ddg.c (add_cross_iteration_register_deps): Call gcc_assert instead of gcc_checking_as...
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "ddg.h"
47
48 #ifdef INSN_SCHEDULING
49
50 /* A flag indicating that a ddg edge belongs to an SCC or not. */
51 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
52
53 /* Forward declarations. */
54 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
55 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
56 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
57 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
58 ddg_node_ptr, dep_t);
59 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
60 dep_type, dep_data_type, int);
61 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
62 dep_data_type, int, int);
63 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
64 \f
65 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
66 static bool mem_ref_p;
67
68 /* Auxiliary function for mem_read_insn_p. */
69 static int
70 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
71 {
72 if (MEM_P (*x))
73 mem_ref_p = true;
74 return 0;
75 }
76
77 /* Auxiliary function for mem_read_insn_p. */
78 static void
79 mark_mem_use_1 (rtx *x, void *data)
80 {
81 for_each_rtx (x, mark_mem_use, data);
82 }
83
84 /* Returns nonzero if INSN reads from memory. */
85 static bool
86 mem_read_insn_p (rtx insn)
87 {
88 mem_ref_p = false;
89 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
90 return mem_ref_p;
91 }
92
93 static void
94 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
95 {
96 if (MEM_P (loc))
97 mem_ref_p = true;
98 }
99
100 /* Returns nonzero if INSN writes to memory. */
101 static bool
102 mem_write_insn_p (rtx insn)
103 {
104 mem_ref_p = false;
105 note_stores (PATTERN (insn), mark_mem_store, NULL);
106 return mem_ref_p;
107 }
108
109 /* Returns nonzero if X has access to memory. */
110 static bool
111 rtx_mem_access_p (rtx x)
112 {
113 int i, j;
114 const char *fmt;
115 enum rtx_code code;
116
117 if (x == 0)
118 return false;
119
120 if (MEM_P (x))
121 return true;
122
123 code = GET_CODE (x);
124 fmt = GET_RTX_FORMAT (code);
125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
126 {
127 if (fmt[i] == 'e')
128 {
129 if (rtx_mem_access_p (XEXP (x, i)))
130 return true;
131 }
132 else if (fmt[i] == 'E')
133 for (j = 0; j < XVECLEN (x, i); j++)
134 {
135 if (rtx_mem_access_p (XVECEXP (x, i, j)))
136 return true;
137 }
138 }
139 return false;
140 }
141
142 /* Returns nonzero if INSN reads to or writes from memory. */
143 static bool
144 mem_access_insn_p (rtx insn)
145 {
146 return rtx_mem_access_p (PATTERN (insn));
147 }
148
149 /* Computes the dependence parameters (latency, distance etc.), creates
150 a ddg_edge and adds it to the given DDG. */
151 static void
152 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
153 ddg_node_ptr dest_node, dep_t link)
154 {
155 ddg_edge_ptr e;
156 int latency, distance = 0;
157 dep_type t = TRUE_DEP;
158 dep_data_type dt = (mem_access_insn_p (src_node->insn)
159 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
160 : REG_DEP);
161 gcc_assert (src_node->cuid < dest_node->cuid);
162 gcc_assert (link);
163
164 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
165 if (DEP_TYPE (link) == REG_DEP_ANTI)
166 t = ANTI_DEP;
167 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
168 t = OUTPUT_DEP;
169
170 gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
171 gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
172
173 /* We currently choose not to create certain anti-deps edges and
174 compensate for that by generating reg-moves based on the life-range
175 analysis. The anti-deps that will be deleted are the ones which
176 have true-deps edges in the opposite direction (in other words
177 the kernel has only one def of the relevant register). TODO:
178 support the removal of all anti-deps edges, i.e. including those
179 whose register has multiple defs in the loop. */
180 if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
181 {
182 rtx set;
183
184 set = single_set (dest_node->insn);
185 /* TODO: Handle registers that REG_P is not true for them, i.e.
