usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static void clear_table (void);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, enum machine_mode, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
66
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
75
76 /* A table that enables us to look up elts by their value. */
77 static htab_t hash_table;
78
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn;
82 static bool cselib_current_insn_in_libcall;
83
84 /* Every new unknown value gets a unique number. */
85 static unsigned int next_unknown_value;
86
87 /* The number of registers we had when the varrays were last resized. */
88 static unsigned int cselib_nregs;
89
90 /* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92 static int n_useless_values;
93
94 /* Number of useless values before we remove them from the hash table. */
95 #define MAX_USELESS_VALUES 32
96
97 /* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
104 struct elt_list **reg_values;
105 unsigned int reg_values_size;
106 #define REG_VALUES(i) reg_values[i]
107
108 /* The largest number of hard regs used by any entry added to the
109 REG_VALUES table. Cleared on each clear_table() invocation. */
110 static unsigned int max_value_regs;
111
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in clear_table() for fast emptying. */
114 static unsigned int *used_regs;
115 static unsigned int n_used_regs;
116
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
119 static GTY(()) rtx callmem;
120
121 /* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123 static int values_became_useless;
124
125 /* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127 static cselib_val dummy_val;
128
129 /* Used to list all values that contain memory reference.
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132 static cselib_val *first_containing_mem = &dummy_val;
133 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
134 \f
135
136 /* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
138
139 static inline struct elt_list *
140 new_elt_list (struct elt_list *next, cselib_val *elt)
141 {
142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
144 el->next = next;
145 el->elt = elt;
146 return el;
147 }
148
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
151
152 static inline struct elt_loc_list *
153 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 {
155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
157 el->next = next;
158 el->loc = loc;
159 el->setting_insn = cselib_current_insn;
160 el->in_libcall = cselib_current_insn_in_libcall;
161 return el;
162 }
163
164 /* The elt_list at *PL is no longer needed. Unchain it and free its
165 storage. */
166
167 static inline void
168 unchain_one_elt_list (struct elt_list **pl)
169 {
170 struct elt_list *l = *pl;
171
172 *pl = l->next;
173 pool_free (elt_list_pool, l);
174 }
175
176 /* Likewise for elt_loc_lists. */
177
178 static void
179 unchain_one_elt_loc_list (struct elt_loc_list **pl)
180 {
181 struct elt_loc_list *l = *pl;
182
183 *pl = l->next;
184 pool_free (elt_loc_list_pool, l);
185 }
186
187 /* Likewise for cselib_vals. This also frees the addr_list associated with
188 V. */
189
190 static void
191 unchain_one_value (cselib_val *v)
192 {
193 while (v->addr_list)
194 unchain_one_elt_list (&v->addr_list);
195
196 pool_free (cselib_val_pool, v);
197 }
198
199 /* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
202
203 static void
204 clear_table (void)
205 {
206 unsigned int i;
207
208 for (i = 0; i < n_used_regs; i++)
209 REG_VALUES (used_regs[i]) = 0;
210
211 max_value_regs = 0;
212
213 n_used_regs = 0;
214
215 htab_empty (hash_table);
216
217 n_useless_values = 0;
218
219 next_unknown_value = 0;
220
221 first_containing_mem = &dummy_val;
222 }
223
224 /* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
228
229 static int
230 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
231 {
232 struct elt_loc_list *l;
233 const cselib_val *v = (const cselib_val *) entry;
234 rtx x = (rtx) x_arg;
235 enum machine_mode mode = GET_MODE (x);
236
237 gcc_assert (GET_CODE (x) != CONST_INT
238 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
239
240 if (mode != GET_MODE (v->u.val_rtx))
241 return 0;
242
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x) == CONST
245 && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247 x = XEXP (x, 0);
248
249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l = v->locs; l; l = l->next)
252 if (rtx_equal_for_cselib_p (l->loc, x))
253 return 1;
254
255 return 0;
256 }
257
258 /* The hash function for our hash table. The value is always computed with
259 cselib_hash_rtx when adding an element; this function just extracts the
260 hash value from a cselib_val structure. */
261
262 static hashval_t
263 get_value_hash (const void *entry)
264 {
265 const cselib_val *v = (const cselib_val *) entry;
266 return v->value;
267 }
268
269 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
272 removed. */
273
274 int
275 references_value_p (rtx x, int only_useless)
276 {
277 enum rtx_code code = GET_CODE (x);
278 const char *fmt = GET_RTX_FORMAT (code);
279 int i, j;
280
281 if (GET_CODE (x) == VALUE
282 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283 return 1;
284
