gensupport.c (init_rtx_reader_args_cb): Start counting code generating patterns from...
[gcc.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Originally contributed by Michael P. Hayes
5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /*
26 OVERVIEW:
27
28 The files in this collection (df*.c,df.h) provide a general framework
29 for solving dataflow problems. The global dataflow is performed using
30 a good implementation of iterative dataflow analysis.
31
32 The file df-problems.c provides problem instance for the most common
33 dataflow problems: reaching defs, upward exposed uses, live variables,
34 uninitialized variables, def-use chains, and use-def chains. However,
35 the interface allows other dataflow problems to be defined as well.
36
37 Dataflow analysis is available in most of the rtl backend (the parts
38 between pass_df_initialize and pass_df_finish). It is quite likely
39 that these boundaries will be expanded in the future. The only
40 requirement is that there be a correct control flow graph.
41
42 There are three variations of the live variable problem that are
43 available whenever dataflow is available. The LR problem finds the
44 areas that can reach a use of a variable, the UR problems finds the
45 areas that can be reached from a definition of a variable. The LIVE
46 problem finds the intersection of these two areas.
47
48 There are several optional problems. These can be enabled when they
49 are needed and disabled when they are not needed.
50
51 Dataflow problems are generally solved in three layers. The bottom
52 layer is called scanning where a data structure is built for each rtl
53 insn that describes the set of defs and uses of that insn. Scanning
54 is generally kept up to date, i.e. as the insns changes, the scanned
55 version of that insn changes also. There are various mechanisms for
56 making this happen and are described in the INCREMENTAL SCANNING
57 section.
58
59 In the middle layer, basic blocks are scanned to produce transfer
60 functions which describe the effects of that block on the global
61 dataflow solution. The transfer functions are only rebuilt if the
62 some instruction within the block has changed.
63
64 The top layer is the dataflow solution itself. The dataflow solution
65 is computed by using an efficient iterative solver and the transfer
66 functions. The dataflow solution must be recomputed whenever the
67 control changes or if one of the transfer function changes.
68
69
70 USAGE:
71
72 Here is an example of using the dataflow routines.
73
74 df_[chain,live,note,rd]_add_problem (flags);
75
76 df_set_blocks (blocks);
77
78 df_analyze ();
79
80 df_dump (stderr);
81
82 df_finish_pass (false);
83
84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85 instance to struct df_problem, to the set of problems solved in this
86 instance of df. All calls to add a problem for a given instance of df
87 must occur before the first call to DF_ANALYZE.
88
89 Problems can be dependent on other problems. For instance, solving
90 def-use or use-def chains is dependent on solving reaching
91 definitions. As long as these dependencies are listed in the problem
92 definition, the order of adding the problems is not material.
93 Otherwise, the problems will be solved in the order of calls to
94 df_add_problem. Note that it is not necessary to have a problem. In
95 that case, df will just be used to do the scanning.
96
97
98
99 DF_SET_BLOCKS is an optional call used to define a region of the
100 function on which the analysis will be performed. The normal case is
101 to analyze the entire function and no call to df_set_blocks is made.
102 DF_SET_BLOCKS only effects the blocks that are effected when computing
103 the transfer functions and final solution. The insn level information
104 is always kept up to date.
105
106 When a subset is given, the analysis behaves as if the function only
107 contains those blocks and any edges that occur directly between the
108 blocks in the set. Care should be taken to call df_set_blocks right
109 before the call to analyze in order to eliminate the possibility that
110 optimizations that reorder blocks invalidate the bitvector.
111
112 DF_ANALYZE causes all of the defined problems to be (re)solved. When
113 DF_ANALYZE is completes, the IN and OUT sets for each basic block
114 contain the computer information. The DF_*_BB_INFO macros can be used
115 to access these bitvectors. All deferred rescannings are down before
116 the transfer functions are recomputed.
117
118 DF_DUMP can then be called to dump the information produce to some
119 file. This calls DF_DUMP_START, to print the information that is not
120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121 for each block to print the basic specific information. These parts
122 can all be called separately as part of a larger dump function.
123
124
125 DF_FINISH_PASS causes df_remove_problem to be called on all of the
126 optional problems. It also causes any insns whose scanning has been
127 deferred to be rescanned as well as clears all of the changeable flags.
128 Setting the pass manager TODO_df_finish flag causes this function to
129 be run. However, the pass manager will call df_finish_pass AFTER the
130 pass dumping has been done, so if you want to see the results of the
131 optional problems in the pass dumps, use the TODO flag rather than
132 calling the function yourself.
133
134 INCREMENTAL SCANNING
135
136 There are four ways of doing the incremental scanning:
137
138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
147 upon even after changes have been made to the instructions. This
148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
173 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
174 df_insn_delete do not immediately change the insn but instead make
175 a note that the insn needs to be rescanned. The next call to
176 df_analyze, df_finish_pass, or df_process_deferred_rescans will
177 cause all of the pending rescans to be processed.
178
179 This is the technique of choice if either 1a, 1b, or 1c are issues
180 in the pass. In the case of 1a or 1b, a call to df_finish_pass
181 (either manually or via TODO_df_finish) should be made before the
182 next call to df_analyze or df_process_deferred_rescans.
183
184 This mode is also used by a few passes that still rely on note_uses,
185 note_stores and for_each_rtx instead of using the DF data. This
186 can be said to fall under case 1c.
187
188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189 (This mode can be cleared by calling df_clear_flags
190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
191 be rescanned.
192
193 3) Total rescanning - In this mode the rescanning is disabled.
194 Only when insns are deleted is the df information associated with
195 it also deleted. At the end of the pass, a call must be made to
196 df_insn_rescan_all. This method is used by the register allocator
197 since it generally changes each insn multiple times (once for each ref)
198 and does not need to make use of the updated scanning information.
199
200 4) Do it yourself - In this mechanism, the pass updates the insns
201 itself using the low level df primitives. Currently no pass does
202 this, but it has the advantage that it is quite efficient given
203 that the pass generally has exact knowledge of what it is changing.
204
205 DATA STRUCTURES
206
207 Scanning produces a `struct df_ref' data structure (ref) is allocated
208 for every register reference (def or use) and this records the insn
209 and bb the ref is found within. The refs are linked together in
210 chains of uses and defs for each insn and for each register. Each ref
211 also has a chain field that links all the use refs for a def or all
212 the def refs for a use. This is used to create use-def or def-use
213 chains.
214
215 Different optimizations have different needs. Ultimately, only
216 register allocation and schedulers should be using the bitmaps
217 produced for the live register and uninitialized register problems.
218 The rest of the backend should be upgraded to using and maintaining
219 the linked information such as def use or use def chains.
220
221
222 PHILOSOPHY:
223
224 While incremental bitmaps are not worthwhile to maintain, incremental
225 chains may be perfectly reasonable. The fastest way to build chains
226 from scratch or after significant modifications is to build reaching
227 definitions (RD) and build the chains from this.
228
229 However, general algorithms for maintaining use-def or def-use chains
230 are not practical. The amount of work to recompute the chain any
231 chain after an arbitrary change is large. However, with a modest
232 amount of work it is generally possible to have the application that
233 uses the chains keep them up to date. The high level knowledge of
234 what is really happening is essential to crafting efficient
235 incremental algorithms.
236
237 As for the bit vector problems, there is no interface to give a set of
238 blocks over with to resolve the iteration. In general, restarting a
239 dataflow iteration is difficult and expensive. Again, the best way to
240 keep the dataflow information up to data (if this is really what is
241 needed) it to formulate a problem specific solution.
242
243 There are fine grained calls for creating and deleting references from
244 instructions in df-scan.c. However, these are not currently connected
245 to the engine that resolves the dataflow equations.
246
247
248 DATA STRUCTURES:
249
250 The basic object is a DF_REF (reference) and this may either be a
251 DEF (definition) or a USE of a register.
252
253 These are linked into a variety of lists; namely reg-def, reg-use,
254 insn-def, insn-use, def-use, and use-def lists. For example, the
255 reg-def lists contain all the locations that define a given register
256 while the insn-use lists contain all the locations that use a
257 register.
258
259 Note that the reg-def and reg-use chains are generally short for
260 pseudos and long for the hard registers.
261
262 ACCESSING INSNS:
263
264 1) The df insn information is kept in an array of DF_INSN_INFO objects.