186 subregs and special registers. */
187 if (set && REG_P (SET_DEST (set)))
188 {
189 int regno = REGNO (SET_DEST (set));
190 df_ref first_def;
191 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
192
193 first_def = df_bb_regno_first_def_find (g->bb, regno);
194 gcc_assert (first_def);
195
196 if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
197 return;
198 }
199 }
200
201 latency = dep_cost (link);
202 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
203 add_edge_to_ddg (g, e);
204 }
205
206 /* The same as the above function, but it doesn't require a link parameter. */
207 static void
208 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
209 dep_type d_t, dep_data_type d_dt, int distance)
210 {
211 ddg_edge_ptr e;
212 int l;
213 enum reg_note dep_kind;
214 struct _dep _dep, *dep = &_dep;
215
216 gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
217 gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
218
219 if (d_t == ANTI_DEP)
220 dep_kind = REG_DEP_ANTI;
221 else if (d_t == OUTPUT_DEP)
222 dep_kind = REG_DEP_OUTPUT;
223 else
224 {
225 gcc_assert (d_t == TRUE_DEP);
226
227 dep_kind = REG_DEP_TRUE;
228 }
229
230 init_dep (dep, from->insn, to->insn, dep_kind);
231
232 l = dep_cost (dep);
233
234 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
235 if (distance > 0)
236 add_backarc_to_ddg (g, e);
237 else
238 add_edge_to_ddg (g, e);
239 }
240
241
242 /* Given a downwards exposed register def LAST_DEF (which is the last
243 definition of that register in the bb), add inter-loop true dependences
244 to all its uses in the next iteration, an output dependence to the
245 first def of the same register (possibly itself) in the next iteration
246 and anti-dependences from its uses in the current iteration to the
247 first definition in the next iteration. */
248 static void
249 add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
250 {
251 int regno = DF_REF_REGNO (last_def);
252 struct df_link *r_use;
253 int has_use_in_bb_p = false;
254 rtx def_insn = DF_REF_INSN (last_def);
255 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
256 ddg_node_ptr use_node;
257 #ifdef ENABLE_CHECKING
258 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
259 #endif
260 df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
261
262 gcc_assert (last_def_node);
263 gcc_assert (first_def);
264
265 #ifdef ENABLE_CHECKING
266 if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
267 gcc_assert (!bitmap_bit_p (&bb_info->gen,
268 DF_REF_ID (first_def)));
269 #endif
270
271 /* Create inter-loop true dependences and anti dependences. */
272 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
273 {
274 rtx use_insn = DF_REF_INSN (r_use->ref);
275
276 if (BLOCK_FOR_INSN (use_insn) != g->bb)
277 continue;
278
279 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
280 use_node = get_node_of_insn (g, use_insn);
281 gcc_assert (use_node);
282 has_use_in_bb_p = true;
283 if (use_node->cuid <= last_def_node->cuid)
284 {
285 /* Add true deps from last_def to it's uses in the next
286 iteration. Any such upwards exposed use appears before
287 the last_def def. */
288 create_ddg_dep_no_link (g, last_def_node, use_node,
289 DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
290 REG_DEP, 1);
291 }
292 else if (!DEBUG_INSN_P (use_insn))
293 {
294 /* Add anti deps from last_def's uses in the current iteration
295 to the first def in the next iteration. We do not add ANTI
296 dep when there is an intra-loop TRUE dep in the opposite
297 direction, but use regmoves to fix such disregarded ANTI
298 deps when broken. If the first_def reaches the USE then
299 there is such a dep. */
300 ddg_node_ptr first_def_node = get_node_of_insn (g,
301 DF_REF_INSN (first_def));
302
303 gcc_assert (first_def_node);
304
305 if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
306 || !flag_modulo_sched_allow_regmoves)
307 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
308 REG_DEP, 1);
309
310 }
311 }
312 /* Create an inter-loop output dependence between LAST_DEF (which is the
313 last def in its block, being downwards exposed) and the first def in
314 its block. Avoid creating a self output dependence. Avoid creating
315 an output dependence if there is a dependence path between the two
316 defs starting with a true dependence to a use which can be in the
317 next iteration; followed by an anti dependence of that use to the
318 first def (i.e. if there is a use between the two defs.) */
319 if (!has_use_in_bb_p)
320 {
321 ddg_node_ptr dest_node;
322
