Check array contiguity for OpenACC/Fortran
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "dumpfile.h"
33 #include "cselib.h"
34 #include "function-abi.h"
35
36 /* A list of cselib_val structures. */
37 struct elt_list
38 {
39 struct elt_list *next;
40 cselib_val *elt;
41 };
42
43 static bool cselib_record_memory;
44 static bool cselib_preserve_constants;
45 static bool cselib_any_perm_equivs;
46 static inline void promote_debug_loc (struct elt_loc_list *l);
47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48 static void new_elt_loc_list (cselib_val *, rtx);
49 static void unchain_one_value (cselib_val *);
50 static void unchain_one_elt_list (struct elt_list **);
51 static void unchain_one_elt_loc_list (struct elt_loc_list **);
52 static void remove_useless_values (void);
53 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
55 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56 static cselib_val *cselib_lookup_mem (rtx, int);
57 static void cselib_invalidate_regno (unsigned int, machine_mode);
58 static void cselib_invalidate_mem (rtx);
59 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
60 static void cselib_record_sets (rtx_insn *);
61
62 struct expand_value_data
63 {
64 bitmap regs_active;
65 cselib_expand_callback callback;
66 void *callback_arg;
67 bool dummy;
68 };
69
70 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
71
72 /* There are three ways in which cselib can look up an rtx:
73 - for a REG, the reg_values table (which is indexed by regno) is used
74 - for a MEM, we recursively look up its address and then follow the
75 addr_list of that value
76 - for everything else, we compute a hash value and go through the hash
77 table. Since different rtx's can still have the same hash value,
78 this involves walking the table entries for a given value and comparing
79 the locations of the entries with the rtx we are looking up. */
80
81 struct cselib_hasher : nofree_ptr_hash <cselib_val>
82 {
83 struct key {
84 /* The rtx value and its mode (needed separately for constant
85 integers). */
86 machine_mode mode;
87 rtx x;
88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
89 machine_mode memmode;
90 };
91 typedef key *compare_type;
92 static inline hashval_t hash (const cselib_val *);
93 static inline bool equal (const cselib_val *, const key *);
94 };
95
96 /* The hash function for our hash table. The value is always computed with
97 cselib_hash_rtx when adding an element; this function just extracts the
98 hash value from a cselib_val structure. */
99
100 inline hashval_t
101 cselib_hasher::hash (const cselib_val *v)
102 {
103 return v->hash;
104 }
105
106 /* The equality test for our hash table. The first argument V is a table
107 element (i.e. a cselib_val), while the second arg X is an rtx. We know
108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
109 CONST of an appropriate mode. */
110
111 inline bool
112 cselib_hasher::equal (const cselib_val *v, const key *x_arg)
113 {
114 struct elt_loc_list *l;
115 rtx x = x_arg->x;
116 machine_mode mode = x_arg->mode;
117 machine_mode memmode = x_arg->memmode;
118
119 if (mode != GET_MODE (v->val_rtx))
120 return false;
121
122 if (GET_CODE (x) == VALUE)
123 return x == v->val_rtx;
124
125 /* We don't guarantee that distinct rtx's have different hash values,
126 so we need to do a comparison. */
127 for (l = v->locs; l; l = l->next)
128 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
129 {
130 promote_debug_loc (l);
131 return true;
132 }
133
134 return false;
135 }
136
137 /* A table that enables us to look up elts by their value. */
138 static hash_table<cselib_hasher> *cselib_hash_table;
139
140 /* A table to hold preserved values. */
141 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
142
143 /* This is a global so we don't have to pass this through every function.
144 It is used in new_elt_loc_list to set SETTING_INSN. */
145 static rtx_insn *cselib_current_insn;
146
147 /* The unique id that the next create value will take. */
148 static unsigned int next_uid;
149
150 /* The number of registers we had when the varrays were last resized. */
151 static unsigned int cselib_nregs;
152
153 /* Count values without known locations, or with only locations that
154 wouldn't have been known except for debug insns. Whenever this
155 grows too big, we remove these useless values from the table.
156
157 Counting values with only debug values is a bit tricky. We don't
158 want to increment n_useless_values when we create a value for a
159 debug insn, for this would get n_useless_values out of sync, but we
160 want increment it if all locs in the list that were ever referenced
161 in nondebug insns are removed from the list.
162
163 In the general case, once we do that, we'd have to stop accepting
164 nondebug expressions in the loc list, to avoid having two values
165 equivalent that, without debug insns, would have been made into
166 separate values. However, because debug insns never introduce
167 equivalences themselves (no assignments), the only means for
168 growing loc lists is through nondebug assignments. If the locs
169 also happen to be referenced in debug insns, it will work just fine.
170
171 A consequence of this is that there's at most one debug-only loc in
172 each loc list. If we keep it in the first entry, testing whether
173 we have a debug-only loc list takes O(1).
174
175 Furthermore, since any additional entry in a loc list containing a
176 debug loc would have to come from an assignment (nondebug) that
177 references both the initial debug loc and the newly-equivalent loc,
178 the initial debug loc would be promoted to a nondebug loc, and the
179 loc list would not contain debug locs any more.
180
181 So the only case we have to be careful with in order to keep
182 n_useless_values in sync between debug and nondebug compilations is
183 to avoid incrementing n_useless_values when removing the single loc
184 from a value that turns out to not appear outside debug values. We
185 increment n_useless_debug_values instead, and leave such values
186 alone until, for other reasons, we garbage-collect useless
187 values. */
188 static int n_useless_values;
189 static int n_useless_debug_values;
190
191 /* Count values whose locs have been taken exclusively from debug
192 insns for the entire life of the value. */
193 static int n_debug_values;
194
195 /* Number of useless values before we remove them from the hash table. */
196 #define MAX_USELESS_VALUES 32
197
198 /* This table maps from register number to values. It does not
199 contain pointers to cselib_val structures, but rather elt_lists.
200 The purpose is to be able to refer to the same register in
201 different modes. The first element of the list defines the mode in
202 which the register was set; if the mode is unknown or the value is
203 no longer valid in that mode, ELT will be NULL for the first
204 element. */
205 static struct elt_list **reg_values;
206 static unsigned int reg_values_size;
207 #define REG_VALUES(i) reg_values[i]
208
209 /* The largest number of hard regs used by any entry added to the
210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
211 static unsigned int max_value_regs;
212
213 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
214 in cselib_clear_table() for fast emptying. */
215 static unsigned int *used_regs;
216 static unsigned int n_used_regs;
217
218 /* We pass this to cselib_invalidate_mem to invalidate all of
219 memory for a non-const call instruction. */
220 static GTY(()) rtx callmem;
221
222 /* Set by discard_useless_locs if it deleted the last location of any
223 value. */
224 static int values_became_useless;
225
226 /* Used as stop element of the containing_mem list so we can check
227 presence in the list by checking the next pointer. */
228 static cselib_val dummy_val;
229
230 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
231 that is constant through the whole function and should never be
232 eliminated. */
233 static cselib_val *cfa_base_preserved_val;
234 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
235
236 /* Used to list all values that contain memory reference.
237 May or may not contain the useless values - the list is compacted
238 each time memory is invalidated. */
239 static cselib_val *first_containing_mem = &dummy_val;
240
241 static object_allocator<elt_list> elt_list_pool ("elt_list");
242 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
243 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
244
245 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
246
247 /* If nonnull, cselib will call this function before freeing useless
248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
249 void (*cselib_discard_hook) (cselib_val *);
250
251 /* If nonnull, cselib will call this function before recording sets or
252 even clobbering outputs of INSN. All the recorded sets will be
253 represented in the array sets[n_sets]. new_val_min can be used to
254 tell whether values present in sets are introduced by this
255 instruction. */
256 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
257 int n_sets);
258
259 #define PRESERVED_VALUE_P(RTX) \
260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
261
262 #define SP_BASED_VALUE_P(RTX) \
263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
264
265 \f
266
267 /* Allocate a struct elt_list and fill in its two elements with the
268 arguments. */
269
270 static inline struct elt_list *
271 new_elt_list (struct elt_list *next, cselib_val *elt)
272 {
273 elt_list *el = elt_list_pool.allocate ();
274 el->next = next;
275 el->elt = elt;
276 return el;
277 }
278
279 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
280 list. */
281
282 static inline void
283 new_elt_loc_list (cselib_val *val, rtx loc)
284 {
285 struct elt_loc_list *el, *next = val->locs;
286
287 gcc_checking_assert (!next || !next->setting_insn
288 || !DEBUG_INSN_P (next->setting_insn)
289 || cselib_current_insn == next->setting_insn);
290
291 /* If we're creating the first loc in a debug insn context, we've
292 just created a debug value. Count it. */
293 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
294 n_debug_values++;
295
296 val = canonical_cselib_val (val);
297 next = val->locs;
298
299 if (GET_CODE (loc) == VALUE)
300 {
301 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
302
303 gcc_checking_assert (PRESERVED_VALUE_P (loc)
304 == PRESERVED_VALUE_P (val->val_rtx));
305
306 if (val->val_rtx == loc)
307 return;
308 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
309 {
310 /* Reverse the insertion. */
311 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
312 return;
313 }
314
315 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
316
317 if (CSELIB_VAL_PTR (loc)->locs)
318 {
319 /* Bring all locs from LOC to VAL. */
320 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
321 {
322 /* Adjust values that have LOC as canonical so that VAL
323 becomes their canonical. */
324 if (el->loc && GET_CODE (el->loc) == VALUE)
325 {
326 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
327 == loc);
328 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
329 }
330 }
331 el->next = val->locs;
332 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
333 }
334
