re PR rtl-optimization/22445 (Optimizations done by cselib depend on pointer values)
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45
46 static bool cselib_record_memory;
47 static int entry_and_rtx_equal_p (const void *, const void *);
48 static hashval_t get_value_hash (const void *);
49 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
50 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
51 static void unchain_one_value (cselib_val *);
52 static void unchain_one_elt_list (struct elt_list **);
53 static void unchain_one_elt_loc_list (struct elt_loc_list **);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
66
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
75
76 /* A table that enables us to look up elts by their value. */
77 static htab_t hash_table;
78
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn;
82 static bool cselib_current_insn_in_libcall;
83
84 /* Every new unknown value gets a unique number. */
85 static unsigned int next_unknown_value;
86
87 /* The number of registers we had when the varrays were last resized. */
88 static unsigned int cselib_nregs;
89
90 /* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92 static int n_useless_values;
93
94 /* Number of useless values before we remove them from the hash table. */
95 #define MAX_USELESS_VALUES 32
96
97 /* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
104 static struct elt_list **reg_values;
105 static unsigned int reg_values_size;
106 #define REG_VALUES(i) reg_values[i]
107
108 /* The largest number of hard regs used by any entry added to the
109 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
110 static unsigned int max_value_regs;
111
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in cselib_clear_table() for fast emptying. */
114 static unsigned int *used_regs;
115 static unsigned int n_used_regs;
116
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
119 static GTY(()) rtx callmem;
120
121 /* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123 static int values_became_useless;
124
125 /* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127 static cselib_val dummy_val;
128
129 /* Used to list all values that contain memory reference.
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132 static cselib_val *first_containing_mem = &dummy_val;
133 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
134 \f
135
136 /* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
138
139 static inline struct elt_list *
140 new_elt_list (struct elt_list *next, cselib_val *elt)
141 {
142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
144 el->next = next;
145 el->elt = elt;
146 return el;
147 }
148
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
151
152 static inline struct elt_loc_list *
153 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 {
155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
157 el->next = next;
158 el->loc = loc;
159 el->setting_insn = cselib_current_insn;
160 el->in_libcall = cselib_current_insn_in_libcall;
161 return el;
162 }
163
164 /* The elt_list at *PL is no longer needed. Unchain it and free its
165 storage. */
166
167 static inline void
168 unchain_one_elt_list (struct elt_list **pl)
169 {
170 struct elt_list *l = *pl;
171
172 *pl = l->next;
173 pool_free (elt_list_pool, l);
174 }
175
176 /* Likewise for elt_loc_lists. */
177
178 static void
179 unchain_one_elt_loc_list (struct elt_loc_list **pl)
180 {
181 struct elt_loc_list *l = *pl;
182
183 *pl = l->next;
184 pool_free (elt_loc_list_pool, l);
185 }
186
187 /* Likewise for cselib_vals. This also frees the addr_list associated with
188 V. */
189
190 static void
191 unchain_one_value (cselib_val *v)
192 {
193 while (v->addr_list)
194 unchain_one_elt_list (&v->addr_list);
195
196 pool_free (cselib_val_pool, v);
197 }
198
199 /* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
202
203 void
204 cselib_clear_table (void)
205 {
206 unsigned int i;
207
208 for (i = 0; i < n_used_regs; i++)
209 REG_VALUES (used_regs[i]) = 0;
210
211 max_value_regs = 0;
212
213 n_used_regs = 0;
214
215 htab_empty (hash_table);
216
217 n_useless_values = 0;
218
219 next_unknown_value = 0;
220
221 first_containing_mem = &dummy_val;
222 }
223
224 /* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
228
229 static int
230 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
231 {
232 struct elt_loc_list *l;
233 const cselib_val *v = (const cselib_val *) entry;
234 rtx x = (rtx) x_arg;
235 enum machine_mode mode = GET_MODE (x);
236
237 gcc_assert (GET_CODE (x) != CONST_INT
238 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
239
240 if (mode != GET_MODE (v->u.val_rtx))
241 return 0;
242
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x) == CONST
245 && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247 x = XEXP (x, 0);
248
249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l = v->locs; l; l = l->next)
252 if (rtx_equal_for_cselib_p (l->loc, x))
253 return 1;
254
255 return 0;
256 }
257
258 /* The hash function for our hash table. The value is always computed with
259 cselib_hash_rtx when adding an element; this function just extracts the
260 hash value from a cselib_val structure. */
261
262 static hashval_t
263 get_value_hash (const void *entry)
264 {
265 const cselib_val *v = (const cselib_val *) entry;
266 return v->value;
267 }
268
269 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
272 removed. */
273
274 int
275 references_value_p (rtx x, int only_useless)
276 {
277 enum rtx_code code = GET_CODE (x);
278 const char *fmt = GET_RTX_FORMAT (code);