265 The array is indexed by insn uid, and every DF_REF points to the
266 DF_INSN_INFO object of the insn that contains the reference.
267
268 2) Each insn has three sets of refs, which are linked into one of three
269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274 The latter list are the list of references in REG_EQUAL or REG_EQUIV
275 notes. These macros produce a ref (or NULL), the rest of the list
276 can be obtained by traversal of the NEXT_REF field (accessed by the
277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
278 the uses or refs in an instruction.
279
280 3) Each insn has a logical uid field (LUID) which is stored in the
281 DF_INSN_INFO object for the insn. The LUID field is accessed by
282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283 When properly set, the LUID is an integer that numbers each insn in
284 the basic block, in order from the start of the block.
285 The numbers are only correct after a call to df_analyze. They will
286 rot after insns are added deleted or moved round.
287
288 ACCESSING REFS:
289
290 There are 4 ways to obtain access to refs:
291
292 1) References are divided into two categories, REAL and ARTIFICIAL.
293
294 REAL refs are associated with instructions.
295
296 ARTIFICIAL refs are associated with basic blocks. The heads of
297 these lists can be accessed by calling df_get_artificial_defs or
298 df_get_artificial_uses for the particular basic block.
299
300 Artificial defs and uses occur both at the beginning and ends of blocks.
301
302 For blocks that area at the destination of eh edges, the
303 artificial uses and defs occur at the beginning. The defs relate
304 to the registers specified in EH_RETURN_DATA_REGNO and the uses
305 relate to the registers specified in ED_USES. Logically these
306 defs and uses should really occur along the eh edge, but there is
307 no convenient way to do this. Artificial edges that occur at the
308 beginning of the block have the DF_REF_AT_TOP flag set.
309
310 Artificial uses occur at the end of all blocks. These arise from
311 the hard registers that are always live, such as the stack
312 register and are put there to keep the code from forgetting about
313 them.
314
315 Artificial defs occur at the end of the entry block. These arise
316 from registers that are live at entry to the function.
317
318 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
319 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320
321 All of the eq_uses, uses and defs associated with each pseudo or
322 hard register may be linked in a bidirectional chain. These are
323 called reg-use or reg_def chains. If the changeable flag
324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
325 treated like uses. If it is not set they are ignored.
326
327 The first use, eq_use or def for a register can be obtained using
328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329 macros. Subsequent uses for the same regno can be obtained by
330 following the next_reg field of the ref. The number of elements in
331 each of the chains can be found by using the DF_REG_USE_COUNT,
332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333
334 In previous versions of this code, these chains were ordered. It
335 has not been practical to continue this practice.
336
337 3) If def-use or use-def chains are built, these can be traversed to
338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
339 include the eq_uses. Otherwise these are ignored when building the
340 chains.
341
342 4) An array of all of the uses (and an array of all of the defs) can
343 be built. These arrays are indexed by the value in the id
344 structure. These arrays are only lazily kept up to date, and that
345 process can be expensive. To have these arrays built, call
346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
347 has been set the array will contain the eq_uses. Otherwise these
348 are ignored when building the array and assigning the ids. Note
349 that the values in the id field of a ref may change across calls to
350 df_analyze or df_reorganize_defs or df_reorganize_uses.
351
352 If the only use of this array is to find all of the refs, it is
353 better to traverse all of the registers and then traverse all of
354 reg-use or reg-def chains.
355
356 NOTES:
357
358 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359 both a use and a def. These are both marked read/write to show that they
360 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361 will generate a use of reg 42 followed by a def of reg 42 (both marked
362 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363 generates a use of reg 41 then a def of reg 41 (both marked read/write),
364 even though reg 41 is decremented before it is used for the memory
365 address in this second example.
366
367 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368 for which the number of word_mode units covered by the outer mode is
369 smaller than that covered by the inner mode, invokes a read-modify-write
370 operation. We generate both a use and a def and again mark them
371 read/write.
372
373 Paradoxical subreg writes do not leave a trace of the old content, so they
374 are write-only operations.
375 */
376
377
378 #include "config.h"
379 #include "system.h"
380 #include "coretypes.h"
381 #include "tm.h"
382 #include "rtl.h"
383 #include "tm_p.h"
384 #include "insn-config.h"
385 #include "recog.h"
386 #include "function.h"
387 #include "regs.h"
388 #include "alloc-pool.h"
389 #include "flags.h"
390 #include "hard-reg-set.h"
391 #include "basic-block.h"
392 #include "sbitmap.h"
393 #include "bitmap.h"
394 #include "timevar.h"
395 #include "df.h"
396 #include "tree-pass.h"
397 #include "params.h"
398
399 static void *df_get_bb_info (struct dataflow *, unsigned int);
400 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
401 static void df_clear_bb_info (struct dataflow *, unsigned int);
402 #ifdef DF_DEBUG_CFG
403 static void df_set_clean_cfg (void);
404 #endif
405
406 /* The obstack on which regsets are allocated. */
407 struct bitmap_obstack reg_obstack;
408
409 /* An obstack for bitmap not related to specific dataflow problems.
410 This obstack should e.g. be used for bitmaps with a short life time
411 such as temporary bitmaps. */
412
413 bitmap_obstack df_bitmap_obstack;
414
415
416 /*----------------------------------------------------------------------------
417 Functions to create, destroy and manipulate an instance of df.
418 ----------------------------------------------------------------------------*/
419
420 struct df_d *df;
421
422 /* Add PROBLEM (and any dependent problems) to the DF instance. */
423
424 void
425 df_add_problem (struct df_problem *problem)
426 {
427 struct dataflow *dflow;
428 int i;
429
430 /* First try to add the dependent problem. */
431 if (problem->dependent_problem)
432 df_add_problem (problem->dependent_problem);
433
434 /* Check to see if this problem has already been defined. If it
435 has, just return that instance, if not, add it to the end of the
436 vector. */
437 dflow = df->problems_by_index[problem->id];
438 if (dflow)
439 return;
440
441 /* Make a new one and add it to the end. */
442 dflow = XCNEW (struct dataflow);
443 dflow->problem = problem;
444 dflow->computed = false;
445 dflow->solutions_dirty = true;
446 df->problems_by_index[dflow->problem->id] = dflow;
447
448 /* Keep the defined problems ordered by index. This solves the
449 problem that RI will use the information from UREC if UREC has
450 been defined, or from LIVE if LIVE is defined and otherwise LR.
