[AArch64] Add support for the SVE PCS
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "dumpfile.h"
33 #include "cselib.h"
34 #include "params.h"
35 #include "function-abi.h"
36
37 /* A list of cselib_val structures. */
38 struct elt_list
39 {
40 struct elt_list *next;
41 cselib_val *elt;
42 };
43
44 static bool cselib_record_memory;
45 static bool cselib_preserve_constants;
46 static bool cselib_any_perm_equivs;
47 static inline void promote_debug_loc (struct elt_loc_list *l);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static void new_elt_loc_list (cselib_val *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static void remove_useless_values (void);
54 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
55 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
56 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
57 static cselib_val *cselib_lookup_mem (rtx, int);
58 static void cselib_invalidate_regno (unsigned int, machine_mode);
59 static void cselib_invalidate_mem (rtx);
60 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
61 static void cselib_record_sets (rtx_insn *);
62
63 struct expand_value_data
64 {
65 bitmap regs_active;
66 cselib_expand_callback callback;
67 void *callback_arg;
68 bool dummy;
69 };
70
71 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
72
73 /* There are three ways in which cselib can look up an rtx:
74 - for a REG, the reg_values table (which is indexed by regno) is used
75 - for a MEM, we recursively look up its address and then follow the
76 addr_list of that value
77 - for everything else, we compute a hash value and go through the hash
78 table. Since different rtx's can still have the same hash value,
79 this involves walking the table entries for a given value and comparing
80 the locations of the entries with the rtx we are looking up. */
81
82 struct cselib_hasher : nofree_ptr_hash <cselib_val>
83 {
84 struct key {
85 /* The rtx value and its mode (needed separately for constant
86 integers). */
87 machine_mode mode;
88 rtx x;
89 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
90 machine_mode memmode;
91 };
92 typedef key *compare_type;
93 static inline hashval_t hash (const cselib_val *);
94 static inline bool equal (const cselib_val *, const key *);
95 };
96
97 /* The hash function for our hash table. The value is always computed with
98 cselib_hash_rtx when adding an element; this function just extracts the
99 hash value from a cselib_val structure. */
100
101 inline hashval_t
102 cselib_hasher::hash (const cselib_val *v)
103 {
104 return v->hash;
105 }
106
107 /* The equality test for our hash table. The first argument V is a table
108 element (i.e. a cselib_val), while the second arg X is an rtx. We know
109 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
110 CONST of an appropriate mode. */
111
112 inline bool
113 cselib_hasher::equal (const cselib_val *v, const key *x_arg)
114 {
115 struct elt_loc_list *l;
116 rtx x = x_arg->x;
117 machine_mode mode = x_arg->mode;
118 machine_mode memmode = x_arg->memmode;
119
120 if (mode != GET_MODE (v->val_rtx))
121 return false;
122
123 if (GET_CODE (x) == VALUE)
124 return x == v->val_rtx;
125
126 /* We don't guarantee that distinct rtx's have different hash values,
127 so we need to do a comparison. */
128 for (l = v->locs; l; l = l->next)
129 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
130 {
131 promote_debug_loc (l);
132 return true;
133 }
134
135 return false;
136 }
137
138 /* A table that enables us to look up elts by their value. */
139 static hash_table<cselib_hasher> *cselib_hash_table;
140
141 /* A table to hold preserved values. */
142 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
143
144 /* This is a global so we don't have to pass this through every function.
145 It is used in new_elt_loc_list to set SETTING_INSN. */
146 static rtx_insn *cselib_current_insn;
147
148 /* The unique id that the next create value will take. */
149 static unsigned int next_uid;
150
151 /* The number of registers we had when the varrays were last resized. */
152 static unsigned int cselib_nregs;
153
154 /* Count values without known locations, or with only locations that
155 wouldn't have been known except for debug insns. Whenever this
156 grows too big, we remove these useless values from the table.
157
158 Counting values with only debug values is a bit tricky. We don't
159 want to increment n_useless_values when we create a value for a
160 debug insn, for this would get n_useless_values out of sync, but we
161 want increment it if all locs in the list that were ever referenced
162 in nondebug insns are removed from the list.
163
164 In the general case, once we do that, we'd have to stop accepting
165 nondebug expressions in the loc list, to avoid having two values
166 equivalent that, without debug insns, would have been made into
167 separate values. However, because debug insns never introduce
168 equivalences themselves (no assignments), the only means for
169 growing loc lists is through nondebug assignments. If the locs
170 also happen to be referenced in debug insns, it will work just fine.
171
172 A consequence of this is that there's at most one debug-only loc in
173 each loc list. If we keep it in the first entry, testing whether
174 we have a debug-only loc list takes O(1).
175
176 Furthermore, since any additional entry in a loc list containing a
177 debug loc would have to come from an assignment (nondebug) that
178 references both the initial debug loc and the newly-equivalent loc,
179 the initial debug loc would be promoted to a nondebug loc, and the
180 loc list would not contain debug locs any more.
181
182 So the only case we have to be careful with in order to keep
183 n_useless_values in sync between debug and nondebug compilations is
184 to avoid incrementing n_useless_values when removing the single loc
185 from a value that turns out to not appear outside debug values. We
186 increment n_useless_debug_values instead, and leave such values
187 alone until, for other reasons, we garbage-collect useless
188 values. */
189 static int n_useless_values;
190 static int n_useless_debug_values;
191
192 /* Count values whose locs have been taken exclusively from debug
193 insns for the entire life of the value. */
194 static int n_debug_values;
195
196 /* Number of useless values before we remove them from the hash table. */
197 #define MAX_USELESS_VALUES 32
198
199 /* This table maps from register number to values. It does not
200 contain pointers to cselib_val structures, but rather elt_lists.
201 The purpose is to be able to refer to the same register in
202 different modes. The first element of the list defines the mode in
203 which the register was set; if the mode is unknown or the value is
204 no longer valid in that mode, ELT will be NULL for the first
205 element. */
206 static struct elt_list **reg_values;
207 static unsigned int reg_values_size;
208 #define REG_VALUES(i) reg_values[i]
209
210 /* The largest number of hard regs used by any entry added to the
211 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
212 static unsigned int max_value_regs;
213
214 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
215 in cselib_clear_table() for fast emptying. */
216 static unsigned int *used_regs;
217 static unsigned int n_used_regs;
218
219 /* We pass this to cselib_invalidate_mem to invalidate all of
220 memory for a non-const call instruction. */
221 static GTY(()) rtx callmem;
222
223 /* Set by discard_useless_locs if it deleted the last location of any
224 value. */
225 static int values_became_useless;
226
227 /* Used as stop element of the containing_mem list so we can check
228 presence in the list by checking the next pointer. */
229 static cselib_val dummy_val;
230
231 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
232 that is constant through the whole function and should never be
233 eliminated. */
234 static cselib_val *cfa_base_preserved_val;
235 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
236
237 /* Used to list all values that contain memory reference.
238 May or may not contain the useless values - the list is compacted
239 each time memory is invalidated. */
240 static cselib_val *first_containing_mem = &dummy_val;
241
242 static object_allocator<elt_list> elt_list_pool ("elt_list");
243 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
244 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
245
246 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
247
248 /* If nonnull, cselib will call this function before freeing useless
249 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
250 void (*cselib_discard_hook) (cselib_val *);
251
252 /* If nonnull, cselib will call this function before recording sets or
253 even clobbering outputs of INSN. All the recorded sets will be
254 represented in the array sets[n_sets]. new_val_min can be used to
255 tell whether values present in sets are introduced by this
256 instruction. */
257 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
258 int n_sets);
259
260 #define PRESERVED_VALUE_P(RTX) \
261 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
262
263 #define SP_BASED_VALUE_P(RTX) \
264 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
265
266 \f
267
268 /* Allocate a struct elt_list and fill in its two elements with the
269 arguments. */
270
271 static inline struct elt_list *
272 new_elt_list (struct elt_list *next, cselib_val *elt)
273 {
274 elt_list *el = elt_list_pool.allocate ();
275 el->next = next;
276 el->elt = elt;
277 return el;
278 }
279
280 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
281 list. */
282
283 static inline void
284 new_elt_loc_list (cselib_val *val, rtx loc)
285 {
286 struct elt_loc_list *el, *next = val->locs;
287
288 gcc_checking_assert (!next || !next->setting_insn
289 || !DEBUG_INSN_P (next->setting_insn)
290 || cselib_current_insn == next->setting_insn);
291
292 /* If we're creating the first loc in a debug insn context, we've
293 just created a debug value. Count it. */
294 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
295 n_debug_values++;
296
297 val = canonical_cselib_val (val);
298 next = val->locs;
299
300 if (GET_CODE (loc) == VALUE)
301 {
302 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
303
304 gcc_checking_assert (PRESERVED_VALUE_P (loc)
305 == PRESERVED_VALUE_P (val->val_rtx));
306
307 if (val->val_rtx == loc)
308 return;
309 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
310 {
311 /* Reverse the insertion. */
312 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
313 return;
314 }
315
316 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
317
318 if (CSELIB_VAL_PTR (loc)->locs)
319 {
320 /* Bring all locs from LOC to VAL. */
321 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
322 {
323 /* Adjust values that have LOC as canonical so that VAL
324 becomes their canonical. */
325 if (el->loc && GET_CODE (el->loc) == VALUE)
326 {
327 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
328 == loc);
329 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
330 }
331 }
332 el->next = val->locs;
333 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
334 }
335
336 if (CSELIB_VAL_PTR (loc)->addr_list)
337 {
338 /* Bring in addr_list into canonical node. */
