bitmap.h (struct bitmap_obstack): New obstack type.
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "df.h"
47 #include "ddg.h"
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
57 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
58 dep_type, dep_data_type, int);
59 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
60 dep_data_type, int, int);
61 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 \f
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p;
65
66 /* Auxiliary function for mem_read_insn_p. */
67 static int
68 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 {
70 if (MEM_P (*x))
71 mem_ref_p = true;
72 return 0;
73 }
74
75 /* Auxiliary function for mem_read_insn_p. */
76 static void
77 mark_mem_use_1 (rtx *x, void *data)
78 {
79 for_each_rtx (x, mark_mem_use, data);
80 }
81
82 /* Returns nonzero if INSN reads from memory. */
83 static bool
84 mem_read_insn_p (rtx insn)
85 {
86 mem_ref_p = false;
87 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
88 return mem_ref_p;
89 }
90
91 static void
92 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 {
94 if (MEM_P (loc))
95 mem_ref_p = true;
96 }
97
98 /* Returns nonzero if INSN writes to memory. */
99 static bool
100 mem_write_insn_p (rtx insn)
101 {
102 mem_ref_p = false;
103 note_stores (PATTERN (insn), mark_mem_store, NULL);
104 return mem_ref_p;
105 }
106
107 /* Returns nonzero if X has access to memory. */
108 static bool
109 rtx_mem_access_p (rtx x)
110 {
111 int i, j;
112 const char *fmt;
113 enum rtx_code code;
114
115 if (x == 0)
116 return false;
117
118 if (MEM_P (x))
119 return true;
120
121 code = GET_CODE (x);
122 fmt = GET_RTX_FORMAT (code);
123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 {
125 if (fmt[i] == 'e')
126 {
127 if (rtx_mem_access_p (XEXP (x, i)))
128 return true;
129 }
130 else if (fmt[i] == 'E')
131 for (j = 0; j < XVECLEN (x, i); j++)
132 {
133 if (rtx_mem_access_p (XVECEXP (x, i, j)))
134 return true;
135 }
136 }
137 return false;
138 }
139
140 /* Returns nonzero if INSN reads to or writes from memory. */
141 static bool
142 mem_access_insn_p (rtx insn)
143 {
144 return rtx_mem_access_p (PATTERN (insn));
145 }
146
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
149 static void
150 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
151 ddg_node_ptr dest_node, rtx link)
152 {
153 ddg_edge_ptr e;
154 int latency, distance = 0;
155 int interloop = (src_node->cuid >= dest_node->cuid);
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
163 if (interloop)
164 distance = 1;
165
166 gcc_assert (link);
167
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
170 t = ANTI_DEP;
171 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
172 t = OUTPUT_DEP;
173 latency = insn_cost (src_node->insn, link, dest_node->insn);
174
175 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
176
177 if (interloop)
178 {
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t == OUTPUT_DEP && src_node == dest_node)
185 && !(t == ANTI_DEP && dt == REG_DEP))
186 add_backarc_to_ddg (g, e);
187 else
188 free (e);
189 }
190 else
191 add_edge_to_ddg (g, e);
192 }
193
194 /* The same as the above function, but it doesn't require a link parameter. */
195 static void
196 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
197 dep_type d_t, dep_data_type d_dt, int distance)
198 {
199 ddg_edge_ptr e;
200 int l;
201 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
202
203 if (d_t == ANTI_DEP)
204 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
205 else if (d_t == OUTPUT_DEP)
206 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
207
208 l = insn_cost (from->insn, link, to->insn);
209 free_INSN_LIST_node (link);
210
211 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
212 if (distance > 0)
