re PR debug/47858 (IPA-SRA decreases quality of debug info)
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "tree-pass.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45 #include "bitmap.h"
46
47 /* A list of cselib_val structures. */
48 struct elt_list {
49 struct elt_list *next;
50 cselib_val *elt;
51 };
52
53 static bool cselib_record_memory;
54 static bool cselib_preserve_constants;
55 static int entry_and_rtx_equal_p (const void *, const void *);
56 static hashval_t get_value_hash (const void *);
57 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
58 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
59 static void unchain_one_value (cselib_val *);
60 static void unchain_one_elt_list (struct elt_list **);
61 static void unchain_one_elt_loc_list (struct elt_loc_list **);
62 static int discard_useless_locs (void **, void *);
63 static int discard_useless_values (void **, void *);
64 static void remove_useless_values (void);
65 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
66 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
67 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
68 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
69 static cselib_val *cselib_lookup_mem (rtx, int);
70 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
71 static void cselib_invalidate_mem (rtx);
72 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
73 static void cselib_record_sets (rtx);
74
75 struct expand_value_data
76 {
77 bitmap regs_active;
78 cselib_expand_callback callback;
79 void *callback_arg;
80 bool dummy;
81 };
82
83 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
84
85 /* There are three ways in which cselib can look up an rtx:
86 - for a REG, the reg_values table (which is indexed by regno) is used
87 - for a MEM, we recursively look up its address and then follow the
88 addr_list of that value
89 - for everything else, we compute a hash value and go through the hash
90 table. Since different rtx's can still have the same hash value,
91 this involves walking the table entries for a given value and comparing
92 the locations of the entries with the rtx we are looking up. */
93
94 /* A table that enables us to look up elts by their value. */
95 static htab_t cselib_hash_table;
96
97 /* This is a global so we don't have to pass this through every function.
98 It is used in new_elt_loc_list to set SETTING_INSN. */
99 static rtx cselib_current_insn;
100
101 /* The unique id that the next create value will take. */
102 static unsigned int next_uid;
103
104 /* The number of registers we had when the varrays were last resized. */
105 static unsigned int cselib_nregs;
106
107 /* Count values without known locations, or with only locations that
108 wouldn't have been known except for debug insns. Whenever this
109 grows too big, we remove these useless values from the table.
110
111 Counting values with only debug values is a bit tricky. We don't
112 want to increment n_useless_values when we create a value for a
113 debug insn, for this would get n_useless_values out of sync, but we
114 want increment it if all locs in the list that were ever referenced
115 in nondebug insns are removed from the list.
116
117 In the general case, once we do that, we'd have to stop accepting
118 nondebug expressions in the loc list, to avoid having two values
119 equivalent that, without debug insns, would have been made into
120 separate values. However, because debug insns never introduce
121 equivalences themselves (no assignments), the only means for
122 growing loc lists is through nondebug assignments. If the locs
123 also happen to be referenced in debug insns, it will work just fine.
124
125 A consequence of this is that there's at most one debug-only loc in
126 each loc list. If we keep it in the first entry, testing whether
127 we have a debug-only loc list takes O(1).
128
129 Furthermore, since any additional entry in a loc list containing a
130 debug loc would have to come from an assignment (nondebug) that
131 references both the initial debug loc and the newly-equivalent loc,
132 the initial debug loc would be promoted to a nondebug loc, and the
133 loc list would not contain debug locs any more.
134
135 So the only case we have to be careful with in order to keep
136 n_useless_values in sync between debug and nondebug compilations is
137 to avoid incrementing n_useless_values when removing the single loc
138 from a value that turns out to not appear outside debug values. We
139 increment n_useless_debug_values instead, and leave such values
140 alone until, for other reasons, we garbage-collect useless
141 values. */
142 static int n_useless_values;
143 static int n_useless_debug_values;
144
145 /* Count values whose locs have been taken exclusively from debug
146 insns for the entire life of the value. */
147 static int n_debug_values;
148
149 /* Number of useless values before we remove them from the hash table. */
150 #define MAX_USELESS_VALUES 32
151
152 /* This table maps from register number to values. It does not
153 contain pointers to cselib_val structures, but rather elt_lists.
154 The purpose is to be able to refer to the same register in
155 different modes. The first element of the list defines the mode in
156 which the register was set; if the mode is unknown or the value is
157 no longer valid in that mode, ELT will be NULL for the first
158 element. */
159 static struct elt_list **reg_values;
160 static unsigned int reg_values_size;
161 #define REG_VALUES(i) reg_values[i]
162
163 /* The largest number of hard regs used by any entry added to the
164 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
165 static unsigned int max_value_regs;
166
167 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
168 in cselib_clear_table() for fast emptying. */
169 static unsigned int *used_regs;
170 static unsigned int n_used_regs;
171
172 /* We pass this to cselib_invalidate_mem to invalidate all of
173 memory for a non-const call instruction. */
174 static GTY(()) rtx callmem;
175
176 /* Set by discard_useless_locs if it deleted the last location of any
177 value. */
178 static int values_became_useless;
179
180 /* Used as stop element of the containing_mem list so we can check
181 presence in the list by checking the next pointer. */
182 static cselib_val dummy_val;
183
184 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
185 that is constant through the whole function and should never be
186 eliminated. */
187 static cselib_val *cfa_base_preserved_val;
188 static unsigned int cfa_base_preserved_regno;
189
190 /* Used to list all values that contain memory reference.
191 May or may not contain the useless values - the list is compacted
192 each time memory is invalidated. */
193 static cselib_val *first_containing_mem = &dummy_val;
194 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
195
196 /* If nonnull, cselib will call this function before freeing useless
197 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
198 void (*cselib_discard_hook) (cselib_val *);
199
200 /* If nonnull, cselib will call this function before recording sets or
201 even clobbering outputs of INSN. All the recorded sets will be
202 represented in the array sets[n_sets]. new_val_min can be used to
203 tell whether values present in sets are introduced by this
204 instruction. */
205 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
206 int n_sets);
207
208 #define PRESERVED_VALUE_P(RTX) \
209 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
210
211 \f
212
213 /* Allocate a struct elt_list and fill in its two elements with the
214 arguments. */
215
216 static inline struct elt_list *
217 new_elt_list (struct elt_list *next, cselib_val *elt)
218 {
219 struct elt_list *el;
220 el = (struct elt_list *) pool_alloc (elt_list_pool);
221 el->next = next;
222 el->elt = elt;
223 return el;
224 }
225
226 /* Allocate a struct elt_loc_list and fill in its two elements with the
227 arguments. */
228
229 static inline struct elt_loc_list *
230 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
231 {
232 struct elt_loc_list *el;
233 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
234 el->next = next;
235 el->loc = loc;
236 el->setting_insn = cselib_current_insn;
237 gcc_assert (!next || !next->setting_insn
238 || !DEBUG_INSN_P (next->setting_insn));
239
240 /* If we're creating the first loc in a debug insn context, we've
241 just created a debug value. Count it. */
242 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
243 n_debug_values++;
244
245 return el;
246 }
247
248 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
249 originating from a debug insn, maintaining the debug values
250 count. */
251
252 static inline void
253 promote_debug_loc (struct elt_loc_list *l)
254 {
255 if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
256 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
257 {
258 n_debug_values--;
259 l->setting_insn = cselib_current_insn;
260 gcc_assert (!l->next || cselib_preserve_constants);
261 }
262 }
263
264 /* The elt_list at *PL is no longer needed. Unchain it and free its
265 storage. */
266
267 static inline void
268 unchain_one_elt_list (struct elt_list **pl)
269 {
270 struct elt_list *l = *pl;
271
272 *pl = l->next;
273 pool_free (elt_list_pool, l);
274 }
275
276 /* Likewise for elt_loc_lists. */
277
278 static void
279 unchain_one_elt_loc_list (struct elt_loc_list **pl)
280 {
281 struct elt_loc_list *l = *pl;
282
283 *pl = l->next;
284 pool_free (elt_loc_list_pool, l);
285 }
286
287 /* Likewise for cselib_vals. This also frees the addr_list associated with
288 V. */
289
290 static void
291 unchain_one_value (cselib_val *v)
292 {
293 while (v->addr_list)
294 unchain_one_elt_list (&v->addr_list);
295
296 pool_free (cselib_val_pool, v);
297 }
298
299 /* Remove all entries from the hash table. Also used during
300 initialization. */
301
302 void
303 cselib_clear_table (void)
304 {
305 cselib_reset_table (1);