339 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
340 while (last->next)
341 last = last->next;
342 last->next = val->addr_list;
343 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
344 CSELIB_VAL_PTR (loc)->addr_list = NULL;
345 }
346
347 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
348 && val->next_containing_mem == NULL)
349 {
350 /* Add VAL to the containing_mem list after LOC. LOC will
351 be removed when we notice it doesn't contain any
352 MEMs. */
353 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
354 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
355 }
356
357 /* Chain LOC back to VAL. */
358 el = elt_loc_list_pool.allocate ();
359 el->loc = val->val_rtx;
360 el->setting_insn = cselib_current_insn;
361 el->next = NULL;
362 CSELIB_VAL_PTR (loc)->locs = el;
363 }
364
365 el = elt_loc_list_pool.allocate ();
366 el->loc = loc;
367 el->setting_insn = cselib_current_insn;
368 el->next = next;
369 val->locs = el;
370 }
371
372 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
373 originating from a debug insn, maintaining the debug values
374 count. */
375
376 static inline void
377 promote_debug_loc (struct elt_loc_list *l)
378 {
379 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
380 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
381 {
382 n_debug_values--;
383 l->setting_insn = cselib_current_insn;
384 if (cselib_preserve_constants && l->next)
385 {
386 gcc_assert (l->next->setting_insn
387 && DEBUG_INSN_P (l->next->setting_insn)
388 && !l->next->next);
389 l->next->setting_insn = cselib_current_insn;
390 }
391 else
392 gcc_assert (!l->next);
393 }
394 }
395
396 /* The elt_list at *PL is no longer needed. Unchain it and free its
397 storage. */
398
399 static inline void
400 unchain_one_elt_list (struct elt_list **pl)
401 {
402 struct elt_list *l = *pl;
403
404 *pl = l->next;
405 elt_list_pool.remove (l);
406 }
407
408 /* Likewise for elt_loc_lists. */
409
410 static void
411 unchain_one_elt_loc_list (struct elt_loc_list **pl)
412 {
413 struct elt_loc_list *l = *pl;
414
415 *pl = l->next;
416 elt_loc_list_pool.remove (l);
417 }
418
419 /* Likewise for cselib_vals. This also frees the addr_list associated with
420 V. */
421
422 static void
423 unchain_one_value (cselib_val *v)
424 {
425 while (v->addr_list)
426 unchain_one_elt_list (&v->addr_list);
427
428 cselib_val_pool.remove (v);
429 }
430
431 /* Remove all entries from the hash table. Also used during
432 initialization. */
433
434 void
435 cselib_clear_table (void)
436 {
437 cselib_reset_table (1);
438 }
439
440 /* Return TRUE if V is a constant, a function invariant or a VALUE
441 equivalence; FALSE otherwise. */
442
443 static bool
444 invariant_or_equiv_p (cselib_val *v)
445 {
446 struct elt_loc_list *l;
447
448 if (v == cfa_base_preserved_val)
449 return true;
450
451 /* Keep VALUE equivalences around. */
452 for (l = v->locs; l; l = l->next)
453 if (GET_CODE (l->loc) == VALUE)
454 return true;
455
456 if (v->locs != NULL
457 && v->locs->next == NULL)
458 {
459 if (CONSTANT_P (v->locs->loc)
460 && (GET_CODE (v->locs->loc) != CONST
461 || !references_value_p (v->locs->loc, 0)))
462 return true;
463 /* Although a debug expr may be bound to different expressions,
464 we can preserve it as if it was constant, to get unification
465 and proper merging within var-tracking. */
466 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
467 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
468 || GET_CODE (v->locs->loc) == ENTRY_VALUE
469 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
470 return true;
471
472 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
473 if (GET_CODE (v->locs->loc) == PLUS
474 && CONST_INT_P (XEXP (v->locs->loc, 1))
475 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
476 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
477 return true;
478 }
479
480 return false;
481 }
482
483 /* Remove from hash table all VALUEs except constants, function
484 invariants and VALUE equivalences. */
485
486 int
487 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
488 {
489 cselib_val *v = *x;
490
491 if (invariant_or_equiv_p (v))
492 {
493 cselib_hasher::key lookup = {
494 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
495 };
496 cselib_val **slot
497 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
498 v->hash, INSERT);
499 gcc_assert (!*slot);
500 *slot = v;
501 }
502
503 cselib_hash_table->clear_slot (x);
504
505 return 1;
506 }
507
508 /* Remove all entries from the hash table, arranging for the next
509 value to be numbered NUM. */
510
511 void
512 cselib_reset_table (unsigned int num)
513 {
514 unsigned int i;
515
516 max_value_regs = 0;
517
518 if (cfa_base_preserved_val)
519 {
520 unsigned int regno = cfa_base_preserved_regno;
521 unsigned int new_used_regs = 0;
522 for (i = 0; i < n_used_regs; i++)
523 if (used_regs[i] == regno)
524 {
525 new_used_regs = 1;
526 continue;
527 }
528 else
529 REG_VALUES (used_regs[i]) = 0;
530 gcc_assert (new_used_regs == 1);
531 n_used_regs = new_used_regs;
532 used_regs[0] = regno;
533 max_value_regs
534 = hard_regno_nregs (regno,
535 GET_MODE (cfa_base_preserved_val->locs->loc));
536 }
537 else
538 {
539 for (i = 0; i < n_used_regs; i++)
540 REG_VALUES (used_regs[i]) = 0;
541 n_used_regs = 0;
542 }
543
544 if (cselib_preserve_constants)
545 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
546 (NULL);
547 else
548 {
549 cselib_hash_table->empty ();
550 gcc_checking_assert (!cselib_any_perm_equivs);
551 }
552
553 n_useless_values = 0;
554 n_useless_debug_values = 0;
555 n_debug_values = 0;
556
557 next_uid = num;
558
559 first_containing_mem = &dummy_val;
560 }
561
562 /* Return the number of the next value that will be generated. */
563
564 unsigned int
565 cselib_get_next_uid (void)
566 {
567 return next_uid;
568 }
569
570 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
571 INSERTing if requested. When X is part of the address of a MEM,
572 MEMMODE should specify the mode of the MEM. */
573
574 static cselib_val **
575 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
576 enum insert_option insert, machine_mode memmode)
577 {
578 cselib_val **slot = NULL;
579 cselib_hasher::key lookup = { mode, x, memmode };
580 if (cselib_preserve_constants)
581 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
582 NO_INSERT);
583 if (!slot)
584 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
585 return slot;
586 }
587
588 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
589 only return true for values which point to a cselib_val whose value
590 element has been set to zero, which implies the cselib_val will be
591 removed. */
592
593 int
594 references_value_p (const_rtx x, int only_useless)
595 {
596 const enum rtx_code code = GET_CODE (x);
597 const char *fmt = GET_RTX_FORMAT (code);
598 int i, j;
599
600 if (GET_CODE (x) == VALUE
601 && (! only_useless ||
602 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
603 return 1;
604
605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 {
607 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
608 return 1;
609 else if (fmt[i] == 'E')
610 for (j = 0; j < XVECLEN (x, i); j++)
611 if (references_value_p (XVECEXP (x, i, j), only_useless))
612 return 1;
613 }
614
615 return 0;
616 }
617
618 /* For all locations found in X, delete locations that reference useless
619 values (i.e. values without any location). Called through
620 htab_traverse. */
621
622 int
623 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
624 {
625 cselib_val *v = *x;
626 struct elt_loc_list **p = &v->locs;
627 bool had_locs = v->locs != NULL;
628 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
629
630 while (*p)
631 {
632 if (references_value_p ((*p)->loc, 1))
633 unchain_one_elt_loc_list (p);
634 else
635 p = &(*p)->next;
636 }
637
638 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
639 {
640 if (setting_insn && DEBUG_INSN_P (setting_insn))
641 n_useless_debug_values++;
642 else
643 n_useless_values++;
644 values_became_useless = 1;
645 }
646 return 1;
647 }
648
649 /* If X is a value with no locations, remove it from the hashtable. */
650
651 int
652 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
653 {
654 cselib_val *v = *x;
655
656 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
657 {
658 if (cselib_discard_hook)
659 cselib_discard_hook (v);
660
661 CSELIB_VAL_PTR (v->val_rtx) = NULL;
662 cselib_hash_table->clear_slot (x);
663 unchain_one_value (v);
664 n_useless_values--;
665 }
666
667 return 1;
668 }
669
670 /* Clean out useless values (i.e. those which no longer have locations
671 associated with them) from the hash table. */
672
673 static void
674 remove_useless_values (void)
675 {
676 cselib_val **p, *v;
677
678 /* First pass: eliminate locations that reference the value. That in
679 turn can make more values useless. */
680 do
681 {
682 values_became_useless = 0;
683 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
684 }
685 while (values_became_useless);
686
687 /* Second pass: actually remove the values. */
688
689 p = &first_containing_mem;
690 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
691 if (v->locs && v == canonical_cselib_val (v))
692 {
693 *p = v;
694 p = &(*p)->next_containing_mem;
695 }
696 *p = &dummy_val;
697
698 n_useless_values += n_useless_debug_values;
699 n_debug_values -= n_useless_debug_values;
700 n_useless_debug_values = 0;
701
702 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
703
704 gcc_assert (!n_useless_values);
705 }
706
707 /* Arrange for a value to not be removed from the hash table even if
708 it becomes useless. */
709
710 void
711 cselib_preserve_value (cselib_val *v)
712 {
713 PRESERVED_VALUE_P (v->val_rtx) = 1;
714 }
715
716 /* Test whether a value is preserved. */
717
718 bool
719 cselib_preserved_value_p (cselib_val *v)
720 {
721 return PRESERVED_VALUE_P (v->val_rtx);
722 }
723
724 /* Arrange for a REG value to be assumed constant through the whole function,
725 never invalidated and preserved across cselib_reset_table calls. */
726
727 void
728 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
729 {
730 if (cselib_preserve_constants
731 && v->locs
732 && REG_P (v->locs->loc))
733 {
734 cfa_base_preserved_val = v;
735 cfa_base_preserved_regno = regno;
736 }
737 }
738
739 /* Clean all non-constant expressions in the hash table, but retain
740 their values. */
741
742 void
743 cselib_preserve_only_values (void)
744 {
745 int i;
746
747 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
748 cselib_invalidate_regno (i, reg_raw_mode[i]);
749
750 cselib_invalidate_mem (callmem);
751
752 remove_useless_values ();
753
754 gcc_assert (first_containing_mem == &dummy_val);
755 }
756
757 /* Arrange for a value to be marked as based on stack pointer
758 for find_base_term purposes. */
759
760 void
761 cselib_set_value_sp_based (cselib_val *v)
762 {
763 SP_BASED_VALUE_P (v->val_rtx) = 1;
764 }
765
766 /* Test whether a value is based on stack pointer for
767 find_base_term purposes. */
768
769 bool
770 cselib_sp_based_value_p (cselib_val *v)
771 {
772 return SP_BASED_VALUE_P (v->val_rtx);
773 }
774
775 /* Return the mode in which a register was last set. If X is not a
776 register, return its mode. If the mode in which the register was
