59602dea2917265e8a5733aa3d411daab0883fbb
[gcc.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Originally contributed by Michael P. Hayes
5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 2, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 02110-1301, USA.
25 */
26
27 /*
28 OVERVIEW:
29
30 The files in this collection (df*.c,df.h) provide a general framework
31 for solving dataflow problems. The global dataflow is performed using
32 a good implementation of iterative dataflow analysis.
33
34 The file df-problems.c provides problem instance for the most common
35 dataflow problems: reaching defs, upward exposed uses, live variables,
36 uninitialized variables, def-use chains, and use-def chains. However,
37 the interface allows other dataflow problems to be defined as well.
38
39
40 USAGE:
41
42 Here is an example of using the dataflow routines.
43
44 struct df *df;
45
46 df = df_init (init_flags);
47
48 df_add_problem (df, problem);
49
50 df_set_blocks (df, blocks);
51
52 df_rescan_blocks (df, blocks);
53
54 df_analyze (df);
55
56 df_dump (df, stderr);
57
58 df_finish (df);
59
60
61
62 DF_INIT simply creates a poor man's object (df) that needs to be
63 passed to all the dataflow routines. df_finish destroys this object
64 and frees up any allocated memory.
65
66 There are two flags that can be passed to df_init:
67
68 DF_NO_SCAN means that no scanning of the rtl code is performed. This
69 is used if the problem instance is to do it's own scanning.
70
71 DF_HARD_REGS means that the scanning is to build information about
72 both pseudo registers and hardware registers. Without this
73 information, the problems will be solved only on pseudo registers.
74
75
76
77 DF_ADD_PROBLEM adds a problem, defined by an instance to struct
78 df_problem, to the set of problems solved in this instance of df. All
79 calls to add a problem for a given instance of df must occur before
80 the first call to DF_RESCAN_BLOCKS or DF_ANALYZE.
81
82 For all of the problems defined in df-problems.c, there are
83 convienence functions named DF_*_ADD_PROBLEM.
84
85
86 Problems can be dependent on other problems. For instance, solving
87 def-use or use-def chains is dependant on solving reaching
88 definitions. As long as these dependancies are listed in the problem
89 definition, the order of adding the problems is not material.
90 Otherwise, the problems will be solved in the order of calls to
91 df_add_problem. Note that it is not necessary to have a problem. In
92 that case, df will just be used to do the scanning.
93
94
95
96 DF_SET_BLOCKS is an optional call used to define a region of the
97 function on which the analysis will be performed. The normal case is
98 to analyze the entire function and no call to df_set_blocks is made.
99
100 When a subset is given, the analysis behaves as if the function only
101 contains those blocks and any edges that occur directly between the
102 blocks in the set. Care should be taken to call df_set_blocks right
103 before the call to analyze in order to eliminate the possiblity that
104 optimizations that reorder blocks invalidate the bitvector.
105
106
107
108 DF_RESCAN_BLOCKS is an optional call that causes the scanner to be
109 (re)run over the set of blocks passed in. If blocks is NULL, the entire
110 function (or all of the blocks defined in df_set_blocks) is rescanned.
111 If blocks contains blocks that were not defined in the call to
112 df_set_blocks, these blocks are added to the set of blocks.
113
114
115 DF_ANALYZE causes all of the defined problems to be (re)solved. It
116 does not cause blocks to be (re)scanned at the rtl level unless no
117 prior call is made to df_rescan_blocks.
118
119
120 DF_DUMP can then be called to dump the information produce to some
121 file.
122
123
124
125 DF_FINISH causes all of the datastructures to be cleaned up and freed.
126 The df_instance is also freed and its pointer should be NULLed.
127
128
129
130
131 Scanning produces a `struct df_ref' data structure (ref) is allocated
132 for every register reference (def or use) and this records the insn
133 and bb the ref is found within. The refs are linked together in
134 chains of uses and defs for each insn and for each register. Each ref
135 also has a chain field that links all the use refs for a def or all
136 the def refs for a use. This is used to create use-def or def-use
137 chains.
138
139 Different optimizations have different needs. Ultimately, only
140 register allocation and schedulers should be using the bitmaps
141 produced for the live register and uninitialized register problems.
142 The rest of the backend should be upgraded to using and maintaining
143 the linked information such as def use or use def chains.
144
145
146
147 PHILOSOPHY:
148
149 While incremental bitmaps are not worthwhile to maintain, incremental
150 chains may be perfectly reasonable. The fastest way to build chains
151 from scratch or after significant modifications is to build reaching
152 definitions (RD) and build the chains from this.
