re PR tree-optimization/26854 (Inordinate compile times on large routines)
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "sbitmap.h"
43 #include "expr.h"
44 #include "bitmap.h"
45 #include "ddg.h"
46
47 #ifdef INSN_SCHEDULING
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
57 ddg_node_ptr, dep_t);
58 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
59 dep_type, dep_data_type, int);
60 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
61 dep_data_type, int, int);
62 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
63 \f
64 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
65 static bool mem_ref_p;
66
67 /* Auxiliary function for mem_read_insn_p. */
68 static int
69 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
70 {
71 if (MEM_P (*x))
72 mem_ref_p = true;
73 return 0;
74 }
75
76 /* Auxiliary function for mem_read_insn_p. */
77 static void
78 mark_mem_use_1 (rtx *x, void *data)
79 {
80 for_each_rtx (x, mark_mem_use, data);
81 }
82
83 /* Returns nonzero if INSN reads from memory. */
84 static bool
85 mem_read_insn_p (rtx insn)
86 {
87 mem_ref_p = false;
88 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
89 return mem_ref_p;
90 }
91
92 static void
93 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94 {
95 if (MEM_P (loc))
96 mem_ref_p = true;
97 }
98
99 /* Returns nonzero if INSN writes to memory. */
100 static bool
101 mem_write_insn_p (rtx insn)
102 {
103 mem_ref_p = false;
104 note_stores (PATTERN (insn), mark_mem_store, NULL);
105 return mem_ref_p;
106 }
107
108 /* Returns nonzero if X has access to memory. */
109 static bool
110 rtx_mem_access_p (rtx x)
111 {
112 int i, j;
113 const char *fmt;
114 enum rtx_code code;
115
116 if (x == 0)
117 return false;
118
119 if (MEM_P (x))
120 return true;
121
122 code = GET_CODE (x);
123 fmt = GET_RTX_FORMAT (code);
124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
125 {
126 if (fmt[i] == 'e')
127 {
128 if (rtx_mem_access_p (XEXP (x, i)))
129 return true;
130 }
131 else if (fmt[i] == 'E')
132 for (j = 0; j < XVECLEN (x, i); j++)
133 {
134 if (rtx_mem_access_p (XVECEXP (x, i, j)))
135 return true;
136 }
137 }
138 return false;
139 }
140
141 /* Returns nonzero if INSN reads to or writes from memory. */
142 static bool
143 mem_access_insn_p (rtx insn)
144 {
145 return rtx_mem_access_p (PATTERN (insn));
146 }
147
148 /* Computes the dependence parameters (latency, distance etc.), creates
149 a ddg_edge and adds it to the given DDG. */
150 static void
151 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
152 ddg_node_ptr dest_node, dep_t link)
153 {
154 ddg_edge_ptr e;
155 int latency, distance = 0;
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160 gcc_assert (src_node->cuid < dest_node->cuid);
161 gcc_assert (link);
162
163 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
164 if (DEP_TYPE (link) == REG_DEP_ANTI)
165 t = ANTI_DEP;
166 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
167 t = OUTPUT_DEP;
168
169 /* We currently choose not to create certain anti-deps edges and
170 compensate for that by generating reg-moves based on the life-range
171 analysis. The anti-deps that will be deleted are the ones which
172 have true-deps edges in the opposite direction (in other words
173 the kernel has only one def of the relevant register). TODO:
174 support the removal of all anti-deps edges, i.e. including those
175 whose register has multiple defs in the loop. */
176 if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
177 {
178 rtx set;
179
180 set = single_set (dest_node->insn);
181 /* TODO: Handle registers that REG_P is not true for them, i.e.