285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
286 {
287 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 return 1;
289 else if (fmt[i] == 'E')
290 for (j = 0; j < XVECLEN (x, i); j++)
291 if (references_value_p (XVECEXP (x, i, j), only_useless))
292 return 1;
293 }
294
295 return 0;
296 }
297
298 /* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
300 htab_traverse. */
301
302 static int
303 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
304 {
305 cselib_val *v = (cselib_val *)*x;
306 struct elt_loc_list **p = &v->locs;
307 int had_locs = v->locs != 0;
308
309 while (*p)
310 {
311 if (references_value_p ((*p)->loc, 1))
312 unchain_one_elt_loc_list (p);
313 else
314 p = &(*p)->next;
315 }
316
317 if (had_locs && v->locs == 0)
318 {
319 n_useless_values++;
320 values_became_useless = 1;
321 }
322 return 1;
323 }
324
325 /* If X is a value with no locations, remove it from the hashtable. */
326
327 static int
328 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
329 {
330 cselib_val *v = (cselib_val *)*x;
331
332 if (v->locs == 0)
333 {
334 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
338 }
339
340 return 1;
341 }
342
343 /* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
345
346 static void
347 remove_useless_values (void)
348 {
349 cselib_val **p, *v;
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
352 do
353 {
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
356 }
357 while (values_became_useless);
358
359 /* Second pass: actually remove the values. */
360
361 p = &first_containing_mem;
362 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
363 if (v->locs)
364 {
365 *p = v;
366 p = &(*p)->next_containing_mem;
367 }
368 *p = &dummy_val;
369
370 htab_traverse (hash_table, discard_useless_values, 0);
371
372 gcc_assert (!n_useless_values);
373 }
374
375 /* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
379
380 enum machine_mode
381 cselib_reg_set_mode (rtx x)
382 {
383 if (!REG_P (x))
384 return GET_MODE (x);
385
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
389
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
391 }
392
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
395
396 int
397 rtx_equal_for_cselib_p (rtx x, rtx y)
398 {
399 enum rtx_code code;
400 const char *fmt;
401 int i;
402
403 if (REG_P (x) || MEM_P (x))
404 {
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406
407 if (e)
408 x = e->u.val_rtx;
409 }
410
411 if (REG_P (y) || MEM_P (y))
412 {
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414
415 if (e)
416 y = e->u.val_rtx;
417 }
418
419 if (x == y)
420 return 1;
421
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424
425 if (GET_CODE (x) == VALUE)
426 {
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
429
430 for (l = e->locs; l; l = l->next)
431 {
432 rtx t = l->loc;
433
434 /* Avoid infinite recursion. */
435 if (REG_P (t) || MEM_P (t))
436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
439 }
440
441 return 0;
442 }
443
444 if (GET_CODE (y) == VALUE)
445 {
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
448
449 for (l = e->locs; l; l = l->next)
450 {
451 rtx t = l->loc;
452
453 if (REG_P (t) || MEM_P (t))
454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
457 }
458
459 return 0;
460 }
461
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
464
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x) == LABEL_REF)
467 return XEXP (x, 0) == XEXP (y, 0);
468
469 code = GET_CODE (x);
470 fmt = GET_RTX_FORMAT (code);
471
472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
473 {
474 int j;
475
476 switch (fmt[i])
477 {
478 case 'w':
479 if (XWINT (x, i) != XWINT (y, i))
480 return 0;
481 break;
482
483 case 'n':
484 case 'i':
485 if (XINT (x, i) != XINT (y, i))
486 return 0;
487 break;
488
489 case 'V':
490 case 'E':
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x, i) != XVECLEN (y, i))
493 return 0;
494
495 /* And the corresponding elements must match. */
496 for (j = 0; j < XVECLEN (x, i); j++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
498 XVECEXP (y, i, j)))
499 return 0;
500 break;
501
502 case 'e':
503 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
504 return 0;
505 break;
506
507 case 'S':
508 case 's':
509 if (strcmp (XSTR (x, i), XSTR (y, i)))
510 return 0;
511 break;
512
513 case 'u':
514 /* These are just backpointers, so they don't matter. */
515 break;
516
517 case '0':
518 case 't':
519 break;
520
521 /* It is believed that rtx's at this level will never
522 contain anything but integers and other rtx's,
523 except for within LABEL_REFs and SYMBOL_REFs. */
524 default:
525 gcc_unreachable ();
526 }
527 }
528 return 1;
529 }
530
531 /* We need to pass down the mode of constants through the hash table
532 functions. For that purpose, wrap them in a CONST of the appropriate
533 mode. */
534 static rtx
535 wrap_constant (enum machine_mode mode, rtx x)
536 {
537 if (GET_CODE (x) != CONST_INT
538 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
539 return x;
540 gcc_assert (mode != VOIDmode);
541 return gen_rtx_CONST (mode, x);
542 }
543
544 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
545 For registers and memory locations, we look up their cselib_val structure
546 and return its VALUE element.