323 if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
324 return;
325
326 dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
327 gcc_assert (dest_node);
328 create_ddg_dep_no_link (g, last_def_node, dest_node,
329 OUTPUT_DEP, REG_DEP, 1);
330 }
331 }
332 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
333 static void
334 build_inter_loop_deps (ddg_ptr g)
335 {
336 unsigned rd_num;
337 struct df_rd_bb_info *rd_bb_info;
338 bitmap_iterator bi;
339
340 rd_bb_info = DF_RD_BB_INFO (g->bb);
341
342 /* Find inter-loop register output, true and anti deps. */
343 EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
344 {
345 df_ref rd = DF_DEFS_GET (rd_num);
346
347 add_cross_iteration_register_deps (g, rd);
348 }
349 }
350
351
352 static int
353 walk_mems_2 (rtx *x, rtx mem)
354 {
355 if (MEM_P (*x))
356 {
357 if (may_alias_p (*x, mem))
358 return 1;
359
360 return -1;
361 }
362 return 0;
363 }
364
365 static int
366 walk_mems_1 (rtx *x, rtx *pat)
367 {
368 if (MEM_P (*x))
369 {
370 /* Visit all MEMs in *PAT and check indepedence. */
371 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
372 /* Indicate that dependence was determined and stop traversal. */
373 return 1;
374
375 return -1;
376 }
377 return 0;
378 }
379
380 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
381 static int
382 insns_may_alias_p (rtx insn1, rtx insn2)
383 {
384 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
385 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
386 &PATTERN (insn2));
387 }
388
389 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
390 to ddg G. */
391 static void
392 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
393 {
394 if (!insns_may_alias_p (from->insn, to->insn))
395 /* Do not create edge if memory references have disjoint alias sets. */
396 return;
397
398 if (mem_write_insn_p (from->insn))
399 {
400 if (mem_read_insn_p (to->insn))
401 create_ddg_dep_no_link (g, from, to,
402 DEBUG_INSN_P (to->insn)
403 ? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
404 else if (from->cuid != to->cuid)
405 create_ddg_dep_no_link (g, from, to,
406 DEBUG_INSN_P (to->insn)
407 ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
408 }
409 else
410 {
411 if (mem_read_insn_p (to->insn))
412 return;
413 else if (from->cuid != to->cuid)
414 {
415 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
416 if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
417 create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
418 else
419 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
420 }
421 }
422
423 }
424
425 /* Perform intra-block Data Dependency analysis and connect the nodes in
426 the DDG. We assume the loop has a single basic block. */
427 static void
428 build_intra_loop_deps (ddg_ptr g)
429 {
430 int i;
431 /* Hold the dependency analysis state during dependency calculations. */
432 struct deps_desc tmp_deps;
433 rtx head, tail;
434
435 /* Build the dependence information, using the sched_analyze function. */
436 init_deps_global ();
437 init_deps (&tmp_deps, false);
438
439 /* Do the intra-block data dependence analysis for the given block. */
440 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
441 sched_analyze (&tmp_deps, head, tail);
442
443 /* Build intra-loop data dependencies using the scheduler dependency
444 analysis. */
445 for (i = 0; i < g->num_nodes; i++)
446 {
447 ddg_node_ptr dest_node = &g->nodes[i];
448 sd_iterator_def sd_it;
449 dep_t dep;
450
451 if (! INSN_P (dest_node->insn))
452 continue;
453
454 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
455 {
456 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
457
458 if (!src_node)
459 continue;
460
461 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
462 }
463
464 /* If this insn modifies memory, add an edge to all insns that access
465 memory. */
466 if (mem_access_insn_p (dest_node->insn))
467 {
468 int j;
469
470 for (j = 0; j <= i; j++)
471 {
472 ddg_node_ptr j_node = &g->nodes[j];
473 if (DEBUG_INSN_P (j_node->insn))
474 continue;
475 if (mem_access_insn_p (j_node->insn))
476 /* Don't bother calculating inter-loop dep if an intra-loop dep
477 already exists. */
478 if (! TEST_BIT (dest_node->successors, j))
479 add_inter_loop_mem_dep (g, dest_node, j_node);
480 }
481 }
482 }
483
484 /* Free the INSN_LISTs. */
485 finish_deps_global ();
486 free_deps (&tmp_deps);
487
488 /* Free dependencies. */
489 sched_free_deps (head, tail, false);
490 }
491
492
493 /* Given a basic block, create its DDG and return a pointer to a variable
494 of ddg type that represents it.