182 subregs and special registers. */
183 if (set && REG_P (SET_DEST (set)))
184 {
185 int regno = REGNO (SET_DEST (set));
186 struct df_ref *first_def;
187 struct df_ref *last_def;
188
189 first_def = df_bb_regno_first_def_find (g->bb, regno);
190 gcc_assert (first_def);
191
192 last_def = df_bb_regno_last_def_find (g->bb, regno);
193 if (first_def == last_def)
194 return;
195 }
196 }
197
198 latency = dep_cost (link);
199 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
200 add_edge_to_ddg (g, e);
201 }
202
203 /* The same as the above function, but it doesn't require a link parameter. */
204 static void
205 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
206 dep_type d_t, dep_data_type d_dt, int distance)
207 {
208 ddg_edge_ptr e;
209 int l;
210 enum reg_note dep_kind;
211 struct _dep _dep, *dep = &_dep;
212
213 if (d_t == ANTI_DEP)
214 dep_kind = REG_DEP_ANTI;
215 else if (d_t == OUTPUT_DEP)
216 dep_kind = REG_DEP_OUTPUT;
217 else
218 {
219 gcc_assert (d_t == TRUE_DEP);
220
221 dep_kind = REG_DEP_TRUE;
222 }
223
224 init_dep (dep, from->insn, to->insn, dep_kind);
225
226 l = dep_cost (dep);
227
228 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
229 if (distance > 0)
230 add_backarc_to_ddg (g, e);
231 else
232 add_edge_to_ddg (g, e);
233 }
234
235
236 /* Given a downwards exposed register def LAST_DEF (which is the last
237 definition of that register in the bb), add inter-loop true dependences
238 to all its uses in the next iteration, an output dependence to the
239 first def of the same register (possibly itself) in the next iteration
240 and anti-dependences from its uses in the current iteration to the
241 first definition in the next iteration. */
242 static void
243 add_cross_iteration_register_deps (ddg_ptr g, struct df_ref *last_def)
244 {
245 int regno = DF_REF_REGNO (last_def);
246 struct df_link *r_use;
247 int has_use_in_bb_p = false;
248 rtx def_insn = DF_REF_INSN (last_def);
249 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
250 ddg_node_ptr use_node;
251 #ifdef ENABLE_CHECKING
252 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
253 #endif
254 struct df_ref *first_def = df_bb_regno_first_def_find (g->bb, regno);
255
256 gcc_assert (last_def_node);
257 gcc_assert (first_def);
258
259 #ifdef ENABLE_CHECKING
260 if (last_def->id != first_def->id)
261 gcc_assert (!bitmap_bit_p (bb_info->gen, first_def->id));
262 #endif
263
264 /* Create inter-loop true dependences and anti dependences. */
265 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
266 {
267 rtx use_insn = DF_REF_INSN (r_use->ref);
268
269 if (BLOCK_FOR_INSN (use_insn) != g->bb)
270 continue;
271
272 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
273 use_node = get_node_of_insn (g, use_insn);
274 gcc_assert (use_node);
275 has_use_in_bb_p = true;
276 if (use_node->cuid <= last_def_node->cuid)
277 {
278 /* Add true deps from last_def to it's uses in the next
279 iteration. Any such upwards exposed use appears before
280 the last_def def. */
281 create_ddg_dep_no_link (g, last_def_node, use_node, TRUE_DEP,
282 REG_DEP, 1);
283 }
284 else
285 {
286 /* Add anti deps from last_def's uses in the current iteration
287 to the first def in the next iteration. We do not add ANTI
288 dep when there is an intra-loop TRUE dep in the opposite
289 direction, but use regmoves to fix such disregarded ANTI
290 deps when broken. If the first_def reaches the USE then
291 there is such a dep. */
292 ddg_node_ptr first_def_node = get_node_of_insn (g,
293 first_def->insn);
294
295 gcc_assert (first_def_node);
296
297 if (last_def->id != first_def->id
298 || !flag_modulo_sched_allow_regmoves)
299 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
300 REG_DEP, 1);
301
302 }
303 }
304 /* Create an inter-loop output dependence between LAST_DEF (which is the
305 last def in its block, being downwards exposed) and the first def in
306 its block. Avoid creating a self output dependence. Avoid creating
307 an output dependence if there is a dependence path between the two
308 defs starting with a true dependence to a use which can be in the
309 next iteration; followed by an anti dependence of that use to the
310 first def (i.e. if there is a use between the two defs.) */
311 if (!has_use_in_bb_p)
312 {
313 ddg_node_ptr dest_node;
314
315 if (last_def->id == first_def->id)
316 return;
317
318 dest_node = get_node_of_insn (g, first_def->insn);
319 gcc_assert (dest_node);
320 create_ddg_dep_no_link (g, last_def_node, dest_node,
321 OUTPUT_DEP, REG_DEP, 1);
322 }
323 }
324 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
325 static void