279 int i, j;
280
281 if (GET_CODE (x) == VALUE
282 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283 return 1;
284
285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
286 {
287 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 return 1;
289 else if (fmt[i] == 'E')
290 for (j = 0; j < XVECLEN (x, i); j++)
291 if (references_value_p (XVECEXP (x, i, j), only_useless))
292 return 1;
293 }
294
295 return 0;
296 }
297
298 /* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
300 htab_traverse. */
301
302 static int
303 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
304 {
305 cselib_val *v = (cselib_val *)*x;
306 struct elt_loc_list **p = &v->locs;
307 int had_locs = v->locs != 0;
308
309 while (*p)
310 {
311 if (references_value_p ((*p)->loc, 1))
312 unchain_one_elt_loc_list (p);
313 else
314 p = &(*p)->next;
315 }
316
317 if (had_locs && v->locs == 0)
318 {
319 n_useless_values++;
320 values_became_useless = 1;
321 }
322 return 1;
323 }
324
325 /* If X is a value with no locations, remove it from the hashtable. */
326
327 static int
328 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
329 {
330 cselib_val *v = (cselib_val *)*x;
331
332 if (v->locs == 0)
333 {
334 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
338 }
339
340 return 1;
341 }
342
343 /* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
345
346 static void
347 remove_useless_values (void)
348 {
349 cselib_val **p, *v;
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
352 do
353 {
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
356 }
357 while (values_became_useless);
358
359 /* Second pass: actually remove the values. */
360
361 p = &first_containing_mem;
362 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
363 if (v->locs)
364 {
365 *p = v;
366 p = &(*p)->next_containing_mem;
367 }
368 *p = &dummy_val;
369
370 htab_traverse (hash_table, discard_useless_values, 0);
371
372 gcc_assert (!n_useless_values);
373 }
374
375 /* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
379
380 enum machine_mode
381 cselib_reg_set_mode (rtx x)
382 {
383 if (!REG_P (x))
384 return GET_MODE (x);
385
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
389
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
391 }
392
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
395
396 int
397 rtx_equal_for_cselib_p (rtx x, rtx y)
398 {
399 enum rtx_code code;
400 const char *fmt;
401 int i;
402
403 if (REG_P (x) || MEM_P (x))
404 {
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406
407 if (e)
408 x = e->u.val_rtx;
409 }
410
411 if (REG_P (y) || MEM_P (y))
412 {
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414
415 if (e)
416 y = e->u.val_rtx;
417 }
418
419 if (x == y)
420 return 1;
421
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424
425 if (GET_CODE (x) == VALUE)
426 {
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
429
430 for (l = e->locs; l; l = l->next)
431 {
432 rtx t = l->loc;
433
434 /* Avoid infinite recursion. */
435 if (REG_P (t) || MEM_P (t))
436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
439 }
440
441 return 0;
442 }
443
444 if (GET_CODE (y) == VALUE)
445 {
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
448
449 for (l = e->locs; l; l = l->next)
450 {
451 rtx t = l->loc;
452
453 if (REG_P (t) || MEM_P (t))
454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
457 }
458
459 return 0;
460 }
461
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
464
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x) == LABEL_REF)
467 return XEXP (x, 0) == XEXP (y, 0);
468
469 code = GET_CODE (x);
470 fmt = GET_RTX_FORMAT (code);
471
472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
473 {
474 int j;
475
476 switch (fmt[i])
477 {
478 case 'w':
479 if (XWINT (x, i) != XWINT (y, i))
480 return 0;
481 break;
482
483 case 'n':
484 case 'i':
485 if (XINT (x, i) != XINT (y, i))
486 return 0;
487 break;
488
489 case 'V':
490 case 'E':
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x, i) != XVECLEN (y, i))
493 return 0;
494
495 /* And the corresponding elements must match. */
496 for (j = 0; j < XVECLEN (x, i); j++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
498 XVECEXP (y, i, j)))
499 return 0;
500 break;
501
502 case 'e':
503 if (i == 1
504 && targetm.commutative_p (x, UNKNOWN)
505 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
506 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
507 return 1;
508 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
509 return 0;
510 break;
511
512 case 'S':
513 case 's':
514 if (strcmp (XSTR (x, i), XSTR (y, i)))
515 return 0;
516 break;
517
518 case 'u':
519 /* These are just backpointers, so they don't matter. */
520 break;
521
522 case '0':
523 case 't':
524 break;
525
526 /* It is believed that rtx's at this level will never
527 contain anything but integers and other rtx's,
528 except for within LABEL_REFs and SYMBOL_REFs. */
529 default:
530 gcc_unreachable ();
531 }
532 }
533 return 1;
534 }
535
536 /* We need to pass down the mode of constants through the hash table
537 functions. For that purpose, wrap them in a CONST of the appropriate
538 mode. */
539 static rtx
540 wrap_constant (enum machine_mode mode, rtx x)
541 {
542 if (GET_CODE (x) != CONST_INT
543 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
544 return x;
545 gcc_assert (mode != VOIDmode);
546 return gen_rtx_CONST (mode, x);
547 }
548
549 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
550 For registers and memory locations, we look up their cselib_val structure
551 and return its VALUE element.
