re PR debug/66691 (ICE on valid code at -O3 with -g enabled in simplify_subreg, at...
[gcc.git] / gcc / doc / cpp.texi
1 \input texinfo
2 @setfilename cpp.info
3 @settitle The C Preprocessor
4 @setchapternewpage off
5 @c @smallbook
6 @c @cropmarks
7 @c @finalout
8
9 @include gcc-common.texi
10
11 @copying
12 @c man begin COPYRIGHT
13 Copyright @copyright{} 1987-2015 Free Software Foundation, Inc.
14
15 Permission is granted to copy, distribute and/or modify this document
16 under the terms of the GNU Free Documentation License, Version 1.3 or
17 any later version published by the Free Software Foundation. A copy of
18 the license is included in the
19 @c man end
20 section entitled ``GNU Free Documentation License''.
21 @ignore
22 @c man begin COPYRIGHT
23 man page gfdl(7).
24 @c man end
25 @end ignore
26
27 @c man begin COPYRIGHT
28 This manual contains no Invariant Sections. The Front-Cover Texts are
29 (a) (see below), and the Back-Cover Texts are (b) (see below).
30
31 (a) The FSF's Front-Cover Text is:
32
33 A GNU Manual
34
35 (b) The FSF's Back-Cover Text is:
36
37 You have freedom to copy and modify this GNU Manual, like GNU
38 software. Copies published by the Free Software Foundation raise
39 funds for GNU development.
40 @c man end
41 @end copying
42
43 @c Create a separate index for command line options.
44 @defcodeindex op
45 @syncodeindex vr op
46
47 @c Used in cppopts.texi and cppenv.texi.
48 @set cppmanual
49
50 @ifinfo
51 @dircategory Software development
52 @direntry
53 * Cpp: (cpp). The GNU C preprocessor.
54 @end direntry
55 @end ifinfo
56
57 @titlepage
58 @title The C Preprocessor
59 @versionsubtitle
60 @author Richard M. Stallman, Zachary Weinberg
61 @page
62 @c There is a fill at the bottom of the page, so we need a filll to
63 @c override it.
64 @vskip 0pt plus 1filll
65 @insertcopying
66 @end titlepage
67 @contents
68 @page
69
70 @ifnottex
71 @node Top
72 @top
73 The C preprocessor implements the macro language used to transform C,
74 C++, and Objective-C programs before they are compiled. It can also be
75 useful on its own.
76
77 @menu
78 * Overview::
79 * Header Files::
80 * Macros::
81 * Conditionals::
82 * Diagnostics::
83 * Line Control::
84 * Pragmas::
85 * Other Directives::
86 * Preprocessor Output::
87 * Traditional Mode::
88 * Implementation Details::
89 * Invocation::
90 * Environment Variables::
91 * GNU Free Documentation License::
92 * Index of Directives::
93 * Option Index::
94 * Concept Index::
95
96 @detailmenu
97 --- The Detailed Node Listing ---
98
99 Overview
100
101 * Character sets::
102 * Initial processing::
103 * Tokenization::
104 * The preprocessing language::
105
106 Header Files
107
108 * Include Syntax::
109 * Include Operation::
110 * Search Path::
111 * Once-Only Headers::
112 * Alternatives to Wrapper #ifndef::
113 * Computed Includes::
114 * Wrapper Headers::
115 * System Headers::
116
117 Macros
118
119 * Object-like Macros::
120 * Function-like Macros::
121 * Macro Arguments::
122 * Stringification::
123 * Concatenation::
124 * Variadic Macros::
125 * Predefined Macros::
126 * Undefining and Redefining Macros::
127 * Directives Within Macro Arguments::
128 * Macro Pitfalls::
129
130 Predefined Macros
131
132 * Standard Predefined Macros::
133 * Common Predefined Macros::
134 * System-specific Predefined Macros::
135 * C++ Named Operators::
136
137 Macro Pitfalls
138
139 * Misnesting::
140 * Operator Precedence Problems::
141 * Swallowing the Semicolon::
142 * Duplication of Side Effects::
143 * Self-Referential Macros::
144 * Argument Prescan::
145 * Newlines in Arguments::
146
147 Conditionals
148
149 * Conditional Uses::
150 * Conditional Syntax::
151 * Deleted Code::
152
153 Conditional Syntax
154
155 * Ifdef::
156 * If::
157 * Defined::
158 * Else::
159 * Elif::
160
161 Implementation Details
162
163 * Implementation-defined behavior::
164 * Implementation limits::
165 * Obsolete Features::
166 * Differences from previous versions::
167
168 Obsolete Features
169
170 * Obsolete Features::
171
172 @end detailmenu
173 @end menu
174
175 @insertcopying
176 @end ifnottex
177
178 @node Overview
179 @chapter Overview
180 @c man begin DESCRIPTION
181 The C preprocessor, often known as @dfn{cpp}, is a @dfn{macro processor}
182 that is used automatically by the C compiler to transform your program
183 before compilation. It is called a macro processor because it allows
184 you to define @dfn{macros}, which are brief abbreviations for longer
185 constructs.
186
187 The C preprocessor is intended to be used only with C, C++, and
188 Objective-C source code. In the past, it has been abused as a general
189 text processor. It will choke on input which does not obey C's lexical
190 rules. For example, apostrophes will be interpreted as the beginning of
191 character constants, and cause errors. Also, you cannot rely on it
192 preserving characteristics of the input which are not significant to
193 C-family languages. If a Makefile is preprocessed, all the hard tabs
194 will be removed, and the Makefile will not work.
195
196 Having said that, you can often get away with using cpp on things which
197 are not C@. Other Algol-ish programming languages are often safe
198 (Pascal, Ada, etc.) So is assembly, with caution. @option{-traditional-cpp}
199 mode preserves more white space, and is otherwise more permissive. Many
200 of the problems can be avoided by writing C or C++ style comments
201 instead of native language comments, and keeping macros simple.
202
203 Wherever possible, you should use a preprocessor geared to the language
204 you are writing in. Modern versions of the GNU assembler have macro
205 facilities. Most high level programming languages have their own
206 conditional compilation and inclusion mechanism. If all else fails,
207 try a true general text processor, such as GNU M4.
208
209 C preprocessors vary in some details. This manual discusses the GNU C
210 preprocessor, which provides a small superset of the features of ISO
211 Standard C@. In its default mode, the GNU C preprocessor does not do a
212 few things required by the standard. These are features which are
213 rarely, if ever, used, and may cause surprising changes to the meaning
214 of a program which does not expect them. To get strict ISO Standard C,
215 you should use the @option{-std=c90}, @option{-std=c99} or
216 @option{-std=c11} options, depending
217 on which version of the standard you want. To get all the mandatory
218 diagnostics, you must also use @option{-pedantic}. @xref{Invocation}.
219
220 This manual describes the behavior of the ISO preprocessor. To
221 minimize gratuitous differences, where the ISO preprocessor's
222 behavior does not conflict with traditional semantics, the
223 traditional preprocessor should behave the same way. The various
224 differences that do exist are detailed in the section @ref{Traditional
225 Mode}.
226
227 For clarity, unless noted otherwise, references to @samp{CPP} in this
228 manual refer to GNU CPP@.
229 @c man end
230
231 @menu
232 * Character sets::
233 * Initial processing::
234 * Tokenization::
235 * The preprocessing language::
236 @end menu
237
238 @node Character sets
239 @section Character sets
240
241 Source code character set processing in C and related languages is
242 rather complicated. The C standard discusses two character sets, but
243 there are really at least four.
244
245 The files input to CPP might be in any character set at all. CPP's
246 very first action, before it even looks for line boundaries, is to
247 convert the file into the character set it uses for internal
248 processing. That set is what the C standard calls the @dfn{source}
249 character set. It must be isomorphic with ISO 10646, also known as
250 Unicode. CPP uses the UTF-8 encoding of Unicode.
251
252 The character sets of the input files are specified using the
253 @option{-finput-charset=} option.
254
255 All preprocessing work (the subject of the rest of this manual) is
256 carried out in the source character set. If you request textual
257 output from the preprocessor with the @option{-E} option, it will be
258 in UTF-8.
259
260 After preprocessing is complete, string and character constants are
261 converted again, into the @dfn{execution} character set. This
262 character set is under control of the user; the default is UTF-8,
263 matching the source character set. Wide string and character
264 constants have their own character set, which is not called out
265 specifically in the standard. Again, it is under control of the user.
266 The default is UTF-16 or UTF-32, whichever fits in the target's
267 @code{wchar_t} type, in the target machine's byte
268 order.@footnote{UTF-16 does not meet the requirements of the C
269 standard for a wide character set, but the choice of 16-bit
270 @code{wchar_t} is enshrined in some system ABIs so we cannot fix
271 this.} Octal and hexadecimal escape sequences do not undergo
272 conversion; @t{'\x12'} has the value 0x12 regardless of the currently
273 selected execution character set. All other escapes are replaced by
274 the character in the source character set that they represent, then
275 converted to the execution character set, just like unescaped
276 characters.
277
278 In identifiers, characters outside the ASCII range can only be
279 specified with the @samp{\u} and @samp{\U} escapes, not used
280 directly. If strict ISO C90 conformance is specified with an option
281 such as @option{-std=c90}, or @option{-fno-extended-identifiers} is
282 used, then those escapes are not permitted in identifiers.
283
284 @node Initial processing
285 @section Initial processing
286
287 The preprocessor performs a series of textual transformations on its
288 input. These happen before all other processing. Conceptually, they
289 happen in a rigid order, and the entire file is run through each
290 transformation before the next one begins. CPP actually does them
291 all at once, for performance reasons. These transformations correspond
292 roughly to the first three ``phases of translation'' described in the C
293 standard.
294
295 @enumerate
296 @item
297 @cindex line endings
298 The input file is read into memory and broken into lines.
299
300 Different systems use different conventions to indicate the end of a
301 line. GCC accepts the ASCII control sequences @kbd{LF}, @kbd{@w{CR
302 LF}} and @kbd{CR} as end-of-line markers. These are the canonical
303 sequences used by Unix, DOS and VMS, and the classic Mac OS (before
304 OSX) respectively. You may therefore safely copy source code written
305 on any of those systems to a different one and use it without
306 conversion. (GCC may lose track of the current line number if a file
307 doesn't consistently use one convention, as sometimes happens when it
308 is edited on computers with different conventions that share a network
309 file system.)
310
311 If the last line of any input file lacks an end-of-line marker, the end
312 of the file is considered to implicitly supply one. The C standard says
313 that this condition provokes undefined behavior, so GCC will emit a
314 warning message.
315
316 @item
317 @cindex trigraphs
318 @anchor{trigraphs}If trigraphs are enabled, they are replaced by their
319 corresponding single characters. By default GCC ignores trigraphs,
320 but if you request a strictly conforming mode with the @option{-std}
321 option, or you specify the @option{-trigraphs} option, then it
322 converts them.
323
324 These are nine three-character sequences, all starting with @samp{??},
325 that are defined by ISO C to stand for single characters. They permit
326 obsolete systems that lack some of C's punctuation to use C@. For
327 example, @samp{??/} stands for @samp{\}, so @t{'??/n'} is a character
328 constant for a newline.
329
330 Trigraphs are not popular and many compilers implement them
331 incorrectly. Portable code should not rely on trigraphs being either
332 converted or ignored. With @option{-Wtrigraphs} GCC will warn you
333 when a trigraph may change the meaning of your program if it were
334 converted. @xref{Wtrigraphs}.
335
336 In a string constant, you can prevent a sequence of question marks
337 from being confused with a trigraph by inserting a backslash between
338 the question marks, or by separating the string literal at the
339 trigraph and making use of string literal concatenation. @t{"(??\?)"}
340 is the string @samp{(???)}, not @samp{(?]}. Traditional C compilers
341 do not recognize these idioms.
342
343 The nine trigraphs and their replacements are
344
345 @smallexample
346 Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
347 Replacement: [ ] @{ @} # \ ^ | ~
348 @end smallexample
349
350 @item
351 @cindex continued lines
352 @cindex backslash-newline
353 Continued lines are merged into one long line.
354
355 A continued line is a line which ends with a backslash, @samp{\}. The
356 backslash is removed and the following line is joined with the current
357 one. No space is inserted, so you may split a line anywhere, even in
358 the middle of a word. (It is generally more readable to split lines
359 only at white space.)
360
361 The trailing backslash on a continued line is commonly referred to as a
362 @dfn{backslash-newline}.
363
364 If there is white space between a backslash and the end of a line, that
365 is still a continued line. However, as this is usually the result of an
366 editing mistake, and many compilers will not accept it as a continued
367 line, GCC will warn you about it.
368
369 @item
370 @cindex comments
371 @cindex line comments
372 @cindex block comments
373 All comments are replaced with single spaces.
374
375 There are two kinds of comments. @dfn{Block comments} begin with
376 @samp{/*} and continue until the next @samp{*/}. Block comments do not
377 nest:
378
379 @smallexample
380 /* @r{this is} /* @r{one comment} */ @r{text outside comment}
381 @end smallexample
382
383 @dfn{Line comments} begin with @samp{//} and continue to the end of the
384 current line. Line comments do not nest either, but it does not matter,
385 because they would end in the same place anyway.
386
387 @smallexample
388 // @r{this is} // @r{one comment}
389 @r{text outside comment}
390 @end smallexample
391 @end enumerate
392
393 It is safe to put line comments inside block comments, or vice versa.
394
395 @smallexample
396 @group
397 /* @r{block comment}
398 // @r{contains line comment}
399 @r{yet more comment}
400 */ @r{outside comment}
401
402 // @r{line comment} /* @r{contains block comment} */
403 @end group
404 @end smallexample
405
406 But beware of commenting out one end of a block comment with a line
407 comment.
408
409 @smallexample
410 @group
411 // @r{l.c.} /* @r{block comment begins}
412 @r{oops! this isn't a comment anymore} */
413 @end group
414 @end smallexample
415
416 Comments are not recognized within string literals.
417 @t{@w{"/* blah */"}} is the string constant @samp{@w{/* blah */}}, not
418 an empty string.
419
420 Line comments are not in the 1989 edition of the C standard, but they
421 are recognized by GCC as an extension. In C++ and in the 1999 edition
422 of the C standard, they are an official part of the language.
423
424 Since these transformations happen before all other processing, you can
425 split a line mechanically with backslash-newline anywhere. You can
426 comment out the end of a line. You can continue a line comment onto the
427 next line with backslash-newline. You can even split @samp{/*},
428 @samp{*/}, and @samp{//} onto multiple lines with backslash-newline.
429 For example:
430
431 @smallexample
432 @group
433 /\
434 *
435 */ # /*
436 */ defi\
437 ne FO\
438 O 10\
439 20
440 @end group
441 @end smallexample
442
443 @noindent
444 is equivalent to @code{@w{#define FOO 1020}}. All these tricks are
445 extremely confusing and should not be used in code intended to be
446 readable.
447
448 There is no way to prevent a backslash at the end of a line from being
449 interpreted as a backslash-newline. This cannot affect any correct
450 program, however.
451
452 @node Tokenization
453 @section Tokenization
454
455 @cindex tokens
456 @cindex preprocessing tokens
457 After the textual transformations are finished, the input file is
458 converted into a sequence of @dfn{preprocessing tokens}. These mostly
459 correspond to the syntactic tokens used by the C compiler, but there are
460 a few differences. White space separates tokens; it is not itself a
461 token of any kind. Tokens do not have to be separated by white space,
462 but it is often necessary to avoid ambiguities.
463
464 When faced with a sequence of characters that has more than one possible
465 tokenization, the preprocessor is greedy. It always makes each token,
466 starting from the left, as big as possible before moving on to the next
467 token. For instance, @code{a+++++b} is interpreted as
468 @code{@w{a ++ ++ + b}}, not as @code{@w{a ++ + ++ b}}, even though the
469 latter tokenization could be part of a valid C program and the former
470 could not.
471
472 Once the input file is broken into tokens, the token boundaries never
473 change, except when the @samp{##} preprocessing operator is used to paste
474 tokens together. @xref{Concatenation}. For example,
475
476 @smallexample
477 @group
478 #define foo() bar
479 foo()baz
480 @expansion{} bar baz
481 @emph{not}
482 @expansion{} barbaz
483 @end group
484 @end smallexample
485
486 The compiler does not re-tokenize the preprocessor's output. Each
487 preprocessing token becomes one compiler token.
488
489 @cindex identifiers
490 Preprocessing tokens fall into five broad classes: identifiers,
491 preprocessing numbers, string literals, punctuators, and other. An
492 @dfn{identifier} is the same as an identifier in C: any sequence of
493 letters, digits, or underscores, which begins with a letter or
494 underscore. Keywords of C have no significance to the preprocessor;
495 they are ordinary identifiers. You can define a macro whose name is a
496 keyword, for instance. The only identifier which can be considered a
497 preprocessing keyword is @code{defined}. @xref{Defined}.
498
499 This is mostly true of other languages which use the C preprocessor.
500 However, a few of the keywords of C++ are significant even in the
501 preprocessor. @xref{C++ Named Operators}.
502
503 In the 1999 C standard, identifiers may contain letters which are not
504 part of the ``basic source character set'', at the implementation's
505 discretion (such as accented Latin letters, Greek letters, or Chinese
506 ideograms). This may be done with an extended character set, or the
507 @samp{\u} and @samp{\U} escape sequences. GCC only accepts such
508 characters in the @samp{\u} and @samp{\U} forms.
509
510 As an extension, GCC treats @samp{$} as a letter. This is for
511 compatibility with some systems, such as VMS, where @samp{$} is commonly
512 used in system-defined function and object names. @samp{$} is not a
513 letter in strictly conforming mode, or if you specify the @option{-$}
514 option. @xref{Invocation}.
515
516 @cindex numbers
517 @cindex preprocessing numbers
518 A @dfn{preprocessing number} has a rather bizarre definition. The
519 category includes all the normal integer and floating point constants
520 one expects of C, but also a number of other things one might not
521 initially recognize as a number. Formally, preprocessing numbers begin
522 with an optional period, a required decimal digit, and then continue
523 with any sequence of letters, digits, underscores, periods, and
524 exponents. Exponents are the two-character sequences @samp{e+},
525 @samp{e-}, @samp{E+}, @samp{E-}, @samp{p+}, @samp{p-}, @samp{P+}, and
526 @samp{P-}. (The exponents that begin with @samp{p} or @samp{P} are new
527 to C99. They are used for hexadecimal floating-point constants.)
528
529 The purpose of this unusual definition is to isolate the preprocessor
530 from the full complexity of numeric constants. It does not have to
531 distinguish between lexically valid and invalid floating-point numbers,
532 which is complicated. The definition also permits you to split an
533 identifier at any position and get exactly two tokens, which can then be
534 pasted back together with the @samp{##} operator.
535
536 It's possible for preprocessing numbers to cause programs to be
537 misinterpreted. For example, @code{0xE+12} is a preprocessing number
538 which does not translate to any valid numeric constant, therefore a
539 syntax error. It does not mean @code{@w{0xE + 12}}, which is what you
540 might have intended.
541
542 @cindex string literals
543 @cindex string constants
544 @cindex character constants
545 @cindex header file names
546 @c the @: prevents makeinfo from turning '' into ".
547 @dfn{String literals} are string constants, character constants, and
548 header file names (the argument of @samp{#include}).@footnote{The C
549 standard uses the term @dfn{string literal} to refer only to what we are
550 calling @dfn{string constants}.} String constants and character
551 constants are straightforward: @t{"@dots{}"} or @t{'@dots{}'}. In
552 either case embedded quotes should be escaped with a backslash:
553 @t{'\'@:'} is the character constant for @samp{'}. There is no limit on
554 the length of a character constant, but the value of a character
555 constant that contains more than one character is
556 implementation-defined. @xref{Implementation Details}.
557
558 Header file names either look like string constants, @t{"@dots{}"}, or are
559 written with angle brackets instead, @t{<@dots{}>}. In either case,
560 backslash is an ordinary character. There is no way to escape the
561 closing quote or angle bracket. The preprocessor looks for the header
562 file in different places depending on which form you use. @xref{Include
563 Operation}.
564
565 No string literal may extend past the end of a line. Older versions
566 of GCC accepted multi-line string constants. You may use continued
567 lines instead, or string constant concatenation. @xref{Differences
568 from previous versions}.
569
570 @cindex punctuators
571 @cindex digraphs
572 @cindex alternative tokens
573 @dfn{Punctuators} are all the usual bits of punctuation which are
574 meaningful to C and C++. All but three of the punctuation characters in
575 ASCII are C punctuators. The exceptions are @samp{@@}, @samp{$}, and
576 @samp{`}. In addition, all the two- and three-character operators are
577 punctuators. There are also six @dfn{digraphs}, which the C++ standard
578 calls @dfn{alternative tokens}, which are merely alternate ways to spell
579 other punctuators. This is a second attempt to work around missing
580 punctuation in obsolete systems. It has no negative side effects,
581 unlike trigraphs, but does not cover as much ground. The digraphs and
582 their corresponding normal punctuators are:
583
584 @smallexample
585 Digraph: <% %> <: :> %: %:%:
586 Punctuator: @{ @} [ ] # ##
587 @end smallexample
588
589 @cindex other tokens
590 Any other single character is considered ``other''. It is passed on to
591 the preprocessor's output unmolested. The C compiler will almost
592 certainly reject source code containing ``other'' tokens. In ASCII, the
593 only other characters are @samp{@@}, @samp{$}, @samp{`}, and control
594 characters other than NUL (all bits zero). (Note that @samp{$} is
595 normally considered a letter.) All characters with the high bit set
596 (numeric range 0x7F--0xFF) are also ``other'' in the present
597 implementation. This will change when proper support for international
598 character sets is added to GCC@.
599
600 NUL is a special case because of the high probability that its
601 appearance is accidental, and because it may be invisible to the user
602 (many terminals do not display NUL at all). Within comments, NULs are
603 silently ignored, just as any other character would be. In running
604 text, NUL is considered white space. For example, these two directives
605 have the same meaning.
606
607 @smallexample
608 #define X^@@1
609 #define X 1
610 @end smallexample
611
612 @noindent
613 (where @samp{^@@} is ASCII NUL)@. Within string or character constants,
614 NULs are preserved. In the latter two cases the preprocessor emits a
615 warning message.
616
617 @node The preprocessing language
618 @section The preprocessing language
619 @cindex directives
620 @cindex preprocessing directives
621 @cindex directive line
622 @cindex directive name
623
624 After tokenization, the stream of tokens may simply be passed straight
625 to the compiler's parser. However, if it contains any operations in the
626 @dfn{preprocessing language}, it will be transformed first. This stage
627 corresponds roughly to the standard's ``translation phase 4'' and is
628 what most people think of as the preprocessor's job.