153
154 However, general algorithms for maintaining use-def or def-use chains
155 are not practical. The amount of work to recompute the chain any
156 chain after an arbitrary change is large. However, with a modest
157 amount of work it is generally possible to have the application that
158 uses the chains keep them up to date. The high level knowledge of
159 what is really happening is essential to crafting efficient
160 incremental algorithms.
161
162 As for the bit vector problems, there is no interface to give a set of
163 blocks over with to resolve the iteration. In general, restarting a
164 dataflow iteration is difficult and expensive. Again, the best way to
165 keep the dataflow infomation up to data (if this is really what is
166 needed) it to formulate a problem specific solution.
167
168 There are fine grained calls for creating and deleting references from
169 instructions in df-scan.c. However, these are not currently connected
170 to the engine that resolves the dataflow equations.
171
172
173 DATA STRUCTURES:
174
175 The basic object is a DF_REF (reference) and this may either be a
176 DEF (definition) or a USE of a register.
177
178 These are linked into a variety of lists; namely reg-def, reg-use,
179 insn-def, insn-use, def-use, and use-def lists. For example, the
180 reg-def lists contain all the locations that define a given register
181 while the insn-use lists contain all the locations that use a
182 register.
183
184 Note that the reg-def and reg-use chains are generally short for
185 pseudos and long for the hard registers.
186
187 ACCESSING REFS:
188
189 There are 4 ways to obtain access to refs:
190
191 1) References are divided into two categories, REAL and ARTIFICIAL.
192
193 REAL refs are associated with instructions. They are linked into
194 either in the insn's defs list (accessed by the DF_INSN_DEFS or
195 DF_INSN_UID_DEFS macros) or the insn's uses list (accessed by the
196 DF_INSN_USES or DF_INSN_UID_USES macros). These macros produce a
197 ref (or NULL), the rest of the list can be obtained by traversal of
198 the NEXT_REF field (accessed by the DF_REF_NEXT_REF macro.) There
199 is no significance to the ordering of the uses or refs in an
200 instruction.
201
202 ARTIFICIAL refs are associated with basic blocks. The heads of
203 these lists can be accessed by calling get_artificial_defs or
204 get_artificial_uses for the particular basic block. Artificial
205 defs and uses are only there if DF_HARD_REGS was specified when the
206 df instance was created.
207
208 Artificial defs and uses occur at the beginning blocks that are the
209 destination of eh edges. The defs come from the registers
210 specified in EH_RETURN_DATA_REGNO and the uses come from the
211 registers specified in ED_USES. Logically these defs and uses
212 should really occur along the eh edge, but there is no convienent
213 way to do this. Artificial edges that occur at the beginning of
214 the block have the DF_REF_AT_TOP flag set.
215
216 Artificial uses also occur at the end of all blocks. These arise
217 from the hard registers that are always live, such as the stack
218 register and are put there to keep the code from forgetting about
219 them.
220
221 2) All of the uses and defs associated with each pseudo or hard
222 register are linked in a bidirectional chain. These are called
223 reg-use or reg_def chains.
224
225 The first use (or def) for a register can be obtained using the
226 DF_REG_USE_GET macro (or DF_REG_DEF_GET macro). Subsequent uses
227 for the same regno can be obtained by following the next_reg field
228 of the ref.
229
230 In previous versions of this code, these chains were ordered. It
231 has not been practical to continue this practice.
232
233 3) If def-use or use-def chains are built, these can be traversed to
234 get to other refs.
235
236 4) An array of all of the uses (and an array of all of the defs) can
237 be built. These arrays are indexed by the value in the id
238 structure. These arrays are only lazily kept up to date, and that
239 process can be expensive. To have these arrays built, call
240 df_reorganize_refs. Note that the values in the id field of a ref
241 may change across calls to df_analyze or df_reorganize refs.
242
243 If the only use of this array is to find all of the refs, it is
244 better to traverse all of the registers and then traverse all of
245 reg-use or reg-def chains.
246
247
248
249 NOTES:
250
251 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
252 both a use and a def. These are both marked read/write to show that they
253 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
254 will generate a use of reg 42 followed by a def of reg 42 (both marked
255 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
256 generates a use of reg 41 then a def of reg 41 (both marked read/write),
257 even though reg 41 is decremented before it is used for the memory
258 address in this second example.
259
260 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
261 for which the number of word_mode units covered by the outer mode is
262 smaller than that covered by the inner mode, invokes a read-modify-write.
263 operation. We generate both a use and a def and again mark them
264 read/write.
265
266 Paradoxical subreg writes do not leave a trace of the old content, so they
267 are write-only operations.
