df.h (df_rd_bb_info, [...]): Embedd bitmap_head into the structure.
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "sbitmap.h"
43 #include "expr.h"
44 #include "bitmap.h"
45 #include "ddg.h"
46
47 #ifdef INSN_SCHEDULING
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
57 ddg_node_ptr, dep_t);
58 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
59 dep_type, dep_data_type, int);
60 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
61 dep_data_type, int, int);
62 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
63 \f
64 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
65 static bool mem_ref_p;
66
67 /* Auxiliary function for mem_read_insn_p. */
68 static int
69 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
70 {
71 if (MEM_P (*x))
72 mem_ref_p = true;
73 return 0;
74 }
75
76 /* Auxiliary function for mem_read_insn_p. */
77 static void
78 mark_mem_use_1 (rtx *x, void *data)
79 {
80 for_each_rtx (x, mark_mem_use, data);
81 }
82
83 /* Returns nonzero if INSN reads from memory. */
84 static bool
85 mem_read_insn_p (rtx insn)
86 {
87 mem_ref_p = false;
88 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
89 return mem_ref_p;
90 }
91
92 static void
93 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94 {
95 if (MEM_P (loc))
96 mem_ref_p = true;
97 }
98
99 /* Returns nonzero if INSN writes to memory. */
100 static bool
101 mem_write_insn_p (rtx insn)
102 {
103 mem_ref_p = false;
104 note_stores (PATTERN (insn), mark_mem_store, NULL);
105 return mem_ref_p;
106 }
107
108 /* Returns nonzero if X has access to memory. */
109 static bool
110 rtx_mem_access_p (rtx x)
111 {
112 int i, j;
113 const char *fmt;
114 enum rtx_code code;
115
116 if (x == 0)
117 return false;
118
119 if (MEM_P (x))
120 return true;
121
122 code = GET_CODE (x);
123 fmt = GET_RTX_FORMAT (code);
124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
125 {
126 if (fmt[i] == 'e')
127 {
128 if (rtx_mem_access_p (XEXP (x, i)))
129 return true;
130 }
131 else if (fmt[i] == 'E')
132 for (j = 0; j < XVECLEN (x, i); j++)
133 {
134 if (rtx_mem_access_p (XVECEXP (x, i, j)))
135 return true;
136 }
137 }
138 return false;
139 }
140
141 /* Returns nonzero if INSN reads to or writes from memory. */
142 static bool
143 mem_access_insn_p (rtx insn)
144 {
145 return rtx_mem_access_p (PATTERN (insn));
146 }
147
148 /* Computes the dependence parameters (latency, distance etc.), creates
149 a ddg_edge and adds it to the given DDG. */
150 static void
151 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
152 ddg_node_ptr dest_node, dep_t link)
153 {
154 ddg_edge_ptr e;
155 int latency, distance = 0;
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160 gcc_assert (src_node->cuid < dest_node->cuid);
161 gcc_assert (link);
162
163 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
164 if (DEP_TYPE (link) == REG_DEP_ANTI)
165 t = ANTI_DEP;
166 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
167 t = OUTPUT_DEP;
168
169 gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
170 gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
171
172 /* We currently choose not to create certain anti-deps edges and
173 compensate for that by generating reg-moves based on the life-range
174 analysis. The anti-deps that will be deleted are the ones which
175 have true-deps edges in the opposite direction (in other words
176 the kernel has only one def of the relevant register). TODO:
177 support the removal of all anti-deps edges, i.e. including those
178 whose register has multiple defs in the loop. */
179 if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
180 {
181 rtx set;
182
183 set = single_set (dest_node->insn);
184 /* TODO: Handle registers that REG_P is not true for them, i.e.