306 }
307
308 /* Remove from hash table all VALUEs except constants
309 and function invariants. */
310
311 static int
312 preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
313 {
314 cselib_val *v = (cselib_val *)*x;
315
316 if (v->locs != NULL
317 && v->locs->next == NULL)
318 {
319 if (CONSTANT_P (v->locs->loc)
320 && (GET_CODE (v->locs->loc) != CONST
321 || !references_value_p (v->locs->loc, 0)))
322 return 1;
323 if (cfa_base_preserved_val)
324 {
325 if (v == cfa_base_preserved_val)
326 return 1;
327 if (GET_CODE (v->locs->loc) == PLUS
328 && CONST_INT_P (XEXP (v->locs->loc, 1))
329 && XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
330 return 1;
331 }
332 }
333 /* Keep around VALUEs that forward function invariant ENTRY_VALUEs
334 to corresponding parameter VALUEs. */
335 if (v->locs != NULL
336 && v->locs->next != NULL
337 && v->locs->next->next == NULL
338 && GET_CODE (v->locs->next->loc) == ENTRY_VALUE
339 && GET_CODE (v->locs->loc) == VALUE)
340 return 1;
341
342 htab_clear_slot (cselib_hash_table, x);
343 return 1;
344 }
345
346 /* Remove all entries from the hash table, arranging for the next
347 value to be numbered NUM. */
348
349 void
350 cselib_reset_table (unsigned int num)
351 {
352 unsigned int i;
353
354 max_value_regs = 0;
355
356 if (cfa_base_preserved_val)
357 {
358 unsigned int regno = cfa_base_preserved_regno;
359 unsigned int new_used_regs = 0;
360 for (i = 0; i < n_used_regs; i++)
361 if (used_regs[i] == regno)
362 {
363 new_used_regs = 1;
364 continue;
365 }
366 else
367 REG_VALUES (used_regs[i]) = 0;
368 gcc_assert (new_used_regs == 1);
369 n_used_regs = new_used_regs;
370 used_regs[0] = regno;
371 max_value_regs
372 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
373 }
374 else
375 {
376 for (i = 0; i < n_used_regs; i++)
377 REG_VALUES (used_regs[i]) = 0;
378 n_used_regs = 0;
379 }
380
381 if (cselib_preserve_constants)
382 htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
383 else
384 htab_empty (cselib_hash_table);
385
386 n_useless_values = 0;
387 n_useless_debug_values = 0;
388 n_debug_values = 0;
389
390 next_uid = num;
391
392 first_containing_mem = &dummy_val;
393 }
394
395 /* Return the number of the next value that will be generated. */
396
397 unsigned int
398 cselib_get_next_uid (void)
399 {
400 return next_uid;
401 }
402
403 /* See the documentation of cselib_find_slot below. */
404 static enum machine_mode find_slot_memmode;
405
406 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
407 INSERTing if requested. When X is part of the address of a MEM,
408 MEMMODE should specify the mode of the MEM. While searching the
409 table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
410 in X can be resolved. */
411
412 static void **
413 cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
414 enum machine_mode memmode)
415 {
416 void **slot;
417 find_slot_memmode = memmode;
418 slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
419 find_slot_memmode = VOIDmode;
420 return slot;
421 }
422
423 /* The equality test for our hash table. The first argument ENTRY is a table
424 element (i.e. a cselib_val), while the second arg X is an rtx. We know
425 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
426 CONST of an appropriate mode. */
427
428 static int
429 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
430 {
431 struct elt_loc_list *l;
432 const cselib_val *const v = (const cselib_val *) entry;
433 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
434 enum machine_mode mode = GET_MODE (x);
435
436 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
437 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
438
439 if (mode != GET_MODE (v->val_rtx))
440 return 0;
441
442 /* Unwrap X if necessary. */
443 if (GET_CODE (x) == CONST
444 && (CONST_INT_P (XEXP (x, 0))
445 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
446 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
447 x = XEXP (x, 0);
448
449 /* We don't guarantee that distinct rtx's have different hash values,
450 so we need to do a comparison. */
451 for (l = v->locs; l; l = l->next)
452 if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
453 {
454 promote_debug_loc (l);
455 return 1;
456 }
457
458 return 0;
459 }
460
461 /* The hash function for our hash table. The value is always computed with
462 cselib_hash_rtx when adding an element; this function just extracts the
463 hash value from a cselib_val structure. */
464
465 static hashval_t
466 get_value_hash (const void *entry)
467 {
468 const cselib_val *const v = (const cselib_val *) entry;
469 return v->hash;
470 }
471
472 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
473 only return true for values which point to a cselib_val whose value
474 element has been set to zero, which implies the cselib_val will be
475 removed. */
476
477 int
478 references_value_p (const_rtx x, int only_useless)
479 {
480 const enum rtx_code code = GET_CODE (x);
481 const char *fmt = GET_RTX_FORMAT (code);
482 int i, j;
483
484 if (GET_CODE (x) == VALUE
485 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
486 return 1;
487
488 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
489 {
490 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
491 return 1;
492 else if (fmt[i] == 'E')
493 for (j = 0; j < XVECLEN (x, i); j++)
494 if (references_value_p (XVECEXP (x, i, j), only_useless))
495 return 1;
496 }
497
498 return 0;
499 }
500
501 /* For all locations found in X, delete locations that reference useless
502 values (i.e. values without any location). Called through
503 htab_traverse. */
504
505 static int
506 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
507 {
508 cselib_val *v = (cselib_val *)*x;
509 struct elt_loc_list **p = &v->locs;
510 bool had_locs = v->locs != NULL;
511 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
512
513 while (*p)
514 {
515 if (references_value_p ((*p)->loc, 1))
516 unchain_one_elt_loc_list (p);
517 else
518 p = &(*p)->next;
519 }
520
521 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
522 {
523 if (setting_insn && DEBUG_INSN_P (setting_insn))
524 n_useless_debug_values++;
525 else
526 n_useless_values++;
527 values_became_useless = 1;
528 }
529 return 1;
530 }
531
532 /* If X is a value with no locations, remove it from the hashtable. */
533
534 static int
535 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
536 {
537 cselib_val *v = (cselib_val *)*x;
538
539 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
540 {
541 if (cselib_discard_hook)
542 cselib_discard_hook (v);
543
544 CSELIB_VAL_PTR (v->val_rtx) = NULL;
545 htab_clear_slot (cselib_hash_table, x);
546 unchain_one_value (v);
547 n_useless_values--;
548 }
549
550 return 1;
551 }
552
553 /* Clean out useless values (i.e. those which no longer have locations
554 associated with them) from the hash table. */
555
556 static void
557 remove_useless_values (void)
558 {
559 cselib_val **p, *v;
560
561 /* First pass: eliminate locations that reference the value. That in
562 turn can make more values useless. */
563 do
564 {
565 values_became_useless = 0;
566 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
567 }
568 while (values_became_useless);
569
570 /* Second pass: actually remove the values. */
571
572 p = &first_containing_mem;
573 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
574 if (v->locs)
575 {
576 *p = v;
577 p = &(*p)->next_containing_mem;
578 }
579 *p = &dummy_val;
580
581 n_useless_values += n_useless_debug_values;
582 n_debug_values -= n_useless_debug_values;
583 n_useless_debug_values = 0;
584
585 htab_traverse (cselib_hash_table, discard_useless_values, 0);
586
587 gcc_assert (!n_useless_values);
588 }
589
590 /* Arrange for a value to not be removed from the hash table even if
591 it becomes useless. */
592
593 void
594 cselib_preserve_value (cselib_val *v)
595 {
596 PRESERVED_VALUE_P (v->val_rtx) = 1;
597 }
598
599 /* Test whether a value is preserved. */
600
601 bool
602 cselib_preserved_value_p (cselib_val *v)
603 {
604 return PRESERVED_VALUE_P (v->val_rtx);
605 }
606
607 /* Arrange for a REG value to be assumed constant through the whole function,
608 never invalidated and preserved across cselib_reset_table calls. */
609
610 void
611 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
612 {
613 if (cselib_preserve_constants
614 && v->locs
615 && REG_P (v->locs->loc))
616 {
617 cfa_base_preserved_val = v;
618 cfa_base_preserved_regno = regno;
619 }
620 }
621
622 /* Clean all non-constant expressions in the hash table, but retain
623 their values. */
624
625 void
626 cselib_preserve_only_values (void)
627 {
628 int i;
629
630 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
631 cselib_invalidate_regno (i, reg_raw_mode[i]);
632
633 cselib_invalidate_mem (callmem);
634
635 remove_useless_values ();
636
637 gcc_assert (first_containing_mem == &dummy_val);
638 }
639
640 /* Return the mode in which a register was last set. If X is not a
641 register, return its mode. If the mode in which the register was
642 set is not known, or the value was already clobbered, return
643 VOIDmode. */
644
645 enum machine_mode
646 cselib_reg_set_mode (const_rtx x)
647 {
648 if (!REG_P (x))
649 return GET_MODE (x);
650
651 if (REG_VALUES (REGNO (x)) == NULL
652 || REG_VALUES (REGNO (x))->elt == NULL)
653 return VOIDmode;
654
655 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
656 }
657
658 /* Return nonzero if we can prove that X and Y contain the same value, taking
659 our gathered information into account. */
660
661 int
662 rtx_equal_for_cselib_p (rtx x, rtx y)
663 {
664 return rtx_equal_for_cselib_1 (x, y, VOIDmode);
665 }
666
667 /* If x is a PLUS or an autoinc operation, expand the operation,
668 storing the offset, if any, in *OFF. */
669
670 static rtx
671 autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
672 {
673 switch (GET_CODE (x))
674 {
675 case PLUS:
676 *off = XEXP (x, 1);
677 return XEXP (x, 0);
678
679 case PRE_DEC:
