re PR debug/48203 (ICE in dwarf2out.c while building eglibc.)
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "tree-pass.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45 #include "bitmap.h"
46
47 /* A list of cselib_val structures. */
48 struct elt_list {
49 struct elt_list *next;
50 cselib_val *elt;
51 };
52
53 static bool cselib_record_memory;
54 static bool cselib_preserve_constants;
55 static int entry_and_rtx_equal_p (const void *, const void *);
56 static hashval_t get_value_hash (const void *);
57 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
58 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
59 static void unchain_one_value (cselib_val *);
60 static void unchain_one_elt_list (struct elt_list **);
61 static void unchain_one_elt_loc_list (struct elt_loc_list **);
62 static int discard_useless_locs (void **, void *);
63 static int discard_useless_values (void **, void *);
64 static void remove_useless_values (void);
65 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
66 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
67 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
68 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
69 static cselib_val *cselib_lookup_mem (rtx, int);
70 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
71 static void cselib_invalidate_mem (rtx);
72 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
73 static void cselib_record_sets (rtx);
74
75 struct expand_value_data
76 {
77 bitmap regs_active;
78 cselib_expand_callback callback;
79 void *callback_arg;
80 bool dummy;
81 };
82
83 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
84
85 /* There are three ways in which cselib can look up an rtx:
86 - for a REG, the reg_values table (which is indexed by regno) is used
87 - for a MEM, we recursively look up its address and then follow the
88 addr_list of that value
89 - for everything else, we compute a hash value and go through the hash
90 table. Since different rtx's can still have the same hash value,
91 this involves walking the table entries for a given value and comparing
92 the locations of the entries with the rtx we are looking up. */
93
94 /* A table that enables us to look up elts by their value. */
95 static htab_t cselib_hash_table;
96
97 /* This is a global so we don't have to pass this through every function.
98 It is used in new_elt_loc_list to set SETTING_INSN. */
99 static rtx cselib_current_insn;
100
101 /* The unique id that the next create value will take. */
102 static unsigned int next_uid;
103
104 /* The number of registers we had when the varrays were last resized. */
105 static unsigned int cselib_nregs;
106
107 /* Count values without known locations, or with only locations that
108 wouldn't have been known except for debug insns. Whenever this
109 grows too big, we remove these useless values from the table.
110
111 Counting values with only debug values is a bit tricky. We don't
112 want to increment n_useless_values when we create a value for a
113 debug insn, for this would get n_useless_values out of sync, but we
114 want increment it if all locs in the list that were ever referenced
115 in nondebug insns are removed from the list.
116
117 In the general case, once we do that, we'd have to stop accepting
118 nondebug expressions in the loc list, to avoid having two values
119 equivalent that, without debug insns, would have been made into
120 separate values. However, because debug insns never introduce
121 equivalences themselves (no assignments), the only means for
122 growing loc lists is through nondebug assignments. If the locs
123 also happen to be referenced in debug insns, it will work just fine.
124
125 A consequence of this is that there's at most one debug-only loc in
126 each loc list. If we keep it in the first entry, testing whether
127 we have a debug-only loc list takes O(1).
128
129 Furthermore, since any additional entry in a loc list containing a
130 debug loc would have to come from an assignment (nondebug) that
131 references both the initial debug loc and the newly-equivalent loc,
132 the initial debug loc would be promoted to a nondebug loc, and the
133 loc list would not contain debug locs any more.
134
135 So the only case we have to be careful with in order to keep
136 n_useless_values in sync between debug and nondebug compilations is
137 to avoid incrementing n_useless_values when removing the single loc
138 from a value that turns out to not appear outside debug values. We
139 increment n_useless_debug_values instead, and leave such values
140 alone until, for other reasons, we garbage-collect useless
141 values. */
142 static int n_useless_values;
143 static int n_useless_debug_values;
144
145 /* Count values whose locs have been taken exclusively from debug
146 insns for the entire life of the value. */
147 static int n_debug_values;
148
149 /* Number of useless values before we remove them from the hash table. */
150 #define MAX_USELESS_VALUES 32
151
152 /* This table maps from register number to values. It does not
153 contain pointers to cselib_val structures, but rather elt_lists.
154 The purpose is to be able to refer to the same register in
155 different modes. The first element of the list defines the mode in
156 which the register was set; if the mode is unknown or the value is
157 no longer valid in that mode, ELT will be NULL for the first
158 element. */
159 static struct elt_list **reg_values;
160 static unsigned int reg_values_size;
161 #define REG_VALUES(i) reg_values[i]
162
163 /* The largest number of hard regs used by any entry added to the
164 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
165 static unsigned int max_value_regs;
166
167 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
168 in cselib_clear_table() for fast emptying. */
169 static unsigned int *used_regs;
170 static unsigned int n_used_regs;
171
172 /* We pass this to cselib_invalidate_mem to invalidate all of
173 memory for a non-const call instruction. */
174 static GTY(()) rtx callmem;
175
176 /* Set by discard_useless_locs if it deleted the last location of any
177 value. */
178 static int values_became_useless;
179
180 /* Used as stop element of the containing_mem list so we can check
181 presence in the list by checking the next pointer. */
182 static cselib_val dummy_val;
183
184 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
185 that is constant through the whole function and should never be
186 eliminated. */
187 static cselib_val *cfa_base_preserved_val;
188 static unsigned int cfa_base_preserved_regno;
189
190 /* Used to list all values that contain memory reference.
191 May or may not contain the useless values - the list is compacted
192 each time memory is invalidated. */
193 static cselib_val *first_containing_mem = &dummy_val;
194 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
195
196 /* If nonnull, cselib will call this function before freeing useless
197 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
198 void (*cselib_discard_hook) (cselib_val *);
199
200 /* If nonnull, cselib will call this function before recording sets or
201 even clobbering outputs of INSN. All the recorded sets will be
202 represented in the array sets[n_sets]. new_val_min can be used to
203 tell whether values present in sets are introduced by this
204 instruction. */
205 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
206 int n_sets);
207
208 #define PRESERVED_VALUE_P(RTX) \
209 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
210
211 \f
212
213 /* Allocate a struct elt_list and fill in its two elements with the
214 arguments. */
215
216 static inline struct elt_list *
217 new_elt_list (struct elt_list *next, cselib_val *elt)
218 {
219 struct elt_list *el;
220 el = (struct elt_list *) pool_alloc (elt_list_pool);
221 el->next = next;
222 el->elt = elt;
223 return el;
224 }
225
226 /* Allocate a struct elt_loc_list and fill in its two elements with the
227 arguments. */
228
229 static inline struct elt_loc_list *
230 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
231 {
232 struct elt_loc_list *el;
233 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
234 el->next = next;
235 el->loc = loc;
236 el->setting_insn = cselib_current_insn;
237 gcc_assert (!next || !next->setting_insn
238 || !DEBUG_INSN_P (next->setting_insn));
239
240 /* If we're creating the first loc in a debug insn context, we've
241 just created a debug value. Count it. */
242 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
243 n_debug_values++;
244
245 return el;
246 }
247
248 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
249 originating from a debug insn, maintaining the debug values
250 count. */
251
252 static inline void
253 promote_debug_loc (struct elt_loc_list *l)
254 {
255 if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
256 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
257 {
258 n_debug_values--;
259 l->setting_insn = cselib_current_insn;
260 gcc_assert (!l->next);
261 }
262 }
263
264 /* The elt_list at *PL is no longer needed. Unchain it and free its
265 storage. */
266
267 static inline void
268 unchain_one_elt_list (struct elt_list **pl)
269 {
270 struct elt_list *l = *pl;
271
272 *pl = l->next;
273 pool_free (elt_list_pool, l);
274 }
275
276 /* Likewise for elt_loc_lists. */
277
278 static void
279 unchain_one_elt_loc_list (struct elt_loc_list **pl)
280 {
281 struct elt_loc_list *l = *pl;
282
283 *pl = l->next;
284 pool_free (elt_loc_list_pool, l);
285 }
286
287 /* Likewise for cselib_vals. This also frees the addr_list associated with
288 V. */
289
290 static void
291 unchain_one_value (cselib_val *v)
292 {
293 while (v->addr_list)
294 unchain_one_elt_list (&v->addr_list);
295
296 pool_free (cselib_val_pool, v);
297 }
298
299 /* Remove all entries from the hash table. Also used during
