errors.h (warning, [...]): Mark as cold.
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "df.h"
47 #include "ddg.h"
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, dep_t);
57 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
58 dep_type, dep_data_type, int);
59 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
60 dep_data_type, int, int);
61 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 \f
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p;
65
66 /* Auxiliary function for mem_read_insn_p. */
67 static int
68 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 {
70 if (MEM_P (*x))
71 mem_ref_p = true;
72 return 0;
73 }
74
75 /* Auxiliary function for mem_read_insn_p. */
76 static void
77 mark_mem_use_1 (rtx *x, void *data)
78 {
79 for_each_rtx (x, mark_mem_use, data);
80 }
81
82 /* Returns nonzero if INSN reads from memory. */
83 static bool
84 mem_read_insn_p (rtx insn)
85 {
86 mem_ref_p = false;
87 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
88 return mem_ref_p;
89 }
90
91 static void
92 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 {
94 if (MEM_P (loc))
95 mem_ref_p = true;
96 }
97
98 /* Returns nonzero if INSN writes to memory. */
99 static bool
100 mem_write_insn_p (rtx insn)
101 {
102 mem_ref_p = false;
103 note_stores (PATTERN (insn), mark_mem_store, NULL);
104 return mem_ref_p;
105 }
106
107 /* Returns nonzero if X has access to memory. */
108 static bool
109 rtx_mem_access_p (rtx x)
110 {
111 int i, j;
112 const char *fmt;
113 enum rtx_code code;
114
115 if (x == 0)
116 return false;
117
118 if (MEM_P (x))
119 return true;
120
121 code = GET_CODE (x);
122 fmt = GET_RTX_FORMAT (code);
123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 {
125 if (fmt[i] == 'e')
126 {
127 if (rtx_mem_access_p (XEXP (x, i)))
128 return true;
129 }
130 else if (fmt[i] == 'E')
131 for (j = 0; j < XVECLEN (x, i); j++)
132 {
133 if (rtx_mem_access_p (XVECEXP (x, i, j)))
134 return true;
135 }
136 }
137 return false;
138 }
139
140 /* Returns nonzero if INSN reads to or writes from memory. */
141 static bool
142 mem_access_insn_p (rtx insn)
143 {
144 return rtx_mem_access_p (PATTERN (insn));
145 }
146
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
149 static void
150 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
151 ddg_node_ptr dest_node, dep_t link)
152 {
153 ddg_edge_ptr e;
154 int latency, distance = 0;
155 int interloop = (src_node->cuid >= dest_node->cuid);
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
163 if (interloop)
164 distance = 1;
165
166 gcc_assert (link);
167
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (DEP_KIND (link) == REG_DEP_ANTI)
170 t = ANTI_DEP;
171 else if (DEP_KIND (link) == REG_DEP_OUTPUT)
172 t = OUTPUT_DEP;
173 latency = dep_cost (link);
174
175 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
176
177 if (interloop)
178 {
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t == OUTPUT_DEP && src_node == dest_node)
185 && !(t == ANTI_DEP && dt == REG_DEP))
186 add_backarc_to_ddg (g, e);
187 else
188 free (e);
189 }
190 else if (t == ANTI_DEP && dt == REG_DEP)
191 free (e); /* We can fix broken anti register deps using reg-moves. */
192 else
193 add_edge_to_ddg (g, e);
194 }
195
196 /* The same as the above function, but it doesn't require a link parameter. */
197 static void
198 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
199 dep_type d_t, dep_data_type d_dt, int distance)
200 {
201 ddg_edge_ptr e;
202 int l;
203 enum reg_note dep_kind;
204 struct _dep _dep, *dep = &_dep;
205
206 if (d_t == ANTI_DEP)
207 dep_kind = REG_DEP_ANTI;
