tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static void clear_table (void);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int hash_rtx (rtx, enum machine_mode, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_invalidate_rtx (rtx, rtx, void *);
65 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
66 static void cselib_record_sets (rtx);
67
68 /* There are three ways in which cselib can look up an rtx:
69 - for a REG, the reg_values table (which is indexed by regno) is used
70 - for a MEM, we recursively look up its address and then follow the
71 addr_list of that value
72 - for everything else, we compute a hash value and go through the hash
73 table. Since different rtx's can still have the same hash value,
74 this involves walking the table entries for a given value and comparing
75 the locations of the entries with the rtx we are looking up. */
76
77 /* A table that enables us to look up elts by their value. */
78 static htab_t hash_table;
79
80 /* This is a global so we don't have to pass this through every function.
81 It is used in new_elt_loc_list to set SETTING_INSN. */
82 static rtx cselib_current_insn;
83 static bool cselib_current_insn_in_libcall;
84
85 /* Every new unknown value gets a unique number. */
86 static unsigned int next_unknown_value;
87
88 /* The number of registers we had when the varrays were last resized. */
89 static unsigned int cselib_nregs;
90
91 /* Count values without known locations. Whenever this grows too big, we
92 remove these useless values from the table. */
93 static int n_useless_values;
94
95 /* Number of useless values before we remove them from the hash table. */
96 #define MAX_USELESS_VALUES 32
97
98 /* This table maps from register number to values. It does not
99 contain pointers to cselib_val structures, but rather elt_lists.
100 The purpose is to be able to refer to the same register in
101 different modes. The first element of the list defines the mode in
102 which the register was set; if the mode is unknown or the value is
103 no longer valid in that mode, ELT will be NULL for the first
104 element. */
105 struct elt_list **reg_values;
106 unsigned int reg_values_size;
107 #define REG_VALUES(i) reg_values[i]
108
109 /* The largest number of hard regs used by any entry added to the
110 REG_VALUES table. Cleared on each clear_table() invocation. */
111 static unsigned int max_value_regs;
112
113 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
114 in clear_table() for fast emptying. */
115 static unsigned int *used_regs;
116 static unsigned int n_used_regs;
117
118 /* We pass this to cselib_invalidate_mem to invalidate all of
119 memory for a non-const call instruction. */
120 static GTY(()) rtx callmem;
121
122 /* Set by discard_useless_locs if it deleted the last location of any
123 value. */
124 static int values_became_useless;
125
126 /* Used as stop element of the containing_mem list so we can check
127 presence in the list by checking the next pointer. */
128 static cselib_val dummy_val;
129
130 /* Used to list all values that contain memory reference.
131 May or may not contain the useless values - the list is compacted
132 each time memory is invalidated. */
133 static cselib_val *first_containing_mem = &dummy_val;
134 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
135 \f
136
137 /* Allocate a struct elt_list and fill in its two elements with the
138 arguments. */
139
140 static inline struct elt_list *
141 new_elt_list (struct elt_list *next, cselib_val *elt)
142 {
143 struct elt_list *el;
144 el = pool_alloc (elt_list_pool);
145 el->next = next;
146 el->elt = elt;
147 return el;
148 }
149
150 /* Allocate a struct elt_loc_list and fill in its two elements with the
151 arguments. */
152
153 static inline struct elt_loc_list *
154 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
155 {
156 struct elt_loc_list *el;
157 el = pool_alloc (elt_loc_list_pool);
158 el->next = next;
159 el->loc = loc;
160 el->setting_insn = cselib_current_insn;
161 el->in_libcall = cselib_current_insn_in_libcall;
162 return el;
163 }
164
165 /* The elt_list at *PL is no longer needed. Unchain it and free its
166 storage. */
167
168 static inline void
169 unchain_one_elt_list (struct elt_list **pl)
170 {
171 struct elt_list *l = *pl;
172
173 *pl = l->next;
174 pool_free (elt_list_pool, l);
175 }
176
177 /* Likewise for elt_loc_lists. */
178
179 static void
180 unchain_one_elt_loc_list (struct elt_loc_list **pl)