495 Initialize the ddg structure fields to the appropriate values. */
496 ddg_ptr
497 create_ddg (basic_block bb, int closing_branch_deps)
498 {
499 ddg_ptr g;
500 rtx insn, first_note;
501 int i;
502 int num_nodes = 0;
503
504 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
505
506 g->bb = bb;
507 g->closing_branch_deps = closing_branch_deps;
508
509 /* Count the number of insns in the BB. */
510 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
511 insn = NEXT_INSN (insn))
512 {
513 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
514 continue;
515
516 if (DEBUG_INSN_P (insn))
517 g->num_debug++;
518 else
519 {
520 if (mem_read_insn_p (insn))
521 g->num_loads++;
522 if (mem_write_insn_p (insn))
523 g->num_stores++;
524 }
525 num_nodes++;
526 }
527
528 /* There is nothing to do for this BB. */
529 if ((num_nodes - g->num_debug) <= 1)
530 {
531 free (g);
532 return NULL;
533 }
534
535 /* Allocate the nodes array, and initialize the nodes. */
536 g->num_nodes = num_nodes;
537 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
538 g->closing_branch = NULL;
539 i = 0;
540 first_note = NULL_RTX;
541 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
542 insn = NEXT_INSN (insn))
543 {
544 if (! INSN_P (insn))
545 {
546 if (! first_note && NOTE_P (insn)
547 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
548 first_note = insn;
549 continue;
550 }
551 if (JUMP_P (insn))
552 {
553 gcc_assert (!g->closing_branch);
554 g->closing_branch = &g->nodes[i];
555 }
556 else if (GET_CODE (PATTERN (insn)) == USE)
557 {
558 if (! first_note)
559 first_note = insn;
560 continue;
561 }
562
563 g->nodes[i].cuid = i;
564 g->nodes[i].successors = sbitmap_alloc (num_nodes);
565 sbitmap_zero (g->nodes[i].successors);
566 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
567 sbitmap_zero (g->nodes[i].predecessors);
568 g->nodes[i].first_note = (first_note ? first_note : insn);
569 g->nodes[i++].insn = insn;
570 first_note = NULL_RTX;
571 }
572
573 /* We must have found a branch in DDG. */
574 gcc_assert (g->closing_branch);
575
576
577 /* Build the data dependency graph. */
578 build_intra_loop_deps (g);
579 build_inter_loop_deps (g);
580 return g;
581 }
582
583 /* Free all the memory allocated for the DDG. */
584 void
585 free_ddg (ddg_ptr g)
586 {
587 int i;
588
589 if (!g)
590 return;
591
592 for (i = 0; i < g->num_nodes; i++)
593 {
594 ddg_edge_ptr e = g->nodes[i].out;
595
596 while (e)
597 {
598 ddg_edge_ptr next = e->next_out;
599
600 free (e);
601 e = next;
602 }
603 sbitmap_free (g->nodes[i].successors);
604 sbitmap_free (g->nodes[i].predecessors);
605 }
606 if (g->num_backarcs > 0)
607 free (g->backarcs);
608 free (g->nodes);
609 free (g);
610 }
611
612 void
613 print_ddg_edge (FILE *file, ddg_edge_ptr e)
614 {
615 char dep_c;
616
617 switch (e->type)
618 {
619 case OUTPUT_DEP :
620 dep_c = 'O';
621 break;
622 case ANTI_DEP :
623 dep_c = 'A';
624 break;
625 default:
626 dep_c = 'T';
627 }
628
629 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
630 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
631 }
632
633 /* Print the DDG nodes with there in/out edges to the dump file. */
634 void