451 However for this to work, the computation of RI must be pushed
452 after which ever of those problems is defined, but we do not
453 require any of those except for LR to have actually been
454 defined. */
455 df->num_problems_defined++;
456 for (i = df->num_problems_defined - 2; i >= 0; i--)
457 {
458 if (problem->id < df->problems_in_order[i]->problem->id)
459 df->problems_in_order[i+1] = df->problems_in_order[i];
460 else
461 {
462 df->problems_in_order[i+1] = dflow;
463 return;
464 }
465 }
466 df->problems_in_order[0] = dflow;
467 }
468
469
470 /* Set the MASK flags in the DFLOW problem. The old flags are
471 returned. If a flag is not allowed to be changed this will fail if
472 checking is enabled. */
473 int
474 df_set_flags (int changeable_flags)
475 {
476 int old_flags = df->changeable_flags;
477 df->changeable_flags |= changeable_flags;
478 return old_flags;
479 }
480
481
482 /* Clear the MASK flags in the DFLOW problem. The old flags are
483 returned. If a flag is not allowed to be changed this will fail if
484 checking is enabled. */
485 int
486 df_clear_flags (int changeable_flags)
487 {
488 int old_flags = df->changeable_flags;
489 df->changeable_flags &= ~changeable_flags;
490 return old_flags;
491 }
492
493
494 /* Set the blocks that are to be considered for analysis. If this is
495 not called or is called with null, the entire function in
496 analyzed. */
497
498 void
499 df_set_blocks (bitmap blocks)
500 {
501 if (blocks)
502 {
503 if (dump_file)
504 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
505 if (df->blocks_to_analyze)
506 {
507 /* This block is called to change the focus from one subset
508 to another. */
509 int p;
510 bitmap_head diff;
511 bitmap_initialize (&diff, &df_bitmap_obstack);
512 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
513 for (p = 0; p < df->num_problems_defined; p++)
514 {
515 struct dataflow *dflow = df->problems_in_order[p];
516 if (dflow->optional_p && dflow->problem->reset_fun)
517 dflow->problem->reset_fun (df->blocks_to_analyze);
518 else if (dflow->problem->free_blocks_on_set_blocks)
519 {
520 bitmap_iterator bi;
521 unsigned int bb_index;
522
523 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
524 {
525 basic_block bb = BASIC_BLOCK (bb_index);
526 if (bb)
527 {
528 void *bb_info = df_get_bb_info (dflow, bb_index);
529 dflow->problem->free_bb_fun (bb, bb_info);
530 df_clear_bb_info (dflow, bb_index);
531 }
532 }
533 }
534 }
535
536 bitmap_clear (&diff);
537 }
538 else
539 {
540 /* This block of code is executed to change the focus from
541 the entire function to a subset. */
542 bitmap_head blocks_to_reset;
543 bool initialized = false;
544 int p;
545 for (p = 0; p < df->num_problems_defined; p++)
546 {
547 struct dataflow *dflow = df->problems_in_order[p];
548 if (dflow->optional_p && dflow->problem->reset_fun)
549 {
550 if (!initialized)
551 {
552 basic_block bb;
553 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
554 FOR_ALL_BB(bb)
555 {
556 bitmap_set_bit (&blocks_to_reset, bb->index);
557 }
558 }
559 dflow->problem->reset_fun (&blocks_to_reset);
560 }
561 }
562 if (initialized)
563 bitmap_clear (&blocks_to_reset);
564
565 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
566 }
567 bitmap_copy (df->blocks_to_analyze, blocks);
568 df->analyze_subset = true;
569 }
570 else
571 {
572 /* This block is executed to reset the focus to the entire
573 function. */
574 if (dump_file)
575 fprintf (dump_file, "clearing blocks_to_analyze\n");
576 if (df->blocks_to_analyze)
577 {
578 BITMAP_FREE (df->blocks_to_analyze);
579 df->blocks_to_analyze = NULL;
580 }
581 df->analyze_subset = false;
582 }
583
584 /* Setting the blocks causes the refs to be unorganized since only
585 the refs in the blocks are seen. */
586 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
587 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
588 df_mark_solutions_dirty ();
589 }
590
591
592 /* Delete a DFLOW problem (and any problems that depend on this
593 problem). */
594
595 void
596 df_remove_problem (struct dataflow *dflow)
597 {
598 struct df_problem *problem;
599 int i;
600
601 if (!dflow)
602 return;
603
604 problem = dflow->problem;
605 gcc_assert (problem->remove_problem_fun);
606
607 /* Delete any problems that depended on this problem first. */
608 for (i = 0; i < df->num_problems_defined; i++)
609 if (df->problems_in_order[i]->problem->dependent_problem == problem)
610 df_remove_problem (df->problems_in_order[i]);
611
612 /* Now remove this problem. */
613 for (i = 0; i < df->num_problems_defined; i++)
614 if (df->problems_in_order[i] == dflow)
615 {
616 int j;
617 for (j = i + 1; j < df->num_problems_defined; j++)
618 df->problems_in_order[j-1] = df->problems_in_order[j];
619 df->problems_in_order[j-1] = NULL;
620 df->num_problems_defined--;
621 break;
622 }
623
624 (problem->remove_problem_fun) ();
625 df->problems_by_index[problem->id] = NULL;
626 }
627
628
629 /* Remove all of the problems that are not permanent. Scanning, LR
630 and (at -O2 or higher) LIVE are permanent, the rest are removable.
631 Also clear all of the changeable_flags. */
632
633 void
634 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
635 {
636 int i;
637 int removed = 0;
638
639 #ifdef ENABLE_DF_CHECKING
640 int saved_flags;
641 #endif
642
643 if (!df)
644 return;
645
646 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
647 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
648
649 #ifdef ENABLE_DF_CHECKING
650 saved_flags = df->changeable_flags;
651 #endif
652
653 for (i = 0; i < df->num_problems_defined; i++)
654 {
655 struct dataflow *dflow = df->problems_in_order[i];
656 struct df_problem *problem = dflow->problem;
657
658 if (dflow->optional_p)
659 {
660 gcc_assert (problem->remove_problem_fun);
661 (problem->remove_problem_fun) ();
662 df->problems_in_order[i] = NULL;
663 df->problems_by_index[problem->id] = NULL;
664 removed++;
665 }
666 }
667 df->num_problems_defined -= removed;
668
669 /* Clear all of the flags. */
670 df->changeable_flags = 0;
671 df_process_deferred_rescans ();
672
673 /* Set the focus back to the whole function. */
674 if (df->blocks_to_analyze)
675 {
676 BITMAP_FREE (df->blocks_to_analyze);
677 df->blocks_to_analyze = NULL;
678 df_mark_solutions_dirty ();
679 df->analyze_subset = false;
680 }
681
682 #ifdef ENABLE_DF_CHECKING
683 /* Verification will fail in DF_NO_INSN_RESCAN. */
684 if (!(saved_flags & DF_NO_INSN_RESCAN))
685 {
686 df_lr_verify_transfer_functions ();
687 if (df_live)
688 df_live_verify_transfer_functions ();
689 }
690
691 #ifdef DF_DEBUG_CFG
692 df_set_clean_cfg ();
693 #endif
694 #endif
695
696 #ifdef ENABLE_CHECKING
697 if (verify)
698 df->changeable_flags |= DF_VERIFY_SCHEDULED;
699 #endif
700 }
701
702
703 /* Set up the dataflow instance for the entire back end. */
704
705 static unsigned int
706 rest_of_handle_df_initialize (void)
707 {
708 gcc_assert (!df);
709 df = XCNEW (struct df_d);
710 df->changeable_flags = 0;
711
712 bitmap_obstack_initialize (&df_bitmap_obstack);
713
714 /* Set this to a conservative value. Stack_ptr_mod will compute it
715 correctly later. */
716 crtl->sp_is_unchanging = 0;
717
718 df_scan_add_problem ();
719 df_scan_alloc (NULL);
720
721 /* These three problems are permanent. */
722 df_lr_add_problem ();
723 if (optimize > 1)
724 df_live_add_problem ();
725
726 df->postorder = XNEWVEC (int, last_basic_block);
727 df->postorder_inverted = XNEWVEC (int, last_basic_block);
728 df->n_blocks = post_order_compute (df->postorder, true, true);
729 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
730 gcc_assert (df->n_blocks == df->n_blocks_inverted);
731
732 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
733 memset (df->hard_regs_live_count, 0,
734 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
735
736 df_hard_reg_init ();
737 /* After reload, some ports add certain bits to regs_ever_live so
738 this cannot be reset. */
739 df_compute_regs_ever_live (true);
740 df_scan_blocks ();
741 df_compute_regs_ever_live (false);
742 return 0;
743 }
744
745
746 static bool
747 gate_opt (void)
748 {
749 return optimize > 0;
750 }
751
752
753 struct rtl_opt_pass pass_df_initialize_opt =
754 {
755 {
756 RTL_PASS,
757 "dfinit", /* name */
758 gate_opt, /* gate */
759 rest_of_handle_df_initialize, /* execute */
760 NULL, /* sub */
761 NULL, /* next */
762 0, /* static_pass_number */
763 TV_DF_SCAN, /* tv_id */
764 0, /* properties_required */
765 0, /* properties_provided */
766 0, /* properties_destroyed */
767 0, /* todo_flags_start */
768 0 /* todo_flags_finish */
769 }
770 };
771
772
773 static bool
774 gate_no_opt (void)
775 {
776 return optimize == 0;
777 }
778
779
780 struct rtl_opt_pass pass_df_initialize_no_opt =
781 {
782 {
783 RTL_PASS,
784 "no-opt dfinit", /* name */
785 gate_no_opt, /* gate */
786 rest_of_handle_df_initialize, /* execute */
787 NULL, /* sub */
788 NULL, /* next */
789 0, /* static_pass_number */
790 TV_DF_SCAN, /* tv_id */
791 0, /* properties_required */
792 0, /* properties_provided */
793 0, /* properties_destroyed */
794 0, /* todo_flags_start */
795 0 /* todo_flags_finish */
796 }
797 };
798
799
800 /* Free all the dataflow info and the DF structure. This should be
801 called from the df_finish macro which also NULLs the parm. */
802
803 static unsigned int
804 rest_of_handle_df_finish (void)
805 {
806 int i;
807
808 gcc_assert (df);
809
810 for (i = 0; i < df->num_problems_defined; i++)
811 {
812 struct dataflow *dflow = df->problems_in_order[i];
813 dflow->problem->free_fun ();
814 }
815
816 free (df->postorder);
817 free (df->postorder_inverted);
818 free (df->hard_regs_live_count);
819 free (df);
820 df = NULL;
821
822 bitmap_obstack_release (&df_bitmap_obstack);
823 return 0;
824 }
825
826
827 struct rtl_opt_pass pass_df_finish =
828 {
829 {
830 RTL_PASS,
831 "dfinish", /* name */
832 NULL, /* gate */
833 rest_of_handle_df_finish, /* execute */
834 NULL, /* sub */
835 NULL, /* next */
836 0, /* static_pass_number */
837 TV_NONE, /* tv_id */
838 0, /* properties_required */
839 0, /* properties_provided */
840 0, /* properties_destroyed */
841 0, /* todo_flags_start */
842 0 /* todo_flags_finish */
843 }
844 };
845
846
847
848
849 \f
850 /*----------------------------------------------------------------------------
851 The general data flow analysis engine.
852 ----------------------------------------------------------------------------*/
853
854 /* Return time BB when it was visited for last time. */
855 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
856
857 /* Helper function for df_worklist_dataflow.