213 add_backarc_to_ddg (g, e);
214 else
215 add_edge_to_ddg (g, e);
216 }
217
218 \f
219 /* Given a downwards exposed register def RD, add inter-loop true dependences
220 for all its uses in the next iteration, and an output dependence to the
221 first def of the next iteration. */
222 static void
223 add_deps_for_def (ddg_ptr g, struct df *df, struct ref *rd)
224 {
225 int regno = DF_REF_REGNO (rd);
226 struct bb_info *bb_info = DF_BB_INFO (df, g->bb);
227 struct df_link *r_use;
228 int use_before_def = false;
229 rtx def_insn = DF_REF_INSN (rd);
230 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
231
232 /* Create and inter-loop true dependence between RD and each of its uses
233 that is upwards exposed in RD's block. */
234 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
235 {
236 if (bitmap_bit_p (bb_info->ru_gen, r_use->ref->id))
237 {
238 rtx use_insn = DF_REF_INSN (r_use->ref);
239 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
240
241 gcc_assert (src_node && dest_node);
242
243 /* Any such upwards exposed use appears before the rd def. */
244 use_before_def = true;
245 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
246 REG_DEP, 1);
247 }
248 }
249
250 /* Create an inter-loop output dependence between RD (which is the
251 last def in its block, being downwards exposed) and the first def
252 in its block. Avoid creating a self output dependence. Avoid creating
253 an output dependence if there is a dependence path between the two defs
254 starting with a true dependence followed by an anti dependence (i.e. if
255 there is a use between the two defs. */
256 if (! use_before_def)
257 {
258 struct ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
259 int i;
260 ddg_node_ptr dest_node;
261
262 if (!def || rd->id == def->id)
263 return;
264
265 /* Check if there are uses after RD. */
266 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
267 if (df_reg_used (df, g->nodes[i].insn, rd->reg))
268 return;
269
270 dest_node = get_node_of_insn (g, def->insn);
271 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
272 }
273 }
274
275 /* Given a register USE, add an inter-loop anti dependence to the first
276 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
277 by a def in the block. */
278 static void
279 add_deps_for_use (ddg_ptr g, struct df *df, struct ref *use)
280 {
281 int i;
282 int regno = DF_REF_REGNO (use);
283 struct ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
284 ddg_node_ptr use_node;
285 ddg_node_ptr def_node;
286 struct bb_info *bb_info;
287
288 bb_info = DF_BB_INFO (df, g->bb);
289
290 if (!first_def)
291 return;
292
293 use_node = get_node_of_insn (g, use->insn);
294 def_node = get_node_of_insn (g, first_def->insn);
295
296 gcc_assert (use_node && def_node);
297
298 /* Make sure there are no defs after USE. */
299 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
300 if (df_find_def (df, g->nodes[i].insn, use->reg))
301 return;
302 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
303 the opozite direction. If the first_def reaches the USE then there is
304 such a dep. */
305 if (! bitmap_bit_p (bb_info->rd_gen, first_def->id))
306 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
307 }
308
309 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
310 static void
311 build_inter_loop_deps (ddg_ptr g, struct df *df)
312 {
313 unsigned rd_num, u_num;
314 struct bb_info *bb_info;
315 bitmap_iterator bi;
316
317 bb_info = DF_BB_INFO (df, g->bb);
318
319 /* Find inter-loop output and true deps by connecting downward exposed defs
320 to the first def of the BB and to upwards exposed uses. */
321 EXECUTE_IF_SET_IN_BITMAP (bb_info->rd_gen, 0, rd_num, bi)
322 {
323 struct ref *rd = df->defs[rd_num];
324
325 add_deps_for_def (g, df, rd);
326 }
327
