c-lex.c (c_lex_with_flags, lex_string): Constify.
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "ddg.h"
47
48 /* A flag indicating that a ddg edge belongs to an SCC or not. */
49 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
50
51 /* Forward declarations. */
52 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
53 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
54 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
55 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, dep_t);
56 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
57 dep_type, dep_data_type, int);
58 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
59 dep_data_type, int, int);
60 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
61 \f
62 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
63 static bool mem_ref_p;
64
65 /* Auxiliary function for mem_read_insn_p. */
66 static int
67 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
68 {
69 if (MEM_P (*x))
70 mem_ref_p = true;
71 return 0;
72 }
73
74 /* Auxiliary function for mem_read_insn_p. */
75 static void
76 mark_mem_use_1 (rtx *x, void *data)
77 {
78 for_each_rtx (x, mark_mem_use, data);
79 }
80
81 /* Returns nonzero if INSN reads from memory. */
82 static bool
83 mem_read_insn_p (rtx insn)
84 {
85 mem_ref_p = false;
86 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
87 return mem_ref_p;
88 }
89
90 static void
91 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
92 {
93 if (MEM_P (loc))
94 mem_ref_p = true;
95 }
96
97 /* Returns nonzero if INSN writes to memory. */
98 static bool
99 mem_write_insn_p (rtx insn)
100 {
101 mem_ref_p = false;
102 note_stores (PATTERN (insn), mark_mem_store, NULL);
103 return mem_ref_p;
104 }
105
106 /* Returns nonzero if X has access to memory. */
107 static bool
108 rtx_mem_access_p (rtx x)
109 {
110 int i, j;
111 const char *fmt;
112 enum rtx_code code;
113
114 if (x == 0)
115 return false;
116
117 if (MEM_P (x))
118 return true;
119
120 code = GET_CODE (x);
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 {
124 if (fmt[i] == 'e')
125 {
126 if (rtx_mem_access_p (XEXP (x, i)))
127 return true;
128 }
129 else if (fmt[i] == 'E')
130 for (j = 0; j < XVECLEN (x, i); j++)
131 {
132 if (rtx_mem_access_p (XVECEXP (x, i, j)))
133 return true;
134 }
135 }
136 return false;
137 }
138
139 /* Returns nonzero if INSN reads to or writes from memory. */
140 static bool
141 mem_access_insn_p (rtx insn)
142 {
143 return rtx_mem_access_p (PATTERN (insn));
144 }
145
146 /* Computes the dependence parameters (latency, distance etc.), creates
147 a ddg_edge and adds it to the given DDG. */
148 static void
149 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
150 ddg_node_ptr dest_node, dep_t link)
151 {
152 ddg_edge_ptr e;
153 int latency, distance = 0;
154 int interloop = (src_node->cuid >= dest_node->cuid);
155 dep_type t = TRUE_DEP;
156 dep_data_type dt = (mem_access_insn_p (src_node->insn)
157 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
158 : REG_DEP);
159
160 /* For now we don't have an exact calculation of the distance,
161 so assume 1 conservatively. */
162 if (interloop)
163 distance = 1;
164
165 gcc_assert (link);
166
167 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
168 if (DEP_KIND (link) == REG_DEP_ANTI)
169 t = ANTI_DEP;
170 else if (DEP_KIND (link) == REG_DEP_OUTPUT)
171 t = OUTPUT_DEP;
172 latency = dep_cost (link);
173
174 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
175
176 if (interloop)
177 {
178 /* Some interloop dependencies are relaxed:
179 1. Every insn is output dependent on itself; ignore such deps.