335 if (CSELIB_VAL_PTR (loc)->addr_list)
336 {
337 /* Bring in addr_list into canonical node. */
338 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
339 while (last->next)
340 last = last->next;
341 last->next = val->addr_list;
342 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
343 CSELIB_VAL_PTR (loc)->addr_list = NULL;
344 }
345
346 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
347 && val->next_containing_mem == NULL)
348 {
349 /* Add VAL to the containing_mem list after LOC. LOC will
350 be removed when we notice it doesn't contain any
351 MEMs. */
352 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
353 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
354 }
355
356 /* Chain LOC back to VAL. */
357 el = elt_loc_list_pool.allocate ();
358 el->loc = val->val_rtx;
359 el->setting_insn = cselib_current_insn;
360 el->next = NULL;
361 CSELIB_VAL_PTR (loc)->locs = el;
362 }
363
364 el = elt_loc_list_pool.allocate ();
365 el->loc = loc;
366 el->setting_insn = cselib_current_insn;
367 el->next = next;
368 val->locs = el;
369 }
370
371 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
372 originating from a debug insn, maintaining the debug values
373 count. */
374
375 static inline void
376 promote_debug_loc (struct elt_loc_list *l)
377 {
378 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
379 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
380 {
381 n_debug_values--;
382 l->setting_insn = cselib_current_insn;
383 if (cselib_preserve_constants && l->next)
384 {
385 gcc_assert (l->next->setting_insn
386 && DEBUG_INSN_P (l->next->setting_insn)
387 && !l->next->next);
388 l->next->setting_insn = cselib_current_insn;
389 }
390 else
391 gcc_assert (!l->next);
392 }
393 }
394
395 /* The elt_list at *PL is no longer needed. Unchain it and free its
396 storage. */
397
398 static inline void
399 unchain_one_elt_list (struct elt_list **pl)
400 {
401 struct elt_list *l = *pl;
402
403 *pl = l->next;
404 elt_list_pool.remove (l);
405 }
406
407 /* Likewise for elt_loc_lists. */
408
409 static void
410 unchain_one_elt_loc_list (struct elt_loc_list **pl)
411 {
412 struct elt_loc_list *l = *pl;
413
414 *pl = l->next;
415 elt_loc_list_pool.remove (l);
416 }
417
418 /* Likewise for cselib_vals. This also frees the addr_list associated with
419 V. */
420
421 static void
422 unchain_one_value (cselib_val *v)
423 {
424 while (v->addr_list)
425 unchain_one_elt_list (&v->addr_list);
426
427 cselib_val_pool.remove (v);
428 }
429
430 /* Remove all entries from the hash table. Also used during
431 initialization. */
432
433 void
434 cselib_clear_table (void)
435 {
436 cselib_reset_table (1);
437 }
438
439 /* Return TRUE if V is a constant, a function invariant or a VALUE
440 equivalence; FALSE otherwise. */
441
442 static bool
443 invariant_or_equiv_p (cselib_val *v)
444 {
445 struct elt_loc_list *l;
446
447 if (v == cfa_base_preserved_val)
448 return true;
449
450 /* Keep VALUE equivalences around. */
451 for (l = v->locs; l; l = l->next)
452 if (GET_CODE (l->loc) == VALUE)
453 return true;
454
455 if (v->locs != NULL
456 && v->locs->next == NULL)
457 {
458 if (CONSTANT_P (v->locs->loc)
459 && (GET_CODE (v->locs->loc) != CONST
460 || !references_value_p (v->locs->loc, 0)))
461 return true;
462 /* Although a debug expr may be bound to different expressions,
463 we can preserve it as if it was constant, to get unification
464 and proper merging within var-tracking. */
465 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
466 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
467 || GET_CODE (v->locs->loc) == ENTRY_VALUE
468 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
469 return true;
470
471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
472 if (GET_CODE (v->locs->loc) == PLUS
473 && CONST_INT_P (XEXP (v->locs->loc, 1))
474 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
476 return true;
477 }
478
479 return false;
480 }
481
482 /* Remove from hash table all VALUEs except constants, function
483 invariants and VALUE equivalences. */
484
485 int
486 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
487 {
488 cselib_val *v = *x;
489
490 if (invariant_or_equiv_p (v))
491 {
492 cselib_hasher::key lookup = {
493 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
494 };
495 cselib_val **slot
496 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
497 v->hash, INSERT);
498 gcc_assert (!*slot);
499 *slot = v;
500 }
501
502 cselib_hash_table->clear_slot (x);
503
504 return 1;
505 }
506
507 /* Remove all entries from the hash table, arranging for the next
508 value to be numbered NUM. */
509
510 void
511 cselib_reset_table (unsigned int num)
512 {
513 unsigned int i;
514
515 max_value_regs = 0;
516
517 if (cfa_base_preserved_val)
518 {
519 unsigned int regno = cfa_base_preserved_regno;
520 unsigned int new_used_regs = 0;
521 for (i = 0; i < n_used_regs; i++)
522 if (used_regs[i] == regno)
523 {
524 new_used_regs = 1;
525 continue;
526 }
527 else
528 REG_VALUES (used_regs[i]) = 0;
529 gcc_assert (new_used_regs == 1);
530 n_used_regs = new_used_regs;
531 used_regs[0] = regno;
532 max_value_regs
533 = hard_regno_nregs (regno,
534 GET_MODE (cfa_base_preserved_val->locs->loc));
535 }
536 else
537 {
538 for (i = 0; i < n_used_regs; i++)
539 REG_VALUES (used_regs[i]) = 0;
540 n_used_regs = 0;
541 }
542
543 if (cselib_preserve_constants)
544 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
545 (NULL);
546 else
547 {
548 cselib_hash_table->empty ();
549 gcc_checking_assert (!cselib_any_perm_equivs);
550 }
551
552 n_useless_values = 0;
553 n_useless_debug_values = 0;
554 n_debug_values = 0;
555
556 next_uid = num;
557
558 first_containing_mem = &dummy_val;
559 }
560
561 /* Return the number of the next value that will be generated. */
562
563 unsigned int
564 cselib_get_next_uid (void)
565 {
566 return next_uid;
567 }
568
569 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
570 INSERTing if requested. When X is part of the address of a MEM,
571 MEMMODE should specify the mode of the MEM. */
572
573 static cselib_val **
574 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
575 enum insert_option insert, machine_mode memmode)
576 {
577 cselib_val **slot = NULL;
578 cselib_hasher::key lookup = { mode, x, memmode };
579 if (cselib_preserve_constants)
580 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
581 NO_INSERT);
582 if (!slot)
583 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
584 return slot;
585 }
586
587 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
588 only return true for values which point to a cselib_val whose value
589 element has been set to zero, which implies the cselib_val will be
590 removed. */
591
592 int
593 references_value_p (const_rtx x, int only_useless)
594 {
595 const enum rtx_code code = GET_CODE (x);
596 const char *fmt = GET_RTX_FORMAT (code);
597 int i, j;
598
599 if (GET_CODE (x) == VALUE
600 && (! only_useless ||
601 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
602 return 1;
603
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
607 return 1;
608 else if (fmt[i] == 'E')
609 for (j = 0; j < XVECLEN (x, i); j++)
610 if (references_value_p (XVECEXP (x, i, j), only_useless))
611 return 1;
612 }
613
614 return 0;
615 }
616
617 /* For all locations found in X, delete locations that reference useless
618 values (i.e. values without any location). Called through
619 htab_traverse. */
620
621 int
622 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
623 {
624 cselib_val *v = *x;
625 struct elt_loc_list **p = &v->locs;
626 bool had_locs = v->locs != NULL;
627 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
628
629 while (*p)
630 {
631 if (references_value_p ((*p)->loc, 1))
632 unchain_one_elt_loc_list (p);
633 else
634 p = &(*p)->next;
635 }
636
637 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
638 {
639 if (setting_insn && DEBUG_INSN_P (setting_insn))
640 n_useless_debug_values++;
641 else
642 n_useless_values++;
643 values_became_useless = 1;
644 }
645 return 1;
646 }
647
648 /* If X is a value with no locations, remove it from the hashtable. */
649
650 int
651 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
652 {
653 cselib_val *v = *x;
654
655 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
656 {
657 if (cselib_discard_hook)
658 cselib_discard_hook (v);
659
660 CSELIB_VAL_PTR (v->val_rtx) = NULL;
661 cselib_hash_table->clear_slot (x);
662 unchain_one_value (v);
663 n_useless_values--;
664 }
665
666 return 1;
667 }
668
669 /* Clean out useless values (i.e. those which no longer have locations
670 associated with them) from the hash table. */
671
672 static void
673 remove_useless_values (void)
674 {
675 cselib_val **p, *v;
676
677 /* First pass: eliminate locations that reference the value. That in
678 turn can make more values useless. */
679 do
680 {
681 values_became_useless = 0;
682 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
683 }
684 while (values_became_useless);
685
686 /* Second pass: actually remove the values. */
687
688 p = &first_containing_mem;
689 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
690 if (v->locs && v == canonical_cselib_val (v))
691 {
692 *p = v;
693 p = &(*p)->next_containing_mem;
694 }
695 *p = &dummy_val;
696
697 n_useless_values += n_useless_debug_values;
698 n_debug_values -= n_useless_debug_values;
699 n_useless_debug_values = 0;
700
701 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
702
703 gcc_assert (!n_useless_values);
704 }
705
706 /* Arrange for a value to not be removed from the hash table even if
707 it becomes useless. */
708
709 void
710 cselib_preserve_value (cselib_val *v)
711 {
712 PRESERVED_VALUE_P (v->val_rtx) = 1;
713 }
714
715 /* Test whether a value is preserved. */
716
717 bool
718 cselib_preserved_value_p (cselib_val *v)
719 {
720 return PRESERVED_VALUE_P (v->val_rtx);
721 }
722
723 /* Arrange for a REG value to be assumed constant through the whole function,
724 never invalidated and preserved across cselib_reset_table calls. */
725
726 void
727 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
728 {
729 if (cselib_preserve_constants
730 && v->locs
731 && REG_P (v->locs->loc))
732 {
733 cfa_base_preserved_val = v;
734 cfa_base_preserved_regno = regno;
735 }
736 }
737
738 /* Clean all non-constant expressions in the hash table, but retain
739 their values. */
740
741 void
742 cselib_preserve_only_values (void)
743 {
744 int i;
745
746 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
747 cselib_invalidate_regno (i, reg_raw_mode[i]);
748
749 cselib_invalidate_mem (callmem);
750
751 remove_useless_values ();
752
753 gcc_assert (first_containing_mem == &dummy_val);
754 }
755
756 /* Arrange for a value to be marked as based on stack pointer
757 for find_base_term purposes. */
758
759 void
760 cselib_set_value_sp_based (cselib_val *v)
761 {
762 SP_BASED_VALUE_P (v->val_rtx) = 1;
763 }
764
765 /* Test whether a value is based on stack pointer for
766 find_base_term purposes. */
767
768 bool
769 cselib_sp_based_value_p (cselib_val *v)
770 {
771 return SP_BASED_VALUE_P (v->val_rtx);
772 }
773
774 /* Return the mode in which a register was last set. If X is not a
775 register, return its mode. If the mode in which the register was