547 Possible reasons for return 0 are: the object is volatile, or we couldn't
548 find a register or memory location in the table and CREATE is zero. If
549 CREATE is nonzero, table elts are created for regs and mem.
550 MODE is used in hashing for CONST_INTs only;
551 otherwise the mode of X is used. */
552
553 static unsigned int
554 cselib_hash_rtx (rtx x, enum machine_mode mode, int create)
555 {
556 cselib_val *e;
557 int i, j;
558 enum rtx_code code;
559 const char *fmt;
560 unsigned int hash = 0;
561
562 code = GET_CODE (x);
563 hash += (unsigned) code + (unsigned) GET_MODE (x);
564
565 switch (code)
566 {
567 case MEM:
568 case REG:
569 e = cselib_lookup (x, GET_MODE (x), create);
570 if (! e)
571 return 0;
572
573 return e->value;
574
575 case CONST_INT:
576 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
577 return hash ? hash : (unsigned int) CONST_INT;
578
579 case CONST_DOUBLE:
580 /* This is like the general case, except that it only counts
581 the integers representing the constant. */
582 hash += (unsigned) code + (unsigned) GET_MODE (x);
583 if (GET_MODE (x) != VOIDmode)
584 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
585 else
586 hash += ((unsigned) CONST_DOUBLE_LOW (x)
587 + (unsigned) CONST_DOUBLE_HIGH (x));
588 return hash ? hash : (unsigned int) CONST_DOUBLE;
589
590 case CONST_VECTOR:
591 {
592 int units;
593 rtx elt;
594
595 units = CONST_VECTOR_NUNITS (x);
596
597 for (i = 0; i < units; ++i)
598 {
599 elt = CONST_VECTOR_ELT (x, i);
600 hash += cselib_hash_rtx (elt, GET_MODE (elt), 0);
601 }
602
603 return hash;
604 }
605
606 /* Assume there is only one rtx object for any given label. */
607 case LABEL_REF:
608 hash
609 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
610 return hash ? hash : (unsigned int) LABEL_REF;
611
612 case SYMBOL_REF:
613 hash
614 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
615 return hash ? hash : (unsigned int) SYMBOL_REF;
616
617 case PRE_DEC:
618 case PRE_INC:
619 case POST_DEC:
620 case POST_INC:
621 case POST_MODIFY:
622 case PRE_MODIFY:
623 case PC:
624 case CC0:
625 case CALL:
626 case UNSPEC_VOLATILE:
627 return 0;
628
629 case ASM_OPERANDS:
630 if (MEM_VOLATILE_P (x))
631 return 0;
632
633 break;
634
635 default:
636 break;
637 }
638
639 i = GET_RTX_LENGTH (code) - 1;
640 fmt = GET_RTX_FORMAT (code);
641 for (; i >= 0; i--)
642 {
643 switch (fmt[i])
644 {
645 case 'e':
646 {
647 rtx tem = XEXP (x, i);
648 unsigned int tem_hash = cselib_hash_rtx (tem, 0, create);
649
650 if (tem_hash == 0)
651 return 0;
652
653 hash += tem_hash;
654 }
655 break;
656 case 'E':
657 for (j = 0; j < XVECLEN (x, i); j++)
658 {
659 unsigned int tem_hash
660 = cselib_hash_rtx (XVECEXP (x, i, j), 0, create);
661
662 if (tem_hash == 0)
663 return 0;
664
665 hash += tem_hash;
666 }
667 break;
668
669 case 's':
670 {
671 const unsigned char *p = (const unsigned char *) XSTR (x, i);
672
673 if (p)
674 while (*p)
675 hash += *p++;
676 break;
677 }
678
679 case 'i':
680 hash += XINT (x, i);
681 break;
682
683 case '0':
684 case 't':
685 /* unused */
686 break;
687
688 default:
689 gcc_unreachable ();
690 }
691 }
692
693 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
694 }
695
696 /* Create a new value structure for VALUE and initialize it. The mode of the
697 value is MODE. */
698
699 static inline cselib_val *
700 new_cselib_val (unsigned int value, enum machine_mode mode)
701 {
702 cselib_val *e = pool_alloc (cselib_val_pool);
703
704 gcc_assert (value);
705
706 e->value = value;
707 /* We use custom method to allocate this RTL construct because it accounts
708 about 8% of overall memory usage. */
709 e->u.val_rtx = pool_alloc (value_pool);
710 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
711 PUT_CODE (e->u.val_rtx, VALUE);
712 PUT_MODE (e->u.val_rtx, mode);
713 CSELIB_VAL_PTR (e->u.val_rtx) = e;
714 e->addr_list = 0;
715 e->locs = 0;
716 e->next_containing_mem = 0;
717 return e;
718 }
719
720 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