180 2. Every true/flow dependence is an anti dependence in the
181 opposite direction with distance 1; such register deps
182 will be removed by renaming if broken --- ignore them. */
183 if (!(t == OUTPUT_DEP && src_node == dest_node)
184 && !(t == ANTI_DEP && dt == REG_DEP))
185 add_backarc_to_ddg (g, e);
186 else
187 free (e);
188 }
189 else if (t == ANTI_DEP && dt == REG_DEP)
190 free (e); /* We can fix broken anti register deps using reg-moves. */
191 else
192 add_edge_to_ddg (g, e);
193 }
194
195 /* The same as the above function, but it doesn't require a link parameter. */
196 static void
197 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
198 dep_type d_t, dep_data_type d_dt, int distance)
199 {
200 ddg_edge_ptr e;
201 int l;
202 enum reg_note dep_kind;
203 struct _dep _dep, *dep = &_dep;
204
205 if (d_t == ANTI_DEP)
206 dep_kind = REG_DEP_ANTI;
207 else if (d_t == OUTPUT_DEP)
208 dep_kind = REG_DEP_OUTPUT;
209 else
210 {
211 gcc_assert (d_t == TRUE_DEP);
212
213 dep_kind = REG_DEP_TRUE;
214 }
215
216 init_dep (dep, from->insn, to->insn, dep_kind);
217
218 l = dep_cost (dep);
219
220 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
221 if (distance > 0)
222 add_backarc_to_ddg (g, e);
223 else
224 add_edge_to_ddg (g, e);
225 }
226
227 \f
228 /* Given a downwards exposed register def RD, add inter-loop true dependences
229 for all its uses in the next iteration, and an output dependence to the
230 first def of the next iteration. */
231 static void
232 add_deps_for_def (ddg_ptr g, struct df_ref *rd)
233 {
234 int regno = DF_REF_REGNO (rd);
235 struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (g->bb);
236 struct df_link *r_use;
237 int use_before_def = false;
238 rtx def_insn = DF_REF_INSN (rd);
239 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
240
241 /* Create and inter-loop true dependence between RD and each of its uses
242 that is upwards exposed in RD's block. */
243 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
244 {
245 if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
246 {
247 rtx use_insn = DF_REF_INSN (r_use->ref);
248 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
249
250 gcc_assert (src_node && dest_node);
251
252 /* Any such upwards exposed use appears before the rd def. */
253 use_before_def = true;
254 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
255 REG_DEP, 1);
256 }
257 }
258
259 /* Create an inter-loop output dependence between RD (which is the
260 last def in its block, being downwards exposed) and the first def
261 in its block. Avoid creating a self output dependence. Avoid creating
262 an output dependence if there is a dependence path between the two defs
263 starting with a true dependence followed by an anti dependence (i.e. if
264 there is a use between the two defs. */
265 if (! use_before_def)
266 {
267 struct df_ref *def = df_bb_regno_first_def_find (g->bb, regno);
268 int i;
269 ddg_node_ptr dest_node;
270
271 if (!def || rd->id == def->id)
272 return;
273
274 /* Check if there are uses after RD. */
275 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
276 if (df_find_use (g->nodes[i].insn, DF_REF_REG (rd)))
277 return;
278
279 dest_node = get_node_of_insn (g, def->insn);
280 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
281 }
282 }
283
284 /* Given a register USE, add an inter-loop anti dependence to the first
285 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
286 by a def in the block. */
287 static void
288 add_deps_for_use (ddg_ptr g, struct df_ref *use)
289 {
290 int i;
291 int regno = DF_REF_REGNO (use);
292 struct df_ref *first_def = df_bb_regno_first_def_find (g->bb, regno);
293 ddg_node_ptr use_node;
294 ddg_node_ptr def_node;
295 struct df_rd_bb_info *bb_info;
296
297 bb_info = DF_RD_BB_INFO (g->bb);
298
299 if (!first_def)
300 return;
301
302 use_node = get_node_of_insn (g, use->insn);
303 def_node = get_node_of_insn (g, first_def->insn);
304
305 gcc_assert (use_node && def_node);
306
307 /* Make sure there are no defs after USE. */