629
630 The preprocessing language consists of @dfn{directives} to be executed
631 and @dfn{macros} to be expanded. Its primary capabilities are:
632
633 @itemize @bullet
634 @item
635 Inclusion of header files. These are files of declarations that can be
636 substituted into your program.
637
638 @item
639 Macro expansion. You can define @dfn{macros}, which are abbreviations
640 for arbitrary fragments of C code. The preprocessor will replace the
641 macros with their definitions throughout the program. Some macros are
642 automatically defined for you.
643
644 @item
645 Conditional compilation. You can include or exclude parts of the
646 program according to various conditions.
647
648 @item
649 Line control. If you use a program to combine or rearrange source files
650 into an intermediate file which is then compiled, you can use line
651 control to inform the compiler where each source line originally came
652 from.
653
654 @item
655 Diagnostics. You can detect problems at compile time and issue errors
656 or warnings.
657 @end itemize
658
659 There are a few more, less useful, features.
660
661 Except for expansion of predefined macros, all these operations are
662 triggered with @dfn{preprocessing directives}. Preprocessing directives
663 are lines in your program that start with @samp{#}. Whitespace is
664 allowed before and after the @samp{#}. The @samp{#} is followed by an
665 identifier, the @dfn{directive name}. It specifies the operation to
666 perform. Directives are commonly referred to as @samp{#@var{name}}
667 where @var{name} is the directive name. For example, @samp{#define} is
668 the directive that defines a macro.
669
670 The @samp{#} which begins a directive cannot come from a macro
671 expansion. Also, the directive name is not macro expanded. Thus, if
672 @code{foo} is defined as a macro expanding to @code{define}, that does
673 not make @samp{#foo} a valid preprocessing directive.
674
675 The set of valid directive names is fixed. Programs cannot define new
676 preprocessing directives.
677
678 Some directives require arguments; these make up the rest of the
679 directive line and must be separated from the directive name by
680 whitespace. For example, @samp{#define} must be followed by a macro
681 name and the intended expansion of the macro.
682
683 A preprocessing directive cannot cover more than one line. The line
684 may, however, be continued with backslash-newline, or by a block comment
685 which extends past the end of the line. In either case, when the
686 directive is processed, the continuations have already been merged with
687 the first line to make one long line.
688
689 @node Header Files
690 @chapter Header Files
691
692 @cindex header file
693 A header file is a file containing C declarations and macro definitions
694 (@pxref{Macros}) to be shared between several source files. You request
695 the use of a header file in your program by @dfn{including} it, with the
696 C preprocessing directive @samp{#include}.
697
698 Header files serve two purposes.
699
700 @itemize @bullet
701 @item
702 @cindex system header files
703 System header files declare the interfaces to parts of the operating
704 system. You include them in your program to supply the definitions and
705 declarations you need to invoke system calls and libraries.
706
707 @item
708 Your own header files contain declarations for interfaces between the
709 source files of your program. Each time you have a group of related
710 declarations and macro definitions all or most of which are needed in
711 several different source files, it is a good idea to create a header
712 file for them.
713 @end itemize
714
715 Including a header file produces the same results as copying the header
716 file into each source file that needs it. Such copying would be
717 time-consuming and error-prone. With a header file, the related
718 declarations appear in only one place. If they need to be changed, they
719 can be changed in one place, and programs that include the header file
720 will automatically use the new version when next recompiled. The header
721 file eliminates the labor of finding and changing all the copies as well
722 as the risk that a failure to find one copy will result in
723 inconsistencies within a program.
724
725 In C, the usual convention is to give header files names that end with
726 @file{.h}. It is most portable to use only letters, digits, dashes, and
727 underscores in header file names, and at most one dot.
728
729 @menu
730 * Include Syntax::
731 * Include Operation::
732 * Search Path::
733 * Once-Only Headers::
734 * Alternatives to Wrapper #ifndef::
735 * Computed Includes::
736 * Wrapper Headers::
737 * System Headers::
738 @end menu
739
740 @node Include Syntax
741 @section Include Syntax
742
743 @findex #include
744 Both user and system header files are included using the preprocessing
745 directive @samp{#include}. It has two variants:
746
747 @table @code
748 @item #include <@var{file}>
749 This variant is used for system header files. It searches for a file
750 named @var{file} in a standard list of system directories. You can prepend
751 directories to this list with the @option{-I} option (@pxref{Invocation}).
752
753 @item #include "@var{file}"
754 This variant is used for header files of your own program. It
755 searches for a file named @var{file} first in the directory containing
756 the current file, then in the quote directories and then the same
757 directories used for @code{<@var{file}>}. You can prepend directories
758 to the list of quote directories with the @option{-iquote} option.
759 @end table
760
761 The argument of @samp{#include}, whether delimited with quote marks or
762 angle brackets, behaves like a string constant in that comments are not
763 recognized, and macro names are not expanded. Thus, @code{@w{#include
764 <x/*y>}} specifies inclusion of a system header file named @file{x/*y}.
765
766 However, if backslashes occur within @var{file}, they are considered
767 ordinary text characters, not escape characters. None of the character
768 escape sequences appropriate to string constants in C are processed.
769 Thus, @code{@w{#include "x\n\\y"}} specifies a filename containing three
770 backslashes. (Some systems interpret @samp{\} as a pathname separator.
771 All of these also interpret @samp{/} the same way. It is most portable
772 to use only @samp{/}.)
773
774 It is an error if there is anything (other than comments) on the line
775 after the file name.
776
777 @node Include Operation
778 @section Include Operation
779
780 The @samp{#include} directive works by directing the C preprocessor to
781 scan the specified file as input before continuing with the rest of the
782 current file. The output from the preprocessor contains the output
783 already generated, followed by the output resulting from the included
784 file, followed by the output that comes from the text after the
785 @samp{#include} directive. For example, if you have a header file
786 @file{header.h} as follows,
787
788 @smallexample
789 char *test (void);
790 @end smallexample
791
792 @noindent
793 and a main program called @file{program.c} that uses the header file,
794 like this,
795
796 @smallexample
797 int x;
798 #include "header.h"
799
800 int
801 main (void)
802 @{
803 puts (test ());
804 @}
805 @end smallexample
806
807 @noindent
808 the compiler will see the same token stream as it would if
809 @file{program.c} read
810
811 @smallexample
812 int x;
813 char *test (void);
814
815 int
816 main (void)
817 @{
818 puts (test ());
819 @}
820 @end smallexample
821
822 Included files are not limited to declarations and macro definitions;
823 those are merely the typical uses. Any fragment of a C program can be
824 included from another file. The include file could even contain the
825 beginning of a statement that is concluded in the containing file, or
826 the end of a statement that was started in the including file. However,
827 an included file must consist of complete tokens. Comments and string
828 literals which have not been closed by the end of an included file are
829 invalid. For error recovery, they are considered to end at the end of
830 the file.
831
832 To avoid confusion, it is best if header files contain only complete
833 syntactic units---function declarations or definitions, type
834 declarations, etc.
835
836 The line following the @samp{#include} directive is always treated as a
837 separate line by the C preprocessor, even if the included file lacks a
838 final newline.
839
840 @node Search Path
841 @section Search Path
842
843 GCC looks in several different places for headers. On a normal Unix
844 system, if you do not instruct it otherwise, it will look for headers
845 requested with @code{@w{#include <@var{file}>}} in:
846
847 @smallexample
848 /usr/local/include
849 @var{libdir}/gcc/@var{target}/@var{version}/include
850 /usr/@var{target}/include
851 /usr/include
852 @end smallexample
853
854 For C++ programs, it will also look in
855 @file{@var{libdir}/../include/c++/@var{version}},
856 first. In the above, @var{target} is the canonical name of the system
857 GCC was configured to compile code for; often but not always the same as
858 the canonical name of the system it runs on. @var{version} is the
859 version of GCC in use.
860
861 You can add to this list with the @option{-I@var{dir}} command-line
862 option. All the directories named by @option{-I} are searched, in
863 left-to-right order, @emph{before} the default directories. The only
864 exception is when @file{dir} is already searched by default. In
865 this case, the option is ignored and the search order for system
866 directories remains unchanged.
867
868 Duplicate directories are removed from the quote and bracket search
869 chains before the two chains are merged to make the final search chain.
870 Thus, it is possible for a directory to occur twice in the final search
871 chain if it was specified in both the quote and bracket chains.
872
873 You can prevent GCC from searching any of the default directories with
874 the @option{-nostdinc} option. This is useful when you are compiling an
875 operating system kernel or some other program that does not use the
876 standard C library facilities, or the standard C library itself.
877 @option{-I} options are not ignored as described above when
878 @option{-nostdinc} is in effect.
879
880 GCC looks for headers requested with @code{@w{#include "@var{file}"}}
881 first in the directory containing the current file, then in the
882 directories as specified by @option{-iquote} options, then in the same
883 places it would have looked for a header requested with angle
884 brackets. For example, if @file{/usr/include/sys/stat.h} contains
885 @code{@w{#include "types.h"}}, GCC looks for @file{types.h} first in
886 @file{/usr/include/sys}, then in its usual search path.
887
888 @samp{#line} (@pxref{Line Control}) does not change GCC's idea of the
889 directory containing the current file.
890
891 You may put @option{-I-} at any point in your list of @option{-I} options.
892 This has two effects. First, directories appearing before the
893 @option{-I-} in the list are searched only for headers requested with
894 quote marks. Directories after @option{-I-} are searched for all
895 headers. Second, the directory containing the current file is not
896 searched for anything, unless it happens to be one of the directories
897 named by an @option{-I} switch. @option{-I-} is deprecated, @option{-iquote}
898 should be used instead.
899
900 @option{-I. -I-} is not the same as no @option{-I} options at all, and does
901 not cause the same behavior for @samp{<>} includes that @samp{""}
902 includes get with no special options. @option{-I.} searches the
903 compiler's current working directory for header files. That may or may
904 not be the same as the directory containing the current file.
905
906 If you need to look for headers in a directory named @file{-}, write
907 @option{-I./-}.
908
909 There are several more ways to adjust the header search path. They are
910 generally less useful. @xref{Invocation}.
911
912 @node Once-Only Headers
913 @section Once-Only Headers
914 @cindex repeated inclusion
915 @cindex including just once
916 @cindex wrapper @code{#ifndef}
917
918 If a header file happens to be included twice, the compiler will process
919 its contents twice. This is very likely to cause an error, e.g.@: when the
920 compiler sees the same structure definition twice. Even if it does not,
921 it will certainly waste time.
922
923 The standard way to prevent this is to enclose the entire real contents
924 of the file in a conditional, like this:
925
926 @smallexample
927 @group
928 /* File foo. */
929 #ifndef FILE_FOO_SEEN
930 #define FILE_FOO_SEEN
931
932 @var{the entire file}
933
934 #endif /* !FILE_FOO_SEEN */
935 @end group
936 @end smallexample
937
938 This construct is commonly known as a @dfn{wrapper #ifndef}.
939 When the header is included again, the conditional will be false,
940 because @code{FILE_FOO_SEEN} is defined. The preprocessor will skip
941 over the entire contents of the file, and the compiler will not see it
942 twice.
943
944 CPP optimizes even further. It remembers when a header file has a
945 wrapper @samp{#ifndef}. If a subsequent @samp{#include} specifies that
946 header, and the macro in the @samp{#ifndef} is still defined, it does
947 not bother to rescan the file at all.
948
949 You can put comments outside the wrapper. They will not interfere with
950 this optimization.
951
952 @cindex controlling macro
953 @cindex guard macro
954 The macro @code{FILE_FOO_SEEN} is called the @dfn{controlling macro} or
955 @dfn{guard macro}. In a user header file, the macro name should not
956 begin with @samp{_}. In a system header file, it should begin with
957 @samp{__} to avoid conflicts with user programs. In any kind of header
958 file, the macro name should contain the name of the file and some
959 additional text, to avoid conflicts with other header files.
960
961 @node Alternatives to Wrapper #ifndef
962 @section Alternatives to Wrapper #ifndef
963
964 CPP supports two more ways of indicating that a header file should be
965 read only once. Neither one is as portable as a wrapper @samp{#ifndef}
966 and we recommend you do not use them in new programs, with the caveat
967 that @samp{#import} is standard practice in Objective-C.
968
969 @findex #import
970 CPP supports a variant of @samp{#include} called @samp{#import} which
971 includes a file, but does so at most once. If you use @samp{#import}
972 instead of @samp{#include}, then you don't need the conditionals
973 inside the header file to prevent multiple inclusion of the contents.
974 @samp{#import} is standard in Objective-C, but is considered a
975 deprecated extension in C and C++.
976
977 @samp{#import} is not a well designed feature. It requires the users of
978 a header file to know that it should only be included once. It is much
979 better for the header file's implementor to write the file so that users
980 don't need to know this. Using a wrapper @samp{#ifndef} accomplishes
981 this goal.
982
983 In the present implementation, a single use of @samp{#import} will
984 prevent the file from ever being read again, by either @samp{#import} or
985 @samp{#include}. You should not rely on this; do not use both
986 @samp{#import} and @samp{#include} to refer to the same header file.
987
988 Another way to prevent a header file from being included more than once
989 is with the @samp{#pragma once} directive. If @samp{#pragma once} is
990 seen when scanning a header file, that file will never be read again, no
991 matter what.
992
993 @samp{#pragma once} does not have the problems that @samp{#import} does,
994 but it is not recognized by all preprocessors, so you cannot rely on it
995 in a portable program.
996
997 @node Computed Includes
998 @section Computed Includes
999 @cindex computed includes
1000 @cindex macros in include
1001
1002 Sometimes it is necessary to select one of several different header
1003 files to be included into your program. They might specify
1004 configuration parameters to be used on different sorts of operating
1005 systems, for instance. You could do this with a series of conditionals,
1006
1007 @smallexample
1008 #if SYSTEM_1
1009 # include "system_1.h"
1010 #elif SYSTEM_2
1011 # include "system_2.h"
1012 #elif SYSTEM_3
1013 @dots{}
1014 #endif
1015 @end smallexample
1016
1017 That rapidly becomes tedious. Instead, the preprocessor offers the
1018 ability to use a macro for the header name. This is called a
1019 @dfn{computed include}. Instead of writing a header name as the direct
1020 argument of @samp{#include}, you simply put a macro name there instead:
1021
1022 @smallexample
1023 #define SYSTEM_H "system_1.h"
1024 @dots{}
1025 #include SYSTEM_H
1026 @end smallexample
1027
1028 @noindent
1029 @code{SYSTEM_H} will be expanded, and the preprocessor will look for
1030 @file{system_1.h} as if the @samp{#include} had been written that way
1031 originally. @code{SYSTEM_H} could be defined by your Makefile with a
1032 @option{-D} option.
1033
1034 You must be careful when you define the macro. @samp{#define} saves
1035 tokens, not text. The preprocessor has no way of knowing that the macro
1036 will be used as the argument of @samp{#include}, so it generates
1037 ordinary tokens, not a header name. This is unlikely to cause problems
1038 if you use double-quote includes, which are close enough to string
1039 constants. If you use angle brackets, however, you may have trouble.
1040
1041 The syntax of a computed include is actually a bit more general than the
1042 above. If the first non-whitespace character after @samp{#include} is
1043 not @samp{"} or @samp{<}, then the entire line is macro-expanded
1044 like running text would be.
1045
1046 If the line expands to a single string constant, the contents of that
1047 string constant are the file to be included. CPP does not re-examine the
1048 string for embedded quotes, but neither does it process backslash
1049 escapes in the string. Therefore
1050
1051 @smallexample
1052 #define HEADER "a\"b"
1053 #include HEADER
1054 @end smallexample
1055
1056 @noindent
1057 looks for a file named @file{a\"b}. CPP searches for the file according
1058 to the rules for double-quoted includes.
1059
1060 If the line expands to a token stream beginning with a @samp{<} token
1061 and including a @samp{>} token, then the tokens between the @samp{<} and
1062 the first @samp{>} are combined to form the filename to be included.
1063 Any whitespace between tokens is reduced to a single space; then any
1064 space after the initial @samp{<} is retained, but a trailing space
1065 before the closing @samp{>} is ignored. CPP searches for the file
1066 according to the rules for angle-bracket includes.
1067
1068 In either case, if there are any tokens on the line after the file name,
1069 an error occurs and the directive is not processed. It is also an error
1070 if the result of expansion does not match either of the two expected
1071 forms.
1072
1073 These rules are implementation-defined behavior according to the C
1074 standard. To minimize the risk of different compilers interpreting your
1075 computed includes differently, we recommend you use only a single
1076 object-like macro which expands to a string constant. This will also
1077 minimize confusion for people reading your program.
1078
1079 @node Wrapper Headers
1080 @section Wrapper Headers
1081 @cindex wrapper headers
1082 @cindex overriding a header file
1083 @findex #include_next
1084
1085 Sometimes it is necessary to adjust the contents of a system-provided
1086 header file without editing it directly. GCC's @command{fixincludes}
1087 operation does this, for example. One way to do that would be to create
1088 a new header file with the same name and insert it in the search path
1089 before the original header. That works fine as long as you're willing
1090 to replace the old header entirely. But what if you want to refer to
1091 the old header from the new one?
1092
1093 You cannot simply include the old header with @samp{#include}. That
1094 will start from the beginning, and find your new header again. If your
1095 header is not protected from multiple inclusion (@pxref{Once-Only
1096 Headers}), it will recurse infinitely and cause a fatal error.
1097
1098 You could include the old header with an absolute pathname:
1099 @smallexample
1100 #include "/usr/include/old-header.h"
1101 @end smallexample
1102 @noindent
1103 This works, but is not clean; should the system headers ever move, you
1104 would have to edit the new headers to match.
1105
1106 There is no way to solve this problem within the C standard, but you can
1107 use the GNU extension @samp{#include_next}. It means, ``Include the
1108 @emph{next} file with this name''. This directive works like
1109 @samp{#include} except in searching for the specified file: it starts
1110 searching the list of header file directories @emph{after} the directory
1111 in which the current file was found.
1112
1113 Suppose you specify @option{-I /usr/local/include}, and the list of
1114 directories to search also includes @file{/usr/include}; and suppose
1115 both directories contain @file{signal.h}. Ordinary @code{@w{#include
1116 <signal.h>}} finds the file under @file{/usr/local/include}. If that
1117 file contains @code{@w{#include_next <signal.h>}}, it starts searching
1118 after that directory, and finds the file in @file{/usr/include}.
1119
1120 @samp{#include_next} does not distinguish between @code{<@var{file}>}
1121 and @code{"@var{file}"} inclusion, nor does it check that the file you
1122 specify has the same name as the current file. It simply looks for the
1123 file named, starting with the directory in the search path after the one
1124 where the current file was found.
1125
1126 The use of @samp{#include_next} can lead to great confusion. We
1127 recommend it be used only when there is no other alternative. In
1128 particular, it should not be used in the headers belonging to a specific
1129 program; it should be used only to make global corrections along the
1130 lines of @command{fixincludes}.
1131
1132 @node System Headers
1133 @section System Headers
1134 @cindex system header files
1135
1136 The header files declaring interfaces to the operating system and
1137 runtime libraries often cannot be written in strictly conforming C@.
1138 Therefore, GCC gives code found in @dfn{system headers} special
1139 treatment. All warnings, other than those generated by @samp{#warning}
1140 (@pxref{Diagnostics}), are suppressed while GCC is processing a system
1141 header. Macros defined in a system header are immune to a few warnings
1142 wherever they are expanded. This immunity is granted on an ad-hoc
1143 basis, when we find that a warning generates lots of false positives
1144 because of code in macros defined in system headers.
1145
1146 Normally, only the headers found in specific directories are considered
1147 system headers. These directories are determined when GCC is compiled.
1148 There are, however, two ways to make normal headers into system headers.
1149
1150 The @option{-isystem} command-line option adds its argument to the list of
1151 directories to search for headers, just like @option{-I}. Any headers
1152 found in that directory will be considered system headers.
1153
1154 All directories named by @option{-isystem} are searched @emph{after} all
1155 directories named by @option{-I}, no matter what their order was on the
1156 command line. If the same directory is named by both @option{-I} and
1157 @option{-isystem}, the @option{-I} option is ignored. GCC provides an
1158 informative message when this occurs if @option{-v} is used.
1159
1160 @findex #pragma GCC system_header
1161 There is also a directive, @code{@w{#pragma GCC system_header}}, which
1162 tells GCC to consider the rest of the current include file a system
1163 header, no matter where it was found. Code that comes before the
1164 @samp{#pragma} in the file will not be affected. @code{@w{#pragma GCC
1165 system_header}} has no effect in the primary source file.
1166
1167 On very old systems, some of the pre-defined system header directories
1168 get even more special treatment. GNU C++ considers code in headers
1169 found in those directories to be surrounded by an @code{@w{extern "C"}}
1170 block. There is no way to request this behavior with a @samp{#pragma},
1171 or from the command line.
1172
1173 @node Macros
1174 @chapter Macros
1175
1176 A @dfn{macro} is a fragment of code which has been given a name.
1177 Whenever the name is used, it is replaced by the contents of the macro.
1178 There are two kinds of macros. They differ mostly in what they look
1179 like when they are used. @dfn{Object-like} macros resemble data objects
1180 when used, @dfn{function-like} macros resemble function calls.
1181
1182 You may define any valid identifier as a macro, even if it is a C
1183 keyword. The preprocessor does not know anything about keywords. This
1184 can be useful if you wish to hide a keyword such as @code{const} from an
1185 older compiler that does not understand it. However, the preprocessor
1186 operator @code{defined} (@pxref{Defined}) can never be defined as a
1187 macro, and C++'s named operators (@pxref{C++ Named Operators}) cannot be
1188 macros when you are compiling C++.
1189
1190 @menu
1191 * Object-like Macros::
1192 * Function-like Macros::
1193 * Macro Arguments::
1194 * Stringification::
1195 * Concatenation::
1196 * Variadic Macros::
1197 * Predefined Macros::
1198 * Undefining and Redefining Macros::
1199 * Directives Within Macro Arguments::
1200 * Macro Pitfalls::
1201 @end menu
1202
1203 @node Object-like Macros
1204 @section Object-like Macros
1205 @cindex object-like macro
1206 @cindex symbolic constants
1207 @cindex manifest constants
1208
1209 An @dfn{object-like macro} is a simple identifier which will be replaced
1210 by a code fragment. It is called object-like because it looks like a
1211 data object in code that uses it. They are most commonly used to give
1212 symbolic names to numeric constants.