300 initialization. */
301
302 void
303 cselib_clear_table (void)
304 {
305 cselib_reset_table (1);
306 }
307
308 /* Remove from hash table all VALUEs except constants
309 and function invariants. */
310
311 static int
312 preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
313 {
314 cselib_val *v = (cselib_val *)*x;
315
316 if (v->locs != NULL
317 && v->locs->next == NULL)
318 {
319 if (CONSTANT_P (v->locs->loc)
320 && (GET_CODE (v->locs->loc) != CONST
321 || !references_value_p (v->locs->loc, 0)))
322 return 1;
323 if (cfa_base_preserved_val)
324 {
325 if (v == cfa_base_preserved_val)
326 return 1;
327 if (GET_CODE (v->locs->loc) == PLUS
328 && CONST_INT_P (XEXP (v->locs->loc, 1))
329 && XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
330 return 1;
331 }
332 }
333 /* Keep around VALUEs that forward function invariant ENTRY_VALUEs
334 to corresponding parameter VALUEs. */
335 if (v->locs != NULL
336 && v->locs->next != NULL
337 && v->locs->next->next == NULL
338 && GET_CODE (v->locs->next->loc) == ENTRY_VALUE
339 && GET_CODE (v->locs->loc) == VALUE)
340 return 1;
341
342 htab_clear_slot (cselib_hash_table, x);
343 return 1;
344 }
345
346 /* Remove all entries from the hash table, arranging for the next
347 value to be numbered NUM. */
348
349 void
350 cselib_reset_table (unsigned int num)
351 {
352 unsigned int i;
353
354 max_value_regs = 0;
355
356 if (cfa_base_preserved_val)
357 {
358 unsigned int regno = cfa_base_preserved_regno;
359 unsigned int new_used_regs = 0;
360 for (i = 0; i < n_used_regs; i++)
361 if (used_regs[i] == regno)
362 {
363 new_used_regs = 1;
364 continue;
365 }
366 else
367 REG_VALUES (used_regs[i]) = 0;
368 gcc_assert (new_used_regs == 1);
369 n_used_regs = new_used_regs;
370 used_regs[0] = regno;
371 max_value_regs
372 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
373 }
374 else
375 {
376 for (i = 0; i < n_used_regs; i++)
377 REG_VALUES (used_regs[i]) = 0;
378 n_used_regs = 0;
379 }
380
381 if (cselib_preserve_constants)
382 htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
383 else
384 htab_empty (cselib_hash_table);
385
386 n_useless_values = 0;
387 n_useless_debug_values = 0;
388 n_debug_values = 0;
389
390 next_uid = num;
391
392 first_containing_mem = &dummy_val;
393 }
394
395 /* Return the number of the next value that will be generated. */
396
397 unsigned int
398 cselib_get_next_uid (void)
399 {
400 return next_uid;
401 }
402
403 /* See the documentation of cselib_find_slot below. */
404 static enum machine_mode find_slot_memmode;
405
406 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
407 INSERTing if requested. When X is part of the address of a MEM,
408 MEMMODE should specify the mode of the MEM. While searching the
409 table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
410 in X can be resolved. */
411
412 static void **
413 cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
414 enum machine_mode memmode)
415 {
416 void **slot;
417 find_slot_memmode = memmode;
418 slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
419 find_slot_memmode = VOIDmode;
420 return slot;
421 }
422
423 /* The equality test for our hash table. The first argument ENTRY is a table
424 element (i.e. a cselib_val), while the second arg X is an rtx. We know
425 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
426 CONST of an appropriate mode. */
427
428 static int
429 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
430 {
431 struct elt_loc_list *l;
432 const cselib_val *const v = (const cselib_val *) entry;
433 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
434 enum machine_mode mode = GET_MODE (x);
435
436 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
437 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
438
439 if (mode != GET_MODE (v->val_rtx))
440 return 0;
441
442 /* Unwrap X if necessary. */
443 if (GET_CODE (x) == CONST
444 && (CONST_INT_P (XEXP (x, 0))
445 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
446 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
447 x = XEXP (x, 0);
448
449 /* We don't guarantee that distinct rtx's have different hash values,
450 so we need to do a comparison. */
451 for (l = v->locs; l; l = l->next)
452 if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
453 {
454 promote_debug_loc (l);
455 return 1;
456 }
457
458 return 0;
459 }
460
461 /* The hash function for our hash table. The value is always computed with
462 cselib_hash_rtx when adding an element; this function just extracts the
463 hash value from a cselib_val structure. */
464
465 static hashval_t
466 get_value_hash (const void *entry)
467 {
468 const cselib_val *const v = (const cselib_val *) entry;
469 return v->hash;
470 }
471
472 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
473 only return true for values which point to a cselib_val whose value
474 element has been set to zero, which implies the cselib_val will be
475 removed. */
476
477 int
478 references_value_p (const_rtx x, int only_useless)
479 {
480 const enum rtx_code code = GET_CODE (x);
481 const char *fmt = GET_RTX_FORMAT (code);
482 int i, j;
483
484 if (GET_CODE (x) == VALUE
485 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
486 return 1;
487
488 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
489 {
490 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
491 return 1;
492 else if (fmt[i] == 'E')
493 for (j = 0; j < XVECLEN (x, i); j++)
494 if (references_value_p (XVECEXP (x, i, j), only_useless))
495 return 1;
496 }
497
498 return 0;
499 }
500
501 /* For all locations found in X, delete locations that reference useless
502 values (i.e. values without any location). Called through
503 htab_traverse. */
504
505 static int
506 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
507 {
508 cselib_val *v = (cselib_val *)*x;
509 struct elt_loc_list **p = &v->locs;
510 bool had_locs = v->locs != NULL;
511 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
512
513 while (*p)
514 {
515 if (references_value_p ((*p)->loc, 1))
516 unchain_one_elt_loc_list (p);
517 else
518 p = &(*p)->next;
519 }
520
521 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
522 {
523 if (setting_insn && DEBUG_INSN_P (setting_insn))
524 n_useless_debug_values++;
525 else
526 n_useless_values++;
527 values_became_useless = 1;
528 }
529 return 1;
530 }
531
532 /* If X is a value with no locations, remove it from the hashtable. */
533
534 static int
535 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
536 {
537 cselib_val *v = (cselib_val *)*x;
538
539 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
540 {
541 if (cselib_discard_hook)
542 cselib_discard_hook (v);
543
544 CSELIB_VAL_PTR (v->val_rtx) = NULL;
545 htab_clear_slot (cselib_hash_table, x);
546 unchain_one_value (v);
547 n_useless_values--;
548 }
549
550 return 1;
551 }
552
553 /* Clean out useless values (i.e. those which no longer have locations
554 associated with them) from the hash table. */
555
556 static void
557 remove_useless_values (void)
558 {
559 cselib_val **p, *v;
560
561 /* First pass: eliminate locations that reference the value. That in
562 turn can make more values useless. */
563 do
564 {
565 values_became_useless = 0;
566 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
567 }
568 while (values_became_useless);
569
570 /* Second pass: actually remove the values. */
571
572 p = &first_containing_mem;
573 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
574 if (v->locs)
575 {
576 *p = v;
577 p = &(*p)->next_containing_mem;
578 }
579 *p = &dummy_val;
580
581 n_useless_values += n_useless_debug_values;
582 n_debug_values -= n_useless_debug_values;
583 n_useless_debug_values = 0;
584
585 htab_traverse (cselib_hash_table, discard_useless_values, 0);
586
587 gcc_assert (!n_useless_values);
588 }
589
590 /* Arrange for a value to not be removed from the hash table even if
591 it becomes useless. */
592
593 void
594 cselib_preserve_value (cselib_val *v)
595 {
596 PRESERVED_VALUE_P (v->val_rtx) = 1;
597 }
598
599 /* Test whether a value is preserved. */
600
601 bool
602 cselib_preserved_value_p (cselib_val *v)
603 {
604 return PRESERVED_VALUE_P (v->val_rtx);
605 }
606
607 /* Arrange for a REG value to be assumed constant through the whole function,
608 never invalidated and preserved across cselib_reset_table calls. */
609
610 void
611 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
612 {
613 if (cselib_preserve_constants
614 && v->locs
615 && REG_P (v->locs->loc))
616 {
617 cfa_base_preserved_val = v;
618 cfa_base_preserved_regno = regno;
619 }
620 }
621
622 /* Clean all non-constant expressions in the hash table, but retain
623 their values. */
624
625 void
626 cselib_preserve_only_values (void)
627 {
628 int i;
629
630 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
631 cselib_invalidate_regno (i, reg_raw_mode[i]);
632
633 cselib_invalidate_mem (callmem);
634
635 remove_useless_values ();
636
637 gcc_assert (first_containing_mem == &dummy_val);
638 }
639
640 /* Return the mode in which a register was last set. If X is not a
641 register, return its mode. If the mode in which the register was
642 set is not known, or the value was already clobbered, return
643 VOIDmode. */
644
645 enum machine_mode
646 cselib_reg_set_mode (const_rtx x)
647 {
648 if (!REG_P (x))
649 return GET_MODE (x);
650
651 if (REG_VALUES (REGNO (x)) == NULL
652 || REG_VALUES (REGNO (x))->elt == NULL)
653 return VOIDmode;
654
655 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
656 }
657
658 /* Return nonzero if we can prove that X and Y contain the same value, taking
659 our gathered information into account. */
660
661 int
662 rtx_equal_for_cselib_p (rtx x, rtx y)
663 {
664 return rtx_equal_for_cselib_1 (x, y, VOIDmode);
665 }
666
667 /* If x is a PLUS or an autoinc operation, expand the operation,
668 storing the offset, if any, in *OFF. */
