re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / df.c
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA.
23
24
25 OVERVIEW:
26
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
32
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
39
40
41 USAGE:
42
43 Here's an example of using the dataflow routines.
44
45 struct df *df;
46
47 df = df_init ();
48
49 df_analyze (df, 0, DF_ALL);
50
51 df_dump (df, DF_ALL, stderr);
52
53 df_finish (df);
54
55
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
60
61 df_analyze performs the following:
62
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
77
78
79 PHILOSOPHY:
80
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
88
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
98
99
100 DATA STRUCTURES:
101
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
104
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
109
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
113
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
116
117
118 TODO:
119
120 1) Incremental dataflow analysis.
121
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
126
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
129
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
134
135 2) Reduced memory requirements.
136
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
143
144 3) Ordering of reg-def and reg-use lists.
145
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
149
150 4) Working with a sub-CFG.
151
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
156
157
158 NOTES:
159
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
168
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
173 read/write.
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
176
177 #include "config.h"
178 #include "system.h"
179 #include "coretypes.h"
180 #include "tm.h"
181 #include "rtl.h"
182 #include "tm_p.h"
183 #include "insn-config.h"
184 #include "recog.h"
185 #include "function.h"
186 #include "regs.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
190 #include "sbitmap.h"
191 #include "bitmap.h"
192 #include "df.h"
193
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
195 do \
196 { \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
200 { \
201 (BB) = BASIC_BLOCK (node_); \
202 CODE; \
203 } \
204 } \
205 while (0)
206
207 static alloc_pool df_ref_pool;
208 static alloc_pool df_link_pool;
209 static struct df *ddf;
210
211 static void df_reg_table_realloc (struct df *, int);
212 static void df_insn_table_realloc (struct df *, unsigned int);
213 static void df_bb_table_realloc (struct df *, unsigned int);
214 static void df_bitmaps_alloc (struct df *, bitmap, int);
215 static void df_bitmaps_free (struct df *, int);
216 static void df_free (struct df *);
217 static void df_alloc (struct df *, int);
218
219 static rtx df_reg_use_gen (unsigned int);
220
221 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
222 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
223 static void df_def_unlink (struct df *, struct ref *);
224 static void df_use_unlink (struct df *, struct ref *);
225 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
226 #if 0
227 static void df_bb_refs_unlink (struct df *, basic_block);
228 static void df_refs_unlink (struct df *, bitmap);
229 #endif
230
231 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
232 enum df_ref_type, enum df_ref_flags);
233 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
234 enum df_ref_flags);
235 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
236 enum df_ref_flags);
237 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
238 static void df_defs_record (struct df *, rtx, basic_block, rtx);
239 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
240 basic_block, rtx, enum df_ref_flags);
241 static void df_insn_refs_record (struct df *, basic_block, rtx);
242 static void df_bb_refs_record (struct df *, basic_block);
243 static void df_refs_record (struct df *, bitmap);
244
245 static void df_bb_reg_def_chain_create (struct df *, basic_block);
246 static void df_reg_def_chain_create (struct df *, bitmap, bool);
247 static void df_bb_reg_use_chain_create (struct df *, basic_block);
248 static void df_reg_use_chain_create (struct df *, bitmap, bool);
249 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
250 static void df_du_chain_create (struct df *, bitmap);
251 static void df_bb_ud_chain_create (struct df *, basic_block);
252 static void df_ud_chain_create (struct df *, bitmap);
253 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
254 static void df_rd_local_compute (struct df *, bitmap);
255 static void df_bb_ru_local_compute (struct df *, basic_block);
256 static void df_ru_local_compute (struct df *, bitmap);
257 static void df_bb_lr_local_compute (struct df *, basic_block);
258 static void df_lr_local_compute (struct df *, bitmap);
259 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
260 static void df_reg_info_compute (struct df *, bitmap);
261
262 static int df_bb_luids_set (struct df *df, basic_block);
263 static int df_luids_set (struct df *df, bitmap);
264
265 static int df_modified_p (struct df *, bitmap);
266 static int df_refs_queue (struct df *);
267 static int df_refs_process (struct df *);
268 static int df_bb_refs_update (struct df *, basic_block);
269 static int df_refs_update (struct df *, bitmap);
270 static void df_analyze_1 (struct df *, bitmap, int, int);
271
272 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
273 static int df_rtx_mem_replace (rtx *, void *);
274 static int df_rtx_reg_replace (rtx *, void *);
275 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
276
277 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
278 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
279 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
280 rtx, unsigned int);
281 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
282 rtx, unsigned int);
283
284 static void df_chain_dump (struct df_link *, FILE *file);
285 static void df_chain_dump_regno (struct df_link *, FILE *file);
286 static void df_regno_debug (struct df *, unsigned int, FILE *);
287 static void df_ref_debug (struct df *, struct ref *, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
289 void *, void *);
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
291 void *, void *);
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
293 void *, void *);
294 static void hybrid_search (basic_block, struct dataflow *,
295 sbitmap, sbitmap, sbitmap);
296
297 \f
298 /* Local memory allocation/deallocation routines. */
299
300
301 /* Increase the insn info table to have space for at least SIZE + 1
302 elements. */
303 static void
304 df_insn_table_realloc (struct df *df, unsigned int size)
305 {
306 size++;
307 if (size <= df->insn_size)
308 return;
309
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size += df->insn_size / 4;
313
314 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
315
316 memset (df->insns + df->insn_size, 0,
317 (size - df->insn_size) * sizeof (struct insn_info));
318
319 df->insn_size = size;
320
321 if (! df->insns_modified)
322 {
323 df->insns_modified = BITMAP_ALLOC (NULL);
324 bitmap_zero (df->insns_modified);
325 }
326 }
327
328 /* Increase the bb info table to have space for at least SIZE + 1
329 elements. */
330
331 static void
332 df_bb_table_realloc (struct df *df, unsigned int size)
333 {
334 size++;
335 if (size <= df->n_bbs)
336 return;
337
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size += df->n_bbs / 4;
341
342 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
343
344 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
345
346 df->n_bbs = size;
347 }
348
349 /* Increase the reg info table by SIZE more elements. */
350 static void
351 df_reg_table_realloc (struct df *df, int size)
352 {
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
356
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
360
361 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
362 df->reg_def_last = xrealloc (df->reg_def_last,
363 size * sizeof (struct ref *));
364
365 /* Zero the new entries. */
366 memset (df->regs + df->reg_size, 0,
367 (size - df->reg_size) * sizeof (struct reg_info));
368
369 df->reg_size = size;
370 }
371
372
373 /* Allocate bitmaps for each basic block. */
374
375 static void
376 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
377 {
378 basic_block bb;
379
380 df->n_defs = df->def_id;
381 df->n_uses = df->use_id;
382
383 if (!blocks)
384 blocks = df->all_blocks;
385
386 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
387 {
388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
389
390 if (flags & DF_RD)
391 {
392 if (!bb_info->rd_in)
393 {
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info->rd_kill = BITMAP_ALLOC (NULL);
396 bb_info->rd_gen = BITMAP_ALLOC (NULL);
397 bb_info->rd_in = BITMAP_ALLOC (NULL);
398 bb_info->rd_out = BITMAP_ALLOC (NULL);
399 }
400 else
401 {
402 bitmap_clear (bb_info->rd_kill);
403 bitmap_clear (bb_info->rd_gen);
404 bitmap_clear (bb_info->rd_in);
405 bitmap_clear (bb_info->rd_out);
406 }
407 }
408
409 if (flags & DF_RU)
410 {
411 if (!bb_info->ru_in)
412 {
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_ALLOC (NULL);
415 bb_info->ru_gen = BITMAP_ALLOC (NULL);
416 bb_info->ru_in = BITMAP_ALLOC (NULL);
417 bb_info->ru_out = BITMAP_ALLOC (NULL);
418 }
419 else
420 {
421 bitmap_clear (bb_info->ru_kill);
422 bitmap_clear (bb_info->ru_gen);
423 bitmap_clear (bb_info->ru_in);
424 bitmap_clear (bb_info->ru_out);
425 }
426 }
427
428 if (flags & DF_LR)
429 {
430 if (!bb_info->lr_in)
431 {
432 /* Allocate bitmaps for live variables. */
433 bb_info->lr_def = BITMAP_ALLOC (NULL);
434 bb_info->lr_use = BITMAP_ALLOC (NULL);
435 bb_info->lr_in = BITMAP_ALLOC (NULL);
436 bb_info->lr_out = BITMAP_ALLOC (NULL);
437 }
438 else
439 {
440 bitmap_clear (bb_info->lr_def);
441 bitmap_clear (bb_info->lr_use);
442 bitmap_clear (bb_info->lr_in);
443 bitmap_clear (bb_info->lr_out);
444 }
445 }
446 });
447 }
448
449
450 /* Free bitmaps for each basic block. */
451 static void
452 df_bitmaps_free (struct df *df, int flags)
453 {
454 basic_block bb;
455
456 FOR_EACH_BB (bb)
457 {
458 struct bb_info *bb_info = DF_BB_INFO (df, bb);
459
460 if (!bb_info)
461 continue;
462
463 if ((flags & DF_RD) && bb_info->rd_in)
464 {
465 /* Free bitmaps for reaching definitions. */
466 BITMAP_FREE (bb_info->rd_kill);
467 bb_info->rd_kill = NULL;
468 BITMAP_FREE (bb_info->rd_gen);
469 bb_info->rd_gen = NULL;
470 BITMAP_FREE (bb_info->rd_in);
471 bb_info->rd_in = NULL;
472 BITMAP_FREE (bb_info->rd_out);
473 bb_info->rd_out = NULL;
474 }
475
476 if ((flags & DF_RU) && bb_info->ru_in)
477 {
478 /* Free bitmaps for upward exposed uses. */
479 BITMAP_FREE (bb_info->ru_kill);
480 bb_info->ru_kill = NULL;
481 BITMAP_FREE (bb_info->ru_gen);
482 bb_info->ru_gen = NULL;
483 BITMAP_FREE (bb_info->ru_in);
484 bb_info->ru_in = NULL;
485 BITMAP_FREE (bb_info->ru_out);
486 bb_info->ru_out = NULL;
487 }
488
489 if ((flags & DF_LR) && bb_info->lr_in)
490 {
491 /* Free bitmaps for live variables. */
492 BITMAP_FREE (bb_info->lr_def);
493 bb_info->lr_def = NULL;
494 BITMAP_FREE (bb_info->lr_use);
495 bb_info->lr_use = NULL;
496 BITMAP_FREE (bb_info->lr_in);
497 bb_info->lr_in = NULL;
498 BITMAP_FREE (bb_info->lr_out);
499 bb_info->lr_out = NULL;
500 }
501 }
502 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
503 }
504
505
506 /* Allocate and initialize dataflow memory. */
507 static void
508 df_alloc (struct df *df, int n_regs)
509 {
510 int n_insns;
511 basic_block bb;
512
513 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
514 100);
515 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
516
517 /* Perhaps we should use LUIDs to save memory for the insn_refs
518 table. This is only a small saving; a few pointers. */
519 n_insns = get_max_uid () + 1;
520
521 df->def_id = 0;
522 df->n_defs = 0;
523 /* Approximate number of defs by number of insns. */
524 df->def_size = n_insns;
525 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
526
527 df->use_id = 0;
528 df->n_uses = 0;
529 /* Approximate number of uses by twice number of insns. */
530 df->use_size = n_insns * 2;
531 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
532
533 df->n_regs = n_regs;
534 df->n_bbs = last_basic_block;
535
536 /* Allocate temporary working array used during local dataflow analysis. */
537 df_insn_table_realloc (df, n_insns);
538
539 df_reg_table_realloc (df, df->n_regs);
540
541 df->bbs_modified = BITMAP_ALLOC (NULL);
542 bitmap_zero (df->bbs_modified);
543
544 df->flags = 0;
545
546 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
547
548 df->all_blocks = BITMAP_ALLOC (NULL);
549 FOR_EACH_BB (bb)
550 bitmap_set_bit (df->all_blocks, bb->index);
551 }
552
553
554 /* Free all the dataflow info. */
555 static void
556 df_free (struct df *df)
557 {
558 df_bitmaps_free (df, DF_ALL);
559
560 if (df->bbs)
561 free (df->bbs);
562 df->bbs = 0;
563
564 if (df->insns)
565 free (df->insns);
566 df->insns = 0;
567 df->insn_size = 0;
568
569 if (df->defs)
570 free (df->defs);
571 df->defs = 0;
572 df->def_size = 0;
573 df->def_id = 0;
574
575 if (df->uses)
576 free (df->uses);
577 df->uses = 0;
578 df->use_size = 0;