721 contains the data at this address. X is a MEM that represents the
722 value. Update the two value structures to represent this situation. */
723
724 static void
725 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
726 {
727 struct elt_loc_list *l;
728
729 /* Avoid duplicates. */
730 for (l = mem_elt->locs; l; l = l->next)
731 if (MEM_P (l->loc)
732 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
733 return;
734
735 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
736 mem_elt->locs
737 = new_elt_loc_list (mem_elt->locs,
738 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
739 if (mem_elt->next_containing_mem == NULL)
740 {
741 mem_elt->next_containing_mem = first_containing_mem;
742 first_containing_mem = mem_elt;
743 }
744 }
745
746 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
747 If CREATE, make a new one if we haven't seen it before. */
748
749 static cselib_val *
750 cselib_lookup_mem (rtx x, int create)
751 {
752 enum machine_mode mode = GET_MODE (x);
753 void **slot;
754 cselib_val *addr;
755 cselib_val *mem_elt;
756 struct elt_list *l;
757
758 if (MEM_VOLATILE_P (x) || mode == BLKmode
759 || !cselib_record_memory
760 || (FLOAT_MODE_P (mode) && flag_float_store))
761 return 0;
762
763 /* Look up the value for the address. */
764 addr = cselib_lookup (XEXP (x, 0), mode, create);
765 if (! addr)
766 return 0;
767
768 /* Find a value that describes a value of our mode at that address. */
769 for (l = addr->addr_list; l; l = l->next)
770 if (GET_MODE (l->elt->u.val_rtx) == mode)
771 return l->elt;
772
773 if (! create)
774 return 0;
775
776 mem_elt = new_cselib_val (++next_unknown_value, mode);
777 add_mem_for_addr (addr, mem_elt, x);
778 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
779 mem_elt->value, INSERT);
780 *slot = mem_elt;
781 return mem_elt;
782 }
783
784 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
785 with VALUE expressions. This way, it becomes independent of changes
786 to registers and memory.
787 X isn't actually modified; if modifications are needed, new rtl is
788 allocated. However, the return value can share rtl with X. */
789
790 rtx
791 cselib_subst_to_values (rtx x)
792 {
793 enum rtx_code code = GET_CODE (x);
794 const char *fmt = GET_RTX_FORMAT (code);
795 cselib_val *e;
796 struct elt_list *l;
797 rtx copy = x;
798 int i;
799
800 switch (code)
801 {
802 case REG:
803 l = REG_VALUES (REGNO (x));
804 if (l && l->elt == NULL)
805 l = l->next;
806 for (; l; l = l->next)
807 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
808 return l->elt->u.val_rtx;
809
810 gcc_unreachable ();
811
812 case MEM:
813 e = cselib_lookup_mem (x, 0);
814 if (! e)
815 {
816 /* This happens for autoincrements. Assign a value that doesn't
817 match any other. */
818 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
819 }
820 return e->u.val_rtx;
821
822 case CONST_DOUBLE:
823 case CONST_VECTOR:
824 case CONST_INT:
825 return x;
826
827 case POST_INC:
828 case PRE_INC:
829 case POST_DEC:
830 case PRE_DEC:
831 case POST_MODIFY:
832 case PRE_MODIFY:
833 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
834 return e->u.val_rtx;
835
836 default:
837 break;
838 }
839
840 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
841 {
842 if (fmt[i] == 'e')
843 {
844 rtx t = cselib_subst_to_values (XEXP (x, i));
845
846 if (t != XEXP (x, i) && x == copy)
847 copy = shallow_copy_rtx (x);
848
849 XEXP (copy, i) = t;
850 }
851 else if (fmt[i] == 'E')
852 {
853 int j, k;
854
855 for (j = 0; j < XVECLEN (x, i); j++)
856 {
857 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
858
859 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
860 {
861 if (x == copy)
862 copy = shallow_copy_rtx (x);
863
864 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
865 for (k = 0; k < j; k++)
866 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
867 }
868
869 XVECEXP (copy, i, j) = t;
870 }
871 }
872 }
873
874 return copy;
875 }
876
877 /* Look up the rtl expression X in our tables and return the value it has.