669
670 static rtx
671 autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
672 {
673 switch (GET_CODE (x))
674 {
675 case PLUS:
676 *off = XEXP (x, 1);
677 return XEXP (x, 0);
678
679 case PRE_DEC:
680 if (memmode == VOIDmode)
681 return x;
682
683 *off = GEN_INT (-GET_MODE_SIZE (memmode));
684 return XEXP (x, 0);
685 break;
686
687 case PRE_INC:
688 if (memmode == VOIDmode)
689 return x;
690
691 *off = GEN_INT (GET_MODE_SIZE (memmode));
692 return XEXP (x, 0);
693
694 case PRE_MODIFY:
695 return XEXP (x, 1);
696
697 case POST_DEC:
698 case POST_INC:
699 case POST_MODIFY:
700 return XEXP (x, 0);
701
702 default:
703 return x;
704 }
705 }
706
707 /* Return nonzero if we can prove that X and Y contain the same value,
708 taking our gathered information into account. MEMMODE holds the
709 mode of the enclosing MEM, if any, as required to deal with autoinc
710 addressing modes. If X and Y are not (known to be) part of
711 addresses, MEMMODE should be VOIDmode. */
712
713 static int
714 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
715 {
716 enum rtx_code code;
717 const char *fmt;
718 int i;
719
720 if (REG_P (x) || MEM_P (x))
721 {
722 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
723
724 if (e)
725 x = e->val_rtx;
726 }
727
728 if (REG_P (y) || MEM_P (y))
729 {
730 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
731
732 if (e)
733 y = e->val_rtx;
734 }
735
736 if (x == y)
737 return 1;
738
739 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
740 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
741
742 if (GET_CODE (x) == VALUE)
743 {
744 cselib_val *e = CSELIB_VAL_PTR (x);
745 struct elt_loc_list *l;
746
747 for (l = e->locs; l; l = l->next)
748 {
749 rtx t = l->loc;
750
751 /* Avoid infinite recursion. */
752 if (REG_P (t) || MEM_P (t))
753 continue;
754 else if (rtx_equal_for_cselib_1 (t, y, memmode))
755 return 1;
756 }
757
758 return 0;
759 }
760
761 if (GET_CODE (y) == VALUE)
762 {
763 cselib_val *e = CSELIB_VAL_PTR (y);
764 struct elt_loc_list *l;
765
766 for (l = e->locs; l; l = l->next)
767 {
768 rtx t = l->loc;
769
770 if (REG_P (t) || MEM_P (t))
771 continue;
772 else if (rtx_equal_for_cselib_1 (x, t, memmode))
773 return 1;
774 }
775
776 return 0;
777 }
778
779 if (GET_MODE (x) != GET_MODE (y))
780 return 0;
781
782 if (GET_CODE (x) != GET_CODE (y))
783 {
784 rtx xorig = x, yorig = y;
785 rtx xoff = NULL, yoff = NULL;
786
787 x = autoinc_split (x, &xoff, memmode);
788 y = autoinc_split (y, &yoff, memmode);
789
790 if (!xoff != !yoff)
791 return 0;
792
793 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
794 return 0;
795
796 /* Don't recurse if nothing changed. */
797 if (x != xorig || y != yorig)
798 return rtx_equal_for_cselib_1 (x, y, memmode);
799
800 return 0;
801 }
802
803 /* These won't be handled correctly by the code below. */
804 switch (GET_CODE (x))
805 {
806 case CONST_DOUBLE:
807 case CONST_FIXED:
808 case DEBUG_EXPR:
809 return 0;
810
811 case DEBUG_IMPLICIT_PTR:
812 return DEBUG_IMPLICIT_PTR_DECL (x)
813 == DEBUG_IMPLICIT_PTR_DECL (y);
814
815 case ENTRY_VALUE:
816 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
817 use rtx_equal_for_cselib_1 to compare the operands. */
818 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
819
820 case LABEL_REF:
821 return XEXP (x, 0) == XEXP (y, 0);
822
823 case MEM:
824 /* We have to compare any autoinc operations in the addresses
825 using this MEM's mode. */
826 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
827
828 default:
829 break;
830 }
831
832 code = GET_CODE (x);
833 fmt = GET_RTX_FORMAT (code);
834
835 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
836 {
837 int j;
838
839 switch (fmt[i])
840 {
841 case 'w':
842 if (XWINT (x, i) != XWINT (y, i))
843 return 0;
844 break;
845
846 case 'n':
847 case 'i':
848 if (XINT (x, i) != XINT (y, i))
849 return 0;
850 break;
851
852 case 'V':
853 case 'E':
854 /* Two vectors must have the same length. */
855 if (XVECLEN (x, i) != XVECLEN (y, i))
856 return 0;
857
858 /* And the corresponding elements must match. */
859 for (j = 0; j < XVECLEN (x, i); j++)
860 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
861 XVECEXP (y, i, j), memmode))
862 return 0;
863 break;
864
865 case 'e':
866 if (i == 1
867 && targetm.commutative_p (x, UNKNOWN)
868 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
869 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
870 return 1;
871 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
872 return 0;
873 break;
874
875 case 'S':
876 case 's':
877 if (strcmp (XSTR (x, i), XSTR (y, i)))
878 return 0;
879 break;
880
881 case 'u':
882 /* These are just backpointers, so they don't matter. */
883 break;
884
885 case '0':
886 case 't':
887 break;
888
889 /* It is believed that rtx's at this level will never
890 contain anything but integers and other rtx's,
891 except for within LABEL_REFs and SYMBOL_REFs. */
892 default:
893 gcc_unreachable ();
894 }
895 }
896 return 1;
897 }
898
899 /* We need to pass down the mode of constants through the hash table
900 functions. For that purpose, wrap them in a CONST of the appropriate
901 mode. */
902 static rtx
903 wrap_constant (enum machine_mode mode, rtx x)
904 {
905 if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
906 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
907 return x;
908 gcc_assert (mode != VOIDmode);
909 return gen_rtx_CONST (mode, x);
910 }
911
912 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
913 For registers and memory locations, we look up their cselib_val structure
914 and return its VALUE element.
915 Possible reasons for return 0 are: the object is volatile, or we couldn't
916 find a register or memory location in the table and CREATE is zero. If
917 CREATE is nonzero, table elts are created for regs and mem.
918 N.B. this hash function returns the same hash value for RTXes that
919 differ only in the order of operands, thus it is suitable for comparisons
920 that take commutativity into account.
921 If we wanted to also support associative rules, we'd have to use a different
922 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
923 MEMMODE indicates the mode of an enclosing MEM, and it's only
924 used to compute autoinc values.
925 We used to have a MODE argument for hashing for CONST_INTs, but that
926 didn't make sense, since it caused spurious hash differences between
927 (set (reg:SI 1) (const_int))
928 (plus:SI (reg:SI 2) (reg:SI 1))
929 and
930 (plus:SI (reg:SI 2) (const_int))
931 If the mode is important in any context, it must be checked specifically
932 in a comparison anyway, since relying on hash differences is unsafe. */
933
934 static unsigned int
935 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
936 {
937 cselib_val *e;
938 int i, j;
939 enum rtx_code code;
940 const char *fmt;
941 unsigned int hash = 0;
942
943 code = GET_CODE (x);
944 hash += (unsigned) code + (unsigned) GET_MODE (x);
945
946 switch (code)
947 {
948 case MEM:
949 case REG:
950 e = cselib_lookup (x, GET_MODE (x), create, memmode);
951 if (! e)
952 return 0;
953
954 return e->hash;
955
956 case DEBUG_EXPR:
957 hash += ((unsigned) DEBUG_EXPR << 7)
958 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
959 return hash ? hash : (unsigned int) DEBUG_EXPR;
960
961 case DEBUG_IMPLICIT_PTR:
962 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
963 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
964 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
965
966 case ENTRY_VALUE:
967 /* ENTRY_VALUEs are function invariant, thus try to avoid
968 recursing on argument if ENTRY_VALUE is one of the
969 forms emitted by expand_debug_expr, otherwise
970 ENTRY_VALUE hash would depend on the current value
971 in some register or memory. */
972 if (REG_P (ENTRY_VALUE_EXP (x)))
973 hash += (unsigned int) REG
974 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
975 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
976 else if (MEM_P (ENTRY_VALUE_EXP (x))
977 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
978 hash += (unsigned int) MEM
979 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
980 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
981 else
982 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
983 return hash ? hash : (unsigned int) ENTRY_VALUE;
984
985 case CONST_INT:
986 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
987 return hash ? hash : (unsigned int) CONST_INT;
988
989 case CONST_DOUBLE:
990 /* This is like the general case, except that it only counts
991 the integers representing the constant. */
992 hash += (unsigned) code + (unsigned) GET_MODE (x);
993 if (GET_MODE (x) != VOIDmode)
994 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
995 else
996 hash += ((unsigned) CONST_DOUBLE_LOW (x)
997 + (unsigned) CONST_DOUBLE_HIGH (x));
998 return hash ? hash : (unsigned int) CONST_DOUBLE;
999
1000 case CONST_FIXED:
1001 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1002 hash += fixed_hash (CONST_FIXED_VALUE (x));
1003 return hash ? hash : (unsigned int) CONST_FIXED;
1004
1005 case CONST_VECTOR:
1006 {
1007 int units;
1008 rtx elt;
1009
1010 units = CONST_VECTOR_NUNITS (x);
1011
1012 for (i = 0; i < units; ++i)
1013 {
1014 elt = CONST_VECTOR_ELT (x, i);
1015 hash += cselib_hash_rtx (elt, 0, memmode);
1016 }
1017
1018 return hash;
1019 }
1020
1021 /* Assume there is only one rtx object for any given label. */
1022 case LABEL_REF:
1023 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1024 differences and differences between each stage's debugging dumps. */
1025 hash += (((unsigned int) LABEL_REF << 7)
1026 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1027 return hash ? hash : (unsigned int) LABEL_REF;
1028
1029 case SYMBOL_REF:
1030 {
1031 /* Don't hash on the symbol's address to avoid bootstrap differences.