208 else if (d_t == OUTPUT_DEP)
209 dep_kind = REG_DEP_OUTPUT;
210 else
211 {
212 gcc_assert (d_t == TRUE_DEP);
213
214 dep_kind = REG_DEP_TRUE;
215 }
216
217 init_dep (dep, from->insn, to->insn, dep_kind);
218
219 l = dep_cost (dep);
220
221 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
222 if (distance > 0)
223 add_backarc_to_ddg (g, e);
224 else
225 add_edge_to_ddg (g, e);
226 }
227
228 \f
229 /* Given a downwards exposed register def RD, add inter-loop true dependences
230 for all its uses in the next iteration, and an output dependence to the
231 first def of the next iteration. */
232 static void
233 add_deps_for_def (ddg_ptr g, struct df *df, struct df_ref *rd)
234 {
235 int regno = DF_REF_REGNO (rd);
236 struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (df, g->bb);
237 struct df_link *r_use;
238 int use_before_def = false;
239 rtx def_insn = DF_REF_INSN (rd);
240 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
241
242 /* Create and inter-loop true dependence between RD and each of its uses
243 that is upwards exposed in RD's block. */
244 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
245 {
246 if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
247 {
248 rtx use_insn = DF_REF_INSN (r_use->ref);
249 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
250
251 gcc_assert (src_node && dest_node);
252
253 /* Any such upwards exposed use appears before the rd def. */
254 use_before_def = true;
255 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
256 REG_DEP, 1);
257 }
258 }
259
260 /* Create an inter-loop output dependence between RD (which is the
261 last def in its block, being downwards exposed) and the first def
262 in its block. Avoid creating a self output dependence. Avoid creating
263 an output dependence if there is a dependence path between the two defs
264 starting with a true dependence followed by an anti dependence (i.e. if
265 there is a use between the two defs. */
266 if (! use_before_def)
267 {
268 struct df_ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
269 int i;
270 ddg_node_ptr dest_node;
271
272 if (!def || rd->id == def->id)
273 return;
274
275 /* Check if there are uses after RD. */
276 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
277 if (df_find_use (df, g->nodes[i].insn, rd->reg))
278 return;
279
280 dest_node = get_node_of_insn (g, def->insn);
281 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
282 }
283 }
284
285 /* Given a register USE, add an inter-loop anti dependence to the first
286 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
287 by a def in the block. */
288 static void
289 add_deps_for_use (ddg_ptr g, struct df *df, struct df_ref *use)
290 {
291 int i;
292 int regno = DF_REF_REGNO (use);
293 struct df_ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
294 ddg_node_ptr use_node;
295 ddg_node_ptr def_node;
296 struct df_rd_bb_info *bb_info;
297
298 bb_info = DF_RD_BB_INFO (df, g->bb);
299
300 if (!first_def)
301 return;
302
303 use_node = get_node_of_insn (g, use->insn);
304 def_node = get_node_of_insn (g, first_def->insn);
305
306 gcc_assert (use_node && def_node);
307
308 /* Make sure there are no defs after USE. */
309 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
310 if (df_find_def (df, g->nodes[i].insn, use->reg))
311 return;
312 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
313 the opposite direction. If the first_def reaches the USE then there is
314 such a dep. */
315 if (! bitmap_bit_p (bb_info->gen, first_def->id))
316 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
317 }
318
