decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /*
25 OVERVIEW:
26
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
30
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
35
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
40
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
46
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
49
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
57
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
62
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
67
68
69 USAGE:
70
71 Here is an example of using the dataflow routines.
72
73 df_[chain,live,note,rd]_add_problem (flags);
74
75 df_set_blocks (blocks);
76
77 df_analyze ();
78
79 df_dump (stderr);
80
81 df_finish_pass (false);
82
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
87
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
95
96
97
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
104
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
110
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
116
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
122
123
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
132
133 INCREMENTAL SCANNING
134
135 There are four ways of doing the incremental scanning:
136
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
191
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
198
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
203
204 DATA STRUCTURES
205
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
213
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
219
220
221 PHILOSOPHY:
222
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
227
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
235
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
241
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
245
246
247 DATA STRUCTURES:
248
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
251
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
257
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
260
261 ACCESSING INSNS:
262
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
286
287 ACCESSING REFS:
288
289 There are 4 ways to obtain access to refs:
290
291 1) References are divided into two categories, REAL and ARTIFICIAL.
292
293 REAL refs are associated with instructions.
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
298
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
316
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
340
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
355 NOTES:
356
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
365
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
371
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
374 */
375
376
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "tm.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "insn-config.h"
384 #include "recog.h"
385 #include "hard-reg-set.h"
386 #include "function.h"
387 #include "regs.h"
388 #include "alloc-pool.h"
389 #include "flags.h"
390 #include "predict.h"
391 #include "dominance.h"
392 #include "cfg.h"
393 #include "cfganal.h"
394 #include "basic-block.h"
395 #include "sbitmap.h"
396 #include "bitmap.h"
397 #include "df.h"
398 #include "tree-pass.h"
399 #include "params.h"
400 #include "cfgloop.h"
401 #include "emit-rtl.h"
402
403 static void *df_get_bb_info (struct dataflow *, unsigned int);
404 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
405 static void df_clear_bb_info (struct dataflow *, unsigned int);
406 #ifdef DF_DEBUG_CFG
407 static void df_set_clean_cfg (void);
408 #endif
409
410 /* The obstack on which regsets are allocated. */
411 struct bitmap_obstack reg_obstack;
412
413 /* An obstack for bitmap not related to specific dataflow problems.
414 This obstack should e.g. be used for bitmaps with a short life time
415 such as temporary bitmaps. */
416
417 bitmap_obstack df_bitmap_obstack;
418
419
420 /*----------------------------------------------------------------------------
421 Functions to create, destroy and manipulate an instance of df.
422 ----------------------------------------------------------------------------*/
423
424 struct df_d *df;
425
426 /* Add PROBLEM (and any dependent problems) to the DF instance. */
427
428 void
429 df_add_problem (struct df_problem *problem)
430 {
431 struct dataflow *dflow;
432 int i;
433
434 /* First try to add the dependent problem. */
435 if (problem->dependent_problem)
436 df_add_problem (problem->dependent_problem);
437
438 /* Check to see if this problem has already been defined. If it
439 has, just return that instance, if not, add it to the end of the
440 vector. */
441 dflow = df->problems_by_index[problem->id];
442 if (dflow)
443 return;
444
445 /* Make a new one and add it to the end. */
446 dflow = XCNEW (struct dataflow);
447 dflow->problem = problem;
448 dflow->computed = false;
449 dflow->solutions_dirty = true;
450 df->problems_by_index[dflow->problem->id] = dflow;
451
452 /* Keep the defined problems ordered by index. This solves the
453 problem that RI will use the information from UREC if UREC has
454 been defined, or from LIVE if LIVE is defined and otherwise LR.
455 However for this to work, the computation of RI must be pushed
456 after which ever of those problems is defined, but we do not
457 require any of those except for LR to have actually been
458 defined. */
459 df->num_problems_defined++;
460 for (i = df->num_problems_defined - 2; i >= 0; i--)
461 {
462 if (problem->id < df->problems_in_order[i]->problem->id)
463 df->problems_in_order[i+1] = df->problems_in_order[i];
464 else
465 {
466 df->problems_in_order[i+1] = dflow;
467 return;
468 }
469 }
470 df->problems_in_order[0] = dflow;
471 }
472
473
474 /* Set the MASK flags in the DFLOW problem. The old flags are
475 returned. If a flag is not allowed to be changed this will fail if
476 checking is enabled. */
477 int
478 df_set_flags (int changeable_flags)
479 {
480 int old_flags = df->changeable_flags;
481 df->changeable_flags |= changeable_flags;
482 return old_flags;
483 }
484
485
486 /* Clear the MASK flags in the DFLOW problem. The old flags are
487 returned. If a flag is not allowed to be changed this will fail if
488 checking is enabled. */
489 int
490 df_clear_flags (int changeable_flags)
491 {
492 int old_flags = df->changeable_flags;
493 df->changeable_flags &= ~changeable_flags;
494 return old_flags;
495 }
496
497
498 /* Set the blocks that are to be considered for analysis. If this is
499 not called or is called with null, the entire function in
500 analyzed. */
501
502 void
503 df_set_blocks (bitmap blocks)
504 {
505 if (blocks)
506 {
507 if (dump_file)
508 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
509 if (df->blocks_to_analyze)
510 {
511 /* This block is called to change the focus from one subset
512 to another. */
513 int p;
514 bitmap_head diff;
515 bitmap_initialize (&diff, &df_bitmap_obstack);
516 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
517 for (p = 0; p < df->num_problems_defined; p++)
518 {
519 struct dataflow *dflow = df->problems_in_order[p];
520 if (dflow->optional_p && dflow->problem->reset_fun)
521 dflow->problem->reset_fun (df->blocks_to_analyze);
522 else if (dflow->problem->free_blocks_on_set_blocks)
523 {
524 bitmap_iterator bi;
525 unsigned int bb_index;
526
527 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
528 {
529 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
530 if (bb)
531 {
532 void *bb_info = df_get_bb_info (dflow, bb_index);
533 dflow->problem->free_bb_fun (bb, bb_info);
534 df_clear_bb_info (dflow, bb_index);
535 }
536 }
537 }
538 }
539
540 bitmap_clear (&diff);
541 }
542 else
543 {
544 /* This block of code is executed to change the focus from
545 the entire function to a subset. */
546 bitmap_head blocks_to_reset;
547 bool initialized = false;
548 int p;
549 for (p = 0; p < df->num_problems_defined; p++)
550 {
551 struct dataflow *dflow = df->problems_in_order[p];
552 if (dflow->optional_p && dflow->problem->reset_fun)
553 {
554 if (!initialized)
555 {
556 basic_block bb;
557 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
558 FOR_ALL_BB_FN (bb, cfun)
559 {
560 bitmap_set_bit (&blocks_to_reset, bb->index);
561 }
562 }
563 dflow->problem->reset_fun (&blocks_to_reset);
564 }
565 }
566 if (initialized)
567 bitmap_clear (&blocks_to_reset);
568
569 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
570 }
571 bitmap_copy (df->blocks_to_analyze, blocks);
572 df->analyze_subset = true;
573 }
574 else
575 {
576 /* This block is executed to reset the focus to the entire
577 function. */
578 if (dump_file)
579 fprintf (dump_file, "clearing blocks_to_analyze\n");
580 if (df->blocks_to_analyze)
581 {
582 BITMAP_FREE (df->blocks_to_analyze);
583 df->blocks_to_analyze = NULL;
584 }
585 df->analyze_subset = false;
586 }
587
588 /* Setting the blocks causes the refs to be unorganized since only
589 the refs in the blocks are seen. */
590 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
591 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
592 df_mark_solutions_dirty ();
593 }
594
595
596 /* Delete a DFLOW problem (and any problems that depend on this
597 problem). */
598
599 void
600 df_remove_problem (struct dataflow *dflow)
601 {
602 struct df_problem *problem;
603 int i;
604
605 if (!dflow)
606 return;
607
608 problem = dflow->problem;
609 gcc_assert (problem->remove_problem_fun);
610
611 /* Delete any problems that depended on this problem first. */
612 for (i = 0; i < df->num_problems_defined; i++)
613 if (df->problems_in_order[i]->problem->dependent_problem == problem)
614 df_remove_problem (df->problems_in_order[i]);
615
616 /* Now remove this problem. */
617 for (i = 0; i < df->num_problems_defined; i++)
618 if (df->problems_in_order[i] == dflow)
619 {
620 int j;
621 for (j = i + 1; j < df->num_problems_defined; j++)
622 df->problems_in_order[j-1] = df->problems_in_order[j];
623 df->problems_in_order[j-1] = NULL;
624 df->num_problems_defined--;
625 break;
626 }
627
628 (problem->remove_problem_fun) ();
629 df->problems_by_index[problem->id] = NULL;
630 }
631
632
633 /* Remove all of the problems that are not permanent. Scanning, LR
634 and (at -O2 or higher) LIVE are permanent, the rest are removable.
