Remove trailing white spaces.
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "sbitmap.h"
43 #include "expr.h"
44 #include "bitmap.h"
45 #include "ddg.h"
46
47 #ifdef INSN_SCHEDULING
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
57 ddg_node_ptr, dep_t);
58 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
59 dep_type, dep_data_type, int);
60 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
61 dep_data_type, int, int);
62 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
63 \f
64 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
65 static bool mem_ref_p;
66
67 /* Auxiliary function for mem_read_insn_p. */
68 static int
69 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
70 {
71 if (MEM_P (*x))
72 mem_ref_p = true;
73 return 0;
74 }
75
76 /* Auxiliary function for mem_read_insn_p. */
77 static void
78 mark_mem_use_1 (rtx *x, void *data)
79 {
80 for_each_rtx (x, mark_mem_use, data);
81 }
82
83 /* Returns nonzero if INSN reads from memory. */
84 static bool
85 mem_read_insn_p (rtx insn)
86 {
87 mem_ref_p = false;
88 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
89 return mem_ref_p;
90 }
91
92 static void
93 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94 {
95 if (MEM_P (loc))
96 mem_ref_p = true;
97 }
98
99 /* Returns nonzero if INSN writes to memory. */
100 static bool
101 mem_write_insn_p (rtx insn)
102 {
103 mem_ref_p = false;
104 note_stores (PATTERN (insn), mark_mem_store, NULL);
105 return mem_ref_p;
106 }
107
108 /* Returns nonzero if X has access to memory. */
109 static bool
110 rtx_mem_access_p (rtx x)
111 {
112 int i, j;
113 const char *fmt;
114 enum rtx_code code;
115
116 if (x == 0)
117 return false;
118
119 if (MEM_P (x))
120 return true;
121
122 code = GET_CODE (x);
123 fmt = GET_RTX_FORMAT (code);
124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
125 {
126 if (fmt[i] == 'e')
127 {
128 if (rtx_mem_access_p (XEXP (x, i)))
129 return true;
130 }
131 else if (fmt[i] == 'E')
132 for (j = 0; j < XVECLEN (x, i); j++)
133 {
134 if (rtx_mem_access_p (XVECEXP (x, i, j)))
135 return true;
136 }
137 }
138 return false;
139 }
140
141 /* Returns nonzero if INSN reads to or writes from memory. */
142 static bool
143 mem_access_insn_p (rtx insn)
144 {
145 return rtx_mem_access_p (PATTERN (insn));
146 }
147
148 /* Computes the dependence parameters (latency, distance etc.), creates
149 a ddg_edge and adds it to the given DDG. */
150 static void
151 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
152 ddg_node_ptr dest_node, dep_t link)
153 {
154 ddg_edge_ptr e;
155 int latency, distance = 0;
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160 gcc_assert (src_node->cuid < dest_node->cuid);
161 gcc_assert (link);
162
163 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
164 if (DEP_TYPE (link) == REG_DEP_ANTI)
165 t = ANTI_DEP;
166 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
167 t = OUTPUT_DEP;
168
169 gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
170 gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
171
172 /* We currently choose not to create certain anti-deps edges and
173 compensate for that by generating reg-moves based on the life-range
174 analysis. The anti-deps that will be deleted are the ones which
175 have true-deps edges in the opposite direction (in other words
176 the kernel has only one def of the relevant register). TODO:
177 support the removal of all anti-deps edges, i.e. including those
178 whose register has multiple defs in the loop. */
179 if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
180 {
181 rtx set;
182
183 set = single_set (dest_node->insn);
184 /* TODO: Handle registers that REG_P is not true for them, i.e.