552 Possible reasons for return 0 are: the object is volatile, or we couldn't
553 find a register or memory location in the table and CREATE is zero. If
554 CREATE is nonzero, table elts are created for regs and mem.
555 N.B. this hash function returns the same hash value for RTXes that
556 differ only in the order of operands, thus it is suitable for comparisons
557 that take commutativity into account.
558 If we wanted to also support associative rules, we'd have to use a different
559 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
560 We used to have a MODE argument for hashing for CONST_INTs, but that
561 didn't make sense, since it caused spurious hash differences between
562 (set (reg:SI 1) (const_int))
563 (plus:SI (reg:SI 2) (reg:SI 1))
564 and
565 (plus:SI (reg:SI 2) (const_int))
566 If the mode is important in any context, it must be checked specifically
567 in a comparison anyway, since relying on hash differences is unsafe. */
568
569 static unsigned int
570 cselib_hash_rtx (rtx x, int create)
571 {
572 cselib_val *e;
573 int i, j;
574 enum rtx_code code;
575 const char *fmt;
576 unsigned int hash = 0;
577
578 code = GET_CODE (x);
579 hash += (unsigned) code + (unsigned) GET_MODE (x);
580
581 switch (code)
582 {
583 case MEM:
584 case REG:
585 e = cselib_lookup (x, GET_MODE (x), create);
586 if (! e)
587 return 0;
588
589 return e->value;
590
591 case CONST_INT:
592 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
593 return hash ? hash : (unsigned int) CONST_INT;
594
595 case CONST_DOUBLE:
596 /* This is like the general case, except that it only counts
597 the integers representing the constant. */
598 hash += (unsigned) code + (unsigned) GET_MODE (x);
599 if (GET_MODE (x) != VOIDmode)
600 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
601 else
602 hash += ((unsigned) CONST_DOUBLE_LOW (x)
603 + (unsigned) CONST_DOUBLE_HIGH (x));
604 return hash ? hash : (unsigned int) CONST_DOUBLE;
605
606 case CONST_VECTOR:
607 {
608 int units;
609 rtx elt;
610
611 units = CONST_VECTOR_NUNITS (x);
612
613 for (i = 0; i < units; ++i)
614 {
615 elt = CONST_VECTOR_ELT (x, i);
616 hash += cselib_hash_rtx (elt, 0);
617 }
618
619 return hash;
620 }
621
622 /* Assume there is only one rtx object for any given label. */
623 case LABEL_REF:
624 hash
625 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
626 return hash ? hash : (unsigned int) LABEL_REF;
627
628 case SYMBOL_REF:
629 hash
630 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
631 return hash ? hash : (unsigned int) SYMBOL_REF;
632
633 case PRE_DEC:
634 case PRE_INC:
635 case POST_DEC:
636 case POST_INC:
637 case POST_MODIFY:
638 case PRE_MODIFY:
639 case PC:
640 case CC0:
641 case CALL:
642 case UNSPEC_VOLATILE:
643 return 0;
644
645 case ASM_OPERANDS:
646 if (MEM_VOLATILE_P (x))
647 return 0;
648
649 break;
650
651 default:
652 break;
653 }
654
655 i = GET_RTX_LENGTH (code) - 1;
656 fmt = GET_RTX_FORMAT (code);
657 for (; i >= 0; i--)
658 {
659 switch (fmt[i])
660 {
661 case 'e':
662 {
663 rtx tem = XEXP (x, i);
664 unsigned int tem_hash = cselib_hash_rtx (tem, create);
665
666 if (tem_hash == 0)
667 return 0;
668
669 hash += tem_hash;
670 }
671 break;
672 case 'E':
673 for (j = 0; j < XVECLEN (x, i); j++)
674 {
675 unsigned int tem_hash
676 = cselib_hash_rtx (XVECEXP (x, i, j), create);
677
678 if (tem_hash == 0)
679 return 0;
680
681 hash += tem_hash;
682 }
683 break;
684
685 case 's':
686 {
687 const unsigned char *p = (const unsigned char *) XSTR (x, i);
688
689 if (p)
690 while (*p)
691 hash += *p++;
692 break;
693 }
694
695 case 'i':
696 hash += XINT (x, i);
697 break;
698
699 case '0':
700 case 't':
701 /* unused */
702 break;
703
704 default:
705 gcc_unreachable ();
706 }
707 }
708
709 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
710 }
711
712 /* Create a new value structure for VALUE and initialize it. The mode of the
713 value is MODE. */
714
715 static inline cselib_val *
716 new_cselib_val (unsigned int value, enum machine_mode mode)
717 {
718 cselib_val *e = pool_alloc (cselib_val_pool);
719
720 gcc_assert (value);
721
722 e->value = value;
723 /* We use an alloc pool to allocate this RTL construct because it
724 accounts for about 8% of the overall memory usage. We know
725 precisely when we can have VALUE RTXen (when cselib is active)
726 so we don't need to put them in garbage collected memory.
