cse.c (check_for_label_ref): Move earlier in file.
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "except.h"
38 #include "target.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "hash-set.h"
45 #include "rtl-iter.h"
46
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
61
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75 Registers and "quantity numbers":
76
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
85
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
89
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
92
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
109
110 Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
115
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130 Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
185
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
193
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
197
198 Related expressions:
199
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
206
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
209
210 static int max_qty;
211
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
214
215 static int next_qty;
216
217 /* Per-qty information tracking.
218
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
221
222 `mode' contains the machine mode of this quantity.
223
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
229
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
241
242 struct qty_table_elem
243 {
244 rtx const_rtx;
245 rtx_insn *const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
253 };
254
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
257
258 /* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260 struct change_cc_mode_args
261 {
262 rtx_insn *insn;
263 rtx newreg;
264 };
265
266 #ifdef HAVE_cc0
267 /* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
270
271 Instead, we store below the current and last value assigned to CC0.
272 If it should happen to be a constant, it is stored in preference
273 to the actual assigned value. In case it is a constant, we store
274 the mode in which the constant should be interpreted. */
275
276 static rtx this_insn_cc0, prev_insn_cc0;
277 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
278 #endif
279
280 /* Insn being scanned. */
281
282 static rtx_insn *this_insn;
283 static bool optimize_this_for_speed_p;
284
285 /* Index by register number, gives the number of the next (or
286 previous) register in the chain of registers sharing the same
287 value.
288
289 Or -1 if this register is at the end of the chain.
290
291 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
292
293 /* Per-register equivalence chain. */
294 struct reg_eqv_elem
295 {
296 int next, prev;
297 };
298
299 /* The table of all register equivalence chains. */
300 static struct reg_eqv_elem *reg_eqv_table;
301
302 struct cse_reg_info
303 {
304 /* The timestamp at which this register is initialized. */
305 unsigned int timestamp;
306
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
309
310 /* The number of times the register has been altered in the current
311 basic block. */
312 int reg_tick;
313
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
317 invalid. */
318 int reg_in_table;
319
320 /* The SUBREG that was set when REG_TICK was last incremented. Set
321 to -1 if the last store was to the whole register, not a subreg. */
322 unsigned int subreg_ticked;
323 };
324
325 /* A table of cse_reg_info indexed by register numbers. */
326 static struct cse_reg_info *cse_reg_info_table;
327
328 /* The size of the above table. */
329 static unsigned int cse_reg_info_table_size;
330
331 /* The index of the first entry that has not been initialized. */
332 static unsigned int cse_reg_info_table_first_uninitialized;
333
334 /* The timestamp at the beginning of the current run of
335 cse_extended_basic_block. We increment this variable at the beginning of
336 the current run of cse_extended_basic_block. The timestamp field of a
337 cse_reg_info entry matches the value of this variable if and only
338 if the entry has been initialized during the current run of
339 cse_extended_basic_block. */
340 static unsigned int cse_reg_info_timestamp;
341
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
346
347 static HARD_REG_SET hard_regs_in_table;
348
349 /* True if CSE has altered the CFG. */
350 static bool cse_cfg_altered;
351
352 /* True if CSE has altered conditional jump insns in such a way
353 that jump optimization should be redone. */
354 static bool cse_jumps_altered;
355
356 /* True if we put a LABEL_REF into the hash table for an INSN
357 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
358 to put in the note. */
359 static bool recorded_label_ref;
360
361 /* canon_hash stores 1 in do_not_record
362 if it notices a reference to CC0, PC, or some other volatile
363 subexpression. */
364
365 static int do_not_record;
366
367 /* canon_hash stores 1 in hash_arg_in_memory
368 if it notices a reference to memory within the expression being hashed. */
369
370 static int hash_arg_in_memory;
371
372 /* The hash table contains buckets which are chains of `struct table_elt's,
373 each recording one expression's information.
374 That expression is in the `exp' field.
375
376 The canon_exp field contains a canonical (from the point of view of
377 alias analysis) version of the `exp' field.
378
379 Those elements with the same hash code are chained in both directions
380 through the `next_same_hash' and `prev_same_hash' fields.
381
382 Each set of expressions with equivalent values
383 are on a two-way chain through the `next_same_value'
384 and `prev_same_value' fields, and all point with
385 the `first_same_value' field at the first element in
386 that chain. The chain is in order of increasing cost.
387 Each element's cost value is in its `cost' field.
388
389 The `in_memory' field is nonzero for elements that
390 involve any reference to memory. These elements are removed
391 whenever a write is done to an unidentified location in memory.
392 To be safe, we assume that a memory address is unidentified unless
393 the address is either a symbol constant or a constant plus
394 the frame pointer or argument pointer.
395
396 The `related_value' field is used to connect related expressions
397 (that differ by adding an integer).
398 The related expressions are chained in a circular fashion.
399 `related_value' is zero for expressions for which this
400 chain is not useful.
401
402 The `cost' field stores the cost of this element's expression.
403 The `regcost' field stores the value returned by approx_reg_cost for
404 this element's expression.
405
406 The `is_const' flag is set if the element is a constant (including
407 a fixed address).
408
409 The `flag' field is used as a temporary during some search routines.
410
411 The `mode' field is usually the same as GET_MODE (`exp'), but
412 if `exp' is a CONST_INT and has no machine mode then the `mode'
413 field is the mode it was being used as. Each constant is
414 recorded separately for each mode it is used with. */
415
416 struct table_elt
417 {
418 rtx exp;
419 rtx canon_exp;
420 struct table_elt *next_same_hash;
421 struct table_elt *prev_same_hash;
422 struct table_elt *next_same_value;
423 struct table_elt *prev_same_value;
424 struct table_elt *first_same_value;
425 struct table_elt *related_value;
426 int cost;
427 int regcost;
428 /* The size of this field should match the size
429 of the mode field of struct rtx_def (see rtl.h). */
430 ENUM_BITFIELD(machine_mode) mode : 8;
431 char in_memory;
432 char is_const;
433 char flag;
434 };
435
436 /* We don't want a lot of buckets, because we rarely have very many
437 things stored in the hash table, and a lot of buckets slows
438 down a lot of loops that happen frequently. */
439 #define HASH_SHIFT 5
440 #define HASH_SIZE (1 << HASH_SHIFT)
441 #define HASH_MASK (HASH_SIZE - 1)
442
443 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
444 register (hard registers may require `do_not_record' to be set). */
445
446 #define HASH(X, M) \
447 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
448 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
449 : canon_hash (X, M)) & HASH_MASK)
450
451 /* Like HASH, but without side-effects. */
452 #define SAFE_HASH(X, M) \
453 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
454 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
455 : safe_hash (X, M)) & HASH_MASK)
456
457 /* Determine whether register number N is considered a fixed register for the
458 purpose of approximating register costs.
459 It is desirable to replace other regs with fixed regs, to reduce need for
460 non-fixed hard regs.
461 A reg wins if it is either the frame pointer or designated as fixed. */
462 #define FIXED_REGNO_P(N) \
463 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
464 || fixed_regs[N] || global_regs[N])
465
466 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
467 hard registers and pointers into the frame are the cheapest with a cost
468 of 0. Next come pseudos with a cost of one and other hard registers with
469 a cost of 2. Aside from these special cases, call `rtx_cost'. */
470
471 #define CHEAP_REGNO(N) \
472 (REGNO_PTR_FRAME_P (N) \
473 || (HARD_REGISTER_NUM_P (N) \
474 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
475
476 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
477 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
478
479 /* Get the number of times this register has been updated in this
480 basic block. */
481
482 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
483
484 /* Get the point at which REG was recorded in the table. */
485
486 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
487
488 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
489 SUBREG). */
490
491 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
492
493 /* Get the quantity number for REG. */
494
495 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
496
497 /* Determine if the quantity number for register X represents a valid index
498 into the qty_table. */
499
500 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
501
502 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
503
504 #define CHEAPER(X, Y) \
505 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
506
507 static struct table_elt *table[HASH_SIZE];
508
509 /* Chain of `struct table_elt's made so far for this function
510 but currently removed from the table. */
511
512 static struct table_elt *free_element_chain;
513
514 /* Set to the cost of a constant pool reference if one was found for a
515 symbolic constant. If this was found, it means we should try to
516 convert constants into constant pool entries if they don't fit in
517 the insn. */
518
519 static int constant_pool_entries_cost;
520 static int constant_pool_entries_regcost;
521
522 /* Trace a patch through the CFG. */
523
524 struct branch_path
525 {
526 /* The basic block for this path entry. */
527 basic_block bb;
528 };
529
530 /* This data describes a block that will be processed by
531 cse_extended_basic_block. */
532
533 struct cse_basic_block_data
534 {
535 /* Total number of SETs in block. */
536 int nsets;
537 /* Size of current branch path, if any. */
538 int path_size;
539 /* Current path, indicating which basic_blocks will be processed. */
540 struct branch_path *path;
541 };
542
543
544 /* Pointers to the live in/live out bitmaps for the boundaries of the
545 current EBB. */
546 static bitmap cse_ebb_live_in, cse_ebb_live_out;
547
548 /* A simple bitmap to track which basic blocks have been visited
549 already as part of an already processed extended basic block. */
550 static sbitmap cse_visited_basic_blocks;
551
552 static bool fixed_base_plus_p (rtx x);
553 static int notreg_cost (rtx, enum rtx_code, int);
554 static int preferable (int, int, int, int);
555 static void new_basic_block (void);
556 static void make_new_qty (unsigned int, enum machine_mode);
557 static void make_regs_eqv (unsigned int, unsigned int);
558 static void delete_reg_equiv (unsigned int);
559 static int mention_regs (rtx);
560 static int insert_regs (rtx, struct table_elt *, int);
561 static void remove_from_table (struct table_elt *, unsigned);
562 static void remove_pseudo_from_table (rtx, unsigned);
563 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
564 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
565 static rtx lookup_as_function (rtx, enum rtx_code);
566 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
567 enum machine_mode, int, int);
568 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
569 enum machine_mode);
570 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
571 static void invalidate (rtx, enum machine_mode);
572 static void remove_invalid_refs (unsigned int);
573 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
574 enum machine_mode);
575 static void rehash_using_reg (rtx);
576 static void invalidate_memory (void);
577 static void invalidate_for_call (void);
578 static rtx use_related_value (rtx, struct table_elt *);
579
580 static inline unsigned canon_hash (rtx, enum machine_mode);
581 static inline unsigned safe_hash (rtx, enum machine_mode);
582 static inline unsigned hash_rtx_string (const char *);
583
584 static rtx canon_reg (rtx, rtx_insn *);
585 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
586 enum machine_mode *,
587 enum machine_mode *);
588 static rtx fold_rtx (rtx, rtx_insn *);
589 static rtx equiv_constant (rtx);
590 static void record_jump_equiv (rtx_insn *, bool);
591 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
592 int);
593 static void cse_insn (rtx_insn *);
594 static void cse_prescan_path (struct cse_basic_block_data *);
595 static void invalidate_from_clobbers (rtx_insn *);
596 static void invalidate_from_sets_and_clobbers (rtx_insn *);
597 static rtx cse_process_notes (rtx, rtx, bool *);
598 static void cse_extended_basic_block (struct cse_basic_block_data *);
599 extern void dump_class (struct table_elt*);
600 static void get_cse_reg_info_1 (unsigned int regno);
601 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
602
603 static void flush_hash_table (void);
604 static bool insn_live_p (rtx_insn *, int *);
605 static bool set_live_p (rtx, rtx_insn *, int *);
606 static int cse_change_cc_mode (rtx *, void *);
607 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
608 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
609 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
610 bool);
611 \f
612
613 #undef RTL_HOOKS_GEN_LOWPART
614 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
615
616 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
617 \f
618 /* Nonzero if X has the form (PLUS frame-pointer integer). */
619
620 static bool
621 fixed_base_plus_p (rtx x)
622 {
623 switch (GET_CODE (x))
624 {
625 case REG:
626 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
627 return true;
628 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
629 return true;
630 return false;
631
632 case PLUS:
633 if (!CONST_INT_P (XEXP (x, 1)))
634 return false;
635 return fixed_base_plus_p (XEXP (x, 0));
636
637 default:
638 return false;
639 }
640 }
641
642 /* Dump the expressions in the equivalence class indicated by CLASSP.
643 This function is used only for debugging. */
644 DEBUG_FUNCTION void
645 dump_class (struct table_elt *classp)
646 {
647 struct table_elt *elt;
648
649 fprintf (stderr, "Equivalence chain for ");
650 print_rtl (stderr, classp->exp);
651 fprintf (stderr, ": \n");
652
653 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
654 {
655 print_rtl (stderr, elt->exp);
656 fprintf (stderr, "\n");
657 }
658 }
659
660 /* Return an estimate of the cost of the registers used in an rtx.
661 This is mostly the number of different REG expressions in the rtx;
662 however for some exceptions like fixed registers we use a cost of
663 0. If any other hard register reference occurs, return MAX_COST. */
664
665 static int
666 approx_reg_cost (const_rtx x)
667 {
668 int cost = 0;
669 subrtx_iterator::array_type array;
670 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
671 {
672 const_rtx x = *iter;
673 if (REG_P (x))
674 {
675 unsigned int regno = REGNO (x);
676 if (!CHEAP_REGNO (regno))
677 {
678 if (regno < FIRST_PSEUDO_REGISTER)
679 {
680 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
681 return MAX_COST;
682 cost += 2;
683 }
684 else
685 cost += 1;
686 }
687 }
688 }
689 return cost;
690 }
691
692 /* Return a negative value if an rtx A, whose costs are given by COST_A
693 and REGCOST_A, is more desirable than an rtx B.
694 Return a positive value if A is less desirable, or 0 if the two are
695 equally good. */
696 static int
697 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
698 {
699 /* First, get rid of cases involving expressions that are entirely
700 unwanted. */
701 if (cost_a != cost_b)
702 {
703 if (cost_a == MAX_COST)
704 return 1;
705 if (cost_b == MAX_COST)
706 return -1;
707 }
708
709 /* Avoid extending lifetimes of hardregs. */
710 if (regcost_a != regcost_b)
711 {
712 if (regcost_a == MAX_COST)
713 return 1;
714 if (regcost_b == MAX_COST)
715 return -1;
716 }
717
718 /* Normal operation costs take precedence. */
719 if (cost_a != cost_b)
720 return cost_a - cost_b;
721 /* Only if these are identical consider effects on register pressure. */
722 if (regcost_a != regcost_b)
723 return regcost_a - regcost_b;
724 return 0;
725 }
726
727 /* Internal function, to compute cost when X is not a register; called
728 from COST macro to keep it simple. */
729
730 static int
731 notreg_cost (rtx x, enum rtx_code outer, int opno)
732 {
733 return ((GET_CODE (x) == SUBREG
734 && REG_P (SUBREG_REG (x))
735 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
736 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
737 && (GET_MODE_SIZE (GET_MODE (x))
738 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
739 && subreg_lowpart_p (x)
740 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
741 GET_MODE (SUBREG_REG (x))))
742 ? 0
743 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
744 }
745
746 \f
747 /* Initialize CSE_REG_INFO_TABLE. */
748
749 static void
750 init_cse_reg_info (unsigned int nregs)
751 {
752 /* Do we need to grow the table? */
753 if (nregs > cse_reg_info_table_size)
754 {
755 unsigned int new_size;
756
757 if (cse_reg_info_table_size < 2048)
758 {
759 /* Compute a new size that is a power of 2 and no smaller
760 than the large of NREGS and 64. */
761 new_size = (cse_reg_info_table_size
762 ? cse_reg_info_table_size : 64);
763
764 while (new_size < nregs)
765 new_size *= 2;
766 }
767 else
768 {
769 /* If we need a big table, allocate just enough to hold
770 NREGS registers. */
771 new_size = nregs;
772 }
773
774 /* Reallocate the table with NEW_SIZE entries. */
775 free (cse_reg_info_table);
776 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
777 cse_reg_info_table_size = new_size;
778 cse_reg_info_table_first_uninitialized = 0;
779 }
780
781 /* Do we have all of the first NREGS entries initialized? */
782 if (cse_reg_info_table_first_uninitialized < nregs)
783 {
784 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
785 unsigned int i;
786
787 /* Put the old timestamp on newly allocated entries so that they
788 will all be considered out of date. We do not touch those
789 entries beyond the first NREGS entries to be nice to the
790 virtual memory. */
791 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
792 cse_reg_info_table[i].timestamp = old_timestamp;
793
794 cse_reg_info_table_first_uninitialized = nregs;
795 }
796 }
797
798 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
799
800 static void
801 get_cse_reg_info_1 (unsigned int regno)
802 {
803 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
804 entry will be considered to have been initialized. */
805 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
806
807 /* Initialize the rest of the entry. */
808 cse_reg_info_table[regno].reg_tick = 1;
809 cse_reg_info_table[regno].reg_in_table = -1;
810 cse_reg_info_table[regno].subreg_ticked = -1;
811 cse_reg_info_table[regno].reg_qty = -regno - 1;
812 }
813
814 /* Find a cse_reg_info entry for REGNO. */
815
816 static inline struct cse_reg_info *
817 get_cse_reg_info (unsigned int regno)
818 {
819 struct cse_reg_info *p = &cse_reg_info_table[regno];
820
821 /* If this entry has not been initialized, go ahead and initialize
822 it. */
823 if (p->timestamp != cse_reg_info_timestamp)
824 get_cse_reg_info_1 (regno);
825
826 return p;
827 }
828
829 /* Clear the hash table and initialize each register with its own quantity,
830 for a new basic block. */
831
832 static void
833 new_basic_block (void)
834 {
835 int i;
836
837 next_qty = 0;
838
839 /* Invalidate cse_reg_info_table. */
840 cse_reg_info_timestamp++;
841
842 /* Clear out hash table state for this pass. */
843 CLEAR_HARD_REG_SET (hard_regs_in_table);
844
845 /* The per-quantity values used to be initialized here, but it is
846 much faster to initialize each as it is made in `make_new_qty'. */
847
848 for (i = 0; i < HASH_SIZE; i++)
849 {
850 struct table_elt *first;
851
852 first = table[i];
853 if (first != NULL)
854 {
855 struct table_elt *last = first;
856
857 table[i] = NULL;
858
859 while (last->next_same_hash != NULL)
860 last = last->next_same_hash;
861
862 /* Now relink this hash entire chain into
863 the free element list. */
864
865 last->next_same_hash = free_element_chain;
866 free_element_chain = first;
867 }
868 }
869
870 #ifdef HAVE_cc0
871 prev_insn_cc0 = 0;
872 #endif
873 }
874
875 /* Say that register REG contains a quantity in mode MODE not in any
876 register before and initialize that quantity. */
877
878 static void
879 make_new_qty (unsigned int reg, enum machine_mode mode)
880 {
881 int q;
882 struct qty_table_elem *ent;
883 struct reg_eqv_elem *eqv;
884
885 gcc_assert (next_qty < max_qty);
886
887 q = REG_QTY (reg) = next_qty++;
888 ent = &qty_table[q];
889 ent->first_reg = reg;
890 ent->last_reg = reg;
891 ent->mode = mode;
892 ent->const_rtx = ent->const_insn = NULL;
893 ent->comparison_code = UNKNOWN;
894
895 eqv = &reg_eqv_table[reg];
896 eqv->next = eqv->prev = -1;
897 }
898
899 /* Make reg NEW equivalent to reg OLD.
900 OLD is not changing; NEW is. */
901
902 static void
903 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
904 {
905 unsigned int lastr, firstr;
906 int q = REG_QTY (old_reg);
907 struct qty_table_elem *ent;
908
909 ent = &qty_table[q];
910
911 /* Nothing should become eqv until it has a "non-invalid" qty number. */
912 gcc_assert (REGNO_QTY_VALID_P (old_reg));
913
914 REG_QTY (new_reg) = q;
915 firstr = ent->first_reg;
916 lastr = ent->last_reg;
917
918 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
919 hard regs. Among pseudos, if NEW will live longer than any other reg
920 of the same qty, and that is beyond the current basic block,
921 make it the new canonical replacement for this qty. */
922 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
923 /* Certain fixed registers might be of the class NO_REGS. This means
924 that not only can they not be allocated by the compiler, but
925 they cannot be used in substitutions or canonicalizations
926 either. */
927 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
928 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
929 || (new_reg >= FIRST_PSEUDO_REGISTER
930 && (firstr < FIRST_PSEUDO_REGISTER
931 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
932 && !bitmap_bit_p (cse_ebb_live_out, firstr))
933 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
934 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
935 {
936 reg_eqv_table[firstr].prev = new_reg;
937 reg_eqv_table[new_reg].next = firstr;
938 reg_eqv_table[new_reg].prev = -1;
939 ent->first_reg = new_reg;
940 }
941 else
942 {
943 /* If NEW is a hard reg (known to be non-fixed), insert at end.
944 Otherwise, insert before any non-fixed hard regs that are at the
945 end. Registers of class NO_REGS cannot be used as an
946 equivalent for anything. */
947 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
948 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
949 && new_reg >= FIRST_PSEUDO_REGISTER)
950 lastr = reg_eqv_table[lastr].prev;
951 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
952 if (reg_eqv_table[lastr].next >= 0)
953 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
954 else
955 qty_table[q].last_reg = new_reg;
956 reg_eqv_table[lastr].next = new_reg;
957 reg_eqv_table[new_reg].prev = lastr;
958 }
959 }
960
961 /* Remove REG from its equivalence class. */
962
963 static void
964 delete_reg_equiv (unsigned int reg)
965 {
966 struct qty_table_elem *ent;
967 int q = REG_QTY (reg);
968 int p, n;
969
970 /* If invalid, do nothing. */
971 if (! REGNO_QTY_VALID_P (reg))
972 return;
973
974 ent = &qty_table[q];
975
976 p = reg_eqv_table[reg].prev;
977 n = reg_eqv_table[reg].next;
978
979 if (n != -1)
980 reg_eqv_table[n].prev = p;
981 else
982 ent->last_reg = p;
983 if (p != -1)
984 reg_eqv_table[p].next = n;
985 else
986 ent->first_reg = n;
987
988 REG_QTY (reg) = -reg - 1;
989 }
990
991 /* Remove any invalid expressions from the hash table
992 that refer to any of the registers contained in expression X.
993
994 Make sure that newly inserted references to those registers
995 as subexpressions will be considered valid.
996
997 mention_regs is not called when a register itself
998 is being stored in the table.
999
1000 Return 1 if we have done something that may have changed the hash code
1001 of X. */
1002
1003 static int
1004 mention_regs (rtx x)
1005 {
1006 enum rtx_code code;
1007 int i, j;
1008 const char *fmt;
1009 int changed = 0;
1010
1011 if (x == 0)
1012 return 0;
1013
1014 code = GET_CODE (x);
1015 if (code == REG)
1016 {
1017 unsigned int regno = REGNO (x);
1018 unsigned int endregno = END_REGNO (x);
1019 unsigned int i;
1020
1021 for (i = regno; i < endregno; i++)
1022 {
1023 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1024 remove_invalid_refs (i);
1025
1026 REG_IN_TABLE (i) = REG_TICK (i);
1027 SUBREG_TICKED (i) = -1;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1034 pseudo if they don't use overlapping words. We handle only pseudos
1035 here for simplicity. */
1036 if (code == SUBREG && REG_P (SUBREG_REG (x))
1037 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1038 {
1039 unsigned int i = REGNO (SUBREG_REG (x));
1040
1041 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1042 {
1043 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1044 the last store to this register really stored into this
1045 subreg, then remove the memory of this subreg.
1046 Otherwise, remove any memory of the entire register and
1047 all its subregs from the table. */
1048 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1049 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1050 remove_invalid_refs (i);
1051 else
1052 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1053 }
1054
1055 REG_IN_TABLE (i) = REG_TICK (i);
1056 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1057 return 0;
1058 }
1059
1060 /* If X is a comparison or a COMPARE and either operand is a register
1061 that does not have a quantity, give it one. This is so that a later
1062 call to record_jump_equiv won't cause X to be assigned a different
1063 hash code and not found in the table after that call.
1064
1065 It is not necessary to do this here, since rehash_using_reg can
1066 fix up the table later, but doing this here eliminates the need to
1067 call that expensive function in the most common case where the only
1068 use of the register is in the comparison. */
1069
1070 if (code == COMPARE || COMPARISON_P (x))
1071 {
1072 if (REG_P (XEXP (x, 0))
1073 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1074 if (insert_regs (XEXP (x, 0), NULL, 0))
1075 {
1076 rehash_using_reg (XEXP (x, 0));
1077 changed = 1;
1078 }
1079
1080 if (REG_P (XEXP (x, 1))
1081 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1082 if (insert_regs (XEXP (x, 1), NULL, 0))
1083 {
1084 rehash_using_reg (XEXP (x, 1));
1085 changed = 1;
1086 }
1087 }
1088
1089 fmt = GET_RTX_FORMAT (code);
1090 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1091 if (fmt[i] == 'e')
1092 changed |= mention_regs (XEXP (x, i));
1093 else if (fmt[i] == 'E')
1094 for (j = 0; j < XVECLEN (x, i); j++)
1095 changed |= mention_regs (XVECEXP (x, i, j));
1096
1097 return changed;
1098 }
1099
1100 /* Update the register quantities for inserting X into the hash table
1101 with a value equivalent to CLASSP.
1102 (If the class does not contain a REG, it is irrelevant.)
1103 If MODIFIED is nonzero, X is a destination; it is being modified.
1104 Note that delete_reg_equiv should be called on a register
1105 before insert_regs is done on that register with MODIFIED != 0.