680 if (memmode == VOIDmode)
681 return x;
682
683 *off = GEN_INT (-GET_MODE_SIZE (memmode));
684 return XEXP (x, 0);
685 break;
686
687 case PRE_INC:
688 if (memmode == VOIDmode)
689 return x;
690
691 *off = GEN_INT (GET_MODE_SIZE (memmode));
692 return XEXP (x, 0);
693
694 case PRE_MODIFY:
695 return XEXP (x, 1);
696
697 case POST_DEC:
698 case POST_INC:
699 case POST_MODIFY:
700 return XEXP (x, 0);
701
702 default:
703 return x;
704 }
705 }
706
707 /* Return nonzero if we can prove that X and Y contain the same value,
708 taking our gathered information into account. MEMMODE holds the
709 mode of the enclosing MEM, if any, as required to deal with autoinc
710 addressing modes. If X and Y are not (known to be) part of
711 addresses, MEMMODE should be VOIDmode. */
712
713 static int
714 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
715 {
716 enum rtx_code code;
717 const char *fmt;
718 int i;
719
720 if (REG_P (x) || MEM_P (x))
721 {
722 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
723
724 if (e)
725 x = e->val_rtx;
726 }
727
728 if (REG_P (y) || MEM_P (y))
729 {
730 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
731
732 if (e)
733 y = e->val_rtx;
734 }
735
736 if (x == y)
737 return 1;
738
739 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
740 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
741
742 if (GET_CODE (x) == VALUE)
743 {
744 cselib_val *e = CSELIB_VAL_PTR (x);
745 struct elt_loc_list *l;
746
747 for (l = e->locs; l; l = l->next)
748 {
749 rtx t = l->loc;
750
751 /* Avoid infinite recursion. */
752 if (REG_P (t) || MEM_P (t))
753 continue;
754 else if (rtx_equal_for_cselib_1 (t, y, memmode))
755 return 1;
756 }
757
758 return 0;
759 }
760
761 if (GET_CODE (y) == VALUE)
762 {
763 cselib_val *e = CSELIB_VAL_PTR (y);
764 struct elt_loc_list *l;
765
766 for (l = e->locs; l; l = l->next)
767 {
768 rtx t = l->loc;
769
770 if (REG_P (t) || MEM_P (t))
771 continue;
772 else if (rtx_equal_for_cselib_1 (x, t, memmode))
773 return 1;
774 }
775
776 return 0;
777 }
778
779 if (GET_MODE (x) != GET_MODE (y))
780 return 0;
781
782 if (GET_CODE (x) != GET_CODE (y))
783 {
784 rtx xorig = x, yorig = y;
785 rtx xoff = NULL, yoff = NULL;
786
787 x = autoinc_split (x, &xoff, memmode);
788 y = autoinc_split (y, &yoff, memmode);
789
790 if (!xoff != !yoff)
791 return 0;
792
793 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
794 return 0;
795
796 /* Don't recurse if nothing changed. */
797 if (x != xorig || y != yorig)
798 return rtx_equal_for_cselib_1 (x, y, memmode);
799
800 return 0;
801 }
802
803 /* These won't be handled correctly by the code below. */
804 switch (GET_CODE (x))
805 {
806 case CONST_DOUBLE:
807 case CONST_FIXED:
808 case DEBUG_EXPR:
809 return 0;
810
811 case DEBUG_IMPLICIT_PTR:
812 return DEBUG_IMPLICIT_PTR_DECL (x)
813 == DEBUG_IMPLICIT_PTR_DECL (y);
814
815 case DEBUG_PARAMETER_REF:
816 return DEBUG_PARAMETER_REF_DECL (x)
817 == DEBUG_PARAMETER_REF_DECL (y);
818
819 case ENTRY_VALUE:
820 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
821 use rtx_equal_for_cselib_1 to compare the operands. */
822 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
823
824 case LABEL_REF:
825 return XEXP (x, 0) == XEXP (y, 0);
826
827 case MEM:
828 /* We have to compare any autoinc operations in the addresses
829 using this MEM's mode. */
830 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
831
832 default:
833 break;
834 }
835
836 code = GET_CODE (x);
837 fmt = GET_RTX_FORMAT (code);
838
839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
840 {
841 int j;
842
843 switch (fmt[i])
844 {
845 case 'w':
846 if (XWINT (x, i) != XWINT (y, i))
847 return 0;
848 break;
849
850 case 'n':
851 case 'i':
852 if (XINT (x, i) != XINT (y, i))
853 return 0;
854 break;
855
856 case 'V':
857 case 'E':
858 /* Two vectors must have the same length. */
859 if (XVECLEN (x, i) != XVECLEN (y, i))
860 return 0;
861
862 /* And the corresponding elements must match. */
863 for (j = 0; j < XVECLEN (x, i); j++)
864 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
865 XVECEXP (y, i, j), memmode))
866 return 0;
867 break;
868
869 case 'e':
870 if (i == 1
871 && targetm.commutative_p (x, UNKNOWN)
872 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
873 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
874 return 1;
875 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
876 return 0;
877 break;
878
879 case 'S':
880 case 's':
881 if (strcmp (XSTR (x, i), XSTR (y, i)))
882 return 0;
883 break;
884
885 case 'u':
886 /* These are just backpointers, so they don't matter. */
887 break;
888
889 case '0':
890 case 't':
891 break;
892
893 /* It is believed that rtx's at this level will never
894 contain anything but integers and other rtx's,
895 except for within LABEL_REFs and SYMBOL_REFs. */
896 default:
897 gcc_unreachable ();
898 }
899 }
900 return 1;
901 }
902
903 /* We need to pass down the mode of constants through the hash table
904 functions. For that purpose, wrap them in a CONST of the appropriate
905 mode. */
906 static rtx
907 wrap_constant (enum machine_mode mode, rtx x)
908 {
909 if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
910 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
911 return x;
912 gcc_assert (mode != VOIDmode);
913 return gen_rtx_CONST (mode, x);
914 }
915
916 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
917 For registers and memory locations, we look up their cselib_val structure
918 and return its VALUE element.
919 Possible reasons for return 0 are: the object is volatile, or we couldn't
920 find a register or memory location in the table and CREATE is zero. If
921 CREATE is nonzero, table elts are created for regs and mem.
922 N.B. this hash function returns the same hash value for RTXes that
923 differ only in the order of operands, thus it is suitable for comparisons
924 that take commutativity into account.
925 If we wanted to also support associative rules, we'd have to use a different
926 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
927 MEMMODE indicates the mode of an enclosing MEM, and it's only
928 used to compute autoinc values.
929 We used to have a MODE argument for hashing for CONST_INTs, but that
930 didn't make sense, since it caused spurious hash differences between
931 (set (reg:SI 1) (const_int))
932 (plus:SI (reg:SI 2) (reg:SI 1))
933 and
934 (plus:SI (reg:SI 2) (const_int))
935 If the mode is important in any context, it must be checked specifically
936 in a comparison anyway, since relying on hash differences is unsafe. */
937
938 static unsigned int
939 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
940 {
941 cselib_val *e;
942 int i, j;
943 enum rtx_code code;
944 const char *fmt;
945 unsigned int hash = 0;
946
947 code = GET_CODE (x);
948 hash += (unsigned) code + (unsigned) GET_MODE (x);
949
950 switch (code)
951 {
952 case MEM:
953 case REG:
954 e = cselib_lookup (x, GET_MODE (x), create, memmode);
955 if (! e)
956 return 0;
957
958 return e->hash;
959
960 case DEBUG_EXPR:
961 hash += ((unsigned) DEBUG_EXPR << 7)
962 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
963 return hash ? hash : (unsigned int) DEBUG_EXPR;
964
965 case DEBUG_IMPLICIT_PTR:
966 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
967 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
968 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
969
970 case DEBUG_PARAMETER_REF:
971 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
972 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
973 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
974
975 case ENTRY_VALUE:
976 /* ENTRY_VALUEs are function invariant, thus try to avoid
977 recursing on argument if ENTRY_VALUE is one of the
978 forms emitted by expand_debug_expr, otherwise
979 ENTRY_VALUE hash would depend on the current value
980 in some register or memory. */
981 if (REG_P (ENTRY_VALUE_EXP (x)))
982 hash += (unsigned int) REG
983 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
984 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
985 else if (MEM_P (ENTRY_VALUE_EXP (x))
986 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
987 hash += (unsigned int) MEM
988 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
989 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
990 else
991 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
992 return hash ? hash : (unsigned int) ENTRY_VALUE;
993
994 case CONST_INT:
995 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
996 return hash ? hash : (unsigned int) CONST_INT;
997
998 case CONST_DOUBLE:
999 /* This is like the general case, except that it only counts
1000 the integers representing the constant. */
1001 hash += (unsigned) code + (unsigned) GET_MODE (x);
1002 if (GET_MODE (x) != VOIDmode)
1003 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1004 else
1005 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1006 + (unsigned) CONST_DOUBLE_HIGH (x));
1007 return hash ? hash : (unsigned int) CONST_DOUBLE;
1008
1009 case CONST_FIXED:
1010 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1011 hash += fixed_hash (CONST_FIXED_VALUE (x));
1012 return hash ? hash : (unsigned int) CONST_FIXED;
1013
1014 case CONST_VECTOR:
1015 {
1016 int units;
1017 rtx elt;
1018
1019 units = CONST_VECTOR_NUNITS (x);
1020
1021 for (i = 0; i < units; ++i)
1022 {
1023 elt = CONST_VECTOR_ELT (x, i);
1024 hash += cselib_hash_rtx (elt, 0, memmode);
1025 }
1026
1027 return hash;
1028 }
1029
1030 /* Assume there is only one rtx object for any given label. */
1031 case LABEL_REF:
1032 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1033 differences and differences between each stage's debugging dumps. */
1034 hash += (((unsigned int) LABEL_REF << 7)
1035 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1036 return hash ? hash : (unsigned int) LABEL_REF;
1037
1038 case SYMBOL_REF:
1039 {
1040 /* Don't hash on the symbol's address to avoid bootstrap differences.