777 set is not known, or the value was already clobbered, return
778 VOIDmode. */
779
780 machine_mode
781 cselib_reg_set_mode (const_rtx x)
782 {
783 if (!REG_P (x))
784 return GET_MODE (x);
785
786 if (REG_VALUES (REGNO (x)) == NULL
787 || REG_VALUES (REGNO (x))->elt == NULL)
788 return VOIDmode;
789
790 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
791 }
792
793 /* If x is a PLUS or an autoinc operation, expand the operation,
794 storing the offset, if any, in *OFF. */
795
796 static rtx
797 autoinc_split (rtx x, rtx *off, machine_mode memmode)
798 {
799 switch (GET_CODE (x))
800 {
801 case PLUS:
802 *off = XEXP (x, 1);
803 return XEXP (x, 0);
804
805 case PRE_DEC:
806 if (memmode == VOIDmode)
807 return x;
808
809 *off = gen_int_mode (-GET_MODE_SIZE (memmode), GET_MODE (x));
810 return XEXP (x, 0);
811
812 case PRE_INC:
813 if (memmode == VOIDmode)
814 return x;
815
816 *off = gen_int_mode (GET_MODE_SIZE (memmode), GET_MODE (x));
817 return XEXP (x, 0);
818
819 case PRE_MODIFY:
820 return XEXP (x, 1);
821
822 case POST_DEC:
823 case POST_INC:
824 case POST_MODIFY:
825 return XEXP (x, 0);
826
827 default:
828 return x;
829 }
830 }
831
832 /* Return nonzero if we can prove that X and Y contain the same value,
833 taking our gathered information into account. MEMMODE holds the
834 mode of the enclosing MEM, if any, as required to deal with autoinc
835 addressing modes. If X and Y are not (known to be) part of
836 addresses, MEMMODE should be VOIDmode. */
837
838 int
839 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
840 {
841 enum rtx_code code;
842 const char *fmt;
843 int i;
844
845 if (REG_P (x) || MEM_P (x))
846 {
847 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
848
849 if (e)
850 x = e->val_rtx;
851 }
852
853 if (REG_P (y) || MEM_P (y))
854 {
855 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
856
857 if (e)
858 y = e->val_rtx;
859 }
860
861 if (x == y)
862 return 1;
863
864 if (GET_CODE (x) == VALUE)
865 {
866 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
867 struct elt_loc_list *l;
868
869 if (GET_CODE (y) == VALUE)
870 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
871
872 if (depth == 128)
873 return 0;
874
875 for (l = e->locs; l; l = l->next)
876 {
877 rtx t = l->loc;
878
879 /* Avoid infinite recursion. We know we have the canonical
880 value, so we can just skip any values in the equivalence
881 list. */
882 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
883 continue;
884 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
885 return 1;
886 }
887
888 return 0;
889 }
890 else if (GET_CODE (y) == VALUE)
891 {
892 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
893 struct elt_loc_list *l;
894
895 if (depth == 128)
896 return 0;
897
898 for (l = e->locs; l; l = l->next)
899 {
900 rtx t = l->loc;
901
902 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
903 continue;
904 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
905 return 1;
906 }
907
908 return 0;
909 }
910
911 if (GET_MODE (x) != GET_MODE (y))
912 return 0;
913
914 if (GET_CODE (x) != GET_CODE (y))
915 {
916 rtx xorig = x, yorig = y;
917 rtx xoff = NULL, yoff = NULL;
918
919 x = autoinc_split (x, &xoff, memmode);
920 y = autoinc_split (y, &yoff, memmode);
921
922 if (!xoff != !yoff)
923 return 0;
924
925 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
926 return 0;
927
928 /* Don't recurse if nothing changed. */
929 if (x != xorig || y != yorig)
930 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
931
932 return 0;
933 }
934
935 /* These won't be handled correctly by the code below. */
936 switch (GET_CODE (x))
937 {
938 CASE_CONST_UNIQUE:
939 case DEBUG_EXPR:
940 return 0;
941
942 case DEBUG_IMPLICIT_PTR:
943 return DEBUG_IMPLICIT_PTR_DECL (x)
944 == DEBUG_IMPLICIT_PTR_DECL (y);
945
946 case DEBUG_PARAMETER_REF:
947 return DEBUG_PARAMETER_REF_DECL (x)
948 == DEBUG_PARAMETER_REF_DECL (y);
949
950 case ENTRY_VALUE:
951 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
952 use rtx_equal_for_cselib_1 to compare the operands. */
953 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
954
955 case LABEL_REF:
956 return label_ref_label (x) == label_ref_label (y);
957
958 case REG:
959 return REGNO (x) == REGNO (y);
960
961 case MEM:
962 /* We have to compare any autoinc operations in the addresses
963 using this MEM's mode. */
964 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
965 depth);
966
967 default:
968 break;
969 }
970
971 code = GET_CODE (x);
972 fmt = GET_RTX_FORMAT (code);
973
974 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
975 {
976 int j;
977
978 switch (fmt[i])
979 {
980 case 'w':
981 if (XWINT (x, i) != XWINT (y, i))
982 return 0;
983 break;
984
985 case 'n':
986 case 'i':
987 if (XINT (x, i) != XINT (y, i))
988 return 0;
989 break;
990
991 case 'p':
992 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
993 return 0;
994 break;
995
996 case 'V':
997 case 'E':
998 /* Two vectors must have the same length. */
999 if (XVECLEN (x, i) != XVECLEN (y, i))
1000 return 0;
1001
1002 /* And the corresponding elements must match. */
1003 for (j = 0; j < XVECLEN (x, i); j++)
1004 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1005 XVECEXP (y, i, j), memmode, depth))
1006 return 0;
1007 break;
1008
1009 case 'e':
1010 if (i == 1
1011 && targetm.commutative_p (x, UNKNOWN)
1012 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1013 depth)
1014 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1015 depth))
1016 return 1;
1017 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1018 depth))
1019 return 0;
1020 break;
1021
1022 case 'S':
1023 case 's':
1024 if (strcmp (XSTR (x, i), XSTR (y, i)))
1025 return 0;
1026 break;
1027
1028 case 'u':
1029 /* These are just backpointers, so they don't matter. */
1030 break;
1031
1032 case '0':
1033 case 't':
1034 break;
1035
1036 /* It is believed that rtx's at this level will never
1037 contain anything but integers and other rtx's,
1038 except for within LABEL_REFs and SYMBOL_REFs. */
1039 default:
1040 gcc_unreachable ();
1041 }
1042 }
1043 return 1;
1044 }
1045
1046 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1047 For registers and memory locations, we look up their cselib_val structure
1048 and return its VALUE element.
1049 Possible reasons for return 0 are: the object is volatile, or we couldn't
1050 find a register or memory location in the table and CREATE is zero. If
1051 CREATE is nonzero, table elts are created for regs and mem.
1052 N.B. this hash function returns the same hash value for RTXes that
1053 differ only in the order of operands, thus it is suitable for comparisons
1054 that take commutativity into account.
1055 If we wanted to also support associative rules, we'd have to use a different
1056 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1057 MEMMODE indicates the mode of an enclosing MEM, and it's only
1058 used to compute autoinc values.
1059 We used to have a MODE argument for hashing for CONST_INTs, but that
1060 didn't make sense, since it caused spurious hash differences between
1061 (set (reg:SI 1) (const_int))
1062 (plus:SI (reg:SI 2) (reg:SI 1))
1063 and
1064 (plus:SI (reg:SI 2) (const_int))
1065 If the mode is important in any context, it must be checked specifically
1066 in a comparison anyway, since relying on hash differences is unsafe. */
1067
1068 static unsigned int
1069 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1070 {
1071 cselib_val *e;
1072 poly_int64 offset;
1073 int i, j;
1074 enum rtx_code code;
1075 const char *fmt;
1076 unsigned int hash = 0;
1077
1078 code = GET_CODE (x);
1079 hash += (unsigned) code + (unsigned) GET_MODE (x);
1080
1081 switch (code)
1082 {
1083 case VALUE:
1084 e = CSELIB_VAL_PTR (x);
1085 return e->hash;
1086
1087 case MEM:
1088 case REG:
1089 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1090 if (! e)
1091 return 0;
1092
1093 return e->hash;
1094
1095 case DEBUG_EXPR:
1096 hash += ((unsigned) DEBUG_EXPR << 7)
1097 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1098 return hash ? hash : (unsigned int) DEBUG_EXPR;
1099
1100 case DEBUG_IMPLICIT_PTR:
1101 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1102 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1103 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1104
1105 case DEBUG_PARAMETER_REF:
1106 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1107 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1108 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1109
1110 case ENTRY_VALUE:
1111 /* ENTRY_VALUEs are function invariant, thus try to avoid
1112 recursing on argument if ENTRY_VALUE is one of the
1113 forms emitted by expand_debug_expr, otherwise
1114 ENTRY_VALUE hash would depend on the current value
1115 in some register or memory. */
1116 if (REG_P (ENTRY_VALUE_EXP (x)))
1117 hash += (unsigned int) REG
1118 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1119 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1120 else if (MEM_P (ENTRY_VALUE_EXP (x))
1121 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1122 hash += (unsigned int) MEM
1123 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1124 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1125 else
1126 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1127 return hash ? hash : (unsigned int) ENTRY_VALUE;
1128
1129 case CONST_INT:
1130 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1131 return hash ? hash : (unsigned int) CONST_INT;
1132
1133 case CONST_WIDE_INT:
1134 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1135 hash += CONST_WIDE_INT_ELT (x, i);
1136 return hash;
1137
1138 case CONST_POLY_INT:
1139 {
1140 inchash::hash h;
1141 h.add_int (hash);
1142 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1143 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1144 return h.end ();
1145 }
1146
1147 case CONST_DOUBLE:
1148 /* This is like the general case, except that it only counts
1149 the integers representing the constant. */
1150 hash += (unsigned) code + (unsigned) GET_MODE (x);
1151 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1152 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1153 + (unsigned) CONST_DOUBLE_HIGH (x));
1154 else
1155 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1156 return hash ? hash : (unsigned int) CONST_DOUBLE;
1157
1158 case CONST_FIXED:
1159 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1160 hash += fixed_hash (CONST_FIXED_VALUE (x));
1161 return hash ? hash : (unsigned int) CONST_FIXED;
1162
1163 case CONST_VECTOR:
1164 {
1165 int units;
1166 rtx elt;
1167
1168 units = const_vector_encoded_nelts (x);
1169
1170 for (i = 0; i < units; ++i)
1171 {
1172 elt = CONST_VECTOR_ENCODED_ELT (x, i);
1173 hash += cselib_hash_rtx (elt, 0, memmode);
1174 }
1175
1176 return hash;
1177 }
1178
1179 /* Assume there is only one rtx object for any given label. */
1180 case LABEL_REF:
1181 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1182 differences and differences between each stage's debugging dumps. */
1183 hash += (((unsigned int) LABEL_REF << 7)
1184 + CODE_LABEL_NUMBER (label_ref_label (x)));
1185 return hash ? hash : (unsigned int) LABEL_REF;
1186
1187 case SYMBOL_REF:
1188 {
1189 /* Don't hash on the symbol's address to avoid bootstrap differences.
