[Fortran] gfortran.texi - minor style cleanup
[gcc.git] / gcc / dfp.c
1 /* Decimal floating point support.
2 Copyright (C) 2005-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "dfp.h"
26
27 /* The order of the following headers is important for making sure
28 decNumber structure is large enough to hold decimal128 digits. */
29
30 #include "decimal128.h"
31 #include "decimal64.h"
32 #include "decimal32.h"
33
34 #ifndef WORDS_BIGENDIAN
35 #define WORDS_BIGENDIAN 0
36 #endif
37
38 /* Initialize R (a real with the decimal flag set) from DN. Can
39 utilize status passed in via CONTEXT, if a previous operation had
40 interesting status. */
41
42 static void
43 decimal_from_decnumber (REAL_VALUE_TYPE *r, decNumber *dn, decContext *context)
44 {
45 memset (r, 0, sizeof (REAL_VALUE_TYPE));
46
47 r->cl = rvc_normal;
48 if (decNumberIsNaN (dn))
49 r->cl = rvc_nan;
50 if (decNumberIsInfinite (dn))
51 r->cl = rvc_inf;
52 if (context->status & DEC_Overflow)
53 r->cl = rvc_inf;
54 if (decNumberIsNegative (dn))
55 r->sign = 1;
56 r->decimal = 1;
57
58 if (r->cl != rvc_normal)
59 return;
60
61 decContextDefault (context, DEC_INIT_DECIMAL128);
62 context->traps = 0;
63
64 decimal128FromNumber ((decimal128 *) r->sig, dn, context);
65 }
66
67 /* Create decimal encoded R from string S. */
68
69 void
70 decimal_real_from_string (REAL_VALUE_TYPE *r, const char *s)
71 {
72 decNumber dn;
73 decContext set;
74 decContextDefault (&set, DEC_INIT_DECIMAL128);
75 set.traps = 0;
76
77 decNumberFromString (&dn, s, &set);
78
79 /* It would be more efficient to store directly in decNumber format,
80 but that is impractical from current data structure size.
81 Encoding as a decimal128 is much more compact. */
82 decimal_from_decnumber (r, &dn, &set);
83 }
84
85 /* Initialize a decNumber from a REAL_VALUE_TYPE. */
86
87 static void
88 decimal_to_decnumber (const REAL_VALUE_TYPE *r, decNumber *dn)
89 {
90 decContext set;
91 decContextDefault (&set, DEC_INIT_DECIMAL128);
92 set.traps = 0;
93
94 switch (r->cl)
95 {
96 case rvc_zero:
97 decNumberZero (dn);
98 break;
99 case rvc_inf:
100 decNumberFromString (dn, "Infinity", &set);
101 break;
102 case rvc_nan:
103 if (r->signalling)
104 decNumberFromString (dn, "snan", &set);
105 else
106 decNumberFromString (dn, "nan", &set);
107 break;
108 case rvc_normal:
109 if (!r->decimal)
110 {
111 /* dconst{1,2,m1,half} are used in various places in
112 the middle-end and optimizers, allow them here
113 as an exception by converting them to decimal. */
114 if (memcmp (r, &dconst1, sizeof (*r)) == 0)
115 {
116 decNumberFromString (dn, "1", &set);
117 break;
118 }
119 if (memcmp (r, &dconst2, sizeof (*r)) == 0)
120 {
121 decNumberFromString (dn, "2", &set);
122 break;
123 }
124 if (memcmp (r, &dconstm1, sizeof (*r)) == 0)
125 {
126 decNumberFromString (dn, "-1", &set);
127 break;
128 }
129 if (memcmp (r, &dconsthalf, sizeof (*r)) == 0)
130 {
131 decNumberFromString (dn, "0.5", &set);
132 break;
133 }
134 gcc_unreachable ();
135 }
136 decimal128ToNumber ((const decimal128 *) r->sig, dn);
137 break;
138 default:
139 gcc_unreachable ();
140 }
141
142 /* Fix up sign bit. */
143 if (r->sign != decNumberIsNegative (dn))
144 dn->bits ^= DECNEG;
145 }
146
147 /* Encode a real into an IEEE 754 decimal32 type. */
148
149 void
150 encode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
151 long *buf, const REAL_VALUE_TYPE *r)
152 {
153 decNumber dn;
154 decimal32 d32;
155 decContext set;
156 int32_t image;
157
158 decContextDefault (&set, DEC_INIT_DECIMAL128);
159 set.traps = 0;
160
161 decimal_to_decnumber (r, &dn);
162 decimal32FromNumber (&d32, &dn, &set);
163
164 memcpy (&image, d32.bytes, sizeof (int32_t));