185 subregs and special registers. */
186 if (set && REG_P (SET_DEST (set)))
187 {
188 int regno = REGNO (SET_DEST (set));
189 df_ref first_def;
190 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
191
192 first_def = df_bb_regno_first_def_find (g->bb, regno);
193 gcc_assert (first_def);
194
195 if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
196 return;
197 }
198 }
199
200 latency = dep_cost (link);
201 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
202 add_edge_to_ddg (g, e);
203 }
204
205 /* The same as the above function, but it doesn't require a link parameter. */
206 static void
207 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
208 dep_type d_t, dep_data_type d_dt, int distance)
209 {
210 ddg_edge_ptr e;
211 int l;
212 enum reg_note dep_kind;
213 struct _dep _dep, *dep = &_dep;
214
215 gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
216 gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
217
218 if (d_t == ANTI_DEP)
219 dep_kind = REG_DEP_ANTI;
220 else if (d_t == OUTPUT_DEP)
221 dep_kind = REG_DEP_OUTPUT;
222 else
223 {
224 gcc_assert (d_t == TRUE_DEP);
225
226 dep_kind = REG_DEP_TRUE;
227 }
228
229 init_dep (dep, from->insn, to->insn, dep_kind);
230
231 l = dep_cost (dep);
232
233 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
234 if (distance > 0)
235 add_backarc_to_ddg (g, e);
236 else
237 add_edge_to_ddg (g, e);
238 }
239
240
241 /* Given a downwards exposed register def LAST_DEF (which is the last
242 definition of that register in the bb), add inter-loop true dependences
243 to all its uses in the next iteration, an output dependence to the
244 first def of the same register (possibly itself) in the next iteration
245 and anti-dependences from its uses in the current iteration to the
246 first definition in the next iteration. */
247 static void
248 add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
249 {
250 int regno = DF_REF_REGNO (last_def);
251 struct df_link *r_use;
252 int has_use_in_bb_p = false;
253 rtx def_insn = DF_REF_INSN (last_def);
254 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
255 ddg_node_ptr use_node;
256 #ifdef ENABLE_CHECKING
257 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
258 #endif
259 df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
260
261 gcc_assert (last_def_node);
262 gcc_assert (first_def);
263
264 #ifdef ENABLE_CHECKING
265 if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
266 gcc_assert (!bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)));
267 #endif
268
269 /* Create inter-loop true dependences and anti dependences. */
270 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
271 {
272 rtx use_insn = DF_REF_INSN (r_use->ref);
273
274 if (BLOCK_FOR_INSN (use_insn) != g->bb)
275 continue;
276
277 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
278 use_node = get_node_of_insn (g, use_insn);
279 gcc_assert (use_node);
280 has_use_in_bb_p = true;
281 if (use_node->cuid <= last_def_node->cuid)
282 {
283 /* Add true deps from last_def to it's uses in the next
284 iteration. Any such upwards exposed use appears before
285 the last_def def. */
286 create_ddg_dep_no_link (g, last_def_node, use_node,
287 DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
288 REG_DEP, 1);
289 }
290 else if (!DEBUG_INSN_P (use_insn))
291 {
292 /* Add anti deps from last_def's uses in the current iteration
293 to the first def in the next iteration. We do not add ANTI
294 dep when there is an intra-loop TRUE dep in the opposite
295 direction, but use regmoves to fix such disregarded ANTI
296 deps when broken. If the first_def reaches the USE then
297 there is such a dep. */
298 ddg_node_ptr first_def_node = get_node_of_insn (g,
299 DF_REF_INSN (first_def));
300
301 gcc_assert (first_def_node);
302
303 if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
304 || !flag_modulo_sched_allow_regmoves)
305 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
306 REG_DEP, 1);
307
308 }
309 }
310 /* Create an inter-loop output dependence between LAST_DEF (which is the
311 last def in its block, being downwards exposed) and the first def in
312 its block. Avoid creating a self output dependence. Avoid creating