858 Propagate the dataflow forward.
859 Given a BB_INDEX, do the dataflow propagation
860 and set bits on for successors in PENDING
861 if the out set of the dataflow has changed.
862
863 AGE specify time when BB was visited last time.
864 AGE of 0 means we are visiting for first time and need to
865 compute transfer function to initialize datastructures.
866 Otherwise we re-do transfer function only if something change
867 while computing confluence functions.
868 We need to compute confluence only of basic block that are younger
869 then last visit of the BB.
870
871 Return true if BB info has changed. This is always the case
872 in the first visit. */
873
874 static bool
875 df_worklist_propagate_forward (struct dataflow *dataflow,
876 unsigned bb_index,
877 unsigned *bbindex_to_postorder,
878 bitmap pending,
879 sbitmap considered,
880 ptrdiff_t age)
881 {
882 edge e;
883 edge_iterator ei;
884 basic_block bb = BASIC_BLOCK (bb_index);
885 bool changed = !age;
886
887 /* Calculate <conf_op> of incoming edges. */
888 if (EDGE_COUNT (bb->preds) > 0)
889 FOR_EACH_EDGE (e, ei, bb->preds)
890 {
891 if (age <= BB_LAST_CHANGE_AGE (e->src)
892 && TEST_BIT (considered, e->src->index))
893 changed |= dataflow->problem->con_fun_n (e);
894 }
895 else if (dataflow->problem->con_fun_0)
896 dataflow->problem->con_fun_0 (bb);
897
898 if (changed
899 && dataflow->problem->trans_fun (bb_index))
900 {
901 /* The out set of this block has changed.
902 Propagate to the outgoing blocks. */
903 FOR_EACH_EDGE (e, ei, bb->succs)
904 {
905 unsigned ob_index = e->dest->index;
906
907 if (TEST_BIT (considered, ob_index))
908 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
909 }
910 return true;
911 }
912 return false;
913 }
914
915
916 /* Helper function for df_worklist_dataflow.
917 Propagate the dataflow backward. */
918
919 static bool
920 df_worklist_propagate_backward (struct dataflow *dataflow,
921 unsigned bb_index,
922 unsigned *bbindex_to_postorder,
923 bitmap pending,
924 sbitmap considered,
925 ptrdiff_t age)
926 {
927 edge e;
928 edge_iterator ei;
929 basic_block bb = BASIC_BLOCK (bb_index);
930 bool changed = !age;
931
932 /* Calculate <conf_op> of incoming edges. */
933 if (EDGE_COUNT (bb->succs) > 0)
934 FOR_EACH_EDGE (e, ei, bb->succs)
935 {
936 if (age <= BB_LAST_CHANGE_AGE (e->dest)
937 && TEST_BIT (considered, e->dest->index))
938 changed |= dataflow->problem->con_fun_n (e);
939 }
940 else if (dataflow->problem->con_fun_0)
941 dataflow->problem->con_fun_0 (bb);
942
943 if (changed
944 && dataflow->problem->trans_fun (bb_index))
945 {
946 /* The out set of this block has changed.
947 Propagate to the outgoing blocks. */
948 FOR_EACH_EDGE (e, ei, bb->preds)
949 {
950 unsigned ob_index = e->src->index;
951
952 if (TEST_BIT (considered, ob_index))
953 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
954 }
955 return true;
956 }
957 return false;
958 }
959
960 /* Main dataflow solver loop.
961
962 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
963 need to visit.
964 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
965 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
966 PENDING will be freed.
967
968 The worklists are bitmaps indexed by postorder positions.
969
970 The function implements standard algorithm for dataflow solving with two
971 worklists (we are processing WORKLIST and storing new BBs to visit in
972 PENDING).
973
974 As an optimization we maintain ages when BB was changed (stored in bb->aux)
975 and when it was last visited (stored in last_visit_age). This avoids need
976 to re-do confluence function for edges to basic blocks whose source
977 did not change since destination was visited last time. */
978
979 static void
980 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
981 bitmap pending,
982 sbitmap considered,
983 int *blocks_in_postorder,
984 unsigned *bbindex_to_postorder,
985 int n_blocks)
986 {
987 enum df_flow_dir dir = dataflow->problem->dir;
988 int dcount = 0;
989 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
990 int age = 0;
991 bool changed;
992 VEC(int, heap) *last_visit_age = NULL;
993 int prev_age;
994 basic_block bb;
995 int i;
996
997 VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks);
998
999 /* Double-queueing. Worklist is for the current iteration,
1000 and pending is for the next. */
1001 while (!bitmap_empty_p (pending))
1002 {
1003 bitmap_iterator bi;
1004 unsigned int index;
1005
1006 /* Swap pending and worklist. */
1007 bitmap temp = worklist;
1008 worklist = pending;
1009 pending = temp;
1010
1011 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1012 {
1013 unsigned bb_index;
1014 dcount++;
1015
1016 bitmap_clear_bit (pending, index);
1017 bb_index = blocks_in_postorder[index];
1018 bb = BASIC_BLOCK (bb_index);
1019 prev_age = VEC_index (int, last_visit_age, index);
1020 if (dir == DF_FORWARD)
1021 changed = df_worklist_propagate_forward (dataflow, bb_index,
1022 bbindex_to_postorder,
1023 pending, considered,
1024 prev_age);
1025 else
1026 changed = df_worklist_propagate_backward (dataflow, bb_index,
1027 bbindex_to_postorder,
1028 pending, considered,
1029 prev_age);
1030 VEC_replace (int, last_visit_age, index, ++age);
1031 if (changed)
1032 bb->aux = (void *)(ptrdiff_t)age;
1033 }
1034 bitmap_clear (worklist);
1035 }
1036 for (i = 0; i < n_blocks; i++)
1037 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
1038
1039 BITMAP_FREE (worklist);
1040 BITMAP_FREE (pending);
1041 VEC_free (int, heap, last_visit_age);
1042
1043 /* Dump statistics. */
1044 if (dump_file)
1045 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1046 "n_basic_blocks %d n_edges %d"
1047 " count %d (%5.2g)\n",
1048 n_basic_blocks, n_edges,
1049 dcount, dcount / (float)n_basic_blocks);
1050 }
1051
1052 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1053 with "n"-th bit representing the n-th block in the reverse-postorder order.
1054 The solver is a double-queue algorithm similar to the "double stack" solver
1055 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1056 The only significant difference is that the worklist in this implementation
1057 is always sorted in RPO of the CFG visiting direction. */
1058
1059 void
1060 df_worklist_dataflow (struct dataflow *dataflow,
1061 bitmap blocks_to_consider,
1062 int *blocks_in_postorder,
1063 int n_blocks)
1064 {
1065 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1066 sbitmap considered = sbitmap_alloc (last_basic_block);
1067 bitmap_iterator bi;
1068 unsigned int *bbindex_to_postorder;
1069 int i;
1070 unsigned int index;
1071 enum df_flow_dir dir = dataflow->problem->dir;
1072
1073 gcc_assert (dir != DF_NONE);
1074
1075 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1076 bbindex_to_postorder =
1077 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1078
1079 /* Initialize the array to an out-of-bound value. */
1080 for (i = 0; i < last_basic_block; i++)
1081 bbindex_to_postorder[i] = last_basic_block;
1082
1083 /* Initialize the considered map. */
1084 sbitmap_zero (considered);
1085 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1086 {
1087 SET_BIT (considered, index);
1088 }
1089
1090 /* Initialize the mapping of block index to postorder. */
1091 for (i = 0; i < n_blocks; i++)
1092 {
1093 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1094 /* Add all blocks to the worklist. */
1095 bitmap_set_bit (pending, i);
1096 }
1097
1098 /* Initialize the problem. */
1099 if (dataflow->problem->init_fun)
1100 dataflow->problem->init_fun (blocks_to_consider);
1101
1102 /* Solve it. */
1103 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1104 blocks_in_postorder,
1105 bbindex_to_postorder,
1106 n_blocks);
1107 sbitmap_free (considered);
1108 free (bbindex_to_postorder);
1109 }
1110
1111
1112 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1113 the order of the remaining entries. Returns the length of the resulting
1114 list. */
1115
1116 static unsigned
1117 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1118 {
1119 unsigned act, last;
1120
1121 for (act = 0, last = 0; act < len; act++)
1122 if (bitmap_bit_p (blocks, list[act]))
1123 list[last++] = list[act];
1124
1125 return last;
1126 }
1127
1128
1129 /* Execute dataflow analysis on a single dataflow problem.