635 print_ddg (FILE *file, ddg_ptr g)
636 {
637 int i;
638
639 for (i = 0; i < g->num_nodes; i++)
640 {
641 ddg_edge_ptr e;
642
643 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
644 print_rtl_single (file, g->nodes[i].insn);
645 fprintf (file, "OUT ARCS: ");
646 for (e = g->nodes[i].out; e; e = e->next_out)
647 print_ddg_edge (file, e);
648
649 fprintf (file, "\nIN ARCS: ");
650 for (e = g->nodes[i].in; e; e = e->next_in)
651 print_ddg_edge (file, e);
652
653 fprintf (file, "\n");
654 }
655 }
656
657 /* Print the given DDG in VCG format. */
658 void
659 vcg_print_ddg (FILE *file, ddg_ptr g)
660 {
661 int src_cuid;
662
663 fprintf (file, "graph: {\n");
664 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
665 {
666 ddg_edge_ptr e;
667 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
668
669 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
670 print_rtl_single (file, g->nodes[src_cuid].insn);
671 fprintf (file, "\"}\n");
672 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
673 {
674 int dst_uid = INSN_UID (e->dest->insn);
675 int dst_cuid = e->dest->cuid;
676
677 /* Give the backarcs a different color. */
678 if (e->distance > 0)
679 fprintf (file, "backedge: {color: red ");
680 else
681 fprintf (file, "edge: { ");
682
683 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
684 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
685 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
686 }
687 }
688 fprintf (file, "}\n");
689 }
690
691 /* Dump the sccs in SCCS. */
692 void
693 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
694 {
695 unsigned int u = 0;
696 sbitmap_iterator sbi;
697 int i;
698
699 if (!file)
700 return;
701
702 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
703 for (i = 0; i < sccs->num_sccs; i++)
704 {
705 fprintf (file, "SCC number: %d\n", i);
706 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
707 {
708 fprintf (file, "insn num %d\n", u);
709 print_rtl_single (file, g->nodes[u].insn);
710 }
711 }
712 fprintf (file, "\n");
713 }
714
715 /* Create an edge and initialize it with given values. */
716 static ddg_edge_ptr
717 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
718 dep_type t, dep_data_type dt, int l, int d)
719 {
720 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
721
722 e->src = src;
723 e->dest = dest;
724 e->type = t;
725 e->data_type = dt;
726 e->latency = l;
727 e->distance = d;
728 e->next_in = e->next_out = NULL;
729 e->aux.info = 0;
730 return e;
731 }
732
733 /* Add the given edge to the in/out linked lists of the DDG nodes. */
734 static void
735 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
736 {
737 ddg_node_ptr src = e->src;
738 ddg_node_ptr dest = e->dest;
739
740 /* Should have allocated the sbitmaps. */
741 gcc_assert (src->successors && dest->predecessors);
742
743 SET_BIT (src->successors, dest->cuid);
744 SET_BIT (dest->predecessors, src->cuid);
745 e->next_in = dest->in;
746 dest->in = e;
747 e->next_out = src->out;
748 src->out = e;
749 }
750
751
752 \f
753 /* Algorithm for computing the recurrence_length of an scc. We assume at
754 for now that cycles in the data dependence graph contain a single backarc.