181 {
182 struct elt_loc_list *l = *pl;
183
184 *pl = l->next;
185 pool_free (elt_loc_list_pool, l);
186 }
187
188 /* Likewise for cselib_vals. This also frees the addr_list associated with
189 V. */
190
191 static void
192 unchain_one_value (cselib_val *v)
193 {
194 while (v->addr_list)
195 unchain_one_elt_list (&v->addr_list);
196
197 pool_free (cselib_val_pool, v);
198 }
199
200 /* Remove all entries from the hash table. Also used during
201 initialization. If CLEAR_ALL isn't set, then only clear the entries
202 which are known to have been used. */
203
204 static void
205 clear_table (void)
206 {
207 unsigned int i;
208
209 for (i = 0; i < n_used_regs; i++)
210 REG_VALUES (used_regs[i]) = 0;
211
212 max_value_regs = 0;
213
214 n_used_regs = 0;
215
216 htab_empty (hash_table);
217
218 n_useless_values = 0;
219
220 next_unknown_value = 0;
221
222 first_containing_mem = &dummy_val;
223 }
224
225 /* The equality test for our hash table. The first argument ENTRY is a table
226 element (i.e. a cselib_val), while the second arg X is an rtx. We know
227 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
228 CONST of an appropriate mode. */
229
230 static int
231 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
232 {
233 struct elt_loc_list *l;
234 const cselib_val *v = (const cselib_val *) entry;
235 rtx x = (rtx) x_arg;
236 enum machine_mode mode = GET_MODE (x);
237
238 if (GET_CODE (x) == CONST_INT
239 || (mode == VOIDmode && GET_CODE (x) == CONST_DOUBLE))
240 abort ();
241 if (mode != GET_MODE (v->u.val_rtx))
242 return 0;
243
244 /* Unwrap X if necessary. */
245 if (GET_CODE (x) == CONST
246 && (GET_CODE (XEXP (x, 0)) == CONST_INT
247 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
248 x = XEXP (x, 0);
249
250 /* We don't guarantee that distinct rtx's have different hash values,
251 so we need to do a comparison. */
252 for (l = v->locs; l; l = l->next)
253 if (rtx_equal_for_cselib_p (l->loc, x))
254 return 1;
255
256 return 0;
257 }
258
259 /* The hash function for our hash table. The value is always computed with
260 hash_rtx when adding an element; this function just extracts the hash
261 value from a cselib_val structure. */
262
263 static hashval_t
264 get_value_hash (const void *entry)
265 {
266 const cselib_val *v = (const cselib_val *) entry;
267 return v->value;
268 }
269
270 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
271 only return true for values which point to a cselib_val whose value
272 element has been set to zero, which implies the cselib_val will be
273 removed. */
274
275 int
276 references_value_p (rtx x, int only_useless)
277 {
278 enum rtx_code code = GET_CODE (x);
279 const char *fmt = GET_RTX_FORMAT (code);
280 int i, j;
281
282 if (GET_CODE (x) == VALUE
283 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
284 return 1;
285
286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
287 {
288 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
289 return 1;
290 else if (fmt[i] == 'E')
291 for (j = 0; j < XVECLEN (x, i); j++)
292 if (references_value_p (XVECEXP (x, i, j), only_useless))
293 return 1;
294 }
295
296 return 0;
297 }
298
299 /* For all locations found in X, delete locations that reference useless
300 values (i.e. values without any location). Called through
301 htab_traverse. */
302
303 static int
304 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
305 {
306 cselib_val *v = (cselib_val *)*x;
307 struct elt_loc_list **p = &v->locs;
308 int had_locs = v->locs != 0;
309
310 while (*p)
311 {
312 if (references_value_p ((*p)->loc, 1))
313 unchain_one_elt_loc_list (p);
314 else
315 p = &(*p)->next;
316 }
317
318 if (had_locs && v->locs == 0)
319 {
320 n_useless_values++;
321 values_became_useless = 1;
322 }
323 return 1;
324 }
325
326 /* If X is a value with no locations, remove it from the hashtable. */
327
328 static int
329 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
330 {
331 cselib_val *v = (cselib_val *)*x;
332
333 if (v->locs == 0)
334 {
335 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
336 htab_clear_slot (hash_table, x);
337 unchain_one_value (v);
338 n_useless_values--;
339 }
340
341 return 1;
342 }
343
344 /* Clean out useless values (i.e. those which no longer have locations
345 associated with them) from the hash table. */
346
347 static void
348 remove_useless_values (void)
349 {
350 cselib_val **p, *v;
351 /* First pass: eliminate locations that reference the value. That in