185 subregs and special registers. */
186 if (set && REG_P (SET_DEST (set)))
187 {
188 int regno = REGNO (SET_DEST (set));
189 df_ref first_def;
190 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
191
192 first_def = df_bb_regno_first_def_find (g->bb, regno);
193 gcc_assert (first_def);
194
195 if (bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def)))
196 return;
197 }
198 }
199
200 latency = dep_cost (link);
201 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
202 add_edge_to_ddg (g, e);
203 }
204
205 /* The same as the above function, but it doesn't require a link parameter. */
206 static void
207 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
208 dep_type d_t, dep_data_type d_dt, int distance)
209 {
210 ddg_edge_ptr e;
211 int l;
212 enum reg_note dep_kind;
213 struct _dep _dep, *dep = &_dep;
214
215 gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
216 gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
217
218 if (d_t == ANTI_DEP)
219 dep_kind = REG_DEP_ANTI;
220 else if (d_t == OUTPUT_DEP)
221 dep_kind = REG_DEP_OUTPUT;
222 else
223 {
224 gcc_assert (d_t == TRUE_DEP);
225
226 dep_kind = REG_DEP_TRUE;
227 }
228
229 init_dep (dep, from->insn, to->insn, dep_kind);
230
231 l = dep_cost (dep);
232
233 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
234 if (distance > 0)
235 add_backarc_to_ddg (g, e);
236 else
237 add_edge_to_ddg (g, e);
238 }
239
240
241 /* Given a downwards exposed register def LAST_DEF (which is the last
242 definition of that register in the bb), add inter-loop true dependences
243 to all its uses in the next iteration, an output dependence to the
244 first def of the same register (possibly itself) in the next iteration
245 and anti-dependences from its uses in the current iteration to the
246 first definition in the next iteration. */
247 static void
248 add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
249 {
250 int regno = DF_REF_REGNO (last_def);
251 struct df_link *r_use;
252 int has_use_in_bb_p = false;
253 rtx def_insn = DF_REF_INSN (last_def);
254 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
255 ddg_node_ptr use_node;
256 #ifdef ENABLE_CHECKING
257 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
258 #endif
259 df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
260
261 gcc_assert (last_def_node);
262 gcc_assert (first_def);
263
264 #ifdef ENABLE_CHECKING
265 if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
266 gcc_assert (!bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def)));
267 #endif
268
269 /* Create inter-loop true dependences and anti dependences. */
270 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
271 {
272 rtx use_insn = DF_REF_INSN (r_use->ref);
273
274 if (BLOCK_FOR_INSN (use_insn) != g->bb)
275 continue;
276
277 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
278 use_node = get_node_of_insn (g, use_insn);
279 gcc_assert (use_node);
280 has_use_in_bb_p = true;
281 if (use_node->cuid <= last_def_node->cuid)
282 {
283 /* Add true deps from last_def to it's uses in the next
284 iteration. Any such upwards exposed use appears before
285 the last_def def. */
286 create_ddg_dep_no_link (g, last_def_node, use_node,
287 DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
288 REG_DEP, 1);
289 }
290 else if (!DEBUG_INSN_P (use_insn))
291 {
292 /* Add anti deps from last_def's uses in the current iteration
293 to the first def in the next iteration. We do not add ANTI
294 dep when there is an intra-loop TRUE dep in the opposite
295 direction, but use regmoves to fix such disregarded ANTI
296 deps when broken. If the first_def reaches the USE then
297 there is such a dep. */
298 ddg_node_ptr first_def_node = get_node_of_insn (g,
299 DF_REF_INSN (first_def));
300
301 gcc_assert (first_def_node);
302
303 if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
304 || !flag_modulo_sched_allow_regmoves)
305 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
306 REG_DEP, 1);
307
308 }
309 }
310 /* Create an inter-loop output dependence between LAST_DEF (which is the
311 last def in its block, being downwards exposed) and the first def in
312 its block. Avoid creating a self output dependence. Avoid creating
313 an output dependence if there is a dependence path between the two
314 defs starting with a true dependence to a use which can be in the
315 next iteration; followed by an anti dependence of that use to the
316 first def (i.e. if there is a use between the two defs.) */
317 if (!has_use_in_bb_p)
318 {
319 ddg_node_ptr dest_node;
320
321 if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
322 return;
323
324 dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
325 gcc_assert (dest_node);
326 create_ddg_dep_no_link (g, last_def_node, dest_node,
327 OUTPUT_DEP, REG_DEP, 1);
328 }