579 df->use_id = 0;
580
581 if (df->regs)
582 free (df->regs);
583 df->regs = 0;
584 df->reg_size = 0;
585
586 BITMAP_FREE (df->bbs_modified);
587 df->bbs_modified = 0;
588
589 BITMAP_FREE (df->insns_modified);
590 df->insns_modified = 0;
591
592 BITMAP_FREE (df->all_blocks);
593 df->all_blocks = 0;
594
595 free_alloc_pool (df_ref_pool);
596 free_alloc_pool (df_link_pool);
597 }
598 \f
599 /* Local miscellaneous routines. */
600
601 /* Return a USE for register REGNO. */
602 static rtx df_reg_use_gen (unsigned int regno)
603 {
604 rtx reg;
605 rtx use;
606
607 reg = regno_reg_rtx[regno];
608
609 use = gen_rtx_USE (GET_MODE (reg), reg);
610 return use;
611 }
612 \f
613 /* Local chain manipulation routines. */
614
615 /* Create a link in a def-use or use-def chain. */
616 static inline struct df_link *
617 df_link_create (struct ref *ref, struct df_link *next)
618 {
619 struct df_link *link;
620
621 link = pool_alloc (df_link_pool);
622 link->next = next;
623 link->ref = ref;
624 return link;
625 }
626
627 /* Releases members of the CHAIN. */
628
629 static void
630 free_reg_ref_chain (struct df_link **chain)
631 {
632 struct df_link *act, *next;
633
634 for (act = *chain; act; act = next)
635 {
636 next = act->next;
637 pool_free (df_link_pool, act);
638 }
639
640 *chain = NULL;
641 }
642
643 /* Add REF to chain head pointed to by PHEAD. */
644 static struct df_link *
645 df_ref_unlink (struct df_link **phead, struct ref *ref)
646 {
647 struct df_link *link = *phead;
648
649 if (link)
650 {
651 if (! link->next)
652 {
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
655 be inconsistent. */
656 gcc_assert (link->ref == ref);
657
658 /* Now have an empty chain. */
659 *phead = NULL;
660 }
661 else
662 {
663 /* Multiple refs. One of them must be us. */
664 if (link->ref == ref)
665 *phead = link->next;
666 else
667 {
668 /* Follow chain. */
669 for (; link->next; link = link->next)
670 {
671 if (link->next->ref == ref)
672 {
673 /* Unlink from list. */
674 link->next = link->next->next;
675 return link->next;
676 }
677 }
678 }
679 }
680 }
681 return link;
682 }
683
684
685 /* Unlink REF from all def-use/use-def chains, etc. */
686 int
687 df_ref_remove (struct df *df, struct ref *ref)
688 {
689 if (DF_REF_REG_DEF_P (ref))
690 {
691 df_def_unlink (df, ref);
692 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
693 }
694 else
695 {
696 df_use_unlink (df, ref);
697 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
698 }
699 return 1;
700 }
701
702
703 /* Unlink DEF from use-def and reg-def chains. */
704 static void
705 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
706 {
707 struct df_link *du_link;
708 unsigned int dregno = DF_REF_REGNO (def);
709
710 /* Follow def-use chain to find all the uses of this def. */
711 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
712 {
713 struct ref *use = du_link->ref;
714
715 /* Unlink this def from the use-def chain. */
716 df_ref_unlink (&DF_REF_CHAIN (use), def);
717 }
718 DF_REF_CHAIN (def) = 0;
719
720 /* Unlink def from reg-def chain. */
721 df_ref_unlink (&df->regs[dregno].defs, def);
722
723 df->defs[DF_REF_ID (def)] = 0;
724 }
725
726
727 /* Unlink use from def-use and reg-use chains. */
728 static void
729 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
730 {
731 struct df_link *ud_link;
732 unsigned int uregno = DF_REF_REGNO (use);
733
734 /* Follow use-def chain to find all the defs of this use. */
735 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
736 {
737 struct ref *def = ud_link->ref;
738
739 /* Unlink this use from the def-use chain. */
740 df_ref_unlink (&DF_REF_CHAIN (def), use);
741 }
742 DF_REF_CHAIN (use) = 0;
743
744 /* Unlink use from reg-use chain. */
745 df_ref_unlink (&df->regs[uregno].uses, use);
746
747 df->uses[DF_REF_ID (use)] = 0;
748 }
749 \f
750 /* Local routines for recording refs. */
751
752
753 /* Create a new ref of type DF_REF_TYPE for register REG at address
754 LOC within INSN of BB. */
755 static struct ref *
756 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
757 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
758 {
759 struct ref *this_ref;
760
761 this_ref = pool_alloc (df_ref_pool);
762 DF_REF_REG (this_ref) = reg;
763 DF_REF_LOC (this_ref) = loc;
764 DF_REF_INSN (this_ref) = insn;
765 DF_REF_CHAIN (this_ref) = 0;
766 DF_REF_TYPE (this_ref) = ref_type;
767 DF_REF_FLAGS (this_ref) = ref_flags;
768 DF_REF_DATA (this_ref) = NULL;
769
770 if (ref_type == DF_REF_REG_DEF)
771 {
772 if (df->def_id >= df->def_size)
773 {
774 /* Make table 25 percent larger. */
775 df->def_size += (df->def_size / 4);
776 df->defs = xrealloc (df->defs,
777 df->def_size * sizeof (*df->defs));
778 }
779 DF_REF_ID (this_ref) = df->def_id;
780 df->defs[df->def_id++] = this_ref;
781 }
782 else
783 {
784 if (df->use_id >= df->use_size)
785 {
786 /* Make table 25 percent larger. */
787 df->use_size += (df->use_size / 4);
788 df->uses = xrealloc (df->uses,
789 df->use_size * sizeof (*df->uses));
790 }
791 DF_REF_ID (this_ref) = df->use_id;
792 df->uses[df->use_id++] = this_ref;
793 }
794 return this_ref;
795 }
796
797
798 /* Create a new reference of type DF_REF_TYPE for a single register REG,
799 used inside the LOC rtx of INSN. */
800 static void
801 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
802 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
803 {
804 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
805 }
806
807
808 /* Create new references of type DF_REF_TYPE for each part of register REG
809 at address LOC within INSN of BB. */
810 static void
811 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
812 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
813 {
814 unsigned int regno;
815
816 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
817
818 /* For the reg allocator we are interested in some SUBREG rtx's, but not
819 all. Notably only those representing a word extraction from a multi-word
820 reg. As written in the docu those should have the form
821 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
822 XXX Is that true? We could also use the global word_mode variable. */
823 if ((df->flags & DF_SUBREGS) == 0
824 && GET_CODE (reg) == SUBREG
825 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
826 || GET_MODE_SIZE (GET_MODE (reg))
827 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
828 {
829 loc = &SUBREG_REG (reg);
830 reg = *loc;
831 ref_flags |= DF_REF_STRIPPED;
832 }
833
834 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
835 if (regno < FIRST_PSEUDO_REGISTER)
836 {
837 int i;
838 int endregno;
839
840 if (! (df->flags & DF_HARD_REGS))
841 return;
842
843 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
844 for the mode, because we only want to add references to regs, which
845 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
846 reference the whole reg 0 in DI mode (which would also include
847 reg 1, at least, if 0 and 1 are SImode registers). */
848 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
849 if (GET_CODE (reg) == SUBREG)
850 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
851 SUBREG_BYTE (reg), GET_MODE (reg));
852 endregno += regno;
853
854 for (i = regno; i < endregno; i++)
855 df_ref_record_1 (df, regno_reg_rtx[i],
856 loc, insn, ref_type, ref_flags);
857 }
858 else
859 {
860 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
861 }
862 }
863
864
865 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
866 covered by the outer mode is smaller than that covered by the inner mode,
867 is a read-modify-write operation.
868 This function returns true iff the SUBREG X is such a SUBREG. */
869 bool
870 read_modify_subreg_p (rtx x)
871 {
872 unsigned int isize, osize;
873 if (GET_CODE (x) != SUBREG)
874 return false;
875 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
876 osize = GET_MODE_SIZE (GET_MODE (x));
877 return (isize > osize && isize > UNITS_PER_WORD);
878 }
879
880
881 /* Process all the registers defined in the rtx, X. */
882 static void
883 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
884 {
885 rtx *loc;
886 rtx dst;
887 enum df_ref_flags flags = 0;
888
889 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
890 construct. */
891 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
892 loc = &XEXP (x, 0);
893 else
894 loc = &SET_DEST (x);
895 dst = *loc;
896
897 /* Some targets place small structures in registers for
898 return values of functions. */
899 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
900 {
901 int i;
902
903 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
904 {
905 rtx temp = XVECEXP (dst, 0, i);
906 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
907 || GET_CODE (temp) == SET)
908 df_def_record_1 (df, temp, bb, insn);
909 }
910 return;
911 }
912
913 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
914 be handy for the reg allocator. */
915 while (GET_CODE (dst) == STRICT_LOW_PART
916 || GET_CODE (dst) == ZERO_EXTRACT
917 || read_modify_subreg_p (dst))
918 {
919 /* Strict low part always contains SUBREG, but we do not want to make
920 it appear outside, as whole register is always considered. */
921 if (GET_CODE (dst) == STRICT_LOW_PART)
922 {
923 loc = &XEXP (dst, 0);
924 dst = *loc;
925 }
926 loc = &XEXP (dst, 0);
927 dst = *loc;
928 flags |= DF_REF_READ_WRITE;
929 }
930
931 if (REG_P (dst)
932 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
933 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
934 }
935
936
937 /* Process all the registers defined in the pattern rtx, X. */
938 static void
939 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
940 {
941 RTX_CODE code = GET_CODE (x);
942
943 if (code == SET || code == CLOBBER)
944 {
945 /* Mark the single def within the pattern. */
946 df_def_record_1 (df, x, bb, insn);
947 }
948 else if (code == PARALLEL)
949 {
950 int i;
951
952 /* Mark the multiple defs within the pattern. */
953 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
954 {
955 code = GET_CODE (XVECEXP (x, 0, i));
956 if (code == SET || code == CLOBBER)
957 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
958 }
959 }
960 }
961
962
963 /* Process all the registers used in the rtx at address LOC. */
964 static void
965 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
966 basic_block bb, rtx insn, enum df_ref_flags flags)
967 {
968 RTX_CODE code;
969 rtx x;
970 retry:
971 x = *loc;
972 if (!x)
973 return;
974 code = GET_CODE (x);
975 switch (code)
976 {
977 case LABEL_REF:
978 case SYMBOL_REF:
979 case CONST_INT:
980 case CONST:
981 case CONST_DOUBLE:
982 case CONST_VECTOR:
983 case PC:
984 case CC0:
985 case ADDR_VEC:
986 case ADDR_DIFF_VEC:
987 return;
988
989 case CLOBBER:
990 /* If we are clobbering a MEM, mark any registers inside the address
991 as being used. */
992 if (MEM_P (XEXP (x, 0)))
993 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
994 DF_REF_REG_MEM_STORE, bb, insn, flags);
995
996 /* If we're clobbering a REG then we have a def so ignore. */
997 return;
998
999 case MEM:
1000 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
1001 return;
1002
1003 case SUBREG:
1004 /* While we're here, optimize this case. */
1005
1006 /* In case the SUBREG is not of a REG, do not optimize. */
1007 if (!REG_P (SUBREG_REG (x)))
1008 {
1009 loc = &SUBREG_REG (x);
1010 df_uses_record (df, loc, ref_type, bb, insn, flags);
1011 return;
1012 }
1013 /* ... Fall through ... */
1014
1015 case REG:
1016 df_ref_record (df, x, loc, insn, ref_type, flags);
1017 return;
1018
1019 case SET:
1020 {
1021 rtx dst = SET_DEST (x);
1022
1023 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1024
1025 switch (GET_CODE (dst))
1026 {
1027 case SUBREG:
1028 if (read_modify_subreg_p (dst))
1029 {
1030 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1031 insn, DF_REF_READ_WRITE);
1032 break;
1033 }
1034 /* Fall through. */
1035 case REG:
1036 case PARALLEL:
1037 case SCRATCH:
1038 case PC:
1039 case CC0:
1040 break;
1041 case MEM:
1042 df_uses_record (df, &XEXP (dst, 0),
1043 DF_REF_REG_MEM_STORE,
1044 bb, insn, 0);
1045 break;
1046 case STRICT_LOW_PART:
1047 /* A strict_low_part uses the whole REG and not just the
1048 SUBREG. */
1049 dst = XEXP (dst, 0);
1050 gcc_assert (GET_CODE (dst) == SUBREG);
1051 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1052 insn, DF_REF_READ_WRITE);
1053 break;
1054 case ZERO_EXTRACT:
1055 case SIGN_EXTRACT:
1056 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1057 DF_REF_READ_WRITE);
1058 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1059 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1060 dst = XEXP (dst, 0);
1061 break;
1062 default:
1063 gcc_unreachable ();
1064 }
1065 return;
1066 }
1067
1068 case RETURN:
1069 break;
1070
1071 case ASM_OPERANDS:
1072 case UNSPEC_VOLATILE:
1073 case TRAP_IF:
1074 case ASM_INPUT:
1075 {
1076 /* Traditional and volatile asm instructions must be considered to use
1077 and clobber all hard registers, all pseudo-registers and all of
1078 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1079
1080 Consider for instance a volatile asm that changes the fpu rounding
1081 mode. An insn should not be moved across this even if it only uses
1082 pseudo-regs because it might give an incorrectly rounded result.