1041 Different hash values may cause expressions to be recorded in
1042 different orders and thus different registers to be used in the
1043 final assembler. This also avoids differences in the dump files
1044 between various stages. */
1045 unsigned int h = 0;
1046 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1047
1048 while (*p)
1049 h += (h << 7) + *p++; /* ??? revisit */
1050
1051 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1052 return hash ? hash : (unsigned int) SYMBOL_REF;
1053 }
1054
1055 case PRE_DEC:
1056 case PRE_INC:
1057 /* We can't compute these without knowing the MEM mode. */
1058 gcc_assert (memmode != VOIDmode);
1059 i = GET_MODE_SIZE (memmode);
1060 if (code == PRE_DEC)
1061 i = -i;
1062 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1063 like (mem:MEMMODE (plus (reg) (const_int I))). */
1064 hash += (unsigned) PLUS - (unsigned)code
1065 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1066 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1067 return hash ? hash : 1 + (unsigned) PLUS;
1068
1069 case PRE_MODIFY:
1070 gcc_assert (memmode != VOIDmode);
1071 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1072
1073 case POST_DEC:
1074 case POST_INC:
1075 case POST_MODIFY:
1076 gcc_assert (memmode != VOIDmode);
1077 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1078
1079 case PC:
1080 case CC0:
1081 case CALL:
1082 case UNSPEC_VOLATILE:
1083 return 0;
1084
1085 case ASM_OPERANDS:
1086 if (MEM_VOLATILE_P (x))
1087 return 0;
1088
1089 break;
1090
1091 default:
1092 break;
1093 }
1094
1095 i = GET_RTX_LENGTH (code) - 1;
1096 fmt = GET_RTX_FORMAT (code);
1097 for (; i >= 0; i--)
1098 {
1099 switch (fmt[i])
1100 {
1101 case 'e':
1102 {
1103 rtx tem = XEXP (x, i);
1104 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1105
1106 if (tem_hash == 0)
1107 return 0;
1108
1109 hash += tem_hash;
1110 }
1111 break;
1112 case 'E':
1113 for (j = 0; j < XVECLEN (x, i); j++)
1114 {
1115 unsigned int tem_hash
1116 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1117
1118 if (tem_hash == 0)
1119 return 0;
1120
1121 hash += tem_hash;
1122 }
1123 break;
1124
1125 case 's':
1126 {
1127 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1128
1129 if (p)
1130 while (*p)
1131 hash += *p++;
1132 break;
1133 }
1134
1135 case 'i':
1136 hash += XINT (x, i);
1137 break;
1138
1139 case '0':
1140 case 't':
1141 /* unused */
1142 break;
1143
1144 default:
1145 gcc_unreachable ();
1146 }
1147 }
1148
1149 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1150 }
1151
1152 /* Create a new value structure for VALUE and initialize it. The mode of the
1153 value is MODE. */
1154
1155 static inline cselib_val *
1156 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
1157 {
1158 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1159
1160 gcc_assert (hash);
1161 gcc_assert (next_uid);
1162
1163 e->hash = hash;
1164 e->uid = next_uid++;
1165 /* We use an alloc pool to allocate this RTL construct because it
1166 accounts for about 8% of the overall memory usage. We know
1167 precisely when we can have VALUE RTXen (when cselib is active)
1168 so we don't need to put them in garbage collected memory.
1169 ??? Why should a VALUE be an RTX in the first place? */
1170 e->val_rtx = (rtx) pool_alloc (value_pool);
1171 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1172 PUT_CODE (e->val_rtx, VALUE);
1173 PUT_MODE (e->val_rtx, mode);
1174 CSELIB_VAL_PTR (e->val_rtx) = e;
1175 e->addr_list = 0;
1176 e->locs = 0;
1177 e->next_containing_mem = 0;
1178
1179 if (dump_file && (dump_flags & TDF_CSELIB))
1180 {
1181 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1182 if (flag_dump_noaddr || flag_dump_unnumbered)
1183 fputs ("# ", dump_file);
1184 else
1185 fprintf (dump_file, "%p ", (void*)e);
1186 print_rtl_single (dump_file, x);
1187 fputc ('\n', dump_file);
1188 }
1189
1190 return e;
1191 }
1192
1193 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1194 contains the data at this address. X is a MEM that represents the
1195 value. Update the two value structures to represent this situation. */
1196
1197 static void
1198 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1199 {
1200 struct elt_loc_list *l;
1201
1202 /* Avoid duplicates. */
1203 for (l = mem_elt->locs; l; l = l->next)
1204 if (MEM_P (l->loc)
1205 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1206 {
1207 promote_debug_loc (l);
1208 return;
1209 }
1210
1211 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1212 mem_elt->locs
1213 = new_elt_loc_list (mem_elt->locs,
1214 replace_equiv_address_nv (x, addr_elt->val_rtx));
1215 if (mem_elt->next_containing_mem == NULL)
1216 {
1217 mem_elt->next_containing_mem = first_containing_mem;
1218 first_containing_mem = mem_elt;
1219 }
1220 }
1221
1222 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1223 If CREATE, make a new one if we haven't seen it before. */
1224
1225 static cselib_val *
1226 cselib_lookup_mem (rtx x, int create)
1227 {
1228 enum machine_mode mode = GET_MODE (x);
1229 enum machine_mode addr_mode;
1230 void **slot;
1231 cselib_val *addr;
1232 cselib_val *mem_elt;
1233 struct elt_list *l;
1234
1235 if (MEM_VOLATILE_P (x) || mode == BLKmode
1236 || !cselib_record_memory
1237 || (FLOAT_MODE_P (mode) && flag_float_store))
1238 return 0;
1239
1240 addr_mode = GET_MODE (XEXP (x, 0));
1241 if (addr_mode == VOIDmode)
1242 addr_mode = Pmode;
1243
1244 /* Look up the value for the address. */
1245 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1246 if (! addr)
1247 return 0;
1248
1249 /* Find a value that describes a value of our mode at that address. */
1250 for (l = addr->addr_list; l; l = l->next)
1251 if (GET_MODE (l->elt->val_rtx) == mode)
1252 {
1253 promote_debug_loc (l->elt->locs);
1254 return l->elt;
1255 }
1256
1257 if (! create)
1258 return 0;
1259
1260 mem_elt = new_cselib_val (next_uid, mode, x);
1261 add_mem_for_addr (addr, mem_elt, x);
1262 slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
1263 INSERT, mode);
1264 *slot = mem_elt;
1265 return mem_elt;
1266 }
1267
1268 /* Search thru the possible substitutions in P. We prefer a non reg
1269 substitution because this allows us to expand the tree further. If
1270 we find, just a reg, take the lowest regno. There may be several
1271 non-reg results, we just take the first one because they will all
1272 expand to the same place. */
1273
1274 static rtx
1275 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1276 int max_depth)
1277 {
1278 rtx reg_result = NULL;
1279 unsigned int regno = UINT_MAX;
1280 struct elt_loc_list *p_in = p;
1281
1282 for (; p; p = p -> next)
1283 {
1284 /* Avoid infinite recursion trying to expand a reg into a
1285 the same reg. */
1286 if ((REG_P (p->loc))
1287 && (REGNO (p->loc) < regno)
1288 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1289 {
1290 reg_result = p->loc;
1291 regno = REGNO (p->loc);
1292 }
1293 /* Avoid infinite recursion and do not try to expand the
1294 value. */
1295 else if (GET_CODE (p->loc) == VALUE
1296 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1297 continue;
1298 else if (!REG_P (p->loc))
1299 {
1300 rtx result, note;
1301 if (dump_file && (dump_flags & TDF_CSELIB))
1302 {
1303 print_inline_rtx (dump_file, p->loc, 0);
1304 fprintf (dump_file, "\n");
1305 }
1306 if (GET_CODE (p->loc) == LO_SUM
1307 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1308 && p->setting_insn
1309 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1310 && XEXP (note, 0) == XEXP (p->loc, 1))
1311 return XEXP (p->loc, 1);
1312 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1313 if (result)
1314 return result;
1315 }
1316
1317 }
1318
1319 if (regno != UINT_MAX)
1320 {
1321 rtx result;
1322 if (dump_file && (dump_flags & TDF_CSELIB))
1323 fprintf (dump_file, "r%d\n", regno);
1324
1325 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1326 if (result)
1327 return result;
1328 }
1329
1330 if (dump_file && (dump_flags & TDF_CSELIB))
1331 {
1332 if (reg_result)
1333 {
1334 print_inline_rtx (dump_file, reg_result, 0);
1335 fprintf (dump_file, "\n");
1336 }
1337 else
1338 fprintf (dump_file, "NULL\n");
1339 }
1340 return reg_result;
1341 }
1342
1343
1344 /* Forward substitute and expand an expression out to its roots.
1345 This is the opposite of common subexpression. Because local value
1346 numbering is such a weak optimization, the expanded expression is
1347 pretty much unique (not from a pointer equals point of view but
1348 from a tree shape point of view.