1032 Different hash values may cause expressions to be recorded in
1033 different orders and thus different registers to be used in the
1034 final assembler. This also avoids differences in the dump files
1035 between various stages. */
1036 unsigned int h = 0;
1037 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1038
1039 while (*p)
1040 h += (h << 7) + *p++; /* ??? revisit */
1041
1042 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1043 return hash ? hash : (unsigned int) SYMBOL_REF;
1044 }
1045
1046 case PRE_DEC:
1047 case PRE_INC:
1048 /* We can't compute these without knowing the MEM mode. */
1049 gcc_assert (memmode != VOIDmode);
1050 i = GET_MODE_SIZE (memmode);
1051 if (code == PRE_DEC)
1052 i = -i;
1053 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1054 like (mem:MEMMODE (plus (reg) (const_int I))). */
1055 hash += (unsigned) PLUS - (unsigned)code
1056 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1057 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1058 return hash ? hash : 1 + (unsigned) PLUS;
1059
1060 case PRE_MODIFY:
1061 gcc_assert (memmode != VOIDmode);
1062 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1063
1064 case POST_DEC:
1065 case POST_INC:
1066 case POST_MODIFY:
1067 gcc_assert (memmode != VOIDmode);
1068 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1069
1070 case PC:
1071 case CC0:
1072 case CALL:
1073 case UNSPEC_VOLATILE:
1074 return 0;
1075
1076 case ASM_OPERANDS:
1077 if (MEM_VOLATILE_P (x))
1078 return 0;
1079
1080 break;
1081
1082 default:
1083 break;
1084 }
1085
1086 i = GET_RTX_LENGTH (code) - 1;
1087 fmt = GET_RTX_FORMAT (code);
1088 for (; i >= 0; i--)
1089 {
1090 switch (fmt[i])
1091 {
1092 case 'e':
1093 {
1094 rtx tem = XEXP (x, i);
1095 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1096
1097 if (tem_hash == 0)
1098 return 0;
1099
1100 hash += tem_hash;
1101 }
1102 break;
1103 case 'E':
1104 for (j = 0; j < XVECLEN (x, i); j++)
1105 {
1106 unsigned int tem_hash
1107 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1108
1109 if (tem_hash == 0)
1110 return 0;
1111
1112 hash += tem_hash;
1113 }
1114 break;
1115
1116 case 's':
1117 {
1118 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1119
1120 if (p)
1121 while (*p)
1122 hash += *p++;
1123 break;
1124 }
1125
1126 case 'i':
1127 hash += XINT (x, i);
1128 break;
1129
1130 case '0':
1131 case 't':
1132 /* unused */
1133 break;
1134
1135 default:
1136 gcc_unreachable ();
1137 }
1138 }
1139
1140 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1141 }
1142
1143 /* Create a new value structure for VALUE and initialize it. The mode of the
1144 value is MODE. */
1145
1146 static inline cselib_val *
1147 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
1148 {
1149 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1150
1151 gcc_assert (hash);
1152 gcc_assert (next_uid);
1153
1154 e->hash = hash;
1155 e->uid = next_uid++;
1156 /* We use an alloc pool to allocate this RTL construct because it
1157 accounts for about 8% of the overall memory usage. We know
1158 precisely when we can have VALUE RTXen (when cselib is active)
1159 so we don't need to put them in garbage collected memory.
1160 ??? Why should a VALUE be an RTX in the first place? */
1161 e->val_rtx = (rtx) pool_alloc (value_pool);
1162 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1163 PUT_CODE (e->val_rtx, VALUE);
1164 PUT_MODE (e->val_rtx, mode);
1165 CSELIB_VAL_PTR (e->val_rtx) = e;
1166 e->addr_list = 0;
1167 e->locs = 0;
1168 e->next_containing_mem = 0;
1169
1170 if (dump_file && (dump_flags & TDF_CSELIB))
1171 {
1172 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1173 if (flag_dump_noaddr || flag_dump_unnumbered)
1174 fputs ("# ", dump_file);
1175 else
1176 fprintf (dump_file, "%p ", (void*)e);
1177 print_rtl_single (dump_file, x);
1178 fputc ('\n', dump_file);
1179 }
1180
1181 return e;
1182 }
1183
1184 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1185 contains the data at this address. X is a MEM that represents the
1186 value. Update the two value structures to represent this situation. */
1187
1188 static void
1189 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1190 {
1191 struct elt_loc_list *l;
1192
1193 /* Avoid duplicates. */
1194 for (l = mem_elt->locs; l; l = l->next)
1195 if (MEM_P (l->loc)
1196 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1197 {
1198 promote_debug_loc (l);
1199 return;
1200 }
1201
1202 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1203 mem_elt->locs
1204 = new_elt_loc_list (mem_elt->locs,
1205 replace_equiv_address_nv (x, addr_elt->val_rtx));
1206 if (mem_elt->next_containing_mem == NULL)
1207 {
1208 mem_elt->next_containing_mem = first_containing_mem;
1209 first_containing_mem = mem_elt;
1210 }
1211 }
1212
1213 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1214 If CREATE, make a new one if we haven't seen it before. */
1215
1216 static cselib_val *
1217 cselib_lookup_mem (rtx x, int create)
1218 {
1219 enum machine_mode mode = GET_MODE (x);
1220 enum machine_mode addr_mode;
1221 void **slot;
1222 cselib_val *addr;
1223 cselib_val *mem_elt;
1224 struct elt_list *l;
1225
1226 if (MEM_VOLATILE_P (x) || mode == BLKmode
1227 || !cselib_record_memory
1228 || (FLOAT_MODE_P (mode) && flag_float_store))
1229 return 0;
1230
1231 addr_mode = GET_MODE (XEXP (x, 0));
1232 if (addr_mode == VOIDmode)
1233 addr_mode = Pmode;
1234
1235 /* Look up the value for the address. */
1236 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1237 if (! addr)
1238 return 0;
1239
1240 /* Find a value that describes a value of our mode at that address. */
1241 for (l = addr->addr_list; l; l = l->next)
1242 if (GET_MODE (l->elt->val_rtx) == mode)
1243 {
1244 promote_debug_loc (l->elt->locs);
1245 return l->elt;
1246 }
1247
1248 if (! create)
1249 return 0;
1250
1251 mem_elt = new_cselib_val (next_uid, mode, x);
1252 add_mem_for_addr (addr, mem_elt, x);
1253 slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
1254 INSERT, mode);
1255 *slot = mem_elt;
1256 return mem_elt;
1257 }
1258
1259 /* Search thru the possible substitutions in P. We prefer a non reg
1260 substitution because this allows us to expand the tree further. If
1261 we find, just a reg, take the lowest regno. There may be several
1262 non-reg results, we just take the first one because they will all
1263 expand to the same place. */
1264
1265 static rtx
1266 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1267 int max_depth)
1268 {
1269 rtx reg_result = NULL;
1270 unsigned int regno = UINT_MAX;
1271 struct elt_loc_list *p_in = p;
1272
1273 for (; p; p = p -> next)
1274 {
1275 /* Avoid infinite recursion trying to expand a reg into a
1276 the same reg. */
1277 if ((REG_P (p->loc))
1278 && (REGNO (p->loc) < regno)
1279 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1280 {
1281 reg_result = p->loc;
1282 regno = REGNO (p->loc);
1283 }
1284 /* Avoid infinite recursion and do not try to expand the
1285 value. */
1286 else if (GET_CODE (p->loc) == VALUE
1287 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1288 continue;
1289 else if (!REG_P (p->loc))
1290 {
1291 rtx result, note;
1292 if (dump_file && (dump_flags & TDF_CSELIB))
1293 {
1294 print_inline_rtx (dump_file, p->loc, 0);
1295 fprintf (dump_file, "\n");
1296 }
1297 if (GET_CODE (p->loc) == LO_SUM
1298 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1299 && p->setting_insn
1300 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1301 && XEXP (note, 0) == XEXP (p->loc, 1))
1302 return XEXP (p->loc, 1);
1303 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1304 if (result)
1305 return result;
1306 }
1307
1308 }
1309
1310 if (regno != UINT_MAX)
1311 {
1312 rtx result;
1313 if (dump_file && (dump_flags & TDF_CSELIB))
1314 fprintf (dump_file, "r%d\n", regno);
1315
1316 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1317 if (result)
1318 return result;
1319 }
1320
1321 if (dump_file && (dump_flags & TDF_CSELIB))
1322 {
1323 if (reg_result)
1324 {
1325 print_inline_rtx (dump_file, reg_result, 0);
1326 fprintf (dump_file, "\n");
1327 }
1328 else
1329 fprintf (dump_file, "NULL\n");
1330 }
1331 return reg_result;
1332 }
1333
1334
1335 /* Forward substitute and expand an expression out to its roots.
