cp-tree.h (lang_identifier): Remove class_value.
[gcc.git] / gcc / df.c
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.
23
24
25 OVERVIEW:
26
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
32
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
39
40
41 USAGE:
42
43 Here's an example of using the dataflow routines.
44
45 struct df *df;
46
47 df = df_init ();
48
49 df_analyze (df, 0, DF_ALL);
50
51 df_dump (df, DF_ALL, stderr);
52
53 df_finish (df);
54
55
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
60
61 df_analyze performs the following:
62
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
77
78
79 PHILOSOPHY:
80
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
88
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
98
99
100 DATA STRUCTURES:
101
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
104
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
109
110 Note that the reg-def and reg-use chains are generally short (except for the
111 hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
113
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
116
117
118 TODO:
119
120 1) Incremental dataflow analysis.
121
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
126
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
129
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
134
135 2) Reduced memory requirements.
136
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
143
144 3) Ordering of reg-def and reg-use lists.
145
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
149
150 4) Working with a sub-CFG.
151
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
156
157
158 NOTES:
159
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
168
169 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
170 a read-modify write operation. We generate both a use and a def
171 and again mark them read/write.
172 */
173
174 #include "config.h"
175 #include "system.h"
176 #include "coretypes.h"
177 #include "tm.h"
178 #include "rtl.h"
179 #include "tm_p.h"
180 #include "insn-config.h"
181 #include "recog.h"
182 #include "function.h"
183 #include "regs.h"
184 #include "alloc-pool.h"
185 #include "hard-reg-set.h"
186 #include "basic-block.h"
187 #include "sbitmap.h"
188 #include "bitmap.h"
189 #include "df.h"
190
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
192 do \
193 { \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;}); \
197 } \
198 while (0)
199
200 static alloc_pool df_ref_pool;
201 static alloc_pool df_link_pool;
202 static struct df *ddf;
203
204 static void df_reg_table_realloc (struct df *, int);
205 static void df_insn_table_realloc (struct df *, unsigned int);
206 static void df_bb_table_realloc (struct df *, unsigned int);
207 static void df_bitmaps_alloc (struct df *, bitmap, int);
208 static void df_bitmaps_free (struct df *, int);
209 static void df_free (struct df *);
210 static void df_alloc (struct df *, int);
211
212 static rtx df_reg_use_gen (unsigned int);
213
214 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
215 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
216 static void df_def_unlink (struct df *, struct ref *);
217 static void df_use_unlink (struct df *, struct ref *);
218 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
219 #if 0
220 static void df_bb_refs_unlink (struct df *, basic_block);
221 static void df_refs_unlink (struct df *, bitmap);
222 #endif
223
224 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
225 enum df_ref_type, enum df_ref_flags);
226 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
227 enum df_ref_flags);
228 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
229 enum df_ref_flags);
230 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
231 static void df_defs_record (struct df *, rtx, basic_block, rtx);
232 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
233 basic_block, rtx, enum df_ref_flags);
234 static void df_insn_refs_record (struct df *, basic_block, rtx);
235 static void df_bb_refs_record (struct df *, basic_block);
236 static void df_refs_record (struct df *, bitmap);
237
238 static void df_bb_reg_def_chain_create (struct df *, basic_block);
239 static void df_reg_def_chain_create (struct df *, bitmap, bool);
240 static void df_bb_reg_use_chain_create (struct df *, basic_block);
241 static void df_reg_use_chain_create (struct df *, bitmap, bool);
242 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
243 static void df_du_chain_create (struct df *, bitmap);
244 static void df_bb_ud_chain_create (struct df *, basic_block);
245 static void df_ud_chain_create (struct df *, bitmap);
246 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
247 static void df_rd_local_compute (struct df *, bitmap);
248 static void df_bb_ru_local_compute (struct df *, basic_block);
249 static void df_ru_local_compute (struct df *, bitmap);
250 static void df_bb_lr_local_compute (struct df *, basic_block);
251 static void df_lr_local_compute (struct df *, bitmap);
252 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
253 static void df_reg_info_compute (struct df *, bitmap);
254
255 static int df_bb_luids_set (struct df *df, basic_block);
256 static int df_luids_set (struct df *df, bitmap);
257
258 static int df_modified_p (struct df *, bitmap);
259 static int df_refs_queue (struct df *);
260 static int df_refs_process (struct df *);
261 static int df_bb_refs_update (struct df *, basic_block);
262 static int df_refs_update (struct df *, bitmap);
263 static void df_analyze_1 (struct df *, bitmap, int, int);
264
265 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
266 static int df_rtx_mem_replace (rtx *, void *);
267 static int df_rtx_reg_replace (rtx *, void *);
268 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
269
270 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
271 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
272 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
273 rtx, unsigned int);
274 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
275 rtx, unsigned int);
276
277 static void df_chain_dump (struct df_link *, FILE *file);
278 static void df_chain_dump_regno (struct df_link *, FILE *file);
279 static void df_regno_debug (struct df *, unsigned int, FILE *);
280 static void df_ref_debug (struct df *, struct ref *, FILE *);
281 static void df_rd_transfer_function (int, int *, void *, void *, void *,
282 void *, void *);
283 static void df_ru_transfer_function (int, int *, void *, void *, void *,
284 void *, void *);
285 static void df_lr_transfer_function (int, int *, void *, void *, void *,
286 void *, void *);
287 static void hybrid_search (basic_block, struct dataflow *,
288 sbitmap, sbitmap, sbitmap);
289
290 \f
291 /* Local memory allocation/deallocation routines. */
292
293
294 /* Increase the insn info table to have space for at least SIZE + 1
295 elements. */
296 static void
297 df_insn_table_realloc (struct df *df, unsigned int size)
298 {
299 size++;
300 if (size <= df->insn_size)
301 return;
302
303 /* Make the table a little larger than requested, so we do not need
304 to enlarge it so often. */
305 size += df->insn_size / 4;
306
307 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
308
309 memset (df->insns + df->insn_size, 0,
310 (size - df->insn_size) * sizeof (struct insn_info));
311
312 df->insn_size = size;
313
314 if (! df->insns_modified)
315 {
316 df->insns_modified = BITMAP_XMALLOC ();
317 bitmap_zero (df->insns_modified);
318 }
319 }
320
321 /* Increase the bb info table to have space for at least SIZE + 1
322 elements. */
323
324 static void
325 df_bb_table_realloc (struct df *df, unsigned int size)
326 {
327 size++;
328 if (size <= df->n_bbs)
329 return;
330
331 /* Make the table a little larger than requested, so we do not need
332 to enlarge it so often. */
333 size += df->n_bbs / 4;
334
335 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
336
337 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
338
339 df->n_bbs = size;
340 }
341
342 /* Increase the reg info table by SIZE more elements. */
343 static void
344 df_reg_table_realloc (struct df *df, int size)
345 {
346 /* Make table 25 percent larger by default. */
347 if (! size)
348 size = df->reg_size / 4;
349
350 size += df->reg_size;
351 if (size < max_reg_num ())
352 size = max_reg_num ();
353
354 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
355 df->reg_def_last = xrealloc (df->reg_def_last,
356 size * sizeof (struct ref *));
357
358 /* Zero the new entries. */
359 memset (df->regs + df->reg_size, 0,
360 (size - df->reg_size) * sizeof (struct reg_info));
361
362 df->reg_size = size;
363 }
364
365
366 /* Allocate bitmaps for each basic block. */
367
368 static void
369 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
370 {
371 basic_block bb;
372
373 df->n_defs = df->def_id;
374 df->n_uses = df->use_id;
375
376 if (!blocks)
377 blocks = df->all_blocks;
378
379 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
380 {
381 struct bb_info *bb_info = DF_BB_INFO (df, bb);
382
383 if (flags & DF_RD)
384 {
385 if (!bb_info->rd_in)
386 {
387 /* Allocate bitmaps for reaching definitions. */
388 bb_info->rd_kill = BITMAP_XMALLOC ();
389 bb_info->rd_gen = BITMAP_XMALLOC ();
390 bb_info->rd_in = BITMAP_XMALLOC ();
391 bb_info->rd_out = BITMAP_XMALLOC ();
392 }
393 else
394 {
395 bitmap_clear (bb_info->rd_kill);
396 bitmap_clear (bb_info->rd_gen);
397 bitmap_clear (bb_info->rd_in);
398 bitmap_clear (bb_info->rd_out);
399 }
400 }
401
402 if (flags & DF_RU)
403 {
404 if (!bb_info->ru_in)
405 {
406 /* Allocate bitmaps for upward exposed uses. */
407 bb_info->ru_kill = BITMAP_XMALLOC ();
408 bb_info->ru_gen = BITMAP_XMALLOC ();
409 bb_info->ru_in = BITMAP_XMALLOC ();
410 bb_info->ru_out = BITMAP_XMALLOC ();
411 }
412 else
413 {
414 bitmap_clear (bb_info->ru_kill);
415 bitmap_clear (bb_info->ru_gen);
416 bitmap_clear (bb_info->ru_in);
417 bitmap_clear (bb_info->ru_out);
418 }
419 }
420
421 if (flags & DF_LR)
422 {
423 if (!bb_info->lr_in)
424 {
425 /* Allocate bitmaps for live variables. */
426 bb_info->lr_def = BITMAP_XMALLOC ();
427 bb_info->lr_use = BITMAP_XMALLOC ();
428 bb_info->lr_in = BITMAP_XMALLOC ();
429 bb_info->lr_out = BITMAP_XMALLOC ();
430 }
431 else
432 {
433 bitmap_clear (bb_info->lr_def);
434 bitmap_clear (bb_info->lr_use);
435 bitmap_clear (bb_info->lr_in);
436 bitmap_clear (bb_info->lr_out);
437 }
438 }
439 });
440 }
441
442
443 /* Free bitmaps for each basic block. */
444 static void
445 df_bitmaps_free (struct df *df, int flags)
446 {
447 basic_block bb;
448
449 FOR_EACH_BB (bb)
450 {
451 struct bb_info *bb_info = DF_BB_INFO (df, bb);
452
453 if (!bb_info)
454 continue;
455
456 if ((flags & DF_RD) && bb_info->rd_in)
457 {
458 /* Free bitmaps for reaching definitions. */
459 BITMAP_XFREE (bb_info->rd_kill);
460 bb_info->rd_kill = NULL;
461 BITMAP_XFREE (bb_info->rd_gen);
462 bb_info->rd_gen = NULL;
463 BITMAP_XFREE (bb_info->rd_in);
464 bb_info->rd_in = NULL;
465 BITMAP_XFREE (bb_info->rd_out);
466 bb_info->rd_out = NULL;
467 }
468
469 if ((flags & DF_RU) && bb_info->ru_in)
470 {
471 /* Free bitmaps for upward exposed uses. */
472 BITMAP_XFREE (bb_info->ru_kill);
473 bb_info->ru_kill = NULL;
474 BITMAP_XFREE (bb_info->ru_gen);
475 bb_info->ru_gen = NULL;
476 BITMAP_XFREE (bb_info->ru_in);
477 bb_info->ru_in = NULL;
478 BITMAP_XFREE (bb_info->ru_out);
479 bb_info->ru_out = NULL;
480 }
481
482 if ((flags & DF_LR) && bb_info->lr_in)
483 {
484 /* Free bitmaps for live variables. */
485 BITMAP_XFREE (bb_info->lr_def);
486 bb_info->lr_def = NULL;
487 BITMAP_XFREE (bb_info->lr_use);
488 bb_info->lr_use = NULL;
489 BITMAP_XFREE (bb_info->lr_in);
490 bb_info->lr_in = NULL;
491 BITMAP_XFREE (bb_info->lr_out);
492 bb_info->lr_out = NULL;
493 }
494 }
495 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
496 }
497
498
499 /* Allocate and initialize dataflow memory. */
500 static void
501 df_alloc (struct df *df, int n_regs)
502 {
503 int n_insns;
504 basic_block bb;
505
506 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
507 100);
508 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
509
510 /* Perhaps we should use LUIDs to save memory for the insn_refs
511 table. This is only a small saving; a few pointers. */
512 n_insns = get_max_uid () + 1;
513
514 df->def_id = 0;
515 df->n_defs = 0;
516 /* Approximate number of defs by number of insns. */
517 df->def_size = n_insns;
518 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
519
520 df->use_id = 0;
521 df->n_uses = 0;
522 /* Approximate number of uses by twice number of insns. */
523 df->use_size = n_insns * 2;
524 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
525
526 df->n_regs = n_regs;
527 df->n_bbs = last_basic_block;
528
529 /* Allocate temporary working array used during local dataflow analysis. */
530 df_insn_table_realloc (df, n_insns);
531
532 df_reg_table_realloc (df, df->n_regs);
533
534 df->bbs_modified = BITMAP_XMALLOC ();
535 bitmap_zero (df->bbs_modified);
536
537 df->flags = 0;
538
539 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
540
541 df->all_blocks = BITMAP_XMALLOC ();
542 FOR_EACH_BB (bb)
543 bitmap_set_bit (df->all_blocks, bb->index);
544 }
545
546
547 /* Free all the dataflow info. */
548 static void
549 df_free (struct df *df)
550 {
551 df_bitmaps_free (df, DF_ALL);
552
553 if (df->bbs)
554 free (df->bbs);
555 df->bbs = 0;
556
557 if (df->insns)
558 free (df->insns);
559 df->insns = 0;
560 df->insn_size = 0;
561
562 if (df->defs)
563 free (df->defs);
564 df->defs = 0;
565 df->def_size = 0;
566 df->def_id = 0;
567
568 if (df->uses)
569 free (df->uses);
570 df->uses = 0;
571 df->use_size = 0;
572 df->use_id = 0;
573
574 if (df->regs)
575 free (df->regs);
576 df->regs = 0;
577 df->reg_size = 0;
578
579 if (df->bbs_modified)
580 BITMAP_XFREE (df->bbs_modified);
581 df->bbs_modified = 0;
582
583 if (df->insns_modified)
584 BITMAP_XFREE (df->insns_modified);
585 df->insns_modified = 0;
586
587 BITMAP_XFREE (df->all_blocks);
588 df->all_blocks = 0;
589
590 free_alloc_pool (df_ref_pool);
591 free_alloc_pool (df_link_pool);
592 }
593 \f
594 /* Local miscellaneous routines. */
595
596 /* Return a USE for register REGNO. */
597 static rtx df_reg_use_gen (unsigned int regno)
598 {
599 rtx reg;
600 rtx use;
601
602 reg = regno_reg_rtx[regno];
603
604 use = gen_rtx_USE (GET_MODE (reg), reg);
605 return use;
606 }
607 \f
608 /* Local chain manipulation routines. */
609
610 /* Create a link in a def-use or use-def chain. */
611 static inline struct df_link *
612 df_link_create (struct ref *ref, struct df_link *next)
613 {
614 struct df_link *link;
615
616 link = pool_alloc (df_link_pool);
617 link->next = next;
618 link->ref = ref;
619 return link;
620 }
621
622 /* Releases members of the CHAIN. */
623
624 static void
625 free_reg_ref_chain (struct df_link **chain)
626 {
627 struct df_link *act, *next;
628
629 for (act = *chain; act; act = next)
630 {
631 next = act->next;
632 pool_free (df_link_pool, act);
633 }
634
635 *chain = NULL;
636 }
637
638 /* Add REF to chain head pointed to by PHEAD. */
639 static struct df_link *
640 df_ref_unlink (struct df_link **phead, struct ref *ref)
641 {
642 struct df_link *link = *phead;
643
644 if (link)
645 {
646 if (! link->next)
647 {
648 /* Only a single ref. It must be the one we want.