328 /* Find inter-loop anti deps. We are interested in uses of the block that
329 appear below all defs; this implies that these uses are killed. */
330 EXECUTE_IF_SET_IN_BITMAP (bb_info->ru_kill, 0, u_num, bi)
331 {
332 struct ref *use = df->uses[u_num];
333
334 /* We are interested in uses of this BB. */
335 if (BLOCK_FOR_INSN (use->insn) == g->bb)
336 add_deps_for_use (g, df,use);
337 }
338 }
339
340 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
341 to ddg G. */
342 static void
343 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
344 {
345 if (mem_write_insn_p (from->insn))
346 {
347 if (mem_read_insn_p (to->insn))
348 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
349 else if (from->cuid != to->cuid)
350 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
351 }
352 else
353 {
354 if (mem_read_insn_p (to->insn))
355 return;
356 else if (from->cuid != to->cuid)
357 {
358 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
359 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
360 }
361 }
362
363 }
364
365 /* Perform intra-block Data Dependency analysis and connect the nodes in
366 the DDG. We assume the loop has a single basic block. */
367 static void
368 build_intra_loop_deps (ddg_ptr g)
369 {
370 int i;
371 /* Hold the dependency analysis state during dependency calculations. */
372 struct deps tmp_deps;
373 rtx head, tail, link;
374
375 /* Build the dependence information, using the sched_analyze function. */
376 init_deps_global ();
377 init_deps (&tmp_deps);
378
379 /* Do the intra-block data dependence analysis for the given block. */
380 get_block_head_tail (g->bb->index, &head, &tail);
381 sched_analyze (&tmp_deps, head, tail);
382
383 /* Build intra-loop data dependencies using the scheduler dependency
384 analysis. */
385 for (i = 0; i < g->num_nodes; i++)
386 {
387 ddg_node_ptr dest_node = &g->nodes[i];
388
389 if (! INSN_P (dest_node->insn))
390 continue;
391
392 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
393 {
394 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
395
396 if (!src_node)
397 continue;
398
399 add_forward_dependence (XEXP (link, 0), dest_node->insn,
400 REG_NOTE_KIND (link));
401 create_ddg_dependence (g, src_node, dest_node,
402 INSN_DEPEND (src_node->insn));
403 }
404
405 /* If this insn modifies memory, add an edge to all insns that access
406 memory. */
407 if (mem_access_insn_p (dest_node->insn))
408 {
409 int j;
410
411 for (j = 0; j <= i; j++)
412 {
413 ddg_node_ptr j_node = &g->nodes[j];
414 if (mem_access_insn_p (j_node->insn))
415 /* Don't bother calculating inter-loop dep if an intra-loop dep
416 already exists. */
417 if (! TEST_BIT (dest_node->successors, j))
418 add_inter_loop_mem_dep (g, dest_node, j_node);
419 }
420 }
421 }
422
423 /* Free the INSN_LISTs. */
424 finish_deps_global ();
425 free_deps (&tmp_deps);
426 }
427
428
429 /* Given a basic block, create its DDG and return a pointer to a variable
430 of ddg type that represents it.
431 Initialize the ddg structure fields to the appropriate values. */
432 ddg_ptr
433 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
434 {
435 ddg_ptr g;
436 rtx insn, first_note;
437 int i;
438 int num_nodes = 0;
439
440 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
441
442 g->bb = bb;
443 g->closing_branch_deps = closing_branch_deps;
444
445 /* Count the number of insns in the BB. */
446 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
447 insn = NEXT_INSN (insn))
448 {
449 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
450 continue;
451
452 if (mem_read_insn_p (insn))
453 g->num_loads++;
454 if (mem_write_insn_p (insn))
455 g->num_stores++;
456 num_nodes++;
457 }
458
459 /* There is nothing to do for this BB. */
460 if (num_nodes <= 1)
461 {
462 free (g);
463 return NULL;