1336 This is the opposite of common subexpression. Because local value
1337 numbering is such a weak optimization, the expanded expression is
1338 pretty much unique (not from a pointer equals point of view but
1339 from a tree shape point of view.
1340
1341 This function returns NULL if the expansion fails. The expansion
1342 will fail if there is no value number for one of the operands or if
1343 one of the operands has been overwritten between the current insn
1344 and the beginning of the basic block. For instance x has no
1345 expansion in:
1346
1347 r1 <- r1 + 3
1348 x <- r1 + 8
1349
1350 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1351 It is clear on return. */
1352
1353 rtx
1354 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1355 {
1356 struct expand_value_data evd;
1357
1358 evd.regs_active = regs_active;
1359 evd.callback = NULL;
1360 evd.callback_arg = NULL;
1361 evd.dummy = false;
1362
1363 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1364 }
1365
1366 /* Same as cselib_expand_value_rtx, but using a callback to try to
1367 resolve some expressions. The CB function should return ORIG if it
1368 can't or does not want to deal with a certain RTX. Any other
1369 return value, including NULL, will be used as the expansion for
1370 VALUE, without any further changes. */
1371
1372 rtx
1373 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1374 cselib_expand_callback cb, void *data)
1375 {
1376 struct expand_value_data evd;
1377
1378 evd.regs_active = regs_active;
1379 evd.callback = cb;
1380 evd.callback_arg = data;
1381 evd.dummy = false;
1382
1383 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1384 }
1385
1386 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1387 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1388 would return NULL or non-NULL, without allocating new rtx. */
1389
1390 bool
1391 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1392 cselib_expand_callback cb, void *data)
1393 {
1394 struct expand_value_data evd;
1395
1396 evd.regs_active = regs_active;
1397 evd.callback = cb;
1398 evd.callback_arg = data;
1399 evd.dummy = true;
1400
1401 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1402 }
1403
1404 /* Internal implementation of cselib_expand_value_rtx and
1405 cselib_expand_value_rtx_cb. */
1406
1407 static rtx
1408 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1409 int max_depth)
1410 {
1411 rtx copy, scopy;
1412 int i, j;
1413 RTX_CODE code;
1414 const char *format_ptr;
1415 enum machine_mode mode;
1416
1417 code = GET_CODE (orig);
1418
1419 /* For the context of dse, if we end up expand into a huge tree, we
1420 will not have a useful address, so we might as well just give up
1421 quickly. */
1422 if (max_depth <= 0)
1423 return NULL;
1424
1425 switch (code)
1426 {
1427 case REG:
1428 {
1429 struct elt_list *l = REG_VALUES (REGNO (orig));
1430
1431 if (l && l->elt == NULL)
1432 l = l->next;
1433 for (; l; l = l->next)
1434 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1435 {
1436 rtx result;
1437 int regno = REGNO (orig);
1438
1439 /* The only thing that we are not willing to do (this
1440 is requirement of dse and if others potential uses
1441 need this function we should add a parm to control
1442 it) is that we will not substitute the
1443 STACK_POINTER_REGNUM, FRAME_POINTER or the
1444 HARD_FRAME_POINTER.
1445
1446 These expansions confuses the code that notices that
1447 stores into the frame go dead at the end of the
1448 function and that the frame is not effected by calls
1449 to subroutines. If you allow the
1450 STACK_POINTER_REGNUM substitution, then dse will
1451 think that parameter pushing also goes dead which is
1452 wrong. If you allow the FRAME_POINTER or the
1453 HARD_FRAME_POINTER then you lose the opportunity to
1454 make the frame assumptions. */
1455 if (regno == STACK_POINTER_REGNUM
1456 || regno == FRAME_POINTER_REGNUM
1457 || regno == HARD_FRAME_POINTER_REGNUM)
1458 return orig;
1459
1460 bitmap_set_bit (evd->regs_active, regno);
1461
1462 if (dump_file && (dump_flags & TDF_CSELIB))
1463 fprintf (dump_file, "expanding: r%d into: ", regno);
1464
1465 result = expand_loc (l->elt->locs, evd, max_depth);
1466 bitmap_clear_bit (evd->regs_active, regno);
1467
1468 if (result)
1469 return result;
1470 else
1471 return orig;
1472 }
1473 }
1474
1475 case CONST_INT:
1476 case CONST_DOUBLE:
1477 case CONST_VECTOR:
1478 case SYMBOL_REF:
1479 case CODE_LABEL:
1480 case PC:
1481 case CC0:
1482 case SCRATCH:
1483 /* SCRATCH must be shared because they represent distinct values. */
1484 return orig;
1485 case CLOBBER:
1486 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1487 return orig;
1488 break;
1489
1490 case CONST:
1491 if (shared_const_p (orig))
1492 return orig;
1493 break;
1494
1495 case SUBREG:
1496 {
1497 rtx subreg;
1498
1499 if (evd->callback)
1500 {
1501 subreg = evd->callback (orig, evd->regs_active, max_depth,
1502 evd->callback_arg);
1503 if (subreg != orig)
1504 return subreg;
1505 }
1506
1507 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1508 max_depth - 1);
1509 if (!subreg)
1510 return NULL;
1511 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1512 GET_MODE (SUBREG_REG (orig)),
1513 SUBREG_BYTE (orig));
1514 if (scopy == NULL
1515 || (GET_CODE (scopy) == SUBREG
1516 && !REG_P (SUBREG_REG (scopy))
1517 && !MEM_P (SUBREG_REG (scopy))))
1518 return NULL;
1519
1520 return scopy;
1521 }
1522
1523 case VALUE:
1524 {
1525 rtx result;
1526
1527 if (dump_file && (dump_flags & TDF_CSELIB))
1528 {
1529 fputs ("\nexpanding ", dump_file);
1530 print_rtl_single (dump_file, orig);
1531 fputs (" into...", dump_file);
1532 }
1533
1534 if (evd->callback)
1535 {
1536 result = evd->callback (orig, evd->regs_active, max_depth,
1537 evd->callback_arg);
1538
1539 if (result != orig)
1540 return result;
1541 }
1542
1543 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1544 return result;
1545 }
1546
1547 case DEBUG_EXPR:
1548 if (evd->callback)
1549 return evd->callback (orig, evd->regs_active, max_depth,
1550 evd->callback_arg);
1551 return orig;
1552
1553 default:
1554 break;
1555 }
1556
1557 /* Copy the various flags, fields, and other information. We assume
1558 that all fields need copying, and then clear the fields that should
1559 not be copied. That is the sensible default behavior, and forces
1560 us to explicitly document why we are *not* copying a flag. */
1561 if (evd->dummy)
1562 copy = NULL;
1563 else
1564 copy = shallow_copy_rtx (orig);
1565
1566 format_ptr = GET_RTX_FORMAT (code);
1567
1568 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1569 switch (*format_ptr++)
1570 {
1571 case 'e':
1572 if (XEXP (orig, i) != NULL)
1573 {
1574 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1575 max_depth - 1);
1576 if (!result)
1577 return NULL;
1578 if (copy)
1579 XEXP (copy, i) = result;
1580 }
1581 break;
1582
1583 case 'E':
1584 case 'V':
1585 if (XVEC (orig, i) != NULL)
1586 {
1587 if (copy)
1588 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1589 for (j = 0; j < XVECLEN (orig, i); j++)
1590 {
1591 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1592 evd, max_depth - 1);
1593 if (!result)
1594 return NULL;
1595 if (copy)
1596 XVECEXP (copy, i, j) = result;
1597 }
1598 }
1599 break;
1600
1601 case 't':
1602 case 'w':
1603 case 'i':
1604 case 's':
1605 case 'S':
1606 case 'T':
1607 case 'u':
1608 case 'B':
1609 case '0':
1610 /* These are left unchanged. */
1611 break;
1612
1613 default:
1614 gcc_unreachable ();
1615 }
1616
1617 if (evd->dummy)
1618 return orig;
1619
1620 mode = GET_MODE (copy);
1621 /* If an operand has been simplified into CONST_INT, which doesn't
1622 have a mode and the mode isn't derivable from whole rtx's mode,
1623 try simplify_*_operation first with mode from original's operand
1624 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1625 scopy = copy;
1626 switch (GET_RTX_CLASS (code))
1627 {
1628 case RTX_UNARY:
1629 if (CONST_INT_P (XEXP (copy, 0))
1630 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1631 {
1632 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1633 GET_MODE (XEXP (orig, 0)));
1634 if (scopy)
1635 return scopy;
1636 }
1637 break;
1638 case RTX_COMM_ARITH:
1639 case RTX_BIN_ARITH:
1640 /* These expressions can derive operand modes from the whole rtx's mode. */
1641 break;
1642 case RTX_TERNARY:
1643 case RTX_BITFIELD_OPS:
1644 if (CONST_INT_P (XEXP (copy, 0))
1645 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1646 {
1647 scopy = simplify_ternary_operation (code, mode,
1648 GET_MODE (XEXP (orig, 0)),
1649 XEXP (copy, 0), XEXP (copy, 1),
1650 XEXP (copy, 2));
1651 if (scopy)
1652 return scopy;
1653 }
1654 break;
1655 case RTX_COMPARE:
1656 case RTX_COMM_COMPARE:
1657 if (CONST_INT_P (XEXP (copy, 0))
1658 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1659 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1660 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1661 {
1662 scopy = simplify_relational_operation (code, mode,
1663 (GET_MODE (XEXP (orig, 0))
1664 != VOIDmode)
1665 ? GET_MODE (XEXP (orig, 0))
1666 : GET_MODE (XEXP (orig, 1)),
1667 XEXP (copy, 0),
1668 XEXP (copy, 1));
1669 if (scopy)
1670 return scopy;
1671 }
1672 break;
1673 default:
1674 break;
1675 }
1676 scopy = simplify_rtx (copy);
1677 if (scopy)
1678 return scopy;
1679 return copy;
1680 }
1681
1682 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1683 with VALUE expressions. This way, it becomes independent of changes
1684 to registers and memory.