1349
1350 This function returns NULL if the expansion fails. The expansion
1351 will fail if there is no value number for one of the operands or if
1352 one of the operands has been overwritten between the current insn
1353 and the beginning of the basic block. For instance x has no
1354 expansion in:
1355
1356 r1 <- r1 + 3
1357 x <- r1 + 8
1358
1359 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1360 It is clear on return. */
1361
1362 rtx
1363 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1364 {
1365 struct expand_value_data evd;
1366
1367 evd.regs_active = regs_active;
1368 evd.callback = NULL;
1369 evd.callback_arg = NULL;
1370 evd.dummy = false;
1371
1372 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1373 }
1374
1375 /* Same as cselib_expand_value_rtx, but using a callback to try to
1376 resolve some expressions. The CB function should return ORIG if it
1377 can't or does not want to deal with a certain RTX. Any other
1378 return value, including NULL, will be used as the expansion for
1379 VALUE, without any further changes. */
1380
1381 rtx
1382 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1383 cselib_expand_callback cb, void *data)
1384 {
1385 struct expand_value_data evd;
1386
1387 evd.regs_active = regs_active;
1388 evd.callback = cb;
1389 evd.callback_arg = data;
1390 evd.dummy = false;
1391
1392 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1393 }
1394
1395 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1396 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1397 would return NULL or non-NULL, without allocating new rtx. */
1398
1399 bool
1400 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1401 cselib_expand_callback cb, void *data)
1402 {
1403 struct expand_value_data evd;
1404
1405 evd.regs_active = regs_active;
1406 evd.callback = cb;
1407 evd.callback_arg = data;
1408 evd.dummy = true;
1409
1410 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1411 }
1412
1413 /* Internal implementation of cselib_expand_value_rtx and
1414 cselib_expand_value_rtx_cb. */
1415
1416 static rtx
1417 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1418 int max_depth)
1419 {
1420 rtx copy, scopy;
1421 int i, j;
1422 RTX_CODE code;
1423 const char *format_ptr;
1424 enum machine_mode mode;
1425
1426 code = GET_CODE (orig);
1427
1428 /* For the context of dse, if we end up expand into a huge tree, we
1429 will not have a useful address, so we might as well just give up
1430 quickly. */
1431 if (max_depth <= 0)
1432 return NULL;
1433
1434 switch (code)
1435 {
1436 case REG:
1437 {
1438 struct elt_list *l = REG_VALUES (REGNO (orig));
1439
1440 if (l && l->elt == NULL)
1441 l = l->next;
1442 for (; l; l = l->next)
1443 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1444 {
1445 rtx result;
1446 int regno = REGNO (orig);
1447
1448 /* The only thing that we are not willing to do (this
1449 is requirement of dse and if others potential uses
1450 need this function we should add a parm to control
1451 it) is that we will not substitute the
1452 STACK_POINTER_REGNUM, FRAME_POINTER or the
1453 HARD_FRAME_POINTER.
1454
1455 These expansions confuses the code that notices that
1456 stores into the frame go dead at the end of the
1457 function and that the frame is not effected by calls
1458 to subroutines. If you allow the
1459 STACK_POINTER_REGNUM substitution, then dse will
1460 think that parameter pushing also goes dead which is
1461 wrong. If you allow the FRAME_POINTER or the
1462 HARD_FRAME_POINTER then you lose the opportunity to
1463 make the frame assumptions. */
1464 if (regno == STACK_POINTER_REGNUM
1465 || regno == FRAME_POINTER_REGNUM
1466 || regno == HARD_FRAME_POINTER_REGNUM)
1467 return orig;
1468
1469 bitmap_set_bit (evd->regs_active, regno);
1470
1471 if (dump_file && (dump_flags & TDF_CSELIB))
1472 fprintf (dump_file, "expanding: r%d into: ", regno);
1473
1474 result = expand_loc (l->elt->locs, evd, max_depth);
1475 bitmap_clear_bit (evd->regs_active, regno);
1476
1477 if (result)
1478 return result;
1479 else
1480 return orig;
1481 }
1482 }
1483
1484 case CONST_INT:
1485 case CONST_DOUBLE:
1486 case CONST_VECTOR:
1487 case SYMBOL_REF:
1488 case CODE_LABEL:
1489 case PC:
1490 case CC0:
1491 case SCRATCH:
1492 /* SCRATCH must be shared because they represent distinct values. */
1493 return orig;
1494 case CLOBBER:
1495 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1496 return orig;
1497 break;
1498
1499 case CONST:
1500 if (shared_const_p (orig))
1501 return orig;
1502 break;
1503
1504 case SUBREG:
1505 {
1506 rtx subreg;
1507
1508 if (evd->callback)
1509 {
1510 subreg = evd->callback (orig, evd->regs_active, max_depth,
1511 evd->callback_arg);
1512 if (subreg != orig)
1513 return subreg;
1514 }
1515
1516 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1517 max_depth - 1);
1518 if (!subreg)
1519 return NULL;
1520 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1521 GET_MODE (SUBREG_REG (orig)),
1522 SUBREG_BYTE (orig));
1523 if (scopy == NULL
1524 || (GET_CODE (scopy) == SUBREG
1525 && !REG_P (SUBREG_REG (scopy))
1526 && !MEM_P (SUBREG_REG (scopy))))
1527 return NULL;
1528
1529 return scopy;
1530 }
1531
1532 case VALUE:
1533 {
1534 rtx result;
1535
1536 if (dump_file && (dump_flags & TDF_CSELIB))
1537 {
1538 fputs ("\nexpanding ", dump_file);
1539 print_rtl_single (dump_file, orig);
1540 fputs (" into...", dump_file);
1541 }
1542
1543 if (evd->callback)
1544 {
1545 result = evd->callback (orig, evd->regs_active, max_depth,
1546 evd->callback_arg);
1547
1548 if (result != orig)
1549 return result;
1550 }
1551
1552 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1553 return result;
1554 }
1555
1556 case DEBUG_EXPR:
1557 if (evd->callback)
1558 return evd->callback (orig, evd->regs_active, max_depth,
1559 evd->callback_arg);
1560 return orig;
1561
1562 default:
1563 break;
1564 }
1565
1566 /* Copy the various flags, fields, and other information. We assume
1567 that all fields need copying, and then clear the fields that should
1568 not be copied. That is the sensible default behavior, and forces
1569 us to explicitly document why we are *not* copying a flag. */
1570 if (evd->dummy)
1571 copy = NULL;
1572 else
1573 copy = shallow_copy_rtx (orig);
1574
1575 format_ptr = GET_RTX_FORMAT (code);
1576
1577 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1578 switch (*format_ptr++)
1579 {
1580 case 'e':
1581 if (XEXP (orig, i) != NULL)
1582 {
1583 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1584 max_depth - 1);
1585 if (!result)
1586 return NULL;
1587 if (copy)
1588 XEXP (copy, i) = result;
1589 }
1590 break;
1591
1592 case 'E':
1593 case 'V':
1594 if (XVEC (orig, i) != NULL)
1595 {
1596 if (copy)
1597 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1598 for (j = 0; j < XVECLEN (orig, i); j++)
1599 {
1600 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1601 evd, max_depth - 1);
1602 if (!result)
1603 return NULL;
1604 if (copy)
1605 XVECEXP (copy, i, j) = result;
1606 }
1607 }
1608 break;
1609
1610 case 't':
1611 case 'w':
1612 case 'i':
1613 case 's':
1614 case 'S':
1615 case 'T':
1616 case 'u':
1617 case 'B':
1618 case '0':
1619 /* These are left unchanged. */
1620 break;
1621
1622 default:
1623 gcc_unreachable ();
1624 }
1625
1626 if (evd->dummy)
1627 return orig;
1628
1629 mode = GET_MODE (copy);
1630 /* If an operand has been simplified into CONST_INT, which doesn't
1631 have a mode and the mode isn't derivable from whole rtx's mode,
1632 try simplify_*_operation first with mode from original's operand
1633 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1634 scopy = copy;
1635 switch (GET_RTX_CLASS (code))
1636 {
1637 case RTX_UNARY:
1638 if (CONST_INT_P (XEXP (copy, 0))
1639 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1640 {
1641 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1642 GET_MODE (XEXP (orig, 0)));
1643 if (scopy)
1644 return scopy;
1645 }
1646 break;
1647 case RTX_COMM_ARITH:
1648 case RTX_BIN_ARITH:
1649 /* These expressions can derive operand modes from the whole rtx's mode. */
1650 break;
1651 case RTX_TERNARY:
1652 case RTX_BITFIELD_OPS:
1653 if (CONST_INT_P (XEXP (copy, 0))
1654 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1655 {
1656 scopy = simplify_ternary_operation (code, mode,
1657 GET_MODE (XEXP (orig, 0)),
1658 XEXP (copy, 0), XEXP (copy, 1),
1659 XEXP (copy, 2));
1660 if (scopy)
1661 return scopy;
1662 }
1663 break;
1664 case RTX_COMPARE:
1665 case RTX_COMM_COMPARE:
1666 if (CONST_INT_P (XEXP (copy, 0))
1667 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1668 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1669 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1670 {
1671 scopy = simplify_relational_operation (code, mode,
1672 (GET_MODE (XEXP (orig, 0))
1673 != VOIDmode)
1674 ? GET_MODE (XEXP (orig, 0))
1675 : GET_MODE (XEXP (orig, 1)),
1676 XEXP (copy, 0),
1677 XEXP (copy, 1));
1678 if (scopy)
1679 return scopy;
1680 }
1681 break;
1682 default:
1683 break;
1684 }
1685 scopy = simplify_rtx (copy);
1686 if (scopy)
1687 return scopy;
1688 return copy;
1689 }
1690
1691 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1692 with VALUE expressions. This way, it becomes independent of changes
1693 to registers and memory.