1083
1084 For now, just mark any regs we can find in ASM_OPERANDS as
1085 used. */
1086
1087 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1088 We can not just fall through here since then we would be confused
1089 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1090 traditional asms unlike their normal usage. */
1091 if (code == ASM_OPERANDS)
1092 {
1093 int j;
1094
1095 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1096 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1097 DF_REF_REG_USE, bb, insn, 0);
1098 return;
1099 }
1100 break;
1101 }
1102
1103 case PRE_DEC:
1104 case POST_DEC:
1105 case PRE_INC:
1106 case POST_INC:
1107 case PRE_MODIFY:
1108 case POST_MODIFY:
1109 /* Catch the def of the register being modified. */
1110 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1111
1112 /* ... Fall through to handle uses ... */
1113
1114 default:
1115 break;
1116 }
1117
1118 /* Recursively scan the operands of this expression. */
1119 {
1120 const char *fmt = GET_RTX_FORMAT (code);
1121 int i;
1122
1123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1124 {
1125 if (fmt[i] == 'e')
1126 {
1127 /* Tail recursive case: save a function call level. */
1128 if (i == 0)
1129 {
1130 loc = &XEXP (x, 0);
1131 goto retry;
1132 }
1133 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1134 }
1135 else if (fmt[i] == 'E')
1136 {
1137 int j;
1138 for (j = 0; j < XVECLEN (x, i); j++)
1139 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1140 bb, insn, flags);
1141 }
1142 }
1143 }
1144 }
1145
1146
1147 /* Record all the df within INSN of basic block BB. */
1148 static void
1149 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1150 {
1151 int i;
1152
1153 if (INSN_P (insn))
1154 {
1155 rtx note;
1156
1157 /* Record register defs. */
1158 df_defs_record (df, PATTERN (insn), bb, insn);
1159
1160 if (df->flags & DF_EQUIV_NOTES)
1161 for (note = REG_NOTES (insn); note;
1162 note = XEXP (note, 1))
1163 {
1164 switch (REG_NOTE_KIND (note))
1165 {
1166 case REG_EQUIV:
1167 case REG_EQUAL:
1168 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1169 bb, insn, 0);
1170 default:
1171 break;
1172 }
1173 }
1174
1175 if (CALL_P (insn))
1176 {
1177 rtx note;
1178 rtx x;
1179
1180 /* Record the registers used to pass arguments. */
1181 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1182 note = XEXP (note, 1))
1183 {
1184 if (GET_CODE (XEXP (note, 0)) == USE)
1185 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1186 bb, insn, 0);
1187 }
1188
1189 /* The stack ptr is used (honorarily) by a CALL insn. */
1190 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1191 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1192
1193 if (df->flags & DF_HARD_REGS)
1194 {
1195 /* Calls may also reference any of the global registers,
1196 so they are recorded as used. */
1197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1198 if (global_regs[i])
1199 {
1200 x = df_reg_use_gen (i);
1201 df_uses_record (df, &XEXP (x, 0),
1202 DF_REF_REG_USE, bb, insn, 0);
1203 }
1204 }
1205 }
1206
1207 /* Record the register uses. */
1208 df_uses_record (df, &PATTERN (insn),
1209 DF_REF_REG_USE, bb, insn, 0);
1210
1211 if (CALL_P (insn))
1212 {
1213 rtx note;
1214
1215 /* We do not record hard registers clobbered by the call,
1216 since there are awfully many of them and "defs" created
1217 through them are not interesting (since no use can be legally
1218 reached by them). So we must just make sure we include them when
1219 computing kill bitmaps. */
1220
1221 /* There may be extra registers to be clobbered. */
1222 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1223 note;
1224 note = XEXP (note, 1))
1225 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1226 df_defs_record (df, XEXP (note, 0), bb, insn);
1227 }
1228 }
1229 }
1230
1231
1232 /* Record all the refs within the basic block BB. */
1233 static void
1234 df_bb_refs_record (struct df *df, basic_block bb)
1235 {
1236 rtx insn;
1237
1238 /* Scan the block an insn at a time from beginning to end. */
1239 FOR_BB_INSNS (bb, insn)
1240 {
1241 if (INSN_P (insn))
1242 {
1243 /* Record defs within INSN. */
1244 df_insn_refs_record (df, bb, insn);
1245 }
1246 }
1247 }
1248
1249
1250 /* Record all the refs in the basic blocks specified by BLOCKS. */
1251 static void
1252 df_refs_record (struct df *df, bitmap blocks)
1253 {
1254 basic_block bb;
1255
1256 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1257 {
1258 df_bb_refs_record (df, bb);
1259 });
1260 }
1261 \f
1262 /* Dataflow analysis routines. */
1263
1264 /* Create reg-def chains for basic block BB. These are a list of
1265 definitions for each register. */
1266
1267 static void
1268 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1269 {
1270 rtx insn;
1271
1272 /* Perhaps the defs should be sorted using a depth first search
1273 of the CFG (or possibly a breadth first search). */
1274
1275 FOR_BB_INSNS_REVERSE (bb, insn)
1276 {
1277 struct df_link *link;
1278 unsigned int uid = INSN_UID (insn);
1279
1280 if (! INSN_P (insn))
1281 continue;
1282
1283 for (link = df->insns[uid].defs; link; link = link->next)
1284 {
1285 struct ref *def = link->ref;
1286 unsigned int dregno = DF_REF_REGNO (def);
1287
1288 /* Do not add ref's to the chain twice, i.e., only add new
1289 refs. XXX the same could be done by testing if the
1290 current insn is a modified (or a new) one. This would be
1291 faster. */
1292 if (DF_REF_ID (def) < df->def_id_save)
1293 continue;
1294
1295 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1296 }
1297 }
1298 }
1299
1300
1301 /* Create reg-def chains for each basic block within BLOCKS. These
1302 are a list of definitions for each register. If REDO is true, add
1303 all defs, otherwise just add the new defs. */
1304
1305 static void
1306 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1307 {
1308 basic_block bb;
1309 #ifdef ENABLE_CHECKING
1310 unsigned regno;
1311 #endif
1312 unsigned old_def_id_save = df->def_id_save;
1313
1314 if (redo)
1315 {
1316 #ifdef ENABLE_CHECKING
1317 for (regno = 0; regno < df->n_regs; regno++)
1318 gcc_assert (!df->regs[regno].defs);
1319 #endif
1320
1321 /* Pretend that all defs are new. */
1322 df->def_id_save = 0;
1323 }
1324
1325 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1326 {
1327 df_bb_reg_def_chain_create (df, bb);
1328 });
1329
1330 df->def_id_save = old_def_id_save;
1331 }
1332
1333 /* Remove all reg-def chains stored in the dataflow object DF. */
1334
1335 static void
1336 df_reg_def_chain_clean (struct df *df)
1337 {
1338 unsigned regno;
1339
1340 for (regno = 0; regno < df->n_regs; regno++)
1341 free_reg_ref_chain (&df->regs[regno].defs);
1342 }
1343
1344 /* Create reg-use chains for basic block BB. These are a list of uses
1345 for each register. */
1346
1347 static void
1348 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1349 {
1350 rtx insn;
1351
1352 /* Scan in forward order so that the last uses appear at the start
1353 of the chain. */
1354
1355 FOR_BB_INSNS (bb, insn)
1356 {
1357 struct df_link *link;
1358 unsigned int uid = INSN_UID (insn);
1359
1360 if (! INSN_P (insn))
1361 continue;
1362
1363 for (link = df->insns[uid].uses; link; link = link->next)
1364 {
1365 struct ref *use = link->ref;
1366 unsigned int uregno = DF_REF_REGNO (use);
1367
1368 /* Do not add ref's to the chain twice, i.e., only add new
1369 refs. XXX the same could be done by testing if the
1370 current insn is a modified (or a new) one. This would be
1371 faster. */
1372 if (DF_REF_ID (use) < df->use_id_save)
1373 continue;
1374
1375 df->regs[uregno].uses
1376 = df_link_create (use, df->regs[uregno].uses);
1377 }
1378 }
1379 }
1380
1381
1382 /* Create reg-use chains for each basic block within BLOCKS. These
1383 are a list of uses for each register. If REDO is true, remove the
1384 old reg-use chains first, otherwise just add new uses to them. */
1385
1386 static void
1387 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1388 {
1389 basic_block bb;
1390 #ifdef ENABLE_CHECKING
1391 unsigned regno;
1392 #endif
1393 unsigned old_use_id_save = df->use_id_save;
1394
1395 if (redo)
1396 {
1397 #ifdef ENABLE_CHECKING
1398 for (regno = 0; regno < df->n_regs; regno++)
1399 gcc_assert (!df->regs[regno].uses);
1400 #endif
1401
1402 /* Pretend that all uses are new. */
1403 df->use_id_save = 0;
1404 }
1405
1406 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1407 {
1408 df_bb_reg_use_chain_create (df, bb);
1409 });
1410
1411 df->use_id_save = old_use_id_save;
1412 }
1413
1414 /* Remove all reg-use chains stored in the dataflow object DF. */
1415
1416 static void
1417 df_reg_use_chain_clean (struct df *df)
1418 {
1419 unsigned regno;
1420
1421 for (regno = 0; regno < df->n_regs; regno++)
1422 free_reg_ref_chain (&df->regs[regno].uses);
1423 }
1424
1425 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1426 static void
1427 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1428 {
1429 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1430 rtx insn;
1431
1432 bitmap_copy (ru, bb_info->ru_out);
1433
1434 /* For each def in BB create a linked list (chain) of uses
1435 reached from the def. */
1436 FOR_BB_INSNS_REVERSE (bb, insn)
1437 {
1438 struct df_link *def_link;
1439 struct df_link *use_link;
1440 unsigned int uid = INSN_UID (insn);
1441
1442 if (! INSN_P (insn))
1443 continue;
1444
1445 /* For each def in insn... */
1446 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1447 {
1448 struct ref *def = def_link->ref;
1449 unsigned int dregno = DF_REF_REGNO (def);
1450
1451 DF_REF_CHAIN (def) = 0;
1452
1453 /* While the reg-use chains are not essential, it
1454 is _much_ faster to search these short lists rather
1455 than all the reaching uses, especially for large functions. */
1456 for (use_link = df->regs[dregno].uses; use_link;
1457 use_link = use_link->next)
1458 {
1459 struct ref *use = use_link->ref;
1460
1461 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1462 {
1463 DF_REF_CHAIN (def)
1464 = df_link_create (use, DF_REF_CHAIN (def));
1465
1466 bitmap_clear_bit (ru, DF_REF_ID (use));
1467 }
1468 }
1469 }
1470
1471 /* For each use in insn... */
1472 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1473 {
1474 struct ref *use = use_link->ref;
1475 bitmap_set_bit (ru, DF_REF_ID (use));
1476 }
1477 }
1478 }
1479
1480
1481 /* Create def-use chains from reaching use bitmaps for basic blocks
1482 in BLOCKS. */
1483 static void
1484 df_du_chain_create (struct df *df, bitmap blocks)
1485 {
1486 bitmap ru;
1487 basic_block bb;
1488
1489 ru = BITMAP_ALLOC (NULL);
1490
1491 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1492 {
1493 df_bb_du_chain_create (df, bb, ru);
1494 });
1495
1496 BITMAP_FREE (ru);
1497 }
1498
1499
1500 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1501 static void
1502 df_bb_ud_chain_create (struct df *df, basic_block bb)
1503 {
1504 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1505 struct ref **reg_def_last = df->reg_def_last;
1506 rtx insn;
1507
1508 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1509
1510 /* For each use in BB create a linked list (chain) of defs
1511 that reach the use. */
1512 FOR_BB_INSNS (bb, insn)
1513 {
1514 unsigned int uid = INSN_UID (insn);
1515 struct df_link *use_link;
1516 struct df_link *def_link;
1517
1518 if (! INSN_P (insn))
1519 continue;
1520
1521 /* For each use in insn... */
1522 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1523 {
1524 struct ref *use = use_link->ref;
1525 unsigned int regno = DF_REF_REGNO (use);
1526
1527 DF_REF_CHAIN (use) = 0;
1528
1529 /* Has regno been defined in this BB yet? If so, use
1530 the last def as the single entry for the use-def
1531 chain for this use. Otherwise, we need to add all
1532 the defs using this regno that reach the start of
1533 this BB. */
1534 if (reg_def_last[regno])
1535 {
1536 DF_REF_CHAIN (use)
1537 = df_link_create (reg_def_last[regno], 0);
1538 }
1539 else
1540 {
1541 /* While the reg-def chains are not essential, it is
1542 _much_ faster to search these short lists rather than
1543 all the reaching defs, especially for large
1544 functions. */
1545 for (def_link = df->regs[regno].defs; def_link;
1546 def_link = def_link->next)
1547 {
1548 struct ref *def = def_link->ref;
1549
1550 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1551 {
1552 DF_REF_CHAIN (use)
1553 = df_link_create (def, DF_REF_CHAIN (use));
1554 }
1555 }
1556 }
1557 }
1558
1559
1560 /* For each def in insn... record the last def of each reg. */
1561 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1562 {
1563 struct ref *def = def_link->ref;
1564 int dregno = DF_REF_REGNO (def);
1565
1566 reg_def_last[dregno] = def;
1567 }
1568 }
1569 }
1570
1571
1572 /* Create use-def chains from reaching def bitmaps for basic blocks
1573 within BLOCKS. */
1574 static void
1575 df_ud_chain_create (struct df *df, bitmap blocks)
1576 {
1577 basic_block bb;
1578
1579 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1580 {
1581 df_bb_ud_chain_create (df, bb);
1582 });
1583 }
1584 \f
1585
1586
1587 static void
1588 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1589 void *out, void *gen, void *kill,
1590 void *data ATTRIBUTE_UNUSED)
1591 {
1592 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1593 }
1594
1595
1596 static void
1597 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1598 void *out, void *gen, void *kill,
1599 void *data ATTRIBUTE_UNUSED)
1600 {
1601 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1602 }
1603
1604
1605 static void
1606 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1607 void *out, void *use, void *def,
1608 void *data ATTRIBUTE_UNUSED)
1609 {
1610 *changed = bitmap_ior_and_compl (in, use, out, def);
1611 }
1612
1613
1614 /* Compute local reaching def info for basic block BB. */
1615 static void
1616 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1617 {
