extend.texi (PowerPC AltiVec Built-in Functions): Add reference to the OpenPOWER...
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Inquiring about the alignment of a type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
76 function.
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
86 checking.
87 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
88 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
89 * Other Builtins:: Other built-in functions.
90 * Target Builtins:: Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas:: Pragmas accepted by GCC.
93 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
94 * Thread-Local:: Per-thread variables.
95 * Binary constants:: Binary constants using the @samp{0b} prefix.
96 @end menu
97
98 @node Statement Exprs
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
104
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@. This allows you to use loops, switches, and local variables
109 within an expression.
110
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces. For
113 example:
114
115 @smallexample
116 (@{ int y = foo (); int z;
117 if (y > 0) z = y;
118 else z = - y;
119 z; @})
120 @end smallexample
121
122 @noindent
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
125
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct. (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
131
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once). For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
135 follows:
136
137 @smallexample
138 #define max(a,b) ((a) > (b) ? (a) : (b))
139 @end smallexample
140
141 @noindent
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects. In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
147
148 @smallexample
149 #define maxint(a,b) \
150 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 @end smallexample
152
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
156
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
159
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression. For instance, if @code{A} is a class, then
163
164 @smallexample
165 A a;
166
167 (@{a;@}).Foo ()
168 @end smallexample
169
170 @noindent
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 address of @code{a}.
175
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end. This makes statement
178 expressions inside macros slightly different from function calls. In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call. In the statement expression case they are destroyed during
182 the statement expression. For instance,
183
184 @smallexample
185 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
187
188 void foo ()
189 @{
190 macro (X ());
191 function (X ());
192 @}
193 @end smallexample
194
195 @noindent
196 has different places where temporaries are destroyed. For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}. In the @code{function} case that
199 temporary is destroyed when the function returns.
200
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++. (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
205 bug.)
206
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted. Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression. In any case, as with a function call, the evaluation of a
218 statement expression is not interleaved with the evaluation of other
219 parts of the containing expression. For example,
220
221 @smallexample
222 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
223 @end smallexample
224
225 @noindent
226 calls @code{foo} and @code{bar1} and does not call @code{baz} but
227 may or may not call @code{bar2}. If @code{bar2} is called, it is
228 called after @code{foo} and before @code{bar1}.
229
230 @node Local Labels
231 @section Locally Declared Labels
232 @cindex local labels
233 @cindex macros, local labels
234
235 GCC allows you to declare @dfn{local labels} in any nested block
236 scope. A local label is just like an ordinary label, but you can
237 only reference it (with a @code{goto} statement, or by taking its
238 address) within the block in which it is declared.
239
240 A local label declaration looks like this:
241
242 @smallexample
243 __label__ @var{label};
244 @end smallexample
245
246 @noindent
247 or
248
249 @smallexample
250 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
251 @end smallexample
252
253 Local label declarations must come at the beginning of the block,
254 before any ordinary declarations or statements.
255
256 The label declaration defines the label @emph{name}, but does not define
257 the label itself. You must do this in the usual way, with
258 @code{@var{label}:}, within the statements of the statement expression.
259
260 The local label feature is useful for complex macros. If a macro
261 contains nested loops, a @code{goto} can be useful for breaking out of
262 them. However, an ordinary label whose scope is the whole function
263 cannot be used: if the macro can be expanded several times in one
264 function, the label is multiply defined in that function. A
265 local label avoids this problem. For example:
266
267 @smallexample
268 #define SEARCH(value, array, target) \
269 do @{ \
270 __label__ found; \
271 typeof (target) _SEARCH_target = (target); \
272 typeof (*(array)) *_SEARCH_array = (array); \
273 int i, j; \
274 int value; \
275 for (i = 0; i < max; i++) \
276 for (j = 0; j < max; j++) \
277 if (_SEARCH_array[i][j] == _SEARCH_target) \
278 @{ (value) = i; goto found; @} \
279 (value) = -1; \
280 found:; \
281 @} while (0)
282 @end smallexample
283
284 This could also be written using a statement expression:
285
286 @smallexample
287 #define SEARCH(array, target) \
288 (@{ \
289 __label__ found; \
290 typeof (target) _SEARCH_target = (target); \
291 typeof (*(array)) *_SEARCH_array = (array); \
292 int i, j; \
293 int value; \
294 for (i = 0; i < max; i++) \
295 for (j = 0; j < max; j++) \
296 if (_SEARCH_array[i][j] == _SEARCH_target) \
297 @{ value = i; goto found; @} \
298 value = -1; \
299 found: \
300 value; \
301 @})
302 @end smallexample
303
304 Local label declarations also make the labels they declare visible to
305 nested functions, if there are any. @xref{Nested Functions}, for details.
306
307 @node Labels as Values
308 @section Labels as Values
309 @cindex labels as values
310 @cindex computed gotos
311 @cindex goto with computed label
312 @cindex address of a label
313
314 You can get the address of a label defined in the current function
315 (or a containing function) with the unary operator @samp{&&}. The
316 value has type @code{void *}. This value is a constant and can be used
317 wherever a constant of that type is valid. For example:
318
319 @smallexample
320 void *ptr;
321 /* @r{@dots{}} */
322 ptr = &&foo;
323 @end smallexample
324
325 To use these values, you need to be able to jump to one. This is done
326 with the computed goto statement@footnote{The analogous feature in
327 Fortran is called an assigned goto, but that name seems inappropriate in
328 C, where one can do more than simply store label addresses in label
329 variables.}, @code{goto *@var{exp};}. For example,
330
331 @smallexample
332 goto *ptr;
333 @end smallexample
334
335 @noindent
336 Any expression of type @code{void *} is allowed.
337
338 One way of using these constants is in initializing a static array that
339 serves as a jump table:
340
341 @smallexample
342 static void *array[] = @{ &&foo, &&bar, &&hack @};
343 @end smallexample
344
345 @noindent
346 Then you can select a label with indexing, like this:
347
348 @smallexample
349 goto *array[i];
350 @end smallexample
351
352 @noindent
353 Note that this does not check whether the subscript is in bounds---array
354 indexing in C never does that.
355
356 Such an array of label values serves a purpose much like that of the
357 @code{switch} statement. The @code{switch} statement is cleaner, so
358 use that rather than an array unless the problem does not fit a
359 @code{switch} statement very well.
360
361 Another use of label values is in an interpreter for threaded code.
362 The labels within the interpreter function can be stored in the
363 threaded code for super-fast dispatching.
364
365 You may not use this mechanism to jump to code in a different function.
366 If you do that, totally unpredictable things happen. The best way to
367 avoid this is to store the label address only in automatic variables and
368 never pass it as an argument.
369
370 An alternate way to write the above example is
371
372 @smallexample
373 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
374 &&hack - &&foo @};
375 goto *(&&foo + array[i]);
376 @end smallexample
377
378 @noindent
379 This is more friendly to code living in shared libraries, as it reduces
380 the number of dynamic relocations that are needed, and by consequence,
381 allows the data to be read-only.
382 This alternative with label differences is not supported for the AVR target,
383 please use the first approach for AVR programs.
384
385 The @code{&&foo} expressions for the same label might have different
386 values if the containing function is inlined or cloned. If a program
387 relies on them being always the same,
388 @code{__attribute__((__noinline__,__noclone__))} should be used to
389 prevent inlining and cloning. If @code{&&foo} is used in a static
390 variable initializer, inlining and cloning is forbidden.
391
392 @node Nested Functions
393 @section Nested Functions
394 @cindex nested functions
395 @cindex downward funargs
396 @cindex thunks
397
398 A @dfn{nested function} is a function defined inside another function.
399 Nested functions are supported as an extension in GNU C, but are not
400 supported by GNU C++.
401
402 The nested function's name is local to the block where it is defined.
403 For example, here we define a nested function named @code{square}, and
404 call it twice:
405
406 @smallexample
407 @group
408 foo (double a, double b)
409 @{
410 double square (double z) @{ return z * z; @}
411
412 return square (a) + square (b);
413 @}
414 @end group
415 @end smallexample
416
417 The nested function can access all the variables of the containing
418 function that are visible at the point of its definition. This is
419 called @dfn{lexical scoping}. For example, here we show a nested
420 function which uses an inherited variable named @code{offset}:
421
422 @smallexample
423 @group
424 bar (int *array, int offset, int size)
425 @{
426 int access (int *array, int index)
427 @{ return array[index + offset]; @}
428 int i;
429 /* @r{@dots{}} */
430 for (i = 0; i < size; i++)
431 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
432 @}
433 @end group
434 @end smallexample
435
436 Nested function definitions are permitted within functions in the places
437 where variable definitions are allowed; that is, in any block, mixed
438 with the other declarations and statements in the block.
439
440 It is possible to call the nested function from outside the scope of its
441 name by storing its address or passing the address to another function:
442
443 @smallexample
444 hack (int *array, int size)
445 @{
446 void store (int index, int value)
447 @{ array[index] = value; @}
448
449 intermediate (store, size);
450 @}
451 @end smallexample
452
453 Here, the function @code{intermediate} receives the address of
454 @code{store} as an argument. If @code{intermediate} calls @code{store},
455 the arguments given to @code{store} are used to store into @code{array}.
456 But this technique works only so long as the containing function
457 (@code{hack}, in this example) does not exit.
458
459 If you try to call the nested function through its address after the
460 containing function exits, all hell breaks loose. If you try
461 to call it after a containing scope level exits, and if it refers
462 to some of the variables that are no longer in scope, you may be lucky,
463 but it's not wise to take the risk. If, however, the nested function
464 does not refer to anything that has gone out of scope, you should be
465 safe.
466
467 GCC implements taking the address of a nested function using a technique
468 called @dfn{trampolines}. This technique was described in
469 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
470 C++ Conference Proceedings, October 17-21, 1988).
471
472 A nested function can jump to a label inherited from a containing
473 function, provided the label is explicitly declared in the containing
474 function (@pxref{Local Labels}). Such a jump returns instantly to the
475 containing function, exiting the nested function that did the
476 @code{goto} and any intermediate functions as well. Here is an example:
477
478 @smallexample
479 @group
480 bar (int *array, int offset, int size)
481 @{
482 __label__ failure;
483 int access (int *array, int index)
484 @{
485 if (index > size)
486 goto failure;
487 return array[index + offset];
488 @}
489 int i;
490 /* @r{@dots{}} */
491 for (i = 0; i < size; i++)
492 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
493 /* @r{@dots{}} */
494 return 0;
495
496 /* @r{Control comes here from @code{access}
497 if it detects an error.} */
498 failure:
499 return -1;
500 @}
501 @end group
502 @end smallexample
503
504 A nested function always has no linkage. Declaring one with
505 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
506 before its definition, use @code{auto} (which is otherwise meaningless
507 for function declarations).
508
509 @smallexample
510 bar (int *array, int offset, int size)
511 @{
512 __label__ failure;
513 auto int access (int *, int);
514 /* @r{@dots{}} */
515 int access (int *array, int index)
516 @{
517 if (index > size)
518 goto failure;
519 return array[index + offset];
520 @}
521 /* @r{@dots{}} */
522 @}
523 @end smallexample
524
525 @node Constructing Calls
526 @section Constructing Function Calls
527 @cindex constructing calls
528 @cindex forwarding calls
529
530 Using the built-in functions described below, you can record
531 the arguments a function received, and call another function
532 with the same arguments, without knowing the number or types
533 of the arguments.
534
535 You can also record the return value of that function call,
536 and later return that value, without knowing what data type
537 the function tried to return (as long as your caller expects
538 that data type).
539
540 However, these built-in functions may interact badly with some
541 sophisticated features or other extensions of the language. It
542 is, therefore, not recommended to use them outside very simple
543 functions acting as mere forwarders for their arguments.
544
545 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
546 This built-in function returns a pointer to data
547 describing how to perform a call with the same arguments as are passed
548 to the current function.
549
550 The function saves the arg pointer register, structure value address,
551 and all registers that might be used to pass arguments to a function
552 into a block of memory allocated on the stack. Then it returns the
553 address of that block.
554 @end deftypefn
555
556 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
557 This built-in function invokes @var{function}
558 with a copy of the parameters described by @var{arguments}
559 and @var{size}.
560
561 The value of @var{arguments} should be the value returned by
562 @code{__builtin_apply_args}. The argument @var{size} specifies the size
563 of the stack argument data, in bytes.
564
565 This function returns a pointer to data describing
566 how to return whatever value is returned by @var{function}. The data
567 is saved in a block of memory allocated on the stack.
568
569 It is not always simple to compute the proper value for @var{size}. The
570 value is used by @code{__builtin_apply} to compute the amount of data
571 that should be pushed on the stack and copied from the incoming argument
572 area.
573 @end deftypefn
574
575 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
576 This built-in function returns the value described by @var{result} from
577 the containing function. You should specify, for @var{result}, a value
578 returned by @code{__builtin_apply}.
579 @end deftypefn
580
581 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
582 This built-in function represents all anonymous arguments of an inline
583 function. It can be used only in inline functions that are always
584 inlined, never compiled as a separate function, such as those using
585 @code{__attribute__ ((__always_inline__))} or
586 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
587 It must be only passed as last argument to some other function
588 with variable arguments. This is useful for writing small wrapper
589 inlines for variable argument functions, when using preprocessor
590 macros is undesirable. For example:
591 @smallexample
592 extern int myprintf (FILE *f, const char *format, ...);
593 extern inline __attribute__ ((__gnu_inline__)) int
594 myprintf (FILE *f, const char *format, ...)
595 @{
596 int r = fprintf (f, "myprintf: ");
597 if (r < 0)
598 return r;
599 int s = fprintf (f, format, __builtin_va_arg_pack ());
600 if (s < 0)
601 return s;
602 return r + s;
603 @}
604 @end smallexample
605 @end deftypefn
606
607 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
608 This built-in function returns the number of anonymous arguments of
609 an inline function. It can be used only in inline functions that
610 are always inlined, never compiled as a separate function, such
611 as those using @code{__attribute__ ((__always_inline__))} or
612 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
613 For example following does link- or run-time checking of open
614 arguments for optimized code:
615 @smallexample
616 #ifdef __OPTIMIZE__
617 extern inline __attribute__((__gnu_inline__)) int
618 myopen (const char *path, int oflag, ...)
619 @{
620 if (__builtin_va_arg_pack_len () > 1)
621 warn_open_too_many_arguments ();
622
623 if (__builtin_constant_p (oflag))
624 @{
625 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
626 @{
627 warn_open_missing_mode ();
628 return __open_2 (path, oflag);
629 @}
630 return open (path, oflag, __builtin_va_arg_pack ());
631 @}
632
633 if (__builtin_va_arg_pack_len () < 1)
634 return __open_2 (path, oflag);
635
636 return open (path, oflag, __builtin_va_arg_pack ());
637 @}
638 #endif
639 @end smallexample
640 @end deftypefn
641
642 @node Typeof
643 @section Referring to a Type with @code{typeof}
644 @findex typeof
645 @findex sizeof
646 @cindex macros, types of arguments
647
648 Another way to refer to the type of an expression is with @code{typeof}.
649 The syntax of using of this keyword looks like @code{sizeof}, but the
650 construct acts semantically like a type name defined with @code{typedef}.
651
652 There are two ways of writing the argument to @code{typeof}: with an
653 expression or with a type. Here is an example with an expression:
654
655 @smallexample
656 typeof (x[0](1))
657 @end smallexample
658
659 @noindent
660 This assumes that @code{x} is an array of pointers to functions;
661 the type described is that of the values of the functions.
662
663 Here is an example with a typename as the argument:
664
665 @smallexample
666 typeof (int *)
667 @end smallexample
668
669 @noindent
670 Here the type described is that of pointers to @code{int}.
671
672 If you are writing a header file that must work when included in ISO C
673 programs, write @code{__typeof__} instead of @code{typeof}.
674 @xref{Alternate Keywords}.
675
676 A @code{typeof} construct can be used anywhere a typedef name can be
677 used. For example, you can use it in a declaration, in a cast, or inside
678 of @code{sizeof} or @code{typeof}.
679
680 The operand of @code{typeof} is evaluated for its side effects if and
681 only if it is an expression of variably modified type or the name of
682 such a type.
683
684 @code{typeof} is often useful in conjunction with
685 statement expressions (@pxref{Statement Exprs}).
686 Here is how the two together can
687 be used to define a safe ``maximum'' macro which operates on any
688 arithmetic type and evaluates each of its arguments exactly once:
689
690 @smallexample
691 #define max(a,b) \
692 (@{ typeof (a) _a = (a); \
693 typeof (b) _b = (b); \
694 _a > _b ? _a : _b; @})
695 @end smallexample
696
697 @cindex underscores in variables in macros
698 @cindex @samp{_} in variables in macros
699 @cindex local variables in macros
700 @cindex variables, local, in macros
701 @cindex macros, local variables in
702
703 The reason for using names that start with underscores for the local
704 variables is to avoid conflicts with variable names that occur within the
705 expressions that are substituted for @code{a} and @code{b}. Eventually we
706 hope to design a new form of declaration syntax that allows you to declare
707 variables whose scopes start only after their initializers; this will be a
708 more reliable way to prevent such conflicts.
709
710 @noindent
711 Some more examples of the use of @code{typeof}:
712
713 @itemize @bullet
714 @item
715 This declares @code{y} with the type of what @code{x} points to.
716
717 @smallexample
718 typeof (*x) y;
719 @end smallexample
720
721 @item
722 This declares @code{y} as an array of such values.
723
724 @smallexample
725 typeof (*x) y[4];
726 @end smallexample
727
728 @item
729 This declares @code{y} as an array of pointers to characters:
730
731 @smallexample
732 typeof (typeof (char *)[4]) y;
733 @end smallexample
734
735 @noindent
736 It is equivalent to the following traditional C declaration:
737
738 @smallexample
739 char *y[4];
740 @end smallexample
741
742 To see the meaning of the declaration using @code{typeof}, and why it
743 might be a useful way to write, rewrite it with these macros:
744
745 @smallexample
746 #define pointer(T) typeof(T *)
747 #define array(T, N) typeof(T [N])
748 @end smallexample
749
750 @noindent
751 Now the declaration can be rewritten this way:
752
753 @smallexample
754 array (pointer (char), 4) y;
755 @end smallexample
756
757 @noindent
758 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
759 pointers to @code{char}.
760 @end itemize
761
762 In GNU C, but not GNU C++, you may also declare the type of a variable
763 as @code{__auto_type}. In that case, the declaration must declare
764 only one variable, whose declarator must just be an identifier, the
765 declaration must be initialized, and the type of the variable is
766 determined by the initializer; the name of the variable is not in
767 scope until after the initializer. (In C++, you should use C++11
768 @code{auto} for this purpose.) Using @code{__auto_type}, the
769 ``maximum'' macro above could be written as:
770
771 @smallexample
772 #define max(a,b) \
773 (@{ __auto_type _a = (a); \
774 __auto_type _b = (b); \
775 _a > _b ? _a : _b; @})
776 @end smallexample
777
778 Using @code{__auto_type} instead of @code{typeof} has two advantages:
779
780 @itemize @bullet
781 @item Each argument to the macro appears only once in the expansion of
782 the macro. This prevents the size of the macro expansion growing
783 exponentially when calls to such macros are nested inside arguments of
784 such macros.
785
786 @item If the argument to the macro has variably modified type, it is
787 evaluated only once when using @code{__auto_type}, but twice if
788 @code{typeof} is used.
789 @end itemize
790
791 @node Conditionals
792 @section Conditionals with Omitted Operands
793 @cindex conditional expressions, extensions
794 @cindex omitted middle-operands
795 @cindex middle-operands, omitted
796 @cindex extensions, @code{?:}
797 @cindex @code{?:} extensions
798
799 The middle operand in a conditional expression may be omitted. Then
800 if the first operand is nonzero, its value is the value of the conditional
801 expression.
802
803 Therefore, the expression
804
805 @smallexample
806 x ? : y
807 @end smallexample
808
809 @noindent
810 has the value of @code{x} if that is nonzero; otherwise, the value of
811 @code{y}.
812
813 This example is perfectly equivalent to
814
815 @smallexample
816 x ? x : y
817 @end smallexample
818
819 @cindex side effect in @code{?:}
820 @cindex @code{?:} side effect
821 @noindent
822 In this simple case, the ability to omit the middle operand is not
823 especially useful. When it becomes useful is when the first operand does,
824 or may (if it is a macro argument), contain a side effect. Then repeating
825 the operand in the middle would perform the side effect twice. Omitting
826 the middle operand uses the value already computed without the undesirable
827 effects of recomputing it.
828
829 @node __int128
830 @section 128-bit Integers
831 @cindex @code{__int128} data types
832
833 As an extension the integer scalar type @code{__int128} is supported for
834 targets which have an integer mode wide enough to hold 128 bits.
835 Simply write @code{__int128} for a signed 128-bit integer, or
836 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
837 support in GCC for expressing an integer constant of type @code{__int128}
838 for targets with @code{long long} integer less than 128 bits wide.
839
840 @node Long Long
841 @section Double-Word Integers
842 @cindex @code{long long} data types
843 @cindex double-word arithmetic
844 @cindex multiprecision arithmetic
845 @cindex @code{LL} integer suffix
846 @cindex @code{ULL} integer suffix
847
848 ISO C99 supports data types for integers that are at least 64 bits wide,
849 and as an extension GCC supports them in C90 mode and in C++.
850 Simply write @code{long long int} for a signed integer, or
851 @code{unsigned long long int} for an unsigned integer. To make an
852 integer constant of type @code{long long int}, add the suffix @samp{LL}
853 to the integer. To make an integer constant of type @code{unsigned long
854 long int}, add the suffix @samp{ULL} to the integer.
855
856 You can use these types in arithmetic like any other integer types.
857 Addition, subtraction, and bitwise boolean operations on these types
858 are open-coded on all types of machines. Multiplication is open-coded
859 if the machine supports a fullword-to-doubleword widening multiply
860 instruction. Division and shifts are open-coded only on machines that
861 provide special support. The operations that are not open-coded use
862 special library routines that come with GCC@.