1694 X isn't actually modified; if modifications are needed, new rtl is
1695 allocated. However, the return value can share rtl with X.
1696 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1697
1698 rtx
1699 cselib_subst_to_values (rtx x, enum machine_mode memmode)
1700 {
1701 enum rtx_code code = GET_CODE (x);
1702 const char *fmt = GET_RTX_FORMAT (code);
1703 cselib_val *e;
1704 struct elt_list *l;
1705 rtx copy = x;
1706 int i;
1707
1708 switch (code)
1709 {
1710 case REG:
1711 l = REG_VALUES (REGNO (x));
1712 if (l && l->elt == NULL)
1713 l = l->next;
1714 for (; l; l = l->next)
1715 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1716 return l->elt->val_rtx;
1717
1718 gcc_unreachable ();
1719
1720 case MEM:
1721 e = cselib_lookup_mem (x, 0);
1722 /* This used to happen for autoincrements, but we deal with them
1723 properly now. Remove the if stmt for the next release. */
1724 if (! e)
1725 {
1726 /* Assign a value that doesn't match any other. */
1727 e = new_cselib_val (next_uid, GET_MODE (x), x);
1728 }
1729 return e->val_rtx;
1730
1731 case ENTRY_VALUE:
1732 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1733 if (! e)
1734 break;
1735 return e->val_rtx;
1736
1737 case CONST_DOUBLE:
1738 case CONST_VECTOR:
1739 case CONST_INT:
1740 case CONST_FIXED:
1741 return x;
1742
1743 case PRE_DEC:
1744 case PRE_INC:
1745 gcc_assert (memmode != VOIDmode);
1746 i = GET_MODE_SIZE (memmode);
1747 if (code == PRE_DEC)
1748 i = -i;
1749 return cselib_subst_to_values (plus_constant (XEXP (x, 0), i),
1750 memmode);
1751
1752 case PRE_MODIFY:
1753 gcc_assert (memmode != VOIDmode);
1754 return cselib_subst_to_values (XEXP (x, 1), memmode);
1755
1756 case POST_DEC:
1757 case POST_INC:
1758 case POST_MODIFY:
1759 gcc_assert (memmode != VOIDmode);
1760 return cselib_subst_to_values (XEXP (x, 0), memmode);
1761
1762 default:
1763 break;
1764 }
1765
1766 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1767 {
1768 if (fmt[i] == 'e')
1769 {
1770 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1771
1772 if (t != XEXP (x, i))
1773 {
1774 if (x == copy)
1775 copy = shallow_copy_rtx (x);
1776 XEXP (copy, i) = t;
1777 }
1778 }
1779 else if (fmt[i] == 'E')
1780 {
1781 int j;
1782
1783 for (j = 0; j < XVECLEN (x, i); j++)
1784 {
1785 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1786
1787 if (t != XVECEXP (x, i, j))
1788 {
1789 if (XVEC (x, i) == XVEC (copy, i))
1790 {
1791 if (x == copy)
1792 copy = shallow_copy_rtx (x);
1793 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1794 }
1795 XVECEXP (copy, i, j) = t;
1796 }
1797 }
1798 }
1799 }
1800
1801 return copy;
1802 }
1803
1804 /* Look up the rtl expression X in our tables and return the value it
1805 has. If CREATE is zero, we return NULL if we don't know the value.
1806 Otherwise, we create a new one if possible, using mode MODE if X
1807 doesn't have a mode (i.e. because it's a constant). When X is part
1808 of an address, MEMMODE should be the mode of the enclosing MEM if
1809 we're tracking autoinc expressions. */
1810
1811 static cselib_val *
1812 cselib_lookup_1 (rtx x, enum machine_mode mode,
1813 int create, enum machine_mode memmode)
1814 {
1815 void **slot;
1816 cselib_val *e;
1817 unsigned int hashval;
1818
1819 if (GET_MODE (x) != VOIDmode)
1820 mode = GET_MODE (x);
1821
1822 if (GET_CODE (x) == VALUE)
1823 return CSELIB_VAL_PTR (x);
1824
1825 if (REG_P (x))
1826 {
1827 struct elt_list *l;
1828 unsigned int i = REGNO (x);
1829
1830 l = REG_VALUES (i);
1831 if (l && l->elt == NULL)
1832 l = l->next;
1833 for (; l; l = l->next)
1834 if (mode == GET_MODE (l->elt->val_rtx))
1835 {
1836 promote_debug_loc (l->elt->locs);
1837 return l->elt;
1838 }
1839
1840 if (! create)
1841 return 0;
1842
1843 if (i < FIRST_PSEUDO_REGISTER)
1844 {
1845 unsigned int n = hard_regno_nregs[i][mode];
1846
1847 if (n > max_value_regs)
1848 max_value_regs = n;
1849 }
1850
1851 e = new_cselib_val (next_uid, GET_MODE (x), x);
1852 e->locs = new_elt_loc_list (e->locs, x);
1853 if (REG_VALUES (i) == 0)
1854 {
1855 /* Maintain the invariant that the first entry of
1856 REG_VALUES, if present, must be the value used to set the
1857 register, or NULL. */
1858 used_regs[n_used_regs++] = i;
1859 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1860 }
1861 else if (cselib_preserve_constants
1862 && GET_MODE_CLASS (mode) == MODE_INT)
1863 {
1864 /* During var-tracking, try harder to find equivalences
1865 for SUBREGs. If a setter sets say a DImode register
1866 and user uses that register only in SImode, add a lowpart
1867 subreg location. */
1868 struct elt_list *lwider = NULL;
1869 l = REG_VALUES (i);
1870 if (l && l->elt == NULL)
1871 l = l->next;
1872 for (; l; l = l->next)
1873 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
1874 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
1875 > GET_MODE_SIZE (mode)
1876 && (lwider == NULL
1877 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
1878 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
1879 {
1880 struct elt_loc_list *el;
1881 if (i < FIRST_PSEUDO_REGISTER
1882 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
1883 continue;
1884 for (el = l->elt->locs; el; el = el->next)
1885 if (!REG_P (el->loc))
1886 break;
1887 if (el)
1888 lwider = l;
1889 }
1890 if (lwider)
1891 {
1892 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
1893 GET_MODE (lwider->elt->val_rtx));
1894 if (sub)
1895 e->locs->next = new_elt_loc_list (e->locs->next, sub);
1896 }
1897 }
1898 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1899 slot = cselib_find_slot (x, e->hash, INSERT, memmode);
1900 *slot = e;
1901 return e;
1902 }
1903
1904 if (MEM_P (x))
1905 return cselib_lookup_mem (x, create);
1906
1907 hashval = cselib_hash_rtx (x, create, memmode);
1908 /* Can't even create if hashing is not possible. */
1909 if (! hashval)
1910 return 0;
1911
1912 slot = cselib_find_slot (wrap_constant (mode, x), hashval,
1913 create ? INSERT : NO_INSERT, memmode);
1914 if (slot == 0)
1915 return 0;
1916
1917 e = (cselib_val *) *slot;
1918 if (e)
1919 return e;
1920
1921 e = new_cselib_val (hashval, mode, x);
1922
1923 /* We have to fill the slot before calling cselib_subst_to_values:
1924 the hash table is inconsistent until we do so, and
1925 cselib_subst_to_values will need to do lookups. */
1926 *slot = (void *) e;
1927 e->locs = new_elt_loc_list (e->locs,
1928 cselib_subst_to_values (x, memmode));
1929 return e;
1930 }
1931
1932 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
1933
1934 cselib_val *
1935 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
1936 int create, enum machine_mode memmode, rtx insn)
1937 {
1938 cselib_val *ret;
1939
1940 gcc_assert (!cselib_current_insn);
1941 cselib_current_insn = insn;
1942
1943 ret = cselib_lookup (x, mode, create, memmode);
1944
1945 cselib_current_insn = NULL;
1946
1947 return ret;
1948 }
1949
1950 /* Wrapper for cselib_lookup_1, that logs the lookup result and
1951 maintains invariants related with debug insns. */
1952
1953 cselib_val *
1954 cselib_lookup (rtx x, enum machine_mode mode,
1955 int create, enum machine_mode memmode)
1956 {
1957 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
1958
1959 /* ??? Should we return NULL if we're not to create an entry, the
1960 found loc is a debug loc and cselib_current_insn is not DEBUG?