1618 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1619 rtx insn;
1620 bitmap seen = BITMAP_ALLOC (NULL);
1621 bool call_seen = false;
1622
1623 FOR_BB_INSNS_REVERSE (bb, insn)
1624 {
1625 unsigned int uid = INSN_UID (insn);
1626 struct df_link *def_link;
1627
1628 if (! INSN_P (insn))
1629 continue;
1630
1631 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1632 {
1633 struct ref *def = def_link->ref;
1634 unsigned int regno = DF_REF_REGNO (def);
1635 struct df_link *def2_link;
1636
1637 if (bitmap_bit_p (seen, regno)
1638 || (call_seen
1639 && regno < FIRST_PSEUDO_REGISTER
1640 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1641 continue;
1642
1643 for (def2_link = df->regs[regno].defs; def2_link;
1644 def2_link = def2_link->next)
1645 {
1646 struct ref *def2 = def2_link->ref;
1647
1648 /* Add all defs of this reg to the set of kills. This
1649 is greedy since many of these defs will not actually
1650 be killed by this BB but it keeps things a lot
1651 simpler. */
1652 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1653 }
1654
1655 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1656 bitmap_set_bit (seen, regno);
1657 }
1658
1659 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1660 {
1661 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1662 call_seen = 1;
1663 }
1664 }
1665
1666 BITMAP_FREE (seen);
1667 }
1668
1669
1670 /* Compute local reaching def info for each basic block within BLOCKS. */
1671 static void
1672 df_rd_local_compute (struct df *df, bitmap blocks)
1673 {
1674 basic_block bb;
1675 bitmap killed_by_call = NULL;
1676 unsigned regno;
1677 struct df_link *def_link;
1678
1679 if (df->flags & DF_HARD_REGS)
1680 {
1681 killed_by_call = BITMAP_ALLOC (NULL);
1682 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1683 {
1684 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1685 continue;
1686
1687 for (def_link = df->regs[regno].defs;
1688 def_link;
1689 def_link = def_link->next)
1690 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1691 }
1692 }
1693
1694 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1695 {
1696 df_bb_rd_local_compute (df, bb, killed_by_call);
1697 });
1698
1699 if (df->flags & DF_HARD_REGS)
1700 BITMAP_FREE (killed_by_call);
1701 }
1702
1703
1704 /* Compute local reaching use (upward exposed use) info for basic
1705 block BB. */
1706 static void
1707 df_bb_ru_local_compute (struct df *df, basic_block bb)
1708 {
1709 /* This is much more tricky than computing reaching defs. With
1710 reaching defs, defs get killed by other defs. With upwards
1711 exposed uses, these get killed by defs with the same regno. */
1712
1713 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1714 rtx insn;
1715
1716
1717 FOR_BB_INSNS_REVERSE (bb, insn)
1718 {
1719 unsigned int uid = INSN_UID (insn);
1720 struct df_link *def_link;
1721 struct df_link *use_link;
1722
1723 if (! INSN_P (insn))
1724 continue;
1725
1726 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1727 {
1728 struct ref *def = def_link->ref;
1729 unsigned int dregno = DF_REF_REGNO (def);
1730
1731 for (use_link = df->regs[dregno].uses; use_link;
1732 use_link = use_link->next)
1733 {
1734 struct ref *use = use_link->ref;
1735
1736 /* Add all uses of this reg to the set of kills. This
1737 is greedy since many of these uses will not actually
1738 be killed by this BB but it keeps things a lot
1739 simpler. */
1740 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1741
1742 /* Zap from the set of gens for this BB. */
1743 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1744 }
1745 }
1746
1747 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1748 {
1749 struct ref *use = use_link->ref;
1750 /* Add use to set of gens in this BB. */
1751 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1752 }
1753 }
1754 }
1755
1756
1757 /* Compute local reaching use (upward exposed use) info for each basic
1758 block within BLOCKS. */
1759 static void
1760 df_ru_local_compute (struct df *df, bitmap blocks)
1761 {
1762 basic_block bb;
1763
1764 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1765 {
1766 df_bb_ru_local_compute (df, bb);
1767 });
1768 }
1769
1770
1771 /* Compute local live variable info for basic block BB. */
1772 static void
1773 df_bb_lr_local_compute (struct df *df, basic_block bb)
1774 {
1775 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1776 rtx insn;
1777
1778 FOR_BB_INSNS_REVERSE (bb, insn)
1779 {
1780 unsigned int uid = INSN_UID (insn);
1781 struct df_link *link;
1782
1783 if (! INSN_P (insn))
1784 continue;
1785
1786 for (link = df->insns[uid].defs; link; link = link->next)
1787 {
1788 struct ref *def = link->ref;
1789 unsigned int dregno = DF_REF_REGNO (def);
1790
1791 /* Add def to set of defs in this BB. */
1792 bitmap_set_bit (bb_info->lr_def, dregno);
1793
1794 bitmap_clear_bit (bb_info->lr_use, dregno);
1795 }
1796
1797 for (link = df->insns[uid].uses; link; link = link->next)
1798 {
1799 struct ref *use = link->ref;
1800 /* Add use to set of uses in this BB. */
1801 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1802 }
1803 }
1804 }
1805
1806
1807 /* Compute local live variable info for each basic block within BLOCKS. */
1808 static void
1809 df_lr_local_compute (struct df *df, bitmap blocks)
1810 {
1811 basic_block bb;
1812
1813 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1814 {
1815 df_bb_lr_local_compute (df, bb);
1816 });
1817 }
1818
1819
1820 /* Compute register info: lifetime, bb, and number of defs and uses
1821 for basic block BB. */
1822 static void
1823 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1824 {
1825 struct reg_info *reg_info = df->regs;
1826 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1827 rtx insn;
1828
1829 bitmap_copy (live, bb_info->lr_out);
1830
1831 FOR_BB_INSNS_REVERSE (bb, insn)
1832 {
1833 unsigned int uid = INSN_UID (insn);
1834 unsigned int regno;
1835 struct df_link *link;
1836 bitmap_iterator bi;
1837
1838 if (! INSN_P (insn))
1839 continue;
1840
1841 for (link = df->insns[uid].defs; link; link = link->next)
1842 {
1843 struct ref *def = link->ref;
1844 unsigned int dregno = DF_REF_REGNO (def);
1845
1846 /* Kill this register. */
1847 bitmap_clear_bit (live, dregno);
1848 reg_info[dregno].n_defs++;
1849 }
1850
1851 for (link = df->insns[uid].uses; link; link = link->next)
1852 {
1853 struct ref *use = link->ref;
1854 unsigned int uregno = DF_REF_REGNO (use);
1855
1856 /* This register is now live. */
1857 bitmap_set_bit (live, uregno);
1858 reg_info[uregno].n_uses++;
1859 }
1860
1861 /* Increment lifetimes of all live registers. */
1862 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1863 {
1864 reg_info[regno].lifetime++;
1865 }
1866 }
1867 }
1868
1869
1870 /* Compute register info: lifetime, bb, and number of defs and uses. */
1871 static void
1872 df_reg_info_compute (struct df *df, bitmap blocks)
1873 {
1874 basic_block bb;
1875 bitmap live;
1876
1877 live = BITMAP_ALLOC (NULL);
1878
1879 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1880 {
1881 df_bb_reg_info_compute (df, bb, live);
1882 });
1883
1884 BITMAP_FREE (live);
1885 }
1886
1887
1888 /* Assign LUIDs for BB. */
1889 static int
1890 df_bb_luids_set (struct df *df, basic_block bb)
1891 {
1892 rtx insn;
1893 int luid = 0;
1894
1895 /* The LUIDs are monotonically increasing for each basic block. */
1896
1897 FOR_BB_INSNS (bb, insn)
1898 {
1899 if (INSN_P (insn))
1900 DF_INSN_LUID (df, insn) = luid++;
1901 DF_INSN_LUID (df, insn) = luid;
1902 }
1903 return luid;
1904 }
1905
1906
1907 /* Assign LUIDs for each basic block within BLOCKS. */
1908 static int
1909 df_luids_set (struct df *df, bitmap blocks)
1910 {
1911 basic_block bb;
1912 int total = 0;
1913
1914 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1915 {
1916 total += df_bb_luids_set (df, bb);
1917 });
1918 return total;
1919 }
1920
1921
1922 /* Perform dataflow analysis using existing DF structure for blocks
1923 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1924 static void
1925 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1926 {
1927 int aflags;
1928 int dflags;
1929 int i;
1930 basic_block bb;
1931 struct dataflow dflow;
1932
1933 dflags = 0;
1934 aflags = flags;
1935 if (flags & DF_UD_CHAIN)
1936 aflags |= DF_RD | DF_RD_CHAIN;
1937
1938 if (flags & DF_DU_CHAIN)
1939 aflags |= DF_RU;
1940
1941 if (flags & DF_RU)
1942 aflags |= DF_RU_CHAIN;
1943
1944 if (flags & DF_REG_INFO)
1945 aflags |= DF_LR;
1946
1947 if (! blocks)
1948 blocks = df->all_blocks;
1949
1950 df->flags = flags;
1951 if (update)
1952 {
1953 df_refs_update (df, NULL);
1954 /* More fine grained incremental dataflow analysis would be
1955 nice. For now recompute the whole shebang for the
1956 modified blocks. */
1957 #if 0
1958 df_refs_unlink (df, blocks);
1959 #endif
1960 /* All the def-use, use-def chains can be potentially
1961 modified by changes in one block. The size of the
1962 bitmaps can also change. */
1963 }
1964 else
1965 {
1966 /* Scan the function for all register defs and uses. */
1967 df_refs_queue (df);
1968 df_refs_record (df, blocks);
1969
1970 /* Link all the new defs and uses to the insns. */
1971 df_refs_process (df);
1972 }
1973
1974 /* Allocate the bitmaps now the total number of defs and uses are
1975 known. If the number of defs or uses have changed, then
1976 these bitmaps need to be reallocated. */
1977 df_bitmaps_alloc (df, NULL, aflags);
1978
1979 /* Set the LUIDs for each specified basic block. */
1980 df_luids_set (df, blocks);
1981
1982 /* Recreate reg-def and reg-use chains from scratch so that first
1983 def is at the head of the reg-def chain and the last use is at
1984 the head of the reg-use chain. This is only important for
1985 regs local to a basic block as it speeds up searching. */
1986 if (aflags & DF_RD_CHAIN)
1987 {
1988 df_reg_def_chain_create (df, blocks, false);
1989 }
1990
1991 if (aflags & DF_RU_CHAIN)
1992 {
1993 df_reg_use_chain_create (df, blocks, false);
1994 }
1995
1996 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
1997 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
1998 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
1999 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
2000 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
2001 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2002
2003 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2004 flow_reverse_top_sort_order_compute (df->rts_order);
2005 for (i = 0; i < n_basic_blocks; i++)
2006 {
2007 df->inverse_dfs_map[df->dfs_order[i]] = i;
2008 df->inverse_rc_map[df->rc_order[i]] = i;
2009 df->inverse_rts_map[df->rts_order[i]] = i;
2010 }
2011 if (aflags & DF_RD)
2012 {
2013 /* Compute the sets of gens and kills for the defs of each bb. */
2014 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2015 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2016 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2017 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2018
2019 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2020 FOR_EACH_BB (bb)
2021 {
2022 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2023 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2024 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2025 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2026 }
2027
2028 dflow.repr = SR_BITMAP;
2029 dflow.dir = DF_FORWARD;
2030 dflow.conf_op = DF_UNION;
2031 dflow.transfun = df_rd_transfer_function;
2032 dflow.n_blocks = n_basic_blocks;
2033 dflow.order = df->rc_order;
2034 dflow.data = NULL;
2035
2036 iterative_dataflow (&dflow);
2037 free (dflow.in);
2038 free (dflow.out);
2039 free (dflow.gen);
2040 free (dflow.kill);
2041 }
2042
2043 if (aflags & DF_UD_CHAIN)
2044 {
2045 /* Create use-def chains. */
2046 df_ud_chain_create (df, df->all_blocks);
2047
2048 if (! (flags & DF_RD))
2049 dflags |= DF_RD;
2050 }
2051
2052 if (aflags & DF_RU)
2053 {
2054 /* Compute the sets of gens and kills for the upwards exposed
2055 uses in each bb. */
2056 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2057 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2058 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2059 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2060
2061 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2062
2063 FOR_EACH_BB (bb)
2064 {
2065 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2066 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2067 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2068 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2069 }
2070
2071 dflow.repr = SR_BITMAP;
2072 dflow.dir = DF_BACKWARD;
2073 dflow.conf_op = DF_UNION;
2074 dflow.transfun = df_ru_transfer_function;
2075 dflow.n_blocks = n_basic_blocks;
2076 dflow.order = df->rts_order;
2077 dflow.data = NULL;
2078
2079 iterative_dataflow (&dflow);
2080 free (dflow.in);
2081 free (dflow.out);
2082 free (dflow.gen);
2083 free (dflow.kill);
2084 }
2085
2086 if (aflags & DF_DU_CHAIN)
2087 {
2088 /* Create def-use chains. */
2089 df_du_chain_create (df, df->all_blocks);
2090
2091 if (! (flags & DF_RU))
2092 dflags |= DF_RU;
2093 }
2094
2095 /* Free up bitmaps that are no longer required. */
2096 if (dflags)
2097 df_bitmaps_free (df, dflags);
2098
2099 if (aflags & DF_LR)
2100 {
2101 /* Compute the sets of defs and uses of live variables. */
2102 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2103 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2104 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2105 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2106
2107 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2108
2109 FOR_EACH_BB (bb)
2110 {
2111 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2112 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2113 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2114 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2115 }