1130
1131 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1132 examined or will be computed. For calls from DF_ANALYZE, this is
1133 the set of blocks that has been passed to DF_SET_BLOCKS.
1134 */
1135
1136 void
1137 df_analyze_problem (struct dataflow *dflow,
1138 bitmap blocks_to_consider,
1139 int *postorder, int n_blocks)
1140 {
1141 timevar_push (dflow->problem->tv_id);
1142
1143 /* (Re)Allocate the datastructures necessary to solve the problem. */
1144 if (dflow->problem->alloc_fun)
1145 dflow->problem->alloc_fun (blocks_to_consider);
1146
1147 #ifdef ENABLE_DF_CHECKING
1148 if (dflow->problem->verify_start_fun)
1149 dflow->problem->verify_start_fun ();
1150 #endif
1151
1152 /* Set up the problem and compute the local information. */
1153 if (dflow->problem->local_compute_fun)
1154 dflow->problem->local_compute_fun (blocks_to_consider);
1155
1156 /* Solve the equations. */
1157 if (dflow->problem->dataflow_fun)
1158 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1159 postorder, n_blocks);
1160
1161 /* Massage the solution. */
1162 if (dflow->problem->finalize_fun)
1163 dflow->problem->finalize_fun (blocks_to_consider);
1164
1165 #ifdef ENABLE_DF_CHECKING
1166 if (dflow->problem->verify_end_fun)
1167 dflow->problem->verify_end_fun ();
1168 #endif
1169
1170 timevar_pop (dflow->problem->tv_id);
1171
1172 dflow->computed = true;
1173 }
1174
1175
1176 /* Analyze dataflow info for the basic blocks specified by the bitmap
1177 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1178
1179 void
1180 df_analyze (void)
1181 {
1182 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1183 bool everything;
1184 int i;
1185
1186 free (df->postorder);
1187 free (df->postorder_inverted);
1188 df->postorder = XNEWVEC (int, last_basic_block);
1189 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1190 df->n_blocks = post_order_compute (df->postorder, true, true);
1191 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1192
1193 /* These should be the same. */
1194 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1195
1196 /* We need to do this before the df_verify_all because this is
1197 not kept incrementally up to date. */
1198 df_compute_regs_ever_live (false);
1199 df_process_deferred_rescans ();
1200
1201 if (dump_file)
1202 fprintf (dump_file, "df_analyze called\n");
1203
1204 #ifndef ENABLE_DF_CHECKING
1205 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1206 #endif
1207 df_verify ();
1208
1209 for (i = 0; i < df->n_blocks; i++)
1210 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1211
1212 #ifdef ENABLE_CHECKING
1213 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1214 the ENTRY block. */
1215 for (i = 0; i < df->n_blocks_inverted; i++)
1216 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1217 #endif
1218
1219 /* Make sure that we have pruned any unreachable blocks from these
1220 sets. */
1221 if (df->analyze_subset)
1222 {
1223 everything = false;
1224 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1225 df->n_blocks = df_prune_to_subcfg (df->postorder,
1226 df->n_blocks, df->blocks_to_analyze);
1227 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1228 df->n_blocks_inverted,
1229 df->blocks_to_analyze);
1230 BITMAP_FREE (current_all_blocks);
1231 }
1232 else
1233 {
1234 everything = true;
1235 df->blocks_to_analyze = current_all_blocks;
1236 current_all_blocks = NULL;
1237 }
1238
1239 /* Skip over the DF_SCAN problem. */
1240 for (i = 1; i < df->num_problems_defined; i++)
1241 {
1242 struct dataflow *dflow = df->problems_in_order[i];
1243 if (dflow->solutions_dirty)
1244 {
1245 if (dflow->problem->dir == DF_FORWARD)
1246 df_analyze_problem (dflow,
1247 df->blocks_to_analyze,
1248 df->postorder_inverted,
1249 df->n_blocks_inverted);
1250 else
1251 df_analyze_problem (dflow,
1252 df->blocks_to_analyze,
1253 df->postorder,
1254 df->n_blocks);
1255 }
1256 }
1257
1258 if (everything)
1259 {
1260 BITMAP_FREE (df->blocks_to_analyze);
1261 df->blocks_to_analyze = NULL;
1262 }
1263
1264 #ifdef DF_DEBUG_CFG
1265 df_set_clean_cfg ();
1266 #endif
1267 }
1268
1269
1270 /* Return the number of basic blocks from the last call to df_analyze. */
1271
1272 int
1273 df_get_n_blocks (enum df_flow_dir dir)
1274 {
1275 gcc_assert (dir != DF_NONE);
1276
1277 if (dir == DF_FORWARD)
1278 {
1279 gcc_assert (df->postorder_inverted);
1280 return df->n_blocks_inverted;
1281 }
1282
1283 gcc_assert (df->postorder);
1284 return df->n_blocks;
1285 }
1286
1287
1288 /* Return a pointer to the array of basic blocks in the reverse postorder.
1289 Depending on the direction of the dataflow problem,
1290 it returns either the usual reverse postorder array
1291 or the reverse postorder of inverted traversal. */
1292 int *
1293 df_get_postorder (enum df_flow_dir dir)
1294 {
1295 gcc_assert (dir != DF_NONE);
1296
1297 if (dir == DF_FORWARD)
1298 {
1299 gcc_assert (df->postorder_inverted);
1300 return df->postorder_inverted;
1301 }
1302 gcc_assert (df->postorder);
1303 return df->postorder;
1304 }
1305
1306 static struct df_problem user_problem;
1307 static struct dataflow user_dflow;
1308
1309 /* Interface for calling iterative dataflow with user defined
1310 confluence and transfer functions. All that is necessary is to
1311 supply DIR, a direction, CONF_FUN_0, a confluence function for
1312 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1313 confluence function, TRANS_FUN, the basic block transfer function,
1314 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1315 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1316
1317 void
1318 df_simple_dataflow (enum df_flow_dir dir,
1319 df_init_function init_fun,
1320 df_confluence_function_0 con_fun_0,
1321 df_confluence_function_n con_fun_n,
1322 df_transfer_function trans_fun,
1323 bitmap blocks, int * postorder, int n_blocks)
1324 {
1325 memset (&user_problem, 0, sizeof (struct df_problem));
1326 user_problem.dir = dir;
1327 user_problem.init_fun = init_fun;
1328 user_problem.con_fun_0 = con_fun_0;
1329 user_problem.con_fun_n = con_fun_n;
1330 user_problem.trans_fun = trans_fun;
1331 user_dflow.problem = &user_problem;
1332 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1333 }
1334
1335
1336 \f
1337 /*----------------------------------------------------------------------------