727 ??? Why should a VALUE be an RTX in the first place? */
728 e->u.val_rtx = pool_alloc (value_pool);
729 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
730 PUT_CODE (e->u.val_rtx, VALUE);
731 PUT_MODE (e->u.val_rtx, mode);
732 CSELIB_VAL_PTR (e->u.val_rtx) = e;
733 e->addr_list = 0;
734 e->locs = 0;
735 e->next_containing_mem = 0;
736 return e;
737 }
738
739 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
740 contains the data at this address. X is a MEM that represents the
741 value. Update the two value structures to represent this situation. */
742
743 static void
744 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
745 {
746 struct elt_loc_list *l;
747
748 /* Avoid duplicates. */
749 for (l = mem_elt->locs; l; l = l->next)
750 if (MEM_P (l->loc)
751 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
752 return;
753
754 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
755 mem_elt->locs
756 = new_elt_loc_list (mem_elt->locs,
757 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
758 if (mem_elt->next_containing_mem == NULL)
759 {
760 mem_elt->next_containing_mem = first_containing_mem;
761 first_containing_mem = mem_elt;
762 }
763 }
764
765 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
766 If CREATE, make a new one if we haven't seen it before. */
767
768 static cselib_val *
769 cselib_lookup_mem (rtx x, int create)
770 {
771 enum machine_mode mode = GET_MODE (x);
772 void **slot;
773 cselib_val *addr;
774 cselib_val *mem_elt;
775 struct elt_list *l;
776
777 if (MEM_VOLATILE_P (x) || mode == BLKmode
778 || !cselib_record_memory
779 || (FLOAT_MODE_P (mode) && flag_float_store))
780 return 0;
781
782 /* Look up the value for the address. */
783 addr = cselib_lookup (XEXP (x, 0), mode, create);
784 if (! addr)
785 return 0;
786
787 /* Find a value that describes a value of our mode at that address. */
788 for (l = addr->addr_list; l; l = l->next)
789 if (GET_MODE (l->elt->u.val_rtx) == mode)
790 return l->elt;
791
792 if (! create)
793 return 0;
794
795 mem_elt = new_cselib_val (++next_unknown_value, mode);
796 add_mem_for_addr (addr, mem_elt, x);
797 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
798 mem_elt->value, INSERT);
799 *slot = mem_elt;
800 return mem_elt;
801 }
802
803 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
804 with VALUE expressions. This way, it becomes independent of changes
805 to registers and memory.
806 X isn't actually modified; if modifications are needed, new rtl is
807 allocated. However, the return value can share rtl with X. */
808
809 rtx
810 cselib_subst_to_values (rtx x)
811 {
812 enum rtx_code code = GET_CODE (x);
813 const char *fmt = GET_RTX_FORMAT (code);
814 cselib_val *e;
815 struct elt_list *l;
816 rtx copy = x;
817 int i;
818
819 switch (code)
820 {
821 case REG:
822 l = REG_VALUES (REGNO (x));
823 if (l && l->elt == NULL)
824 l = l->next;
825 for (; l; l = l->next)
826 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
827 return l->elt->u.val_rtx;
828
829 gcc_unreachable ();
830
831 case MEM:
832 e = cselib_lookup_mem (x, 0);
833 if (! e)
834 {
835 /* This happens for autoincrements. Assign a value that doesn't
836 match any other. */
837 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
838 }
839 return e->u.val_rtx;
840
841 case CONST_DOUBLE:
842 case CONST_VECTOR:
843 case CONST_INT:
844 return x;
845
846 case POST_INC:
847 case PRE_INC:
848 case POST_DEC:
849 case PRE_DEC:
850 case POST_MODIFY:
851 case PRE_MODIFY:
852 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
853 return e->u.val_rtx;
854
855 default:
856 break;
857 }
858
859 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
860 {
861 if (fmt[i] == 'e')
862 {
863 rtx t = cselib_subst_to_values (XEXP (x, i));
864
865 if (t != XEXP (x, i) && x == copy)
866 copy = shallow_copy_rtx (x);
867
868 XEXP (copy, i) = t;
869 }
870 else if (fmt[i] == 'E')
871 {
872 int j, k;
873
874 for (j = 0; j < XVECLEN (x, i); j++)
875 {
876 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
877
878 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
879 {
880 if (x == copy)
881 copy = shallow_copy_rtx (x);
882
883 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
884 for (k = 0; k < j; k++)
885 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
886 }
887
888 XVECEXP (copy, i, j) = t;
889 }
890 }
891 }
892
893 return copy;
894 }
895
896 /* Look up the rtl expression X in our tables and return the value it has.