755 This simplifies the algorithm, and can be generalized later. */
756 static void
757 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
758 {
759 int j;
760 int result = -1;
761
762 for (j = 0; j < scc->num_backarcs; j++)
763 {
764 ddg_edge_ptr backarc = scc->backarcs[j];
765 int length;
766 int distance = backarc->distance;
767 ddg_node_ptr src = backarc->dest;
768 ddg_node_ptr dest = backarc->src;
769
770 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
771 if (length < 0 )
772 {
773 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
774 continue;
775 }
776 length += backarc->latency;
777 result = MAX (result, (length / distance));
778 }
779 scc->recurrence_length = result;
780 }
781
782 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
783 and mark edges that belong to this scc as IN_SCC. */
784 static ddg_scc_ptr
785 create_scc (ddg_ptr g, sbitmap nodes)
786 {
787 ddg_scc_ptr scc;
788 unsigned int u = 0;
789 sbitmap_iterator sbi;
790
791 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
792 scc->backarcs = NULL;
793 scc->num_backarcs = 0;
794 scc->nodes = sbitmap_alloc (g->num_nodes);
795 sbitmap_copy (scc->nodes, nodes);
796
797 /* Mark the backarcs that belong to this SCC. */
798 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
799 {
800 ddg_edge_ptr e;
801 ddg_node_ptr n = &g->nodes[u];
802
803 for (e = n->out; e; e = e->next_out)
804 if (TEST_BIT (nodes, e->dest->cuid))
805 {
806 e->aux.count = IN_SCC;
807 if (e->distance > 0)
808 add_backarc_to_scc (scc, e);
809 }
810 }
811
812 set_recurrence_length (scc, g);
813 return scc;
814 }
815
816 /* Cleans the memory allocation of a given SCC. */
817 static void
818 free_scc (ddg_scc_ptr scc)
819 {
820 if (!scc)
821 return;
822
823 sbitmap_free (scc->nodes);
824 if (scc->num_backarcs > 0)
825 free (scc->backarcs);
826 free (scc);
827 }
828
829
830 /* Add a given edge known to be a backarc to the given DDG. */
831 static void
832 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
833 {
834 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
835
836 add_edge_to_ddg (g, e);
837 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
838 g->backarcs[g->num_backarcs++] = e;
839 }
840
841 /* Add backarc to an SCC. */
842 static void
843 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
844 {
845 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
846
847 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
848 scc->backarcs[scc->num_backarcs++] = e;
849 }
850
851 /* Add the given SCC to the DDG. */
852 static void
853 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
854 {
855 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
856
857 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
858 g->sccs[g->num_sccs++] = scc;
859 }
860
861 /* Given the instruction INSN return the node that represents it. */
862 ddg_node_ptr
863 get_node_of_insn (ddg_ptr g, rtx insn)
864 {
865 int i;
866
867 for (i = 0; i < g->num_nodes; i++)
868 if (insn == g->nodes[i].insn)
869 return &g->nodes[i];
870 return NULL;
871 }
872
873 /* Given a set OPS of nodes in the DDG, find the set of their successors
874 which are not in OPS, and set their bits in SUCC. Bits corresponding to
875 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
876 void
877 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
878 {
879 unsigned int i = 0;
880 sbitmap_iterator sbi;
881
882 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
883 {
884 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
885 sbitmap_a_or_b (succ, succ, node_succ);
886 };
887
888 /* We want those that are not in ops. */
889 sbitmap_difference (succ, succ, ops);
890 }
891
892 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
893 which are not in OPS, and set their bits in PREDS. Bits corresponding to