1685 X isn't actually modified; if modifications are needed, new rtl is
1686 allocated. However, the return value can share rtl with X.
1687 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1688
1689 rtx
1690 cselib_subst_to_values (rtx x, enum machine_mode memmode)
1691 {
1692 enum rtx_code code = GET_CODE (x);
1693 const char *fmt = GET_RTX_FORMAT (code);
1694 cselib_val *e;
1695 struct elt_list *l;
1696 rtx copy = x;
1697 int i;
1698
1699 switch (code)
1700 {
1701 case REG:
1702 l = REG_VALUES (REGNO (x));
1703 if (l && l->elt == NULL)
1704 l = l->next;
1705 for (; l; l = l->next)
1706 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1707 return l->elt->val_rtx;
1708
1709 gcc_unreachable ();
1710
1711 case MEM:
1712 e = cselib_lookup_mem (x, 0);
1713 /* This used to happen for autoincrements, but we deal with them
1714 properly now. Remove the if stmt for the next release. */
1715 if (! e)
1716 {
1717 /* Assign a value that doesn't match any other. */
1718 e = new_cselib_val (next_uid, GET_MODE (x), x);
1719 }
1720 return e->val_rtx;
1721
1722 case CONST_DOUBLE:
1723 case CONST_VECTOR:
1724 case CONST_INT:
1725 case CONST_FIXED:
1726 return x;
1727
1728 case PRE_DEC:
1729 case PRE_INC:
1730 gcc_assert (memmode != VOIDmode);
1731 i = GET_MODE_SIZE (memmode);
1732 if (code == PRE_DEC)
1733 i = -i;
1734 return cselib_subst_to_values (plus_constant (XEXP (x, 0), i),
1735 memmode);
1736
1737 case PRE_MODIFY:
1738 gcc_assert (memmode != VOIDmode);
1739 return cselib_subst_to_values (XEXP (x, 1), memmode);
1740
1741 case POST_DEC:
1742 case POST_INC:
1743 case POST_MODIFY:
1744 gcc_assert (memmode != VOIDmode);
1745 return cselib_subst_to_values (XEXP (x, 0), memmode);
1746
1747 default:
1748 break;
1749 }
1750
1751 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1752 {
1753 if (fmt[i] == 'e')
1754 {
1755 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1756
1757 if (t != XEXP (x, i))
1758 {
1759 if (x == copy)
1760 copy = shallow_copy_rtx (x);
1761 XEXP (copy, i) = t;
1762 }
1763 }
1764 else if (fmt[i] == 'E')
1765 {
1766 int j;
1767
1768 for (j = 0; j < XVECLEN (x, i); j++)
1769 {
1770 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1771
1772 if (t != XVECEXP (x, i, j))
1773 {
1774 if (XVEC (x, i) == XVEC (copy, i))
1775 {
1776 if (x == copy)
1777 copy = shallow_copy_rtx (x);
1778 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1779 }
1780 XVECEXP (copy, i, j) = t;
1781 }
1782 }
1783 }
1784 }
1785
1786 return copy;
1787 }
1788
1789 /* Look up the rtl expression X in our tables and return the value it
1790 has. If CREATE is zero, we return NULL if we don't know the value.
1791 Otherwise, we create a new one if possible, using mode MODE if X
1792 doesn't have a mode (i.e. because it's a constant). When X is part
1793 of an address, MEMMODE should be the mode of the enclosing MEM if
1794 we're tracking autoinc expressions. */
1795
1796 static cselib_val *
1797 cselib_lookup_1 (rtx x, enum machine_mode mode,
1798 int create, enum machine_mode memmode)
1799 {
1800 void **slot;
1801 cselib_val *e;
1802 unsigned int hashval;
1803
1804 if (GET_MODE (x) != VOIDmode)
1805 mode = GET_MODE (x);
1806
1807 if (GET_CODE (x) == VALUE)
1808 return CSELIB_VAL_PTR (x);
1809
1810 if (REG_P (x))
1811 {
1812 struct elt_list *l;
1813 unsigned int i = REGNO (x);
1814
1815 l = REG_VALUES (i);
1816 if (l && l->elt == NULL)
1817 l = l->next;
1818 for (; l; l = l->next)
1819 if (mode == GET_MODE (l->elt->val_rtx))
1820 {
1821 promote_debug_loc (l->elt->locs);
1822 return l->elt;
1823 }
1824
1825 if (! create)
1826 return 0;
1827
1828 if (i < FIRST_PSEUDO_REGISTER)
1829 {
1830 unsigned int n = hard_regno_nregs[i][mode];
1831
1832 if (n > max_value_regs)
1833 max_value_regs = n;
1834 }
1835
1836 e = new_cselib_val (next_uid, GET_MODE (x), x);
1837 e->locs = new_elt_loc_list (e->locs, x);
1838 if (REG_VALUES (i) == 0)
1839 {
1840 /* Maintain the invariant that the first entry of
1841 REG_VALUES, if present, must be the value used to set the
1842 register, or NULL. */
1843 used_regs[n_used_regs++] = i;
1844 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1845 }
1846 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1847 slot = cselib_find_slot (x, e->hash, INSERT, memmode);
1848 *slot = e;
1849 return e;
1850 }
1851
1852 if (MEM_P (x))
1853 return cselib_lookup_mem (x, create);
1854
1855 hashval = cselib_hash_rtx (x, create, memmode);
1856 /* Can't even create if hashing is not possible. */
1857 if (! hashval)
1858 return 0;
1859
1860 slot = cselib_find_slot (wrap_constant (mode, x), hashval,
1861 create ? INSERT : NO_INSERT, memmode);
1862 if (slot == 0)
1863 return 0;
1864
1865 e = (cselib_val *) *slot;
1866 if (e)
1867 return e;
1868
1869 e = new_cselib_val (hashval, mode, x);
1870
1871 /* We have to fill the slot before calling cselib_subst_to_values:
1872 the hash table is inconsistent until we do so, and
1873 cselib_subst_to_values will need to do lookups. */
1874 *slot = (void *) e;
1875 e->locs = new_elt_loc_list (e->locs,
1876 cselib_subst_to_values (x, memmode));
1877 return e;
1878 }
1879
1880 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
1881
1882 cselib_val *
1883 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
1884 int create, enum machine_mode memmode, rtx insn)
1885 {
1886 cselib_val *ret;
1887
1888 gcc_assert (!cselib_current_insn);
1889 cselib_current_insn = insn;
1890
1891 ret = cselib_lookup (x, mode, create, memmode);
1892
1893 cselib_current_insn = NULL;
1894
1895 return ret;
1896 }
1897
1898 /* Wrapper for cselib_lookup_1, that logs the lookup result and
1899 maintains invariants related with debug insns. */
1900
1901 cselib_val *
1902 cselib_lookup (rtx x, enum machine_mode mode,
1903 int create, enum machine_mode memmode)
1904 {
1905 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
1906
1907 /* ??? Should we return NULL if we're not to create an entry, the
1908 found loc is a debug loc and cselib_current_insn is not DEBUG?