326 build_inter_loop_deps (ddg_ptr g)
327 {
328 unsigned rd_num;
329 struct df_rd_bb_info *rd_bb_info;
330 bitmap_iterator bi;
331
332 rd_bb_info = DF_RD_BB_INFO (g->bb);
333
334 /* Find inter-loop register output, true and anti deps. */
335 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
336 {
337 struct df_ref *rd = DF_DEFS_GET (rd_num);
338
339 add_cross_iteration_register_deps (g, rd);
340 }
341 }
342
343
344 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
345 to ddg G. */
346 static void
347 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
348 {
349 if (mem_write_insn_p (from->insn))
350 {
351 if (mem_read_insn_p (to->insn))
352 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
353 else if (from->cuid != to->cuid)
354 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
355 }
356 else
357 {
358 if (mem_read_insn_p (to->insn))
359 return;
360 else if (from->cuid != to->cuid)
361 {
362 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
363 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
364 }
365 }
366
367 }
368
369 /* Perform intra-block Data Dependency analysis and connect the nodes in
370 the DDG. We assume the loop has a single basic block. */
371 static void
372 build_intra_loop_deps (ddg_ptr g)
373 {
374 int i;
375 /* Hold the dependency analysis state during dependency calculations. */
376 struct deps tmp_deps;
377 rtx head, tail;
378
379 /* Build the dependence information, using the sched_analyze function. */
380 init_deps_global ();
381 init_deps (&tmp_deps);
382
383 /* Do the intra-block data dependence analysis for the given block. */
384 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
385 sched_analyze (&tmp_deps, head, tail);
386
387 /* Build intra-loop data dependencies using the scheduler dependency
388 analysis. */
389 for (i = 0; i < g->num_nodes; i++)
390 {
391 ddg_node_ptr dest_node = &g->nodes[i];
392 sd_iterator_def sd_it;
393 dep_t dep;
394
395 if (! INSN_P (dest_node->insn))
396 continue;
397
398 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
399 {
400 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
401
402 if (!src_node)
403 continue;
404
405 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
406 }
407
408 /* If this insn modifies memory, add an edge to all insns that access
409 memory. */
410 if (mem_access_insn_p (dest_node->insn))
411 {
412 int j;
413
414 for (j = 0; j <= i; j++)
415 {
416 ddg_node_ptr j_node = &g->nodes[j];
417 if (mem_access_insn_p (j_node->insn))
418 /* Don't bother calculating inter-loop dep if an intra-loop dep
419 already exists. */
420 if (! TEST_BIT (dest_node->successors, j))
421 add_inter_loop_mem_dep (g, dest_node, j_node);
422 }
423 }
424 }
425
426 /* Free the INSN_LISTs. */
427 finish_deps_global ();
428 free_deps (&tmp_deps);
429
430 /* Free dependencies. */
431 sched_free_deps (head, tail, false);
432 }
433
434
435 /* Given a basic block, create its DDG and return a pointer to a variable
436 of ddg type that represents it.
437 Initialize the ddg structure fields to the appropriate values. */
438 ddg_ptr
439 create_ddg (basic_block bb, int closing_branch_deps)
440 {
441 ddg_ptr g;
442 rtx insn, first_note;
443 int i;
444 int num_nodes = 0;
445
446 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
447
448 g->bb = bb;
449 g->closing_branch_deps = closing_branch_deps;
450
451 /* Count the number of insns in the BB. */
452 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
453 insn = NEXT_INSN (insn))
454 {
455 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
456 continue;
457
458 if (mem_read_insn_p (insn))
459 g->num_loads++;
460 if (mem_write_insn_p (insn))
461 g->num_stores++;
462 num_nodes++;
463 }
464
465 /* There is nothing to do for this BB. */
466 if (num_nodes <= 1)
467 {
468 free (g);
469 return NULL;
470 }
471
472 /* Allocate the nodes array, and initialize the nodes. */
473 g->num_nodes = num_nodes;
474 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
475 g->closing_branch = NULL;
476 i = 0;
477 first_note = NULL_RTX;
478 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
479 insn = NEXT_INSN (insn))
480 {
481 if (! INSN_P (insn))
482 {
483 if (! first_note && NOTE_P (insn)
484 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
485 first_note = insn;
486 continue;
487 }
488 if (JUMP_P (insn))
489 {
490 gcc_assert (!g->closing_branch);
491 g->closing_branch = &g->nodes[i];
492 }
493 else if (GET_CODE (PATTERN (insn)) == USE)
494 {
495 if (! first_note)
496 first_note = insn;
497 continue;
498 }
499
500 g->nodes[i].cuid = i;
501 g->nodes[i].successors = sbitmap_alloc (num_nodes);