897 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
898 we create a new one if possible, using mode MODE if X doesn't have a mode
899 (i.e. because it's a constant). */
900
901 cselib_val *
902 cselib_lookup (rtx x, enum machine_mode mode, int create)
903 {
904 void **slot;
905 cselib_val *e;
906 unsigned int hashval;
907
908 if (GET_MODE (x) != VOIDmode)
909 mode = GET_MODE (x);
910
911 if (GET_CODE (x) == VALUE)
912 return CSELIB_VAL_PTR (x);
913
914 if (REG_P (x))
915 {
916 struct elt_list *l;
917 unsigned int i = REGNO (x);
918
919 l = REG_VALUES (i);
920 if (l && l->elt == NULL)
921 l = l->next;
922 for (; l; l = l->next)
923 if (mode == GET_MODE (l->elt->u.val_rtx))
924 return l->elt;
925
926 if (! create)
927 return 0;
928
929 if (i < FIRST_PSEUDO_REGISTER)
930 {
931 unsigned int n = hard_regno_nregs[i][mode];
932
933 if (n > max_value_regs)
934 max_value_regs = n;
935 }
936
937 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
938 e->locs = new_elt_loc_list (e->locs, x);
939 if (REG_VALUES (i) == 0)
940 {
941 /* Maintain the invariant that the first entry of
942 REG_VALUES, if present, must be the value used to set the
943 register, or NULL. */
944 used_regs[n_used_regs++] = i;
945 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
946 }
947 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
948 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
949 *slot = e;
950 return e;
951 }
952
953 if (MEM_P (x))
954 return cselib_lookup_mem (x, create);
955
956 hashval = cselib_hash_rtx (x, create);
957 /* Can't even create if hashing is not possible. */
958 if (! hashval)
959 return 0;
960
961 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
962 hashval, create ? INSERT : NO_INSERT);
963 if (slot == 0)
964 return 0;
965
966 e = (cselib_val *) *slot;
967 if (e)
968 return e;
969
970 e = new_cselib_val (hashval, mode);
971
972 /* We have to fill the slot before calling cselib_subst_to_values:
973 the hash table is inconsistent until we do so, and
974 cselib_subst_to_values will need to do lookups. */
975 *slot = (void *) e;
976 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
977 return e;
978 }
979
980 /* Invalidate any entries in reg_values that overlap REGNO. This is called
981 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
982 is used to determine how many hard registers are being changed. If MODE
983 is VOIDmode, then only REGNO is being changed; this is used when
984 invalidating call clobbered registers across a call. */
985
986 static void
987 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
988 {
989 unsigned int endregno;
990 unsigned int i;
991
992 /* If we see pseudos after reload, something is _wrong_. */
993 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
994 || reg_renumber[regno] < 0);
995
996 /* Determine the range of registers that must be invalidated. For
997 pseudos, only REGNO is affected. For hard regs, we must take MODE
998 into account, and we must also invalidate lower register numbers
999 if they contain values that overlap REGNO. */
1000 if (regno < FIRST_PSEUDO_REGISTER)
1001 {
1002 gcc_assert (mode != VOIDmode);
1003
1004 if (regno < max_value_regs)
1005 i = 0;
1006 else
1007 i = regno - max_value_regs;
1008
1009 endregno = regno + hard_regno_nregs[regno][mode];
1010 }
1011 else
1012 {
1013 i = regno;
1014 endregno = regno + 1;
1015 }
1016
1017 for (; i < endregno; i++)
1018 {
1019 struct elt_list **l = &REG_VALUES (i);
1020
1021 /* Go through all known values for this reg; if it overlaps the range
1022 we're invalidating, remove the value. */
1023 while (*l)
1024 {
1025 cselib_val *v = (*l)->elt;
1026 struct elt_loc_list **p;
1027 unsigned int this_last = i;
1028
1029 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1030 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1031
1032 if (this_last < regno || v == NULL)
1033 {
1034 l = &(*l)->next;
1035 continue;
1036 }
1037
1038 /* We have an overlap. */
1039 if (*l == REG_VALUES (i))
1040 {
1041 /* Maintain the invariant that the first entry of
1042 REG_VALUES, if present, must be the value used to set
1043 the register, or NULL. This is also nice because
1044 then we won't push the same regno onto user_regs
1045 multiple times. */
1046 (*l)->elt = NULL;
1047 l = &(*l)->next;