776 set is not known, or the value was already clobbered, return
777 VOIDmode. */
778
779 machine_mode
780 cselib_reg_set_mode (const_rtx x)
781 {
782 if (!REG_P (x))
783 return GET_MODE (x);
784
785 if (REG_VALUES (REGNO (x)) == NULL
786 || REG_VALUES (REGNO (x))->elt == NULL)
787 return VOIDmode;
788
789 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
790 }
791
792 /* If x is a PLUS or an autoinc operation, expand the operation,
793 storing the offset, if any, in *OFF. */
794
795 static rtx
796 autoinc_split (rtx x, rtx *off, machine_mode memmode)
797 {
798 switch (GET_CODE (x))
799 {
800 case PLUS:
801 *off = XEXP (x, 1);
802 return XEXP (x, 0);
803
804 case PRE_DEC:
805 if (memmode == VOIDmode)
806 return x;
807
808 *off = gen_int_mode (-GET_MODE_SIZE (memmode), GET_MODE (x));
809 return XEXP (x, 0);
810
811 case PRE_INC:
812 if (memmode == VOIDmode)
813 return x;
814
815 *off = gen_int_mode (GET_MODE_SIZE (memmode), GET_MODE (x));
816 return XEXP (x, 0);
817
818 case PRE_MODIFY:
819 return XEXP (x, 1);
820
821 case POST_DEC:
822 case POST_INC:
823 case POST_MODIFY:
824 return XEXP (x, 0);
825
826 default:
827 return x;
828 }
829 }
830
831 /* Return nonzero if we can prove that X and Y contain the same value,
832 taking our gathered information into account. MEMMODE holds the
833 mode of the enclosing MEM, if any, as required to deal with autoinc
834 addressing modes. If X and Y are not (known to be) part of
835 addresses, MEMMODE should be VOIDmode. */
836
837 int
838 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
839 {
840 enum rtx_code code;
841 const char *fmt;
842 int i;
843
844 if (REG_P (x) || MEM_P (x))
845 {
846 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
847
848 if (e)
849 x = e->val_rtx;
850 }
851
852 if (REG_P (y) || MEM_P (y))
853 {
854 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
855
856 if (e)
857 y = e->val_rtx;
858 }
859
860 if (x == y)
861 return 1;
862
863 if (GET_CODE (x) == VALUE)
864 {
865 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
866 struct elt_loc_list *l;
867
868 if (GET_CODE (y) == VALUE)
869 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
870
871 if (depth == 128)
872 return 0;
873
874 for (l = e->locs; l; l = l->next)
875 {
876 rtx t = l->loc;
877
878 /* Avoid infinite recursion. We know we have the canonical
879 value, so we can just skip any values in the equivalence
880 list. */
881 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
882 continue;
883 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
884 return 1;
885 }
886
887 return 0;
888 }
889 else if (GET_CODE (y) == VALUE)
890 {
891 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
892 struct elt_loc_list *l;
893
894 if (depth == 128)
895 return 0;
896
897 for (l = e->locs; l; l = l->next)
898 {
899 rtx t = l->loc;
900
901 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
902 continue;
903 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
904 return 1;
905 }
906
907 return 0;
908 }
909
910 if (GET_MODE (x) != GET_MODE (y))
911 return 0;
912
913 if (GET_CODE (x) != GET_CODE (y))
914 {
915 rtx xorig = x, yorig = y;
916 rtx xoff = NULL, yoff = NULL;
917
918 x = autoinc_split (x, &xoff, memmode);
919 y = autoinc_split (y, &yoff, memmode);
920
921 if (!xoff != !yoff)
922 return 0;
923
924 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
925 return 0;
926
927 /* Don't recurse if nothing changed. */
928 if (x != xorig || y != yorig)
929 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
930
931 return 0;
932 }
933
934 /* These won't be handled correctly by the code below. */
935 switch (GET_CODE (x))
936 {
937 CASE_CONST_UNIQUE:
938 case DEBUG_EXPR:
939 return 0;
940
941 case DEBUG_IMPLICIT_PTR:
942 return DEBUG_IMPLICIT_PTR_DECL (x)
943 == DEBUG_IMPLICIT_PTR_DECL (y);
944
945 case DEBUG_PARAMETER_REF:
946 return DEBUG_PARAMETER_REF_DECL (x)
947 == DEBUG_PARAMETER_REF_DECL (y);
948
949 case ENTRY_VALUE:
950 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
951 use rtx_equal_for_cselib_1 to compare the operands. */
952 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
953
954 case LABEL_REF:
955 return label_ref_label (x) == label_ref_label (y);
956
957 case REG:
958 return REGNO (x) == REGNO (y);
959
960 case MEM:
961 /* We have to compare any autoinc operations in the addresses
962 using this MEM's mode. */
963 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
964 depth);
965
966 default:
967 break;
968 }
969
970 code = GET_CODE (x);
971 fmt = GET_RTX_FORMAT (code);
972
973 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 {
975 int j;
976
977 switch (fmt[i])
978 {
979 case 'w':
980 if (XWINT (x, i) != XWINT (y, i))
981 return 0;
982 break;
983
984 case 'n':
985 case 'i':
986 if (XINT (x, i) != XINT (y, i))
987 return 0;
988 break;
989
990 case 'p':
991 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
992 return 0;
993 break;
994
995 case 'V':
996 case 'E':
997 /* Two vectors must have the same length. */
998 if (XVECLEN (x, i) != XVECLEN (y, i))
999 return 0;
1000
1001 /* And the corresponding elements must match. */
1002 for (j = 0; j < XVECLEN (x, i); j++)
1003 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1004 XVECEXP (y, i, j), memmode, depth))
1005 return 0;
1006 break;
1007
1008 case 'e':
1009 if (i == 1
1010 && targetm.commutative_p (x, UNKNOWN)
1011 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1012 depth)
1013 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1014 depth))
1015 return 1;
1016 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1017 depth))
1018 return 0;
1019 break;
1020
1021 case 'S':
1022 case 's':
1023 if (strcmp (XSTR (x, i), XSTR (y, i)))
1024 return 0;
1025 break;
1026
1027 case 'u':
1028 /* These are just backpointers, so they don't matter. */
1029 break;
1030
1031 case '0':
1032 case 't':
1033 break;
1034
1035 /* It is believed that rtx's at this level will never
1036 contain anything but integers and other rtx's,
1037 except for within LABEL_REFs and SYMBOL_REFs. */
1038 default:
1039 gcc_unreachable ();
1040 }
1041 }
1042 return 1;
1043 }
1044
1045 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1046 For registers and memory locations, we look up their cselib_val structure
1047 and return its VALUE element.
1048 Possible reasons for return 0 are: the object is volatile, or we couldn't
1049 find a register or memory location in the table and CREATE is zero. If
1050 CREATE is nonzero, table elts are created for regs and mem.
1051 N.B. this hash function returns the same hash value for RTXes that
1052 differ only in the order of operands, thus it is suitable for comparisons
1053 that take commutativity into account.
1054 If we wanted to also support associative rules, we'd have to use a different
1055 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1056 MEMMODE indicates the mode of an enclosing MEM, and it's only
1057 used to compute autoinc values.
1058 We used to have a MODE argument for hashing for CONST_INTs, but that
1059 didn't make sense, since it caused spurious hash differences between
1060 (set (reg:SI 1) (const_int))
1061 (plus:SI (reg:SI 2) (reg:SI 1))
1062 and
1063 (plus:SI (reg:SI 2) (const_int))
1064 If the mode is important in any context, it must be checked specifically
1065 in a comparison anyway, since relying on hash differences is unsafe. */
1066
1067 static unsigned int
1068 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1069 {
1070 cselib_val *e;
1071 poly_int64 offset;
1072 int i, j;
1073 enum rtx_code code;
1074 const char *fmt;
1075 unsigned int hash = 0;
1076
1077 code = GET_CODE (x);
1078 hash += (unsigned) code + (unsigned) GET_MODE (x);
1079
1080 switch (code)
1081 {
1082 case VALUE:
1083 e = CSELIB_VAL_PTR (x);
1084 return e->hash;
1085
1086 case MEM:
1087 case REG:
1088 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1089 if (! e)
1090 return 0;
1091
1092 return e->hash;
1093
1094 case DEBUG_EXPR:
1095 hash += ((unsigned) DEBUG_EXPR << 7)
1096 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1097 return hash ? hash : (unsigned int) DEBUG_EXPR;
1098
1099 case DEBUG_IMPLICIT_PTR:
1100 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1101 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1102 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1103
1104 case DEBUG_PARAMETER_REF:
1105 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1106 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1107 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1108
1109 case ENTRY_VALUE:
1110 /* ENTRY_VALUEs are function invariant, thus try to avoid
1111 recursing on argument if ENTRY_VALUE is one of the
1112 forms emitted by expand_debug_expr, otherwise
1113 ENTRY_VALUE hash would depend on the current value
1114 in some register or memory. */
1115 if (REG_P (ENTRY_VALUE_EXP (x)))
1116 hash += (unsigned int) REG
1117 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1118 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1119 else if (MEM_P (ENTRY_VALUE_EXP (x))
1120 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1121 hash += (unsigned int) MEM
1122 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1123 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1124 else
1125 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1126 return hash ? hash : (unsigned int) ENTRY_VALUE;
1127
1128 case CONST_INT:
1129 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1130 return hash ? hash : (unsigned int) CONST_INT;
1131
1132 case CONST_WIDE_INT:
1133 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1134 hash += CONST_WIDE_INT_ELT (x, i);
1135 return hash;
1136
1137 case CONST_POLY_INT:
1138 {
1139 inchash::hash h;
1140 h.add_int (hash);
1141 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1142 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1143 return h.end ();
1144 }
1145
1146 case CONST_DOUBLE:
1147 /* This is like the general case, except that it only counts
1148 the integers representing the constant. */
1149 hash += (unsigned) code + (unsigned) GET_MODE (x);
1150 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1151 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1152 + (unsigned) CONST_DOUBLE_HIGH (x));
1153 else
1154 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1155 return hash ? hash : (unsigned int) CONST_DOUBLE;
1156
1157 case CONST_FIXED:
1158 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1159 hash += fixed_hash (CONST_FIXED_VALUE (x));
1160 return hash ? hash : (unsigned int) CONST_FIXED;
1161
1162 case CONST_VECTOR:
1163 {
1164 int units;
1165 rtx elt;
1166
1167 units = const_vector_encoded_nelts (x);
1168
1169 for (i = 0; i < units; ++i)
1170 {
1171 elt = CONST_VECTOR_ENCODED_ELT (x, i);
1172 hash += cselib_hash_rtx (elt, 0, memmode);
1173 }
1174
1175 return hash;
1176 }
1177
1178 /* Assume there is only one rtx object for any given label. */
1179 case LABEL_REF:
1180 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1181 differences and differences between each stage's debugging dumps. */
1182 hash += (((unsigned int) LABEL_REF << 7)
1183 + CODE_LABEL_NUMBER (label_ref_label (x)));
1184 return hash ? hash : (unsigned int) LABEL_REF;
1185
1186 case SYMBOL_REF:
1187 {
1188 /* Don't hash on the symbol's address to avoid bootstrap differences.