502 sbitmap_zero (g->nodes[i].successors);
503 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
504 sbitmap_zero (g->nodes[i].predecessors);
505 g->nodes[i].first_note = (first_note ? first_note : insn);
506 g->nodes[i++].insn = insn;
507 first_note = NULL_RTX;
508 }
509
510 /* We must have found a branch in DDG. */
511 gcc_assert (g->closing_branch);
512
513
514 /* Build the data dependency graph. */
515 build_intra_loop_deps (g);
516 build_inter_loop_deps (g);
517 return g;
518 }
519
520 /* Free all the memory allocated for the DDG. */
521 void
522 free_ddg (ddg_ptr g)
523 {
524 int i;
525
526 if (!g)
527 return;
528
529 for (i = 0; i < g->num_nodes; i++)
530 {
531 ddg_edge_ptr e = g->nodes[i].out;
532
533 while (e)
534 {
535 ddg_edge_ptr next = e->next_out;
536
537 free (e);
538 e = next;
539 }
540 sbitmap_free (g->nodes[i].successors);
541 sbitmap_free (g->nodes[i].predecessors);
542 }
543 if (g->num_backarcs > 0)
544 free (g->backarcs);
545 free (g->nodes);
546 free (g);
547 }
548
549 void
550 print_ddg_edge (FILE *file, ddg_edge_ptr e)
551 {
552 char dep_c;
553
554 switch (e->type)
555 {
556 case OUTPUT_DEP :
557 dep_c = 'O';
558 break;
559 case ANTI_DEP :
560 dep_c = 'A';
561 break;
562 default:
563 dep_c = 'T';
564 }
565
566 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
567 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
568 }
569
570 /* Print the DDG nodes with there in/out edges to the dump file. */
571 void
572 print_ddg (FILE *file, ddg_ptr g)
573 {
574 int i;
575
576 for (i = 0; i < g->num_nodes; i++)
577 {
578 ddg_edge_ptr e;
579
580 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
581 print_rtl_single (file, g->nodes[i].insn);
582 fprintf (file, "OUT ARCS: ");
583 for (e = g->nodes[i].out; e; e = e->next_out)
584 print_ddg_edge (file, e);
585
586 fprintf (file, "\nIN ARCS: ");
587 for (e = g->nodes[i].in; e; e = e->next_in)
588 print_ddg_edge (file, e);
589
590 fprintf (file, "\n");
591 }
592 }
593
594 /* Print the given DDG in VCG format. */
595 void
596 vcg_print_ddg (FILE *file, ddg_ptr g)
597 {
598 int src_cuid;
599
600 fprintf (file, "graph: {\n");
601 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
602 {
603 ddg_edge_ptr e;
604 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
605
606 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
607 print_rtl_single (file, g->nodes[src_cuid].insn);
608 fprintf (file, "\"}\n");
609 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
610 {
611 int dst_uid = INSN_UID (e->dest->insn);
612 int dst_cuid = e->dest->cuid;
613
614 /* Give the backarcs a different color. */
615 if (e->distance > 0)
616 fprintf (file, "backedge: {color: red ");
617 else
618 fprintf (file, "edge: { ");
619
620 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
621 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
622 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
623 }
624 }
625 fprintf (file, "}\n");
626 }
627
628 /* Dump the sccs in SCCS. */
629 void
630 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
631 {
632 unsigned int u = 0;
633 sbitmap_iterator sbi;
634 int i;
635
636 if (!file)
637 return;
638
639 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
640 for (i = 0; i < sccs->num_sccs; i++)
641 {
642 fprintf (file, "SCC number: %d\n", i);
643 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
644 {
645 fprintf (file, "insn num %d\n", u);
646 print_rtl_single (file, g->nodes[u].insn);
647 }
648 }
649 fprintf (file, "\n");
650 }
651
652 /* Create an edge and initialize it with given values. */
653 static ddg_edge_ptr
654 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
655 dep_type t, dep_data_type dt, int l, int d)
656 {
657 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
658
659 e->src = src;
660 e->dest = dest;
661 e->type = t;
662 e->data_type = dt;
663 e->latency = l;
664 e->distance = d;
665 e->next_in = e->next_out = NULL;
666 e->aux.info = 0;
667 return e;
668 }
669
670 /* Add the given edge to the in/out linked lists of the DDG nodes. */
671 static void
672 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
673 {
674 ddg_node_ptr src = e->src;
675 ddg_node_ptr dest = e->dest;
676
677 /* Should have allocated the sbitmaps. */
678 gcc_assert (src->successors && dest->predecessors);
679
680 SET_BIT (src->successors, dest->cuid);
681 SET_BIT (dest->predecessors, src->cuid);
682 e->next_in = dest->in;
683 dest->in = e;
684 e->next_out = src->out;
685 src->out = e;
686 }
687
688
689 \f
690 /* Algorithm for computing the recurrence_length of an scc. We assume at
691 for now that cycles in the data dependence graph contain a single backarc.