1106
1107 Nonzero value means that elements of reg_qty have changed
1108 so X's hash code may be different. */
1109
1110 static int
1111 insert_regs (rtx x, struct table_elt *classp, int modified)
1112 {
1113 if (REG_P (x))
1114 {
1115 unsigned int regno = REGNO (x);
1116 int qty_valid;
1117
1118 /* If REGNO is in the equivalence table already but is of the
1119 wrong mode for that equivalence, don't do anything here. */
1120
1121 qty_valid = REGNO_QTY_VALID_P (regno);
1122 if (qty_valid)
1123 {
1124 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1125
1126 if (ent->mode != GET_MODE (x))
1127 return 0;
1128 }
1129
1130 if (modified || ! qty_valid)
1131 {
1132 if (classp)
1133 for (classp = classp->first_same_value;
1134 classp != 0;
1135 classp = classp->next_same_value)
1136 if (REG_P (classp->exp)
1137 && GET_MODE (classp->exp) == GET_MODE (x))
1138 {
1139 unsigned c_regno = REGNO (classp->exp);
1140
1141 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1142
1143 /* Suppose that 5 is hard reg and 100 and 101 are
1144 pseudos. Consider
1145
1146 (set (reg:si 100) (reg:si 5))
1147 (set (reg:si 5) (reg:si 100))
1148 (set (reg:di 101) (reg:di 5))
1149
1150 We would now set REG_QTY (101) = REG_QTY (5), but the
1151 entry for 5 is in SImode. When we use this later in
1152 copy propagation, we get the register in wrong mode. */
1153 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1154 continue;
1155
1156 make_regs_eqv (regno, c_regno);
1157 return 1;
1158 }
1159
1160 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1161 than REG_IN_TABLE to find out if there was only a single preceding
1162 invalidation - for the SUBREG - or another one, which would be
1163 for the full register. However, if we find here that REG_TICK
1164 indicates that the register is invalid, it means that it has
1165 been invalidated in a separate operation. The SUBREG might be used
1166 now (then this is a recursive call), or we might use the full REG
1167 now and a SUBREG of it later. So bump up REG_TICK so that
1168 mention_regs will do the right thing. */
1169 if (! modified
1170 && REG_IN_TABLE (regno) >= 0
1171 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1172 REG_TICK (regno)++;
1173 make_new_qty (regno, GET_MODE (x));
1174 return 1;
1175 }
1176
1177 return 0;
1178 }
1179
1180 /* If X is a SUBREG, we will likely be inserting the inner register in the
1181 table. If that register doesn't have an assigned quantity number at
1182 this point but does later, the insertion that we will be doing now will
1183 not be accessible because its hash code will have changed. So assign
1184 a quantity number now. */
1185
1186 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1187 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1188 {
1189 insert_regs (SUBREG_REG (x), NULL, 0);
1190 mention_regs (x);
1191 return 1;
1192 }
1193 else
1194 return mention_regs (x);
1195 }
1196 \f
1197
1198 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1199 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1200 CST is equal to an anchor. */
1201
1202 static bool
1203 compute_const_anchors (rtx cst,
1204 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1205 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1206 {
1207 HOST_WIDE_INT n = INTVAL (cst);
1208
1209 *lower_base = n & ~(targetm.const_anchor - 1);
1210 if (*lower_base == n)
1211 return false;
1212
1213 *upper_base =
1214 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1215 *upper_offs = n - *upper_base;
1216 *lower_offs = n - *lower_base;
1217 return true;
1218 }
1219
1220 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1221
1222 static void
1223 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1224 enum machine_mode mode)
1225 {
1226 struct table_elt *elt;
1227 unsigned hash;
1228 rtx anchor_exp;
1229 rtx exp;
1230
1231 anchor_exp = GEN_INT (anchor);
1232 hash = HASH (anchor_exp, mode);
1233 elt = lookup (anchor_exp, hash, mode);
1234 if (!elt)
1235 elt = insert (anchor_exp, NULL, hash, mode);
1236
1237 exp = plus_constant (mode, reg, offs);
1238 /* REG has just been inserted and the hash codes recomputed. */
1239 mention_regs (exp);
1240 hash = HASH (exp, mode);
1241
1242 /* Use the cost of the register rather than the whole expression. When
1243 looking up constant anchors we will further offset the corresponding
1244 expression therefore it does not make sense to prefer REGs over
1245 reg-immediate additions. Prefer instead the oldest expression. Also
1246 don't prefer pseudos over hard regs so that we derive constants in
1247 argument registers from other argument registers rather than from the
1248 original pseudo that was used to synthesize the constant. */
1249 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1250 }
1251
1252 /* The constant CST is equivalent to the register REG. Create
1253 equivalences between the two anchors of CST and the corresponding
1254 register-offset expressions using REG. */
1255
1256 static void
1257 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1258 {
1259 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1260
1261 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1262 &upper_base, &upper_offs))
1263 return;
1264
1265 /* Ignore anchors of value 0. Constants accessible from zero are
1266 simple. */
1267 if (lower_base != 0)
1268 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1269
1270 if (upper_base != 0)
1271 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1272 }
1273
1274 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1275 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1276 valid expression. Return the cheapest and oldest of such expressions. In
1277 *OLD, return how old the resulting expression is compared to the other
1278 equivalent expressions. */
1279
1280 static rtx
1281 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1282 unsigned *old)
1283 {
1284 struct table_elt *elt;
1285 unsigned idx;
1286 struct table_elt *match_elt;
1287 rtx match;
1288
1289 /* Find the cheapest and *oldest* expression to maximize the chance of
1290 reusing the same pseudo. */
1291
1292 match_elt = NULL;
1293 match = NULL_RTX;
1294 for (elt = anchor_elt->first_same_value, idx = 0;
1295 elt;
1296 elt = elt->next_same_value, idx++)
1297 {
1298 if (match_elt && CHEAPER (match_elt, elt))
1299 return match;
1300
1301 if (REG_P (elt->exp)
1302 || (GET_CODE (elt->exp) == PLUS
1303 && REG_P (XEXP (elt->exp, 0))
1304 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1305 {
1306 rtx x;
1307
1308 /* Ignore expressions that are no longer valid. */
1309 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1310 continue;
1311
1312 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1313 if (REG_P (x)
1314 || (GET_CODE (x) == PLUS
1315 && IN_RANGE (INTVAL (XEXP (x, 1)),
1316 -targetm.const_anchor,
1317 targetm.const_anchor - 1)))
1318 {
1319 match = x;
1320 match_elt = elt;
1321 *old = idx;
1322 }
1323 }
1324 }
1325
1326 return match;
1327 }
1328
1329 /* Try to express the constant SRC_CONST using a register+offset expression
1330 derived from a constant anchor. Return it if successful or NULL_RTX,
1331 otherwise. */
1332
1333 static rtx
1334 try_const_anchors (rtx src_const, enum machine_mode mode)
1335 {
1336 struct table_elt *lower_elt, *upper_elt;
1337 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1338 rtx lower_anchor_rtx, upper_anchor_rtx;
1339 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1340 unsigned lower_old, upper_old;
1341
1342 /* CONST_INT is used for CC modes, but we should leave those alone. */
1343 if (GET_MODE_CLASS (mode) == MODE_CC)
1344 return NULL_RTX;
1345
1346 gcc_assert (SCALAR_INT_MODE_P (mode));
1347 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1348 &upper_base, &upper_offs))
1349 return NULL_RTX;
1350
1351 lower_anchor_rtx = GEN_INT (lower_base);
1352 upper_anchor_rtx = GEN_INT (upper_base);
1353 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1354 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1355
1356 if (lower_elt)
1357 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1358 if (upper_elt)
1359 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1360
1361 if (!lower_exp)
1362 return upper_exp;
1363 if (!upper_exp)
1364 return lower_exp;
1365
1366 /* Return the older expression. */
1367 return (upper_old > lower_old ? upper_exp : lower_exp);
1368 }
1369 \f
1370 /* Look in or update the hash table. */
1371
1372 /* Remove table element ELT from use in the table.
1373 HASH is its hash code, made using the HASH macro.
1374 It's an argument because often that is known in advance
1375 and we save much time not recomputing it. */
1376
1377 static void
1378 remove_from_table (struct table_elt *elt, unsigned int hash)
1379 {
1380 if (elt == 0)
1381 return;
1382
1383 /* Mark this element as removed. See cse_insn. */
1384 elt->first_same_value = 0;
1385
1386 /* Remove the table element from its equivalence class. */
1387
1388 {
1389 struct table_elt *prev = elt->prev_same_value;
1390 struct table_elt *next = elt->next_same_value;
1391
1392 if (next)
1393 next->prev_same_value = prev;
1394
1395 if (prev)
1396 prev->next_same_value = next;
1397 else
1398 {
1399 struct table_elt *newfirst = next;
1400 while (next)
1401 {
1402 next->first_same_value = newfirst;
1403 next = next->next_same_value;
1404 }
1405 }
1406 }
1407
1408 /* Remove the table element from its hash bucket. */
1409
1410 {
1411 struct table_elt *prev = elt->prev_same_hash;
1412 struct table_elt *next = elt->next_same_hash;
1413
1414 if (next)
1415 next->prev_same_hash = prev;
1416
1417 if (prev)
1418 prev->next_same_hash = next;
1419 else if (table[hash] == elt)
1420 table[hash] = next;
1421 else
1422 {
1423 /* This entry is not in the proper hash bucket. This can happen
1424 when two classes were merged by `merge_equiv_classes'. Search
1425 for the hash bucket that it heads. This happens only very
1426 rarely, so the cost is acceptable. */
1427 for (hash = 0; hash < HASH_SIZE; hash++)
1428 if (table[hash] == elt)
1429 table[hash] = next;
1430 }
1431 }
1432
1433 /* Remove the table element from its related-value circular chain. */
1434
1435 if (elt->related_value != 0 && elt->related_value != elt)
1436 {
1437 struct table_elt *p = elt->related_value;
1438
1439 while (p->related_value != elt)
1440 p = p->related_value;
1441 p->related_value = elt->related_value;
1442 if (p->related_value == p)
1443 p->related_value = 0;
1444 }
1445
1446 /* Now add it to the free element chain. */
1447 elt->next_same_hash = free_element_chain;
1448 free_element_chain = elt;
1449 }
1450
1451 /* Same as above, but X is a pseudo-register. */
1452
1453 static void
1454 remove_pseudo_from_table (rtx x, unsigned int hash)
1455 {
1456 struct table_elt *elt;
1457
1458 /* Because a pseudo-register can be referenced in more than one
1459 mode, we might have to remove more than one table entry. */
1460 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1461 remove_from_table (elt, hash);
1462 }
1463
1464 /* Look up X in the hash table and return its table element,
1465 or 0 if X is not in the table.
1466
1467 MODE is the machine-mode of X, or if X is an integer constant
1468 with VOIDmode then MODE is the mode with which X will be used.
1469
1470 Here we are satisfied to find an expression whose tree structure
1471 looks like X. */
1472
1473 static struct table_elt *
1474 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1475 {
1476 struct table_elt *p;
1477
1478 for (p = table[hash]; p; p = p->next_same_hash)
1479 if (mode == p->mode && ((x == p->exp && REG_P (x))
1480 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1481 return p;
1482
1483 return 0;
1484 }
1485
1486 /* Like `lookup' but don't care whether the table element uses invalid regs.
1487 Also ignore discrepancies in the machine mode of a register. */
1488
1489 static struct table_elt *
1490 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1491 {
1492 struct table_elt *p;
1493
1494 if (REG_P (x))
1495 {
1496 unsigned int regno = REGNO (x);
1497
1498 /* Don't check the machine mode when comparing registers;
1499 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1500 for (p = table[hash]; p; p = p->next_same_hash)
1501 if (REG_P (p->exp)
1502 && REGNO (p->exp) == regno)
1503 return p;
1504 }
1505 else
1506 {
1507 for (p = table[hash]; p; p = p->next_same_hash)
1508 if (mode == p->mode
1509 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1510 return p;
1511 }
1512
1513 return 0;
1514 }
1515
1516 /* Look for an expression equivalent to X and with code CODE.
1517 If one is found, return that expression. */
1518
1519 static rtx
1520 lookup_as_function (rtx x, enum rtx_code code)
1521 {
1522 struct table_elt *p
1523 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1524
1525 if (p == 0)
1526 return 0;
1527
1528 for (p = p->first_same_value; p; p = p->next_same_value)
1529 if (GET_CODE (p->exp) == code
1530 /* Make sure this is a valid entry in the table. */
1531 && exp_equiv_p (p->exp, p->exp, 1, false))
1532 return p->exp;
1533
1534 return 0;
1535 }
1536
1537 /* Insert X in the hash table, assuming HASH is its hash code and
1538 CLASSP is an element of the class it should go in (or 0 if a new
1539 class should be made). COST is the code of X and reg_cost is the
1540 cost of registers in X. It is inserted at the proper position to
1541 keep the class in the order cheapest first.
1542
1543 MODE is the machine-mode of X, or if X is an integer constant
1544 with VOIDmode then MODE is the mode with which X will be used.
1545
1546 For elements of equal cheapness, the most recent one
1547 goes in front, except that the first element in the list
1548 remains first unless a cheaper element is added. The order of
1549 pseudo-registers does not matter, as canon_reg will be called to
1550 find the cheapest when a register is retrieved from the table.
1551
1552 The in_memory field in the hash table element is set to 0.
1553 The caller must set it nonzero if appropriate.
1554
1555 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1556 and if insert_regs returns a nonzero value
1557 you must then recompute its hash code before calling here.
1558
1559 If necessary, update table showing constant values of quantities. */
1560
1561 static struct table_elt *
1562 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1563 enum machine_mode mode, int cost, int reg_cost)
1564 {
1565 struct table_elt *elt;
1566
1567 /* If X is a register and we haven't made a quantity for it,
1568 something is wrong. */
1569 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1570
1571 /* If X is a hard register, show it is being put in the table. */
1572 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1573 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1574
1575 /* Put an element for X into the right hash bucket. */
1576
1577 elt = free_element_chain;
1578 if (elt)
1579 free_element_chain = elt->next_same_hash;
1580 else
1581 elt = XNEW (struct table_elt);
1582
1583 elt->exp = x;
1584 elt->canon_exp = NULL_RTX;
1585 elt->cost = cost;
1586 elt->regcost = reg_cost;
1587 elt->next_same_value = 0;
1588 elt->prev_same_value = 0;
1589 elt->next_same_hash = table[hash];
1590 elt->prev_same_hash = 0;
1591 elt->related_value = 0;
1592 elt->in_memory = 0;
1593 elt->mode = mode;
1594 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1595
1596 if (table[hash])
1597 table[hash]->prev_same_hash = elt;
1598 table[hash] = elt;
1599
1600 /* Put it into the proper value-class. */
1601 if (classp)
1602 {
1603 classp = classp->first_same_value;
1604 if (CHEAPER (elt, classp))
1605 /* Insert at the head of the class. */
1606 {
1607 struct table_elt *p;
1608 elt->next_same_value = classp;
1609 classp->prev_same_value = elt;
1610 elt->first_same_value = elt;
1611
1612 for (p = classp; p; p = p->next_same_value)
1613 p->first_same_value = elt;
1614 }
1615 else
1616 {
1617 /* Insert not at head of the class. */
1618 /* Put it after the last element cheaper than X. */
1619 struct table_elt *p, *next;
1620
1621 for (p = classp;
1622 (next = p->next_same_value) && CHEAPER (next, elt);
1623 p = next)
1624 ;
1625
1626 /* Put it after P and before NEXT. */
1627 elt->next_same_value = next;
1628 if (next)
1629 next->prev_same_value = elt;
1630
1631 elt->prev_same_value = p;
1632 p->next_same_value = elt;
1633 elt->first_same_value = classp;
1634 }
1635 }
1636 else
1637 elt->first_same_value = elt;
1638
1639 /* If this is a constant being set equivalent to a register or a register
1640 being set equivalent to a constant, note the constant equivalence.
1641
1642 If this is a constant, it cannot be equivalent to a different constant,
1643 and a constant is the only thing that can be cheaper than a register. So
1644 we know the register is the head of the class (before the constant was
1645 inserted).
1646
1647 If this is a register that is not already known equivalent to a
1648 constant, we must check the entire class.
1649
1650 If this is a register that is already known equivalent to an insn,
1651 update the qtys `const_insn' to show that `this_insn' is the latest
1652 insn making that quantity equivalent to the constant. */
1653
1654 if (elt->is_const && classp && REG_P (classp->exp)
1655 && !REG_P (x))
1656 {
1657 int exp_q = REG_QTY (REGNO (classp->exp));
1658 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1659
1660 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1661 exp_ent->const_insn = this_insn;
1662 }
1663
1664 else if (REG_P (x)
1665 && classp
1666 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1667 && ! elt->is_const)
1668 {
1669 struct table_elt *p;
1670
1671 for (p = classp; p != 0; p = p->next_same_value)
1672 {
1673 if (p->is_const && !REG_P (p->exp))
1674 {
1675 int x_q = REG_QTY (REGNO (x));
1676 struct qty_table_elem *x_ent = &qty_table[x_q];
1677
1678 x_ent->const_rtx
1679 = gen_lowpart (GET_MODE (x), p->exp);
1680 x_ent->const_insn = this_insn;
1681 break;
1682 }
1683 }
1684 }
1685
1686 else if (REG_P (x)
1687 && qty_table[REG_QTY (REGNO (x))].const_rtx
1688 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1689 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1690
1691 /* If this is a constant with symbolic value,
1692 and it has a term with an explicit integer value,
1693 link it up with related expressions. */
1694 if (GET_CODE (x) == CONST)
1695 {
1696 rtx subexp = get_related_value (x);
1697 unsigned subhash;
1698 struct table_elt *subelt, *subelt_prev;
1699
1700 if (subexp != 0)
1701 {
1702 /* Get the integer-free subexpression in the hash table. */
1703 subhash = SAFE_HASH (subexp, mode);
1704 subelt = lookup (subexp, subhash, mode);
1705 if (subelt == 0)
1706 subelt = insert (subexp, NULL, subhash, mode);
1707 /* Initialize SUBELT's circular chain if it has none. */
1708 if (subelt->related_value == 0)
1709 subelt->related_value = subelt;
1710 /* Find the element in the circular chain that precedes SUBELT. */
1711 subelt_prev = subelt;
1712 while (subelt_prev->related_value != subelt)
1713 subelt_prev = subelt_prev->related_value;
1714 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1715 This way the element that follows SUBELT is the oldest one. */
1716 elt->related_value = subelt_prev->related_value;
1717 subelt_prev->related_value = elt;
1718 }
1719 }
1720
1721 return elt;
1722 }
1723
1724 /* Wrap insert_with_costs by passing the default costs. */
1725
1726 static struct table_elt *
1727 insert (rtx x, struct table_elt *classp, unsigned int hash,
1728 enum machine_mode mode)
1729 {
1730 return
1731 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1732 }
1733
1734 \f
1735 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1736 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1737 the two classes equivalent.
1738
1739 CLASS1 will be the surviving class; CLASS2 should not be used after this
1740 call.
1741
1742 Any invalid entries in CLASS2 will not be copied. */
1743
1744 static void
1745 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1746 {
1747 struct table_elt *elt, *next, *new_elt;
1748
1749 /* Ensure we start with the head of the classes. */
1750 class1 = class1->first_same_value;
1751 class2 = class2->first_same_value;
1752
1753 /* If they were already equal, forget it. */
1754 if (class1 == class2)
1755 return;
1756
1757 for (elt = class2; elt; elt = next)
1758 {
1759 unsigned int hash;
1760 rtx exp = elt->exp;
1761 enum machine_mode mode = elt->mode;
1762
1763 next = elt->next_same_value;
1764
1765 /* Remove old entry, make a new one in CLASS1's class.
1766 Don't do this for invalid entries as we cannot find their
1767 hash code (it also isn't necessary). */
1768 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1769 {
1770 bool need_rehash = false;
1771
1772 hash_arg_in_memory = 0;
1773 hash = HASH (exp, mode);
1774
1775 if (REG_P (exp))
1776 {
1777 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1778 delete_reg_equiv (REGNO (exp));
1779 }
1780
1781 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1782 remove_pseudo_from_table (exp, hash);
1783 else
1784 remove_from_table (elt, hash);
1785
1786 if (insert_regs (exp, class1, 0) || need_rehash)
1787 {
1788 rehash_using_reg (exp);
1789 hash = HASH (exp, mode);
1790 }
1791 new_elt = insert (exp, class1, hash, mode);
1792 new_elt->in_memory = hash_arg_in_memory;
1793 }
1794 }
1795 }
1796 \f
1797 /* Flush the entire hash table. */
1798
1799 static void
1800 flush_hash_table (void)
1801 {
1802 int i;
1803 struct table_elt *p;
1804
1805 for (i = 0; i < HASH_SIZE; i++)
1806 for (p = table[i]; p; p = table[i])
1807 {
1808 /* Note that invalidate can remove elements
1809 after P in the current hash chain. */
1810 if (REG_P (p->exp))
1811 invalidate (p->exp, VOIDmode);
1812 else
1813 remove_from_table (p, i);
1814 }
1815 }
1816 \f
1817 /* Check whether an anti dependence exists between X and EXP. MODE and
1818 ADDR are as for canon_anti_dependence. */
1819
1820 static bool
1821 check_dependence (const_rtx x, rtx exp, enum machine_mode mode, rtx addr)
1822 {
1823 subrtx_iterator::array_type array;
1824 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1825 {
1826 const_rtx x = *iter;
1827 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1828 return true;
1829 }
1830 return false;
1831 }
1832 \f
1833 /* Remove from the hash table, or mark as invalid, all expressions whose
1834 values could be altered by storing in X. X is a register, a subreg, or
1835 a memory reference with nonvarying address (because, when a memory
1836 reference with a varying address is stored in, all memory references are
1837 removed by invalidate_memory so specific invalidation is superfluous).
1838 FULL_MODE, if not VOIDmode, indicates that this much should be
1839 invalidated instead of just the amount indicated by the mode of X. This
1840 is only used for bitfield stores into memory.
1841
1842 A nonvarying address may be just a register or just a symbol reference,
1843 or it may be either of those plus a numeric offset. */
1844
1845 static void
1846 invalidate (rtx x, enum machine_mode full_mode)
1847 {
1848 int i;
1849 struct table_elt *p;
1850 rtx addr;
1851
1852 switch (GET_CODE (x))
1853 {
1854 case REG:
1855 {
1856 /* If X is a register, dependencies on its contents are recorded
1857 through the qty number mechanism. Just change the qty number of
1858 the register, mark it as invalid for expressions that refer to it,
1859 and remove it itself. */
1860 unsigned int regno = REGNO (x);
1861 unsigned int hash = HASH (x, GET_MODE (x));
1862
1863 /* Remove REGNO from any quantity list it might be on and indicate
1864 that its value might have changed. If it is a pseudo, remove its
1865 entry from the hash table.
1866
1867 For a hard register, we do the first two actions above for any
1868 additional hard registers corresponding to X. Then, if any of these
1869 registers are in the table, we must remove any REG entries that
1870 overlap these registers. */
1871
1872 delete_reg_equiv (regno);
1873 REG_TICK (regno)++;
1874 SUBREG_TICKED (regno) = -1;
1875
1876 if (regno >= FIRST_PSEUDO_REGISTER)
1877 remove_pseudo_from_table (x, hash);
1878 else
1879 {
1880 HOST_WIDE_INT in_table
1881 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1882 unsigned int endregno = END_HARD_REGNO (x);
1883 unsigned int tregno, tendregno, rn;
1884 struct table_elt *p, *next;
1885
1886 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1887
1888 for (rn = regno + 1; rn < endregno; rn++)
1889 {
1890 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1891 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1892 delete_reg_equiv (rn);
1893 REG_TICK (rn)++;
1894 SUBREG_TICKED (rn) = -1;
1895 }
1896
1897 if (in_table)
1898 for (hash = 0; hash < HASH_SIZE; hash++)
1899 for (p = table[hash]; p; p = next)
1900 {
1901 next = p->next_same_hash;
1902
1903 if (!REG_P (p->exp)
1904 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1905 continue;
1906
1907 tregno = REGNO (p->exp);
1908 tendregno = END_HARD_REGNO (p->exp);
1909 if (tendregno > regno && tregno < endregno)
1910 remove_from_table (p, hash);
1911 }
1912 }
1913 }
1914 return;
1915
1916 case SUBREG:
1917 invalidate (SUBREG_REG (x), VOIDmode);
1918 return;
1919
1920 case PARALLEL:
1921 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1922 invalidate (XVECEXP (x, 0, i), VOIDmode);
1923 return;
1924
1925 case EXPR_LIST:
1926 /* This is part of a disjoint return value; extract the location in
1927 question ignoring the offset. */
1928 invalidate (XEXP (x, 0), VOIDmode);
1929 return;
1930
1931 case MEM:
1932 addr = canon_rtx (get_addr (XEXP (x, 0)));
1933 /* Calculate the canonical version of X here so that
1934 true_dependence doesn't generate new RTL for X on each call. */
1935 x = canon_rtx (x);
1936
1937 /* Remove all hash table elements that refer to overlapping pieces of
1938 memory. */
1939 if (full_mode == VOIDmode)
1940 full_mode = GET_MODE (x);
1941
1942 for (i = 0; i < HASH_SIZE; i++)
1943 {
1944 struct table_elt *next;
1945
1946 for (p = table[i]; p; p = next)
1947 {
1948 next = p->next_same_hash;
1949 if (p->in_memory)
1950 {
1951 /* Just canonicalize the expression once;
1952 otherwise each time we call invalidate
1953 true_dependence will canonicalize the
1954 expression again. */
1955 if (!p->canon_exp)
1956 p->canon_exp = canon_rtx (p->exp);
1957 if (check_dependence (p->canon_exp, x, full_mode, addr))
1958 remove_from_table (p, i);
1959 }
1960 }
1961 }
1962 return;
1963
1964 default:
1965 gcc_unreachable ();
1966 }
1967 }
1968 \f
1969 /* Remove all expressions that refer to register REGNO,
1970 since they are already invalid, and we are about to
1971 mark that register valid again and don't want the old
1972 expressions to reappear as valid. */
1973
1974 static void
1975 remove_invalid_refs (unsigned int regno)
1976 {
1977 unsigned int i;
1978 struct table_elt *p, *next;
1979
1980 for (i = 0; i < HASH_SIZE; i++)
1981 for (p = table[i]; p; p = next)
1982 {
1983 next = p->next_same_hash;
1984 if (!REG_P (p->exp)
1985 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1986 remove_from_table (p, i);
1987 }
1988 }
1989
1990 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1991 and mode MODE. */
1992 static void
1993 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1994 enum machine_mode mode)
1995 {
1996 unsigned int i;
1997 struct table_elt *p, *next;
1998 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1999
2000 for (i = 0; i < HASH_SIZE; i++)
2001 for (p = table[i]; p; p = next)
2002 {
2003 rtx exp = p->exp;
2004 next = p->next_same_hash;
2005
2006 if (!REG_P (exp)
2007 && (GET_CODE (exp) != SUBREG
2008 || !REG_P (SUBREG_REG (exp))
2009 || REGNO (SUBREG_REG (exp)) != regno
2010 || (((SUBREG_BYTE (exp)
2011 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2012 && SUBREG_BYTE (exp) <= end))
2013 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2014 remove_from_table (p, i);
2015 }
2016 }
2017 \f
2018 /* Recompute the hash codes of any valid entries in the hash table that
2019 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2020
2021 This is called when we make a jump equivalence. */
2022
2023 static void
2024 rehash_using_reg (rtx x)
2025 {
2026 unsigned int i;
2027 struct table_elt *p, *next;
2028 unsigned hash;
2029
2030 if (GET_CODE (x) == SUBREG)
2031 x = SUBREG_REG (x);
2032
2033 /* If X is not a register or if the register is known not to be in any
2034 valid entries in the table, we have no work to do. */
2035
2036 if (!REG_P (x)
2037 || REG_IN_TABLE (REGNO (x)) < 0
2038 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2039 return;
2040
2041 /* Scan all hash chains looking for valid entries that mention X.
2042 If we find one and it is in the wrong hash chain, move it. */
2043
2044 for (i = 0; i < HASH_SIZE; i++)
2045 for (p = table[i]; p; p = next)
2046 {
2047 next = p->next_same_hash;
2048 if (reg_mentioned_p (x, p->exp)
2049 && exp_equiv_p (p->exp, p->exp, 1, false)
2050 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2051 {
2052 if (p->next_same_hash)
2053 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2054
2055 if (p->prev_same_hash)
2056 p->prev_same_hash->next_same_hash = p->next_same_hash;
2057 else
2058 table[i] = p->next_same_hash;
2059
2060 p->next_same_hash = table[hash];
2061 p->prev_same_hash = 0;
2062 if (table[hash])
2063 table[hash]->prev_same_hash = p;
2064 table[hash] = p;
2065 }
2066 }
2067 }
2068 \f
2069 /* Remove from the hash table any expression that is a call-clobbered
2070 register. Also update their TICK values. */
2071
2072 static void
2073 invalidate_for_call (void)
2074 {
2075 unsigned int regno, endregno;
2076 unsigned int i;
2077 unsigned hash;
2078 struct table_elt *p, *next;
2079 int in_table = 0;
2080 hard_reg_set_iterator hrsi;
2081
2082 /* Go through all the hard registers. For each that is clobbered in
2083 a CALL_INSN, remove the register from quantity chains and update
2084 reg_tick if defined. Also see if any of these registers is currently
2085 in the table. */
2086 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2087 {
2088 delete_reg_equiv (regno);
2089 if (REG_TICK (regno) >= 0)
2090 {
2091 REG_TICK (regno)++;
2092 SUBREG_TICKED (regno) = -1;
2093 }
2094 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2095 }
2096
2097 /* In the case where we have no call-clobbered hard registers in the
2098 table, we are done. Otherwise, scan the table and remove any
2099 entry that overlaps a call-clobbered register. */
2100
2101 if (in_table)
2102 for (hash = 0; hash < HASH_SIZE; hash++)
2103 for (p = table[hash]; p; p = next)
2104 {
2105 next = p->next_same_hash;
2106
2107 if (!REG_P (p->exp)
2108 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2109 continue;
2110
2111 regno = REGNO (p->exp);
2112 endregno = END_HARD_REGNO (p->exp);
2113
2114 for (i = regno; i < endregno; i++)
2115 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2116 {
2117 remove_from_table (p, hash);
2118 break;
2119 }
2120 }
2121 }
2122 \f
2123 /* Given an expression X of type CONST,
2124 and ELT which is its table entry (or 0 if it
2125 is not in the hash table),
2126 return an alternate expression for X as a register plus integer.
2127 If none can be found, return 0. */
2128
2129 static rtx
2130 use_related_value (rtx x, struct table_elt *elt)
2131 {
2132 struct table_elt *relt = 0;
2133 struct table_elt *p, *q;
2134 HOST_WIDE_INT offset;
2135
2136 /* First, is there anything related known?