635 Also clear all of the changeable_flags. */
636
637 void
638 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
639 {
640 int i;
641
642 #ifdef ENABLE_DF_CHECKING
643 int saved_flags;
644 #endif
645
646 if (!df)
647 return;
648
649 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
650 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
651
652 #ifdef ENABLE_DF_CHECKING
653 saved_flags = df->changeable_flags;
654 #endif
655
656 /* We iterate over problems by index as each problem removed will
657 lead to problems_in_order to be reordered. */
658 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
659 {
660 struct dataflow *dflow = df->problems_by_index[i];
661
662 if (dflow && dflow->optional_p)
663 df_remove_problem (dflow);
664 }
665
666 /* Clear all of the flags. */
667 df->changeable_flags = 0;
668 df_process_deferred_rescans ();
669
670 /* Set the focus back to the whole function. */
671 if (df->blocks_to_analyze)
672 {
673 BITMAP_FREE (df->blocks_to_analyze);
674 df->blocks_to_analyze = NULL;
675 df_mark_solutions_dirty ();
676 df->analyze_subset = false;
677 }
678
679 #ifdef ENABLE_DF_CHECKING
680 /* Verification will fail in DF_NO_INSN_RESCAN. */
681 if (!(saved_flags & DF_NO_INSN_RESCAN))
682 {
683 df_lr_verify_transfer_functions ();
684 if (df_live)
685 df_live_verify_transfer_functions ();
686 }
687
688 #ifdef DF_DEBUG_CFG
689 df_set_clean_cfg ();
690 #endif
691 #endif
692
693 #ifdef ENABLE_CHECKING
694 if (verify)
695 df->changeable_flags |= DF_VERIFY_SCHEDULED;
696 #endif
697 }
698
699
700 /* Set up the dataflow instance for the entire back end. */
701
702 static unsigned int
703 rest_of_handle_df_initialize (void)
704 {
705 gcc_assert (!df);
706 df = XCNEW (struct df_d);
707 df->changeable_flags = 0;
708
709 bitmap_obstack_initialize (&df_bitmap_obstack);
710
711 /* Set this to a conservative value. Stack_ptr_mod will compute it
712 correctly later. */
713 crtl->sp_is_unchanging = 0;
714
715 df_scan_add_problem ();
716 df_scan_alloc (NULL);
717
718 /* These three problems are permanent. */
719 df_lr_add_problem ();
720 if (optimize > 1)
721 df_live_add_problem ();
722
723 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
724 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
725 df->n_blocks = post_order_compute (df->postorder, true, true);
726 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
727 gcc_assert (df->n_blocks == df->n_blocks_inverted);
728
729 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
730
731 df_hard_reg_init ();
732 /* After reload, some ports add certain bits to regs_ever_live so
733 this cannot be reset. */
734 df_compute_regs_ever_live (true);
735 df_scan_blocks ();
736 df_compute_regs_ever_live (false);
737 return 0;
738 }
739
740
741 namespace {
742
743 const pass_data pass_data_df_initialize_opt =
744 {
745 RTL_PASS, /* type */
746 "dfinit", /* name */
747 OPTGROUP_NONE, /* optinfo_flags */
748 TV_DF_SCAN, /* tv_id */
749 0, /* properties_required */
750 0, /* properties_provided */
751 0, /* properties_destroyed */
752 0, /* todo_flags_start */
753 0, /* todo_flags_finish */
754 };
755
756 class pass_df_initialize_opt : public rtl_opt_pass
757 {
758 public:
759 pass_df_initialize_opt (gcc::context *ctxt)
760 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
761 {}
762
763 /* opt_pass methods: */
764 virtual bool gate (function *) { return optimize > 0; }
765 virtual unsigned int execute (function *)
766 {
767 return rest_of_handle_df_initialize ();
768 }
769
770 }; // class pass_df_initialize_opt
771
772 } // anon namespace
773
774 rtl_opt_pass *
775 make_pass_df_initialize_opt (gcc::context *ctxt)
776 {
777 return new pass_df_initialize_opt (ctxt);
778 }
779
780
781 namespace {
782
783 const pass_data pass_data_df_initialize_no_opt =
784 {
785 RTL_PASS, /* type */
786 "no-opt dfinit", /* name */
787 OPTGROUP_NONE, /* optinfo_flags */
788 TV_DF_SCAN, /* tv_id */
789 0, /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
793 0, /* todo_flags_finish */
794 };
795
796 class pass_df_initialize_no_opt : public rtl_opt_pass
797 {
798 public:
799 pass_df_initialize_no_opt (gcc::context *ctxt)
800 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
801 {}
802
803 /* opt_pass methods: */
804 virtual bool gate (function *) { return optimize == 0; }
805 virtual unsigned int execute (function *)
806 {
807 return rest_of_handle_df_initialize ();
808 }
809
810 }; // class pass_df_initialize_no_opt
811
812 } // anon namespace
813
814 rtl_opt_pass *
815 make_pass_df_initialize_no_opt (gcc::context *ctxt)
816 {
817 return new pass_df_initialize_no_opt (ctxt);
818 }
819
820
821 /* Free all the dataflow info and the DF structure. This should be
822 called from the df_finish macro which also NULLs the parm. */
823
824 static unsigned int
825 rest_of_handle_df_finish (void)
826 {
827 int i;
828
829 gcc_assert (df);
830
831 for (i = 0; i < df->num_problems_defined; i++)
832 {
833 struct dataflow *dflow = df->problems_in_order[i];
834 dflow->problem->free_fun ();
835 }
836
837 free (df->postorder);
838 free (df->postorder_inverted);
839 free (df->hard_regs_live_count);
840 free (df);
841 df = NULL;
842
843 bitmap_obstack_release (&df_bitmap_obstack);
844 return 0;
845 }
846
847
848 namespace {
849
850 const pass_data pass_data_df_finish =
851 {
852 RTL_PASS, /* type */
853 "dfinish", /* name */
854 OPTGROUP_NONE, /* optinfo_flags */
855 TV_NONE, /* tv_id */
856 0, /* properties_required */
857 0, /* properties_provided */
858 0, /* properties_destroyed */
859 0, /* todo_flags_start */
860 0, /* todo_flags_finish */
861 };
862
863 class pass_df_finish : public rtl_opt_pass
864 {
865 public:
866 pass_df_finish (gcc::context *ctxt)
867 : rtl_opt_pass (pass_data_df_finish, ctxt)
868 {}
869
870 /* opt_pass methods: */
871 virtual unsigned int execute (function *)
872 {
873 return rest_of_handle_df_finish ();
874 }
875
876 }; // class pass_df_finish
877
878 } // anon namespace
879
880 rtl_opt_pass *
881 make_pass_df_finish (gcc::context *ctxt)
882 {
883 return new pass_df_finish (ctxt);
884 }
885
886
887
888
889 \f
890 /*----------------------------------------------------------------------------
891 The general data flow analysis engine.
892 ----------------------------------------------------------------------------*/
893
894 /* Return time BB when it was visited for last time. */
895 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
896
897 /* Helper function for df_worklist_dataflow.