1190 Different hash values may cause expressions to be recorded in
1191 different orders and thus different registers to be used in the
1192 final assembler. This also avoids differences in the dump files
1193 between various stages. */
1194 unsigned int h = 0;
1195 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1196
1197 while (*p)
1198 h += (h << 7) + *p++; /* ??? revisit */
1199
1200 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1201 return hash ? hash : (unsigned int) SYMBOL_REF;
1202 }
1203
1204 case PRE_DEC:
1205 case PRE_INC:
1206 /* We can't compute these without knowing the MEM mode. */
1207 gcc_assert (memmode != VOIDmode);
1208 offset = GET_MODE_SIZE (memmode);
1209 if (code == PRE_DEC)
1210 offset = -offset;
1211 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1212 like (mem:MEMMODE (plus (reg) (const_int I))). */
1213 hash += (unsigned) PLUS - (unsigned)code
1214 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1215 + cselib_hash_rtx (gen_int_mode (offset, GET_MODE (x)),
1216 create, memmode);
1217 return hash ? hash : 1 + (unsigned) PLUS;
1218
1219 case PRE_MODIFY:
1220 gcc_assert (memmode != VOIDmode);
1221 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1222
1223 case POST_DEC:
1224 case POST_INC:
1225 case POST_MODIFY:
1226 gcc_assert (memmode != VOIDmode);
1227 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1228
1229 case PC:
1230 case CC0:
1231 case CALL:
1232 case UNSPEC_VOLATILE:
1233 return 0;
1234
1235 case ASM_OPERANDS:
1236 if (MEM_VOLATILE_P (x))
1237 return 0;
1238
1239 break;
1240
1241 default:
1242 break;
1243 }
1244
1245 i = GET_RTX_LENGTH (code) - 1;
1246 fmt = GET_RTX_FORMAT (code);
1247 for (; i >= 0; i--)
1248 {
1249 switch (fmt[i])
1250 {
1251 case 'e':
1252 {
1253 rtx tem = XEXP (x, i);
1254 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1255
1256 if (tem_hash == 0)
1257 return 0;
1258
1259 hash += tem_hash;
1260 }
1261 break;
1262 case 'E':
1263 for (j = 0; j < XVECLEN (x, i); j++)
1264 {
1265 unsigned int tem_hash
1266 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1267
1268 if (tem_hash == 0)
1269 return 0;
1270
1271 hash += tem_hash;
1272 }
1273 break;
1274
1275 case 's':
1276 {
1277 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1278
1279 if (p)
1280 while (*p)
1281 hash += *p++;
1282 break;
1283 }
1284
1285 case 'i':
1286 hash += XINT (x, i);
1287 break;
1288
1289 case 'p':
1290 hash += constant_lower_bound (SUBREG_BYTE (x));
1291 break;
1292
1293 case '0':
1294 case 't':
1295 /* unused */
1296 break;
1297
1298 default:
1299 gcc_unreachable ();
1300 }
1301 }
1302
1303 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1304 }
1305
1306 /* Create a new value structure for VALUE and initialize it. The mode of the
1307 value is MODE. */
1308
1309 static inline cselib_val *
1310 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1311 {
1312 cselib_val *e = cselib_val_pool.allocate ();
1313
1314 gcc_assert (hash);
1315 gcc_assert (next_uid);
1316
1317 e->hash = hash;
1318 e->uid = next_uid++;
1319 /* We use an alloc pool to allocate this RTL construct because it
1320 accounts for about 8% of the overall memory usage. We know
1321 precisely when we can have VALUE RTXen (when cselib is active)
1322 so we don't need to put them in garbage collected memory.
1323 ??? Why should a VALUE be an RTX in the first place? */
1324 e->val_rtx = (rtx_def*) value_pool.allocate ();
1325 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1326 PUT_CODE (e->val_rtx, VALUE);
1327 PUT_MODE (e->val_rtx, mode);
1328 CSELIB_VAL_PTR (e->val_rtx) = e;
1329 e->addr_list = 0;
1330 e->locs = 0;
1331 e->next_containing_mem = 0;
1332
1333 if (dump_file && (dump_flags & TDF_CSELIB))
1334 {
1335 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1336 if (flag_dump_noaddr || flag_dump_unnumbered)
1337 fputs ("# ", dump_file);
1338 else
1339 fprintf (dump_file, "%p ", (void*)e);
1340 print_rtl_single (dump_file, x);
1341 fputc ('\n', dump_file);
1342 }
1343
1344 return e;
1345 }
1346
1347 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1348 contains the data at this address. X is a MEM that represents the
1349 value. Update the two value structures to represent this situation. */
1350
1351 static void
1352 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1353 {
1354 addr_elt = canonical_cselib_val (addr_elt);
1355 mem_elt = canonical_cselib_val (mem_elt);
1356
1357 /* Avoid duplicates. */
1358 addr_space_t as = MEM_ADDR_SPACE (x);
1359 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
1360 if (MEM_P (l->loc)
1361 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1362 && MEM_ADDR_SPACE (l->loc) == as)
1363 {
1364 promote_debug_loc (l);
1365 return;
1366 }
1367
1368 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1369 new_elt_loc_list (mem_elt,
1370 replace_equiv_address_nv (x, addr_elt->val_rtx));
1371 if (mem_elt->next_containing_mem == NULL)
1372 {
1373 mem_elt->next_containing_mem = first_containing_mem;
1374 first_containing_mem = mem_elt;
1375 }
1376 }
1377
1378 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1379 If CREATE, make a new one if we haven't seen it before. */
1380
1381 static cselib_val *
1382 cselib_lookup_mem (rtx x, int create)
1383 {
1384 machine_mode mode = GET_MODE (x);
1385 machine_mode addr_mode;
1386 cselib_val **slot;
1387 cselib_val *addr;
1388 cselib_val *mem_elt;
1389
1390 if (MEM_VOLATILE_P (x) || mode == BLKmode
1391 || !cselib_record_memory
1392 || (FLOAT_MODE_P (mode) && flag_float_store))
1393 return 0;
1394
1395 addr_mode = GET_MODE (XEXP (x, 0));
1396 if (addr_mode == VOIDmode)
1397 addr_mode = Pmode;
1398
1399 /* Look up the value for the address. */
1400 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1401 if (! addr)
1402 return 0;
1403 addr = canonical_cselib_val (addr);
1404
1405 /* Find a value that describes a value of our mode at that address. */
1406 addr_space_t as = MEM_ADDR_SPACE (x);
1407 for (elt_list *l = addr->addr_list; l; l = l->next)
1408 if (GET_MODE (l->elt->val_rtx) == mode)
1409 {
1410 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1411 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1412 {
1413 promote_debug_loc (l->elt->locs);
1414 return l->elt;
1415 }
1416 }
1417
1418 if (! create)
1419 return 0;
1420
1421 mem_elt = new_cselib_val (next_uid, mode, x);
1422 add_mem_for_addr (addr, mem_elt, x);
1423 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1424 *slot = mem_elt;
1425 return mem_elt;
1426 }
1427
1428 /* Search through the possible substitutions in P. We prefer a non reg
1429 substitution because this allows us to expand the tree further. If
1430 we find, just a reg, take the lowest regno. There may be several
1431 non-reg results, we just take the first one because they will all
1432 expand to the same place. */
1433
1434 static rtx
1435 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1436 int max_depth)
1437 {
1438 rtx reg_result = NULL;
1439 unsigned int regno = UINT_MAX;
1440 struct elt_loc_list *p_in = p;
1441
1442 for (; p; p = p->next)
1443 {
1444 /* Return these right away to avoid returning stack pointer based
1445 expressions for frame pointer and vice versa, which is something
1446 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1447 for more details. */
1448 if (REG_P (p->loc)
1449 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1450 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1451 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1452 || REGNO (p->loc) == cfa_base_preserved_regno))
1453 return p->loc;
1454 /* Avoid infinite recursion trying to expand a reg into a
1455 the same reg. */
1456 if ((REG_P (p->loc))
1457 && (REGNO (p->loc) < regno)
1458 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1459 {
1460 reg_result = p->loc;
1461 regno = REGNO (p->loc);
1462 }
1463 /* Avoid infinite recursion and do not try to expand the
1464 value. */
1465 else if (GET_CODE (p->loc) == VALUE
1466 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1467 continue;
1468 else if (!REG_P (p->loc))
1469 {
1470 rtx result, note;
1471 if (dump_file && (dump_flags & TDF_CSELIB))
1472 {
1473 print_inline_rtx (dump_file, p->loc, 0);
1474 fprintf (dump_file, "\n");
1475 }
1476 if (GET_CODE (p->loc) == LO_SUM
1477 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1478 && p->setting_insn
1479 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1480 && XEXP (note, 0) == XEXP (p->loc, 1))
1481 return XEXP (p->loc, 1);
1482 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1483 if (result)
1484 return result;
1485 }
1486
1487 }
1488
1489 if (regno != UINT_MAX)
1490 {
1491 rtx result;
1492 if (dump_file && (dump_flags & TDF_CSELIB))
1493 fprintf (dump_file, "r%d\n", regno);
1494
1495 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1496 if (result)
1497 return result;
1498 }
1499
1500 if (dump_file && (dump_flags & TDF_CSELIB))
1501 {
1502 if (reg_result)
1503 {
1504 print_inline_rtx (dump_file, reg_result, 0);
1505 fprintf (dump_file, "\n");
1506 }
1507 else
1508 fprintf (dump_file, "NULL\n");
1509 }
1510 return reg_result;
1511 }
1512
1513
1514 /* Forward substitute and expand an expression out to its roots.
1515 This is the opposite of common subexpression. Because local value
1516 numbering is such a weak optimization, the expanded expression is
1517 pretty much unique (not from a pointer equals point of view but
1518 from a tree shape point of view.