464 }
465
466 /* Allocate the nodes array, and initialize the nodes. */
467 g->num_nodes = num_nodes;
468 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
469 g->closing_branch = NULL;
470 i = 0;
471 first_note = NULL_RTX;
472 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
473 insn = NEXT_INSN (insn))
474 {
475 if (! INSN_P (insn))
476 {
477 if (! first_note && NOTE_P (insn)
478 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
479 first_note = insn;
480 continue;
481 }
482 if (JUMP_P (insn))
483 {
484 gcc_assert (!g->closing_branch);
485 g->closing_branch = &g->nodes[i];
486 }
487 else if (GET_CODE (PATTERN (insn)) == USE)
488 {
489 if (! first_note)
490 first_note = insn;
491 continue;
492 }
493
494 g->nodes[i].cuid = i;
495 g->nodes[i].successors = sbitmap_alloc (num_nodes);
496 sbitmap_zero (g->nodes[i].successors);
497 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
498 sbitmap_zero (g->nodes[i].predecessors);
499 g->nodes[i].first_note = (first_note ? first_note : insn);
500 g->nodes[i++].insn = insn;
501 first_note = NULL_RTX;
502 }
503
504 /* We must have found a branch in DDG. */
505 gcc_assert (g->closing_branch);
506
507
508 /* Build the data dependency graph. */
509 build_intra_loop_deps (g);
510 build_inter_loop_deps (g, df);
511 return g;
512 }
513
514 /* Free all the memory allocated for the DDG. */
515 void
516 free_ddg (ddg_ptr g)
517 {
518 int i;
519
520 if (!g)
521 return;
522
523 for (i = 0; i < g->num_nodes; i++)
524 {
525 ddg_edge_ptr e = g->nodes[i].out;
526
527 while (e)
528 {
529 ddg_edge_ptr next = e->next_out;
530
531 free (e);
532 e = next;
533 }
534 sbitmap_free (g->nodes[i].successors);
535 sbitmap_free (g->nodes[i].predecessors);
536 }
537 if (g->num_backarcs > 0)
538 free (g->backarcs);
539 free (g->nodes);
540 free (g);
541 }
542
543 void
544 print_ddg_edge (FILE *dump_file, ddg_edge_ptr e)
545 {
546 char dep_c;
547
548 switch (e->type) {
549 case OUTPUT_DEP :
550 dep_c = 'O';
551 break;
552 case ANTI_DEP :
553 dep_c = 'A';
554 break;
555 default:
556 dep_c = 'T';
557 }
558
559 fprintf (dump_file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
560 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
561 }
562
563 /* Print the DDG nodes with there in/out edges to the dump file. */
564 void
565 print_ddg (FILE *dump_file, ddg_ptr g)
566 {
567 int i;
568
569 for (i = 0; i < g->num_nodes; i++)
570 {
571 ddg_edge_ptr e;
572
573 print_rtl_single (dump_file, g->nodes[i].insn);
574 fprintf (dump_file, "OUT ARCS: ");
575 for (e = g->nodes[i].out; e; e = e->next_out)
576 print_ddg_edge (dump_file, e);
577
578 fprintf (dump_file, "\nIN ARCS: ");
579 for (e = g->nodes[i].in; e; e = e->next_in)
580 print_ddg_edge (dump_file, e);
581
582 fprintf (dump_file, "\n");
583 }
584 }
585
586 /* Print the given DDG in VCG format. */
587 void
588 vcg_print_ddg (FILE *dump_file, ddg_ptr g)
589 {
590 int src_cuid;
591
592 fprintf (dump_file, "graph: {\n");
593 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
594 {
595 ddg_edge_ptr e;
596 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
597
598 fprintf (dump_file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
599 print_rtl_single (dump_file, g->nodes[src_cuid].insn);
600 fprintf (dump_file, "\"}\n");
601 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
602 {
603 int dst_uid = INSN_UID (e->dest->insn);
604 int dst_cuid = e->dest->cuid;
605
606 /* Give the backarcs a different color. */
607 if (e->distance > 0)
608 fprintf (dump_file, "backedge: {color: red ");
609 else
610 fprintf (dump_file, "edge: { ");
611
612 fprintf (dump_file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
613 fprintf (dump_file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
614 fprintf (dump_file, "label: \"%d_%d\"}\n", e->latency, e->distance);