2116
2117 dflow.repr = SR_BITMAP;
2118 dflow.dir = DF_BACKWARD;
2119 dflow.conf_op = DF_UNION;
2120 dflow.transfun = df_lr_transfer_function;
2121 dflow.n_blocks = n_basic_blocks;
2122 dflow.order = df->rts_order;
2123 dflow.data = NULL;
2124
2125 iterative_dataflow (&dflow);
2126 free (dflow.in);
2127 free (dflow.out);
2128 free (dflow.gen);
2129 free (dflow.kill);
2130 }
2131
2132 if (aflags & DF_REG_INFO)
2133 {
2134 df_reg_info_compute (df, df->all_blocks);
2135 }
2136
2137 free (df->dfs_order);
2138 free (df->rc_order);
2139 free (df->rts_order);
2140 free (df->inverse_rc_map);
2141 free (df->inverse_dfs_map);
2142 free (df->inverse_rts_map);
2143 }
2144
2145
2146 /* Initialize dataflow analysis. */
2147 struct df *
2148 df_init (void)
2149 {
2150 struct df *df;
2151
2152 df = xcalloc (1, sizeof (struct df));
2153
2154 /* Squirrel away a global for debugging. */
2155 ddf = df;
2156
2157 return df;
2158 }
2159
2160
2161 /* Start queuing refs. */
2162 static int
2163 df_refs_queue (struct df *df)
2164 {
2165 df->def_id_save = df->def_id;
2166 df->use_id_save = df->use_id;
2167 /* ???? Perhaps we should save current obstack state so that we can
2168 unwind it. */
2169 return 0;
2170 }
2171
2172
2173 /* Process queued refs. */
2174 static int
2175 df_refs_process (struct df *df)
2176 {
2177 unsigned int i;
2178
2179 /* Build new insn-def chains. */
2180 for (i = df->def_id_save; i != df->def_id; i++)
2181 {
2182 struct ref *def = df->defs[i];
2183 unsigned int uid = DF_REF_INSN_UID (def);
2184
2185 /* Add def to head of def list for INSN. */
2186 df->insns[uid].defs
2187 = df_link_create (def, df->insns[uid].defs);
2188 }
2189
2190 /* Build new insn-use chains. */
2191 for (i = df->use_id_save; i != df->use_id; i++)
2192 {
2193 struct ref *use = df->uses[i];
2194 unsigned int uid = DF_REF_INSN_UID (use);
2195
2196 /* Add use to head of use list for INSN. */
2197 df->insns[uid].uses
2198 = df_link_create (use, df->insns[uid].uses);
2199 }
2200 return 0;
2201 }
2202
2203
2204 /* Update refs for basic block BB. */
2205 static int
2206 df_bb_refs_update (struct df *df, basic_block bb)
2207 {
2208 rtx insn;
2209 int count = 0;
2210
2211 /* While we have to scan the chain of insns for this BB, we do not
2212 need to allocate and queue a long chain of BB/INSN pairs. Using
2213 a bitmap for insns_modified saves memory and avoids queuing
2214 duplicates. */
2215
2216 FOR_BB_INSNS (bb, insn)
2217 {
2218 unsigned int uid;
2219
2220 uid = INSN_UID (insn);
2221
2222 if (bitmap_bit_p (df->insns_modified, uid))
2223 {
2224 /* Delete any allocated refs of this insn. MPH, FIXME. */
2225 df_insn_refs_unlink (df, bb, insn);
2226
2227 /* Scan the insn for refs. */
2228 df_insn_refs_record (df, bb, insn);
2229
2230 count++;
2231 }
2232 }
2233 return count;
2234 }
2235
2236
2237 /* Process all the modified/deleted insns that were queued. */
2238 static int
2239 df_refs_update (struct df *df, bitmap blocks)
2240 {
2241 basic_block bb;
2242 unsigned count = 0, bbno;
2243
2244 df->n_regs = max_reg_num ();
2245 if (df->n_regs >= df->reg_size)
2246 df_reg_table_realloc (df, 0);
2247
2248 df_refs_queue (df);
2249
2250 if (!blocks)
2251 {
2252 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2253 {
2254 count += df_bb_refs_update (df, bb);
2255 });
2256 }
2257 else
2258 {
2259 bitmap_iterator bi;
2260
2261 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2262 {
2263 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2264 }
2265 }
2266
2267 df_refs_process (df);
2268 return count;
2269 }
2270
2271
2272 /* Return nonzero if any of the requested blocks in the bitmap
2273 BLOCKS have been modified. */
2274 static int
2275 df_modified_p (struct df *df, bitmap blocks)
2276 {
2277 int update = 0;
2278 basic_block bb;
2279
2280 if (!df->n_bbs)
2281 return 0;
2282
2283 FOR_EACH_BB (bb)
2284 if (bitmap_bit_p (df->bbs_modified, bb->index)
2285 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2286 {
2287 update = 1;
2288 break;
2289 }
2290
2291 return update;
2292 }
2293
2294 /* Analyze dataflow info for the basic blocks specified by the bitmap
2295 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2296 modified blocks if BLOCKS is -1. */
2297
2298 int
2299 df_analyze (struct df *df, bitmap blocks, int flags)
2300 {
2301 int update;
2302
2303 /* We could deal with additional basic blocks being created by
2304 rescanning everything again. */
2305 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2306
2307 update = df_modified_p (df, blocks);
2308 if (update || (flags != df->flags))
2309 {
2310 if (! blocks)
2311 {
2312 if (df->n_bbs)
2313 {
2314 /* Recompute everything from scratch. */
2315 df_free (df);
2316 }
2317 /* Allocate and initialize data structures. */
2318 df_alloc (df, max_reg_num ());
2319 df_analyze_1 (df, 0, flags, 0);
2320 update = 1;
2321 }
2322 else
2323 {
2324 if (blocks == (bitmap) -1)
2325 blocks = df->bbs_modified;
2326
2327 gcc_assert (df->n_bbs);
2328
2329 df_analyze_1 (df, blocks, flags, 1);
2330 bitmap_zero (df->bbs_modified);
2331 bitmap_zero (df->insns_modified);
2332 }
2333 }
2334 return update;
2335 }
2336
2337 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2338 the order of the remaining entries. Returns the length of the resulting
2339 list. */
2340
2341 static unsigned
2342 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2343 {
2344 unsigned act, last;
2345
2346 for (act = 0, last = 0; act < len; act++)
2347 if (bitmap_bit_p (blocks, list[act]))
2348 list[last++] = list[act];
2349
2350 return last;
2351 }
2352
2353 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2354 graph induced by BLOCKS.
2355
2356 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2357 here, and simultaneously not make even greater chaos in it. We behave
2358 slightly differently in some details, especially in handling modified
2359 insns. */
2360
2361 void
2362 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2363 {
2364 rtx insn;
2365 basic_block bb;
2366 struct dataflow dflow;
2367 unsigned n_blocks;
2368
2369 if (flags & DF_UD_CHAIN)
2370 flags |= DF_RD | DF_RD_CHAIN;
2371 if (flags & DF_DU_CHAIN)
2372 flags |= DF_RU;
2373 if (flags & DF_RU)
2374 flags |= DF_RU_CHAIN;
2375 if (flags & DF_REG_INFO)
2376 flags |= DF_LR;
2377
2378 if (!df->n_bbs)
2379 {
2380 df_alloc (df, max_reg_num ());
2381
2382 /* Mark all insns as modified. */
2383
2384 FOR_EACH_BB (bb)
2385 {
2386 FOR_BB_INSNS (bb, insn)
2387 {
2388 df_insn_modify (df, bb, insn);
2389 }
2390 }
2391 }
2392
2393 df->flags = flags;
2394
2395 df_reg_def_chain_clean (df);
2396 df_reg_use_chain_clean (df);
2397
2398 df_refs_update (df, blocks);
2399
2400 /* Clear the updated stuff from ``modified'' bitmaps. */
2401 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2402 {
2403 if (bitmap_bit_p (df->bbs_modified, bb->index))
2404 {
2405 FOR_BB_INSNS (bb, insn)
2406 {
2407 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2408 }
2409
2410 bitmap_clear_bit (df->bbs_modified, bb->index);
2411 }
2412 });
2413
2414 /* Allocate the bitmaps now the total number of defs and uses are
2415 known. If the number of defs or uses have changed, then
2416 these bitmaps need to be reallocated. */
2417 df_bitmaps_alloc (df, blocks, flags);
2418
2419 /* Set the LUIDs for each specified basic block. */
2420 df_luids_set (df, blocks);
2421
2422 /* Recreate reg-def and reg-use chains from scratch so that first
2423 def is at the head of the reg-def chain and the last use is at
2424 the head of the reg-use chain. This is only important for
2425 regs local to a basic block as it speeds up searching. */
2426 if (flags & DF_RD_CHAIN)
2427 {
2428 df_reg_def_chain_create (df, blocks, true);
2429 }
2430
2431 if (flags & DF_RU_CHAIN)
2432 {
2433 df_reg_use_chain_create (df, blocks, true);
2434 }
2435
2436 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2437 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2438 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2439
2440 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2441 flow_reverse_top_sort_order_compute (df->rts_order);
2442
2443 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
2444 prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
2445 prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);
2446
2447 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2448 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2449 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2450 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2451
2452 if (flags & DF_RD)
2453 {
2454 /* Compute the sets of gens and kills for the defs of each bb. */
2455 df_rd_local_compute (df, blocks);
2456
2457 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2458 {
2459 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2460 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2461 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2462 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2463 });
2464
2465 dflow.repr = SR_BITMAP;
2466 dflow.dir = DF_FORWARD;
2467 dflow.conf_op = DF_UNION;
2468 dflow.transfun = df_rd_transfer_function;
2469 dflow.n_blocks = n_blocks;
2470 dflow.order = df->rc_order;
2471 dflow.data = NULL;
2472
2473 iterative_dataflow (&dflow);
2474 }
2475
2476 if (flags & DF_UD_CHAIN)
2477 {
2478 /* Create use-def chains. */
2479 df_ud_chain_create (df, blocks);
2480 }
2481
2482 if (flags & DF_RU)
2483 {
2484 /* Compute the sets of gens and kills for the upwards exposed
2485 uses in each bb. */
2486 df_ru_local_compute (df, blocks);
2487
2488 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2489 {
2490 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2491 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2492 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2493 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2494 });
2495
2496 dflow.repr = SR_BITMAP;
2497 dflow.dir = DF_BACKWARD;
2498 dflow.conf_op = DF_UNION;
2499 dflow.transfun = df_ru_transfer_function;
2500 dflow.n_blocks = n_blocks;
2501 dflow.order = df->rts_order;
2502 dflow.data = NULL;
2503
2504 iterative_dataflow (&dflow);
2505 }
2506
2507 if (flags & DF_DU_CHAIN)
2508 {
2509 /* Create def-use chains. */
2510 df_du_chain_create (df, blocks);
2511 }
2512
2513 if (flags & DF_LR)
2514 {
2515 /* Compute the sets of defs and uses of live variables. */
2516 df_lr_local_compute (df, blocks);
2517
2518 FOR_EACH_BB (bb)
2519 {
2520 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2521 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2522 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2523 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2524 }
2525
2526 dflow.repr = SR_BITMAP;
2527 dflow.dir = DF_BACKWARD;
2528 dflow.conf_op = DF_UNION;
2529 dflow.transfun = df_lr_transfer_function;
2530 dflow.n_blocks = n_blocks;
2531 dflow.order = df->rts_order;
2532 dflow.data = NULL;
2533
2534 iterative_dataflow (&dflow);
2535 }
2536
2537 if (flags & DF_REG_INFO)
2538 {
2539 df_reg_info_compute (df, blocks);
2540 }
2541
2542 free (dflow.in);
2543 free (dflow.out);
2544 free (dflow.gen);
2545 free (dflow.kill);
2546
2547 free (df->dfs_order);
2548 free (df->rc_order);
2549 free (df->rts_order);
2550 }
2551
2552 /* Free all the dataflow info and the DF structure. */
2553 void
2554 df_finish (struct df *df)
2555 {
2556 df_free (df);
2557 free (df);
2558 }
2559
2560 /* Unlink INSN from its reference information. */
2561 static void
2562 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2563 {
2564 struct df_link *link;
2565 unsigned int uid;
2566
2567 uid = INSN_UID (insn);
2568
2569 /* Unlink all refs defined by this insn. */
2570 for (link = df->insns[uid].defs; link; link = link->next)
2571 df_def_unlink (df, link->ref);
2572
2573 /* Unlink all refs used by this insn. */
2574 for (link = df->insns[uid].uses; link; link = link->next)
2575 df_use_unlink (df, link->ref);
2576
2577 df->insns[uid].defs = 0;
2578 df->insns[uid].uses = 0;
2579 }
2580
2581
2582 #if 0
2583 /* Unlink all the insns within BB from their reference information. */
2584 static void
2585 df_bb_refs_unlink (struct df *df, basic_block bb)
2586 {
2587 rtx insn;
2588
2589 /* Scan the block an insn at a time from beginning to end. */
2590 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2591 {
2592 if (INSN_P (insn))
2593 {
2594 /* Unlink refs for INSN. */
2595 df_insn_refs_unlink (df, bb, insn);
2596 }
2597 if (insn == BB_END (bb))
2598 break;
2599 }
2600 }
2601
2602
2603 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2604 Not currently used. */
2605 static void
2606 df_refs_unlink (struct df *df, bitmap blocks)
2607 {
2608 basic_block bb;
2609
2610 if (blocks)
2611 {
2612 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2613 {
2614 df_bb_refs_unlink (df, bb);
2615 });
2616 }
2617 else
2618 {
2619 FOR_EACH_BB (bb)
2620 df_bb_refs_unlink (df, bb);
2621 }
2622 }
2623 #endif
2624 \f
2625 /* Functions to modify insns. */
2626
2627
2628 /* Delete INSN and all its reference information. */
2629 rtx
2630 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2631 {
2632 /* If the insn is a jump, we should perhaps call delete_insn to
2633 handle the JUMP_LABEL? */
2634
2635 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2636 gcc_assert (insn != BB_HEAD (bb));
2637
2638 /* Delete the insn. */
2639 delete_insn (insn);
2640
2641 df_insn_modify (df, bb, insn);
2642
2643 return NEXT_INSN (insn);
2644 }
2645
2646 /* Mark that basic block BB was modified. */
2647
2648 static void
2649 df_bb_modify (struct df *df, basic_block bb)
2650 {
2651 if ((unsigned) bb->index >= df->n_bbs)
2652 df_bb_table_realloc (df, df->n_bbs);
2653
2654 bitmap_set_bit (df->bbs_modified, bb->index);
2655 }
2656
2657 /* Mark that INSN within BB may have changed (created/modified/deleted).