352 turn can make more values useless. */
353 do
354 {
355 values_became_useless = 0;
356 htab_traverse (hash_table, discard_useless_locs, 0);
357 }
358 while (values_became_useless);
359
360 /* Second pass: actually remove the values. */
361
362 p = &first_containing_mem;
363 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
364 if (v->locs)
365 {
366 *p = v;
367 p = &(*p)->next_containing_mem;
368 }
369 *p = &dummy_val;
370
371 htab_traverse (hash_table, discard_useless_values, 0);
372
373 if (n_useless_values != 0)
374 abort ();
375 }
376
377 /* Return the mode in which a register was last set. If X is not a
378 register, return its mode. If the mode in which the register was
379 set is not known, or the value was already clobbered, return
380 VOIDmode. */
381
382 enum machine_mode
383 cselib_reg_set_mode (rtx x)
384 {
385 if (!REG_P (x))
386 return GET_MODE (x);
387
388 if (REG_VALUES (REGNO (x)) == NULL
389 || REG_VALUES (REGNO (x))->elt == NULL)
390 return VOIDmode;
391
392 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
393 }
394
395 /* Return nonzero if we can prove that X and Y contain the same value, taking
396 our gathered information into account. */
397
398 int
399 rtx_equal_for_cselib_p (rtx x, rtx y)
400 {
401 enum rtx_code code;
402 const char *fmt;
403 int i;
404
405 if (REG_P (x) || MEM_P (x))
406 {
407 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
408
409 if (e)
410 x = e->u.val_rtx;
411 }
412
413 if (REG_P (y) || MEM_P (y))
414 {
415 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
416
417 if (e)
418 y = e->u.val_rtx;
419 }
420
421 if (x == y)
422 return 1;
423
424 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
425 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
426
427 if (GET_CODE (x) == VALUE)
428 {
429 cselib_val *e = CSELIB_VAL_PTR (x);
430 struct elt_loc_list *l;
431
432 for (l = e->locs; l; l = l->next)
433 {
434 rtx t = l->loc;
435
436 /* Avoid infinite recursion. */
437 if (REG_P (t) || GET_CODE (t) == MEM)
438 continue;
439 else if (rtx_equal_for_cselib_p (t, y))
440 return 1;
441 }
442
443 return 0;
444 }
445
446 if (GET_CODE (y) == VALUE)
447 {
448 cselib_val *e = CSELIB_VAL_PTR (y);
449 struct elt_loc_list *l;
450
451 for (l = e->locs; l; l = l->next)
452 {
453 rtx t = l->loc;
454
455 if (REG_P (t) || GET_CODE (t) == MEM)
456 continue;
457 else if (rtx_equal_for_cselib_p (x, t))
458 return 1;
459 }
460
461 return 0;
462 }
463
464 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
465 return 0;
466
467 /* This won't be handled correctly by the code below. */
468 if (GET_CODE (x) == LABEL_REF)
469 return XEXP (x, 0) == XEXP (y, 0);
470
471 code = GET_CODE (x);
472 fmt = GET_RTX_FORMAT (code);
473
474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 {
476 int j;
477
478 switch (fmt[i])
479 {
480 case 'w':
481 if (XWINT (x, i) != XWINT (y, i))
482 return 0;
483 break;
484
485 case 'n':
486 case 'i':
487 if (XINT (x, i) != XINT (y, i))
488 return 0;
489 break;
490
491 case 'V':
492 case 'E':
493 /* Two vectors must have the same length. */
494 if (XVECLEN (x, i) != XVECLEN (y, i))
495 return 0;
496
497 /* And the corresponding elements must match. */
498 for (j = 0; j < XVECLEN (x, i); j++)
499 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
500 XVECEXP (y, i, j)))
501 return 0;
502 break;
503
504 case 'e':
505 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
506 return 0;
507 break;
508
509 case 'S':
510 case 's':
511 if (strcmp (XSTR (x, i), XSTR (y, i)))
512 return 0;
513 break;
514
515 case 'u':
516 /* These are just backpointers, so they don't matter. */
517 break;
518
519 case '0':
520 case 't':
521 break;
522
523 /* It is believed that rtx's at this level will never
524 contain anything but integers and other rtx's,
525 except for within LABEL_REFs and SYMBOL_REFs. */
526 default:
527 abort ();
528 }
529 }
530 return 1;
531 }
532
533 /* We need to pass down the mode of constants through the hash table
534 functions. For that purpose, wrap them in a CONST of the appropriate
535 mode. */
536 static rtx
537 wrap_constant (enum machine_mode mode, rtx x)
538 {
539 if (GET_CODE (x) != CONST_INT
540 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
541 return x;
542 if (mode == VOIDmode)
543 abort ();
544 return gen_rtx_CONST (mode, x);
545 }
546
547 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
548 For registers and memory locations, we look up their cselib_val structure
549 and return its VALUE element.