1909 If so, we should also avoid converting val to non-DEBUG; probably
1910 easiest setting cselib_current_insn to NULL before the call
1911 above. */
1912
1913 if (dump_file && (dump_flags & TDF_CSELIB))
1914 {
1915 fputs ("cselib lookup ", dump_file);
1916 print_inline_rtx (dump_file, x, 2);
1917 fprintf (dump_file, " => %u:%u\n",
1918 ret ? ret->uid : 0,
1919 ret ? ret->hash : 0);
1920 }
1921
1922 return ret;
1923 }
1924
1925 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1926 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1927 is used to determine how many hard registers are being changed. If MODE
1928 is VOIDmode, then only REGNO is being changed; this is used when
1929 invalidating call clobbered registers across a call. */
1930
1931 static void
1932 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1933 {
1934 unsigned int endregno;
1935 unsigned int i;
1936
1937 /* If we see pseudos after reload, something is _wrong_. */
1938 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1939 || reg_renumber[regno] < 0);
1940
1941 /* Determine the range of registers that must be invalidated. For
1942 pseudos, only REGNO is affected. For hard regs, we must take MODE
1943 into account, and we must also invalidate lower register numbers
1944 if they contain values that overlap REGNO. */
1945 if (regno < FIRST_PSEUDO_REGISTER)
1946 {
1947 gcc_assert (mode != VOIDmode);
1948
1949 if (regno < max_value_regs)
1950 i = 0;
1951 else
1952 i = regno - max_value_regs;
1953
1954 endregno = end_hard_regno (mode, regno);
1955 }
1956 else
1957 {
1958 i = regno;
1959 endregno = regno + 1;
1960 }
1961
1962 for (; i < endregno; i++)
1963 {
1964 struct elt_list **l = &REG_VALUES (i);
1965
1966 /* Go through all known values for this reg; if it overlaps the range
1967 we're invalidating, remove the value. */
1968 while (*l)
1969 {
1970 cselib_val *v = (*l)->elt;
1971 bool had_locs;
1972 rtx setting_insn;
1973 struct elt_loc_list **p;
1974 unsigned int this_last = i;
1975
1976 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1977 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
1978
1979 if (this_last < regno || v == NULL
1980 || (v == cfa_base_preserved_val
1981 && i == cfa_base_preserved_regno))
1982 {
1983 l = &(*l)->next;
1984 continue;
1985 }
1986
1987 /* We have an overlap. */
1988 if (*l == REG_VALUES (i))
1989 {
1990 /* Maintain the invariant that the first entry of
1991 REG_VALUES, if present, must be the value used to set
1992 the register, or NULL. This is also nice because
1993 then we won't push the same regno onto user_regs
1994 multiple times. */
1995 (*l)->elt = NULL;
1996 l = &(*l)->next;
1997 }
1998 else
1999 unchain_one_elt_list (l);
2000
2001 had_locs = v->locs != NULL;
2002 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2003
2004 /* Now, we clear the mapping from value to reg. It must exist, so
2005 this code will crash intentionally if it doesn't. */
2006 for (p = &v->locs; ; p = &(*p)->next)
2007 {
2008 rtx x = (*p)->loc;
2009
2010 if (REG_P (x) && REGNO (x) == i)
2011 {
2012 unchain_one_elt_loc_list (p);
2013 break;
2014 }
2015 }
2016
2017 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2018 {
2019 if (setting_insn && DEBUG_INSN_P (setting_insn))
2020 n_useless_debug_values++;
2021 else
2022 n_useless_values++;
2023 }
2024 }
2025 }
2026 }
2027 \f
2028 /* Return 1 if X has a value that can vary even between two
2029 executions of the program. 0 means X can be compared reliably
2030 against certain constants or near-constants. */
2031
2032 static bool
2033 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
2034 {
2035 /* We actually don't need to verify very hard. This is because
2036 if X has actually changed, we invalidate the memory anyway,
2037 so assume that all common memory addresses are
2038 invariant. */
2039 return 0;
2040 }
2041
2042 /* Invalidate any locations in the table which are changed because of a
2043 store to MEM_RTX. If this is called because of a non-const call
2044 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2045
2046 static void
2047 cselib_invalidate_mem (rtx mem_rtx)
2048 {
2049 cselib_val **vp, *v, *next;
2050 int num_mems = 0;
2051 rtx mem_addr;
2052
2053 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2054 mem_rtx = canon_rtx (mem_rtx);
2055
2056 vp = &first_containing_mem;
2057 for (v = *vp; v != &dummy_val; v = next)
2058 {
2059 bool has_mem = false;
2060 struct elt_loc_list **p = &v->locs;
2061 bool had_locs = v->locs != NULL;
2062 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2063
2064 while (*p)
2065 {
2066 rtx x = (*p)->loc;
2067 cselib_val *addr;
2068 struct elt_list **mem_chain;
2069
2070 /* MEMs may occur in locations only at the top level; below
2071 that every MEM or REG is substituted by its VALUE. */
2072 if (!MEM_P (x))
2073 {
2074 p = &(*p)->next;
2075 continue;
2076 }
2077 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2078 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
2079 x, NULL_RTX, cselib_rtx_varies_p))
2080 {
2081 has_mem = true;
2082 num_mems++;
2083 p = &(*p)->next;
2084 continue;
2085 }
2086
2087 /* This one overlaps. */
2088 /* We must have a mapping from this MEM's address to the
2089 value (E). Remove that, too. */
2090 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2091 mem_chain = &addr->addr_list;
2092 for (;;)
2093 {
2094 if ((*mem_chain)->elt == v)
2095 {
2096 unchain_one_elt_list (mem_chain);
2097 break;
2098 }
2099
2100 mem_chain = &(*mem_chain)->next;
2101 }
2102
2103 unchain_one_elt_loc_list (p);
2104 }
2105
2106 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2107 {
2108 if (setting_insn && DEBUG_INSN_P (setting_insn))
2109 n_useless_debug_values++;
2110 else
2111 n_useless_values++;
2112 }
2113
2114 next = v->next_containing_mem;
2115 if (has_mem)
2116 {
2117 *vp = v;
2118 vp = &(*vp)->next_containing_mem;
2119 }
2120 else
2121 v->next_containing_mem = NULL;
2122 }
2123 *vp = &dummy_val;
2124 }
2125
2126 /* Invalidate DEST, which is being assigned to or clobbered. */
2127
2128 void
2129 cselib_invalidate_rtx (rtx dest)
2130 {
2131 while (GET_CODE (dest) == SUBREG
2132 || GET_CODE (dest) == ZERO_EXTRACT
2133 || GET_CODE (dest) == STRICT_LOW_PART)
2134 dest = XEXP (dest, 0);
2135
2136 if (REG_P (dest))
2137 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2138 else if (MEM_P (dest))
2139 cselib_invalidate_mem (dest);
2140 }
2141
2142 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2143
2144 static void
2145 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2146 void *data ATTRIBUTE_UNUSED)
2147 {
2148 cselib_invalidate_rtx (dest);
2149 }
2150
2151 /* Record the result of a SET instruction. DEST is being set; the source
2152 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2153 describes its address. */
2154
2155 static void
2156 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2157 {
2158 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2159
2160 if (src_elt == 0 || side_effects_p (dest))
2161 return;
2162
2163 if (dreg >= 0)
2164 {
2165 if (dreg < FIRST_PSEUDO_REGISTER)
2166 {
2167 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2168
2169 if (n > max_value_regs)
2170 max_value_regs = n;
2171 }
2172
2173 if (REG_VALUES (dreg) == 0)
2174 {
2175 used_regs[n_used_regs++] = dreg;
2176 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2177 }
2178 else
2179 {
2180 /* The register should have been invalidated. */
2181 gcc_assert (REG_VALUES (dreg)->elt == 0);
2182 REG_VALUES (dreg)->elt = src_elt;
2183 }
2184
2185 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2186 n_useless_values--;
2187 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
2188 }
2189 else if (MEM_P (dest) && dest_addr_elt != 0
2190 && cselib_record_memory)
2191 {
2192 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2193 n_useless_values--;
2194 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2195 }
2196 }
2197
2198 /* There is no good way to determine how many elements there can be
2199 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2200 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2201
2202 struct cselib_record_autoinc_data
2203 {
2204 struct cselib_set *sets;
2205 int n_sets;
2206 };
2207
2208 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2209 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2210
2211 static int
2212 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2213 rtx dest, rtx src, rtx srcoff, void *arg)
2214 {
2215 struct cselib_record_autoinc_data *data;
2216 data = (struct cselib_record_autoinc_data *)arg;
2217
2218 data->sets[data->n_sets].dest = dest;
2219
2220 if (srcoff)
2221 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2222 else
2223 data->sets[data->n_sets].src = src;
2224
2225 data->n_sets++;
2226
2227 return -1;
2228 }
2229
2230 /* Record the effects of any sets and autoincs in INSN. */
2231 static void
2232 cselib_record_sets (rtx insn)
2233 {
2234 int n_sets = 0;
2235 int i;
2236 struct cselib_set sets[MAX_SETS];
2237 rtx body = PATTERN (insn);
2238 rtx cond = 0;
2239 int n_sets_before_autoinc;
2240 struct cselib_record_autoinc_data data;
2241
2242 body = PATTERN (insn);
2243 if (GET_CODE (body) == COND_EXEC)
2244 {
2245 cond = COND_EXEC_TEST (body);
2246 body = COND_EXEC_CODE (body);
2247 }
2248
2249 /* Find all sets. */
2250 if (GET_CODE (body) == SET)
2251 {
2252 sets[0].src = SET_SRC (body);
2253 sets[0].dest = SET_DEST (body);
2254 n_sets = 1;
2255 }
2256 else if (GET_CODE (body) == PARALLEL)
2257 {
2258 /* Look through the PARALLEL and record the values being
2259 set, if possible. Also handle any CLOBBERs. */