863
864 There may be pitfalls when you use @code{long long} types for function
865 arguments without function prototypes. If a function
866 expects type @code{int} for its argument, and you pass a value of type
867 @code{long long int}, confusion results because the caller and the
868 subroutine disagree about the number of bytes for the argument.
869 Likewise, if the function expects @code{long long int} and you pass
870 @code{int}. The best way to avoid such problems is to use prototypes.
871
872 @node Complex
873 @section Complex Numbers
874 @cindex complex numbers
875 @cindex @code{_Complex} keyword
876 @cindex @code{__complex__} keyword
877
878 ISO C99 supports complex floating data types, and as an extension GCC
879 supports them in C90 mode and in C++. GCC also supports complex integer data
880 types which are not part of ISO C99. You can declare complex types
881 using the keyword @code{_Complex}. As an extension, the older GNU
882 keyword @code{__complex__} is also supported.
883
884 For example, @samp{_Complex double x;} declares @code{x} as a
885 variable whose real part and imaginary part are both of type
886 @code{double}. @samp{_Complex short int y;} declares @code{y} to
887 have real and imaginary parts of type @code{short int}; this is not
888 likely to be useful, but it shows that the set of complex types is
889 complete.
890
891 To write a constant with a complex data type, use the suffix @samp{i} or
892 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
893 has type @code{_Complex float} and @code{3i} has type
894 @code{_Complex int}. Such a constant always has a pure imaginary
895 value, but you can form any complex value you like by adding one to a
896 real constant. This is a GNU extension; if you have an ISO C99
897 conforming C library (such as the GNU C Library), and want to construct complex
898 constants of floating type, you should include @code{<complex.h>} and
899 use the macros @code{I} or @code{_Complex_I} instead.
900
901 @cindex @code{__real__} keyword
902 @cindex @code{__imag__} keyword
903 To extract the real part of a complex-valued expression @var{exp}, write
904 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
905 extract the imaginary part. This is a GNU extension; for values of
906 floating type, you should use the ISO C99 functions @code{crealf},
907 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
908 @code{cimagl}, declared in @code{<complex.h>} and also provided as
909 built-in functions by GCC@.
910
911 @cindex complex conjugation
912 The operator @samp{~} performs complex conjugation when used on a value
913 with a complex type. This is a GNU extension; for values of
914 floating type, you should use the ISO C99 functions @code{conjf},
915 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
916 provided as built-in functions by GCC@.
917
918 GCC can allocate complex automatic variables in a noncontiguous
919 fashion; it's even possible for the real part to be in a register while
920 the imaginary part is on the stack (or vice versa). Only the DWARF
921 debug info format can represent this, so use of DWARF is recommended.
922 If you are using the stabs debug info format, GCC describes a noncontiguous
923 complex variable as if it were two separate variables of noncomplex type.
924 If the variable's actual name is @code{foo}, the two fictitious
925 variables are named @code{foo$real} and @code{foo$imag}. You can
926 examine and set these two fictitious variables with your debugger.
927
928 @node Floating Types
929 @section Additional Floating Types
930 @cindex additional floating types
931 @cindex @code{_Float@var{n}} data types
932 @cindex @code{_Float@var{n}x} data types
933 @cindex @code{__float80} data type
934 @cindex @code{__float128} data type
935 @cindex @code{__ibm128} data type
936 @cindex @code{w} floating point suffix
937 @cindex @code{q} floating point suffix
938 @cindex @code{W} floating point suffix
939 @cindex @code{Q} floating point suffix
940
941 ISO/IEC TS 18661-3:2015 defines C support for additional floating
942 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
943 these type names; the set of types supported depends on the target
944 architecture. These types are not supported when compiling C++.
945 Constants with these types use suffixes @code{f@var{n}} or
946 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
947 names can be used together with @code{_Complex} to declare complex
948 types.
949
950 As an extension, GNU C and GNU C++ support additional floating
951 types, which are not supported by all targets.
952 @itemize @bullet
953 @item @code{__float128} is available on i386, x86_64, IA-64, and
954 hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
955 the vector scalar (VSX) instruction set. @code{__float128} supports
956 the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64
957 other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
958 On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
959 double}.
960
961 @item @code{__float80} is available on the i386, x86_64, and IA-64
962 targets, and supports the 80-bit (@code{XFmode}) floating type. It is
963 an alias for the type name @code{_Float64x} on these targets.
964
965 @item @code{__ibm128} is available on PowerPC targets, and provides
966 access to the IBM extended double format which is the current format
967 used for @code{long double}. When @code{long double} transitions to
968 @code{__float128} on PowerPC in the future, @code{__ibm128} will remain
969 for use in conversions between the two types.
970 @end itemize
971
972 Support for these additional types includes the arithmetic operators:
973 add, subtract, multiply, divide; unary arithmetic operators;
974 relational operators; equality operators; and conversions to and from
975 integer and other floating types. Use a suffix @samp{w} or @samp{W}
976 in a literal constant of type @code{__float80} or type
977 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
978
979 In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
980 on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
981 expected in future versions of GCC that @code{_Float128} and @code{__float128}
982 will be enabled automatically.
983
984 The @code{_Float128} type is supported on all systems where
985 @code{__float128} is supported or where @code{long double} has the
986 IEEE binary128 format. The @code{_Float64x} type is supported on all
987 systems where @code{__float128} is supported. The @code{_Float32}
988 type is supported on all systems supporting IEEE binary32; the
989 @code{_Float64} and @code{_Float32x} types are supported on all systems
990 supporting IEEE binary64. The @code{_Float16} type is supported on AArch64
991 systems by default, and on ARM systems when the IEEE format for 16-bit
992 floating-point types is selected with @option{-mfp16-format=ieee}.
993 GCC does not currently support @code{_Float128x} on any systems.
994
995 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
996 types using the corresponding internal complex type, @code{XCmode} for
997 @code{__float80} type and @code{TCmode} for @code{__float128} type:
998
999 @smallexample
1000 typedef _Complex float __attribute__((mode(TC))) _Complex128;
1001 typedef _Complex float __attribute__((mode(XC))) _Complex80;
1002 @end smallexample
1003
1004 On the PowerPC Linux VSX targets, you can declare complex types using
1005 the corresponding internal complex type, @code{KCmode} for
1006 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
1007
1008 @smallexample
1009 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
1010 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
1011 @end smallexample
1012
1013 @node Half-Precision
1014 @section Half-Precision Floating Point
1015 @cindex half-precision floating point
1016 @cindex @code{__fp16} data type
1017
1018 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1019 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1020 On ARM systems, you must enable this type explicitly with the
1021 @option{-mfp16-format} command-line option in order to use it.
1022
1023 ARM targets support two incompatible representations for half-precision
1024 floating-point values. You must choose one of the representations and
1025 use it consistently in your program.
1026
1027 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1028 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1029 There are 11 bits of significand precision, approximately 3
1030 decimal digits.
1031
1032 Specifying @option{-mfp16-format=alternative} selects the ARM
1033 alternative format. This representation is similar to the IEEE
1034 format, but does not support infinities or NaNs. Instead, the range
1035 of exponents is extended, so that this format can represent normalized
1036 values in the range of @math{2^{-14}} to 131008.
1037
1038 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1039 not require use of the @option{-mfp16-format} command-line option.
1040
1041 The @code{__fp16} type may only be used as an argument to intrinsics defined
1042 in @code{<arm_fp16.h>}, or as a storage format. For purposes of
1043 arithmetic and other operations, @code{__fp16} values in C or C++
1044 expressions are automatically promoted to @code{float}.
1045
1046 The ARM target provides hardware support for conversions between
1047 @code{__fp16} and @code{float} values
1048 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8 provides
1049 hardware support for conversions between @code{__fp16} and @code{double}
1050 values. GCC generates code using these hardware instructions if you
1051 compile with options to select an FPU that provides them;
1052 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1053 in addition to the @option{-mfp16-format} option to select
1054 a half-precision format.
1055
1056 Language-level support for the @code{__fp16} data type is
1057 independent of whether GCC generates code using hardware floating-point
1058 instructions. In cases where hardware support is not specified, GCC
1059 implements conversions between @code{__fp16} and other types as library
1060 calls.
1061
1062 It is recommended that portable code use the @code{_Float16} type defined
1063 by ISO/IEC TS 18661-3:2015. @xref{Floating Types}.
1064
1065 @node Decimal Float
1066 @section Decimal Floating Types
1067 @cindex decimal floating types
1068 @cindex @code{_Decimal32} data type
1069 @cindex @code{_Decimal64} data type
1070 @cindex @code{_Decimal128} data type
1071 @cindex @code{df} integer suffix
1072 @cindex @code{dd} integer suffix
1073 @cindex @code{dl} integer suffix
1074 @cindex @code{DF} integer suffix
1075 @cindex @code{DD} integer suffix
1076 @cindex @code{DL} integer suffix
1077
1078 As an extension, GNU C supports decimal floating types as
1079 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1080 floating types in GCC will evolve as the draft technical report changes.
1081 Calling conventions for any target might also change. Not all targets
1082 support decimal floating types.
1083
1084 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1085 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1086 @code{float}, @code{double}, and @code{long double} whose radix is not
1087 specified by the C standard but is usually two.
1088
1089 Support for decimal floating types includes the arithmetic operators
1090 add, subtract, multiply, divide; unary arithmetic operators;
1091 relational operators; equality operators; and conversions to and from
1092 integer and other floating types. Use a suffix @samp{df} or
1093 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1094 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1095 @code{_Decimal128}.
1096
1097 GCC support of decimal float as specified by the draft technical report
1098 is incomplete:
1099
1100 @itemize @bullet
1101 @item
1102 When the value of a decimal floating type cannot be represented in the
1103 integer type to which it is being converted, the result is undefined
1104 rather than the result value specified by the draft technical report.
1105
1106 @item
1107 GCC does not provide the C library functionality associated with
1108 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1109 @file{wchar.h}, which must come from a separate C library implementation.
1110 Because of this the GNU C compiler does not define macro
1111 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1112 the technical report.
1113 @end itemize
1114
1115 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1116 are supported by the DWARF debug information format.
1117
1118 @node Hex Floats
1119 @section Hex Floats
1120 @cindex hex floats
1121
1122 ISO C99 supports floating-point numbers written not only in the usual
1123 decimal notation, such as @code{1.55e1}, but also numbers such as
1124 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1125 supports this in C90 mode (except in some cases when strictly
1126 conforming) and in C++. In that format the
1127 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1128 mandatory. The exponent is a decimal number that indicates the power of
1129 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1130 @tex
1131 $1 {15\over16}$,
1132 @end tex
1133 @ifnottex
1134 1 15/16,
1135 @end ifnottex
1136 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1137 is the same as @code{1.55e1}.
1138
1139 Unlike for floating-point numbers in the decimal notation the exponent
1140 is always required in the hexadecimal notation. Otherwise the compiler
1141 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1142 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1143 extension for floating-point constants of type @code{float}.
1144
1145 @node Fixed-Point
1146 @section Fixed-Point Types
1147 @cindex fixed-point types
1148 @cindex @code{_Fract} data type
1149 @cindex @code{_Accum} data type
1150 @cindex @code{_Sat} data type
1151 @cindex @code{hr} fixed-suffix
1152 @cindex @code{r} fixed-suffix
1153 @cindex @code{lr} fixed-suffix
1154 @cindex @code{llr} fixed-suffix
1155 @cindex @code{uhr} fixed-suffix
1156 @cindex @code{ur} fixed-suffix
1157 @cindex @code{ulr} fixed-suffix
1158 @cindex @code{ullr} fixed-suffix
1159 @cindex @code{hk} fixed-suffix
1160 @cindex @code{k} fixed-suffix
1161 @cindex @code{lk} fixed-suffix
1162 @cindex @code{llk} fixed-suffix
1163 @cindex @code{uhk} fixed-suffix
1164 @cindex @code{uk} fixed-suffix
1165 @cindex @code{ulk} fixed-suffix
1166 @cindex @code{ullk} fixed-suffix
1167 @cindex @code{HR} fixed-suffix
1168 @cindex @code{R} fixed-suffix
1169 @cindex @code{LR} fixed-suffix
1170 @cindex @code{LLR} fixed-suffix
1171 @cindex @code{UHR} fixed-suffix
1172 @cindex @code{UR} fixed-suffix
1173 @cindex @code{ULR} fixed-suffix
1174 @cindex @code{ULLR} fixed-suffix
1175 @cindex @code{HK} fixed-suffix
1176 @cindex @code{K} fixed-suffix
1177 @cindex @code{LK} fixed-suffix
1178 @cindex @code{LLK} fixed-suffix
1179 @cindex @code{UHK} fixed-suffix
1180 @cindex @code{UK} fixed-suffix
1181 @cindex @code{ULK} fixed-suffix
1182 @cindex @code{ULLK} fixed-suffix
1183
1184 As an extension, GNU C supports fixed-point types as
1185 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1186 types in GCC will evolve as the draft technical report changes.
1187 Calling conventions for any target might also change. Not all targets
1188 support fixed-point types.
1189
1190 The fixed-point types are
1191 @code{short _Fract},
1192 @code{_Fract},
1193 @code{long _Fract},
1194 @code{long long _Fract},
1195 @code{unsigned short _Fract},
1196 @code{unsigned _Fract},
1197 @code{unsigned long _Fract},
1198 @code{unsigned long long _Fract},
1199 @code{_Sat short _Fract},
1200 @code{_Sat _Fract},
1201 @code{_Sat long _Fract},
1202 @code{_Sat long long _Fract},
1203 @code{_Sat unsigned short _Fract},
1204 @code{_Sat unsigned _Fract},
1205 @code{_Sat unsigned long _Fract},
1206 @code{_Sat unsigned long long _Fract},
1207 @code{short _Accum},
1208 @code{_Accum},
1209 @code{long _Accum},
1210 @code{long long _Accum},
1211 @code{unsigned short _Accum},
1212 @code{unsigned _Accum},
1213 @code{unsigned long _Accum},
1214 @code{unsigned long long _Accum},
1215 @code{_Sat short _Accum},
1216 @code{_Sat _Accum},
1217 @code{_Sat long _Accum},
1218 @code{_Sat long long _Accum},
1219 @code{_Sat unsigned short _Accum},
1220 @code{_Sat unsigned _Accum},
1221 @code{_Sat unsigned long _Accum},
1222 @code{_Sat unsigned long long _Accum}.
1223
1224 Fixed-point data values contain fractional and optional integral parts.
1225 The format of fixed-point data varies and depends on the target machine.
1226
1227 Support for fixed-point types includes:
1228 @itemize @bullet
1229 @item
1230 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1231 @item
1232 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1233 @item
1234 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1235 @item
1236 binary shift operators (@code{<<}, @code{>>})
1237 @item
1238 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1239 @item
1240 equality operators (@code{==}, @code{!=})
1241 @item
1242 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1243 @code{<<=}, @code{>>=})
1244 @item
1245 conversions to and from integer, floating-point, or fixed-point types
1246 @end itemize
1247
1248 Use a suffix in a fixed-point literal constant:
1249 @itemize
1250 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1251 @code{_Sat short _Fract}
1252 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1253 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1254 @code{_Sat long _Fract}
1255 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1256 @code{_Sat long long _Fract}
1257 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1258 @code{_Sat unsigned short _Fract}
1259 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1260 @code{_Sat unsigned _Fract}
1261 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1262 @code{_Sat unsigned long _Fract}
1263 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1264 and @code{_Sat unsigned long long _Fract}
1265 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1266 @code{_Sat short _Accum}
1267 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1268 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1269 @code{_Sat long _Accum}
1270 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1271 @code{_Sat long long _Accum}
1272 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1273 @code{_Sat unsigned short _Accum}
1274 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1275 @code{_Sat unsigned _Accum}
1276 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1277 @code{_Sat unsigned long _Accum}
1278 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1279 and @code{_Sat unsigned long long _Accum}
1280 @end itemize
1281
1282 GCC support of fixed-point types as specified by the draft technical report
1283 is incomplete:
1284
1285 @itemize @bullet
1286 @item
1287 Pragmas to control overflow and rounding behaviors are not implemented.
1288 @end itemize
1289
1290 Fixed-point types are supported by the DWARF debug information format.
1291
1292 @node Named Address Spaces
1293 @section Named Address Spaces
1294 @cindex Named Address Spaces
1295
1296 As an extension, GNU C supports named address spaces as
1297 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1298 address spaces in GCC will evolve as the draft technical report
1299 changes. Calling conventions for any target might also change. At
1300 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1301 address spaces other than the generic address space.
1302
1303 Address space identifiers may be used exactly like any other C type
1304 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1305 document for more details.
1306
1307 @anchor{AVR Named Address Spaces}
1308 @subsection AVR Named Address Spaces
1309
1310 On the AVR target, there are several address spaces that can be used
1311 in order to put read-only data into the flash memory and access that
1312 data by means of the special instructions @code{LPM} or @code{ELPM}
1313 needed to read from flash.
1314
1315 Per default, any data including read-only data is located in RAM
1316 (the generic address space) so that non-generic address spaces are
1317 needed to locate read-only data in flash memory
1318 @emph{and} to generate the right instructions to access this data
1319 without using (inline) assembler code.
1320
1321 @table @code
1322 @item __flash
1323 @cindex @code{__flash} AVR Named Address Spaces
1324 The @code{__flash} qualifier locates data in the
1325 @code{.progmem.data} section. Data is read using the @code{LPM}
1326 instruction. Pointers to this address space are 16 bits wide.
1327
1328 @item __flash1
1329 @itemx __flash2
1330 @itemx __flash3
1331 @itemx __flash4
1332 @itemx __flash5
1333 @cindex @code{__flash1} AVR Named Address Spaces
1334 @cindex @code{__flash2} AVR Named Address Spaces
1335 @cindex @code{__flash3} AVR Named Address Spaces
1336 @cindex @code{__flash4} AVR Named Address Spaces
1337 @cindex @code{__flash5} AVR Named Address Spaces
1338 These are 16-bit address spaces locating data in section
1339 @code{.progmem@var{N}.data} where @var{N} refers to
1340 address space @code{__flash@var{N}}.
1341 The compiler sets the @code{RAMPZ} segment register appropriately
1342 before reading data by means of the @code{ELPM} instruction.
1343
1344 @item __memx
1345 @cindex @code{__memx} AVR Named Address Spaces
1346 This is a 24-bit address space that linearizes flash and RAM:
1347 If the high bit of the address is set, data is read from
1348 RAM using the lower two bytes as RAM address.
1349 If the high bit of the address is clear, data is read from flash
1350 with @code{RAMPZ} set according to the high byte of the address.
1351 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1352
1353 Objects in this address space are located in @code{.progmemx.data}.
1354 @end table
1355
1356 @b{Example}
1357
1358 @smallexample
1359 char my_read (const __flash char ** p)
1360 @{
1361 /* p is a pointer to RAM that points to a pointer to flash.
1362 The first indirection of p reads that flash pointer
1363 from RAM and the second indirection reads a char from this
1364 flash address. */
1365
1366 return **p;
1367 @}
1368
1369 /* Locate array[] in flash memory */
1370 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1371
1372 int i = 1;
1373
1374 int main (void)
1375 @{
1376 /* Return 17 by reading from flash memory */
1377 return array[array[i]];
1378 @}
1379 @end smallexample
1380
1381 @noindent
1382 For each named address space supported by avr-gcc there is an equally
1383 named but uppercase built-in macro defined.
1384 The purpose is to facilitate testing if respective address space
1385 support is available or not:
1386
1387 @smallexample
1388 #ifdef __FLASH
1389 const __flash int var = 1;
1390
1391 int read_var (void)
1392 @{
1393 return var;
1394 @}
1395 #else
1396 #include <avr/pgmspace.h> /* From AVR-LibC */
1397
1398 const int var PROGMEM = 1;
1399
1400 int read_var (void)
1401 @{
1402 return (int) pgm_read_word (&var);
1403 @}
1404 #endif /* __FLASH */
1405 @end smallexample
1406
1407 @noindent
1408 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1409 locates data in flash but
1410 accesses to these data read from generic address space, i.e.@:
1411 from RAM,
1412 so that you need special accessors like @code{pgm_read_byte}
1413 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1414 together with attribute @code{progmem}.
1415
1416 @noindent
1417 @b{Limitations and caveats}
1418
1419 @itemize
1420 @item
1421 Reading across the 64@tie{}KiB section boundary of
1422 the @code{__flash} or @code{__flash@var{N}} address spaces
1423 shows undefined behavior. The only address space that
1424 supports reading across the 64@tie{}KiB flash segment boundaries is
1425 @code{__memx}.
1426
1427 @item
1428 If you use one of the @code{__flash@var{N}} address spaces
1429 you must arrange your linker script to locate the
1430 @code{.progmem@var{N}.data} sections according to your needs.
1431
1432 @item
1433 Any data or pointers to the non-generic address spaces must
1434 be qualified as @code{const}, i.e.@: as read-only data.
1435 This still applies if the data in one of these address
1436 spaces like software version number or calibration lookup table are intended to
1437 be changed after load time by, say, a boot loader. In this case
1438 the right qualification is @code{const} @code{volatile} so that the compiler
1439 must not optimize away known values or insert them
1440 as immediates into operands of instructions.
1441
1442 @item
1443 The following code initializes a variable @code{pfoo}
1444 located in static storage with a 24-bit address:
1445 @smallexample
1446 extern const __memx char foo;
1447 const __memx void *pfoo = &foo;
1448 @end smallexample
1449
1450 @noindent
1451 Such code requires at least binutils 2.23, see
1452 @w{@uref{https://sourceware.org/PR13503,PR13503}}.
1453
1454 @item
1455 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1456 Data can be put into and read from flash memory by means of
1457 attribute @code{progmem}, see @ref{AVR Variable Attributes}.