1338 Functions to support limited incremental change.
1339 ----------------------------------------------------------------------------*/
1340
1341
1342 /* Get basic block info. */
1343
1344 static void *
1345 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1346 {
1347 if (dflow->block_info == NULL)
1348 return NULL;
1349 if (index >= dflow->block_info_size)
1350 return NULL;
1351 return (void *)((char *)dflow->block_info
1352 + index * dflow->problem->block_info_elt_size);
1353 }
1354
1355
1356 /* Set basic block info. */
1357
1358 static void
1359 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1360 void *bb_info)
1361 {
1362 gcc_assert (dflow->block_info);
1363 memcpy ((char *)dflow->block_info
1364 + index * dflow->problem->block_info_elt_size,
1365 bb_info, dflow->problem->block_info_elt_size);
1366 }
1367
1368
1369 /* Clear basic block info. */
1370
1371 static void
1372 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1373 {
1374 gcc_assert (dflow->block_info);
1375 gcc_assert (dflow->block_info_size > index);
1376 memset ((char *)dflow->block_info
1377 + index * dflow->problem->block_info_elt_size,
1378 0, dflow->problem->block_info_elt_size);
1379 }
1380
1381
1382 /* Mark the solutions as being out of date. */
1383
1384 void
1385 df_mark_solutions_dirty (void)
1386 {
1387 if (df)
1388 {
1389 int p;
1390 for (p = 1; p < df->num_problems_defined; p++)
1391 df->problems_in_order[p]->solutions_dirty = true;
1392 }
1393 }
1394
1395
1396 /* Return true if BB needs it's transfer functions recomputed. */
1397
1398 bool
1399 df_get_bb_dirty (basic_block bb)
1400 {
1401 return bitmap_bit_p ((df_live
1402 ? df_live : df_lr)->out_of_date_transfer_functions,
1403 bb->index);
1404 }
1405
1406
1407 /* Mark BB as needing it's transfer functions as being out of
1408 date. */
1409
1410 void
1411 df_set_bb_dirty (basic_block bb)
1412 {
1413 bb->flags |= BB_MODIFIED;
1414 if (df)
1415 {
1416 int p;
1417 for (p = 1; p < df->num_problems_defined; p++)
1418 {
1419 struct dataflow *dflow = df->problems_in_order[p];
1420 if (dflow->out_of_date_transfer_functions)
1421 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1422 }
1423 df_mark_solutions_dirty ();
1424 }
1425 }
1426
1427
1428 /* Grow the bb_info array. */
1429
1430 void
1431 df_grow_bb_info (struct dataflow *dflow)
1432 {
1433 unsigned int new_size = last_basic_block + 1;
1434 if (dflow->block_info_size < new_size)
1435 {
1436 new_size += new_size / 4;
1437 dflow->block_info
1438 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1439 new_size
1440 * dflow->problem->block_info_elt_size);
1441 memset ((char *)dflow->block_info
1442 + dflow->block_info_size
1443 * dflow->problem->block_info_elt_size,
1444 0,
1445 (new_size - dflow->block_info_size)
1446 * dflow->problem->block_info_elt_size);
1447 dflow->block_info_size = new_size;
1448 }
1449 }
1450
1451
1452 /* Clear the dirty bits. This is called from places that delete
1453 blocks. */
1454 static void
1455 df_clear_bb_dirty (basic_block bb)
1456 {
1457 int p;
1458 for (p = 1; p < df->num_problems_defined; p++)
1459 {
1460 struct dataflow *dflow = df->problems_in_order[p];
1461 if (dflow->out_of_date_transfer_functions)
1462 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1463 }
1464 }
1465
1466 /* Called from the rtl_compact_blocks to reorganize the problems basic
1467 block info. */
1468
1469 void
1470 df_compact_blocks (void)
1471 {
1472 int i, p;
1473 basic_block bb;
1474 void *problem_temps;
1475 bitmap_head tmp;
1476
1477 bitmap_initialize (&tmp, &df_bitmap_obstack);
1478 for (p = 0; p < df->num_problems_defined; p++)
1479 {
1480 struct dataflow *dflow = df->problems_in_order[p];
1481
1482 /* Need to reorganize the out_of_date_transfer_functions for the
1483 dflow problem. */
1484 if (dflow->out_of_date_transfer_functions)
1485 {
1486 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1487 bitmap_clear (dflow->out_of_date_transfer_functions);
1488 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1489 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1490 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1491 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1492
1493 i = NUM_FIXED_BLOCKS;
1494 FOR_EACH_BB (bb)
1495 {
1496 if (bitmap_bit_p (&tmp, bb->index))
1497 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1498 i++;
1499 }
1500 }
1501
1502 /* Now shuffle the block info for the problem. */
1503 if (dflow->problem->free_bb_fun)
1504 {
1505 int size = last_basic_block * dflow->problem->block_info_elt_size;
1506 problem_temps = XNEWVAR (char, size);
1507 df_grow_bb_info (dflow);
1508 memcpy (problem_temps, dflow->block_info, size);
1509
1510 /* Copy the bb info from the problem tmps to the proper
1511 place in the block_info vector. Null out the copied
1512 item. The entry and exit blocks never move. */
1513 i = NUM_FIXED_BLOCKS;
1514 FOR_EACH_BB (bb)
1515 {
1516 df_set_bb_info (dflow, i,
1517 (char *)problem_temps
1518 + bb->index * dflow->problem->block_info_elt_size);
1519 i++;
1520 }
1521 memset ((char *)dflow->block_info
1522 + i * dflow->problem->block_info_elt_size, 0,
1523 (last_basic_block - i)
1524 * dflow->problem->block_info_elt_size);
1525 free (problem_temps);
1526 }
1527 }
1528
1529 /* Shuffle the bits in the basic_block indexed arrays. */
1530
1531 if (df->blocks_to_analyze)
1532 {
1533 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1534 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1535 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1536 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1537 bitmap_copy (&tmp, df->blocks_to_analyze);
1538 bitmap_clear (df->blocks_to_analyze);
1539 i = NUM_FIXED_BLOCKS;
1540 FOR_EACH_BB (bb)
1541 {
1542 if (bitmap_bit_p (&tmp, bb->index))
1543 bitmap_set_bit (df->blocks_to_analyze, i);
1544 i++;
1545 }
1546 }
1547
1548 bitmap_clear (&tmp);
1549
1550 i = NUM_FIXED_BLOCKS;
1551 FOR_EACH_BB (bb)
1552 {
1553 SET_BASIC_BLOCK (i, bb);
1554 bb->index = i;
1555 i++;
1556 }
1557
1558 gcc_assert (i == n_basic_blocks);
1559
1560 for (; i < last_basic_block; i++)
1561 SET_BASIC_BLOCK (i, NULL);
1562
1563 #ifdef DF_DEBUG_CFG
1564 if (!df_lr->solutions_dirty)
1565 df_set_clean_cfg ();
1566 #endif
1567 }
1568
1569
1570 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1571 block. There is no excuse for people to do this kind of thing. */
1572
1573 void
1574 df_bb_replace (int old_index, basic_block new_block)
1575 {
1576 int new_block_index = new_block->index;
1577 int p;
1578
1579 if (dump_file)
1580 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1581
1582 gcc_assert (df);
1583 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1584
1585 for (p = 0; p < df->num_problems_defined; p++)
1586 {
1587 struct dataflow *dflow = df->problems_in_order[p];
1588 if (dflow->block_info)
1589 {
1590 df_grow_bb_info (dflow);
1591 df_set_bb_info (dflow, old_index,
1592 df_get_bb_info (dflow, new_block_index));
1593 }
1594 }
1595
1596 df_clear_bb_dirty (new_block);
1597 SET_BASIC_BLOCK (old_index, new_block);
1598 new_block->index = old_index;
1599 df_set_bb_dirty (BASIC_BLOCK (old_index));
1600 SET_BASIC_BLOCK (new_block_index, NULL);
1601 }
1602
1603
1604 /* Free all of the per basic block dataflow from all of the problems.