1213
1214 @findex #define
1215 You create macros with the @samp{#define} directive. @samp{#define} is
1216 followed by the name of the macro and then the token sequence it should
1217 be an abbreviation for, which is variously referred to as the macro's
1218 @dfn{body}, @dfn{expansion} or @dfn{replacement list}. For example,
1219
1220 @smallexample
1221 #define BUFFER_SIZE 1024
1222 @end smallexample
1223
1224 @noindent
1225 defines a macro named @code{BUFFER_SIZE} as an abbreviation for the
1226 token @code{1024}. If somewhere after this @samp{#define} directive
1227 there comes a C statement of the form
1228
1229 @smallexample
1230 foo = (char *) malloc (BUFFER_SIZE);
1231 @end smallexample
1232
1233 @noindent
1234 then the C preprocessor will recognize and @dfn{expand} the macro
1235 @code{BUFFER_SIZE}. The C compiler will see the same tokens as it would
1236 if you had written
1237
1238 @smallexample
1239 foo = (char *) malloc (1024);
1240 @end smallexample
1241
1242 By convention, macro names are written in uppercase. Programs are
1243 easier to read when it is possible to tell at a glance which names are
1244 macros.
1245
1246 The macro's body ends at the end of the @samp{#define} line. You may
1247 continue the definition onto multiple lines, if necessary, using
1248 backslash-newline. When the macro is expanded, however, it will all
1249 come out on one line. For example,
1250
1251 @smallexample
1252 #define NUMBERS 1, \
1253 2, \
1254 3
1255 int x[] = @{ NUMBERS @};
1256 @expansion{} int x[] = @{ 1, 2, 3 @};
1257 @end smallexample
1258
1259 @noindent
1260 The most common visible consequence of this is surprising line numbers
1261 in error messages.
1262
1263 There is no restriction on what can go in a macro body provided it
1264 decomposes into valid preprocessing tokens. Parentheses need not
1265 balance, and the body need not resemble valid C code. (If it does not,
1266 you may get error messages from the C compiler when you use the macro.)
1267
1268 The C preprocessor scans your program sequentially. Macro definitions
1269 take effect at the place you write them. Therefore, the following input
1270 to the C preprocessor
1271
1272 @smallexample
1273 foo = X;
1274 #define X 4
1275 bar = X;
1276 @end smallexample
1277
1278 @noindent
1279 produces
1280
1281 @smallexample
1282 foo = X;
1283 bar = 4;
1284 @end smallexample
1285
1286 When the preprocessor expands a macro name, the macro's expansion
1287 replaces the macro invocation, then the expansion is examined for more
1288 macros to expand. For example,
1289
1290 @smallexample
1291 @group
1292 #define TABLESIZE BUFSIZE
1293 #define BUFSIZE 1024
1294 TABLESIZE
1295 @expansion{} BUFSIZE
1296 @expansion{} 1024
1297 @end group
1298 @end smallexample
1299
1300 @noindent
1301 @code{TABLESIZE} is expanded first to produce @code{BUFSIZE}, then that
1302 macro is expanded to produce the final result, @code{1024}.
1303
1304 Notice that @code{BUFSIZE} was not defined when @code{TABLESIZE} was
1305 defined. The @samp{#define} for @code{TABLESIZE} uses exactly the
1306 expansion you specify---in this case, @code{BUFSIZE}---and does not
1307 check to see whether it too contains macro names. Only when you
1308 @emph{use} @code{TABLESIZE} is the result of its expansion scanned for
1309 more macro names.
1310
1311 This makes a difference if you change the definition of @code{BUFSIZE}
1312 at some point in the source file. @code{TABLESIZE}, defined as shown,
1313 will always expand using the definition of @code{BUFSIZE} that is
1314 currently in effect:
1315
1316 @smallexample
1317 #define BUFSIZE 1020
1318 #define TABLESIZE BUFSIZE
1319 #undef BUFSIZE
1320 #define BUFSIZE 37
1321 @end smallexample
1322
1323 @noindent
1324 Now @code{TABLESIZE} expands (in two stages) to @code{37}.
1325
1326 If the expansion of a macro contains its own name, either directly or
1327 via intermediate macros, it is not expanded again when the expansion is
1328 examined for more macros. This prevents infinite recursion.
1329 @xref{Self-Referential Macros}, for the precise details.
1330
1331 @node Function-like Macros
1332 @section Function-like Macros
1333 @cindex function-like macros
1334
1335 You can also define macros whose use looks like a function call. These
1336 are called @dfn{function-like macros}. To define a function-like macro,
1337 you use the same @samp{#define} directive, but you put a pair of
1338 parentheses immediately after the macro name. For example,
1339
1340 @smallexample
1341 #define lang_init() c_init()
1342 lang_init()
1343 @expansion{} c_init()
1344 @end smallexample
1345
1346 A function-like macro is only expanded if its name appears with a pair
1347 of parentheses after it. If you write just the name, it is left alone.
1348 This can be useful when you have a function and a macro of the same
1349 name, and you wish to use the function sometimes.
1350
1351 @smallexample
1352 extern void foo(void);
1353 #define foo() /* @r{optimized inline version} */
1354 @dots{}
1355 foo();
1356 funcptr = foo;
1357 @end smallexample
1358
1359 Here the call to @code{foo()} will use the macro, but the function
1360 pointer will get the address of the real function. If the macro were to
1361 be expanded, it would cause a syntax error.
1362
1363 If you put spaces between the macro name and the parentheses in the
1364 macro definition, that does not define a function-like macro, it defines
1365 an object-like macro whose expansion happens to begin with a pair of
1366 parentheses.
1367
1368 @smallexample
1369 #define lang_init () c_init()
1370 lang_init()
1371 @expansion{} () c_init()()
1372 @end smallexample
1373
1374 The first two pairs of parentheses in this expansion come from the
1375 macro. The third is the pair that was originally after the macro
1376 invocation. Since @code{lang_init} is an object-like macro, it does not
1377 consume those parentheses.
1378
1379 @node Macro Arguments
1380 @section Macro Arguments
1381 @cindex arguments
1382 @cindex macros with arguments
1383 @cindex arguments in macro definitions
1384
1385 Function-like macros can take @dfn{arguments}, just like true functions.
1386 To define a macro that uses arguments, you insert @dfn{parameters}
1387 between the pair of parentheses in the macro definition that make the
1388 macro function-like. The parameters must be valid C identifiers,
1389 separated by commas and optionally whitespace.
1390
1391 To invoke a macro that takes arguments, you write the name of the macro
1392 followed by a list of @dfn{actual arguments} in parentheses, separated
1393 by commas. The invocation of the macro need not be restricted to a
1394 single logical line---it can cross as many lines in the source file as
1395 you wish. The number of arguments you give must match the number of
1396 parameters in the macro definition. When the macro is expanded, each
1397 use of a parameter in its body is replaced by the tokens of the
1398 corresponding argument. (You need not use all of the parameters in the
1399 macro body.)
1400
1401 As an example, here is a macro that computes the minimum of two numeric
1402 values, as it is defined in many C programs, and some uses.
1403
1404 @smallexample
1405 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
1406 x = min(a, b); @expansion{} x = ((a) < (b) ? (a) : (b));
1407 y = min(1, 2); @expansion{} y = ((1) < (2) ? (1) : (2));
1408 z = min(a + 28, *p); @expansion{} z = ((a + 28) < (*p) ? (a + 28) : (*p));
1409 @end smallexample
1410
1411 @noindent
1412 (In this small example you can already see several of the dangers of
1413 macro arguments. @xref{Macro Pitfalls}, for detailed explanations.)
1414
1415 Leading and trailing whitespace in each argument is dropped, and all
1416 whitespace between the tokens of an argument is reduced to a single
1417 space. Parentheses within each argument must balance; a comma within
1418 such parentheses does not end the argument. However, there is no
1419 requirement for square brackets or braces to balance, and they do not
1420 prevent a comma from separating arguments. Thus,
1421
1422 @smallexample
1423 macro (array[x = y, x + 1])
1424 @end smallexample
1425
1426 @noindent
1427 passes two arguments to @code{macro}: @code{array[x = y} and @code{x +
1428 1]}. If you want to supply @code{array[x = y, x + 1]} as an argument,
1429 you can write it as @code{array[(x = y, x + 1)]}, which is equivalent C
1430 code.
1431
1432 All arguments to a macro are completely macro-expanded before they are
1433 substituted into the macro body. After substitution, the complete text
1434 is scanned again for macros to expand, including the arguments. This rule
1435 may seem strange, but it is carefully designed so you need not worry
1436 about whether any function call is actually a macro invocation. You can
1437 run into trouble if you try to be too clever, though. @xref{Argument
1438 Prescan}, for detailed discussion.
1439
1440 For example, @code{min (min (a, b), c)} is first expanded to
1441
1442 @smallexample
1443 min (((a) < (b) ? (a) : (b)), (c))
1444 @end smallexample
1445
1446 @noindent
1447 and then to
1448
1449 @smallexample
1450 @group
1451 ((((a) < (b) ? (a) : (b))) < (c)
1452 ? (((a) < (b) ? (a) : (b)))
1453 : (c))
1454 @end group
1455 @end smallexample
1456
1457 @noindent
1458 (Line breaks shown here for clarity would not actually be generated.)
1459
1460 @cindex empty macro arguments
1461 You can leave macro arguments empty; this is not an error to the
1462 preprocessor (but many macros will then expand to invalid code).
1463 You cannot leave out arguments entirely; if a macro takes two arguments,
1464 there must be exactly one comma at the top level of its argument list.
1465 Here are some silly examples using @code{min}:
1466
1467 @smallexample
1468 min(, b) @expansion{} (( ) < (b) ? ( ) : (b))
1469 min(a, ) @expansion{} ((a ) < ( ) ? (a ) : ( ))
1470 min(,) @expansion{} (( ) < ( ) ? ( ) : ( ))
1471 min((,),) @expansion{} (((,)) < ( ) ? ((,)) : ( ))
1472
1473 min() @error{} macro "min" requires 2 arguments, but only 1 given
1474 min(,,) @error{} macro "min" passed 3 arguments, but takes just 2
1475 @end smallexample
1476
1477 Whitespace is not a preprocessing token, so if a macro @code{foo} takes
1478 one argument, @code{@w{foo ()}} and @code{@w{foo ( )}} both supply it an
1479 empty argument. Previous GNU preprocessor implementations and
1480 documentation were incorrect on this point, insisting that a
1481 function-like macro that takes a single argument be passed a space if an
1482 empty argument was required.
1483
1484 Macro parameters appearing inside string literals are not replaced by
1485 their corresponding actual arguments.
1486
1487 @smallexample
1488 #define foo(x) x, "x"
1489 foo(bar) @expansion{} bar, "x"
1490 @end smallexample
1491
1492 @node Stringification
1493 @section Stringification
1494 @cindex stringification
1495 @cindex @samp{#} operator
1496
1497 Sometimes you may want to convert a macro argument into a string
1498 constant. Parameters are not replaced inside string constants, but you
1499 can use the @samp{#} preprocessing operator instead. When a macro
1500 parameter is used with a leading @samp{#}, the preprocessor replaces it
1501 with the literal text of the actual argument, converted to a string
1502 constant. Unlike normal parameter replacement, the argument is not
1503 macro-expanded first. This is called @dfn{stringification}.
1504
1505 There is no way to combine an argument with surrounding text and
1506 stringify it all together. Instead, you can write a series of adjacent
1507 string constants and stringified arguments. The preprocessor will
1508 replace the stringified arguments with string constants. The C
1509 compiler will then combine all the adjacent string constants into one
1510 long string.
1511
1512 Here is an example of a macro definition that uses stringification:
1513
1514 @smallexample
1515 @group
1516 #define WARN_IF(EXP) \
1517 do @{ if (EXP) \
1518 fprintf (stderr, "Warning: " #EXP "\n"); @} \
1519 while (0)
1520 WARN_IF (x == 0);
1521 @expansion{} do @{ if (x == 0)
1522 fprintf (stderr, "Warning: " "x == 0" "\n"); @} while (0);
1523 @end group
1524 @end smallexample
1525
1526 @noindent
1527 The argument for @code{EXP} is substituted once, as-is, into the
1528 @code{if} statement, and once, stringified, into the argument to
1529 @code{fprintf}. If @code{x} were a macro, it would be expanded in the
1530 @code{if} statement, but not in the string.
1531
1532 The @code{do} and @code{while (0)} are a kludge to make it possible to
1533 write @code{WARN_IF (@var{arg});}, which the resemblance of
1534 @code{WARN_IF} to a function would make C programmers want to do; see
1535 @ref{Swallowing the Semicolon}.
1536
1537 Stringification in C involves more than putting double-quote characters
1538 around the fragment. The preprocessor backslash-escapes the quotes
1539 surrounding embedded string constants, and all backslashes within string and
1540 character constants, in order to get a valid C string constant with the
1541 proper contents. Thus, stringifying @code{@w{p = "foo\n";}} results in
1542 @t{@w{"p = \"foo\\n\";"}}. However, backslashes that are not inside string
1543 or character constants are not duplicated: @samp{\n} by itself
1544 stringifies to @t{"\n"}.
1545
1546 All leading and trailing whitespace in text being stringified is
1547 ignored. Any sequence of whitespace in the middle of the text is
1548 converted to a single space in the stringified result. Comments are
1549 replaced by whitespace long before stringification happens, so they
1550 never appear in stringified text.
1551
1552 There is no way to convert a macro argument into a character constant.
1553
1554 If you want to stringify the result of expansion of a macro argument,
1555 you have to use two levels of macros.
1556
1557 @smallexample
1558 #define xstr(s) str(s)
1559 #define str(s) #s
1560 #define foo 4
1561 str (foo)
1562 @expansion{} "foo"
1563 xstr (foo)
1564 @expansion{} xstr (4)
1565 @expansion{} str (4)
1566 @expansion{} "4"
1567 @end smallexample
1568
1569 @code{s} is stringified when it is used in @code{str}, so it is not
1570 macro-expanded first. But @code{s} is an ordinary argument to
1571 @code{xstr}, so it is completely macro-expanded before @code{xstr}
1572 itself is expanded (@pxref{Argument Prescan}). Therefore, by the time
1573 @code{str} gets to its argument, it has already been macro-expanded.
1574
1575 @node Concatenation
1576 @section Concatenation
1577 @cindex concatenation
1578 @cindex token pasting
1579 @cindex token concatenation
1580 @cindex @samp{##} operator
1581
1582 It is often useful to merge two tokens into one while expanding macros.
1583 This is called @dfn{token pasting} or @dfn{token concatenation}. The
1584 @samp{##} preprocessing operator performs token pasting. When a macro
1585 is expanded, the two tokens on either side of each @samp{##} operator
1586 are combined into a single token, which then replaces the @samp{##} and
1587 the two original tokens in the macro expansion. Usually both will be
1588 identifiers, or one will be an identifier and the other a preprocessing
1589 number. When pasted, they make a longer identifier. This isn't the
1590 only valid case. It is also possible to concatenate two numbers (or a
1591 number and a name, such as @code{1.5} and @code{e3}) into a number.
1592 Also, multi-character operators such as @code{+=} can be formed by
1593 token pasting.
1594
1595 However, two tokens that don't together form a valid token cannot be
1596 pasted together. For example, you cannot concatenate @code{x} with
1597 @code{+} in either order. If you try, the preprocessor issues a warning
1598 and emits the two tokens. Whether it puts white space between the
1599 tokens is undefined. It is common to find unnecessary uses of @samp{##}
1600 in complex macros. If you get this warning, it is likely that you can
1601 simply remove the @samp{##}.
1602
1603 Both the tokens combined by @samp{##} could come from the macro body,
1604 but you could just as well write them as one token in the first place.
1605 Token pasting is most useful when one or both of the tokens comes from a
1606 macro argument. If either of the tokens next to an @samp{##} is a
1607 parameter name, it is replaced by its actual argument before @samp{##}
1608 executes. As with stringification, the actual argument is not
1609 macro-expanded first. If the argument is empty, that @samp{##} has no
1610 effect.
1611
1612 Keep in mind that the C preprocessor converts comments to whitespace
1613 before macros are even considered. Therefore, you cannot create a
1614 comment by concatenating @samp{/} and @samp{*}. You can put as much
1615 whitespace between @samp{##} and its operands as you like, including
1616 comments, and you can put comments in arguments that will be
1617 concatenated. However, it is an error if @samp{##} appears at either
1618 end of a macro body.
1619
1620 Consider a C program that interprets named commands. There probably
1621 needs to be a table of commands, perhaps an array of structures declared
1622 as follows:
1623
1624 @smallexample
1625 @group
1626 struct command
1627 @{
1628 char *name;
1629 void (*function) (void);
1630 @};
1631 @end group
1632
1633 @group
1634 struct command commands[] =
1635 @{
1636 @{ "quit", quit_command @},
1637 @{ "help", help_command @},
1638 @dots{}
1639 @};
1640 @end group
1641 @end smallexample
1642
1643 It would be cleaner not to have to give each command name twice, once in
1644 the string constant and once in the function name. A macro which takes the
1645 name of a command as an argument can make this unnecessary. The string
1646 constant can be created with stringification, and the function name by
1647 concatenating the argument with @samp{_command}. Here is how it is done:
1648
1649 @smallexample
1650 #define COMMAND(NAME) @{ #NAME, NAME ## _command @}
1651
1652 struct command commands[] =
1653 @{
1654 COMMAND (quit),
1655 COMMAND (help),
1656 @dots{}
1657 @};
1658 @end smallexample
1659
1660 @node Variadic Macros
1661 @section Variadic Macros
1662 @cindex variable number of arguments
1663 @cindex macros with variable arguments
1664 @cindex variadic macros
1665
1666 A macro can be declared to accept a variable number of arguments much as
1667 a function can. The syntax for defining the macro is similar to that of
1668 a function. Here is an example:
1669
1670 @smallexample
1671 #define eprintf(@dots{}) fprintf (stderr, __VA_ARGS__)
1672 @end smallexample
1673
1674 This kind of macro is called @dfn{variadic}. When the macro is invoked,
1675 all the tokens in its argument list after the last named argument (this
1676 macro has none), including any commas, become the @dfn{variable
1677 argument}. This sequence of tokens replaces the identifier
1678 @code{@w{__VA_ARGS__}} in the macro body wherever it appears. Thus, we
1679 have this expansion:
1680
1681 @smallexample
1682 eprintf ("%s:%d: ", input_file, lineno)
1683 @expansion{} fprintf (stderr, "%s:%d: ", input_file, lineno)
1684 @end smallexample
1685
1686 The variable argument is completely macro-expanded before it is inserted
1687 into the macro expansion, just like an ordinary argument. You may use
1688 the @samp{#} and @samp{##} operators to stringify the variable argument
1689 or to paste its leading or trailing token with another token. (But see
1690 below for an important special case for @samp{##}.)
1691
1692 If your macro is complicated, you may want a more descriptive name for
1693 the variable argument than @code{@w{__VA_ARGS__}}. CPP permits
1694 this, as an extension. You may write an argument name immediately
1695 before the @samp{@dots{}}; that name is used for the variable argument.
1696 The @code{eprintf} macro above could be written
1697
1698 @smallexample
1699 #define eprintf(args@dots{}) fprintf (stderr, args)
1700 @end smallexample
1701
1702 @noindent
1703 using this extension. You cannot use @code{@w{__VA_ARGS__}} and this
1704 extension in the same macro.
1705
1706 You can have named arguments as well as variable arguments in a variadic
1707 macro. We could define @code{eprintf} like this, instead:
1708
1709 @smallexample
1710 #define eprintf(format, @dots{}) fprintf (stderr, format, __VA_ARGS__)
1711 @end smallexample
1712
1713 @noindent
1714 This formulation looks more descriptive, but unfortunately it is less
1715 flexible: you must now supply at least one argument after the format
1716 string. In standard C, you cannot omit the comma separating the named
1717 argument from the variable arguments. Furthermore, if you leave the
1718 variable argument empty, you will get a syntax error, because
1719 there will be an extra comma after the format string.
1720
1721 @smallexample
1722 eprintf("success!\n", );
1723 @expansion{} fprintf(stderr, "success!\n", );
1724 @end smallexample
1725
1726 GNU CPP has a pair of extensions which deal with this problem. First,
1727 you are allowed to leave the variable argument out entirely:
1728
1729 @smallexample
1730 eprintf ("success!\n")
1731 @expansion{} fprintf(stderr, "success!\n", );
1732 @end smallexample
1733
1734 @noindent
1735 Second, the @samp{##} token paste operator has a special meaning when
1736 placed between a comma and a variable argument. If you write
1737
1738 @smallexample
1739 #define eprintf(format, @dots{}) fprintf (stderr, format, ##__VA_ARGS__)
1740 @end smallexample
1741
1742 @noindent
1743 and the variable argument is left out when the @code{eprintf} macro is
1744 used, then the comma before the @samp{##} will be deleted. This does
1745 @emph{not} happen if you pass an empty argument, nor does it happen if
1746 the token preceding @samp{##} is anything other than a comma.
1747
1748 @smallexample
1749 eprintf ("success!\n")
1750 @expansion{} fprintf(stderr, "success!\n");
1751 @end smallexample
1752
1753 @noindent
1754 The above explanation is ambiguous about the case where the only macro
1755 parameter is a variable arguments parameter, as it is meaningless to
1756 try to distinguish whether no argument at all is an empty argument or
1757 a missing argument. In this case the C99 standard is clear that the
1758 comma must remain, however the existing GCC extension used to swallow
1759 the comma. So CPP retains the comma when conforming to a specific C
1760 standard, and drops it otherwise.
1761
1762 C99 mandates that the only place the identifier @code{@w{__VA_ARGS__}}
1763 can appear is in the replacement list of a variadic macro. It may not
1764 be used as a macro name, macro argument name, or within a different type
1765 of macro. It may also be forbidden in open text; the standard is
1766 ambiguous. We recommend you avoid using it except for its defined
1767 purpose.
1768
1769 Variadic macros are a new feature in C99. GNU CPP has supported them
1770 for a long time, but only with a named variable argument
1771 (@samp{args@dots{}}, not @samp{@dots{}} and @code{@w{__VA_ARGS__}}). If you are
1772 concerned with portability to previous versions of GCC, you should use
1773 only named variable arguments. On the other hand, if you are concerned
1774 with portability to other conforming implementations of C99, you should
1775 use only @code{@w{__VA_ARGS__}}.