2137 If we have a table element, we can tell from that.
2138 Otherwise, must look it up. */
2139
2140 if (elt != 0 && elt->related_value != 0)
2141 relt = elt;
2142 else if (elt == 0 && GET_CODE (x) == CONST)
2143 {
2144 rtx subexp = get_related_value (x);
2145 if (subexp != 0)
2146 relt = lookup (subexp,
2147 SAFE_HASH (subexp, GET_MODE (subexp)),
2148 GET_MODE (subexp));
2149 }
2150
2151 if (relt == 0)
2152 return 0;
2153
2154 /* Search all related table entries for one that has an
2155 equivalent register. */
2156
2157 p = relt;
2158 while (1)
2159 {
2160 /* This loop is strange in that it is executed in two different cases.
2161 The first is when X is already in the table. Then it is searching
2162 the RELATED_VALUE list of X's class (RELT). The second case is when
2163 X is not in the table. Then RELT points to a class for the related
2164 value.
2165
2166 Ensure that, whatever case we are in, that we ignore classes that have
2167 the same value as X. */
2168
2169 if (rtx_equal_p (x, p->exp))
2170 q = 0;
2171 else
2172 for (q = p->first_same_value; q; q = q->next_same_value)
2173 if (REG_P (q->exp))
2174 break;
2175
2176 if (q)
2177 break;
2178
2179 p = p->related_value;
2180
2181 /* We went all the way around, so there is nothing to be found.
2182 Alternatively, perhaps RELT was in the table for some other reason
2183 and it has no related values recorded. */
2184 if (p == relt || p == 0)
2185 break;
2186 }
2187
2188 if (q == 0)
2189 return 0;
2190
2191 offset = (get_integer_term (x) - get_integer_term (p->exp));
2192 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2193 return plus_constant (q->mode, q->exp, offset);
2194 }
2195 \f
2196
2197 /* Hash a string. Just add its bytes up. */
2198 static inline unsigned
2199 hash_rtx_string (const char *ps)
2200 {
2201 unsigned hash = 0;
2202 const unsigned char *p = (const unsigned char *) ps;
2203
2204 if (p)
2205 while (*p)
2206 hash += *p++;
2207
2208 return hash;
2209 }
2210
2211 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2212 When the callback returns true, we continue with the new rtx. */
2213
2214 unsigned
2215 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2216 int *do_not_record_p, int *hash_arg_in_memory_p,
2217 bool have_reg_qty, hash_rtx_callback_function cb)
2218 {
2219 int i, j;
2220 unsigned hash = 0;
2221 enum rtx_code code;
2222 const char *fmt;
2223 enum machine_mode newmode;
2224 rtx newx;
2225
2226 /* Used to turn recursion into iteration. We can't rely on GCC's
2227 tail-recursion elimination since we need to keep accumulating values
2228 in HASH. */
2229 repeat:
2230 if (x == 0)
2231 return hash;
2232
2233 /* Invoke the callback first. */
2234 if (cb != NULL
2235 && ((*cb) (x, mode, &newx, &newmode)))
2236 {
2237 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2238 hash_arg_in_memory_p, have_reg_qty, cb);
2239 return hash;
2240 }
2241
2242 code = GET_CODE (x);
2243 switch (code)
2244 {
2245 case REG:
2246 {
2247 unsigned int regno = REGNO (x);
2248
2249 if (do_not_record_p && !reload_completed)
2250 {
2251 /* On some machines, we can't record any non-fixed hard register,
2252 because extending its life will cause reload problems. We
2253 consider ap, fp, sp, gp to be fixed for this purpose.
2254
2255 We also consider CCmode registers to be fixed for this purpose;
2256 failure to do so leads to failure to simplify 0<100 type of
2257 conditionals.
2258
2259 On all machines, we can't record any global registers.
2260 Nor should we record any register that is in a small
2261 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2262 bool record;
2263
2264 if (regno >= FIRST_PSEUDO_REGISTER)
2265 record = true;
2266 else if (x == frame_pointer_rtx
2267 || x == hard_frame_pointer_rtx
2268 || x == arg_pointer_rtx
2269 || x == stack_pointer_rtx
2270 || x == pic_offset_table_rtx)
2271 record = true;
2272 else if (global_regs[regno])
2273 record = false;
2274 else if (fixed_regs[regno])
2275 record = true;
2276 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2277 record = true;
2278 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2279 record = false;
2280 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2281 record = false;
2282 else
2283 record = true;
2284
2285 if (!record)
2286 {
2287 *do_not_record_p = 1;
2288 return 0;
2289 }
2290 }
2291
2292 hash += ((unsigned int) REG << 7);
2293 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2294 return hash;
2295 }
2296
2297 /* We handle SUBREG of a REG specially because the underlying
2298 reg changes its hash value with every value change; we don't
2299 want to have to forget unrelated subregs when one subreg changes. */
2300 case SUBREG:
2301 {
2302 if (REG_P (SUBREG_REG (x)))
2303 {
2304 hash += (((unsigned int) SUBREG << 7)
2305 + REGNO (SUBREG_REG (x))
2306 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2307 return hash;
2308 }
2309 break;
2310 }
2311
2312 case CONST_INT:
2313 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2314 + (unsigned int) INTVAL (x));
2315 return hash;
2316
2317 case CONST_WIDE_INT:
2318 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2319 hash += CONST_WIDE_INT_ELT (x, i);
2320 return hash;
2321
2322 case CONST_DOUBLE:
2323 /* This is like the general case, except that it only counts
2324 the integers representing the constant. */
2325 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2326 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2327 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2328 + (unsigned int) CONST_DOUBLE_HIGH (x));
2329 else
2330 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2331 return hash;
2332
2333 case CONST_FIXED:
2334 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2335 hash += fixed_hash (CONST_FIXED_VALUE (x));
2336 return hash;
2337
2338 case CONST_VECTOR:
2339 {
2340 int units;
2341 rtx elt;
2342
2343 units = CONST_VECTOR_NUNITS (x);
2344
2345 for (i = 0; i < units; ++i)
2346 {
2347 elt = CONST_VECTOR_ELT (x, i);
2348 hash += hash_rtx_cb (elt, GET_MODE (elt),
2349 do_not_record_p, hash_arg_in_memory_p,
2350 have_reg_qty, cb);
2351 }
2352
2353 return hash;
2354 }
2355
2356 /* Assume there is only one rtx object for any given label. */
2357 case LABEL_REF:
2358 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2359 differences and differences between each stage's debugging dumps. */
2360 hash += (((unsigned int) LABEL_REF << 7)
2361 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2362 return hash;
2363
2364 case SYMBOL_REF:
2365 {
2366 /* Don't hash on the symbol's address to avoid bootstrap differences.
2367 Different hash values may cause expressions to be recorded in
2368 different orders and thus different registers to be used in the
2369 final assembler. This also avoids differences in the dump files
2370 between various stages. */
2371 unsigned int h = 0;
2372 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2373
2374 while (*p)
2375 h += (h << 7) + *p++; /* ??? revisit */
2376
2377 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2378 return hash;
2379 }
2380
2381 case MEM:
2382 /* We don't record if marked volatile or if BLKmode since we don't
2383 know the size of the move. */
2384 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2385 {
2386 *do_not_record_p = 1;
2387 return 0;
2388 }
2389 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2390 *hash_arg_in_memory_p = 1;
2391
2392 /* Now that we have already found this special case,
2393 might as well speed it up as much as possible. */
2394 hash += (unsigned) MEM;
2395 x = XEXP (x, 0);
2396 goto repeat;
2397
2398 case USE:
2399 /* A USE that mentions non-volatile memory needs special
2400 handling since the MEM may be BLKmode which normally
2401 prevents an entry from being made. Pure calls are
2402 marked by a USE which mentions BLKmode memory.
2403 See calls.c:emit_call_1. */
2404 if (MEM_P (XEXP (x, 0))
2405 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2406 {
2407 hash += (unsigned) USE;
2408 x = XEXP (x, 0);
2409
2410 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2411 *hash_arg_in_memory_p = 1;
2412
2413 /* Now that we have already found this special case,
2414 might as well speed it up as much as possible. */
2415 hash += (unsigned) MEM;
2416 x = XEXP (x, 0);
2417 goto repeat;
2418 }
2419 break;
2420
2421 case PRE_DEC:
2422 case PRE_INC:
2423 case POST_DEC:
2424 case POST_INC:
2425 case PRE_MODIFY:
2426 case POST_MODIFY:
2427 case PC:
2428 case CC0:
2429 case CALL:
2430 case UNSPEC_VOLATILE:
2431 if (do_not_record_p) {
2432 *do_not_record_p = 1;
2433 return 0;
2434 }
2435 else
2436 return hash;
2437 break;
2438
2439 case ASM_OPERANDS:
2440 if (do_not_record_p && MEM_VOLATILE_P (x))
2441 {
2442 *do_not_record_p = 1;
2443 return 0;
2444 }
2445 else
2446 {
2447 /* We don't want to take the filename and line into account. */
2448 hash += (unsigned) code + (unsigned) GET_MODE (x)
2449 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2450 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2451 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2452
2453 if (ASM_OPERANDS_INPUT_LENGTH (x))
2454 {
2455 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2456 {
2457 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2458 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2459 do_not_record_p, hash_arg_in_memory_p,
2460 have_reg_qty, cb)
2461 + hash_rtx_string
2462 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2463 }
2464
2465 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2466 x = ASM_OPERANDS_INPUT (x, 0);
2467 mode = GET_MODE (x);
2468 goto repeat;
2469 }
2470
2471 return hash;
2472 }
2473 break;
2474
2475 default:
2476 break;
2477 }
2478
2479 i = GET_RTX_LENGTH (code) - 1;
2480 hash += (unsigned) code + (unsigned) GET_MODE (x);
2481 fmt = GET_RTX_FORMAT (code);
2482 for (; i >= 0; i--)
2483 {
2484 switch (fmt[i])
2485 {
2486 case 'e':
2487 /* If we are about to do the last recursive call
2488 needed at this level, change it into iteration.
2489 This function is called enough to be worth it. */
2490 if (i == 0)
2491 {
2492 x = XEXP (x, i);
2493 goto repeat;
2494 }
2495
2496 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2497 hash_arg_in_memory_p,
2498 have_reg_qty, cb);
2499 break;
2500
2501 case 'E':
2502 for (j = 0; j < XVECLEN (x, i); j++)
2503 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2504 hash_arg_in_memory_p,
2505 have_reg_qty, cb);
2506 break;
2507
2508 case 's':
2509 hash += hash_rtx_string (XSTR (x, i));
2510 break;
2511
2512 case 'i':
2513 hash += (unsigned int) XINT (x, i);
2514 break;
2515
2516 case '0': case 't':
2517 /* Unused. */
2518 break;
2519
2520 default:
2521 gcc_unreachable ();
2522 }
2523 }
2524
2525 return hash;
2526 }
2527
2528 /* Hash an rtx. We are careful to make sure the value is never negative.
2529 Equivalent registers hash identically.
2530 MODE is used in hashing for CONST_INTs only;
2531 otherwise the mode of X is used.
2532
2533 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2534
2535 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2536 a MEM rtx which does not have the MEM_READONLY_P flag set.
2537
2538 Note that cse_insn knows that the hash code of a MEM expression
2539 is just (int) MEM plus the hash code of the address. */
2540
2541 unsigned
2542 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2543 int *hash_arg_in_memory_p, bool have_reg_qty)
2544 {
2545 return hash_rtx_cb (x, mode, do_not_record_p,
2546 hash_arg_in_memory_p, have_reg_qty, NULL);
2547 }
2548
2549 /* Hash an rtx X for cse via hash_rtx.
2550 Stores 1 in do_not_record if any subexpression is volatile.
2551 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2552 does not have the MEM_READONLY_P flag set. */
2553
2554 static inline unsigned
2555 canon_hash (rtx x, enum machine_mode mode)
2556 {
2557 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2558 }
2559
2560 /* Like canon_hash but with no side effects, i.e. do_not_record
2561 and hash_arg_in_memory are not changed. */
2562
2563 static inline unsigned
2564 safe_hash (rtx x, enum machine_mode mode)
2565 {
2566 int dummy_do_not_record;
2567 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2568 }
2569 \f
2570 /* Return 1 iff X and Y would canonicalize into the same thing,
2571 without actually constructing the canonicalization of either one.
2572 If VALIDATE is nonzero,
2573 we assume X is an expression being processed from the rtl
2574 and Y was found in the hash table. We check register refs
2575 in Y for being marked as valid.
2576
2577 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2578
2579 int
2580 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2581 {
2582 int i, j;
2583 enum rtx_code code;
2584 const char *fmt;
2585
2586 /* Note: it is incorrect to assume an expression is equivalent to itself
2587 if VALIDATE is nonzero. */
2588 if (x == y && !validate)
2589 return 1;
2590
2591 if (x == 0 || y == 0)
2592 return x == y;
2593
2594 code = GET_CODE (x);
2595 if (code != GET_CODE (y))
2596 return 0;
2597
2598 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2599 if (GET_MODE (x) != GET_MODE (y))
2600 return 0;
2601
2602 /* MEMs referring to different address space are not equivalent. */
2603 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2604 return 0;
2605
2606 switch (code)
2607 {
2608 case PC:
2609 case CC0:
2610 CASE_CONST_UNIQUE:
2611 return x == y;
2612
2613 case LABEL_REF:
2614 return XEXP (x, 0) == XEXP (y, 0);
2615
2616 case SYMBOL_REF:
2617 return XSTR (x, 0) == XSTR (y, 0);
2618
2619 case REG:
2620 if (for_gcse)
2621 return REGNO (x) == REGNO (y);
2622 else
2623 {
2624 unsigned int regno = REGNO (y);
2625 unsigned int i;
2626 unsigned int endregno = END_REGNO (y);
2627
2628 /* If the quantities are not the same, the expressions are not
2629 equivalent. If there are and we are not to validate, they
2630 are equivalent. Otherwise, ensure all regs are up-to-date. */
2631
2632 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2633 return 0;
2634
2635 if (! validate)
2636 return 1;
2637
2638 for (i = regno; i < endregno; i++)
2639 if (REG_IN_TABLE (i) != REG_TICK (i))
2640 return 0;
2641
2642 return 1;
2643 }
2644
2645 case MEM:
2646 if (for_gcse)
2647 {
2648 /* A volatile mem should not be considered equivalent to any
2649 other. */
2650 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2651 return 0;
2652
2653 /* Can't merge two expressions in different alias sets, since we
2654 can decide that the expression is transparent in a block when
2655 it isn't, due to it being set with the different alias set.
2656
2657 Also, can't merge two expressions with different MEM_ATTRS.
2658 They could e.g. be two different entities allocated into the
2659 same space on the stack (see e.g. PR25130). In that case, the
2660 MEM addresses can be the same, even though the two MEMs are
2661 absolutely not equivalent.
2662
2663 But because really all MEM attributes should be the same for
2664 equivalent MEMs, we just use the invariant that MEMs that have
2665 the same attributes share the same mem_attrs data structure. */
2666 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2667 return 0;
2668
2669 /* If we are handling exceptions, we cannot consider two expressions
2670 with different trapping status as equivalent, because simple_mem
2671 might accept one and reject the other. */
2672 if (cfun->can_throw_non_call_exceptions
2673 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2674 return 0;
2675 }
2676 break;
2677
2678 /* For commutative operations, check both orders. */
2679 case PLUS:
2680 case MULT:
2681 case AND:
2682 case IOR:
2683 case XOR:
2684 case NE:
2685 case EQ:
2686 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2687 validate, for_gcse)
2688 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2689 validate, for_gcse))
2690 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2691 validate, for_gcse)
2692 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2693 validate, for_gcse)));
2694
2695 case ASM_OPERANDS:
2696 /* We don't use the generic code below because we want to
2697 disregard filename and line numbers. */
2698
2699 /* A volatile asm isn't equivalent to any other. */
2700 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2701 return 0;
2702
2703 if (GET_MODE (x) != GET_MODE (y)
2704 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2705 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2706 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2707 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2708 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2709 return 0;
2710
2711 if (ASM_OPERANDS_INPUT_LENGTH (x))
2712 {
2713 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2714 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2715 ASM_OPERANDS_INPUT (y, i),
2716 validate, for_gcse)
2717 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2718 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2719 return 0;
2720 }
2721
2722 return 1;
2723
2724 default:
2725 break;
2726 }
2727
2728 /* Compare the elements. If any pair of corresponding elements
2729 fail to match, return 0 for the whole thing. */
2730
2731 fmt = GET_RTX_FORMAT (code);
2732 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2733 {
2734 switch (fmt[i])
2735 {
2736 case 'e':
2737 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2738 validate, for_gcse))
2739 return 0;
2740 break;
2741
2742 case 'E':
2743 if (XVECLEN (x, i) != XVECLEN (y, i))
2744 return 0;
2745 for (j = 0; j < XVECLEN (x, i); j++)
2746 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2747 validate, for_gcse))
2748 return 0;
2749 break;
2750
2751 case 's':
2752 if (strcmp (XSTR (x, i), XSTR (y, i)))
2753 return 0;
2754 break;
2755
2756 case 'i':
2757 if (XINT (x, i) != XINT (y, i))
2758 return 0;
2759 break;
2760
2761 case 'w':
2762 if (XWINT (x, i) != XWINT (y, i))
2763 return 0;
2764 break;
2765
2766 case '0':
2767 case 't':
2768 break;
2769
2770 default:
2771 gcc_unreachable ();
2772 }
2773 }
2774
2775 return 1;
2776 }
2777 \f
2778 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2779 the result if necessary. INSN is as for canon_reg. */
2780
2781 static void
2782 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2783 {
2784 if (*xloc)
2785 {
2786 rtx new_rtx = canon_reg (*xloc, insn);
2787
2788 /* If replacing pseudo with hard reg or vice versa, ensure the
2789 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2790 gcc_assert (insn && new_rtx);
2791 validate_change (insn, xloc, new_rtx, 1);
2792 }
2793 }
2794
2795 /* Canonicalize an expression:
2796 replace each register reference inside it
2797 with the "oldest" equivalent register.
2798
2799 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2800 after we make our substitution. The calls are made with IN_GROUP nonzero
2801 so apply_change_group must be called upon the outermost return from this
2802 function (unless INSN is zero). The result of apply_change_group can
2803 generally be discarded since the changes we are making are optional. */
2804
2805 static rtx
2806 canon_reg (rtx x, rtx_insn *insn)
2807 {
2808 int i;
2809 enum rtx_code code;
2810 const char *fmt;
2811
2812 if (x == 0)
2813 return x;
2814
2815 code = GET_CODE (x);
2816 switch (code)
2817 {
2818 case PC:
2819 case CC0:
2820 case CONST:
2821 CASE_CONST_ANY:
2822 case SYMBOL_REF:
2823 case LABEL_REF:
2824 case ADDR_VEC:
2825 case ADDR_DIFF_VEC:
2826 return x;
2827
2828 case REG:
2829 {
2830 int first;
2831 int q;
2832 struct qty_table_elem *ent;
2833
2834 /* Never replace a hard reg, because hard regs can appear
2835 in more than one machine mode, and we must preserve the mode
2836 of each occurrence. Also, some hard regs appear in
2837 MEMs that are shared and mustn't be altered. Don't try to
2838 replace any reg that maps to a reg of class NO_REGS. */
2839 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2840 || ! REGNO_QTY_VALID_P (REGNO (x)))
2841 return x;
2842
2843 q = REG_QTY (REGNO (x));
2844 ent = &qty_table[q];
2845 first = ent->first_reg;
2846 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2847 : REGNO_REG_CLASS (first) == NO_REGS ? x
2848 : gen_rtx_REG (ent->mode, first));
2849 }
2850
2851 default:
2852 break;
2853 }
2854
2855 fmt = GET_RTX_FORMAT (code);
2856 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2857 {
2858 int j;
2859
2860 if (fmt[i] == 'e')
2861 validate_canon_reg (&XEXP (x, i), insn);
2862 else if (fmt[i] == 'E')
2863 for (j = 0; j < XVECLEN (x, i); j++)
2864 validate_canon_reg (&XVECEXP (x, i, j), insn);
2865 }
2866
2867 return x;
2868 }
2869 \f
2870 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2871 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2872 what values are being compared.
2873
2874 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2875 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2876 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2877 compared to produce cc0.
2878
2879 The return value is the comparison operator and is either the code of
2880 A or the code corresponding to the inverse of the comparison. */
2881
2882 static enum rtx_code
2883 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2884 enum machine_mode *pmode1, enum machine_mode *pmode2)
2885 {
2886 rtx arg1, arg2;
2887 hash_set<rtx> *visited = NULL;
2888 /* Set nonzero when we find something of interest. */
2889 rtx x = NULL;
2890
2891 arg1 = *parg1, arg2 = *parg2;
2892
2893 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2894
2895 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2896 {
2897 int reverse_code = 0;
2898 struct table_elt *p = 0;
2899
2900 /* Remember state from previous iteration. */
2901 if (x)
2902 {
2903 if (!visited)
2904 visited = new hash_set<rtx>;
2905 visited->add (x);
2906 x = 0;
2907 }
2908
2909 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2910 On machines with CC0, this is the only case that can occur, since
2911 fold_rtx will return the COMPARE or item being compared with zero
2912 when given CC0. */
2913
2914 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2915 x = arg1;
2916
2917 /* If ARG1 is a comparison operator and CODE is testing for
2918 STORE_FLAG_VALUE, get the inner arguments. */
2919
2920 else if (COMPARISON_P (arg1))
2921 {
2922 #ifdef FLOAT_STORE_FLAG_VALUE
2923 REAL_VALUE_TYPE fsfv;
2924 #endif
2925
2926 if (code == NE
2927 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2928 && code == LT && STORE_FLAG_VALUE == -1)
2929 #ifdef FLOAT_STORE_FLAG_VALUE
2930 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2931 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2932 REAL_VALUE_NEGATIVE (fsfv)))
2933 #endif
2934 )
2935 x = arg1;
2936 else if (code == EQ
2937 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2938 && code == GE && STORE_FLAG_VALUE == -1)
2939 #ifdef FLOAT_STORE_FLAG_VALUE
2940 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2941 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2942 REAL_VALUE_NEGATIVE (fsfv)))
2943 #endif
2944 )
2945 x = arg1, reverse_code = 1;
2946 }
2947
2948 /* ??? We could also check for
2949
2950 (ne (and (eq (...) (const_int 1))) (const_int 0))
2951
2952 and related forms, but let's wait until we see them occurring. */
2953
2954 if (x == 0)
2955 /* Look up ARG1 in the hash table and see if it has an equivalence
2956 that lets us see what is being compared. */
2957 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2958 if (p)
2959 {
2960 p = p->first_same_value;
2961
2962 /* If what we compare is already known to be constant, that is as
2963 good as it gets.
2964 We need to break the loop in this case, because otherwise we
2965 can have an infinite loop when looking at a reg that is known
2966 to be a constant which is the same as a comparison of a reg
2967 against zero which appears later in the insn stream, which in
2968 turn is constant and the same as the comparison of the first reg
2969 against zero... */
2970 if (p->is_const)
2971 break;
2972 }
2973
2974 for (; p; p = p->next_same_value)
2975 {
2976 enum machine_mode inner_mode = GET_MODE (p->exp);
2977 #ifdef FLOAT_STORE_FLAG_VALUE
2978 REAL_VALUE_TYPE fsfv;
2979 #endif
2980
2981 /* If the entry isn't valid, skip it. */
2982 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2983 continue;
2984
2985 /* If it's a comparison we've used before, skip it. */
2986 if (visited && visited->contains (p->exp))
2987 continue;
2988
2989 if (GET_CODE (p->exp) == COMPARE
2990 /* Another possibility is that this machine has a compare insn
2991 that includes the comparison code. In that case, ARG1 would
2992 be equivalent to a comparison operation that would set ARG1 to
2993 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2994 ORIG_CODE is the actual comparison being done; if it is an EQ,
2995 we must reverse ORIG_CODE. On machine with a negative value
2996 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2997 || ((code == NE
2998 || (code == LT
2999 && val_signbit_known_set_p (inner_mode,
3000 STORE_FLAG_VALUE))
3001 #ifdef FLOAT_STORE_FLAG_VALUE
3002 || (code == LT
3003 && SCALAR_FLOAT_MODE_P (inner_mode)
3004 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3005 REAL_VALUE_NEGATIVE (fsfv)))
3006 #endif
3007 )
3008 && COMPARISON_P (p->exp)))
3009 {
3010 x = p->exp;
3011 break;
3012 }
3013 else if ((code == EQ
3014 || (code == GE
3015 && val_signbit_known_set_p (inner_mode,
3016 STORE_FLAG_VALUE))
3017 #ifdef FLOAT_STORE_FLAG_VALUE
3018 || (code == GE
3019 && SCALAR_FLOAT_MODE_P (inner_mode)
3020 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3021 REAL_VALUE_NEGATIVE (fsfv)))
3022 #endif
3023 )
3024 && COMPARISON_P (p->exp))
3025 {
3026 reverse_code = 1;
3027 x = p->exp;
3028 break;
3029 }
3030
3031 /* If this non-trapping address, e.g. fp + constant, the
3032 equivalent is a better operand since it may let us predict
3033 the value of the comparison. */
3034 else if (!rtx_addr_can_trap_p (p->exp))
3035 {
3036 arg1 = p->exp;
3037 continue;
3038 }
3039 }
3040
3041 /* If we didn't find a useful equivalence for ARG1, we are done.
3042 Otherwise, set up for the next iteration. */
3043 if (x == 0)
3044 break;
3045
3046 /* If we need to reverse the comparison, make sure that that is
3047 possible -- we can't necessarily infer the value of GE from LT
3048 with floating-point operands. */
3049 if (reverse_code)
3050 {
3051 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3052 if (reversed == UNKNOWN)
3053 break;
3054 else
3055 code = reversed;
3056 }
3057 else if (COMPARISON_P (x))
3058 code = GET_CODE (x);
3059 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3060 }
3061
3062 /* Return our results. Return the modes from before fold_rtx
3063 because fold_rtx might produce const_int, and then it's too late. */
3064 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3065 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3066
3067 if (visited)
3068 delete visited;
3069 return code;
3070 }
3071 \f
3072 /* If X is a nontrivial arithmetic operation on an argument for which
3073 a constant value can be determined, return the result of operating
3074 on that value, as a constant. Otherwise, return X, possibly with
3075 one or more operands changed to a forward-propagated constant.
3076
3077 If X is a register whose contents are known, we do NOT return
3078 those contents here; equiv_constant is called to perform that task.
3079 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3080
3081 INSN is the insn that we may be modifying. If it is 0, make a copy
3082 of X before modifying it. */
3083
3084 static rtx
3085 fold_rtx (rtx x, rtx_insn *insn)
3086 {
3087 enum rtx_code code;
3088 enum machine_mode mode;
3089 const char *fmt;
3090 int i;
3091 rtx new_rtx = 0;
3092 int changed = 0;
3093
3094 /* Operands of X. */
3095 rtx folded_arg0;
3096 rtx folded_arg1;
3097
3098 /* Constant equivalents of first three operands of X;
3099 0 when no such equivalent is known. */
3100 rtx const_arg0;
3101 rtx const_arg1;
3102 rtx const_arg2;
3103
3104 /* The mode of the first operand of X. We need this for sign and zero
3105 extends. */
3106 enum machine_mode mode_arg0;
3107
3108 if (x == 0)
3109 return x;
3110
3111 /* Try to perform some initial simplifications on X. */
3112 code = GET_CODE (x);
3113 switch (code)
3114 {
3115 case MEM:
3116 case SUBREG:
3117 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3118 return new_rtx;
3119 return x;
3120
3121 case CONST:
3122 CASE_CONST_ANY:
3123 case SYMBOL_REF:
3124 case LABEL_REF:
3125 case REG:
3126 case PC:
3127 /* No use simplifying an EXPR_LIST
3128 since they are used only for lists of args
3129 in a function call's REG_EQUAL note. */
3130 case EXPR_LIST:
3131 return x;
3132
3133 #ifdef HAVE_cc0
3134 case CC0:
3135 return prev_insn_cc0;
3136 #endif
3137
3138 case ASM_OPERANDS:
3139 if (insn)
3140 {
3141 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3142 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3143 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3144 }
3145 return x;
3146
3147 #ifdef NO_FUNCTION_CSE
3148 case CALL:
3149 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3150 return x;
3151 break;
3152 #endif
3153
3154 /* Anything else goes through the loop below. */
3155 default:
3156 break;
3157 }
3158
3159 mode = GET_MODE (x);
3160 const_arg0 = 0;
3161 const_arg1 = 0;
3162 const_arg2 = 0;
3163 mode_arg0 = VOIDmode;
3164
3165 /* Try folding our operands.