1605 This is typically called before a basic block is deleted and the
1606 problem will be reanalyzed. */
1607
1608 void
1609 df_bb_delete (int bb_index)
1610 {
1611 basic_block bb = BASIC_BLOCK (bb_index);
1612 int i;
1613
1614 if (!df)
1615 return;
1616
1617 for (i = 0; i < df->num_problems_defined; i++)
1618 {
1619 struct dataflow *dflow = df->problems_in_order[i];
1620 if (dflow->problem->free_bb_fun)
1621 {
1622 void *bb_info = df_get_bb_info (dflow, bb_index);
1623 if (bb_info)
1624 {
1625 dflow->problem->free_bb_fun (bb, bb_info);
1626 df_clear_bb_info (dflow, bb_index);
1627 }
1628 }
1629 }
1630 df_clear_bb_dirty (bb);
1631 df_mark_solutions_dirty ();
1632 }
1633
1634
1635 /* Verify that there is a place for everything and everything is in
1636 its place. This is too expensive to run after every pass in the
1637 mainline. However this is an excellent debugging tool if the
1638 dataflow information is not being updated properly. You can just
1639 sprinkle calls in until you find the place that is changing an
1640 underlying structure without calling the proper updating
1641 routine. */
1642
1643 void
1644 df_verify (void)
1645 {
1646 df_scan_verify ();
1647 #ifdef ENABLE_DF_CHECKING
1648 df_lr_verify_transfer_functions ();
1649 if (df_live)
1650 df_live_verify_transfer_functions ();
1651 #endif
1652 }
1653
1654 #ifdef DF_DEBUG_CFG
1655
1656 /* Compute an array of ints that describes the cfg. This can be used
1657 to discover places where the cfg is modified by the appropriate
1658 calls have not been made to the keep df informed. The internals of
1659 this are unexciting, the key is that two instances of this can be
1660 compared to see if any changes have been made to the cfg. */
1661
1662 static int *
1663 df_compute_cfg_image (void)
1664 {
1665 basic_block bb;
1666 int size = 2 + (2 * n_basic_blocks);
1667 int i;
1668 int * map;
1669
1670 FOR_ALL_BB (bb)
1671 {
1672 size += EDGE_COUNT (bb->succs);
1673 }
1674
1675 map = XNEWVEC (int, size);
1676 map[0] = size;
1677 i = 1;
1678 FOR_ALL_BB (bb)
1679 {
1680 edge_iterator ei;
1681 edge e;
1682
1683 map[i++] = bb->index;
1684 FOR_EACH_EDGE (e, ei, bb->succs)
1685 map[i++] = e->dest->index;
1686 map[i++] = -1;
1687 }
1688 map[i] = -1;
1689 return map;
1690 }
1691
1692 static int *saved_cfg = NULL;
1693
1694
1695 /* This function compares the saved version of the cfg with the
1696 current cfg and aborts if the two are identical. The function
1697 silently returns if the cfg has been marked as dirty or the two are
1698 the same. */
1699
1700 void
1701 df_check_cfg_clean (void)
1702 {
1703 int *new_map;
1704
1705 if (!df)
1706 return;
1707
1708 if (df_lr->solutions_dirty)
1709 return;
1710
1711 if (saved_cfg == NULL)
1712 return;
1713
1714 new_map = df_compute_cfg_image ();
1715 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1716 free (new_map);
1717 }
1718
1719
1720 /* This function builds a cfg fingerprint and squirrels it away in
1721 saved_cfg. */
1722
1723 static void
1724 df_set_clean_cfg (void)
1725 {
1726 free (saved_cfg);
1727 saved_cfg = df_compute_cfg_image ();
1728 }
1729
1730 #endif /* DF_DEBUG_CFG */
1731 /*----------------------------------------------------------------------------
1732 PUBLIC INTERFACES TO QUERY INFORMATION.
1733 ----------------------------------------------------------------------------*/
1734
1735
1736 /* Return first def of REGNO within BB. */
1737
1738 df_ref
1739 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1740 {
1741 rtx insn;
1742 df_ref *def_rec;
1743 unsigned int uid;
1744
1745 FOR_BB_INSNS (bb, insn)
1746 {
1747 if (!INSN_P (insn))
1748 continue;
1749
1750 uid = INSN_UID (insn);
1751 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1752 {
1753 df_ref def = *def_rec;
1754 if (DF_REF_REGNO (def) == regno)
1755 return def;
1756 }
1757 }
1758 return NULL;
1759 }
1760
1761
1762 /* Return last def of REGNO within BB. */
1763
1764 df_ref
1765 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1766 {
1767 rtx insn;
1768 df_ref *def_rec;
1769 unsigned int uid;
1770
1771 FOR_BB_INSNS_REVERSE (bb, insn)
1772 {
1773 if (!INSN_P (insn))
1774 continue;
1775
1776 uid = INSN_UID (insn);
1777 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1778 {
1779 df_ref def = *def_rec;
1780 if (DF_REF_REGNO (def) == regno)
1781 return def;
1782 }
1783 }
1784
1785 return NULL;
1786 }
1787
1788 /* Finds the reference corresponding to the definition of REG in INSN.
1789 DF is the dataflow object. */
1790
1791 df_ref
1792 df_find_def (rtx insn, rtx reg)
1793 {
1794 unsigned int uid;
1795 df_ref *def_rec;
1796
1797 if (GET_CODE (reg) == SUBREG)
1798 reg = SUBREG_REG (reg);
1799 gcc_assert (REG_P (reg));
1800
1801 uid = INSN_UID (insn);
1802 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1803 {
1804 df_ref def = *def_rec;
1805 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1806 return def;
1807 }
1808
1809 return NULL;
1810 }
1811
1812
1813 /* Return true if REG is defined in INSN, zero otherwise. */
1814
1815 bool
1816 df_reg_defined (rtx insn, rtx reg)
1817 {
1818 return df_find_def (insn, reg) != NULL;
1819 }
1820
1821
1822 /* Finds the reference corresponding to the use of REG in INSN.
1823 DF is the dataflow object. */
1824
1825 df_ref
1826 df_find_use (rtx insn, rtx reg)
1827 {
1828 unsigned int uid;
1829 df_ref *use_rec;
1830
1831 if (GET_CODE (reg) == SUBREG)
1832 reg = SUBREG_REG (reg);
1833 gcc_assert (REG_P (reg));
1834
1835 uid = INSN_UID (insn);
1836 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1837 {
1838 df_ref use = *use_rec;
1839 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1840 return use;
1841 }
1842 if (df->changeable_flags & DF_EQ_NOTES)
1843 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1844 {
1845 df_ref use = *use_rec;
1846 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1847 return use;
1848 }
1849 return NULL;
1850 }
1851
1852
1853 /* Return true if REG is referenced in INSN, zero otherwise. */
1854
1855 bool
1856 df_reg_used (rtx insn, rtx reg)
1857 {
1858 return df_find_use (insn, reg) != NULL;
1859 }
1860
1861 \f
1862 /*----------------------------------------------------------------------------
1863 Debugging and printing functions.
1864 ----------------------------------------------------------------------------*/
1865
1866 /* Write information about registers and basic blocks into FILE.
1867 This is part of making a debugging dump. */
1868
1869 void
1870 dump_regset (regset r, FILE *outf)
1871 {
1872 unsigned i;
1873 reg_set_iterator rsi;
1874
1875 if (r == NULL)
1876 {
1877 fputs (" (nil)", outf);
1878 return;
1879 }
1880
1881 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
1882 {
1883 fprintf (outf, " %d", i);
1884 if (i < FIRST_PSEUDO_REGISTER)
1885 fprintf (outf, " [%s]",
1886 reg_names[i]);
1887 }
1888 }
1889
1890 /* Print a human-readable representation of R on the standard error
1891 stream. This function is designed to be used from within the
1892 debugger. */
1893 extern void debug_regset (regset);
1894 DEBUG_FUNCTION void
1895 debug_regset (regset r)
1896 {
1897 dump_regset (r, stderr);
1898 putc ('\n', stderr);
1899 }
1900
1901 /* Write information about registers and basic blocks into FILE.