165 buf[0] = image;
166 }
167
168 /* Decode an IEEE 754 decimal32 type into a real. */
169
170 void
171 decode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
172 REAL_VALUE_TYPE *r, const long *buf)
173 {
174 decNumber dn;
175 decimal32 d32;
176 decContext set;
177 int32_t image;
178
179 decContextDefault (&set, DEC_INIT_DECIMAL128);
180 set.traps = 0;
181
182 image = buf[0];
183 memcpy (&d32.bytes, &image, sizeof (int32_t));
184
185 decimal32ToNumber (&d32, &dn);
186 decimal_from_decnumber (r, &dn, &set);
187 }
188
189 /* Encode a real into an IEEE 754 decimal64 type. */
190
191 void
192 encode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
193 long *buf, const REAL_VALUE_TYPE *r)
194 {
195 decNumber dn;
196 decimal64 d64;
197 decContext set;
198 int32_t image;
199
200 decContextDefault (&set, DEC_INIT_DECIMAL128);
201 set.traps = 0;
202
203 decimal_to_decnumber (r, &dn);
204 decimal64FromNumber (&d64, &dn, &set);
205
206 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
207 {
208 memcpy (&image, &d64.bytes[0], sizeof (int32_t));
209 buf[0] = image;
210 memcpy (&image, &d64.bytes[4], sizeof (int32_t));
211 buf[1] = image;
212 }
213 else
214 {
215 memcpy (&image, &d64.bytes[4], sizeof (int32_t));
216 buf[0] = image;
217 memcpy (&image, &d64.bytes[0], sizeof (int32_t));
218 buf[1] = image;
219 }
220 }
221
222 /* Decode an IEEE 754 decimal64 type into a real. */
223
224 void
225 decode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
226 REAL_VALUE_TYPE *r, const long *buf)
227 {
228 decNumber dn;
229 decimal64 d64;
230 decContext set;
231 int32_t image;
232
233 decContextDefault (&set, DEC_INIT_DECIMAL128);
234 set.traps = 0;
235
236 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
237 {
238 image = buf[0];
239 memcpy (&d64.bytes[0], &image, sizeof (int32_t));
240 image = buf[1];
241 memcpy (&d64.bytes[4], &image, sizeof (int32_t));
242 }
243 else
244 {
245 image = buf[1];
246 memcpy (&d64.bytes[0], &image, sizeof (int32_t));
247 image = buf[0];
248 memcpy (&d64.bytes[4], &image, sizeof (int32_t));
249 }
250
251 decimal64ToNumber (&d64, &dn);
252 decimal_from_decnumber (r, &dn, &set);
253 }
254
255 /* Encode a real into an IEEE 754 decimal128 type. */
256
257 void
258 encode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
259 long *buf, const REAL_VALUE_TYPE *r)
260 {
261 decNumber dn;
262 decContext set;
263 decimal128 d128;
264 int32_t image;
265
266 decContextDefault (&set, DEC_INIT_DECIMAL128);
267 set.traps = 0;
268
269 decimal_to_decnumber (r, &dn);
270 decimal128FromNumber (&d128, &dn, &set);
271
272 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
273 {
274 memcpy (&image, &d128.bytes[0], sizeof (int32_t));
275 buf[0] = image;
276 memcpy (&image, &d128.bytes[4], sizeof (int32_t));
277 buf[1] = image;
278 memcpy (&image, &d128.bytes[8], sizeof (int32_t));
279 buf[2] = image;
280 memcpy (&image, &d128.bytes[12], sizeof (int32_t));
281 buf[3] = image;
282 }
283 else
284 {
285 memcpy (&image, &d128.bytes[12], sizeof (int32_t));
286 buf[0] = image;
287 memcpy (&image, &d128.bytes[8], sizeof (int32_t));
288 buf[1] = image;
289 memcpy (&image, &d128.bytes[4], sizeof (int32_t));
290 buf[2] = image;
291 memcpy (&image, &d128.bytes[0], sizeof (int32_t));
292 buf[3] = image;
293 }
294 }
295
296 /* Decode an IEEE 754 decimal128 type into a real. */
297
298 void
299 decode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
300 REAL_VALUE_TYPE *r, const long *buf)
301 {
302 decNumber dn;
303 decimal128 d128;
304 decContext set;
305 int32_t image;
306
307 decContextDefault (&set, DEC_INIT_DECIMAL128);
308 set.traps = 0;
309
310 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
311 {