308 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
309 if (df_find_def (g->nodes[i].insn, DF_REF_REG (use)))
310 return;
311 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
312 the opposite direction. If the first_def reaches the USE then there is
313 such a dep. */
314 if (! bitmap_bit_p (bb_info->gen, first_def->id))
315 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
316 }
317
318 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
319 static void
320 build_inter_loop_deps (ddg_ptr g)
321 {
322 unsigned rd_num, u_num;
323 struct df_rd_bb_info *rd_bb_info;
324 struct df_ru_bb_info *ru_bb_info;
325 bitmap_iterator bi;
326
327 rd_bb_info = DF_RD_BB_INFO (g->bb);
328
329 /* Find inter-loop output and true deps by connecting downward exposed defs
330 to the first def of the BB and to upwards exposed uses. */
331 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
332 {
333 struct df_ref *rd = DF_DEFS_GET (rd_num);
334
335 add_deps_for_def (g, rd);
336 }
337
338 ru_bb_info = DF_RU_BB_INFO (g->bb);
339
340 /* Find inter-loop anti deps. We are interested in uses of the block that
341 appear below all defs; this implies that these uses are killed. */
342 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
343 {
344 struct df_ref *use = DF_USES_GET (u_num);
345 if (!(DF_REF_FLAGS (use) & DF_REF_IN_NOTE))
346 /* We are interested in uses of this BB. */
347 if (BLOCK_FOR_INSN (use->insn) == g->bb)
348 add_deps_for_use (g, use);
349 }
350 }
351
352 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
353 to ddg G. */
354 static void
355 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
356 {
357 if (mem_write_insn_p (from->insn))
358 {
359 if (mem_read_insn_p (to->insn))
360 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
361 else if (from->cuid != to->cuid)
362 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
363 }
364 else
365 {
366 if (mem_read_insn_p (to->insn))
367 return;
368 else if (from->cuid != to->cuid)
369 {
370 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
371 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
372 }
373 }
374
375 }
376
377 /* Perform intra-block Data Dependency analysis and connect the nodes in
378 the DDG. We assume the loop has a single basic block. */
379 static void
380 build_intra_loop_deps (ddg_ptr g)
381 {
382 int i;
383 /* Hold the dependency analysis state during dependency calculations. */
384 struct deps tmp_deps;
385 rtx head, tail;
386 dep_link_t link;
387
388 /* Build the dependence information, using the sched_analyze function. */
389 init_deps_global ();
390 init_deps (&tmp_deps);
391
392 /* Do the intra-block data dependence analysis for the given block. */
393 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
394 sched_analyze (&tmp_deps, head, tail);
395
396 /* Build intra-loop data dependencies using the scheduler dependency
397 analysis. */
398 for (i = 0; i < g->num_nodes; i++)
399 {
400 ddg_node_ptr dest_node = &g->nodes[i];
401
402 if (! INSN_P (dest_node->insn))
403 continue;
404
405 FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (dest_node->insn))
406 {
407 dep_t dep = DEP_LINK_DEP (link);
408 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
409
410 if (!src_node)
411 continue;
412
413 add_forw_dep (link);
414 create_ddg_dependence (g, src_node, dest_node, dep);
415 }
416
417 /* If this insn modifies memory, add an edge to all insns that access
418 memory. */
419 if (mem_access_insn_p (dest_node->insn))
420 {
421 int j;
422
423 for (j = 0; j <= i; j++)
424 {
425 ddg_node_ptr j_node = &g->nodes[j];
426 if (mem_access_insn_p (j_node->insn))
427 /* Don't bother calculating inter-loop dep if an intra-loop dep
428 already exists. */
429 if (! TEST_BIT (dest_node->successors, j))
430 add_inter_loop_mem_dep (g, dest_node, j_node);
431 }
432 }
433 }
434
435 /* Free the INSN_LISTs. */
436 finish_deps_global ();
437 free_deps (&tmp_deps);
438 }
439
440
441 /* Given a basic block, create its DDG and return a pointer to a variable
442 of ddg type that represents it.