1776
1777 Previous versions of CPP implemented the comma-deletion extension
1778 much more generally. We have restricted it in this release to minimize
1779 the differences from C99. To get the same effect with both this and
1780 previous versions of GCC, the token preceding the special @samp{##} must
1781 be a comma, and there must be white space between that comma and
1782 whatever comes immediately before it:
1783
1784 @smallexample
1785 #define eprintf(format, args@dots{}) fprintf (stderr, format , ##args)
1786 @end smallexample
1787
1788 @noindent
1789 @xref{Differences from previous versions}, for the gory details.
1790
1791 @node Predefined Macros
1792 @section Predefined Macros
1793
1794 @cindex predefined macros
1795 Several object-like macros are predefined; you use them without
1796 supplying their definitions. They fall into three classes: standard,
1797 common, and system-specific.
1798
1799 In C++, there is a fourth category, the named operators. They act like
1800 predefined macros, but you cannot undefine them.
1801
1802 @menu
1803 * Standard Predefined Macros::
1804 * Common Predefined Macros::
1805 * System-specific Predefined Macros::
1806 * C++ Named Operators::
1807 @end menu
1808
1809 @node Standard Predefined Macros
1810 @subsection Standard Predefined Macros
1811 @cindex standard predefined macros.
1812
1813 The standard predefined macros are specified by the relevant
1814 language standards, so they are available with all compilers that
1815 implement those standards. Older compilers may not provide all of
1816 them. Their names all start with double underscores.
1817
1818 @table @code
1819 @item __FILE__
1820 This macro expands to the name of the current input file, in the form of
1821 a C string constant. This is the path by which the preprocessor opened
1822 the file, not the short name specified in @samp{#include} or as the
1823 input file name argument. For example,
1824 @code{"/usr/local/include/myheader.h"} is a possible expansion of this
1825 macro.
1826
1827 @item __LINE__
1828 This macro expands to the current input line number, in the form of a
1829 decimal integer constant. While we call it a predefined macro, it's
1830 a pretty strange macro, since its ``definition'' changes with each
1831 new line of source code.
1832 @end table
1833
1834 @code{__FILE__} and @code{__LINE__} are useful in generating an error
1835 message to report an inconsistency detected by the program; the message
1836 can state the source line at which the inconsistency was detected. For
1837 example,
1838
1839 @smallexample
1840 fprintf (stderr, "Internal error: "
1841 "negative string length "
1842 "%d at %s, line %d.",
1843 length, __FILE__, __LINE__);
1844 @end smallexample
1845
1846 An @samp{#include} directive changes the expansions of @code{__FILE__}
1847 and @code{__LINE__} to correspond to the included file. At the end of
1848 that file, when processing resumes on the input file that contained
1849 the @samp{#include} directive, the expansions of @code{__FILE__} and
1850 @code{__LINE__} revert to the values they had before the
1851 @samp{#include} (but @code{__LINE__} is then incremented by one as
1852 processing moves to the line after the @samp{#include}).
1853
1854 A @samp{#line} directive changes @code{__LINE__}, and may change
1855 @code{__FILE__} as well. @xref{Line Control}.
1856
1857 C99 introduces @code{__func__}, and GCC has provided @code{__FUNCTION__}
1858 for a long time. Both of these are strings containing the name of the
1859 current function (there are slight semantic differences; see the GCC
1860 manual). Neither of them is a macro; the preprocessor does not know the
1861 name of the current function. They tend to be useful in conjunction
1862 with @code{__FILE__} and @code{__LINE__}, though.
1863
1864 @table @code
1865
1866 @item __DATE__
1867 This macro expands to a string constant that describes the date on which
1868 the preprocessor is being run. The string constant contains eleven
1869 characters and looks like @code{@w{"Feb 12 1996"}}. If the day of the
1870 month is less than 10, it is padded with a space on the left.
1871
1872 If GCC cannot determine the current date, it will emit a warning message
1873 (once per compilation) and @code{__DATE__} will expand to
1874 @code{@w{"??? ?? ????"}}.
1875
1876 @item __TIME__
1877 This macro expands to a string constant that describes the time at
1878 which the preprocessor is being run. The string constant contains
1879 eight characters and looks like @code{"23:59:01"}.
1880
1881 If GCC cannot determine the current time, it will emit a warning message
1882 (once per compilation) and @code{__TIME__} will expand to
1883 @code{"??:??:??"}.
1884
1885 @item __STDC__
1886 In normal operation, this macro expands to the constant 1, to signify
1887 that this compiler conforms to ISO Standard C@. If GNU CPP is used with
1888 a compiler other than GCC, this is not necessarily true; however, the
1889 preprocessor always conforms to the standard unless the
1890 @option{-traditional-cpp} option is used.
1891
1892 This macro is not defined if the @option{-traditional-cpp} option is used.
1893
1894 On some hosts, the system compiler uses a different convention, where
1895 @code{__STDC__} is normally 0, but is 1 if the user specifies strict
1896 conformance to the C Standard. CPP follows the host convention when
1897 processing system header files, but when processing user files
1898 @code{__STDC__} is always 1. This has been reported to cause problems;
1899 for instance, some versions of Solaris provide X Windows headers that
1900 expect @code{__STDC__} to be either undefined or 1. @xref{Invocation}.
1901
1902 @item __STDC_VERSION__
1903 This macro expands to the C Standard's version number, a long integer
1904 constant of the form @code{@var{yyyy}@var{mm}L} where @var{yyyy} and
1905 @var{mm} are the year and month of the Standard version. This signifies
1906 which version of the C Standard the compiler conforms to. Like
1907 @code{__STDC__}, this is not necessarily accurate for the entire
1908 implementation, unless GNU CPP is being used with GCC@.
1909
1910 The value @code{199409L} signifies the 1989 C standard as amended in
1911 1994, which is the current default; the value @code{199901L} signifies
1912 the 1999 revision of the C standard. Support for the 1999 revision is
1913 not yet complete.
1914
1915 This macro is not defined if the @option{-traditional-cpp} option is
1916 used, nor when compiling C++ or Objective-C@.
1917
1918 @item __STDC_HOSTED__
1919 This macro is defined, with value 1, if the compiler's target is a
1920 @dfn{hosted environment}. A hosted environment has the complete
1921 facilities of the standard C library available.
1922
1923 @item __cplusplus
1924 This macro is defined when the C++ compiler is in use. You can use
1925 @code{__cplusplus} to test whether a header is compiled by a C compiler
1926 or a C++ compiler. This macro is similar to @code{__STDC_VERSION__}, in
1927 that it expands to a version number. Depending on the language standard
1928 selected, the value of the macro is @code{199711L}, as mandated by the
1929 1998 C++ standard; @code{201103L}, per the 2011 C++ standard; an
1930 unspecified value strictly larger than @code{201103L} for the experimental
1931 languages enabled by @option{-std=c++1y} and @option{-std=gnu++1y}.
1932
1933 @item __OBJC__
1934 This macro is defined, with value 1, when the Objective-C compiler is in
1935 use. You can use @code{__OBJC__} to test whether a header is compiled
1936 by a C compiler or an Objective-C compiler.
1937
1938 @item __ASSEMBLER__
1939 This macro is defined with value 1 when preprocessing assembly
1940 language.
1941
1942 @end table
1943
1944 @node Common Predefined Macros
1945 @subsection Common Predefined Macros
1946 @cindex common predefined macros
1947
1948 The common predefined macros are GNU C extensions. They are available
1949 with the same meanings regardless of the machine or operating system on
1950 which you are using GNU C or GNU Fortran. Their names all start with
1951 double underscores.
1952
1953 @table @code
1954
1955 @item __COUNTER__
1956 This macro expands to sequential integral values starting from 0. In
1957 conjunction with the @code{##} operator, this provides a convenient means to
1958 generate unique identifiers. Care must be taken to ensure that
1959 @code{__COUNTER__} is not expanded prior to inclusion of precompiled headers
1960 which use it. Otherwise, the precompiled headers will not be used.
1961
1962 @item __GFORTRAN__
1963 The GNU Fortran compiler defines this.
1964
1965 @item __GNUC__
1966 @itemx __GNUC_MINOR__
1967 @itemx __GNUC_PATCHLEVEL__
1968 These macros are defined by all GNU compilers that use the C
1969 preprocessor: C, C++, Objective-C and Fortran. Their values are the major
1970 version, minor version, and patch level of the compiler, as integer
1971 constants. For example, GCC 3.2.1 will define @code{__GNUC__} to 3,
1972 @code{__GNUC_MINOR__} to 2, and @code{__GNUC_PATCHLEVEL__} to 1. These
1973 macros are also defined if you invoke the preprocessor directly.
1974
1975 @code{__GNUC_PATCHLEVEL__} is new to GCC 3.0; it is also present in the
1976 widely-used development snapshots leading up to 3.0 (which identify
1977 themselves as GCC 2.96 or 2.97, depending on which snapshot you have).
1978
1979 If all you need to know is whether or not your program is being compiled
1980 by GCC, or a non-GCC compiler that claims to accept the GNU C dialects,
1981 you can simply test @code{__GNUC__}. If you need to write code
1982 which depends on a specific version, you must be more careful. Each
1983 time the minor version is increased, the patch level is reset to zero;
1984 each time the major version is increased (which happens rarely), the
1985 minor version and patch level are reset. If you wish to use the
1986 predefined macros directly in the conditional, you will need to write it
1987 like this:
1988
1989 @smallexample
1990 /* @r{Test for GCC > 3.2.0} */
1991 #if __GNUC__ > 3 || \
1992 (__GNUC__ == 3 && (__GNUC_MINOR__ > 2 || \
1993 (__GNUC_MINOR__ == 2 && \
1994 __GNUC_PATCHLEVEL__ > 0))
1995 @end smallexample
1996
1997 @noindent
1998 Another approach is to use the predefined macros to
1999 calculate a single number, then compare that against a threshold:
2000
2001 @smallexample
2002 #define GCC_VERSION (__GNUC__ * 10000 \
2003 + __GNUC_MINOR__ * 100 \
2004 + __GNUC_PATCHLEVEL__)
2005 @dots{}
2006 /* @r{Test for GCC > 3.2.0} */
2007 #if GCC_VERSION > 30200
2008 @end smallexample
2009
2010 @noindent
2011 Many people find this form easier to understand.
2012
2013 @item __GNUG__
2014 The GNU C++ compiler defines this. Testing it is equivalent to
2015 testing @code{@w{(__GNUC__ && __cplusplus)}}.
2016
2017 @item __STRICT_ANSI__
2018 GCC defines this macro if and only if the @option{-ansi} switch, or a
2019 @option{-std} switch specifying strict conformance to some version of ISO C
2020 or ISO C++, was specified when GCC was invoked. It is defined to @samp{1}.
2021 This macro exists primarily to direct GNU libc's header files to
2022 restrict their definitions to the minimal set found in the 1989 C
2023 standard.
2024
2025 @item __BASE_FILE__
2026 This macro expands to the name of the main input file, in the form
2027 of a C string constant. This is the source file that was specified
2028 on the command line of the preprocessor or C compiler.
2029
2030 @item __INCLUDE_LEVEL__
2031 This macro expands to a decimal integer constant that represents the
2032 depth of nesting in include files. The value of this macro is
2033 incremented on every @samp{#include} directive and decremented at the
2034 end of every included file. It starts out at 0, its value within the
2035 base file specified on the command line.
2036
2037 @item __ELF__
2038 This macro is defined if the target uses the ELF object format.
2039
2040 @item __VERSION__
2041 This macro expands to a string constant which describes the version of
2042 the compiler in use. You should not rely on its contents having any
2043 particular form, but it can be counted on to contain at least the
2044 release number.
2045
2046 @item __OPTIMIZE__
2047 @itemx __OPTIMIZE_SIZE__
2048 @itemx __NO_INLINE__
2049 These macros describe the compilation mode. @code{__OPTIMIZE__} is
2050 defined in all optimizing compilations. @code{__OPTIMIZE_SIZE__} is
2051 defined if the compiler is optimizing for size, not speed.
2052 @code{__NO_INLINE__} is defined if no functions will be inlined into
2053 their callers (when not optimizing, or when inlining has been
2054 specifically disabled by @option{-fno-inline}).
2055
2056 These macros cause certain GNU header files to provide optimized
2057 definitions, using macros or inline functions, of system library
2058 functions. You should not use these macros in any way unless you make
2059 sure that programs will execute with the same effect whether or not they
2060 are defined. If they are defined, their value is 1.
2061
2062 @item __GNUC_GNU_INLINE__
2063 GCC defines this macro if functions declared @code{inline} will be
2064 handled in GCC's traditional gnu90 mode. Object files will contain
2065 externally visible definitions of all functions declared @code{inline}
2066 without @code{extern} or @code{static}. They will not contain any
2067 definitions of any functions declared @code{extern inline}.
2068
2069 @item __GNUC_STDC_INLINE__
2070 GCC defines this macro if functions declared @code{inline} will be
2071 handled according to the ISO C99 standard. Object files will contain
2072 externally visible definitions of all functions declared @code{extern
2073 inline}. They will not contain definitions of any functions declared
2074 @code{inline} without @code{extern}.
2075
2076 If this macro is defined, GCC supports the @code{gnu_inline} function
2077 attribute as a way to always get the gnu90 behavior. Support for
2078 this and @code{__GNUC_GNU_INLINE__} was added in GCC 4.1.3. If
2079 neither macro is defined, an older version of GCC is being used:
2080 @code{inline} functions will be compiled in gnu90 mode, and the
2081 @code{gnu_inline} function attribute will not be recognized.
2082
2083 @item __CHAR_UNSIGNED__
2084 GCC defines this macro if and only if the data type @code{char} is
2085 unsigned on the target machine. It exists to cause the standard header
2086 file @file{limits.h} to work correctly. You should not use this macro
2087 yourself; instead, refer to the standard macros defined in @file{limits.h}.
2088
2089 @item __WCHAR_UNSIGNED__
2090 Like @code{__CHAR_UNSIGNED__}, this macro is defined if and only if the
2091 data type @code{wchar_t} is unsigned and the front-end is in C++ mode.
2092
2093 @item __REGISTER_PREFIX__
2094 This macro expands to a single token (not a string constant) which is
2095 the prefix applied to CPU register names in assembly language for this
2096 target. You can use it to write assembly that is usable in multiple
2097 environments. For example, in the @code{m68k-aout} environment it
2098 expands to nothing, but in the @code{m68k-coff} environment it expands
2099 to a single @samp{%}.
2100
2101 @item __USER_LABEL_PREFIX__
2102 This macro expands to a single token which is the prefix applied to
2103 user labels (symbols visible to C code) in assembly. For example, in
2104 the @code{m68k-aout} environment it expands to an @samp{_}, but in the
2105 @code{m68k-coff} environment it expands to nothing.
2106
2107 This macro will have the correct definition even if
2108 @option{-f(no-)underscores} is in use, but it will not be correct if
2109 target-specific options that adjust this prefix are used (e.g.@: the
2110 OSF/rose @option{-mno-underscores} option).
2111
2112 @item __SIZE_TYPE__
2113 @itemx __PTRDIFF_TYPE__
2114 @itemx __WCHAR_TYPE__
2115 @itemx __WINT_TYPE__
2116 @itemx __INTMAX_TYPE__
2117 @itemx __UINTMAX_TYPE__
2118 @itemx __SIG_ATOMIC_TYPE__
2119 @itemx __INT8_TYPE__
2120 @itemx __INT16_TYPE__
2121 @itemx __INT32_TYPE__
2122 @itemx __INT64_TYPE__
2123 @itemx __UINT8_TYPE__
2124 @itemx __UINT16_TYPE__
2125 @itemx __UINT32_TYPE__
2126 @itemx __UINT64_TYPE__
2127 @itemx __INT_LEAST8_TYPE__
2128 @itemx __INT_LEAST16_TYPE__
2129 @itemx __INT_LEAST32_TYPE__
2130 @itemx __INT_LEAST64_TYPE__
2131 @itemx __UINT_LEAST8_TYPE__
2132 @itemx __UINT_LEAST16_TYPE__
2133 @itemx __UINT_LEAST32_TYPE__
2134 @itemx __UINT_LEAST64_TYPE__
2135 @itemx __INT_FAST8_TYPE__
2136 @itemx __INT_FAST16_TYPE__
2137 @itemx __INT_FAST32_TYPE__
2138 @itemx __INT_FAST64_TYPE__
2139 @itemx __UINT_FAST8_TYPE__
2140 @itemx __UINT_FAST16_TYPE__
2141 @itemx __UINT_FAST32_TYPE__
2142 @itemx __UINT_FAST64_TYPE__
2143 @itemx __INTPTR_TYPE__
2144 @itemx __UINTPTR_TYPE__
2145 These macros are defined to the correct underlying types for the
2146 @code{size_t}, @code{ptrdiff_t}, @code{wchar_t}, @code{wint_t},
2147 @code{intmax_t}, @code{uintmax_t}, @code{sig_atomic_t}, @code{int8_t},
2148 @code{int16_t}, @code{int32_t}, @code{int64_t}, @code{uint8_t},
2149 @code{uint16_t}, @code{uint32_t}, @code{uint64_t},
2150 @code{int_least8_t}, @code{int_least16_t}, @code{int_least32_t},
2151 @code{int_least64_t}, @code{uint_least8_t}, @code{uint_least16_t},
2152 @code{uint_least32_t}, @code{uint_least64_t}, @code{int_fast8_t},
2153 @code{int_fast16_t}, @code{int_fast32_t}, @code{int_fast64_t},
2154 @code{uint_fast8_t}, @code{uint_fast16_t}, @code{uint_fast32_t},
2155 @code{uint_fast64_t}, @code{intptr_t}, and @code{uintptr_t} typedefs,
2156 respectively. They exist to make the standard header files
2157 @file{stddef.h}, @file{stdint.h}, and @file{wchar.h} work correctly.
2158 You should not use these macros directly; instead, include the
2159 appropriate headers and use the typedefs. Some of these macros may
2160 not be defined on particular systems if GCC does not provide a
2161 @file{stdint.h} header on those systems.
2162
2163 @item __CHAR_BIT__
2164 Defined to the number of bits used in the representation of the
2165 @code{char} data type. It exists to make the standard header given
2166 numerical limits work correctly. You should not use
2167 this macro directly; instead, include the appropriate headers.
2168
2169 @item __SCHAR_MAX__
2170 @itemx __WCHAR_MAX__
2171 @itemx __SHRT_MAX__
2172 @itemx __INT_MAX__
2173 @itemx __LONG_MAX__
2174 @itemx __LONG_LONG_MAX__
2175 @itemx __WINT_MAX__
2176 @itemx __SIZE_MAX__
2177 @itemx __PTRDIFF_MAX__
2178 @itemx __INTMAX_MAX__
2179 @itemx __UINTMAX_MAX__
2180 @itemx __SIG_ATOMIC_MAX__
2181 @itemx __INT8_MAX__
2182 @itemx __INT16_MAX__
2183 @itemx __INT32_MAX__
2184 @itemx __INT64_MAX__
2185 @itemx __UINT8_MAX__
2186 @itemx __UINT16_MAX__
2187 @itemx __UINT32_MAX__
2188 @itemx __UINT64_MAX__
2189 @itemx __INT_LEAST8_MAX__
2190 @itemx __INT_LEAST16_MAX__
2191 @itemx __INT_LEAST32_MAX__
2192 @itemx __INT_LEAST64_MAX__
2193 @itemx __UINT_LEAST8_MAX__
2194 @itemx __UINT_LEAST16_MAX__
2195 @itemx __UINT_LEAST32_MAX__
2196 @itemx __UINT_LEAST64_MAX__
2197 @itemx __INT_FAST8_MAX__
2198 @itemx __INT_FAST16_MAX__
2199 @itemx __INT_FAST32_MAX__
2200 @itemx __INT_FAST64_MAX__
2201 @itemx __UINT_FAST8_MAX__
2202 @itemx __UINT_FAST16_MAX__
2203 @itemx __UINT_FAST32_MAX__
2204 @itemx __UINT_FAST64_MAX__
2205 @itemx __INTPTR_MAX__
2206 @itemx __UINTPTR_MAX__
2207 @itemx __WCHAR_MIN__
2208 @itemx __WINT_MIN__
2209 @itemx __SIG_ATOMIC_MIN__
2210 Defined to the maximum value of the @code{signed char}, @code{wchar_t},
2211 @code{signed short},
2212 @code{signed int}, @code{signed long}, @code{signed long long},
2213 @code{wint_t}, @code{size_t}, @code{ptrdiff_t},
2214 @code{intmax_t}, @code{uintmax_t}, @code{sig_atomic_t}, @code{int8_t},
2215 @code{int16_t}, @code{int32_t}, @code{int64_t}, @code{uint8_t},
2216 @code{uint16_t}, @code{uint32_t}, @code{uint64_t},
2217 @code{int_least8_t}, @code{int_least16_t}, @code{int_least32_t},
2218 @code{int_least64_t}, @code{uint_least8_t}, @code{uint_least16_t},
2219 @code{uint_least32_t}, @code{uint_least64_t}, @code{int_fast8_t},
2220 @code{int_fast16_t}, @code{int_fast32_t}, @code{int_fast64_t},
2221 @code{uint_fast8_t}, @code{uint_fast16_t}, @code{uint_fast32_t},
2222 @code{uint_fast64_t}, @code{intptr_t}, and @code{uintptr_t} types and
2223 to the minimum value of the @code{wchar_t}, @code{wint_t}, and
2224 @code{sig_atomic_t} types respectively. They exist to make the
2225 standard header given numerical limits work correctly. You should not
2226 use these macros directly; instead, include the appropriate headers.
2227 Some of these macros may not be defined on particular systems if GCC
2228 does not provide a @file{stdint.h} header on those systems.
2229
2230 @item __INT8_C
2231 @itemx __INT16_C
2232 @itemx __INT32_C
2233 @itemx __INT64_C
2234 @itemx __UINT8_C
2235 @itemx __UINT16_C
2236 @itemx __UINT32_C
2237 @itemx __UINT64_C
2238 @itemx __INTMAX_C
2239 @itemx __UINTMAX_C
2240 Defined to implementations of the standard @file{stdint.h} macros with
2241 the same names without the leading @code{__}. They exist the make the
2242 implementation of that header work correctly. You should not use
2243 these macros directly; instead, include the appropriate headers. Some
2244 of these macros may not be defined on particular systems if GCC does
2245 not provide a @file{stdint.h} header on those systems.