313 an output dependence if there is a dependence path between the two
314 defs starting with a true dependence to a use which can be in the
315 next iteration; followed by an anti dependence of that use to the
316 first def (i.e. if there is a use between the two defs.) */
317 if (!has_use_in_bb_p)
318 {
319 ddg_node_ptr dest_node;
320
321 if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
322 return;
323
324 dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
325 gcc_assert (dest_node);
326 create_ddg_dep_no_link (g, last_def_node, dest_node,
327 OUTPUT_DEP, REG_DEP, 1);
328 }
329 }
330 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
331 static void
332 build_inter_loop_deps (ddg_ptr g)
333 {
334 unsigned rd_num;
335 struct df_rd_bb_info *rd_bb_info;
336 bitmap_iterator bi;
337
338 rd_bb_info = DF_RD_BB_INFO (g->bb);
339
340 /* Find inter-loop register output, true and anti deps. */
341 EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
342 {
343 df_ref rd = DF_DEFS_GET (rd_num);
344
345 add_cross_iteration_register_deps (g, rd);
346 }
347 }
348
349
350 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
351 to ddg G. */
352 static void
353 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
354 {
355 if (!insn_alias_sets_conflict_p (from->insn, to->insn))
356 /* Do not create edge if memory references have disjoint alias sets. */
357 return;
358
359 if (mem_write_insn_p (from->insn))
360 {
361 if (mem_read_insn_p (to->insn))
362 create_ddg_dep_no_link (g, from, to,
363 DEBUG_INSN_P (to->insn)
364 ? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
365 else if (from->cuid != to->cuid)
366 create_ddg_dep_no_link (g, from, to,
367 DEBUG_INSN_P (to->insn)
368 ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
369 }
370 else
371 {
372 if (mem_read_insn_p (to->insn))
373 return;
374 else if (from->cuid != to->cuid)
375 {
376 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
377 if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
378 create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
379 else
380 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
381 }
382 }
383
384 }
385
386 /* Perform intra-block Data Dependency analysis and connect the nodes in
387 the DDG. We assume the loop has a single basic block. */
388 static void
389 build_intra_loop_deps (ddg_ptr g)
390 {
391 int i;
392 /* Hold the dependency analysis state during dependency calculations. */
393 struct deps_desc tmp_deps;
394 rtx head, tail;
395
396 /* Build the dependence information, using the sched_analyze function. */
397 init_deps_global ();
398 init_deps (&tmp_deps, false);
399
400 /* Do the intra-block data dependence analysis for the given block. */
401 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
402 sched_analyze (&tmp_deps, head, tail);
403
404 /* Build intra-loop data dependencies using the scheduler dependency
405 analysis. */
406 for (i = 0; i < g->num_nodes; i++)
407 {
408 ddg_node_ptr dest_node = &g->nodes[i];
409 sd_iterator_def sd_it;
410 dep_t dep;
411
412 if (! INSN_P (dest_node->insn))
413 continue;
414
415 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
416 {
417 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
418
419 if (!src_node)
420 continue;
421
422 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
423 }
424
425 /* If this insn modifies memory, add an edge to all insns that access
426 memory. */
427 if (mem_access_insn_p (dest_node->insn))
428 {
429 int j;
430
431 for (j = 0; j <= i; j++)
432 {
433 ddg_node_ptr j_node = &g->nodes[j];
434 if (DEBUG_INSN_P (j_node->insn))
435 continue;
436 if (mem_access_insn_p (j_node->insn))
437 /* Don't bother calculating inter-loop dep if an intra-loop dep
438 already exists. */
439 if (! TEST_BIT (dest_node->successors, j))
440 add_inter_loop_mem_dep (g, dest_node, j_node);
441 }
442 }
443 }
444
445 /* Free the INSN_LISTs. */
446 finish_deps_global ();
447 free_deps (&tmp_deps);
448
449 /* Free dependencies. */
450 sched_free_deps (head, tail, false);
451 }
452
453
454 /* Given a basic block, create its DDG and return a pointer to a variable
455 of ddg type that represents it.