692 This simplifies the algorithm, and can be generalized later. */
693 static void
694 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
695 {
696 int j;
697 int result = -1;
698
699 for (j = 0; j < scc->num_backarcs; j++)
700 {
701 ddg_edge_ptr backarc = scc->backarcs[j];
702 int length;
703 int distance = backarc->distance;
704 ddg_node_ptr src = backarc->dest;
705 ddg_node_ptr dest = backarc->src;
706
707 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
708 if (length < 0 )
709 {
710 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
711 continue;
712 }
713 length += backarc->latency;
714 result = MAX (result, (length / distance));
715 }
716 scc->recurrence_length = result;
717 }
718
719 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
720 and mark edges that belong to this scc as IN_SCC. */
721 static ddg_scc_ptr
722 create_scc (ddg_ptr g, sbitmap nodes)
723 {
724 ddg_scc_ptr scc;
725 unsigned int u = 0;
726 sbitmap_iterator sbi;
727
728 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
729 scc->backarcs = NULL;
730 scc->num_backarcs = 0;
731 scc->nodes = sbitmap_alloc (g->num_nodes);
732 sbitmap_copy (scc->nodes, nodes);
733
734 /* Mark the backarcs that belong to this SCC. */
735 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
736 {
737 ddg_edge_ptr e;
738 ddg_node_ptr n = &g->nodes[u];
739
740 for (e = n->out; e; e = e->next_out)
741 if (TEST_BIT (nodes, e->dest->cuid))
742 {
743 e->aux.count = IN_SCC;
744 if (e->distance > 0)
745 add_backarc_to_scc (scc, e);
746 }
747 }
748
749 set_recurrence_length (scc, g);
750 return scc;
751 }
752
753 /* Cleans the memory allocation of a given SCC. */
754 static void
755 free_scc (ddg_scc_ptr scc)
756 {
757 if (!scc)
758 return;
759
760 sbitmap_free (scc->nodes);
761 if (scc->num_backarcs > 0)
762 free (scc->backarcs);
763 free (scc);
764 }
765
766
767 /* Add a given edge known to be a backarc to the given DDG. */
768 static void
769 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
770 {
771 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
772
773 add_edge_to_ddg (g, e);
774 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
775 g->backarcs[g->num_backarcs++] = e;
776 }
777
778 /* Add backarc to an SCC. */
779 static void
780 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
781 {
782 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
783
784 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
785 scc->backarcs[scc->num_backarcs++] = e;
786 }
787
788 /* Add the given SCC to the DDG. */
789 static void
790 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
791 {
792 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
793
794 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
795 g->sccs[g->num_sccs++] = scc;
796 }
797
798 /* Given the instruction INSN return the node that represents it. */
799 ddg_node_ptr
800 get_node_of_insn (ddg_ptr g, rtx insn)
801 {
802 int i;
803
804 for (i = 0; i < g->num_nodes; i++)
805 if (insn == g->nodes[i].insn)
806 return &g->nodes[i];
807 return NULL;
808 }
809
810 /* Given a set OPS of nodes in the DDG, find the set of their successors
811 which are not in OPS, and set their bits in SUCC. Bits corresponding to
812 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
813 void
814 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
815 {
816 unsigned int i = 0;
817 sbitmap_iterator sbi;
818
819 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
820 {
821 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
822 sbitmap_a_or_b (succ, succ, node_succ);
823 };
824
825 /* We want those that are not in ops. */
826 sbitmap_difference (succ, succ, ops);
827 }
828
829 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