649 If not, the def-use and use-def chains are likely to
650 be inconsistent. */
651 if (link->ref != ref)
652 abort ();
653 /* Now have an empty chain. */
654 *phead = NULL;
655 }
656 else
657 {
658 /* Multiple refs. One of them must be us. */
659 if (link->ref == ref)
660 *phead = link->next;
661 else
662 {
663 /* Follow chain. */
664 for (; link->next; link = link->next)
665 {
666 if (link->next->ref == ref)
667 {
668 /* Unlink from list. */
669 link->next = link->next->next;
670 return link->next;
671 }
672 }
673 }
674 }
675 }
676 return link;
677 }
678
679
680 /* Unlink REF from all def-use/use-def chains, etc. */
681 int
682 df_ref_remove (struct df *df, struct ref *ref)
683 {
684 if (DF_REF_REG_DEF_P (ref))
685 {
686 df_def_unlink (df, ref);
687 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
688 }
689 else
690 {
691 df_use_unlink (df, ref);
692 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
693 }
694 return 1;
695 }
696
697
698 /* Unlink DEF from use-def and reg-def chains. */
699 static void
700 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
701 {
702 struct df_link *du_link;
703 unsigned int dregno = DF_REF_REGNO (def);
704
705 /* Follow def-use chain to find all the uses of this def. */
706 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
707 {
708 struct ref *use = du_link->ref;
709
710 /* Unlink this def from the use-def chain. */
711 df_ref_unlink (&DF_REF_CHAIN (use), def);
712 }
713 DF_REF_CHAIN (def) = 0;
714
715 /* Unlink def from reg-def chain. */
716 df_ref_unlink (&df->regs[dregno].defs, def);
717
718 df->defs[DF_REF_ID (def)] = 0;
719 }
720
721
722 /* Unlink use from def-use and reg-use chains. */
723 static void
724 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
725 {
726 struct df_link *ud_link;
727 unsigned int uregno = DF_REF_REGNO (use);
728
729 /* Follow use-def chain to find all the defs of this use. */
730 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
731 {
732 struct ref *def = ud_link->ref;
733
734 /* Unlink this use from the def-use chain. */
735 df_ref_unlink (&DF_REF_CHAIN (def), use);
736 }
737 DF_REF_CHAIN (use) = 0;
738
739 /* Unlink use from reg-use chain. */
740 df_ref_unlink (&df->regs[uregno].uses, use);
741
742 df->uses[DF_REF_ID (use)] = 0;
743 }
744 \f
745 /* Local routines for recording refs. */
746
747
748 /* Create a new ref of type DF_REF_TYPE for register REG at address
749 LOC within INSN of BB. */
750 static struct ref *
751 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
752 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
753 {
754 struct ref *this_ref;
755
756 this_ref = pool_alloc (df_ref_pool);
757 DF_REF_REG (this_ref) = reg;
758 DF_REF_LOC (this_ref) = loc;
759 DF_REF_INSN (this_ref) = insn;
760 DF_REF_CHAIN (this_ref) = 0;
761 DF_REF_TYPE (this_ref) = ref_type;
762 DF_REF_FLAGS (this_ref) = ref_flags;
763 DF_REF_DATA (this_ref) = NULL;
764
765 if (ref_type == DF_REF_REG_DEF)
766 {
767 if (df->def_id >= df->def_size)
768 {
769 /* Make table 25 percent larger. */
770 df->def_size += (df->def_size / 4);
771 df->defs = xrealloc (df->defs,
772 df->def_size * sizeof (*df->defs));
773 }
774 DF_REF_ID (this_ref) = df->def_id;
775 df->defs[df->def_id++] = this_ref;
776 }
777 else
778 {
779 if (df->use_id >= df->use_size)
780 {
781 /* Make table 25 percent larger. */
782 df->use_size += (df->use_size / 4);
783 df->uses = xrealloc (df->uses,
784 df->use_size * sizeof (*df->uses));
785 }
786 DF_REF_ID (this_ref) = df->use_id;
787 df->uses[df->use_id++] = this_ref;
788 }
789 return this_ref;
790 }
791
792
793 /* Create a new reference of type DF_REF_TYPE for a single register REG,
794 used inside the LOC rtx of INSN. */
795 static void
796 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
797 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
798 {
799 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
800 }
801
802
803 /* Create new references of type DF_REF_TYPE for each part of register REG
804 at address LOC within INSN of BB. */
805 static void
806 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
807 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
808 {
809 unsigned int regno;
810
811 if (!REG_P (reg) && GET_CODE (reg) != SUBREG)
812 abort ();
813
814 /* For the reg allocator we are interested in some SUBREG rtx's, but not
815 all. Notably only those representing a word extraction from a multi-word
816 reg. As written in the docu those should have the form
817 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
818 XXX Is that true? We could also use the global word_mode variable. */
819 if (GET_CODE (reg) == SUBREG
820 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
821 || GET_MODE_SIZE (GET_MODE (reg))
822 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
823 {
824 loc = &SUBREG_REG (reg);
825 reg = *loc;
826 ref_flags |= DF_REF_STRIPPED;
827 }
828
829 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
830 if (regno < FIRST_PSEUDO_REGISTER)
831 {
832 int i;
833 int endregno;
834
835 if (! (df->flags & DF_HARD_REGS))
836 return;
837
838 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
839 for the mode, because we only want to add references to regs, which
840 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
841 reference the whole reg 0 in DI mode (which would also include
842 reg 1, at least, if 0 and 1 are SImode registers). */
843 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
844 if (GET_CODE (reg) == SUBREG)
845 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
846 SUBREG_BYTE (reg), GET_MODE (reg));
847 endregno += regno;
848
849 for (i = regno; i < endregno; i++)
850 df_ref_record_1 (df, regno_reg_rtx[i],
851 loc, insn, ref_type, ref_flags);
852 }
853 else
854 {
855 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
856 }
857 }
858
859
860 /* Return nonzero if writes to paradoxical SUBREGs, or SUBREGs which
861 are too narrow, are read-modify-write. */
862 bool
863 read_modify_subreg_p (rtx x)
864 {
865 unsigned int isize, osize;
866 if (GET_CODE (x) != SUBREG)
867 return false;
868 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
869 osize = GET_MODE_SIZE (GET_MODE (x));
870 /* Paradoxical subreg writes don't leave a trace of the old content. */
871 return (isize > osize && isize > UNITS_PER_WORD);
872 }
873
874
875 /* Process all the registers defined in the rtx, X. */
876 static void
877 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
878 {
879 rtx *loc;
880 rtx dst;
881 enum df_ref_flags flags = 0;
882
883 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
884 construct. */
885 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
886 loc = &XEXP (x, 0);
887 else
888 loc = &SET_DEST (x);
889 dst = *loc;
890
891 /* Some targets place small structures in registers for
892 return values of functions. */
893 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
894 {
895 int i;
896
897 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
898 {
899 rtx temp = XVECEXP (dst, 0, i);
900 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
901 || GET_CODE (temp) == SET)
902 df_def_record_1 (df, temp, bb, insn);
903 }
904 return;
905 }
906
907 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
908 be handy for the reg allocator. */
909 while (GET_CODE (dst) == STRICT_LOW_PART
910 || GET_CODE (dst) == ZERO_EXTRACT
911 || GET_CODE (dst) == SIGN_EXTRACT
912 || ((df->flags & DF_FOR_REGALLOC) == 0
913 && read_modify_subreg_p (dst)))
914 {
915 /* Strict low part always contains SUBREG, but we do not want to make
916 it appear outside, as whole register is always considered. */
917 if (GET_CODE (dst) == STRICT_LOW_PART)
918 {
919 loc = &XEXP (dst, 0);
920 dst = *loc;
921 }
922 loc = &XEXP (dst, 0);
923 dst = *loc;
924 flags |= DF_REF_READ_WRITE;
925 }
926
927 if (REG_P (dst)
928 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
929 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
930 }
931
932
933 /* Process all the registers defined in the pattern rtx, X. */
934 static void
935 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
936 {
937 RTX_CODE code = GET_CODE (x);
938
939 if (code == SET || code == CLOBBER)
940 {
941 /* Mark the single def within the pattern. */
942 df_def_record_1 (df, x, bb, insn);
943 }
944 else if (code == PARALLEL)
945 {
946 int i;
947
948 /* Mark the multiple defs within the pattern. */
949 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
950 {
951 code = GET_CODE (XVECEXP (x, 0, i));
952 if (code == SET || code == CLOBBER)
953 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
954 }
955 }
956 }
957
958
959 /* Process all the registers used in the rtx at address LOC. */
960 static void
961 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
962 basic_block bb, rtx insn, enum df_ref_flags flags)
963 {
964 RTX_CODE code;
965 rtx x;
966 retry:
967 x = *loc;
968 if (!x)
969 return;
970 code = GET_CODE (x);
971 switch (code)
972 {
973 case LABEL_REF:
974 case SYMBOL_REF:
975 case CONST_INT:
976 case CONST:
977 case CONST_DOUBLE:
978 case CONST_VECTOR:
979 case PC:
980 case CC0:
981 case ADDR_VEC:
982 case ADDR_DIFF_VEC:
983 return;
984
985 case CLOBBER:
986 /* If we are clobbering a MEM, mark any registers inside the address
987 as being used. */
988 if (MEM_P (XEXP (x, 0)))
989 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
990 DF_REF_REG_MEM_STORE, bb, insn, flags);
991
992 /* If we're clobbering a REG then we have a def so ignore. */
993 return;
994
995 case MEM:
996 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
997 return;
998
999 case SUBREG:
1000 /* While we're here, optimize this case. */
1001
1002 /* In case the SUBREG is not of a REG, do not optimize. */
1003 if (!REG_P (SUBREG_REG (x)))
1004 {
1005 loc = &SUBREG_REG (x);
1006 df_uses_record (df, loc, ref_type, bb, insn, flags);
1007 return;
1008 }
1009 /* ... Fall through ... */
1010
1011 case REG:
1012 df_ref_record (df, x, loc, insn, ref_type, flags);
1013 return;
1014
1015 case SET:
1016 {
1017 rtx dst = SET_DEST (x);
1018
1019 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1020
1021 switch (GET_CODE (dst))
1022 {
1023 case SUBREG:
1024 if ((df->flags & DF_FOR_REGALLOC) == 0
1025 && read_modify_subreg_p (dst))
1026 {
1027 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1028 insn, DF_REF_READ_WRITE);
1029 break;
1030 }
1031 /* Fall through. */
1032 case REG:
1033 case PARALLEL:
1034 case PC:
1035 case CC0:
1036 break;
1037 case MEM:
1038 df_uses_record (df, &XEXP (dst, 0),
1039 DF_REF_REG_MEM_STORE,
1040 bb, insn, 0);
1041 break;
1042 case STRICT_LOW_PART:
1043 /* A strict_low_part uses the whole REG and not just the SUBREG. */
1044 dst = XEXP (dst, 0);
1045 if (GET_CODE (dst) != SUBREG)
1046 abort ();
1047 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1048 insn, DF_REF_READ_WRITE);
1049 break;
1050 case ZERO_EXTRACT:
1051 case SIGN_EXTRACT:
1052 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1053 DF_REF_READ_WRITE);
1054 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1055 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1056 dst = XEXP (dst, 0);
1057 break;
1058 default:
1059 abort ();
1060 }
1061 return;
1062 }
1063
1064 case RETURN:
1065 break;
1066
1067 case ASM_OPERANDS:
1068 case UNSPEC_VOLATILE:
1069 case TRAP_IF:
1070 case ASM_INPUT:
1071 {
1072 /* Traditional and volatile asm instructions must be considered to use
1073 and clobber all hard registers, all pseudo-registers and all of
1074 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1075
1076 Consider for instance a volatile asm that changes the fpu rounding
1077 mode. An insn should not be moved across this even if it only uses
1078 pseudo-regs because it might give an incorrectly rounded result.