1189 Different hash values may cause expressions to be recorded in
1190 different orders and thus different registers to be used in the
1191 final assembler. This also avoids differences in the dump files
1192 between various stages. */
1193 unsigned int h = 0;
1194 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1195
1196 while (*p)
1197 h += (h << 7) + *p++; /* ??? revisit */
1198
1199 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1200 return hash ? hash : (unsigned int) SYMBOL_REF;
1201 }
1202
1203 case PRE_DEC:
1204 case PRE_INC:
1205 /* We can't compute these without knowing the MEM mode. */
1206 gcc_assert (memmode != VOIDmode);
1207 offset = GET_MODE_SIZE (memmode);
1208 if (code == PRE_DEC)
1209 offset = -offset;
1210 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1211 like (mem:MEMMODE (plus (reg) (const_int I))). */
1212 hash += (unsigned) PLUS - (unsigned)code
1213 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1214 + cselib_hash_rtx (gen_int_mode (offset, GET_MODE (x)),
1215 create, memmode);
1216 return hash ? hash : 1 + (unsigned) PLUS;
1217
1218 case PRE_MODIFY:
1219 gcc_assert (memmode != VOIDmode);
1220 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1221
1222 case POST_DEC:
1223 case POST_INC:
1224 case POST_MODIFY:
1225 gcc_assert (memmode != VOIDmode);
1226 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1227
1228 case PC:
1229 case CC0:
1230 case CALL:
1231 case UNSPEC_VOLATILE:
1232 return 0;
1233
1234 case ASM_OPERANDS:
1235 if (MEM_VOLATILE_P (x))
1236 return 0;
1237
1238 break;
1239
1240 default:
1241 break;
1242 }
1243
1244 i = GET_RTX_LENGTH (code) - 1;
1245 fmt = GET_RTX_FORMAT (code);
1246 for (; i >= 0; i--)
1247 {
1248 switch (fmt[i])
1249 {
1250 case 'e':
1251 {
1252 rtx tem = XEXP (x, i);
1253 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1254
1255 if (tem_hash == 0)
1256 return 0;
1257
1258 hash += tem_hash;
1259 }
1260 break;
1261 case 'E':
1262 for (j = 0; j < XVECLEN (x, i); j++)
1263 {
1264 unsigned int tem_hash
1265 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1266
1267 if (tem_hash == 0)
1268 return 0;
1269
1270 hash += tem_hash;
1271 }
1272 break;
1273
1274 case 's':
1275 {
1276 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1277
1278 if (p)
1279 while (*p)
1280 hash += *p++;
1281 break;
1282 }
1283
1284 case 'i':
1285 hash += XINT (x, i);
1286 break;
1287
1288 case 'p':
1289 hash += constant_lower_bound (SUBREG_BYTE (x));
1290 break;
1291
1292 case '0':
1293 case 't':
1294 /* unused */
1295 break;
1296
1297 default:
1298 gcc_unreachable ();
1299 }
1300 }
1301
1302 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1303 }
1304
1305 /* Create a new value structure for VALUE and initialize it. The mode of the
1306 value is MODE. */
1307
1308 static inline cselib_val *
1309 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1310 {
1311 cselib_val *e = cselib_val_pool.allocate ();
1312
1313 gcc_assert (hash);
1314 gcc_assert (next_uid);
1315
1316 e->hash = hash;
1317 e->uid = next_uid++;
1318 /* We use an alloc pool to allocate this RTL construct because it
1319 accounts for about 8% of the overall memory usage. We know
1320 precisely when we can have VALUE RTXen (when cselib is active)
1321 so we don't need to put them in garbage collected memory.
1322 ??? Why should a VALUE be an RTX in the first place? */
1323 e->val_rtx = (rtx_def*) value_pool.allocate ();
1324 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1325 PUT_CODE (e->val_rtx, VALUE);
1326 PUT_MODE (e->val_rtx, mode);
1327 CSELIB_VAL_PTR (e->val_rtx) = e;
1328 e->addr_list = 0;
1329 e->locs = 0;
1330 e->next_containing_mem = 0;
1331
1332 if (dump_file && (dump_flags & TDF_CSELIB))
1333 {
1334 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1335 if (flag_dump_noaddr || flag_dump_unnumbered)
1336 fputs ("# ", dump_file);
1337 else
1338 fprintf (dump_file, "%p ", (void*)e);
1339 print_rtl_single (dump_file, x);
1340 fputc ('\n', dump_file);
1341 }
1342
1343 return e;
1344 }
1345
1346 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1347 contains the data at this address. X is a MEM that represents the
1348 value. Update the two value structures to represent this situation. */
1349
1350 static void
1351 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1352 {
1353 addr_elt = canonical_cselib_val (addr_elt);
1354 mem_elt = canonical_cselib_val (mem_elt);
1355
1356 /* Avoid duplicates. */
1357 addr_space_t as = MEM_ADDR_SPACE (x);
1358 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
1359 if (MEM_P (l->loc)
1360 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1361 && MEM_ADDR_SPACE (l->loc) == as)
1362 {
1363 promote_debug_loc (l);
1364 return;
1365 }
1366
1367 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1368 new_elt_loc_list (mem_elt,
1369 replace_equiv_address_nv (x, addr_elt->val_rtx));
1370 if (mem_elt->next_containing_mem == NULL)
1371 {
1372 mem_elt->next_containing_mem = first_containing_mem;
1373 first_containing_mem = mem_elt;
1374 }
1375 }
1376
1377 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1378 If CREATE, make a new one if we haven't seen it before. */
1379
1380 static cselib_val *
1381 cselib_lookup_mem (rtx x, int create)
1382 {
1383 machine_mode mode = GET_MODE (x);
1384 machine_mode addr_mode;
1385 cselib_val **slot;
1386 cselib_val *addr;
1387 cselib_val *mem_elt;
1388
1389 if (MEM_VOLATILE_P (x) || mode == BLKmode
1390 || !cselib_record_memory
1391 || (FLOAT_MODE_P (mode) && flag_float_store))
1392 return 0;
1393
1394 addr_mode = GET_MODE (XEXP (x, 0));
1395 if (addr_mode == VOIDmode)
1396 addr_mode = Pmode;
1397
1398 /* Look up the value for the address. */
1399 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1400 if (! addr)
1401 return 0;
1402 addr = canonical_cselib_val (addr);
1403
1404 /* Find a value that describes a value of our mode at that address. */
1405 addr_space_t as = MEM_ADDR_SPACE (x);
1406 for (elt_list *l = addr->addr_list; l; l = l->next)
1407 if (GET_MODE (l->elt->val_rtx) == mode)
1408 {
1409 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1410 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1411 {
1412 promote_debug_loc (l->elt->locs);
1413 return l->elt;
1414 }
1415 }
1416
1417 if (! create)
1418 return 0;
1419
1420 mem_elt = new_cselib_val (next_uid, mode, x);
1421 add_mem_for_addr (addr, mem_elt, x);
1422 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1423 *slot = mem_elt;
1424 return mem_elt;
1425 }
1426
1427 /* Search through the possible substitutions in P. We prefer a non reg
1428 substitution because this allows us to expand the tree further. If
1429 we find, just a reg, take the lowest regno. There may be several
1430 non-reg results, we just take the first one because they will all
1431 expand to the same place. */
1432
1433 static rtx
1434 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1435 int max_depth)
1436 {
1437 rtx reg_result = NULL;
1438 unsigned int regno = UINT_MAX;
1439 struct elt_loc_list *p_in = p;
1440
1441 for (; p; p = p->next)
1442 {
1443 /* Return these right away to avoid returning stack pointer based
1444 expressions for frame pointer and vice versa, which is something
1445 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1446 for more details. */
1447 if (REG_P (p->loc)
1448 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1449 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1450 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1451 || REGNO (p->loc) == cfa_base_preserved_regno))
1452 return p->loc;
1453 /* Avoid infinite recursion trying to expand a reg into a
1454 the same reg. */
1455 if ((REG_P (p->loc))
1456 && (REGNO (p->loc) < regno)
1457 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1458 {
1459 reg_result = p->loc;
1460 regno = REGNO (p->loc);
1461 }
1462 /* Avoid infinite recursion and do not try to expand the
1463 value. */
1464 else if (GET_CODE (p->loc) == VALUE
1465 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1466 continue;
1467 else if (!REG_P (p->loc))
1468 {
1469 rtx result, note;
1470 if (dump_file && (dump_flags & TDF_CSELIB))
1471 {
1472 print_inline_rtx (dump_file, p->loc, 0);
1473 fprintf (dump_file, "\n");
1474 }
1475 if (GET_CODE (p->loc) == LO_SUM
1476 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1477 && p->setting_insn
1478 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1479 && XEXP (note, 0) == XEXP (p->loc, 1))
1480 return XEXP (p->loc, 1);
1481 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1482 if (result)
1483 return result;
1484 }
1485
1486 }
1487
1488 if (regno != UINT_MAX)
1489 {
1490 rtx result;
1491 if (dump_file && (dump_flags & TDF_CSELIB))
1492 fprintf (dump_file, "r%d\n", regno);
1493
1494 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1495 if (result)
1496 return result;
1497 }
1498
1499 if (dump_file && (dump_flags & TDF_CSELIB))
1500 {
1501 if (reg_result)
1502 {
1503 print_inline_rtx (dump_file, reg_result, 0);
1504 fprintf (dump_file, "\n");
1505 }
1506 else
1507 fprintf (dump_file, "NULL\n");
1508 }
1509 return reg_result;
1510 }
1511
1512
1513 /* Forward substitute and expand an expression out to its roots.
1514 This is the opposite of common subexpression. Because local value
1515 numbering is such a weak optimization, the expanded expression is
1516 pretty much unique (not from a pointer equals point of view but
1517 from a tree shape point of view.