830 which are not in OPS, and set their bits in PREDS. Bits corresponding to
831 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
832 void
833 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
834 {
835 unsigned int i = 0;
836 sbitmap_iterator sbi;
837
838 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
839 {
840 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
841 sbitmap_a_or_b (preds, preds, node_preds);
842 };
843
844 /* We want those that are not in ops. */
845 sbitmap_difference (preds, preds, ops);
846 }
847
848
849 /* Compare function to be passed to qsort to order the backarcs in descending
850 recMII order. */
851 static int
852 compare_sccs (const void *s1, const void *s2)
853 {
854 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
855 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
856 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
857
858 }
859
860 /* Order the backarcs in descending recMII order using compare_sccs. */
861 static void
862 order_sccs (ddg_all_sccs_ptr g)
863 {
864 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
865 (int (*) (const void *, const void *)) compare_sccs);
866 }
867
868 #ifdef ENABLE_CHECKING
869 /* Check that every node in SCCS belongs to exactly one strongly connected
870 component and that no element of SCCS is empty. */
871 static void
872 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
873 {
874 int i = 0;
875 sbitmap tmp = sbitmap_alloc (num_nodes);
876
877 sbitmap_zero (tmp);
878 for (i = 0; i < sccs->num_sccs; i++)
879 {
880 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
881 /* Verify that every node in sccs is in exactly one strongly
882 connected component. */
883 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
884 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
885 }
886 sbitmap_free (tmp);
887 }
888 #endif
889
890 /* Perform the Strongly Connected Components decomposing algorithm on the
891 DDG and return DDG_ALL_SCCS structure that contains them. */
892 ddg_all_sccs_ptr
893 create_ddg_all_sccs (ddg_ptr g)
894 {
895 int i;
896 int num_nodes = g->num_nodes;
897 sbitmap from = sbitmap_alloc (num_nodes);
898 sbitmap to = sbitmap_alloc (num_nodes);
899 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
900 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
901 xmalloc (sizeof (struct ddg_all_sccs));
902
903 sccs->ddg = g;
904 sccs->sccs = NULL;
905 sccs->num_sccs = 0;
906
907 for (i = 0; i < g->num_backarcs; i++)
908 {
909 ddg_scc_ptr scc;
910 ddg_edge_ptr backarc = g->backarcs[i];
911 ddg_node_ptr src = backarc->src;
912 ddg_node_ptr dest = backarc->dest;
913
914 /* If the backarc already belongs to an SCC, continue. */
915 if (backarc->aux.count == IN_SCC)
916 continue;
917
918 sbitmap_zero (scc_nodes);
919 sbitmap_zero (from);
920 sbitmap_zero (to);
921 SET_BIT (from, dest->cuid);
922 SET_BIT (to, src->cuid);
923
924 if (find_nodes_on_paths (scc_nodes, g, from, to))
925 {
926 scc = create_scc (g, scc_nodes);
927 add_scc_to_ddg (sccs, scc);
928 }
929 }
930 order_sccs (sccs);
931 sbitmap_free (from);
932 sbitmap_free (to);
933 sbitmap_free (scc_nodes);
934 #ifdef ENABLE_CHECKING
935 check_sccs (sccs, num_nodes);
936 #endif
937 return sccs;
938 }
939
940 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
941 void
942 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
943 {
944 int i;
945
946 if (!all_sccs)
947 return;
948
949 for (i = 0; i < all_sccs->num_sccs; i++)
950 free_scc (all_sccs->sccs[i]);
951
952 free (all_sccs);
953 }
954
955 \f
956 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
957 nodes - find all nodes that lie on paths from FROM to TO (not excluding
958 nodes from FROM and TO). Return nonzero if nodes exist. */
959 int
960 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