456 Initialize the ddg structure fields to the appropriate values. */
457 ddg_ptr
458 create_ddg (basic_block bb, int closing_branch_deps)
459 {
460 ddg_ptr g;
461 rtx insn, first_note;
462 int i;
463 int num_nodes = 0;
464
465 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
466
467 g->bb = bb;
468 g->closing_branch_deps = closing_branch_deps;
469
470 /* Count the number of insns in the BB. */
471 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
472 insn = NEXT_INSN (insn))
473 {
474 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
475 continue;
476
477 if (DEBUG_INSN_P (insn))
478 g->num_debug++;
479 else
480 {
481 if (mem_read_insn_p (insn))
482 g->num_loads++;
483 if (mem_write_insn_p (insn))
484 g->num_stores++;
485 }
486 num_nodes++;
487 }
488
489 /* There is nothing to do for this BB. */
490 if (num_nodes <= 1)
491 {
492 free (g);
493 return NULL;
494 }
495
496 /* Allocate the nodes array, and initialize the nodes. */
497 g->num_nodes = num_nodes;
498 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
499 g->closing_branch = NULL;
500 i = 0;
501 first_note = NULL_RTX;
502 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
503 insn = NEXT_INSN (insn))
504 {
505 if (! INSN_P (insn))
506 {
507 if (! first_note && NOTE_P (insn)
508 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
509 first_note = insn;
510 continue;
511 }
512 if (JUMP_P (insn))
513 {
514 gcc_assert (!g->closing_branch);
515 g->closing_branch = &g->nodes[i];
516 }
517 else if (GET_CODE (PATTERN (insn)) == USE)
518 {
519 if (! first_note)
520 first_note = insn;
521 continue;
522 }
523
524 g->nodes[i].cuid = i;
525 g->nodes[i].successors = sbitmap_alloc (num_nodes);
526 sbitmap_zero (g->nodes[i].successors);
527 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
528 sbitmap_zero (g->nodes[i].predecessors);
529 g->nodes[i].first_note = (first_note ? first_note : insn);
530 g->nodes[i++].insn = insn;
531 first_note = NULL_RTX;
532 }
533
534 /* We must have found a branch in DDG. */
535 gcc_assert (g->closing_branch);
536
537
538 /* Build the data dependency graph. */
539 build_intra_loop_deps (g);
540 build_inter_loop_deps (g);
541 return g;
542 }
543
544 /* Free all the memory allocated for the DDG. */
545 void
546 free_ddg (ddg_ptr g)
547 {
548 int i;
549
550 if (!g)
551 return;
552
553 for (i = 0; i < g->num_nodes; i++)
554 {
555 ddg_edge_ptr e = g->nodes[i].out;
556
557 while (e)
558 {
559 ddg_edge_ptr next = e->next_out;
560
561 free (e);
562 e = next;
563 }
564 sbitmap_free (g->nodes[i].successors);
565 sbitmap_free (g->nodes[i].predecessors);
566 }
567 if (g->num_backarcs > 0)
568 free (g->backarcs);
569 free (g->nodes);
570 free (g);
571 }
572
573 void
574 print_ddg_edge (FILE *file, ddg_edge_ptr e)
575 {
576 char dep_c;
577
578 switch (e->type)
579 {
580 case OUTPUT_DEP :
581 dep_c = 'O';
582 break;
583 case ANTI_DEP :
584 dep_c = 'A';
585 break;
586 default:
587 dep_c = 'T';
588 }
589
590 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
591 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
592 }
593
594 /* Print the DDG nodes with there in/out edges to the dump file. */
595 void
596 print_ddg (FILE *file, ddg_ptr g)
597 {
598 int i;
599
600 for (i = 0; i < g->num_nodes; i++)
601 {
602 ddg_edge_ptr e;
603
604 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
605 print_rtl_single (file, g->nodes[i].insn);
606 fprintf (file, "OUT ARCS: ");
607 for (e = g->nodes[i].out; e; e = e->next_out)
608 print_ddg_edge (file, e);
609
610 fprintf (file, "\nIN ARCS: ");
611 for (e = g->nodes[i].in; e; e = e->next_in)
612 print_ddg_edge (file, e);
613
614 fprintf (file, "\n");
615 }
616 }
617
618 /* Print the given DDG in VCG format. */
619 void
620 vcg_print_ddg (FILE *file, ddg_ptr g)
621 {
622 int src_cuid;
623
624 fprintf (file, "graph: {\n");
625 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
626 {
627 ddg_edge_ptr e;
628 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
629
630 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
631 print_rtl_single (file, g->nodes[src_cuid].insn);
632 fprintf (file, "\"}\n");
633 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
634 {
635 int dst_uid = INSN_UID (e->dest->insn);
636 int dst_cuid = e->dest->cuid;
637
638 /* Give the backarcs a different color. */
639 if (e->distance > 0)
640 fprintf (file, "backedge: {color: red ");
641 else
642 fprintf (file, "edge: { ");
643
644 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
645 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
646 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
647 }
648 }
649 fprintf (file, "}\n");
650 }
651
652 /* Dump the sccs in SCCS. */
653 void
654 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
655 {
656 unsigned int u = 0;
657 sbitmap_iterator sbi;
658 int i;
659
660 if (!file)
661 return;
662
663 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
664 for (i = 0; i < sccs->num_sccs; i++)
665 {
666 fprintf (file, "SCC number: %d\n", i);
667 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
668 {
669 fprintf (file, "insn num %d\n", u);
670 print_rtl_single (file, g->nodes[u].insn);
671 }
672 }
673 fprintf (file, "\n");
674 }
675
676 /* Create an edge and initialize it with given values. */
677 static ddg_edge_ptr
678 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
679 dep_type t, dep_data_type dt, int l, int d)
680 {
681 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
682
683 e->src = src;
684 e->dest = dest;
685 e->type = t;
686 e->data_type = dt;
687 e->latency = l;
688 e->distance = d;
689 e->next_in = e->next_out = NULL;
690 e->aux.info = 0;
691 return e;
692 }
693
694 /* Add the given edge to the in/out linked lists of the DDG nodes. */
695 static void
696 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
697 {
698 ddg_node_ptr src = e->src;
699 ddg_node_ptr dest = e->dest;
700
701 /* Should have allocated the sbitmaps. */
702 gcc_assert (src->successors && dest->predecessors);
703
704 SET_BIT (src->successors, dest->cuid);
705 SET_BIT (dest->predecessors, src->cuid);
706 e->next_in = dest->in;
707 dest->in = e;
708 e->next_out = src->out;
709 src->out = e;
710 }
711
712
713 \f
714 /* Algorithm for computing the recurrence_length of an scc. We assume at
715 for now that cycles in the data dependence graph contain a single backarc.