1961 If so, we should also avoid converting val to non-DEBUG; probably
1962 easiest setting cselib_current_insn to NULL before the call
1963 above. */
1964
1965 if (dump_file && (dump_flags & TDF_CSELIB))
1966 {
1967 fputs ("cselib lookup ", dump_file);
1968 print_inline_rtx (dump_file, x, 2);
1969 fprintf (dump_file, " => %u:%u\n",
1970 ret ? ret->uid : 0,
1971 ret ? ret->hash : 0);
1972 }
1973
1974 return ret;
1975 }
1976
1977 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1978 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1979 is used to determine how many hard registers are being changed. If MODE
1980 is VOIDmode, then only REGNO is being changed; this is used when
1981 invalidating call clobbered registers across a call. */
1982
1983 static void
1984 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1985 {
1986 unsigned int endregno;
1987 unsigned int i;
1988
1989 /* If we see pseudos after reload, something is _wrong_. */
1990 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1991 || reg_renumber[regno] < 0);
1992
1993 /* Determine the range of registers that must be invalidated. For
1994 pseudos, only REGNO is affected. For hard regs, we must take MODE
1995 into account, and we must also invalidate lower register numbers
1996 if they contain values that overlap REGNO. */
1997 if (regno < FIRST_PSEUDO_REGISTER)
1998 {
1999 gcc_assert (mode != VOIDmode);
2000
2001 if (regno < max_value_regs)
2002 i = 0;
2003 else
2004 i = regno - max_value_regs;
2005
2006 endregno = end_hard_regno (mode, regno);
2007 }
2008 else
2009 {
2010 i = regno;
2011 endregno = regno + 1;
2012 }
2013
2014 for (; i < endregno; i++)
2015 {
2016 struct elt_list **l = &REG_VALUES (i);
2017
2018 /* Go through all known values for this reg; if it overlaps the range
2019 we're invalidating, remove the value. */
2020 while (*l)
2021 {
2022 cselib_val *v = (*l)->elt;
2023 bool had_locs;
2024 rtx setting_insn;
2025 struct elt_loc_list **p;
2026 unsigned int this_last = i;
2027
2028 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2029 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2030
2031 if (this_last < regno || v == NULL
2032 || (v == cfa_base_preserved_val
2033 && i == cfa_base_preserved_regno))
2034 {
2035 l = &(*l)->next;
2036 continue;
2037 }
2038
2039 /* We have an overlap. */
2040 if (*l == REG_VALUES (i))
2041 {
2042 /* Maintain the invariant that the first entry of
2043 REG_VALUES, if present, must be the value used to set
2044 the register, or NULL. This is also nice because
2045 then we won't push the same regno onto user_regs
2046 multiple times. */
2047 (*l)->elt = NULL;
2048 l = &(*l)->next;
2049 }
2050 else
2051 unchain_one_elt_list (l);
2052
2053 had_locs = v->locs != NULL;
2054 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2055
2056 /* Now, we clear the mapping from value to reg. It must exist, so
2057 this code will crash intentionally if it doesn't. */
2058 for (p = &v->locs; ; p = &(*p)->next)
2059 {
2060 rtx x = (*p)->loc;
2061
2062 if (REG_P (x) && REGNO (x) == i)
2063 {
2064 unchain_one_elt_loc_list (p);
2065 break;
2066 }
2067 }
2068
2069 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2070 {
2071 if (setting_insn && DEBUG_INSN_P (setting_insn))
2072 n_useless_debug_values++;
2073 else
2074 n_useless_values++;
2075 }
2076 }
2077 }
2078 }
2079 \f
2080 /* Return 1 if X has a value that can vary even between two
2081 executions of the program. 0 means X can be compared reliably
2082 against certain constants or near-constants. */
2083
2084 static bool
2085 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
2086 {
2087 /* We actually don't need to verify very hard. This is because
2088 if X has actually changed, we invalidate the memory anyway,
2089 so assume that all common memory addresses are
2090 invariant. */
2091 return 0;
2092 }
2093
2094 /* Invalidate any locations in the table which are changed because of a
2095 store to MEM_RTX. If this is called because of a non-const call
2096 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2097
2098 static void
2099 cselib_invalidate_mem (rtx mem_rtx)
2100 {
2101 cselib_val **vp, *v, *next;
2102 int num_mems = 0;
2103 rtx mem_addr;
2104
2105 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2106 mem_rtx = canon_rtx (mem_rtx);
2107
2108 vp = &first_containing_mem;
2109 for (v = *vp; v != &dummy_val; v = next)
2110 {
2111 bool has_mem = false;
2112 struct elt_loc_list **p = &v->locs;
2113 bool had_locs = v->locs != NULL;
2114 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2115
2116 while (*p)
2117 {
2118 rtx x = (*p)->loc;
2119 cselib_val *addr;
2120 struct elt_list **mem_chain;
2121
2122 /* MEMs may occur in locations only at the top level; below
2123 that every MEM or REG is substituted by its VALUE. */
2124 if (!MEM_P (x))
2125 {
2126 p = &(*p)->next;
2127 continue;
2128 }
2129 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2130 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
2131 x, NULL_RTX, cselib_rtx_varies_p))
2132 {
2133 has_mem = true;
2134 num_mems++;
2135 p = &(*p)->next;
2136 continue;
2137 }
2138
2139 /* This one overlaps. */
2140 /* We must have a mapping from this MEM's address to the
2141 value (E). Remove that, too. */
2142 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2143 mem_chain = &addr->addr_list;
2144 for (;;)
2145 {
2146 if ((*mem_chain)->elt == v)
2147 {
2148 unchain_one_elt_list (mem_chain);
2149 break;
2150 }
2151
2152 mem_chain = &(*mem_chain)->next;
2153 }
2154
2155 unchain_one_elt_loc_list (p);
2156 }
2157
2158 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2159 {
2160 if (setting_insn && DEBUG_INSN_P (setting_insn))
2161 n_useless_debug_values++;
2162 else
2163 n_useless_values++;
2164 }
2165
2166 next = v->next_containing_mem;
2167 if (has_mem)
2168 {
2169 *vp = v;
2170 vp = &(*vp)->next_containing_mem;
2171 }
2172 else
2173 v->next_containing_mem = NULL;
2174 }
2175 *vp = &dummy_val;
2176 }
2177
2178 /* Invalidate DEST, which is being assigned to or clobbered. */
2179
2180 void
2181 cselib_invalidate_rtx (rtx dest)
2182 {
2183 while (GET_CODE (dest) == SUBREG
2184 || GET_CODE (dest) == ZERO_EXTRACT
2185 || GET_CODE (dest) == STRICT_LOW_PART)
2186 dest = XEXP (dest, 0);
2187
2188 if (REG_P (dest))
2189 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2190 else if (MEM_P (dest))
2191 cselib_invalidate_mem (dest);
2192 }
2193
2194 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2195
2196 static void
2197 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2198 void *data ATTRIBUTE_UNUSED)
2199 {
2200 cselib_invalidate_rtx (dest);
2201 }
2202
2203 /* Record the result of a SET instruction. DEST is being set; the source
2204 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2205 describes its address. */
2206
2207 static void
2208 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2209 {
2210 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2211
2212 if (src_elt == 0 || side_effects_p (dest))
2213 return;
2214
2215 if (dreg >= 0)
2216 {
2217 if (dreg < FIRST_PSEUDO_REGISTER)
2218 {
2219 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2220
2221 if (n > max_value_regs)
2222 max_value_regs = n;
2223 }
2224
2225 if (REG_VALUES (dreg) == 0)
2226 {
2227 used_regs[n_used_regs++] = dreg;
2228 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2229 }
2230 else
2231 {
2232 /* The register should have been invalidated. */
2233 gcc_assert (REG_VALUES (dreg)->elt == 0);
2234 REG_VALUES (dreg)->elt = src_elt;
2235 }
2236
2237 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2238 n_useless_values--;
2239 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
2240 }
2241 else if (MEM_P (dest) && dest_addr_elt != 0
2242 && cselib_record_memory)
2243 {
2244 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2245 n_useless_values--;
2246 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2247 }
2248 }
2249
2250 /* There is no good way to determine how many elements there can be
2251 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2252 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2253
2254 struct cselib_record_autoinc_data
2255 {
2256 struct cselib_set *sets;
2257 int n_sets;
2258 };
2259
2260 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2261 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2262
2263 static int
2264 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2265 rtx dest, rtx src, rtx srcoff, void *arg)
2266 {
2267 struct cselib_record_autoinc_data *data;
2268 data = (struct cselib_record_autoinc_data *)arg;
2269
2270 data->sets[data->n_sets].dest = dest;
2271
2272 if (srcoff)
2273 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2274 else
2275 data->sets[data->n_sets].src = src;
2276
2277 data->n_sets++;
2278
2279 return -1;
2280 }
2281
2282 /* Record the effects of any sets and autoincs in INSN. */
2283 static void
2284 cselib_record_sets (rtx insn)
2285 {
2286 int n_sets = 0;
2287 int i;
2288 struct cselib_set sets[MAX_SETS];
2289 rtx body = PATTERN (insn);
2290 rtx cond = 0;
2291 int n_sets_before_autoinc;
2292 struct cselib_record_autoinc_data data;
2293
2294 body = PATTERN (insn);
2295 if (GET_CODE (body) == COND_EXEC)
2296 {
2297 cond = COND_EXEC_TEST (body);
2298 body = COND_EXEC_CODE (body);
2299 }
2300
2301 /* Find all sets. */
2302 if (GET_CODE (body) == SET)
2303 {
2304 sets[0].src = SET_SRC (body);
2305 sets[0].dest = SET_DEST (body);
2306 n_sets = 1;
2307 }
2308 else if (GET_CODE (body) == PARALLEL)
2309 {
2310 /* Look through the PARALLEL and record the values being
2311 set, if possible. Also handle any CLOBBERs. */