329 }
330 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
331 static void
332 build_inter_loop_deps (ddg_ptr g)
333 {
334 unsigned rd_num;
335 struct df_rd_bb_info *rd_bb_info;
336 bitmap_iterator bi;
337
338 rd_bb_info = DF_RD_BB_INFO (g->bb);
339
340 /* Find inter-loop register output, true and anti deps. */
341 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
342 {
343 df_ref rd = DF_DEFS_GET (rd_num);
344
345 add_cross_iteration_register_deps (g, rd);
346 }
347 }
348
349
350 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
351 to ddg G. */
352 static void
353 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
354 {
355 if (!insn_alias_sets_conflict_p (from->insn, to->insn))
356 /* Do not create edge if memory references have disjoint alias sets. */
357 return;
358
359 if (mem_write_insn_p (from->insn))
360 {
361 if (mem_read_insn_p (to->insn))
362 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
363 else if (from->cuid != to->cuid)
364 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
365 }
366 else
367 {
368 if (mem_read_insn_p (to->insn))
369 return;
370 else if (from->cuid != to->cuid)
371 {
372 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
373 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
374 }
375 }
376
377 }
378
379 /* Perform intra-block Data Dependency analysis and connect the nodes in
380 the DDG. We assume the loop has a single basic block. */
381 static void
382 build_intra_loop_deps (ddg_ptr g)
383 {
384 int i;
385 /* Hold the dependency analysis state during dependency calculations. */
386 struct deps tmp_deps;
387 rtx head, tail;
388
389 /* Build the dependence information, using the sched_analyze function. */
390 init_deps_global ();
391 init_deps (&tmp_deps, false);
392
393 /* Do the intra-block data dependence analysis for the given block. */
394 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
395 sched_analyze (&tmp_deps, head, tail);
396
397 /* Build intra-loop data dependencies using the scheduler dependency
398 analysis. */
399 for (i = 0; i < g->num_nodes; i++)
400 {
401 ddg_node_ptr dest_node = &g->nodes[i];
402 sd_iterator_def sd_it;
403 dep_t dep;
404
405 if (! INSN_P (dest_node->insn))
406 continue;
407
408 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
409 {
410 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
411
412 if (!src_node)
413 continue;
414
415 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
416 }
417
418 /* If this insn modifies memory, add an edge to all insns that access
419 memory. */
420 if (mem_access_insn_p (dest_node->insn))
421 {
422 int j;
423
424 for (j = 0; j <= i; j++)
425 {
426 ddg_node_ptr j_node = &g->nodes[j];
427 if (DEBUG_INSN_P (j_node->insn))
428 continue;
429 if (mem_access_insn_p (j_node->insn))
430 /* Don't bother calculating inter-loop dep if an intra-loop dep
431 already exists. */
432 if (! TEST_BIT (dest_node->successors, j))
433 add_inter_loop_mem_dep (g, dest_node, j_node);
434 }
435 }
436 }
437
438 /* Free the INSN_LISTs. */
439 finish_deps_global ();
440 free_deps (&tmp_deps);
441
442 /* Free dependencies. */
443 sched_free_deps (head, tail, false);
444 }
445
446
447 /* Given a basic block, create its DDG and return a pointer to a variable
448 of ddg type that represents it.
449 Initialize the ddg structure fields to the appropriate values. */
450 ddg_ptr
451 create_ddg (basic_block bb, int closing_branch_deps)
452 {
453 ddg_ptr g;
454 rtx insn, first_note;
455 int i;
456 int num_nodes = 0;
457
458 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
459
460 g->bb = bb;
461 g->closing_branch_deps = closing_branch_deps;
462
463 /* Count the number of insns in the BB. */
464 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
465 insn = NEXT_INSN (insn))
466 {
467 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
468 continue;
469
470 if (DEBUG_INSN_P (insn))
471 g->num_debug++;
472 else
473 {
474 if (mem_read_insn_p (insn))
475 g->num_loads++;
476 if (mem_write_insn_p (insn))
477 g->num_stores++;
478 }
479 num_nodes++;
480 }
481
482 /* There is nothing to do for this BB. */
483 if (num_nodes <= 1)
484 {
485 free (g);
486 return NULL;
487 }
488
489 /* Allocate the nodes array, and initialize the nodes. */
490 g->num_nodes = num_nodes;
491 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
492 g->closing_branch = NULL;
493 i = 0;
494 first_note = NULL_RTX;
495 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
496 insn = NEXT_INSN (insn))
497 {
498 if (! INSN_P (insn))
499 {
500 if (! first_note && NOTE_P (insn)
501 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
502 first_note = insn;
503 continue;
504 }
505 if (JUMP_P (insn))
506 {
507 gcc_assert (!g->closing_branch);
508 g->closing_branch = &g->nodes[i];
509 }
510 else if (GET_CODE (PATTERN (insn)) == USE)