268 */
269
270
271 #include "config.h"
272 #include "system.h"
273 #include "coretypes.h"
274 #include "tm.h"
275 #include "rtl.h"
276 #include "tm_p.h"
277 #include "insn-config.h"
278 #include "recog.h"
279 #include "function.h"
280 #include "regs.h"
281 #include "output.h"
282 #include "alloc-pool.h"
283 #include "flags.h"
284 #include "hard-reg-set.h"
285 #include "basic-block.h"
286 #include "sbitmap.h"
287 #include "bitmap.h"
288 #include "timevar.h"
289 #include "df.h"
290 #include "tree-pass.h"
291
292 static struct df *ddf = NULL;
293 struct df *shared_df = NULL;
294
295 /*----------------------------------------------------------------------------
296 Functions to create, destroy and manipulate an instance of df.
297 ----------------------------------------------------------------------------*/
298
299
300 /* Initialize dataflow analysis and allocate and initialize dataflow
301 memory. */
302
303 struct df *
304 df_init (int flags)
305 {
306 struct df *df = xcalloc (1, sizeof (struct df));
307 df->flags = flags;
308
309 /* This is executed once per compilation to initialize platform
310 specific data structures. */
311 df_hard_reg_init ();
312
313 /* All df instance must define the scanning problem. */
314 df_scan_add_problem (df);
315 ddf = df;
316 return df;
317 }
318
319 /* Add PROBLEM to the DF instance. */
320
321 struct dataflow *
322 df_add_problem (struct df *df, struct df_problem *problem)
323 {
324 struct dataflow *dflow;
325
326 /* First try to add the dependent problem. */
327 if (problem->dependent_problem)
328 df_add_problem (df, problem->dependent_problem);
329
330 /* Check to see if this problem has already been defined. If it
331 has, just return that instance, if not, add it to the end of the
332 vector. */
333 dflow = df->problems_by_index[problem->id];
334 if (dflow)
335 return dflow;
336
337 /* Make a new one and add it to the end. */
338 dflow = xcalloc (1, sizeof (struct dataflow));
339 dflow->df = df;
340 dflow->problem = problem;
341 df->problems_in_order[df->num_problems_defined++] = dflow;
342 df->problems_by_index[dflow->problem->id] = dflow;
343
344 return dflow;
345 }
346
347
348 /* Set the blocks that are to be considered for analysis. If this is
349 not called or is called with null, the entire function in
350 analyzed. */
351
352 void
353 df_set_blocks (struct df *df, bitmap blocks)
354 {
355 if (blocks)
356 {
357 if (!df->blocks_to_analyze)
358 df->blocks_to_analyze = BITMAP_ALLOC (NULL);
359 bitmap_copy (df->blocks_to_analyze, blocks);
360 }
361 else
362 {
363 if (df->blocks_to_analyze)
364 {
365 BITMAP_FREE (df->blocks_to_analyze);
366 df->blocks_to_analyze = NULL;
367 }
368 }
369 }
370
371
372 /* Free all the dataflow info and the DF structure. This should be
373 called from the df_finish macro which also NULLs the parm. */
374
375 void
376 df_finish1 (struct df *df)
377 {
378 int i;
379
380 for (i = 0; i < df->num_problems_defined; i++)
381 (*df->problems_in_order[i]->problem->free_fun) (df->problems_in_order[i]);
382
383 free (df);
384 }
385
386 \f
387 /*----------------------------------------------------------------------------