2260 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2261 {
2262 rtx x = XVECEXP (body, 0, i);
2263
2264 if (GET_CODE (x) == SET)
2265 {
2266 sets[n_sets].src = SET_SRC (x);
2267 sets[n_sets].dest = SET_DEST (x);
2268 n_sets++;
2269 }
2270 }
2271 }
2272
2273 if (n_sets == 1
2274 && MEM_P (sets[0].src)
2275 && !cselib_record_memory
2276 && MEM_READONLY_P (sets[0].src))
2277 {
2278 rtx note = find_reg_equal_equiv_note (insn);
2279
2280 if (note && CONSTANT_P (XEXP (note, 0)))
2281 sets[0].src = XEXP (note, 0);
2282 }
2283
2284 data.sets = sets;
2285 data.n_sets = n_sets_before_autoinc = n_sets;
2286 for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
2287 n_sets = data.n_sets;
2288
2289 /* Look up the values that are read. Do this before invalidating the
2290 locations that are written. */
2291 for (i = 0; i < n_sets; i++)
2292 {
2293 rtx dest = sets[i].dest;
2294
2295 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2296 the low part after invalidating any knowledge about larger modes. */
2297 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2298 sets[i].dest = dest = XEXP (dest, 0);
2299
2300 /* We don't know how to record anything but REG or MEM. */
2301 if (REG_P (dest)
2302 || (MEM_P (dest) && cselib_record_memory))
2303 {
2304 rtx src = sets[i].src;
2305 if (cond)
2306 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2307 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2308 if (MEM_P (dest))
2309 {
2310 enum machine_mode address_mode
2311 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2312
2313 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2314 address_mode, 1,
2315 GET_MODE (dest));
2316 }
2317 else
2318 sets[i].dest_addr_elt = 0;
2319 }
2320 }
2321
2322 if (cselib_record_sets_hook)
2323 cselib_record_sets_hook (insn, sets, n_sets);
2324
2325 /* Invalidate all locations written by this insn. Note that the elts we
2326 looked up in the previous loop aren't affected, just some of their
2327 locations may go away. */
2328 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2329
2330 for (i = n_sets_before_autoinc; i < n_sets; i++)
2331 cselib_invalidate_rtx (sets[i].dest);
2332
2333 /* If this is an asm, look for duplicate sets. This can happen when the
2334 user uses the same value as an output multiple times. This is valid
2335 if the outputs are not actually used thereafter. Treat this case as
2336 if the value isn't actually set. We do this by smashing the destination
2337 to pc_rtx, so that we won't record the value later. */
2338 if (n_sets >= 2 && asm_noperands (body) >= 0)
2339 {
2340 for (i = 0; i < n_sets; i++)
2341 {
2342 rtx dest = sets[i].dest;
2343 if (REG_P (dest) || MEM_P (dest))
2344 {
2345 int j;
2346 for (j = i + 1; j < n_sets; j++)
2347 if (rtx_equal_p (dest, sets[j].dest))
2348 {
2349 sets[i].dest = pc_rtx;
2350 sets[j].dest = pc_rtx;
2351 }
2352 }
2353 }
2354 }
2355
2356 /* Now enter the equivalences in our tables. */
2357 for (i = 0; i < n_sets; i++)
2358 {
2359 rtx dest = sets[i].dest;
2360 if (REG_P (dest)
2361 || (MEM_P (dest) && cselib_record_memory))
2362 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2363 }
2364 }
2365
2366 /* Record the effects of INSN. */
2367
2368 void
2369 cselib_process_insn (rtx insn)
2370 {
2371 int i;
2372 rtx x;
2373
2374 cselib_current_insn = insn;
2375
2376 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2377 if (LABEL_P (insn)
2378 || (CALL_P (insn)
2379 && find_reg_note (insn, REG_SETJMP, NULL))
2380 || (NONJUMP_INSN_P (insn)
2381 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2382 && MEM_VOLATILE_P (PATTERN (insn))))
2383 {
2384 cselib_reset_table (next_uid);
2385 cselib_current_insn = NULL_RTX;
2386 return;
2387 }
2388
2389 if (! INSN_P (insn))
2390 {
2391 cselib_current_insn = NULL_RTX;
2392 return;
2393 }
2394
2395 /* If this is a call instruction, forget anything stored in a
2396 call clobbered register, or, if this is not a const call, in
2397 memory. */
2398 if (CALL_P (insn))
2399 {
2400 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2401 if (call_used_regs[i]
2402 || (REG_VALUES (i) && REG_VALUES (i)->elt
2403 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2404 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2405 cselib_invalidate_regno (i, reg_raw_mode[i]);
2406
2407 /* Since it is not clear how cselib is going to be used, be
2408 conservative here and treat looping pure or const functions
2409 as if they were regular functions. */
2410 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2411 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2412 cselib_invalidate_mem (callmem);
2413 }
2414
2415 cselib_record_sets (insn);
2416
2417 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2418 after we have processed the insn. */
2419 if (CALL_P (insn))
2420 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2421 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2422 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2423
2424 cselib_current_insn = NULL_RTX;
2425
2426 if (n_useless_values > MAX_USELESS_VALUES
2427 /* remove_useless_values is linear in the hash table size. Avoid
2428 quadratic behavior for very large hashtables with very few
2429 useless elements. */
2430 && ((unsigned int)n_useless_values
2431 > (cselib_hash_table->n_elements
2432 - cselib_hash_table->n_deleted
2433 - n_debug_values) / 4))
2434 remove_useless_values ();
2435 }
2436
2437 /* Initialize cselib for one pass. The caller must also call
2438 init_alias_analysis. */
2439
2440 void
2441 cselib_init (int record_what)
2442 {
2443 elt_list_pool = create_alloc_pool ("elt_list",
2444 sizeof (struct elt_list), 10);
2445 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2446 sizeof (struct elt_loc_list), 10);
2447 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2448 sizeof (cselib_val), 10);
2449 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2450 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2451 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2452
2453 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2454 see canon_true_dependence. This is only created once. */
2455 if (! callmem)
2456 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2457
2458 cselib_nregs = max_reg_num ();
2459
2460 /* We preserve reg_values to allow expensive clearing of the whole thing.
2461 Reallocate it however if it happens to be too large. */
2462 if (!reg_values || reg_values_size < cselib_nregs
2463 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2464 {
2465 if (reg_values)
2466 free (reg_values);
2467 /* Some space for newly emit instructions so we don't end up
2468 reallocating in between passes. */
2469 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2470 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2471 }
2472 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2473 n_used_regs = 0;
2474 cselib_hash_table = htab_create (31, get_value_hash,
2475 entry_and_rtx_equal_p, NULL);
2476 next_uid = 1;
2477 }
2478
2479 /* Called when the current user is done with cselib. */
2480
2481 void
2482 cselib_finish (void)
2483 {
2484 cselib_discard_hook = NULL;
2485 cselib_preserve_constants = false;
2486 cfa_base_preserved_val = NULL;
2487 cfa_base_preserved_regno = INVALID_REGNUM;
2488 free_alloc_pool (elt_list_pool);
2489 free_alloc_pool (elt_loc_list_pool);
2490 free_alloc_pool (cselib_val_pool);
2491 free_alloc_pool (value_pool);
2492 cselib_clear_table ();
2493 htab_delete (cselib_hash_table);
2494 free (used_regs);
2495 used_regs = 0;
2496 cselib_hash_table = 0;
2497 n_useless_values = 0;
2498 n_useless_debug_values = 0;
2499 n_debug_values = 0;
2500 next_uid = 0;
2501 }
2502
2503 /* Dump the cselib_val *X to FILE *info. */
2504
2505 static int
2506 dump_cselib_val (void **x, void *info)
2507 {
2508 cselib_val *v = (cselib_val *)*x;
2509 FILE *out = (FILE *)info;
2510 bool need_lf = true;
2511
2512 print_inline_rtx (out, v->val_rtx, 0);
2513
2514 if (v->locs)
2515 {
2516 struct elt_loc_list *l = v->locs;
2517 if (need_lf)
2518 {
2519 fputc ('\n', out);
2520 need_lf = false;
2521 }
2522 fputs (" locs:", out);
2523 do
2524 {
2525 fprintf (out, "\n from insn %i ",
2526 INSN_UID (l->setting_insn));
2527 print_inline_rtx (out, l->loc, 4);
2528 }
2529 while ((l = l->next));
2530 fputc ('\n', out);
2531 }
2532 else
2533 {
2534 fputs (" no locs", out);
2535 need_lf = true;
2536 }
2537
2538 if (v->addr_list)
2539 {
2540 struct elt_list *e = v->addr_list;
2541 if (need_lf)
2542 {
2543 fputc ('\n', out);
2544 need_lf = false;
2545 }
2546 fputs (" addr list:", out);
2547 do
2548 {
2549 fputs ("\n ", out);
2550 print_inline_rtx (out, e->elt->val_rtx, 2);
2551 }
2552 while ((e = e->next));
2553 fputc ('\n', out);
2554 }
2555 else
2556 {
2557 fputs (" no addrs", out);
2558 need_lf = true;
2559 }
2560
2561 if (v->next_containing_mem == &dummy_val)
2562 fputs (" last mem\n", out);
2563 else if (v->next_containing_mem)
2564 {
2565 fputs (" next mem ", out);
2566 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2567 fputc ('\n', out);
2568 }
2569 else if (need_lf)
2570 fputc ('\n', out);
2571
2572 return 1;
2573 }
2574
2575 /* Dump to OUT everything in the CSELIB table. */
2576
2577 void
2578 dump_cselib_table (FILE *out)
2579 {
2580 fprintf (out, "cselib hash table:\n");
2581 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2582 if (first_containing_mem != &dummy_val)
2583 {
2584 fputs ("first mem ", out);
2585 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2586 fputc ('\n', out);
2587 }
2588 fprintf (out, "next uid %i\n", next_uid);
2589 }
2590
2591 #include "gt-cselib.h"