716 This simplifies the algorithm, and can be generalized later. */
717 static void
718 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
719 {
720 int j;
721 int result = -1;
722
723 for (j = 0; j < scc->num_backarcs; j++)
724 {
725 ddg_edge_ptr backarc = scc->backarcs[j];
726 int length;
727 int distance = backarc->distance;
728 ddg_node_ptr src = backarc->dest;
729 ddg_node_ptr dest = backarc->src;
730
731 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
732 if (length < 0 )
733 {
734 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
735 continue;
736 }
737 length += backarc->latency;
738 result = MAX (result, (length / distance));
739 }
740 scc->recurrence_length = result;
741 }
742
743 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
744 and mark edges that belong to this scc as IN_SCC. */
745 static ddg_scc_ptr
746 create_scc (ddg_ptr g, sbitmap nodes)
747 {
748 ddg_scc_ptr scc;
749 unsigned int u = 0;
750 sbitmap_iterator sbi;
751
752 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
753 scc->backarcs = NULL;
754 scc->num_backarcs = 0;
755 scc->nodes = sbitmap_alloc (g->num_nodes);
756 sbitmap_copy (scc->nodes, nodes);
757
758 /* Mark the backarcs that belong to this SCC. */
759 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
760 {
761 ddg_edge_ptr e;
762 ddg_node_ptr n = &g->nodes[u];
763
764 for (e = n->out; e; e = e->next_out)
765 if (TEST_BIT (nodes, e->dest->cuid))
766 {
767 e->aux.count = IN_SCC;
768 if (e->distance > 0)
769 add_backarc_to_scc (scc, e);
770 }
771 }
772
773 set_recurrence_length (scc, g);
774 return scc;
775 }
776
777 /* Cleans the memory allocation of a given SCC. */
778 static void
779 free_scc (ddg_scc_ptr scc)
780 {
781 if (!scc)
782 return;
783
784 sbitmap_free (scc->nodes);
785 if (scc->num_backarcs > 0)
786 free (scc->backarcs);
787 free (scc);
788 }
789
790
791 /* Add a given edge known to be a backarc to the given DDG. */
792 static void
793 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
794 {
795 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
796
797 add_edge_to_ddg (g, e);
798 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
799 g->backarcs[g->num_backarcs++] = e;
800 }
801
802 /* Add backarc to an SCC. */
803 static void
804 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
805 {
806 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
807
808 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
809 scc->backarcs[scc->num_backarcs++] = e;
810 }
811
812 /* Add the given SCC to the DDG. */
813 static void
814 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
815 {
816 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
817
818 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
819 g->sccs[g->num_sccs++] = scc;
820 }
821
822 /* Given the instruction INSN return the node that represents it. */
823 ddg_node_ptr
824 get_node_of_insn (ddg_ptr g, rtx insn)
825 {
826 int i;
827
828 for (i = 0; i < g->num_nodes; i++)
829 if (insn == g->nodes[i].insn)
830 return &g->nodes[i];
831 return NULL;
832 }
833
834 /* Given a set OPS of nodes in the DDG, find the set of their successors
835 which are not in OPS, and set their bits in SUCC. Bits corresponding to
836 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
837 void
838 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
839 {
840 unsigned int i = 0;
841 sbitmap_iterator sbi;
842
843 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
844 {
845 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
846 sbitmap_a_or_b (succ, succ, node_succ);
847 };
848
849 /* We want those that are not in ops. */
850 sbitmap_difference (succ, succ, ops);
851 }
852
853 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