3166 Then see which ones have constant values known. */
3167
3168 fmt = GET_RTX_FORMAT (code);
3169 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3170 if (fmt[i] == 'e')
3171 {
3172 rtx folded_arg = XEXP (x, i), const_arg;
3173 enum machine_mode mode_arg = GET_MODE (folded_arg);
3174
3175 switch (GET_CODE (folded_arg))
3176 {
3177 case MEM:
3178 case REG:
3179 case SUBREG:
3180 const_arg = equiv_constant (folded_arg);
3181 break;
3182
3183 case CONST:
3184 CASE_CONST_ANY:
3185 case SYMBOL_REF:
3186 case LABEL_REF:
3187 const_arg = folded_arg;
3188 break;
3189
3190 #ifdef HAVE_cc0
3191 case CC0:
3192 /* The cc0-user and cc0-setter may be in different blocks if
3193 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3194 will have been cleared as we exited the block with the
3195 setter.
3196
3197 While we could potentially track cc0 in this case, it just
3198 doesn't seem to be worth it given that cc0 targets are not
3199 terribly common or important these days and trapping math
3200 is rarely used. The combination of those two conditions
3201 necessary to trip this situation is exceedingly rare in the
3202 real world. */
3203 if (!prev_insn_cc0)
3204 {
3205 const_arg = NULL_RTX;
3206 }
3207 else
3208 {
3209 folded_arg = prev_insn_cc0;
3210 mode_arg = prev_insn_cc0_mode;
3211 const_arg = equiv_constant (folded_arg);
3212 }
3213 break;
3214 #endif
3215
3216 default:
3217 folded_arg = fold_rtx (folded_arg, insn);
3218 const_arg = equiv_constant (folded_arg);
3219 break;
3220 }
3221
3222 /* For the first three operands, see if the operand
3223 is constant or equivalent to a constant. */
3224 switch (i)
3225 {
3226 case 0:
3227 folded_arg0 = folded_arg;
3228 const_arg0 = const_arg;
3229 mode_arg0 = mode_arg;
3230 break;
3231 case 1:
3232 folded_arg1 = folded_arg;
3233 const_arg1 = const_arg;
3234 break;
3235 case 2:
3236 const_arg2 = const_arg;
3237 break;
3238 }
3239
3240 /* Pick the least expensive of the argument and an equivalent constant
3241 argument. */
3242 if (const_arg != 0
3243 && const_arg != folded_arg
3244 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3245
3246 /* It's not safe to substitute the operand of a conversion
3247 operator with a constant, as the conversion's identity
3248 depends upon the mode of its operand. This optimization
3249 is handled by the call to simplify_unary_operation. */
3250 && (GET_RTX_CLASS (code) != RTX_UNARY
3251 || GET_MODE (const_arg) == mode_arg0
3252 || (code != ZERO_EXTEND
3253 && code != SIGN_EXTEND
3254 && code != TRUNCATE
3255 && code != FLOAT_TRUNCATE
3256 && code != FLOAT_EXTEND
3257 && code != FLOAT
3258 && code != FIX
3259 && code != UNSIGNED_FLOAT
3260 && code != UNSIGNED_FIX)))
3261 folded_arg = const_arg;
3262
3263 if (folded_arg == XEXP (x, i))
3264 continue;
3265
3266 if (insn == NULL_RTX && !changed)
3267 x = copy_rtx (x);
3268 changed = 1;
3269 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3270 }
3271
3272 if (changed)
3273 {
3274 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3275 consistent with the order in X. */
3276 if (canonicalize_change_group (insn, x))
3277 {
3278 rtx tem;
3279 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3280 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3281 }
3282
3283 apply_change_group ();
3284 }
3285
3286 /* If X is an arithmetic operation, see if we can simplify it. */
3287
3288 switch (GET_RTX_CLASS (code))
3289 {
3290 case RTX_UNARY:
3291 {
3292 /* We can't simplify extension ops unless we know the
3293 original mode. */
3294 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3295 && mode_arg0 == VOIDmode)
3296 break;
3297
3298 new_rtx = simplify_unary_operation (code, mode,
3299 const_arg0 ? const_arg0 : folded_arg0,
3300 mode_arg0);
3301 }
3302 break;
3303
3304 case RTX_COMPARE:
3305 case RTX_COMM_COMPARE:
3306 /* See what items are actually being compared and set FOLDED_ARG[01]
3307 to those values and CODE to the actual comparison code. If any are
3308 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3309 do anything if both operands are already known to be constant. */
3310
3311 /* ??? Vector mode comparisons are not supported yet. */
3312 if (VECTOR_MODE_P (mode))
3313 break;
3314
3315 if (const_arg0 == 0 || const_arg1 == 0)
3316 {
3317 struct table_elt *p0, *p1;
3318 rtx true_rtx, false_rtx;
3319 enum machine_mode mode_arg1;
3320
3321 if (SCALAR_FLOAT_MODE_P (mode))
3322 {
3323 #ifdef FLOAT_STORE_FLAG_VALUE
3324 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3325 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3326 #else
3327 true_rtx = NULL_RTX;
3328 #endif
3329 false_rtx = CONST0_RTX (mode);
3330 }
3331 else
3332 {
3333 true_rtx = const_true_rtx;
3334 false_rtx = const0_rtx;
3335 }
3336
3337 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3338 &mode_arg0, &mode_arg1);
3339
3340 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3341 what kinds of things are being compared, so we can't do
3342 anything with this comparison. */
3343
3344 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3345 break;
3346
3347 const_arg0 = equiv_constant (folded_arg0);
3348 const_arg1 = equiv_constant (folded_arg1);
3349
3350 /* If we do not now have two constants being compared, see
3351 if we can nevertheless deduce some things about the
3352 comparison. */
3353 if (const_arg0 == 0 || const_arg1 == 0)
3354 {
3355 if (const_arg1 != NULL)
3356 {
3357 rtx cheapest_simplification;
3358 int cheapest_cost;
3359 rtx simp_result;
3360 struct table_elt *p;
3361
3362 /* See if we can find an equivalent of folded_arg0
3363 that gets us a cheaper expression, possibly a
3364 constant through simplifications. */
3365 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3366 mode_arg0);
3367
3368 if (p != NULL)
3369 {
3370 cheapest_simplification = x;
3371 cheapest_cost = COST (x);
3372
3373 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3374 {
3375 int cost;
3376
3377 /* If the entry isn't valid, skip it. */
3378 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3379 continue;
3380
3381 /* Try to simplify using this equivalence. */
3382 simp_result
3383 = simplify_relational_operation (code, mode,
3384 mode_arg0,
3385 p->exp,
3386 const_arg1);
3387
3388 if (simp_result == NULL)
3389 continue;
3390
3391 cost = COST (simp_result);
3392 if (cost < cheapest_cost)
3393 {
3394 cheapest_cost = cost;
3395 cheapest_simplification = simp_result;
3396 }
3397 }
3398
3399 /* If we have a cheaper expression now, use that
3400 and try folding it further, from the top. */
3401 if (cheapest_simplification != x)
3402 return fold_rtx (copy_rtx (cheapest_simplification),
3403 insn);
3404 }
3405 }
3406
3407 /* See if the two operands are the same. */
3408
3409 if ((REG_P (folded_arg0)
3410 && REG_P (folded_arg1)
3411 && (REG_QTY (REGNO (folded_arg0))
3412 == REG_QTY (REGNO (folded_arg1))))
3413 || ((p0 = lookup (folded_arg0,
3414 SAFE_HASH (folded_arg0, mode_arg0),
3415 mode_arg0))
3416 && (p1 = lookup (folded_arg1,
3417 SAFE_HASH (folded_arg1, mode_arg0),
3418 mode_arg0))
3419 && p0->first_same_value == p1->first_same_value))
3420 folded_arg1 = folded_arg0;
3421
3422 /* If FOLDED_ARG0 is a register, see if the comparison we are
3423 doing now is either the same as we did before or the reverse
3424 (we only check the reverse if not floating-point). */
3425 else if (REG_P (folded_arg0))
3426 {
3427 int qty = REG_QTY (REGNO (folded_arg0));
3428
3429 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3430 {
3431 struct qty_table_elem *ent = &qty_table[qty];
3432
3433 if ((comparison_dominates_p (ent->comparison_code, code)
3434 || (! FLOAT_MODE_P (mode_arg0)
3435 && comparison_dominates_p (ent->comparison_code,
3436 reverse_condition (code))))
3437 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3438 || (const_arg1
3439 && rtx_equal_p (ent->comparison_const,
3440 const_arg1))
3441 || (REG_P (folded_arg1)
3442 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3443 {
3444 if (comparison_dominates_p (ent->comparison_code, code))
3445 {
3446 if (true_rtx)
3447 return true_rtx;
3448 else
3449 break;
3450 }
3451 else
3452 return false_rtx;
3453 }
3454 }
3455 }
3456 }
3457 }
3458
3459 /* If we are comparing against zero, see if the first operand is
3460 equivalent to an IOR with a constant. If so, we may be able to
3461 determine the result of this comparison. */
3462 if (const_arg1 == const0_rtx && !const_arg0)
3463 {
3464 rtx y = lookup_as_function (folded_arg0, IOR);
3465 rtx inner_const;
3466
3467 if (y != 0
3468 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3469 && CONST_INT_P (inner_const)
3470 && INTVAL (inner_const) != 0)
3471 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3472 }
3473
3474 {
3475 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3476 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3477 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3478 op0, op1);
3479 }
3480 break;
3481
3482 case RTX_BIN_ARITH:
3483 case RTX_COMM_ARITH:
3484 switch (code)
3485 {
3486 case PLUS:
3487 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3488 with that LABEL_REF as its second operand. If so, the result is
3489 the first operand of that MINUS. This handles switches with an
3490 ADDR_DIFF_VEC table. */
3491 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3492 {
3493 rtx y
3494 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3495 : lookup_as_function (folded_arg0, MINUS);
3496
3497 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3498 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3499 return XEXP (y, 0);
3500
3501 /* Now try for a CONST of a MINUS like the above. */
3502 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3503 : lookup_as_function (folded_arg0, CONST))) != 0
3504 && GET_CODE (XEXP (y, 0)) == MINUS
3505 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3506 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3507 return XEXP (XEXP (y, 0), 0);
3508 }
3509
3510 /* Likewise if the operands are in the other order. */
3511 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3512 {
3513 rtx y
3514 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3515 : lookup_as_function (folded_arg1, MINUS);
3516
3517 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3518 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3519 return XEXP (y, 0);
3520
3521 /* Now try for a CONST of a MINUS like the above. */
3522 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3523 : lookup_as_function (folded_arg1, CONST))) != 0
3524 && GET_CODE (XEXP (y, 0)) == MINUS
3525 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3526 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3527 return XEXP (XEXP (y, 0), 0);
3528 }
3529
3530 /* If second operand is a register equivalent to a negative
3531 CONST_INT, see if we can find a register equivalent to the
3532 positive constant. Make a MINUS if so. Don't do this for
3533 a non-negative constant since we might then alternate between
3534 choosing positive and negative constants. Having the positive
3535 constant previously-used is the more common case. Be sure
3536 the resulting constant is non-negative; if const_arg1 were
3537 the smallest negative number this would overflow: depending
3538 on the mode, this would either just be the same value (and
3539 hence not save anything) or be incorrect. */
3540 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3541 && INTVAL (const_arg1) < 0
3542 /* This used to test
3543
3544 -INTVAL (const_arg1) >= 0
3545
3546 But The Sun V5.0 compilers mis-compiled that test. So
3547 instead we test for the problematic value in a more direct
3548 manner and hope the Sun compilers get it correct. */
3549 && INTVAL (const_arg1) !=
3550 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3551 && REG_P (folded_arg1))
3552 {
3553 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3554 struct table_elt *p
3555 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3556
3557 if (p)
3558 for (p = p->first_same_value; p; p = p->next_same_value)
3559 if (REG_P (p->exp))
3560 return simplify_gen_binary (MINUS, mode, folded_arg0,
3561 canon_reg (p->exp, NULL));
3562 }
3563 goto from_plus;
3564
3565 case MINUS:
3566 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3567 If so, produce (PLUS Z C2-C). */
3568 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3569 {
3570 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3571 if (y && CONST_INT_P (XEXP (y, 1)))
3572 return fold_rtx (plus_constant (mode, copy_rtx (y),
3573 -INTVAL (const_arg1)),
3574 NULL);
3575 }
3576
3577 /* Fall through. */
3578
3579 from_plus:
3580 case SMIN: case SMAX: case UMIN: case UMAX:
3581 case IOR: case AND: case XOR:
3582 case MULT:
3583 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3584 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3585 is known to be of similar form, we may be able to replace the
3586 operation with a combined operation. This may eliminate the
3587 intermediate operation if every use is simplified in this way.
3588 Note that the similar optimization done by combine.c only works
3589 if the intermediate operation's result has only one reference. */
3590
3591 if (REG_P (folded_arg0)
3592 && const_arg1 && CONST_INT_P (const_arg1))
3593 {
3594 int is_shift
3595 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3596 rtx y, inner_const, new_const;
3597 rtx canon_const_arg1 = const_arg1;
3598 enum rtx_code associate_code;
3599
3600 if (is_shift
3601 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3602 || INTVAL (const_arg1) < 0))
3603 {
3604 if (SHIFT_COUNT_TRUNCATED)
3605 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3606 & (GET_MODE_BITSIZE (mode)
3607 - 1));
3608 else
3609 break;
3610 }
3611
3612 y = lookup_as_function (folded_arg0, code);
3613 if (y == 0)
3614 break;
3615
3616 /* If we have compiled a statement like
3617 "if (x == (x & mask1))", and now are looking at
3618 "x & mask2", we will have a case where the first operand
3619 of Y is the same as our first operand. Unless we detect
3620 this case, an infinite loop will result. */
3621 if (XEXP (y, 0) == folded_arg0)
3622 break;
3623
3624 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3625 if (!inner_const || !CONST_INT_P (inner_const))
3626 break;
3627
3628 /* Don't associate these operations if they are a PLUS with the
3629 same constant and it is a power of two. These might be doable
3630 with a pre- or post-increment. Similarly for two subtracts of
3631 identical powers of two with post decrement. */
3632
3633 if (code == PLUS && const_arg1 == inner_const
3634 && ((HAVE_PRE_INCREMENT
3635 && exact_log2 (INTVAL (const_arg1)) >= 0)
3636 || (HAVE_POST_INCREMENT
3637 && exact_log2 (INTVAL (const_arg1)) >= 0)
3638 || (HAVE_PRE_DECREMENT
3639 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3640 || (HAVE_POST_DECREMENT
3641 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3642 break;
3643
3644 /* ??? Vector mode shifts by scalar
3645 shift operand are not supported yet. */
3646 if (is_shift && VECTOR_MODE_P (mode))
3647 break;
3648
3649 if (is_shift
3650 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3651 || INTVAL (inner_const) < 0))
3652 {
3653 if (SHIFT_COUNT_TRUNCATED)
3654 inner_const = GEN_INT (INTVAL (inner_const)
3655 & (GET_MODE_BITSIZE (mode) - 1));
3656 else
3657 break;
3658 }
3659
3660 /* Compute the code used to compose the constants. For example,
3661 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3662
3663 associate_code = (is_shift || code == MINUS ? PLUS : code);
3664
3665 new_const = simplify_binary_operation (associate_code, mode,
3666 canon_const_arg1,
3667 inner_const);
3668
3669 if (new_const == 0)
3670 break;
3671
3672 /* If we are associating shift operations, don't let this
3673 produce a shift of the size of the object or larger.
3674 This could occur when we follow a sign-extend by a right
3675 shift on a machine that does a sign-extend as a pair
3676 of shifts. */
3677
3678 if (is_shift
3679 && CONST_INT_P (new_const)
3680 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3681 {
3682 /* As an exception, we can turn an ASHIFTRT of this
3683 form into a shift of the number of bits - 1. */
3684 if (code == ASHIFTRT)
3685 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3686 else if (!side_effects_p (XEXP (y, 0)))
3687 return CONST0_RTX (mode);
3688 else
3689 break;
3690 }
3691
3692 y = copy_rtx (XEXP (y, 0));
3693
3694 /* If Y contains our first operand (the most common way this
3695 can happen is if Y is a MEM), we would do into an infinite
3696 loop if we tried to fold it. So don't in that case. */
3697
3698 if (! reg_mentioned_p (folded_arg0, y))
3699 y = fold_rtx (y, insn);
3700
3701 return simplify_gen_binary (code, mode, y, new_const);
3702 }
3703 break;
3704
3705 case DIV: case UDIV:
3706 /* ??? The associative optimization performed immediately above is
3707 also possible for DIV and UDIV using associate_code of MULT.
3708 However, we would need extra code to verify that the
3709 multiplication does not overflow, that is, there is no overflow
3710 in the calculation of new_const. */
3711 break;
3712
3713 default:
3714 break;
3715 }
3716
3717 new_rtx = simplify_binary_operation (code, mode,
3718 const_arg0 ? const_arg0 : folded_arg0,
3719 const_arg1 ? const_arg1 : folded_arg1);
3720 break;
3721
3722 case RTX_OBJ:
3723 /* (lo_sum (high X) X) is simply X. */
3724 if (code == LO_SUM && const_arg0 != 0
3725 && GET_CODE (const_arg0) == HIGH
3726 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3727 return const_arg1;
3728 break;
3729
3730 case RTX_TERNARY:
3731 case RTX_BITFIELD_OPS:
3732 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3733 const_arg0 ? const_arg0 : folded_arg0,
3734 const_arg1 ? const_arg1 : folded_arg1,
3735 const_arg2 ? const_arg2 : XEXP (x, 2));
3736 break;
3737
3738 default:
3739 break;
3740 }
3741
3742 return new_rtx ? new_rtx : x;
3743 }
3744 \f
3745 /* Return a constant value currently equivalent to X.
3746 Return 0 if we don't know one. */
3747
3748 static rtx
3749 equiv_constant (rtx x)
3750 {
3751 if (REG_P (x)
3752 && REGNO_QTY_VALID_P (REGNO (x)))
3753 {
3754 int x_q = REG_QTY (REGNO (x));
3755 struct qty_table_elem *x_ent = &qty_table[x_q];
3756
3757 if (x_ent->const_rtx)
3758 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3759 }
3760
3761 if (x == 0 || CONSTANT_P (x))
3762 return x;
3763
3764 if (GET_CODE (x) == SUBREG)
3765 {
3766 enum machine_mode mode = GET_MODE (x);
3767 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3768 rtx new_rtx;
3769
3770 /* See if we previously assigned a constant value to this SUBREG. */
3771 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3772 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3773 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3774 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3775 return new_rtx;
3776
3777 /* If we didn't and if doing so makes sense, see if we previously
3778 assigned a constant value to the enclosing word mode SUBREG. */
3779 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3780 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3781 {
3782 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3783 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3784 {
3785 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3786 new_rtx = lookup_as_function (y, CONST_INT);
3787 if (new_rtx)
3788 return gen_lowpart (mode, new_rtx);
3789 }
3790 }
3791
3792 /* Otherwise see if we already have a constant for the inner REG,
3793 and if that is enough to calculate an equivalent constant for
3794 the subreg. Note that the upper bits of paradoxical subregs
3795 are undefined, so they cannot be said to equal anything. */
3796 if (REG_P (SUBREG_REG (x))
3797 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3798 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3799 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3800
3801 return 0;
3802 }
3803
3804 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3805 the hash table in case its value was seen before. */
3806
3807 if (MEM_P (x))
3808 {
3809 struct table_elt *elt;
3810
3811 x = avoid_constant_pool_reference (x);
3812 if (CONSTANT_P (x))
3813 return x;
3814
3815 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3816 if (elt == 0)
3817 return 0;
3818
3819 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3820 if (elt->is_const && CONSTANT_P (elt->exp))
3821 return elt->exp;
3822 }
3823
3824 return 0;
3825 }
3826 \f
3827 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3828 "taken" branch.
3829
3830 In certain cases, this can cause us to add an equivalence. For example,
3831 if we are following the taken case of
3832 if (i == 2)
3833 we can add the fact that `i' and '2' are now equivalent.
3834
3835 In any case, we can record that this comparison was passed. If the same
3836 comparison is seen later, we will know its value. */
3837
3838 static void
3839 record_jump_equiv (rtx_insn *insn, bool taken)
3840 {
3841 int cond_known_true;
3842 rtx op0, op1;
3843 rtx set;
3844 enum machine_mode mode, mode0, mode1;
3845 int reversed_nonequality = 0;
3846 enum rtx_code code;
3847
3848 /* Ensure this is the right kind of insn. */
3849 gcc_assert (any_condjump_p (insn));
3850
3851 set = pc_set (insn);
3852
3853 /* See if this jump condition is known true or false. */
3854 if (taken)
3855 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3856 else
3857 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3858
3859 /* Get the type of comparison being done and the operands being compared.
3860 If we had to reverse a non-equality condition, record that fact so we
3861 know that it isn't valid for floating-point. */
3862 code = GET_CODE (XEXP (SET_SRC (set), 0));
3863 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3864 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3865
3866 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3867 if (! cond_known_true)
3868 {
3869 code = reversed_comparison_code_parts (code, op0, op1, insn);
3870
3871 /* Don't remember if we can't find the inverse. */
3872 if (code == UNKNOWN)
3873 return;
3874 }
3875
3876 /* The mode is the mode of the non-constant. */
3877 mode = mode0;
3878 if (mode1 != VOIDmode)
3879 mode = mode1;
3880
3881 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3882 }
3883
3884 /* Yet another form of subreg creation. In this case, we want something in
3885 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3886
3887 static rtx
3888 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3889 {
3890 enum machine_mode op_mode = GET_MODE (op);
3891 if (op_mode == mode || op_mode == VOIDmode)
3892 return op;
3893 return lowpart_subreg (mode, op, op_mode);
3894 }
3895
3896 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3897 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3898 Make any useful entries we can with that information. Called from
3899 above function and called recursively. */
3900
3901 static void
3902 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3903 rtx op1, int reversed_nonequality)
3904 {
3905 unsigned op0_hash, op1_hash;
3906 int op0_in_memory, op1_in_memory;
3907 struct table_elt *op0_elt, *op1_elt;
3908
3909 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3910 we know that they are also equal in the smaller mode (this is also
3911 true for all smaller modes whether or not there is a SUBREG, but
3912 is not worth testing for with no SUBREG). */
3913
3914 /* Note that GET_MODE (op0) may not equal MODE. */
3915 if (code == EQ && paradoxical_subreg_p (op0))
3916 {
3917 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3918 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3919 if (tem)
3920 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3921 reversed_nonequality);
3922 }
3923
3924 if (code == EQ && paradoxical_subreg_p (op1))
3925 {
3926 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3927 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3928 if (tem)
3929 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3930 reversed_nonequality);
3931 }
3932
3933 /* Similarly, if this is an NE comparison, and either is a SUBREG
3934 making a smaller mode, we know the whole thing is also NE. */
3935
3936 /* Note that GET_MODE (op0) may not equal MODE;
3937 if we test MODE instead, we can get an infinite recursion
3938 alternating between two modes each wider than MODE. */
3939
3940 if (code == NE && GET_CODE (op0) == SUBREG
3941 && subreg_lowpart_p (op0)
3942 && (GET_MODE_SIZE (GET_MODE (op0))
3943 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3944 {
3945 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3946 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3947 if (tem)
3948 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3949 reversed_nonequality);
3950 }
3951
3952 if (code == NE && GET_CODE (op1) == SUBREG
3953 && subreg_lowpart_p (op1)
3954 && (GET_MODE_SIZE (GET_MODE (op1))
3955 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3956 {
3957 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3958 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3959 if (tem)
3960 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3961 reversed_nonequality);
3962 }
3963
3964 /* Hash both operands. */
3965
3966 do_not_record = 0;
3967 hash_arg_in_memory = 0;
3968 op0_hash = HASH (op0, mode);
3969 op0_in_memory = hash_arg_in_memory;
3970
3971 if (do_not_record)
3972 return;
3973
3974 do_not_record = 0;
3975 hash_arg_in_memory = 0;
3976 op1_hash = HASH (op1, mode);
3977 op1_in_memory = hash_arg_in_memory;
3978
3979 if (do_not_record)
3980 return;
3981
3982 /* Look up both operands. */
3983 op0_elt = lookup (op0, op0_hash, mode);
3984 op1_elt = lookup (op1, op1_hash, mode);
3985
3986 /* If both operands are already equivalent or if they are not in the
3987 table but are identical, do nothing. */
3988 if ((op0_elt != 0 && op1_elt != 0
3989 && op0_elt->first_same_value == op1_elt->first_same_value)
3990 || op0 == op1 || rtx_equal_p (op0, op1))
3991 return;
3992
3993 /* If we aren't setting two things equal all we can do is save this
3994 comparison. Similarly if this is floating-point. In the latter
3995 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3996 If we record the equality, we might inadvertently delete code
3997 whose intent was to change -0 to +0. */
3998
3999 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4000 {
4001 struct qty_table_elem *ent;
4002 int qty;
4003
4004 /* If we reversed a floating-point comparison, if OP0 is not a
4005 register, or if OP1 is neither a register or constant, we can't
4006 do anything. */
4007
4008 if (!REG_P (op1))
4009 op1 = equiv_constant (op1);
4010
4011 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4012 || !REG_P (op0) || op1 == 0)
4013 return;
4014
4015 /* Put OP0 in the hash table if it isn't already. This gives it a
4016 new quantity number. */
4017 if (op0_elt == 0)
4018 {
4019 if (insert_regs (op0, NULL, 0))
4020 {
4021 rehash_using_reg (op0);
4022 op0_hash = HASH (op0, mode);
4023
4024 /* If OP0 is contained in OP1, this changes its hash code
4025 as well. Faster to rehash than to check, except
4026 for the simple case of a constant. */
4027 if (! CONSTANT_P (op1))
4028 op1_hash = HASH (op1,mode);
4029 }
4030
4031 op0_elt = insert (op0, NULL, op0_hash, mode);
4032 op0_elt->in_memory = op0_in_memory;
4033 }
4034
4035 qty = REG_QTY (REGNO (op0));
4036 ent = &qty_table[qty];
4037
4038 ent->comparison_code = code;
4039 if (REG_P (op1))
4040 {
4041 /* Look it up again--in case op0 and op1 are the same. */
4042 op1_elt = lookup (op1, op1_hash, mode);
4043
4044 /* Put OP1 in the hash table so it gets a new quantity number. */
4045 if (op1_elt == 0)
4046 {
4047 if (insert_regs (op1, NULL, 0))
4048 {
4049 rehash_using_reg (op1);
4050 op1_hash = HASH (op1, mode);
4051 }
4052
4053 op1_elt = insert (op1, NULL, op1_hash, mode);
4054 op1_elt->in_memory = op1_in_memory;
4055 }
4056
4057 ent->comparison_const = NULL_RTX;
4058 ent->comparison_qty = REG_QTY (REGNO (op1));
4059 }
4060 else
4061 {
4062 ent->comparison_const = op1;
4063 ent->comparison_qty = -1;
4064 }
4065
4066 return;
4067 }
4068
4069 /* If either side is still missing an equivalence, make it now,
4070 then merge the equivalences. */
4071
4072 if (op0_elt == 0)
4073 {
4074 if (insert_regs (op0, NULL, 0))
4075 {
4076 rehash_using_reg (op0);
4077 op0_hash = HASH (op0, mode);
4078 }
4079
4080 op0_elt = insert (op0, NULL, op0_hash, mode);
4081 op0_elt->in_memory = op0_in_memory;
4082 }
4083
4084 if (op1_elt == 0)
4085 {
4086 if (insert_regs (op1, NULL, 0))
4087 {
4088 rehash_using_reg (op1);
4089 op1_hash = HASH (op1, mode);
4090 }
4091
4092 op1_elt = insert (op1, NULL, op1_hash, mode);
4093 op1_elt->in_memory = op1_in_memory;
4094 }
4095
4096 merge_equiv_classes (op0_elt, op1_elt);
4097 }
4098 \f
4099 /* CSE processing for one instruction.