898 Propagate the dataflow forward.
899 Given a BB_INDEX, do the dataflow propagation
900 and set bits on for successors in PENDING
901 if the out set of the dataflow has changed.
902
903 AGE specify time when BB was visited last time.
904 AGE of 0 means we are visiting for first time and need to
905 compute transfer function to initialize datastructures.
906 Otherwise we re-do transfer function only if something change
907 while computing confluence functions.
908 We need to compute confluence only of basic block that are younger
909 then last visit of the BB.
910
911 Return true if BB info has changed. This is always the case
912 in the first visit. */
913
914 static bool
915 df_worklist_propagate_forward (struct dataflow *dataflow,
916 unsigned bb_index,
917 unsigned *bbindex_to_postorder,
918 bitmap pending,
919 sbitmap considered,
920 ptrdiff_t age)
921 {
922 edge e;
923 edge_iterator ei;
924 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
925 bool changed = !age;
926
927 /* Calculate <conf_op> of incoming edges. */
928 if (EDGE_COUNT (bb->preds) > 0)
929 FOR_EACH_EDGE (e, ei, bb->preds)
930 {
931 if (age <= BB_LAST_CHANGE_AGE (e->src)
932 && bitmap_bit_p (considered, e->src->index))
933 changed |= dataflow->problem->con_fun_n (e);
934 }
935 else if (dataflow->problem->con_fun_0)
936 dataflow->problem->con_fun_0 (bb);
937
938 if (changed
939 && dataflow->problem->trans_fun (bb_index))
940 {
941 /* The out set of this block has changed.
942 Propagate to the outgoing blocks. */
943 FOR_EACH_EDGE (e, ei, bb->succs)
944 {
945 unsigned ob_index = e->dest->index;
946
947 if (bitmap_bit_p (considered, ob_index))
948 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
949 }
950 return true;
951 }
952 return false;
953 }
954
955
956 /* Helper function for df_worklist_dataflow.
957 Propagate the dataflow backward. */
958
959 static bool
960 df_worklist_propagate_backward (struct dataflow *dataflow,
961 unsigned bb_index,
962 unsigned *bbindex_to_postorder,
963 bitmap pending,
964 sbitmap considered,
965 ptrdiff_t age)
966 {
967 edge e;
968 edge_iterator ei;
969 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
970 bool changed = !age;
971
972 /* Calculate <conf_op> of incoming edges. */
973 if (EDGE_COUNT (bb->succs) > 0)
974 FOR_EACH_EDGE (e, ei, bb->succs)
975 {
976 if (age <= BB_LAST_CHANGE_AGE (e->dest)
977 && bitmap_bit_p (considered, e->dest->index))
978 changed |= dataflow->problem->con_fun_n (e);
979 }
980 else if (dataflow->problem->con_fun_0)
981 dataflow->problem->con_fun_0 (bb);
982
983 if (changed
984 && dataflow->problem->trans_fun (bb_index))
985 {
986 /* The out set of this block has changed.
987 Propagate to the outgoing blocks. */
988 FOR_EACH_EDGE (e, ei, bb->preds)
989 {
990 unsigned ob_index = e->src->index;
991
992 if (bitmap_bit_p (considered, ob_index))
993 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
994 }
995 return true;
996 }
997 return false;
998 }
999
1000 /* Main dataflow solver loop.
1001
1002 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1003 need to visit.
1004 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
1005 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
1006 PENDING will be freed.
1007
1008 The worklists are bitmaps indexed by postorder positions.
1009
1010 The function implements standard algorithm for dataflow solving with two
1011 worklists (we are processing WORKLIST and storing new BBs to visit in
1012 PENDING).
1013
1014 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1015 and when it was last visited (stored in last_visit_age). This avoids need
1016 to re-do confluence function for edges to basic blocks whose source
1017 did not change since destination was visited last time. */
1018
1019 static void
1020 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1021 bitmap pending,
1022 sbitmap considered,
1023 int *blocks_in_postorder,
1024 unsigned *bbindex_to_postorder,
1025 int n_blocks)
1026 {
1027 enum df_flow_dir dir = dataflow->problem->dir;
1028 int dcount = 0;
1029 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1030 int age = 0;
1031 bool changed;
1032 vec<int> last_visit_age = vNULL;
1033 int prev_age;
1034 basic_block bb;
1035 int i;
1036
1037 last_visit_age.safe_grow_cleared (n_blocks);
1038
1039 /* Double-queueing. Worklist is for the current iteration,
1040 and pending is for the next. */
1041 while (!bitmap_empty_p (pending))
1042 {
1043 bitmap_iterator bi;
1044 unsigned int index;
1045
1046 std::swap (pending, worklist);
1047
1048 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1049 {
1050 unsigned bb_index;
1051 dcount++;
1052
1053 bitmap_clear_bit (pending, index);
1054 bb_index = blocks_in_postorder[index];
1055 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1056 prev_age = last_visit_age[index];
1057 if (dir == DF_FORWARD)
1058 changed = df_worklist_propagate_forward (dataflow, bb_index,
1059 bbindex_to_postorder,
1060 pending, considered,
1061 prev_age);
1062 else
1063 changed = df_worklist_propagate_backward (dataflow, bb_index,
1064 bbindex_to_postorder,
1065 pending, considered,
1066 prev_age);
1067 last_visit_age[index] = ++age;
1068 if (changed)
1069 bb->aux = (void *)(ptrdiff_t)age;
1070 }
1071 bitmap_clear (worklist);
1072 }
1073 for (i = 0; i < n_blocks; i++)
1074 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
1075
1076 BITMAP_FREE (worklist);
1077 BITMAP_FREE (pending);
1078 last_visit_age.release ();
1079
1080 /* Dump statistics. */
1081 if (dump_file)
1082 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1083 "n_basic_blocks %d n_edges %d"
1084 " count %d (%5.2g)\n",
1085 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1086 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1087 }
1088
1089 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1090 with "n"-th bit representing the n-th block in the reverse-postorder order.
1091 The solver is a double-queue algorithm similar to the "double stack" solver
1092 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1093 The only significant difference is that the worklist in this implementation
1094 is always sorted in RPO of the CFG visiting direction. */
1095
1096 void
1097 df_worklist_dataflow (struct dataflow *dataflow,
1098 bitmap blocks_to_consider,
1099 int *blocks_in_postorder,
1100 int n_blocks)
1101 {
1102 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1103 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
1104 bitmap_iterator bi;
1105 unsigned int *bbindex_to_postorder;
1106 int i;
1107 unsigned int index;
1108 enum df_flow_dir dir = dataflow->problem->dir;
1109
1110 gcc_assert (dir != DF_NONE);
1111
1112 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1113 bbindex_to_postorder = XNEWVEC (unsigned int,
1114 last_basic_block_for_fn (cfun));
1115
1116 /* Initialize the array to an out-of-bound value. */
1117 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1118 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1119
1120 /* Initialize the considered map. */
1121 bitmap_clear (considered);
1122 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1123 {
1124 bitmap_set_bit (considered, index);
1125 }
1126
1127 /* Initialize the mapping of block index to postorder. */
1128 for (i = 0; i < n_blocks; i++)
1129 {
1130 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1131 /* Add all blocks to the worklist. */
1132 bitmap_set_bit (pending, i);
1133 }
1134
1135 /* Initialize the problem. */
1136 if (dataflow->problem->init_fun)
1137 dataflow->problem->init_fun (blocks_to_consider);
1138
1139 /* Solve it. */
1140 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1141 blocks_in_postorder,
1142 bbindex_to_postorder,
1143 n_blocks);
1144 sbitmap_free (considered);
1145 free (bbindex_to_postorder);
1146 }
1147
1148
1149 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1150 the order of the remaining entries. Returns the length of the resulting
1151 list. */
1152
1153 static unsigned
1154 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1155 {
1156 unsigned act, last;
1157
1158 for (act = 0, last = 0; act < len; act++)
1159 if (bitmap_bit_p (blocks, list[act]))
1160 list[last++] = list[act];
1161
1162 return last;
1163 }
1164
1165
1166 /* Execute dataflow analysis on a single dataflow problem.