1519
1520 This function returns NULL if the expansion fails. The expansion
1521 will fail if there is no value number for one of the operands or if
1522 one of the operands has been overwritten between the current insn
1523 and the beginning of the basic block. For instance x has no
1524 expansion in:
1525
1526 r1 <- r1 + 3
1527 x <- r1 + 8
1528
1529 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1530 It is clear on return. */
1531
1532 rtx
1533 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1534 {
1535 struct expand_value_data evd;
1536
1537 evd.regs_active = regs_active;
1538 evd.callback = NULL;
1539 evd.callback_arg = NULL;
1540 evd.dummy = false;
1541
1542 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1543 }
1544
1545 /* Same as cselib_expand_value_rtx, but using a callback to try to
1546 resolve some expressions. The CB function should return ORIG if it
1547 can't or does not want to deal with a certain RTX. Any other
1548 return value, including NULL, will be used as the expansion for
1549 VALUE, without any further changes. */
1550
1551 rtx
1552 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1553 cselib_expand_callback cb, void *data)
1554 {
1555 struct expand_value_data evd;
1556
1557 evd.regs_active = regs_active;
1558 evd.callback = cb;
1559 evd.callback_arg = data;
1560 evd.dummy = false;
1561
1562 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1563 }
1564
1565 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1566 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1567 would return NULL or non-NULL, without allocating new rtx. */
1568
1569 bool
1570 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1571 cselib_expand_callback cb, void *data)
1572 {
1573 struct expand_value_data evd;
1574
1575 evd.regs_active = regs_active;
1576 evd.callback = cb;
1577 evd.callback_arg = data;
1578 evd.dummy = true;
1579
1580 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1581 }
1582
1583 /* Internal implementation of cselib_expand_value_rtx and
1584 cselib_expand_value_rtx_cb. */
1585
1586 static rtx
1587 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1588 int max_depth)
1589 {
1590 rtx copy, scopy;
1591 int i, j;
1592 RTX_CODE code;
1593 const char *format_ptr;
1594 machine_mode mode;
1595
1596 code = GET_CODE (orig);
1597
1598 /* For the context of dse, if we end up expand into a huge tree, we
1599 will not have a useful address, so we might as well just give up
1600 quickly. */
1601 if (max_depth <= 0)
1602 return NULL;
1603
1604 switch (code)
1605 {
1606 case REG:
1607 {
1608 struct elt_list *l = REG_VALUES (REGNO (orig));
1609
1610 if (l && l->elt == NULL)
1611 l = l->next;
1612 for (; l; l = l->next)
1613 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1614 {
1615 rtx result;
1616 unsigned regno = REGNO (orig);
1617
1618 /* The only thing that we are not willing to do (this
1619 is requirement of dse and if others potential uses
1620 need this function we should add a parm to control
1621 it) is that we will not substitute the
1622 STACK_POINTER_REGNUM, FRAME_POINTER or the
1623 HARD_FRAME_POINTER.
1624
1625 These expansions confuses the code that notices that
1626 stores into the frame go dead at the end of the
1627 function and that the frame is not effected by calls
1628 to subroutines. If you allow the
1629 STACK_POINTER_REGNUM substitution, then dse will
1630 think that parameter pushing also goes dead which is
1631 wrong. If you allow the FRAME_POINTER or the
1632 HARD_FRAME_POINTER then you lose the opportunity to
1633 make the frame assumptions. */
1634 if (regno == STACK_POINTER_REGNUM
1635 || regno == FRAME_POINTER_REGNUM
1636 || regno == HARD_FRAME_POINTER_REGNUM
1637 || regno == cfa_base_preserved_regno)
1638 return orig;
1639
1640 bitmap_set_bit (evd->regs_active, regno);
1641
1642 if (dump_file && (dump_flags & TDF_CSELIB))
1643 fprintf (dump_file, "expanding: r%d into: ", regno);
1644
1645 result = expand_loc (l->elt->locs, evd, max_depth);
1646 bitmap_clear_bit (evd->regs_active, regno);
1647
1648 if (result)
1649 return result;
1650 else
1651 return orig;
1652 }
1653 return orig;
1654 }
1655
1656 CASE_CONST_ANY:
1657 case SYMBOL_REF:
1658 case CODE_LABEL:
1659 case PC:
1660 case CC0:
1661 case SCRATCH:
1662 /* SCRATCH must be shared because they represent distinct values. */
1663 return orig;
1664 case CLOBBER:
1665 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1666 return orig;
1667 break;
1668
1669 case CONST:
1670 if (shared_const_p (orig))
1671 return orig;
1672 break;
1673
1674 case SUBREG:
1675 {
1676 rtx subreg;
1677
1678 if (evd->callback)
1679 {
1680 subreg = evd->callback (orig, evd->regs_active, max_depth,
1681 evd->callback_arg);
1682 if (subreg != orig)
1683 return subreg;
1684 }
1685
1686 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1687 max_depth - 1);
1688 if (!subreg)
1689 return NULL;
1690 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1691 GET_MODE (SUBREG_REG (orig)),
1692 SUBREG_BYTE (orig));
1693 if (scopy == NULL
1694 || (GET_CODE (scopy) == SUBREG
1695 && !REG_P (SUBREG_REG (scopy))
1696 && !MEM_P (SUBREG_REG (scopy))))
1697 return NULL;
1698
1699 return scopy;
1700 }
1701
1702 case VALUE:
1703 {
1704 rtx result;
1705
1706 if (dump_file && (dump_flags & TDF_CSELIB))
1707 {
1708 fputs ("\nexpanding ", dump_file);
1709 print_rtl_single (dump_file, orig);
1710 fputs (" into...", dump_file);
1711 }
1712
1713 if (evd->callback)
1714 {
1715 result = evd->callback (orig, evd->regs_active, max_depth,
1716 evd->callback_arg);
1717
1718 if (result != orig)
1719 return result;
1720 }
1721
1722 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1723 return result;
1724 }
1725
1726 case DEBUG_EXPR:
1727 if (evd->callback)
1728 return evd->callback (orig, evd->regs_active, max_depth,
1729 evd->callback_arg);
1730 return orig;
1731
1732 default:
1733 break;
1734 }
1735
1736 /* Copy the various flags, fields, and other information. We assume
1737 that all fields need copying, and then clear the fields that should
1738 not be copied. That is the sensible default behavior, and forces
1739 us to explicitly document why we are *not* copying a flag. */
1740 if (evd->dummy)
1741 copy = NULL;
1742 else
1743 copy = shallow_copy_rtx (orig);
1744
1745 format_ptr = GET_RTX_FORMAT (code);
1746
1747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1748 switch (*format_ptr++)
1749 {
1750 case 'e':
1751 if (XEXP (orig, i) != NULL)
1752 {
1753 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1754 max_depth - 1);
1755 if (!result)
1756 return NULL;
1757 if (copy)
1758 XEXP (copy, i) = result;
1759 }
1760 break;
1761
1762 case 'E':
1763 case 'V':
1764 if (XVEC (orig, i) != NULL)
1765 {
1766 if (copy)
1767 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1768 for (j = 0; j < XVECLEN (orig, i); j++)
1769 {
1770 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1771 evd, max_depth - 1);
1772 if (!result)
1773 return NULL;
1774 if (copy)
1775 XVECEXP (copy, i, j) = result;
1776 }
1777 }
1778 break;
1779
1780 case 't':
1781 case 'w':
1782 case 'i':
1783 case 's':
1784 case 'S':
1785 case 'T':
1786 case 'u':
1787 case 'B':
1788 case '0':
1789 /* These are left unchanged. */
1790 break;
1791
1792 default:
1793 gcc_unreachable ();
1794 }
1795
1796 if (evd->dummy)
1797 return orig;
1798
1799 mode = GET_MODE (copy);
1800 /* If an operand has been simplified into CONST_INT, which doesn't
1801 have a mode and the mode isn't derivable from whole rtx's mode,
1802 try simplify_*_operation first with mode from original's operand
1803 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1804 scopy = copy;
1805 switch (GET_RTX_CLASS (code))
1806 {
1807 case RTX_UNARY:
1808 if (CONST_INT_P (XEXP (copy, 0))
1809 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1810 {
1811 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1812 GET_MODE (XEXP (orig, 0)));
1813 if (scopy)
1814 return scopy;
1815 }
1816 break;
1817 case RTX_COMM_ARITH:
1818 case RTX_BIN_ARITH:
1819 /* These expressions can derive operand modes from the whole rtx's mode. */
1820 break;
1821 case RTX_TERNARY:
1822 case RTX_BITFIELD_OPS:
1823 if (CONST_INT_P (XEXP (copy, 0))
1824 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1825 {
1826 scopy = simplify_ternary_operation (code, mode,
1827 GET_MODE (XEXP (orig, 0)),
1828 XEXP (copy, 0), XEXP (copy, 1),
1829 XEXP (copy, 2));
1830 if (scopy)
1831 return scopy;
1832 }
1833 break;
1834 case RTX_COMPARE:
1835 case RTX_COMM_COMPARE:
1836 if (CONST_INT_P (XEXP (copy, 0))
1837 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1838 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1839 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1840 {
1841 scopy = simplify_relational_operation (code, mode,
1842 (GET_MODE (XEXP (orig, 0))
1843 != VOIDmode)
1844 ? GET_MODE (XEXP (orig, 0))
1845 : GET_MODE (XEXP (orig, 1)),
1846 XEXP (copy, 0),
1847 XEXP (copy, 1));
1848 if (scopy)
1849 return scopy;
1850 }
1851 break;
1852 default:
1853 break;
1854 }
1855 scopy = simplify_rtx (copy);
1856 if (scopy)
1857 return scopy;
1858 return copy;
1859 }
1860
1861 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1862 with VALUE expressions. This way, it becomes independent of changes
1863 to registers and memory.
1864 X isn't actually modified; if modifications are needed, new rtl is
1865 allocated. However, the return value can share rtl with X.
1866 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1867
1868 rtx
1869 cselib_subst_to_values (rtx x, machine_mode memmode)
1870 {
1871 enum rtx_code code = GET_CODE (x);
1872 const char *fmt = GET_RTX_FORMAT (code);
1873 cselib_val *e;
1874 struct elt_list *l;
1875 rtx copy = x;
1876 int i;
1877 poly_int64 offset;
1878
1879 switch (code)
1880 {
1881 case REG:
1882 l = REG_VALUES (REGNO (x));
1883 if (l && l->elt == NULL)
1884 l = l->next;
1885 for (; l; l = l->next)
1886 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1887 return l->elt->val_rtx;
1888
1889 gcc_unreachable ();
1890
1891 case MEM:
1892 e = cselib_lookup_mem (x, 0);
1893 /* This used to happen for autoincrements, but we deal with them
1894 properly now. Remove the if stmt for the next release. */
1895 if (! e)
1896 {
1897 /* Assign a value that doesn't match any other. */
1898 e = new_cselib_val (next_uid, GET_MODE (x), x);
1899 }
1900 return e->val_rtx;
1901
1902 case ENTRY_VALUE:
1903 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1904 if (! e)
1905 break;
1906 return e->val_rtx;
1907
1908 CASE_CONST_ANY:
1909 return x;
1910
1911 case PRE_DEC:
1912 case PRE_INC:
1913 gcc_assert (memmode != VOIDmode);
1914 offset = GET_MODE_SIZE (memmode);
1915 if (code == PRE_DEC)
1916 offset = -offset;
1917 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1918 XEXP (x, 0), offset),
1919 memmode);
1920
1921 case PRE_MODIFY:
1922 gcc_assert (memmode != VOIDmode);
1923 return cselib_subst_to_values (XEXP (x, 1), memmode);
1924
1925 case POST_DEC:
1926 case POST_INC:
1927 case POST_MODIFY:
1928 gcc_assert (memmode != VOIDmode);
1929 return cselib_subst_to_values (XEXP (x, 0), memmode);
1930
1931 default:
1932 break;
1933 }
1934
1935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1936 {
1937 if (fmt[i] == 'e')
1938 {
1939 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1940
1941 if (t != XEXP (x, i))
1942 {
1943 if (x == copy)
1944 copy = shallow_copy_rtx (x);
1945 XEXP (copy, i) = t;
1946 }
1947 }
1948 else if (fmt[i] == 'E')
1949 {
1950 int j;
1951
1952 for (j = 0; j < XVECLEN (x, i); j++)
1953 {
1954 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1955
1956 if (t != XVECEXP (x, i, j))
1957 {
1958 if (XVEC (x, i) == XVEC (copy, i))
1959 {
1960 if (x == copy)
1961 copy = shallow_copy_rtx (x);
1962 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1963 }
1964 XVECEXP (copy, i, j) = t;
1965 }
1966 }
1967 }
1968 }
1969
1970 return copy;
1971 }
1972
1973 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1974
1975 rtx
1976 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
1977 {
1978 rtx ret;
1979 gcc_assert (!cselib_current_insn);
1980 cselib_current_insn = insn;
1981 ret = cselib_subst_to_values (x, memmode);
1982 cselib_current_insn = NULL;
1983 return ret;
1984 }
1985
1986 /* Look up the rtl expression X in our tables and return the value it
1987 has. If CREATE is zero, we return NULL if we don't know the value.