1458
1459 @end itemize
1460
1461 @subsection M32C Named Address Spaces
1462 @cindex @code{__far} M32C Named Address Spaces
1463
1464 On the M32C target, with the R8C and M16C CPU variants, variables
1465 qualified with @code{__far} are accessed using 32-bit addresses in
1466 order to access memory beyond the first 64@tie{}Ki bytes. If
1467 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1468 effect.
1469
1470 @subsection RL78 Named Address Spaces
1471 @cindex @code{__far} RL78 Named Address Spaces
1472
1473 On the RL78 target, variables qualified with @code{__far} are accessed
1474 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1475 addresses. Non-far variables are assumed to appear in the topmost
1476 64@tie{}KiB of the address space.
1477
1478 @subsection SPU Named Address Spaces
1479 @cindex @code{__ea} SPU Named Address Spaces
1480
1481 On the SPU target variables may be declared as
1482 belonging to another address space by qualifying the type with the
1483 @code{__ea} address space identifier:
1484
1485 @smallexample
1486 extern int __ea i;
1487 @end smallexample
1488
1489 @noindent
1490 The compiler generates special code to access the variable @code{i}.
1491 It may use runtime library
1492 support, or generate special machine instructions to access that address
1493 space.
1494
1495 @subsection x86 Named Address Spaces
1496 @cindex x86 named address spaces
1497
1498 On the x86 target, variables may be declared as being relative
1499 to the @code{%fs} or @code{%gs} segments.
1500
1501 @table @code
1502 @item __seg_fs
1503 @itemx __seg_gs
1504 @cindex @code{__seg_fs} x86 named address space
1505 @cindex @code{__seg_gs} x86 named address space
1506 The object is accessed with the respective segment override prefix.
1507
1508 The respective segment base must be set via some method specific to
1509 the operating system. Rather than require an expensive system call
1510 to retrieve the segment base, these address spaces are not considered
1511 to be subspaces of the generic (flat) address space. This means that
1512 explicit casts are required to convert pointers between these address
1513 spaces and the generic address space. In practice the application
1514 should cast to @code{uintptr_t} and apply the segment base offset
1515 that it installed previously.
1516
1517 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1518 defined when these address spaces are supported.
1519 @end table
1520
1521 @node Zero Length
1522 @section Arrays of Length Zero
1523 @cindex arrays of length zero
1524 @cindex zero-length arrays
1525 @cindex length-zero arrays
1526 @cindex flexible array members
1527
1528 Zero-length arrays are allowed in GNU C@. They are very useful as the
1529 last element of a structure that is really a header for a variable-length
1530 object:
1531
1532 @smallexample
1533 struct line @{
1534 int length;
1535 char contents[0];
1536 @};
1537
1538 struct line *thisline = (struct line *)
1539 malloc (sizeof (struct line) + this_length);
1540 thisline->length = this_length;
1541 @end smallexample
1542
1543 In ISO C90, you would have to give @code{contents} a length of 1, which
1544 means either you waste space or complicate the argument to @code{malloc}.
1545
1546 In ISO C99, you would use a @dfn{flexible array member}, which is
1547 slightly different in syntax and semantics:
1548
1549 @itemize @bullet
1550 @item
1551 Flexible array members are written as @code{contents[]} without
1552 the @code{0}.
1553
1554 @item
1555 Flexible array members have incomplete type, and so the @code{sizeof}
1556 operator may not be applied. As a quirk of the original implementation
1557 of zero-length arrays, @code{sizeof} evaluates to zero.
1558
1559 @item
1560 Flexible array members may only appear as the last member of a
1561 @code{struct} that is otherwise non-empty.
1562
1563 @item
1564 A structure containing a flexible array member, or a union containing
1565 such a structure (possibly recursively), may not be a member of a
1566 structure or an element of an array. (However, these uses are
1567 permitted by GCC as extensions.)
1568 @end itemize
1569
1570 Non-empty initialization of zero-length
1571 arrays is treated like any case where there are more initializer
1572 elements than the array holds, in that a suitable warning about ``excess
1573 elements in array'' is given, and the excess elements (all of them, in
1574 this case) are ignored.
1575
1576 GCC allows static initialization of flexible array members.
1577 This is equivalent to defining a new structure containing the original
1578 structure followed by an array of sufficient size to contain the data.
1579 E.g.@: in the following, @code{f1} is constructed as if it were declared
1580 like @code{f2}.
1581
1582 @smallexample
1583 struct f1 @{
1584 int x; int y[];
1585 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1586
1587 struct f2 @{
1588 struct f1 f1; int data[3];
1589 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1590 @end smallexample
1591
1592 @noindent
1593 The convenience of this extension is that @code{f1} has the desired
1594 type, eliminating the need to consistently refer to @code{f2.f1}.
1595
1596 This has symmetry with normal static arrays, in that an array of
1597 unknown size is also written with @code{[]}.
1598
1599 Of course, this extension only makes sense if the extra data comes at
1600 the end of a top-level object, as otherwise we would be overwriting
1601 data at subsequent offsets. To avoid undue complication and confusion
1602 with initialization of deeply nested arrays, we simply disallow any
1603 non-empty initialization except when the structure is the top-level
1604 object. For example:
1605
1606 @smallexample
1607 struct foo @{ int x; int y[]; @};
1608 struct bar @{ struct foo z; @};
1609
1610 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1611 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1612 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1613 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1614 @end smallexample
1615
1616 @node Empty Structures
1617 @section Structures with No Members
1618 @cindex empty structures
1619 @cindex zero-size structures
1620
1621 GCC permits a C structure to have no members:
1622
1623 @smallexample
1624 struct empty @{
1625 @};
1626 @end smallexample
1627
1628 The structure has size zero. In C++, empty structures are part
1629 of the language. G++ treats empty structures as if they had a single
1630 member of type @code{char}.
1631
1632 @node Variable Length
1633 @section Arrays of Variable Length
1634 @cindex variable-length arrays
1635 @cindex arrays of variable length
1636 @cindex VLAs
1637
1638 Variable-length automatic arrays are allowed in ISO C99, and as an
1639 extension GCC accepts them in C90 mode and in C++. These arrays are
1640 declared like any other automatic arrays, but with a length that is not
1641 a constant expression. The storage is allocated at the point of
1642 declaration and deallocated when the block scope containing the declaration
1643 exits. For
1644 example:
1645
1646 @smallexample
1647 FILE *
1648 concat_fopen (char *s1, char *s2, char *mode)
1649 @{
1650 char str[strlen (s1) + strlen (s2) + 1];
1651 strcpy (str, s1);
1652 strcat (str, s2);
1653 return fopen (str, mode);
1654 @}
1655 @end smallexample
1656
1657 @cindex scope of a variable length array
1658 @cindex variable-length array scope
1659 @cindex deallocating variable length arrays
1660 Jumping or breaking out of the scope of the array name deallocates the
1661 storage. Jumping into the scope is not allowed; you get an error
1662 message for it.
1663
1664 @cindex variable-length array in a structure
1665 As an extension, GCC accepts variable-length arrays as a member of
1666 a structure or a union. For example:
1667
1668 @smallexample
1669 void
1670 foo (int n)
1671 @{
1672 struct S @{ int x[n]; @};
1673 @}
1674 @end smallexample
1675
1676 @cindex @code{alloca} vs variable-length arrays
1677 You can use the function @code{alloca} to get an effect much like
1678 variable-length arrays. The function @code{alloca} is available in
1679 many other C implementations (but not in all). On the other hand,
1680 variable-length arrays are more elegant.
1681
1682 There are other differences between these two methods. Space allocated
1683 with @code{alloca} exists until the containing @emph{function} returns.
1684 The space for a variable-length array is deallocated as soon as the array
1685 name's scope ends, unless you also use @code{alloca} in this scope.
1686
1687 You can also use variable-length arrays as arguments to functions:
1688
1689 @smallexample
1690 struct entry
1691 tester (int len, char data[len][len])
1692 @{
1693 /* @r{@dots{}} */
1694 @}
1695 @end smallexample
1696
1697 The length of an array is computed once when the storage is allocated
1698 and is remembered for the scope of the array in case you access it with
1699 @code{sizeof}.
1700
1701 If you want to pass the array first and the length afterward, you can
1702 use a forward declaration in the parameter list---another GNU extension.
1703
1704 @smallexample
1705 struct entry
1706 tester (int len; char data[len][len], int len)
1707 @{
1708 /* @r{@dots{}} */
1709 @}
1710 @end smallexample
1711
1712 @cindex parameter forward declaration
1713 The @samp{int len} before the semicolon is a @dfn{parameter forward
1714 declaration}, and it serves the purpose of making the name @code{len}
1715 known when the declaration of @code{data} is parsed.
1716
1717 You can write any number of such parameter forward declarations in the
1718 parameter list. They can be separated by commas or semicolons, but the
1719 last one must end with a semicolon, which is followed by the ``real''
1720 parameter declarations. Each forward declaration must match a ``real''
1721 declaration in parameter name and data type. ISO C99 does not support
1722 parameter forward declarations.
1723
1724 @node Variadic Macros
1725 @section Macros with a Variable Number of Arguments.
1726 @cindex variable number of arguments
1727 @cindex macro with variable arguments
1728 @cindex rest argument (in macro)
1729 @cindex variadic macros
1730
1731 In the ISO C standard of 1999, a macro can be declared to accept a
1732 variable number of arguments much as a function can. The syntax for
1733 defining the macro is similar to that of a function. Here is an
1734 example:
1735
1736 @smallexample
1737 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1738 @end smallexample
1739
1740 @noindent
1741 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1742 such a macro, it represents the zero or more tokens until the closing
1743 parenthesis that ends the invocation, including any commas. This set of
1744 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1745 wherever it appears. See the CPP manual for more information.
1746
1747 GCC has long supported variadic macros, and used a different syntax that
1748 allowed you to give a name to the variable arguments just like any other
1749 argument. Here is an example:
1750
1751 @smallexample
1752 #define debug(format, args...) fprintf (stderr, format, args)
1753 @end smallexample
1754
1755 @noindent
1756 This is in all ways equivalent to the ISO C example above, but arguably
1757 more readable and descriptive.
1758
1759 GNU CPP has two further variadic macro extensions, and permits them to
1760 be used with either of the above forms of macro definition.
1761
1762 In standard C, you are not allowed to leave the variable argument out
1763 entirely; but you are allowed to pass an empty argument. For example,
1764 this invocation is invalid in ISO C, because there is no comma after
1765 the string:
1766
1767 @smallexample
1768 debug ("A message")
1769 @end smallexample
1770
1771 GNU CPP permits you to completely omit the variable arguments in this
1772 way. In the above examples, the compiler would complain, though since
1773 the expansion of the macro still has the extra comma after the format
1774 string.
1775
1776 To help solve this problem, CPP behaves specially for variable arguments
1777 used with the token paste operator, @samp{##}. If instead you write
1778
1779 @smallexample
1780 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1781 @end smallexample
1782
1783 @noindent
1784 and if the variable arguments are omitted or empty, the @samp{##}
1785 operator causes the preprocessor to remove the comma before it. If you
1786 do provide some variable arguments in your macro invocation, GNU CPP
1787 does not complain about the paste operation and instead places the
1788 variable arguments after the comma. Just like any other pasted macro
1789 argument, these arguments are not macro expanded.
1790
1791 @node Escaped Newlines
1792 @section Slightly Looser Rules for Escaped Newlines
1793 @cindex escaped newlines
1794 @cindex newlines (escaped)
1795
1796 The preprocessor treatment of escaped newlines is more relaxed
1797 than that specified by the C90 standard, which requires the newline
1798 to immediately follow a backslash.
1799 GCC's implementation allows whitespace in the form
1800 of spaces, horizontal and vertical tabs, and form feeds between the
1801 backslash and the subsequent newline. The preprocessor issues a
1802 warning, but treats it as a valid escaped newline and combines the two
1803 lines to form a single logical line. This works within comments and
1804 tokens, as well as between tokens. Comments are @emph{not} treated as
1805 whitespace for the purposes of this relaxation, since they have not
1806 yet been replaced with spaces.
1807
1808 @node Subscripting
1809 @section Non-Lvalue Arrays May Have Subscripts
1810 @cindex subscripting
1811 @cindex arrays, non-lvalue
1812
1813 @cindex subscripting and function values
1814 In ISO C99, arrays that are not lvalues still decay to pointers, and
1815 may be subscripted, although they may not be modified or used after
1816 the next sequence point and the unary @samp{&} operator may not be
1817 applied to them. As an extension, GNU C allows such arrays to be
1818 subscripted in C90 mode, though otherwise they do not decay to
1819 pointers outside C99 mode. For example,
1820 this is valid in GNU C though not valid in C90:
1821
1822 @smallexample
1823 @group
1824 struct foo @{int a[4];@};
1825
1826 struct foo f();
1827
1828 bar (int index)
1829 @{
1830 return f().a[index];
1831 @}
1832 @end group
1833 @end smallexample
1834
1835 @node Pointer Arith
1836 @section Arithmetic on @code{void}- and Function-Pointers
1837 @cindex void pointers, arithmetic
1838 @cindex void, size of pointer to
1839 @cindex function pointers, arithmetic
1840 @cindex function, size of pointer to
1841
1842 In GNU C, addition and subtraction operations are supported on pointers to
1843 @code{void} and on pointers to functions. This is done by treating the
1844 size of a @code{void} or of a function as 1.
1845
1846 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1847 and on function types, and returns 1.
1848
1849 @opindex Wpointer-arith
1850 The option @option{-Wpointer-arith} requests a warning if these extensions
1851 are used.
1852
1853 @node Pointers to Arrays
1854 @section Pointers to Arrays with Qualifiers Work as Expected
1855 @cindex pointers to arrays
1856 @cindex const qualifier
1857
1858 In GNU C, pointers to arrays with qualifiers work similar to pointers
1859 to other qualified types. For example, a value of type @code{int (*)[5]}
1860 can be used to initialize a variable of type @code{const int (*)[5]}.
1861 These types are incompatible in ISO C because the @code{const} qualifier
1862 is formally attached to the element type of the array and not the
1863 array itself.
1864
1865 @smallexample
1866 extern void
1867 transpose (int N, int M, double out[M][N], const double in[N][M]);
1868 double x[3][2];
1869 double y[2][3];
1870 @r{@dots{}}
1871 transpose(3, 2, y, x);
1872 @end smallexample
1873
1874 @node Initializers
1875 @section Non-Constant Initializers
1876 @cindex initializers, non-constant
1877 @cindex non-constant initializers
1878
1879 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1880 automatic variable are not required to be constant expressions in GNU C@.
1881 Here is an example of an initializer with run-time varying elements:
1882
1883 @smallexample
1884 foo (float f, float g)
1885 @{
1886 float beat_freqs[2] = @{ f-g, f+g @};
1887 /* @r{@dots{}} */
1888 @}
1889 @end smallexample
1890
1891 @node Compound Literals
1892 @section Compound Literals
1893 @cindex constructor expressions
1894 @cindex initializations in expressions
1895 @cindex structures, constructor expression
1896 @cindex expressions, constructor
1897 @cindex compound literals
1898 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1899
1900 A compound literal looks like a cast of a brace-enclosed aggregate
1901 initializer list. Its value is an object of the type specified in
1902 the cast, containing the elements specified in the initializer.
1903 Unlike the result of a cast, a compound literal is an lvalue. ISO
1904 C99 and later support compound literals. As an extension, GCC
1905 supports compound literals also in C90 mode and in C++, although
1906 as explained below, the C++ semantics are somewhat different.
1907
1908 Usually, the specified type of a compound literal is a structure. Assume
1909 that @code{struct foo} and @code{structure} are declared as shown:
1910
1911 @smallexample
1912 struct foo @{int a; char b[2];@} structure;
1913 @end smallexample
1914
1915 @noindent
1916 Here is an example of constructing a @code{struct foo} with a compound literal:
1917
1918 @smallexample
1919 structure = ((struct foo) @{x + y, 'a', 0@});
1920 @end smallexample
1921
1922 @noindent
1923 This is equivalent to writing the following:
1924
1925 @smallexample
1926 @{
1927 struct foo temp = @{x + y, 'a', 0@};
1928 structure = temp;
1929 @}
1930 @end smallexample
1931
1932 You can also construct an array, though this is dangerous in C++, as
1933 explained below. If all the elements of the compound literal are
1934 (made up of) simple constant expressions suitable for use in
1935 initializers of objects of static storage duration, then the compound
1936 literal can be coerced to a pointer to its first element and used in
1937 such an initializer, as shown here:
1938
1939 @smallexample
1940 char **foo = (char *[]) @{ "x", "y", "z" @};
1941 @end smallexample
1942
1943 Compound literals for scalar types and union types are also allowed. In
1944 the following example the variable @code{i} is initialized to the value
1945 @code{2}, the result of incrementing the unnamed object created by
1946 the compound literal.
1947
1948 @smallexample
1949 int i = ++(int) @{ 1 @};
1950 @end smallexample
1951
1952 As a GNU extension, GCC allows initialization of objects with static storage
1953 duration by compound literals (which is not possible in ISO C99 because
1954 the initializer is not a constant).
1955 It is handled as if the object were initialized only with the brace-enclosed
1956 list if the types of the compound literal and the object match.
1957 The elements of the compound literal must be constant.
1958 If the object being initialized has array type of unknown size, the size is
1959 determined by the size of the compound literal.
1960
1961 @smallexample
1962 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1963 static int y[] = (int []) @{1, 2, 3@};
1964 static int z[] = (int [3]) @{1@};
1965 @end smallexample
1966
1967 @noindent
1968 The above lines are equivalent to the following:
1969 @smallexample
1970 static struct foo x = @{1, 'a', 'b'@};
1971 static int y[] = @{1, 2, 3@};
1972 static int z[] = @{1, 0, 0@};
1973 @end smallexample
1974
1975 In C, a compound literal designates an unnamed object with static or
1976 automatic storage duration. In C++, a compound literal designates a
1977 temporary object that only lives until the end of its full-expression.
1978 As a result, well-defined C code that takes the address of a subobject
1979 of a compound literal can be undefined in C++, so G++ rejects
1980 the conversion of a temporary array to a pointer. For instance, if
1981 the array compound literal example above appeared inside a function,
1982 any subsequent use of @code{foo} in C++ would have undefined behavior
1983 because the lifetime of the array ends after the declaration of @code{foo}.
1984
1985 As an optimization, G++ sometimes gives array compound literals longer
1986 lifetimes: when the array either appears outside a function or has
1987 a @code{const}-qualified type. If @code{foo} and its initializer had
1988 elements of type @code{char *const} rather than @code{char *}, or if
1989 @code{foo} were a global variable, the array would have static storage
1990 duration. But it is probably safest just to avoid the use of array
1991 compound literals in C++ code.
1992
1993 @node Designated Inits
1994 @section Designated Initializers
1995 @cindex initializers with labeled elements
1996 @cindex labeled elements in initializers
1997 @cindex case labels in initializers
1998 @cindex designated initializers
1999
2000 Standard C90 requires the elements of an initializer to appear in a fixed
2001 order, the same as the order of the elements in the array or structure
2002 being initialized.
2003
2004 In ISO C99 you can give the elements in any order, specifying the array
2005 indices or structure field names they apply to, and GNU C allows this as
2006 an extension in C90 mode as well. This extension is not
2007 implemented in GNU C++.
2008
2009 To specify an array index, write
2010 @samp{[@var{index}] =} before the element value. For example,
2011
2012 @smallexample
2013 int a[6] = @{ [4] = 29, [2] = 15 @};
2014 @end smallexample
2015
2016 @noindent
2017 is equivalent to
2018
2019 @smallexample
2020 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2021 @end smallexample
2022
2023 @noindent
2024 The index values must be constant expressions, even if the array being
2025 initialized is automatic.
2026
2027 An alternative syntax for this that has been obsolete since GCC 2.5 but
2028 GCC still accepts is to write @samp{[@var{index}]} before the element
2029 value, with no @samp{=}.
2030
2031 To initialize a range of elements to the same value, write
2032 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2033 extension. For example,
2034
2035 @smallexample
2036 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2037 @end smallexample
2038
2039 @noindent
2040 If the value in it has side-effects, the side-effects happen only once,
2041 not for each initialized field by the range initializer.
2042
2043 @noindent
2044 Note that the length of the array is the highest value specified
2045 plus one.
2046
2047 In a structure initializer, specify the name of a field to initialize
2048 with @samp{.@var{fieldname} =} before the element value. For example,
2049 given the following structure,
2050
2051 @smallexample
2052 struct point @{ int x, y; @};
2053 @end smallexample
2054
2055 @noindent
2056 the following initialization
2057
2058 @smallexample
2059 struct point p = @{ .y = yvalue, .x = xvalue @};
2060 @end smallexample
2061
2062 @noindent
2063 is equivalent to
2064
2065 @smallexample
2066 struct point p = @{ xvalue, yvalue @};
2067 @end smallexample
2068
2069 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2070 @samp{@var{fieldname}:}, as shown here:
2071
2072 @smallexample
2073 struct point p = @{ y: yvalue, x: xvalue @};
2074 @end smallexample
2075
2076 Omitted field members are implicitly initialized the same as objects
2077 that have static storage duration.
2078
2079 @cindex designators
2080 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2081 @dfn{designator}. You can also use a designator (or the obsolete colon
2082 syntax) when initializing a union, to specify which element of the union
2083 should be used. For example,
2084
2085 @smallexample
2086 union foo @{ int i; double d; @};
2087
2088 union foo f = @{ .d = 4 @};
2089 @end smallexample
2090
2091 @noindent
2092 converts 4 to a @code{double} to store it in the union using
2093 the second element. By contrast, casting 4 to type @code{union foo}
2094 stores it into the union as the integer @code{i}, since it is
2095 an integer. @xref{Cast to Union}.
2096
2097 You can combine this technique of naming elements with ordinary C
2098 initialization of successive elements. Each initializer element that
2099 does not have a designator applies to the next consecutive element of the
2100 array or structure. For example,
2101
2102 @smallexample
2103 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2104 @end smallexample
2105
2106 @noindent
2107 is equivalent to
2108
2109 @smallexample
2110 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2111 @end smallexample
2112
2113 Labeling the elements of an array initializer is especially useful
2114 when the indices are characters or belong to an @code{enum} type.