1167
1168 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1169 examined or will be computed. For calls from DF_ANALYZE, this is
1170 the set of blocks that has been passed to DF_SET_BLOCKS.
1171 */
1172
1173 void
1174 df_analyze_problem (struct dataflow *dflow,
1175 bitmap blocks_to_consider,
1176 int *postorder, int n_blocks)
1177 {
1178 timevar_push (dflow->problem->tv_id);
1179
1180 /* (Re)Allocate the datastructures necessary to solve the problem. */
1181 if (dflow->problem->alloc_fun)
1182 dflow->problem->alloc_fun (blocks_to_consider);
1183
1184 #ifdef ENABLE_DF_CHECKING
1185 if (dflow->problem->verify_start_fun)
1186 dflow->problem->verify_start_fun ();
1187 #endif
1188
1189 /* Set up the problem and compute the local information. */
1190 if (dflow->problem->local_compute_fun)
1191 dflow->problem->local_compute_fun (blocks_to_consider);
1192
1193 /* Solve the equations. */
1194 if (dflow->problem->dataflow_fun)
1195 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1196 postorder, n_blocks);
1197
1198 /* Massage the solution. */
1199 if (dflow->problem->finalize_fun)
1200 dflow->problem->finalize_fun (blocks_to_consider);
1201
1202 #ifdef ENABLE_DF_CHECKING
1203 if (dflow->problem->verify_end_fun)
1204 dflow->problem->verify_end_fun ();
1205 #endif
1206
1207 timevar_pop (dflow->problem->tv_id);
1208
1209 dflow->computed = true;
1210 }
1211
1212
1213 /* Analyze dataflow info. */
1214
1215 static void
1216 df_analyze_1 (void)
1217 {
1218 int i;
1219
1220 /* These should be the same. */
1221 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1222
1223 /* We need to do this before the df_verify_all because this is
1224 not kept incrementally up to date. */
1225 df_compute_regs_ever_live (false);
1226 df_process_deferred_rescans ();
1227
1228 if (dump_file)
1229 fprintf (dump_file, "df_analyze called\n");
1230
1231 #ifndef ENABLE_DF_CHECKING
1232 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1233 #endif
1234 df_verify ();
1235
1236 /* Skip over the DF_SCAN problem. */
1237 for (i = 1; i < df->num_problems_defined; i++)
1238 {
1239 struct dataflow *dflow = df->problems_in_order[i];
1240 if (dflow->solutions_dirty)
1241 {
1242 if (dflow->problem->dir == DF_FORWARD)
1243 df_analyze_problem (dflow,
1244 df->blocks_to_analyze,
1245 df->postorder_inverted,
1246 df->n_blocks_inverted);
1247 else
1248 df_analyze_problem (dflow,
1249 df->blocks_to_analyze,
1250 df->postorder,
1251 df->n_blocks);
1252 }
1253 }
1254
1255 if (!df->analyze_subset)
1256 {
1257 BITMAP_FREE (df->blocks_to_analyze);
1258 df->blocks_to_analyze = NULL;
1259 }
1260
1261 #ifdef DF_DEBUG_CFG
1262 df_set_clean_cfg ();
1263 #endif
1264 }
1265
1266 /* Analyze dataflow info. */
1267
1268 void
1269 df_analyze (void)
1270 {
1271 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1272 int i;
1273
1274 free (df->postorder);
1275 free (df->postorder_inverted);
1276 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1277 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1278 df->n_blocks = post_order_compute (df->postorder, true, true);
1279 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1280
1281 for (i = 0; i < df->n_blocks; i++)
1282 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1283
1284 #ifdef ENABLE_CHECKING
1285 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1286 the ENTRY block. */
1287 for (i = 0; i < df->n_blocks_inverted; i++)
1288 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1289 #endif
1290
1291 /* Make sure that we have pruned any unreachable blocks from these
1292 sets. */
1293 if (df->analyze_subset)
1294 {
1295 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1296 df->n_blocks = df_prune_to_subcfg (df->postorder,
1297 df->n_blocks, df->blocks_to_analyze);
1298 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1299 df->n_blocks_inverted,
1300 df->blocks_to_analyze);
1301 BITMAP_FREE (current_all_blocks);
1302 }
1303 else
1304 {
1305 df->blocks_to_analyze = current_all_blocks;
1306 current_all_blocks = NULL;
1307 }
1308
1309 df_analyze_1 ();
1310 }
1311
1312 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1313 Returns the number of blocks which is always loop->num_nodes. */
1314
1315 static int
1316 loop_post_order_compute (int *post_order, struct loop *loop)
1317 {
1318 edge_iterator *stack;
1319 int sp;
1320 int post_order_num = 0;
1321 bitmap visited;
1322
1323 /* Allocate stack for back-tracking up CFG. */
1324 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1325 sp = 0;
1326
1327 /* Allocate bitmap to track nodes that have been visited. */
1328 visited = BITMAP_ALLOC (NULL);
1329
1330 /* Push the first edge on to the stack. */
1331 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1332
1333 while (sp)
1334 {
1335 edge_iterator ei;
1336 basic_block src;
1337 basic_block dest;
1338
1339 /* Look at the edge on the top of the stack. */
1340 ei = stack[sp - 1];
1341 src = ei_edge (ei)->src;
1342 dest = ei_edge (ei)->dest;
1343
1344 /* Check if the edge destination has been visited yet and mark it
1345 if not so. */
1346 if (flow_bb_inside_loop_p (loop, dest)
1347 && bitmap_set_bit (visited, dest->index))
1348 {
1349 if (EDGE_COUNT (dest->succs) > 0)
1350 /* Since the DEST node has been visited for the first
1351 time, check its successors. */
1352 stack[sp++] = ei_start (dest->succs);
1353 else
1354 post_order[post_order_num++] = dest->index;
1355 }
1356 else
1357 {
1358 if (ei_one_before_end_p (ei)
1359 && src != loop_preheader_edge (loop)->src)
1360 post_order[post_order_num++] = src->index;
1361
1362 if (!ei_one_before_end_p (ei))
1363 ei_next (&stack[sp - 1]);
1364 else
1365 sp--;
1366 }
1367 }
1368
1369 free (stack);
1370 BITMAP_FREE (visited);
1371
1372 return post_order_num;
1373 }
1374
1375 /* Compute the reverse top sort order of the inverted sub-CFG specified
1376 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1377
1378 static int
1379 loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1380 {
1381 basic_block bb;
1382 edge_iterator *stack;
1383 int sp;
1384 int post_order_num = 0;
1385 bitmap visited;
1386
1387 /* Allocate stack for back-tracking up CFG. */
1388 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1389 sp = 0;
1390
1391 /* Allocate bitmap to track nodes that have been visited. */
1392 visited = BITMAP_ALLOC (NULL);
1393
1394 /* Put all latches into the initial work list. In theory we'd want
1395 to start from loop exits but then we'd have the special case of
1396 endless loops. It doesn't really matter for DF iteration order and
1397 handling latches last is probably even better. */
1398 stack[sp++] = ei_start (loop->header->preds);
1399 bitmap_set_bit (visited, loop->header->index);
1400
1401 /* The inverted traversal loop. */
1402 while (sp)
1403 {
1404 edge_iterator ei;
1405 basic_block pred;
1406
1407 /* Look at the edge on the top of the stack. */
1408 ei = stack[sp - 1];
1409 bb = ei_edge (ei)->dest;
1410 pred = ei_edge (ei)->src;
1411
1412 /* Check if the predecessor has been visited yet and mark it
1413 if not so. */
1414 if (flow_bb_inside_loop_p (loop, pred)
1415 && bitmap_set_bit (visited, pred->index))
1416 {