388 The general data flow analysis engine.
389 ----------------------------------------------------------------------------*/
390
391
392 /* Hybrid search algorithm from "Implementation Techniques for
393 Efficient Data-Flow Analysis of Large Programs". */
394
395 static void
396 df_hybrid_search_forward (basic_block bb,
397 struct dataflow *dataflow,
398 bool single_pass)
399 {
400 int result_changed;
401 int i = bb->index;
402 edge e;
403 edge_iterator ei;
404
405 SET_BIT (dataflow->visited, bb->index);
406 gcc_assert (TEST_BIT (dataflow->pending, bb->index));
407 RESET_BIT (dataflow->pending, i);
408
409 /* Calculate <conf_op> of predecessor_outs. */
410 if (EDGE_COUNT (bb->preds) > 0)
411 FOR_EACH_EDGE (e, ei, bb->preds)
412 {
413 if (!TEST_BIT (dataflow->considered, e->src->index))
414 continue;
415
416 (*dataflow->problem->con_fun_n) (dataflow, e);
417 }
418 else if (*dataflow->problem->con_fun_0)
419 (*dataflow->problem->con_fun_0) (dataflow, bb);
420
421 result_changed = (*dataflow->problem->trans_fun) (dataflow, i);
422
423 if (!result_changed || single_pass)
424 return;
425
426 FOR_EACH_EDGE (e, ei, bb->succs)
427 {
428 if (e->dest->index == i)
429 continue;
430 if (!TEST_BIT (dataflow->considered, e->dest->index))
431 continue;
432 SET_BIT (dataflow->pending, e->dest->index);
433 }
434
435 FOR_EACH_EDGE (e, ei, bb->succs)
436 {
437 if (e->dest->index == i)
438 continue;
439
440 if (!TEST_BIT (dataflow->considered, e->dest->index))
441 continue;
442 if (!TEST_BIT (dataflow->visited, e->dest->index))
443 df_hybrid_search_forward (e->dest, dataflow, single_pass);
444 }
445 }
446
447 static void
448 df_hybrid_search_backward (basic_block bb,
449 struct dataflow *dataflow,
450 bool single_pass)
451 {
452 int result_changed;
453 int i = bb->index;
454 edge e;
455 edge_iterator ei;
456
457 SET_BIT (dataflow->visited, bb->index);
458 gcc_assert (TEST_BIT (dataflow->pending, bb->index));
459 RESET_BIT (dataflow->pending, i);
460
461 /* Calculate <conf_op> of predecessor_outs. */
462 if (EDGE_COUNT (bb->succs) > 0)
463 FOR_EACH_EDGE (e, ei, bb->succs)
464 {
465 if (!TEST_BIT (dataflow->considered, e->dest->index))
466 continue;
467
468 (*dataflow->problem->con_fun_n) (dataflow, e);
469 }
470 else if (*dataflow->problem->con_fun_0)
471 (*dataflow->problem->con_fun_0) (dataflow, bb);
472
473 result_changed = (*dataflow->problem->trans_fun) (dataflow, i);
474
475 if (!result_changed || single_pass)
476 return;
477
478 FOR_EACH_EDGE (e, ei, bb->preds)
479 {
480 if (e->src->index == i)
481 continue;
482
483 if (!TEST_BIT (dataflow->considered, e->src->index))
484 continue;
485
486 SET_BIT (dataflow->pending, e->src->index);
487 }
488
489 FOR_EACH_EDGE (e, ei, bb->preds)
490 {
491 if (e->src->index == i)
492 continue;
493
494 if (!TEST_BIT (dataflow->considered, e->src->index))
495 continue;
496
497 if (!TEST_BIT (dataflow->visited, e->src->index))
498 df_hybrid_search_backward (e->src, dataflow, single_pass);
499 }
500 }
501
502
503 /* This function will perform iterative bitvector dataflow described
504 by DATAFLOW, producing the in and out sets. Only the part of the
505 cfg induced by blocks in DATAFLOW->order is taken into account.
506
507 SINGLE_PASS is true if you just want to make one pass over the
508 blocks. */
509
510 void
511 df_iterative_dataflow (struct dataflow *dataflow,
512 bitmap blocks_to_consider, bitmap blocks_to_init,
513 int *blocks_in_postorder, int n_blocks,
514 bool single_pass)
515 {
516 unsigned int idx;
517 int i;
518 sbitmap visited = sbitmap_alloc (last_basic_block);
519 sbitmap pending = sbitmap_alloc (last_basic_block);
520 sbitmap considered = sbitmap_alloc (last_basic_block);
521 bitmap_iterator bi;
522
523 dataflow->visited = visited;
524 dataflow->pending = pending;
525 dataflow->considered = considered;
526
527 sbitmap_zero (visited);
528 sbitmap_zero (pending);
529 sbitmap_zero (considered);
530
531 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, idx, bi)
532 {
533 SET_BIT (considered, idx);
534 }
535
536 for (i = 0; i < n_blocks; i++)
537 {
538 idx = blocks_in_postorder[i];
539 SET_BIT (pending, idx);
540 };
541
542 (*dataflow->problem->init_fun) (dataflow, blocks_to_init);
543
544 while (1)
545 {
546
547 /* For forward problems, you want to pass in reverse postorder
548 and for backward problems you want postorder. This has been
549 shown to be as good as you can do by several people, the
550 first being Mathew Hecht in his phd dissertation.
551
552 The nodes are passed into this function in postorder. */
553
554 if (dataflow->problem->dir == DF_FORWARD)
555 {
556 for (i = n_blocks - 1 ; i >= 0 ; i--)
557 {
558 idx = blocks_in_postorder[i];
559
560 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
561 df_hybrid_search_forward (BASIC_BLOCK (idx), dataflow, single_pass);
562 }
563 }
564 else
565 {
566 for (i = 0; i < n_blocks; i++)
567 {
568 idx = blocks_in_postorder[i];
569
570 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
571 df_hybrid_search_backward (BASIC_BLOCK (idx), dataflow, single_pass);
572 }
573 }
574
575 if (sbitmap_first_set_bit (pending) == -1)
576 break;
577
578 sbitmap_zero (visited);
579 }
580
581 sbitmap_free (pending);
582 sbitmap_free (visited);
583 sbitmap_free (considered);
584 }
585
586
587 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
588 the order of the remaining entries. Returns the length of the resulting
589 list. */
590
591 static unsigned
592 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
593 {
594 unsigned act, last;
595
596 for (act = 0, last = 0; act < len; act++)
597 if (bitmap_bit_p (blocks, list[act]))
598 list[last++] = list[act];
599
600 return last;
601 }
602
603
604 /* Execute dataflow analysis on a single dataflow problem.