615 }
616 }
617 fprintf (dump_file, "}\n");
618 }
619
620 /* Create an edge and initialize it with given values. */
621 static ddg_edge_ptr
622 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
623 dep_type t, dep_data_type dt, int l, int d)
624 {
625 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
626
627 e->src = src;
628 e->dest = dest;
629 e->type = t;
630 e->data_type = dt;
631 e->latency = l;
632 e->distance = d;
633 e->next_in = e->next_out = NULL;
634 e->aux.info = 0;
635 return e;
636 }
637
638 /* Add the given edge to the in/out linked lists of the DDG nodes. */
639 static void
640 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
641 {
642 ddg_node_ptr src = e->src;
643 ddg_node_ptr dest = e->dest;
644
645 /* Should have allocated the sbitmaps. */
646 gcc_assert (src->successors && dest->predecessors);
647
648 SET_BIT (src->successors, dest->cuid);
649 SET_BIT (dest->predecessors, src->cuid);
650 e->next_in = dest->in;
651 dest->in = e;
652 e->next_out = src->out;
653 src->out = e;
654 }
655
656
657 \f
658 /* Algorithm for computing the recurrence_length of an scc. We assume at
659 for now that cycles in the data dependence graph contain a single backarc.
660 This simplifies the algorithm, and can be generalized later. */
661 static void
662 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
663 {
664 int j;
665 int result = -1;
666
667 for (j = 0; j < scc->num_backarcs; j++)
668 {
669 ddg_edge_ptr backarc = scc->backarcs[j];
670 int length;
671 int distance = backarc->distance;
672 ddg_node_ptr src = backarc->dest;
673 ddg_node_ptr dest = backarc->src;
674
675 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
676 if (length < 0 )
677 {
678 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
679 continue;
680 }
681 length += backarc->latency;
682 result = MAX (result, (length / distance));
683 }
684 scc->recurrence_length = result;
685 }
686
687 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
688 and mark edges that belong to this scc as IN_SCC. */
689 static ddg_scc_ptr
690 create_scc (ddg_ptr g, sbitmap nodes)
691 {
692 ddg_scc_ptr scc;
693 int u;
694
695 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
696 scc->backarcs = NULL;
697 scc->num_backarcs = 0;
698 scc->nodes = sbitmap_alloc (g->num_nodes);
699 sbitmap_copy (scc->nodes, nodes);
700
701 /* Mark the backarcs that belong to this SCC. */
702 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
703 {
704 ddg_edge_ptr e;
705 ddg_node_ptr n = &g->nodes[u];
706
707 for (e = n->out; e; e = e->next_out)
708 if (TEST_BIT (nodes, e->dest->cuid))
709 {
710 e->aux.count = IN_SCC;
711 if (e->distance > 0)
712 add_backarc_to_scc (scc, e);
713 }
714 });
715
716 set_recurrence_length (scc, g);
717 return scc;
718 }
719
720 /* Cleans the memory allocation of a given SCC. */
721 static void
722 free_scc (ddg_scc_ptr scc)
723 {
724 if (!scc)
725 return;
726
727 sbitmap_free (scc->nodes);
728 if (scc->num_backarcs > 0)
729 free (scc->backarcs);
730 free (scc);
731 }
732
733
734 /* Add a given edge known to be a backarc to the given DDG. */
735 static void
736 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
737 {
738 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
739
740 add_edge_to_ddg (g, e);
741 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
742 g->backarcs[g->num_backarcs++] = e;
743 }
744
745 /* Add backarc to an SCC. */
746 static void
747 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
748 {
749 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
750
751 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
752 scc->backarcs[scc->num_backarcs++] = e;
753 }
754
755 /* Add the given SCC to the DDG. */
756 static void
757 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