1048 }
1049 else
1050 unchain_one_elt_list (l);
1051
1052 /* Now, we clear the mapping from value to reg. It must exist, so
1053 this code will crash intentionally if it doesn't. */
1054 for (p = &v->locs; ; p = &(*p)->next)
1055 {
1056 rtx x = (*p)->loc;
1057
1058 if (REG_P (x) && REGNO (x) == i)
1059 {
1060 unchain_one_elt_loc_list (p);
1061 break;
1062 }
1063 }
1064 if (v->locs == 0)
1065 n_useless_values++;
1066 }
1067 }
1068 }
1069 \f
1070 /* Return 1 if X has a value that can vary even between two
1071 executions of the program. 0 means X can be compared reliably
1072 against certain constants or near-constants. */
1073
1074 static int
1075 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1076 {
1077 /* We actually don't need to verify very hard. This is because
1078 if X has actually changed, we invalidate the memory anyway,
1079 so assume that all common memory addresses are
1080 invariant. */
1081 return 0;
1082 }
1083
1084 /* Invalidate any locations in the table which are changed because of a
1085 store to MEM_RTX. If this is called because of a non-const call
1086 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1087
1088 static void
1089 cselib_invalidate_mem (rtx mem_rtx)
1090 {
1091 cselib_val **vp, *v, *next;
1092 int num_mems = 0;
1093 rtx mem_addr;
1094
1095 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1096 mem_rtx = canon_rtx (mem_rtx);
1097
1098 vp = &first_containing_mem;
1099 for (v = *vp; v != &dummy_val; v = next)
1100 {
1101 bool has_mem = false;
1102 struct elt_loc_list **p = &v->locs;
1103 int had_locs = v->locs != 0;
1104
1105 while (*p)
1106 {
1107 rtx x = (*p)->loc;
1108 cselib_val *addr;
1109 struct elt_list **mem_chain;
1110
1111 /* MEMs may occur in locations only at the top level; below
1112 that every MEM or REG is substituted by its VALUE. */
1113 if (!MEM_P (x))
1114 {
1115 p = &(*p)->next;
1116 continue;
1117 }
1118 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1119 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1120 x, cselib_rtx_varies_p))
1121 {
1122 has_mem = true;
1123 num_mems++;
1124 p = &(*p)->next;
1125 continue;
1126 }
1127
1128 /* This one overlaps. */
1129 /* We must have a mapping from this MEM's address to the
1130 value (E). Remove that, too. */
1131 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1132 mem_chain = &addr->addr_list;
1133 for (;;)
1134 {
1135 if ((*mem_chain)->elt == v)
1136 {
1137 unchain_one_elt_list (mem_chain);
1138 break;
1139 }
1140
1141 mem_chain = &(*mem_chain)->next;
1142 }
1143
1144 unchain_one_elt_loc_list (p);
1145 }
1146
1147 if (had_locs && v->locs == 0)
1148 n_useless_values++;
1149
1150 next = v->next_containing_mem;
1151 if (has_mem)
1152 {
1153 *vp = v;
1154 vp = &(*vp)->next_containing_mem;
1155 }
1156 else
1157 v->next_containing_mem = NULL;
1158 }
1159 *vp = &dummy_val;
1160 }
1161
1162 /* Invalidate DEST, which is being assigned to or clobbered. */
1163
1164 void
1165 cselib_invalidate_rtx (rtx dest)
1166 {
1167 while (GET_CODE (dest) == SUBREG
1168 || GET_CODE (dest) == ZERO_EXTRACT
1169 || GET_CODE (dest) == STRICT_LOW_PART)
1170 dest = XEXP (dest, 0);
1171
1172 if (REG_P (dest))
1173 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1174 else if (MEM_P (dest))
1175 cselib_invalidate_mem (dest);
1176
1177 /* Some machines don't define AUTO_INC_DEC, but they still use push
1178 instructions. We need to catch that case here in order to
1179 invalidate the stack pointer correctly. Note that invalidating
1180 the stack pointer is different from invalidating DEST. */
1181 if (push_operand (dest, GET_MODE (dest)))
1182 cselib_invalidate_rtx (stack_pointer_rtx);
1183 }
1184
1185 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1186
1187 static void
1188 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1189 void *data ATTRIBUTE_UNUSED)
1190 {
1191 cselib_invalidate_rtx (dest);
1192 }
1193
1194 /* Record the result of a SET instruction. DEST is being set; the source
1195 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1196 describes its address. */
1197
1198 static void
1199 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1200 {
1201 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1202
1203 if (src_elt == 0 || side_effects_p (dest))
1204 return;
1205