1417 if (EDGE_COUNT (pred->preds) > 0)
1418 /* Since the predecessor node has been visited for the first
1419 time, check its predecessors. */
1420 stack[sp++] = ei_start (pred->preds);
1421 else
1422 post_order[post_order_num++] = pred->index;
1423 }
1424 else
1425 {
1426 if (flow_bb_inside_loop_p (loop, bb)
1427 && ei_one_before_end_p (ei))
1428 post_order[post_order_num++] = bb->index;
1429
1430 if (!ei_one_before_end_p (ei))
1431 ei_next (&stack[sp - 1]);
1432 else
1433 sp--;
1434 }
1435 }
1436
1437 free (stack);
1438 BITMAP_FREE (visited);
1439 return post_order_num;
1440 }
1441
1442
1443 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1444
1445 void
1446 df_analyze_loop (struct loop *loop)
1447 {
1448 free (df->postorder);
1449 free (df->postorder_inverted);
1450
1451 df->postorder = XNEWVEC (int, loop->num_nodes);
1452 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1453 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1454 df->n_blocks_inverted
1455 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1456 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1457 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1458
1459 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1460 for (int i = 0; i < df->n_blocks; ++i)
1461 bitmap_set_bit (blocks, df->postorder[i]);
1462 df_set_blocks (blocks);
1463 BITMAP_FREE (blocks);
1464
1465 df_analyze_1 ();
1466 }
1467
1468
1469 /* Return the number of basic blocks from the last call to df_analyze. */
1470
1471 int
1472 df_get_n_blocks (enum df_flow_dir dir)
1473 {
1474 gcc_assert (dir != DF_NONE);
1475
1476 if (dir == DF_FORWARD)
1477 {
1478 gcc_assert (df->postorder_inverted);
1479 return df->n_blocks_inverted;
1480 }
1481
1482 gcc_assert (df->postorder);
1483 return df->n_blocks;
1484 }
1485
1486
1487 /* Return a pointer to the array of basic blocks in the reverse postorder.
1488 Depending on the direction of the dataflow problem,
1489 it returns either the usual reverse postorder array
1490 or the reverse postorder of inverted traversal. */
1491 int *
1492 df_get_postorder (enum df_flow_dir dir)
1493 {
1494 gcc_assert (dir != DF_NONE);
1495
1496 if (dir == DF_FORWARD)
1497 {
1498 gcc_assert (df->postorder_inverted);
1499 return df->postorder_inverted;
1500 }
1501 gcc_assert (df->postorder);
1502 return df->postorder;
1503 }
1504
1505 static struct df_problem user_problem;
1506 static struct dataflow user_dflow;
1507
1508 /* Interface for calling iterative dataflow with user defined
1509 confluence and transfer functions. All that is necessary is to
1510 supply DIR, a direction, CONF_FUN_0, a confluence function for
1511 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1512 confluence function, TRANS_FUN, the basic block transfer function,
1513 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1514 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1515
1516 void
1517 df_simple_dataflow (enum df_flow_dir dir,
1518 df_init_function init_fun,
1519 df_confluence_function_0 con_fun_0,
1520 df_confluence_function_n con_fun_n,
1521 df_transfer_function trans_fun,
1522 bitmap blocks, int * postorder, int n_blocks)
1523 {
1524 memset (&user_problem, 0, sizeof (struct df_problem));
1525 user_problem.dir = dir;
1526 user_problem.init_fun = init_fun;
1527 user_problem.con_fun_0 = con_fun_0;
1528 user_problem.con_fun_n = con_fun_n;
1529 user_problem.trans_fun = trans_fun;
1530 user_dflow.problem = &user_problem;
1531 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1532 }
1533
1534
1535 \f
1536 /*----------------------------------------------------------------------------
1537 Functions to support limited incremental change.
1538 ----------------------------------------------------------------------------*/
1539
1540
1541 /* Get basic block info. */
1542
1543 static void *
1544 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1545 {
1546 if (dflow->block_info == NULL)
1547 return NULL;
1548 if (index >= dflow->block_info_size)
1549 return NULL;
1550 return (void *)((char *)dflow->block_info
1551 + index * dflow->problem->block_info_elt_size);
1552 }
1553
1554
1555 /* Set basic block info. */
1556
1557 static void
1558 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1559 void *bb_info)
1560 {
1561 gcc_assert (dflow->block_info);
1562 memcpy ((char *)dflow->block_info
1563 + index * dflow->problem->block_info_elt_size,
1564 bb_info, dflow->problem->block_info_elt_size);
1565 }
1566
1567
1568 /* Clear basic block info. */
1569
1570 static void
1571 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1572 {
1573 gcc_assert (dflow->block_info);
1574 gcc_assert (dflow->block_info_size > index);
1575 memset ((char *)dflow->block_info
1576 + index * dflow->problem->block_info_elt_size,
1577 0, dflow->problem->block_info_elt_size);
1578 }
1579
1580
1581 /* Mark the solutions as being out of date. */
1582
1583 void
1584 df_mark_solutions_dirty (void)
1585 {
1586 if (df)
1587 {
1588 int p;
1589 for (p = 1; p < df->num_problems_defined; p++)
1590 df->problems_in_order[p]->solutions_dirty = true;
1591 }
1592 }
1593
1594
1595 /* Return true if BB needs it's transfer functions recomputed. */
1596
1597 bool
1598 df_get_bb_dirty (basic_block bb)
1599 {
1600 return bitmap_bit_p ((df_live
1601 ? df_live : df_lr)->out_of_date_transfer_functions,
1602 bb->index);
1603 }
1604
1605
1606 /* Mark BB as needing it's transfer functions as being out of
1607 date. */
1608
1609 void
1610 df_set_bb_dirty (basic_block bb)
1611 {
1612 bb->flags |= BB_MODIFIED;
1613 if (df)
1614 {
1615 int p;
1616 for (p = 1; p < df->num_problems_defined; p++)
1617 {
1618 struct dataflow *dflow = df->problems_in_order[p];
1619 if (dflow->out_of_date_transfer_functions)
1620 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1621 }
1622 df_mark_solutions_dirty ();
1623 }
1624 }
1625
1626
1627 /* Grow the bb_info array. */
1628
1629 void
1630 df_grow_bb_info (struct dataflow *dflow)
1631 {
1632 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1633 if (dflow->block_info_size < new_size)
1634 {
1635 new_size += new_size / 4;
1636 dflow->block_info
1637 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1638 new_size
1639 * dflow->problem->block_info_elt_size);
1640 memset ((char *)dflow->block_info
1641 + dflow->block_info_size
1642 * dflow->problem->block_info_elt_size,
1643 0,
1644 (new_size - dflow->block_info_size)
1645 * dflow->problem->block_info_elt_size);
1646 dflow->block_info_size = new_size;
1647 }
1648 }
1649
1650
1651 /* Clear the dirty bits. This is called from places that delete
1652 blocks. */
1653 static void
1654 df_clear_bb_dirty (basic_block bb)
1655 {
1656 int p;
1657 for (p = 1; p < df->num_problems_defined; p++)
1658 {
1659 struct dataflow *dflow = df->problems_in_order[p];
1660 if (dflow->out_of_date_transfer_functions)
1661 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1662 }
1663 }
1664
1665 /* Called from the rtl_compact_blocks to reorganize the problems basic
1666 block info. */
1667
1668 void
1669 df_compact_blocks (void)
1670 {
1671 int i, p;
1672 basic_block bb;
1673 void *problem_temps;
1674 bitmap_head tmp;
1675
1676 bitmap_initialize (&tmp, &df_bitmap_obstack);