4100
4101 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4102 but the few that "leak through" are cleaned up by cse_insn, and complex
4103 addressing modes are often formed here.
4104
4105 The main function is cse_insn, and between here and that function
4106 a couple of helper functions is defined to keep the size of cse_insn
4107 within reasonable proportions.
4108
4109 Data is shared between the main and helper functions via STRUCT SET,
4110 that contains all data related for every set in the instruction that
4111 is being processed.
4112
4113 Note that cse_main processes all sets in the instruction. Most
4114 passes in GCC only process simple SET insns or single_set insns, but
4115 CSE processes insns with multiple sets as well. */
4116
4117 /* Data on one SET contained in the instruction. */
4118
4119 struct set
4120 {
4121 /* The SET rtx itself. */
4122 rtx rtl;
4123 /* The SET_SRC of the rtx (the original value, if it is changing). */
4124 rtx src;
4125 /* The hash-table element for the SET_SRC of the SET. */
4126 struct table_elt *src_elt;
4127 /* Hash value for the SET_SRC. */
4128 unsigned src_hash;
4129 /* Hash value for the SET_DEST. */
4130 unsigned dest_hash;
4131 /* The SET_DEST, with SUBREG, etc., stripped. */
4132 rtx inner_dest;
4133 /* Nonzero if the SET_SRC is in memory. */
4134 char src_in_memory;
4135 /* Nonzero if the SET_SRC contains something
4136 whose value cannot be predicted and understood. */
4137 char src_volatile;
4138 /* Original machine mode, in case it becomes a CONST_INT.
4139 The size of this field should match the size of the mode
4140 field of struct rtx_def (see rtl.h). */
4141 ENUM_BITFIELD(machine_mode) mode : 8;
4142 /* A constant equivalent for SET_SRC, if any. */
4143 rtx src_const;
4144 /* Hash value of constant equivalent for SET_SRC. */
4145 unsigned src_const_hash;
4146 /* Table entry for constant equivalent for SET_SRC, if any. */
4147 struct table_elt *src_const_elt;
4148 /* Table entry for the destination address. */
4149 struct table_elt *dest_addr_elt;
4150 };
4151 \f
4152 /* Special handling for (set REG0 REG1) where REG0 is the
4153 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4154 be used in the sequel, so (if easily done) change this insn to
4155 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4156 that computed their value. Then REG1 will become a dead store
4157 and won't cloud the situation for later optimizations.
4158
4159 Do not make this change if REG1 is a hard register, because it will
4160 then be used in the sequel and we may be changing a two-operand insn
4161 into a three-operand insn.
4162
4163 This is the last transformation that cse_insn will try to do. */
4164
4165 static void
4166 try_back_substitute_reg (rtx set, rtx_insn *insn)
4167 {
4168 rtx dest = SET_DEST (set);
4169 rtx src = SET_SRC (set);
4170
4171 if (REG_P (dest)
4172 && REG_P (src) && ! HARD_REGISTER_P (src)
4173 && REGNO_QTY_VALID_P (REGNO (src)))
4174 {
4175 int src_q = REG_QTY (REGNO (src));
4176 struct qty_table_elem *src_ent = &qty_table[src_q];
4177
4178 if (src_ent->first_reg == REGNO (dest))
4179 {
4180 /* Scan for the previous nonnote insn, but stop at a basic
4181 block boundary. */
4182 rtx_insn *prev = insn;
4183 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4184 do
4185 {
4186 prev = PREV_INSN (prev);
4187 }
4188 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4189
4190 /* Do not swap the registers around if the previous instruction
4191 attaches a REG_EQUIV note to REG1.
4192
4193 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4194 from the pseudo that originally shadowed an incoming argument
4195 to another register. Some uses of REG_EQUIV might rely on it
4196 being attached to REG1 rather than REG2.
4197
4198 This section previously turned the REG_EQUIV into a REG_EQUAL
4199 note. We cannot do that because REG_EQUIV may provide an
4200 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4201 if (NONJUMP_INSN_P (prev)
4202 && GET_CODE (PATTERN (prev)) == SET
4203 && SET_DEST (PATTERN (prev)) == src
4204 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4205 {
4206 rtx note;
4207
4208 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4209 validate_change (insn, &SET_DEST (set), src, 1);
4210 validate_change (insn, &SET_SRC (set), dest, 1);
4211 apply_change_group ();
4212
4213 /* If INSN has a REG_EQUAL note, and this note mentions
4214 REG0, then we must delete it, because the value in
4215 REG0 has changed. If the note's value is REG1, we must
4216 also delete it because that is now this insn's dest. */
4217 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4218 if (note != 0
4219 && (reg_mentioned_p (dest, XEXP (note, 0))
4220 || rtx_equal_p (src, XEXP (note, 0))))
4221 remove_note (insn, note);
4222 }
4223 }
4224 }
4225 }
4226 \f
4227 /* Record all the SETs in this instruction into SETS_PTR,
4228 and return the number of recorded sets. */
4229 static int
4230 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4231 {
4232 struct set *sets = *psets;
4233 int n_sets = 0;
4234 rtx x = PATTERN (insn);
4235
4236 if (GET_CODE (x) == SET)
4237 {
4238 /* Ignore SETs that are unconditional jumps.
4239 They never need cse processing, so this does not hurt.
4240 The reason is not efficiency but rather
4241 so that we can test at the end for instructions
4242 that have been simplified to unconditional jumps
4243 and not be misled by unchanged instructions
4244 that were unconditional jumps to begin with. */
4245 if (SET_DEST (x) == pc_rtx
4246 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4247 ;
4248 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4249 The hard function value register is used only once, to copy to
4250 someplace else, so it isn't worth cse'ing. */
4251 else if (GET_CODE (SET_SRC (x)) == CALL)
4252 ;
4253 else
4254 sets[n_sets++].rtl = x;
4255 }
4256 else if (GET_CODE (x) == PARALLEL)
4257 {
4258 int i, lim = XVECLEN (x, 0);
4259
4260 /* Go over the epressions of the PARALLEL in forward order, to
4261 put them in the same order in the SETS array. */
4262 for (i = 0; i < lim; i++)
4263 {
4264 rtx y = XVECEXP (x, 0, i);
4265 if (GET_CODE (y) == SET)
4266 {
4267 /* As above, we ignore unconditional jumps and call-insns and
4268 ignore the result of apply_change_group. */
4269 if (SET_DEST (y) == pc_rtx
4270 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4271 ;
4272 else if (GET_CODE (SET_SRC (y)) == CALL)
4273 ;
4274 else
4275 sets[n_sets++].rtl = y;
4276 }
4277 }
4278 }
4279
4280 return n_sets;
4281 }
4282 \f
4283 /* Where possible, substitute every register reference in the N_SETS
4284 number of SETS in INSN with the the canonical register.
4285
4286 Register canonicalization propagatest the earliest register (i.e.
4287 one that is set before INSN) with the same value. This is a very
4288 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4289 to RTL. For instance, a CONST for an address is usually expanded
4290 multiple times to loads into different registers, thus creating many
4291 subexpressions of the form:
4292
4293 (set (reg1) (some_const))
4294 (set (mem (... reg1 ...) (thing)))
4295 (set (reg2) (some_const))
4296 (set (mem (... reg2 ...) (thing)))
4297
4298 After canonicalizing, the code takes the following form:
4299
4300 (set (reg1) (some_const))
4301 (set (mem (... reg1 ...) (thing)))
4302 (set (reg2) (some_const))
4303 (set (mem (... reg1 ...) (thing)))
4304
4305 The set to reg2 is now trivially dead, and the memory reference (or
4306 address, or whatever) may be a candidate for further CSEing.
4307
4308 In this function, the result of apply_change_group can be ignored;
4309 see canon_reg. */
4310
4311 static void
4312 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4313 {
4314 struct set *sets = *psets;
4315 rtx tem;
4316 rtx x = PATTERN (insn);
4317 int i;
4318
4319 if (CALL_P (insn))
4320 {
4321 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4322 if (GET_CODE (XEXP (tem, 0)) != SET)
4323 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4324 }
4325
4326 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4327 {
4328 canon_reg (SET_SRC (x), insn);
4329 apply_change_group ();
4330 fold_rtx (SET_SRC (x), insn);
4331 }
4332 else if (GET_CODE (x) == CLOBBER)
4333 {
4334 /* If we clobber memory, canon the address.
4335 This does nothing when a register is clobbered
4336 because we have already invalidated the reg. */
4337 if (MEM_P (XEXP (x, 0)))
4338 canon_reg (XEXP (x, 0), insn);
4339 }
4340 else if (GET_CODE (x) == USE
4341 && ! (REG_P (XEXP (x, 0))
4342 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4343 /* Canonicalize a USE of a pseudo register or memory location. */
4344 canon_reg (x, insn);
4345 else if (GET_CODE (x) == ASM_OPERANDS)
4346 {
4347 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4348 {
4349 rtx input = ASM_OPERANDS_INPUT (x, i);
4350 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4351 {
4352 input = canon_reg (input, insn);
4353 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4354 }
4355 }
4356 }
4357 else if (GET_CODE (x) == CALL)
4358 {
4359 canon_reg (x, insn);
4360 apply_change_group ();
4361 fold_rtx (x, insn);
4362 }
4363 else if (DEBUG_INSN_P (insn))
4364 canon_reg (PATTERN (insn), insn);
4365 else if (GET_CODE (x) == PARALLEL)
4366 {
4367 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4368 {
4369 rtx y = XVECEXP (x, 0, i);
4370 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4371 {
4372 canon_reg (SET_SRC (y), insn);
4373 apply_change_group ();
4374 fold_rtx (SET_SRC (y), insn);
4375 }
4376 else if (GET_CODE (y) == CLOBBER)
4377 {
4378 if (MEM_P (XEXP (y, 0)))
4379 canon_reg (XEXP (y, 0), insn);
4380 }
4381 else if (GET_CODE (y) == USE
4382 && ! (REG_P (XEXP (y, 0))
4383 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4384 canon_reg (y, insn);
4385 else if (GET_CODE (y) == CALL)
4386 {
4387 canon_reg (y, insn);
4388 apply_change_group ();
4389 fold_rtx (y, insn);
4390 }
4391 }
4392 }
4393
4394 if (n_sets == 1 && REG_NOTES (insn) != 0
4395 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4396 {
4397 /* We potentially will process this insn many times. Therefore,
4398 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4399 unique set in INSN.
4400
4401 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4402 because cse_insn handles those specially. */
4403 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4404 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4405 remove_note (insn, tem);
4406 else
4407 {
4408 canon_reg (XEXP (tem, 0), insn);
4409 apply_change_group ();
4410 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4411 df_notes_rescan (insn);
4412 }
4413 }
4414
4415 /* Canonicalize sources and addresses of destinations.
4416 We do this in a separate pass to avoid problems when a MATCH_DUP is
4417 present in the insn pattern. In that case, we want to ensure that
4418 we don't break the duplicate nature of the pattern. So we will replace
4419 both operands at the same time. Otherwise, we would fail to find an
4420 equivalent substitution in the loop calling validate_change below.
4421
4422 We used to suppress canonicalization of DEST if it appears in SRC,
4423 but we don't do this any more. */
4424
4425 for (i = 0; i < n_sets; i++)
4426 {
4427 rtx dest = SET_DEST (sets[i].rtl);
4428 rtx src = SET_SRC (sets[i].rtl);
4429 rtx new_rtx = canon_reg (src, insn);
4430
4431 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4432
4433 if (GET_CODE (dest) == ZERO_EXTRACT)
4434 {
4435 validate_change (insn, &XEXP (dest, 1),
4436 canon_reg (XEXP (dest, 1), insn), 1);
4437 validate_change (insn, &XEXP (dest, 2),
4438 canon_reg (XEXP (dest, 2), insn), 1);
4439 }
4440
4441 while (GET_CODE (dest) == SUBREG
4442 || GET_CODE (dest) == ZERO_EXTRACT
4443 || GET_CODE (dest) == STRICT_LOW_PART)
4444 dest = XEXP (dest, 0);
4445
4446 if (MEM_P (dest))
4447 canon_reg (dest, insn);
4448 }
4449
4450 /* Now that we have done all the replacements, we can apply the change
4451 group and see if they all work. Note that this will cause some
4452 canonicalizations that would have worked individually not to be applied
4453 because some other canonicalization didn't work, but this should not
4454 occur often.
4455
4456 The result of apply_change_group can be ignored; see canon_reg. */
4457
4458 apply_change_group ();
4459 }
4460 \f
4461 /* Main function of CSE.
4462 First simplify sources and addresses of all assignments
4463 in the instruction, using previously-computed equivalents values.
4464 Then install the new sources and destinations in the table
4465 of available values. */
4466
4467 static void
4468 cse_insn (rtx_insn *insn)
4469 {
4470 rtx x = PATTERN (insn);
4471 int i;
4472 rtx tem;
4473 int n_sets = 0;
4474
4475 rtx src_eqv = 0;
4476 struct table_elt *src_eqv_elt = 0;
4477 int src_eqv_volatile = 0;
4478 int src_eqv_in_memory = 0;
4479 unsigned src_eqv_hash = 0;
4480
4481 struct set *sets = (struct set *) 0;
4482
4483 if (GET_CODE (x) == SET)
4484 sets = XALLOCA (struct set);
4485 else if (GET_CODE (x) == PARALLEL)
4486 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4487
4488 this_insn = insn;
4489 #ifdef HAVE_cc0
4490 /* Records what this insn does to set CC0. */
4491 this_insn_cc0 = 0;
4492 this_insn_cc0_mode = VOIDmode;
4493 #endif
4494
4495 /* Find all regs explicitly clobbered in this insn,
4496 to ensure they are not replaced with any other regs
4497 elsewhere in this insn. */
4498 invalidate_from_sets_and_clobbers (insn);
4499
4500 /* Record all the SETs in this instruction. */
4501 n_sets = find_sets_in_insn (insn, &sets);
4502
4503 /* Substitute the canonical register where possible. */
4504 canonicalize_insn (insn, &sets, n_sets);
4505
4506 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4507 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4508 is necessary because SRC_EQV is handled specially for this case, and if
4509 it isn't set, then there will be no equivalence for the destination. */
4510 if (n_sets == 1 && REG_NOTES (insn) != 0
4511 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4512 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4513 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4514 src_eqv = copy_rtx (XEXP (tem, 0));
4515
4516 /* Set sets[i].src_elt to the class each source belongs to.
4517 Detect assignments from or to volatile things
4518 and set set[i] to zero so they will be ignored
4519 in the rest of this function.
4520
4521 Nothing in this loop changes the hash table or the register chains. */
4522
4523 for (i = 0; i < n_sets; i++)
4524 {
4525 bool repeat = false;
4526 rtx src, dest;
4527 rtx src_folded;
4528 struct table_elt *elt = 0, *p;
4529 enum machine_mode mode;
4530 rtx src_eqv_here;
4531 rtx src_const = 0;
4532 rtx src_related = 0;
4533 bool src_related_is_const_anchor = false;
4534 struct table_elt *src_const_elt = 0;
4535 int src_cost = MAX_COST;
4536 int src_eqv_cost = MAX_COST;
4537 int src_folded_cost = MAX_COST;
4538 int src_related_cost = MAX_COST;
4539 int src_elt_cost = MAX_COST;
4540 int src_regcost = MAX_COST;
4541 int src_eqv_regcost = MAX_COST;
4542 int src_folded_regcost = MAX_COST;
4543 int src_related_regcost = MAX_COST;
4544 int src_elt_regcost = MAX_COST;
4545 /* Set nonzero if we need to call force_const_mem on with the
4546 contents of src_folded before using it. */
4547 int src_folded_force_flag = 0;
4548
4549 dest = SET_DEST (sets[i].rtl);
4550 src = SET_SRC (sets[i].rtl);
4551
4552 /* If SRC is a constant that has no machine mode,
4553 hash it with the destination's machine mode.
4554 This way we can keep different modes separate. */
4555
4556 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4557 sets[i].mode = mode;
4558
4559 if (src_eqv)
4560 {
4561 enum machine_mode eqvmode = mode;
4562 if (GET_CODE (dest) == STRICT_LOW_PART)
4563 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4564 do_not_record = 0;
4565 hash_arg_in_memory = 0;
4566 src_eqv_hash = HASH (src_eqv, eqvmode);
4567
4568 /* Find the equivalence class for the equivalent expression. */
4569
4570 if (!do_not_record)
4571 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4572
4573 src_eqv_volatile = do_not_record;
4574 src_eqv_in_memory = hash_arg_in_memory;
4575 }
4576
4577 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4578 value of the INNER register, not the destination. So it is not
4579 a valid substitution for the source. But save it for later. */
4580 if (GET_CODE (dest) == STRICT_LOW_PART)
4581 src_eqv_here = 0;
4582 else
4583 src_eqv_here = src_eqv;
4584
4585 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4586 simplified result, which may not necessarily be valid. */
4587 src_folded = fold_rtx (src, insn);
4588
4589 #if 0
4590 /* ??? This caused bad code to be generated for the m68k port with -O2.
4591 Suppose src is (CONST_INT -1), and that after truncation src_folded
4592 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4593 At the end we will add src and src_const to the same equivalence
4594 class. We now have 3 and -1 on the same equivalence class. This
4595 causes later instructions to be mis-optimized. */
4596 /* If storing a constant in a bitfield, pre-truncate the constant
4597 so we will be able to record it later. */
4598 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4599 {
4600 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4601
4602 if (CONST_INT_P (src)
4603 && CONST_INT_P (width)
4604 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4605 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4606 src_folded
4607 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4608 << INTVAL (width)) - 1));
4609 }
4610 #endif
4611
4612 /* Compute SRC's hash code, and also notice if it
4613 should not be recorded at all. In that case,
4614 prevent any further processing of this assignment. */
4615 do_not_record = 0;
4616 hash_arg_in_memory = 0;
4617
4618 sets[i].src = src;
4619 sets[i].src_hash = HASH (src, mode);
4620 sets[i].src_volatile = do_not_record;
4621 sets[i].src_in_memory = hash_arg_in_memory;
4622
4623 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4624 a pseudo, do not record SRC. Using SRC as a replacement for
4625 anything else will be incorrect in that situation. Note that
4626 this usually occurs only for stack slots, in which case all the
4627 RTL would be referring to SRC, so we don't lose any optimization
4628 opportunities by not having SRC in the hash table. */
4629
4630 if (MEM_P (src)
4631 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4632 && REG_P (dest)
4633 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4634 sets[i].src_volatile = 1;
4635
4636 /* Also do not record result of a non-volatile inline asm with
4637 more than one result or with clobbers, we do not want CSE to
4638 break the inline asm apart. */
4639 else if (GET_CODE (src) == ASM_OPERANDS
4640 && GET_CODE (x) == PARALLEL)
4641 sets[i].src_volatile = 1;
4642
4643 #if 0
4644 /* It is no longer clear why we used to do this, but it doesn't
4645 appear to still be needed. So let's try without it since this
4646 code hurts cse'ing widened ops. */
4647 /* If source is a paradoxical subreg (such as QI treated as an SI),
4648 treat it as volatile. It may do the work of an SI in one context
4649 where the extra bits are not being used, but cannot replace an SI
4650 in general. */
4651 if (paradoxical_subreg_p (src))
4652 sets[i].src_volatile = 1;
4653 #endif
4654
4655 /* Locate all possible equivalent forms for SRC. Try to replace
4656 SRC in the insn with each cheaper equivalent.
4657
4658 We have the following types of equivalents: SRC itself, a folded
4659 version, a value given in a REG_EQUAL note, or a value related
4660 to a constant.
4661
4662 Each of these equivalents may be part of an additional class
4663 of equivalents (if more than one is in the table, they must be in
4664 the same class; we check for this).
4665
4666 If the source is volatile, we don't do any table lookups.
4667
4668 We note any constant equivalent for possible later use in a
4669 REG_NOTE. */
4670
4671 if (!sets[i].src_volatile)
4672 elt = lookup (src, sets[i].src_hash, mode);
4673
4674 sets[i].src_elt = elt;
4675
4676 if (elt && src_eqv_here && src_eqv_elt)
4677 {
4678 if (elt->first_same_value != src_eqv_elt->first_same_value)
4679 {
4680 /* The REG_EQUAL is indicating that two formerly distinct
4681 classes are now equivalent. So merge them. */
4682 merge_equiv_classes (elt, src_eqv_elt);
4683 src_eqv_hash = HASH (src_eqv, elt->mode);
4684 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4685 }
4686
4687 src_eqv_here = 0;
4688 }
4689
4690 else if (src_eqv_elt)
4691 elt = src_eqv_elt;
4692
4693 /* Try to find a constant somewhere and record it in `src_const'.
4694 Record its table element, if any, in `src_const_elt'. Look in
4695 any known equivalences first. (If the constant is not in the
4696 table, also set `sets[i].src_const_hash'). */
4697 if (elt)
4698 for (p = elt->first_same_value; p; p = p->next_same_value)
4699 if (p->is_const)
4700 {
4701 src_const = p->exp;
4702 src_const_elt = elt;
4703 break;
4704 }
4705
4706 if (src_const == 0
4707 && (CONSTANT_P (src_folded)
4708 /* Consider (minus (label_ref L1) (label_ref L2)) as
4709 "constant" here so we will record it. This allows us
4710 to fold switch statements when an ADDR_DIFF_VEC is used. */
4711 || (GET_CODE (src_folded) == MINUS
4712 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4713 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4714 src_const = src_folded, src_const_elt = elt;
4715 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4716 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4717
4718 /* If we don't know if the constant is in the table, get its
4719 hash code and look it up. */
4720 if (src_const && src_const_elt == 0)
4721 {
4722 sets[i].src_const_hash = HASH (src_const, mode);
4723 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4724 }
4725
4726 sets[i].src_const = src_const;
4727 sets[i].src_const_elt = src_const_elt;
4728
4729 /* If the constant and our source are both in the table, mark them as
4730 equivalent. Otherwise, if a constant is in the table but the source
4731 isn't, set ELT to it. */
4732 if (src_const_elt && elt
4733 && src_const_elt->first_same_value != elt->first_same_value)
4734 merge_equiv_classes (elt, src_const_elt);
4735 else if (src_const_elt && elt == 0)
4736 elt = src_const_elt;
4737
4738 /* See if there is a register linearly related to a constant
4739 equivalent of SRC. */
4740 if (src_const
4741 && (GET_CODE (src_const) == CONST
4742 || (src_const_elt && src_const_elt->related_value != 0)))
4743 {
4744 src_related = use_related_value (src_const, src_const_elt);
4745 if (src_related)
4746 {
4747 struct table_elt *src_related_elt
4748 = lookup (src_related, HASH (src_related, mode), mode);
4749 if (src_related_elt && elt)
4750 {
4751 if (elt->first_same_value
4752 != src_related_elt->first_same_value)
4753 /* This can occur when we previously saw a CONST
4754 involving a SYMBOL_REF and then see the SYMBOL_REF
4755 twice. Merge the involved classes. */
4756 merge_equiv_classes (elt, src_related_elt);
4757
4758 src_related = 0;
4759 src_related_elt = 0;
4760 }
4761 else if (src_related_elt && elt == 0)
4762 elt = src_related_elt;
4763 }
4764 }
4765
4766 /* See if we have a CONST_INT that is already in a register in a
4767 wider mode. */
4768
4769 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4770 && GET_MODE_CLASS (mode) == MODE_INT
4771 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4772 {
4773 enum machine_mode wider_mode;
4774
4775 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4776 wider_mode != VOIDmode
4777 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4778 && src_related == 0;
4779 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4780 {
4781 struct table_elt *const_elt
4782 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4783
4784 if (const_elt == 0)
4785 continue;
4786
4787 for (const_elt = const_elt->first_same_value;
4788 const_elt; const_elt = const_elt->next_same_value)
4789 if (REG_P (const_elt->exp))
4790 {
4791 src_related = gen_lowpart (mode, const_elt->exp);
4792 break;
4793 }
4794 }
4795 }
4796
4797 /* Another possibility is that we have an AND with a constant in
4798 a mode narrower than a word. If so, it might have been generated
4799 as part of an "if" which would narrow the AND. If we already
4800 have done the AND in a wider mode, we can use a SUBREG of that
4801 value. */
4802
4803 if (flag_expensive_optimizations && ! src_related
4804 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4805 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4806 {
4807 enum machine_mode tmode;
4808 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4809
4810 for (tmode = GET_MODE_WIDER_MODE (mode);
4811 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4812 tmode = GET_MODE_WIDER_MODE (tmode))
4813 {
4814 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4815 struct table_elt *larger_elt;
4816
4817 if (inner)
4818 {
4819 PUT_MODE (new_and, tmode);
4820 XEXP (new_and, 0) = inner;
4821 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4822 if (larger_elt == 0)
4823 continue;
4824
4825 for (larger_elt = larger_elt->first_same_value;
4826 larger_elt; larger_elt = larger_elt->next_same_value)
4827 if (REG_P (larger_elt->exp))
4828 {
4829 src_related
4830 = gen_lowpart (mode, larger_elt->exp);
4831 break;
4832 }
4833
4834 if (src_related)
4835 break;
4836 }
4837 }
4838 }
4839
4840 #ifdef LOAD_EXTEND_OP
4841 /* See if a MEM has already been loaded with a widening operation;
4842 if it has, we can use a subreg of that. Many CISC machines
4843 also have such operations, but this is only likely to be
4844 beneficial on these machines. */
4845
4846 if (flag_expensive_optimizations && src_related == 0
4847 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4848 && GET_MODE_CLASS (mode) == MODE_INT
4849 && MEM_P (src) && ! do_not_record
4850 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4851 {
4852 struct rtx_def memory_extend_buf;
4853 rtx memory_extend_rtx = &memory_extend_buf;
4854 enum machine_mode tmode;
4855
4856 /* Set what we are trying to extend and the operation it might
4857 have been extended with. */
4858 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4859 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4860 XEXP (memory_extend_rtx, 0) = src;
4861
4862 for (tmode = GET_MODE_WIDER_MODE (mode);
4863 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4864 tmode = GET_MODE_WIDER_MODE (tmode))
4865 {
4866 struct table_elt *larger_elt;
4867
4868 PUT_MODE (memory_extend_rtx, tmode);
4869 larger_elt = lookup (memory_extend_rtx,
4870 HASH (memory_extend_rtx, tmode), tmode);
4871 if (larger_elt == 0)
4872 continue;
4873
4874 for (larger_elt = larger_elt->first_same_value;
4875 larger_elt; larger_elt = larger_elt->next_same_value)
4876 if (REG_P (larger_elt->exp))
4877 {
4878 src_related = gen_lowpart (mode, larger_elt->exp);
4879 break;
4880 }
4881
4882 if (src_related)
4883 break;
4884 }
4885 }
4886 #endif /* LOAD_EXTEND_OP */
4887
4888 /* Try to express the constant using a register+offset expression
4889 derived from a constant anchor. */
4890
4891 if (targetm.const_anchor
4892 && !src_related
4893 && src_const
4894 && GET_CODE (src_const) == CONST_INT)
4895 {
4896 src_related = try_const_anchors (src_const, mode);
4897 src_related_is_const_anchor = src_related != NULL_RTX;
4898 }
4899
4900
4901 if (src == src_folded)
4902 src_folded = 0;
4903
4904 /* At this point, ELT, if nonzero, points to a class of expressions
4905 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4906 and SRC_RELATED, if nonzero, each contain additional equivalent
4907 expressions. Prune these latter expressions by deleting expressions
4908 already in the equivalence class.