961 {
962 int answer;
963 int change;
964 unsigned int u = 0;
965 int num_nodes = g->num_nodes;
966 sbitmap_iterator sbi;
967
968 sbitmap workset = sbitmap_alloc (num_nodes);
969 sbitmap reachable_from = sbitmap_alloc (num_nodes);
970 sbitmap reach_to = sbitmap_alloc (num_nodes);
971 sbitmap tmp = sbitmap_alloc (num_nodes);
972
973 sbitmap_copy (reachable_from, from);
974 sbitmap_copy (tmp, from);
975
976 change = 1;
977 while (change)
978 {
979 change = 0;
980 sbitmap_copy (workset, tmp);
981 sbitmap_zero (tmp);
982 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
983 {
984 ddg_edge_ptr e;
985 ddg_node_ptr u_node = &g->nodes[u];
986
987 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
988 {
989 ddg_node_ptr v_node = e->dest;
990 int v = v_node->cuid;
991
992 if (!TEST_BIT (reachable_from, v))
993 {
994 SET_BIT (reachable_from, v);
995 SET_BIT (tmp, v);
996 change = 1;
997 }
998 }
999 }
1000 }
1001
1002 sbitmap_copy (reach_to, to);
1003 sbitmap_copy (tmp, to);
1004
1005 change = 1;
1006 while (change)
1007 {
1008 change = 0;
1009 sbitmap_copy (workset, tmp);
1010 sbitmap_zero (tmp);
1011 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1012 {
1013 ddg_edge_ptr e;
1014 ddg_node_ptr u_node = &g->nodes[u];
1015
1016 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1017 {
1018 ddg_node_ptr v_node = e->src;
1019 int v = v_node->cuid;
1020
1021 if (!TEST_BIT (reach_to, v))
1022 {
1023 SET_BIT (reach_to, v);
1024 SET_BIT (tmp, v);
1025 change = 1;
1026 }
1027 }
1028 }
1029 }
1030
1031 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1032 sbitmap_free (workset);
1033 sbitmap_free (reachable_from);
1034 sbitmap_free (reach_to);
1035 sbitmap_free (tmp);
1036 return answer;
1037 }
1038
1039
1040 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1041 at-least as large as the count of U_NODE plus the latency between them.
1042 Sets a bit in TMP for each successor whose count was changed (increased).
1043 Returns nonzero if any count was changed. */
1044 static int
1045 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1046 {
1047 ddg_edge_ptr e;
1048 int result = 0;
1049
1050 for (e = u_node->out; e; e = e->next_out)
1051 {
1052 ddg_node_ptr v_node = e->dest;
1053 int v = v_node->cuid;
1054
1055 if (TEST_BIT (nodes, v)
1056 && (e->distance == 0)
1057 && (v_node->aux.count < u_node->aux.count + e->latency))
1058 {
1059 v_node->aux.count = u_node->aux.count + e->latency;
1060 SET_BIT (tmp, v);
1061 result = 1;
1062 }
1063 }
1064 return result;
1065 }
1066
1067
1068 /* Find the length of a longest path from SRC to DEST in G,
1069 going only through NODES, and disregarding backarcs. */
1070 int
1071 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1072 {
1073 int i;
1074 unsigned int u = 0;
1075 int change = 1;
1076 int result;
1077 int num_nodes = g->num_nodes;
1078 sbitmap workset = sbitmap_alloc (num_nodes);
1079 sbitmap tmp = sbitmap_alloc (num_nodes);
1080
1081
1082 /* Data will hold the distance of the longest path found so far from
1083 src to each node. Initialize to -1 = less than minimum. */
1084 for (i = 0; i < g->num_nodes; i++)
1085 g->nodes[i].aux.count = -1;
1086 g->nodes[src].aux.count = 0;
1087
1088 sbitmap_zero (tmp);
1089 SET_BIT (tmp, src);
1090
1091 while (change)
1092 {
1093 sbitmap_iterator sbi;
1094
1095 change = 0;
1096 sbitmap_copy (workset, tmp);
1097 sbitmap_zero (tmp);
1098 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1099 {
1100 ddg_node_ptr u_node = &g->nodes[u];
1101
1102 change |= update_dist_to_successors (u_node, nodes, tmp);
1103 }
1104 }
1105 result = g->nodes[dest].aux.count;
1106 sbitmap_free (workset);
1107 sbitmap_free (tmp);
1108 return result;
1109 }
1110
1111 #endif /* INSN_SCHEDULING */