1079
1080 For now, just mark any regs we can find in ASM_OPERANDS as
1081 used. */
1082
1083 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1084 We can not just fall through here since then we would be confused
1085 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1086 traditional asms unlike their normal usage. */
1087 if (code == ASM_OPERANDS)
1088 {
1089 int j;
1090
1091 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1092 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1093 DF_REF_REG_USE, bb, insn, 0);
1094 return;
1095 }
1096 break;
1097 }
1098
1099 case PRE_DEC:
1100 case POST_DEC:
1101 case PRE_INC:
1102 case POST_INC:
1103 case PRE_MODIFY:
1104 case POST_MODIFY:
1105 /* Catch the def of the register being modified. */
1106 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1107
1108 /* ... Fall through to handle uses ... */
1109
1110 default:
1111 break;
1112 }
1113
1114 /* Recursively scan the operands of this expression. */
1115 {
1116 const char *fmt = GET_RTX_FORMAT (code);
1117 int i;
1118
1119 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1120 {
1121 if (fmt[i] == 'e')
1122 {
1123 /* Tail recursive case: save a function call level. */
1124 if (i == 0)
1125 {
1126 loc = &XEXP (x, 0);
1127 goto retry;
1128 }
1129 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1130 }
1131 else if (fmt[i] == 'E')
1132 {
1133 int j;
1134 for (j = 0; j < XVECLEN (x, i); j++)
1135 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1136 bb, insn, flags);
1137 }
1138 }
1139 }
1140 }
1141
1142
1143 /* Record all the df within INSN of basic block BB. */
1144 static void
1145 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1146 {
1147 int i;
1148
1149 if (INSN_P (insn))
1150 {
1151 rtx note;
1152
1153 /* Record register defs. */
1154 df_defs_record (df, PATTERN (insn), bb, insn);
1155
1156 if (df->flags & DF_EQUIV_NOTES)
1157 for (note = REG_NOTES (insn); note;
1158 note = XEXP (note, 1))
1159 {
1160 switch (REG_NOTE_KIND (note))
1161 {
1162 case REG_EQUIV:
1163 case REG_EQUAL:
1164 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1165 bb, insn, 0);
1166 default:
1167 break;
1168 }
1169 }
1170
1171 if (CALL_P (insn))
1172 {
1173 rtx note;
1174 rtx x;
1175
1176 /* Record the registers used to pass arguments. */
1177 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1178 note = XEXP (note, 1))
1179 {
1180 if (GET_CODE (XEXP (note, 0)) == USE)
1181 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1182 bb, insn, 0);
1183 }
1184
1185 /* The stack ptr is used (honorarily) by a CALL insn. */
1186 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1187 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1188
1189 if (df->flags & DF_HARD_REGS)
1190 {
1191 /* Calls may also reference any of the global registers,
1192 so they are recorded as used. */
1193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1194 if (global_regs[i])
1195 {
1196 x = df_reg_use_gen (i);
1197 df_uses_record (df, &SET_DEST (x),
1198 DF_REF_REG_USE, bb, insn, 0);
1199 }
1200 }
1201 }
1202
1203 /* Record the register uses. */
1204 df_uses_record (df, &PATTERN (insn),
1205 DF_REF_REG_USE, bb, insn, 0);
1206
1207 if (CALL_P (insn))
1208 {
1209 rtx note;
1210
1211 /* We do not record hard registers clobbered by the call,
1212 since there are awfully many of them and "defs" created
1213 through them are not interesting (since no use can be legally
1214 reached by them). So we must just make sure we include them when
1215 computing kill bitmaps. */
1216
1217 /* There may be extra registers to be clobbered. */
1218 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1219 note;
1220 note = XEXP (note, 1))
1221 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1222 df_defs_record (df, XEXP (note, 0), bb, insn);
1223 }
1224 }
1225 }
1226
1227
1228 /* Record all the refs within the basic block BB. */
1229 static void
1230 df_bb_refs_record (struct df *df, basic_block bb)
1231 {
1232 rtx insn;
1233
1234 /* Scan the block an insn at a time from beginning to end. */
1235 FOR_BB_INSNS (bb, insn)
1236 {
1237 if (INSN_P (insn))
1238 {
1239 /* Record defs within INSN. */
1240 df_insn_refs_record (df, bb, insn);
1241 }
1242 }
1243 }
1244
1245
1246 /* Record all the refs in the basic blocks specified by BLOCKS. */
1247 static void
1248 df_refs_record (struct df *df, bitmap blocks)
1249 {
1250 basic_block bb;
1251
1252 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1253 {
1254 df_bb_refs_record (df, bb);
1255 });
1256 }
1257 \f
1258 /* Dataflow analysis routines. */
1259
1260 /* Create reg-def chains for basic block BB. These are a list of
1261 definitions for each register. */
1262
1263 static void
1264 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1265 {
1266 rtx insn;
1267
1268 /* Perhaps the defs should be sorted using a depth first search
1269 of the CFG (or possibly a breadth first search). */
1270
1271 FOR_BB_INSNS_REVERSE (bb, insn)
1272 {
1273 struct df_link *link;
1274 unsigned int uid = INSN_UID (insn);
1275
1276 if (! INSN_P (insn))
1277 continue;
1278
1279 for (link = df->insns[uid].defs; link; link = link->next)
1280 {
1281 struct ref *def = link->ref;
1282 unsigned int dregno = DF_REF_REGNO (def);
1283
1284 /* Do not add ref's to the chain twice, i.e., only add new
1285 refs. XXX the same could be done by testing if the
1286 current insn is a modified (or a new) one. This would be
1287 faster. */
1288 if (DF_REF_ID (def) < df->def_id_save)
1289 continue;
1290
1291 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1292 }
1293 }
1294 }
1295
1296
1297 /* Create reg-def chains for each basic block within BLOCKS. These
1298 are a list of definitions for each register. If REDO is true, add
1299 all defs, otherwise just add the new defs. */
1300
1301 static void
1302 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1303 {
1304 basic_block bb;
1305 #ifdef ENABLE_CHECKING
1306 unsigned regno;
1307 #endif
1308 unsigned old_def_id_save = df->def_id_save;
1309
1310 if (redo)
1311 {
1312 #ifdef ENABLE_CHECKING
1313 for (regno = 0; regno < df->n_regs; regno++)
1314 if (df->regs[regno].defs)
1315 abort ();
1316 #endif
1317
1318 /* Pretend that all defs are new. */
1319 df->def_id_save = 0;
1320 }
1321
1322 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1323 {
1324 df_bb_reg_def_chain_create (df, bb);
1325 });
1326
1327 df->def_id_save = old_def_id_save;
1328 }
1329
1330 /* Remove all reg-def chains stored in the dataflow object DF. */
1331
1332 static void
1333 df_reg_def_chain_clean (struct df *df)
1334 {
1335 unsigned regno;
1336
1337 for (regno = 0; regno < df->n_regs; regno++)
1338 free_reg_ref_chain (&df->regs[regno].defs);
1339 }
1340
1341 /* Create reg-use chains for basic block BB. These are a list of uses
1342 for each register. */
1343
1344 static void
1345 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1346 {
1347 rtx insn;
1348
1349 /* Scan in forward order so that the last uses appear at the start
1350 of the chain. */
1351
1352 FOR_BB_INSNS (bb, insn)
1353 {
1354 struct df_link *link;
1355 unsigned int uid = INSN_UID (insn);
1356
1357 if (! INSN_P (insn))
1358 continue;
1359
1360 for (link = df->insns[uid].uses; link; link = link->next)
1361 {
1362 struct ref *use = link->ref;
1363 unsigned int uregno = DF_REF_REGNO (use);
1364
1365 /* Do not add ref's to the chain twice, i.e., only add new
1366 refs. XXX the same could be done by testing if the
1367 current insn is a modified (or a new) one. This would be
1368 faster. */
1369 if (DF_REF_ID (use) < df->use_id_save)
1370 continue;
1371
1372 df->regs[uregno].uses
1373 = df_link_create (use, df->regs[uregno].uses);
1374 }
1375 }
1376 }
1377
1378
1379 /* Create reg-use chains for each basic block within BLOCKS. These
1380 are a list of uses for each register. If REDO is true, remove the
1381 old reg-use chains first, otherwise just add new uses to them. */
1382
1383 static void
1384 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1385 {
1386 basic_block bb;
1387 #ifdef ENABLE_CHECKING
1388 unsigned regno;
1389 #endif
1390 unsigned old_use_id_save = df->use_id_save;
1391
1392 if (redo)
1393 {
1394 #ifdef ENABLE_CHECKING
1395 for (regno = 0; regno < df->n_regs; regno++)
1396 if (df->regs[regno].uses)
1397 abort ();
1398 #endif
1399
1400 /* Pretend that all uses are new. */
1401 df->use_id_save = 0;
1402 }
1403
1404 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1405 {
1406 df_bb_reg_use_chain_create (df, bb);
1407 });
1408
1409 df->use_id_save = old_use_id_save;
1410 }
1411
1412 /* Remove all reg-use chains stored in the dataflow object DF. */
1413
1414 static void
1415 df_reg_use_chain_clean (struct df *df)
1416 {
1417 unsigned regno;
1418
1419 for (regno = 0; regno < df->n_regs; regno++)
1420 free_reg_ref_chain (&df->regs[regno].uses);
1421 }
1422
1423 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1424 static void
1425 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1426 {
1427 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1428 rtx insn;
1429
1430 bitmap_copy (ru, bb_info->ru_out);
1431
1432 /* For each def in BB create a linked list (chain) of uses
1433 reached from the def. */
1434 FOR_BB_INSNS_REVERSE (bb, insn)
1435 {
1436 struct df_link *def_link;
1437 struct df_link *use_link;
1438 unsigned int uid = INSN_UID (insn);
1439
1440 if (! INSN_P (insn))
1441 continue;
1442
1443 /* For each def in insn... */
1444 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1445 {
1446 struct ref *def = def_link->ref;
1447 unsigned int dregno = DF_REF_REGNO (def);
1448
1449 DF_REF_CHAIN (def) = 0;
1450
1451 /* While the reg-use chains are not essential, it
1452 is _much_ faster to search these short lists rather
1453 than all the reaching uses, especially for large functions. */
1454 for (use_link = df->regs[dregno].uses; use_link;
1455 use_link = use_link->next)
1456 {
1457 struct ref *use = use_link->ref;
1458
1459 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1460 {
1461 DF_REF_CHAIN (def)
1462 = df_link_create (use, DF_REF_CHAIN (def));
1463
1464 bitmap_clear_bit (ru, DF_REF_ID (use));
1465 }
1466 }
1467 }
1468
1469 /* For each use in insn... */
1470 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1471 {
1472 struct ref *use = use_link->ref;
1473 bitmap_set_bit (ru, DF_REF_ID (use));
1474 }
1475 }
1476 }
1477
1478
1479 /* Create def-use chains from reaching use bitmaps for basic blocks
1480 in BLOCKS. */
1481 static void
1482 df_du_chain_create (struct df *df, bitmap blocks)
1483 {
1484 bitmap ru;
1485 basic_block bb;
1486
1487 ru = BITMAP_XMALLOC ();
1488
1489 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1490 {
1491 df_bb_du_chain_create (df, bb, ru);
1492 });
1493
1494 BITMAP_XFREE (ru);
1495 }
1496
1497
1498 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1499 static void
1500 df_bb_ud_chain_create (struct df *df, basic_block bb)
1501 {
1502 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1503 struct ref **reg_def_last = df->reg_def_last;
1504 rtx insn;
1505
1506 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1507
1508 /* For each use in BB create a linked list (chain) of defs