1677 for (p = 0; p < df->num_problems_defined; p++)
1678 {
1679 struct dataflow *dflow = df->problems_in_order[p];
1680
1681 /* Need to reorganize the out_of_date_transfer_functions for the
1682 dflow problem. */
1683 if (dflow->out_of_date_transfer_functions)
1684 {
1685 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1686 bitmap_clear (dflow->out_of_date_transfer_functions);
1687 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1688 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1689 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1690 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1691
1692 i = NUM_FIXED_BLOCKS;
1693 FOR_EACH_BB_FN (bb, cfun)
1694 {
1695 if (bitmap_bit_p (&tmp, bb->index))
1696 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1697 i++;
1698 }
1699 }
1700
1701 /* Now shuffle the block info for the problem. */
1702 if (dflow->problem->free_bb_fun)
1703 {
1704 int size = (last_basic_block_for_fn (cfun)
1705 * dflow->problem->block_info_elt_size);
1706 problem_temps = XNEWVAR (char, size);
1707 df_grow_bb_info (dflow);
1708 memcpy (problem_temps, dflow->block_info, size);
1709
1710 /* Copy the bb info from the problem tmps to the proper
1711 place in the block_info vector. Null out the copied
1712 item. The entry and exit blocks never move. */
1713 i = NUM_FIXED_BLOCKS;
1714 FOR_EACH_BB_FN (bb, cfun)
1715 {
1716 df_set_bb_info (dflow, i,
1717 (char *)problem_temps
1718 + bb->index * dflow->problem->block_info_elt_size);
1719 i++;
1720 }
1721 memset ((char *)dflow->block_info
1722 + i * dflow->problem->block_info_elt_size, 0,
1723 (last_basic_block_for_fn (cfun) - i)
1724 * dflow->problem->block_info_elt_size);
1725 free (problem_temps);
1726 }
1727 }
1728
1729 /* Shuffle the bits in the basic_block indexed arrays. */
1730
1731 if (df->blocks_to_analyze)
1732 {
1733 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1734 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1735 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1736 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1737 bitmap_copy (&tmp, df->blocks_to_analyze);
1738 bitmap_clear (df->blocks_to_analyze);
1739 i = NUM_FIXED_BLOCKS;
1740 FOR_EACH_BB_FN (bb, cfun)
1741 {
1742 if (bitmap_bit_p (&tmp, bb->index))
1743 bitmap_set_bit (df->blocks_to_analyze, i);
1744 i++;
1745 }
1746 }
1747
1748 bitmap_clear (&tmp);
1749
1750 i = NUM_FIXED_BLOCKS;
1751 FOR_EACH_BB_FN (bb, cfun)
1752 {
1753 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1754 bb->index = i;
1755 i++;
1756 }
1757
1758 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1759
1760 for (; i < last_basic_block_for_fn (cfun); i++)
1761 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1762
1763 #ifdef DF_DEBUG_CFG
1764 if (!df_lr->solutions_dirty)
1765 df_set_clean_cfg ();
1766 #endif
1767 }
1768
1769
1770 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1771 block. There is no excuse for people to do this kind of thing. */
1772
1773 void
1774 df_bb_replace (int old_index, basic_block new_block)
1775 {
1776 int new_block_index = new_block->index;
1777 int p;
1778
1779 if (dump_file)
1780 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1781
1782 gcc_assert (df);
1783 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1784
1785 for (p = 0; p < df->num_problems_defined; p++)
1786 {
1787 struct dataflow *dflow = df->problems_in_order[p];
1788 if (dflow->block_info)
1789 {
1790 df_grow_bb_info (dflow);
1791 df_set_bb_info (dflow, old_index,
1792 df_get_bb_info (dflow, new_block_index));
1793 }
1794 }
1795
1796 df_clear_bb_dirty (new_block);
1797 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1798 new_block->index = old_index;
1799 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1800 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1801 }
1802
1803
1804 /* Free all of the per basic block dataflow from all of the problems.
1805 This is typically called before a basic block is deleted and the
1806 problem will be reanalyzed. */
1807
1808 void
1809 df_bb_delete (int bb_index)
1810 {
1811 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1812 int i;
1813
1814 if (!df)
1815 return;
1816
1817 for (i = 0; i < df->num_problems_defined; i++)
1818 {
1819 struct dataflow *dflow = df->problems_in_order[i];
1820 if (dflow->problem->free_bb_fun)
1821 {
1822 void *bb_info = df_get_bb_info (dflow, bb_index);
1823 if (bb_info)
1824 {
1825 dflow->problem->free_bb_fun (bb, bb_info);
1826 df_clear_bb_info (dflow, bb_index);
1827 }
1828 }
1829 }
1830 df_clear_bb_dirty (bb);
1831 df_mark_solutions_dirty ();
1832 }
1833
1834
1835 /* Verify that there is a place for everything and everything is in
1836 its place. This is too expensive to run after every pass in the
1837 mainline. However this is an excellent debugging tool if the
1838 dataflow information is not being updated properly. You can just
1839 sprinkle calls in until you find the place that is changing an
1840 underlying structure without calling the proper updating
1841 routine. */
1842
1843 void
1844 df_verify (void)
1845 {
1846 df_scan_verify ();
1847 #ifdef ENABLE_DF_CHECKING
1848 df_lr_verify_transfer_functions ();
1849 if (df_live)
1850 df_live_verify_transfer_functions ();
1851 #endif
1852 }
1853
1854 #ifdef DF_DEBUG_CFG
1855
1856 /* Compute an array of ints that describes the cfg. This can be used
1857 to discover places where the cfg is modified by the appropriate
1858 calls have not been made to the keep df informed. The internals of
1859 this are unexciting, the key is that two instances of this can be
1860 compared to see if any changes have been made to the cfg. */
1861
1862 static int *
1863 df_compute_cfg_image (void)
1864 {
1865 basic_block bb;
1866 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1867 int i;
1868 int * map;
1869
1870 FOR_ALL_BB_FN (bb, cfun)
1871 {
1872 size += EDGE_COUNT (bb->succs);
1873 }
1874
1875 map = XNEWVEC (int, size);
1876 map[0] = size;
1877 i = 1;
1878 FOR_ALL_BB_FN (bb, cfun)
1879 {
1880 edge_iterator ei;
1881 edge e;
1882
1883 map[i++] = bb->index;
1884 FOR_EACH_EDGE (e, ei, bb->succs)
1885 map[i++] = e->dest->index;
1886 map[i++] = -1;
1887 }
1888 map[i] = -1;
1889 return map;
1890 }
1891
1892 static int *saved_cfg = NULL;
1893
1894
1895 /* This function compares the saved version of the cfg with the
1896 current cfg and aborts if the two are identical. The function
1897 silently returns if the cfg has been marked as dirty or the two are
1898 the same. */
1899
1900 void
1901 df_check_cfg_clean (void)
1902 {
1903 int *new_map;
1904
1905 if (!df)
1906 return;
1907
1908 if (df_lr->solutions_dirty)
1909 return;
1910
1911 if (saved_cfg == NULL)
1912 return;
1913
1914 new_map = df_compute_cfg_image ();
1915 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1916 free (new_map);
1917 }
1918
1919
1920 /* This function builds a cfg fingerprint and squirrels it away in
1921 saved_cfg. */
1922
1923 static void
1924 df_set_clean_cfg (void)
1925 {
1926 free (saved_cfg);
1927 saved_cfg = df_compute_cfg_image ();
1928 }
1929
1930 #endif /* DF_DEBUG_CFG */
1931 /*----------------------------------------------------------------------------