312 image = buf[0];
313 memcpy (&d128.bytes[0], &image, sizeof (int32_t));
314 image = buf[1];
315 memcpy (&d128.bytes[4], &image, sizeof (int32_t));
316 image = buf[2];
317 memcpy (&d128.bytes[8], &image, sizeof (int32_t));
318 image = buf[3];
319 memcpy (&d128.bytes[12], &image, sizeof (int32_t));
320 }
321 else
322 {
323 image = buf[3];
324 memcpy (&d128.bytes[0], &image, sizeof (int32_t));
325 image = buf[2];
326 memcpy (&d128.bytes[4], &image, sizeof (int32_t));
327 image = buf[1];
328 memcpy (&d128.bytes[8], &image, sizeof (int32_t));
329 image = buf[0];
330 memcpy (&d128.bytes[12], &image, sizeof (int32_t));
331 }
332
333 decimal128ToNumber (&d128, &dn);
334 decimal_from_decnumber (r, &dn, &set);
335 }
336
337 /* Helper function to convert from a binary real internal
338 representation. */
339
340 static void
341 decimal_to_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from,
342 const real_format *fmt)
343 {
344 char string[256];
345 const decimal128 *const d128 = (const decimal128 *) from->sig;
346
347 decimal128ToString (d128, string);
348 real_from_string3 (to, string, fmt);
349 }
350
351
352 /* Helper function to convert from a binary real internal
353 representation. */
354
355 static void
356 decimal_from_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from)
357 {
358 char string[256];
359
360 /* We convert to string, then to decNumber then to decimal128. */
361 real_to_decimal (string, from, sizeof (string), 0, 1);
362 decimal_real_from_string (to, string);
363 }
364
365 /* Helper function to real.c:do_compare() to handle decimal internal
366 representation including when one of the operands is still in the
367 binary internal representation. */
368
369 int
370 decimal_do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
371 int nan_result)
372 {
373 decContext set;
374 decNumber dn, dn2, dn3;
375 REAL_VALUE_TYPE a1, b1;
376
377 /* If either operand is non-decimal, create temporary versions. */
378 if (!a->decimal)
379 {
380 decimal_from_binary (&a1, a);
381 a = &a1;
382 }
383 if (!b->decimal)
384 {
385 decimal_from_binary (&b1, b);
386 b = &b1;
387 }
388
389 /* Convert into decNumber form for comparison operation. */
390 decContextDefault (&set, DEC_INIT_DECIMAL128);
391 set.traps = 0;
392 decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
393 decimal128ToNumber ((const decimal128 *) b->sig, &dn3);
394
395 /* Finally, do the comparison. */
396 decNumberCompare (&dn, &dn2, &dn3, &set);
397
398 /* Return the comparison result. */
399 if (decNumberIsNaN (&dn))
400 return nan_result;
401 else if (decNumberIsZero (&dn))
402 return 0;
403 else if (decNumberIsNegative (&dn))
404 return -1;
405 else
406 return 1;
407 }
408
409 /* Helper to round_for_format, handling decimal float types. */
410
411 void
412 decimal_round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
413 {
414 decNumber dn;
415 decContext set;
416
417 /* Real encoding occurs later. */
418 if (r->cl != rvc_normal)
419 return;
420
421 decContextDefault (&set, DEC_INIT_DECIMAL128);
422 set.traps = 0;
423 decimal128ToNumber ((decimal128 *) r->sig, &dn);
424
425 if (fmt == &decimal_quad_format)
426 {
427 /* The internal format is already in this format. */
428 return;
429 }
430 else if (fmt == &decimal_single_format)
431 {
432 decimal32 d32;
433 decContextDefault (&set, DEC_INIT_DECIMAL32);
434 set.traps = 0;
435
436 decimal32FromNumber (&d32, &dn, &set);
437 decimal32ToNumber (&d32, &dn);
438 }
439 else if (fmt == &decimal_double_format)
440 {
441 decimal64 d64;
442 decContextDefault (&set, DEC_INIT_DECIMAL64);
443 set.traps = 0;
444
445 decimal64FromNumber (&d64, &dn, &set);
446 decimal64ToNumber (&d64, &dn);
447 }
448 else