1988 Otherwise, we create a new one if possible, using mode MODE if X
1989 doesn't have a mode (i.e. because it's a constant). When X is part
1990 of an address, MEMMODE should be the mode of the enclosing MEM if
1991 we're tracking autoinc expressions. */
1992
1993 static cselib_val *
1994 cselib_lookup_1 (rtx x, machine_mode mode,
1995 int create, machine_mode memmode)
1996 {
1997 cselib_val **slot;
1998 cselib_val *e;
1999 unsigned int hashval;
2000
2001 if (GET_MODE (x) != VOIDmode)
2002 mode = GET_MODE (x);
2003
2004 if (GET_CODE (x) == VALUE)
2005 return CSELIB_VAL_PTR (x);
2006
2007 if (REG_P (x))
2008 {
2009 struct elt_list *l;
2010 unsigned int i = REGNO (x);
2011
2012 l = REG_VALUES (i);
2013 if (l && l->elt == NULL)
2014 l = l->next;
2015 for (; l; l = l->next)
2016 if (mode == GET_MODE (l->elt->val_rtx))
2017 {
2018 promote_debug_loc (l->elt->locs);
2019 return l->elt;
2020 }
2021
2022 if (! create)
2023 return 0;
2024
2025 if (i < FIRST_PSEUDO_REGISTER)
2026 {
2027 unsigned int n = hard_regno_nregs (i, mode);
2028
2029 if (n > max_value_regs)
2030 max_value_regs = n;
2031 }
2032
2033 e = new_cselib_val (next_uid, GET_MODE (x), x);
2034 new_elt_loc_list (e, x);
2035
2036 scalar_int_mode int_mode;
2037 if (REG_VALUES (i) == 0)
2038 {
2039 /* Maintain the invariant that the first entry of
2040 REG_VALUES, if present, must be the value used to set the
2041 register, or NULL. */
2042 used_regs[n_used_regs++] = i;
2043 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2044 }
2045 else if (cselib_preserve_constants
2046 && is_int_mode (mode, &int_mode))
2047 {
2048 /* During var-tracking, try harder to find equivalences
2049 for SUBREGs. If a setter sets say a DImode register
2050 and user uses that register only in SImode, add a lowpart
2051 subreg location. */
2052 struct elt_list *lwider = NULL;
2053 scalar_int_mode lmode;
2054 l = REG_VALUES (i);
2055 if (l && l->elt == NULL)
2056 l = l->next;
2057 for (; l; l = l->next)
2058 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2059 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
2060 && (lwider == NULL
2061 || partial_subreg_p (lmode,
2062 GET_MODE (lwider->elt->val_rtx))))
2063 {
2064 struct elt_loc_list *el;
2065 if (i < FIRST_PSEUDO_REGISTER
2066 && hard_regno_nregs (i, lmode) != 1)
2067 continue;
2068 for (el = l->elt->locs; el; el = el->next)
2069 if (!REG_P (el->loc))
2070 break;
2071 if (el)
2072 lwider = l;
2073 }
2074 if (lwider)
2075 {
2076 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
2077 GET_MODE (lwider->elt->val_rtx));
2078 if (sub)
2079 new_elt_loc_list (e, sub);
2080 }
2081 }
2082 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2083 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2084 *slot = e;
2085 return e;
2086 }
2087
2088 if (MEM_P (x))
2089 return cselib_lookup_mem (x, create);
2090
2091 hashval = cselib_hash_rtx (x, create, memmode);
2092 /* Can't even create if hashing is not possible. */
2093 if (! hashval)
2094 return 0;
2095
2096 slot = cselib_find_slot (mode, x, hashval,
2097 create ? INSERT : NO_INSERT, memmode);
2098 if (slot == 0)
2099 return 0;
2100
2101 e = (cselib_val *) *slot;
2102 if (e)
2103 return e;
2104
2105 e = new_cselib_val (hashval, mode, x);
2106
2107 /* We have to fill the slot before calling cselib_subst_to_values:
2108 the hash table is inconsistent until we do so, and
2109 cselib_subst_to_values will need to do lookups. */
2110 *slot = e;
2111 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2112 return e;
2113 }
2114
2115 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2116
2117 cselib_val *
2118 cselib_lookup_from_insn (rtx x, machine_mode mode,
2119 int create, machine_mode memmode, rtx_insn *insn)
2120 {
2121 cselib_val *ret;
2122
2123 gcc_assert (!cselib_current_insn);
2124 cselib_current_insn = insn;
2125
2126 ret = cselib_lookup (x, mode, create, memmode);
2127
2128 cselib_current_insn = NULL;
2129
2130 return ret;
2131 }
2132
2133 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2134 maintains invariants related with debug insns. */
2135
2136 cselib_val *
2137 cselib_lookup (rtx x, machine_mode mode,
2138 int create, machine_mode memmode)
2139 {
2140 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2141
2142 /* ??? Should we return NULL if we're not to create an entry, the
2143 found loc is a debug loc and cselib_current_insn is not DEBUG?
2144 If so, we should also avoid converting val to non-DEBUG; probably
2145 easiest setting cselib_current_insn to NULL before the call
2146 above. */
2147
2148 if (dump_file && (dump_flags & TDF_CSELIB))
2149 {
2150 fputs ("cselib lookup ", dump_file);
2151 print_inline_rtx (dump_file, x, 2);
2152 fprintf (dump_file, " => %u:%u\n",
2153 ret ? ret->uid : 0,
2154 ret ? ret->hash : 0);
2155 }
2156
2157 return ret;
2158 }
2159
2160 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2161 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2162 is used to determine how many hard registers are being changed. If MODE
2163 is VOIDmode, then only REGNO is being changed; this is used when
2164 invalidating call clobbered registers across a call. */
2165
2166 static void
2167 cselib_invalidate_regno (unsigned int regno, machine_mode mode)
2168 {
2169 unsigned int endregno;
2170 unsigned int i;
2171
2172 /* If we see pseudos after reload, something is _wrong_. */
2173 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2174 || reg_renumber[regno] < 0);
2175
2176 /* Determine the range of registers that must be invalidated. For
2177 pseudos, only REGNO is affected. For hard regs, we must take MODE
2178 into account, and we must also invalidate lower register numbers
2179 if they contain values that overlap REGNO. */
2180 if (regno < FIRST_PSEUDO_REGISTER)
2181 {
2182 gcc_assert (mode != VOIDmode);
2183
2184 if (regno < max_value_regs)
2185 i = 0;
2186 else
2187 i = regno - max_value_regs;
2188
2189 endregno = end_hard_regno (mode, regno);
2190 }
2191 else
2192 {
2193 i = regno;
2194 endregno = regno + 1;
2195 }
2196
2197 for (; i < endregno; i++)
2198 {
2199 struct elt_list **l = &REG_VALUES (i);
2200
2201 /* Go through all known values for this reg; if it overlaps the range
2202 we're invalidating, remove the value. */
2203 while (*l)
2204 {
2205 cselib_val *v = (*l)->elt;
2206 bool had_locs;
2207 rtx_insn *setting_insn;
2208 struct elt_loc_list **p;
2209 unsigned int this_last = i;
2210
2211 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2212 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2213
2214 if (this_last < regno || v == NULL
2215 || (v == cfa_base_preserved_val
2216 && i == cfa_base_preserved_regno))
2217 {
2218 l = &(*l)->next;
2219 continue;
2220 }
2221
2222 /* We have an overlap. */
2223 if (*l == REG_VALUES (i))
2224 {
2225 /* Maintain the invariant that the first entry of
2226 REG_VALUES, if present, must be the value used to set
2227 the register, or NULL. This is also nice because
2228 then we won't push the same regno onto user_regs
2229 multiple times. */
2230 (*l)->elt = NULL;
2231 l = &(*l)->next;
2232 }
2233 else
2234 unchain_one_elt_list (l);
2235
2236 v = canonical_cselib_val (v);
2237
2238 had_locs = v->locs != NULL;
2239 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2240
2241 /* Now, we clear the mapping from value to reg. It must exist, so
2242 this code will crash intentionally if it doesn't. */
2243 for (p = &v->locs; ; p = &(*p)->next)
2244 {
2245 rtx x = (*p)->loc;
2246
2247 if (REG_P (x) && REGNO (x) == i)
2248 {
2249 unchain_one_elt_loc_list (p);
2250 break;
2251 }
2252 }
2253
2254 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2255 {
2256 if (setting_insn && DEBUG_INSN_P (setting_insn))
2257 n_useless_debug_values++;
2258 else
2259 n_useless_values++;
2260 }
2261 }
2262 }
2263 }
2264 \f
2265 /* Invalidate any locations in the table which are changed because of a
2266 store to MEM_RTX. If this is called because of a non-const call
2267 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2268
2269 static void
2270 cselib_invalidate_mem (rtx mem_rtx)
2271 {
2272 cselib_val **vp, *v, *next;
2273 int num_mems = 0;
2274 rtx mem_addr;
2275
2276 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2277 mem_rtx = canon_rtx (mem_rtx);
2278
2279 vp = &first_containing_mem;
2280 for (v = *vp; v != &dummy_val; v = next)
2281 {
2282 bool has_mem = false;
2283 struct elt_loc_list **p = &v->locs;
2284 bool had_locs = v->locs != NULL;
2285 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2286
2287 while (*p)
2288 {
2289 rtx x = (*p)->loc;
2290 cselib_val *addr;
2291 struct elt_list **mem_chain;
2292
2293 /* MEMs may occur in locations only at the top level; below
2294 that every MEM or REG is substituted by its VALUE. */
2295 if (!MEM_P (x))
2296 {
2297 p = &(*p)->next;
2298 continue;
2299 }
2300 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2301 && ! canon_anti_dependence (x, false, mem_rtx,
2302 GET_MODE (mem_rtx), mem_addr))
2303 {
2304 has_mem = true;
2305 num_mems++;
2306 p = &(*p)->next;
2307 continue;
2308 }
2309
2310 /* This one overlaps. */
2311 /* We must have a mapping from this MEM's address to the
2312 value (E). Remove that, too. */
2313 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2314 addr = canonical_cselib_val (addr);
2315 gcc_checking_assert (v == canonical_cselib_val (v));
2316 mem_chain = &addr->addr_list;
2317 for (;;)
2318 {