2246
2247 @item __SIZEOF_INT__
2248 @itemx __SIZEOF_LONG__
2249 @itemx __SIZEOF_LONG_LONG__
2250 @itemx __SIZEOF_SHORT__
2251 @itemx __SIZEOF_POINTER__
2252 @itemx __SIZEOF_FLOAT__
2253 @itemx __SIZEOF_DOUBLE__
2254 @itemx __SIZEOF_LONG_DOUBLE__
2255 @itemx __SIZEOF_SIZE_T__
2256 @itemx __SIZEOF_WCHAR_T__
2257 @itemx __SIZEOF_WINT_T__
2258 @itemx __SIZEOF_PTRDIFF_T__
2259 Defined to the number of bytes of the C standard data types: @code{int},
2260 @code{long}, @code{long long}, @code{short}, @code{void *}, @code{float},
2261 @code{double}, @code{long double}, @code{size_t}, @code{wchar_t}, @code{wint_t}
2262 and @code{ptrdiff_t}.
2263
2264 @item __BYTE_ORDER__
2265 @itemx __ORDER_LITTLE_ENDIAN__
2266 @itemx __ORDER_BIG_ENDIAN__
2267 @itemx __ORDER_PDP_ENDIAN__
2268 @code{__BYTE_ORDER__} is defined to one of the values
2269 @code{__ORDER_LITTLE_ENDIAN__}, @code{__ORDER_BIG_ENDIAN__}, or
2270 @code{__ORDER_PDP_ENDIAN__} to reflect the layout of multi-byte and
2271 multi-word quantities in memory. If @code{__BYTE_ORDER__} is equal to
2272 @code{__ORDER_LITTLE_ENDIAN__} or @code{__ORDER_BIG_ENDIAN__}, then
2273 multi-byte and multi-word quantities are laid out identically: the
2274 byte (word) at the lowest address is the least significant or most
2275 significant byte (word) of the quantity, respectively. If
2276 @code{__BYTE_ORDER__} is equal to @code{__ORDER_PDP_ENDIAN__}, then
2277 bytes in 16-bit words are laid out in a little-endian fashion, whereas
2278 the 16-bit subwords of a 32-bit quantity are laid out in big-endian
2279 fashion.
2280
2281 You should use these macros for testing like this:
2282
2283 @smallexample
2284 /* @r{Test for a little-endian machine} */
2285 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
2286 @end smallexample
2287
2288 @item __FLOAT_WORD_ORDER__
2289 @code{__FLOAT_WORD_ORDER__} is defined to one of the values
2290 @code{__ORDER_LITTLE_ENDIAN__} or @code{__ORDER_BIG_ENDIAN__} to reflect
2291 the layout of the words of multi-word floating-point quantities.
2292
2293 @item __DEPRECATED
2294 This macro is defined, with value 1, when compiling a C++ source file
2295 with warnings about deprecated constructs enabled. These warnings are
2296 enabled by default, but can be disabled with @option{-Wno-deprecated}.
2297
2298 @item __EXCEPTIONS
2299 This macro is defined, with value 1, when compiling a C++ source file
2300 with exceptions enabled. If @option{-fno-exceptions} is used when
2301 compiling the file, then this macro is not defined.
2302
2303 @item __GXX_RTTI
2304 This macro is defined, with value 1, when compiling a C++ source file
2305 with runtime type identification enabled. If @option{-fno-rtti} is
2306 used when compiling the file, then this macro is not defined.
2307
2308 @item __USING_SJLJ_EXCEPTIONS__
2309 This macro is defined, with value 1, if the compiler uses the old
2310 mechanism based on @code{setjmp} and @code{longjmp} for exception
2311 handling.
2312
2313 @item __GXX_EXPERIMENTAL_CXX0X__
2314 This macro is defined when compiling a C++ source file with the option
2315 @option{-std=c++0x} or @option{-std=gnu++0x}. It indicates that some
2316 features likely to be included in C++0x are available. Note that these
2317 features are experimental, and may change or be removed in future
2318 versions of GCC.
2319
2320 @item __GXX_WEAK__
2321 This macro is defined when compiling a C++ source file. It has the
2322 value 1 if the compiler will use weak symbols, COMDAT sections, or
2323 other similar techniques to collapse symbols with ``vague linkage''
2324 that are defined in multiple translation units. If the compiler will
2325 not collapse such symbols, this macro is defined with value 0. In
2326 general, user code should not need to make use of this macro; the
2327 purpose of this macro is to ease implementation of the C++ runtime
2328 library provided with G++.
2329
2330 @item __NEXT_RUNTIME__
2331 This macro is defined, with value 1, if (and only if) the NeXT runtime
2332 (as in @option{-fnext-runtime}) is in use for Objective-C@. If the GNU
2333 runtime is used, this macro is not defined, so that you can use this
2334 macro to determine which runtime (NeXT or GNU) is being used.
2335
2336 @item __LP64__
2337 @itemx _LP64
2338 These macros are defined, with value 1, if (and only if) the compilation
2339 is for a target where @code{long int} and pointer both use 64-bits and
2340 @code{int} uses 32-bit.
2341
2342 @item __SSP__
2343 This macro is defined, with value 1, when @option{-fstack-protector} is in
2344 use.
2345
2346 @item __SSP_ALL__
2347 This macro is defined, with value 2, when @option{-fstack-protector-all} is
2348 in use.
2349
2350 @item __SSP_STRONG__
2351 This macro is defined, with value 3, when @option{-fstack-protector-strong} is
2352 in use.
2353
2354 @item __SSP_EXPLICIT__
2355 This macro is defined, with value 4, when @option{-fstack-protector-explicit} is
2356 in use.
2357
2358 @item __SANITIZE_ADDRESS__
2359 This macro is defined, with value 1, when @option{-fsanitize=address}
2360 or @option{-fsanitize=kernel-address} are in use.
2361
2362 @item __TIMESTAMP__
2363 This macro expands to a string constant that describes the date and time
2364 of the last modification of the current source file. The string constant
2365 contains abbreviated day of the week, month, day of the month, time in
2366 hh:mm:ss form, year and looks like @code{@w{"Sun Sep 16 01:03:52 1973"}}.
2367 If the day of the month is less than 10, it is padded with a space on the left.
2368
2369 If GCC cannot determine the current date, it will emit a warning message
2370 (once per compilation) and @code{__TIMESTAMP__} will expand to
2371 @code{@w{"??? ??? ?? ??:??:?? ????"}}.
2372
2373 @item __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
2374 @itemx __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
2375 @itemx __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
2376 @itemx __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
2377 @itemx __GCC_HAVE_SYNC_COMPARE_AND_SWAP_16
2378 These macros are defined when the target processor supports atomic compare
2379 and swap operations on operands 1, 2, 4, 8 or 16 bytes in length, respectively.
2380
2381 @item __GCC_HAVE_DWARF2_CFI_ASM
2382 This macro is defined when the compiler is emitting Dwarf2 CFI directives
2383 to the assembler. When this is defined, it is possible to emit those same
2384 directives in inline assembly.
2385
2386 @item __FP_FAST_FMA
2387 @itemx __FP_FAST_FMAF
2388 @itemx __FP_FAST_FMAL
2389 These macros are defined with value 1 if the backend supports the
2390 @code{fma}, @code{fmaf}, and @code{fmal} builtin functions, so that
2391 the include file @file{math.h} can define the macros
2392 @code{FP_FAST_FMA}, @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL}
2393 for compatibility with the 1999 C standard.
2394
2395 @item __GCC_IEC_559
2396 This macro is defined to indicate the intended level of support for
2397 IEEE 754 (IEC 60559) floating-point arithmetic. It expands to a
2398 nonnegative integer value. If 0, it indicates that the combination of
2399 the compiler configuration and the command-line options is not
2400 intended to support IEEE 754 arithmetic for @code{float} and
2401 @code{double} as defined in C99 and C11 Annex F (for example, that the
2402 standard rounding modes and exceptions are not supported, or that
2403 optimizations are enabled that conflict with IEEE 754 semantics). If
2404 1, it indicates that IEEE 754 arithmetic is intended to be supported;
2405 this does not mean that all relevant language features are supported
2406 by GCC. If 2 or more, it additionally indicates support for IEEE
2407 754-2008 (in particular, that the binary encodings for quiet and
2408 signaling NaNs are as specified in IEEE 754-2008).
2409
2410 This macro does not indicate the default state of command-line options
2411 that control optimizations that C99 and C11 permit to be controlled by
2412 standard pragmas, where those standards do not require a particular
2413 default state. It does not indicate whether optimizations respect
2414 signaling NaN semantics (the macro for that is
2415 @code{__SUPPORT_SNAN__}). It does not indicate support for decimal
2416 floating point or the IEEE 754 binary16 and binary128 types.
2417
2418 @item __GCC_IEC_559_COMPLEX
2419 This macro is defined to indicate the intended level of support for
2420 IEEE 754 (IEC 60559) floating-point arithmetic for complex numbers, as
2421 defined in C99 and C11 Annex G. It expands to a nonnegative integer
2422 value. If 0, it indicates that the combination of the compiler
2423 configuration and the command-line options is not intended to support
2424 Annex G requirements (for example, because @option{-fcx-limited-range}
2425 was used). If 1 or more, it indicates that it is intended to support
2426 those requirements; this does not mean that all relevant language
2427 features are supported by GCC.
2428
2429 @item __NO_MATH_ERRNO__
2430 This macro is defined if @option{-fno-math-errno} is used, or enabled
2431 by another option such as @option{-ffast-math} or by default.
2432 @end table
2433
2434 @node System-specific Predefined Macros
2435 @subsection System-specific Predefined Macros
2436
2437 @cindex system-specific predefined macros
2438 @cindex predefined macros, system-specific
2439 @cindex reserved namespace
2440
2441 The C preprocessor normally predefines several macros that indicate what
2442 type of system and machine is in use. They are obviously different on
2443 each target supported by GCC@. This manual, being for all systems and
2444 machines, cannot tell you what their names are, but you can use
2445 @command{cpp -dM} to see them all. @xref{Invocation}. All system-specific
2446 predefined macros expand to a constant value, so you can test them with
2447 either @samp{#ifdef} or @samp{#if}.
2448
2449 The C standard requires that all system-specific macros be part of the
2450 @dfn{reserved namespace}. All names which begin with two underscores,
2451 or an underscore and a capital letter, are reserved for the compiler and
2452 library to use as they wish. However, historically system-specific
2453 macros have had names with no special prefix; for instance, it is common
2454 to find @code{unix} defined on Unix systems. For all such macros, GCC
2455 provides a parallel macro with two underscores added at the beginning
2456 and the end. If @code{unix} is defined, @code{__unix__} will be defined
2457 too. There will never be more than two underscores; the parallel of
2458 @code{_mips} is @code{__mips__}.
2459
2460 When the @option{-ansi} option, or any @option{-std} option that
2461 requests strict conformance, is given to the compiler, all the
2462 system-specific predefined macros outside the reserved namespace are
2463 suppressed. The parallel macros, inside the reserved namespace, remain
2464 defined.
2465
2466 We are slowly phasing out all predefined macros which are outside the
2467 reserved namespace. You should never use them in new programs, and we
2468 encourage you to correct older code to use the parallel macros whenever
2469 you find it. We don't recommend you use the system-specific macros that
2470 are in the reserved namespace, either. It is better in the long run to
2471 check specifically for features you need, using a tool such as
2472 @command{autoconf}.
2473
2474 @node C++ Named Operators
2475 @subsection C++ Named Operators
2476 @cindex named operators
2477 @cindex C++ named operators
2478 @cindex @file{iso646.h}
2479
2480 In C++, there are eleven keywords which are simply alternate spellings
2481 of operators normally written with punctuation. These keywords are
2482 treated as such even in the preprocessor. They function as operators in
2483 @samp{#if}, and they cannot be defined as macros or poisoned. In C, you
2484 can request that those keywords take their C++ meaning by including
2485 @file{iso646.h}. That header defines each one as a normal object-like
2486 macro expanding to the appropriate punctuator.
2487
2488 These are the named operators and their corresponding punctuators:
2489
2490 @multitable {Named Operator} {Punctuator}
2491 @item Named Operator @tab Punctuator
2492 @item @code{and} @tab @code{&&}
2493 @item @code{and_eq} @tab @code{&=}
2494 @item @code{bitand} @tab @code{&}
2495 @item @code{bitor} @tab @code{|}
2496 @item @code{compl} @tab @code{~}
2497 @item @code{not} @tab @code{!}
2498 @item @code{not_eq} @tab @code{!=}
2499 @item @code{or} @tab @code{||}
2500 @item @code{or_eq} @tab @code{|=}
2501 @item @code{xor} @tab @code{^}
2502 @item @code{xor_eq} @tab @code{^=}
2503 @end multitable
2504
2505 @node Undefining and Redefining Macros
2506 @section Undefining and Redefining Macros
2507 @cindex undefining macros
2508 @cindex redefining macros
2509 @findex #undef
2510
2511 If a macro ceases to be useful, it may be @dfn{undefined} with the
2512 @samp{#undef} directive. @samp{#undef} takes a single argument, the
2513 name of the macro to undefine. You use the bare macro name, even if the
2514 macro is function-like. It is an error if anything appears on the line
2515 after the macro name. @samp{#undef} has no effect if the name is not a
2516 macro.
2517
2518 @smallexample
2519 #define FOO 4
2520 x = FOO; @expansion{} x = 4;
2521 #undef FOO
2522 x = FOO; @expansion{} x = FOO;
2523 @end smallexample
2524
2525 Once a macro has been undefined, that identifier may be @dfn{redefined}
2526 as a macro by a subsequent @samp{#define} directive. The new definition
2527 need not have any resemblance to the old definition.
2528
2529 However, if an identifier which is currently a macro is redefined, then
2530 the new definition must be @dfn{effectively the same} as the old one.
2531 Two macro definitions are effectively the same if:
2532 @itemize @bullet
2533 @item Both are the same type of macro (object- or function-like).
2534 @item All the tokens of the replacement list are the same.
2535 @item If there are any parameters, they are the same.
2536 @item Whitespace appears in the same places in both. It need not be
2537 exactly the same amount of whitespace, though. Remember that comments
2538 count as whitespace.
2539 @end itemize
2540
2541 @noindent
2542 These definitions are effectively the same:
2543 @smallexample
2544 #define FOUR (2 + 2)
2545 #define FOUR (2 + 2)
2546 #define FOUR (2 /* @r{two} */ + 2)
2547 @end smallexample
2548 @noindent
2549 but these are not:
2550 @smallexample
2551 #define FOUR (2 + 2)
2552 #define FOUR ( 2+2 )
2553 #define FOUR (2 * 2)
2554 #define FOUR(score,and,seven,years,ago) (2 + 2)
2555 @end smallexample
2556
2557 If a macro is redefined with a definition that is not effectively the
2558 same as the old one, the preprocessor issues a warning and changes the
2559 macro to use the new definition. If the new definition is effectively
2560 the same, the redefinition is silently ignored. This allows, for
2561 instance, two different headers to define a common macro. The
2562 preprocessor will only complain if the definitions do not match.
2563
2564 @node Directives Within Macro Arguments
2565 @section Directives Within Macro Arguments
2566 @cindex macro arguments and directives
2567
2568 Occasionally it is convenient to use preprocessor directives within
2569 the arguments of a macro. The C and C++ standards declare that
2570 behavior in these cases is undefined.
2571
2572 Versions of CPP prior to 3.2 would reject such constructs with an
2573 error message. This was the only syntactic difference between normal
2574 functions and function-like macros, so it seemed attractive to remove
2575 this limitation, and people would often be surprised that they could
2576 not use macros in this way. Moreover, sometimes people would use
2577 conditional compilation in the argument list to a normal library
2578 function like @samp{printf}, only to find that after a library upgrade
2579 @samp{printf} had changed to be a function-like macro, and their code
2580 would no longer compile. So from version 3.2 we changed CPP to
2581 successfully process arbitrary directives within macro arguments in
2582 exactly the same way as it would have processed the directive were the
2583 function-like macro invocation not present.
2584
2585 If, within a macro invocation, that macro is redefined, then the new
2586 definition takes effect in time for argument pre-expansion, but the
2587 original definition is still used for argument replacement. Here is a
2588 pathological example:
2589
2590 @smallexample
2591 #define f(x) x x
2592 f (1
2593 #undef f
2594 #define f 2
2595 f)
2596 @end smallexample
2597
2598 @noindent
2599 which expands to
2600
2601 @smallexample
2602 1 2 1 2
2603 @end smallexample
2604
2605 @noindent
2606 with the semantics described above.
2607
2608 @node Macro Pitfalls
2609 @section Macro Pitfalls
2610 @cindex problems with macros
2611 @cindex pitfalls of macros
2612
2613 In this section we describe some special rules that apply to macros and
2614 macro expansion, and point out certain cases in which the rules have
2615 counter-intuitive consequences that you must watch out for.
2616
2617 @menu
2618 * Misnesting::
2619 * Operator Precedence Problems::
2620 * Swallowing the Semicolon::
2621 * Duplication of Side Effects::
2622 * Self-Referential Macros::
2623 * Argument Prescan::
2624 * Newlines in Arguments::
2625 @end menu
2626
2627 @node Misnesting
2628 @subsection Misnesting
2629
2630 When a macro is called with arguments, the arguments are substituted
2631 into the macro body and the result is checked, together with the rest of
2632 the input file, for more macro calls. It is possible to piece together
2633 a macro call coming partially from the macro body and partially from the
2634 arguments. For example,
2635
2636 @smallexample
2637 #define twice(x) (2*(x))
2638 #define call_with_1(x) x(1)
2639 call_with_1 (twice)
2640 @expansion{} twice(1)
2641 @expansion{} (2*(1))
2642 @end smallexample
2643
2644 Macro definitions do not have to have balanced parentheses. By writing
2645 an unbalanced open parenthesis in a macro body, it is possible to create
2646 a macro call that begins inside the macro body but ends outside of it.
2647 For example,
2648
2649 @smallexample
2650 #define strange(file) fprintf (file, "%s %d",
2651 @dots{}
2652 strange(stderr) p, 35)
2653 @expansion{} fprintf (stderr, "%s %d", p, 35)
2654 @end smallexample
2655
2656 The ability to piece together a macro call can be useful, but the use of
2657 unbalanced open parentheses in a macro body is just confusing, and
2658 should be avoided.
2659
2660 @node Operator Precedence Problems
2661 @subsection Operator Precedence Problems
2662 @cindex parentheses in macro bodies
2663
2664 You may have noticed that in most of the macro definition examples shown
2665 above, each occurrence of a macro argument name had parentheses around
2666 it. In addition, another pair of parentheses usually surround the
2667 entire macro definition. Here is why it is best to write macros that
2668 way.
2669
2670 Suppose you define a macro as follows,
2671
2672 @smallexample
2673 #define ceil_div(x, y) (x + y - 1) / y
2674 @end smallexample
2675
2676 @noindent
2677 whose purpose is to divide, rounding up. (One use for this operation is
2678 to compute how many @code{int} objects are needed to hold a certain
2679 number of @code{char} objects.) Then suppose it is used as follows:
2680
2681 @smallexample
2682 a = ceil_div (b & c, sizeof (int));
2683 @expansion{} a = (b & c + sizeof (int) - 1) / sizeof (int);
2684 @end smallexample
2685
2686 @noindent
2687 This does not do what is intended. The operator-precedence rules of
2688 C make it equivalent to this:
2689
2690 @smallexample
2691 a = (b & (c + sizeof (int) - 1)) / sizeof (int);
2692 @end smallexample
2693
2694 @noindent
2695 What we want is this:
2696
2697 @smallexample
2698 a = ((b & c) + sizeof (int) - 1)) / sizeof (int);
2699 @end smallexample
2700
2701 @noindent
2702 Defining the macro as
2703
2704 @smallexample
2705 #define ceil_div(x, y) ((x) + (y) - 1) / (y)
2706 @end smallexample
2707
2708 @noindent
2709 provides the desired result.
2710
2711 Unintended grouping can result in another way. Consider @code{sizeof
2712 ceil_div(1, 2)}. That has the appearance of a C expression that would
2713 compute the size of the type of @code{ceil_div (1, 2)}, but in fact it
2714 means something very different. Here is what it expands to:
2715
2716 @smallexample
2717 sizeof ((1) + (2) - 1) / (2)
2718 @end smallexample
2719
2720 @noindent
2721 This would take the size of an integer and divide it by two. The
2722 precedence rules have put the division outside the @code{sizeof} when it
2723 was intended to be inside.
2724
2725 Parentheses around the entire macro definition prevent such problems.
2726 Here, then, is the recommended way to define @code{ceil_div}:
2727
2728 @smallexample
2729 #define ceil_div(x, y) (((x) + (y) - 1) / (y))
2730 @end smallexample
2731
2732 @node Swallowing the Semicolon
2733 @subsection Swallowing the Semicolon
2734 @cindex semicolons (after macro calls)
2735
2736 Often it is desirable to define a macro that expands into a compound
2737 statement. Consider, for example, the following macro, that advances a
2738 pointer (the argument @code{p} says where to find it) across whitespace
2739 characters:
2740
2741 @smallexample
2742 #define SKIP_SPACES(p, limit) \
2743 @{ char *lim = (limit); \
2744 while (p < lim) @{ \
2745 if (*p++ != ' ') @{ \
2746 p--; break; @}@}@}
2747 @end smallexample
2748
2749 @noindent
2750 Here backslash-newline is used to split the macro definition, which must
2751 be a single logical line, so that it resembles the way such code would
2752 be laid out if not part of a macro definition.
2753
2754 A call to this macro might be @code{SKIP_SPACES (p, lim)}. Strictly
2755 speaking, the call expands to a compound statement, which is a complete
2756 statement with no need for a semicolon to end it. However, since it
2757 looks like a function call, it minimizes confusion if you can use it
2758 like a function call, writing a semicolon afterward, as in
2759 @code{SKIP_SPACES (p, lim);}
2760
2761 This can cause trouble before @code{else} statements, because the
2762 semicolon is actually a null statement. Suppose you write
2763
2764 @smallexample
2765 if (*p != 0)
2766 SKIP_SPACES (p, lim);
2767 else @dots{}
2768 @end smallexample
2769
2770 @noindent
2771 The presence of two statements---the compound statement and a null
2772 statement---in between the @code{if} condition and the @code{else}
2773 makes invalid C code.
2774
2775 The definition of the macro @code{SKIP_SPACES} can be altered to solve
2776 this problem, using a @code{do @dots{} while} statement. Here is how:
2777
2778 @smallexample
2779 #define SKIP_SPACES(p, limit) \
2780 do @{ char *lim = (limit); \
2781 while (p < lim) @{ \
2782 if (*p++ != ' ') @{ \
2783 p--; break; @}@}@} \
2784 while (0)
2785 @end smallexample
2786
2787 Now @code{SKIP_SPACES (p, lim);} expands into
2788
2789 @smallexample
2790 do @{@dots{}@} while (0);
2791 @end smallexample
2792
2793 @noindent
2794 which is one statement. The loop executes exactly once; most compilers
2795 generate no extra code for it.