854 which are not in OPS, and set their bits in PREDS. Bits corresponding to
855 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
856 void
857 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
858 {
859 unsigned int i = 0;
860 sbitmap_iterator sbi;
861
862 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
863 {
864 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
865 sbitmap_a_or_b (preds, preds, node_preds);
866 };
867
868 /* We want those that are not in ops. */
869 sbitmap_difference (preds, preds, ops);
870 }
871
872
873 /* Compare function to be passed to qsort to order the backarcs in descending
874 recMII order. */
875 static int
876 compare_sccs (const void *s1, const void *s2)
877 {
878 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
879 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
880 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
881
882 }
883
884 /* Order the backarcs in descending recMII order using compare_sccs. */
885 static void
886 order_sccs (ddg_all_sccs_ptr g)
887 {
888 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
889 (int (*) (const void *, const void *)) compare_sccs);
890 }
891
892 #ifdef ENABLE_CHECKING
893 /* Check that every node in SCCS belongs to exactly one strongly connected
894 component and that no element of SCCS is empty. */
895 static void
896 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
897 {
898 int i = 0;
899 sbitmap tmp = sbitmap_alloc (num_nodes);
900
901 sbitmap_zero (tmp);
902 for (i = 0; i < sccs->num_sccs; i++)
903 {
904 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
905 /* Verify that every node in sccs is in exactly one strongly
906 connected component. */
907 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
908 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
909 }
910 sbitmap_free (tmp);
911 }
912 #endif
913
914 /* Perform the Strongly Connected Components decomposing algorithm on the
915 DDG and return DDG_ALL_SCCS structure that contains them. */
916 ddg_all_sccs_ptr
917 create_ddg_all_sccs (ddg_ptr g)
918 {
919 int i;
920 int num_nodes = g->num_nodes;
921 sbitmap from = sbitmap_alloc (num_nodes);
922 sbitmap to = sbitmap_alloc (num_nodes);
923 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
924 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
925 xmalloc (sizeof (struct ddg_all_sccs));
926
927 sccs->ddg = g;
928 sccs->sccs = NULL;
929 sccs->num_sccs = 0;
930
931 for (i = 0; i < g->num_backarcs; i++)
932 {
933 ddg_scc_ptr scc;
934 ddg_edge_ptr backarc = g->backarcs[i];
935 ddg_node_ptr src = backarc->src;
936 ddg_node_ptr dest = backarc->dest;
937
938 /* If the backarc already belongs to an SCC, continue. */
939 if (backarc->aux.count == IN_SCC)
940 continue;
941
942 sbitmap_zero (scc_nodes);
943 sbitmap_zero (from);
944 sbitmap_zero (to);
945 SET_BIT (from, dest->cuid);
946 SET_BIT (to, src->cuid);
947
948 if (find_nodes_on_paths (scc_nodes, g, from, to))
949 {
950 scc = create_scc (g, scc_nodes);
951 add_scc_to_ddg (sccs, scc);
952 }
953 }
954 order_sccs (sccs);
955 sbitmap_free (from);
956 sbitmap_free (to);
957 sbitmap_free (scc_nodes);
958 #ifdef ENABLE_CHECKING
959 check_sccs (sccs, num_nodes);
960 #endif
961 return sccs;
962 }
963
964 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
965 void
966 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
967 {
968 int i;
969
970 if (!all_sccs)
971 return;
972
973 for (i = 0; i < all_sccs->num_sccs; i++)
974 free_scc (all_sccs->sccs[i]);
975
976 free (all_sccs);
977 }
978
979 \f
980 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
981 nodes - find all nodes that lie on paths from FROM to TO (not excluding
982 nodes from FROM and TO). Return nonzero if nodes exist. */
983 int
984 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