443 Initialize the ddg structure fields to the appropriate values. */
444 ddg_ptr
445 create_ddg (basic_block bb, int closing_branch_deps)
446 {
447 ddg_ptr g;
448 rtx insn, first_note;
449 int i;
450 int num_nodes = 0;
451
452 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
453
454 g->bb = bb;
455 g->closing_branch_deps = closing_branch_deps;
456
457 /* Count the number of insns in the BB. */
458 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
459 insn = NEXT_INSN (insn))
460 {
461 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
462 continue;
463
464 if (mem_read_insn_p (insn))
465 g->num_loads++;
466 if (mem_write_insn_p (insn))
467 g->num_stores++;
468 num_nodes++;
469 }
470
471 /* There is nothing to do for this BB. */
472 if (num_nodes <= 1)
473 {
474 free (g);
475 return NULL;
476 }
477
478 /* Allocate the nodes array, and initialize the nodes. */
479 g->num_nodes = num_nodes;
480 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
481 g->closing_branch = NULL;
482 i = 0;
483 first_note = NULL_RTX;
484 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
485 insn = NEXT_INSN (insn))
486 {
487 if (! INSN_P (insn))
488 {
489 if (! first_note && NOTE_P (insn)
490 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
491 first_note = insn;
492 continue;
493 }
494 if (JUMP_P (insn))
495 {
496 gcc_assert (!g->closing_branch);
497 g->closing_branch = &g->nodes[i];
498 }
499 else if (GET_CODE (PATTERN (insn)) == USE)
500 {
501 if (! first_note)
502 first_note = insn;
503 continue;
504 }
505
506 g->nodes[i].cuid = i;
507 g->nodes[i].successors = sbitmap_alloc (num_nodes);
508 sbitmap_zero (g->nodes[i].successors);
509 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
510 sbitmap_zero (g->nodes[i].predecessors);
511 g->nodes[i].first_note = (first_note ? first_note : insn);
512 g->nodes[i++].insn = insn;
513 first_note = NULL_RTX;
514 }
515
516 /* We must have found a branch in DDG. */
517 gcc_assert (g->closing_branch);
518
519
520 /* Build the data dependency graph. */
521 build_intra_loop_deps (g);
522 build_inter_loop_deps (g);
523 return g;
524 }
525
526 /* Free all the memory allocated for the DDG. */
527 void
528 free_ddg (ddg_ptr g)
529 {
530 int i;
531
532 if (!g)
533 return;
534
535 for (i = 0; i < g->num_nodes; i++)
536 {
537 ddg_edge_ptr e = g->nodes[i].out;
538
539 while (e)
540 {
541 ddg_edge_ptr next = e->next_out;
542
543 free (e);
544 e = next;
545 }
546 sbitmap_free (g->nodes[i].successors);
547 sbitmap_free (g->nodes[i].predecessors);
548 }
549 if (g->num_backarcs > 0)
550 free (g->backarcs);
551 free (g->nodes);
552 free (g);
553 }
554
555 void
556 print_ddg_edge (FILE *file, ddg_edge_ptr e)
557 {
558 char dep_c;
559
560 switch (e->type)
561 {
562 case OUTPUT_DEP :
563 dep_c = 'O';
564 break;
565 case ANTI_DEP :
566 dep_c = 'A';
567 break;
568 default:
569 dep_c = 'T';
570 }
571
572 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
573 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
574 }
575
576 /* Print the DDG nodes with there in/out edges to the dump file. */
577 void
578 print_ddg (FILE *file, ddg_ptr g)
579 {
580 int i;
581
582 for (i = 0; i < g->num_nodes; i++)
583 {
584 ddg_edge_ptr e;
585
586 print_rtl_single (file, g->nodes[i].insn);
587 fprintf (file, "OUT ARCS: ");
588 for (e = g->nodes[i].out; e; e = e->next_out)
589 print_ddg_edge (file, e);
590
591 fprintf (file, "\nIN ARCS: ");
592 for (e = g->nodes[i].in; e; e = e->next_in)
593 print_ddg_edge (file, e);
594
595 fprintf (file, "\n");
596 }
597 }
598
599 /* Print the given DDG in VCG format. */
600 void
601 vcg_print_ddg (FILE *file, ddg_ptr g)
602 {
603 int src_cuid;
604
605 fprintf (file, "graph: {\n");
606 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
607 {
608 ddg_edge_ptr e;
609 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
610
611 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
612 print_rtl_single (file, g->nodes[src_cuid].insn);
613 fprintf (file, "\"}\n");
614 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
615 {
616 int dst_uid = INSN_UID (e->dest->insn);
617 int dst_cuid = e->dest->cuid;
618
619 /* Give the backarcs a different color. */
620 if (e->distance > 0)
621 fprintf (file, "backedge: {color: red ");
622 else
623 fprintf (file, "edge: { ");
624
625 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
626 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
627 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
628 }
629 }
630 fprintf (file, "}\n");
631 }
632
633 /* Dump the sccs in SCCS. */
634 void
635 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
636 {
637 unsigned int u = 0;
638 sbitmap_iterator sbi;
639 int i;
640
641 if (!file)
642 return;
643
644 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
645 for (i = 0; i < sccs->num_sccs; i++)
646 {
647 fprintf (file, "SCC number: %d\n", i);
648 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
649 {
650 fprintf (file, "insn num %d\n", u);
651 print_rtl_single (file, g->nodes[u].insn);
652 }
653 }
654 fprintf (file, "\n");
655 }
656
657 /* Create an edge and initialize it with given values. */
658 static ddg_edge_ptr
659 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
660 dep_type t, dep_data_type dt, int l, int d)
661 {
662 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
663
664 e->src = src;
665 e->dest = dest;
666 e->type = t;
667 e->data_type = dt;
668 e->latency = l;
669 e->distance = d;
670 e->next_in = e->next_out = NULL;
671 e->aux.info = 0;
672 return e;
673 }
674
675 /* Add the given edge to the in/out linked lists of the DDG nodes. */
676 static void
677 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
678 {
679 ddg_node_ptr src = e->src;
680 ddg_node_ptr dest = e->dest;
681
682 /* Should have allocated the sbitmaps. */
683 gcc_assert (src->successors && dest->predecessors);
684
685 SET_BIT (src->successors, dest->cuid);
686 SET_BIT (dest->predecessors, src->cuid);
687 e->next_in = dest->in;
688 dest->in = e;
689 e->next_out = src->out;
690 src->out = e;
691 }
692
693
694 \f
695 /* Algorithm for computing the recurrence_length of an scc. We assume at
696 for now that cycles in the data dependence graph contain a single backarc.