550 Possible reasons for return 0 are: the object is volatile, or we couldn't
551 find a register or memory location in the table and CREATE is zero. If
552 CREATE is nonzero, table elts are created for regs and mem.
553 MODE is used in hashing for CONST_INTs only;
554 otherwise the mode of X is used. */
555
556 static unsigned int
557 hash_rtx (rtx x, enum machine_mode mode, int create)
558 {
559 cselib_val *e;
560 int i, j;
561 enum rtx_code code;
562 const char *fmt;
563 unsigned int hash = 0;
564
565 code = GET_CODE (x);
566 hash += (unsigned) code + (unsigned) GET_MODE (x);
567
568 switch (code)
569 {
570 case MEM:
571 case REG:
572 e = cselib_lookup (x, GET_MODE (x), create);
573 if (! e)
574 return 0;
575
576 return e->value;
577
578 case CONST_INT:
579 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
580 return hash ? hash : (unsigned int) CONST_INT;
581
582 case CONST_DOUBLE:
583 /* This is like the general case, except that it only counts
584 the integers representing the constant. */
585 hash += (unsigned) code + (unsigned) GET_MODE (x);
586 if (GET_MODE (x) != VOIDmode)
587 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
588 else
589 hash += ((unsigned) CONST_DOUBLE_LOW (x)
590 + (unsigned) CONST_DOUBLE_HIGH (x));
591 return hash ? hash : (unsigned int) CONST_DOUBLE;
592
593 case CONST_VECTOR:
594 {
595 int units;
596 rtx elt;
597
598 units = CONST_VECTOR_NUNITS (x);
599
600 for (i = 0; i < units; ++i)
601 {
602 elt = CONST_VECTOR_ELT (x, i);
603 hash += hash_rtx (elt, GET_MODE (elt), 0);
604 }
605
606 return hash;
607 }
608
609 /* Assume there is only one rtx object for any given label. */
610 case LABEL_REF:
611 hash
612 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
613 return hash ? hash : (unsigned int) LABEL_REF;
614
615 case SYMBOL_REF:
616 hash
617 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
618 return hash ? hash : (unsigned int) SYMBOL_REF;
619
620 case PRE_DEC:
621 case PRE_INC:
622 case POST_DEC:
623 case POST_INC:
624 case POST_MODIFY:
625 case PRE_MODIFY:
626 case PC:
627 case CC0:
628 case CALL:
629 case UNSPEC_VOLATILE:
630 return 0;
631
632 case ASM_OPERANDS:
633 if (MEM_VOLATILE_P (x))
634 return 0;
635
636 break;
637
638 default:
639 break;
640 }
641
642 i = GET_RTX_LENGTH (code) - 1;
643 fmt = GET_RTX_FORMAT (code);
644 for (; i >= 0; i--)
645 {
646 if (fmt[i] == 'e')
647 {
648 rtx tem = XEXP (x, i);
649 unsigned int tem_hash = hash_rtx (tem, 0, create);
650
651 if (tem_hash == 0)
652 return 0;
653
654 hash += tem_hash;
655 }
656 else if (fmt[i] == 'E')
657 for (j = 0; j < XVECLEN (x, i); j++)
658 {
659 unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
660
661 if (tem_hash == 0)
662 return 0;
663
664 hash += tem_hash;
665 }
666 else if (fmt[i] == 's')
667 {
668 const unsigned char *p = (const unsigned char *) XSTR (x, i);
669
670 if (p)
671 while (*p)
672 hash += *p++;
673 }
674 else if (fmt[i] == 'i')
675 hash += XINT (x, i);
676 else if (fmt[i] == '0' || fmt[i] == 't')
677 /* unused */;
678 else
679 abort ();
680 }
681
682 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
683 }
684
685 /* Create a new value structure for VALUE and initialize it. The mode of the
686 value is MODE. */
687
688 static inline cselib_val *
689 new_cselib_val (unsigned int value, enum machine_mode mode)
690 {
691 cselib_val *e = pool_alloc (cselib_val_pool);
692
693 #ifdef ENABLE_CHECKING
694 if (value == 0)
695 abort ();
696 #endif
697
698 e->value = value;
699 /* We use custom method to allocate this RTL construct because it accounts
700 about 8% of overall memory usage. */
701 e->u.val_rtx = pool_alloc (value_pool);
702 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
703 PUT_CODE (e->u.val_rtx, VALUE);
704 PUT_MODE (e->u.val_rtx, mode);
705 CSELIB_VAL_PTR (e->u.val_rtx) = e;
706 e->addr_list = 0;
707 e->locs = 0;
708 e->next_containing_mem = 0;
709 return e;
710 }
711
712 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
713 contains the data at this address. X is a MEM that represents the
714 value. Update the two value structures to represent this situation. */
715
716 static void
717 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
718 {
719 struct elt_loc_list *l;
720
721 /* Avoid duplicates. */
722 for (l = mem_elt->locs; l; l = l->next)
723 if (GET_CODE (l->loc) == MEM
724 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
725 return;
726
727 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
728 mem_elt->locs
729 = new_elt_loc_list (mem_elt->locs,
730 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
731 if (mem_elt->next_containing_mem == NULL)
732 {
733 mem_elt->next_containing_mem = first_containing_mem;
734 first_containing_mem = mem_elt;
735 }
736 }
737
738 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
739 If CREATE, make a new one if we haven't seen it before. */
740
741 static cselib_val *
742 cselib_lookup_mem (rtx x, int create)
743 {
744 enum machine_mode mode = GET_MODE (x);
745 void **slot;
746 cselib_val *addr;
747 cselib_val *mem_elt;
748 struct elt_list *l;
749
750 if (MEM_VOLATILE_P (x) || mode == BLKmode
751 || !cselib_record_memory
752 || (FLOAT_MODE_P (mode) && flag_float_store))
753 return 0;
754
755 /* Look up the value for the address. */
756 addr = cselib_lookup (XEXP (x, 0), mode, create);
757 if (! addr)
758 return 0;
759
760 /* Find a value that describes a value of our mode at that address. */
761 for (l = addr->addr_list; l; l = l->next)
762 if (GET_MODE (l->elt->u.val_rtx) == mode)
763 return l->elt;
764
765 if (! create)
766 return 0;
767
768 mem_elt = new_cselib_val (++next_unknown_value, mode);
769 add_mem_for_addr (addr, mem_elt, x);
770 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
771 mem_elt->value, INSERT);
772 *slot = mem_elt;
773 return mem_elt;
774 }
775
776 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
777 with VALUE expressions. This way, it becomes independent of changes
778 to registers and memory.