1509 that reach the use. */
1510 FOR_BB_INSNS (bb, insn)
1511 {
1512 unsigned int uid = INSN_UID (insn);
1513 struct df_link *use_link;
1514 struct df_link *def_link;
1515
1516 if (! INSN_P (insn))
1517 continue;
1518
1519 /* For each use in insn... */
1520 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1521 {
1522 struct ref *use = use_link->ref;
1523 unsigned int regno = DF_REF_REGNO (use);
1524
1525 DF_REF_CHAIN (use) = 0;
1526
1527 /* Has regno been defined in this BB yet? If so, use
1528 the last def as the single entry for the use-def
1529 chain for this use. Otherwise, we need to add all
1530 the defs using this regno that reach the start of
1531 this BB. */
1532 if (reg_def_last[regno])
1533 {
1534 DF_REF_CHAIN (use)
1535 = df_link_create (reg_def_last[regno], 0);
1536 }
1537 else
1538 {
1539 /* While the reg-def chains are not essential, it is
1540 _much_ faster to search these short lists rather than
1541 all the reaching defs, especially for large
1542 functions. */
1543 for (def_link = df->regs[regno].defs; def_link;
1544 def_link = def_link->next)
1545 {
1546 struct ref *def = def_link->ref;
1547
1548 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1549 {
1550 DF_REF_CHAIN (use)
1551 = df_link_create (def, DF_REF_CHAIN (use));
1552 }
1553 }
1554 }
1555 }
1556
1557
1558 /* For each def in insn... record the last def of each reg. */
1559 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1560 {
1561 struct ref *def = def_link->ref;
1562 int dregno = DF_REF_REGNO (def);
1563
1564 reg_def_last[dregno] = def;
1565 }
1566 }
1567 }
1568
1569
1570 /* Create use-def chains from reaching def bitmaps for basic blocks
1571 within BLOCKS. */
1572 static void
1573 df_ud_chain_create (struct df *df, bitmap blocks)
1574 {
1575 basic_block bb;
1576
1577 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1578 {
1579 df_bb_ud_chain_create (df, bb);
1580 });
1581 }
1582 \f
1583
1584
1585 static void
1586 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1587 void *out, void *gen, void *kill,
1588 void *data ATTRIBUTE_UNUSED)
1589 {
1590 *changed = bitmap_union_of_diff (out, gen, in, kill);
1591 }
1592
1593
1594 static void
1595 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1596 void *out, void *gen, void *kill,
1597 void *data ATTRIBUTE_UNUSED)
1598 {
1599 *changed = bitmap_union_of_diff (in, gen, out, kill);
1600 }
1601
1602
1603 static void
1604 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1605 void *out, void *use, void *def,
1606 void *data ATTRIBUTE_UNUSED)
1607 {
1608 *changed = bitmap_union_of_diff (in, use, out, def);
1609 }
1610
1611
1612 /* Compute local reaching def info for basic block BB. */
1613 static void
1614 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1615 {
1616 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1617 rtx insn;
1618 bitmap seen = BITMAP_XMALLOC ();
1619 bool call_seen = false;
1620
1621 FOR_BB_INSNS_REVERSE (bb, insn)
1622 {
1623 unsigned int uid = INSN_UID (insn);
1624 struct df_link *def_link;
1625
1626 if (! INSN_P (insn))
1627 continue;
1628
1629 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1630 {
1631 struct ref *def = def_link->ref;
1632 unsigned int regno = DF_REF_REGNO (def);
1633 struct df_link *def2_link;
1634
1635 if (bitmap_bit_p (seen, regno)
1636 || (call_seen
1637 && regno < FIRST_PSEUDO_REGISTER
1638 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1639 continue;
1640
1641 for (def2_link = df->regs[regno].defs; def2_link;
1642 def2_link = def2_link->next)
1643 {
1644 struct ref *def2 = def2_link->ref;
1645
1646 /* Add all defs of this reg to the set of kills. This
1647 is greedy since many of these defs will not actually
1648 be killed by this BB but it keeps things a lot
1649 simpler. */
1650 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1651 }
1652
1653 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1654 bitmap_set_bit (seen, regno);
1655 }
1656
1657 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1658 {
1659 bitmap_operation (bb_info->rd_kill, bb_info->rd_kill,
1660 call_killed_defs, BITMAP_IOR);
1661 call_seen = 1;
1662 }
1663 }
1664
1665 BITMAP_XFREE (seen);
1666 }
1667
1668
1669 /* Compute local reaching def info for each basic block within BLOCKS. */
1670 static void
1671 df_rd_local_compute (struct df *df, bitmap blocks)
1672 {
1673 basic_block bb;
1674 bitmap killed_by_call = NULL;
1675 unsigned regno;
1676 struct df_link *def_link;
1677
1678 if (df->flags & DF_HARD_REGS)
1679 {
1680 killed_by_call = BITMAP_XMALLOC ();
1681 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1682 {
1683 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1684 continue;
1685
1686 for (def_link = df->regs[regno].defs;
1687 def_link;
1688 def_link = def_link->next)
1689 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1690 }
1691 }
1692
1693 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1694 {
1695 df_bb_rd_local_compute (df, bb, killed_by_call);
1696 });
1697
1698 if (df->flags & DF_HARD_REGS)
1699 BITMAP_XFREE (killed_by_call);
1700 }
1701
1702
1703 /* Compute local reaching use (upward exposed use) info for basic
1704 block BB. */
1705 static void
1706 df_bb_ru_local_compute (struct df *df, basic_block bb)
1707 {
1708 /* This is much more tricky than computing reaching defs. With
1709 reaching defs, defs get killed by other defs. With upwards
1710 exposed uses, these get killed by defs with the same regno. */
1711
1712 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1713 rtx insn;
1714
1715
1716 FOR_BB_INSNS_REVERSE (bb, insn)
1717 {
1718 unsigned int uid = INSN_UID (insn);
1719 struct df_link *def_link;
1720 struct df_link *use_link;
1721
1722 if (! INSN_P (insn))
1723 continue;
1724
1725 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1726 {
1727 struct ref *def = def_link->ref;
1728 unsigned int dregno = DF_REF_REGNO (def);
1729
1730 for (use_link = df->regs[dregno].uses; use_link;
1731 use_link = use_link->next)
1732 {
1733 struct ref *use = use_link->ref;
1734
1735 /* Add all uses of this reg to the set of kills. This
1736 is greedy since many of these uses will not actually
1737 be killed by this BB but it keeps things a lot
1738 simpler. */
1739 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1740
1741 /* Zap from the set of gens for this BB. */
1742 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1743 }
1744 }
1745
1746 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1747 {
1748 struct ref *use = use_link->ref;
1749 /* Add use to set of gens in this BB. */
1750 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1751 }
1752 }
1753 }
1754
1755
1756 /* Compute local reaching use (upward exposed use) info for each basic
1757 block within BLOCKS. */
1758 static void
1759 df_ru_local_compute (struct df *df, bitmap blocks)
1760 {
1761 basic_block bb;
1762
1763 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1764 {
1765 df_bb_ru_local_compute (df, bb);
1766 });
1767 }
1768
1769
1770 /* Compute local live variable info for basic block BB. */
1771 static void
1772 df_bb_lr_local_compute (struct df *df, basic_block bb)
1773 {
1774 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1775 rtx insn;
1776
1777 FOR_BB_INSNS_REVERSE (bb, insn)
1778 {
1779 unsigned int uid = INSN_UID (insn);
1780 struct df_link *link;
1781
1782 if (! INSN_P (insn))
1783 continue;
1784
1785 for (link = df->insns[uid].defs; link; link = link->next)
1786 {
1787 struct ref *def = link->ref;
1788 unsigned int dregno = DF_REF_REGNO (def);
1789
1790 /* Add def to set of defs in this BB. */
1791 bitmap_set_bit (bb_info->lr_def, dregno);
1792
1793 bitmap_clear_bit (bb_info->lr_use, dregno);
1794 }
1795
1796 for (link = df->insns[uid].uses; link; link = link->next)
1797 {
1798 struct ref *use = link->ref;
1799 /* Add use to set of uses in this BB. */
1800 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1801 }
1802 }
1803 }
1804
1805
1806 /* Compute local live variable info for each basic block within BLOCKS. */
1807 static void
1808 df_lr_local_compute (struct df *df, bitmap blocks)
1809 {
1810 basic_block bb;
1811
1812 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1813 {
1814 df_bb_lr_local_compute (df, bb);
1815 });
1816 }
1817
1818
1819 /* Compute register info: lifetime, bb, and number of defs and uses
1820 for basic block BB. */
1821 static void
1822 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1823 {
1824 struct reg_info *reg_info = df->regs;
1825 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1826 rtx insn;
1827
1828 bitmap_copy (live, bb_info->lr_out);
1829
1830 FOR_BB_INSNS_REVERSE (bb, insn)
1831 {
1832 unsigned int uid = INSN_UID (insn);
1833 unsigned int regno;
1834 struct df_link *link;
1835
1836 if (! INSN_P (insn))
1837 continue;
1838
1839 for (link = df->insns[uid].defs; link; link = link->next)
1840 {
1841 struct ref *def = link->ref;
1842 unsigned int dregno = DF_REF_REGNO (def);
1843
1844 /* Kill this register. */
1845 bitmap_clear_bit (live, dregno);
1846 reg_info[dregno].n_defs++;
1847 }
1848
1849 for (link = df->insns[uid].uses; link; link = link->next)
1850 {
1851 struct ref *use = link->ref;
1852 unsigned int uregno = DF_REF_REGNO (use);
1853
1854 /* This register is now live. */
1855 bitmap_set_bit (live, uregno);
1856 reg_info[uregno].n_uses++;
1857 }
1858
1859 /* Increment lifetimes of all live registers. */
1860 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1861 {
1862 reg_info[regno].lifetime++;
1863 });
1864 }
1865 }
1866
1867
1868 /* Compute register info: lifetime, bb, and number of defs and uses. */
1869 static void
1870 df_reg_info_compute (struct df *df, bitmap blocks)
1871 {
1872 basic_block bb;
1873 bitmap live;
1874
1875 live = BITMAP_XMALLOC ();
1876
1877 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1878 {
1879 df_bb_reg_info_compute (df, bb, live);
1880 });
1881
1882 BITMAP_XFREE (live);
1883 }
1884
1885
1886 /* Assign LUIDs for BB. */
1887 static int
1888 df_bb_luids_set (struct df *df, basic_block bb)
1889 {
1890 rtx insn;
1891 int luid = 0;
1892
1893 /* The LUIDs are monotonically increasing for each basic block. */
1894
1895 FOR_BB_INSNS (bb, insn)
1896 {
1897 if (INSN_P (insn))
1898 DF_INSN_LUID (df, insn) = luid++;
1899 DF_INSN_LUID (df, insn) = luid;
1900 }
1901 return luid;
1902 }
1903
1904
1905 /* Assign LUIDs for each basic block within BLOCKS. */
1906 static int
1907 df_luids_set (struct df *df, bitmap blocks)
1908 {
1909 basic_block bb;
1910 int total = 0;
1911
1912 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1913 {
1914 total += df_bb_luids_set (df, bb);
1915 });
1916 return total;
1917 }
1918
1919
1920 /* Perform dataflow analysis using existing DF structure for blocks
1921 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1922 static void
1923 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1924 {
1925 int aflags;
1926 int dflags;
1927 int i;
1928 basic_block bb;
1929 struct dataflow dflow;
1930
1931 dflags = 0;
1932 aflags = flags;
1933 if (flags & DF_UD_CHAIN)
1934 aflags |= DF_RD | DF_RD_CHAIN;
1935
1936 if (flags & DF_DU_CHAIN)
1937 aflags |= DF_RU;
1938
1939 if (flags & DF_RU)
1940 aflags |= DF_RU_CHAIN;