2115 For example:
2116
2117 @smallexample
2118 int whitespace[256]
2119 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2120 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2121 @end smallexample
2122
2123 @cindex designator lists
2124 You can also write a series of @samp{.@var{fieldname}} and
2125 @samp{[@var{index}]} designators before an @samp{=} to specify a
2126 nested subobject to initialize; the list is taken relative to the
2127 subobject corresponding to the closest surrounding brace pair. For
2128 example, with the @samp{struct point} declaration above:
2129
2130 @smallexample
2131 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2132 @end smallexample
2133
2134 @noindent
2135 If the same field is initialized multiple times, it has the value from
2136 the last initialization. If any such overridden initialization has
2137 side-effect, it is unspecified whether the side-effect happens or not.
2138 Currently, GCC discards them and issues a warning.
2139
2140 @node Case Ranges
2141 @section Case Ranges
2142 @cindex case ranges
2143 @cindex ranges in case statements
2144
2145 You can specify a range of consecutive values in a single @code{case} label,
2146 like this:
2147
2148 @smallexample
2149 case @var{low} ... @var{high}:
2150 @end smallexample
2151
2152 @noindent
2153 This has the same effect as the proper number of individual @code{case}
2154 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2155
2156 This feature is especially useful for ranges of ASCII character codes:
2157
2158 @smallexample
2159 case 'A' ... 'Z':
2160 @end smallexample
2161
2162 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2163 it may be parsed wrong when you use it with integer values. For example,
2164 write this:
2165
2166 @smallexample
2167 case 1 ... 5:
2168 @end smallexample
2169
2170 @noindent
2171 rather than this:
2172
2173 @smallexample
2174 case 1...5:
2175 @end smallexample
2176
2177 @node Cast to Union
2178 @section Cast to a Union Type
2179 @cindex cast to a union
2180 @cindex union, casting to a
2181
2182 A cast to union type looks similar to other casts, except that the type
2183 specified is a union type. You can specify the type either with the
2184 @code{union} keyword or with a @code{typedef} name that refers to
2185 a union. A cast to a union actually creates a compound literal and
2186 yields an lvalue, not an rvalue like true casts do.
2187 @xref{Compound Literals}.
2188
2189 The types that may be cast to the union type are those of the members
2190 of the union. Thus, given the following union and variables:
2191
2192 @smallexample
2193 union foo @{ int i; double d; @};
2194 int x;
2195 double y;
2196 @end smallexample
2197
2198 @noindent
2199 both @code{x} and @code{y} can be cast to type @code{union foo}.
2200
2201 Using the cast as the right-hand side of an assignment to a variable of
2202 union type is equivalent to storing in a member of the union:
2203
2204 @smallexample
2205 union foo u;
2206 /* @r{@dots{}} */
2207 u = (union foo) x @equiv{} u.i = x
2208 u = (union foo) y @equiv{} u.d = y
2209 @end smallexample
2210
2211 You can also use the union cast as a function argument:
2212
2213 @smallexample
2214 void hack (union foo);
2215 /* @r{@dots{}} */
2216 hack ((union foo) x);
2217 @end smallexample
2218
2219 @node Mixed Declarations
2220 @section Mixed Declarations and Code
2221 @cindex mixed declarations and code
2222 @cindex declarations, mixed with code
2223 @cindex code, mixed with declarations
2224
2225 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2226 within compound statements. As an extension, GNU C also allows this in
2227 C90 mode. For example, you could do:
2228
2229 @smallexample
2230 int i;
2231 /* @r{@dots{}} */
2232 i++;
2233 int j = i + 2;
2234 @end smallexample
2235
2236 Each identifier is visible from where it is declared until the end of
2237 the enclosing block.
2238
2239 @node Function Attributes
2240 @section Declaring Attributes of Functions
2241 @cindex function attributes
2242 @cindex declaring attributes of functions
2243 @cindex @code{volatile} applied to function
2244 @cindex @code{const} applied to function
2245
2246 In GNU C, you can use function attributes to declare certain things
2247 about functions called in your program which help the compiler
2248 optimize calls and check your code more carefully. For example, you
2249 can use attributes to declare that a function never returns
2250 (@code{noreturn}), returns a value depending only on its arguments
2251 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2252
2253 You can also use attributes to control memory placement, code
2254 generation options or call/return conventions within the function
2255 being annotated. Many of these attributes are target-specific. For
2256 example, many targets support attributes for defining interrupt
2257 handler functions, which typically must follow special register usage
2258 and return conventions.
2259
2260 Function attributes are introduced by the @code{__attribute__} keyword
2261 on a declaration, followed by an attribute specification inside double
2262 parentheses. You can specify multiple attributes in a declaration by
2263 separating them by commas within the double parentheses or by
2264 immediately following an attribute declaration with another attribute
2265 declaration. @xref{Attribute Syntax}, for the exact rules on
2266 attribute syntax and placement.
2267
2268 GCC also supports attributes on
2269 variable declarations (@pxref{Variable Attributes}),
2270 labels (@pxref{Label Attributes}),
2271 enumerators (@pxref{Enumerator Attributes}),
2272 statements (@pxref{Statement Attributes}),
2273 and types (@pxref{Type Attributes}).
2274
2275 There is some overlap between the purposes of attributes and pragmas
2276 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2277 found convenient to use @code{__attribute__} to achieve a natural
2278 attachment of attributes to their corresponding declarations, whereas
2279 @code{#pragma} is of use for compatibility with other compilers
2280 or constructs that do not naturally form part of the grammar.
2281
2282 In addition to the attributes documented here,
2283 GCC plugins may provide their own attributes.
2284
2285 @menu
2286 * Common Function Attributes::
2287 * AArch64 Function Attributes::
2288 * ARC Function Attributes::
2289 * ARM Function Attributes::
2290 * AVR Function Attributes::
2291 * Blackfin Function Attributes::
2292 * CR16 Function Attributes::
2293 * Epiphany Function Attributes::
2294 * H8/300 Function Attributes::
2295 * IA-64 Function Attributes::
2296 * M32C Function Attributes::
2297 * M32R/D Function Attributes::
2298 * m68k Function Attributes::
2299 * MCORE Function Attributes::
2300 * MeP Function Attributes::
2301 * MicroBlaze Function Attributes::
2302 * Microsoft Windows Function Attributes::
2303 * MIPS Function Attributes::
2304 * MSP430 Function Attributes::
2305 * NDS32 Function Attributes::
2306 * Nios II Function Attributes::
2307 * Nvidia PTX Function Attributes::
2308 * PowerPC Function Attributes::
2309 * RL78 Function Attributes::
2310 * RX Function Attributes::
2311 * S/390 Function Attributes::
2312 * SH Function Attributes::
2313 * SPU Function Attributes::
2314 * Symbian OS Function Attributes::
2315 * V850 Function Attributes::
2316 * Visium Function Attributes::
2317 * x86 Function Attributes::
2318 * Xstormy16 Function Attributes::
2319 @end menu
2320
2321 @node Common Function Attributes
2322 @subsection Common Function Attributes
2323
2324 The following attributes are supported on most targets.
2325
2326 @table @code
2327 @c Keep this table alphabetized by attribute name. Treat _ as space.
2328
2329 @item alias ("@var{target}")
2330 @cindex @code{alias} function attribute
2331 The @code{alias} attribute causes the declaration to be emitted as an
2332 alias for another symbol, which must be specified. For instance,
2333
2334 @smallexample
2335 void __f () @{ /* @r{Do something.} */; @}
2336 void f () __attribute__ ((weak, alias ("__f")));
2337 @end smallexample
2338
2339 @noindent
2340 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2341 mangled name for the target must be used. It is an error if @samp{__f}
2342 is not defined in the same translation unit.
2343
2344 This attribute requires assembler and object file support,
2345 and may not be available on all targets.
2346
2347 @item aligned (@var{alignment})
2348 @cindex @code{aligned} function attribute
2349 This attribute specifies a minimum alignment for the function,
2350 measured in bytes.
2351
2352 You cannot use this attribute to decrease the alignment of a function,
2353 only to increase it. However, when you explicitly specify a function
2354 alignment this overrides the effect of the
2355 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2356 function.
2357
2358 Note that the effectiveness of @code{aligned} attributes may be
2359 limited by inherent limitations in your linker. On many systems, the
2360 linker is only able to arrange for functions to be aligned up to a
2361 certain maximum alignment. (For some linkers, the maximum supported
2362 alignment may be very very small.) See your linker documentation for
2363 further information.
2364
2365 The @code{aligned} attribute can also be used for variables and fields
2366 (@pxref{Variable Attributes}.)
2367
2368 @item alloc_align
2369 @cindex @code{alloc_align} function attribute
2370 The @code{alloc_align} attribute is used to tell the compiler that the
2371 function return value points to memory, where the returned pointer minimum
2372 alignment is given by one of the functions parameters. GCC uses this
2373 information to improve pointer alignment analysis.
2374
2375 The function parameter denoting the allocated alignment is specified by
2376 one integer argument, whose number is the argument of the attribute.
2377 Argument numbering starts at one.
2378
2379 For instance,
2380
2381 @smallexample
2382 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2383 @end smallexample
2384
2385 @noindent
2386 declares that @code{my_memalign} returns memory with minimum alignment
2387 given by parameter 1.
2388
2389 @item alloc_size
2390 @cindex @code{alloc_size} function attribute
2391 The @code{alloc_size} attribute is used to tell the compiler that the
2392 function return value points to memory, where the size is given by
2393 one or two of the functions parameters. GCC uses this
2394 information to improve the correctness of @code{__builtin_object_size}.
2395
2396 The function parameter(s) denoting the allocated size are specified by
2397 one or two integer arguments supplied to the attribute. The allocated size
2398 is either the value of the single function argument specified or the product
2399 of the two function arguments specified. Argument numbering starts at
2400 one.
2401
2402 For instance,
2403
2404 @smallexample
2405 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2406 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2407 @end smallexample
2408
2409 @noindent
2410 declares that @code{my_calloc} returns memory of the size given by
2411 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2412 of the size given by parameter 2.
2413
2414 @item always_inline
2415 @cindex @code{always_inline} function attribute
2416 Generally, functions are not inlined unless optimization is specified.
2417 For functions declared inline, this attribute inlines the function
2418 independent of any restrictions that otherwise apply to inlining.
2419 Failure to inline such a function is diagnosed as an error.
2420 Note that if such a function is called indirectly the compiler may
2421 or may not inline it depending on optimization level and a failure
2422 to inline an indirect call may or may not be diagnosed.
2423
2424 @item artificial
2425 @cindex @code{artificial} function attribute
2426 This attribute is useful for small inline wrappers that if possible
2427 should appear during debugging as a unit. Depending on the debug
2428 info format it either means marking the function as artificial
2429 or using the caller location for all instructions within the inlined
2430 body.
2431
2432 @item assume_aligned
2433 @cindex @code{assume_aligned} function attribute
2434 The @code{assume_aligned} attribute is used to tell the compiler that the
2435 function return value points to memory, where the returned pointer minimum
2436 alignment is given by the first argument.
2437 If the attribute has two arguments, the second argument is misalignment offset.
2438
2439 For instance
2440
2441 @smallexample
2442 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2443 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2444 @end smallexample
2445
2446 @noindent
2447 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2448 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2449 to 8.
2450
2451 @item bnd_instrument
2452 @cindex @code{bnd_instrument} function attribute
2453 The @code{bnd_instrument} attribute on functions is used to inform the
2454 compiler that the function should be instrumented when compiled
2455 with the @option{-fchkp-instrument-marked-only} option.
2456
2457 @item bnd_legacy
2458 @cindex @code{bnd_legacy} function attribute
2459 @cindex Pointer Bounds Checker attributes
2460 The @code{bnd_legacy} attribute on functions is used to inform the
2461 compiler that the function should not be instrumented when compiled
2462 with the @option{-fcheck-pointer-bounds} option.
2463
2464 @item cold
2465 @cindex @code{cold} function attribute
2466 The @code{cold} attribute on functions is used to inform the compiler that
2467 the function is unlikely to be executed. The function is optimized for
2468 size rather than speed and on many targets it is placed into a special
2469 subsection of the text section so all cold functions appear close together,
2470 improving code locality of non-cold parts of program. The paths leading
2471 to calls of cold functions within code are marked as unlikely by the branch
2472 prediction mechanism. It is thus useful to mark functions used to handle
2473 unlikely conditions, such as @code{perror}, as cold to improve optimization
2474 of hot functions that do call marked functions in rare occasions.
2475
2476 When profile feedback is available, via @option{-fprofile-use}, cold functions
2477 are automatically detected and this attribute is ignored.
2478
2479 @item const
2480 @cindex @code{const} function attribute
2481 @cindex functions that have no side effects
2482 Many functions do not examine any values except their arguments, and
2483 have no effects except the return value. Basically this is just slightly
2484 more strict class than the @code{pure} attribute below, since function is not
2485 allowed to read global memory.
2486
2487 @cindex pointer arguments
2488 Note that a function that has pointer arguments and examines the data
2489 pointed to must @emph{not} be declared @code{const}. Likewise, a
2490 function that calls a non-@code{const} function usually must not be
2491 @code{const}. It does not make sense for a @code{const} function to
2492 return @code{void}.
2493
2494 @item constructor
2495 @itemx destructor
2496 @itemx constructor (@var{priority})
2497 @itemx destructor (@var{priority})
2498 @cindex @code{constructor} function attribute
2499 @cindex @code{destructor} function attribute
2500 The @code{constructor} attribute causes the function to be called
2501 automatically before execution enters @code{main ()}. Similarly, the
2502 @code{destructor} attribute causes the function to be called
2503 automatically after @code{main ()} completes or @code{exit ()} is
2504 called. Functions with these attributes are useful for
2505 initializing data that is used implicitly during the execution of
2506 the program.
2507
2508 You may provide an optional integer priority to control the order in
2509 which constructor and destructor functions are run. A constructor
2510 with a smaller priority number runs before a constructor with a larger
2511 priority number; the opposite relationship holds for destructors. So,
2512 if you have a constructor that allocates a resource and a destructor
2513 that deallocates the same resource, both functions typically have the
2514 same priority. The priorities for constructor and destructor
2515 functions are the same as those specified for namespace-scope C++
2516 objects (@pxref{C++ Attributes}). However, at present, the order in which
2517 constructors for C++ objects with static storage duration and functions
2518 decorated with attribute @code{constructor} are invoked is unspecified.
2519 In mixed declarations, attribute @code{init_priority} can be used to
2520 impose a specific ordering.
2521
2522 @item deprecated
2523 @itemx deprecated (@var{msg})
2524 @cindex @code{deprecated} function attribute
2525 The @code{deprecated} attribute results in a warning if the function
2526 is used anywhere in the source file. This is useful when identifying
2527 functions that are expected to be removed in a future version of a
2528 program. The warning also includes the location of the declaration
2529 of the deprecated function, to enable users to easily find further
2530 information about why the function is deprecated, or what they should
2531 do instead. Note that the warnings only occurs for uses:
2532
2533 @smallexample
2534 int old_fn () __attribute__ ((deprecated));
2535 int old_fn ();
2536 int (*fn_ptr)() = old_fn;
2537 @end smallexample
2538
2539 @noindent
2540 results in a warning on line 3 but not line 2. The optional @var{msg}
2541 argument, which must be a string, is printed in the warning if
2542 present.
2543
2544 The @code{deprecated} attribute can also be used for variables and
2545 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2546
2547 @item error ("@var{message}")
2548 @itemx warning ("@var{message}")
2549 @cindex @code{error} function attribute
2550 @cindex @code{warning} function attribute
2551 If the @code{error} or @code{warning} attribute
2552 is used on a function declaration and a call to such a function
2553 is not eliminated through dead code elimination or other optimizations,
2554 an error or warning (respectively) that includes @var{message} is diagnosed.
2555 This is useful
2556 for compile-time checking, especially together with @code{__builtin_constant_p}
2557 and inline functions where checking the inline function arguments is not
2558 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2559
2560 While it is possible to leave the function undefined and thus invoke
2561 a link failure (to define the function with
2562 a message in @code{.gnu.warning*} section),
2563 when using these attributes the problem is diagnosed
2564 earlier and with exact location of the call even in presence of inline
2565 functions or when not emitting debugging information.
2566
2567 @item externally_visible
2568 @cindex @code{externally_visible} function attribute
2569 This attribute, attached to a global variable or function, nullifies
2570 the effect of the @option{-fwhole-program} command-line option, so the
2571 object remains visible outside the current compilation unit.
2572
2573 If @option{-fwhole-program} is used together with @option{-flto} and
2574 @command{gold} is used as the linker plugin,
2575 @code{externally_visible} attributes are automatically added to functions
2576 (not variable yet due to a current @command{gold} issue)
2577 that are accessed outside of LTO objects according to resolution file
2578 produced by @command{gold}.
2579 For other linkers that cannot generate resolution file,
2580 explicit @code{externally_visible} attributes are still necessary.
2581
2582 @item flatten
2583 @cindex @code{flatten} function attribute
2584 Generally, inlining into a function is limited. For a function marked with
2585 this attribute, every call inside this function is inlined, if possible.
2586 Whether the function itself is considered for inlining depends on its size and
2587 the current inlining parameters.
2588
2589 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2590 @cindex @code{format} function attribute
2591 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2592 @opindex Wformat
2593 The @code{format} attribute specifies that a function takes @code{printf},
2594 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2595 should be type-checked against a format string. For example, the
2596 declaration:
2597
2598 @smallexample
2599 extern int
2600 my_printf (void *my_object, const char *my_format, ...)
2601 __attribute__ ((format (printf, 2, 3)));
2602 @end smallexample
2603
2604 @noindent
2605 causes the compiler to check the arguments in calls to @code{my_printf}
2606 for consistency with the @code{printf} style format string argument
2607 @code{my_format}.
2608
2609 The parameter @var{archetype} determines how the format string is
2610 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2611 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2612 @code{strfmon}. (You can also use @code{__printf__},
2613 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2614 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2615 @code{ms_strftime} are also present.
2616 @var{archetype} values such as @code{printf} refer to the formats accepted
2617 by the system's C runtime library,
2618 while values prefixed with @samp{gnu_} always refer
2619 to the formats accepted by the GNU C Library. On Microsoft Windows
2620 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2621 @file{msvcrt.dll} library.
2622 The parameter @var{string-index}
2623 specifies which argument is the format string argument (starting
2624 from 1), while @var{first-to-check} is the number of the first
2625 argument to check against the format string. For functions
2626 where the arguments are not available to be checked (such as
2627 @code{vprintf}), specify the third parameter as zero. In this case the
2628 compiler only checks the format string for consistency. For
2629 @code{strftime} formats, the third parameter is required to be zero.
2630 Since non-static C++ methods have an implicit @code{this} argument, the
2631 arguments of such methods should be counted from two, not one, when
2632 giving values for @var{string-index} and @var{first-to-check}.
2633
2634 In the example above, the format string (@code{my_format}) is the second
2635 argument of the function @code{my_print}, and the arguments to check
2636 start with the third argument, so the correct parameters for the format
2637 attribute are 2 and 3.
2638
2639 @opindex ffreestanding
2640 @opindex fno-builtin
2641 The @code{format} attribute allows you to identify your own functions
2642 that take format strings as arguments, so that GCC can check the
2643 calls to these functions for errors. The compiler always (unless
2644 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2645 for the standard library functions @code{printf}, @code{fprintf},
2646 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2647 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2648 warnings are requested (using @option{-Wformat}), so there is no need to
2649 modify the header file @file{stdio.h}. In C99 mode, the functions
2650 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2651 @code{vsscanf} are also checked. Except in strictly conforming C
2652 standard modes, the X/Open function @code{strfmon} is also checked as
2653 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2654 @xref{C Dialect Options,,Options Controlling C Dialect}.
2655
2656 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2657 recognized in the same context. Declarations including these format attributes
2658 are parsed for correct syntax, however the result of checking of such format
2659 strings is not yet defined, and is not carried out by this version of the
2660 compiler.
2661
2662 The target may also provide additional types of format checks.
2663 @xref{Target Format Checks,,Format Checks Specific to Particular
2664 Target Machines}.
2665
2666 @item format_arg (@var{string-index})
2667 @cindex @code{format_arg} function attribute
2668 @opindex Wformat-nonliteral
2669 The @code{format_arg} attribute specifies that a function takes a format
2670 string for a @code{printf}, @code{scanf}, @code{strftime} or
2671 @code{strfmon} style function and modifies it (for example, to translate
2672 it into another language), so the result can be passed to a
2673 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2674 function (with the remaining arguments to the format function the same
2675 as they would have been for the unmodified string). For example, the
2676 declaration:
2677
2678 @smallexample
2679 extern char *
2680 my_dgettext (char *my_domain, const char *my_format)
2681 __attribute__ ((format_arg (2)));
2682 @end smallexample
2683
2684 @noindent
2685 causes the compiler to check the arguments in calls to a @code{printf},
2686 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2687 format string argument is a call to the @code{my_dgettext} function, for
2688 consistency with the format string argument @code{my_format}. If the
2689 @code{format_arg} attribute had not been specified, all the compiler
2690 could tell in such calls to format functions would be that the format
2691 string argument is not constant; this would generate a warning when
2692 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2693 without the attribute.
2694
2695 The parameter @var{string-index} specifies which argument is the format
2696 string argument (starting from one). Since non-static C++ methods have
2697 an implicit @code{this} argument, the arguments of such methods should
2698 be counted from two.
2699
2700 The @code{format_arg} attribute allows you to identify your own
2701 functions that modify format strings, so that GCC can check the
2702 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2703 type function whose operands are a call to one of your own function.