449 gcc_unreachable ();
450
451 decimal_from_decnumber (r, &dn, &set);
452 }
453
454 /* Extend or truncate to a new mode. Handles conversions between
455 binary and decimal types. */
456
457 void
458 decimal_real_convert (REAL_VALUE_TYPE *r, const real_format *fmt,
459 const REAL_VALUE_TYPE *a)
460 {
461 if (a->decimal && fmt->b == 10)
462 return;
463 if (a->decimal)
464 decimal_to_binary (r, a, fmt);
465 else
466 decimal_from_binary (r, a);
467 }
468
469 /* Render R_ORIG as a decimal floating point constant. Emit DIGITS
470 significant digits in the result, bounded by BUF_SIZE. If DIGITS
471 is 0, choose the maximum for the representation. If
472 CROP_TRAILING_ZEROS, strip trailing zeros. Currently, not honoring
473 DIGITS or CROP_TRAILING_ZEROS. */
474
475 void
476 decimal_real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig,
477 size_t buf_size,
478 size_t digits ATTRIBUTE_UNUSED,
479 int crop_trailing_zeros ATTRIBUTE_UNUSED)
480 {
481 const decimal128 *const d128 = (const decimal128*) r_orig->sig;
482
483 /* decimal128ToString requires space for at least 24 characters;
484 Require two more for suffix. */
485 gcc_assert (buf_size >= 24);
486 decimal128ToString (d128, str);
487 }
488
489 static bool
490 decimal_do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
491 const REAL_VALUE_TYPE *op1, int subtract_p)
492 {
493 decNumber dn;
494 decContext set;
495 decNumber dn2, dn3;
496
497 decimal_to_decnumber (op0, &dn2);
498 decimal_to_decnumber (op1, &dn3);
499
500 decContextDefault (&set, DEC_INIT_DECIMAL128);
501 set.traps = 0;
502
503 if (subtract_p)
504 decNumberSubtract (&dn, &dn2, &dn3, &set);
505 else
506 decNumberAdd (&dn, &dn2, &dn3, &set);
507
508 decimal_from_decnumber (r, &dn, &set);
509
510 /* Return true, if inexact. */
511 return (set.status & DEC_Inexact);
512 }
513
514 /* Compute R = OP0 * OP1. */
515
516 static bool
517 decimal_do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
518 const REAL_VALUE_TYPE *op1)
519 {
520 decContext set;
521 decNumber dn, dn2, dn3;
522
523 decimal_to_decnumber (op0, &dn2);
524 decimal_to_decnumber (op1, &dn3);
525
526 decContextDefault (&set, DEC_INIT_DECIMAL128);
527 set.traps = 0;
528
529 decNumberMultiply (&dn, &dn2, &dn3, &set);
530 decimal_from_decnumber (r, &dn, &set);
531
532 /* Return true, if inexact. */
533 return (set.status & DEC_Inexact);
534 }
535
536 /* Compute R = OP0 / OP1. */
537
538 static bool
539 decimal_do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
540 const REAL_VALUE_TYPE *op1)
541 {
542 decContext set;
543 decNumber dn, dn2, dn3;
544
545 decimal_to_decnumber (op0, &dn2);
546 decimal_to_decnumber (op1, &dn3);
547
548 decContextDefault (&set, DEC_INIT_DECIMAL128);
549 set.traps = 0;
550
551 decNumberDivide (&dn, &dn2, &dn3, &set);
552 decimal_from_decnumber (r, &dn, &set);
553
554 /* Return true, if inexact. */
555 return (set.status & DEC_Inexact);
556 }
557
558 /* Set R to A truncated to an integral value toward zero (decimal
559 floating point). */
560
561 void
562 decimal_do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
563 {
564 decNumber dn, dn2;
565 decContext set;
566
567 decContextDefault (&set, DEC_INIT_DECIMAL128);
568 set.traps = 0;
569 set.round = DEC_ROUND_DOWN;
570 decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
571
572 decNumberToIntegralValue (&dn, &dn2, &set);
573 decimal_from_decnumber (r, &dn, &set);
574 }
575
576 /* Render decimal float value R as an integer. */
577
578 HOST_WIDE_INT
579 decimal_real_to_integer (const REAL_VALUE_TYPE *r)
580 {
581 decContext set;
582 decNumber dn, dn2, dn3;
583 REAL_VALUE_TYPE to;
584 char string[256];
585
586 decContextDefault (&set, DEC_INIT_DECIMAL128);