1941
1942 if (flags & DF_REG_INFO)
1943 aflags |= DF_LR;
1944
1945 if (! blocks)
1946 blocks = df->all_blocks;
1947
1948 df->flags = flags;
1949 if (update)
1950 {
1951 df_refs_update (df, NULL);
1952 /* More fine grained incremental dataflow analysis would be
1953 nice. For now recompute the whole shebang for the
1954 modified blocks. */
1955 #if 0
1956 df_refs_unlink (df, blocks);
1957 #endif
1958 /* All the def-use, use-def chains can be potentially
1959 modified by changes in one block. The size of the
1960 bitmaps can also change. */
1961 }
1962 else
1963 {
1964 /* Scan the function for all register defs and uses. */
1965 df_refs_queue (df);
1966 df_refs_record (df, blocks);
1967
1968 /* Link all the new defs and uses to the insns. */
1969 df_refs_process (df);
1970 }
1971
1972 /* Allocate the bitmaps now the total number of defs and uses are
1973 known. If the number of defs or uses have changed, then
1974 these bitmaps need to be reallocated. */
1975 df_bitmaps_alloc (df, NULL, aflags);
1976
1977 /* Set the LUIDs for each specified basic block. */
1978 df_luids_set (df, blocks);
1979
1980 /* Recreate reg-def and reg-use chains from scratch so that first
1981 def is at the head of the reg-def chain and the last use is at
1982 the head of the reg-use chain. This is only important for
1983 regs local to a basic block as it speeds up searching. */
1984 if (aflags & DF_RD_CHAIN)
1985 {
1986 df_reg_def_chain_create (df, blocks, false);
1987 }
1988
1989 if (aflags & DF_RU_CHAIN)
1990 {
1991 df_reg_use_chain_create (df, blocks, false);
1992 }
1993
1994 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
1995 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
1996 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
1997 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
1998 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
1999 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2000
2001 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2002 flow_reverse_top_sort_order_compute (df->rts_order);
2003 for (i = 0; i < n_basic_blocks; i++)
2004 {
2005 df->inverse_dfs_map[df->dfs_order[i]] = i;
2006 df->inverse_rc_map[df->rc_order[i]] = i;
2007 df->inverse_rts_map[df->rts_order[i]] = i;
2008 }
2009 if (aflags & DF_RD)
2010 {
2011 /* Compute the sets of gens and kills for the defs of each bb. */
2012 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2013 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2014 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2015 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2016
2017 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2018 FOR_EACH_BB (bb)
2019 {
2020 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2021 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2022 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2023 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2024 }
2025
2026 dflow.repr = SR_BITMAP;
2027 dflow.dir = DF_FORWARD;
2028 dflow.conf_op = DF_UNION;
2029 dflow.transfun = df_rd_transfer_function;
2030 dflow.n_blocks = n_basic_blocks;
2031 dflow.order = df->rc_order;
2032 dflow.data = NULL;
2033
2034 iterative_dataflow (&dflow);
2035 free (dflow.in);
2036 free (dflow.out);
2037 free (dflow.gen);
2038 free (dflow.kill);
2039 }
2040
2041 if (aflags & DF_UD_CHAIN)
2042 {
2043 /* Create use-def chains. */
2044 df_ud_chain_create (df, df->all_blocks);
2045
2046 if (! (flags & DF_RD))
2047 dflags |= DF_RD;
2048 }
2049
2050 if (aflags & DF_RU)
2051 {
2052 /* Compute the sets of gens and kills for the upwards exposed
2053 uses in each bb. */
2054 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2055 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2056 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2057 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2058
2059 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2060
2061 FOR_EACH_BB (bb)
2062 {
2063 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2064 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2065 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2066 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2067 }
2068
2069 dflow.repr = SR_BITMAP;
2070 dflow.dir = DF_BACKWARD;
2071 dflow.conf_op = DF_UNION;
2072 dflow.transfun = df_ru_transfer_function;
2073 dflow.n_blocks = n_basic_blocks;
2074 dflow.order = df->rts_order;
2075 dflow.data = NULL;
2076
2077 iterative_dataflow (&dflow);
2078 free (dflow.in);
2079 free (dflow.out);
2080 free (dflow.gen);
2081 free (dflow.kill);
2082 }
2083
2084 if (aflags & DF_DU_CHAIN)
2085 {
2086 /* Create def-use chains. */
2087 df_du_chain_create (df, df->all_blocks);
2088
2089 if (! (flags & DF_RU))
2090 dflags |= DF_RU;
2091 }
2092
2093 /* Free up bitmaps that are no longer required. */
2094 if (dflags)
2095 df_bitmaps_free (df, dflags);
2096
2097 if (aflags & DF_LR)
2098 {
2099 /* Compute the sets of defs and uses of live variables. */
2100 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2101 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2102 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2103 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2104
2105 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2106
2107 FOR_EACH_BB (bb)
2108 {
2109 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2110 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2111 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2112 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2113 }
2114
2115 dflow.repr = SR_BITMAP;
2116 dflow.dir = DF_BACKWARD;
2117 dflow.conf_op = DF_UNION;
2118 dflow.transfun = df_lr_transfer_function;
2119 dflow.n_blocks = n_basic_blocks;
2120 dflow.order = df->rts_order;
2121 dflow.data = NULL;
2122
2123 iterative_dataflow (&dflow);
2124 free (dflow.in);
2125 free (dflow.out);
2126 free (dflow.gen);
2127 free (dflow.kill);
2128 }
2129
2130 if (aflags & DF_REG_INFO)
2131 {
2132 df_reg_info_compute (df, df->all_blocks);
2133 }
2134
2135 free (df->dfs_order);
2136 free (df->rc_order);
2137 free (df->rts_order);
2138 free (df->inverse_rc_map);
2139 free (df->inverse_dfs_map);
2140 free (df->inverse_rts_map);
2141 }
2142
2143
2144 /* Initialize dataflow analysis. */
2145 struct df *
2146 df_init (void)
2147 {
2148 struct df *df;
2149
2150 df = xcalloc (1, sizeof (struct df));
2151
2152 /* Squirrel away a global for debugging. */
2153 ddf = df;
2154
2155 return df;
2156 }
2157
2158
2159 /* Start queuing refs. */
2160 static int
2161 df_refs_queue (struct df *df)
2162 {
2163 df->def_id_save = df->def_id;
2164 df->use_id_save = df->use_id;
2165 /* ???? Perhaps we should save current obstack state so that we can
2166 unwind it. */
2167 return 0;
2168 }
2169
2170
2171 /* Process queued refs. */
2172 static int
2173 df_refs_process (struct df *df)
2174 {
2175 unsigned int i;
2176
2177 /* Build new insn-def chains. */
2178 for (i = df->def_id_save; i != df->def_id; i++)
2179 {
2180 struct ref *def = df->defs[i];
2181 unsigned int uid = DF_REF_INSN_UID (def);
2182
2183 /* Add def to head of def list for INSN. */
2184 df->insns[uid].defs
2185 = df_link_create (def, df->insns[uid].defs);
2186 }
2187
2188 /* Build new insn-use chains. */
2189 for (i = df->use_id_save; i != df->use_id; i++)
2190 {
2191 struct ref *use = df->uses[i];
2192 unsigned int uid = DF_REF_INSN_UID (use);
2193
2194 /* Add use to head of use list for INSN. */
2195 df->insns[uid].uses
2196 = df_link_create (use, df->insns[uid].uses);
2197 }
2198 return 0;
2199 }
2200
2201
2202 /* Update refs for basic block BB. */
2203 static int
2204 df_bb_refs_update (struct df *df, basic_block bb)
2205 {
2206 rtx insn;
2207 int count = 0;
2208
2209 /* While we have to scan the chain of insns for this BB, we do not
2210 need to allocate and queue a long chain of BB/INSN pairs. Using
2211 a bitmap for insns_modified saves memory and avoids queuing
2212 duplicates. */
2213
2214 FOR_BB_INSNS (bb, insn)
2215 {
2216 unsigned int uid;
2217
2218 uid = INSN_UID (insn);
2219
2220 if (bitmap_bit_p (df->insns_modified, uid))
2221 {
2222 /* Delete any allocated refs of this insn. MPH, FIXME. */
2223 df_insn_refs_unlink (df, bb, insn);
2224
2225 /* Scan the insn for refs. */
2226 df_insn_refs_record (df, bb, insn);
2227
2228 count++;
2229 }
2230 }
2231 return count;
2232 }
2233
2234
2235 /* Process all the modified/deleted insns that were queued. */
2236 static int
2237 df_refs_update (struct df *df, bitmap blocks)
2238 {
2239 basic_block bb;
2240 int count = 0, bbno;
2241
2242 df->n_regs = max_reg_num ();
2243 if (df->n_regs >= df->reg_size)
2244 df_reg_table_realloc (df, 0);
2245
2246 df_refs_queue (df);
2247
2248 if (!blocks)
2249 {
2250 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2251 {
2252 count += df_bb_refs_update (df, bb);
2253 });
2254 }
2255 else
2256 {
2257 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno,
2258 {
2259 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2260 });
2261 }
2262
2263 df_refs_process (df);
2264 return count;
2265 }
2266
2267
2268 /* Return nonzero if any of the requested blocks in the bitmap
2269 BLOCKS have been modified. */
2270 static int
2271 df_modified_p (struct df *df, bitmap blocks)
2272 {
2273 int update = 0;
2274 basic_block bb;
2275
2276 if (!df->n_bbs)
2277 return 0;
2278
2279 FOR_EACH_BB (bb)
2280 if (bitmap_bit_p (df->bbs_modified, bb->index)
2281 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2282 {
2283 update = 1;
2284 break;
2285 }
2286
2287 return update;
2288 }
2289
2290 /* Analyze dataflow info for the basic blocks specified by the bitmap
2291 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2292 modified blocks if BLOCKS is -1. */
2293
2294 int
2295 df_analyze (struct df *df, bitmap blocks, int flags)
2296 {
2297 int update;
2298
2299 /* We could deal with additional basic blocks being created by
2300 rescanning everything again. */
2301 if (df->n_bbs && df->n_bbs != (unsigned int) last_basic_block)
2302 abort ();
2303
2304 update = df_modified_p (df, blocks);
2305 if (update || (flags != df->flags))
2306 {
2307 if (! blocks)
2308 {
2309 if (df->n_bbs)
2310 {
2311 /* Recompute everything from scratch. */
2312 df_free (df);
2313 }
2314 /* Allocate and initialize data structures. */
2315 df_alloc (df, max_reg_num ());
2316 df_analyze_1 (df, 0, flags, 0);
2317 update = 1;
2318 }
2319 else
2320 {
2321 if (blocks == (bitmap) -1)
2322 blocks = df->bbs_modified;
2323
2324 if (! df->n_bbs)
2325 abort ();
2326
2327 df_analyze_1 (df, blocks, flags, 1);
2328 bitmap_zero (df->bbs_modified);
2329 bitmap_zero (df->insns_modified);
2330 }
2331 }
2332 return update;
2333 }
2334
2335 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2336 the order of the remaining entries. Returns the length of the resulting
2337 list. */
2338
2339 static unsigned
2340 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2341 {
2342 unsigned act, last;
2343
2344 for (act = 0, last = 0; act < len; act++)
2345 if (bitmap_bit_p (blocks, list[act]))
2346 list[last++] = list[act];
2347
2348 return last;
2349 }
2350
2351 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2352 graph induced by BLOCKS.