2704 The compiler always treats @code{gettext}, @code{dgettext}, and
2705 @code{dcgettext} in this manner except when strict ISO C support is
2706 requested by @option{-ansi} or an appropriate @option{-std} option, or
2707 @option{-ffreestanding} or @option{-fno-builtin}
2708 is used. @xref{C Dialect Options,,Options
2709 Controlling C Dialect}.
2710
2711 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2712 @code{NSString} reference for compatibility with the @code{format} attribute
2713 above.
2714
2715 The target may also allow additional types in @code{format-arg} attributes.
2716 @xref{Target Format Checks,,Format Checks Specific to Particular
2717 Target Machines}.
2718
2719 @item gnu_inline
2720 @cindex @code{gnu_inline} function attribute
2721 This attribute should be used with a function that is also declared
2722 with the @code{inline} keyword. It directs GCC to treat the function
2723 as if it were defined in gnu90 mode even when compiling in C99 or
2724 gnu99 mode.
2725
2726 If the function is declared @code{extern}, then this definition of the
2727 function is used only for inlining. In no case is the function
2728 compiled as a standalone function, not even if you take its address
2729 explicitly. Such an address becomes an external reference, as if you
2730 had only declared the function, and had not defined it. This has
2731 almost the effect of a macro. The way to use this is to put a
2732 function definition in a header file with this attribute, and put
2733 another copy of the function, without @code{extern}, in a library
2734 file. The definition in the header file causes most calls to the
2735 function to be inlined. If any uses of the function remain, they
2736 refer to the single copy in the library. Note that the two
2737 definitions of the functions need not be precisely the same, although
2738 if they do not have the same effect your program may behave oddly.
2739
2740 In C, if the function is neither @code{extern} nor @code{static}, then
2741 the function is compiled as a standalone function, as well as being
2742 inlined where possible.
2743
2744 This is how GCC traditionally handled functions declared
2745 @code{inline}. Since ISO C99 specifies a different semantics for
2746 @code{inline}, this function attribute is provided as a transition
2747 measure and as a useful feature in its own right. This attribute is
2748 available in GCC 4.1.3 and later. It is available if either of the
2749 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2750 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2751 Function is As Fast As a Macro}.
2752
2753 In C++, this attribute does not depend on @code{extern} in any way,
2754 but it still requires the @code{inline} keyword to enable its special
2755 behavior.
2756
2757 @item hot
2758 @cindex @code{hot} function attribute
2759 The @code{hot} attribute on a function is used to inform the compiler that
2760 the function is a hot spot of the compiled program. The function is
2761 optimized more aggressively and on many targets it is placed into a special
2762 subsection of the text section so all hot functions appear close together,
2763 improving locality.
2764
2765 When profile feedback is available, via @option{-fprofile-use}, hot functions
2766 are automatically detected and this attribute is ignored.
2767
2768 @item ifunc ("@var{resolver}")
2769 @cindex @code{ifunc} function attribute
2770 @cindex indirect functions
2771 @cindex functions that are dynamically resolved
2772 The @code{ifunc} attribute is used to mark a function as an indirect
2773 function using the STT_GNU_IFUNC symbol type extension to the ELF
2774 standard. This allows the resolution of the symbol value to be
2775 determined dynamically at load time, and an optimized version of the
2776 routine can be selected for the particular processor or other system
2777 characteristics determined then. To use this attribute, first define
2778 the implementation functions available, and a resolver function that
2779 returns a pointer to the selected implementation function. The
2780 implementation functions' declarations must match the API of the
2781 function being implemented, the resolver's declaration is be a
2782 function returning pointer to void function returning void:
2783
2784 @smallexample
2785 void *my_memcpy (void *dst, const void *src, size_t len)
2786 @{
2787 @dots{}
2788 @}
2789
2790 static void (*resolve_memcpy (void)) (void)
2791 @{
2792 return my_memcpy; // we'll just always select this routine
2793 @}
2794 @end smallexample
2795
2796 @noindent
2797 The exported header file declaring the function the user calls would
2798 contain:
2799
2800 @smallexample
2801 extern void *memcpy (void *, const void *, size_t);
2802 @end smallexample
2803
2804 @noindent
2805 allowing the user to call this as a regular function, unaware of the
2806 implementation. Finally, the indirect function needs to be defined in
2807 the same translation unit as the resolver function:
2808
2809 @smallexample
2810 void *memcpy (void *, const void *, size_t)
2811 __attribute__ ((ifunc ("resolve_memcpy")));
2812 @end smallexample
2813
2814 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2815 and GNU C Library version 2.11.1 are required to use this feature.
2816
2817 @item interrupt
2818 @itemx interrupt_handler
2819 Many GCC back ends support attributes to indicate that a function is
2820 an interrupt handler, which tells the compiler to generate function
2821 entry and exit sequences that differ from those from regular
2822 functions. The exact syntax and behavior are target-specific;
2823 refer to the following subsections for details.
2824
2825 @item leaf
2826 @cindex @code{leaf} function attribute
2827 Calls to external functions with this attribute must return to the
2828 current compilation unit only by return or by exception handling. In
2829 particular, a leaf function is not allowed to invoke callback functions
2830 passed to it from the current compilation unit, directly call functions
2831 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2832 might still call functions from other compilation units and thus they
2833 are not necessarily leaf in the sense that they contain no function
2834 calls at all.
2835
2836 The attribute is intended for library functions to improve dataflow
2837 analysis. The compiler takes the hint that any data not escaping the
2838 current compilation unit cannot be used or modified by the leaf
2839 function. For example, the @code{sin} function is a leaf function, but
2840 @code{qsort} is not.
2841
2842 Note that leaf functions might indirectly run a signal handler defined
2843 in the current compilation unit that uses static variables. Similarly,
2844 when lazy symbol resolution is in effect, leaf functions might invoke
2845 indirect functions whose resolver function or implementation function is
2846 defined in the current compilation unit and uses static variables. There
2847 is no standard-compliant way to write such a signal handler, resolver
2848 function, or implementation function, and the best that you can do is to
2849 remove the @code{leaf} attribute or mark all such static variables
2850 @code{volatile}. Lastly, for ELF-based systems that support symbol
2851 interposition, care should be taken that functions defined in the
2852 current compilation unit do not unexpectedly interpose other symbols
2853 based on the defined standards mode and defined feature test macros;
2854 otherwise an inadvertent callback would be added.
2855
2856 The attribute has no effect on functions defined within the current
2857 compilation unit. This is to allow easy merging of multiple compilation
2858 units into one, for example, by using the link-time optimization. For
2859 this reason the attribute is not allowed on types to annotate indirect
2860 calls.
2861
2862 @item malloc
2863 @cindex @code{malloc} function attribute
2864 @cindex functions that behave like malloc
2865 This tells the compiler that a function is @code{malloc}-like, i.e.,
2866 that the pointer @var{P} returned by the function cannot alias any
2867 other pointer valid when the function returns, and moreover no
2868 pointers to valid objects occur in any storage addressed by @var{P}.
2869
2870 Using this attribute can improve optimization. Functions like
2871 @code{malloc} and @code{calloc} have this property because they return
2872 a pointer to uninitialized or zeroed-out storage. However, functions
2873 like @code{realloc} do not have this property, as they can return a
2874 pointer to storage containing pointers.
2875
2876 @item no_icf
2877 @cindex @code{no_icf} function attribute
2878 This function attribute prevents a functions from being merged with another
2879 semantically equivalent function.
2880
2881 @item no_instrument_function
2882 @cindex @code{no_instrument_function} function attribute
2883 @opindex finstrument-functions
2884 If @option{-finstrument-functions} is given, profiling function calls are
2885 generated at entry and exit of most user-compiled functions.
2886 Functions with this attribute are not so instrumented.
2887
2888 @item no_profile_instrument_function
2889 @cindex @code{no_profile_instrument_function} function attribute
2890 The @code{no_profile_instrument_function} attribute on functions is used
2891 to inform the compiler that it should not process any profile feedback based
2892 optimization code instrumentation.
2893
2894 @item no_reorder
2895 @cindex @code{no_reorder} function attribute
2896 Do not reorder functions or variables marked @code{no_reorder}
2897 against each other or top level assembler statements the executable.
2898 The actual order in the program will depend on the linker command
2899 line. Static variables marked like this are also not removed.
2900 This has a similar effect
2901 as the @option{-fno-toplevel-reorder} option, but only applies to the
2902 marked symbols.
2903
2904 @item no_sanitize_address
2905 @itemx no_address_safety_analysis
2906 @cindex @code{no_sanitize_address} function attribute
2907 The @code{no_sanitize_address} attribute on functions is used
2908 to inform the compiler that it should not instrument memory accesses
2909 in the function when compiling with the @option{-fsanitize=address} option.
2910 The @code{no_address_safety_analysis} is a deprecated alias of the
2911 @code{no_sanitize_address} attribute, new code should use
2912 @code{no_sanitize_address}.
2913
2914 @item no_sanitize_thread
2915 @cindex @code{no_sanitize_thread} function attribute
2916 The @code{no_sanitize_thread} attribute on functions is used
2917 to inform the compiler that it should not instrument memory accesses
2918 in the function when compiling with the @option{-fsanitize=thread} option.
2919
2920 @item no_sanitize_undefined
2921 @cindex @code{no_sanitize_undefined} function attribute
2922 The @code{no_sanitize_undefined} attribute on functions is used
2923 to inform the compiler that it should not check for undefined behavior
2924 in the function when compiling with the @option{-fsanitize=undefined} option.
2925
2926 @item no_split_stack
2927 @cindex @code{no_split_stack} function attribute
2928 @opindex fsplit-stack
2929 If @option{-fsplit-stack} is given, functions have a small
2930 prologue which decides whether to split the stack. Functions with the
2931 @code{no_split_stack} attribute do not have that prologue, and thus
2932 may run with only a small amount of stack space available.
2933
2934 @item no_stack_limit
2935 @cindex @code{no_stack_limit} function attribute
2936 This attribute locally overrides the @option{-fstack-limit-register}
2937 and @option{-fstack-limit-symbol} command-line options; it has the effect
2938 of disabling stack limit checking in the function it applies to.
2939
2940 @item noclone
2941 @cindex @code{noclone} function attribute
2942 This function attribute prevents a function from being considered for
2943 cloning---a mechanism that produces specialized copies of functions
2944 and which is (currently) performed by interprocedural constant
2945 propagation.
2946
2947 @item noinline
2948 @cindex @code{noinline} function attribute
2949 This function attribute prevents a function from being considered for
2950 inlining.
2951 @c Don't enumerate the optimizations by name here; we try to be
2952 @c future-compatible with this mechanism.
2953 If the function does not have side-effects, there are optimizations
2954 other than inlining that cause function calls to be optimized away,
2955 although the function call is live. To keep such calls from being
2956 optimized away, put
2957 @smallexample
2958 asm ("");
2959 @end smallexample
2960
2961 @noindent
2962 (@pxref{Extended Asm}) in the called function, to serve as a special
2963 side-effect.
2964
2965 @item nonnull (@var{arg-index}, @dots{})
2966 @cindex @code{nonnull} function attribute
2967 @cindex functions with non-null pointer arguments
2968 The @code{nonnull} attribute specifies that some function parameters should
2969 be non-null pointers. For instance, the declaration:
2970
2971 @smallexample
2972 extern void *
2973 my_memcpy (void *dest, const void *src, size_t len)
2974 __attribute__((nonnull (1, 2)));
2975 @end smallexample
2976
2977 @noindent
2978 causes the compiler to check that, in calls to @code{my_memcpy},
2979 arguments @var{dest} and @var{src} are non-null. If the compiler
2980 determines that a null pointer is passed in an argument slot marked
2981 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2982 is issued. The compiler may also choose to make optimizations based
2983 on the knowledge that certain function arguments will never be null.
2984
2985 If no argument index list is given to the @code{nonnull} attribute,
2986 all pointer arguments are marked as non-null. To illustrate, the
2987 following declaration is equivalent to the previous example:
2988
2989 @smallexample
2990 extern void *
2991 my_memcpy (void *dest, const void *src, size_t len)
2992 __attribute__((nonnull));
2993 @end smallexample
2994
2995 @item noplt
2996 @cindex @code{noplt} function attribute
2997 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
2998 Calls to functions marked with this attribute in position-independent code
2999 do not use the PLT.
3000
3001 @smallexample
3002 @group
3003 /* Externally defined function foo. */
3004 int foo () __attribute__ ((noplt));
3005
3006 int
3007 main (/* @r{@dots{}} */)
3008 @{
3009 /* @r{@dots{}} */
3010 foo ();
3011 /* @r{@dots{}} */
3012 @}
3013 @end group
3014 @end smallexample
3015
3016 The @code{noplt} attribute on function @code{foo}
3017 tells the compiler to assume that
3018 the function @code{foo} is externally defined and that the call to
3019 @code{foo} must avoid the PLT
3020 in position-independent code.
3021
3022 In position-dependent code, a few targets also convert calls to
3023 functions that are marked to not use the PLT to use the GOT instead.
3024
3025 @item noreturn
3026 @cindex @code{noreturn} function attribute
3027 @cindex functions that never return
3028 A few standard library functions, such as @code{abort} and @code{exit},
3029 cannot return. GCC knows this automatically. Some programs define
3030 their own functions that never return. You can declare them
3031 @code{noreturn} to tell the compiler this fact. For example,
3032
3033 @smallexample
3034 @group
3035 void fatal () __attribute__ ((noreturn));
3036
3037 void
3038 fatal (/* @r{@dots{}} */)
3039 @{
3040 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3041 exit (1);
3042 @}
3043 @end group
3044 @end smallexample
3045
3046 The @code{noreturn} keyword tells the compiler to assume that
3047 @code{fatal} cannot return. It can then optimize without regard to what
3048 would happen if @code{fatal} ever did return. This makes slightly
3049 better code. More importantly, it helps avoid spurious warnings of
3050 uninitialized variables.
3051
3052 The @code{noreturn} keyword does not affect the exceptional path when that
3053 applies: a @code{noreturn}-marked function may still return to the caller
3054 by throwing an exception or calling @code{longjmp}.
3055
3056 Do not assume that registers saved by the calling function are
3057 restored before calling the @code{noreturn} function.
3058
3059 It does not make sense for a @code{noreturn} function to have a return
3060 type other than @code{void}.
3061
3062 @item nothrow
3063 @cindex @code{nothrow} function attribute
3064 The @code{nothrow} attribute is used to inform the compiler that a
3065 function cannot throw an exception. For example, most functions in
3066 the standard C library can be guaranteed not to throw an exception
3067 with the notable exceptions of @code{qsort} and @code{bsearch} that
3068 take function pointer arguments.
3069
3070 @item optimize
3071 @cindex @code{optimize} function attribute
3072 The @code{optimize} attribute is used to specify that a function is to
3073 be compiled with different optimization options than specified on the
3074 command line. Arguments can either be numbers or strings. Numbers
3075 are assumed to be an optimization level. Strings that begin with
3076 @code{O} are assumed to be an optimization option, while other options
3077 are assumed to be used with a @code{-f} prefix. You can also use the
3078 @samp{#pragma GCC optimize} pragma to set the optimization options
3079 that affect more than one function.
3080 @xref{Function Specific Option Pragmas}, for details about the
3081 @samp{#pragma GCC optimize} pragma.
3082
3083 This attribute should be used for debugging purposes only. It is not
3084 suitable in production code.
3085
3086 @item pure
3087 @cindex @code{pure} function attribute
3088 @cindex functions that have no side effects
3089 Many functions have no effects except the return value and their
3090 return value depends only on the parameters and/or global variables.
3091 Such a function can be subject
3092 to common subexpression elimination and loop optimization just as an
3093 arithmetic operator would be. These functions should be declared
3094 with the attribute @code{pure}. For example,
3095
3096 @smallexample
3097 int square (int) __attribute__ ((pure));
3098 @end smallexample
3099
3100 @noindent
3101 says that the hypothetical function @code{square} is safe to call
3102 fewer times than the program says.
3103
3104 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3105 Interesting non-pure functions are functions with infinite loops or those
3106 depending on volatile memory or other system resource, that may change between
3107 two consecutive calls (such as @code{feof} in a multithreading environment).
3108
3109 @item returns_nonnull
3110 @cindex @code{returns_nonnull} function attribute
3111 The @code{returns_nonnull} attribute specifies that the function
3112 return value should be a non-null pointer. For instance, the declaration:
3113
3114 @smallexample
3115 extern void *
3116 mymalloc (size_t len) __attribute__((returns_nonnull));
3117 @end smallexample
3118
3119 @noindent
3120 lets the compiler optimize callers based on the knowledge
3121 that the return value will never be null.
3122
3123 @item returns_twice
3124 @cindex @code{returns_twice} function attribute
3125 @cindex functions that return more than once
3126 The @code{returns_twice} attribute tells the compiler that a function may
3127 return more than one time. The compiler ensures that all registers
3128 are dead before calling such a function and emits a warning about
3129 the variables that may be clobbered after the second return from the
3130 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3131 The @code{longjmp}-like counterpart of such function, if any, might need
3132 to be marked with the @code{noreturn} attribute.
3133
3134 @item section ("@var{section-name}")
3135 @cindex @code{section} function attribute
3136 @cindex functions in arbitrary sections
3137 Normally, the compiler places the code it generates in the @code{text} section.
3138 Sometimes, however, you need additional sections, or you need certain
3139 particular functions to appear in special sections. The @code{section}
3140 attribute specifies that a function lives in a particular section.
3141 For example, the declaration:
3142
3143 @smallexample
3144 extern void foobar (void) __attribute__ ((section ("bar")));
3145 @end smallexample
3146
3147 @noindent
3148 puts the function @code{foobar} in the @code{bar} section.
3149
3150 Some file formats do not support arbitrary sections so the @code{section}
3151 attribute is not available on all platforms.
3152 If you need to map the entire contents of a module to a particular
3153 section, consider using the facilities of the linker instead.
3154
3155 @item sentinel
3156 @cindex @code{sentinel} function attribute
3157 This function attribute ensures that a parameter in a function call is
3158 an explicit @code{NULL}. The attribute is only valid on variadic
3159 functions. By default, the sentinel is located at position zero, the
3160 last parameter of the function call. If an optional integer position
3161 argument P is supplied to the attribute, the sentinel must be located at
3162 position P counting backwards from the end of the argument list.
3163
3164 @smallexample
3165 __attribute__ ((sentinel))
3166 is equivalent to
3167 __attribute__ ((sentinel(0)))
3168 @end smallexample
3169
3170 The attribute is automatically set with a position of 0 for the built-in
3171 functions @code{execl} and @code{execlp}. The built-in function
3172 @code{execle} has the attribute set with a position of 1.
3173
3174 A valid @code{NULL} in this context is defined as zero with any pointer
3175 type. If your system defines the @code{NULL} macro with an integer type
3176 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3177 with a copy that redefines NULL appropriately.
3178
3179 The warnings for missing or incorrect sentinels are enabled with
3180 @option{-Wformat}.
3181
3182 @item simd
3183 @itemx simd("@var{mask}")
3184 @cindex @code{simd} function attribute
3185 This attribute enables creation of one or more function versions that
3186 can process multiple arguments using SIMD instructions from a
3187 single invocation. Specifying this attribute allows compiler to
3188 assume that such versions are available at link time (provided
3189 in the same or another translation unit). Generated versions are
3190 target-dependent and described in the corresponding Vector ABI document. For
3191 x86_64 target this document can be found
3192 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3193
3194 The optional argument @var{mask} may have the value
3195 @code{notinbranch} or @code{inbranch},
3196 and instructs the compiler to generate non-masked or masked
3197 clones correspondingly. By default, all clones are generated.
3198
3199 The attribute should not be used together with Cilk Plus @code{vector}
3200 attribute on the same function.
3201
3202 If the attribute is specified and @code{#pragma omp declare simd} is
3203 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3204 switch is specified, then the attribute is ignored.
3205
3206 @item stack_protect
3207 @cindex @code{stack_protect} function attribute
3208 This attribute adds stack protection code to the function if
3209 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3210 or @option{-fstack-protector-explicit} are set.
3211
3212 @item target (@var{options})
3213 @cindex @code{target} function attribute
3214 Multiple target back ends implement the @code{target} attribute
3215 to specify that a function is to
3216 be compiled with different target options than specified on the
3217 command line. This can be used for instance to have functions
3218 compiled with a different ISA (instruction set architecture) than the
3219 default. You can also use the @samp{#pragma GCC target} pragma to set
3220 more than one function to be compiled with specific target options.
3221 @xref{Function Specific Option Pragmas}, for details about the
3222 @samp{#pragma GCC target} pragma.
3223
3224 For instance, on an x86, you could declare one function with the
3225 @code{target("sse4.1,arch=core2")} attribute and another with
3226 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3227 compiling the first function with @option{-msse4.1} and
3228 @option{-march=core2} options, and the second function with
3229 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3230 to make sure that a function is only invoked on a machine that
3231 supports the particular ISA it is compiled for (for example by using
3232 @code{cpuid} on x86 to determine what feature bits and architecture
3233 family are used).
3234
3235 @smallexample
3236 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3237 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3238 @end smallexample
3239
3240 You can either use multiple
3241 strings separated by commas to specify multiple options,
3242 or separate the options with a comma (@samp{,}) within a single string.
3243
3244 The options supported are specific to each target; refer to @ref{x86
3245 Function Attributes}, @ref{PowerPC Function Attributes},
3246 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3247 for details.
3248
3249 @item target_clones (@var{options})
3250 @cindex @code{target_clones} function attribute
3251 The @code{target_clones} attribute is used to specify that a function
3252 be cloned into multiple versions compiled with different target options
3253 than specified on the command line. The supported options and restrictions
3254 are the same as for @code{target} attribute.
3255
3256 For instance, on an x86, you could compile a function with
3257 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3258 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3259 It also creates a resolver function (see the @code{ifunc} attribute
3260 above) that dynamically selects a clone suitable for current architecture.
3261
3262 @item unused
3263 @cindex @code{unused} function attribute
3264 This attribute, attached to a function, means that the function is meant
3265 to be possibly unused. GCC does not produce a warning for this
3266 function.