2319 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2320
2321 if (canon == v)
2322 {
2323 unchain_one_elt_list (mem_chain);
2324 break;
2325 }
2326
2327 /* Record canonicalized elt. */
2328 (*mem_chain)->elt = canon;
2329
2330 mem_chain = &(*mem_chain)->next;
2331 }
2332
2333 unchain_one_elt_loc_list (p);
2334 }
2335
2336 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2337 {
2338 if (setting_insn && DEBUG_INSN_P (setting_insn))
2339 n_useless_debug_values++;
2340 else
2341 n_useless_values++;
2342 }
2343
2344 next = v->next_containing_mem;
2345 if (has_mem)
2346 {
2347 *vp = v;
2348 vp = &(*vp)->next_containing_mem;
2349 }
2350 else
2351 v->next_containing_mem = NULL;
2352 }
2353 *vp = &dummy_val;
2354 }
2355
2356 /* Invalidate DEST. */
2357
2358 void
2359 cselib_invalidate_rtx (rtx dest)
2360 {
2361 while (GET_CODE (dest) == SUBREG
2362 || GET_CODE (dest) == ZERO_EXTRACT
2363 || GET_CODE (dest) == STRICT_LOW_PART)
2364 dest = XEXP (dest, 0);
2365
2366 if (REG_P (dest))
2367 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2368 else if (MEM_P (dest))
2369 cselib_invalidate_mem (dest);
2370 }
2371
2372 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2373
2374 static void
2375 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx,
2376 void *data ATTRIBUTE_UNUSED)
2377 {
2378 cselib_invalidate_rtx (dest);
2379 }
2380
2381 /* Record the result of a SET instruction. DEST is being set; the source
2382 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2383 describes its address. */
2384
2385 static void
2386 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2387 {
2388 if (src_elt == 0 || side_effects_p (dest))
2389 return;
2390
2391 if (REG_P (dest))
2392 {
2393 unsigned int dreg = REGNO (dest);
2394 if (dreg < FIRST_PSEUDO_REGISTER)
2395 {
2396 unsigned int n = REG_NREGS (dest);
2397
2398 if (n > max_value_regs)
2399 max_value_regs = n;
2400 }
2401
2402 if (REG_VALUES (dreg) == 0)
2403 {
2404 used_regs[n_used_regs++] = dreg;
2405 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2406 }
2407 else
2408 {
2409 /* The register should have been invalidated. */
2410 gcc_assert (REG_VALUES (dreg)->elt == 0);
2411 REG_VALUES (dreg)->elt = src_elt;
2412 }
2413
2414 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2415 n_useless_values--;
2416 new_elt_loc_list (src_elt, dest);
2417 }
2418 else if (MEM_P (dest) && dest_addr_elt != 0
2419 && cselib_record_memory)
2420 {
2421 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2422 n_useless_values--;
2423 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2424 }
2425 }
2426
2427 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2428
2429 void
2430 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2431 {
2432 cselib_val *nelt;
2433 rtx_insn *save_cselib_current_insn = cselib_current_insn;
2434
2435 gcc_checking_assert (elt);
2436 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2437 gcc_checking_assert (!side_effects_p (x));
2438
2439 cselib_current_insn = insn;
2440
2441 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2442
2443 if (nelt != elt)
2444 {
2445 cselib_any_perm_equivs = true;
2446
2447 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2448 cselib_preserve_value (nelt);
2449
2450 new_elt_loc_list (nelt, elt->val_rtx);
2451 }
2452
2453 cselib_current_insn = save_cselib_current_insn;
2454 }
2455
2456 /* Return TRUE if any permanent equivalences have been recorded since
2457 the table was last initialized. */
2458 bool
2459 cselib_have_permanent_equivalences (void)
2460 {
2461 return cselib_any_perm_equivs;
2462 }
2463
2464 /* There is no good way to determine how many elements there can be
2465 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2466 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2467
2468 struct cselib_record_autoinc_data
2469 {
2470 struct cselib_set *sets;
2471 int n_sets;
2472 };
2473
2474 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2475 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2476
2477 static int
2478 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2479 rtx dest, rtx src, rtx srcoff, void *arg)
2480 {
2481 struct cselib_record_autoinc_data *data;
2482 data = (struct cselib_record_autoinc_data *)arg;
2483
2484 data->sets[data->n_sets].dest = dest;
2485
2486 if (srcoff)
2487 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2488 else
2489 data->sets[data->n_sets].src = src;
2490
2491 data->n_sets++;
2492
2493 return 0;
2494 }
2495
2496 /* Record the effects of any sets and autoincs in INSN. */
2497 static void
2498 cselib_record_sets (rtx_insn *insn)
2499 {
2500 int n_sets = 0;
2501 int i;
2502 struct cselib_set sets[MAX_SETS];
2503 rtx cond = 0;
2504 int n_sets_before_autoinc;
2505 int n_strict_low_parts = 0;
2506 struct cselib_record_autoinc_data data;
2507
2508 rtx body = PATTERN (insn);
2509 if (GET_CODE (body) == COND_EXEC)
2510 {
2511 cond = COND_EXEC_TEST (body);
2512 body = COND_EXEC_CODE (body);
2513 }
2514
2515 /* Find all sets. */
2516 if (GET_CODE (body) == SET)
2517 {
2518 sets[0].src = SET_SRC (body);
2519 sets[0].dest = SET_DEST (body);
2520 n_sets = 1;
2521 }
2522 else if (GET_CODE (body) == PARALLEL)
2523 {
2524 /* Look through the PARALLEL and record the values being
2525 set, if possible. Also handle any CLOBBERs. */
2526 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2527 {
2528 rtx x = XVECEXP (body, 0, i);
2529
2530 if (GET_CODE (x) == SET)
2531 {
2532 sets[n_sets].src = SET_SRC (x);
2533 sets[n_sets].dest = SET_DEST (x);
2534 n_sets++;
2535 }
2536 }
2537 }
2538
2539 if (n_sets == 1
2540 && MEM_P (sets[0].src)
2541 && !cselib_record_memory
2542 && MEM_READONLY_P (sets[0].src))
2543 {
2544 rtx note = find_reg_equal_equiv_note (insn);
2545
2546 if (note && CONSTANT_P (XEXP (note, 0)))
2547 sets[0].src = XEXP (note, 0);
2548 }
2549
2550 data.sets = sets;
2551 data.n_sets = n_sets_before_autoinc = n_sets;
2552 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2553 n_sets = data.n_sets;
2554
2555 /* Look up the values that are read. Do this before invalidating the
2556 locations that are written. */
2557 for (i = 0; i < n_sets; i++)
2558 {
2559 rtx dest = sets[i].dest;
2560 rtx orig = dest;
2561
2562 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2563 the low part after invalidating any knowledge about larger modes. */
2564 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2565 sets[i].dest = dest = XEXP (dest, 0);
2566
2567 /* We don't know how to record anything but REG or MEM. */
2568 if (REG_P (dest)
2569 || (MEM_P (dest) && cselib_record_memory))
2570 {
2571 rtx src = sets[i].src;
2572 if (cond)
2573 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2574 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2575 if (MEM_P (dest))
2576 {
2577 machine_mode address_mode = get_address_mode (dest);
2578
2579 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2580 address_mode, 1,
2581 GET_MODE (dest));
2582 }
2583 else
2584 sets[i].dest_addr_elt = 0;
2585 }
2586
2587 /* Improve handling of STRICT_LOW_PART if the current value is known
2588 to be const0_rtx, then the low bits will be set to dest and higher
2589 bits will remain zero. Used in code like:
2590
2591 {di:SI=0;clobber flags:CC;}
2592 flags:CCNO=cmp(bx:SI,0)
2593 strict_low_part(di:QI)=flags:CCNO<=0
2594
2595 where we can note both that di:QI=flags:CCNO<=0 and
2596 also that because di:SI is known to be 0 and strict_low_part(di:QI)
2597 preserves the upper bits that di:SI=zero_extend(flags:CCNO<=0). */
2598 scalar_int_mode mode;
2599 if (dest != orig
2600 && cselib_record_sets_hook
2601 && REG_P (dest)
2602 && HARD_REGISTER_P (dest)
2603 && sets[i].src_elt
2604 && is_a <scalar_int_mode> (GET_MODE (dest), &mode)
2605 && n_sets + n_strict_low_parts < MAX_SETS)
2606 {
2607 opt_scalar_int_mode wider_mode_iter;
2608 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2609 {
2610 scalar_int_mode wider_mode = wider_mode_iter.require ();
2611 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
2612 break;
2613
2614 rtx reg = gen_lowpart (wider_mode, dest);
2615 if (!REG_P (reg))
2616 break;
2617
2618 cselib_val *v = cselib_lookup (reg, wider_mode, 0, VOIDmode);
2619 if (!v)
2620 continue;
2621
2622 struct elt_loc_list *l;
2623 for (l = v->locs; l; l = l->next)
2624 if (l->loc == const0_rtx)
2625 break;
2626
2627 if (!l)
2628 continue;
2629
2630 sets[n_sets + n_strict_low_parts].dest = reg;
2631 sets[n_sets + n_strict_low_parts].src = dest;
2632 sets[n_sets + n_strict_low_parts++].src_elt = sets[i].src_elt;
2633 break;
2634 }
2635 }
2636 }
2637
2638 if (cselib_record_sets_hook)
2639 cselib_record_sets_hook (insn, sets, n_sets);
2640
2641 /* Invalidate all locations written by this insn. Note that the elts we
2642 looked up in the previous loop aren't affected, just some of their
2643 locations may go away. */
2644 note_pattern_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2645
2646 for (i = n_sets_before_autoinc; i < n_sets; i++)
2647 cselib_invalidate_rtx (sets[i].dest);
2648
2649 /* If this is an asm, look for duplicate sets. This can happen when the
2650 user uses the same value as an output multiple times. This is valid
2651 if the outputs are not actually used thereafter. Treat this case as
2652 if the value isn't actually set. We do this by smashing the destination
2653 to pc_rtx, so that we won't record the value later. */
2654 if (n_sets >= 2 && asm_noperands (body) >= 0)
2655 {