4909
4910 Check for an equivalent identical to the destination. If found,
4911 this is the preferred equivalent since it will likely lead to
4912 elimination of the insn. Indicate this by placing it in
4913 `src_related'. */
4914
4915 if (elt)
4916 elt = elt->first_same_value;
4917 for (p = elt; p; p = p->next_same_value)
4918 {
4919 enum rtx_code code = GET_CODE (p->exp);
4920
4921 /* If the expression is not valid, ignore it. Then we do not
4922 have to check for validity below. In most cases, we can use
4923 `rtx_equal_p', since canonicalization has already been done. */
4924 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4925 continue;
4926
4927 /* Also skip paradoxical subregs, unless that's what we're
4928 looking for. */
4929 if (paradoxical_subreg_p (p->exp)
4930 && ! (src != 0
4931 && GET_CODE (src) == SUBREG
4932 && GET_MODE (src) == GET_MODE (p->exp)
4933 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4934 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4935 continue;
4936
4937 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4938 src = 0;
4939 else if (src_folded && GET_CODE (src_folded) == code
4940 && rtx_equal_p (src_folded, p->exp))
4941 src_folded = 0;
4942 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4943 && rtx_equal_p (src_eqv_here, p->exp))
4944 src_eqv_here = 0;
4945 else if (src_related && GET_CODE (src_related) == code
4946 && rtx_equal_p (src_related, p->exp))
4947 src_related = 0;
4948
4949 /* This is the same as the destination of the insns, we want
4950 to prefer it. Copy it to src_related. The code below will
4951 then give it a negative cost. */
4952 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4953 src_related = dest;
4954 }
4955
4956 /* Find the cheapest valid equivalent, trying all the available
4957 possibilities. Prefer items not in the hash table to ones
4958 that are when they are equal cost. Note that we can never
4959 worsen an insn as the current contents will also succeed.
4960 If we find an equivalent identical to the destination, use it as best,
4961 since this insn will probably be eliminated in that case. */
4962 if (src)
4963 {
4964 if (rtx_equal_p (src, dest))
4965 src_cost = src_regcost = -1;
4966 else
4967 {
4968 src_cost = COST (src);
4969 src_regcost = approx_reg_cost (src);
4970 }
4971 }
4972
4973 if (src_eqv_here)
4974 {
4975 if (rtx_equal_p (src_eqv_here, dest))
4976 src_eqv_cost = src_eqv_regcost = -1;
4977 else
4978 {
4979 src_eqv_cost = COST (src_eqv_here);
4980 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4981 }
4982 }
4983
4984 if (src_folded)
4985 {
4986 if (rtx_equal_p (src_folded, dest))
4987 src_folded_cost = src_folded_regcost = -1;
4988 else
4989 {
4990 src_folded_cost = COST (src_folded);
4991 src_folded_regcost = approx_reg_cost (src_folded);
4992 }
4993 }
4994
4995 if (src_related)
4996 {
4997 if (rtx_equal_p (src_related, dest))
4998 src_related_cost = src_related_regcost = -1;
4999 else
5000 {
5001 src_related_cost = COST (src_related);
5002 src_related_regcost = approx_reg_cost (src_related);
5003
5004 /* If a const-anchor is used to synthesize a constant that
5005 normally requires multiple instructions then slightly prefer
5006 it over the original sequence. These instructions are likely
5007 to become redundant now. We can't compare against the cost
5008 of src_eqv_here because, on MIPS for example, multi-insn
5009 constants have zero cost; they are assumed to be hoisted from
5010 loops. */
5011 if (src_related_is_const_anchor
5012 && src_related_cost == src_cost
5013 && src_eqv_here)
5014 src_related_cost--;
5015 }
5016 }
5017
5018 /* If this was an indirect jump insn, a known label will really be
5019 cheaper even though it looks more expensive. */
5020 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5021 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5022
5023 /* Terminate loop when replacement made. This must terminate since
5024 the current contents will be tested and will always be valid. */
5025 while (1)
5026 {
5027 rtx trial;
5028
5029 /* Skip invalid entries. */
5030 while (elt && !REG_P (elt->exp)
5031 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5032 elt = elt->next_same_value;
5033
5034 /* A paradoxical subreg would be bad here: it'll be the right
5035 size, but later may be adjusted so that the upper bits aren't
5036 what we want. So reject it. */
5037 if (elt != 0
5038 && paradoxical_subreg_p (elt->exp)
5039 /* It is okay, though, if the rtx we're trying to match
5040 will ignore any of the bits we can't predict. */
5041 && ! (src != 0
5042 && GET_CODE (src) == SUBREG
5043 && GET_MODE (src) == GET_MODE (elt->exp)
5044 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5045 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5046 {
5047 elt = elt->next_same_value;
5048 continue;
5049 }
5050
5051 if (elt)
5052 {
5053 src_elt_cost = elt->cost;
5054 src_elt_regcost = elt->regcost;
5055 }
5056
5057 /* Find cheapest and skip it for the next time. For items
5058 of equal cost, use this order:
5059 src_folded, src, src_eqv, src_related and hash table entry. */
5060 if (src_folded
5061 && preferable (src_folded_cost, src_folded_regcost,
5062 src_cost, src_regcost) <= 0
5063 && preferable (src_folded_cost, src_folded_regcost,
5064 src_eqv_cost, src_eqv_regcost) <= 0
5065 && preferable (src_folded_cost, src_folded_regcost,
5066 src_related_cost, src_related_regcost) <= 0
5067 && preferable (src_folded_cost, src_folded_regcost,
5068 src_elt_cost, src_elt_regcost) <= 0)
5069 {
5070 trial = src_folded, src_folded_cost = MAX_COST;
5071 if (src_folded_force_flag)
5072 {
5073 rtx forced = force_const_mem (mode, trial);
5074 if (forced)
5075 trial = forced;
5076 }
5077 }
5078 else if (src
5079 && preferable (src_cost, src_regcost,
5080 src_eqv_cost, src_eqv_regcost) <= 0
5081 && preferable (src_cost, src_regcost,
5082 src_related_cost, src_related_regcost) <= 0
5083 && preferable (src_cost, src_regcost,
5084 src_elt_cost, src_elt_regcost) <= 0)
5085 trial = src, src_cost = MAX_COST;
5086 else if (src_eqv_here
5087 && preferable (src_eqv_cost, src_eqv_regcost,
5088 src_related_cost, src_related_regcost) <= 0
5089 && preferable (src_eqv_cost, src_eqv_regcost,
5090 src_elt_cost, src_elt_regcost) <= 0)
5091 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5092 else if (src_related
5093 && preferable (src_related_cost, src_related_regcost,
5094 src_elt_cost, src_elt_regcost) <= 0)
5095 trial = src_related, src_related_cost = MAX_COST;
5096 else
5097 {
5098 trial = elt->exp;
5099 elt = elt->next_same_value;
5100 src_elt_cost = MAX_COST;
5101 }
5102
5103 /* Avoid creation of overlapping memory moves. */
5104 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5105 {
5106 rtx src, dest;
5107
5108 /* BLKmode moves are not handled by cse anyway. */
5109 if (GET_MODE (trial) == BLKmode)
5110 break;
5111
5112 src = canon_rtx (trial);
5113 dest = canon_rtx (SET_DEST (sets[i].rtl));
5114
5115 if (!MEM_P (src) || !MEM_P (dest)
5116 || !nonoverlapping_memrefs_p (src, dest, false))
5117 break;
5118 }
5119
5120 /* Try to optimize
5121 (set (reg:M N) (const_int A))
5122 (set (reg:M2 O) (const_int B))
5123 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5124 (reg:M2 O)). */
5125 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5126 && CONST_INT_P (trial)
5127 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5128 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5129 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5130 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5131 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5132 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5133 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5134 <= HOST_BITS_PER_WIDE_INT))
5135 {
5136 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5137 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5138 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5139 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5140 struct table_elt *dest_elt
5141 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5142 rtx dest_cst = NULL;
5143
5144 if (dest_elt)
5145 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5146 if (p->is_const && CONST_INT_P (p->exp))
5147 {
5148 dest_cst = p->exp;
5149 break;
5150 }
5151 if (dest_cst)
5152 {
5153 HOST_WIDE_INT val = INTVAL (dest_cst);
5154 HOST_WIDE_INT mask;
5155 unsigned int shift;
5156 if (BITS_BIG_ENDIAN)
5157 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5158 - INTVAL (pos) - INTVAL (width);
5159 else
5160 shift = INTVAL (pos);
5161 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5162 mask = ~(HOST_WIDE_INT) 0;
5163 else
5164 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5165 val &= ~(mask << shift);
5166 val |= (INTVAL (trial) & mask) << shift;
5167 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5168 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5169 dest_reg, 1);
5170 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5171 GEN_INT (val), 1);
5172 if (apply_change_group ())
5173 {
5174 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5175 if (note)
5176 {
5177 remove_note (insn, note);
5178 df_notes_rescan (insn);
5179 }
5180 src_eqv = NULL_RTX;
5181 src_eqv_elt = NULL;
5182 src_eqv_volatile = 0;
5183 src_eqv_in_memory = 0;
5184 src_eqv_hash = 0;
5185 repeat = true;
5186 break;
5187 }
5188 }
5189 }
5190
5191 /* We don't normally have an insn matching (set (pc) (pc)), so
5192 check for this separately here. We will delete such an
5193 insn below.
5194
5195 For other cases such as a table jump or conditional jump
5196 where we know the ultimate target, go ahead and replace the
5197 operand. While that may not make a valid insn, we will
5198 reemit the jump below (and also insert any necessary
5199 barriers). */
5200 if (n_sets == 1 && dest == pc_rtx
5201 && (trial == pc_rtx
5202 || (GET_CODE (trial) == LABEL_REF
5203 && ! condjump_p (insn))))
5204 {
5205 /* Don't substitute non-local labels, this confuses CFG. */
5206 if (GET_CODE (trial) == LABEL_REF
5207 && LABEL_REF_NONLOCAL_P (trial))
5208 continue;
5209
5210 SET_SRC (sets[i].rtl) = trial;
5211 cse_jumps_altered = true;
5212 break;
5213 }
5214
5215 /* Reject certain invalid forms of CONST that we create. */
5216 else if (CONSTANT_P (trial)
5217 && GET_CODE (trial) == CONST
5218 /* Reject cases that will cause decode_rtx_const to
5219 die. On the alpha when simplifying a switch, we
5220 get (const (truncate (minus (label_ref)
5221 (label_ref)))). */
5222 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5223 /* Likewise on IA-64, except without the
5224 truncate. */
5225 || (GET_CODE (XEXP (trial, 0)) == MINUS
5226 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5227 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5228 /* Do nothing for this case. */
5229 ;
5230
5231 /* Look for a substitution that makes a valid insn. */
5232 else if (validate_unshare_change
5233 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5234 {
5235 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5236
5237 /* The result of apply_change_group can be ignored; see
5238 canon_reg. */
5239
5240 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5241 apply_change_group ();
5242
5243 break;
5244 }
5245
5246 /* If we previously found constant pool entries for
5247 constants and this is a constant, try making a
5248 pool entry. Put it in src_folded unless we already have done
5249 this since that is where it likely came from. */
5250
5251 else if (constant_pool_entries_cost
5252 && CONSTANT_P (trial)
5253 && (src_folded == 0
5254 || (!MEM_P (src_folded)
5255 && ! src_folded_force_flag))
5256 && GET_MODE_CLASS (mode) != MODE_CC
5257 && mode != VOIDmode)
5258 {
5259 src_folded_force_flag = 1;
5260 src_folded = trial;
5261 src_folded_cost = constant_pool_entries_cost;
5262 src_folded_regcost = constant_pool_entries_regcost;
5263 }
5264 }
5265
5266 /* If we changed the insn too much, handle this set from scratch. */
5267 if (repeat)
5268 {
5269 i--;
5270 continue;
5271 }
5272
5273 src = SET_SRC (sets[i].rtl);
5274
5275 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5276 However, there is an important exception: If both are registers
5277 that are not the head of their equivalence class, replace SET_SRC
5278 with the head of the class. If we do not do this, we will have
5279 both registers live over a portion of the basic block. This way,
5280 their lifetimes will likely abut instead of overlapping. */
5281 if (REG_P (dest)
5282 && REGNO_QTY_VALID_P (REGNO (dest)))
5283 {
5284 int dest_q = REG_QTY (REGNO (dest));
5285 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5286
5287 if (dest_ent->mode == GET_MODE (dest)
5288 && dest_ent->first_reg != REGNO (dest)
5289 && REG_P (src) && REGNO (src) == REGNO (dest)
5290 /* Don't do this if the original insn had a hard reg as
5291 SET_SRC or SET_DEST. */
5292 && (!REG_P (sets[i].src)
5293 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5294 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5295 /* We can't call canon_reg here because it won't do anything if
5296 SRC is a hard register. */
5297 {
5298 int src_q = REG_QTY (REGNO (src));
5299 struct qty_table_elem *src_ent = &qty_table[src_q];
5300 int first = src_ent->first_reg;
5301 rtx new_src
5302 = (first >= FIRST_PSEUDO_REGISTER
5303 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5304
5305 /* We must use validate-change even for this, because this
5306 might be a special no-op instruction, suitable only to
5307 tag notes onto. */
5308 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5309 {
5310 src = new_src;
5311 /* If we had a constant that is cheaper than what we are now
5312 setting SRC to, use that constant. We ignored it when we
5313 thought we could make this into a no-op. */
5314 if (src_const && COST (src_const) < COST (src)
5315 && validate_change (insn, &SET_SRC (sets[i].rtl),
5316 src_const, 0))
5317 src = src_const;
5318 }
5319 }
5320 }
5321
5322 /* If we made a change, recompute SRC values. */
5323 if (src != sets[i].src)
5324 {
5325 do_not_record = 0;
5326 hash_arg_in_memory = 0;
5327 sets[i].src = src;
5328 sets[i].src_hash = HASH (src, mode);
5329 sets[i].src_volatile = do_not_record;
5330 sets[i].src_in_memory = hash_arg_in_memory;
5331 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5332 }
5333
5334 /* If this is a single SET, we are setting a register, and we have an
5335 equivalent constant, we want to add a REG_EQUAL note if the constant
5336 is different from the source. We don't want to do it for a constant
5337 pseudo since verifying that this pseudo hasn't been eliminated is a
5338 pain; moreover such a note won't help anything.
5339
5340 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5341 which can be created for a reference to a compile time computable
5342 entry in a jump table. */
5343 if (n_sets == 1
5344 && REG_P (dest)
5345 && src_const
5346 && !REG_P (src_const)
5347 && !(GET_CODE (src_const) == SUBREG
5348 && REG_P (SUBREG_REG (src_const)))
5349 && !(GET_CODE (src_const) == CONST
5350 && GET_CODE (XEXP (src_const, 0)) == MINUS
5351 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5352 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5353 && !rtx_equal_p (src, src_const))
5354 {
5355 /* Make sure that the rtx is not shared. */
5356 src_const = copy_rtx (src_const);
5357
5358 /* Record the actual constant value in a REG_EQUAL note,
5359 making a new one if one does not already exist. */
5360 set_unique_reg_note (insn, REG_EQUAL, src_const);
5361 df_notes_rescan (insn);
5362 }
5363
5364 /* Now deal with the destination. */
5365 do_not_record = 0;
5366
5367 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5368 while (GET_CODE (dest) == SUBREG
5369 || GET_CODE (dest) == ZERO_EXTRACT
5370 || GET_CODE (dest) == STRICT_LOW_PART)
5371 dest = XEXP (dest, 0);
5372
5373 sets[i].inner_dest = dest;
5374
5375 if (MEM_P (dest))
5376 {
5377 #ifdef PUSH_ROUNDING
5378 /* Stack pushes invalidate the stack pointer. */
5379 rtx addr = XEXP (dest, 0);
5380 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5381 && XEXP (addr, 0) == stack_pointer_rtx)
5382 invalidate (stack_pointer_rtx, VOIDmode);
5383 #endif
5384 dest = fold_rtx (dest, insn);
5385 }
5386
5387 /* Compute the hash code of the destination now,
5388 before the effects of this instruction are recorded,
5389 since the register values used in the address computation
5390 are those before this instruction. */
5391 sets[i].dest_hash = HASH (dest, mode);
5392
5393 /* Don't enter a bit-field in the hash table
5394 because the value in it after the store
5395 may not equal what was stored, due to truncation. */
5396
5397 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5398 {
5399 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5400
5401 if (src_const != 0 && CONST_INT_P (src_const)
5402 && CONST_INT_P (width)
5403 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5404 && ! (INTVAL (src_const)
5405 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5406 /* Exception: if the value is constant,
5407 and it won't be truncated, record it. */
5408 ;
5409 else
5410 {
5411 /* This is chosen so that the destination will be invalidated
5412 but no new value will be recorded.
5413 We must invalidate because sometimes constant
5414 values can be recorded for bitfields. */
5415 sets[i].src_elt = 0;
5416 sets[i].src_volatile = 1;
5417 src_eqv = 0;
5418 src_eqv_elt = 0;
5419 }
5420 }
5421
5422 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5423 the insn. */
5424 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5425 {
5426 /* One less use of the label this insn used to jump to. */
5427 delete_insn_and_edges (insn);
5428 cse_jumps_altered = true;
5429 /* No more processing for this set. */
5430 sets[i].rtl = 0;
5431 }
5432
5433 /* If this SET is now setting PC to a label, we know it used to
5434 be a conditional or computed branch. */
5435 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5436 && !LABEL_REF_NONLOCAL_P (src))
5437 {
5438 /* We reemit the jump in as many cases as possible just in
5439 case the form of an unconditional jump is significantly
5440 different than a computed jump or conditional jump.
5441
5442 If this insn has multiple sets, then reemitting the
5443 jump is nontrivial. So instead we just force rerecognition
5444 and hope for the best. */
5445 if (n_sets == 1)
5446 {
5447 rtx new_rtx, note;
5448
5449 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5450 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5451 LABEL_NUSES (XEXP (src, 0))++;
5452
5453 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5454 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5455 if (note)
5456 {
5457 XEXP (note, 1) = NULL_RTX;
5458 REG_NOTES (new_rtx) = note;
5459 }
5460
5461 delete_insn_and_edges (insn);
5462 insn = as_a <rtx_insn *> (new_rtx);
5463 }
5464 else
5465 INSN_CODE (insn) = -1;
5466
5467 /* Do not bother deleting any unreachable code, let jump do it. */
5468 cse_jumps_altered = true;
5469 sets[i].rtl = 0;
5470 }
5471
5472 /* If destination is volatile, invalidate it and then do no further
5473 processing for this assignment. */
5474
5475 else if (do_not_record)
5476 {
5477 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5478 invalidate (dest, VOIDmode);
5479 else if (MEM_P (dest))
5480 invalidate (dest, VOIDmode);
5481 else if (GET_CODE (dest) == STRICT_LOW_PART
5482 || GET_CODE (dest) == ZERO_EXTRACT)
5483 invalidate (XEXP (dest, 0), GET_MODE (dest));
5484 sets[i].rtl = 0;
5485 }
5486
5487 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5488 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5489
5490 #ifdef HAVE_cc0
5491 /* If setting CC0, record what it was set to, or a constant, if it
5492 is equivalent to a constant. If it is being set to a floating-point
5493 value, make a COMPARE with the appropriate constant of 0. If we
5494 don't do this, later code can interpret this as a test against
5495 const0_rtx, which can cause problems if we try to put it into an
5496 insn as a floating-point operand. */
5497 if (dest == cc0_rtx)
5498 {
5499 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5500 this_insn_cc0_mode = mode;
5501 if (FLOAT_MODE_P (mode))
5502 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5503 CONST0_RTX (mode));
5504 }
5505 #endif
5506 }
5507
5508 /* Now enter all non-volatile source expressions in the hash table
5509 if they are not already present.
5510 Record their equivalence classes in src_elt.
5511 This way we can insert the corresponding destinations into
5512 the same classes even if the actual sources are no longer in them
5513 (having been invalidated). */
5514
5515 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5516 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5517 {
5518 struct table_elt *elt;
5519 struct table_elt *classp = sets[0].src_elt;
5520 rtx dest = SET_DEST (sets[0].rtl);
5521 enum machine_mode eqvmode = GET_MODE (dest);
5522
5523 if (GET_CODE (dest) == STRICT_LOW_PART)
5524 {
5525 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5526 classp = 0;
5527 }
5528 if (insert_regs (src_eqv, classp, 0))
5529 {
5530 rehash_using_reg (src_eqv);
5531 src_eqv_hash = HASH (src_eqv, eqvmode);
5532 }
5533 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5534 elt->in_memory = src_eqv_in_memory;
5535 src_eqv_elt = elt;
5536
5537 /* Check to see if src_eqv_elt is the same as a set source which
5538 does not yet have an elt, and if so set the elt of the set source
5539 to src_eqv_elt. */
5540 for (i = 0; i < n_sets; i++)
5541 if (sets[i].rtl && sets[i].src_elt == 0
5542 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5543 sets[i].src_elt = src_eqv_elt;
5544 }
5545
5546 for (i = 0; i < n_sets; i++)
5547 if (sets[i].rtl && ! sets[i].src_volatile
5548 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5549 {
5550 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5551 {
5552 /* REG_EQUAL in setting a STRICT_LOW_PART
5553 gives an equivalent for the entire destination register,
5554 not just for the subreg being stored in now.
5555 This is a more interesting equivalence, so we arrange later
5556 to treat the entire reg as the destination. */
5557 sets[i].src_elt = src_eqv_elt;
5558 sets[i].src_hash = src_eqv_hash;
5559 }
5560 else
5561 {
5562 /* Insert source and constant equivalent into hash table, if not
5563 already present. */
5564 struct table_elt *classp = src_eqv_elt;
5565 rtx src = sets[i].src;
5566 rtx dest = SET_DEST (sets[i].rtl);
5567 enum machine_mode mode
5568 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5569
5570 /* It's possible that we have a source value known to be
5571 constant but don't have a REG_EQUAL note on the insn.
5572 Lack of a note will mean src_eqv_elt will be NULL. This
5573 can happen where we've generated a SUBREG to access a
5574 CONST_INT that is already in a register in a wider mode.
5575 Ensure that the source expression is put in the proper
5576 constant class. */
5577 if (!classp)
5578 classp = sets[i].src_const_elt;
5579
5580 if (sets[i].src_elt == 0)
5581 {
5582 struct table_elt *elt;
5583
5584 /* Note that these insert_regs calls cannot remove
5585 any of the src_elt's, because they would have failed to
5586 match if not still valid. */
5587 if (insert_regs (src, classp, 0))
5588 {
5589 rehash_using_reg (src);
5590 sets[i].src_hash = HASH (src, mode);
5591 }
5592 elt = insert (src, classp, sets[i].src_hash, mode);
5593 elt->in_memory = sets[i].src_in_memory;
5594 sets[i].src_elt = classp = elt;
5595 }
5596 if (sets[i].src_const && sets[i].src_const_elt == 0
5597 && src != sets[i].src_const
5598 && ! rtx_equal_p (sets[i].src_const, src))
5599 sets[i].src_elt = insert (sets[i].src_const, classp,
5600 sets[i].src_const_hash, mode);
5601 }
5602 }
5603 else if (sets[i].src_elt == 0)
5604 /* If we did not insert the source into the hash table (e.g., it was
5605 volatile), note the equivalence class for the REG_EQUAL value, if any,
5606 so that the destination goes into that class. */
5607 sets[i].src_elt = src_eqv_elt;
5608
5609 /* Record destination addresses in the hash table. This allows us to
5610 check if they are invalidated by other sets. */
5611 for (i = 0; i < n_sets; i++)
5612 {
5613 if (sets[i].rtl)
5614 {
5615 rtx x = sets[i].inner_dest;
5616 struct table_elt *elt;
5617 enum machine_mode mode;
5618 unsigned hash;
5619
5620 if (MEM_P (x))
5621 {
5622 x = XEXP (x, 0);
5623 mode = GET_MODE (x);
5624 hash = HASH (x, mode);
5625 elt = lookup (x, hash, mode);
5626 if (!elt)
5627 {
5628 if (insert_regs (x, NULL, 0))
5629 {
5630 rtx dest = SET_DEST (sets[i].rtl);
5631
5632 rehash_using_reg (x);
5633 hash = HASH (x, mode);
5634 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5635 }
5636 elt = insert (x, NULL, hash, mode);
5637 }
5638
5639 sets[i].dest_addr_elt = elt;
5640 }
5641 else
5642 sets[i].dest_addr_elt = NULL;
5643 }
5644 }
5645
5646 invalidate_from_clobbers (insn);
5647
5648 /* Some registers are invalidated by subroutine calls. Memory is
5649 invalidated by non-constant calls. */
5650
5651 if (CALL_P (insn))
5652 {
5653 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5654 invalidate_memory ();
5655 invalidate_for_call ();
5656 }
5657
5658 /* Now invalidate everything set by this instruction.
5659 If a SUBREG or other funny destination is being set,
5660 sets[i].rtl is still nonzero, so here we invalidate the reg
5661 a part of which is being set. */
5662
5663 for (i = 0; i < n_sets; i++)
5664 if (sets[i].rtl)
5665 {
5666 /* We can't use the inner dest, because the mode associated with
5667 a ZERO_EXTRACT is significant. */
5668 rtx dest = SET_DEST (sets[i].rtl);
5669
5670 /* Needed for registers to remove the register from its
5671 previous quantity's chain.
5672 Needed for memory if this is a nonvarying address, unless
5673 we have just done an invalidate_memory that covers even those. */
5674 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5675 invalidate (dest, VOIDmode);
5676 else if (MEM_P (dest))
5677 invalidate (dest, VOIDmode);
5678 else if (GET_CODE (dest) == STRICT_LOW_PART
5679 || GET_CODE (dest) == ZERO_EXTRACT)
5680 invalidate (XEXP (dest, 0), GET_MODE (dest));
5681 }
5682
5683 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5684 the regs restored by the longjmp come from a later time
5685 than the setjmp. */
5686 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5687 {
5688 flush_hash_table ();
5689 goto done;
5690 }
5691
5692 /* Make sure registers mentioned in destinations
5693 are safe for use in an expression to be inserted.
5694 This removes from the hash table
5695 any invalid entry that refers to one of these registers.
5696
5697 We don't care about the return value from mention_regs because
5698 we are going to hash the SET_DEST values unconditionally. */
5699
5700 for (i = 0; i < n_sets; i++)
5701 {
5702 if (sets[i].rtl)
5703 {
5704 rtx x = SET_DEST (sets[i].rtl);
5705
5706 if (!REG_P (x))
5707 mention_regs (x);
5708 else
5709 {
5710 /* We used to rely on all references to a register becoming
5711 inaccessible when a register changes to a new quantity,
5712 since that changes the hash code. However, that is not
5713 safe, since after HASH_SIZE new quantities we get a
5714 hash 'collision' of a register with its own invalid
5715 entries. And since SUBREGs have been changed not to
5716 change their hash code with the hash code of the register,
5717 it wouldn't work any longer at all. So we have to check
5718 for any invalid references lying around now.
5719 This code is similar to the REG case in mention_regs,
5720 but it knows that reg_tick has been incremented, and
5721 it leaves reg_in_table as -1 . */
5722 unsigned int regno = REGNO (x);
5723 unsigned int endregno = END_REGNO (x);
5724 unsigned int i;
5725
5726 for (i = regno; i < endregno; i++)
5727 {
5728 if (REG_IN_TABLE (i) >= 0)
5729 {
5730 remove_invalid_refs (i);
5731 REG_IN_TABLE (i) = -1;
5732 }
5733 }
5734 }
5735 }
5736 }
5737
5738 /* We may have just removed some of the src_elt's from the hash table.