1518
1519 This function returns NULL if the expansion fails. The expansion
1520 will fail if there is no value number for one of the operands or if
1521 one of the operands has been overwritten between the current insn
1522 and the beginning of the basic block. For instance x has no
1523 expansion in:
1524
1525 r1 <- r1 + 3
1526 x <- r1 + 8
1527
1528 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1529 It is clear on return. */
1530
1531 rtx
1532 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1533 {
1534 struct expand_value_data evd;
1535
1536 evd.regs_active = regs_active;
1537 evd.callback = NULL;
1538 evd.callback_arg = NULL;
1539 evd.dummy = false;
1540
1541 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1542 }
1543
1544 /* Same as cselib_expand_value_rtx, but using a callback to try to
1545 resolve some expressions. The CB function should return ORIG if it
1546 can't or does not want to deal with a certain RTX. Any other
1547 return value, including NULL, will be used as the expansion for
1548 VALUE, without any further changes. */
1549
1550 rtx
1551 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1552 cselib_expand_callback cb, void *data)
1553 {
1554 struct expand_value_data evd;
1555
1556 evd.regs_active = regs_active;
1557 evd.callback = cb;
1558 evd.callback_arg = data;
1559 evd.dummy = false;
1560
1561 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1562 }
1563
1564 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1565 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1566 would return NULL or non-NULL, without allocating new rtx. */
1567
1568 bool
1569 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1570 cselib_expand_callback cb, void *data)
1571 {
1572 struct expand_value_data evd;
1573
1574 evd.regs_active = regs_active;
1575 evd.callback = cb;
1576 evd.callback_arg = data;
1577 evd.dummy = true;
1578
1579 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1580 }
1581
1582 /* Internal implementation of cselib_expand_value_rtx and
1583 cselib_expand_value_rtx_cb. */
1584
1585 static rtx
1586 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1587 int max_depth)
1588 {
1589 rtx copy, scopy;
1590 int i, j;
1591 RTX_CODE code;
1592 const char *format_ptr;
1593 machine_mode mode;
1594
1595 code = GET_CODE (orig);
1596
1597 /* For the context of dse, if we end up expand into a huge tree, we
1598 will not have a useful address, so we might as well just give up
1599 quickly. */
1600 if (max_depth <= 0)
1601 return NULL;
1602
1603 switch (code)
1604 {
1605 case REG:
1606 {
1607 struct elt_list *l = REG_VALUES (REGNO (orig));
1608
1609 if (l && l->elt == NULL)
1610 l = l->next;
1611 for (; l; l = l->next)
1612 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1613 {
1614 rtx result;
1615 unsigned regno = REGNO (orig);
1616
1617 /* The only thing that we are not willing to do (this
1618 is requirement of dse and if others potential uses
1619 need this function we should add a parm to control
1620 it) is that we will not substitute the
1621 STACK_POINTER_REGNUM, FRAME_POINTER or the
1622 HARD_FRAME_POINTER.
1623
1624 These expansions confuses the code that notices that
1625 stores into the frame go dead at the end of the
1626 function and that the frame is not effected by calls
1627 to subroutines. If you allow the
1628 STACK_POINTER_REGNUM substitution, then dse will
1629 think that parameter pushing also goes dead which is
1630 wrong. If you allow the FRAME_POINTER or the
1631 HARD_FRAME_POINTER then you lose the opportunity to
1632 make the frame assumptions. */
1633 if (regno == STACK_POINTER_REGNUM
1634 || regno == FRAME_POINTER_REGNUM
1635 || regno == HARD_FRAME_POINTER_REGNUM
1636 || regno == cfa_base_preserved_regno)
1637 return orig;
1638
1639 bitmap_set_bit (evd->regs_active, regno);
1640
1641 if (dump_file && (dump_flags & TDF_CSELIB))
1642 fprintf (dump_file, "expanding: r%d into: ", regno);
1643
1644 result = expand_loc (l->elt->locs, evd, max_depth);
1645 bitmap_clear_bit (evd->regs_active, regno);
1646
1647 if (result)
1648 return result;
1649 else
1650 return orig;
1651 }
1652 return orig;
1653 }
1654
1655 CASE_CONST_ANY:
1656 case SYMBOL_REF:
1657 case CODE_LABEL:
1658 case PC:
1659 case CC0:
1660 case SCRATCH:
1661 /* SCRATCH must be shared because they represent distinct values. */
1662 return orig;
1663 case CLOBBER:
1664 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1665 return orig;
1666 break;
1667
1668 case CONST:
1669 if (shared_const_p (orig))
1670 return orig;
1671 break;
1672
1673 case SUBREG:
1674 {
1675 rtx subreg;
1676
1677 if (evd->callback)
1678 {
1679 subreg = evd->callback (orig, evd->regs_active, max_depth,
1680 evd->callback_arg);
1681 if (subreg != orig)
1682 return subreg;
1683 }
1684
1685 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1686 max_depth - 1);
1687 if (!subreg)
1688 return NULL;
1689 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1690 GET_MODE (SUBREG_REG (orig)),
1691 SUBREG_BYTE (orig));
1692 if (scopy == NULL
1693 || (GET_CODE (scopy) == SUBREG
1694 && !REG_P (SUBREG_REG (scopy))
1695 && !MEM_P (SUBREG_REG (scopy))))
1696 return NULL;
1697
1698 return scopy;
1699 }
1700
1701 case VALUE:
1702 {
1703 rtx result;
1704
1705 if (dump_file && (dump_flags & TDF_CSELIB))
1706 {
1707 fputs ("\nexpanding ", dump_file);
1708 print_rtl_single (dump_file, orig);
1709 fputs (" into...", dump_file);
1710 }
1711
1712 if (evd->callback)
1713 {
1714 result = evd->callback (orig, evd->regs_active, max_depth,
1715 evd->callback_arg);
1716
1717 if (result != orig)
1718 return result;
1719 }
1720
1721 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1722 return result;
1723 }
1724
1725 case DEBUG_EXPR:
1726 if (evd->callback)
1727 return evd->callback (orig, evd->regs_active, max_depth,
1728 evd->callback_arg);
1729 return orig;
1730
1731 default:
1732 break;
1733 }
1734
1735 /* Copy the various flags, fields, and other information. We assume
1736 that all fields need copying, and then clear the fields that should
1737 not be copied. That is the sensible default behavior, and forces
1738 us to explicitly document why we are *not* copying a flag. */
1739 if (evd->dummy)
1740 copy = NULL;
1741 else
1742 copy = shallow_copy_rtx (orig);
1743
1744 format_ptr = GET_RTX_FORMAT (code);
1745
1746 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1747 switch (*format_ptr++)
1748 {
1749 case 'e':
1750 if (XEXP (orig, i) != NULL)
1751 {
1752 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1753 max_depth - 1);
1754 if (!result)
1755 return NULL;
1756 if (copy)
1757 XEXP (copy, i) = result;
1758 }
1759 break;
1760
1761 case 'E':
1762 case 'V':
1763 if (XVEC (orig, i) != NULL)
1764 {
1765 if (copy)
1766 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1767 for (j = 0; j < XVECLEN (orig, i); j++)
1768 {
1769 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1770 evd, max_depth - 1);
1771 if (!result)
1772 return NULL;
1773 if (copy)
1774 XVECEXP (copy, i, j) = result;
1775 }
1776 }
1777 break;
1778
1779 case 't':
1780 case 'w':
1781 case 'i':
1782 case 's':
1783 case 'S':
1784 case 'T':
1785 case 'u':
1786 case 'B':
1787 case '0':
1788 /* These are left unchanged. */
1789 break;
1790
1791 default:
1792 gcc_unreachable ();
1793 }
1794
1795 if (evd->dummy)
1796 return orig;
1797
1798 mode = GET_MODE (copy);
1799 /* If an operand has been simplified into CONST_INT, which doesn't
1800 have a mode and the mode isn't derivable from whole rtx's mode,
1801 try simplify_*_operation first with mode from original's operand
1802 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1803 scopy = copy;
1804 switch (GET_RTX_CLASS (code))
1805 {
1806 case RTX_UNARY:
1807 if (CONST_INT_P (XEXP (copy, 0))
1808 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1809 {
1810 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1811 GET_MODE (XEXP (orig, 0)));
1812 if (scopy)
1813 return scopy;
1814 }
1815 break;
1816 case RTX_COMM_ARITH:
1817 case RTX_BIN_ARITH:
1818 /* These expressions can derive operand modes from the whole rtx's mode. */
1819 break;
1820 case RTX_TERNARY:
1821 case RTX_BITFIELD_OPS:
1822 if (CONST_INT_P (XEXP (copy, 0))
1823 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1824 {
1825 scopy = simplify_ternary_operation (code, mode,
1826 GET_MODE (XEXP (orig, 0)),
1827 XEXP (copy, 0), XEXP (copy, 1),
1828 XEXP (copy, 2));
1829 if (scopy)
1830 return scopy;
1831 }
1832 break;
1833 case RTX_COMPARE:
1834 case RTX_COMM_COMPARE:
1835 if (CONST_INT_P (XEXP (copy, 0))
1836 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1837 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1838 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1839 {
1840 scopy = simplify_relational_operation (code, mode,
1841 (GET_MODE (XEXP (orig, 0))
1842 != VOIDmode)
1843 ? GET_MODE (XEXP (orig, 0))
1844 : GET_MODE (XEXP (orig, 1)),
1845 XEXP (copy, 0),
1846 XEXP (copy, 1));
1847 if (scopy)
1848 return scopy;
1849 }
1850 break;
1851 default:
1852 break;
1853 }
1854 scopy = simplify_rtx (copy);
1855 if (scopy)
1856 return scopy;
1857 return copy;
1858 }
1859
1860 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1861 with VALUE expressions. This way, it becomes independent of changes
1862 to registers and memory.
1863 X isn't actually modified; if modifications are needed, new rtl is
1864 allocated. However, the return value can share rtl with X.
1865 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1866
1867 rtx
1868 cselib_subst_to_values (rtx x, machine_mode memmode)
1869 {
1870 enum rtx_code code = GET_CODE (x);
1871 const char *fmt = GET_RTX_FORMAT (code);
1872 cselib_val *e;
1873 struct elt_list *l;
1874 rtx copy = x;
1875 int i;
1876 poly_int64 offset;
1877
1878 switch (code)
1879 {
1880 case REG:
1881 l = REG_VALUES (REGNO (x));
1882 if (l && l->elt == NULL)
1883 l = l->next;
1884 for (; l; l = l->next)
1885 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1886 return l->elt->val_rtx;
1887
1888 gcc_unreachable ();
1889
1890 case MEM:
1891 e = cselib_lookup_mem (x, 0);
1892 /* This used to happen for autoincrements, but we deal with them
1893 properly now. Remove the if stmt for the next release. */
1894 if (! e)
1895 {
1896 /* Assign a value that doesn't match any other. */
1897 e = new_cselib_val (next_uid, GET_MODE (x), x);
1898 }
1899 return e->val_rtx;
1900
1901 case ENTRY_VALUE:
1902 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1903 if (! e)
1904 break;
1905 return e->val_rtx;
1906
1907 CASE_CONST_ANY:
1908 return x;
1909
1910 case PRE_DEC:
1911 case PRE_INC:
1912 gcc_assert (memmode != VOIDmode);
1913 offset = GET_MODE_SIZE (memmode);
1914 if (code == PRE_DEC)
1915 offset = -offset;
1916 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1917 XEXP (x, 0), offset),
1918 memmode);
1919
1920 case PRE_MODIFY:
1921 gcc_assert (memmode != VOIDmode);
1922 return cselib_subst_to_values (XEXP (x, 1), memmode);
1923
1924 case POST_DEC:
1925 case POST_INC:
1926 case POST_MODIFY:
1927 gcc_assert (memmode != VOIDmode);
1928 return cselib_subst_to_values (XEXP (x, 0), memmode);
1929
1930 default:
1931 break;
1932 }
1933
1934 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1935 {
1936 if (fmt[i] == 'e')
1937 {
1938 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1939
1940 if (t != XEXP (x, i))
1941 {
1942 if (x == copy)
1943 copy = shallow_copy_rtx (x);
1944 XEXP (copy, i) = t;
1945 }
1946 }
1947 else if (fmt[i] == 'E')
1948 {
1949 int j;
1950
1951 for (j = 0; j < XVECLEN (x, i); j++)
1952 {
1953 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1954
1955 if (t != XVECEXP (x, i, j))
1956 {
1957 if (XVEC (x, i) == XVEC (copy, i))
1958 {
1959 if (x == copy)
1960 copy = shallow_copy_rtx (x);
1961 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1962 }
1963 XVECEXP (copy, i, j) = t;
1964 }
1965 }
1966 }
1967 }
1968
1969 return copy;
1970 }
1971
1972 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1973
1974 rtx
1975 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
1976 {
1977 rtx ret;
1978 gcc_assert (!cselib_current_insn);
1979 cselib_current_insn = insn;
1980 ret = cselib_subst_to_values (x, memmode);
1981 cselib_current_insn = NULL;
1982 return ret;
1983 }
1984
1985 /* Look up the rtl expression X in our tables and return the value it
1986 has. If CREATE is zero, we return NULL if we don't know the value.