2796
2797 @node Duplication of Side Effects
2798 @subsection Duplication of Side Effects
2799
2800 @cindex side effects (in macro arguments)
2801 @cindex unsafe macros
2802 Many C programs define a macro @code{min}, for ``minimum'', like this:
2803
2804 @smallexample
2805 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
2806 @end smallexample
2807
2808 When you use this macro with an argument containing a side effect,
2809 as shown here,
2810
2811 @smallexample
2812 next = min (x + y, foo (z));
2813 @end smallexample
2814
2815 @noindent
2816 it expands as follows:
2817
2818 @smallexample
2819 next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));
2820 @end smallexample
2821
2822 @noindent
2823 where @code{x + y} has been substituted for @code{X} and @code{foo (z)}
2824 for @code{Y}.
2825
2826 The function @code{foo} is used only once in the statement as it appears
2827 in the program, but the expression @code{foo (z)} has been substituted
2828 twice into the macro expansion. As a result, @code{foo} might be called
2829 two times when the statement is executed. If it has side effects or if
2830 it takes a long time to compute, the results might not be what you
2831 intended. We say that @code{min} is an @dfn{unsafe} macro.
2832
2833 The best solution to this problem is to define @code{min} in a way that
2834 computes the value of @code{foo (z)} only once. The C language offers
2835 no standard way to do this, but it can be done with GNU extensions as
2836 follows:
2837
2838 @smallexample
2839 #define min(X, Y) \
2840 (@{ typeof (X) x_ = (X); \
2841 typeof (Y) y_ = (Y); \
2842 (x_ < y_) ? x_ : y_; @})
2843 @end smallexample
2844
2845 The @samp{(@{ @dots{} @})} notation produces a compound statement that
2846 acts as an expression. Its value is the value of its last statement.
2847 This permits us to define local variables and assign each argument to
2848 one. The local variables have underscores after their names to reduce
2849 the risk of conflict with an identifier of wider scope (it is impossible
2850 to avoid this entirely). Now each argument is evaluated exactly once.
2851
2852 If you do not wish to use GNU C extensions, the only solution is to be
2853 careful when @emph{using} the macro @code{min}. For example, you can
2854 calculate the value of @code{foo (z)}, save it in a variable, and use
2855 that variable in @code{min}:
2856
2857 @smallexample
2858 @group
2859 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
2860 @dots{}
2861 @{
2862 int tem = foo (z);
2863 next = min (x + y, tem);
2864 @}
2865 @end group
2866 @end smallexample
2867
2868 @noindent
2869 (where we assume that @code{foo} returns type @code{int}).
2870
2871 @node Self-Referential Macros
2872 @subsection Self-Referential Macros
2873 @cindex self-reference
2874
2875 A @dfn{self-referential} macro is one whose name appears in its
2876 definition. Recall that all macro definitions are rescanned for more
2877 macros to replace. If the self-reference were considered a use of the
2878 macro, it would produce an infinitely large expansion. To prevent this,
2879 the self-reference is not considered a macro call. It is passed into
2880 the preprocessor output unchanged. Consider an example:
2881
2882 @smallexample
2883 #define foo (4 + foo)
2884 @end smallexample
2885
2886 @noindent
2887 where @code{foo} is also a variable in your program.
2888
2889 Following the ordinary rules, each reference to @code{foo} will expand
2890 into @code{(4 + foo)}; then this will be rescanned and will expand into
2891 @code{(4 + (4 + foo))}; and so on until the computer runs out of memory.
2892
2893 The self-reference rule cuts this process short after one step, at
2894 @code{(4 + foo)}. Therefore, this macro definition has the possibly
2895 useful effect of causing the program to add 4 to the value of @code{foo}
2896 wherever @code{foo} is referred to.
2897
2898 In most cases, it is a bad idea to take advantage of this feature. A
2899 person reading the program who sees that @code{foo} is a variable will
2900 not expect that it is a macro as well. The reader will come across the
2901 identifier @code{foo} in the program and think its value should be that
2902 of the variable @code{foo}, whereas in fact the value is four greater.
2903
2904 One common, useful use of self-reference is to create a macro which
2905 expands to itself. If you write
2906
2907 @smallexample
2908 #define EPERM EPERM
2909 @end smallexample
2910
2911 @noindent
2912 then the macro @code{EPERM} expands to @code{EPERM}. Effectively, it is
2913 left alone by the preprocessor whenever it's used in running text. You
2914 can tell that it's a macro with @samp{#ifdef}. You might do this if you
2915 want to define numeric constants with an @code{enum}, but have
2916 @samp{#ifdef} be true for each constant.
2917
2918 If a macro @code{x} expands to use a macro @code{y}, and the expansion of
2919 @code{y} refers to the macro @code{x}, that is an @dfn{indirect
2920 self-reference} of @code{x}. @code{x} is not expanded in this case
2921 either. Thus, if we have
2922
2923 @smallexample
2924 #define x (4 + y)
2925 #define y (2 * x)
2926 @end smallexample
2927
2928 @noindent
2929 then @code{x} and @code{y} expand as follows:
2930
2931 @smallexample
2932 @group
2933 x @expansion{} (4 + y)
2934 @expansion{} (4 + (2 * x))
2935
2936 y @expansion{} (2 * x)
2937 @expansion{} (2 * (4 + y))
2938 @end group
2939 @end smallexample
2940
2941 @noindent
2942 Each macro is expanded when it appears in the definition of the other
2943 macro, but not when it indirectly appears in its own definition.
2944
2945 @node Argument Prescan
2946 @subsection Argument Prescan
2947 @cindex expansion of arguments
2948 @cindex macro argument expansion
2949 @cindex prescan of macro arguments
2950
2951 Macro arguments are completely macro-expanded before they are
2952 substituted into a macro body, unless they are stringified or pasted
2953 with other tokens. After substitution, the entire macro body, including
2954 the substituted arguments, is scanned again for macros to be expanded.
2955 The result is that the arguments are scanned @emph{twice} to expand
2956 macro calls in them.
2957
2958 Most of the time, this has no effect. If the argument contained any
2959 macro calls, they are expanded during the first scan. The result
2960 therefore contains no macro calls, so the second scan does not change
2961 it. If the argument were substituted as given, with no prescan, the
2962 single remaining scan would find the same macro calls and produce the
2963 same results.
2964
2965 You might expect the double scan to change the results when a
2966 self-referential macro is used in an argument of another macro
2967 (@pxref{Self-Referential Macros}): the self-referential macro would be
2968 expanded once in the first scan, and a second time in the second scan.
2969 However, this is not what happens. The self-references that do not
2970 expand in the first scan are marked so that they will not expand in the
2971 second scan either.
2972
2973 You might wonder, ``Why mention the prescan, if it makes no difference?
2974 And why not skip it and make the preprocessor faster?'' The answer is
2975 that the prescan does make a difference in three special cases:
2976
2977 @itemize @bullet
2978 @item
2979 Nested calls to a macro.
2980
2981 We say that @dfn{nested} calls to a macro occur when a macro's argument
2982 contains a call to that very macro. For example, if @code{f} is a macro
2983 that expects one argument, @code{f (f (1))} is a nested pair of calls to
2984 @code{f}. The desired expansion is made by expanding @code{f (1)} and
2985 substituting that into the definition of @code{f}. The prescan causes
2986 the expected result to happen. Without the prescan, @code{f (1)} itself
2987 would be substituted as an argument, and the inner use of @code{f} would
2988 appear during the main scan as an indirect self-reference and would not
2989 be expanded.
2990
2991 @item
2992 Macros that call other macros that stringify or concatenate.
2993
2994 If an argument is stringified or concatenated, the prescan does not
2995 occur. If you @emph{want} to expand a macro, then stringify or
2996 concatenate its expansion, you can do that by causing one macro to call
2997 another macro that does the stringification or concatenation. For
2998 instance, if you have
2999
3000 @smallexample
3001 #define AFTERX(x) X_ ## x
3002 #define XAFTERX(x) AFTERX(x)
3003 #define TABLESIZE 1024
3004 #define BUFSIZE TABLESIZE
3005 @end smallexample
3006
3007 then @code{AFTERX(BUFSIZE)} expands to @code{X_BUFSIZE}, and
3008 @code{XAFTERX(BUFSIZE)} expands to @code{X_1024}. (Not to
3009 @code{X_TABLESIZE}. Prescan always does a complete expansion.)
3010
3011 @item
3012 Macros used in arguments, whose expansions contain unshielded commas.
3013
3014 This can cause a macro expanded on the second scan to be called with the
3015 wrong number of arguments. Here is an example:
3016
3017 @smallexample
3018 #define foo a,b
3019 #define bar(x) lose(x)
3020 #define lose(x) (1 + (x))
3021 @end smallexample
3022
3023 We would like @code{bar(foo)} to turn into @code{(1 + (foo))}, which
3024 would then turn into @code{(1 + (a,b))}. Instead, @code{bar(foo)}
3025 expands into @code{lose(a,b)}, and you get an error because @code{lose}
3026 requires a single argument. In this case, the problem is easily solved
3027 by the same parentheses that ought to be used to prevent misnesting of
3028 arithmetic operations:
3029
3030 @smallexample
3031 #define foo (a,b)
3032 @exdent or
3033 #define bar(x) lose((x))
3034 @end smallexample
3035
3036 The extra pair of parentheses prevents the comma in @code{foo}'s
3037 definition from being interpreted as an argument separator.
3038
3039 @end itemize
3040
3041 @node Newlines in Arguments
3042 @subsection Newlines in Arguments
3043 @cindex newlines in macro arguments
3044
3045 The invocation of a function-like macro can extend over many logical
3046 lines. However, in the present implementation, the entire expansion
3047 comes out on one line. Thus line numbers emitted by the compiler or
3048 debugger refer to the line the invocation started on, which might be
3049 different to the line containing the argument causing the problem.
3050
3051 Here is an example illustrating this:
3052
3053 @smallexample
3054 #define ignore_second_arg(a,b,c) a; c
3055
3056 ignore_second_arg (foo (),
3057 ignored (),
3058 syntax error);
3059 @end smallexample
3060
3061 @noindent
3062 The syntax error triggered by the tokens @code{syntax error} results in
3063 an error message citing line three---the line of ignore_second_arg---
3064 even though the problematic code comes from line five.
3065
3066 We consider this a bug, and intend to fix it in the near future.
3067
3068 @node Conditionals
3069 @chapter Conditionals
3070 @cindex conditionals
3071
3072 A @dfn{conditional} is a directive that instructs the preprocessor to
3073 select whether or not to include a chunk of code in the final token
3074 stream passed to the compiler. Preprocessor conditionals can test
3075 arithmetic expressions, or whether a name is defined as a macro, or both
3076 simultaneously using the special @code{defined} operator.
3077
3078 A conditional in the C preprocessor resembles in some ways an @code{if}
3079 statement in C, but it is important to understand the difference between
3080 them. The condition in an @code{if} statement is tested during the
3081 execution of your program. Its purpose is to allow your program to
3082 behave differently from run to run, depending on the data it is
3083 operating on. The condition in a preprocessing conditional directive is
3084 tested when your program is compiled. Its purpose is to allow different
3085 code to be included in the program depending on the situation at the
3086 time of compilation.
3087
3088 However, the distinction is becoming less clear. Modern compilers often
3089 do test @code{if} statements when a program is compiled, if their
3090 conditions are known not to vary at run time, and eliminate code which
3091 can never be executed. If you can count on your compiler to do this,
3092 you may find that your program is more readable if you use @code{if}
3093 statements with constant conditions (perhaps determined by macros). Of
3094 course, you can only use this to exclude code, not type definitions or
3095 other preprocessing directives, and you can only do it if the code
3096 remains syntactically valid when it is not to be used.
3097
3098 GCC version 3 eliminates this kind of never-executed code even when
3099 not optimizing. Older versions did it only when optimizing.
3100
3101 @menu
3102 * Conditional Uses::
3103 * Conditional Syntax::
3104 * Deleted Code::
3105 @end menu
3106
3107 @node Conditional Uses
3108 @section Conditional Uses
3109
3110 There are three general reasons to use a conditional.
3111
3112 @itemize @bullet
3113 @item
3114 A program may need to use different code depending on the machine or
3115 operating system it is to run on. In some cases the code for one
3116 operating system may be erroneous on another operating system; for
3117 example, it might refer to data types or constants that do not exist on
3118 the other system. When this happens, it is not enough to avoid
3119 executing the invalid code. Its mere presence will cause the compiler
3120 to reject the program. With a preprocessing conditional, the offending
3121 code can be effectively excised from the program when it is not valid.
3122
3123 @item
3124 You may want to be able to compile the same source file into two
3125 different programs. One version might make frequent time-consuming
3126 consistency checks on its intermediate data, or print the values of
3127 those data for debugging, and the other not.
3128
3129 @item
3130 A conditional whose condition is always false is one way to exclude code
3131 from the program but keep it as a sort of comment for future reference.
3132 @end itemize
3133
3134 Simple programs that do not need system-specific logic or complex
3135 debugging hooks generally will not need to use preprocessing
3136 conditionals.
3137
3138 @node Conditional Syntax
3139 @section Conditional Syntax
3140
3141 @findex #if
3142 A conditional in the C preprocessor begins with a @dfn{conditional
3143 directive}: @samp{#if}, @samp{#ifdef} or @samp{#ifndef}.
3144
3145 @menu
3146 * Ifdef::
3147 * If::
3148 * Defined::
3149 * Else::
3150 * Elif::
3151 @end menu
3152
3153 @node Ifdef
3154 @subsection Ifdef
3155 @findex #ifdef
3156 @findex #endif
3157
3158 The simplest sort of conditional is
3159
3160 @smallexample
3161 @group
3162 #ifdef @var{MACRO}
3163
3164 @var{controlled text}
3165
3166 #endif /* @var{MACRO} */
3167 @end group
3168 @end smallexample
3169
3170 @cindex conditional group
3171 This block is called a @dfn{conditional group}. @var{controlled text}
3172 will be included in the output of the preprocessor if and only if
3173 @var{MACRO} is defined. We say that the conditional @dfn{succeeds} if
3174 @var{MACRO} is defined, @dfn{fails} if it is not.
3175
3176 The @var{controlled text} inside of a conditional can include
3177 preprocessing directives. They are executed only if the conditional
3178 succeeds. You can nest conditional groups inside other conditional
3179 groups, but they must be completely nested. In other words,
3180 @samp{#endif} always matches the nearest @samp{#ifdef} (or
3181 @samp{#ifndef}, or @samp{#if}). Also, you cannot start a conditional
3182 group in one file and end it in another.
3183
3184 Even if a conditional fails, the @var{controlled text} inside it is
3185 still run through initial transformations and tokenization. Therefore,
3186 it must all be lexically valid C@. Normally the only way this matters is
3187 that all comments and string literals inside a failing conditional group
3188 must still be properly ended.
3189
3190 The comment following the @samp{#endif} is not required, but it is a
3191 good practice if there is a lot of @var{controlled text}, because it
3192 helps people match the @samp{#endif} to the corresponding @samp{#ifdef}.
3193 Older programs sometimes put @var{MACRO} directly after the
3194 @samp{#endif} without enclosing it in a comment. This is invalid code
3195 according to the C standard. CPP accepts it with a warning. It
3196 never affects which @samp{#ifndef} the @samp{#endif} matches.
3197
3198 @findex #ifndef
3199 Sometimes you wish to use some code if a macro is @emph{not} defined.
3200 You can do this by writing @samp{#ifndef} instead of @samp{#ifdef}.
3201 One common use of @samp{#ifndef} is to include code only the first
3202 time a header file is included. @xref{Once-Only Headers}.
3203
3204 Macro definitions can vary between compilations for several reasons.
3205 Here are some samples.
3206
3207 @itemize @bullet
3208 @item
3209 Some macros are predefined on each kind of machine
3210 (@pxref{System-specific Predefined Macros}). This allows you to provide
3211 code specially tuned for a particular machine.
3212
3213 @item
3214 System header files define more macros, associated with the features
3215 they implement. You can test these macros with conditionals to avoid
3216 using a system feature on a machine where it is not implemented.
3217
3218 @item
3219 Macros can be defined or undefined with the @option{-D} and @option{-U}
3220 command-line options when you compile the program. You can arrange to
3221 compile the same source file into two different programs by choosing a
3222 macro name to specify which program you want, writing conditionals to
3223 test whether or how this macro is defined, and then controlling the
3224 state of the macro with command-line options, perhaps set in the
3225 Makefile. @xref{Invocation}.
3226
3227 @item
3228 Your program might have a special header file (often called
3229 @file{config.h}) that is adjusted when the program is compiled. It can
3230 define or not define macros depending on the features of the system and
3231 the desired capabilities of the program. The adjustment can be
3232 automated by a tool such as @command{autoconf}, or done by hand.
3233 @end itemize
3234
3235 @node If
3236 @subsection If
3237
3238 The @samp{#if} directive allows you to test the value of an arithmetic
3239 expression, rather than the mere existence of one macro. Its syntax is
3240
3241 @smallexample
3242 @group
3243 #if @var{expression}
3244
3245 @var{controlled text}
3246
3247 #endif /* @var{expression} */
3248 @end group
3249 @end smallexample
3250
3251 @var{expression} is a C expression of integer type, subject to stringent
3252 restrictions. It may contain
3253
3254 @itemize @bullet
3255 @item
3256 Integer constants.
3257
3258 @item
3259 Character constants, which are interpreted as they would be in normal
3260 code.
3261
3262 @item
3263 Arithmetic operators for addition, subtraction, multiplication,
3264 division, bitwise operations, shifts, comparisons, and logical
3265 operations (@code{&&} and @code{||}). The latter two obey the usual
3266 short-circuiting rules of standard C@.
3267
3268 @item
3269 Macros. All macros in the expression are expanded before actual
3270 computation of the expression's value begins.
3271
3272 @item
3273 Uses of the @code{defined} operator, which lets you check whether macros
3274 are defined in the middle of an @samp{#if}.
3275
3276 @item
3277 Identifiers that are not macros, which are all considered to be the
3278 number zero. This allows you to write @code{@w{#if MACRO}} instead of
3279 @code{@w{#ifdef MACRO}}, if you know that MACRO, when defined, will
3280 always have a nonzero value. Function-like macros used without their
3281 function call parentheses are also treated as zero.
3282
3283 In some contexts this shortcut is undesirable. The @option{-Wundef}
3284 option causes GCC to warn whenever it encounters an identifier which is
3285 not a macro in an @samp{#if}.
3286 @end itemize
3287
3288 The preprocessor does not know anything about types in the language.
3289 Therefore, @code{sizeof} operators are not recognized in @samp{#if}, and
3290 neither are @code{enum} constants. They will be taken as identifiers
3291 which are not macros, and replaced by zero. In the case of
3292 @code{sizeof}, this is likely to cause the expression to be invalid.
3293
3294 The preprocessor calculates the value of @var{expression}. It carries
3295 out all calculations in the widest integer type known to the compiler;
3296 on most machines supported by GCC this is 64 bits. This is not the same
3297 rule as the compiler uses to calculate the value of a constant
3298 expression, and may give different results in some cases. If the value
3299 comes out to be nonzero, the @samp{#if} succeeds and the @var{controlled
3300 text} is included; otherwise it is skipped.
3301
3302 @node Defined
3303 @subsection Defined
3304
3305 @cindex @code{defined}
3306 The special operator @code{defined} is used in @samp{#if} and
3307 @samp{#elif} expressions to test whether a certain name is defined as a
3308 macro. @code{defined @var{name}} and @code{defined (@var{name})} are
3309 both expressions whose value is 1 if @var{name} is defined as a macro at
3310 the current point in the program, and 0 otherwise. Thus, @code{@w{#if
3311 defined MACRO}} is precisely equivalent to @code{@w{#ifdef MACRO}}.
3312
3313 @code{defined} is useful when you wish to test more than one macro for
3314 existence at once. For example,
3315
3316 @smallexample
3317 #if defined (__vax__) || defined (__ns16000__)
3318 @end smallexample
3319
3320 @noindent
3321 would succeed if either of the names @code{__vax__} or
3322 @code{__ns16000__} is defined as a macro.
3323
3324 Conditionals written like this:
3325
3326 @smallexample
3327 #if defined BUFSIZE && BUFSIZE >= 1024
3328 @end smallexample
3329
3330 @noindent
3331 can generally be simplified to just @code{@w{#if BUFSIZE >= 1024}},
3332 since if @code{BUFSIZE} is not defined, it will be interpreted as having
3333 the value zero.
3334
3335 If the @code{defined} operator appears as a result of a macro expansion,
3336 the C standard says the behavior is undefined. GNU cpp treats it as a
3337 genuine @code{defined} operator and evaluates it normally. It will warn
3338 wherever your code uses this feature if you use the command-line option
3339 @option{-pedantic}, since other compilers may handle it differently.
3340
3341 @node Else
3342 @subsection Else
3343
3344 @findex #else
3345 The @samp{#else} directive can be added to a conditional to provide
3346 alternative text to be used if the condition fails. This is what it
3347 looks like:
3348
3349 @smallexample
3350 @group
3351 #if @var{expression}
3352 @var{text-if-true}
3353 #else /* Not @var{expression} */
3354 @var{text-if-false}
3355 #endif /* Not @var{expression} */
3356 @end group
3357 @end smallexample
3358
3359 @noindent
3360 If @var{expression} is nonzero, the @var{text-if-true} is included and
3361 the @var{text-if-false} is skipped. If @var{expression} is zero, the
3362 opposite happens.
3363
3364 You can use @samp{#else} with @samp{#ifdef} and @samp{#ifndef}, too.
3365
3366 @node Elif
3367 @subsection Elif
3368
3369 @findex #elif
3370 One common case of nested conditionals is used to check for more than two
3371 possible alternatives. For example, you might have
3372
3373 @smallexample
3374 #if X == 1
3375 @dots{}
3376 #else /* X != 1 */
3377 #if X == 2
3378 @dots{}
3379 #else /* X != 2 */
3380 @dots{}
3381 #endif /* X != 2 */
3382 #endif /* X != 1 */
3383 @end smallexample
3384
3385 Another conditional directive, @samp{#elif}, allows this to be
3386 abbreviated as follows:
3387
3388 @smallexample
3389 #if X == 1
3390 @dots{}
3391 #elif X == 2
3392 @dots{}
3393 #else /* X != 2 and X != 1*/
3394 @dots{}
3395 #endif /* X != 2 and X != 1*/
3396 @end smallexample
3397
3398 @samp{#elif} stands for ``else if''. Like @samp{#else}, it goes in the
3399 middle of a conditional group and subdivides it; it does not require a
3400 matching @samp{#endif} of its own. Like @samp{#if}, the @samp{#elif}
3401 directive includes an expression to be tested. The text following the
3402 @samp{#elif} is processed only if the original @samp{#if}-condition
3403 failed and the @samp{#elif} condition succeeds.