5739 So replace each one with the current head of the same class.
5740 Also check if destination addresses have been removed. */
5741
5742 for (i = 0; i < n_sets; i++)
5743 if (sets[i].rtl)
5744 {
5745 if (sets[i].dest_addr_elt
5746 && sets[i].dest_addr_elt->first_same_value == 0)
5747 {
5748 /* The elt was removed, which means this destination is not
5749 valid after this instruction. */
5750 sets[i].rtl = NULL_RTX;
5751 }
5752 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5753 /* If elt was removed, find current head of same class,
5754 or 0 if nothing remains of that class. */
5755 {
5756 struct table_elt *elt = sets[i].src_elt;
5757
5758 while (elt && elt->prev_same_value)
5759 elt = elt->prev_same_value;
5760
5761 while (elt && elt->first_same_value == 0)
5762 elt = elt->next_same_value;
5763 sets[i].src_elt = elt ? elt->first_same_value : 0;
5764 }
5765 }
5766
5767 /* Now insert the destinations into their equivalence classes. */
5768
5769 for (i = 0; i < n_sets; i++)
5770 if (sets[i].rtl)
5771 {
5772 rtx dest = SET_DEST (sets[i].rtl);
5773 struct table_elt *elt;
5774
5775 /* Don't record value if we are not supposed to risk allocating
5776 floating-point values in registers that might be wider than
5777 memory. */
5778 if ((flag_float_store
5779 && MEM_P (dest)
5780 && FLOAT_MODE_P (GET_MODE (dest)))
5781 /* Don't record BLKmode values, because we don't know the
5782 size of it, and can't be sure that other BLKmode values
5783 have the same or smaller size. */
5784 || GET_MODE (dest) == BLKmode
5785 /* If we didn't put a REG_EQUAL value or a source into the hash
5786 table, there is no point is recording DEST. */
5787 || sets[i].src_elt == 0
5788 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5789 or SIGN_EXTEND, don't record DEST since it can cause
5790 some tracking to be wrong.
5791
5792 ??? Think about this more later. */
5793 || (paradoxical_subreg_p (dest)
5794 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5795 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5796 continue;
5797
5798 /* STRICT_LOW_PART isn't part of the value BEING set,
5799 and neither is the SUBREG inside it.
5800 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5801 if (GET_CODE (dest) == STRICT_LOW_PART)
5802 dest = SUBREG_REG (XEXP (dest, 0));
5803
5804 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5805 /* Registers must also be inserted into chains for quantities. */
5806 if (insert_regs (dest, sets[i].src_elt, 1))
5807 {
5808 /* If `insert_regs' changes something, the hash code must be
5809 recalculated. */
5810 rehash_using_reg (dest);
5811 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5812 }
5813
5814 elt = insert (dest, sets[i].src_elt,
5815 sets[i].dest_hash, GET_MODE (dest));
5816
5817 /* If this is a constant, insert the constant anchors with the
5818 equivalent register-offset expressions using register DEST. */
5819 if (targetm.const_anchor
5820 && REG_P (dest)
5821 && SCALAR_INT_MODE_P (GET_MODE (dest))
5822 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5823 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5824
5825 elt->in_memory = (MEM_P (sets[i].inner_dest)
5826 && !MEM_READONLY_P (sets[i].inner_dest));
5827
5828 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5829 narrower than M2, and both M1 and M2 are the same number of words,
5830 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5831 make that equivalence as well.
5832
5833 However, BAR may have equivalences for which gen_lowpart
5834 will produce a simpler value than gen_lowpart applied to
5835 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5836 BAR's equivalences. If we don't get a simplified form, make
5837 the SUBREG. It will not be used in an equivalence, but will
5838 cause two similar assignments to be detected.
5839
5840 Note the loop below will find SUBREG_REG (DEST) since we have
5841 already entered SRC and DEST of the SET in the table. */
5842
5843 if (GET_CODE (dest) == SUBREG
5844 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5845 / UNITS_PER_WORD)
5846 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5847 && (GET_MODE_SIZE (GET_MODE (dest))
5848 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5849 && sets[i].src_elt != 0)
5850 {
5851 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5852 struct table_elt *elt, *classp = 0;
5853
5854 for (elt = sets[i].src_elt->first_same_value; elt;
5855 elt = elt->next_same_value)
5856 {
5857 rtx new_src = 0;
5858 unsigned src_hash;
5859 struct table_elt *src_elt;
5860 int byte = 0;
5861
5862 /* Ignore invalid entries. */
5863 if (!REG_P (elt->exp)
5864 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5865 continue;
5866
5867 /* We may have already been playing subreg games. If the
5868 mode is already correct for the destination, use it. */
5869 if (GET_MODE (elt->exp) == new_mode)
5870 new_src = elt->exp;
5871 else
5872 {
5873 /* Calculate big endian correction for the SUBREG_BYTE.
5874 We have already checked that M1 (GET_MODE (dest))
5875 is not narrower than M2 (new_mode). */
5876 if (BYTES_BIG_ENDIAN)
5877 byte = (GET_MODE_SIZE (GET_MODE (dest))
5878 - GET_MODE_SIZE (new_mode));
5879
5880 new_src = simplify_gen_subreg (new_mode, elt->exp,
5881 GET_MODE (dest), byte);
5882 }
5883
5884 /* The call to simplify_gen_subreg fails if the value
5885 is VOIDmode, yet we can't do any simplification, e.g.
5886 for EXPR_LISTs denoting function call results.
5887 It is invalid to construct a SUBREG with a VOIDmode
5888 SUBREG_REG, hence a zero new_src means we can't do
5889 this substitution. */
5890 if (! new_src)
5891 continue;
5892
5893 src_hash = HASH (new_src, new_mode);
5894 src_elt = lookup (new_src, src_hash, new_mode);
5895
5896 /* Put the new source in the hash table is if isn't
5897 already. */
5898 if (src_elt == 0)
5899 {
5900 if (insert_regs (new_src, classp, 0))
5901 {
5902 rehash_using_reg (new_src);
5903 src_hash = HASH (new_src, new_mode);
5904 }
5905 src_elt = insert (new_src, classp, src_hash, new_mode);
5906 src_elt->in_memory = elt->in_memory;
5907 }
5908 else if (classp && classp != src_elt->first_same_value)
5909 /* Show that two things that we've seen before are
5910 actually the same. */
5911 merge_equiv_classes (src_elt, classp);
5912
5913 classp = src_elt->first_same_value;
5914 /* Ignore invalid entries. */
5915 while (classp
5916 && !REG_P (classp->exp)
5917 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5918 classp = classp->next_same_value;
5919 }
5920 }
5921 }
5922
5923 /* Special handling for (set REG0 REG1) where REG0 is the
5924 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5925 be used in the sequel, so (if easily done) change this insn to
5926 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5927 that computed their value. Then REG1 will become a dead store
5928 and won't cloud the situation for later optimizations.
5929
5930 Do not make this change if REG1 is a hard register, because it will
5931 then be used in the sequel and we may be changing a two-operand insn
5932 into a three-operand insn.
5933
5934 Also do not do this if we are operating on a copy of INSN. */
5935
5936 if (n_sets == 1 && sets[0].rtl)
5937 try_back_substitute_reg (sets[0].rtl, insn);
5938
5939 done:;
5940 }
5941 \f
5942 /* Remove from the hash table all expressions that reference memory. */
5943
5944 static void
5945 invalidate_memory (void)
5946 {
5947 int i;
5948 struct table_elt *p, *next;
5949
5950 for (i = 0; i < HASH_SIZE; i++)
5951 for (p = table[i]; p; p = next)
5952 {
5953 next = p->next_same_hash;
5954 if (p->in_memory)
5955 remove_from_table (p, i);
5956 }
5957 }
5958
5959 /* Perform invalidation on the basis of everything about INSN,
5960 except for invalidating the actual places that are SET in it.
5961 This includes the places CLOBBERed, and anything that might
5962 alias with something that is SET or CLOBBERed. */
5963
5964 static void
5965 invalidate_from_clobbers (rtx_insn *insn)
5966 {
5967 rtx x = PATTERN (insn);
5968
5969 if (GET_CODE (x) == CLOBBER)
5970 {
5971 rtx ref = XEXP (x, 0);
5972 if (ref)
5973 {
5974 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5975 || MEM_P (ref))
5976 invalidate (ref, VOIDmode);
5977 else if (GET_CODE (ref) == STRICT_LOW_PART
5978 || GET_CODE (ref) == ZERO_EXTRACT)
5979 invalidate (XEXP (ref, 0), GET_MODE (ref));
5980 }
5981 }
5982 else if (GET_CODE (x) == PARALLEL)
5983 {
5984 int i;
5985 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5986 {
5987 rtx y = XVECEXP (x, 0, i);
5988 if (GET_CODE (y) == CLOBBER)
5989 {
5990 rtx ref = XEXP (y, 0);
5991 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5992 || MEM_P (ref))
5993 invalidate (ref, VOIDmode);
5994 else if (GET_CODE (ref) == STRICT_LOW_PART
5995 || GET_CODE (ref) == ZERO_EXTRACT)
5996 invalidate (XEXP (ref, 0), GET_MODE (ref));
5997 }
5998 }
5999 }
6000 }
6001 \f
6002 /* Perform invalidation on the basis of everything about INSN.
6003 This includes the places CLOBBERed, and anything that might
6004 alias with something that is SET or CLOBBERed. */
6005
6006 static void
6007 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6008 {
6009 rtx tem;
6010 rtx x = PATTERN (insn);
6011
6012 if (CALL_P (insn))
6013 {
6014 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6015 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6016 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6017 }
6018
6019 /* Ensure we invalidate the destination register of a CALL insn.
6020 This is necessary for machines where this register is a fixed_reg,
6021 because no other code would invalidate it. */
6022 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6023 invalidate (SET_DEST (x), VOIDmode);
6024
6025 else if (GET_CODE (x) == PARALLEL)
6026 {
6027 int i;
6028
6029 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6030 {
6031 rtx y = XVECEXP (x, 0, i);
6032 if (GET_CODE (y) == CLOBBER)
6033 {
6034 rtx clobbered = XEXP (y, 0);
6035
6036 if (REG_P (clobbered)
6037 || GET_CODE (clobbered) == SUBREG)
6038 invalidate (clobbered, VOIDmode);
6039 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6040 || GET_CODE (clobbered) == ZERO_EXTRACT)
6041 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6042 }
6043 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6044 invalidate (SET_DEST (y), VOIDmode);
6045 }
6046 }
6047 }
6048 \f
6049 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6050 and replace any registers in them with either an equivalent constant
6051 or the canonical form of the register. If we are inside an address,
6052 only do this if the address remains valid.
6053
6054 OBJECT is 0 except when within a MEM in which case it is the MEM.
6055
6056 Return the replacement for X. */
6057
6058 static rtx
6059 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6060 {
6061 enum rtx_code code = GET_CODE (x);
6062 const char *fmt = GET_RTX_FORMAT (code);
6063 int i;
6064
6065 switch (code)
6066 {
6067 case CONST:
6068 case SYMBOL_REF:
6069 case LABEL_REF:
6070 CASE_CONST_ANY:
6071 case PC:
6072 case CC0:
6073 case LO_SUM:
6074 return x;
6075
6076 case MEM:
6077 validate_change (x, &XEXP (x, 0),
6078 cse_process_notes (XEXP (x, 0), x, changed), 0);
6079 return x;
6080
6081 case EXPR_LIST:
6082 if (REG_NOTE_KIND (x) == REG_EQUAL)
6083 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6084 /* Fall through. */
6085
6086 case INSN_LIST:
6087 case INT_LIST:
6088 if (XEXP (x, 1))
6089 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6090 return x;
6091
6092 case SIGN_EXTEND:
6093 case ZERO_EXTEND:
6094 case SUBREG:
6095 {
6096 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6097 /* We don't substitute VOIDmode constants into these rtx,
6098 since they would impede folding. */
6099 if (GET_MODE (new_rtx) != VOIDmode)
6100 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6101 return x;
6102 }
6103
6104 case UNSIGNED_FLOAT:
6105 {
6106 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6107 /* We don't substitute negative VOIDmode constants into these rtx,
6108 since they would impede folding. */
6109 if (GET_MODE (new_rtx) != VOIDmode
6110 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6111 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6112 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6113 return x;
6114 }
6115
6116 case REG:
6117 i = REG_QTY (REGNO (x));
6118
6119 /* Return a constant or a constant register. */
6120 if (REGNO_QTY_VALID_P (REGNO (x)))
6121 {
6122 struct qty_table_elem *ent = &qty_table[i];
6123
6124 if (ent->const_rtx != NULL_RTX
6125 && (CONSTANT_P (ent->const_rtx)
6126 || REG_P (ent->const_rtx)))
6127 {
6128 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6129 if (new_rtx)
6130 return copy_rtx (new_rtx);
6131 }
6132 }
6133
6134 /* Otherwise, canonicalize this register. */
6135 return canon_reg (x, NULL);
6136
6137 default:
6138 break;
6139 }
6140
6141 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6142 if (fmt[i] == 'e')
6143 validate_change (object, &XEXP (x, i),
6144 cse_process_notes (XEXP (x, i), object, changed), 0);
6145
6146 return x;
6147 }
6148
6149 static rtx
6150 cse_process_notes (rtx x, rtx object, bool *changed)
6151 {
6152 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6153 if (new_rtx != x)
6154 *changed = true;
6155 return new_rtx;
6156 }
6157
6158 \f
6159 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6160
6161 DATA is a pointer to a struct cse_basic_block_data, that is used to
6162 describe the path.
6163 It is filled with a queue of basic blocks, starting with FIRST_BB
6164 and following a trace through the CFG.
6165
6166 If all paths starting at FIRST_BB have been followed, or no new path
6167 starting at FIRST_BB can be constructed, this function returns FALSE.
6168 Otherwise, DATA->path is filled and the function returns TRUE indicating
6169 that a path to follow was found.
6170
6171 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6172 block in the path will be FIRST_BB. */
6173
6174 static bool
6175 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6176 int follow_jumps)
6177 {
6178 basic_block bb;
6179 edge e;
6180 int path_size;
6181
6182 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6183
6184 /* See if there is a previous path. */
6185 path_size = data->path_size;
6186
6187 /* There is a previous path. Make sure it started with FIRST_BB. */
6188 if (path_size)
6189 gcc_assert (data->path[0].bb == first_bb);
6190
6191 /* There was only one basic block in the last path. Clear the path and
6192 return, so that paths starting at another basic block can be tried. */
6193 if (path_size == 1)
6194 {
6195 path_size = 0;
6196 goto done;
6197 }
6198
6199 /* If the path was empty from the beginning, construct a new path. */
6200 if (path_size == 0)
6201 data->path[path_size++].bb = first_bb;
6202 else
6203 {
6204 /* Otherwise, path_size must be equal to or greater than 2, because
6205 a previous path exists that is at least two basic blocks long.
6206
6207 Update the previous branch path, if any. If the last branch was
6208 previously along the branch edge, take the fallthrough edge now. */
6209 while (path_size >= 2)
6210 {
6211 basic_block last_bb_in_path, previous_bb_in_path;
6212 edge e;
6213
6214 --path_size;
6215 last_bb_in_path = data->path[path_size].bb;
6216 previous_bb_in_path = data->path[path_size - 1].bb;
6217
6218 /* If we previously followed a path along the branch edge, try
6219 the fallthru edge now. */
6220 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6221 && any_condjump_p (BB_END (previous_bb_in_path))
6222 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6223 && e == BRANCH_EDGE (previous_bb_in_path))
6224 {
6225 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6226 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6227 && single_pred_p (bb)
6228 /* We used to assert here that we would only see blocks
6229 that we have not visited yet. But we may end up
6230 visiting basic blocks twice if the CFG has changed
6231 in this run of cse_main, because when the CFG changes
6232 the topological sort of the CFG also changes. A basic
6233 blocks that previously had more than two predecessors
6234 may now have a single predecessor, and become part of
6235 a path that starts at another basic block.
6236
6237 We still want to visit each basic block only once, so
6238 halt the path here if we have already visited BB. */
6239 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6240 {
6241 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6242 data->path[path_size++].bb = bb;
6243 break;
6244 }
6245 }
6246
6247 data->path[path_size].bb = NULL;
6248 }
6249
6250 /* If only one block remains in the path, bail. */
6251 if (path_size == 1)
6252 {
6253 path_size = 0;
6254 goto done;
6255 }
6256 }
6257
6258 /* Extend the path if possible. */
6259 if (follow_jumps)
6260 {
6261 bb = data->path[path_size - 1].bb;
6262 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6263 {
6264 if (single_succ_p (bb))
6265 e = single_succ_edge (bb);
6266 else if (EDGE_COUNT (bb->succs) == 2
6267 && any_condjump_p (BB_END (bb)))
6268 {
6269 /* First try to follow the branch. If that doesn't lead
6270 to a useful path, follow the fallthru edge. */
6271 e = BRANCH_EDGE (bb);
6272 if (!single_pred_p (e->dest))
6273 e = FALLTHRU_EDGE (bb);
6274 }
6275 else
6276 e = NULL;
6277
6278 if (e
6279 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6280 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6281 && single_pred_p (e->dest)
6282 /* Avoid visiting basic blocks twice. The large comment
6283 above explains why this can happen. */
6284 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6285 {
6286 basic_block bb2 = e->dest;
6287 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6288 data->path[path_size++].bb = bb2;
6289 bb = bb2;
6290 }
6291 else
6292 bb = NULL;
6293 }
6294 }
6295
6296 done:
6297 data->path_size = path_size;
6298 return path_size != 0;
6299 }
6300 \f
6301 /* Dump the path in DATA to file F. NSETS is the number of sets
6302 in the path. */
6303
6304 static void
6305 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6306 {
6307 int path_entry;
6308
6309 fprintf (f, ";; Following path with %d sets: ", nsets);
6310 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6311 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6312 fputc ('\n', dump_file);
6313 fflush (f);
6314 }
6315
6316 \f
6317 /* Return true if BB has exception handling successor edges. */
6318
6319 static bool
6320 have_eh_succ_edges (basic_block bb)
6321 {
6322 edge e;
6323 edge_iterator ei;
6324
6325 FOR_EACH_EDGE (e, ei, bb->succs)
6326 if (e->flags & EDGE_EH)
6327 return true;
6328
6329 return false;
6330 }
6331
6332 \f
6333 /* Scan to the end of the path described by DATA. Return an estimate of
6334 the total number of SETs of all insns in the path. */
6335
6336 static void
6337 cse_prescan_path (struct cse_basic_block_data *data)
6338 {
6339 int nsets = 0;
6340 int path_size = data->path_size;
6341 int path_entry;
6342
6343 /* Scan to end of each basic block in the path. */
6344 for (path_entry = 0; path_entry < path_size; path_entry++)
6345 {
6346 basic_block bb;
6347 rtx_insn *insn;
6348
6349 bb = data->path[path_entry].bb;
6350
6351 FOR_BB_INSNS (bb, insn)
6352 {
6353 if (!INSN_P (insn))
6354 continue;
6355
6356 /* A PARALLEL can have lots of SETs in it,
6357 especially if it is really an ASM_OPERANDS. */
6358 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6359 nsets += XVECLEN (PATTERN (insn), 0);
6360 else
6361 nsets += 1;
6362 }
6363 }
6364
6365 data->nsets = nsets;
6366 }
6367 \f
6368 /* Return true if the pattern of INSN uses a LABEL_REF for which
6369 there isn't a REG_LABEL_OPERAND note. */
6370
6371 static bool
6372 check_for_label_ref (rtx_insn *insn)
6373 {
6374 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6375 note for it, we must rerun jump since it needs to place the note. If
6376 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6377 don't do this since no REG_LABEL_OPERAND will be added. */
6378 subrtx_iterator::array_type array;
6379 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6380 {
6381 const_rtx x = *iter;
6382 if (GET_CODE (x) == LABEL_REF
6383 && !LABEL_REF_NONLOCAL_P (x)
6384 && (!JUMP_P (insn)
6385 || !label_is_jump_target_p (XEXP (x, 0), insn))
6386 && LABEL_P (XEXP (x, 0))
6387 && INSN_UID (XEXP (x, 0)) != 0
6388 && !find_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0)))
6389 return true;
6390 }
6391 return false;
6392 }
6393
6394 /* Process a single extended basic block described by EBB_DATA. */
6395
6396 static void
6397 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6398 {
6399 int path_size = ebb_data->path_size;
6400 int path_entry;
6401 int num_insns = 0;
6402
6403 /* Allocate the space needed by qty_table. */
6404 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6405
6406 new_basic_block ();
6407 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6408 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6409 for (path_entry = 0; path_entry < path_size; path_entry++)
6410 {
6411 basic_block bb;
6412 rtx_insn *insn;
6413
6414 bb = ebb_data->path[path_entry].bb;
6415
6416 /* Invalidate recorded information for eh regs if there is an EH
6417 edge pointing to that bb. */
6418 if (bb_has_eh_pred (bb))
6419 {
6420 df_ref def;
6421
6422 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6423 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6424 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6425 }
6426
6427 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6428 FOR_BB_INSNS (bb, insn)
6429 {
6430 /* If we have processed 1,000 insns, flush the hash table to
6431 avoid extreme quadratic behavior. We must not include NOTEs
6432 in the count since there may be more of them when generating
6433 debugging information. If we clear the table at different
6434 times, code generated with -g -O might be different than code
6435 generated with -O but not -g.
6436
6437 FIXME: This is a real kludge and needs to be done some other
6438 way. */
6439 if (NONDEBUG_INSN_P (insn)
6440 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6441 {
6442 flush_hash_table ();
6443 num_insns = 0;
6444 }
6445
6446 if (INSN_P (insn))
6447 {
6448 /* Process notes first so we have all notes in canonical forms
6449 when looking for duplicate operations. */
6450 if (REG_NOTES (insn))
6451 {
6452 bool changed = false;
6453 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6454 NULL_RTX, &changed);
6455 if (changed)
6456 df_notes_rescan (insn);
6457 }
6458
6459 cse_insn (insn);
6460
6461 /* If we haven't already found an insn where we added a LABEL_REF,
6462 check this one. */
6463 if (INSN_P (insn) && !recorded_label_ref
6464 && check_for_label_ref (insn))
6465 recorded_label_ref = true;
6466
6467 #ifdef HAVE_cc0
6468 if (NONDEBUG_INSN_P (insn))
6469 {
6470 /* If the previous insn sets CC0 and this insn no
6471 longer references CC0, delete the previous insn.
6472 Here we use fact that nothing expects CC0 to be
6473 valid over an insn, which is true until the final
6474 pass. */
6475 rtx_insn *prev_insn;
6476 rtx tem;
6477
6478 prev_insn = prev_nonnote_nondebug_insn (insn);
6479 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6480 && (tem = single_set (prev_insn)) != NULL_RTX
6481 && SET_DEST (tem) == cc0_rtx
6482 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6483 delete_insn (prev_insn);
6484
6485 /* If this insn is not the last insn in the basic
6486 block, it will be PREV_INSN(insn) in the next
6487 iteration. If we recorded any CC0-related
6488 information for this insn, remember it. */
6489 if (insn != BB_END (bb))
6490 {
6491 prev_insn_cc0 = this_insn_cc0;
6492 prev_insn_cc0_mode = this_insn_cc0_mode;
6493 }
6494 }
6495 #endif
6496 }
6497 }
6498
6499 /* With non-call exceptions, we are not always able to update
6500 the CFG properly inside cse_insn. So clean up possibly
6501 redundant EH edges here. */
6502 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6503 cse_cfg_altered |= purge_dead_edges (bb);
6504
6505 /* If we changed a conditional jump, we may have terminated
6506 the path we are following. Check that by verifying that
6507 the edge we would take still exists. If the edge does
6508 not exist anymore, purge the remainder of the path.
6509 Note that this will cause us to return to the caller. */
6510 if (path_entry < path_size - 1)
6511 {
6512 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6513 if (!find_edge (bb, next_bb))
6514 {
6515 do
6516 {
6517 path_size--;
6518
6519 /* If we truncate the path, we must also reset the
6520 visited bit on the remaining blocks in the path,
6521 or we will never visit them at all. */
6522 bitmap_clear_bit (cse_visited_basic_blocks,
6523 ebb_data->path[path_size].bb->index);
6524 ebb_data->path[path_size].bb = NULL;
6525 }
6526 while (path_size - 1 != path_entry);
6527 ebb_data->path_size = path_size;
6528 }
6529 }
6530
6531 /* If this is a conditional jump insn, record any known
6532 equivalences due to the condition being tested. */
6533 insn = BB_END (bb);
6534 if (path_entry < path_size - 1
6535 && JUMP_P (insn)
6536 && single_set (insn)
6537 && any_condjump_p (insn))
6538 {
6539 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6540 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6541 record_jump_equiv (insn, taken);
6542 }
6543
6544 #ifdef HAVE_cc0
6545 /* Clear the CC0-tracking related insns, they can't provide
6546 useful information across basic block boundaries. */
6547 prev_insn_cc0 = 0;
6548 #endif
6549 }
6550
6551 gcc_assert (next_qty <= max_qty);
6552
6553 free (qty_table);
6554 }
6555
6556 \f
6557 /* Perform cse on the instructions of a function.
6558 F is the first instruction.
6559 NREGS is one plus the highest pseudo-reg number used in the instruction.
6560
6561 Return 2 if jump optimizations should be redone due to simplifications
6562 in conditional jump instructions.
6563 Return 1 if the CFG should be cleaned up because it has been modified.
6564 Return 0 otherwise. */
6565
6566 static int
6567 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6568 {
6569 struct cse_basic_block_data ebb_data;
6570 basic_block bb;
6571 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6572 int i, n_blocks;
6573
6574 df_set_flags (DF_LR_RUN_DCE);
6575 df_note_add_problem ();
6576 df_analyze ();
6577 df_set_flags (DF_DEFER_INSN_RESCAN);
6578
6579 reg_scan (get_insns (), max_reg_num ());
6580 init_cse_reg_info (nregs);
6581
6582 ebb_data.path = XNEWVEC (struct branch_path,
6583 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6584
6585 cse_cfg_altered = false;
6586 cse_jumps_altered = false;
6587 recorded_label_ref = false;
6588 constant_pool_entries_cost = 0;
6589 constant_pool_entries_regcost = 0;
6590 ebb_data.path_size = 0;
6591 ebb_data.nsets = 0;
6592 rtl_hooks = cse_rtl_hooks;
6593
6594 init_recog ();
6595 init_alias_analysis ();
6596
6597 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6598
6599 /* Set up the table of already visited basic blocks. */
6600 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6601 bitmap_clear (cse_visited_basic_blocks);
6602
6603 /* Loop over basic blocks in reverse completion order (RPO),
6604 excluding the ENTRY and EXIT blocks. */
6605 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6606 i = 0;
6607 while (i < n_blocks)
6608 {
6609 /* Find the first block in the RPO queue that we have not yet
6610 processed before. */
6611 do
6612 {
6613 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6614 }
6615 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6616 && i < n_blocks);
6617
6618 /* Find all paths starting with BB, and process them. */
6619 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6620 {
6621 /* Pre-scan the path. */
6622 cse_prescan_path (&ebb_data);
6623
6624 /* If this basic block has no sets, skip it. */
6625 if (ebb_data.nsets == 0)
6626 continue;
6627
6628 /* Get a reasonable estimate for the maximum number of qty's
6629 needed for this path. For this, we take the number of sets
6630 and multiply that by MAX_RECOG_OPERANDS. */
6631 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6632
6633 /* Dump the path we're about to process. */
6634 if (dump_file)
6635 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6636
6637 cse_extended_basic_block (&ebb_data);
6638 }
6639 }
6640
6641 /* Clean up. */
6642 end_alias_analysis ();
6643 free (reg_eqv_table);
6644 free (ebb_data.path);
6645 sbitmap_free (cse_visited_basic_blocks);
6646 free (rc_order);
6647 rtl_hooks = general_rtl_hooks;
6648
6649 if (cse_jumps_altered || recorded_label_ref)
6650 return 2;
6651 else if (cse_cfg_altered)
6652 return 1;
6653 else
6654 return 0;
6655 }
6656 \f
6657 /* Count the number of times registers are used (not set) in X.
6658 COUNTS is an array in which we accumulate the count, INCR is how much
6659 we count each register usage.
6660
6661 Don't count a usage of DEST, which is the SET_DEST of a SET which
6662 contains X in its SET_SRC. This is because such a SET does not
6663 modify the liveness of DEST.