605
606 There are three sets of blocks passed in:
607
608 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
609 examined or will be computed. For calls from DF_ANALYZE, this is
610 the set of blocks that has been passed to DF_SET_BLOCKS. For calls
611 from DF_ANALYZE_SIMPLE_CHANGE_SOME_BLOCKS, this is the set of
612 blocks in the fringe (the set of blocks passed in plus the set of
613 immed preds and succs of those blocks).
614
615 BLOCKS_TO_INIT are the blocks whose solution will be changed by
616 this iteration. For calls from DF_ANALYZE, this is the set of
617 blocks that has been passed to DF_SET_BLOCKS. For calls from
618 DF_ANALYZE_SIMPLE_CHANGE_SOME_BLOCKS, this is the set of blocks
619 passed in.
620
621 BLOCKS_TO_SCAN are the set of blocks that need to be rescanned.
622 For calls from DF_ANALYZE, this is the accumulated set of blocks
623 that has been passed to DF_RESCAN_BLOCKS since the last call to
624 DF_ANALYZE. For calls from DF_ANALYZE_SIMPLE_CHANGE_SOME_BLOCKS,
625 this is the set of blocks passed in.
626
627 blocks_to_consider blocks_to_init blocks_to_scan
628 full redo all all all
629 partial redo all all sub
630 small fixup fringe sub sub
631 */
632
633 static void
634 df_analyze_problem (struct dataflow *dflow,
635 bitmap blocks_to_consider,
636 bitmap blocks_to_init,
637 bitmap blocks_to_scan,
638 int *postorder, int n_blocks, bool single_pass)
639 {
640 /* (Re)Allocate the datastructures necessary to solve the problem. */
641 if (*dflow->problem->alloc_fun)
642 (*dflow->problem->alloc_fun) (dflow, blocks_to_scan);
643
644 /* Set up the problem and compute the local information. This
645 function is passed both the blocks_to_consider and the
646 blocks_to_scan because the RD and RU problems require the entire
647 function to be rescanned if they are going to be updated. */
648 if (*dflow->problem->local_compute_fun)
649 (*dflow->problem->local_compute_fun) (dflow, blocks_to_consider, blocks_to_scan);
650
651 /* Solve the equations. */
652 if (*dflow->problem->dataflow_fun)
653 (*dflow->problem->dataflow_fun) (dflow, blocks_to_consider, blocks_to_init,
654 postorder, n_blocks, single_pass);
655
656 /* Massage the solution. */
657 if (*dflow->problem->finalize_fun)
658 (*dflow->problem->finalize_fun) (dflow, blocks_to_consider);
659 }
660
661
662 /* Analyze dataflow info for the basic blocks specified by the bitmap
663 BLOCKS, or for the whole CFG if BLOCKS is zero. */
664
665 void
666 df_analyze (struct df *df)
667 {
668 int *postorder = xmalloc (sizeof (int) *last_basic_block);
669 bitmap current_all_blocks = BITMAP_ALLOC (NULL);
670 int n_blocks;
671 int i;
672 bool everything;
673
674 n_blocks = post_order_compute (postorder, true);
675
676 if (n_blocks != n_basic_blocks)
677 delete_unreachable_blocks ();
678
679 for (i = 0; i < n_blocks; i++)
680 bitmap_set_bit (current_all_blocks, postorder[i]);
681
682 /* No one called df_rescan_blocks, so do it. */
683 if (!df->blocks_to_scan)
684 df_rescan_blocks (df, NULL);
685
686 /* Make sure that we have pruned any unreachable blocks from these
687 sets. */
688 bitmap_and_into (df->blocks_to_scan, current_all_blocks);
689
690 if (df->blocks_to_analyze)
691 {
692 everything = false;
693 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
694 n_blocks = df_prune_to_subcfg (postorder, n_blocks, df->blocks_to_analyze);
695 BITMAP_FREE (current_all_blocks);
696 }
697 else
698 {
699 everything = true;
700 df->blocks_to_analyze = current_all_blocks;
701 current_all_blocks = NULL;
702 }
703
704 /* Skip over the DF_SCAN problem. */
705 for (i = 1; i < df->num_problems_defined; i++)
706 df_analyze_problem (df->problems_in_order[i],
707 df->blocks_to_analyze, df->blocks_to_analyze,
708 df->blocks_to_scan,
709 postorder, n_blocks, false);
710
711 if (everything)
712 {
713 BITMAP_FREE (df->blocks_to_analyze);
714 df->blocks_to_analyze = NULL;
715 }
716
717 BITMAP_FREE (df->blocks_to_scan);
718 df->blocks_to_scan = NULL;
719 }
720
721
722 \f
723 /*----------------------------------------------------------------------------