511 {
512 if (! first_note)
513 first_note = insn;
514 continue;
515 }
516
517 g->nodes[i].cuid = i;
518 g->nodes[i].successors = sbitmap_alloc (num_nodes);
519 sbitmap_zero (g->nodes[i].successors);
520 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
521 sbitmap_zero (g->nodes[i].predecessors);
522 g->nodes[i].first_note = (first_note ? first_note : insn);
523 g->nodes[i++].insn = insn;
524 first_note = NULL_RTX;
525 }
526
527 /* We must have found a branch in DDG. */
528 gcc_assert (g->closing_branch);
529
530
531 /* Build the data dependency graph. */
532 build_intra_loop_deps (g);
533 build_inter_loop_deps (g);
534 return g;
535 }
536
537 /* Free all the memory allocated for the DDG. */
538 void
539 free_ddg (ddg_ptr g)
540 {
541 int i;
542
543 if (!g)
544 return;
545
546 for (i = 0; i < g->num_nodes; i++)
547 {
548 ddg_edge_ptr e = g->nodes[i].out;
549
550 while (e)
551 {
552 ddg_edge_ptr next = e->next_out;
553
554 free (e);
555 e = next;
556 }
557 sbitmap_free (g->nodes[i].successors);
558 sbitmap_free (g->nodes[i].predecessors);
559 }
560 if (g->num_backarcs > 0)
561 free (g->backarcs);
562 free (g->nodes);
563 free (g);
564 }
565
566 void
567 print_ddg_edge (FILE *file, ddg_edge_ptr e)
568 {
569 char dep_c;
570
571 switch (e->type)
572 {
573 case OUTPUT_DEP :
574 dep_c = 'O';
575 break;
576 case ANTI_DEP :
577 dep_c = 'A';
578 break;
579 default:
580 dep_c = 'T';
581 }
582
583 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
584 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
585 }
586
587 /* Print the DDG nodes with there in/out edges to the dump file. */
588 void
589 print_ddg (FILE *file, ddg_ptr g)
590 {
591 int i;
592
593 for (i = 0; i < g->num_nodes; i++)
594 {
595 ddg_edge_ptr e;
596
597 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
598 print_rtl_single (file, g->nodes[i].insn);
599 fprintf (file, "OUT ARCS: ");
600 for (e = g->nodes[i].out; e; e = e->next_out)
601 print_ddg_edge (file, e);
602
603 fprintf (file, "\nIN ARCS: ");
604 for (e = g->nodes[i].in; e; e = e->next_in)
605 print_ddg_edge (file, e);
606
607 fprintf (file, "\n");
608 }
609 }
610
611 /* Print the given DDG in VCG format. */
612 void
613 vcg_print_ddg (FILE *file, ddg_ptr g)
614 {
615 int src_cuid;
616
617 fprintf (file, "graph: {\n");
618 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
619 {
620 ddg_edge_ptr e;
621 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
622
623 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
624 print_rtl_single (file, g->nodes[src_cuid].insn);
625 fprintf (file, "\"}\n");
626 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
627 {
628 int dst_uid = INSN_UID (e->dest->insn);
629 int dst_cuid = e->dest->cuid;
630
631 /* Give the backarcs a different color. */
632 if (e->distance > 0)
633 fprintf (file, "backedge: {color: red ");
634 else
635 fprintf (file, "edge: { ");
636
637 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
638 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
639 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
640 }
641 }
642 fprintf (file, "}\n");
643 }
644
645 /* Dump the sccs in SCCS. */
646 void
647 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
648 {
649 unsigned int u = 0;
650 sbitmap_iterator sbi;
651 int i;
652
653 if (!file)
654 return;
655
656 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
657 for (i = 0; i < sccs->num_sccs; i++)
658 {
659 fprintf (file, "SCC number: %d\n", i);
660 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
661 {
662 fprintf (file, "insn num %d\n", u);
663 print_rtl_single (file, g->nodes[u].insn);
664 }
665 }
666 fprintf (file, "\n");
667 }
668
669 /* Create an edge and initialize it with given values. */
670 static ddg_edge_ptr
671 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
672 dep_type t, dep_data_type dt, int l, int d)
673 {
674 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
675
676 e->src = src;
677 e->dest = dest;
678 e->type = t;
679 e->data_type = dt;
680 e->latency = l;
681 e->distance = d;
682 e->next_in = e->next_out = NULL;
683 e->aux.info = 0;
684 return e;
685 }
686
687 /* Add the given edge to the in/out linked lists of the DDG nodes. */
688 static void
689 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
690 {
691 ddg_node_ptr src = e->src;
692 ddg_node_ptr dest = e->dest;
693
694 /* Should have allocated the sbitmaps. */
695 gcc_assert (src->successors && dest->predecessors);
696
697 SET_BIT (src->successors, dest->cuid);
698 SET_BIT (dest->predecessors, src->cuid);
699 e->next_in = dest->in;
700 dest->in = e;
701 e->next_out = src->out;
702 src->out = e;
703 }
704
705
706 \f
707 /* Algorithm for computing the recurrence_length of an scc. We assume at
708 for now that cycles in the data dependence graph contain a single backarc.