319 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
320 static void
321 build_inter_loop_deps (ddg_ptr g, struct df *df)
322 {
323 unsigned rd_num, u_num;
324 struct df_rd_bb_info *rd_bb_info;
325 struct df_ru_bb_info *ru_bb_info;
326 bitmap_iterator bi;
327
328 rd_bb_info = DF_RD_BB_INFO (df, g->bb);
329
330 /* Find inter-loop output and true deps by connecting downward exposed defs
331 to the first def of the BB and to upwards exposed uses. */
332 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
333 {
334 struct df_ref *rd = DF_DEFS_GET (df, rd_num);
335
336 add_deps_for_def (g, df, rd);
337 }
338
339 ru_bb_info = DF_RU_BB_INFO (df, g->bb);
340
341 /* Find inter-loop anti deps. We are interested in uses of the block that
342 appear below all defs; this implies that these uses are killed. */
343 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
344 {
345 struct df_ref *use = DF_USES_GET (df, u_num);
346
347 /* We are interested in uses of this BB. */
348 if (BLOCK_FOR_INSN (use->insn) == g->bb)
349 add_deps_for_use (g, df, use);
350 }
351 }
352
353 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
354 to ddg G. */
355 static void
356 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
357 {
358 if (mem_write_insn_p (from->insn))
359 {
360 if (mem_read_insn_p (to->insn))
361 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
362 else if (from->cuid != to->cuid)
363 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
364 }
365 else
366 {
367 if (mem_read_insn_p (to->insn))
368 return;
369 else if (from->cuid != to->cuid)
370 {
371 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
372 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
373 }
374 }
375
376 }
377
378 /* Perform intra-block Data Dependency analysis and connect the nodes in
379 the DDG. We assume the loop has a single basic block. */
380 static void
381 build_intra_loop_deps (ddg_ptr g)
382 {
383 int i;
384 /* Hold the dependency analysis state during dependency calculations. */
385 struct deps tmp_deps;
386 rtx head, tail;
387 dep_link_t link;
388
389 /* Build the dependence information, using the sched_analyze function. */
390 init_deps_global ();
391 init_deps (&tmp_deps);
392
393 /* Do the intra-block data dependence analysis for the given block. */
394 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
395 sched_analyze (&tmp_deps, head, tail);
396
397 /* Build intra-loop data dependencies using the scheduler dependency
398 analysis. */
399 for (i = 0; i < g->num_nodes; i++)
400 {
401 ddg_node_ptr dest_node = &g->nodes[i];
402
403 if (! INSN_P (dest_node->insn))
404 continue;
405
406 FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (dest_node->insn))
407 {
408 dep_t dep = DEP_LINK_DEP (link);
409 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
410
411 if (!src_node)
412 continue;
413
414 add_forw_dep (link);
415 create_ddg_dependence (g, src_node, dest_node, dep);
416 }
417
418 /* If this insn modifies memory, add an edge to all insns that access
419 memory. */
420 if (mem_access_insn_p (dest_node->insn))
421 {
422 int j;
423
424 for (j = 0; j <= i; j++)
425 {
426 ddg_node_ptr j_node = &g->nodes[j];
427 if (mem_access_insn_p (j_node->insn))
428 /* Don't bother calculating inter-loop dep if an intra-loop dep
429 already exists. */
430 if (! TEST_BIT (dest_node->successors, j))
431 add_inter_loop_mem_dep (g, dest_node, j_node);
432 }
433 }
434 }
435
436 /* Free the INSN_LISTs. */
437 finish_deps_global ();
438 free_deps (&tmp_deps);
439 }
440
441
442 /* Given a basic block, create its DDG and return a pointer to a variable
443 of ddg type that represents it.