2658 This may be called multiple times for the same insn. There is no
2659 harm calling this function if the insn wasn't changed; it will just
2660 slow down the rescanning of refs. */
2661 void
2662 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2663 {
2664 unsigned int uid;
2665
2666 uid = INSN_UID (insn);
2667 if (uid >= df->insn_size)
2668 df_insn_table_realloc (df, uid);
2669
2670 df_bb_modify (df, bb);
2671 bitmap_set_bit (df->insns_modified, uid);
2672
2673 /* For incremental updating on the fly, perhaps we could make a copy
2674 of all the refs of the original insn and turn them into
2675 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2676 the original refs. If validate_change fails then these anti-refs
2677 will just get ignored. */
2678 }
2679
2680 /* Check if INSN was marked as changed. Of course the correctness of
2681 the information depends on whether the instruction was really modified
2682 at the time df_insn_modify was called. */
2683 bool
2684 df_insn_modified_p (struct df *df, rtx insn)
2685 {
2686 unsigned int uid;
2687
2688 uid = INSN_UID (insn);
2689 return (df->insns_modified
2690 && uid < df->insn_size
2691 && bitmap_bit_p (df->insns_modified, uid));
2692 }
2693
2694 typedef struct replace_args
2695 {
2696 rtx match;
2697 rtx replacement;
2698 rtx insn;
2699 int modified;
2700 } replace_args;
2701
2702
2703 /* Replace mem pointed to by PX with its associated pseudo register.
2704 DATA is actually a pointer to a structure describing the
2705 instruction currently being scanned and the MEM we are currently
2706 replacing. */
2707 static int
2708 df_rtx_mem_replace (rtx *px, void *data)
2709 {
2710 replace_args *args = (replace_args *) data;
2711 rtx mem = *px;
2712
2713 if (mem == NULL_RTX)
2714 return 0;
2715
2716 switch (GET_CODE (mem))
2717 {
2718 case MEM:
2719 break;
2720
2721 case CONST_DOUBLE:
2722 /* We're not interested in the MEM associated with a
2723 CONST_DOUBLE, so there's no need to traverse into one. */
2724 return -1;
2725
2726 default:
2727 /* This is not a MEM. */
2728 return 0;
2729 }
2730
2731 if (!rtx_equal_p (args->match, mem))
2732 /* This is not the MEM we are currently replacing. */
2733 return 0;
2734
2735 /* Actually replace the MEM. */
2736 validate_change (args->insn, px, args->replacement, 1);
2737 args->modified++;
2738
2739 return 0;
2740 }
2741
2742
2743 int
2744 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2745 {
2746 replace_args args;
2747
2748 args.insn = insn;
2749 args.match = mem;
2750 args.replacement = reg;
2751 args.modified = 0;
2752
2753 /* Search and replace all matching mems within insn. */
2754 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2755
2756 if (args.modified)
2757 df_insn_modify (df, bb, insn);
2758
2759 /* ???? FIXME. We may have a new def or one or more new uses of REG
2760 in INSN. REG should be a new pseudo so it won't affect the
2761 dataflow information that we currently have. We should add
2762 the new uses and defs to INSN and then recreate the chains
2763 when df_analyze is called. */
2764 return args.modified;
2765 }
2766
2767
2768 /* Replace one register with another. Called through for_each_rtx; PX
2769 points to the rtx being scanned. DATA is actually a pointer to a
2770 structure of arguments. */
2771 static int
2772 df_rtx_reg_replace (rtx *px, void *data)
2773 {
2774 rtx x = *px;
2775 replace_args *args = (replace_args *) data;
2776
2777 if (x == NULL_RTX)
2778 return 0;
2779
2780 if (x == args->match)
2781 {
2782 validate_change (args->insn, px, args->replacement, 1);
2783 args->modified++;
2784 }
2785
2786 return 0;
2787 }
2788
2789
2790 /* Replace the reg within every ref on CHAIN that is within the set
2791 BLOCKS of basic blocks with NEWREG. Also update the regs within
2792 REG_NOTES. */
2793 void
2794 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2795 {
2796 struct df_link *link;
2797 replace_args args;
2798
2799 if (! blocks)
2800 blocks = df->all_blocks;
2801
2802 args.match = oldreg;
2803 args.replacement = newreg;
2804 args.modified = 0;
2805
2806 for (link = chain; link; link = link->next)
2807 {
2808 struct ref *ref = link->ref;
2809 rtx insn = DF_REF_INSN (ref);
2810
2811 if (! INSN_P (insn))
2812 continue;
2813
2814 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2815
2816 df_ref_reg_replace (df, ref, oldreg, newreg);
2817
2818 /* Replace occurrences of the reg within the REG_NOTES. */
2819 if ((! link->next || DF_REF_INSN (ref)
2820 != DF_REF_INSN (link->next->ref))
2821 && REG_NOTES (insn))
2822 {
2823 args.insn = insn;
2824 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2825 }
2826 }
2827 }
2828
2829
2830 /* Replace all occurrences of register OLDREG with register NEWREG in
2831 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2832 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2833 routine expects the reg-use and reg-def chains to be valid. */
2834 int
2835 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2836 {
2837 unsigned int oldregno = REGNO (oldreg);
2838
2839 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2840 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2841 return 1;
2842 }
2843
2844
2845 /* Try replacing the reg within REF with NEWREG. Do not modify
2846 def-use/use-def chains. */
2847 int
2848 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2849 {
2850 /* Check that insn was deleted by being converted into a NOTE. If
2851 so ignore this insn. */
2852 if (! INSN_P (DF_REF_INSN (ref)))
2853 return 0;
2854
2855 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2856
2857 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2858 return 0;
2859
2860 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2861 return 1;
2862 }
2863
2864
2865 struct ref*
2866 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2867 {
2868 struct ref *def;
2869 struct ref *use;
2870 int def_uid;
2871 int use_uid;
2872 struct df_link *link;
2873
2874 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2875 if (! def)
2876 return 0;
2877
2878 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2879 if (! use)
2880 return 0;
2881
2882 /* The USE no longer exists. */
2883 use_uid = INSN_UID (use_insn);
2884 df_use_unlink (df, use);
2885 df_ref_unlink (&df->insns[use_uid].uses, use);
2886
2887 /* The DEF requires shifting so remove it from DEF_INSN
2888 and add it to USE_INSN by reusing LINK. */
2889 def_uid = INSN_UID (def_insn);
2890 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2891 link->ref = def;
2892 link->next = df->insns[use_uid].defs;
2893 df->insns[use_uid].defs = link;
2894
2895 #if 0
2896 link = df_ref_unlink (&df->regs[regno].defs, def);
2897 link->ref = def;
2898 link->next = df->regs[regno].defs;
2899 df->insns[regno].defs = link;
2900 #endif
2901
2902 DF_REF_INSN (def) = use_insn;
2903 return def;
2904 }
2905
2906
2907 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2908 insns must be processed by this routine. */
2909 static void
2910 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2911 {
2912 rtx insn;
2913
2914 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2915 {
2916 unsigned int uid;
2917
2918 /* A non-const call should not have slipped through the net. If
2919 it does, we need to create a new basic block. Ouch. The
2920 same applies for a label. */
2921 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2922 && !LABEL_P (insn));
2923
2924 uid = INSN_UID (insn);
2925
2926 if (uid >= df->insn_size)
2927 df_insn_table_realloc (df, uid);
2928
2929 df_insn_modify (df, bb, insn);
2930
2931 if (insn == last_insn)
2932 break;
2933 }
2934 }
2935
2936
2937 /* Emit PATTERN before INSN within BB. */
2938 rtx
2939 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2940 {
2941 rtx ret_insn;
2942 rtx prev_insn = PREV_INSN (insn);
2943
2944 /* We should not be inserting before the start of the block. */
2945 gcc_assert (insn != BB_HEAD (bb));
2946 ret_insn = emit_insn_before (pattern, insn);
2947 if (ret_insn == insn)
2948 return ret_insn;
2949
2950 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2951 return ret_insn;
2952 }
2953
2954
2955 /* Emit PATTERN after INSN within BB. */
2956 rtx
2957 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2958 {
2959 rtx ret_insn;
2960
2961 ret_insn = emit_insn_after (pattern, insn);
2962 if (ret_insn == insn)
2963 return ret_insn;
2964
2965 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2966 return ret_insn;
2967 }
2968
2969
2970 /* Emit jump PATTERN after INSN within BB. */
2971 rtx
2972 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2973 {
2974 rtx ret_insn;
2975
2976 ret_insn = emit_jump_insn_after (pattern, insn);
2977 if (ret_insn == insn)
2978 return ret_insn;
2979
2980 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2981 return ret_insn;
2982 }
2983
2984
2985 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2986
2987 This function should only be used to move loop invariant insns
2988 out of a loop where it has been proven that the def-use info
2989 will still be valid. */
2990 rtx
2991 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2992 {
2993 struct df_link *link;
2994 unsigned int uid;
2995
2996 if (! bb)
2997 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2998
2999 uid = INSN_UID (insn);
3000
3001 /* Change bb for all df defined and used by this insn. */
3002 for (link = df->insns[uid].defs; link; link = link->next)
3003 DF_REF_BB (link->ref) = before_bb;
3004 for (link = df->insns[uid].uses; link; link = link->next)
3005 DF_REF_BB (link->ref) = before_bb;
3006
3007 /* The lifetimes of the registers used in this insn will be reduced
3008 while the lifetimes of the registers defined in this insn
3009 are likely to be increased. */
3010
3011 /* ???? Perhaps all the insns moved should be stored on a list
3012 which df_analyze removes when it recalculates data flow. */
3013
3014 return emit_insn_before (insn, before_insn);
3015 }
3016 \f
3017 /* Functions to query dataflow information. */
3018
3019
3020 int
3021 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3022 rtx insn, unsigned int regno)
3023 {
3024 unsigned int uid;
3025 struct df_link *link;
3026
3027 uid = INSN_UID (insn);
3028
3029 for (link = df->insns[uid].defs; link; link = link->next)
3030 {
3031 struct ref *def = link->ref;
3032
3033 if (DF_REF_REGNO (def) == regno)
3034 return 1;
3035 }
3036
3037 return 0;
3038 }
3039
3040 /* Finds the reference corresponding to the definition of REG in INSN.