1987 Otherwise, we create a new one if possible, using mode MODE if X
1988 doesn't have a mode (i.e. because it's a constant). When X is part
1989 of an address, MEMMODE should be the mode of the enclosing MEM if
1990 we're tracking autoinc expressions. */
1991
1992 static cselib_val *
1993 cselib_lookup_1 (rtx x, machine_mode mode,
1994 int create, machine_mode memmode)
1995 {
1996 cselib_val **slot;
1997 cselib_val *e;
1998 unsigned int hashval;
1999
2000 if (GET_MODE (x) != VOIDmode)
2001 mode = GET_MODE (x);
2002
2003 if (GET_CODE (x) == VALUE)
2004 return CSELIB_VAL_PTR (x);
2005
2006 if (REG_P (x))
2007 {
2008 struct elt_list *l;
2009 unsigned int i = REGNO (x);
2010
2011 l = REG_VALUES (i);
2012 if (l && l->elt == NULL)
2013 l = l->next;
2014 for (; l; l = l->next)
2015 if (mode == GET_MODE (l->elt->val_rtx))
2016 {
2017 promote_debug_loc (l->elt->locs);
2018 return l->elt;
2019 }
2020
2021 if (! create)
2022 return 0;
2023
2024 if (i < FIRST_PSEUDO_REGISTER)
2025 {
2026 unsigned int n = hard_regno_nregs (i, mode);
2027
2028 if (n > max_value_regs)
2029 max_value_regs = n;
2030 }
2031
2032 e = new_cselib_val (next_uid, GET_MODE (x), x);
2033 new_elt_loc_list (e, x);
2034
2035 scalar_int_mode int_mode;
2036 if (REG_VALUES (i) == 0)
2037 {
2038 /* Maintain the invariant that the first entry of
2039 REG_VALUES, if present, must be the value used to set the
2040 register, or NULL. */
2041 used_regs[n_used_regs++] = i;
2042 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2043 }
2044 else if (cselib_preserve_constants
2045 && is_int_mode (mode, &int_mode))
2046 {
2047 /* During var-tracking, try harder to find equivalences
2048 for SUBREGs. If a setter sets say a DImode register
2049 and user uses that register only in SImode, add a lowpart
2050 subreg location. */
2051 struct elt_list *lwider = NULL;
2052 scalar_int_mode lmode;
2053 l = REG_VALUES (i);
2054 if (l && l->elt == NULL)
2055 l = l->next;
2056 for (; l; l = l->next)
2057 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2058 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
2059 && (lwider == NULL
2060 || partial_subreg_p (lmode,
2061 GET_MODE (lwider->elt->val_rtx))))
2062 {
2063 struct elt_loc_list *el;
2064 if (i < FIRST_PSEUDO_REGISTER
2065 && hard_regno_nregs (i, lmode) != 1)
2066 continue;
2067 for (el = l->elt->locs; el; el = el->next)
2068 if (!REG_P (el->loc))
2069 break;
2070 if (el)
2071 lwider = l;
2072 }
2073 if (lwider)
2074 {
2075 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
2076 GET_MODE (lwider->elt->val_rtx));
2077 if (sub)
2078 new_elt_loc_list (e, sub);
2079 }
2080 }
2081 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2082 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2083 *slot = e;
2084 return e;
2085 }
2086
2087 if (MEM_P (x))
2088 return cselib_lookup_mem (x, create);
2089
2090 hashval = cselib_hash_rtx (x, create, memmode);
2091 /* Can't even create if hashing is not possible. */
2092 if (! hashval)
2093 return 0;
2094
2095 slot = cselib_find_slot (mode, x, hashval,
2096 create ? INSERT : NO_INSERT, memmode);
2097 if (slot == 0)
2098 return 0;
2099
2100 e = (cselib_val *) *slot;
2101 if (e)
2102 return e;
2103
2104 e = new_cselib_val (hashval, mode, x);
2105
2106 /* We have to fill the slot before calling cselib_subst_to_values:
2107 the hash table is inconsistent until we do so, and
2108 cselib_subst_to_values will need to do lookups. */
2109 *slot = e;
2110 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2111 return e;
2112 }
2113
2114 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2115
2116 cselib_val *
2117 cselib_lookup_from_insn (rtx x, machine_mode mode,
2118 int create, machine_mode memmode, rtx_insn *insn)
2119 {
2120 cselib_val *ret;
2121
2122 gcc_assert (!cselib_current_insn);
2123 cselib_current_insn = insn;
2124
2125 ret = cselib_lookup (x, mode, create, memmode);
2126
2127 cselib_current_insn = NULL;
2128
2129 return ret;
2130 }
2131
2132 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2133 maintains invariants related with debug insns. */
2134
2135 cselib_val *
2136 cselib_lookup (rtx x, machine_mode mode,
2137 int create, machine_mode memmode)
2138 {
2139 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2140
2141 /* ??? Should we return NULL if we're not to create an entry, the
2142 found loc is a debug loc and cselib_current_insn is not DEBUG?
2143 If so, we should also avoid converting val to non-DEBUG; probably
2144 easiest setting cselib_current_insn to NULL before the call
2145 above. */
2146
2147 if (dump_file && (dump_flags & TDF_CSELIB))
2148 {
2149 fputs ("cselib lookup ", dump_file);
2150 print_inline_rtx (dump_file, x, 2);
2151 fprintf (dump_file, " => %u:%u\n",
2152 ret ? ret->uid : 0,
2153 ret ? ret->hash : 0);
2154 }
2155
2156 return ret;
2157 }
2158
2159 /* Invalidate the value at *L, which is part of REG_VALUES (REGNO). */
2160
2161 static void
2162 cselib_invalidate_regno_val (unsigned int regno, struct elt_list **l)
2163 {
2164 cselib_val *v = (*l)->elt;
2165 if (*l == REG_VALUES (regno))
2166 {
2167 /* Maintain the invariant that the first entry of
2168 REG_VALUES, if present, must be the value used to set
2169 the register, or NULL. This is also nice because
2170 then we won't push the same regno onto user_regs
2171 multiple times. */
2172 (*l)->elt = NULL;
2173 l = &(*l)->next;
2174 }
2175 else
2176 unchain_one_elt_list (l);
2177
2178 v = canonical_cselib_val (v);
2179
2180 bool had_locs = v->locs != NULL;
2181 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2182
2183 /* Now, we clear the mapping from value to reg. It must exist, so
2184 this code will crash intentionally if it doesn't. */
2185 for (elt_loc_list **p = &v->locs; ; p = &(*p)->next)
2186 {
2187 rtx x = (*p)->loc;
2188
2189 if (REG_P (x) && REGNO (x) == regno)
2190 {
2191 unchain_one_elt_loc_list (p);
2192 break;
2193 }
2194 }
2195
2196 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2197 {
2198 if (setting_insn && DEBUG_INSN_P (setting_insn))
2199 n_useless_debug_values++;
2200 else
2201 n_useless_values++;
2202 }
2203 }
2204
2205 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2206 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2207 is used to determine how many hard registers are being changed. If MODE
2208 is VOIDmode, then only REGNO is being changed; this is used when
2209 invalidating call clobbered registers across a call. */
2210
2211 static void
2212 cselib_invalidate_regno (unsigned int regno, machine_mode mode)
2213 {
2214 unsigned int endregno;
2215 unsigned int i;
2216
2217 /* If we see pseudos after reload, something is _wrong_. */
2218 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2219 || reg_renumber[regno] < 0);
2220
2221 /* Determine the range of registers that must be invalidated. For
2222 pseudos, only REGNO is affected. For hard regs, we must take MODE
2223 into account, and we must also invalidate lower register numbers
2224 if they contain values that overlap REGNO. */
2225 if (regno < FIRST_PSEUDO_REGISTER)
2226 {
2227 gcc_assert (mode != VOIDmode);
2228
2229 if (regno < max_value_regs)
2230 i = 0;
2231 else
2232 i = regno - max_value_regs;
2233
2234 endregno = end_hard_regno (mode, regno);
2235 }
2236 else
2237 {
2238 i = regno;
2239 endregno = regno + 1;
2240 }
2241
2242 for (; i < endregno; i++)
2243 {
2244 struct elt_list **l = &REG_VALUES (i);
2245
2246 /* Go through all known values for this reg; if it overlaps the range
2247 we're invalidating, remove the value. */
2248 while (*l)
2249 {
2250 cselib_val *v = (*l)->elt;
2251 unsigned int this_last = i;
2252
2253 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2254 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2255
2256 if (this_last < regno || v == NULL
2257 || (v == cfa_base_preserved_val
2258 && i == cfa_base_preserved_regno))
2259 {
2260 l = &(*l)->next;
2261 continue;
2262 }
2263
2264 /* We have an overlap. */
2265 cselib_invalidate_regno_val (i, l);
2266 }
2267 }
2268 }
2269 \f
2270 /* Invalidate any locations in the table which are changed because of a
2271 store to MEM_RTX. If this is called because of a non-const call
2272 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2273
2274 static void
2275 cselib_invalidate_mem (rtx mem_rtx)
2276 {
2277 cselib_val **vp, *v, *next;
2278 int num_mems = 0;
2279 rtx mem_addr;
2280
2281 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2282 mem_rtx = canon_rtx (mem_rtx);
2283
2284 vp = &first_containing_mem;
2285 for (v = *vp; v != &dummy_val; v = next)
2286 {
2287 bool has_mem = false;
2288 struct elt_loc_list **p = &v->locs;
2289 bool had_locs = v->locs != NULL;
2290 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2291
2292 while (*p)
2293 {
2294 rtx x = (*p)->loc;
2295 cselib_val *addr;
2296 struct elt_list **mem_chain;
2297
2298 /* MEMs may occur in locations only at the top level; below
2299 that every MEM or REG is substituted by its VALUE. */
2300 if (!MEM_P (x))
2301 {
2302 p = &(*p)->next;
2303 continue;
2304 }
2305 if (num_mems < param_max_cselib_memory_locations
2306 && ! canon_anti_dependence (x, false, mem_rtx,
2307 GET_MODE (mem_rtx), mem_addr))
2308 {
2309 has_mem = true;
2310 num_mems++;
2311 p = &(*p)->next;
2312 continue;
2313 }
2314
2315 /* This one overlaps. */
2316 /* We must have a mapping from this MEM's address to the
2317 value (E). Remove that, too. */
2318 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2319 addr = canonical_cselib_val (addr);
2320 gcc_checking_assert (v == canonical_cselib_val (v));
2321 mem_chain = &addr->addr_list;
2322 for (;;)
2323 {