1932 PUBLIC INTERFACES TO QUERY INFORMATION.
1933 ----------------------------------------------------------------------------*/
1934
1935
1936 /* Return first def of REGNO within BB. */
1937
1938 df_ref
1939 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1940 {
1941 rtx_insn *insn;
1942 df_ref def;
1943
1944 FOR_BB_INSNS (bb, insn)
1945 {
1946 if (!INSN_P (insn))
1947 continue;
1948
1949 FOR_EACH_INSN_DEF (def, insn)
1950 if (DF_REF_REGNO (def) == regno)
1951 return def;
1952 }
1953 return NULL;
1954 }
1955
1956
1957 /* Return last def of REGNO within BB. */
1958
1959 df_ref
1960 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1961 {
1962 rtx_insn *insn;
1963 df_ref def;
1964
1965 FOR_BB_INSNS_REVERSE (bb, insn)
1966 {
1967 if (!INSN_P (insn))
1968 continue;
1969
1970 FOR_EACH_INSN_DEF (def, insn)
1971 if (DF_REF_REGNO (def) == regno)
1972 return def;
1973 }
1974
1975 return NULL;
1976 }
1977
1978 /* Finds the reference corresponding to the definition of REG in INSN.
1979 DF is the dataflow object. */
1980
1981 df_ref
1982 df_find_def (rtx_insn *insn, rtx reg)
1983 {
1984 df_ref def;
1985
1986 if (GET_CODE (reg) == SUBREG)
1987 reg = SUBREG_REG (reg);
1988 gcc_assert (REG_P (reg));
1989
1990 FOR_EACH_INSN_DEF (def, insn)
1991 if (DF_REF_REGNO (def) == REGNO (reg))
1992 return def;
1993
1994 return NULL;
1995 }
1996
1997
1998 /* Return true if REG is defined in INSN, zero otherwise. */
1999
2000 bool
2001 df_reg_defined (rtx_insn *insn, rtx reg)
2002 {
2003 return df_find_def (insn, reg) != NULL;
2004 }
2005
2006
2007 /* Finds the reference corresponding to the use of REG in INSN.
2008 DF is the dataflow object. */
2009
2010 df_ref
2011 df_find_use (rtx_insn *insn, rtx reg)
2012 {
2013 df_ref use;
2014
2015 if (GET_CODE (reg) == SUBREG)
2016 reg = SUBREG_REG (reg);
2017 gcc_assert (REG_P (reg));
2018
2019 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2020 FOR_EACH_INSN_INFO_USE (use, insn_info)
2021 if (DF_REF_REGNO (use) == REGNO (reg))
2022 return use;
2023 if (df->changeable_flags & DF_EQ_NOTES)
2024 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2025 if (DF_REF_REGNO (use) == REGNO (reg))
2026 return use;
2027 return NULL;
2028 }
2029
2030
2031 /* Return true if REG is referenced in INSN, zero otherwise. */
2032
2033 bool
2034 df_reg_used (rtx_insn *insn, rtx reg)
2035 {
2036 return df_find_use (insn, reg) != NULL;
2037 }
2038
2039 \f
2040 /*----------------------------------------------------------------------------
2041 Debugging and printing functions.
2042 ----------------------------------------------------------------------------*/
2043
2044 /* Write information about registers and basic blocks into FILE.
2045 This is part of making a debugging dump. */
2046
2047 void
2048 dump_regset (regset r, FILE *outf)
2049 {
2050 unsigned i;
2051 reg_set_iterator rsi;
2052
2053 if (r == NULL)
2054 {
2055 fputs (" (nil)", outf);
2056 return;
2057 }
2058
2059 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2060 {
2061 fprintf (outf, " %d", i);
2062 if (i < FIRST_PSEUDO_REGISTER)
2063 fprintf (outf, " [%s]",
2064 reg_names[i]);
2065 }
2066 }
2067
2068 /* Print a human-readable representation of R on the standard error
2069 stream. This function is designed to be used from within the
2070 debugger. */
2071 extern void debug_regset (regset);
2072 DEBUG_FUNCTION void
2073 debug_regset (regset r)
2074 {
2075 dump_regset (r, stderr);
2076 putc ('\n', stderr);
2077 }
2078
2079 /* Write information about registers and basic blocks into FILE.
2080 This is part of making a debugging dump. */
2081
2082 void
2083 df_print_regset (FILE *file, bitmap r)
2084 {
2085 unsigned int i;
2086 bitmap_iterator bi;
2087
2088 if (r == NULL)
2089 fputs (" (nil)", file);
2090 else
2091 {
2092 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2093 {
2094 fprintf (file, " %d", i);
2095 if (i < FIRST_PSEUDO_REGISTER)
2096 fprintf (file, " [%s]", reg_names[i]);
2097 }
2098 }
2099 fprintf (file, "\n");
2100 }
2101
2102
2103 /* Write information about registers and basic blocks into FILE. The
2104 bitmap is in the form used by df_byte_lr. This is part of making a
2105 debugging dump. */
2106
2107 void
2108 df_print_word_regset (FILE *file, bitmap r)
2109 {
2110 unsigned int max_reg = max_reg_num ();
2111
2112 if (r == NULL)
2113 fputs (" (nil)", file);
2114 else
2115 {
2116 unsigned int i;
2117 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2118 {
2119 bool found = (bitmap_bit_p (r, 2 * i)
2120 || bitmap_bit_p (r, 2 * i + 1));
2121 if (found)
2122 {
2123 int word;
2124 const char * sep = "";
2125 fprintf (file, " %d", i);
2126 fprintf (file, "(");
2127 for (word = 0; word < 2; word++)
2128 if (bitmap_bit_p (r, 2 * i + word))
2129 {
2130 fprintf (file, "%s%d", sep, word);
2131 sep = ", ";
2132 }
2133 fprintf (file, ")");
2134 }
2135 }
2136 }
2137 fprintf (file, "\n");
2138 }
2139
2140
2141 /* Dump dataflow info. */
2142
2143 void
2144 df_dump (FILE *file)
2145 {
2146 basic_block bb;
2147 df_dump_start (file);
2148
2149 FOR_ALL_BB_FN (bb, cfun)
2150 {
2151 df_print_bb_index (bb, file);
2152 df_dump_top (bb, file);
2153 df_dump_bottom (bb, file);
2154 }
2155
2156 fprintf (file, "\n");
2157 }
2158
2159
2160 /* Dump dataflow info for df->blocks_to_analyze. */
2161
2162 void
2163 df_dump_region (FILE *file)
2164 {
2165 if (df->blocks_to_analyze)
2166 {
2167 bitmap_iterator bi;
2168 unsigned int bb_index;
2169
2170 fprintf (file, "\n\nstarting region dump\n");
2171 df_dump_start (file);
2172
2173 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2174 {
2175 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2176 dump_bb (file, bb, 0, TDF_DETAILS);
2177 }
2178 fprintf (file, "\n");
2179 }
2180 else
2181 df_dump (file);
2182 }
2183
2184
2185 /* Dump the introductory information for each problem defined. */
2186
2187 void
2188 df_dump_start (FILE *file)
2189 {
2190 int i;
2191
2192 if (!df || !file)
2193 return;
2194
2195 fprintf (file, "\n\n%s\n", current_function_name ());
2196 fprintf (file, "\nDataflow summary:\n");
2197 if (df->blocks_to_analyze)
2198 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2199 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2200
2201 for (i = 0; i < df->num_problems_defined; i++)
2202 {
2203 struct dataflow *dflow = df->problems_in_order[i];
2204 if (dflow->computed)
2205 {
2206 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2207 if (fun)
2208 fun (file);
2209 }
2210 }
2211 }
2212
2213
2214 /* Dump the top or bottom of the block information for BB. */
2215 static void
2216 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2217 {
2218 int i;
2219
2220 if (!df || !file)
2221 return;