758 {
759 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
760
761 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
762 g->sccs[g->num_sccs++] = scc;
763 }
764
765 /* Given the instruction INSN return the node that represents it. */
766 ddg_node_ptr
767 get_node_of_insn (ddg_ptr g, rtx insn)
768 {
769 int i;
770
771 for (i = 0; i < g->num_nodes; i++)
772 if (insn == g->nodes[i].insn)
773 return &g->nodes[i];
774 return NULL;
775 }
776
777 /* Given a set OPS of nodes in the DDG, find the set of their successors
778 which are not in OPS, and set their bits in SUCC. Bits corresponding to
779 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
780 void
781 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
782 {
783 int i;
784
785 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
786 {
787 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
788 sbitmap_a_or_b (succ, succ, node_succ);
789 });
790
791 /* We want those that are not in ops. */
792 sbitmap_difference (succ, succ, ops);
793 }
794
795 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
796 which are not in OPS, and set their bits in PREDS. Bits corresponding to
797 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
798 void
799 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
800 {
801 int i;
802
803 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
804 {
805 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
806 sbitmap_a_or_b (preds, preds, node_preds);
807 });
808
809 /* We want those that are not in ops. */
810 sbitmap_difference (preds, preds, ops);
811 }
812
813
814 /* Compare function to be passed to qsort to order the backarcs in descending
815 recMII order. */
816 static int
817 compare_sccs (const void *s1, const void *s2)
818 {
819 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
820 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
821 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
822
823 }
824
825 /* Order the backarcs in descending recMII order using compare_sccs. */
826 static void
827 order_sccs (ddg_all_sccs_ptr g)
828 {
829 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
830 (int (*) (const void *, const void *)) compare_sccs);
831 }
832
833 /* Perform the Strongly Connected Components decomposing algorithm on the
834 DDG and return DDG_ALL_SCCS structure that contains them. */
835 ddg_all_sccs_ptr
836 create_ddg_all_sccs (ddg_ptr g)
837 {
838 int i;
839 int num_nodes = g->num_nodes;
840 sbitmap from = sbitmap_alloc (num_nodes);
841 sbitmap to = sbitmap_alloc (num_nodes);
842 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
843 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
844 xmalloc (sizeof (struct ddg_all_sccs));
845
846 sccs->ddg = g;
847 sccs->sccs = NULL;
848 sccs->num_sccs = 0;
849
850 for (i = 0; i < g->num_backarcs; i++)
851 {
852 ddg_scc_ptr scc;
853 ddg_edge_ptr backarc = g->backarcs[i];
854 ddg_node_ptr src = backarc->src;
855 ddg_node_ptr dest = backarc->dest;
856
857 /* If the backarc already belongs to an SCC, continue. */
858 if (backarc->aux.count == IN_SCC)
859 continue;
860
861 sbitmap_zero (from);
862 sbitmap_zero (to);
863 SET_BIT (from, dest->cuid);
864 SET_BIT (to, src->cuid);
865
866 if (find_nodes_on_paths (scc_nodes, g, from, to))
867 {
868 scc = create_scc (g, scc_nodes);
869 add_scc_to_ddg (sccs, scc);
870 }
871 }
872 order_sccs (sccs);
873 sbitmap_free (from);
874 sbitmap_free (to);
875 sbitmap_free (scc_nodes);
876 return sccs;
877 }
878
879 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
880 void
881 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
882 {
883 int i;
884
885 if (!all_sccs)
886 return;
887
888 for (i = 0; i < all_sccs->num_sccs; i++)
889 free_scc (all_sccs->sccs[i]);
890
891 free (all_sccs);
892 }
893
894 \f