3267
3268 @item used
3269 @cindex @code{used} function attribute
3270 This attribute, attached to a function, means that code must be emitted
3271 for the function even if it appears that the function is not referenced.
3272 This is useful, for example, when the function is referenced only in
3273 inline assembly.
3274
3275 When applied to a member function of a C++ class template, the
3276 attribute also means that the function is instantiated if the
3277 class itself is instantiated.
3278
3279 @item visibility ("@var{visibility_type}")
3280 @cindex @code{visibility} function attribute
3281 This attribute affects the linkage of the declaration to which it is attached.
3282 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3283 (@pxref{Common Type Attributes}) as well as functions.
3284
3285 There are four supported @var{visibility_type} values: default,
3286 hidden, protected or internal visibility.
3287
3288 @smallexample
3289 void __attribute__ ((visibility ("protected")))
3290 f () @{ /* @r{Do something.} */; @}
3291 int i __attribute__ ((visibility ("hidden")));
3292 @end smallexample
3293
3294 The possible values of @var{visibility_type} correspond to the
3295 visibility settings in the ELF gABI.
3296
3297 @table @code
3298 @c keep this list of visibilities in alphabetical order.
3299
3300 @item default
3301 Default visibility is the normal case for the object file format.
3302 This value is available for the visibility attribute to override other
3303 options that may change the assumed visibility of entities.
3304
3305 On ELF, default visibility means that the declaration is visible to other
3306 modules and, in shared libraries, means that the declared entity may be
3307 overridden.
3308
3309 On Darwin, default visibility means that the declaration is visible to
3310 other modules.
3311
3312 Default visibility corresponds to ``external linkage'' in the language.
3313
3314 @item hidden
3315 Hidden visibility indicates that the entity declared has a new
3316 form of linkage, which we call ``hidden linkage''. Two
3317 declarations of an object with hidden linkage refer to the same object
3318 if they are in the same shared object.
3319
3320 @item internal
3321 Internal visibility is like hidden visibility, but with additional
3322 processor specific semantics. Unless otherwise specified by the
3323 psABI, GCC defines internal visibility to mean that a function is
3324 @emph{never} called from another module. Compare this with hidden
3325 functions which, while they cannot be referenced directly by other
3326 modules, can be referenced indirectly via function pointers. By
3327 indicating that a function cannot be called from outside the module,
3328 GCC may for instance omit the load of a PIC register since it is known
3329 that the calling function loaded the correct value.
3330
3331 @item protected
3332 Protected visibility is like default visibility except that it
3333 indicates that references within the defining module bind to the
3334 definition in that module. That is, the declared entity cannot be
3335 overridden by another module.
3336
3337 @end table
3338
3339 All visibilities are supported on many, but not all, ELF targets
3340 (supported when the assembler supports the @samp{.visibility}
3341 pseudo-op). Default visibility is supported everywhere. Hidden
3342 visibility is supported on Darwin targets.
3343
3344 The visibility attribute should be applied only to declarations that
3345 would otherwise have external linkage. The attribute should be applied
3346 consistently, so that the same entity should not be declared with
3347 different settings of the attribute.
3348
3349 In C++, the visibility attribute applies to types as well as functions
3350 and objects, because in C++ types have linkage. A class must not have
3351 greater visibility than its non-static data member types and bases,
3352 and class members default to the visibility of their class. Also, a
3353 declaration without explicit visibility is limited to the visibility
3354 of its type.
3355
3356 In C++, you can mark member functions and static member variables of a
3357 class with the visibility attribute. This is useful if you know a
3358 particular method or static member variable should only be used from
3359 one shared object; then you can mark it hidden while the rest of the
3360 class has default visibility. Care must be taken to avoid breaking
3361 the One Definition Rule; for example, it is usually not useful to mark
3362 an inline method as hidden without marking the whole class as hidden.
3363
3364 A C++ namespace declaration can also have the visibility attribute.
3365
3366 @smallexample
3367 namespace nspace1 __attribute__ ((visibility ("protected")))
3368 @{ /* @r{Do something.} */; @}
3369 @end smallexample
3370
3371 This attribute applies only to the particular namespace body, not to
3372 other definitions of the same namespace; it is equivalent to using
3373 @samp{#pragma GCC visibility} before and after the namespace
3374 definition (@pxref{Visibility Pragmas}).
3375
3376 In C++, if a template argument has limited visibility, this
3377 restriction is implicitly propagated to the template instantiation.
3378 Otherwise, template instantiations and specializations default to the
3379 visibility of their template.
3380
3381 If both the template and enclosing class have explicit visibility, the
3382 visibility from the template is used.
3383
3384 @item warn_unused_result
3385 @cindex @code{warn_unused_result} function attribute
3386 The @code{warn_unused_result} attribute causes a warning to be emitted
3387 if a caller of the function with this attribute does not use its
3388 return value. This is useful for functions where not checking
3389 the result is either a security problem or always a bug, such as
3390 @code{realloc}.
3391
3392 @smallexample
3393 int fn () __attribute__ ((warn_unused_result));
3394 int foo ()
3395 @{
3396 if (fn () < 0) return -1;
3397 fn ();
3398 return 0;
3399 @}
3400 @end smallexample
3401
3402 @noindent
3403 results in warning on line 5.
3404
3405 @item weak
3406 @cindex @code{weak} function attribute
3407 The @code{weak} attribute causes the declaration to be emitted as a weak
3408 symbol rather than a global. This is primarily useful in defining
3409 library functions that can be overridden in user code, though it can
3410 also be used with non-function declarations. Weak symbols are supported
3411 for ELF targets, and also for a.out targets when using the GNU assembler
3412 and linker.
3413
3414 @item weakref
3415 @itemx weakref ("@var{target}")
3416 @cindex @code{weakref} function attribute
3417 The @code{weakref} attribute marks a declaration as a weak reference.
3418 Without arguments, it should be accompanied by an @code{alias} attribute
3419 naming the target symbol. Optionally, the @var{target} may be given as
3420 an argument to @code{weakref} itself. In either case, @code{weakref}
3421 implicitly marks the declaration as @code{weak}. Without a
3422 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3423 @code{weakref} is equivalent to @code{weak}.
3424
3425 @smallexample
3426 static int x() __attribute__ ((weakref ("y")));
3427 /* is equivalent to... */
3428 static int x() __attribute__ ((weak, weakref, alias ("y")));
3429 /* and to... */
3430 static int x() __attribute__ ((weakref));
3431 static int x() __attribute__ ((alias ("y")));
3432 @end smallexample
3433
3434 A weak reference is an alias that does not by itself require a
3435 definition to be given for the target symbol. If the target symbol is
3436 only referenced through weak references, then it becomes a @code{weak}
3437 undefined symbol. If it is directly referenced, however, then such
3438 strong references prevail, and a definition is required for the
3439 symbol, not necessarily in the same translation unit.
3440
3441 The effect is equivalent to moving all references to the alias to a
3442 separate translation unit, renaming the alias to the aliased symbol,
3443 declaring it as weak, compiling the two separate translation units and
3444 performing a reloadable link on them.
3445
3446 At present, a declaration to which @code{weakref} is attached can
3447 only be @code{static}.
3448
3449
3450 @end table
3451
3452 @c This is the end of the target-independent attribute table
3453
3454 @node AArch64 Function Attributes
3455 @subsection AArch64 Function Attributes
3456
3457 The following target-specific function attributes are available for the
3458 AArch64 target. For the most part, these options mirror the behavior of
3459 similar command-line options (@pxref{AArch64 Options}), but on a
3460 per-function basis.
3461
3462 @table @code
3463 @item general-regs-only
3464 @cindex @code{general-regs-only} function attribute, AArch64
3465 Indicates that no floating-point or Advanced SIMD registers should be
3466 used when generating code for this function. If the function explicitly
3467 uses floating-point code, then the compiler gives an error. This is
3468 the same behavior as that of the command-line option
3469 @option{-mgeneral-regs-only}.
3470
3471 @item fix-cortex-a53-835769
3472 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3473 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3474 applied to this function. To explicitly disable the workaround for this
3475 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3476 This corresponds to the behavior of the command line options
3477 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3478
3479 @item cmodel=
3480 @cindex @code{cmodel=} function attribute, AArch64
3481 Indicates that code should be generated for a particular code model for
3482 this function. The behavior and permissible arguments are the same as
3483 for the command line option @option{-mcmodel=}.
3484
3485 @item strict-align
3486 @cindex @code{strict-align} function attribute, AArch64
3487 Indicates that the compiler should not assume that unaligned memory references
3488 are handled by the system. The behavior is the same as for the command-line
3489 option @option{-mstrict-align}.
3490
3491 @item omit-leaf-frame-pointer
3492 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3493 Indicates that the frame pointer should be omitted for a leaf function call.
3494 To keep the frame pointer, the inverse attribute
3495 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3496 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3497 and @option{-mno-omit-leaf-frame-pointer}.
3498
3499 @item tls-dialect=
3500 @cindex @code{tls-dialect=} function attribute, AArch64
3501 Specifies the TLS dialect to use for this function. The behavior and
3502 permissible arguments are the same as for the command-line option
3503 @option{-mtls-dialect=}.
3504
3505 @item arch=
3506 @cindex @code{arch=} function attribute, AArch64
3507 Specifies the architecture version and architectural extensions to use
3508 for this function. The behavior and permissible arguments are the same as
3509 for the @option{-march=} command-line option.
3510
3511 @item tune=
3512 @cindex @code{tune=} function attribute, AArch64
3513 Specifies the core for which to tune the performance of this function.
3514 The behavior and permissible arguments are the same as for the @option{-mtune=}
3515 command-line option.
3516
3517 @item cpu=
3518 @cindex @code{cpu=} function attribute, AArch64
3519 Specifies the core for which to tune the performance of this function and also
3520 whose architectural features to use. The behavior and valid arguments are the
3521 same as for the @option{-mcpu=} command-line option.
3522
3523 @item sign-return-address
3524 @cindex @code{sign-return-address} function attribute, AArch64
3525 Select the function scope on which return address signing will be applied. The
3526 behavior and permissible arguments are the same as for the command-line option
3527 @option{-msign-return-address=}. The default value is @code{none}.
3528
3529 @end table
3530
3531 The above target attributes can be specified as follows:
3532
3533 @smallexample
3534 __attribute__((target("@var{attr-string}")))
3535 int
3536 f (int a)
3537 @{
3538 return a + 5;
3539 @}
3540 @end smallexample
3541
3542 where @code{@var{attr-string}} is one of the attribute strings specified above.
3543
3544 Additionally, the architectural extension string may be specified on its
3545 own. This can be used to turn on and off particular architectural extensions
3546 without having to specify a particular architecture version or core. Example:
3547
3548 @smallexample
3549 __attribute__((target("+crc+nocrypto")))
3550 int
3551 foo (int a)
3552 @{
3553 return a + 5;
3554 @}
3555 @end smallexample
3556
3557 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3558 extension and disables the @code{crypto} extension for the function @code{foo}
3559 without modifying an existing @option{-march=} or @option{-mcpu} option.
3560
3561 Multiple target function attributes can be specified by separating them with
3562 a comma. For example:
3563 @smallexample
3564 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3565 int
3566 foo (int a)
3567 @{
3568 return a + 5;
3569 @}
3570 @end smallexample
3571
3572 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3573 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3574
3575 @subsubsection Inlining rules
3576 Specifying target attributes on individual functions or performing link-time
3577 optimization across translation units compiled with different target options
3578 can affect function inlining rules:
3579
3580 In particular, a caller function can inline a callee function only if the
3581 architectural features available to the callee are a subset of the features
3582 available to the caller.
3583 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3584 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3585 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3586 because the all the architectural features that function @code{bar} requires
3587 are available to function @code{foo}. Conversely, function @code{bar} cannot
3588 inline function @code{foo}.
3589
3590 Additionally inlining a function compiled with @option{-mstrict-align} into a
3591 function compiled without @code{-mstrict-align} is not allowed.
3592 However, inlining a function compiled without @option{-mstrict-align} into a
3593 function compiled with @option{-mstrict-align} is allowed.
3594
3595 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3596 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3597 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3598 architectural feature rules specified above.
3599
3600 @node ARC Function Attributes
3601 @subsection ARC Function Attributes
3602
3603 These function attributes are supported by the ARC back end:
3604
3605 @table @code
3606 @item interrupt
3607 @cindex @code{interrupt} function attribute, ARC
3608 Use this attribute to indicate
3609 that the specified function is an interrupt handler. The compiler generates
3610 function entry and exit sequences suitable for use in an interrupt handler
3611 when this attribute is present.
3612
3613 On the ARC, you must specify the kind of interrupt to be handled
3614 in a parameter to the interrupt attribute like this:
3615
3616 @smallexample
3617 void f () __attribute__ ((interrupt ("ilink1")));
3618 @end smallexample
3619
3620 Permissible values for this parameter are: @w{@code{ilink1}} and
3621 @w{@code{ilink2}}.
3622
3623 @item long_call
3624 @itemx medium_call
3625 @itemx short_call
3626 @cindex @code{long_call} function attribute, ARC
3627 @cindex @code{medium_call} function attribute, ARC
3628 @cindex @code{short_call} function attribute, ARC
3629 @cindex indirect calls, ARC
3630 These attributes specify how a particular function is called.
3631 These attributes override the
3632 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3633 command-line switches and @code{#pragma long_calls} settings.
3634
3635 For ARC, a function marked with the @code{long_call} attribute is
3636 always called using register-indirect jump-and-link instructions,
3637 thereby enabling the called function to be placed anywhere within the
3638 32-bit address space. A function marked with the @code{medium_call}
3639 attribute will always be close enough to be called with an unconditional
3640 branch-and-link instruction, which has a 25-bit offset from
3641 the call site. A function marked with the @code{short_call}
3642 attribute will always be close enough to be called with a conditional
3643 branch-and-link instruction, which has a 21-bit offset from
3644 the call site.
3645 @end table
3646
3647 @node ARM Function Attributes
3648 @subsection ARM Function Attributes
3649
3650 These function attributes are supported for ARM targets:
3651
3652 @table @code
3653 @item interrupt
3654 @cindex @code{interrupt} function attribute, ARM
3655 Use this attribute to indicate
3656 that the specified function is an interrupt handler. The compiler generates
3657 function entry and exit sequences suitable for use in an interrupt handler
3658 when this attribute is present.
3659
3660 You can specify the kind of interrupt to be handled by
3661 adding an optional parameter to the interrupt attribute like this:
3662
3663 @smallexample
3664 void f () __attribute__ ((interrupt ("IRQ")));
3665 @end smallexample
3666
3667 @noindent
3668 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3669 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3670
3671 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3672 may be called with a word-aligned stack pointer.
3673
3674 @item isr
3675 @cindex @code{isr} function attribute, ARM
3676 Use this attribute on ARM to write Interrupt Service Routines. This is an
3677 alias to the @code{interrupt} attribute above.
3678
3679 @item long_call
3680 @itemx short_call
3681 @cindex @code{long_call} function attribute, ARM
3682 @cindex @code{short_call} function attribute, ARM
3683 @cindex indirect calls, ARM
3684 These attributes specify how a particular function is called.
3685 These attributes override the
3686 @option{-mlong-calls} (@pxref{ARM Options})
3687 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3688 @code{long_call} attribute indicates that the function might be far
3689 away from the call site and require a different (more expensive)
3690 calling sequence. The @code{short_call} attribute always places
3691 the offset to the function from the call site into the @samp{BL}
3692 instruction directly.
3693
3694 @item naked
3695 @cindex @code{naked} function attribute, ARM
3696 This attribute allows the compiler to construct the
3697 requisite function declaration, while allowing the body of the
3698 function to be assembly code. The specified function will not have
3699 prologue/epilogue sequences generated by the compiler. Only basic
3700 @code{asm} statements can safely be included in naked functions
3701 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3702 basic @code{asm} and C code may appear to work, they cannot be
3703 depended upon to work reliably and are not supported.
3704
3705 @item pcs
3706 @cindex @code{pcs} function attribute, ARM
3707
3708 The @code{pcs} attribute can be used to control the calling convention
3709 used for a function on ARM. The attribute takes an argument that specifies
3710 the calling convention to use.
3711
3712 When compiling using the AAPCS ABI (or a variant of it) then valid
3713 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3714 order to use a variant other than @code{"aapcs"} then the compiler must
3715 be permitted to use the appropriate co-processor registers (i.e., the
3716 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3717 For example,
3718
3719 @smallexample
3720 /* Argument passed in r0, and result returned in r0+r1. */
3721 double f2d (float) __attribute__((pcs("aapcs")));
3722 @end smallexample
3723
3724 Variadic functions always use the @code{"aapcs"} calling convention and
3725 the compiler rejects attempts to specify an alternative.
3726
3727 @item target (@var{options})
3728 @cindex @code{target} function attribute
3729 As discussed in @ref{Common Function Attributes}, this attribute
3730 allows specification of target-specific compilation options.
3731
3732 On ARM, the following options are allowed:
3733
3734 @table @samp
3735 @item thumb
3736 @cindex @code{target("thumb")} function attribute, ARM
3737 Force code generation in the Thumb (T16/T32) ISA, depending on the
3738 architecture level.
3739
3740 @item arm
3741 @cindex @code{target("arm")} function attribute, ARM
3742 Force code generation in the ARM (A32) ISA.
3743
3744 Functions from different modes can be inlined in the caller's mode.
3745
3746 @item fpu=
3747 @cindex @code{target("fpu=")} function attribute, ARM
3748 Specifies the fpu for which to tune the performance of this function.
3749 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3750 command-line option.
3751
3752 @end table
3753
3754 @end table
3755
3756 @node AVR Function Attributes
3757 @subsection AVR Function Attributes
3758
3759 These function attributes are supported by the AVR back end:
3760
3761 @table @code
3762 @item interrupt
3763 @cindex @code{interrupt} function attribute, AVR
3764 Use this attribute to indicate
3765 that the specified function is an interrupt handler. The compiler generates
3766 function entry and exit sequences suitable for use in an interrupt handler
3767 when this attribute is present.
3768
3769 On the AVR, the hardware globally disables interrupts when an
3770 interrupt is executed. The first instruction of an interrupt handler
3771 declared with this attribute is a @code{SEI} instruction to
3772 re-enable interrupts. See also the @code{signal} function attribute
3773 that does not insert a @code{SEI} instruction. If both @code{signal} and
3774 @code{interrupt} are specified for the same function, @code{signal}
3775 is silently ignored.
3776
3777 @item naked
3778 @cindex @code{naked} function attribute, AVR
3779 This attribute allows the compiler to construct the
3780 requisite function declaration, while allowing the body of the
3781 function to be assembly code. The specified function will not have
3782 prologue/epilogue sequences generated by the compiler. Only basic
3783 @code{asm} statements can safely be included in naked functions
3784 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3785 basic @code{asm} and C code may appear to work, they cannot be
3786 depended upon to work reliably and are not supported.
3787
3788 @item OS_main
3789 @itemx OS_task
3790 @cindex @code{OS_main} function attribute, AVR
3791 @cindex @code{OS_task} function attribute, AVR
3792 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3793 do not save/restore any call-saved register in their prologue/epilogue.
3794
3795 The @code{OS_main} attribute can be used when there @emph{is
3796 guarantee} that interrupts are disabled at the time when the function
3797 is entered. This saves resources when the stack pointer has to be
3798 changed to set up a frame for local variables.
3799
3800 The @code{OS_task} attribute can be used when there is @emph{no
3801 guarantee} that interrupts are disabled at that time when the function
3802 is entered like for, e@.g@. task functions in a multi-threading operating
3803 system. In that case, changing the stack pointer register is
3804 guarded by save/clear/restore of the global interrupt enable flag.
3805
3806 The differences to the @code{naked} function attribute are:
3807 @itemize @bullet
3808 @item @code{naked} functions do not have a return instruction whereas
3809 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3810 @code{RETI} return instruction.
3811 @item @code{naked} functions do not set up a frame for local variables
3812 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3813 as needed.
3814 @end itemize
3815
3816 @item signal
3817 @cindex @code{signal} function attribute, AVR
3818 Use this attribute on the AVR to indicate that the specified
3819 function is an interrupt handler. The compiler generates function
3820 entry and exit sequences suitable for use in an interrupt handler when this
3821 attribute is present.
3822
3823 See also the @code{interrupt} function attribute.
3824
3825 The AVR hardware globally disables interrupts when an interrupt is executed.
3826 Interrupt handler functions defined with the @code{signal} attribute
3827 do not re-enable interrupts. It is save to enable interrupts in a
3828 @code{signal} handler. This ``save'' only applies to the code
3829 generated by the compiler and not to the IRQ layout of the
3830 application which is responsibility of the application.
3831
3832 If both @code{signal} and @code{interrupt} are specified for the same
3833 function, @code{signal} is silently ignored.
3834 @end table
3835
3836 @node Blackfin Function Attributes
3837 @subsection Blackfin Function Attributes
3838
3839 These function attributes are supported by the Blackfin back end:
3840
3841 @table @code
3842
3843 @item exception_handler
3844 @cindex @code{exception_handler} function attribute
3845 @cindex exception handler functions, Blackfin
3846 Use this attribute on the Blackfin to indicate that the specified function
3847 is an exception handler. The compiler generates function entry and
3848 exit sequences suitable for use in an exception handler when this
3849 attribute is present.
3850
3851 @item interrupt_handler
3852 @cindex @code{interrupt_handler} function attribute, Blackfin
3853 Use this attribute to
3854 indicate that the specified function is an interrupt handler. The compiler
3855 generates function entry and exit sequences suitable for use in an
3856 interrupt handler when this attribute is present.
3857
3858 @item kspisusp
3859 @cindex @code{kspisusp} function attribute, Blackfin
3860 @cindex User stack pointer in interrupts on the Blackfin
3861 When used together with @code{interrupt_handler}, @code{exception_handler}
3862 or @code{nmi_handler}, code is generated to load the stack pointer
3863 from the USP register in the function prologue.