587 set.traps = 0;
588 set.round = DEC_ROUND_DOWN;
589 decimal128ToNumber ((const decimal128 *) r->sig, &dn);
590
591 decNumberToIntegralValue (&dn2, &dn, &set);
592 decNumberZero (&dn3);
593 decNumberRescale (&dn, &dn2, &dn3, &set);
594
595 /* Convert to REAL_VALUE_TYPE and call appropriate conversion
596 function. */
597 decNumberToString (&dn, string);
598 real_from_string (&to, string);
599 return real_to_integer (&to);
600 }
601
602 /* Likewise, but returns a wide_int with PRECISION. *FAIL is set if the
603 value does not fit. */
604
605 wide_int
606 decimal_real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
607 {
608 decContext set;
609 decNumber dn, dn2, dn3;
610 REAL_VALUE_TYPE to;
611 char string[256];
612
613 decContextDefault (&set, DEC_INIT_DECIMAL128);
614 set.traps = 0;
615 set.round = DEC_ROUND_DOWN;
616 decimal128ToNumber ((const decimal128 *) r->sig, &dn);
617
618 decNumberToIntegralValue (&dn2, &dn, &set);
619 decNumberZero (&dn3);
620 decNumberRescale (&dn, &dn2, &dn3, &set);
621
622 /* Convert to REAL_VALUE_TYPE and call appropriate conversion
623 function. */
624 decNumberToString (&dn, string);
625 real_from_string (&to, string);
626 return real_to_integer (&to, fail, precision);
627 }
628
629 /* Perform the decimal floating point operation described by CODE.
630 For a unary operation, OP1 will be NULL. This function returns
631 true if the result may be inexact due to loss of precision. */
632
633 bool
634 decimal_real_arithmetic (REAL_VALUE_TYPE *r, enum tree_code code,
635 const REAL_VALUE_TYPE *op0,
636 const REAL_VALUE_TYPE *op1)
637 {
638 REAL_VALUE_TYPE a, b;
639
640 /* If either operand is non-decimal, create temporaries. */
641 if (!op0->decimal)
642 {
643 decimal_from_binary (&a, op0);
644 op0 = &a;
645 }
646 if (op1 && !op1->decimal)
647 {
648 decimal_from_binary (&b, op1);
649 op1 = &b;
650 }
651
652 switch (code)
653 {
654 case PLUS_EXPR:
655 return decimal_do_add (r, op0, op1, 0);
656
657 case MINUS_EXPR:
658 return decimal_do_add (r, op0, op1, 1);
659
660 case MULT_EXPR:
661 return decimal_do_multiply (r, op0, op1);
662
663 case RDIV_EXPR:
664 return decimal_do_divide (r, op0, op1);
665
666 case MIN_EXPR:
667 if (op1->cl == rvc_nan)
668 *r = *op1;
669 else if (real_compare (UNLT_EXPR, op0, op1))
670 *r = *op0;
671 else
672 *r = *op1;
673 return false;
674
675 case MAX_EXPR:
676 if (op1->cl == rvc_nan)
677 *r = *op1;
678 else if (real_compare (LT_EXPR, op0, op1))
679 *r = *op1;
680 else
681 *r = *op0;
682 return false;
683
684 case NEGATE_EXPR:
685 {
686 *r = *op0;
687 /* Flip sign bit. */
688 decimal128FlipSign ((decimal128 *) r->sig);
689 /* Keep sign field in sync. */
690 r->sign ^= 1;
691 }
692 return false;
693
694 case ABS_EXPR:
695 {
696 *r = *op0;
697 /* Clear sign bit. */
698 decimal128ClearSign ((decimal128 *) r->sig);
699 /* Keep sign field in sync. */
700 r->sign = 0;
701 }
702 return false;
703
704 case FIX_TRUNC_EXPR:
705 decimal_do_fix_trunc (r, op0);
706 return false;
707
708 default:
709 gcc_unreachable ();
710 }
711 }
712
713 /* Fills R with the largest finite value representable in mode MODE.
714 If SIGN is nonzero, R is set to the most negative finite value. */
715
716 void
717 decimal_real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
718 {
719 const char *max;
720
721 switch (mode)
722 {
723 case E_SDmode:
724 max = "9.999999E96";
725 break;
726 case E_DDmode:
727 max = "9.999999999999999E384";
728 break;
729 case E_TDmode:
730 max = "9.999999999999999999999999999999999E6144";
731 break;
732 default:
733 gcc_unreachable ();
734 }
735
736 decimal_real_from_string (r, max);
737 if (sign)
738 decimal128SetSign ((decimal128 *) r->sig, 1);
739 }