3404
3405 More than one @samp{#elif} can go in the same conditional group. Then
3406 the text after each @samp{#elif} is processed only if the @samp{#elif}
3407 condition succeeds after the original @samp{#if} and all previous
3408 @samp{#elif} directives within it have failed.
3409
3410 @samp{#else} is allowed after any number of @samp{#elif} directives, but
3411 @samp{#elif} may not follow @samp{#else}.
3412
3413 @node Deleted Code
3414 @section Deleted Code
3415 @cindex commenting out code
3416
3417 If you replace or delete a part of the program but want to keep the old
3418 code around for future reference, you often cannot simply comment it
3419 out. Block comments do not nest, so the first comment inside the old
3420 code will end the commenting-out. The probable result is a flood of
3421 syntax errors.
3422
3423 One way to avoid this problem is to use an always-false conditional
3424 instead. For instance, put @code{#if 0} before the deleted code and
3425 @code{#endif} after it. This works even if the code being turned
3426 off contains conditionals, but they must be entire conditionals
3427 (balanced @samp{#if} and @samp{#endif}).
3428
3429 Some people use @code{#ifdef notdef} instead. This is risky, because
3430 @code{notdef} might be accidentally defined as a macro, and then the
3431 conditional would succeed. @code{#if 0} can be counted on to fail.
3432
3433 Do not use @code{#if 0} for comments which are not C code. Use a real
3434 comment, instead. The interior of @code{#if 0} must consist of complete
3435 tokens; in particular, single-quote characters must balance. Comments
3436 often contain unbalanced single-quote characters (known in English as
3437 apostrophes). These confuse @code{#if 0}. They don't confuse
3438 @samp{/*}.
3439
3440 @node Diagnostics
3441 @chapter Diagnostics
3442 @cindex diagnostic
3443 @cindex reporting errors
3444 @cindex reporting warnings
3445
3446 @findex #error
3447 The directive @samp{#error} causes the preprocessor to report a fatal
3448 error. The tokens forming the rest of the line following @samp{#error}
3449 are used as the error message.
3450
3451 You would use @samp{#error} inside of a conditional that detects a
3452 combination of parameters which you know the program does not properly
3453 support. For example, if you know that the program will not run
3454 properly on a VAX, you might write
3455
3456 @smallexample
3457 @group
3458 #ifdef __vax__
3459 #error "Won't work on VAXen. See comments at get_last_object."
3460 #endif
3461 @end group
3462 @end smallexample
3463
3464 If you have several configuration parameters that must be set up by
3465 the installation in a consistent way, you can use conditionals to detect
3466 an inconsistency and report it with @samp{#error}. For example,
3467
3468 @smallexample
3469 #if !defined(FOO) && defined(BAR)
3470 #error "BAR requires FOO."
3471 #endif
3472 @end smallexample
3473
3474 @findex #warning
3475 The directive @samp{#warning} is like @samp{#error}, but causes the
3476 preprocessor to issue a warning and continue preprocessing. The tokens
3477 following @samp{#warning} are used as the warning message.
3478
3479 You might use @samp{#warning} in obsolete header files, with a message
3480 directing the user to the header file which should be used instead.
3481
3482 Neither @samp{#error} nor @samp{#warning} macro-expands its argument.
3483 Internal whitespace sequences are each replaced with a single space.
3484 The line must consist of complete tokens. It is wisest to make the
3485 argument of these directives be a single string constant; this avoids
3486 problems with apostrophes and the like.
3487
3488 @node Line Control
3489 @chapter Line Control
3490 @cindex line control
3491
3492 The C preprocessor informs the C compiler of the location in your source
3493 code where each token came from. Presently, this is just the file name
3494 and line number. All the tokens resulting from macro expansion are
3495 reported as having appeared on the line of the source file where the
3496 outermost macro was used. We intend to be more accurate in the future.
3497
3498 If you write a program which generates source code, such as the
3499 @command{bison} parser generator, you may want to adjust the preprocessor's
3500 notion of the current file name and line number by hand. Parts of the
3501 output from @command{bison} are generated from scratch, other parts come
3502 from a standard parser file. The rest are copied verbatim from
3503 @command{bison}'s input. You would like compiler error messages and
3504 symbolic debuggers to be able to refer to @code{bison}'s input file.
3505
3506 @findex #line
3507 @command{bison} or any such program can arrange this by writing
3508 @samp{#line} directives into the output file. @samp{#line} is a
3509 directive that specifies the original line number and source file name
3510 for subsequent input in the current preprocessor input file.
3511 @samp{#line} has three variants:
3512
3513 @table @code
3514 @item #line @var{linenum}
3515 @var{linenum} is a non-negative decimal integer constant. It specifies
3516 the line number which should be reported for the following line of
3517 input. Subsequent lines are counted from @var{linenum}.
3518
3519 @item #line @var{linenum} @var{filename}
3520 @var{linenum} is the same as for the first form, and has the same
3521 effect. In addition, @var{filename} is a string constant. The
3522 following line and all subsequent lines are reported to come from the
3523 file it specifies, until something else happens to change that.
3524 @var{filename} is interpreted according to the normal rules for a string
3525 constant: backslash escapes are interpreted. This is different from
3526 @samp{#include}.
3527
3528 Previous versions of CPP did not interpret escapes in @samp{#line};
3529 we have changed it because the standard requires they be interpreted,
3530 and most other compilers do.
3531
3532 @item #line @var{anything else}
3533 @var{anything else} is checked for macro calls, which are expanded.
3534 The result should match one of the above two forms.
3535 @end table
3536
3537 @samp{#line} directives alter the results of the @code{__FILE__} and
3538 @code{__LINE__} predefined macros from that point on. @xref{Standard
3539 Predefined Macros}. They do not have any effect on @samp{#include}'s
3540 idea of the directory containing the current file. This is a change
3541 from GCC 2.95. Previously, a file reading
3542
3543 @smallexample
3544 #line 1 "../src/gram.y"
3545 #include "gram.h"
3546 @end smallexample
3547
3548 would search for @file{gram.h} in @file{../src}, then the @option{-I}
3549 chain; the directory containing the physical source file would not be
3550 searched. In GCC 3.0 and later, the @samp{#include} is not affected by
3551 the presence of a @samp{#line} referring to a different directory.
3552
3553 We made this change because the old behavior caused problems when
3554 generated source files were transported between machines. For instance,
3555 it is common practice to ship generated parsers with a source release,
3556 so that people building the distribution do not need to have yacc or
3557 Bison installed. These files frequently have @samp{#line} directives
3558 referring to the directory tree of the system where the distribution was
3559 created. If GCC tries to search for headers in those directories, the
3560 build is likely to fail.
3561
3562 The new behavior can cause failures too, if the generated file is not
3563 in the same directory as its source and it attempts to include a header
3564 which would be visible searching from the directory containing the
3565 source file. However, this problem is easily solved with an additional
3566 @option{-I} switch on the command line. The failures caused by the old
3567 semantics could sometimes be corrected only by editing the generated
3568 files, which is difficult and error-prone.
3569
3570 @node Pragmas
3571 @chapter Pragmas
3572
3573 The @samp{#pragma} directive is the method specified by the C standard
3574 for providing additional information to the compiler, beyond what is
3575 conveyed in the language itself. Three forms of this directive
3576 (commonly known as @dfn{pragmas}) are specified by the 1999 C standard.
3577 A C compiler is free to attach any meaning it likes to other pragmas.
3578
3579 GCC has historically preferred to use extensions to the syntax of the
3580 language, such as @code{__attribute__}, for this purpose. However, GCC
3581 does define a few pragmas of its own. These mostly have effects on the
3582 entire translation unit or source file.
3583
3584 In GCC version 3, all GNU-defined, supported pragmas have been given a
3585 @code{GCC} prefix. This is in line with the @code{STDC} prefix on all
3586 pragmas defined by C99. For backward compatibility, pragmas which were
3587 recognized by previous versions are still recognized without the
3588 @code{GCC} prefix, but that usage is deprecated. Some older pragmas are
3589 deprecated in their entirety. They are not recognized with the
3590 @code{GCC} prefix. @xref{Obsolete Features}.
3591
3592 @cindex @code{_Pragma}
3593 C99 introduces the @code{@w{_Pragma}} operator. This feature addresses a
3594 major problem with @samp{#pragma}: being a directive, it cannot be
3595 produced as the result of macro expansion. @code{@w{_Pragma}} is an
3596 operator, much like @code{sizeof} or @code{defined}, and can be embedded
3597 in a macro.
3598
3599 Its syntax is @code{@w{_Pragma (@var{string-literal})}}, where
3600 @var{string-literal} can be either a normal or wide-character string
3601 literal. It is destringized, by replacing all @samp{\\} with a single
3602 @samp{\} and all @samp{\"} with a @samp{"}. The result is then
3603 processed as if it had appeared as the right hand side of a
3604 @samp{#pragma} directive. For example,
3605
3606 @smallexample
3607 _Pragma ("GCC dependency \"parse.y\"")
3608 @end smallexample
3609
3610 @noindent
3611 has the same effect as @code{#pragma GCC dependency "parse.y"}. The
3612 same effect could be achieved using macros, for example
3613
3614 @smallexample
3615 #define DO_PRAGMA(x) _Pragma (#x)
3616 DO_PRAGMA (GCC dependency "parse.y")
3617 @end smallexample
3618
3619 The standard is unclear on where a @code{_Pragma} operator can appear.
3620 The preprocessor does not accept it within a preprocessing conditional
3621 directive like @samp{#if}. To be safe, you are probably best keeping it
3622 out of directives other than @samp{#define}, and putting it on a line of
3623 its own.
3624
3625 This manual documents the pragmas which are meaningful to the
3626 preprocessor itself. Other pragmas are meaningful to the C or C++
3627 compilers. They are documented in the GCC manual.
3628
3629 GCC plugins may provide their own pragmas.
3630
3631 @ftable @code
3632 @item #pragma GCC dependency
3633 @code{#pragma GCC dependency} allows you to check the relative dates of
3634 the current file and another file. If the other file is more recent than
3635 the current file, a warning is issued. This is useful if the current
3636 file is derived from the other file, and should be regenerated. The
3637 other file is searched for using the normal include search path.
3638 Optional trailing text can be used to give more information in the
3639 warning message.
3640
3641 @smallexample
3642 #pragma GCC dependency "parse.y"
3643 #pragma GCC dependency "/usr/include/time.h" rerun fixincludes
3644 @end smallexample
3645
3646 @item #pragma GCC poison
3647 Sometimes, there is an identifier that you want to remove completely
3648 from your program, and make sure that it never creeps back in. To
3649 enforce this, you can @dfn{poison} the identifier with this pragma.
3650 @code{#pragma GCC poison} is followed by a list of identifiers to
3651 poison. If any of those identifiers appears anywhere in the source
3652 after the directive, it is a hard error. For example,
3653
3654 @smallexample
3655 #pragma GCC poison printf sprintf fprintf
3656 sprintf(some_string, "hello");
3657 @end smallexample
3658
3659 @noindent
3660 will produce an error.
3661
3662 If a poisoned identifier appears as part of the expansion of a macro
3663 which was defined before the identifier was poisoned, it will @emph{not}
3664 cause an error. This lets you poison an identifier without worrying
3665 about system headers defining macros that use it.
3666
3667 For example,
3668
3669 @smallexample
3670 #define strrchr rindex
3671 #pragma GCC poison rindex
3672 strrchr(some_string, 'h');
3673 @end smallexample
3674
3675 @noindent
3676 will not produce an error.
3677
3678 @item #pragma GCC system_header
3679 This pragma takes no arguments. It causes the rest of the code in the
3680 current file to be treated as if it came from a system header.
3681 @xref{System Headers}.
3682
3683 @item #pragma GCC warning
3684 @itemx #pragma GCC error
3685 @code{#pragma GCC warning "message"} causes the preprocessor to issue
3686 a warning diagnostic with the text @samp{message}. The message
3687 contained in the pragma must be a single string literal. Similarly,
3688 @code{#pragma GCC error "message"} issues an error message. Unlike
3689 the @samp{#warning} and @samp{#error} directives, these pragmas can be
3690 embedded in preprocessor macros using @samp{_Pragma}.
3691
3692 @end ftable
3693
3694 @node Other Directives
3695 @chapter Other Directives
3696
3697 @findex #ident
3698 @findex #sccs
3699 The @samp{#ident} directive takes one argument, a string constant. On
3700 some systems, that string constant is copied into a special segment of
3701 the object file. On other systems, the directive is ignored. The
3702 @samp{#sccs} directive is a synonym for @samp{#ident}.
3703
3704 These directives are not part of the C standard, but they are not
3705 official GNU extensions either. What historical information we have
3706 been able to find, suggests they originated with System V@.
3707
3708 @cindex null directive
3709 The @dfn{null directive} consists of a @samp{#} followed by a newline,
3710 with only whitespace (including comments) in between. A null directive
3711 is understood as a preprocessing directive but has no effect on the
3712 preprocessor output. The primary significance of the existence of the
3713 null directive is that an input line consisting of just a @samp{#} will
3714 produce no output, rather than a line of output containing just a
3715 @samp{#}. Supposedly some old C programs contain such lines.
3716
3717 @node Preprocessor Output
3718 @chapter Preprocessor Output
3719
3720 When the C preprocessor is used with the C, C++, or Objective-C
3721 compilers, it is integrated into the compiler and communicates a stream
3722 of binary tokens directly to the compiler's parser. However, it can
3723 also be used in the more conventional standalone mode, where it produces
3724 textual output.
3725 @c FIXME: Document the library interface.
3726
3727 @cindex output format
3728 The output from the C preprocessor looks much like the input, except
3729 that all preprocessing directive lines have been replaced with blank
3730 lines and all comments with spaces. Long runs of blank lines are
3731 discarded.
3732
3733 The ISO standard specifies that it is implementation defined whether a
3734 preprocessor preserves whitespace between tokens, or replaces it with
3735 e.g.@: a single space. In GNU CPP, whitespace between tokens is collapsed
3736 to become a single space, with the exception that the first token on a
3737 non-directive line is preceded with sufficient spaces that it appears in
3738 the same column in the preprocessed output that it appeared in the
3739 original source file. This is so the output is easy to read.
3740 @xref{Differences from previous versions}. CPP does not insert any
3741 whitespace where there was none in the original source, except where
3742 necessary to prevent an accidental token paste.
3743
3744 @cindex linemarkers
3745 Source file name and line number information is conveyed by lines
3746 of the form
3747
3748 @smallexample
3749 # @var{linenum} @var{filename} @var{flags}
3750 @end smallexample
3751
3752 @noindent
3753 These are called @dfn{linemarkers}. They are inserted as needed into
3754 the output (but never within a string or character constant). They mean
3755 that the following line originated in file @var{filename} at line
3756 @var{linenum}. @var{filename} will never contain any non-printing
3757 characters; they are replaced with octal escape sequences.
3758
3759 After the file name comes zero or more flags, which are @samp{1},
3760 @samp{2}, @samp{3}, or @samp{4}. If there are multiple flags, spaces
3761 separate them. Here is what the flags mean:
3762
3763 @table @samp
3764 @item 1
3765 This indicates the start of a new file.
3766 @item 2
3767 This indicates returning to a file (after having included another file).
3768 @item 3
3769 This indicates that the following text comes from a system header file,
3770 so certain warnings should be suppressed.
3771 @item 4
3772 This indicates that the following text should be treated as being
3773 wrapped in an implicit @code{extern "C"} block.
3774 @c maybe cross reference NO_IMPLICIT_EXTERN_C
3775 @end table
3776
3777 As an extension, the preprocessor accepts linemarkers in non-assembler
3778 input files. They are treated like the corresponding @samp{#line}
3779 directive, (@pxref{Line Control}), except that trailing flags are
3780 permitted, and are interpreted with the meanings described above. If
3781 multiple flags are given, they must be in ascending order.
3782
3783 Some directives may be duplicated in the output of the preprocessor.
3784 These are @samp{#ident} (always), @samp{#pragma} (only if the
3785 preprocessor does not handle the pragma itself), and @samp{#define} and
3786 @samp{#undef} (with certain debugging options). If this happens, the
3787 @samp{#} of the directive will always be in the first column, and there
3788 will be no space between the @samp{#} and the directive name. If macro
3789 expansion happens to generate tokens which might be mistaken for a
3790 duplicated directive, a space will be inserted between the @samp{#} and
3791 the directive name.
3792
3793 @node Traditional Mode
3794 @chapter Traditional Mode
3795
3796 Traditional (pre-standard) C preprocessing is rather different from
3797 the preprocessing specified by the standard. When GCC is given the
3798 @option{-traditional-cpp} option, it attempts to emulate a traditional
3799 preprocessor.
3800
3801 GCC versions 3.2 and later only support traditional mode semantics in
3802 the preprocessor, and not in the compiler front ends. This chapter
3803 outlines the traditional preprocessor semantics we implemented.
3804
3805 The implementation does not correspond precisely to the behavior of
3806 earlier versions of GCC, nor to any true traditional preprocessor.
3807 After all, inconsistencies among traditional implementations were a
3808 major motivation for C standardization. However, we intend that it
3809 should be compatible with true traditional preprocessors in all ways
3810 that actually matter.
3811
3812 @menu
3813 * Traditional lexical analysis::
3814 * Traditional macros::
3815 * Traditional miscellany::
3816 * Traditional warnings::
3817 @end menu
3818
3819 @node Traditional lexical analysis
3820 @section Traditional lexical analysis
3821
3822 The traditional preprocessor does not decompose its input into tokens
3823 the same way a standards-conforming preprocessor does. The input is
3824 simply treated as a stream of text with minimal internal form.
3825
3826 This implementation does not treat trigraphs (@pxref{trigraphs})
3827 specially since they were an invention of the standards committee. It
3828 handles arbitrarily-positioned escaped newlines properly and splices
3829 the lines as you would expect; many traditional preprocessors did not
3830 do this.
3831
3832 The form of horizontal whitespace in the input file is preserved in
3833 the output. In particular, hard tabs remain hard tabs. This can be
3834 useful if, for example, you are preprocessing a Makefile.
3835
3836 Traditional CPP only recognizes C-style block comments, and treats the
3837 @samp{/*} sequence as introducing a comment only if it lies outside
3838 quoted text. Quoted text is introduced by the usual single and double
3839 quotes, and also by an initial @samp{<} in a @code{#include}
3840 directive.
3841
3842 Traditionally, comments are completely removed and are not replaced
3843 with a space. Since a traditional compiler does its own tokenization
3844 of the output of the preprocessor, this means that comments can
3845 effectively be used as token paste operators. However, comments
3846 behave like separators for text handled by the preprocessor itself,
3847 since it doesn't re-lex its input. For example, in
3848
3849 @smallexample
3850 #if foo/**/bar
3851 @end smallexample
3852
3853 @noindent
3854 @samp{foo} and @samp{bar} are distinct identifiers and expanded
3855 separately if they happen to be macros. In other words, this
3856 directive is equivalent to
3857
3858 @smallexample
3859 #if foo bar
3860 @end smallexample
3861
3862 @noindent
3863 rather than
3864
3865 @smallexample
3866 #if foobar
3867 @end smallexample
3868
3869 Generally speaking, in traditional mode an opening quote need not have
3870 a matching closing quote. In particular, a macro may be defined with
3871 replacement text that contains an unmatched quote. Of course, if you
3872 attempt to compile preprocessed output containing an unmatched quote
3873 you will get a syntax error.
3874
3875 However, all preprocessing directives other than @code{#define}
3876 require matching quotes. For example:
3877
3878 @smallexample
3879 #define m This macro's fine and has an unmatched quote
3880 "/* This is not a comment. */
3881 /* @r{This is a comment. The following #include directive
3882 is ill-formed.} */
3883 #include <stdio.h
3884 @end smallexample
3885
3886 Just as for the ISO preprocessor, what would be a closing quote can be
3887 escaped with a backslash to prevent the quoted text from closing.
3888
3889 @node Traditional macros
3890 @section Traditional macros
3891
3892 The major difference between traditional and ISO macros is that the
3893 former expand to text rather than to a token sequence. CPP removes
3894 all leading and trailing horizontal whitespace from a macro's
3895 replacement text before storing it, but preserves the form of internal
3896 whitespace.
3897
3898 One consequence is that it is legitimate for the replacement text to
3899 contain an unmatched quote (@pxref{Traditional lexical analysis}). An
3900 unclosed string or character constant continues into the text
3901 following the macro call. Similarly, the text at the end of a macro's
3902 expansion can run together with the text after the macro invocation to
3903 produce a single token.
3904
3905 Normally comments are removed from the replacement text after the
3906 macro is expanded, but if the @option{-CC} option is passed on the
3907 command-line comments are preserved. (In fact, the current
3908 implementation removes comments even before saving the macro
3909 replacement text, but it careful to do it in such a way that the
3910 observed effect is identical even in the function-like macro case.)
3911
3912 The ISO stringification operator @samp{#} and token paste operator
3913 @samp{##} have no special meaning. As explained later, an effect
3914 similar to these operators can be obtained in a different way. Macro
3915 names that are embedded in quotes, either from the main file or after
3916 macro replacement, do not expand.
3917
3918 CPP replaces an unquoted object-like macro name with its replacement
3919 text, and then rescans it for further macros to replace. Unlike
3920 standard macro expansion, traditional macro expansion has no provision
3921 to prevent recursion. If an object-like macro appears unquoted in its
3922 replacement text, it will be replaced again during the rescan pass,
3923 and so on @emph{ad infinitum}. GCC detects when it is expanding
3924 recursive macros, emits an error message, and continues after the
3925 offending macro invocation.
3926
3927 @smallexample
3928 #define PLUS +
3929 #define INC(x) PLUS+x
3930 INC(foo);
3931 @expansion{} ++foo;
3932 @end smallexample
3933
3934 Function-like macros are similar in form but quite different in
3935 behavior to their ISO counterparts. Their arguments are contained
3936 within parentheses, are comma-separated, and can cross physical lines.
3937 Commas within nested parentheses are not treated as argument
3938 separators. Similarly, a quote in an argument cannot be left
3939 unclosed; a following comma or parenthesis that comes before the
3940 closing quote is treated like any other character. There is no
3941 facility for handling variadic macros.