985 {
986 int answer;
987 int change;
988 unsigned int u = 0;
989 int num_nodes = g->num_nodes;
990 sbitmap_iterator sbi;
991
992 sbitmap workset = sbitmap_alloc (num_nodes);
993 sbitmap reachable_from = sbitmap_alloc (num_nodes);
994 sbitmap reach_to = sbitmap_alloc (num_nodes);
995 sbitmap tmp = sbitmap_alloc (num_nodes);
996
997 sbitmap_copy (reachable_from, from);
998 sbitmap_copy (tmp, from);
999
1000 change = 1;
1001 while (change)
1002 {
1003 change = 0;
1004 sbitmap_copy (workset, tmp);
1005 sbitmap_zero (tmp);
1006 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1007 {
1008 ddg_edge_ptr e;
1009 ddg_node_ptr u_node = &g->nodes[u];
1010
1011 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
1012 {
1013 ddg_node_ptr v_node = e->dest;
1014 int v = v_node->cuid;
1015
1016 if (!TEST_BIT (reachable_from, v))
1017 {
1018 SET_BIT (reachable_from, v);
1019 SET_BIT (tmp, v);
1020 change = 1;
1021 }
1022 }
1023 }
1024 }
1025
1026 sbitmap_copy (reach_to, to);
1027 sbitmap_copy (tmp, to);
1028
1029 change = 1;
1030 while (change)
1031 {
1032 change = 0;
1033 sbitmap_copy (workset, tmp);
1034 sbitmap_zero (tmp);
1035 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1036 {
1037 ddg_edge_ptr e;
1038 ddg_node_ptr u_node = &g->nodes[u];
1039
1040 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1041 {
1042 ddg_node_ptr v_node = e->src;
1043 int v = v_node->cuid;
1044
1045 if (!TEST_BIT (reach_to, v))
1046 {
1047 SET_BIT (reach_to, v);
1048 SET_BIT (tmp, v);
1049 change = 1;
1050 }
1051 }
1052 }
1053 }
1054
1055 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1056 sbitmap_free (workset);
1057 sbitmap_free (reachable_from);
1058 sbitmap_free (reach_to);
1059 sbitmap_free (tmp);
1060 return answer;
1061 }
1062
1063
1064 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1065 at-least as large as the count of U_NODE plus the latency between them.
1066 Sets a bit in TMP for each successor whose count was changed (increased).
1067 Returns nonzero if any count was changed. */
1068 static int
1069 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1070 {
1071 ddg_edge_ptr e;
1072 int result = 0;
1073
1074 for (e = u_node->out; e; e = e->next_out)
1075 {
1076 ddg_node_ptr v_node = e->dest;
1077 int v = v_node->cuid;
1078
1079 if (TEST_BIT (nodes, v)
1080 && (e->distance == 0)
1081 && (v_node->aux.count < u_node->aux.count + e->latency))
1082 {
1083 v_node->aux.count = u_node->aux.count + e->latency;
1084 SET_BIT (tmp, v);
1085 result = 1;
1086 }
1087 }
1088 return result;
1089 }
1090
1091
1092 /* Find the length of a longest path from SRC to DEST in G,
1093 going only through NODES, and disregarding backarcs. */
1094 int
1095 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1096 {
1097 int i;
1098 unsigned int u = 0;
1099 int change = 1;
1100 int result;
1101 int num_nodes = g->num_nodes;
1102 sbitmap workset = sbitmap_alloc (num_nodes);
1103 sbitmap tmp = sbitmap_alloc (num_nodes);
1104
1105
1106 /* Data will hold the distance of the longest path found so far from
1107 src to each node. Initialize to -1 = less than minimum. */
1108 for (i = 0; i < g->num_nodes; i++)
1109 g->nodes[i].aux.count = -1;
1110 g->nodes[src].aux.count = 0;
1111
1112 sbitmap_zero (tmp);
1113 SET_BIT (tmp, src);
1114
1115 while (change)
1116 {
1117 sbitmap_iterator sbi;
1118
1119 change = 0;
1120 sbitmap_copy (workset, tmp);
1121 sbitmap_zero (tmp);
1122 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1123 {
1124 ddg_node_ptr u_node = &g->nodes[u];
1125
1126 change |= update_dist_to_successors (u_node, nodes, tmp);
1127 }
1128 }
1129 result = g->nodes[dest].aux.count;
1130 sbitmap_free (workset);
1131 sbitmap_free (tmp);
1132 return result;
1133 }
1134
1135 #endif /* INSN_SCHEDULING */