444 Initialize the ddg structure fields to the appropriate values. */
445 ddg_ptr
446 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
447 {
448 ddg_ptr g;
449 rtx insn, first_note;
450 int i;
451 int num_nodes = 0;
452
453 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
454
455 g->bb = bb;
456 g->closing_branch_deps = closing_branch_deps;
457
458 /* Count the number of insns in the BB. */
459 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
460 insn = NEXT_INSN (insn))
461 {
462 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
463 continue;
464
465 if (mem_read_insn_p (insn))
466 g->num_loads++;
467 if (mem_write_insn_p (insn))
468 g->num_stores++;
469 num_nodes++;
470 }
471
472 /* There is nothing to do for this BB. */
473 if (num_nodes <= 1)
474 {
475 free (g);
476 return NULL;
477 }
478
479 /* Allocate the nodes array, and initialize the nodes. */
480 g->num_nodes = num_nodes;
481 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
482 g->closing_branch = NULL;
483 i = 0;
484 first_note = NULL_RTX;
485 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
486 insn = NEXT_INSN (insn))
487 {
488 if (! INSN_P (insn))
489 {
490 if (! first_note && NOTE_P (insn)
491 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
492 first_note = insn;
493 continue;
494 }
495 if (JUMP_P (insn))
496 {
497 gcc_assert (!g->closing_branch);
498 g->closing_branch = &g->nodes[i];
499 }
500 else if (GET_CODE (PATTERN (insn)) == USE)
501 {
502 if (! first_note)
503 first_note = insn;
504 continue;
505 }
506
507 g->nodes[i].cuid = i;
508 g->nodes[i].successors = sbitmap_alloc (num_nodes);
509 sbitmap_zero (g->nodes[i].successors);
510 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
511 sbitmap_zero (g->nodes[i].predecessors);
512 g->nodes[i].first_note = (first_note ? first_note : insn);
513 g->nodes[i++].insn = insn;
514 first_note = NULL_RTX;
515 }
516
517 /* We must have found a branch in DDG. */
518 gcc_assert (g->closing_branch);
519
520
521 /* Build the data dependency graph. */
522 build_intra_loop_deps (g);
523 build_inter_loop_deps (g, df);
524 return g;
525 }
526
527 /* Free all the memory allocated for the DDG. */
528 void
529 free_ddg (ddg_ptr g)
530 {
531 int i;
532
533 if (!g)
534 return;
535
536 for (i = 0; i < g->num_nodes; i++)
537 {
538 ddg_edge_ptr e = g->nodes[i].out;
539
540 while (e)
541 {
542 ddg_edge_ptr next = e->next_out;
543
544 free (e);
545 e = next;
546 }
547 sbitmap_free (g->nodes[i].successors);
548 sbitmap_free (g->nodes[i].predecessors);
549 }
550 if (g->num_backarcs > 0)
551 free (g->backarcs);
552 free (g->nodes);
553 free (g);
554 }
555
556 void
557 print_ddg_edge (FILE *file, ddg_edge_ptr e)
558 {
559 char dep_c;
560
561 switch (e->type)
562 {
563 case OUTPUT_DEP :
564 dep_c = 'O';
565 break;
566 case ANTI_DEP :
567 dep_c = 'A';
568 break;
569 default:
570 dep_c = 'T';
571 }
572
573 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
574 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
575 }
576
577 /* Print the DDG nodes with there in/out edges to the dump file. */
578 void
579 print_ddg (FILE *file, ddg_ptr g)
580 {
581 int i;
582
583 for (i = 0; i < g->num_nodes; i++)
584 {
585 ddg_edge_ptr e;
586
587 print_rtl_single (file, g->nodes[i].insn);
588 fprintf (file, "OUT ARCS: ");
589 for (e = g->nodes[i].out; e; e = e->next_out)
590 print_ddg_edge (file, e);
591
592 fprintf (file, "\nIN ARCS: ");
593 for (e = g->nodes[i].in; e; e = e->next_in)
594 print_ddg_edge (file, e);
595
596 fprintf (file, "\n");
597 }
598 }
599
600 /* Print the given DDG in VCG format. */
601 void
602 vcg_print_ddg (FILE *file, ddg_ptr g)
603 {
604 int src_cuid;
605
606 fprintf (file, "graph: {\n");
607 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
608 {
609 ddg_edge_ptr e;
610 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
611
612 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
613 print_rtl_single (file, g->nodes[src_cuid].insn);
614 fprintf (file, "\"}\n");
615 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
616 {
617 int dst_uid = INSN_UID (e->dest->insn);
618 int dst_cuid = e->dest->cuid;
619
620 /* Give the backarcs a different color. */
621 if (e->distance > 0)
622 fprintf (file, "backedge: {color: red ");
623 else
624 fprintf (file, "edge: { ");
625
626 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
627 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
628 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
629 }
630 }
631 fprintf (file, "}\n");
632 }
633
634 /* Create an edge and initialize it with given values. */
635 static ddg_edge_ptr
636 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
637 dep_type t, dep_data_type dt, int l, int d)
638 {
639 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
640
641 e->src = src;
642 e->dest = dest;
643 e->type = t;
644 e->data_type = dt;
645 e->latency = l;
646 e->distance = d;
647 e->next_in = e->next_out = NULL;
648 e->aux.info = 0;
649 return e;
650 }
651
652 /* Add the given edge to the in/out linked lists of the DDG nodes. */
653 static void
654 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
655 {
656 ddg_node_ptr src = e->src;
657 ddg_node_ptr dest = e->dest;
658
659 /* Should have allocated the sbitmaps. */
660 gcc_assert (src->successors && dest->predecessors);
661
662 SET_BIT (src->successors, dest->cuid);
663 SET_BIT (dest->predecessors, src->cuid);
664 e->next_in = dest->in;
665 dest->in = e;
666 e->next_out = src->out;
667 src->out = e;
668 }
669
670
671 \f
672 /* Algorithm for computing the recurrence_length of an scc. We assume at
673 for now that cycles in the data dependence graph contain a single backarc.