697 This simplifies the algorithm, and can be generalized later. */
698 static void
699 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
700 {
701 int j;
702 int result = -1;
703
704 for (j = 0; j < scc->num_backarcs; j++)
705 {
706 ddg_edge_ptr backarc = scc->backarcs[j];
707 int length;
708 int distance = backarc->distance;
709 ddg_node_ptr src = backarc->dest;
710 ddg_node_ptr dest = backarc->src;
711
712 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
713 if (length < 0 )
714 {
715 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
716 continue;
717 }
718 length += backarc->latency;
719 result = MAX (result, (length / distance));
720 }
721 scc->recurrence_length = result;
722 }
723
724 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
725 and mark edges that belong to this scc as IN_SCC. */
726 static ddg_scc_ptr
727 create_scc (ddg_ptr g, sbitmap nodes)
728 {
729 ddg_scc_ptr scc;
730 unsigned int u = 0;
731 sbitmap_iterator sbi;
732
733 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
734 scc->backarcs = NULL;
735 scc->num_backarcs = 0;
736 scc->nodes = sbitmap_alloc (g->num_nodes);
737 sbitmap_copy (scc->nodes, nodes);
738
739 /* Mark the backarcs that belong to this SCC. */
740 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
741 {
742 ddg_edge_ptr e;
743 ddg_node_ptr n = &g->nodes[u];
744
745 for (e = n->out; e; e = e->next_out)
746 if (TEST_BIT (nodes, e->dest->cuid))
747 {
748 e->aux.count = IN_SCC;
749 if (e->distance > 0)
750 add_backarc_to_scc (scc, e);
751 }
752 }
753
754 set_recurrence_length (scc, g);
755 return scc;
756 }
757
758 /* Cleans the memory allocation of a given SCC. */
759 static void
760 free_scc (ddg_scc_ptr scc)
761 {
762 if (!scc)
763 return;
764
765 sbitmap_free (scc->nodes);
766 if (scc->num_backarcs > 0)
767 free (scc->backarcs);
768 free (scc);
769 }
770
771
772 /* Add a given edge known to be a backarc to the given DDG. */
773 static void
774 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
775 {
776 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
777
778 add_edge_to_ddg (g, e);
779 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
780 g->backarcs[g->num_backarcs++] = e;
781 }
782
783 /* Add backarc to an SCC. */
784 static void
785 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
786 {
787 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
788
789 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
790 scc->backarcs[scc->num_backarcs++] = e;
791 }
792
793 /* Add the given SCC to the DDG. */
794 static void
795 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
796 {
797 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
798
799 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
800 g->sccs[g->num_sccs++] = scc;
801 }
802
803 /* Given the instruction INSN return the node that represents it. */
804 ddg_node_ptr
805 get_node_of_insn (ddg_ptr g, rtx insn)
806 {
807 int i;
808
809 for (i = 0; i < g->num_nodes; i++)
810 if (insn == g->nodes[i].insn)
811 return &g->nodes[i];
812 return NULL;
813 }
814
815 /* Given a set OPS of nodes in the DDG, find the set of their successors
816 which are not in OPS, and set their bits in SUCC. Bits corresponding to
817 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
818 void
819 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
820 {
821 unsigned int i = 0;
822 sbitmap_iterator sbi;
823
824 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
825 {
826 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
827 sbitmap_a_or_b (succ, succ, node_succ);
828 };
829
830 /* We want those that are not in ops. */
831 sbitmap_difference (succ, succ, ops);
832 }
833
834 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