724 Functions to support limited incremental change.
725 ----------------------------------------------------------------------------*/
726
727
728 /* Get basic block info. */
729
730 static void *
731 df_get_bb_info (struct dataflow *dflow, unsigned int index)
732 {
733 return (struct df_scan_bb_info *) dflow->block_info[index];
734 }
735
736
737 /* Set basic block info. */
738
739 static void
740 df_set_bb_info (struct dataflow *dflow, unsigned int index,
741 void *bb_info)
742 {
743 dflow->block_info[index] = bb_info;
744 }
745
746
747 /* Called from the rtl_compact_blocks to reorganize the problems basic
748 block info. */
749
750 void
751 df_compact_blocks (struct df *df)
752 {
753 int i, p;
754 basic_block bb;
755 void **problem_temps;
756 int size = last_basic_block *sizeof (void *);
757 problem_temps = xmalloc (size);
758
759 for (p = 0; p < df->num_problems_defined; p++)
760 {
761 struct dataflow *dflow = df->problems_in_order[p];
762 if (*dflow->problem->free_bb_fun)
763 {
764 df_grow_bb_info (dflow);
765 memcpy (problem_temps, dflow->block_info, size);
766
767 /* Copy the bb info from the problem tmps to the proper
768 place in the block_info vector. Null out the copied
769 item. */
770 i = NUM_FIXED_BLOCKS;
771 FOR_EACH_BB (bb)
772 {
773 df_set_bb_info (dflow, i, problem_temps[bb->index]);
774 problem_temps[bb->index] = NULL;
775 i++;
776 }
777 memset (dflow->block_info + i, 0,
778 (last_basic_block - i) *sizeof (void *));
779
780 /* Free any block infos that were not copied (and NULLed).
781 These are from orphaned blocks. */
782 for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
783 {
784 if (problem_temps[i])
785 (*dflow->problem->free_bb_fun) (dflow, problem_temps[i]);
786 }
787 }
788 }
789
790 free (problem_temps);
791
792 i = NUM_FIXED_BLOCKS;
793 FOR_EACH_BB (bb)
794 {
795 SET_BASIC_BLOCK (i, bb);
796 bb->index = i;
797 i++;
798 }
799
800 gcc_assert (i == n_basic_blocks);
801
802 for (; i < last_basic_block; i++)
803 SET_BASIC_BLOCK (i, NULL);
804 }
805
806
807 /* Shove NEW_BLOCK in at OLD_INDEX. Called from if-cvt to hack a
808 block. There is no excuse for people to do this kind of thing. */
809
810 void
811 df_bb_replace (struct df *df, int old_index, basic_block new_block)
812 {
813 int p;
814
815 for (p = 0; p < df->num_problems_defined; p++)
816 {
817 struct dataflow *dflow = df->problems_in_order[p];
818 if (dflow->block_info)
819 {
820 void *temp;
821
822 df_grow_bb_info (dflow);
823
824 /* The old switcheroo. */
825
826 temp = df_get_bb_info (dflow, old_index);
827 df_set_bb_info (dflow, old_index,
828 df_get_bb_info (dflow, new_block->index));
829 df_set_bb_info (dflow, new_block->index, temp);
830 }
831 }
832
833 SET_BASIC_BLOCK (old_index, new_block);
834 new_block->index = old_index;
835 }
836
837 /*----------------------------------------------------------------------------