1206 if (dreg >= 0)
1207 {
1208 if (dreg < FIRST_PSEUDO_REGISTER)
1209 {
1210 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1211
1212 if (n > max_value_regs)
1213 max_value_regs = n;
1214 }
1215
1216 if (REG_VALUES (dreg) == 0)
1217 {
1218 used_regs[n_used_regs++] = dreg;
1219 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1220 }
1221 else
1222 {
1223 /* The register should have been invalidated. */
1224 gcc_assert (REG_VALUES (dreg)->elt == 0);
1225 REG_VALUES (dreg)->elt = src_elt;
1226 }
1227
1228 if (src_elt->locs == 0)
1229 n_useless_values--;
1230 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1231 }
1232 else if (MEM_P (dest) && dest_addr_elt != 0
1233 && cselib_record_memory)
1234 {
1235 if (src_elt->locs == 0)
1236 n_useless_values--;
1237 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1238 }
1239 }
1240
1241 /* Describe a single set that is part of an insn. */
1242 struct set
1243 {
1244 rtx src;
1245 rtx dest;
1246 cselib_val *src_elt;
1247 cselib_val *dest_addr_elt;
1248 };
1249
1250 /* There is no good way to determine how many elements there can be
1251 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1252 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1253
1254 /* Record the effects of any sets in INSN. */
1255 static void
1256 cselib_record_sets (rtx insn)
1257 {
1258 int n_sets = 0;
1259 int i;
1260 struct set sets[MAX_SETS];
1261 rtx body = PATTERN (insn);
1262 rtx cond = 0;
1263
1264 body = PATTERN (insn);
1265 if (GET_CODE (body) == COND_EXEC)
1266 {
1267 cond = COND_EXEC_TEST (body);
1268 body = COND_EXEC_CODE (body);
1269 }
1270
1271 /* Find all sets. */
1272 if (GET_CODE (body) == SET)
1273 {
1274 sets[0].src = SET_SRC (body);
1275 sets[0].dest = SET_DEST (body);
1276 n_sets = 1;
1277 }
1278 else if (GET_CODE (body) == PARALLEL)
1279 {
1280 /* Look through the PARALLEL and record the values being
1281 set, if possible. Also handle any CLOBBERs. */
1282 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1283 {
1284 rtx x = XVECEXP (body, 0, i);
1285
1286 if (GET_CODE (x) == SET)
1287 {
1288 sets[n_sets].src = SET_SRC (x);
1289 sets[n_sets].dest = SET_DEST (x);
1290 n_sets++;
1291 }
1292 }
1293 }
1294
1295 /* Look up the values that are read. Do this before invalidating the
1296 locations that are written. */
1297 for (i = 0; i < n_sets; i++)
1298 {
1299 rtx dest = sets[i].dest;
1300
1301 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1302 the low part after invalidating any knowledge about larger modes. */
1303 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1304 sets[i].dest = dest = XEXP (dest, 0);
1305
1306 /* We don't know how to record anything but REG or MEM. */
1307 if (REG_P (dest)
1308 || (MEM_P (dest) && cselib_record_memory))
1309 {
1310 rtx src = sets[i].src;
1311 if (cond)
1312 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1313 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1314 if (MEM_P (dest))
1315 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1316 else
1317 sets[i].dest_addr_elt = 0;
1318 }
1319 }
1320
1321 /* Invalidate all locations written by this insn. Note that the elts we
1322 looked up in the previous loop aren't affected, just some of their
1323 locations may go away. */
1324 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1325
1326 /* If this is an asm, look for duplicate sets. This can happen when the
1327 user uses the same value as an output multiple times. This is valid
1328 if the outputs are not actually used thereafter. Treat this case as
1329 if the value isn't actually set. We do this by smashing the destination
1330 to pc_rtx, so that we won't record the value later. */
1331 if (n_sets >= 2 && asm_noperands (body) >= 0)
1332 {
1333 for (i = 0; i < n_sets; i++)
1334 {
1335 rtx dest = sets[i].dest;
1336 if (REG_P (dest) || MEM_P (dest))
1337 {
1338 int j;
1339 for (j = i + 1; j < n_sets; j++)
1340 if (rtx_equal_p (dest, sets[j].dest))
1341 {
1342 sets[i].dest = pc_rtx;
1343 sets[j].dest = pc_rtx;
1344 }
1345 }
1346 }
1347 }
1348
1349 /* Now enter the equivalences in our tables. */
1350 for (i = 0; i < n_sets; i++)
1351 {
1352 rtx dest = sets[i].dest;
1353 if (REG_P (dest)
1354 || (MEM_P (dest) && cselib_record_memory))
1355 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1356 }