3864
3865 @item l1_text
3866 @cindex @code{l1_text} function attribute, Blackfin
3867 This attribute specifies a function to be placed into L1 Instruction
3868 SRAM@. The function is put into a specific section named @code{.l1.text}.
3869 With @option{-mfdpic}, function calls with a such function as the callee
3870 or caller uses inlined PLT.
3871
3872 @item l2
3873 @cindex @code{l2} function attribute, Blackfin
3874 This attribute specifies a function to be placed into L2
3875 SRAM. The function is put into a specific section named
3876 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3877 an inlined PLT.
3878
3879 @item longcall
3880 @itemx shortcall
3881 @cindex indirect calls, Blackfin
3882 @cindex @code{longcall} function attribute, Blackfin
3883 @cindex @code{shortcall} function attribute, Blackfin
3884 The @code{longcall} attribute
3885 indicates that the function might be far away from the call site and
3886 require a different (more expensive) calling sequence. The
3887 @code{shortcall} attribute indicates that the function is always close
3888 enough for the shorter calling sequence to be used. These attributes
3889 override the @option{-mlongcall} switch.
3890
3891 @item nesting
3892 @cindex @code{nesting} function attribute, Blackfin
3893 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3894 Use this attribute together with @code{interrupt_handler},
3895 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3896 entry code should enable nested interrupts or exceptions.
3897
3898 @item nmi_handler
3899 @cindex @code{nmi_handler} function attribute, Blackfin
3900 @cindex NMI handler functions on the Blackfin processor
3901 Use this attribute on the Blackfin to indicate that the specified function
3902 is an NMI handler. The compiler generates function entry and
3903 exit sequences suitable for use in an NMI handler when this
3904 attribute is present.
3905
3906 @item saveall
3907 @cindex @code{saveall} function attribute, Blackfin
3908 @cindex save all registers on the Blackfin
3909 Use this attribute to indicate that
3910 all registers except the stack pointer should be saved in the prologue
3911 regardless of whether they are used or not.
3912 @end table
3913
3914 @node CR16 Function Attributes
3915 @subsection CR16 Function Attributes
3916
3917 These function attributes are supported by the CR16 back end:
3918
3919 @table @code
3920 @item interrupt
3921 @cindex @code{interrupt} function attribute, CR16
3922 Use this attribute to indicate
3923 that the specified function is an interrupt handler. The compiler generates
3924 function entry and exit sequences suitable for use in an interrupt handler
3925 when this attribute is present.
3926 @end table
3927
3928 @node Epiphany Function Attributes
3929 @subsection Epiphany Function Attributes
3930
3931 These function attributes are supported by the Epiphany back end:
3932
3933 @table @code
3934 @item disinterrupt
3935 @cindex @code{disinterrupt} function attribute, Epiphany
3936 This attribute causes the compiler to emit
3937 instructions to disable interrupts for the duration of the given
3938 function.
3939
3940 @item forwarder_section
3941 @cindex @code{forwarder_section} function attribute, Epiphany
3942 This attribute modifies the behavior of an interrupt handler.
3943 The interrupt handler may be in external memory which cannot be
3944 reached by a branch instruction, so generate a local memory trampoline
3945 to transfer control. The single parameter identifies the section where
3946 the trampoline is placed.
3947
3948 @item interrupt
3949 @cindex @code{interrupt} function attribute, Epiphany
3950 Use this attribute to indicate
3951 that the specified function is an interrupt handler. The compiler generates
3952 function entry and exit sequences suitable for use in an interrupt handler
3953 when this attribute is present. It may also generate
3954 a special section with code to initialize the interrupt vector table.
3955
3956 On Epiphany targets one or more optional parameters can be added like this:
3957
3958 @smallexample
3959 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3960 @end smallexample
3961
3962 Permissible values for these parameters are: @w{@code{reset}},
3963 @w{@code{software_exception}}, @w{@code{page_miss}},
3964 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
3965 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
3966 Multiple parameters indicate that multiple entries in the interrupt
3967 vector table should be initialized for this function, i.e.@: for each
3968 parameter @w{@var{name}}, a jump to the function is emitted in
3969 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3970 entirely, in which case no interrupt vector table entry is provided.
3971
3972 Note that interrupts are enabled inside the function
3973 unless the @code{disinterrupt} attribute is also specified.
3974
3975 The following examples are all valid uses of these attributes on
3976 Epiphany targets:
3977 @smallexample
3978 void __attribute__ ((interrupt)) universal_handler ();
3979 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3980 void __attribute__ ((interrupt ("dma0, dma1")))
3981 universal_dma_handler ();
3982 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3983 fast_timer_handler ();
3984 void __attribute__ ((interrupt ("dma0, dma1"),
3985 forwarder_section ("tramp")))
3986 external_dma_handler ();
3987 @end smallexample
3988
3989 @item long_call
3990 @itemx short_call
3991 @cindex @code{long_call} function attribute, Epiphany
3992 @cindex @code{short_call} function attribute, Epiphany
3993 @cindex indirect calls, Epiphany
3994 These attributes specify how a particular function is called.
3995 These attributes override the
3996 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
3997 command-line switch and @code{#pragma long_calls} settings.
3998 @end table
3999
4000
4001 @node H8/300 Function Attributes
4002 @subsection H8/300 Function Attributes
4003
4004 These function attributes are available for H8/300 targets:
4005
4006 @table @code
4007 @item function_vector
4008 @cindex @code{function_vector} function attribute, H8/300
4009 Use this attribute on the H8/300, H8/300H, and H8S to indicate
4010 that the specified function should be called through the function vector.
4011 Calling a function through the function vector reduces code size; however,
4012 the function vector has a limited size (maximum 128 entries on the H8/300
4013 and 64 entries on the H8/300H and H8S)
4014 and shares space with the interrupt vector.
4015
4016 @item interrupt_handler
4017 @cindex @code{interrupt_handler} function attribute, H8/300
4018 Use this attribute on the H8/300, H8/300H, and H8S to
4019 indicate that the specified function is an interrupt handler. The compiler
4020 generates function entry and exit sequences suitable for use in an
4021 interrupt handler when this attribute is present.
4022
4023 @item saveall
4024 @cindex @code{saveall} function attribute, H8/300
4025 @cindex save all registers on the H8/300, H8/300H, and H8S
4026 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4027 all registers except the stack pointer should be saved in the prologue
4028 regardless of whether they are used or not.
4029 @end table
4030
4031 @node IA-64 Function Attributes
4032 @subsection IA-64 Function Attributes
4033
4034 These function attributes are supported on IA-64 targets:
4035
4036 @table @code
4037 @item syscall_linkage
4038 @cindex @code{syscall_linkage} function attribute, IA-64
4039 This attribute is used to modify the IA-64 calling convention by marking
4040 all input registers as live at all function exits. This makes it possible
4041 to restart a system call after an interrupt without having to save/restore
4042 the input registers. This also prevents kernel data from leaking into
4043 application code.
4044
4045 @item version_id
4046 @cindex @code{version_id} function attribute, IA-64
4047 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4048 symbol to contain a version string, thus allowing for function level
4049 versioning. HP-UX system header files may use function level versioning
4050 for some system calls.
4051
4052 @smallexample
4053 extern int foo () __attribute__((version_id ("20040821")));
4054 @end smallexample
4055
4056 @noindent
4057 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4058 @end table
4059
4060 @node M32C Function Attributes
4061 @subsection M32C Function Attributes
4062
4063 These function attributes are supported by the M32C back end:
4064
4065 @table @code
4066 @item bank_switch
4067 @cindex @code{bank_switch} function attribute, M32C
4068 When added to an interrupt handler with the M32C port, causes the
4069 prologue and epilogue to use bank switching to preserve the registers
4070 rather than saving them on the stack.
4071
4072 @item fast_interrupt
4073 @cindex @code{fast_interrupt} function attribute, M32C
4074 Use this attribute on the M32C port to indicate that the specified
4075 function is a fast interrupt handler. This is just like the
4076 @code{interrupt} attribute, except that @code{freit} is used to return
4077 instead of @code{reit}.
4078
4079 @item function_vector
4080 @cindex @code{function_vector} function attribute, M16C/M32C
4081 On M16C/M32C targets, the @code{function_vector} attribute declares a
4082 special page subroutine call function. Use of this attribute reduces
4083 the code size by 2 bytes for each call generated to the
4084 subroutine. The argument to the attribute is the vector number entry
4085 from the special page vector table which contains the 16 low-order
4086 bits of the subroutine's entry address. Each vector table has special
4087 page number (18 to 255) that is used in @code{jsrs} instructions.
4088 Jump addresses of the routines are generated by adding 0x0F0000 (in
4089 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4090 2-byte addresses set in the vector table. Therefore you need to ensure
4091 that all the special page vector routines should get mapped within the
4092 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4093 (for M32C).
4094
4095 In the following example 2 bytes are saved for each call to
4096 function @code{foo}.
4097
4098 @smallexample
4099 void foo (void) __attribute__((function_vector(0x18)));
4100 void foo (void)
4101 @{
4102 @}
4103
4104 void bar (void)
4105 @{
4106 foo();
4107 @}
4108 @end smallexample
4109
4110 If functions are defined in one file and are called in another file,
4111 then be sure to write this declaration in both files.
4112
4113 This attribute is ignored for R8C target.
4114
4115 @item interrupt
4116 @cindex @code{interrupt} function attribute, M32C
4117 Use this attribute to indicate
4118 that the specified function is an interrupt handler. The compiler generates
4119 function entry and exit sequences suitable for use in an interrupt handler
4120 when this attribute is present.
4121 @end table
4122
4123 @node M32R/D Function Attributes
4124 @subsection M32R/D Function Attributes
4125
4126 These function attributes are supported by the M32R/D back end:
4127
4128 @table @code
4129 @item interrupt
4130 @cindex @code{interrupt} function attribute, M32R/D
4131 Use this attribute to indicate
4132 that the specified function is an interrupt handler. The compiler generates
4133 function entry and exit sequences suitable for use in an interrupt handler
4134 when this attribute is present.
4135
4136 @item model (@var{model-name})
4137 @cindex @code{model} function attribute, M32R/D
4138 @cindex function addressability on the M32R/D
4139
4140 On the M32R/D, use this attribute to set the addressability of an
4141 object, and of the code generated for a function. The identifier
4142 @var{model-name} is one of @code{small}, @code{medium}, or
4143 @code{large}, representing each of the code models.
4144
4145 Small model objects live in the lower 16MB of memory (so that their
4146 addresses can be loaded with the @code{ld24} instruction), and are
4147 callable with the @code{bl} instruction.
4148
4149 Medium model objects may live anywhere in the 32-bit address space (the
4150 compiler generates @code{seth/add3} instructions to load their addresses),
4151 and are callable with the @code{bl} instruction.
4152
4153 Large model objects may live anywhere in the 32-bit address space (the
4154 compiler generates @code{seth/add3} instructions to load their addresses),
4155 and may not be reachable with the @code{bl} instruction (the compiler
4156 generates the much slower @code{seth/add3/jl} instruction sequence).
4157 @end table
4158
4159 @node m68k Function Attributes
4160 @subsection m68k Function Attributes
4161
4162 These function attributes are supported by the m68k back end:
4163
4164 @table @code
4165 @item interrupt
4166 @itemx interrupt_handler
4167 @cindex @code{interrupt} function attribute, m68k
4168 @cindex @code{interrupt_handler} function attribute, m68k
4169 Use this attribute to
4170 indicate that the specified function is an interrupt handler. The compiler
4171 generates function entry and exit sequences suitable for use in an
4172 interrupt handler when this attribute is present. Either name may be used.
4173
4174 @item interrupt_thread
4175 @cindex @code{interrupt_thread} function attribute, fido
4176 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4177 that the specified function is an interrupt handler that is designed
4178 to run as a thread. The compiler omits generate prologue/epilogue
4179 sequences and replaces the return instruction with a @code{sleep}
4180 instruction. This attribute is available only on fido.
4181 @end table
4182
4183 @node MCORE Function Attributes
4184 @subsection MCORE Function Attributes
4185
4186 These function attributes are supported by the MCORE back end:
4187
4188 @table @code
4189 @item naked
4190 @cindex @code{naked} function attribute, MCORE
4191 This attribute allows the compiler to construct the
4192 requisite function declaration, while allowing the body of the
4193 function to be assembly code. The specified function will not have
4194 prologue/epilogue sequences generated by the compiler. Only basic
4195 @code{asm} statements can safely be included in naked functions
4196 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4197 basic @code{asm} and C code may appear to work, they cannot be
4198 depended upon to work reliably and are not supported.
4199 @end table
4200
4201 @node MeP Function Attributes
4202 @subsection MeP Function Attributes
4203
4204 These function attributes are supported by the MeP back end:
4205
4206 @table @code
4207 @item disinterrupt
4208 @cindex @code{disinterrupt} function attribute, MeP
4209 On MeP targets, this attribute causes the compiler to emit
4210 instructions to disable interrupts for the duration of the given
4211 function.
4212
4213 @item interrupt
4214 @cindex @code{interrupt} function attribute, MeP
4215 Use this attribute to indicate
4216 that the specified function is an interrupt handler. The compiler generates
4217 function entry and exit sequences suitable for use in an interrupt handler
4218 when this attribute is present.
4219
4220 @item near
4221 @cindex @code{near} function attribute, MeP
4222 This attribute causes the compiler to assume the called
4223 function is close enough to use the normal calling convention,
4224 overriding the @option{-mtf} command-line option.
4225
4226 @item far
4227 @cindex @code{far} function attribute, MeP
4228 On MeP targets this causes the compiler to use a calling convention
4229 that assumes the called function is too far away for the built-in
4230 addressing modes.
4231
4232 @item vliw
4233 @cindex @code{vliw} function attribute, MeP
4234 The @code{vliw} attribute tells the compiler to emit
4235 instructions in VLIW mode instead of core mode. Note that this
4236 attribute is not allowed unless a VLIW coprocessor has been configured
4237 and enabled through command-line options.
4238 @end table
4239
4240 @node MicroBlaze Function Attributes
4241 @subsection MicroBlaze Function Attributes
4242
4243 These function attributes are supported on MicroBlaze targets:
4244
4245 @table @code
4246 @item save_volatiles
4247 @cindex @code{save_volatiles} function attribute, MicroBlaze
4248 Use this attribute to indicate that the function is
4249 an interrupt handler. All volatile registers (in addition to non-volatile
4250 registers) are saved in the function prologue. If the function is a leaf
4251 function, only volatiles used by the function are saved. A normal function
4252 return is generated instead of a return from interrupt.
4253
4254 @item break_handler
4255 @cindex @code{break_handler} function attribute, MicroBlaze
4256 @cindex break handler functions
4257 Use this attribute to indicate that
4258 the specified function is a break handler. The compiler generates function
4259 entry and exit sequences suitable for use in an break handler when this
4260 attribute is present. The return from @code{break_handler} is done through
4261 the @code{rtbd} instead of @code{rtsd}.
4262
4263 @smallexample
4264 void f () __attribute__ ((break_handler));
4265 @end smallexample
4266
4267 @item interrupt_handler
4268 @itemx fast_interrupt
4269 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4270 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4271 These attributes indicate that the specified function is an interrupt
4272 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4273 used in low-latency interrupt mode, and @code{interrupt_handler} for
4274 interrupts that do not use low-latency handlers. In both cases, GCC
4275 emits appropriate prologue code and generates a return from the handler
4276 using @code{rtid} instead of @code{rtsd}.
4277 @end table
4278
4279 @node Microsoft Windows Function Attributes
4280 @subsection Microsoft Windows Function Attributes
4281
4282 The following attributes are available on Microsoft Windows and Symbian OS
4283 targets.
4284
4285 @table @code
4286 @item dllexport
4287 @cindex @code{dllexport} function attribute
4288 @cindex @code{__declspec(dllexport)}
4289 On Microsoft Windows targets and Symbian OS targets the
4290 @code{dllexport} attribute causes the compiler to provide a global
4291 pointer to a pointer in a DLL, so that it can be referenced with the
4292 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4293 name is formed by combining @code{_imp__} and the function or variable
4294 name.
4295
4296 You can use @code{__declspec(dllexport)} as a synonym for
4297 @code{__attribute__ ((dllexport))} for compatibility with other
4298 compilers.
4299
4300 On systems that support the @code{visibility} attribute, this
4301 attribute also implies ``default'' visibility. It is an error to
4302 explicitly specify any other visibility.
4303
4304 GCC's default behavior is to emit all inline functions with the
4305 @code{dllexport} attribute. Since this can cause object file-size bloat,
4306 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4307 ignore the attribute for inlined functions unless the
4308 @option{-fkeep-inline-functions} flag is used instead.
4309
4310 The attribute is ignored for undefined symbols.
4311
4312 When applied to C++ classes, the attribute marks defined non-inlined
4313 member functions and static data members as exports. Static consts
4314 initialized in-class are not marked unless they are also defined
4315 out-of-class.
4316
4317 For Microsoft Windows targets there are alternative methods for
4318 including the symbol in the DLL's export table such as using a
4319 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4320 the @option{--export-all} linker flag.
4321
4322 @item dllimport
4323 @cindex @code{dllimport} function attribute
4324 @cindex @code{__declspec(dllimport)}
4325 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4326 attribute causes the compiler to reference a function or variable via
4327 a global pointer to a pointer that is set up by the DLL exporting the
4328 symbol. The attribute implies @code{extern}. On Microsoft Windows
4329 targets, the pointer name is formed by combining @code{_imp__} and the
4330 function or variable name.
4331
4332 You can use @code{__declspec(dllimport)} as a synonym for
4333 @code{__attribute__ ((dllimport))} for compatibility with other
4334 compilers.
4335
4336 On systems that support the @code{visibility} attribute, this
4337 attribute also implies ``default'' visibility. It is an error to
4338 explicitly specify any other visibility.
4339
4340 Currently, the attribute is ignored for inlined functions. If the
4341 attribute is applied to a symbol @emph{definition}, an error is reported.
4342 If a symbol previously declared @code{dllimport} is later defined, the
4343 attribute is ignored in subsequent references, and a warning is emitted.
4344 The attribute is also overridden by a subsequent declaration as
4345 @code{dllexport}.
4346
4347 When applied to C++ classes, the attribute marks non-inlined
4348 member functions and static data members as imports. However, the
4349 attribute is ignored for virtual methods to allow creation of vtables
4350 using thunks.
4351
4352 On the SH Symbian OS target the @code{dllimport} attribute also has
4353 another affect---it can cause the vtable and run-time type information
4354 for a class to be exported. This happens when the class has a
4355 dllimported constructor or a non-inline, non-pure virtual function
4356 and, for either of those two conditions, the class also has an inline
4357 constructor or destructor and has a key function that is defined in
4358 the current translation unit.
4359
4360 For Microsoft Windows targets the use of the @code{dllimport}
4361 attribute on functions is not necessary, but provides a small
4362 performance benefit by eliminating a thunk in the DLL@. The use of the
4363 @code{dllimport} attribute on imported variables can be avoided by passing the
4364 @option{--enable-auto-import} switch to the GNU linker. As with
4365 functions, using the attribute for a variable eliminates a thunk in
4366 the DLL@.
4367
4368 One drawback to using this attribute is that a pointer to a
4369 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4370 address. However, a pointer to a @emph{function} with the
4371 @code{dllimport} attribute can be used as a constant initializer; in
4372 this case, the address of a stub function in the import lib is
4373 referenced. On Microsoft Windows targets, the attribute can be disabled
4374 for functions by setting the @option{-mnop-fun-dllimport} flag.
4375 @end table
4376
4377 @node MIPS Function Attributes
4378 @subsection MIPS Function Attributes
4379
4380 These function attributes are supported by the MIPS back end:
4381
4382 @table @code
4383 @item interrupt
4384 @cindex @code{interrupt} function attribute, MIPS
4385 Use this attribute to indicate that the specified function is an interrupt
4386 handler. The compiler generates function entry and exit sequences suitable
4387 for use in an interrupt handler when this attribute is present.
4388 An optional argument is supported for the interrupt attribute which allows
4389 the interrupt mode to be described. By default GCC assumes the external
4390 interrupt controller (EIC) mode is in use, this can be explicitly set using
4391 @code{eic}. When interrupts are non-masked then the requested Interrupt
4392 Priority Level (IPL) is copied to the current IPL which has the effect of only
4393 enabling higher priority interrupts. To use vectored interrupt mode use
4394 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4395 the behavior of the non-masked interrupt support and GCC will arrange to mask
4396 all interrupts from sw0 up to and including the specified interrupt vector.
4397
4398 You can use the following attributes to modify the behavior
4399 of an interrupt handler:
4400 @table @code
4401 @item use_shadow_register_set
4402 @cindex @code{use_shadow_register_set} function attribute, MIPS
4403 Assume that the handler uses a shadow register set, instead of
4404 the main general-purpose registers. An optional argument @code{intstack} is
4405 supported to indicate that the shadow register set contains a valid stack
4406 pointer.
4407
4408 @item keep_interrupts_masked
4409 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4410 Keep interrupts masked for the whole function. Without this attribute,
4411 GCC tries to reenable interrupts for as much of the function as it can.
4412
4413 @item use_debug_exception_return
4414 @cindex @code{use_debug_exception_return} function attribute, MIPS
4415 Return using the @code{deret} instruction. Interrupt handlers that don't
4416 have this attribute return using @code{eret} instead.