3942
3943 This implementation removes all comments from macro arguments, unless
3944 the @option{-C} option is given. The form of all other horizontal
3945 whitespace in arguments is preserved, including leading and trailing
3946 whitespace. In particular
3947
3948 @smallexample
3949 f( )
3950 @end smallexample
3951
3952 @noindent
3953 is treated as an invocation of the macro @samp{f} with a single
3954 argument consisting of a single space. If you want to invoke a
3955 function-like macro that takes no arguments, you must not leave any
3956 whitespace between the parentheses.
3957
3958 If a macro argument crosses a new line, the new line is replaced with
3959 a space when forming the argument. If the previous line contained an
3960 unterminated quote, the following line inherits the quoted state.
3961
3962 Traditional preprocessors replace parameters in the replacement text
3963 with their arguments regardless of whether the parameters are within
3964 quotes or not. This provides a way to stringize arguments. For
3965 example
3966
3967 @smallexample
3968 #define str(x) "x"
3969 str(/* @r{A comment} */some text )
3970 @expansion{} "some text "
3971 @end smallexample
3972
3973 @noindent
3974 Note that the comment is removed, but that the trailing space is
3975 preserved. Here is an example of using a comment to effect token
3976 pasting.
3977
3978 @smallexample
3979 #define suffix(x) foo_/**/x
3980 suffix(bar)
3981 @expansion{} foo_bar
3982 @end smallexample
3983
3984 @node Traditional miscellany
3985 @section Traditional miscellany
3986
3987 Here are some things to be aware of when using the traditional
3988 preprocessor.
3989
3990 @itemize @bullet
3991 @item
3992 Preprocessing directives are recognized only when their leading
3993 @samp{#} appears in the first column. There can be no whitespace
3994 between the beginning of the line and the @samp{#}, but whitespace can
3995 follow the @samp{#}.
3996
3997 @item
3998 A true traditional C preprocessor does not recognize @samp{#error} or
3999 @samp{#pragma}, and may not recognize @samp{#elif}. CPP supports all
4000 the directives in traditional mode that it supports in ISO mode,
4001 including extensions, with the exception that the effects of
4002 @samp{#pragma GCC poison} are undefined.
4003
4004 @item
4005 __STDC__ is not defined.
4006
4007 @item
4008 If you use digraphs the behavior is undefined.
4009
4010 @item
4011 If a line that looks like a directive appears within macro arguments,
4012 the behavior is undefined.
4013
4014 @end itemize
4015
4016 @node Traditional warnings
4017 @section Traditional warnings
4018 You can request warnings about features that did not exist, or worked
4019 differently, in traditional C with the @option{-Wtraditional} option.
4020 GCC does not warn about features of ISO C which you must use when you
4021 are using a conforming compiler, such as the @samp{#} and @samp{##}
4022 operators.
4023
4024 Presently @option{-Wtraditional} warns about:
4025
4026 @itemize @bullet
4027 @item
4028 Macro parameters that appear within string literals in the macro body.
4029 In traditional C macro replacement takes place within string literals,
4030 but does not in ISO C@.
4031
4032 @item
4033 In traditional C, some preprocessor directives did not exist.
4034 Traditional preprocessors would only consider a line to be a directive
4035 if the @samp{#} appeared in column 1 on the line. Therefore
4036 @option{-Wtraditional} warns about directives that traditional C
4037 understands but would ignore because the @samp{#} does not appear as the
4038 first character on the line. It also suggests you hide directives like
4039 @samp{#pragma} not understood by traditional C by indenting them. Some
4040 traditional implementations would not recognize @samp{#elif}, so it
4041 suggests avoiding it altogether.
4042
4043 @item
4044 A function-like macro that appears without an argument list. In some
4045 traditional preprocessors this was an error. In ISO C it merely means
4046 that the macro is not expanded.
4047
4048 @item
4049 The unary plus operator. This did not exist in traditional C@.
4050
4051 @item
4052 The @samp{U} and @samp{LL} integer constant suffixes, which were not
4053 available in traditional C@. (Traditional C does support the @samp{L}
4054 suffix for simple long integer constants.) You are not warned about
4055 uses of these suffixes in macros defined in system headers. For
4056 instance, @code{UINT_MAX} may well be defined as @code{4294967295U}, but
4057 you will not be warned if you use @code{UINT_MAX}.
4058
4059 You can usually avoid the warning, and the related warning about
4060 constants which are so large that they are unsigned, by writing the
4061 integer constant in question in hexadecimal, with no U suffix. Take
4062 care, though, because this gives the wrong result in exotic cases.
4063 @end itemize
4064
4065 @node Implementation Details
4066 @chapter Implementation Details
4067
4068 Here we document details of how the preprocessor's implementation
4069 affects its user-visible behavior. You should try to avoid undue
4070 reliance on behavior described here, as it is possible that it will
4071 change subtly in future implementations.
4072
4073 Also documented here are obsolete features and changes from previous
4074 versions of CPP@.
4075
4076 @menu
4077 * Implementation-defined behavior::
4078 * Implementation limits::
4079 * Obsolete Features::
4080 * Differences from previous versions::
4081 @end menu
4082
4083 @node Implementation-defined behavior
4084 @section Implementation-defined behavior
4085 @cindex implementation-defined behavior
4086
4087 This is how CPP behaves in all the cases which the C standard
4088 describes as @dfn{implementation-defined}. This term means that the
4089 implementation is free to do what it likes, but must document its choice
4090 and stick to it.
4091 @c FIXME: Check the C++ standard for more implementation-defined stuff.
4092
4093 @itemize @bullet
4094 @need 1000
4095 @item The mapping of physical source file multi-byte characters to the
4096 execution character set.
4097
4098 The input character set can be specified using the
4099 @option{-finput-charset} option, while the execution character set may
4100 be controlled using the @option{-fexec-charset} and
4101 @option{-fwide-exec-charset} options.
4102
4103 @item Identifier characters.
4104 @anchor{Identifier characters}
4105
4106 The C and C++ standards allow identifiers to be composed of @samp{_}
4107 and the alphanumeric characters. C++ and C99 also allow universal
4108 character names, and C99 further permits implementation-defined
4109 characters.
4110
4111 GCC allows the @samp{$} character in identifiers as an extension for
4112 most targets. This is true regardless of the @option{std=} switch,
4113 since this extension cannot conflict with standards-conforming
4114 programs. When preprocessing assembler, however, dollars are not
4115 identifier characters by default.
4116
4117 Currently the targets that by default do not permit @samp{$} are AVR,
4118 IP2K, MMIX, MIPS Irix 3, ARM aout, and PowerPC targets for the AIX
4119 operating system.
4120
4121 You can override the default with @option{-fdollars-in-identifiers} or
4122 @option{fno-dollars-in-identifiers}. @xref{fdollars-in-identifiers}.
4123
4124 @item Non-empty sequences of whitespace characters.
4125
4126 In textual output, each whitespace sequence is collapsed to a single
4127 space. For aesthetic reasons, the first token on each non-directive
4128 line of output is preceded with sufficient spaces that it appears in the
4129 same column as it did in the original source file.
4130
4131 @item The numeric value of character constants in preprocessor expressions.
4132
4133 The preprocessor and compiler interpret character constants in the
4134 same way; i.e.@: escape sequences such as @samp{\a} are given the
4135 values they would have on the target machine.
4136
4137 The compiler evaluates a multi-character character constant a character
4138 at a time, shifting the previous value left by the number of bits per
4139 target character, and then or-ing in the bit-pattern of the new
4140 character truncated to the width of a target character. The final
4141 bit-pattern is given type @code{int}, and is therefore signed,
4142 regardless of whether single characters are signed or not (a slight
4143 change from versions 3.1 and earlier of GCC)@. If there are more
4144 characters in the constant than would fit in the target @code{int} the
4145 compiler issues a warning, and the excess leading characters are
4146 ignored.
4147
4148 For example, @code{'ab'} for a target with an 8-bit @code{char} would be
4149 interpreted as @w{@samp{(int) ((unsigned char) 'a' * 256 + (unsigned char)
4150 'b')}}, and @code{'\234a'} as @w{@samp{(int) ((unsigned char) '\234' *
4151 256 + (unsigned char) 'a')}}.
4152
4153 @item Source file inclusion.
4154
4155 For a discussion on how the preprocessor locates header files,
4156 @ref{Include Operation}.
4157
4158 @item Interpretation of the filename resulting from a macro-expanded
4159 @samp{#include} directive.
4160
4161 @xref{Computed Includes}.
4162
4163 @item Treatment of a @samp{#pragma} directive that after macro-expansion
4164 results in a standard pragma.
4165
4166 No macro expansion occurs on any @samp{#pragma} directive line, so the
4167 question does not arise.
4168
4169 Note that GCC does not yet implement any of the standard
4170 pragmas.
4171
4172 @end itemize
4173
4174 @node Implementation limits
4175 @section Implementation limits
4176 @cindex implementation limits
4177
4178 CPP has a small number of internal limits. This section lists the
4179 limits which the C standard requires to be no lower than some minimum,
4180 and all the others known. It is intended that there should be as few limits
4181 as possible. If you encounter an undocumented or inconvenient limit,
4182 please report that as a bug. @xref{Bugs, , Reporting Bugs, gcc, Using
4183 the GNU Compiler Collection (GCC)}.
4184
4185 Where we say something is limited @dfn{only by available memory}, that
4186 means that internal data structures impose no intrinsic limit, and space
4187 is allocated with @code{malloc} or equivalent. The actual limit will
4188 therefore depend on many things, such as the size of other things
4189 allocated by the compiler at the same time, the amount of memory
4190 consumed by other processes on the same computer, etc.
4191
4192 @itemize @bullet
4193
4194 @item Nesting levels of @samp{#include} files.
4195
4196 We impose an arbitrary limit of 200 levels, to avoid runaway recursion.
4197 The standard requires at least 15 levels.
4198
4199 @item Nesting levels of conditional inclusion.
4200
4201 The C standard mandates this be at least 63. CPP is limited only by
4202 available memory.
4203
4204 @item Levels of parenthesized expressions within a full expression.
4205
4206 The C standard requires this to be at least 63. In preprocessor
4207 conditional expressions, it is limited only by available memory.
4208
4209 @item Significant initial characters in an identifier or macro name.
4210
4211 The preprocessor treats all characters as significant. The C standard
4212 requires only that the first 63 be significant.
4213
4214 @item Number of macros simultaneously defined in a single translation unit.
4215
4216 The standard requires at least 4095 be possible. CPP is limited only
4217 by available memory.
4218
4219 @item Number of parameters in a macro definition and arguments in a macro call.
4220
4221 We allow @code{USHRT_MAX}, which is no smaller than 65,535. The minimum
4222 required by the standard is 127.
4223
4224 @item Number of characters on a logical source line.
4225
4226 The C standard requires a minimum of 4096 be permitted. CPP places
4227 no limits on this, but you may get incorrect column numbers reported in
4228 diagnostics for lines longer than 65,535 characters.
4229
4230 @item Maximum size of a source file.
4231
4232 The standard does not specify any lower limit on the maximum size of a
4233 source file. GNU cpp maps files into memory, so it is limited by the
4234 available address space. This is generally at least two gigabytes.
4235 Depending on the operating system, the size of physical memory may or
4236 may not be a limitation.
4237
4238 @end itemize
4239
4240 @node Obsolete Features
4241 @section Obsolete Features
4242
4243 CPP has some features which are present mainly for compatibility with
4244 older programs. We discourage their use in new code. In some cases,
4245 we plan to remove the feature in a future version of GCC@.
4246
4247 @subsection Assertions
4248 @cindex assertions
4249
4250 @dfn{Assertions} are a deprecated alternative to macros in writing
4251 conditionals to test what sort of computer or system the compiled
4252 program will run on. Assertions are usually predefined, but you can
4253 define them with preprocessing directives or command-line options.
4254
4255 Assertions were intended to provide a more systematic way to describe
4256 the compiler's target system and we added them for compatibility with
4257 existing compilers. In practice they are just as unpredictable as the
4258 system-specific predefined macros. In addition, they are not part of
4259 any standard, and only a few compilers support them.
4260 Therefore, the use of assertions is @strong{less} portable than the use
4261 of system-specific predefined macros. We recommend you do not use them at
4262 all.
4263
4264 @cindex predicates
4265 An assertion looks like this:
4266
4267 @smallexample
4268 #@var{predicate} (@var{answer})
4269 @end smallexample
4270
4271 @noindent
4272 @var{predicate} must be a single identifier. @var{answer} can be any
4273 sequence of tokens; all characters are significant except for leading
4274 and trailing whitespace, and differences in internal whitespace
4275 sequences are ignored. (This is similar to the rules governing macro
4276 redefinition.) Thus, @code{(x + y)} is different from @code{(x+y)} but
4277 equivalent to @code{@w{( x + y )}}. Parentheses do not nest inside an
4278 answer.
4279
4280 @cindex testing predicates
4281 To test an assertion, you write it in an @samp{#if}. For example, this
4282 conditional succeeds if either @code{vax} or @code{ns16000} has been
4283 asserted as an answer for @code{machine}.
4284
4285 @smallexample
4286 #if #machine (vax) || #machine (ns16000)
4287 @end smallexample
4288
4289 @noindent
4290 You can test whether @emph{any} answer is asserted for a predicate by
4291 omitting the answer in the conditional:
4292
4293 @smallexample
4294 #if #machine
4295 @end smallexample
4296
4297 @findex #assert
4298 Assertions are made with the @samp{#assert} directive. Its sole
4299 argument is the assertion to make, without the leading @samp{#} that
4300 identifies assertions in conditionals.
4301
4302 @smallexample
4303 #assert @var{predicate} (@var{answer})
4304 @end smallexample
4305
4306 @noindent
4307 You may make several assertions with the same predicate and different
4308 answers. Subsequent assertions do not override previous ones for the
4309 same predicate. All the answers for any given predicate are
4310 simultaneously true.
4311
4312 @cindex assertions, canceling
4313 @findex #unassert
4314 Assertions can be canceled with the @samp{#unassert} directive. It
4315 has the same syntax as @samp{#assert}. In that form it cancels only the
4316 answer which was specified on the @samp{#unassert} line; other answers
4317 for that predicate remain true. You can cancel an entire predicate by
4318 leaving out the answer:
4319
4320 @smallexample
4321 #unassert @var{predicate}
4322 @end smallexample
4323
4324 @noindent
4325 In either form, if no such assertion has been made, @samp{#unassert} has
4326 no effect.
4327
4328 You can also make or cancel assertions using command-line options.
4329 @xref{Invocation}.
4330
4331 @node Differences from previous versions
4332 @section Differences from previous versions
4333 @cindex differences from previous versions
4334
4335 This section details behavior which has changed from previous versions
4336 of CPP@. We do not plan to change it again in the near future, but
4337 we do not promise not to, either.
4338
4339 The ``previous versions'' discussed here are 2.95 and before. The
4340 behavior of GCC 3.0 is mostly the same as the behavior of the widely
4341 used 2.96 and 2.97 development snapshots. Where there are differences,
4342 they generally represent bugs in the snapshots.
4343
4344 @itemize @bullet
4345
4346 @item -I- deprecated
4347
4348 This option has been deprecated in 4.0. @option{-iquote} is meant to
4349 replace the need for this option.
4350
4351 @item Order of evaluation of @samp{#} and @samp{##} operators
4352
4353 The standard does not specify the order of evaluation of a chain of
4354 @samp{##} operators, nor whether @samp{#} is evaluated before, after, or
4355 at the same time as @samp{##}. You should therefore not write any code
4356 which depends on any specific ordering. It is possible to guarantee an
4357 ordering, if you need one, by suitable use of nested macros.
4358
4359 An example of where this might matter is pasting the arguments @samp{1},
4360 @samp{e} and @samp{-2}. This would be fine for left-to-right pasting,
4361 but right-to-left pasting would produce an invalid token @samp{e-2}.
4362
4363 GCC 3.0 evaluates @samp{#} and @samp{##} at the same time and strictly
4364 left to right. Older versions evaluated all @samp{#} operators first,
4365 then all @samp{##} operators, in an unreliable order.
4366
4367 @item The form of whitespace between tokens in preprocessor output
4368
4369 @xref{Preprocessor Output}, for the current textual format. This is
4370 also the format used by stringification. Normally, the preprocessor
4371 communicates tokens directly to the compiler's parser, and whitespace
4372 does not come up at all.
4373
4374 Older versions of GCC preserved all whitespace provided by the user and
4375 inserted lots more whitespace of their own, because they could not
4376 accurately predict when extra spaces were needed to prevent accidental
4377 token pasting.
4378
4379 @item Optional argument when invoking rest argument macros
4380
4381 As an extension, GCC permits you to omit the variable arguments entirely
4382 when you use a variable argument macro. This is forbidden by the 1999 C
4383 standard, and will provoke a pedantic warning with GCC 3.0. Previous
4384 versions accepted it silently.
4385
4386 @item @samp{##} swallowing preceding text in rest argument macros
4387
4388 Formerly, in a macro expansion, if @samp{##} appeared before a variable
4389 arguments parameter, and the set of tokens specified for that argument
4390 in the macro invocation was empty, previous versions of CPP would
4391 back up and remove the preceding sequence of non-whitespace characters
4392 (@strong{not} the preceding token). This extension is in direct
4393 conflict with the 1999 C standard and has been drastically pared back.
4394
4395 In the current version of the preprocessor, if @samp{##} appears between
4396 a comma and a variable arguments parameter, and the variable argument is
4397 omitted entirely, the comma will be removed from the expansion. If the
4398 variable argument is empty, or the token before @samp{##} is not a
4399 comma, then @samp{##} behaves as a normal token paste.
4400
4401 @item @samp{#line} and @samp{#include}
4402
4403 The @samp{#line} directive used to change GCC's notion of the
4404 ``directory containing the current file'', used by @samp{#include} with
4405 a double-quoted header file name. In 3.0 and later, it does not.
4406 @xref{Line Control}, for further explanation.
4407
4408 @item Syntax of @samp{#line}
4409
4410 In GCC 2.95 and previous, the string constant argument to @samp{#line}
4411 was treated the same way as the argument to @samp{#include}: backslash
4412 escapes were not honored, and the string ended at the second @samp{"}.
4413 This is not compliant with the C standard. In GCC 3.0, an attempt was
4414 made to correct the behavior, so that the string was treated as a real
4415 string constant, but it turned out to be buggy. In 3.1, the bugs have
4416 been fixed. (We are not fixing the bugs in 3.0 because they affect
4417 relatively few people and the fix is quite invasive.)
4418
4419 @end itemize
4420
4421 @node Invocation
4422 @chapter Invocation
4423 @cindex invocation
4424 @cindex command line
4425
4426 Most often when you use the C preprocessor you will not have to invoke it
4427 explicitly: the C compiler will do so automatically. However, the
4428 preprocessor is sometimes useful on its own. All the options listed
4429 here are also acceptable to the C compiler and have the same meaning,
4430 except that the C compiler has different rules for specifying the output
4431 file.
4432
4433 @emph{Note:} Whether you use the preprocessor by way of @command{gcc}
4434 or @command{cpp}, the @dfn{compiler driver} is run first. This
4435 program's purpose is to translate your command into invocations of the
4436 programs that do the actual work. Their command-line interfaces are
4437 similar but not identical to the documented interface, and may change
4438 without notice.
4439
4440 @ignore
4441 @c man begin SYNOPSIS
4442 cpp [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
4443 [@option{-I}@var{dir}@dots{}] [@option{-iquote}@var{dir}@dots{}]
4444 [@option{-W}@var{warn}@dots{}]
4445 [@option{-M}|@option{-MM}] [@option{-MG}] [@option{-MF} @var{filename}]
4446 [@option{-MP}] [@option{-MQ} @var{target}@dots{}]
4447 [@option{-MT} @var{target}@dots{}]
4448 [@option{-P}] [@option{-fno-working-directory}]
4449 [@option{-x} @var{language}] [@option{-std=}@var{standard}]
4450 @var{infile} @var{outfile}
4451
4452 Only the most useful options are listed here; see below for the remainder.
4453 @c man end
4454 @c man begin SEEALSO
4455 gpl(7), gfdl(7), fsf-funding(7),
4456 gcc(1), as(1), ld(1), and the Info entries for @file{cpp}, @file{gcc}, and
4457 @file{binutils}.
4458 @c man end
4459 @end ignore
4460
4461 @c man begin OPTIONS
4462 The C preprocessor expects two file names as arguments, @var{infile} and
4463 @var{outfile}. The preprocessor reads @var{infile} together with any
4464 other files it specifies with @samp{#include}. All the output generated
4465 by the combined input files is written in @var{outfile}.
4466
4467 Either @var{infile} or @var{outfile} may be @option{-}, which as
4468 @var{infile} means to read from standard input and as @var{outfile}
4469 means to write to standard output. Also, if either file is omitted, it
4470 means the same as if @option{-} had been specified for that file.
4471
4472 Unless otherwise noted, or the option ends in @samp{=}, all options
4473 which take an argument may have that argument appear either immediately
4474 after the option, or with a space between option and argument:
4475 @option{-Ifoo} and @option{-I foo} have the same effect.
4476
4477 @cindex grouping options
4478 @cindex options, grouping
4479 Many options have multi-letter names; therefore multiple single-letter
4480 options may @emph{not} be grouped: @option{-dM} is very different from
4481 @w{@samp{-d -M}}.
4482
4483 @cindex options
4484 @include cppopts.texi
4485 @c man end
4486
4487 @node Environment Variables
4488 @chapter Environment Variables
4489 @cindex environment variables
4490 @c man begin ENVIRONMENT
4491
4492 This section describes the environment variables that affect how CPP
4493 operates. You can use them to specify directories or prefixes to use
4494 when searching for include files, or to control dependency output.
4495
4496 Note that you can also specify places to search using options such as
4497 @option{-I}, and control dependency output with options like
4498 @option{-M} (@pxref{Invocation}). These take precedence over
4499 environment variables, which in turn take precedence over the
4500 configuration of GCC@.
4501
4502 @include cppenv.texi
4503 @c man end
4504
4505 @page
4506 @include fdl.texi
4507
4508 @page
4509 @node Index of Directives
4510 @unnumbered Index of Directives
4511 @printindex fn
4512
4513 @node Option Index
4514 @unnumbered Option Index
4515 @noindent
4516 CPP's command-line options and environment variables are indexed here
4517 without any initial @samp{-} or @samp{--}.
4518 @printindex op
4519
4520 @page
4521 @node Concept Index
4522 @unnumbered Concept Index
4523 @printindex cp
4524
4525 @bye