779 X isn't actually modified; if modifications are needed, new rtl is
780 allocated. However, the return value can share rtl with X. */
781
782 rtx
783 cselib_subst_to_values (rtx x)
784 {
785 enum rtx_code code = GET_CODE (x);
786 const char *fmt = GET_RTX_FORMAT (code);
787 cselib_val *e;
788 struct elt_list *l;
789 rtx copy = x;
790 int i;
791
792 switch (code)
793 {
794 case REG:
795 l = REG_VALUES (REGNO (x));
796 if (l && l->elt == NULL)
797 l = l->next;
798 for (; l; l = l->next)
799 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
800 return l->elt->u.val_rtx;
801
802 abort ();
803
804 case MEM:
805 e = cselib_lookup_mem (x, 0);
806 if (! e)
807 {
808 /* This happens for autoincrements. Assign a value that doesn't
809 match any other. */
810 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
811 }
812 return e->u.val_rtx;
813
814 case CONST_DOUBLE:
815 case CONST_VECTOR:
816 case CONST_INT:
817 return x;
818
819 case POST_INC:
820 case PRE_INC:
821 case POST_DEC:
822 case PRE_DEC:
823 case POST_MODIFY:
824 case PRE_MODIFY:
825 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
826 return e->u.val_rtx;
827
828 default:
829 break;
830 }
831
832 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
833 {
834 if (fmt[i] == 'e')
835 {
836 rtx t = cselib_subst_to_values (XEXP (x, i));
837
838 if (t != XEXP (x, i) && x == copy)
839 copy = shallow_copy_rtx (x);
840
841 XEXP (copy, i) = t;
842 }
843 else if (fmt[i] == 'E')
844 {
845 int j, k;
846
847 for (j = 0; j < XVECLEN (x, i); j++)
848 {
849 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
850
851 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
852 {
853 if (x == copy)
854 copy = shallow_copy_rtx (x);
855
856 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
857 for (k = 0; k < j; k++)
858 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
859 }
860
861 XVECEXP (copy, i, j) = t;
862 }
863 }
864 }
865
866 return copy;
867 }
868
869 /* Look up the rtl expression X in our tables and return the value it has.
870 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
871 we create a new one if possible, using mode MODE if X doesn't have a mode
872 (i.e. because it's a constant). */
873
874 cselib_val *
875 cselib_lookup (rtx x, enum machine_mode mode, int create)
876 {
877 void **slot;
878 cselib_val *e;
879 unsigned int hashval;
880
881 if (GET_MODE (x) != VOIDmode)
882 mode = GET_MODE (x);
883
884 if (GET_CODE (x) == VALUE)
885 return CSELIB_VAL_PTR (x);
886
887 if (REG_P (x))
888 {
889 struct elt_list *l;
890 unsigned int i = REGNO (x);
891
892 l = REG_VALUES (i);
893 if (l && l->elt == NULL)
894 l = l->next;
895 for (; l; l = l->next)
896 if (mode == GET_MODE (l->elt->u.val_rtx))
897 return l->elt;
898
899 if (! create)
900 return 0;
901
902 if (i < FIRST_PSEUDO_REGISTER)
903 {
904 unsigned int n = hard_regno_nregs[i][mode];
905
906 if (n > max_value_regs)
907 max_value_regs = n;
908 }
909
910 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
911 e->locs = new_elt_loc_list (e->locs, x);
912 if (REG_VALUES (i) == 0)
913 {
914 /* Maintain the invariant that the first entry of
915 REG_VALUES, if present, must be the value used to set the
916 register, or NULL. */
917 used_regs[n_used_regs++] = i;
918 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
919 }
920 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
921 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
922 *slot = e;
923 return e;
924 }
925
926 if (GET_CODE (x) == MEM)
927 return cselib_lookup_mem (x, create);
928
929 hashval = hash_rtx (x, mode, create);
930 /* Can't even create if hashing is not possible. */
931 if (! hashval)
932 return 0;
933
934 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
935 hashval, create ? INSERT : NO_INSERT);
936 if (slot == 0)
937 return 0;
938
939 e = (cselib_val *) *slot;
940 if (e)
941 return e;
942
943 e = new_cselib_val (hashval, mode);
944
945 /* We have to fill the slot before calling cselib_subst_to_values:
946 the hash table is inconsistent until we do so, and
947 cselib_subst_to_values will need to do lookups. */
948 *slot = (void *) e;
949 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
950 return e;
951 }
952
953 /* Invalidate any entries in reg_values that overlap REGNO. This is called
954 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
955 is used to determine how many hard registers are being changed. If MODE
956 is VOIDmode, then only REGNO is being changed; this is used when
957 invalidating call clobbered registers across a call. */
958
959 static void
960 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
961 {
962 unsigned int endregno;
963 unsigned int i;
964
965 /* If we see pseudos after reload, something is _wrong_. */