674 This simplifies the algorithm, and can be generalized later. */
675 static void
676 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
677 {
678 int j;
679 int result = -1;
680
681 for (j = 0; j < scc->num_backarcs; j++)
682 {
683 ddg_edge_ptr backarc = scc->backarcs[j];
684 int length;
685 int distance = backarc->distance;
686 ddg_node_ptr src = backarc->dest;
687 ddg_node_ptr dest = backarc->src;
688
689 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
690 if (length < 0 )
691 {
692 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
693 continue;
694 }
695 length += backarc->latency;
696 result = MAX (result, (length / distance));
697 }
698 scc->recurrence_length = result;
699 }
700
701 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
702 and mark edges that belong to this scc as IN_SCC. */
703 static ddg_scc_ptr
704 create_scc (ddg_ptr g, sbitmap nodes)
705 {
706 ddg_scc_ptr scc;
707 unsigned int u = 0;
708 sbitmap_iterator sbi;
709
710 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
711 scc->backarcs = NULL;
712 scc->num_backarcs = 0;
713 scc->nodes = sbitmap_alloc (g->num_nodes);
714 sbitmap_copy (scc->nodes, nodes);
715
716 /* Mark the backarcs that belong to this SCC. */
717 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
718 {
719 ddg_edge_ptr e;
720 ddg_node_ptr n = &g->nodes[u];
721
722 for (e = n->out; e; e = e->next_out)
723 if (TEST_BIT (nodes, e->dest->cuid))
724 {
725 e->aux.count = IN_SCC;
726 if (e->distance > 0)
727 add_backarc_to_scc (scc, e);
728 }
729 }
730
731 set_recurrence_length (scc, g);
732 return scc;
733 }
734
735 /* Cleans the memory allocation of a given SCC. */
736 static void
737 free_scc (ddg_scc_ptr scc)
738 {
739 if (!scc)
740 return;
741
742 sbitmap_free (scc->nodes);
743 if (scc->num_backarcs > 0)
744 free (scc->backarcs);
745 free (scc);
746 }
747
748
749 /* Add a given edge known to be a backarc to the given DDG. */
750 static void
751 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
752 {
753 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
754
755 add_edge_to_ddg (g, e);
756 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
757 g->backarcs[g->num_backarcs++] = e;
758 }
759
760 /* Add backarc to an SCC. */
761 static void
762 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
763 {
764 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
765
766 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
767 scc->backarcs[scc->num_backarcs++] = e;
768 }
769
770 /* Add the given SCC to the DDG. */
771 static void
772 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
773 {
774 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
775
776 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
777 g->sccs[g->num_sccs++] = scc;
778 }
779
780 /* Given the instruction INSN return the node that represents it. */
781 ddg_node_ptr
782 get_node_of_insn (ddg_ptr g, rtx insn)
783 {
784 int i;
785
786 for (i = 0; i < g->num_nodes; i++)
787 if (insn == g->nodes[i].insn)
788 return &g->nodes[i];
789 return NULL;
790 }
791
792 /* Given a set OPS of nodes in the DDG, find the set of their successors
793 which are not in OPS, and set their bits in SUCC. Bits corresponding to
794 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
795 void
796 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
797 {
798 unsigned int i = 0;
799 sbitmap_iterator sbi;
800
801 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
802 {