878 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
879 we create a new one if possible, using mode MODE if X doesn't have a mode
880 (i.e. because it's a constant). */
881
882 cselib_val *
883 cselib_lookup (rtx x, enum machine_mode mode, int create)
884 {
885 void **slot;
886 cselib_val *e;
887 unsigned int hashval;
888
889 if (GET_MODE (x) != VOIDmode)
890 mode = GET_MODE (x);
891
892 if (GET_CODE (x) == VALUE)
893 return CSELIB_VAL_PTR (x);
894
895 if (REG_P (x))
896 {
897 struct elt_list *l;
898 unsigned int i = REGNO (x);
899
900 l = REG_VALUES (i);
901 if (l && l->elt == NULL)
902 l = l->next;
903 for (; l; l = l->next)
904 if (mode == GET_MODE (l->elt->u.val_rtx))
905 return l->elt;
906
907 if (! create)
908 return 0;
909
910 if (i < FIRST_PSEUDO_REGISTER)
911 {
912 unsigned int n = hard_regno_nregs[i][mode];
913
914 if (n > max_value_regs)
915 max_value_regs = n;
916 }
917
918 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
919 e->locs = new_elt_loc_list (e->locs, x);
920 if (REG_VALUES (i) == 0)
921 {
922 /* Maintain the invariant that the first entry of
923 REG_VALUES, if present, must be the value used to set the
924 register, or NULL. */
925 used_regs[n_used_regs++] = i;
926 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
927 }
928 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
929 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
930 *slot = e;
931 return e;
932 }
933
934 if (MEM_P (x))
935 return cselib_lookup_mem (x, create);
936
937 hashval = cselib_hash_rtx (x, mode, create);
938 /* Can't even create if hashing is not possible. */
939 if (! hashval)
940 return 0;
941
942 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
943 hashval, create ? INSERT : NO_INSERT);
944 if (slot == 0)
945 return 0;
946
947 e = (cselib_val *) *slot;
948 if (e)
949 return e;
950
951 e = new_cselib_val (hashval, mode);
952
953 /* We have to fill the slot before calling cselib_subst_to_values:
954 the hash table is inconsistent until we do so, and
955 cselib_subst_to_values will need to do lookups. */
956 *slot = (void *) e;
957 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
958 return e;
959 }
960
961 /* Invalidate any entries in reg_values that overlap REGNO. This is called
962 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
963 is used to determine how many hard registers are being changed. If MODE
964 is VOIDmode, then only REGNO is being changed; this is used when
965 invalidating call clobbered registers across a call. */
966
967 static void
968 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
969 {
970 unsigned int endregno;
971 unsigned int i;
972
973 /* If we see pseudos after reload, something is _wrong_. */
974 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
975 || reg_renumber[regno] < 0);
976
977 /* Determine the range of registers that must be invalidated. For
978 pseudos, only REGNO is affected. For hard regs, we must take MODE
979 into account, and we must also invalidate lower register numbers
980 if they contain values that overlap REGNO. */
981 if (regno < FIRST_PSEUDO_REGISTER)
982 {
983 gcc_assert (mode != VOIDmode);
984
985 if (regno < max_value_regs)
986 i = 0;
987 else
988 i = regno - max_value_regs;
989
990 endregno = regno + hard_regno_nregs[regno][mode];
991 }
992 else
993 {
994 i = regno;
995 endregno = regno + 1;
996 }
997
998 for (; i < endregno; i++)
999 {
1000 struct elt_list **l = &REG_VALUES (i);
1001
1002 /* Go through all known values for this reg; if it overlaps the range
1003 we're invalidating, remove the value. */
1004 while (*l)
1005 {
1006 cselib_val *v = (*l)->elt;
1007 struct elt_loc_list **p;
1008 unsigned int this_last = i;
1009
1010 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1011 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1012
1013 if (this_last < regno || v == NULL)
1014 {
1015 l = &(*l)->next;
1016 continue;
1017 }
1018
1019 /* We have an overlap. */
1020 if (*l == REG_VALUES (i))
1021 {
1022 /* Maintain the invariant that the first entry of
1023 REG_VALUES, if present, must be the value used to set
1024 the register, or NULL. This is also nice because
1025 then we won't push the same regno onto user_regs