2656 for (i = 0; i < n_sets; i++)
2657 {
2658 rtx dest = sets[i].dest;
2659 if (REG_P (dest) || MEM_P (dest))
2660 {
2661 int j;
2662 for (j = i + 1; j < n_sets; j++)
2663 if (rtx_equal_p (dest, sets[j].dest))
2664 {
2665 sets[i].dest = pc_rtx;
2666 sets[j].dest = pc_rtx;
2667 }
2668 }
2669 }
2670 }
2671
2672 /* Now enter the equivalences in our tables. */
2673 for (i = 0; i < n_sets; i++)
2674 {
2675 rtx dest = sets[i].dest;
2676 if (REG_P (dest)
2677 || (MEM_P (dest) && cselib_record_memory))
2678 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2679 }
2680
2681 /* And deal with STRICT_LOW_PART. */
2682 for (i = 0; i < n_strict_low_parts; i++)
2683 {
2684 if (! PRESERVED_VALUE_P (sets[n_sets + i].src_elt->val_rtx))
2685 continue;
2686 machine_mode dest_mode = GET_MODE (sets[n_sets + i].dest);
2687 cselib_val *v
2688 = cselib_lookup (sets[n_sets + i].dest, dest_mode, 1, VOIDmode);
2689 cselib_preserve_value (v);
2690 rtx r = gen_rtx_ZERO_EXTEND (dest_mode,
2691 sets[n_sets + i].src_elt->val_rtx);
2692 cselib_add_permanent_equiv (v, r, insn);
2693 }
2694 }
2695
2696 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2697
2698 bool
2699 fp_setter_insn (rtx_insn *insn)
2700 {
2701 rtx expr, pat = NULL_RTX;
2702
2703 if (!RTX_FRAME_RELATED_P (insn))
2704 return false;
2705
2706 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2707 if (expr)
2708 pat = XEXP (expr, 0);
2709 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2710 return false;
2711
2712 /* Don't return true for frame pointer restores in the epilogue. */
2713 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2714 return false;
2715 return true;
2716 }
2717
2718 /* Record the effects of INSN. */
2719
2720 void
2721 cselib_process_insn (rtx_insn *insn)
2722 {
2723 int i;
2724 rtx x;
2725
2726 cselib_current_insn = insn;
2727
2728 /* Forget everything at a CODE_LABEL or a setjmp. */
2729 if ((LABEL_P (insn)
2730 || (CALL_P (insn)
2731 && find_reg_note (insn, REG_SETJMP, NULL)))
2732 && !cselib_preserve_constants)
2733 {
2734 cselib_reset_table (next_uid);
2735 cselib_current_insn = NULL;
2736 return;
2737 }
2738
2739 if (! INSN_P (insn))
2740 {
2741 cselib_current_insn = NULL;
2742 return;
2743 }
2744
2745 /* If this is a call instruction, forget anything stored in a
2746 call clobbered register, or, if this is not a const call, in
2747 memory. */
2748 if (CALL_P (insn))
2749 {
2750 function_abi callee_abi = insn_callee_abi (insn);
2751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2752 if (elt_list *values = REG_VALUES (i))
2753 {
2754 /* If we know what mode the value was set in, check whether
2755 it is still available after the call in that mode. If we
2756 don't know the mode, we have to check for the worst-case
2757 scenario instead. */
2758 if (values->elt)
2759 {
2760 machine_mode mode = GET_MODE (values->elt->val_rtx);
2761 if (callee_abi.clobbers_reg_p (mode, i))
2762 cselib_invalidate_regno (i, mode);
2763 }
2764 else
2765 {
2766 if (callee_abi.clobbers_at_least_part_of_reg_p (i))
2767 cselib_invalidate_regno (i, reg_raw_mode[i]);
2768 }
2769 }
2770
2771 /* Since it is not clear how cselib is going to be used, be
2772 conservative here and treat looping pure or const functions
2773 as if they were regular functions. */
2774 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2775 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2776 cselib_invalidate_mem (callmem);
2777 else
2778 /* For const/pure calls, invalidate any argument slots because
2779 they are owned by the callee. */
2780 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2781 if (GET_CODE (XEXP (x, 0)) == USE
2782 && MEM_P (XEXP (XEXP (x, 0), 0)))
2783 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
2784 }
2785
2786 cselib_record_sets (insn);
2787
2788 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2789 after we have processed the insn. */
2790 if (CALL_P (insn))
2791 {
2792 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2793 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2794 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2795
2796 /* Flush everything on setjmp. */
2797 if (cselib_preserve_constants
2798 && find_reg_note (insn, REG_SETJMP, NULL))
2799 {
2800 cselib_preserve_only_values ();
2801 cselib_reset_table (next_uid);
2802 }
2803 }
2804
2805 /* On setter of the hard frame pointer if frame_pointer_needed,
2806 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2807 VALUEs are distinct. */
2808 if (reload_completed
2809 && frame_pointer_needed
2810 && fp_setter_insn (insn))
2811 cselib_invalidate_rtx (stack_pointer_rtx);
2812
2813 cselib_current_insn = NULL;
2814
2815 if (n_useless_values > MAX_USELESS_VALUES
2816 /* remove_useless_values is linear in the hash table size. Avoid
2817 quadratic behavior for very large hashtables with very few
2818 useless elements. */
2819 && ((unsigned int)n_useless_values
2820 > (cselib_hash_table->elements () - n_debug_values) / 4))
2821 remove_useless_values ();
2822 }
2823
2824 /* Initialize cselib for one pass. The caller must also call
2825 init_alias_analysis. */
2826
2827 void
2828 cselib_init (int record_what)
2829 {
2830 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2831 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2832 cselib_any_perm_equivs = false;
2833
2834 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2835 see canon_true_dependence. This is only created once. */
2836 if (! callmem)
2837 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2838
2839 cselib_nregs = max_reg_num ();
2840
2841 /* We preserve reg_values to allow expensive clearing of the whole thing.
2842 Reallocate it however if it happens to be too large. */
2843 if (!reg_values || reg_values_size < cselib_nregs
2844 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2845 {
2846 free (reg_values);
2847 /* Some space for newly emit instructions so we don't end up
2848 reallocating in between passes. */
2849 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2850 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2851 }
2852 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2853 n_used_regs = 0;
2854 /* FIXME: enable sanitization (PR87845) */
2855 cselib_hash_table
2856 = new hash_table<cselib_hasher> (31, /* ggc */ false,
2857 /* sanitize_eq_and_hash */ false);
2858 if (cselib_preserve_constants)
2859 cselib_preserved_hash_table
2860 = new hash_table<cselib_hasher> (31, /* ggc */ false,
2861 /* sanitize_eq_and_hash */ false);
2862 next_uid = 1;
2863 }
2864
2865 /* Called when the current user is done with cselib. */
2866
2867 void
2868 cselib_finish (void)
2869 {
2870 bool preserved = cselib_preserve_constants;
2871 cselib_discard_hook = NULL;
2872 cselib_preserve_constants = false;
2873 cselib_any_perm_equivs = false;
2874 cfa_base_preserved_val = NULL;
2875 cfa_base_preserved_regno = INVALID_REGNUM;
2876 elt_list_pool.release ();
2877 elt_loc_list_pool.release ();
2878 cselib_val_pool.release ();
2879 value_pool.release ();
2880 cselib_clear_table ();
2881 delete cselib_hash_table;
2882 cselib_hash_table = NULL;
2883 if (preserved)
2884 delete cselib_preserved_hash_table;
2885 cselib_preserved_hash_table = NULL;
2886 free (used_regs);
2887 used_regs = 0;
2888 n_useless_values = 0;
2889 n_useless_debug_values = 0;
2890 n_debug_values = 0;
2891 next_uid = 0;
2892 }
2893
2894 /* Dump the cselib_val *X to FILE *OUT. */
2895
2896 int
2897 dump_cselib_val (cselib_val **x, FILE *out)
2898 {
2899 cselib_val *v = *x;
2900 bool need_lf = true;
2901
2902 print_inline_rtx (out, v->val_rtx, 0);
2903
2904 if (v->locs)
2905 {
2906 struct elt_loc_list *l = v->locs;
2907 if (need_lf)
2908 {
2909 fputc ('\n', out);
2910 need_lf = false;
2911 }
2912 fputs (" locs:", out);
2913 do
2914 {
2915 if (l->setting_insn)
2916 fprintf (out, "\n from insn %i ",
2917 INSN_UID (l->setting_insn));
2918 else
2919 fprintf (out, "\n ");
2920 print_inline_rtx (out, l->loc, 4);
2921 }
2922 while ((l = l->next));
2923 fputc ('\n', out);
2924 }
2925 else
2926 {
2927 fputs (" no locs", out);
2928 need_lf = true;
2929 }
2930
2931 if (v->addr_list)
2932 {
2933 struct elt_list *e = v->addr_list;
2934 if (need_lf)
2935 {
2936 fputc ('\n', out);
2937 need_lf = false;
2938 }
2939 fputs (" addr list:", out);
2940 do
2941 {
2942 fputs ("\n ", out);
2943 print_inline_rtx (out, e->elt->val_rtx, 2);
2944 }
2945 while ((e = e->next));
2946 fputc ('\n', out);
2947 }
2948 else
2949 {
2950 fputs (" no addrs", out);
2951 need_lf = true;
2952 }
2953
2954 if (v->next_containing_mem == &dummy_val)
2955 fputs (" last mem\n", out);
2956 else if (v->next_containing_mem)
2957 {
2958 fputs (" next mem ", out);
2959 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2960 fputc ('\n', out);
2961 }
2962 else if (need_lf)
2963 fputc ('\n', out);
2964
2965 return 1;
2966 }
2967
2968 /* Dump to OUT everything in the CSELIB table. */
2969
2970 void
2971 dump_cselib_table (FILE *out)
2972 {
2973 fprintf (out, "cselib hash table:\n");
2974 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
2975 fprintf (out, "cselib preserved hash table:\n");
2976 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
2977 if (first_containing_mem != &dummy_val)
2978 {
2979 fputs ("first mem ", out);
2980 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2981 fputc ('\n', out);
2982 }
2983 fprintf (out, "next uid %i\n", next_uid);
2984 }
2985
2986 #include "gt-cselib.h"