2312 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2313 {
2314 rtx x = XVECEXP (body, 0, i);
2315
2316 if (GET_CODE (x) == SET)
2317 {
2318 sets[n_sets].src = SET_SRC (x);
2319 sets[n_sets].dest = SET_DEST (x);
2320 n_sets++;
2321 }
2322 }
2323 }
2324
2325 if (n_sets == 1
2326 && MEM_P (sets[0].src)
2327 && !cselib_record_memory
2328 && MEM_READONLY_P (sets[0].src))
2329 {
2330 rtx note = find_reg_equal_equiv_note (insn);
2331
2332 if (note && CONSTANT_P (XEXP (note, 0)))
2333 sets[0].src = XEXP (note, 0);
2334 }
2335
2336 data.sets = sets;
2337 data.n_sets = n_sets_before_autoinc = n_sets;
2338 for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
2339 n_sets = data.n_sets;
2340
2341 /* Look up the values that are read. Do this before invalidating the
2342 locations that are written. */
2343 for (i = 0; i < n_sets; i++)
2344 {
2345 rtx dest = sets[i].dest;
2346
2347 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2348 the low part after invalidating any knowledge about larger modes. */
2349 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2350 sets[i].dest = dest = XEXP (dest, 0);
2351
2352 /* We don't know how to record anything but REG or MEM. */
2353 if (REG_P (dest)
2354 || (MEM_P (dest) && cselib_record_memory))
2355 {
2356 rtx src = sets[i].src;
2357 if (cond)
2358 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2359 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2360 if (MEM_P (dest))
2361 {
2362 enum machine_mode address_mode
2363 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2364
2365 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2366 address_mode, 1,
2367 GET_MODE (dest));
2368 }
2369 else
2370 sets[i].dest_addr_elt = 0;
2371 }
2372 }
2373
2374 if (cselib_record_sets_hook)
2375 cselib_record_sets_hook (insn, sets, n_sets);
2376
2377 /* Invalidate all locations written by this insn. Note that the elts we
2378 looked up in the previous loop aren't affected, just some of their
2379 locations may go away. */
2380 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2381
2382 for (i = n_sets_before_autoinc; i < n_sets; i++)
2383 cselib_invalidate_rtx (sets[i].dest);
2384
2385 /* If this is an asm, look for duplicate sets. This can happen when the
2386 user uses the same value as an output multiple times. This is valid
2387 if the outputs are not actually used thereafter. Treat this case as
2388 if the value isn't actually set. We do this by smashing the destination
2389 to pc_rtx, so that we won't record the value later. */
2390 if (n_sets >= 2 && asm_noperands (body) >= 0)
2391 {
2392 for (i = 0; i < n_sets; i++)
2393 {
2394 rtx dest = sets[i].dest;
2395 if (REG_P (dest) || MEM_P (dest))
2396 {
2397 int j;
2398 for (j = i + 1; j < n_sets; j++)
2399 if (rtx_equal_p (dest, sets[j].dest))
2400 {
2401 sets[i].dest = pc_rtx;
2402 sets[j].dest = pc_rtx;
2403 }
2404 }
2405 }
2406 }
2407
2408 /* Now enter the equivalences in our tables. */
2409 for (i = 0; i < n_sets; i++)
2410 {
2411 rtx dest = sets[i].dest;
2412 if (REG_P (dest)
2413 || (MEM_P (dest) && cselib_record_memory))
2414 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2415 }
2416 }
2417
2418 /* Record the effects of INSN. */
2419
2420 void
2421 cselib_process_insn (rtx insn)
2422 {
2423 int i;
2424 rtx x;
2425
2426 cselib_current_insn = insn;
2427
2428 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2429 if (LABEL_P (insn)
2430 || (CALL_P (insn)
2431 && find_reg_note (insn, REG_SETJMP, NULL))
2432 || (NONJUMP_INSN_P (insn)
2433 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2434 && MEM_VOLATILE_P (PATTERN (insn))))
2435 {
2436 cselib_reset_table (next_uid);
2437 cselib_current_insn = NULL_RTX;
2438 return;
2439 }
2440
2441 if (! INSN_P (insn))
2442 {
2443 cselib_current_insn = NULL_RTX;
2444 return;
2445 }
2446
2447 /* If this is a call instruction, forget anything stored in a
2448 call clobbered register, or, if this is not a const call, in
2449 memory. */
2450 if (CALL_P (insn))
2451 {
2452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2453 if (call_used_regs[i]
2454 || (REG_VALUES (i) && REG_VALUES (i)->elt
2455 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2456 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2457 cselib_invalidate_regno (i, reg_raw_mode[i]);
2458
2459 /* Since it is not clear how cselib is going to be used, be
2460 conservative here and treat looping pure or const functions
2461 as if they were regular functions. */
2462 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2463 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2464 cselib_invalidate_mem (callmem);
2465 }
2466
2467 cselib_record_sets (insn);
2468
2469 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2470 after we have processed the insn. */
2471 if (CALL_P (insn))
2472 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2473 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2474 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2475
2476 cselib_current_insn = NULL_RTX;
2477
2478 if (n_useless_values > MAX_USELESS_VALUES
2479 /* remove_useless_values is linear in the hash table size. Avoid
2480 quadratic behavior for very large hashtables with very few
2481 useless elements. */
2482 && ((unsigned int)n_useless_values
2483 > (cselib_hash_table->n_elements
2484 - cselib_hash_table->n_deleted
2485 - n_debug_values) / 4))
2486 remove_useless_values ();
2487 }
2488
2489 /* Initialize cselib for one pass. The caller must also call
2490 init_alias_analysis. */
2491
2492 void
2493 cselib_init (int record_what)
2494 {
2495 elt_list_pool = create_alloc_pool ("elt_list",
2496 sizeof (struct elt_list), 10);
2497 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2498 sizeof (struct elt_loc_list), 10);
2499 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2500 sizeof (cselib_val), 10);
2501 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2502 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2503 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2504
2505 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2506 see canon_true_dependence. This is only created once. */
2507 if (! callmem)
2508 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2509
2510 cselib_nregs = max_reg_num ();
2511
2512 /* We preserve reg_values to allow expensive clearing of the whole thing.
2513 Reallocate it however if it happens to be too large. */
2514 if (!reg_values || reg_values_size < cselib_nregs
2515 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2516 {
2517 free (reg_values);
2518 /* Some space for newly emit instructions so we don't end up
2519 reallocating in between passes. */
2520 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2521 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2522 }
2523 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2524 n_used_regs = 0;
2525 cselib_hash_table = htab_create (31, get_value_hash,
2526 entry_and_rtx_equal_p, NULL);
2527 next_uid = 1;
2528 }
2529
2530 /* Called when the current user is done with cselib. */
2531
2532 void
2533 cselib_finish (void)
2534 {
2535 cselib_discard_hook = NULL;
2536 cselib_preserve_constants = false;
2537 cfa_base_preserved_val = NULL;
2538 cfa_base_preserved_regno = INVALID_REGNUM;
2539 free_alloc_pool (elt_list_pool);
2540 free_alloc_pool (elt_loc_list_pool);
2541 free_alloc_pool (cselib_val_pool);
2542 free_alloc_pool (value_pool);
2543 cselib_clear_table ();
2544 htab_delete (cselib_hash_table);
2545 free (used_regs);
2546 used_regs = 0;
2547 cselib_hash_table = 0;
2548 n_useless_values = 0;
2549 n_useless_debug_values = 0;
2550 n_debug_values = 0;
2551 next_uid = 0;
2552 }
2553
2554 /* Dump the cselib_val *X to FILE *info. */
2555
2556 static int
2557 dump_cselib_val (void **x, void *info)
2558 {
2559 cselib_val *v = (cselib_val *)*x;
2560 FILE *out = (FILE *)info;
2561 bool need_lf = true;
2562
2563 print_inline_rtx (out, v->val_rtx, 0);
2564
2565 if (v->locs)
2566 {
2567 struct elt_loc_list *l = v->locs;
2568 if (need_lf)
2569 {
2570 fputc ('\n', out);
2571 need_lf = false;
2572 }
2573 fputs (" locs:", out);
2574 do
2575 {
2576 fprintf (out, "\n from insn %i ",
2577 INSN_UID (l->setting_insn));
2578 print_inline_rtx (out, l->loc, 4);
2579 }
2580 while ((l = l->next));
2581 fputc ('\n', out);
2582 }
2583 else
2584 {
2585 fputs (" no locs", out);
2586 need_lf = true;
2587 }
2588
2589 if (v->addr_list)
2590 {
2591 struct elt_list *e = v->addr_list;
2592 if (need_lf)
2593 {
2594 fputc ('\n', out);
2595 need_lf = false;
2596 }
2597 fputs (" addr list:", out);
2598 do
2599 {
2600 fputs ("\n ", out);
2601 print_inline_rtx (out, e->elt->val_rtx, 2);
2602 }
2603 while ((e = e->next));
2604 fputc ('\n', out);
2605 }
2606 else
2607 {
2608 fputs (" no addrs", out);
2609 need_lf = true;
2610 }
2611
2612 if (v->next_containing_mem == &dummy_val)
2613 fputs (" last mem\n", out);
2614 else if (v->next_containing_mem)
2615 {
2616 fputs (" next mem ", out);
2617 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2618 fputc ('\n', out);
2619 }
2620 else if (need_lf)
2621 fputc ('\n', out);
2622
2623 return 1;
2624 }
2625
2626 /* Dump to OUT everything in the CSELIB table. */
2627
2628 void
2629 dump_cselib_table (FILE *out)
2630 {
2631 fprintf (out, "cselib hash table:\n");
2632 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2633 if (first_containing_mem != &dummy_val)
2634 {
2635 fputs ("first mem ", out);
2636 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2637 fputc ('\n', out);
2638 }
2639 fprintf (out, "next uid %i\n", next_uid);
2640 }
2641
2642 #include "gt-cselib.h"