835 which are not in OPS, and set their bits in PREDS. Bits corresponding to
836 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
837 void
838 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
839 {
840 unsigned int i = 0;
841 sbitmap_iterator sbi;
842
843 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
844 {
845 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
846 sbitmap_a_or_b (preds, preds, node_preds);
847 };
848
849 /* We want those that are not in ops. */
850 sbitmap_difference (preds, preds, ops);
851 }
852
853
854 /* Compare function to be passed to qsort to order the backarcs in descending
855 recMII order. */
856 static int
857 compare_sccs (const void *s1, const void *s2)
858 {
859 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
860 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
861 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
862
863 }
864
865 /* Order the backarcs in descending recMII order using compare_sccs. */
866 static void
867 order_sccs (ddg_all_sccs_ptr g)
868 {
869 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
870 (int (*) (const void *, const void *)) compare_sccs);
871 }
872
873 #ifdef ENABLE_CHECKING
874 /* Check that every node in SCCS belongs to exactly one strongly connected
875 component and that no element of SCCS is empty. */
876 static void
877 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
878 {
879 int i = 0;
880 sbitmap tmp = sbitmap_alloc (num_nodes);
881
882 sbitmap_zero (tmp);
883 for (i = 0; i < sccs->num_sccs; i++)
884 {
885 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
886 /* Verify that every node in sccs is in exactly one strongly
887 connected component. */
888 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
889 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
890 }
891 sbitmap_free (tmp);
892 }
893 #endif
894
895 /* Perform the Strongly Connected Components decomposing algorithm on the
896 DDG and return DDG_ALL_SCCS structure that contains them. */
897 ddg_all_sccs_ptr
898 create_ddg_all_sccs (ddg_ptr g)
899 {
900 int i;
901 int num_nodes = g->num_nodes;
902 sbitmap from = sbitmap_alloc (num_nodes);
903 sbitmap to = sbitmap_alloc (num_nodes);
904 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
905 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
906 xmalloc (sizeof (struct ddg_all_sccs));
907
908 sccs->ddg = g;
909 sccs->sccs = NULL;
910 sccs->num_sccs = 0;
911
912 for (i = 0; i < g->num_backarcs; i++)
913 {
914 ddg_scc_ptr scc;
915 ddg_edge_ptr backarc = g->backarcs[i];
916 ddg_node_ptr src = backarc->src;
917 ddg_node_ptr dest = backarc->dest;
918
919 /* If the backarc already belongs to an SCC, continue. */
920 if (backarc->aux.count == IN_SCC)
921 continue;
922
923 sbitmap_zero (scc_nodes);
924 sbitmap_zero (from);
925 sbitmap_zero (to);
926 SET_BIT (from, dest->cuid);
927 SET_BIT (to, src->cuid);
928
929 if (find_nodes_on_paths (scc_nodes, g, from, to))
930 {
931 scc = create_scc (g, scc_nodes);
932 add_scc_to_ddg (sccs, scc);
933 }
934 }
935 order_sccs (sccs);
936 sbitmap_free (from);
937 sbitmap_free (to);
938 sbitmap_free (scc_nodes);
939 #ifdef ENABLE_CHECKING
940 check_sccs (sccs, num_nodes);
941 #endif
942 return sccs;
943 }
944
945 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
946 void
947 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
948 {
949 int i;
950
951 if (!all_sccs)
952 return;
953
954 for (i = 0; i < all_sccs->num_sccs; i++)
955 free_scc (all_sccs->sccs[i]);
956
957 free (all_sccs);
958 }
959
960 \f
961 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
962 nodes - find all nodes that lie on paths from FROM to TO (not excluding
963 nodes from FROM and TO). Return nonzero if nodes exist. */
964 int