894 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
895 void
896 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
897 {
898 unsigned int i = 0;
899 sbitmap_iterator sbi;
900
901 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
902 {
903 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
904 sbitmap_a_or_b (preds, preds, node_preds);
905 };
906
907 /* We want those that are not in ops. */
908 sbitmap_difference (preds, preds, ops);
909 }
910
911
912 /* Compare function to be passed to qsort to order the backarcs in descending
913 recMII order. */
914 static int
915 compare_sccs (const void *s1, const void *s2)
916 {
917 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
918 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
919 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
920
921 }
922
923 /* Order the backarcs in descending recMII order using compare_sccs. */
924 static void
925 order_sccs (ddg_all_sccs_ptr g)
926 {
927 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
928 (int (*) (const void *, const void *)) compare_sccs);
929 }
930
931 #ifdef ENABLE_CHECKING
932 /* Check that every node in SCCS belongs to exactly one strongly connected
933 component and that no element of SCCS is empty. */
934 static void
935 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
936 {
937 int i = 0;
938 sbitmap tmp = sbitmap_alloc (num_nodes);
939
940 sbitmap_zero (tmp);
941 for (i = 0; i < sccs->num_sccs; i++)
942 {
943 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
944 /* Verify that every node in sccs is in exactly one strongly
945 connected component. */
946 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
947 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
948 }
949 sbitmap_free (tmp);
950 }
951 #endif
952
953 /* Perform the Strongly Connected Components decomposing algorithm on the
954 DDG and return DDG_ALL_SCCS structure that contains them. */
955 ddg_all_sccs_ptr
956 create_ddg_all_sccs (ddg_ptr g)
957 {
958 int i;
959 int num_nodes = g->num_nodes;
960 sbitmap from = sbitmap_alloc (num_nodes);
961 sbitmap to = sbitmap_alloc (num_nodes);
962 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
963 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
964 xmalloc (sizeof (struct ddg_all_sccs));
965
966 sccs->ddg = g;
967 sccs->sccs = NULL;
968 sccs->num_sccs = 0;
969
970 for (i = 0; i < g->num_backarcs; i++)
971 {
972 ddg_scc_ptr scc;
973 ddg_edge_ptr backarc = g->backarcs[i];
974 ddg_node_ptr src = backarc->src;
975 ddg_node_ptr dest = backarc->dest;
976
977 /* If the backarc already belongs to an SCC, continue. */
978 if (backarc->aux.count == IN_SCC)
979 continue;
980
981 sbitmap_zero (scc_nodes);
982 sbitmap_zero (from);
983 sbitmap_zero (to);
984 SET_BIT (from, dest->cuid);
985 SET_BIT (to, src->cuid);
986
987 if (find_nodes_on_paths (scc_nodes, g, from, to))
988 {
989 scc = create_scc (g, scc_nodes);
990 add_scc_to_ddg (sccs, scc);
991 }
992 }
993 order_sccs (sccs);
994 sbitmap_free (from);
995 sbitmap_free (to);
996 sbitmap_free (scc_nodes);
997 #ifdef ENABLE_CHECKING
998 check_sccs (sccs, num_nodes);
999 #endif
1000 return sccs;
1001 }
1002
1003 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
1004 void
1005 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
1006 {
1007 int i;
1008
1009 if (!all_sccs)
1010 return;
1011
1012 for (i = 0; i < all_sccs->num_sccs; i++)
1013 free_scc (all_sccs->sccs[i]);
1014
1015 free (all_sccs);
1016 }
1017
1018 \f
1019 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
1020 nodes - find all nodes that lie on paths from FROM to TO (not excluding
1021 nodes from FROM and TO). Return nonzero if nodes exist. */
1022 int
1023 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