2353
2354 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2355 here, and simultaneously not make even greater chaos in it. We behave
2356 slightly differently in some details, especially in handling modified
2357 insns. */
2358
2359 void
2360 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2361 {
2362 rtx insn;
2363 basic_block bb;
2364 struct dataflow dflow;
2365 unsigned n_blocks;
2366
2367 if (flags & DF_UD_CHAIN)
2368 flags |= DF_RD | DF_RD_CHAIN;
2369 if (flags & DF_DU_CHAIN)
2370 flags |= DF_RU;
2371 if (flags & DF_RU)
2372 flags |= DF_RU_CHAIN;
2373 if (flags & DF_REG_INFO)
2374 flags |= DF_LR;
2375
2376 if (!df->n_bbs)
2377 {
2378 df_alloc (df, max_reg_num ());
2379
2380 /* Mark all insns as modified. */
2381
2382 FOR_EACH_BB (bb)
2383 {
2384 FOR_BB_INSNS (bb, insn)
2385 {
2386 df_insn_modify (df, bb, insn);
2387 }
2388 }
2389 }
2390
2391 df->flags = flags;
2392
2393 df_reg_def_chain_clean (df);
2394 df_reg_use_chain_clean (df);
2395
2396 df_refs_update (df, blocks);
2397
2398 /* Clear the updated stuff from ``modified'' bitmaps. */
2399 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2400 {
2401 if (bitmap_bit_p (df->bbs_modified, bb->index))
2402 {
2403 FOR_BB_INSNS (bb, insn)
2404 {
2405 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2406 }
2407
2408 bitmap_clear_bit (df->bbs_modified, bb->index);
2409 }
2410 });
2411
2412 /* Allocate the bitmaps now the total number of defs and uses are
2413 known. If the number of defs or uses have changed, then
2414 these bitmaps need to be reallocated. */
2415 df_bitmaps_alloc (df, blocks, flags);
2416
2417 /* Set the LUIDs for each specified basic block. */
2418 df_luids_set (df, blocks);
2419
2420 /* Recreate reg-def and reg-use chains from scratch so that first
2421 def is at the head of the reg-def chain and the last use is at
2422 the head of the reg-use chain. This is only important for
2423 regs local to a basic block as it speeds up searching. */
2424 if (flags & DF_RD_CHAIN)
2425 {
2426 df_reg_def_chain_create (df, blocks, true);
2427 }
2428
2429 if (flags & DF_RU_CHAIN)
2430 {
2431 df_reg_use_chain_create (df, blocks, true);
2432 }
2433
2434 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2435 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2436 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2437
2438 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2439 flow_reverse_top_sort_order_compute (df->rts_order);
2440
2441 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
2442 prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
2443 prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);
2444
2445 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2446 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2447 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2448 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2449
2450 if (flags & DF_RD)
2451 {
2452 /* Compute the sets of gens and kills for the defs of each bb. */
2453 df_rd_local_compute (df, blocks);
2454
2455 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2456 {
2457 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2458 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2459 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2460 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2461 });
2462
2463 dflow.repr = SR_BITMAP;
2464 dflow.dir = DF_FORWARD;
2465 dflow.conf_op = DF_UNION;
2466 dflow.transfun = df_rd_transfer_function;
2467 dflow.n_blocks = n_blocks;
2468 dflow.order = df->rc_order;
2469 dflow.data = NULL;
2470
2471 iterative_dataflow (&dflow);
2472 }
2473
2474 if (flags & DF_UD_CHAIN)
2475 {
2476 /* Create use-def chains. */
2477 df_ud_chain_create (df, blocks);
2478 }
2479
2480 if (flags & DF_RU)
2481 {
2482 /* Compute the sets of gens and kills for the upwards exposed
2483 uses in each bb. */
2484 df_ru_local_compute (df, blocks);
2485
2486 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2487 {
2488 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2489 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2490 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2491 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2492 });
2493
2494 dflow.repr = SR_BITMAP;
2495 dflow.dir = DF_BACKWARD;
2496 dflow.conf_op = DF_UNION;
2497 dflow.transfun = df_ru_transfer_function;
2498 dflow.n_blocks = n_blocks;
2499 dflow.order = df->rts_order;
2500 dflow.data = NULL;
2501
2502 iterative_dataflow (&dflow);
2503 }
2504
2505 if (flags & DF_DU_CHAIN)
2506 {
2507 /* Create def-use chains. */
2508 df_du_chain_create (df, blocks);
2509 }
2510
2511 if (flags & DF_LR)
2512 {
2513 /* Compute the sets of defs and uses of live variables. */
2514 df_lr_local_compute (df, blocks);
2515
2516 FOR_EACH_BB (bb)
2517 {
2518 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2519 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2520 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2521 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2522 }
2523
2524 dflow.repr = SR_BITMAP;
2525 dflow.dir = DF_BACKWARD;
2526 dflow.conf_op = DF_UNION;
2527 dflow.transfun = df_lr_transfer_function;
2528 dflow.n_blocks = n_blocks;
2529 dflow.order = df->rts_order;
2530 dflow.data = NULL;
2531
2532 iterative_dataflow (&dflow);
2533 }
2534
2535 if (flags & DF_REG_INFO)
2536 {
2537 df_reg_info_compute (df, blocks);
2538 }
2539
2540 free (dflow.in);
2541 free (dflow.out);
2542 free (dflow.gen);
2543 free (dflow.kill);
2544
2545 free (df->dfs_order);
2546 free (df->rc_order);
2547 free (df->rts_order);
2548 }
2549
2550 /* Free all the dataflow info and the DF structure. */
2551 void
2552 df_finish (struct df *df)
2553 {
2554 df_free (df);
2555 free (df);
2556 }
2557
2558 /* Unlink INSN from its reference information. */
2559 static void
2560 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2561 {
2562 struct df_link *link;
2563 unsigned int uid;
2564
2565 uid = INSN_UID (insn);
2566
2567 /* Unlink all refs defined by this insn. */
2568 for (link = df->insns[uid].defs; link; link = link->next)
2569 df_def_unlink (df, link->ref);
2570
2571 /* Unlink all refs used by this insn. */
2572 for (link = df->insns[uid].uses; link; link = link->next)
2573 df_use_unlink (df, link->ref);
2574
2575 df->insns[uid].defs = 0;
2576 df->insns[uid].uses = 0;
2577 }
2578
2579
2580 #if 0
2581 /* Unlink all the insns within BB from their reference information. */
2582 static void
2583 df_bb_refs_unlink (struct df *df, basic_block bb)
2584 {
2585 rtx insn;
2586
2587 /* Scan the block an insn at a time from beginning to end. */
2588 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2589 {
2590 if (INSN_P (insn))
2591 {
2592 /* Unlink refs for INSN. */
2593 df_insn_refs_unlink (df, bb, insn);
2594 }
2595 if (insn == BB_END (bb))
2596 break;
2597 }
2598 }
2599
2600
2601 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2602 Not currently used. */
2603 static void
2604 df_refs_unlink (struct df *df, bitmap blocks)
2605 {
2606 basic_block bb;
2607
2608 if (blocks)
2609 {
2610 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2611 {
2612 df_bb_refs_unlink (df, bb);
2613 });
2614 }
2615 else
2616 {
2617 FOR_EACH_BB (bb)
2618 df_bb_refs_unlink (df, bb);
2619 }
2620 }
2621 #endif
2622 \f
2623 /* Functions to modify insns. */
2624
2625
2626 /* Delete INSN and all its reference information. */
2627 rtx
2628 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2629 {
2630 /* If the insn is a jump, we should perhaps call delete_insn to
2631 handle the JUMP_LABEL? */
2632
2633 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2634 if (insn == BB_HEAD (bb))
2635 abort ();
2636
2637 /* Delete the insn. */
2638 delete_insn (insn);
2639
2640 df_insn_modify (df, bb, insn);
2641
2642 return NEXT_INSN (insn);
2643 }
2644
2645 /* Mark that basic block BB was modified. */
2646
2647 static void
2648 df_bb_modify (struct df *df, basic_block bb)
2649 {
2650 if ((unsigned) bb->index >= df->n_bbs)
2651 df_bb_table_realloc (df, df->n_bbs);
2652
2653 bitmap_set_bit (df->bbs_modified, bb->index);
2654 }
2655
2656 /* Mark that INSN within BB may have changed (created/modified/deleted).
2657 This may be called multiple times for the same insn. There is no
2658 harm calling this function if the insn wasn't changed; it will just
2659 slow down the rescanning of refs. */
2660 void
2661 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2662 {
2663 unsigned int uid;
2664
2665 uid = INSN_UID (insn);
2666 if (uid >= df->insn_size)
2667 df_insn_table_realloc (df, uid);
2668
2669 df_bb_modify (df, bb);
2670 bitmap_set_bit (df->insns_modified, uid);
2671
2672 /* For incremental updating on the fly, perhaps we could make a copy
2673 of all the refs of the original insn and turn them into
2674 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2675 the original refs. If validate_change fails then these anti-refs
2676 will just get ignored. */
2677 }
2678
2679 typedef struct replace_args
2680 {
2681 rtx match;
2682 rtx replacement;
2683 rtx insn;
2684 int modified;
2685 } replace_args;
2686
2687
2688 /* Replace mem pointed to by PX with its associated pseudo register.
2689 DATA is actually a pointer to a structure describing the
2690 instruction currently being scanned and the MEM we are currently
2691 replacing. */
2692 static int
2693 df_rtx_mem_replace (rtx *px, void *data)
2694 {
2695 replace_args *args = (replace_args *) data;
2696 rtx mem = *px;
2697
2698 if (mem == NULL_RTX)
2699 return 0;
2700
2701 switch (GET_CODE (mem))
2702 {
2703 case MEM:
2704 break;
2705
2706 case CONST_DOUBLE:
2707 /* We're not interested in the MEM associated with a
2708 CONST_DOUBLE, so there's no need to traverse into one. */
2709 return -1;
2710
2711 default:
2712 /* This is not a MEM. */
2713 return 0;
2714 }
2715
2716 if (!rtx_equal_p (args->match, mem))
2717 /* This is not the MEM we are currently replacing. */
2718 return 0;
2719
2720 /* Actually replace the MEM. */
2721 validate_change (args->insn, px, args->replacement, 1);
2722 args->modified++;
2723
2724 return 0;
2725 }
2726
2727
2728 int
2729 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2730 {
2731 replace_args args;
2732
2733 args.insn = insn;
2734 args.match = mem;
2735 args.replacement = reg;
2736 args.modified = 0;
2737
2738 /* Search and replace all matching mems within insn. */
2739 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2740
2741 if (args.modified)
2742 df_insn_modify (df, bb, insn);
2743
2744 /* ???? FIXME. We may have a new def or one or more new uses of REG
2745 in INSN. REG should be a new pseudo so it won't affect the
2746 dataflow information that we currently have. We should add
2747 the new uses and defs to INSN and then recreate the chains
2748 when df_analyze is called. */
2749 return args.modified;
2750 }
2751
2752
2753 /* Replace one register with another. Called through for_each_rtx; PX
2754 points to the rtx being scanned. DATA is actually a pointer to a
2755 structure of arguments. */
2756 static int
2757 df_rtx_reg_replace (rtx *px, void *data)
2758 {
2759 rtx x = *px;
2760 replace_args *args = (replace_args *) data;
2761
2762 if (x == NULL_RTX)
2763 return 0;
2764
2765 if (x == args->match)
2766 {
2767 validate_change (args->insn, px, args->replacement, 1);
2768 args->modified++;
2769 }
2770
2771 return 0;
2772 }
2773
2774
2775 /* Replace the reg within every ref on CHAIN that is within the set
2776 BLOCKS of basic blocks with NEWREG. Also update the regs within
2777 REG_NOTES. */
2778 void
2779 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2780 {
2781 struct df_link *link;
2782 replace_args args;
2783
2784 if (! blocks)
2785 blocks = df->all_blocks;
2786
2787 args.match = oldreg;
2788 args.replacement = newreg;
2789 args.modified = 0;
2790
2791 for (link = chain; link; link = link->next)
2792 {
2793 struct ref *ref = link->ref;
2794 rtx insn = DF_REF_INSN (ref);
2795
2796 if (! INSN_P (insn))
2797 continue;
2798
2799 if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
2800 {
2801 df_ref_reg_replace (df, ref, oldreg, newreg);
2802
2803 /* Replace occurrences of the reg within the REG_NOTES. */
2804 if ((! link->next || DF_REF_INSN (ref)
2805 != DF_REF_INSN (link->next->ref))
2806 && REG_NOTES (insn))
2807 {
2808 args.insn = insn;
2809 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2810 }
2811 }
2812 else
2813 {
2814 /* Temporary check to ensure that we have a grip on which
2815 regs should be replaced. */
2816 abort ();
2817 }
2818 }
2819 }
2820
2821
2822 /* Replace all occurrences of register OLDREG with register NEWREG in
2823 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2824 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2825 routine expects the reg-use and reg-def chains to be valid. */
2826 int
2827 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2828 {
2829 unsigned int oldregno = REGNO (oldreg);
2830
2831 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2832 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2833 return 1;
2834 }
2835
2836
2837 /* Try replacing the reg within REF with NEWREG. Do not modify
2838 def-use/use-def chains. */
2839 int
2840 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2841 {
2842 /* Check that insn was deleted by being converted into a NOTE. If
2843 so ignore this insn. */
2844 if (! INSN_P (DF_REF_INSN (ref)))
2845 return 0;
2846
2847 if (oldreg && oldreg != DF_REF_REG (ref))
2848 abort ();
2849
2850 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2851 return 0;
2852
2853 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2854 return 1;
2855 }
2856
2857
2858 struct ref*
2859 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2860 {
2861 struct ref *def;
2862 struct ref *use;
2863 int def_uid;
2864 int use_uid;
2865 struct df_link *link;
2866
2867 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2868 if (! def)
2869 return 0;
2870
2871 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2872 if (! use)
2873 return 0;
2874
2875 /* The USE no longer exists. */
2876 use_uid = INSN_UID (use_insn);
2877 df_use_unlink (df, use);
2878 df_ref_unlink (&df->insns[use_uid].uses, use);
2879
2880 /* The DEF requires shifting so remove it from DEF_INSN
2881 and add it to USE_INSN by reusing LINK. */
2882 def_uid = INSN_UID (def_insn);
2883 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2884 link->ref = def;
2885 link->next = df->insns[use_uid].defs;
2886 df->insns[use_uid].defs = link;
2887
2888 #if 0
2889 link = df_ref_unlink (&df->regs[regno].defs, def);
2890 link->ref = def;
2891 link->next = df->regs[regno].defs;
2892 df->insns[regno].defs = link;
2893 #endif
2894
2895 DF_REF_INSN (def) = use_insn;
2896 return def;
2897 }
2898
2899
2900 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2901 insns must be processed by this routine. */
2902 static void
2903 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2904 {
2905 rtx insn;
2906
2907 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2908 {
2909 unsigned int uid;
2910
2911 /* A non-const call should not have slipped through the net. If
2912 it does, we need to create a new basic block. Ouch. The
2913 same applies for a label. */
2914 if ((CALL_P (insn)
2915 && ! CONST_OR_PURE_CALL_P (insn))
2916 || LABEL_P (insn))
2917 abort ();
2918
2919 uid = INSN_UID (insn);
2920
2921 if (uid >= df->insn_size)
2922 df_insn_table_realloc (df, uid);
2923
2924 df_insn_modify (df, bb, insn);
2925
2926 if (insn == last_insn)
2927 break;
2928 }
2929 }
2930
2931
2932 /* Emit PATTERN before INSN within BB. */
2933 rtx
2934 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2935 {
2936 rtx ret_insn;
2937 rtx prev_insn = PREV_INSN (insn);
2938
2939 /* We should not be inserting before the start of the block. */
2940 if (insn == BB_HEAD (bb))
2941 abort ();
2942 ret_insn = emit_insn_before (pattern, insn);
2943 if (ret_insn == insn)
2944 return ret_insn;
2945
2946 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2947 return ret_insn;
2948 }
2949
2950
2951 /* Emit PATTERN after INSN within BB. */
2952 rtx
2953 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2954 {
2955 rtx ret_insn;
2956
2957 ret_insn = emit_insn_after (pattern, insn);
2958 if (ret_insn == insn)
2959 return ret_insn;
2960
2961 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2962 return ret_insn;
2963 }
2964
2965
2966 /* Emit jump PATTERN after INSN within BB. */
2967 rtx
2968 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2969 {
2970 rtx ret_insn;
2971
2972 ret_insn = emit_jump_insn_after (pattern, insn);
2973 if (ret_insn == insn)
2974 return ret_insn;
2975
2976 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2977 return ret_insn;
2978 }
2979
2980
2981 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2982
2983 This function should only be used to move loop invariant insns
2984 out of a loop where it has been proven that the def-use info
2985 will still be valid. */
2986 rtx
2987 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2988 {
2989 struct df_link *link;
2990 unsigned int uid;
2991
2992 if (! bb)
2993 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2994
2995 uid = INSN_UID (insn);
2996
2997 /* Change bb for all df defined and used by this insn. */
2998 for (link = df->insns[uid].defs; link; link = link->next)
2999 DF_REF_BB (link->ref) = before_bb;
3000 for (link = df->insns[uid].uses; link; link = link->next)
3001 DF_REF_BB (link->ref) = before_bb;
3002
3003 /* The lifetimes of the registers used in this insn will be reduced
3004 while the lifetimes of the registers defined in this insn
3005 are likely to be increased. */
3006
3007 /* ???? Perhaps all the insns moved should be stored on a list
3008 which df_analyze removes when it recalculates data flow. */
3009
3010 return emit_insn_before (insn, before_insn);
3011 }
3012 \f
3013 /* Functions to query dataflow information. */
3014
3015
3016 int
3017 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3018 rtx insn, unsigned int regno)
3019 {
3020 unsigned int uid;
3021 struct df_link *link;
3022
3023 uid = INSN_UID (insn);
3024
3025 for (link = df->insns[uid].defs; link; link = link->next)
3026 {
3027 struct ref *def = link->ref;
3028
3029 if (DF_REF_REGNO (def) == regno)
3030 return 1;
3031 }
3032
3033 return 0;
3034 }
3035
3036 /* Finds the reference corresponding to the definition of REG in INSN.