2222
2223 for (i = 0; i < df->num_problems_defined; i++)
2224 {
2225 struct dataflow *dflow = df->problems_in_order[i];
2226 if (dflow->computed)
2227 {
2228 df_dump_bb_problem_function bbfun;
2229
2230 if (top)
2231 bbfun = dflow->problem->dump_top_fun;
2232 else
2233 bbfun = dflow->problem->dump_bottom_fun;
2234
2235 if (bbfun)
2236 bbfun (bb, file);
2237 }
2238 }
2239 }
2240
2241 /* Dump the top of the block information for BB. */
2242
2243 void
2244 df_dump_top (basic_block bb, FILE *file)
2245 {
2246 df_dump_bb_problem_data (bb, file, /*top=*/true);
2247 }
2248
2249 /* Dump the bottom of the block information for BB. */
2250
2251 void
2252 df_dump_bottom (basic_block bb, FILE *file)
2253 {
2254 df_dump_bb_problem_data (bb, file, /*top=*/false);
2255 }
2256
2257
2258 /* Dump information about INSN just before or after dumping INSN itself. */
2259 static void
2260 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2261 {
2262 int i;
2263
2264 if (!df || !file)
2265 return;
2266
2267 for (i = 0; i < df->num_problems_defined; i++)
2268 {
2269 struct dataflow *dflow = df->problems_in_order[i];
2270 if (dflow->computed)
2271 {
2272 df_dump_insn_problem_function insnfun;
2273
2274 if (top)
2275 insnfun = dflow->problem->dump_insn_top_fun;
2276 else
2277 insnfun = dflow->problem->dump_insn_bottom_fun;
2278
2279 if (insnfun)
2280 insnfun (insn, file);
2281 }
2282 }
2283 }
2284
2285 /* Dump information about INSN before dumping INSN itself. */
2286
2287 void
2288 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2289 {
2290 df_dump_insn_problem_data (insn, file, /*top=*/true);
2291 }
2292
2293 /* Dump information about INSN after dumping INSN itself. */
2294
2295 void
2296 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2297 {
2298 df_dump_insn_problem_data (insn, file, /*top=*/false);
2299 }
2300
2301
2302 static void
2303 df_ref_dump (df_ref ref, FILE *file)
2304 {
2305 fprintf (file, "%c%d(%d)",
2306 DF_REF_REG_DEF_P (ref)
2307 ? 'd'
2308 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2309 DF_REF_ID (ref),
2310 DF_REF_REGNO (ref));
2311 }
2312
2313 void
2314 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2315 {
2316 fprintf (file, "{ ");
2317 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2318 {
2319 df_ref_dump (ref, file);
2320 if (follow_chain)
2321 df_chain_dump (DF_REF_CHAIN (ref), file);
2322 }
2323 fprintf (file, "}");
2324 }
2325
2326
2327 /* Dump either a ref-def or reg-use chain. */
2328
2329 void
2330 df_regs_chain_dump (df_ref ref, FILE *file)
2331 {
2332 fprintf (file, "{ ");
2333 while (ref)
2334 {
2335 df_ref_dump (ref, file);
2336 ref = DF_REF_NEXT_REG (ref);
2337 }
2338 fprintf (file, "}");
2339 }
2340
2341
2342 static void
2343 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2344 {
2345 for (; mws; mws = DF_MWS_NEXT (mws))
2346 fprintf (file, "mw %c r[%d..%d]\n",
2347 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2348 mws->start_regno, mws->end_regno);
2349 }
2350
2351
2352 static void
2353 df_insn_uid_debug (unsigned int uid,
2354 bool follow_chain, FILE *file)
2355 {
2356 fprintf (file, "insn %d luid %d",
2357 uid, DF_INSN_UID_LUID (uid));
2358
2359 if (DF_INSN_UID_DEFS (uid))
2360 {
2361 fprintf (file, " defs ");
2362 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2363 }
2364
2365 if (DF_INSN_UID_USES (uid))
2366 {
2367 fprintf (file, " uses ");
2368 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2369 }
2370
2371 if (DF_INSN_UID_EQ_USES (uid))
2372 {
2373 fprintf (file, " eq uses ");
2374 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2375 }
2376
2377 if (DF_INSN_UID_MWS (uid))
2378 {
2379 fprintf (file, " mws ");
2380 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2381 }
2382 fprintf (file, "\n");
2383 }
2384
2385
2386 DEBUG_FUNCTION void
2387 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2388 {
2389 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2390 }
2391
2392 DEBUG_FUNCTION void
2393 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2394 {
2395 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2396
2397 fprintf (file, "insn %d bb %d luid %d defs ",
2398 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2399 DF_INSN_INFO_LUID (insn_info));
2400 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2401
2402 fprintf (file, " uses ");
2403 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2404
2405 fprintf (file, " eq_uses ");
2406 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2407 fprintf (file, "\n");
2408 }
2409
2410 DEBUG_FUNCTION void
2411 df_regno_debug (unsigned int regno, FILE *file)
2412 {
2413 fprintf (file, "reg %d defs ", regno);
2414 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2415 fprintf (file, " uses ");
2416 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2417 fprintf (file, " eq_uses ");
2418 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2419 fprintf (file, "\n");
2420 }
2421
2422
2423 DEBUG_FUNCTION void
2424 df_ref_debug (df_ref ref, FILE *file)
2425 {
2426 fprintf (file, "%c%d ",
2427 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2428 DF_REF_ID (ref));
2429 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2430 DF_REF_REGNO (ref),
2431 DF_REF_BBNO (ref),
2432 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2433 DF_REF_FLAGS (ref),
2434 DF_REF_TYPE (ref));
2435 if (DF_REF_LOC (ref))
2436 {
2437 if (flag_dump_noaddr)
2438 fprintf (file, "loc #(#) chain ");
2439 else
2440 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2441 (void *)*DF_REF_LOC (ref));
2442 }
2443 else
2444 fprintf (file, "chain ");
2445 df_chain_dump (DF_REF_CHAIN (ref), file);
2446 fprintf (file, "\n");
2447 }
2448 \f
2449 /* Functions for debugging from GDB. */
2450
2451 DEBUG_FUNCTION void
2452 debug_df_insn (rtx_insn *insn)
2453 {
2454 df_insn_debug (insn, true, stderr);
2455 debug_rtx (insn);
2456 }
2457
2458
2459 DEBUG_FUNCTION void
2460 debug_df_reg (rtx reg)
2461 {
2462 df_regno_debug (REGNO (reg), stderr);
2463 }
2464
2465
2466 DEBUG_FUNCTION void
2467 debug_df_regno (unsigned int regno)
2468 {
2469 df_regno_debug (regno, stderr);
2470 }
2471
2472
2473 DEBUG_FUNCTION void
2474 debug_df_ref (df_ref ref)
2475 {
2476 df_ref_debug (ref, stderr);
2477 }
2478
2479
2480 DEBUG_FUNCTION void
2481 debug_df_defno (unsigned int defno)
2482 {
2483 df_ref_debug (DF_DEFS_GET (defno), stderr);
2484 }
2485
2486
2487 DEBUG_FUNCTION void
2488 debug_df_useno (unsigned int defno)
2489 {
2490 df_ref_debug (DF_USES_GET (defno), stderr);
2491 }
2492
2493
2494 DEBUG_FUNCTION void
2495 debug_df_chain (struct df_link *link)
2496 {
2497 df_chain_dump (link, stderr);
2498 fputc ('\n', stderr);
2499 }