1026 multiple times. */
1027 (*l)->elt = NULL;
1028 l = &(*l)->next;
1029 }
1030 else
1031 unchain_one_elt_list (l);
1032
1033 /* Now, we clear the mapping from value to reg. It must exist, so
1034 this code will crash intentionally if it doesn't. */
1035 for (p = &v->locs; ; p = &(*p)->next)
1036 {
1037 rtx x = (*p)->loc;
1038
1039 if (REG_P (x) && REGNO (x) == i)
1040 {
1041 unchain_one_elt_loc_list (p);
1042 break;
1043 }
1044 }
1045 if (v->locs == 0)
1046 n_useless_values++;
1047 }
1048 }
1049 }
1050 \f
1051 /* Return 1 if X has a value that can vary even between two
1052 executions of the program. 0 means X can be compared reliably
1053 against certain constants or near-constants. */
1054
1055 static int
1056 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1057 {
1058 /* We actually don't need to verify very hard. This is because
1059 if X has actually changed, we invalidate the memory anyway,
1060 so assume that all common memory addresses are
1061 invariant. */
1062 return 0;
1063 }
1064
1065 /* Invalidate any locations in the table which are changed because of a
1066 store to MEM_RTX. If this is called because of a non-const call
1067 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1068
1069 static void
1070 cselib_invalidate_mem (rtx mem_rtx)
1071 {
1072 cselib_val **vp, *v, *next;
1073 int num_mems = 0;
1074 rtx mem_addr;
1075
1076 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1077 mem_rtx = canon_rtx (mem_rtx);
1078
1079 vp = &first_containing_mem;
1080 for (v = *vp; v != &dummy_val; v = next)
1081 {
1082 bool has_mem = false;
1083 struct elt_loc_list **p = &v->locs;
1084 int had_locs = v->locs != 0;
1085
1086 while (*p)
1087 {
1088 rtx x = (*p)->loc;
1089 cselib_val *addr;
1090 struct elt_list **mem_chain;
1091
1092 /* MEMs may occur in locations only at the top level; below
1093 that every MEM or REG is substituted by its VALUE. */
1094 if (!MEM_P (x))
1095 {
1096 p = &(*p)->next;
1097 continue;
1098 }
1099 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1100 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1101 x, cselib_rtx_varies_p))
1102 {
1103 has_mem = true;
1104 num_mems++;
1105 p = &(*p)->next;
1106 continue;
1107 }
1108
1109 /* This one overlaps. */
1110 /* We must have a mapping from this MEM's address to the
1111 value (E). Remove that, too. */
1112 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1113 mem_chain = &addr->addr_list;
1114 for (;;)
1115 {
1116 if ((*mem_chain)->elt == v)
1117 {
1118 unchain_one_elt_list (mem_chain);
1119 break;
1120 }
1121
1122 mem_chain = &(*mem_chain)->next;
1123 }
1124
1125 unchain_one_elt_loc_list (p);
1126 }
1127
1128 if (had_locs && v->locs == 0)
1129 n_useless_values++;
1130
1131 next = v->next_containing_mem;
1132 if (has_mem)
1133 {
1134 *vp = v;
1135 vp = &(*vp)->next_containing_mem;
1136 }
1137 else
1138 v->next_containing_mem = NULL;
1139 }
1140 *vp = &dummy_val;
1141 }
1142
1143 /* Invalidate DEST, which is being assigned to or clobbered. */
1144
1145 void
1146 cselib_invalidate_rtx (rtx dest)
1147 {
1148 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1149 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1150 dest = XEXP (dest, 0);
1151
1152 if (REG_P (dest))
1153 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1154 else if (MEM_P (dest))
1155 cselib_invalidate_mem (dest);
1156
1157 /* Some machines don't define AUTO_INC_DEC, but they still use push
1158 instructions. We need to catch that case here in order to
1159 invalidate the stack pointer correctly. Note that invalidating
1160 the stack pointer is different from invalidating DEST. */
1161 if (push_operand (dest, GET_MODE (dest)))
1162 cselib_invalidate_rtx (stack_pointer_rtx);
1163 }
1164
1165 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1166
1167 static void
1168 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1169 void *data ATTRIBUTE_UNUSED)
1170 {
1171 cselib_invalidate_rtx (dest);
1172 }
1173
1174 /* Record the result of a SET instruction. DEST is being set; the source
1175 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1176 describes its address. */
1177
1178 static void