3037 DF is the dataflow object. */
3038
3039 struct ref *
3040 df_find_def (struct df *df, rtx insn, rtx reg)
3041 {
3042 struct df_link *defs;
3043
3044 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3045 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3046 return defs->ref;
3047
3048 return NULL;
3049 }
3050
3051 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3052
3053 int
3054 df_reg_used (struct df *df, rtx insn, rtx reg)
3055 {
3056 struct df_link *uses;
3057
3058 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3059 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3060 return 1;
3061
3062 return 0;
3063 }
3064
3065 static int
3066 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3067 {
3068 struct df_link *du_link;
3069
3070 /* Follow def-use chain to find all the uses of this def. */
3071 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3072 {
3073 struct ref *use = du_link->ref;
3074 struct df_link *ud_link;
3075
3076 /* Follow use-def chain to check all the defs for this use. */
3077 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3078 if (ud_link->ref != def)
3079 return 0;
3080 }
3081 return 1;
3082 }
3083
3084
3085 int
3086 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3087 rtx insn)
3088 {
3089 unsigned int uid;
3090 struct df_link *link;
3091
3092 uid = INSN_UID (insn);
3093
3094 for (link = df->insns[uid].defs; link; link = link->next)
3095 {
3096 struct ref *def = link->ref;
3097
3098 if (! df_def_dominates_all_uses_p (df, def))
3099 return 0;
3100 }
3101
3102 return 1;
3103 }
3104
3105
3106 /* Return nonzero if all DF dominates all the uses within the bitmap
3107 BLOCKS. */
3108 static int
3109 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3110 bitmap blocks)
3111 {
3112 struct df_link *du_link;
3113
3114 /* Follow def-use chain to find all the uses of this def. */
3115 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3116 {
3117 struct ref *use = du_link->ref;
3118 struct df_link *ud_link;
3119
3120 /* Only worry about the uses within BLOCKS. For example,
3121 consider a register defined within a loop that is live at the
3122 loop exits. */
3123 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3124 {
3125 /* Follow use-def chain to check all the defs for this use. */
3126 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3127 if (ud_link->ref != def)
3128 return 0;
3129 }
3130 }
3131 return 1;
3132 }
3133
3134
3135 /* Return nonzero if all the defs of INSN within BB dominates
3136 all the corresponding uses. */
3137 int
3138 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3139 rtx insn, bitmap blocks)
3140 {
3141 unsigned int uid;
3142 struct df_link *link;
3143
3144 uid = INSN_UID (insn);
3145
3146 for (link = df->insns[uid].defs; link; link = link->next)
3147 {
3148 struct ref *def = link->ref;
3149
3150 /* Only consider the defs within BLOCKS. */
3151 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3152 && ! df_def_dominates_uses_p (df, def, blocks))
3153 return 0;
3154 }
3155 return 1;
3156 }
3157
3158
3159 /* Return the basic block that REG referenced in or NULL if referenced
3160 in multiple basic blocks. */
3161 basic_block
3162 df_regno_bb (struct df *df, unsigned int regno)
3163 {
3164 struct df_link *defs = df->regs[regno].defs;
3165 struct df_link *uses = df->regs[regno].uses;
3166 struct ref *def = defs ? defs->ref : 0;
3167 struct ref *use = uses ? uses->ref : 0;
3168 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3169 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3170
3171 /* Compare blocks of first def and last use. ???? FIXME. What if
3172 the reg-def and reg-use lists are not correctly ordered. */
3173 return bb_def == bb_use ? bb_def : 0;
3174 }
3175
3176
3177 /* Return nonzero if REG used in multiple basic blocks. */
3178 int
3179 df_reg_global_p (struct df *df, rtx reg)
3180 {
3181 return df_regno_bb (df, REGNO (reg)) != 0;
3182 }
3183
3184
3185 /* Return total lifetime (in insns) of REG. */
3186 int
3187 df_reg_lifetime (struct df *df, rtx reg)
3188 {
3189 return df->regs[REGNO (reg)].lifetime;
3190 }
3191
3192
3193 /* Return nonzero if REG live at start of BB. */
3194 int
3195 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3196 {
3197 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3198
3199 #ifdef ENABLE_CHECKING
3200 if (! bb_info->lr_in)
3201 abort ();
3202 #endif
3203
3204 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3205 }
3206
3207
3208 /* Return nonzero if REG live at end of BB. */
3209 int
3210 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3211 {
3212 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3213
3214 #ifdef ENABLE_CHECKING
3215 if (! bb_info->lr_in)
3216 abort ();
3217 #endif
3218
3219 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3220 }
3221
3222
3223 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3224 after life of REG2, or 0, if the lives overlap. */
3225 int
3226 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3227 {
3228 unsigned int regno1 = REGNO (reg1);
3229 unsigned int regno2 = REGNO (reg2);
3230 struct ref *def1;
3231 struct ref *use1;
3232 struct ref *def2;
3233 struct ref *use2;
3234
3235
3236 /* The regs must be local to BB. */
3237 if (df_regno_bb (df, regno1) != bb
3238 || df_regno_bb (df, regno2) != bb)
3239 abort ();
3240
3241 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3242 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3243
3244 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3245 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3246 return -1;
3247
3248 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3249 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3250
3251 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3252 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3253 return 1;
3254
3255 return 0;
3256 }
3257
3258
3259 /* Return last use of REGNO within BB. */
3260 struct ref *
3261 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3262 {
3263 struct df_link *link;
3264
3265 /* This assumes that the reg-use list is ordered such that for any
3266 BB, the last use is found first. However, since the BBs are not
3267 ordered, the first use in the chain is not necessarily the last
3268 use in the function. */
3269 for (link = df->regs[regno].uses; link; link = link->next)
3270 {
3271 struct ref *use = link->ref;
3272
3273 if (DF_REF_BB (use) == bb)
3274 return use;
3275 }
3276 return 0;
3277 }
3278
3279
3280 /* Return first def of REGNO within BB. */
3281 struct ref *
3282 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3283 {
3284 struct df_link *link;
3285
3286 /* This assumes that the reg-def list is ordered such that for any
3287 BB, the first def is found first. However, since the BBs are not
3288 ordered, the first def in the chain is not necessarily the first
3289 def in the function. */
3290 for (link = df->regs[regno].defs; link; link = link->next)
3291 {
3292 struct ref *def = link->ref;
3293
3294 if (DF_REF_BB (def) == bb)
3295 return def;
3296 }
3297 return 0;
3298 }
3299
3300 /* Return last def of REGNO within BB. */
3301 struct ref *
3302 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3303 {
3304 struct df_link *link;
3305 struct ref *last_def = NULL;
3306 int in_bb = 0;
3307
3308 /* This assumes that the reg-def list is ordered such that for any
3309 BB, the first def is found first. However, since the BBs are not
3310 ordered, the first def in the chain is not necessarily the first
3311 def in the function. */
3312 for (link = df->regs[regno].defs; link; link = link->next)
3313 {
3314 struct ref *def = link->ref;
3315 /* The first time in the desired block. */
3316 if (DF_REF_BB (def) == bb)
3317 in_bb = 1;
3318 /* The last def in the desired block. */
3319 else if (in_bb)
3320 return last_def;
3321 last_def = def;
3322 }
3323 return last_def;
3324 }
3325
3326 /* Return first use of REGNO inside INSN within BB. */
3327 static struct ref *
3328 df_bb_insn_regno_last_use_find (struct df *df,
3329 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3330 unsigned int regno)
3331 {
3332 unsigned int uid;
3333 struct df_link *link;
3334
3335 uid = INSN_UID (insn);
3336
3337 for (link = df->insns[uid].uses; link; link = link->next)
3338 {
3339 struct ref *use = link->ref;
3340
3341 if (DF_REF_REGNO (use) == regno)
3342 return use;
3343 }
3344
3345 return 0;
3346 }
3347
3348
3349 /* Return first def of REGNO inside INSN within BB. */
3350 static struct ref *
3351 df_bb_insn_regno_first_def_find (struct df *df,
3352 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3353 unsigned int regno)
3354 {
3355 unsigned int uid;
3356 struct df_link *link;
3357
3358 uid = INSN_UID (insn);
3359
3360 for (link = df->insns[uid].defs; link; link = link->next)
3361 {
3362 struct ref *def = link->ref;
3363
3364 if (DF_REF_REGNO (def) == regno)
3365 return def;
3366 }
3367
3368 return 0;
3369 }
3370
3371
3372 /* Return insn using REG if the BB contains only a single
3373 use and def of REG. */
3374 rtx
3375 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3376 {
3377 struct ref *def;
3378 struct ref *use;
3379 struct df_link *du_link;
3380
3381 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3382
3383 if (! def)
3384 abort ();
3385
3386 du_link = DF_REF_CHAIN (def);
3387
3388 if (! du_link)
3389 return NULL_RTX;
3390
3391 use = du_link->ref;
3392
3393 /* Check if def is dead. */
3394 if (! use)
3395 return NULL_RTX;
3396
3397 /* Check for multiple uses. */
3398 if (du_link->next)
3399 return NULL_RTX;
3400
3401 return DF_REF_INSN (use);
3402 }
3403 \f
3404 /* Functions for debugging/dumping dataflow information. */
3405
3406
3407 /* Dump a def-use or use-def chain for REF to FILE. */
3408 static void
3409 df_chain_dump (struct df_link *link, FILE *file)
3410 {
3411 fprintf (file, "{ ");
3412 for (; link; link = link->next)
3413 {
3414 fprintf (file, "%c%d ",
3415 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3416 DF_REF_ID (link->ref));
3417 }
3418 fprintf (file, "}");
3419 }
3420
3421
3422 /* Dump a chain of refs with the associated regno. */
3423 static void
3424 df_chain_dump_regno (struct df_link *link, FILE *file)
3425 {
3426 fprintf (file, "{ ");
3427 for (; link; link = link->next)
3428 {
3429 fprintf (file, "%c%d(%d) ",
3430 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3431 DF_REF_ID (link->ref),
3432 DF_REF_REGNO (link->ref));
3433 }
3434 fprintf (file, "}");
3435 }
3436
3437
3438 /* Dump dataflow info. */
3439 void
3440 df_dump (struct df *df, int flags, FILE *file)
3441 {
3442 unsigned int j;
3443 basic_block bb;
3444
3445 if (! df || ! file)
3446 return;
3447
3448 fprintf (file, "\nDataflow summary:\n");
3449 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3450 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3451
3452 if (flags & DF_RD)
3453 {
3454 basic_block bb;
3455
3456 fprintf (file, "Reaching defs:\n");
3457 FOR_EACH_BB (bb)
3458 {
3459 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3460
3461 if (! bb_info->rd_in)
3462 continue;
3463
3464 fprintf (file, "bb %d in \t", bb->index);
3465 dump_bitmap (file, bb_info->rd_in);
3466 fprintf (file, "bb %d gen \t", bb->index);
3467 dump_bitmap (file, bb_info->rd_gen);
3468 fprintf (file, "bb %d kill\t", bb->index);
3469 dump_bitmap (file, bb_info->rd_kill);
3470 fprintf (file, "bb %d out \t", bb->index);
3471 dump_bitmap (file, bb_info->rd_out);
3472 }
3473 }
3474
3475 if (flags & DF_UD_CHAIN)
3476 {
3477 fprintf (file, "Use-def chains:\n");