709 This simplifies the algorithm, and can be generalized later. */
710 static void
711 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
712 {
713 int j;
714 int result = -1;
715
716 for (j = 0; j < scc->num_backarcs; j++)
717 {
718 ddg_edge_ptr backarc = scc->backarcs[j];
719 int length;
720 int distance = backarc->distance;
721 ddg_node_ptr src = backarc->dest;
722 ddg_node_ptr dest = backarc->src;
723
724 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
725 if (length < 0 )
726 {
727 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
728 continue;
729 }
730 length += backarc->latency;
731 result = MAX (result, (length / distance));
732 }
733 scc->recurrence_length = result;
734 }
735
736 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
737 and mark edges that belong to this scc as IN_SCC. */
738 static ddg_scc_ptr
739 create_scc (ddg_ptr g, sbitmap nodes)
740 {
741 ddg_scc_ptr scc;
742 unsigned int u = 0;
743 sbitmap_iterator sbi;
744
745 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
746 scc->backarcs = NULL;
747 scc->num_backarcs = 0;
748 scc->nodes = sbitmap_alloc (g->num_nodes);
749 sbitmap_copy (scc->nodes, nodes);
750
751 /* Mark the backarcs that belong to this SCC. */
752 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
753 {
754 ddg_edge_ptr e;
755 ddg_node_ptr n = &g->nodes[u];
756
757 for (e = n->out; e; e = e->next_out)
758 if (TEST_BIT (nodes, e->dest->cuid))
759 {
760 e->aux.count = IN_SCC;
761 if (e->distance > 0)
762 add_backarc_to_scc (scc, e);
763 }
764 }
765
766 set_recurrence_length (scc, g);
767 return scc;
768 }
769
770 /* Cleans the memory allocation of a given SCC. */
771 static void
772 free_scc (ddg_scc_ptr scc)
773 {
774 if (!scc)
775 return;
776
777 sbitmap_free (scc->nodes);
778 if (scc->num_backarcs > 0)
779 free (scc->backarcs);
780 free (scc);
781 }
782
783
784 /* Add a given edge known to be a backarc to the given DDG. */
785 static void
786 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
787 {
788 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
789
790 add_edge_to_ddg (g, e);
791 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
792 g->backarcs[g->num_backarcs++] = e;
793 }
794
795 /* Add backarc to an SCC. */
796 static void
797 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
798 {
799 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
800
801 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
802 scc->backarcs[scc->num_backarcs++] = e;
803 }
804
805 /* Add the given SCC to the DDG. */
806 static void
807 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
808 {
809 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
810
811 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
812 g->sccs[g->num_sccs++] = scc;
813 }
814
815 /* Given the instruction INSN return the node that represents it. */
816 ddg_node_ptr
817 get_node_of_insn (ddg_ptr g, rtx insn)
818 {
819 int i;
820
821 for (i = 0; i < g->num_nodes; i++)
822 if (insn == g->nodes[i].insn)
823 return &g->nodes[i];
824 return NULL;
825 }
826
827 /* Given a set OPS of nodes in the DDG, find the set of their successors
828 which are not in OPS, and set their bits in SUCC. Bits corresponding to
829 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
830 void
831 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
832 {
833 unsigned int i = 0;
834 sbitmap_iterator sbi;
835
836 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
837 {
838 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
839 sbitmap_a_or_b (succ, succ, node_succ);
840 };
841
842 /* We want those that are not in ops. */
843 sbitmap_difference (succ, succ, ops);
844 }
845
846 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