1179 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1180 {
1181 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1182
1183 if (src_elt == 0 || side_effects_p (dest))
1184 return;
1185
1186 if (dreg >= 0)
1187 {
1188 if (dreg < FIRST_PSEUDO_REGISTER)
1189 {
1190 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1191
1192 if (n > max_value_regs)
1193 max_value_regs = n;
1194 }
1195
1196 if (REG_VALUES (dreg) == 0)
1197 {
1198 used_regs[n_used_regs++] = dreg;
1199 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1200 }
1201 else
1202 {
1203 /* The register should have been invalidated. */
1204 gcc_assert (REG_VALUES (dreg)->elt == 0);
1205 REG_VALUES (dreg)->elt = src_elt;
1206 }
1207
1208 if (src_elt->locs == 0)
1209 n_useless_values--;
1210 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1211 }
1212 else if (MEM_P (dest) && dest_addr_elt != 0
1213 && cselib_record_memory)
1214 {
1215 if (src_elt->locs == 0)
1216 n_useless_values--;
1217 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1218 }
1219 }
1220
1221 /* Describe a single set that is part of an insn. */
1222 struct set
1223 {
1224 rtx src;
1225 rtx dest;
1226 cselib_val *src_elt;
1227 cselib_val *dest_addr_elt;
1228 };
1229
1230 /* There is no good way to determine how many elements there can be
1231 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1232 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1233
1234 /* Record the effects of any sets in INSN. */
1235 static void
1236 cselib_record_sets (rtx insn)
1237 {
1238 int n_sets = 0;
1239 int i;
1240 struct set sets[MAX_SETS];
1241 rtx body = PATTERN (insn);
1242 rtx cond = 0;
1243
1244 body = PATTERN (insn);
1245 if (GET_CODE (body) == COND_EXEC)
1246 {
1247 cond = COND_EXEC_TEST (body);
1248 body = COND_EXEC_CODE (body);
1249 }
1250
1251 /* Find all sets. */
1252 if (GET_CODE (body) == SET)
1253 {
1254 sets[0].src = SET_SRC (body);
1255 sets[0].dest = SET_DEST (body);
1256 n_sets = 1;
1257 }
1258 else if (GET_CODE (body) == PARALLEL)
1259 {
1260 /* Look through the PARALLEL and record the values being
1261 set, if possible. Also handle any CLOBBERs. */
1262 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1263 {
1264 rtx x = XVECEXP (body, 0, i);
1265
1266 if (GET_CODE (x) == SET)
1267 {
1268 sets[n_sets].src = SET_SRC (x);
1269 sets[n_sets].dest = SET_DEST (x);
1270 n_sets++;
1271 }
1272 }
1273 }
1274
1275 /* Look up the values that are read. Do this before invalidating the
1276 locations that are written. */
1277 for (i = 0; i < n_sets; i++)
1278 {
1279 rtx dest = sets[i].dest;
1280
1281 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1282 the low part after invalidating any knowledge about larger modes. */
1283 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1284 sets[i].dest = dest = XEXP (dest, 0);
1285
1286 /* We don't know how to record anything but REG or MEM. */
1287 if (REG_P (dest)
1288 || (MEM_P (dest) && cselib_record_memory))
1289 {
1290 rtx src = sets[i].src;
1291 if (cond)
1292 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1293 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1294 if (MEM_P (dest))
1295 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1296 else
1297 sets[i].dest_addr_elt = 0;
1298 }
1299 }
1300
1301 /* Invalidate all locations written by this insn. Note that the elts we
1302 looked up in the previous loop aren't affected, just some of their
1303 locations may go away. */
1304 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1305
1306 /* If this is an asm, look for duplicate sets. This can happen when the
1307 user uses the same value as an output multiple times. This is valid
1308 if the outputs are not actually used thereafter. Treat this case as
1309 if the value isn't actually set. We do this by smashing the destination
1310 to pc_rtx, so that we won't record the value later. */
1311 if (n_sets >= 2 && asm_noperands (body) >= 0)
1312 {
1313 for (i = 0; i < n_sets; i++)
1314 {
1315 rtx dest = sets[i].dest;
1316 if (REG_P (dest) || MEM_P (dest))
1317 {
1318 int j;
1319 for (j = i + 1; j < n_sets; j++)
1320 if (rtx_equal_p (dest, sets[j].dest))
1321 {
1322 sets[i].dest = pc_rtx;
1323 sets[j].dest = pc_rtx;
1324 }
1325 }
1326 }