3041 DF is the dataflow object. */
3042
3043 struct ref *
3044 df_find_def (struct df *df, rtx insn, rtx reg)
3045 {
3046 struct df_link *defs;
3047
3048 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3049 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3050 return defs->ref;
3051
3052 return NULL;
3053 }
3054
3055 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3056
3057 int
3058 df_reg_used (struct df *df, rtx insn, rtx reg)
3059 {
3060 struct df_link *uses;
3061
3062 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3063 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3064 return 1;
3065
3066 return 0;
3067 }
3068
3069 static int
3070 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3071 {
3072 struct df_link *du_link;
3073
3074 /* Follow def-use chain to find all the uses of this def. */
3075 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3076 {
3077 struct ref *use = du_link->ref;
3078 struct df_link *ud_link;
3079
3080 /* Follow use-def chain to check all the defs for this use. */
3081 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3082 if (ud_link->ref != def)
3083 return 0;
3084 }
3085 return 1;
3086 }
3087
3088
3089 int
3090 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3091 rtx insn)
3092 {
3093 unsigned int uid;
3094 struct df_link *link;
3095
3096 uid = INSN_UID (insn);
3097
3098 for (link = df->insns[uid].defs; link; link = link->next)
3099 {
3100 struct ref *def = link->ref;
3101
3102 if (! df_def_dominates_all_uses_p (df, def))
3103 return 0;
3104 }
3105
3106 return 1;
3107 }
3108
3109
3110 /* Return nonzero if all DF dominates all the uses within the bitmap
3111 BLOCKS. */
3112 static int
3113 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3114 bitmap blocks)
3115 {
3116 struct df_link *du_link;
3117
3118 /* Follow def-use chain to find all the uses of this def. */
3119 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3120 {
3121 struct ref *use = du_link->ref;
3122 struct df_link *ud_link;
3123
3124 /* Only worry about the uses within BLOCKS. For example,
3125 consider a register defined within a loop that is live at the
3126 loop exits. */
3127 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3128 {
3129 /* Follow use-def chain to check all the defs for this use. */
3130 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3131 if (ud_link->ref != def)
3132 return 0;
3133 }
3134 }
3135 return 1;
3136 }
3137
3138
3139 /* Return nonzero if all the defs of INSN within BB dominates
3140 all the corresponding uses. */
3141 int
3142 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3143 rtx insn, bitmap blocks)
3144 {
3145 unsigned int uid;
3146 struct df_link *link;
3147
3148 uid = INSN_UID (insn);
3149
3150 for (link = df->insns[uid].defs; link; link = link->next)
3151 {
3152 struct ref *def = link->ref;
3153
3154 /* Only consider the defs within BLOCKS. */
3155 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3156 && ! df_def_dominates_uses_p (df, def, blocks))
3157 return 0;
3158 }
3159 return 1;
3160 }
3161
3162
3163 /* Return the basic block that REG referenced in or NULL if referenced
3164 in multiple basic blocks. */
3165 basic_block
3166 df_regno_bb (struct df *df, unsigned int regno)
3167 {
3168 struct df_link *defs = df->regs[regno].defs;
3169 struct df_link *uses = df->regs[regno].uses;
3170 struct ref *def = defs ? defs->ref : 0;
3171 struct ref *use = uses ? uses->ref : 0;
3172 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3173 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3174
3175 /* Compare blocks of first def and last use. ???? FIXME. What if
3176 the reg-def and reg-use lists are not correctly ordered. */
3177 return bb_def == bb_use ? bb_def : 0;
3178 }
3179
3180
3181 /* Return nonzero if REG used in multiple basic blocks. */
3182 int
3183 df_reg_global_p (struct df *df, rtx reg)
3184 {
3185 return df_regno_bb (df, REGNO (reg)) != 0;
3186 }
3187
3188
3189 /* Return total lifetime (in insns) of REG. */
3190 int
3191 df_reg_lifetime (struct df *df, rtx reg)
3192 {
3193 return df->regs[REGNO (reg)].lifetime;
3194 }
3195
3196
3197 /* Return nonzero if REG live at start of BB. */
3198 int
3199 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3200 {
3201 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3202
3203 gcc_assert (bb_info->lr_in);
3204
3205 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3206 }
3207
3208
3209 /* Return nonzero if REG live at end of BB. */
3210 int
3211 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3212 {
3213 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3214
3215 gcc_assert (bb_info->lr_in);
3216
3217 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3218 }
3219
3220
3221 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3222 after life of REG2, or 0, if the lives overlap. */
3223 int
3224 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3225 {
3226 unsigned int regno1 = REGNO (reg1);
3227 unsigned int regno2 = REGNO (reg2);
3228 struct ref *def1;
3229 struct ref *use1;
3230 struct ref *def2;
3231 struct ref *use2;
3232
3233
3234 /* The regs must be local to BB. */
3235 gcc_assert (df_regno_bb (df, regno1) == bb
3236 && df_regno_bb (df, regno2) == bb);
3237
3238 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3239 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3240
3241 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3242 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3243 return -1;
3244
3245 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3246 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3247
3248 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3249 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3250 return 1;
3251
3252 return 0;
3253 }
3254
3255
3256 /* Return true if the definition DEF, which is in the same basic
3257 block as USE, is available at USE. So DEF may as well be
3258 dead, in which case using it will extend its live range. */
3259 bool
3260 df_local_def_available_p (struct df *df, struct ref *def, struct ref *use)
3261 {
3262 struct df_link *link;
3263 int def_luid = DF_INSN_LUID (df, DF_REF_INSN (def));
3264 int in_bb = 0;
3265 unsigned int regno = REGNO (def->reg);
3266 basic_block bb;
3267
3268 /* The regs must be local to BB. */
3269 gcc_assert (DF_REF_BB (def) == DF_REF_BB (use));
3270 bb = DF_REF_BB (def);
3271
3272 /* This assumes that the reg-def list is ordered such that for any
3273 BB, the first def is found first. However, since the BBs are not
3274 ordered, the first def in the chain is not necessarily the first
3275 def in the function. */
3276 for (link = df->regs[regno].defs; link; link = link->next)
3277 {
3278 struct ref *this_def = link->ref;
3279 if (DF_REF_BB (this_def) == bb)
3280 {
3281 int this_luid = DF_INSN_LUID (df, DF_REF_INSN (this_def));
3282 /* Do nothing with defs coming before DEF. */
3283 if (this_luid > def_luid)
3284 return this_luid > DF_INSN_LUID (df, DF_REF_INSN (use));
3285
3286 in_bb = 1;
3287 }
3288 else if (in_bb)
3289 /* DEF was the last in its basic block. */
3290 return 1;
3291 }
3292
3293 /* DEF was the last in the function. */
3294 return 1;
3295 }
3296
3297
3298 /* Return last use of REGNO within BB. */
3299 struct ref *
3300 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3301 {
3302 struct df_link *link;
3303
3304 /* This assumes that the reg-use list is ordered such that for any
3305 BB, the last use is found first. However, since the BBs are not
3306 ordered, the first use in the chain is not necessarily the last
3307 use in the function. */
3308 for (link = df->regs[regno].uses; link; link = link->next)
3309 {
3310 struct ref *use = link->ref;
3311
3312 if (DF_REF_BB (use) == bb)
3313 return use;
3314 }
3315 return 0;
3316 }
3317
3318
3319 /* Return first def of REGNO within BB. */
3320 struct ref *
3321 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3322 {
3323 struct df_link *link;
3324
3325 /* This assumes that the reg-def list is ordered such that for any
3326 BB, the first def is found first. However, since the BBs are not
3327 ordered, the first def in the chain is not necessarily the first
3328 def in the function. */
3329 for (link = df->regs[regno].defs; link; link = link->next)
3330 {
3331 struct ref *def = link->ref;
3332
3333 if (DF_REF_BB (def) == bb)
3334 return def;
3335 }
3336 return 0;
3337 }
3338
3339 /* Return last def of REGNO within BB. */
3340 struct ref *
3341 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3342 {
3343 struct df_link *link;
3344 struct ref *last_def = NULL;
3345 int in_bb = 0;
3346
3347 /* This assumes that the reg-def list is ordered such that for any
3348 BB, the first def is found first. However, since the BBs are not
3349 ordered, the first def in the chain is not necessarily the first
3350 def in the function. */
3351 for (link = df->regs[regno].defs; link; link = link->next)
3352 {
3353 struct ref *def = link->ref;
3354 /* The first time in the desired block. */
3355 if (DF_REF_BB (def) == bb)
3356 in_bb = 1;
3357 /* The last def in the desired block. */
3358 else if (in_bb)
3359 return last_def;
3360 last_def = def;
3361 }
3362 return last_def;
3363 }
3364
3365 /* Return last use of REGNO inside INSN within BB. */
3366 static struct ref *
3367 df_bb_insn_regno_last_use_find (struct df *df,
3368 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3369 unsigned int regno)
3370 {
3371 unsigned int uid;
3372 struct df_link *link;
3373
3374 uid = INSN_UID (insn);
3375
3376 for (link = df->insns[uid].uses; link; link = link->next)
3377 {
3378 struct ref *use = link->ref;
3379
3380 if (DF_REF_REGNO (use) == regno)
3381 return use;
3382 }
3383
3384 return 0;
3385 }
3386
3387
3388 /* Return first def of REGNO inside INSN within BB. */
3389 static struct ref *
3390 df_bb_insn_regno_first_def_find (struct df *df,
3391 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3392 unsigned int regno)
3393 {
3394 unsigned int uid;
3395 struct df_link *link;
3396
3397 uid = INSN_UID (insn);
3398
3399 for (link = df->insns[uid].defs; link; link = link->next)
3400 {
3401 struct ref *def = link->ref;
3402
3403 if (DF_REF_REGNO (def) == regno)
3404 return def;
3405 }
3406
3407 return 0;
3408 }
3409
3410
3411 /* Return insn using REG if the BB contains only a single
3412 use and def of REG. */
3413 rtx
3414 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3415 {
3416 struct ref *def;
3417 struct ref *use;
3418 struct df_link *du_link;
3419
3420 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3421
3422 gcc_assert (def);
3423
3424 du_link = DF_REF_CHAIN (def);
3425
3426 if (! du_link)
3427 return NULL_RTX;
3428
3429 use = du_link->ref;
3430
3431 /* Check if def is dead. */
3432 if (! use)
3433 return NULL_RTX;
3434
3435 /* Check for multiple uses. */
3436 if (du_link->next)
3437 return NULL_RTX;
3438
3439 return DF_REF_INSN (use);
3440 }
3441 \f
3442 /* Functions for debugging/dumping dataflow information. */
3443
3444
3445 /* Dump a def-use or use-def chain for REF to FILE. */
3446 static void
3447 df_chain_dump (struct df_link *link, FILE *file)
3448 {
3449 fprintf (file, "{ ");
3450 for (; link; link = link->next)
3451 {
3452 fprintf (file, "%c%d ",
3453 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3454 DF_REF_ID (link->ref));
3455 }
3456 fprintf (file, "}");
3457 }
3458
3459
3460 /* Dump a chain of refs with the associated regno. */
3461 static void
3462 df_chain_dump_regno (struct df_link *link, FILE *file)
3463 {
3464 fprintf (file, "{ ");
3465 for (; link; link = link->next)
3466 {
3467 fprintf (file, "%c%d(%d) ",
3468 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3469 DF_REF_ID (link->ref),
3470 DF_REF_REGNO (link->ref));
3471 }
3472 fprintf (file, "}");
3473 }
3474
3475
3476 /* Dump dataflow info. */
3477 void
3478 df_dump (struct df *df, int flags, FILE *file)
3479 {
3480 unsigned int j;
3481 basic_block bb;
3482
3483 if (! df || ! file)
3484 return;
3485
3486 fprintf (file, "\nDataflow summary:\n");
3487 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3488 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3489
3490 if (flags & DF_RD)
3491 {
3492 basic_block bb;
3493
3494 fprintf (file, "Reaching defs:\n");