847 which are not in OPS, and set their bits in PREDS. Bits corresponding to
848 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
849 void
850 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
851 {
852 unsigned int i = 0;
853 sbitmap_iterator sbi;
854
855 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
856 {
857 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
858 sbitmap_a_or_b (preds, preds, node_preds);
859 };
860
861 /* We want those that are not in ops. */
862 sbitmap_difference (preds, preds, ops);
863 }
864
865
866 /* Compare function to be passed to qsort to order the backarcs in descending
867 recMII order. */
868 static int
869 compare_sccs (const void *s1, const void *s2)
870 {
871 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
872 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
873 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
874
875 }
876
877 /* Order the backarcs in descending recMII order using compare_sccs. */
878 static void
879 order_sccs (ddg_all_sccs_ptr g)
880 {
881 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
882 (int (*) (const void *, const void *)) compare_sccs);
883 }
884
885 #ifdef ENABLE_CHECKING
886 /* Check that every node in SCCS belongs to exactly one strongly connected
887 component and that no element of SCCS is empty. */
888 static void
889 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
890 {
891 int i = 0;
892 sbitmap tmp = sbitmap_alloc (num_nodes);
893
894 sbitmap_zero (tmp);
895 for (i = 0; i < sccs->num_sccs; i++)
896 {
897 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
898 /* Verify that every node in sccs is in exactly one strongly
899 connected component. */
900 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
901 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
902 }
903 sbitmap_free (tmp);
904 }
905 #endif
906
907 /* Perform the Strongly Connected Components decomposing algorithm on the
908 DDG and return DDG_ALL_SCCS structure that contains them. */
909 ddg_all_sccs_ptr
910 create_ddg_all_sccs (ddg_ptr g)
911 {
912 int i;
913 int num_nodes = g->num_nodes;
914 sbitmap from = sbitmap_alloc (num_nodes);
915 sbitmap to = sbitmap_alloc (num_nodes);
916 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
917 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
918 xmalloc (sizeof (struct ddg_all_sccs));
919
920 sccs->ddg = g;
921 sccs->sccs = NULL;
922 sccs->num_sccs = 0;
923
924 for (i = 0; i < g->num_backarcs; i++)
925 {
926 ddg_scc_ptr scc;
927 ddg_edge_ptr backarc = g->backarcs[i];
928 ddg_node_ptr src = backarc->src;
929 ddg_node_ptr dest = backarc->dest;
930
931 /* If the backarc already belongs to an SCC, continue. */
932 if (backarc->aux.count == IN_SCC)
933 continue;
934
935 sbitmap_zero (scc_nodes);
936 sbitmap_zero (from);
937 sbitmap_zero (to);
938 SET_BIT (from, dest->cuid);
939 SET_BIT (to, src->cuid);
940
941 if (find_nodes_on_paths (scc_nodes, g, from, to))
942 {
943 scc = create_scc (g, scc_nodes);
944 add_scc_to_ddg (sccs, scc);
945 }
946 }
947 order_sccs (sccs);
948 sbitmap_free (from);
949 sbitmap_free (to);
950 sbitmap_free (scc_nodes);
951 #ifdef ENABLE_CHECKING
952 check_sccs (sccs, num_nodes);
953 #endif
954 return sccs;
955 }
956
957 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
958 void
959 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
960 {
961 int i;
962
963 if (!all_sccs)
964 return;
965
966 for (i = 0; i < all_sccs->num_sccs; i++)
967 free_scc (all_sccs->sccs[i]);
968
969 free (all_sccs);
970 }
971
972 \f
973 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
974 nodes - find all nodes that lie on paths from FROM to TO (not excluding
975 nodes from FROM and TO). Return nonzero if nodes exist. */
976 int
977 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