1357 }
1358
1359 /* Record the effects of INSN. */
1360
1361 void
1362 cselib_process_insn (rtx insn)
1363 {
1364 int i;
1365 rtx x;
1366
1367 if (find_reg_note (insn, REG_LIBCALL, NULL))
1368 cselib_current_insn_in_libcall = true;
1369 cselib_current_insn = insn;
1370
1371 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1372 if (LABEL_P (insn)
1373 || (CALL_P (insn)
1374 && find_reg_note (insn, REG_SETJMP, NULL))
1375 || (NONJUMP_INSN_P (insn)
1376 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1377 && MEM_VOLATILE_P (PATTERN (insn))))
1378 {
1379 if (find_reg_note (insn, REG_RETVAL, NULL))
1380 cselib_current_insn_in_libcall = false;
1381 cselib_clear_table ();
1382 return;
1383 }
1384
1385 if (! INSN_P (insn))
1386 {
1387 if (find_reg_note (insn, REG_RETVAL, NULL))
1388 cselib_current_insn_in_libcall = false;
1389 cselib_current_insn = 0;
1390 return;
1391 }
1392
1393 /* If this is a call instruction, forget anything stored in a
1394 call clobbered register, or, if this is not a const call, in
1395 memory. */
1396 if (CALL_P (insn))
1397 {
1398 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1399 if (call_used_regs[i]
1400 || (REG_VALUES (i) && REG_VALUES (i)->elt
1401 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1402 GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
1403 cselib_invalidate_regno (i, reg_raw_mode[i]);
1404
1405 if (! CONST_OR_PURE_CALL_P (insn))
1406 cselib_invalidate_mem (callmem);
1407 }
1408
1409 cselib_record_sets (insn);
1410
1411 #ifdef AUTO_INC_DEC
1412 /* Clobber any registers which appear in REG_INC notes. We
1413 could keep track of the changes to their values, but it is
1414 unlikely to help. */
1415 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1416 if (REG_NOTE_KIND (x) == REG_INC)
1417 cselib_invalidate_rtx (XEXP (x, 0));
1418 #endif
1419
1420 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1421 after we have processed the insn. */
1422 if (CALL_P (insn))
1423 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1424 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1425 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1426
1427 if (find_reg_note (insn, REG_RETVAL, NULL))
1428 cselib_current_insn_in_libcall = false;
1429 cselib_current_insn = 0;
1430
1431 if (n_useless_values > MAX_USELESS_VALUES)
1432 remove_useless_values ();
1433 }
1434
1435 /* Initialize cselib for one pass. The caller must also call
1436 init_alias_analysis. */
1437
1438 void
1439 cselib_init (bool record_memory)
1440 {
1441 elt_list_pool = create_alloc_pool ("elt_list",
1442 sizeof (struct elt_list), 10);
1443 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1444 sizeof (struct elt_loc_list), 10);
1445 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1446 sizeof (cselib_val), 10);
1447 value_pool = create_alloc_pool ("value",
1448 RTX_SIZE (VALUE), 100);
1449 cselib_record_memory = record_memory;
1450 /* This is only created once. */
1451 if (! callmem)
1452 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1453
1454 cselib_nregs = max_reg_num ();
1455
1456 /* We preserve reg_values to allow expensive clearing of the whole thing.
1457 Reallocate it however if it happens to be too large. */
1458 if (!reg_values || reg_values_size < cselib_nregs
1459 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1460 {
1461 if (reg_values)
1462 free (reg_values);
1463 /* Some space for newly emit instructions so we don't end up
1464 reallocating in between passes. */
1465 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1466 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1467 }
1468 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1469 n_used_regs = 0;
1470 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1471 cselib_current_insn_in_libcall = false;
1472 }
1473
1474 /* Called when the current user is done with cselib. */
1475
1476 void
1477 cselib_finish (void)
1478 {
1479 free_alloc_pool (elt_list_pool);
1480 free_alloc_pool (elt_loc_list_pool);
1481 free_alloc_pool (cselib_val_pool);
1482 free_alloc_pool (value_pool);
1483 cselib_clear_table ();
1484 htab_delete (hash_table);
1485 free (used_regs);
1486 used_regs = 0;
1487 hash_table = 0;
1488 n_useless_values = 0;
1489 next_unknown_value = 0;
1490 }
1491
1492 #include "gt-cselib.h"