965 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
966 {
967 int answer;
968 int change;
969 unsigned int u = 0;
970 int num_nodes = g->num_nodes;
971 sbitmap_iterator sbi;
972
973 sbitmap workset = sbitmap_alloc (num_nodes);
974 sbitmap reachable_from = sbitmap_alloc (num_nodes);
975 sbitmap reach_to = sbitmap_alloc (num_nodes);
976 sbitmap tmp = sbitmap_alloc (num_nodes);
977
978 sbitmap_copy (reachable_from, from);
979 sbitmap_copy (tmp, from);
980
981 change = 1;
982 while (change)
983 {
984 change = 0;
985 sbitmap_copy (workset, tmp);
986 sbitmap_zero (tmp);
987 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
988 {
989 ddg_edge_ptr e;
990 ddg_node_ptr u_node = &g->nodes[u];
991
992 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
993 {
994 ddg_node_ptr v_node = e->dest;
995 int v = v_node->cuid;
996
997 if (!TEST_BIT (reachable_from, v))
998 {
999 SET_BIT (reachable_from, v);
1000 SET_BIT (tmp, v);
1001 change = 1;
1002 }
1003 }
1004 }
1005 }
1006
1007 sbitmap_copy (reach_to, to);
1008 sbitmap_copy (tmp, to);
1009
1010 change = 1;
1011 while (change)
1012 {
1013 change = 0;
1014 sbitmap_copy (workset, tmp);
1015 sbitmap_zero (tmp);
1016 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1017 {
1018 ddg_edge_ptr e;
1019 ddg_node_ptr u_node = &g->nodes[u];
1020
1021 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1022 {
1023 ddg_node_ptr v_node = e->src;
1024 int v = v_node->cuid;
1025
1026 if (!TEST_BIT (reach_to, v))
1027 {
1028 SET_BIT (reach_to, v);
1029 SET_BIT (tmp, v);
1030 change = 1;
1031 }
1032 }
1033 }
1034 }
1035
1036 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1037 sbitmap_free (workset);
1038 sbitmap_free (reachable_from);
1039 sbitmap_free (reach_to);
1040 sbitmap_free (tmp);
1041 return answer;
1042 }
1043
1044
1045 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1046 at-least as large as the count of U_NODE plus the latency between them.
1047 Sets a bit in TMP for each successor whose count was changed (increased).
1048 Returns nonzero if any count was changed. */
1049 static int
1050 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1051 {
1052 ddg_edge_ptr e;
1053 int result = 0;
1054
1055 for (e = u_node->out; e; e = e->next_out)
1056 {
1057 ddg_node_ptr v_node = e->dest;
1058 int v = v_node->cuid;
1059
1060 if (TEST_BIT (nodes, v)
1061 && (e->distance == 0)
1062 && (v_node->aux.count < u_node->aux.count + e->latency))
1063 {
1064 v_node->aux.count = u_node->aux.count + e->latency;
1065 SET_BIT (tmp, v);
1066 result = 1;
1067 }
1068 }
1069 return result;
1070 }
1071
1072
1073 /* Find the length of a longest path from SRC to DEST in G,
1074 going only through NODES, and disregarding backarcs. */
1075 int
1076 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1077 {
1078 int i;
1079 unsigned int u = 0;
1080 int change = 1;
1081 int result;
1082 int num_nodes = g->num_nodes;
1083 sbitmap workset = sbitmap_alloc (num_nodes);
1084 sbitmap tmp = sbitmap_alloc (num_nodes);
1085
1086
1087 /* Data will hold the distance of the longest path found so far from
1088 src to each node. Initialize to -1 = less than minimum. */
1089 for (i = 0; i < g->num_nodes; i++)
1090 g->nodes[i].aux.count = -1;
1091 g->nodes[src].aux.count = 0;
1092
1093 sbitmap_zero (tmp);
1094 SET_BIT (tmp, src);
1095
1096 while (change)
1097 {
1098 sbitmap_iterator sbi;
1099
1100 change = 0;
1101 sbitmap_copy (workset, tmp);
1102 sbitmap_zero (tmp);
1103 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1104 {
1105 ddg_node_ptr u_node = &g->nodes[u];
1106
1107 change |= update_dist_to_successors (u_node, nodes, tmp);
1108 }
1109 }
1110 result = g->nodes[dest].aux.count;
1111 sbitmap_free (workset);
1112 sbitmap_free (tmp);
1113 return result;
1114 }