1024 {
1025 int answer;
1026 int change;
1027 unsigned int u = 0;
1028 int num_nodes = g->num_nodes;
1029 sbitmap_iterator sbi;
1030
1031 sbitmap workset = sbitmap_alloc (num_nodes);
1032 sbitmap reachable_from = sbitmap_alloc (num_nodes);
1033 sbitmap reach_to = sbitmap_alloc (num_nodes);
1034 sbitmap tmp = sbitmap_alloc (num_nodes);
1035
1036 sbitmap_copy (reachable_from, from);
1037 sbitmap_copy (tmp, from);
1038
1039 change = 1;
1040 while (change)
1041 {
1042 change = 0;
1043 sbitmap_copy (workset, tmp);
1044 sbitmap_zero (tmp);
1045 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1046 {
1047 ddg_edge_ptr e;
1048 ddg_node_ptr u_node = &g->nodes[u];
1049
1050 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
1051 {
1052 ddg_node_ptr v_node = e->dest;
1053 int v = v_node->cuid;
1054
1055 if (!TEST_BIT (reachable_from, v))
1056 {
1057 SET_BIT (reachable_from, v);
1058 SET_BIT (tmp, v);
1059 change = 1;
1060 }
1061 }
1062 }
1063 }
1064
1065 sbitmap_copy (reach_to, to);
1066 sbitmap_copy (tmp, to);
1067
1068 change = 1;
1069 while (change)
1070 {
1071 change = 0;
1072 sbitmap_copy (workset, tmp);
1073 sbitmap_zero (tmp);
1074 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1075 {
1076 ddg_edge_ptr e;
1077 ddg_node_ptr u_node = &g->nodes[u];
1078
1079 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1080 {
1081 ddg_node_ptr v_node = e->src;
1082 int v = v_node->cuid;
1083
1084 if (!TEST_BIT (reach_to, v))
1085 {
1086 SET_BIT (reach_to, v);
1087 SET_BIT (tmp, v);
1088 change = 1;
1089 }
1090 }
1091 }
1092 }
1093
1094 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1095 sbitmap_free (workset);
1096 sbitmap_free (reachable_from);
1097 sbitmap_free (reach_to);
1098 sbitmap_free (tmp);
1099 return answer;
1100 }
1101
1102
1103 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1104 at-least as large as the count of U_NODE plus the latency between them.
1105 Sets a bit in TMP for each successor whose count was changed (increased).
1106 Returns nonzero if any count was changed. */
1107 static int
1108 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1109 {
1110 ddg_edge_ptr e;
1111 int result = 0;
1112
1113 for (e = u_node->out; e; e = e->next_out)
1114 {
1115 ddg_node_ptr v_node = e->dest;
1116 int v = v_node->cuid;
1117
1118 if (TEST_BIT (nodes, v)
1119 && (e->distance == 0)
1120 && (v_node->aux.count < u_node->aux.count + e->latency))
1121 {
1122 v_node->aux.count = u_node->aux.count + e->latency;
1123 SET_BIT (tmp, v);
1124 result = 1;
1125 }
1126 }
1127 return result;
1128 }
1129
1130
1131 /* Find the length of a longest path from SRC to DEST in G,
1132 going only through NODES, and disregarding backarcs. */
1133 int
1134 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1135 {
1136 int i;
1137 unsigned int u = 0;
1138 int change = 1;
1139 int result;
1140 int num_nodes = g->num_nodes;
1141 sbitmap workset = sbitmap_alloc (num_nodes);
1142 sbitmap tmp = sbitmap_alloc (num_nodes);
1143
1144
1145 /* Data will hold the distance of the longest path found so far from
1146 src to each node. Initialize to -1 = less than minimum. */
1147 for (i = 0; i < g->num_nodes; i++)
1148 g->nodes[i].aux.count = -1;
1149 g->nodes[src].aux.count = 0;
1150
1151 sbitmap_zero (tmp);
1152 SET_BIT (tmp, src);
1153
1154 while (change)
1155 {
1156 sbitmap_iterator sbi;
1157
1158 change = 0;
1159 sbitmap_copy (workset, tmp);
1160 sbitmap_zero (tmp);
1161 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1162 {
1163 ddg_node_ptr u_node = &g->nodes[u];
1164
1165 change |= update_dist_to_successors (u_node, nodes, tmp);
1166 }
1167 }
1168 result = g->nodes[dest].aux.count;
1169 sbitmap_free (workset);
1170 sbitmap_free (tmp);
1171 return result;
1172 }
1173
1174 #endif /* INSN_SCHEDULING */