838 PUBLIC INTERFACES TO QUERY INFORMATION.
839 ----------------------------------------------------------------------------*/
840
841
842 /* Return last use of REGNO within BB. */
843
844 struct df_ref *
845 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
846 {
847 rtx insn;
848 struct df_ref *use;
849
850 FOR_BB_INSNS_REVERSE (bb, insn)
851 {
852 unsigned int uid = INSN_UID (insn);
853 for (use = DF_INSN_UID_GET (df, uid)->uses; use; use = use->next_ref)
854 if (DF_REF_REGNO (use) == regno)
855 return use;
856 }
857 return NULL;
858 }
859
860
861 /* Return first def of REGNO within BB. */
862
863 struct df_ref *
864 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
865 {
866 rtx insn;
867 struct df_ref *def;
868
869 FOR_BB_INSNS (bb, insn)
870 {
871 unsigned int uid = INSN_UID (insn);
872 for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
873 if (DF_REF_REGNO (def) == regno)
874 return def;
875 }
876 return NULL;
877 }
878
879
880 /* Return last def of REGNO within BB. */
881
882 struct df_ref *
883 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
884 {
885 rtx insn;
886 struct df_ref *def;
887
888 FOR_BB_INSNS_REVERSE (bb, insn)
889 {
890 unsigned int uid = INSN_UID (insn);
891
892 for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
893 if (DF_REF_REGNO (def) == regno)
894 return def;
895 }
896
897 return NULL;
898 }
899
900 /* Return true if INSN defines REGNO. */
901
902 bool
903 df_insn_regno_def_p (struct df *df, rtx insn, unsigned int regno)
904 {
905 unsigned int uid;
906 struct df_ref *def;
907
908 uid = INSN_UID (insn);
909 for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
910 if (DF_REF_REGNO (def) == regno)
911 return true;
912
913 return false;
914 }
915
916
917 /* Finds the reference corresponding to the definition of REG in INSN.
918 DF is the dataflow object. */
919
920 struct df_ref *
921 df_find_def (struct df *df, rtx insn, rtx reg)
922 {
923 unsigned int uid;
924 struct df_ref *def;
925
926 if (GET_CODE (reg) == SUBREG)
927 reg = SUBREG_REG (reg);
928 gcc_assert (REG_P (reg));
929
930 uid = INSN_UID (insn);
931 for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
932 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
933 return def;
934
935 return NULL;
936 }
937
938
939 /* Return true if REG is defined in INSN, zero otherwise. */
940
941 bool
942 df_reg_defined (struct df *df, rtx insn, rtx reg)
943 {
944 return df_find_def (df, insn, reg) != NULL;
945 }
946
947
948 /* Finds the reference corresponding to the use of REG in INSN.
949 DF is the dataflow object. */
950
951 struct df_ref *
952 df_find_use (struct df *df, rtx insn, rtx reg)
953 {
954 unsigned int uid;
955 struct df_ref *use;
956
957 if (GET_CODE (reg) == SUBREG)
958 reg = SUBREG_REG (reg);
959 gcc_assert (REG_P (reg));
960
961 uid = INSN_UID (insn);
962 for (use = DF_INSN_UID_GET (df, uid)->uses; use; use = use->next_ref)
963 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
964 return use;
965
966 return NULL;
967 }
968
969
970 /* Return true if REG is referenced in INSN, zero otherwise. */
971
972 bool
973 df_reg_used (struct df *df, rtx insn, rtx reg)
974 {
975 return df_find_use (df, insn, reg) != NULL;
976 }
977
978 \f
979 /*----------------------------------------------------------------------------
980 Debugging and printing functions.
981 ----------------------------------------------------------------------------*/
982
983 /* Dump dataflow info. */
984 void
985 df_dump (struct df *df, FILE *file)
986 {
987 int i;
988
989 if (! df || ! file)
990 return;
991
992 fprintf (file, "\n\n%s\n", current_function_name ());
993 fprintf (file, "\nDataflow summary:\n");
994 fprintf (file, "def_info->bitmap_size = %d, use_info->bitmap_size = %d\n",
995 df->def_info.bitmap_size, df->use_info.bitmap_size);
996
997 for (i = 0; i < df->num_problems_defined; i++)
998 (*df->problems_in_order[i]->problem->dump_fun) (df->problems_in_order[i], file);
999
1000 fprintf (file, "\n");
1001 }
1002
1003
1004 void