3495 FOR_EACH_BB (bb)
3496 {
3497 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3498
3499 if (! bb_info->rd_in)
3500 continue;
3501
3502 fprintf (file, "bb %d in \t", bb->index);
3503 dump_bitmap (file, bb_info->rd_in);
3504 fprintf (file, "bb %d gen \t", bb->index);
3505 dump_bitmap (file, bb_info->rd_gen);
3506 fprintf (file, "bb %d kill\t", bb->index);
3507 dump_bitmap (file, bb_info->rd_kill);
3508 fprintf (file, "bb %d out \t", bb->index);
3509 dump_bitmap (file, bb_info->rd_out);
3510 }
3511 }
3512
3513 if (flags & DF_UD_CHAIN)
3514 {
3515 fprintf (file, "Use-def chains:\n");
3516 for (j = 0; j < df->n_defs; j++)
3517 {
3518 if (df->defs[j])
3519 {
3520 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3521 j, DF_REF_BBNO (df->defs[j]),
3522 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3523 DF_REF_INSN_UID (df->defs[j]),
3524 DF_REF_REGNO (df->defs[j]));
3525 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3526 fprintf (file, "read/write ");
3527 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3528 fprintf (file, "\n");
3529 }
3530 }
3531 }
3532
3533 if (flags & DF_RU)
3534 {
3535 fprintf (file, "Reaching uses:\n");
3536 FOR_EACH_BB (bb)
3537 {
3538 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3539
3540 if (! bb_info->ru_in)
3541 continue;
3542
3543 fprintf (file, "bb %d in \t", bb->index);
3544 dump_bitmap (file, bb_info->ru_in);
3545 fprintf (file, "bb %d gen \t", bb->index);
3546 dump_bitmap (file, bb_info->ru_gen);
3547 fprintf (file, "bb %d kill\t", bb->index);
3548 dump_bitmap (file, bb_info->ru_kill);
3549 fprintf (file, "bb %d out \t", bb->index);
3550 dump_bitmap (file, bb_info->ru_out);
3551 }
3552 }
3553
3554 if (flags & DF_DU_CHAIN)
3555 {
3556 fprintf (file, "Def-use chains:\n");
3557 for (j = 0; j < df->n_uses; j++)
3558 {
3559 if (df->uses[j])
3560 {
3561 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3562 j, DF_REF_BBNO (df->uses[j]),
3563 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3564 DF_REF_INSN_UID (df->uses[j]),
3565 DF_REF_REGNO (df->uses[j]));
3566 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3567 fprintf (file, "read/write ");
3568 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3569 fprintf (file, "\n");
3570 }
3571 }
3572 }
3573
3574 if (flags & DF_LR)
3575 {
3576 fprintf (file, "Live regs:\n");
3577 FOR_EACH_BB (bb)
3578 {
3579 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3580
3581 if (! bb_info->lr_in)
3582 continue;
3583
3584 fprintf (file, "bb %d in \t", bb->index);
3585 dump_bitmap (file, bb_info->lr_in);
3586 fprintf (file, "bb %d use \t", bb->index);
3587 dump_bitmap (file, bb_info->lr_use);
3588 fprintf (file, "bb %d def \t", bb->index);
3589 dump_bitmap (file, bb_info->lr_def);
3590 fprintf (file, "bb %d out \t", bb->index);
3591 dump_bitmap (file, bb_info->lr_out);
3592 }
3593 }
3594
3595 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3596 {
3597 struct reg_info *reg_info = df->regs;
3598
3599 fprintf (file, "Register info:\n");
3600 for (j = 0; j < df->n_regs; j++)
3601 {
3602 if (((flags & DF_REG_INFO)
3603 && (reg_info[j].n_uses || reg_info[j].n_defs))
3604 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3605 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3606 {
3607 fprintf (file, "reg %d", j);
3608 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3609 {
3610 basic_block bb = df_regno_bb (df, j);
3611
3612 if (bb)
3613 fprintf (file, " bb %d", bb->index);
3614 else
3615 fprintf (file, " bb ?");
3616 }
3617 if (flags & DF_REG_INFO)
3618 {
3619 fprintf (file, " life %d", reg_info[j].lifetime);
3620 }
3621
3622 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3623 {
3624 fprintf (file, " defs ");
3625 if (flags & DF_REG_INFO)
3626 fprintf (file, "%d ", reg_info[j].n_defs);
3627 if (flags & DF_RD_CHAIN)
3628 df_chain_dump (reg_info[j].defs, file);
3629 }
3630
3631 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3632 {
3633 fprintf (file, " uses ");
3634 if (flags & DF_REG_INFO)
3635 fprintf (file, "%d ", reg_info[j].n_uses);
3636 if (flags & DF_RU_CHAIN)
3637 df_chain_dump (reg_info[j].uses, file);
3638 }
3639
3640 fprintf (file, "\n");
3641 }
3642 }
3643 }
3644 fprintf (file, "\n");
3645 }
3646
3647
3648 void
3649 df_insn_debug (struct df *df, rtx insn, FILE *file)
3650 {
3651 unsigned int uid;
3652 int bbi;
3653
3654 uid = INSN_UID (insn);
3655 if (uid >= df->insn_size)
3656 return;
3657
3658 if (df->insns[uid].defs)
3659 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3660 else if (df->insns[uid].uses)
3661 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3662 else
3663 bbi = -1;
3664
3665 fprintf (file, "insn %d bb %d luid %d defs ",
3666 uid, bbi, DF_INSN_LUID (df, insn));
3667 df_chain_dump (df->insns[uid].defs, file);
3668 fprintf (file, " uses ");
3669 df_chain_dump (df->insns[uid].uses, file);
3670 fprintf (file, "\n");
3671 }
3672
3673
3674 void
3675 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3676 {
3677 unsigned int uid;
3678 int bbi;
3679
3680 uid = INSN_UID (insn);
3681 if (uid >= df->insn_size)
3682 return;
3683
3684 if (df->insns[uid].defs)
3685 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3686 else if (df->insns[uid].uses)
3687 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3688 else
3689 bbi = -1;
3690
3691 fprintf (file, "insn %d bb %d luid %d defs ",
3692 uid, bbi, DF_INSN_LUID (df, insn));
3693 df_chain_dump_regno (df->insns[uid].defs, file);
3694 fprintf (file, " uses ");
3695 df_chain_dump_regno (df->insns[uid].uses, file);
3696 fprintf (file, "\n");
3697 }
3698
3699
3700 static void
3701 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3702 {
3703 if (regno >= df->reg_size)
3704 return;
3705
3706 fprintf (file, "reg %d life %d defs ",
3707 regno, df->regs[regno].lifetime);
3708 df_chain_dump (df->regs[regno].defs, file);
3709 fprintf (file, " uses ");
3710 df_chain_dump (df->regs[regno].uses, file);
3711 fprintf (file, "\n");
3712 }
3713
3714
3715 static void
3716 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3717 {
3718 fprintf (file, "%c%d ",
3719 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3720 DF_REF_ID (ref));
3721 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3722 DF_REF_REGNO (ref),
3723 DF_REF_BBNO (ref),
3724 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3725 INSN_UID (DF_REF_INSN (ref)));
3726 df_chain_dump (DF_REF_CHAIN (ref), file);
3727 fprintf (file, "\n");
3728 }
3729 \f
3730 /* Functions for debugging from GDB. */
3731
3732 void
3733 debug_df_insn (rtx insn)
3734 {
3735 df_insn_debug (ddf, insn, stderr);
3736 debug_rtx (insn);
3737 }
3738
3739
3740 void
3741 debug_df_reg (rtx reg)
3742 {
3743 df_regno_debug (ddf, REGNO (reg), stderr);
3744 }
3745
3746
3747 void
3748 debug_df_regno (unsigned int regno)
3749 {
3750 df_regno_debug (ddf, regno, stderr);
3751 }
3752
3753
3754 void
3755 debug_df_ref (struct ref *ref)
3756 {
3757 df_ref_debug (ddf, ref, stderr);
3758 }
3759
3760
3761 void
3762 debug_df_defno (unsigned int defno)
3763 {
3764 df_ref_debug (ddf, ddf->defs[defno], stderr);
3765 }
3766
3767
3768 void
3769 debug_df_useno (unsigned int defno)
3770 {
3771 df_ref_debug (ddf, ddf->uses[defno], stderr);
3772 }
3773
3774
3775 void
3776 debug_df_chain (struct df_link *link)
3777 {
3778 df_chain_dump (link, stderr);
3779 fputc ('\n', stderr);
3780 }
3781 \f
3782
3783 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3784 storing the result in OP1. */
3785
3786 static void
3787 dataflow_set_a_op_b (enum set_representation repr,
3788 enum df_confluence_op op,
3789 void *op1, void *op2)
3790 {
3791 switch (repr)
3792 {
3793 case SR_SBITMAP:
3794 switch (op)
3795 {
3796 case DF_UNION:
3797 sbitmap_a_or_b (op1, op1, op2);
3798 break;
3799
3800 case DF_INTERSECTION:
3801 sbitmap_a_and_b (op1, op1, op2);
3802 break;
3803
3804 default:
3805 gcc_unreachable ();
3806 }
3807 break;
3808
3809 case SR_BITMAP:
3810 switch (op)
3811 {
3812 case DF_UNION:
3813 bitmap_ior_into (op1, op2);
3814 break;
3815
3816 case DF_INTERSECTION:
3817 bitmap_and_into (op1, op2);
3818 break;
3819
3820 default:
3821 gcc_unreachable ();
3822 }
3823 break;
3824
3825 default:
3826 gcc_unreachable ();
3827 }
3828 }
3829
3830 static void
3831 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3832 {
3833 switch (repr)
3834 {
3835 case SR_SBITMAP:
3836 sbitmap_copy (dest, src);
3837 break;
3838
3839 case SR_BITMAP:
3840 bitmap_copy (dest, src);
3841 break;
3842
3843 default:
3844 gcc_unreachable ();
3845 }
3846 }
3847
3848 /* Hybrid search algorithm from "Implementation Techniques for
3849 Efficient Data-Flow Analysis of Large Programs". */
3850
3851 static void
3852 hybrid_search (basic_block bb, struct dataflow *dataflow,
3853 sbitmap visited, sbitmap pending, sbitmap considered)
3854 {
3855 int changed;
3856 int i = bb->index;
3857 edge e;
3858 edge_iterator ei;
3859
3860 SET_BIT (visited, bb->index);
3861 gcc_assert (TEST_BIT (pending, bb->index));
3862 RESET_BIT (pending, i);
3863
3864 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3865 E, E_BB, E_START_BB, OUT_SET) \
3866 do \
3867 { \
3868 /* Calculate <conf_op> of predecessor_outs. */ \
3869 bitmap_zero (IN_SET[i]); \
3870 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3871 { \
3872 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3873 continue; \
3874 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3875 continue; \
3876 \
3877 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3878 IN_SET[i], \
3879 OUT_SET[e->E_ANTI_BB->index]); \
3880 } \
3881 \
3882 (*dataflow->transfun)(i, &changed, \
3883 dataflow->in[i], dataflow->out[i], \
3884 dataflow->gen[i], dataflow->kill[i], \
3885 dataflow->data); \
3886 \
3887 if (!changed) \
3888 break; \
3889 \
3890 FOR_EACH_EDGE (e, ei, bb->E) \
3891 { \
3892 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3893 continue; \
3894 \
3895 if (!TEST_BIT (considered, e->E_BB->index)) \
3896 continue; \
3897 \
3898 SET_BIT (pending, e->E_BB->index); \
3899 } \
3900 \
3901 FOR_EACH_EDGE (e, ei, bb->E) \
3902 { \
3903 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3904 continue; \
3905 \
3906 if (!TEST_BIT (considered, e->E_BB->index)) \
3907 continue; \
3908 \
3909 if (!TEST_BIT (visited, e->E_BB->index)) \
3910 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3911 } \
3912 } while (0)
3913
3914 if (dataflow->dir == DF_FORWARD)
3915 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3916 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3917 else
3918 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3919 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3920 }
3921
3922 /* This function will perform iterative bitvector dataflow described by
3923 DATAFLOW, producing the in and out sets. Only the part of the cfg
3924 induced by blocks in DATAFLOW->order is taken into account.
3925
3926 For forward problems, you probably want to pass in a mapping of
3927 block number to rc_order (like df->inverse_rc_map). */
3928
3929 void
3930 iterative_dataflow (struct dataflow *dataflow)
3931 {
3932 unsigned i, idx;
3933 sbitmap visited, pending, considered;
3934
3935 pending = sbitmap_alloc (last_basic_block);
3936 visited = sbitmap_alloc (last_basic_block);
3937 considered = sbitmap_alloc (last_basic_block);
3938 sbitmap_zero (pending);
3939 sbitmap_zero (visited);
3940 sbitmap_zero (considered);
3941
3942 for (i = 0; i < dataflow->n_blocks; i++)
3943 {
3944 idx = dataflow->order[i];
3945 SET_BIT (pending, idx);
3946 SET_BIT (considered, idx);
3947 if (dataflow->dir == DF_FORWARD)
3948 dataflow_set_copy (dataflow->repr,
3949 dataflow->out[idx], dataflow->gen[idx]);
3950 else
3951 dataflow_set_copy (dataflow->repr,
3952 dataflow->in[idx], dataflow->gen[idx]);
3953 };
3954
3955 while (1)
3956 {
3957 for (i = 0; i < dataflow->n_blocks; i++)
3958 {
3959 idx = dataflow->order[i];
3960
3961 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3962 hybrid_search (BASIC_BLOCK (idx), dataflow,
3963 visited, pending, considered);
3964 }
3965
3966 if (sbitmap_first_set_bit (pending) == -1)
3967 break;
3968
3969 sbitmap_zero (visited);
3970 }
3971
3972 sbitmap_free (pending);
3973 sbitmap_free (visited);
3974 sbitmap_free (considered);
3975 }