6664 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6665 We must then count uses of a SET_DEST regardless, because the insn can't be
6666 deleted here. */
6667
6668 static void
6669 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6670 {
6671 enum rtx_code code;
6672 rtx note;
6673 const char *fmt;
6674 int i, j;
6675
6676 if (x == 0)
6677 return;
6678
6679 switch (code = GET_CODE (x))
6680 {
6681 case REG:
6682 if (x != dest)
6683 counts[REGNO (x)] += incr;
6684 return;
6685
6686 case PC:
6687 case CC0:
6688 case CONST:
6689 CASE_CONST_ANY:
6690 case SYMBOL_REF:
6691 case LABEL_REF:
6692 return;
6693
6694 case CLOBBER:
6695 /* If we are clobbering a MEM, mark any registers inside the address
6696 as being used. */
6697 if (MEM_P (XEXP (x, 0)))
6698 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6699 return;
6700
6701 case SET:
6702 /* Unless we are setting a REG, count everything in SET_DEST. */
6703 if (!REG_P (SET_DEST (x)))
6704 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6705 count_reg_usage (SET_SRC (x), counts,
6706 dest ? dest : SET_DEST (x),
6707 incr);
6708 return;
6709
6710 case DEBUG_INSN:
6711 return;
6712
6713 case CALL_INSN:
6714 case INSN:
6715 case JUMP_INSN:
6716 /* We expect dest to be NULL_RTX here. If the insn may throw,
6717 or if it cannot be deleted due to side-effects, mark this fact
6718 by setting DEST to pc_rtx. */
6719 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6720 || side_effects_p (PATTERN (x)))
6721 dest = pc_rtx;
6722 if (code == CALL_INSN)
6723 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6724 count_reg_usage (PATTERN (x), counts, dest, incr);
6725
6726 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6727 use them. */
6728
6729 note = find_reg_equal_equiv_note (x);
6730 if (note)
6731 {
6732 rtx eqv = XEXP (note, 0);
6733
6734 if (GET_CODE (eqv) == EXPR_LIST)
6735 /* This REG_EQUAL note describes the result of a function call.
6736 Process all the arguments. */
6737 do
6738 {
6739 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6740 eqv = XEXP (eqv, 1);
6741 }
6742 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6743 else
6744 count_reg_usage (eqv, counts, dest, incr);
6745 }
6746 return;
6747
6748 case EXPR_LIST:
6749 if (REG_NOTE_KIND (x) == REG_EQUAL
6750 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6751 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6752 involving registers in the address. */
6753 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6754 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6755
6756 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6757 return;
6758
6759 case ASM_OPERANDS:
6760 /* Iterate over just the inputs, not the constraints as well. */
6761 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6762 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6763 return;
6764
6765 case INSN_LIST:
6766 case INT_LIST:
6767 gcc_unreachable ();
6768
6769 default:
6770 break;
6771 }
6772
6773 fmt = GET_RTX_FORMAT (code);
6774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6775 {
6776 if (fmt[i] == 'e')
6777 count_reg_usage (XEXP (x, i), counts, dest, incr);
6778 else if (fmt[i] == 'E')
6779 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6780 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6781 }
6782 }
6783 \f
6784 /* Return true if X is a dead register. */
6785
6786 static inline int
6787 is_dead_reg (rtx x, int *counts)
6788 {
6789 return (REG_P (x)
6790 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6791 && counts[REGNO (x)] == 0);
6792 }
6793
6794 /* Return true if set is live. */
6795 static bool
6796 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6797 int *counts)
6798 {
6799 #ifdef HAVE_cc0
6800 rtx tem;
6801 #endif
6802
6803 if (set_noop_p (set))
6804 ;
6805
6806 #ifdef HAVE_cc0
6807 else if (GET_CODE (SET_DEST (set)) == CC0
6808 && !side_effects_p (SET_SRC (set))
6809 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6810 || !INSN_P (tem)
6811 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6812 return false;
6813 #endif
6814 else if (!is_dead_reg (SET_DEST (set), counts)
6815 || side_effects_p (SET_SRC (set)))
6816 return true;
6817 return false;
6818 }
6819
6820 /* Return true if insn is live. */
6821
6822 static bool
6823 insn_live_p (rtx_insn *insn, int *counts)
6824 {
6825 int i;
6826 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6827 return true;
6828 else if (GET_CODE (PATTERN (insn)) == SET)
6829 return set_live_p (PATTERN (insn), insn, counts);
6830 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6831 {
6832 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6833 {
6834 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6835
6836 if (GET_CODE (elt) == SET)
6837 {
6838 if (set_live_p (elt, insn, counts))
6839 return true;
6840 }
6841 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6842 return true;
6843 }
6844 return false;
6845 }
6846 else if (DEBUG_INSN_P (insn))
6847 {
6848 rtx_insn *next;
6849
6850 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6851 if (NOTE_P (next))
6852 continue;
6853 else if (!DEBUG_INSN_P (next))
6854 return true;
6855 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6856 return false;
6857
6858 return true;
6859 }
6860 else
6861 return true;
6862 }
6863
6864 /* Count the number of stores into pseudo. Callback for note_stores. */
6865
6866 static void
6867 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6868 {
6869 int *counts = (int *) data;
6870 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6871 counts[REGNO (x)]++;
6872 }
6873
6874 struct dead_debug_insn_data
6875 {
6876 int *counts;
6877 rtx *replacements;
6878 bool seen_repl;
6879 };
6880
6881 /* Return if a DEBUG_INSN needs to be reset because some dead
6882 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6883
6884 static int
6885 is_dead_debug_insn (rtx *loc, void *data)
6886 {
6887 rtx x = *loc;
6888 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6889
6890 if (is_dead_reg (x, ddid->counts))
6891 {
6892 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6893 ddid->seen_repl = true;
6894 else
6895 return 1;
6896 }
6897 return 0;
6898 }
6899
6900 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6901 Callback for simplify_replace_fn_rtx. */
6902
6903 static rtx
6904 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6905 {
6906 rtx *replacements = (rtx *) data;
6907
6908 if (REG_P (x)
6909 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6910 && replacements[REGNO (x)] != NULL_RTX)
6911 {
6912 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6913 return replacements[REGNO (x)];
6914 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6915 GET_MODE (replacements[REGNO (x)]));
6916 }
6917 return NULL_RTX;
6918 }
6919
6920 /* Scan all the insns and delete any that are dead; i.e., they store a register
6921 that is never used or they copy a register to itself.
6922
6923 This is used to remove insns made obviously dead by cse, loop or other
6924 optimizations. It improves the heuristics in loop since it won't try to
6925 move dead invariants out of loops or make givs for dead quantities. The
6926 remaining passes of the compilation are also sped up. */
6927
6928 int
6929 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6930 {
6931 int *counts;
6932 rtx_insn *insn, *prev;
6933 rtx *replacements = NULL;
6934 int ndead = 0;
6935
6936 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6937 /* First count the number of times each register is used. */
6938 if (MAY_HAVE_DEBUG_INSNS)
6939 {
6940 counts = XCNEWVEC (int, nreg * 3);
6941 for (insn = insns; insn; insn = NEXT_INSN (insn))
6942 if (DEBUG_INSN_P (insn))
6943 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6944 NULL_RTX, 1);
6945 else if (INSN_P (insn))
6946 {
6947 count_reg_usage (insn, counts, NULL_RTX, 1);
6948 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6949 }
6950 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6951 First one counts how many times each pseudo is used outside
6952 of debug insns, second counts how many times each pseudo is
6953 used in debug insns and third counts how many times a pseudo
6954 is stored. */
6955 }
6956 else
6957 {
6958 counts = XCNEWVEC (int, nreg);
6959 for (insn = insns; insn; insn = NEXT_INSN (insn))
6960 if (INSN_P (insn))
6961 count_reg_usage (insn, counts, NULL_RTX, 1);
6962 /* If no debug insns can be present, COUNTS is just an array
6963 which counts how many times each pseudo is used. */
6964 }
6965 /* Go from the last insn to the first and delete insns that only set unused
6966 registers or copy a register to itself. As we delete an insn, remove
6967 usage counts for registers it uses.
6968
6969 The first jump optimization pass may leave a real insn as the last
6970 insn in the function. We must not skip that insn or we may end
6971 up deleting code that is not really dead.
6972
6973 If some otherwise unused register is only used in DEBUG_INSNs,
6974 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6975 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6976 has been created for the unused register, replace it with
6977 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6978 for (insn = get_last_insn (); insn; insn = prev)
6979 {
6980 int live_insn = 0;
6981
6982 prev = PREV_INSN (insn);
6983 if (!INSN_P (insn))
6984 continue;
6985
6986 live_insn = insn_live_p (insn, counts);
6987
6988 /* If this is a dead insn, delete it and show registers in it aren't
6989 being used. */
6990
6991 if (! live_insn && dbg_cnt (delete_trivial_dead))
6992 {
6993 if (DEBUG_INSN_P (insn))
6994 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6995 NULL_RTX, -1);
6996 else
6997 {
6998 rtx set;
6999 if (MAY_HAVE_DEBUG_INSNS
7000 && (set = single_set (insn)) != NULL_RTX
7001 && is_dead_reg (SET_DEST (set), counts)
7002 /* Used at least once in some DEBUG_INSN. */
7003 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7004 /* And set exactly once. */
7005 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7006 && !side_effects_p (SET_SRC (set))
7007 && asm_noperands (PATTERN (insn)) < 0)
7008 {
7009 rtx dval, bind_var_loc;
7010 rtx_insn *bind;
7011
7012 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7013 dval = make_debug_expr_from_rtl (SET_DEST (set));
7014
7015 /* Emit a debug bind insn before the insn in which
7016 reg dies. */
7017 bind_var_loc =
7018 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7019 DEBUG_EXPR_TREE_DECL (dval),
7020 SET_SRC (set),
7021 VAR_INIT_STATUS_INITIALIZED);
7022 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7023
7024 bind = emit_debug_insn_before (bind_var_loc, insn);
7025 df_insn_rescan (bind);
7026
7027 if (replacements == NULL)
7028 replacements = XCNEWVEC (rtx, nreg);
7029 replacements[REGNO (SET_DEST (set))] = dval;
7030 }
7031
7032 count_reg_usage (insn, counts, NULL_RTX, -1);
7033 ndead++;
7034 }
7035 delete_insn_and_edges (insn);
7036 }
7037 }
7038
7039 if (MAY_HAVE_DEBUG_INSNS)
7040 {
7041 struct dead_debug_insn_data ddid;
7042 ddid.counts = counts;
7043 ddid.replacements = replacements;
7044 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7045 if (DEBUG_INSN_P (insn))
7046 {
7047 /* If this debug insn references a dead register that wasn't replaced
7048 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7049 ddid.seen_repl = false;
7050 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7051 is_dead_debug_insn, &ddid))
7052 {
7053 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7054 df_insn_rescan (insn);
7055 }
7056 else if (ddid.seen_repl)
7057 {
7058 INSN_VAR_LOCATION_LOC (insn)
7059 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7060 NULL_RTX, replace_dead_reg,
7061 replacements);
7062 df_insn_rescan (insn);
7063 }
7064 }
7065 free (replacements);
7066 }
7067
7068 if (dump_file && ndead)
7069 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7070 ndead);
7071 /* Clean up. */
7072 free (counts);
7073 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7074 return ndead;
7075 }
7076
7077 /* This function is called via for_each_rtx. The argument, NEWREG, is
7078 a condition code register with the desired mode. If we are looking
7079 at the same register in a different mode, replace it with
7080 NEWREG. */
7081
7082 static int
7083 cse_change_cc_mode (rtx *loc, void *data)
7084 {
7085 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7086
7087 if (*loc
7088 && REG_P (*loc)
7089 && REGNO (*loc) == REGNO (args->newreg)
7090 && GET_MODE (*loc) != GET_MODE (args->newreg))
7091 {
7092 validate_change (args->insn, loc, args->newreg, 1);
7093
7094 return -1;
7095 }
7096 return 0;
7097 }
7098
7099 /* Change the mode of any reference to the register REGNO (NEWREG) to
7100 GET_MODE (NEWREG) in INSN. */
7101
7102 static void
7103 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7104 {
7105 struct change_cc_mode_args args;
7106 int success;
7107
7108 if (!INSN_P (insn))
7109 return;
7110
7111 args.insn = insn;
7112 args.newreg = newreg;
7113
7114 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7115 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7116
7117 /* If the following assertion was triggered, there is most probably
7118 something wrong with the cc_modes_compatible back end function.
7119 CC modes only can be considered compatible if the insn - with the mode
7120 replaced by any of the compatible modes - can still be recognized. */
7121 success = apply_change_group ();
7122 gcc_assert (success);
7123 }
7124
7125 /* Change the mode of any reference to the register REGNO (NEWREG) to
7126 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7127 any instruction which modifies NEWREG. */
7128
7129 static void
7130 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7131 {
7132 rtx_insn *insn;
7133
7134 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7135 {
7136 if (! INSN_P (insn))
7137 continue;
7138
7139 if (reg_set_p (newreg, insn))
7140 return;
7141
7142 cse_change_cc_mode_insn (insn, newreg);
7143 }
7144 }
7145
7146 /* BB is a basic block which finishes with CC_REG as a condition code
7147 register which is set to CC_SRC. Look through the successors of BB
7148 to find blocks which have a single predecessor (i.e., this one),
7149 and look through those blocks for an assignment to CC_REG which is
7150 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7151 permitted to change the mode of CC_SRC to a compatible mode. This
7152 returns VOIDmode if no equivalent assignments were found.
7153 Otherwise it returns the mode which CC_SRC should wind up with.
7154 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7155 but is passed unmodified down to recursive calls in order to prevent
7156 endless recursion.
7157
7158 The main complexity in this function is handling the mode issues.
7159 We may have more than one duplicate which we can eliminate, and we
7160 try to find a mode which will work for multiple duplicates. */
7161
7162 static enum machine_mode
7163 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7164 bool can_change_mode)
7165 {
7166 bool found_equiv;
7167 enum machine_mode mode;
7168 unsigned int insn_count;
7169 edge e;
7170 rtx_insn *insns[2];
7171 enum machine_mode modes[2];
7172 rtx_insn *last_insns[2];
7173 unsigned int i;
7174 rtx newreg;
7175 edge_iterator ei;
7176
7177 /* We expect to have two successors. Look at both before picking
7178 the final mode for the comparison. If we have more successors
7179 (i.e., some sort of table jump, although that seems unlikely),
7180 then we require all beyond the first two to use the same
7181 mode. */
7182
7183 found_equiv = false;
7184 mode = GET_MODE (cc_src);
7185 insn_count = 0;
7186 FOR_EACH_EDGE (e, ei, bb->succs)
7187 {
7188 rtx_insn *insn;
7189 rtx_insn *end;
7190
7191 if (e->flags & EDGE_COMPLEX)
7192 continue;
7193
7194 if (EDGE_COUNT (e->dest->preds) != 1
7195 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7196 /* Avoid endless recursion on unreachable blocks. */
7197 || e->dest == orig_bb)
7198 continue;
7199
7200 end = NEXT_INSN (BB_END (e->dest));
7201 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7202 {
7203 rtx set;
7204
7205 if (! INSN_P (insn))
7206 continue;
7207
7208 /* If CC_SRC is modified, we have to stop looking for
7209 something which uses it. */
7210 if (modified_in_p (cc_src, insn))
7211 break;
7212
7213 /* Check whether INSN sets CC_REG to CC_SRC. */
7214 set = single_set (insn);
7215 if (set
7216 && REG_P (SET_DEST (set))
7217 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7218 {
7219 bool found;
7220 enum machine_mode set_mode;
7221 enum machine_mode comp_mode;
7222
7223 found = false;
7224 set_mode = GET_MODE (SET_SRC (set));
7225 comp_mode = set_mode;
7226 if (rtx_equal_p (cc_src, SET_SRC (set)))
7227 found = true;
7228 else if (GET_CODE (cc_src) == COMPARE
7229 && GET_CODE (SET_SRC (set)) == COMPARE
7230 && mode != set_mode
7231 && rtx_equal_p (XEXP (cc_src, 0),
7232 XEXP (SET_SRC (set), 0))
7233 && rtx_equal_p (XEXP (cc_src, 1),
7234 XEXP (SET_SRC (set), 1)))
7235
7236 {
7237 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7238 if (comp_mode != VOIDmode
7239 && (can_change_mode || comp_mode == mode))
7240 found = true;
7241 }
7242
7243 if (found)
7244 {
7245 found_equiv = true;
7246 if (insn_count < ARRAY_SIZE (insns))
7247 {
7248 insns[insn_count] = insn;
7249 modes[insn_count] = set_mode;
7250 last_insns[insn_count] = end;
7251 ++insn_count;
7252
7253 if (mode != comp_mode)
7254 {
7255 gcc_assert (can_change_mode);
7256 mode = comp_mode;
7257
7258 /* The modified insn will be re-recognized later. */
7259 PUT_MODE (cc_src, mode);
7260 }
7261 }
7262 else
7263 {
7264 if (set_mode != mode)
7265 {
7266 /* We found a matching expression in the
7267 wrong mode, but we don't have room to
7268 store it in the array. Punt. This case
7269 should be rare. */
7270 break;
7271 }
7272 /* INSN sets CC_REG to a value equal to CC_SRC
7273 with the right mode. We can simply delete
7274 it. */
7275 delete_insn (insn);
7276 }
7277
7278 /* We found an instruction to delete. Keep looking,
7279 in the hopes of finding a three-way jump. */
7280 continue;
7281 }
7282
7283 /* We found an instruction which sets the condition
7284 code, so don't look any farther. */
7285 break;
7286 }
7287
7288 /* If INSN sets CC_REG in some other way, don't look any
7289 farther. */
7290 if (reg_set_p (cc_reg, insn))
7291 break;
7292 }
7293
7294 /* If we fell off the bottom of the block, we can keep looking
7295 through successors. We pass CAN_CHANGE_MODE as false because
7296 we aren't prepared to handle compatibility between the
7297 further blocks and this block. */
7298 if (insn == end)
7299 {
7300 enum machine_mode submode;
7301
7302 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7303 if (submode != VOIDmode)
7304 {
7305 gcc_assert (submode == mode);
7306 found_equiv = true;
7307 can_change_mode = false;
7308 }
7309 }
7310 }
7311
7312 if (! found_equiv)
7313 return VOIDmode;
7314
7315 /* Now INSN_COUNT is the number of instructions we found which set
7316 CC_REG to a value equivalent to CC_SRC. The instructions are in
7317 INSNS. The modes used by those instructions are in MODES. */
7318
7319 newreg = NULL_RTX;
7320 for (i = 0; i < insn_count; ++i)
7321 {
7322 if (modes[i] != mode)
7323 {
7324 /* We need to change the mode of CC_REG in INSNS[i] and
7325 subsequent instructions. */
7326 if (! newreg)
7327 {
7328 if (GET_MODE (cc_reg) == mode)
7329 newreg = cc_reg;
7330 else
7331 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7332 }
7333 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7334 newreg);
7335 }
7336
7337 delete_insn_and_edges (insns[i]);
7338 }
7339
7340 return mode;
7341 }
7342
7343 /* If we have a fixed condition code register (or two), walk through
7344 the instructions and try to eliminate duplicate assignments. */
7345
7346 static void
7347 cse_condition_code_reg (void)
7348 {
7349 unsigned int cc_regno_1;
7350 unsigned int cc_regno_2;
7351 rtx cc_reg_1;
7352 rtx cc_reg_2;
7353 basic_block bb;
7354
7355 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7356 return;
7357
7358 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7359 if (cc_regno_2 != INVALID_REGNUM)
7360 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7361 else
7362 cc_reg_2 = NULL_RTX;
7363
7364 FOR_EACH_BB_FN (bb, cfun)
7365 {
7366 rtx_insn *last_insn;
7367 rtx cc_reg;
7368 rtx_insn *insn;
7369 rtx_insn *cc_src_insn;
7370 rtx cc_src;
7371 enum machine_mode mode;
7372 enum machine_mode orig_mode;
7373
7374 /* Look for blocks which end with a conditional jump based on a
7375 condition code register. Then look for the instruction which
7376 sets the condition code register. Then look through the
7377 successor blocks for instructions which set the condition
7378 code register to the same value. There are other possible
7379 uses of the condition code register, but these are by far the
7380 most common and the ones which we are most likely to be able
7381 to optimize. */
7382
7383 last_insn = BB_END (bb);
7384 if (!JUMP_P (last_insn))
7385 continue;
7386
7387 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7388 cc_reg = cc_reg_1;
7389 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7390 cc_reg = cc_reg_2;
7391 else
7392 continue;
7393
7394 cc_src_insn = NULL;
7395 cc_src = NULL_RTX;
7396 for (insn = PREV_INSN (last_insn);
7397 insn && insn != PREV_INSN (BB_HEAD (bb));
7398 insn = PREV_INSN (insn))
7399 {
7400 rtx set;
7401
7402 if (! INSN_P (insn))
7403 continue;
7404 set = single_set (insn);
7405 if (set
7406 && REG_P (SET_DEST (set))
7407 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7408 {
7409 cc_src_insn = insn;
7410 cc_src = SET_SRC (set);
7411 break;
7412 }
7413 else if (reg_set_p (cc_reg, insn))
7414 break;
7415 }
7416
7417 if (! cc_src_insn)
7418 continue;
7419
7420 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7421 continue;
7422
7423 /* Now CC_REG is a condition code register used for a
7424 conditional jump at the end of the block, and CC_SRC, in
7425 CC_SRC_INSN, is the value to which that condition code
7426 register is set, and CC_SRC is still meaningful at the end of
7427 the basic block. */
7428
7429 orig_mode = GET_MODE (cc_src);
7430 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7431 if (mode != VOIDmode)
7432 {
7433 gcc_assert (mode == GET_MODE (cc_src));
7434 if (mode != orig_mode)
7435 {
7436 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7437
7438 cse_change_cc_mode_insn (cc_src_insn, newreg);
7439
7440 /* Do the same in the following insns that use the
7441 current value of CC_REG within BB. */
7442 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7443 NEXT_INSN (last_insn),
7444 newreg);
7445 }
7446 }
7447 }
7448 }
7449 \f
7450
7451 /* Perform common subexpression elimination. Nonzero value from
7452 `cse_main' means that jumps were simplified and some code may now
7453 be unreachable, so do jump optimization again. */
7454 static unsigned int
7455 rest_of_handle_cse (void)
7456 {
7457 int tem;
7458
7459 if (dump_file)
7460 dump_flow_info (dump_file, dump_flags);
7461
7462 tem = cse_main (get_insns (), max_reg_num ());
7463
7464 /* If we are not running more CSE passes, then we are no longer
7465 expecting CSE to be run. But always rerun it in a cheap mode. */
7466 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7467
7468 if (tem == 2)
7469 {
7470 timevar_push (TV_JUMP);
7471 rebuild_jump_labels (get_insns ());
7472 cleanup_cfg (CLEANUP_CFG_CHANGED);
7473 timevar_pop (TV_JUMP);
7474 }
7475 else if (tem == 1 || optimize > 1)
7476 cleanup_cfg (0);
7477
7478 return 0;
7479 }
7480
7481 namespace {
7482
7483 const pass_data pass_data_cse =
7484 {
7485 RTL_PASS, /* type */
7486 "cse1", /* name */
7487 OPTGROUP_NONE, /* optinfo_flags */
7488 TV_CSE, /* tv_id */
7489 0, /* properties_required */
7490 0, /* properties_provided */
7491 0, /* properties_destroyed */
7492 0, /* todo_flags_start */
7493 TODO_df_finish, /* todo_flags_finish */
7494 };
7495
7496 class pass_cse : public rtl_opt_pass
7497 {
7498 public:
7499 pass_cse (gcc::context *ctxt)
7500 : rtl_opt_pass (pass_data_cse, ctxt)
7501 {}
7502
7503 /* opt_pass methods: */
7504 virtual bool gate (function *) { return optimize > 0; }
7505 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7506
7507 }; // class pass_cse
7508
7509 } // anon namespace
7510
7511 rtl_opt_pass *
7512 make_pass_cse (gcc::context *ctxt)
7513 {
7514 return new pass_cse (ctxt);
7515 }
7516
7517
7518 /* Run second CSE pass after loop optimizations. */
7519 static unsigned int
7520 rest_of_handle_cse2 (void)
7521 {
7522 int tem;
7523
7524 if (dump_file)
7525 dump_flow_info (dump_file, dump_flags);
7526
7527 tem = cse_main (get_insns (), max_reg_num ());
7528
7529 /* Run a pass to eliminate duplicated assignments to condition code
7530 registers. We have to run this after bypass_jumps, because it
7531 makes it harder for that pass to determine whether a jump can be
7532 bypassed safely. */
7533 cse_condition_code_reg ();
7534
7535 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7536
7537 if (tem == 2)
7538 {
7539 timevar_push (TV_JUMP);
7540 rebuild_jump_labels (get_insns ());
7541 cleanup_cfg (CLEANUP_CFG_CHANGED);
7542 timevar_pop (TV_JUMP);
7543 }
7544 else if (tem == 1)
7545 cleanup_cfg (0);
7546
7547 cse_not_expected = 1;
7548 return 0;
7549 }
7550
7551
7552 namespace {
7553
7554 const pass_data pass_data_cse2 =
7555 {
7556 RTL_PASS, /* type */
7557 "cse2", /* name */
7558 OPTGROUP_NONE, /* optinfo_flags */
7559 TV_CSE2, /* tv_id */
7560 0, /* properties_required */
7561 0, /* properties_provided */
7562 0, /* properties_destroyed */
7563 0, /* todo_flags_start */
7564 TODO_df_finish, /* todo_flags_finish */
7565 };
7566
7567 class pass_cse2 : public rtl_opt_pass
7568 {
7569 public:
7570 pass_cse2 (gcc::context *ctxt)
7571 : rtl_opt_pass (pass_data_cse2, ctxt)
7572 {}
7573
7574 /* opt_pass methods: */
7575 virtual bool gate (function *)
7576 {
7577 return optimize > 0 && flag_rerun_cse_after_loop;
7578 }
7579
7580 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7581
7582 }; // class pass_cse2
7583
7584 } // anon namespace
7585
7586 rtl_opt_pass *
7587 make_pass_cse2 (gcc::context *ctxt)
7588 {
7589 return new pass_cse2 (ctxt);
7590 }
7591
7592 /* Run second CSE pass after loop optimizations. */
7593 static unsigned int
7594 rest_of_handle_cse_after_global_opts (void)
7595 {
7596 int save_cfj;
7597 int tem;
7598
7599 /* We only want to do local CSE, so don't follow jumps. */
7600 save_cfj = flag_cse_follow_jumps;
7601 flag_cse_follow_jumps = 0;
7602
7603 rebuild_jump_labels (get_insns ());
7604 tem = cse_main (get_insns (), max_reg_num ());
7605 purge_all_dead_edges ();
7606 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7607
7608 cse_not_expected = !flag_rerun_cse_after_loop;
7609
7610 /* If cse altered any jumps, rerun jump opts to clean things up. */
7611 if (tem == 2)
7612 {
7613 timevar_push (TV_JUMP);
7614 rebuild_jump_labels (get_insns ());
7615 cleanup_cfg (CLEANUP_CFG_CHANGED);
7616 timevar_pop (TV_JUMP);
7617 }
7618 else if (tem == 1)
7619 cleanup_cfg (0);
7620
7621 flag_cse_follow_jumps = save_cfj;
7622 return 0;
7623 }
7624
7625 namespace {
7626
7627 const pass_data pass_data_cse_after_global_opts =
7628 {
7629 RTL_PASS, /* type */
7630 "cse_local", /* name */
7631 OPTGROUP_NONE, /* optinfo_flags */
7632 TV_CSE, /* tv_id */
7633 0, /* properties_required */
7634 0, /* properties_provided */
7635 0, /* properties_destroyed */
7636 0, /* todo_flags_start */
7637 TODO_df_finish, /* todo_flags_finish */
7638 };
7639
7640 class pass_cse_after_global_opts : public rtl_opt_pass
7641 {
7642 public:
7643 pass_cse_after_global_opts (gcc::context *ctxt)
7644 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7645 {}
7646
7647 /* opt_pass methods: */
7648 virtual bool gate (function *)
7649 {
7650 return optimize > 0 && flag_rerun_cse_after_global_opts;
7651 }
7652
7653 virtual unsigned int execute (function *)
7654 {
7655 return rest_of_handle_cse_after_global_opts ();
7656 }
7657
7658 }; // class pass_cse_after_global_opts
7659
7660 } // anon namespace
7661
7662 rtl_opt_pass *
7663 make_pass_cse_after_global_opts (gcc::context *ctxt)
7664 {
7665 return new pass_cse_after_global_opts (ctxt);
7666 }