1005 df_refs_chain_dump (struct df *df, struct df_ref *ref,
1006 bool follow_chain, FILE *file)
1007 {
1008 fprintf (file, "{ ");
1009 while (ref)
1010 {
1011 fprintf (file, "%c%d(%d) ",
1012 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
1013 DF_REF_ID (ref),
1014 DF_REF_REGNO (ref));
1015 if (follow_chain)
1016 df_chain_dump (df, DF_REF_CHAIN (ref), file);
1017 ref = ref->next_ref;
1018 }
1019 fprintf (file, "}");
1020 }
1021
1022
1023 /* Dump either a ref-def or reg-use chain. */
1024
1025 void
1026 df_regs_chain_dump (struct df *df ATTRIBUTE_UNUSED, struct df_ref *ref, FILE *file)
1027 {
1028 fprintf (file, "{ ");
1029 while (ref)
1030 {
1031 fprintf (file, "%c%d(%d) ",
1032 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
1033 DF_REF_ID (ref),
1034 DF_REF_REGNO (ref));
1035 ref = ref->next_reg;
1036 }
1037 fprintf (file, "}");
1038 }
1039
1040
1041 void
1042 df_insn_debug (struct df *df, rtx insn, bool follow_chain, FILE *file)
1043 {
1044 unsigned int uid;
1045 int bbi;
1046
1047 uid = INSN_UID (insn);
1048
1049 if (DF_INSN_UID_DEFS (df, uid))
1050 bbi = DF_REF_BBNO (DF_INSN_UID_DEFS (df, uid));
1051 else if (DF_INSN_UID_USES(df, uid))
1052 bbi = DF_REF_BBNO (DF_INSN_UID_USES (df, uid));
1053 else
1054 bbi = -1;
1055
1056 fprintf (file, "insn %d bb %d luid %d defs ",
1057 uid, bbi, DF_INSN_LUID (df, insn));
1058
1059 df_refs_chain_dump (df, DF_INSN_UID_DEFS (df, uid), follow_chain, file);
1060 fprintf (file, " defs ");
1061 df_refs_chain_dump (df, DF_INSN_UID_USES (df, uid), follow_chain, file);
1062 fprintf (file, "\n");
1063 }
1064
1065 void
1066 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
1067 {
1068 unsigned int uid;
1069 int bbi;
1070
1071 uid = INSN_UID (insn);
1072 if (DF_INSN_UID_DEFS (df, uid))
1073 bbi = DF_REF_BBNO (DF_INSN_UID_DEFS (df, uid));
1074 else if (DF_INSN_UID_USES(df, uid))
1075 bbi = DF_REF_BBNO (DF_INSN_UID_USES (df, uid));
1076 else
1077 bbi = -1;
1078
1079 fprintf (file, "insn %d bb %d luid %d defs ",
1080 uid, bbi, DF_INSN_LUID (df, insn));
1081 df_regs_chain_dump (df, DF_INSN_UID_DEFS (df, uid), file);
1082
1083 fprintf (file, " uses ");
1084 df_regs_chain_dump (df, DF_INSN_UID_USES (df, uid), file);
1085 fprintf (file, "\n");
1086 }
1087
1088 void
1089 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
1090 {
1091 fprintf (file, "reg %d defs ", regno);
1092 df_regs_chain_dump (df, DF_REG_DEF_GET (df, regno)->reg_chain, file);
1093 fprintf (file, " uses ");
1094 df_regs_chain_dump (df, DF_REG_USE_GET (df, regno)->reg_chain, file);
1095 fprintf (file, "\n");
1096 }
1097
1098
1099 void
1100 df_ref_debug (struct df *df, struct df_ref *ref, FILE *file)
1101 {
1102 fprintf (file, "%c%d ",
1103 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
1104 DF_REF_ID (ref));
1105 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
1106 DF_REF_REGNO (ref),
1107 DF_REF_BBNO (ref),
1108 DF_REF_INSN (ref) ? DF_INSN_LUID (df, DF_REF_INSN (ref)) : -1,
1109 DF_REF_INSN (ref) ? INSN_UID (DF_REF_INSN (ref)) : -1);
1110 df_chain_dump (df, DF_REF_CHAIN (ref), file);
1111 fprintf (file, "\n");
1112 }
1113 \f
1114 /* Functions for debugging from GDB. */
1115
1116 void
1117 debug_df_insn (rtx insn)
1118 {
1119 df_insn_debug (ddf, insn, true, stderr);
1120 debug_rtx (insn);
1121 }
1122
1123
1124 void
1125 debug_df_reg (rtx reg)
1126 {
1127 df_regno_debug (ddf, REGNO (reg), stderr);
1128 }
1129
1130
1131 void
1132 debug_df_regno (unsigned int regno)
1133 {
1134 df_regno_debug (ddf, regno, stderr);
1135 }
1136
1137
1138 void
1139 debug_df_ref (struct df_ref *ref)
1140 {
1141 df_ref_debug (ddf, ref, stderr);
1142 }
1143
1144
1145 void
1146 debug_df_defno (unsigned int defno)
1147 {
1148 df_ref_debug (ddf, DF_DEFS_GET (ddf, defno), stderr);
1149 }
1150
1151
1152 void
1153 debug_df_useno (unsigned int defno)
1154 {
1155 df_ref_debug (ddf, DF_USES_GET (ddf, defno), stderr);
1156 }
1157
1158
1159 void
1160 debug_df_chain (struct df_link *link)
1161 {
1162 df_chain_dump (ddf, link, stderr);
1163 fputc ('\n', stderr);
1164 }