1327 }
1328
1329 /* Now enter the equivalences in our tables. */
1330 for (i = 0; i < n_sets; i++)
1331 {
1332 rtx dest = sets[i].dest;
1333 if (REG_P (dest)
1334 || (MEM_P (dest) && cselib_record_memory))
1335 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1336 }
1337 }
1338
1339 /* Record the effects of INSN. */
1340
1341 void
1342 cselib_process_insn (rtx insn)
1343 {
1344 int i;
1345 rtx x;
1346
1347 if (find_reg_note (insn, REG_LIBCALL, NULL))
1348 cselib_current_insn_in_libcall = true;
1349 if (find_reg_note (insn, REG_RETVAL, NULL))
1350 cselib_current_insn_in_libcall = false;
1351 cselib_current_insn = insn;
1352
1353 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1354 if (LABEL_P (insn)
1355 || (CALL_P (insn)
1356 && find_reg_note (insn, REG_SETJMP, NULL))
1357 || (NONJUMP_INSN_P (insn)
1358 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1359 && MEM_VOLATILE_P (PATTERN (insn))))
1360 {
1361 clear_table ();
1362 return;
1363 }
1364
1365 if (! INSN_P (insn))
1366 {
1367 cselib_current_insn = 0;
1368 return;
1369 }
1370
1371 /* If this is a call instruction, forget anything stored in a
1372 call clobbered register, or, if this is not a const call, in
1373 memory. */
1374 if (CALL_P (insn))
1375 {
1376 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1377 if (call_used_regs[i])
1378 cselib_invalidate_regno (i, reg_raw_mode[i]);
1379
1380 if (! CONST_OR_PURE_CALL_P (insn))
1381 cselib_invalidate_mem (callmem);
1382 }
1383
1384 cselib_record_sets (insn);
1385
1386 #ifdef AUTO_INC_DEC
1387 /* Clobber any registers which appear in REG_INC notes. We
1388 could keep track of the changes to their values, but it is
1389 unlikely to help. */
1390 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1391 if (REG_NOTE_KIND (x) == REG_INC)
1392 cselib_invalidate_rtx (XEXP (x, 0));
1393 #endif
1394
1395 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1396 after we have processed the insn. */
1397 if (CALL_P (insn))
1398 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1399 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1400 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1401
1402 cselib_current_insn = 0;
1403
1404 if (n_useless_values > MAX_USELESS_VALUES)
1405 remove_useless_values ();
1406 }
1407
1408 /* Initialize cselib for one pass. The caller must also call
1409 init_alias_analysis. */
1410
1411 void
1412 cselib_init (bool record_memory)
1413 {
1414 elt_list_pool = create_alloc_pool ("elt_list",
1415 sizeof (struct elt_list), 10);
1416 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1417 sizeof (struct elt_loc_list), 10);
1418 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1419 sizeof (cselib_val), 10);
1420 value_pool = create_alloc_pool ("value",
1421 RTX_SIZE (VALUE), 100);
1422 cselib_record_memory = record_memory;
1423 /* This is only created once. */
1424 if (! callmem)
1425 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1426
1427 cselib_nregs = max_reg_num ();
1428
1429 /* We preserve reg_values to allow expensive clearing of the whole thing.
1430 Reallocate it however if it happens to be too large. */
1431 if (!reg_values || reg_values_size < cselib_nregs
1432 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1433 {
1434 if (reg_values)
1435 free (reg_values);
1436 /* Some space for newly emit instructions so we don't end up
1437 reallocating in between passes. */
1438 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1439 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1440 }
1441 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1442 n_used_regs = 0;
1443 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1444 cselib_current_insn_in_libcall = false;
1445 }
1446
1447 /* Called when the current user is done with cselib. */
1448
1449 void
1450 cselib_finish (void)
1451 {
1452 free_alloc_pool (elt_list_pool);
1453 free_alloc_pool (elt_loc_list_pool);
1454 free_alloc_pool (cselib_val_pool);
1455 free_alloc_pool (value_pool);
1456 clear_table ();
1457 htab_delete (hash_table);
1458 free (used_regs);
1459 used_regs = 0;
1460 hash_table = 0;
1461 n_useless_values = 0;
1462 next_unknown_value = 0;
1463 }
1464
1465 #include "gt-cselib.h"