966 if (reload_completed && regno >= FIRST_PSEUDO_REGISTER
967 && reg_renumber[regno] >= 0)
968 abort ();
969
970 /* Determine the range of registers that must be invalidated. For
971 pseudos, only REGNO is affected. For hard regs, we must take MODE
972 into account, and we must also invalidate lower register numbers
973 if they contain values that overlap REGNO. */
974 if (regno < FIRST_PSEUDO_REGISTER)
975 {
976 if (mode == VOIDmode)
977 abort ();
978
979 if (regno < max_value_regs)
980 i = 0;
981 else
982 i = regno - max_value_regs;
983
984 endregno = regno + hard_regno_nregs[regno][mode];
985 }
986 else
987 {
988 i = regno;
989 endregno = regno + 1;
990 }
991
992 for (; i < endregno; i++)
993 {
994 struct elt_list **l = &REG_VALUES (i);
995
996 /* Go through all known values for this reg; if it overlaps the range
997 we're invalidating, remove the value. */
998 while (*l)
999 {
1000 cselib_val *v = (*l)->elt;
1001 struct elt_loc_list **p;
1002 unsigned int this_last = i;
1003
1004 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1005 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1006
1007 if (this_last < regno || v == NULL)
1008 {
1009 l = &(*l)->next;
1010 continue;
1011 }
1012
1013 /* We have an overlap. */
1014 if (*l == REG_VALUES (i))
1015 {
1016 /* Maintain the invariant that the first entry of
1017 REG_VALUES, if present, must be the value used to set
1018 the register, or NULL. This is also nice because
1019 then we won't push the same regno onto user_regs
1020 multiple times. */
1021 (*l)->elt = NULL;
1022 l = &(*l)->next;
1023 }
1024 else
1025 unchain_one_elt_list (l);
1026
1027 /* Now, we clear the mapping from value to reg. It must exist, so
1028 this code will crash intentionally if it doesn't. */
1029 for (p = &v->locs; ; p = &(*p)->next)
1030 {
1031 rtx x = (*p)->loc;
1032
1033 if (REG_P (x) && REGNO (x) == i)
1034 {
1035 unchain_one_elt_loc_list (p);
1036 break;
1037 }
1038 }
1039 if (v->locs == 0)
1040 n_useless_values++;
1041 }
1042 }
1043 }
1044 \f
1045 /* Return 1 if X has a value that can vary even between two
1046 executions of the program. 0 means X can be compared reliably
1047 against certain constants or near-constants. */
1048
1049 static int
1050 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1051 {
1052 /* We actually don't need to verify very hard. This is because
1053 if X has actually changed, we invalidate the memory anyway,
1054 so assume that all common memory addresses are
1055 invariant. */
1056 return 0;
1057 }
1058
1059 /* Invalidate any locations in the table which are changed because of a
1060 store to MEM_RTX. If this is called because of a non-const call
1061 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1062
1063 static void
1064 cselib_invalidate_mem (rtx mem_rtx)
1065 {
1066 cselib_val **vp, *v, *next;
1067 int num_mems = 0;
1068 rtx mem_addr;
1069
1070 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1071 mem_rtx = canon_rtx (mem_rtx);
1072
1073 vp = &first_containing_mem;
1074 for (v = *vp; v != &dummy_val; v = next)
1075 {
1076 bool has_mem = false;
1077 struct elt_loc_list **p = &v->locs;
1078 int had_locs = v->locs != 0;
1079
1080 while (*p)
1081 {
1082 rtx x = (*p)->loc;
1083 cselib_val *addr;
1084 struct elt_list **mem_chain;
1085
1086 /* MEMs may occur in locations only at the top level; below
1087 that every MEM or REG is substituted by its VALUE. */
1088 if (GET_CODE (x) != MEM)
1089 {
1090 p = &(*p)->next;
1091 continue;
1092 }
1093 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1094 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1095 x, cselib_rtx_varies_p))
1096 {
1097 has_mem = true;
1098 num_mems++;
1099 p = &(*p)->next;
1100 continue;
1101 }
1102
1103 /* This one overlaps. */
1104 /* We must have a mapping from this MEM's address to the
1105 value (E). Remove that, too. */
1106 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1107 mem_chain = &addr->addr_list;
1108 for (;;)
1109 {
1110 if ((*mem_chain)->elt == v)
1111 {
1112 unchain_one_elt_list (mem_chain);
1113 break;
1114 }
1115
1116 mem_chain = &(*mem_chain)->next;
1117 }
1118
1119 unchain_one_elt_loc_list (p);
1120 }
1121
1122 if (had_locs && v->locs == 0)
1123 n_useless_values++;
1124
1125 next = v->next_containing_mem;
1126 if (has_mem)
1127 {
1128 *vp = v;
1129 vp = &(*vp)->next_containing_mem;
1130 }
1131 else
1132 v->next_containing_mem = NULL;
1133 }
1134 *vp = &dummy_val;
1135 }
1136
1137 /* Invalidate DEST, which is being assigned to or clobbered. The second and
1138 the third parameter exist so that this function can be passed to
1139 note_stores; they are ignored. */
1140
1141 static void
1142 cselib_invalidate_rtx (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1143 void *data ATTRIBUTE_UNUSED)