3478 for (j = 0; j < df->n_defs; j++)
3479 {
3480 if (df->defs[j])
3481 {
3482 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3483 j, DF_REF_BBNO (df->defs[j]),
3484 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3485 DF_REF_INSN_UID (df->defs[j]),
3486 DF_REF_REGNO (df->defs[j]));
3487 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3488 fprintf (file, "read/write ");
3489 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3490 fprintf (file, "\n");
3491 }
3492 }
3493 }
3494
3495 if (flags & DF_RU)
3496 {
3497 fprintf (file, "Reaching uses:\n");
3498 FOR_EACH_BB (bb)
3499 {
3500 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3501
3502 if (! bb_info->ru_in)
3503 continue;
3504
3505 fprintf (file, "bb %d in \t", bb->index);
3506 dump_bitmap (file, bb_info->ru_in);
3507 fprintf (file, "bb %d gen \t", bb->index);
3508 dump_bitmap (file, bb_info->ru_gen);
3509 fprintf (file, "bb %d kill\t", bb->index);
3510 dump_bitmap (file, bb_info->ru_kill);
3511 fprintf (file, "bb %d out \t", bb->index);
3512 dump_bitmap (file, bb_info->ru_out);
3513 }
3514 }
3515
3516 if (flags & DF_DU_CHAIN)
3517 {
3518 fprintf (file, "Def-use chains:\n");
3519 for (j = 0; j < df->n_uses; j++)
3520 {
3521 if (df->uses[j])
3522 {
3523 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3524 j, DF_REF_BBNO (df->uses[j]),
3525 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3526 DF_REF_INSN_UID (df->uses[j]),
3527 DF_REF_REGNO (df->uses[j]));
3528 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3529 fprintf (file, "read/write ");
3530 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3531 fprintf (file, "\n");
3532 }
3533 }
3534 }
3535
3536 if (flags & DF_LR)
3537 {
3538 fprintf (file, "Live regs:\n");
3539 FOR_EACH_BB (bb)
3540 {
3541 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3542
3543 if (! bb_info->lr_in)
3544 continue;
3545
3546 fprintf (file, "bb %d in \t", bb->index);
3547 dump_bitmap (file, bb_info->lr_in);
3548 fprintf (file, "bb %d use \t", bb->index);
3549 dump_bitmap (file, bb_info->lr_use);
3550 fprintf (file, "bb %d def \t", bb->index);
3551 dump_bitmap (file, bb_info->lr_def);
3552 fprintf (file, "bb %d out \t", bb->index);
3553 dump_bitmap (file, bb_info->lr_out);
3554 }
3555 }
3556
3557 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3558 {
3559 struct reg_info *reg_info = df->regs;
3560
3561 fprintf (file, "Register info:\n");
3562 for (j = 0; j < df->n_regs; j++)
3563 {
3564 if (((flags & DF_REG_INFO)
3565 && (reg_info[j].n_uses || reg_info[j].n_defs))
3566 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3567 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3568 {
3569 fprintf (file, "reg %d", j);
3570 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3571 {
3572 basic_block bb = df_regno_bb (df, j);
3573
3574 if (bb)
3575 fprintf (file, " bb %d", bb->index);
3576 else
3577 fprintf (file, " bb ?");
3578 }
3579 if (flags & DF_REG_INFO)
3580 {
3581 fprintf (file, " life %d", reg_info[j].lifetime);
3582 }
3583
3584 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3585 {
3586 fprintf (file, " defs ");
3587 if (flags & DF_REG_INFO)
3588 fprintf (file, "%d ", reg_info[j].n_defs);
3589 if (flags & DF_RD_CHAIN)
3590 df_chain_dump (reg_info[j].defs, file);
3591 }
3592
3593 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3594 {
3595 fprintf (file, " uses ");
3596 if (flags & DF_REG_INFO)
3597 fprintf (file, "%d ", reg_info[j].n_uses);
3598 if (flags & DF_RU_CHAIN)
3599 df_chain_dump (reg_info[j].uses, file);
3600 }
3601
3602 fprintf (file, "\n");
3603 }
3604 }
3605 }
3606 fprintf (file, "\n");
3607 }
3608
3609
3610 void
3611 df_insn_debug (struct df *df, rtx insn, FILE *file)
3612 {
3613 unsigned int uid;
3614 int bbi;
3615
3616 uid = INSN_UID (insn);
3617 if (uid >= df->insn_size)
3618 return;
3619
3620 if (df->insns[uid].defs)
3621 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3622 else if (df->insns[uid].uses)
3623 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3624 else
3625 bbi = -1;
3626
3627 fprintf (file, "insn %d bb %d luid %d defs ",
3628 uid, bbi, DF_INSN_LUID (df, insn));
3629 df_chain_dump (df->insns[uid].defs, file);
3630 fprintf (file, " uses ");
3631 df_chain_dump (df->insns[uid].uses, file);
3632 fprintf (file, "\n");
3633 }
3634
3635
3636 void
3637 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3638 {
3639 unsigned int uid;
3640 int bbi;
3641
3642 uid = INSN_UID (insn);
3643 if (uid >= df->insn_size)
3644 return;
3645
3646 if (df->insns[uid].defs)
3647 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3648 else if (df->insns[uid].uses)
3649 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3650 else
3651 bbi = -1;
3652
3653 fprintf (file, "insn %d bb %d luid %d defs ",
3654 uid, bbi, DF_INSN_LUID (df, insn));
3655 df_chain_dump_regno (df->insns[uid].defs, file);
3656 fprintf (file, " uses ");
3657 df_chain_dump_regno (df->insns[uid].uses, file);
3658 fprintf (file, "\n");
3659 }
3660
3661
3662 static void
3663 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3664 {
3665 if (regno >= df->reg_size)
3666 return;
3667
3668 fprintf (file, "reg %d life %d defs ",
3669 regno, df->regs[regno].lifetime);
3670 df_chain_dump (df->regs[regno].defs, file);
3671 fprintf (file, " uses ");
3672 df_chain_dump (df->regs[regno].uses, file);
3673 fprintf (file, "\n");
3674 }
3675
3676
3677 static void
3678 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3679 {
3680 fprintf (file, "%c%d ",
3681 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3682 DF_REF_ID (ref));
3683 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3684 DF_REF_REGNO (ref),
3685 DF_REF_BBNO (ref),
3686 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3687 INSN_UID (DF_REF_INSN (ref)));
3688 df_chain_dump (DF_REF_CHAIN (ref), file);
3689 fprintf (file, "\n");
3690 }
3691 \f
3692 /* Functions for debugging from GDB. */
3693
3694 void
3695 debug_df_insn (rtx insn)
3696 {
3697 df_insn_debug (ddf, insn, stderr);
3698 debug_rtx (insn);
3699 }
3700
3701
3702 void
3703 debug_df_reg (rtx reg)
3704 {
3705 df_regno_debug (ddf, REGNO (reg), stderr);
3706 }
3707
3708
3709 void
3710 debug_df_regno (unsigned int regno)
3711 {
3712 df_regno_debug (ddf, regno, stderr);
3713 }
3714
3715
3716 void
3717 debug_df_ref (struct ref *ref)
3718 {
3719 df_ref_debug (ddf, ref, stderr);
3720 }
3721
3722
3723 void
3724 debug_df_defno (unsigned int defno)
3725 {
3726 df_ref_debug (ddf, ddf->defs[defno], stderr);
3727 }
3728
3729
3730 void
3731 debug_df_useno (unsigned int defno)
3732 {
3733 df_ref_debug (ddf, ddf->uses[defno], stderr);
3734 }
3735
3736
3737 void
3738 debug_df_chain (struct df_link *link)
3739 {
3740 df_chain_dump (link, stderr);
3741 fputc ('\n', stderr);
3742 }
3743 \f
3744
3745 static void
3746 dataflow_set_a_op_b (enum set_representation repr,
3747 enum df_confluence_op op,
3748 void *rslt, void *op1, void *op2)
3749 {
3750 switch (repr)
3751 {
3752 case SR_SBITMAP:
3753 switch (op)
3754 {
3755 case DF_UNION:
3756 sbitmap_a_or_b (rslt, op1, op2);
3757 break;
3758
3759 case DF_INTERSECTION:
3760 sbitmap_a_and_b (rslt, op1, op2);
3761 break;
3762
3763 default:
3764 abort ();
3765 }
3766 break;
3767
3768 case SR_BITMAP:
3769 switch (op)
3770 {
3771 case DF_UNION:
3772 bitmap_a_or_b (rslt, op1, op2);
3773 break;
3774
3775 case DF_INTERSECTION:
3776 bitmap_a_and_b (rslt, op1, op2);
3777 break;
3778
3779 default:
3780 abort ();
3781 }
3782 break;
3783
3784 default:
3785 abort ();
3786 }
3787 }
3788
3789 static void
3790 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3791 {
3792 switch (repr)
3793 {
3794 case SR_SBITMAP:
3795 sbitmap_copy (dest, src);
3796 break;
3797
3798 case SR_BITMAP:
3799 bitmap_copy (dest, src);
3800 break;
3801
3802 default:
3803 abort ();
3804 }
3805 }
3806
3807 /* Hybrid search algorithm from "Implementation Techniques for
3808 Efficient Data-Flow Analysis of Large Programs". */
3809
3810 static void
3811 hybrid_search (basic_block bb, struct dataflow *dataflow,
3812 sbitmap visited, sbitmap pending, sbitmap considered)
3813 {
3814 int changed;
3815 int i = bb->index;
3816 edge e;
3817
3818 SET_BIT (visited, bb->index);
3819 if (!TEST_BIT (pending, bb->index))
3820 abort ();
3821 RESET_BIT (pending, i);
3822
3823 #define HS(E_ANTI, E_ANTI_NEXT, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3824 E, E_NEXT, E_BB, E_START_BB, OUT_SET) \
3825 do \
3826 { \
3827 /* Calculate <conf_op> of predecessor_outs. */ \
3828 bitmap_zero (IN_SET[i]); \
3829 for (e = bb->E_ANTI; e; e = e->E_ANTI_NEXT) \
3830 { \
3831 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3832 continue; \
3833 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3834 continue; \
3835 \
3836 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3837 IN_SET[i], IN_SET[i], \
3838 OUT_SET[e->E_ANTI_BB->index]); \
3839 } \
3840 \
3841 (*dataflow->transfun)(i, &changed, \
3842 dataflow->in[i], dataflow->out[i], \
3843 dataflow->gen[i], dataflow->kill[i], \
3844 dataflow->data); \
3845 \
3846 if (!changed) \
3847 break; \
3848 \
3849 for (e = bb->E; e; e = e->E_NEXT) \
3850 { \
3851 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3852 continue; \
3853 \
3854 if (!TEST_BIT (considered, e->E_BB->index)) \
3855 continue; \
3856 \
3857 SET_BIT (pending, e->E_BB->index); \
3858 } \
3859 \
3860 for (e = bb->E; e; e = e->E_NEXT) \
3861 { \
3862 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3863 continue; \
3864 \
3865 if (!TEST_BIT (considered, e->E_BB->index)) \
3866 continue; \
3867 \
3868 if (!TEST_BIT (visited, e->E_BB->index)) \
3869 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3870 } \
3871 } while (0)
3872
3873 if (dataflow->dir == DF_FORWARD)
3874 HS (pred, pred_next, src, ENTRY_BLOCK_PTR, dataflow->in,
3875 succ, succ_next, dest, EXIT_BLOCK_PTR, dataflow->out);
3876 else
3877 HS (succ, succ_next, dest, EXIT_BLOCK_PTR, dataflow->out,
3878 pred, pred_next, src, ENTRY_BLOCK_PTR, dataflow->in);
3879 }
3880
3881 /* This function will perform iterative bitvector dataflow described by
3882 DATAFLOW, producing the in and out sets. Only the part of the cfg
3883 induced by blocks in DATAFLOW->order is taken into account.
3884
3885 For forward problems, you probably want to pass in a mapping of
3886 block number to rc_order (like df->inverse_rc_map). */
3887
3888 void
3889 iterative_dataflow (struct dataflow *dataflow)
3890 {
3891 unsigned i, idx;
3892 sbitmap visited, pending, considered;
3893
3894 pending = sbitmap_alloc (last_basic_block);
3895 visited = sbitmap_alloc (last_basic_block);
3896 considered = sbitmap_alloc (last_basic_block);
3897 sbitmap_zero (pending);
3898 sbitmap_zero (visited);
3899 sbitmap_zero (considered);
3900
3901 for (i = 0; i < dataflow->n_blocks; i++)
3902 {
3903 idx = dataflow->order[i];
3904 SET_BIT (pending, idx);
3905 SET_BIT (considered, idx);
3906 if (dataflow->dir == DF_FORWARD)
3907 dataflow_set_copy (dataflow->repr,
3908 dataflow->out[idx], dataflow->gen[idx]);
3909 else
3910 dataflow_set_copy (dataflow->repr,
3911 dataflow->in[idx], dataflow->gen[idx]);
3912 };
3913
3914 while (1)
3915 {
3916 for (i = 0; i < dataflow->n_blocks; i++)
3917 {
3918 idx = dataflow->order[i];
3919
3920 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3921 hybrid_search (BASIC_BLOCK (idx), dataflow,
3922 visited, pending, considered);
3923 }
3924
3925 if (sbitmap_first_set_bit (pending) == -1)
3926 break;
3927
3928 sbitmap_zero (visited);
3929 }
3930
3931 sbitmap_free (pending);
3932 sbitmap_free (visited);
3933 sbitmap_free (considered);
3934 }