803 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
804 sbitmap_a_or_b (succ, succ, node_succ);
805 };
806
807 /* We want those that are not in ops. */
808 sbitmap_difference (succ, succ, ops);
809 }
810
811 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
812 which are not in OPS, and set their bits in PREDS. Bits corresponding to
813 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
814 void
815 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
816 {
817 unsigned int i = 0;
818 sbitmap_iterator sbi;
819
820 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
821 {
822 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
823 sbitmap_a_or_b (preds, preds, node_preds);
824 };
825
826 /* We want those that are not in ops. */
827 sbitmap_difference (preds, preds, ops);
828 }
829
830
831 /* Compare function to be passed to qsort to order the backarcs in descending
832 recMII order. */
833 static int
834 compare_sccs (const void *s1, const void *s2)
835 {
836 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
837 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
838 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
839
840 }
841
842 /* Order the backarcs in descending recMII order using compare_sccs. */
843 static void
844 order_sccs (ddg_all_sccs_ptr g)
845 {
846 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
847 (int (*) (const void *, const void *)) compare_sccs);
848 }
849
850 /* Perform the Strongly Connected Components decomposing algorithm on the
851 DDG and return DDG_ALL_SCCS structure that contains them. */
852 ddg_all_sccs_ptr
853 create_ddg_all_sccs (ddg_ptr g)
854 {
855 int i;
856 int num_nodes = g->num_nodes;
857 sbitmap from = sbitmap_alloc (num_nodes);
858 sbitmap to = sbitmap_alloc (num_nodes);
859 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
860 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
861 xmalloc (sizeof (struct ddg_all_sccs));
862
863 sccs->ddg = g;
864 sccs->sccs = NULL;
865 sccs->num_sccs = 0;
866
867 for (i = 0; i < g->num_backarcs; i++)
868 {
869 ddg_scc_ptr scc;
870 ddg_edge_ptr backarc = g->backarcs[i];
871 ddg_node_ptr src = backarc->src;
872 ddg_node_ptr dest = backarc->dest;
873
874 /* If the backarc already belongs to an SCC, continue. */
875 if (backarc->aux.count == IN_SCC)
876 continue;
877
878 sbitmap_zero (from);
879 sbitmap_zero (to);
880 SET_BIT (from, dest->cuid);
881 SET_BIT (to, src->cuid);
882
883 if (find_nodes_on_paths (scc_nodes, g, from, to))
884 {
885 scc = create_scc (g, scc_nodes);
886 add_scc_to_ddg (sccs, scc);
887 }
888 }
889 order_sccs (sccs);
890 sbitmap_free (from);
891 sbitmap_free (to);
892 sbitmap_free (scc_nodes);
893 return sccs;
894 }
895
896 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
897 void
898 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
899 {
900 int i;
901
902 if (!all_sccs)
903 return;
904
905 for (i = 0; i < all_sccs->num_sccs; i++)
906 free_scc (all_sccs->sccs[i]);
907
908 free (all_sccs);
909 }
910
911 \f
912 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
913 nodes - find all nodes that lie on paths from FROM to TO (not excluding
914 nodes from FROM and TO). Return nonzero if nodes exist. */
915 int
916 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
917 {
918 int answer;
919 int change;
920 unsigned int u = 0;
921 int num_nodes = g->num_nodes;
922 sbitmap_iterator sbi;
923
924 sbitmap workset = sbitmap_alloc (num_nodes);