2324 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2325
2326 if (canon == v)
2327 {
2328 unchain_one_elt_list (mem_chain);
2329 break;
2330 }
2331
2332 /* Record canonicalized elt. */
2333 (*mem_chain)->elt = canon;
2334
2335 mem_chain = &(*mem_chain)->next;
2336 }
2337
2338 unchain_one_elt_loc_list (p);
2339 }
2340
2341 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2342 {
2343 if (setting_insn && DEBUG_INSN_P (setting_insn))
2344 n_useless_debug_values++;
2345 else
2346 n_useless_values++;
2347 }
2348
2349 next = v->next_containing_mem;
2350 if (has_mem)
2351 {
2352 *vp = v;
2353 vp = &(*vp)->next_containing_mem;
2354 }
2355 else
2356 v->next_containing_mem = NULL;
2357 }
2358 *vp = &dummy_val;
2359 }
2360
2361 /* Invalidate DEST. */
2362
2363 void
2364 cselib_invalidate_rtx (rtx dest)
2365 {
2366 while (GET_CODE (dest) == SUBREG
2367 || GET_CODE (dest) == ZERO_EXTRACT
2368 || GET_CODE (dest) == STRICT_LOW_PART)
2369 dest = XEXP (dest, 0);
2370
2371 if (REG_P (dest))
2372 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2373 else if (MEM_P (dest))
2374 cselib_invalidate_mem (dest);
2375 }
2376
2377 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2378
2379 static void
2380 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx,
2381 void *data ATTRIBUTE_UNUSED)
2382 {
2383 cselib_invalidate_rtx (dest);
2384 }
2385
2386 /* Record the result of a SET instruction. DEST is being set; the source
2387 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2388 describes its address. */
2389
2390 static void
2391 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2392 {
2393 if (src_elt == 0 || side_effects_p (dest))
2394 return;
2395
2396 if (REG_P (dest))
2397 {
2398 unsigned int dreg = REGNO (dest);
2399 if (dreg < FIRST_PSEUDO_REGISTER)
2400 {
2401 unsigned int n = REG_NREGS (dest);
2402
2403 if (n > max_value_regs)
2404 max_value_regs = n;
2405 }
2406
2407 if (REG_VALUES (dreg) == 0)
2408 {
2409 used_regs[n_used_regs++] = dreg;
2410 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2411 }
2412 else
2413 {
2414 /* The register should have been invalidated. */
2415 gcc_assert (REG_VALUES (dreg)->elt == 0);
2416 REG_VALUES (dreg)->elt = src_elt;
2417 }
2418
2419 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2420 n_useless_values--;
2421 new_elt_loc_list (src_elt, dest);
2422 }
2423 else if (MEM_P (dest) && dest_addr_elt != 0
2424 && cselib_record_memory)
2425 {
2426 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2427 n_useless_values--;
2428 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2429 }
2430 }
2431
2432 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2433
2434 void
2435 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2436 {
2437 cselib_val *nelt;
2438 rtx_insn *save_cselib_current_insn = cselib_current_insn;
2439
2440 gcc_checking_assert (elt);
2441 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2442 gcc_checking_assert (!side_effects_p (x));
2443
2444 cselib_current_insn = insn;
2445
2446 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2447
2448 if (nelt != elt)
2449 {
2450 cselib_any_perm_equivs = true;
2451
2452 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2453 cselib_preserve_value (nelt);
2454
2455 new_elt_loc_list (nelt, elt->val_rtx);
2456 }
2457
2458 cselib_current_insn = save_cselib_current_insn;
2459 }
2460
2461 /* Return TRUE if any permanent equivalences have been recorded since
2462 the table was last initialized. */
2463 bool
2464 cselib_have_permanent_equivalences (void)
2465 {
2466 return cselib_any_perm_equivs;
2467 }
2468
2469 /* There is no good way to determine how many elements there can be
2470 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2471 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2472
2473 struct cselib_record_autoinc_data
2474 {
2475 struct cselib_set *sets;
2476 int n_sets;
2477 };
2478
2479 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2480 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2481
2482 static int
2483 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2484 rtx dest, rtx src, rtx srcoff, void *arg)
2485 {
2486 struct cselib_record_autoinc_data *data;
2487 data = (struct cselib_record_autoinc_data *)arg;
2488
2489 data->sets[data->n_sets].dest = dest;
2490
2491 if (srcoff)
2492 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2493 else
2494 data->sets[data->n_sets].src = src;
2495
2496 data->n_sets++;
2497
2498 return 0;
2499 }
2500
2501 /* Record the effects of any sets and autoincs in INSN. */
2502 static void
2503 cselib_record_sets (rtx_insn *insn)
2504 {
2505 int n_sets = 0;
2506 int i;
2507 struct cselib_set sets[MAX_SETS];
2508 rtx cond = 0;
2509 int n_sets_before_autoinc;
2510 int n_strict_low_parts = 0;
2511 struct cselib_record_autoinc_data data;
2512
2513 rtx body = PATTERN (insn);
2514 if (GET_CODE (body) == COND_EXEC)
2515 {
2516 cond = COND_EXEC_TEST (body);
2517 body = COND_EXEC_CODE (body);
2518 }
2519
2520 /* Find all sets. */
2521 if (GET_CODE (body) == SET)
2522 {
2523 sets[0].src = SET_SRC (body);
2524 sets[0].dest = SET_DEST (body);
2525 n_sets = 1;
2526 }
2527 else if (GET_CODE (body) == PARALLEL)
2528 {
2529 /* Look through the PARALLEL and record the values being
2530 set, if possible. Also handle any CLOBBERs. */
2531 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2532 {
2533 rtx x = XVECEXP (body, 0, i);
2534
2535 if (GET_CODE (x) == SET)
2536 {
2537 sets[n_sets].src = SET_SRC (x);
2538 sets[n_sets].dest = SET_DEST (x);
2539 n_sets++;
2540 }
2541 }
2542 }
2543
2544 if (n_sets == 1
2545 && MEM_P (sets[0].src)
2546 && !cselib_record_memory
2547 && MEM_READONLY_P (sets[0].src))
2548 {
2549 rtx note = find_reg_equal_equiv_note (insn);
2550
2551 if (note && CONSTANT_P (XEXP (note, 0)))
2552 sets[0].src = XEXP (note, 0);
2553 }
2554
2555 data.sets = sets;
2556 data.n_sets = n_sets_before_autoinc = n_sets;
2557 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2558 n_sets = data.n_sets;
2559
2560 /* Look up the values that are read. Do this before invalidating the
2561 locations that are written. */
2562 for (i = 0; i < n_sets; i++)
2563 {
2564 rtx dest = sets[i].dest;
2565 rtx orig = dest;
2566
2567 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2568 the low part after invalidating any knowledge about larger modes. */
2569 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2570 sets[i].dest = dest = XEXP (dest, 0);
2571
2572 /* We don't know how to record anything but REG or MEM. */
2573 if (REG_P (dest)
2574 || (MEM_P (dest) && cselib_record_memory))
2575 {
2576 rtx src = sets[i].src;
2577 if (cond)
2578 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2579 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2580 if (MEM_P (dest))
2581 {
2582 machine_mode address_mode = get_address_mode (dest);
2583
2584 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2585 address_mode, 1,
2586 GET_MODE (dest));
2587 }
2588 else
2589 sets[i].dest_addr_elt = 0;
2590 }
2591
2592 /* Improve handling of STRICT_LOW_PART if the current value is known
2593 to be const0_rtx, then the low bits will be set to dest and higher
2594 bits will remain zero. Used in code like:
2595
2596 {di:SI=0;clobber flags:CC;}
2597 flags:CCNO=cmp(bx:SI,0)
2598 strict_low_part(di:QI)=flags:CCNO<=0
2599
2600 where we can note both that di:QI=flags:CCNO<=0 and
2601 also that because di:SI is known to be 0 and strict_low_part(di:QI)
2602 preserves the upper bits that di:SI=zero_extend(flags:CCNO<=0). */
2603 scalar_int_mode mode;
2604 if (dest != orig
2605 && cselib_record_sets_hook
2606 && REG_P (dest)
2607 && HARD_REGISTER_P (dest)
2608 && sets[i].src_elt
2609 && is_a <scalar_int_mode> (GET_MODE (dest), &mode)
2610 && n_sets + n_strict_low_parts < MAX_SETS)
2611 {
2612 opt_scalar_int_mode wider_mode_iter;
2613 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2614 {
2615 scalar_int_mode wider_mode = wider_mode_iter.require ();
2616 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
2617 break;
2618
2619 rtx reg = gen_lowpart (wider_mode, dest);
2620 if (!REG_P (reg))
2621 break;
2622
2623 cselib_val *v = cselib_lookup (reg, wider_mode, 0, VOIDmode);
2624 if (!v)
2625 continue;
2626
2627 struct elt_loc_list *l;
2628 for (l = v->locs; l; l = l->next)
2629 if (l->loc == const0_rtx)
2630 break;
2631
2632 if (!l)
2633 continue;
2634
2635 sets[n_sets + n_strict_low_parts].dest = reg;
2636 sets[n_sets + n_strict_low_parts].src = dest;
2637 sets[n_sets + n_strict_low_parts++].src_elt = sets[i].src_elt;
2638 break;
2639 }
2640 }
2641 }
2642
2643 if (cselib_record_sets_hook)
2644 cselib_record_sets_hook (insn, sets, n_sets);
2645
2646 /* Invalidate all locations written by this insn. Note that the elts we
2647 looked up in the previous loop aren't affected, just some of their
2648 locations may go away. */
2649 note_pattern_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2650
2651 for (i = n_sets_before_autoinc; i < n_sets; i++)
2652 cselib_invalidate_rtx (sets[i].dest);
2653
2654 /* If this is an asm, look for duplicate sets. This can happen when the
2655 user uses the same value as an output multiple times. This is valid
2656 if the outputs are not actually used thereafter. Treat this case as
2657 if the value isn't actually set. We do this by smashing the destination
2658 to pc_rtx, so that we won't record the value later. */
2659 if (n_sets >= 2 && asm_noperands (body) >= 0)
2660 {
2661 for (i = 0; i < n_sets; i++)
2662 {
2663 rtx dest = sets[i].dest;
2664 if (REG_P (dest) || MEM_P (dest))
2665 {
2666 int j;
2667 for (j = i + 1; j < n_sets; j++)
2668 if (rtx_equal_p (dest, sets[j].dest))
2669 {