1144 {
1145 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1146 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1147 dest = XEXP (dest, 0);
1148
1149 if (REG_P (dest))
1150 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1151 else if (GET_CODE (dest) == MEM)
1152 cselib_invalidate_mem (dest);
1153
1154 /* Some machines don't define AUTO_INC_DEC, but they still use push
1155 instructions. We need to catch that case here in order to
1156 invalidate the stack pointer correctly. Note that invalidating
1157 the stack pointer is different from invalidating DEST. */
1158 if (push_operand (dest, GET_MODE (dest)))
1159 cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
1160 }
1161
1162 /* Record the result of a SET instruction. DEST is being set; the source
1163 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1164 describes its address. */
1165
1166 static void
1167 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1168 {
1169 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1170
1171 if (src_elt == 0 || side_effects_p (dest))
1172 return;
1173
1174 if (dreg >= 0)
1175 {
1176 if (dreg < FIRST_PSEUDO_REGISTER)
1177 {
1178 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1179
1180 if (n > max_value_regs)
1181 max_value_regs = n;
1182 }
1183
1184 if (REG_VALUES (dreg) == 0)
1185 {
1186 used_regs[n_used_regs++] = dreg;
1187 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1188 }
1189 else
1190 {
1191 if (REG_VALUES (dreg)->elt == 0)
1192 REG_VALUES (dreg)->elt = src_elt;
1193 else
1194 /* The register should have been invalidated. */
1195 abort ();
1196 }
1197
1198 if (src_elt->locs == 0)
1199 n_useless_values--;
1200 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1201 }
1202 else if (GET_CODE (dest) == MEM && dest_addr_elt != 0
1203 && cselib_record_memory)
1204 {
1205 if (src_elt->locs == 0)
1206 n_useless_values--;
1207 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1208 }
1209 }
1210
1211 /* Describe a single set that is part of an insn. */
1212 struct set
1213 {
1214 rtx src;
1215 rtx dest;
1216 cselib_val *src_elt;
1217 cselib_val *dest_addr_elt;
1218 };
1219
1220 /* There is no good way to determine how many elements there can be
1221 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1222 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1223
1224 /* Record the effects of any sets in INSN. */
1225 static void
1226 cselib_record_sets (rtx insn)
1227 {
1228 int n_sets = 0;
1229 int i;
1230 struct set sets[MAX_SETS];
1231 rtx body = PATTERN (insn);
1232 rtx cond = 0;
1233
1234 body = PATTERN (insn);
1235 if (GET_CODE (body) == COND_EXEC)
1236 {
1237 cond = COND_EXEC_TEST (body);
1238 body = COND_EXEC_CODE (body);
1239 }
1240
1241 /* Find all sets. */
1242 if (GET_CODE (body) == SET)
1243 {
1244 sets[0].src = SET_SRC (body);
1245 sets[0].dest = SET_DEST (body);
1246 n_sets = 1;
1247 }
1248 else if (GET_CODE (body) == PARALLEL)
1249 {
1250 /* Look through the PARALLEL and record the values being
1251 set, if possible. Also handle any CLOBBERs. */
1252 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1253 {
1254 rtx x = XVECEXP (body, 0, i);
1255
1256 if (GET_CODE (x) == SET)
1257 {
1258 sets[n_sets].src = SET_SRC (x);
1259 sets[n_sets].dest = SET_DEST (x);
1260 n_sets++;
1261 }
1262 }
1263 }
1264
1265 /* Look up the values that are read. Do this before invalidating the
1266 locations that are written. */
1267 for (i = 0; i < n_sets; i++)
1268 {
1269 rtx dest = sets[i].dest;
1270
1271 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1272 the low part after invalidating any knowledge about larger modes. */
1273 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1274 sets[i].dest = dest = XEXP (dest, 0);
1275
1276 /* We don't know how to record anything but REG or MEM. */
1277 if (REG_P (dest)
1278 || (GET_CODE (dest) == MEM && cselib_record_memory))
1279 {
1280 rtx src = sets[i].src;
1281 if (cond)
1282 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1283 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1284 if (GET_CODE (dest) == MEM)
1285 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1286 else
1287 sets[i].dest_addr_elt = 0;
1288 }
1289 }
1290
1291 /* Invalidate all locations written by this insn. Note that the elts we
1292 looked up in the previous loop aren't affected, just some of their
1293 locations may go away. */
1294 note_stores (body, cselib_invalidate_rtx, NULL);
1295
1296 /* If this is an asm, look for duplicate sets. This can happen when the
1297 user uses the same value as an output multiple times. This is valid
1298 if the outputs are not actually used thereafter. Treat this case as
1299 if the value isn't actually set. We do this by smashing the destination