895 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
896 nodes - find all nodes that lie on paths from FROM to TO (not excluding
897 nodes from FROM and TO). Return nonzero if nodes exist. */
898 int
899 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
900 {
901 int answer;
902 int change, u;
903 int num_nodes = g->num_nodes;
904 sbitmap workset = sbitmap_alloc (num_nodes);
905 sbitmap reachable_from = sbitmap_alloc (num_nodes);
906 sbitmap reach_to = sbitmap_alloc (num_nodes);
907 sbitmap tmp = sbitmap_alloc (num_nodes);
908
909 sbitmap_copy (reachable_from, from);
910 sbitmap_copy (tmp, from);
911
912 change = 1;
913 while (change)
914 {
915 change = 0;
916 sbitmap_copy (workset, tmp);
917 sbitmap_zero (tmp);
918 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
919 {
920 ddg_edge_ptr e;
921 ddg_node_ptr u_node = &g->nodes[u];
922
923 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
924 {
925 ddg_node_ptr v_node = e->dest;
926 int v = v_node->cuid;
927
928 if (!TEST_BIT (reachable_from, v))
929 {
930 SET_BIT (reachable_from, v);
931 SET_BIT (tmp, v);
932 change = 1;
933 }
934 }
935 });
936 }
937
938 sbitmap_copy (reach_to, to);
939 sbitmap_copy (tmp, to);
940
941 change = 1;
942 while (change)
943 {
944 change = 0;
945 sbitmap_copy (workset, tmp);
946 sbitmap_zero (tmp);
947 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
948 {
949 ddg_edge_ptr e;
950 ddg_node_ptr u_node = &g->nodes[u];
951
952 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
953 {
954 ddg_node_ptr v_node = e->src;
955 int v = v_node->cuid;
956
957 if (!TEST_BIT (reach_to, v))
958 {
959 SET_BIT (reach_to, v);
960 SET_BIT (tmp, v);
961 change = 1;
962 }
963 }
964 });
965 }
966
967 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
968 sbitmap_free (workset);
969 sbitmap_free (reachable_from);
970 sbitmap_free (reach_to);
971 sbitmap_free (tmp);
972 return answer;
973 }
974
975
976 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
977 at-least as large as the count of U_NODE plus the latency between them.
978 Sets a bit in TMP for each successor whose count was changed (increased).
979 Returns nonzero if any count was changed. */
980 static int
981 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
982 {
983 ddg_edge_ptr e;
984 int result = 0;
985
986 for (e = u_node->out; e; e = e->next_out)
987 {
988 ddg_node_ptr v_node = e->dest;
989 int v = v_node->cuid;
990
991 if (TEST_BIT (nodes, v)
992 && (e->distance == 0)
993 && (v_node->aux.count < u_node->aux.count + e->latency))
994 {
995 v_node->aux.count = u_node->aux.count + e->latency;
996 SET_BIT (tmp, v);
997 result = 1;
998 }
999 }
1000 return result;
1001 }
1002
1003
1004 /* Find the length of a longest path from SRC to DEST in G,
1005 going only through NODES, and disregarding backarcs. */
1006 int
1007 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1008 {
1009 int i, u;
1010 int change = 1;
1011 int result;
1012 int num_nodes = g->num_nodes;
1013 sbitmap workset = sbitmap_alloc (num_nodes);
1014 sbitmap tmp = sbitmap_alloc (num_nodes);
1015
1016
1017 /* Data will hold the distance of the longest path found so far from
1018 src to each node. Initialize to -1 = less than minimum. */
1019 for (i = 0; i < g->num_nodes; i++)
1020 g->nodes[i].aux.count = -1;
1021 g->nodes[src].aux.count = 0;
1022
1023 sbitmap_zero (tmp);
1024 SET_BIT (tmp, src);
1025
1026 while (change)
1027 {
1028 change = 0;
1029 sbitmap_copy (workset, tmp);
1030 sbitmap_zero (tmp);
1031 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
1032 {
1033 ddg_node_ptr u_node = &g->nodes[u];
1034
1035 change |= update_dist_to_successors (u_node, nodes, tmp);
1036 });
1037 }
1038 result = g->nodes[dest].aux.count;
1039 sbitmap_free (workset);
1040 sbitmap_free (tmp);
1041 return result;
1042 }