1902 This is part of making a debugging dump. */
1903
1904 void
1905 df_print_regset (FILE *file, bitmap r)
1906 {
1907 unsigned int i;
1908 bitmap_iterator bi;
1909
1910 if (r == NULL)
1911 fputs (" (nil)", file);
1912 else
1913 {
1914 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1915 {
1916 fprintf (file, " %d", i);
1917 if (i < FIRST_PSEUDO_REGISTER)
1918 fprintf (file, " [%s]", reg_names[i]);
1919 }
1920 }
1921 fprintf (file, "\n");
1922 }
1923
1924
1925 /* Write information about registers and basic blocks into FILE. The
1926 bitmap is in the form used by df_byte_lr. This is part of making a
1927 debugging dump. */
1928
1929 void
1930 df_print_word_regset (FILE *file, bitmap r)
1931 {
1932 unsigned int max_reg = max_reg_num ();
1933
1934 if (r == NULL)
1935 fputs (" (nil)", file);
1936 else
1937 {
1938 unsigned int i;
1939 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
1940 {
1941 bool found = (bitmap_bit_p (r, 2 * i)
1942 || bitmap_bit_p (r, 2 * i + 1));
1943 if (found)
1944 {
1945 int word;
1946 const char * sep = "";
1947 fprintf (file, " %d", i);
1948 fprintf (file, "(");
1949 for (word = 0; word < 2; word++)
1950 if (bitmap_bit_p (r, 2 * i + word))
1951 {
1952 fprintf (file, "%s%d", sep, word);
1953 sep = ", ";
1954 }
1955 fprintf (file, ")");
1956 }
1957 }
1958 }
1959 fprintf (file, "\n");
1960 }
1961
1962
1963 /* Dump dataflow info. */
1964
1965 void
1966 df_dump (FILE *file)
1967 {
1968 basic_block bb;
1969 df_dump_start (file);
1970
1971 FOR_ALL_BB (bb)
1972 {
1973 df_print_bb_index (bb, file);
1974 df_dump_top (bb, file);
1975 df_dump_bottom (bb, file);
1976 }
1977
1978 fprintf (file, "\n");
1979 }
1980
1981
1982 /* Dump dataflow info for df->blocks_to_analyze. */
1983
1984 void
1985 df_dump_region (FILE *file)
1986 {
1987 if (df->blocks_to_analyze)
1988 {
1989 bitmap_iterator bi;
1990 unsigned int bb_index;
1991
1992 fprintf (file, "\n\nstarting region dump\n");
1993 df_dump_start (file);
1994
1995 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1996 {
1997 basic_block bb = BASIC_BLOCK (bb_index);
1998
1999 df_print_bb_index (bb, file);
2000 df_dump_top (bb, file);
2001 df_dump_bottom (bb, file);
2002 }
2003 fprintf (file, "\n");
2004 }
2005 else
2006 df_dump (file);
2007 }
2008
2009
2010 /* Dump the introductory information for each problem defined. */
2011
2012 void
2013 df_dump_start (FILE *file)
2014 {
2015 int i;
2016
2017 if (!df || !file)
2018 return;
2019
2020 fprintf (file, "\n\n%s\n", current_function_name ());
2021 fprintf (file, "\nDataflow summary:\n");
2022 if (df->blocks_to_analyze)
2023 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2024 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2025
2026 for (i = 0; i < df->num_problems_defined; i++)
2027 {
2028 struct dataflow *dflow = df->problems_in_order[i];
2029 if (dflow->computed)
2030 {
2031 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2032 if (fun)
2033 fun(file);
2034 }
2035 }
2036 }
2037
2038
2039 /* Dump the top of the block information for BB. */
2040
2041 void
2042 df_dump_top (basic_block bb, FILE *file)
2043 {
2044 int i;
2045
2046 if (!df || !file)
2047 return;
2048
2049 for (i = 0; i < df->num_problems_defined; i++)
2050 {
2051 struct dataflow *dflow = df->problems_in_order[i];
2052 if (dflow->computed)
2053 {
2054 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
2055 if (bbfun)
2056 bbfun (bb, file);
2057 }
2058 }
2059 }
2060
2061
2062 /* Dump the bottom of the block information for BB. */
2063
2064 void
2065 df_dump_bottom (basic_block bb, FILE *file)
2066 {
2067 int i;
2068
2069 if (!df || !file)
2070 return;
2071
2072 for (i = 0; i < df->num_problems_defined; i++)
2073 {
2074 struct dataflow *dflow = df->problems_in_order[i];
2075 if (dflow->computed)
2076 {
2077 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2078 if (bbfun)
2079 bbfun (bb, file);
2080 }
2081 }
2082 }
2083
2084
2085 static void
2086 df_ref_dump (df_ref ref, FILE *file)
2087 {
2088 fprintf (file, "%c%d(%d)",
2089 DF_REF_REG_DEF_P (ref)
2090 ? 'd'
2091 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2092 DF_REF_ID (ref),
2093 DF_REF_REGNO (ref));
2094 }
2095
2096 void
2097 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2098 {
2099 fprintf (file, "{ ");
2100 while (*ref_rec)
2101 {
2102 df_ref ref = *ref_rec;
2103 df_ref_dump (ref, file);
2104 if (follow_chain)
2105 df_chain_dump (DF_REF_CHAIN (ref), file);
2106 ref_rec++;
2107 }
2108 fprintf (file, "}");
2109 }
2110
2111
2112 /* Dump either a ref-def or reg-use chain. */
2113
2114 void
2115 df_regs_chain_dump (df_ref ref, FILE *file)
2116 {
2117 fprintf (file, "{ ");
2118 while (ref)
2119 {
2120 df_ref_dump (ref, file);
2121 ref = DF_REF_NEXT_REG (ref);
2122 }
2123 fprintf (file, "}");
2124 }
2125
2126
2127 static void
2128 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2129 {
2130 while (*mws)
2131 {
2132 fprintf (file, "mw %c r[%d..%d]\n",
2133 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2134 (*mws)->start_regno, (*mws)->end_regno);
2135 mws++;
2136 }
2137 }
2138
2139
2140 static void
2141 df_insn_uid_debug (unsigned int uid,
2142 bool follow_chain, FILE *file)
2143 {
2144 fprintf (file, "insn %d luid %d",
2145 uid, DF_INSN_UID_LUID (uid));
2146
2147 if (DF_INSN_UID_DEFS (uid))
2148 {
2149 fprintf (file, " defs ");
2150 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2151 }
2152
2153 if (DF_INSN_UID_USES (uid))
2154 {
2155 fprintf (file, " uses ");
2156 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2157 }
2158
2159 if (DF_INSN_UID_EQ_USES (uid))
2160 {
2161 fprintf (file, " eq uses ");
2162 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2163 }
2164
2165 if (DF_INSN_UID_MWS (uid))
2166 {
2167 fprintf (file, " mws ");
2168 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2169 }
2170 fprintf (file, "\n");
2171 }
2172
2173
2174 DEBUG_FUNCTION void
2175 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2176 {
2177 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2178 }
2179
2180 DEBUG_FUNCTION void
2181 df_insn_debug_regno (rtx insn, FILE *file)
2182 {
2183 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2184
2185 fprintf (file, "insn %d bb %d luid %d defs ",
2186 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2187 DF_INSN_INFO_LUID (insn_info));
2188 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2189
2190 fprintf (file, " uses ");
2191 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2192
2193 fprintf (file, " eq_uses ");
2194 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2195 fprintf (file, "\n");
2196 }
2197
2198 DEBUG_FUNCTION void
2199 df_regno_debug (unsigned int regno, FILE *file)
2200 {
2201 fprintf (file, "reg %d defs ", regno);
2202 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2203 fprintf (file, " uses ");
2204 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2205 fprintf (file, " eq_uses ");
2206 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2207 fprintf (file, "\n");
2208 }
2209
2210
2211 DEBUG_FUNCTION void
2212 df_ref_debug (df_ref ref, FILE *file)
2213 {
2214 fprintf (file, "%c%d ",
2215 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2216 DF_REF_ID (ref));
2217 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2218 DF_REF_REGNO (ref),
2219 DF_REF_BBNO (ref),
2220 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2221 DF_REF_FLAGS (ref),
2222 DF_REF_TYPE (ref));
2223 if (DF_REF_LOC (ref))
2224 {
2225 if (flag_dump_noaddr)
2226 fprintf (file, "loc #(#) chain ");
2227 else
2228 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2229 (void *)*DF_REF_LOC (ref));
2230 }
2231 else
2232 fprintf (file, "chain ");
2233 df_chain_dump (DF_REF_CHAIN (ref), file);
2234 fprintf (file, "\n");
2235 }
2236 \f
2237 /* Functions for debugging from GDB. */
2238
2239 DEBUG_FUNCTION void
2240 debug_df_insn (rtx insn)
2241 {
2242 df_insn_debug (insn, true, stderr);
2243 debug_rtx (insn);
2244 }
2245
2246
2247 DEBUG_FUNCTION void
2248 debug_df_reg (rtx reg)
2249 {
2250 df_regno_debug (REGNO (reg), stderr);
2251 }
2252
2253
2254 DEBUG_FUNCTION void
2255 debug_df_regno (unsigned int regno)
2256 {
2257 df_regno_debug (regno, stderr);
2258 }
2259
2260
2261 DEBUG_FUNCTION void
2262 debug_df_ref (df_ref ref)
2263 {
2264 df_ref_debug (ref, stderr);
2265 }
2266
2267
2268 DEBUG_FUNCTION void
2269 debug_df_defno (unsigned int defno)
2270 {
2271 df_ref_debug (DF_DEFS_GET (defno), stderr);
2272 }
2273
2274
2275 DEBUG_FUNCTION void
2276 debug_df_useno (unsigned int defno)
2277 {
2278 df_ref_debug (DF_USES_GET (defno), stderr);
2279 }
2280
2281
2282 DEBUG_FUNCTION void
2283 debug_df_chain (struct df_link *link)
2284 {
2285 df_chain_dump (link, stderr);
2286 fputc ('\n', stderr);
2287 }