1300 to pc_rtx, so that we won't record the value later. */
1301 if (n_sets >= 2 && asm_noperands (body) >= 0)
1302 {
1303 for (i = 0; i < n_sets; i++)
1304 {
1305 rtx dest = sets[i].dest;
1306 if (REG_P (dest) || GET_CODE (dest) == MEM)
1307 {
1308 int j;
1309 for (j = i + 1; j < n_sets; j++)
1310 if (rtx_equal_p (dest, sets[j].dest))
1311 {
1312 sets[i].dest = pc_rtx;
1313 sets[j].dest = pc_rtx;
1314 }
1315 }
1316 }
1317 }
1318
1319 /* Now enter the equivalences in our tables. */
1320 for (i = 0; i < n_sets; i++)
1321 {
1322 rtx dest = sets[i].dest;
1323 if (REG_P (dest)
1324 || (GET_CODE (dest) == MEM && cselib_record_memory))
1325 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1326 }
1327 }
1328
1329 /* Record the effects of INSN. */
1330
1331 void
1332 cselib_process_insn (rtx insn)
1333 {
1334 int i;
1335 rtx x;
1336
1337 if (find_reg_note (insn, REG_LIBCALL, NULL))
1338 cselib_current_insn_in_libcall = true;
1339 if (find_reg_note (insn, REG_RETVAL, NULL))
1340 cselib_current_insn_in_libcall = false;
1341 cselib_current_insn = insn;
1342
1343 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1344 if (GET_CODE (insn) == CODE_LABEL
1345 || (GET_CODE (insn) == CALL_INSN
1346 && find_reg_note (insn, REG_SETJMP, NULL))
1347 || (GET_CODE (insn) == INSN
1348 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1349 && MEM_VOLATILE_P (PATTERN (insn))))
1350 {
1351 clear_table ();
1352 return;
1353 }
1354
1355 if (! INSN_P (insn))
1356 {
1357 cselib_current_insn = 0;
1358 return;
1359 }
1360
1361 /* If this is a call instruction, forget anything stored in a
1362 call clobbered register, or, if this is not a const call, in
1363 memory. */
1364 if (GET_CODE (insn) == CALL_INSN)
1365 {
1366 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1367 if (call_used_regs[i])
1368 cselib_invalidate_regno (i, reg_raw_mode[i]);
1369
1370 if (! CONST_OR_PURE_CALL_P (insn))
1371 cselib_invalidate_mem (callmem);
1372 }
1373
1374 cselib_record_sets (insn);
1375
1376 #ifdef AUTO_INC_DEC
1377 /* Clobber any registers which appear in REG_INC notes. We
1378 could keep track of the changes to their values, but it is
1379 unlikely to help. */
1380 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1381 if (REG_NOTE_KIND (x) == REG_INC)
1382 cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
1383 #endif
1384
1385 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1386 after we have processed the insn. */
1387 if (GET_CODE (insn) == CALL_INSN)
1388 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1389 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1390 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, NULL);
1391
1392 cselib_current_insn = 0;
1393
1394 if (n_useless_values > MAX_USELESS_VALUES)
1395 remove_useless_values ();
1396 }
1397
1398 /* Initialize cselib for one pass. The caller must also call
1399 init_alias_analysis. */
1400
1401 void
1402 cselib_init (bool record_memory)
1403 {
1404 elt_list_pool = create_alloc_pool ("elt_list",
1405 sizeof (struct elt_list), 10);
1406 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1407 sizeof (struct elt_loc_list), 10);
1408 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1409 sizeof (cselib_val), 10);
1410 value_pool = create_alloc_pool ("value",
1411 RTX_SIZE (VALUE), 100);
1412 cselib_record_memory = record_memory;
1413 /* This is only created once. */
1414 if (! callmem)
1415 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1416
1417 cselib_nregs = max_reg_num ();
1418
1419 /* We preserve reg_values to allow expensive clearing of the whole thing.
1420 Reallocate it however if it happens to be too large. */
1421 if (!reg_values || reg_values_size < cselib_nregs
1422 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1423 {
1424 if (reg_values)
1425 free (reg_values);
1426 /* Some space for newly emit instructions so we don't end up
1427 reallocating in between passes. */
1428 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1429 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1430 }
1431 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1432 n_used_regs = 0;
1433 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1434 cselib_current_insn_in_libcall = false;
1435 }
1436
1437 /* Called when the current user is done with cselib. */
1438
1439 void
1440 cselib_finish (void)
1441 {
1442 free_alloc_pool (elt_list_pool);
1443 free_alloc_pool (elt_loc_list_pool);
1444 free_alloc_pool (cselib_val_pool);
1445 free_alloc_pool (value_pool);
1446 clear_table ();
1447 htab_delete (hash_table);
1448 free (used_regs);
1449 used_regs = 0;
1450 hash_table = 0;
1451 n_useless_values = 0;
1452 next_unknown_value = 0;
1453 }
1454
1455 #include "gt-cselib.h"