925 sbitmap reachable_from = sbitmap_alloc (num_nodes);
926 sbitmap reach_to = sbitmap_alloc (num_nodes);
927 sbitmap tmp = sbitmap_alloc (num_nodes);
928
929 sbitmap_copy (reachable_from, from);
930 sbitmap_copy (tmp, from);
931
932 change = 1;
933 while (change)
934 {
935 change = 0;
936 sbitmap_copy (workset, tmp);
937 sbitmap_zero (tmp);
938 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
939 {
940 ddg_edge_ptr e;
941 ddg_node_ptr u_node = &g->nodes[u];
942
943 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
944 {
945 ddg_node_ptr v_node = e->dest;
946 int v = v_node->cuid;
947
948 if (!TEST_BIT (reachable_from, v))
949 {
950 SET_BIT (reachable_from, v);
951 SET_BIT (tmp, v);
952 change = 1;
953 }
954 }
955 }
956 }
957
958 sbitmap_copy (reach_to, to);
959 sbitmap_copy (tmp, to);
960
961 change = 1;
962 while (change)
963 {
964 change = 0;
965 sbitmap_copy (workset, tmp);
966 sbitmap_zero (tmp);
967 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
968 {
969 ddg_edge_ptr e;
970 ddg_node_ptr u_node = &g->nodes[u];
971
972 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
973 {
974 ddg_node_ptr v_node = e->src;
975 int v = v_node->cuid;
976
977 if (!TEST_BIT (reach_to, v))
978 {
979 SET_BIT (reach_to, v);
980 SET_BIT (tmp, v);
981 change = 1;
982 }
983 }
984 }
985 }
986
987 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
988 sbitmap_free (workset);
989 sbitmap_free (reachable_from);
990 sbitmap_free (reach_to);
991 sbitmap_free (tmp);
992 return answer;
993 }
994
995
996 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
997 at-least as large as the count of U_NODE plus the latency between them.
998 Sets a bit in TMP for each successor whose count was changed (increased).
999 Returns nonzero if any count was changed. */
1000 static int
1001 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1002 {
1003 ddg_edge_ptr e;
1004 int result = 0;
1005
1006 for (e = u_node->out; e; e = e->next_out)
1007 {
1008 ddg_node_ptr v_node = e->dest;
1009 int v = v_node->cuid;
1010
1011 if (TEST_BIT (nodes, v)
1012 && (e->distance == 0)
1013 && (v_node->aux.count < u_node->aux.count + e->latency))
1014 {
1015 v_node->aux.count = u_node->aux.count + e->latency;
1016 SET_BIT (tmp, v);
1017 result = 1;
1018 }
1019 }
1020 return result;
1021 }
1022
1023
1024 /* Find the length of a longest path from SRC to DEST in G,
1025 going only through NODES, and disregarding backarcs. */
1026 int
1027 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1028 {
1029 int i;
1030 unsigned int u = 0;
1031 int change = 1;
1032 int result;
1033 int num_nodes = g->num_nodes;
1034 sbitmap workset = sbitmap_alloc (num_nodes);
1035 sbitmap tmp = sbitmap_alloc (num_nodes);
1036
1037
1038 /* Data will hold the distance of the longest path found so far from
1039 src to each node. Initialize to -1 = less than minimum. */
1040 for (i = 0; i < g->num_nodes; i++)
1041 g->nodes[i].aux.count = -1;
1042 g->nodes[src].aux.count = 0;
1043
1044 sbitmap_zero (tmp);
1045 SET_BIT (tmp, src);
1046
1047 while (change)
1048 {
1049 sbitmap_iterator sbi;
1050
1051 change = 0;
1052 sbitmap_copy (workset, tmp);
1053 sbitmap_zero (tmp);
1054 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1055 {
1056 ddg_node_ptr u_node = &g->nodes[u];
1057
1058 change |= update_dist_to_successors (u_node, nodes, tmp);
1059 }
1060 }
1061 result = g->nodes[dest].aux.count;
1062 sbitmap_free (workset);
1063 sbitmap_free (tmp);
1064 return result;
1065 }