978 {
979 int answer;
980 int change;
981 unsigned int u = 0;
982 int num_nodes = g->num_nodes;
983 sbitmap_iterator sbi;
984
985 sbitmap workset = sbitmap_alloc (num_nodes);
986 sbitmap reachable_from = sbitmap_alloc (num_nodes);
987 sbitmap reach_to = sbitmap_alloc (num_nodes);
988 sbitmap tmp = sbitmap_alloc (num_nodes);
989
990 sbitmap_copy (reachable_from, from);
991 sbitmap_copy (tmp, from);
992
993 change = 1;
994 while (change)
995 {
996 change = 0;
997 sbitmap_copy (workset, tmp);
998 sbitmap_zero (tmp);
999 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1000 {
1001 ddg_edge_ptr e;
1002 ddg_node_ptr u_node = &g->nodes[u];
1003
1004 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
1005 {
1006 ddg_node_ptr v_node = e->dest;
1007 int v = v_node->cuid;
1008
1009 if (!TEST_BIT (reachable_from, v))
1010 {
1011 SET_BIT (reachable_from, v);
1012 SET_BIT (tmp, v);
1013 change = 1;
1014 }
1015 }
1016 }
1017 }
1018
1019 sbitmap_copy (reach_to, to);
1020 sbitmap_copy (tmp, to);
1021
1022 change = 1;
1023 while (change)
1024 {
1025 change = 0;
1026 sbitmap_copy (workset, tmp);
1027 sbitmap_zero (tmp);
1028 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1029 {
1030 ddg_edge_ptr e;
1031 ddg_node_ptr u_node = &g->nodes[u];
1032
1033 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1034 {
1035 ddg_node_ptr v_node = e->src;
1036 int v = v_node->cuid;
1037
1038 if (!TEST_BIT (reach_to, v))
1039 {
1040 SET_BIT (reach_to, v);
1041 SET_BIT (tmp, v);
1042 change = 1;
1043 }
1044 }
1045 }
1046 }
1047
1048 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1049 sbitmap_free (workset);
1050 sbitmap_free (reachable_from);
1051 sbitmap_free (reach_to);
1052 sbitmap_free (tmp);
1053 return answer;
1054 }
1055
1056
1057 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1058 at-least as large as the count of U_NODE plus the latency between them.
1059 Sets a bit in TMP for each successor whose count was changed (increased).
1060 Returns nonzero if any count was changed. */
1061 static int
1062 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1063 {
1064 ddg_edge_ptr e;
1065 int result = 0;
1066
1067 for (e = u_node->out; e; e = e->next_out)
1068 {
1069 ddg_node_ptr v_node = e->dest;
1070 int v = v_node->cuid;
1071
1072 if (TEST_BIT (nodes, v)
1073 && (e->distance == 0)
1074 && (v_node->aux.count < u_node->aux.count + e->latency))
1075 {
1076 v_node->aux.count = u_node->aux.count + e->latency;
1077 SET_BIT (tmp, v);
1078 result = 1;
1079 }
1080 }
1081 return result;
1082 }
1083
1084
1085 /* Find the length of a longest path from SRC to DEST in G,
1086 going only through NODES, and disregarding backarcs. */
1087 int
1088 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1089 {
1090 int i;
1091 unsigned int u = 0;
1092 int change = 1;
1093 int result;
1094 int num_nodes = g->num_nodes;
1095 sbitmap workset = sbitmap_alloc (num_nodes);
1096 sbitmap tmp = sbitmap_alloc (num_nodes);
1097
1098
1099 /* Data will hold the distance of the longest path found so far from
1100 src to each node. Initialize to -1 = less than minimum. */
1101 for (i = 0; i < g->num_nodes; i++)
1102 g->nodes[i].aux.count = -1;
1103 g->nodes[src].aux.count = 0;
1104
1105 sbitmap_zero (tmp);
1106 SET_BIT (tmp, src);
1107
1108 while (change)
1109 {
1110 sbitmap_iterator sbi;
1111
1112 change = 0;
1113 sbitmap_copy (workset, tmp);
1114 sbitmap_zero (tmp);
1115 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1116 {
1117 ddg_node_ptr u_node = &g->nodes[u];
1118
1119 change |= update_dist_to_successors (u_node, nodes, tmp);
1120 }
1121 }
1122 result = g->nodes[dest].aux.count;
1123 sbitmap_free (workset);
1124 sbitmap_free (tmp);
1125 return result;
1126 }
1127
1128 #endif /* INSN_SCHEDULING */