2670 sets[i].dest = pc_rtx;
2671 sets[j].dest = pc_rtx;
2672 }
2673 }
2674 }
2675 }
2676
2677 /* Now enter the equivalences in our tables. */
2678 for (i = 0; i < n_sets; i++)
2679 {
2680 rtx dest = sets[i].dest;
2681 if (REG_P (dest)
2682 || (MEM_P (dest) && cselib_record_memory))
2683 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2684 }
2685
2686 /* And deal with STRICT_LOW_PART. */
2687 for (i = 0; i < n_strict_low_parts; i++)
2688 {
2689 if (! PRESERVED_VALUE_P (sets[n_sets + i].src_elt->val_rtx))
2690 continue;
2691 machine_mode dest_mode = GET_MODE (sets[n_sets + i].dest);
2692 cselib_val *v
2693 = cselib_lookup (sets[n_sets + i].dest, dest_mode, 1, VOIDmode);
2694 cselib_preserve_value (v);
2695 rtx r = gen_rtx_ZERO_EXTEND (dest_mode,
2696 sets[n_sets + i].src_elt->val_rtx);
2697 cselib_add_permanent_equiv (v, r, insn);
2698 }
2699 }
2700
2701 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2702
2703 bool
2704 fp_setter_insn (rtx_insn *insn)
2705 {
2706 rtx expr, pat = NULL_RTX;
2707
2708 if (!RTX_FRAME_RELATED_P (insn))
2709 return false;
2710
2711 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2712 if (expr)
2713 pat = XEXP (expr, 0);
2714 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2715 return false;
2716
2717 /* Don't return true for frame pointer restores in the epilogue. */
2718 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2719 return false;
2720 return true;
2721 }
2722
2723 /* V is one of the values in REG_VALUES (REGNO). Return true if it
2724 would be invalidated by CALLEE_ABI. */
2725
2726 static bool
2727 cselib_invalidated_by_call_p (const function_abi &callee_abi,
2728 unsigned int regno, cselib_val *v)
2729 {
2730 machine_mode mode = GET_MODE (v->val_rtx);
2731 if (mode == VOIDmode)
2732 {
2733 v = REG_VALUES (regno)->elt;
2734 if (!v)
2735 /* If we don't know what the mode of the constant value is, and we
2736 don't know what mode the register was set in, conservatively
2737 assume that the register is clobbered. The value's going to be
2738 essentially useless in this case anyway. */
2739 return true;
2740 mode = GET_MODE (v->val_rtx);
2741 }
2742 return callee_abi.clobbers_reg_p (mode, regno);
2743 }
2744
2745 /* Record the effects of INSN. */
2746
2747 void
2748 cselib_process_insn (rtx_insn *insn)
2749 {
2750 int i;
2751 rtx x;
2752
2753 cselib_current_insn = insn;
2754
2755 /* Forget everything at a CODE_LABEL or a setjmp. */
2756 if ((LABEL_P (insn)
2757 || (CALL_P (insn)
2758 && find_reg_note (insn, REG_SETJMP, NULL)))
2759 && !cselib_preserve_constants)
2760 {
2761 cselib_reset_table (next_uid);
2762 cselib_current_insn = NULL;
2763 return;
2764 }
2765
2766 if (! INSN_P (insn))
2767 {
2768 cselib_current_insn = NULL;
2769 return;
2770 }
2771
2772 /* If this is a call instruction, forget anything stored in a
2773 call clobbered register, or, if this is not a const call, in
2774 memory. */
2775 if (CALL_P (insn))
2776 {
2777 function_abi callee_abi = insn_callee_abi (insn);
2778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2779 {
2780 elt_list **l = &REG_VALUES (i);
2781 while (*l)
2782 {
2783 cselib_val *v = (*l)->elt;
2784 if (v && cselib_invalidated_by_call_p (callee_abi, i, v))
2785 cselib_invalidate_regno_val (i, l);
2786 else
2787 l = &(*l)->next;
2788 }
2789 }
2790
2791 /* Since it is not clear how cselib is going to be used, be
2792 conservative here and treat looping pure or const functions
2793 as if they were regular functions. */
2794 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2795 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2796 cselib_invalidate_mem (callmem);
2797 else
2798 /* For const/pure calls, invalidate any argument slots because
2799 they are owned by the callee. */
2800 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2801 if (GET_CODE (XEXP (x, 0)) == USE
2802 && MEM_P (XEXP (XEXP (x, 0), 0)))
2803 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
2804 }
2805
2806 cselib_record_sets (insn);
2807
2808 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2809 after we have processed the insn. */
2810 if (CALL_P (insn))
2811 {
2812 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2813 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2814 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2815
2816 /* Flush everything on setjmp. */
2817 if (cselib_preserve_constants
2818 && find_reg_note (insn, REG_SETJMP, NULL))
2819 {
2820 cselib_preserve_only_values ();
2821 cselib_reset_table (next_uid);
2822 }
2823 }
2824
2825 /* On setter of the hard frame pointer if frame_pointer_needed,
2826 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2827 VALUEs are distinct. */
2828 if (reload_completed
2829 && frame_pointer_needed
2830 && fp_setter_insn (insn))
2831 cselib_invalidate_rtx (stack_pointer_rtx);
2832
2833 cselib_current_insn = NULL;
2834
2835 if (n_useless_values > MAX_USELESS_VALUES
2836 /* remove_useless_values is linear in the hash table size. Avoid
2837 quadratic behavior for very large hashtables with very few
2838 useless elements. */
2839 && ((unsigned int)n_useless_values
2840 > (cselib_hash_table->elements () - n_debug_values) / 4))
2841 remove_useless_values ();
2842 }
2843
2844 /* Initialize cselib for one pass. The caller must also call
2845 init_alias_analysis. */
2846
2847 void
2848 cselib_init (int record_what)
2849 {
2850 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2851 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2852 cselib_any_perm_equivs = false;
2853
2854 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2855 see canon_true_dependence. This is only created once. */
2856 if (! callmem)
2857 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2858
2859 cselib_nregs = max_reg_num ();
2860
2861 /* We preserve reg_values to allow expensive clearing of the whole thing.
2862 Reallocate it however if it happens to be too large. */
2863 if (!reg_values || reg_values_size < cselib_nregs
2864 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2865 {
2866 free (reg_values);
2867 /* Some space for newly emit instructions so we don't end up
2868 reallocating in between passes. */
2869 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2870 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2871 }
2872 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2873 n_used_regs = 0;
2874 /* FIXME: enable sanitization (PR87845) */
2875 cselib_hash_table
2876 = new hash_table<cselib_hasher> (31, /* ggc */ false,
2877 /* sanitize_eq_and_hash */ false);
2878 if (cselib_preserve_constants)
2879 cselib_preserved_hash_table
2880 = new hash_table<cselib_hasher> (31, /* ggc */ false,
2881 /* sanitize_eq_and_hash */ false);
2882 next_uid = 1;
2883 }
2884
2885 /* Called when the current user is done with cselib. */
2886
2887 void
2888 cselib_finish (void)
2889 {
2890 bool preserved = cselib_preserve_constants;
2891 cselib_discard_hook = NULL;
2892 cselib_preserve_constants = false;
2893 cselib_any_perm_equivs = false;
2894 cfa_base_preserved_val = NULL;
2895 cfa_base_preserved_regno = INVALID_REGNUM;
2896 elt_list_pool.release ();
2897 elt_loc_list_pool.release ();
2898 cselib_val_pool.release ();
2899 value_pool.release ();
2900 cselib_clear_table ();
2901 delete cselib_hash_table;
2902 cselib_hash_table = NULL;
2903 if (preserved)
2904 delete cselib_preserved_hash_table;
2905 cselib_preserved_hash_table = NULL;
2906 free (used_regs);
2907 used_regs = 0;
2908 n_useless_values = 0;
2909 n_useless_debug_values = 0;
2910 n_debug_values = 0;
2911 next_uid = 0;
2912 }
2913
2914 /* Dump the cselib_val *X to FILE *OUT. */
2915
2916 int
2917 dump_cselib_val (cselib_val **x, FILE *out)
2918 {
2919 cselib_val *v = *x;
2920 bool need_lf = true;
2921
2922 print_inline_rtx (out, v->val_rtx, 0);
2923
2924 if (v->locs)
2925 {
2926 struct elt_loc_list *l = v->locs;
2927 if (need_lf)
2928 {
2929 fputc ('\n', out);
2930 need_lf = false;
2931 }
2932 fputs (" locs:", out);
2933 do
2934 {
2935 if (l->setting_insn)
2936 fprintf (out, "\n from insn %i ",
2937 INSN_UID (l->setting_insn));
2938 else
2939 fprintf (out, "\n ");
2940 print_inline_rtx (out, l->loc, 4);
2941 }
2942 while ((l = l->next));
2943 fputc ('\n', out);
2944 }
2945 else
2946 {
2947 fputs (" no locs", out);
2948 need_lf = true;
2949 }
2950
2951 if (v->addr_list)
2952 {
2953 struct elt_list *e = v->addr_list;
2954 if (need_lf)
2955 {
2956 fputc ('\n', out);
2957 need_lf = false;
2958 }
2959 fputs (" addr list:", out);
2960 do
2961 {
2962 fputs ("\n ", out);
2963 print_inline_rtx (out, e->elt->val_rtx, 2);
2964 }
2965 while ((e = e->next));
2966 fputc ('\n', out);
2967 }
2968 else
2969 {
2970 fputs (" no addrs", out);
2971 need_lf = true;
2972 }
2973
2974 if (v->next_containing_mem == &dummy_val)
2975 fputs (" last mem\n", out);
2976 else if (v->next_containing_mem)
2977 {
2978 fputs (" next mem ", out);
2979 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2980 fputc ('\n', out);
2981 }
2982 else if (need_lf)
2983 fputc ('\n', out);
2984
2985 return 1;
2986 }
2987
2988 /* Dump to OUT everything in the CSELIB table. */
2989
2990 void
2991 dump_cselib_table (FILE *out)
2992 {
2993 fprintf (out, "cselib hash table:\n");
2994 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
2995 fprintf (out, "cselib preserved hash table:\n");
2996 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
2997 if (first_containing_mem != &dummy_val)
2998 {
2999 fputs ("first mem ", out);
3000 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
3001 fputc ('\n', out);
3002 }
3003 fprintf (out, "next uid %i\n", next_uid);
3004 }
3005
3006 #include "gt-cselib.h"