4417 @end table
4418
4419 You can use any combination of these attributes, as shown below:
4420 @smallexample
4421 void __attribute__ ((interrupt)) v0 ();
4422 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4423 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4424 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4425 void __attribute__ ((interrupt, use_shadow_register_set,
4426 keep_interrupts_masked)) v4 ();
4427 void __attribute__ ((interrupt, use_shadow_register_set,
4428 use_debug_exception_return)) v5 ();
4429 void __attribute__ ((interrupt, keep_interrupts_masked,
4430 use_debug_exception_return)) v6 ();
4431 void __attribute__ ((interrupt, use_shadow_register_set,
4432 keep_interrupts_masked,
4433 use_debug_exception_return)) v7 ();
4434 void __attribute__ ((interrupt("eic"))) v8 ();
4435 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4436 @end smallexample
4437
4438 @item long_call
4439 @itemx near
4440 @itemx far
4441 @cindex indirect calls, MIPS
4442 @cindex @code{long_call} function attribute, MIPS
4443 @cindex @code{near} function attribute, MIPS
4444 @cindex @code{far} function attribute, MIPS
4445 These attributes specify how a particular function is called on MIPS@.
4446 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4447 command-line switch. The @code{long_call} and @code{far} attributes are
4448 synonyms, and cause the compiler to always call
4449 the function by first loading its address into a register, and then using
4450 the contents of that register. The @code{near} attribute has the opposite
4451 effect; it specifies that non-PIC calls should be made using the more
4452 efficient @code{jal} instruction.
4453
4454 @item mips16
4455 @itemx nomips16
4456 @cindex @code{mips16} function attribute, MIPS
4457 @cindex @code{nomips16} function attribute, MIPS
4458
4459 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4460 function attributes to locally select or turn off MIPS16 code generation.
4461 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4462 while MIPS16 code generation is disabled for functions with the
4463 @code{nomips16} attribute. These attributes override the
4464 @option{-mips16} and @option{-mno-mips16} options on the command line
4465 (@pxref{MIPS Options}).
4466
4467 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4468 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4469 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4470 may interact badly with some GCC extensions such as @code{__builtin_apply}
4471 (@pxref{Constructing Calls}).
4472
4473 @item micromips, MIPS
4474 @itemx nomicromips, MIPS
4475 @cindex @code{micromips} function attribute
4476 @cindex @code{nomicromips} function attribute
4477
4478 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4479 function attributes to locally select or turn off microMIPS code generation.
4480 A function with the @code{micromips} attribute is emitted as microMIPS code,
4481 while microMIPS code generation is disabled for functions with the
4482 @code{nomicromips} attribute. These attributes override the
4483 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4484 (@pxref{MIPS Options}).
4485
4486 When compiling files containing mixed microMIPS and non-microMIPS code, the
4487 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4488 command line,
4489 not that within individual functions. Mixed microMIPS and non-microMIPS code
4490 may interact badly with some GCC extensions such as @code{__builtin_apply}
4491 (@pxref{Constructing Calls}).
4492
4493 @item nocompression
4494 @cindex @code{nocompression} function attribute, MIPS
4495 On MIPS targets, you can use the @code{nocompression} function attribute
4496 to locally turn off MIPS16 and microMIPS code generation. This attribute
4497 overrides the @option{-mips16} and @option{-mmicromips} options on the
4498 command line (@pxref{MIPS Options}).
4499 @end table
4500
4501 @node MSP430 Function Attributes
4502 @subsection MSP430 Function Attributes
4503
4504 These function attributes are supported by the MSP430 back end:
4505
4506 @table @code
4507 @item critical
4508 @cindex @code{critical} function attribute, MSP430
4509 Critical functions disable interrupts upon entry and restore the
4510 previous interrupt state upon exit. Critical functions cannot also
4511 have the @code{naked} or @code{reentrant} attributes. They can have
4512 the @code{interrupt} attribute.
4513
4514 @item interrupt
4515 @cindex @code{interrupt} function attribute, MSP430
4516 Use this attribute to indicate
4517 that the specified function is an interrupt handler. The compiler generates
4518 function entry and exit sequences suitable for use in an interrupt handler
4519 when this attribute is present.
4520
4521 You can provide an argument to the interrupt
4522 attribute which specifies a name or number. If the argument is a
4523 number it indicates the slot in the interrupt vector table (0 - 31) to
4524 which this handler should be assigned. If the argument is a name it
4525 is treated as a symbolic name for the vector slot. These names should
4526 match up with appropriate entries in the linker script. By default
4527 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4528 @code{reset} for vector 31 are recognized.
4529
4530 @item naked
4531 @cindex @code{naked} function attribute, MSP430
4532 This attribute allows the compiler to construct the
4533 requisite function declaration, while allowing the body of the
4534 function to be assembly code. The specified function will not have
4535 prologue/epilogue sequences generated by the compiler. Only basic
4536 @code{asm} statements can safely be included in naked functions
4537 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4538 basic @code{asm} and C code may appear to work, they cannot be
4539 depended upon to work reliably and are not supported.
4540
4541 @item reentrant
4542 @cindex @code{reentrant} function attribute, MSP430
4543 Reentrant functions disable interrupts upon entry and enable them
4544 upon exit. Reentrant functions cannot also have the @code{naked}
4545 or @code{critical} attributes. They can have the @code{interrupt}
4546 attribute.
4547
4548 @item wakeup
4549 @cindex @code{wakeup} function attribute, MSP430
4550 This attribute only applies to interrupt functions. It is silently
4551 ignored if applied to a non-interrupt function. A wakeup interrupt
4552 function will rouse the processor from any low-power state that it
4553 might be in when the function exits.
4554
4555 @item lower
4556 @itemx upper
4557 @itemx either
4558 @cindex @code{lower} function attribute, MSP430
4559 @cindex @code{upper} function attribute, MSP430
4560 @cindex @code{either} function attribute, MSP430
4561 On the MSP430 target these attributes can be used to specify whether
4562 the function or variable should be placed into low memory, high
4563 memory, or the placement should be left to the linker to decide. The
4564 attributes are only significant if compiling for the MSP430X
4565 architecture.
4566
4567 The attributes work in conjunction with a linker script that has been
4568 augmented to specify where to place sections with a @code{.lower} and
4569 a @code{.upper} prefix. So, for example, as well as placing the
4570 @code{.data} section, the script also specifies the placement of a
4571 @code{.lower.data} and a @code{.upper.data} section. The intention
4572 is that @code{lower} sections are placed into a small but easier to
4573 access memory region and the upper sections are placed into a larger, but
4574 slower to access, region.
4575
4576 The @code{either} attribute is special. It tells the linker to place
4577 the object into the corresponding @code{lower} section if there is
4578 room for it. If there is insufficient room then the object is placed
4579 into the corresponding @code{upper} section instead. Note that the
4580 placement algorithm is not very sophisticated. It does not attempt to
4581 find an optimal packing of the @code{lower} sections. It just makes
4582 one pass over the objects and does the best that it can. Using the
4583 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4584 options can help the packing, however, since they produce smaller,
4585 easier to pack regions.
4586 @end table
4587
4588 @node NDS32 Function Attributes
4589 @subsection NDS32 Function Attributes
4590
4591 These function attributes are supported by the NDS32 back end:
4592
4593 @table @code
4594 @item exception
4595 @cindex @code{exception} function attribute
4596 @cindex exception handler functions, NDS32
4597 Use this attribute on the NDS32 target to indicate that the specified function
4598 is an exception handler. The compiler will generate corresponding sections
4599 for use in an exception handler.
4600
4601 @item interrupt
4602 @cindex @code{interrupt} function attribute, NDS32
4603 On NDS32 target, this attribute indicates that the specified function
4604 is an interrupt handler. The compiler generates corresponding sections
4605 for use in an interrupt handler. You can use the following attributes
4606 to modify the behavior:
4607 @table @code
4608 @item nested
4609 @cindex @code{nested} function attribute, NDS32
4610 This interrupt service routine is interruptible.
4611 @item not_nested
4612 @cindex @code{not_nested} function attribute, NDS32
4613 This interrupt service routine is not interruptible.
4614 @item nested_ready
4615 @cindex @code{nested_ready} function attribute, NDS32
4616 This interrupt service routine is interruptible after @code{PSW.GIE}
4617 (global interrupt enable) is set. This allows interrupt service routine to
4618 finish some short critical code before enabling interrupts.
4619 @item save_all
4620 @cindex @code{save_all} function attribute, NDS32
4621 The system will help save all registers into stack before entering
4622 interrupt handler.
4623 @item partial_save
4624 @cindex @code{partial_save} function attribute, NDS32
4625 The system will help save caller registers into stack before entering
4626 interrupt handler.
4627 @end table
4628
4629 @item naked
4630 @cindex @code{naked} function attribute, NDS32
4631 This attribute allows the compiler to construct the
4632 requisite function declaration, while allowing the body of the
4633 function to be assembly code. The specified function will not have
4634 prologue/epilogue sequences generated by the compiler. Only basic
4635 @code{asm} statements can safely be included in naked functions
4636 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4637 basic @code{asm} and C code may appear to work, they cannot be
4638 depended upon to work reliably and are not supported.
4639
4640 @item reset
4641 @cindex @code{reset} function attribute, NDS32
4642 @cindex reset handler functions
4643 Use this attribute on the NDS32 target to indicate that the specified function
4644 is a reset handler. The compiler will generate corresponding sections
4645 for use in a reset handler. You can use the following attributes
4646 to provide extra exception handling:
4647 @table @code
4648 @item nmi
4649 @cindex @code{nmi} function attribute, NDS32
4650 Provide a user-defined function to handle NMI exception.
4651 @item warm
4652 @cindex @code{warm} function attribute, NDS32
4653 Provide a user-defined function to handle warm reset exception.
4654 @end table
4655 @end table
4656
4657 @node Nios II Function Attributes
4658 @subsection Nios II Function Attributes
4659
4660 These function attributes are supported by the Nios II back end:
4661
4662 @table @code
4663 @item target (@var{options})
4664 @cindex @code{target} function attribute
4665 As discussed in @ref{Common Function Attributes}, this attribute
4666 allows specification of target-specific compilation options.
4667
4668 When compiling for Nios II, the following options are allowed:
4669
4670 @table @samp
4671 @item custom-@var{insn}=@var{N}
4672 @itemx no-custom-@var{insn}
4673 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4674 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4675 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4676 custom instruction with encoding @var{N} when generating code that uses
4677 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4678 the custom instruction @var{insn}.
4679 These target attributes correspond to the
4680 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4681 command-line options, and support the same set of @var{insn} keywords.
4682 @xref{Nios II Options}, for more information.
4683
4684 @item custom-fpu-cfg=@var{name}
4685 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4686 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4687 command-line option, to select a predefined set of custom instructions
4688 named @var{name}.
4689 @xref{Nios II Options}, for more information.
4690 @end table
4691 @end table
4692
4693 @node Nvidia PTX Function Attributes
4694 @subsection Nvidia PTX Function Attributes
4695
4696 These function attributes are supported by the Nvidia PTX back end:
4697
4698 @table @code
4699 @item kernel
4700 @cindex @code{kernel} attribute, Nvidia PTX
4701 This attribute indicates that the corresponding function should be compiled
4702 as a kernel function, which can be invoked from the host via the CUDA RT
4703 library.
4704 By default functions are only callable only from other PTX functions.
4705
4706 Kernel functions must have @code{void} return type.
4707 @end table
4708
4709 @node PowerPC Function Attributes
4710 @subsection PowerPC Function Attributes
4711
4712 These function attributes are supported by the PowerPC back end:
4713
4714 @table @code
4715 @item longcall
4716 @itemx shortcall
4717 @cindex indirect calls, PowerPC
4718 @cindex @code{longcall} function attribute, PowerPC
4719 @cindex @code{shortcall} function attribute, PowerPC
4720 The @code{longcall} attribute
4721 indicates that the function might be far away from the call site and
4722 require a different (more expensive) calling sequence. The
4723 @code{shortcall} attribute indicates that the function is always close
4724 enough for the shorter calling sequence to be used. These attributes
4725 override both the @option{-mlongcall} switch and
4726 the @code{#pragma longcall} setting.
4727
4728 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4729 calls are necessary.
4730
4731 @item target (@var{options})
4732 @cindex @code{target} function attribute
4733 As discussed in @ref{Common Function Attributes}, this attribute
4734 allows specification of target-specific compilation options.
4735
4736 On the PowerPC, the following options are allowed:
4737
4738 @table @samp
4739 @item altivec
4740 @itemx no-altivec
4741 @cindex @code{target("altivec")} function attribute, PowerPC
4742 Generate code that uses (does not use) AltiVec instructions. In
4743 32-bit code, you cannot enable AltiVec instructions unless
4744 @option{-mabi=altivec} is used on the command line.
4745
4746 @item cmpb
4747 @itemx no-cmpb
4748 @cindex @code{target("cmpb")} function attribute, PowerPC
4749 Generate code that uses (does not use) the compare bytes instruction
4750 implemented on the POWER6 processor and other processors that support
4751 the PowerPC V2.05 architecture.
4752
4753 @item dlmzb
4754 @itemx no-dlmzb
4755 @cindex @code{target("dlmzb")} function attribute, PowerPC
4756 Generate code that uses (does not use) the string-search @samp{dlmzb}
4757 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4758 generated by default when targeting those processors.
4759
4760 @item fprnd
4761 @itemx no-fprnd
4762 @cindex @code{target("fprnd")} function attribute, PowerPC
4763 Generate code that uses (does not use) the FP round to integer
4764 instructions implemented on the POWER5+ processor and other processors
4765 that support the PowerPC V2.03 architecture.
4766
4767 @item hard-dfp
4768 @itemx no-hard-dfp
4769 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4770 Generate code that uses (does not use) the decimal floating-point
4771 instructions implemented on some POWER processors.
4772
4773 @item isel
4774 @itemx no-isel
4775 @cindex @code{target("isel")} function attribute, PowerPC
4776 Generate code that uses (does not use) ISEL instruction.
4777
4778 @item mfcrf
4779 @itemx no-mfcrf
4780 @cindex @code{target("mfcrf")} function attribute, PowerPC
4781 Generate code that uses (does not use) the move from condition
4782 register field instruction implemented on the POWER4 processor and
4783 other processors that support the PowerPC V2.01 architecture.
4784
4785 @item mfpgpr
4786 @itemx no-mfpgpr
4787 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4788 Generate code that uses (does not use) the FP move to/from general
4789 purpose register instructions implemented on the POWER6X processor and
4790 other processors that support the extended PowerPC V2.05 architecture.
4791
4792 @item mulhw
4793 @itemx no-mulhw
4794 @cindex @code{target("mulhw")} function attribute, PowerPC
4795 Generate code that uses (does not use) the half-word multiply and
4796 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4797 These instructions are generated by default when targeting those
4798 processors.
4799
4800 @item multiple
4801 @itemx no-multiple
4802 @cindex @code{target("multiple")} function attribute, PowerPC
4803 Generate code that uses (does not use) the load multiple word
4804 instructions and the store multiple word instructions.
4805
4806 @item update
4807 @itemx no-update
4808 @cindex @code{target("update")} function attribute, PowerPC
4809 Generate code that uses (does not use) the load or store instructions
4810 that update the base register to the address of the calculated memory
4811 location.
4812
4813 @item popcntb
4814 @itemx no-popcntb
4815 @cindex @code{target("popcntb")} function attribute, PowerPC
4816 Generate code that uses (does not use) the popcount and double-precision
4817 FP reciprocal estimate instruction implemented on the POWER5
4818 processor and other processors that support the PowerPC V2.02
4819 architecture.
4820
4821 @item popcntd
4822 @itemx no-popcntd
4823 @cindex @code{target("popcntd")} function attribute, PowerPC
4824 Generate code that uses (does not use) the popcount instruction
4825 implemented on the POWER7 processor and other processors that support
4826 the PowerPC V2.06 architecture.
4827
4828 @item powerpc-gfxopt
4829 @itemx no-powerpc-gfxopt
4830 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4831 Generate code that uses (does not use) the optional PowerPC
4832 architecture instructions in the Graphics group, including
4833 floating-point select.
4834
4835 @item powerpc-gpopt
4836 @itemx no-powerpc-gpopt
4837 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4838 Generate code that uses (does not use) the optional PowerPC
4839 architecture instructions in the General Purpose group, including
4840 floating-point square root.
4841
4842 @item recip-precision
4843 @itemx no-recip-precision
4844 @cindex @code{target("recip-precision")} function attribute, PowerPC
4845 Assume (do not assume) that the reciprocal estimate instructions
4846 provide higher-precision estimates than is mandated by the PowerPC
4847 ABI.
4848
4849 @item string
4850 @itemx no-string
4851 @cindex @code{target("string")} function attribute, PowerPC
4852 Generate code that uses (does not use) the load string instructions
4853 and the store string word instructions to save multiple registers and
4854 do small block moves.
4855
4856 @item vsx
4857 @itemx no-vsx
4858 @cindex @code{target("vsx")} function attribute, PowerPC
4859 Generate code that uses (does not use) vector/scalar (VSX)
4860 instructions, and also enable the use of built-in functions that allow
4861 more direct access to the VSX instruction set. In 32-bit code, you
4862 cannot enable VSX or AltiVec instructions unless
4863 @option{-mabi=altivec} is used on the command line.
4864
4865 @item friz
4866 @itemx no-friz
4867 @cindex @code{target("friz")} function attribute, PowerPC
4868 Generate (do not generate) the @code{friz} instruction when the
4869 @option{-funsafe-math-optimizations} option is used to optimize
4870 rounding a floating-point value to 64-bit integer and back to floating
4871 point. The @code{friz} instruction does not return the same value if
4872 the floating-point number is too large to fit in an integer.
4873
4874 @item avoid-indexed-addresses
4875 @itemx no-avoid-indexed-addresses
4876 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4877 Generate code that tries to avoid (not avoid) the use of indexed load
4878 or store instructions.
4879
4880 @item paired
4881 @itemx no-paired
4882 @cindex @code{target("paired")} function attribute, PowerPC
4883 Generate code that uses (does not use) the generation of PAIRED simd
4884 instructions.
4885
4886 @item longcall
4887 @itemx no-longcall
4888 @cindex @code{target("longcall")} function attribute, PowerPC
4889 Generate code that assumes (does not assume) that all calls are far
4890 away so that a longer more expensive calling sequence is required.
4891
4892 @item cpu=@var{CPU}
4893 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4894 Specify the architecture to generate code for when compiling the
4895 function. If you select the @code{target("cpu=power7")} attribute when
4896 generating 32-bit code, VSX and AltiVec instructions are not generated
4897 unless you use the @option{-mabi=altivec} option on the command line.
4898
4899 @item tune=@var{TUNE}
4900 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4901 Specify the architecture to tune for when compiling the function. If
4902 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4903 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4904 compilation tunes for the @var{CPU} architecture, and not the
4905 default tuning specified on the command line.
4906 @end table
4907
4908 On the PowerPC, the inliner does not inline a
4909 function that has different target options than the caller, unless the
4910 callee has a subset of the target options of the caller.
4911 @end table
4912
4913 @node RL78 Function Attributes
4914 @subsection RL78 Function Attributes
4915
4916 These function attributes are supported by the RL78 back end:
4917
4918 @table @code
4919 @item interrupt
4920 @itemx brk_interrupt
4921 @cindex @code{interrupt} function attribute, RL78
4922 @cindex @code{brk_interrupt} function attribute, RL78
4923 These attributes indicate
4924 that the specified function is an interrupt handler. The compiler generates
4925 function entry and exit sequences suitable for use in an interrupt handler
4926 when this attribute is present.
4927
4928 Use @code{brk_interrupt} instead of @code{interrupt} for
4929 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
4930 that must end with @code{RETB} instead of @code{RETI}).
4931
4932 @item naked
4933 @cindex @code{naked} function attribute, RL78
4934 This attribute allows the compiler to construct the
4935 requisite function declaration, while allowing the body of the
4936 function to be assembly code. The specified function will not have
4937 prologue/epilogue sequences generated by the compiler. Only basic
4938 @code{asm} statements can safely be included in naked functions
4939 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4940 basic @code{asm} and C code may appear to work, they cannot be
4941 depended upon to work reliably and are not supported.
4942 @end table
4943
4944 @node RX Function Attributes
4945 @subsection RX Function Attributes
4946
4947 These function attributes are supported by the RX back end:
4948
4949 @table @code
4950 @item fast_interrupt
4951 @cindex @code{fast_interrupt} function attribute, RX
4952 Use this attribute on the RX port to indicate that the specified
4953 function is a fast interrupt handler. This is just like the
4954 @code{interrupt} attribute, except that @code{freit} is used to return
4955 instead of @code{reit}.
4956
4957 @item interrupt
4958 @cindex @code{interrupt} function attribute, RX
4959 Use this attribute to indicate
4960 that the specified function is an interrupt handler. The compiler generates
4961 function entry and exit sequences suitable for use in an interrupt handler
4962 when this attribute is present.
4963
4964 On RX targets, you may specify one or more vector numbers as arguments
4965 to the attribute, as well as naming an alternate table name.
4966 Parameters are handled sequentially, so one handler can be assigned to
4967 multiple entries in multiple tables. One may also pass the magic
4968 string @code{"$default"} which causes the function to be used for any
4969 unfilled slots in the current table.
4970
4971 This example shows a simple assignment of a function to one vector in
4972 the default table (note that preprocessor macros may be used for
4973 chip-specific symbolic vector names):
4974 @smallexample
4975 void __attribute__ ((interrupt (5))) txd1_handler ();
4976 @end smallexample
4977
4978 This example assigns a function to two slots in the default table
4979 (using preprocessor macros defined elsewhere) and makes it the default
4980 for the @code{dct} table:
4981 @smallexample
4982 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
4983 txd1_handler ();
4984 @end smallexample
4985
4986 @item naked
4987 @cindex @code{naked} function attribute, RX
4988 This attribute allows the compiler to construct the
4989 requisite function declaration, while allowing the body of the
4990 function to be assembly code. The specified function will not have
4991 prologue/epilogue sequences generated by the compiler. Only basic
4992 @code{asm} statements can safely be included in naked functions
4993 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4994 basic @code{asm} and C code may appear to work, they cannot be
4995 depended upon to work reliably and are not supported.
4996
4997 @item vector
4998 @cindex @code{vector} function attribute, RX
4999 This RX attribute is similar to the @code{interrupt} attribute, including its
5000 parameters, but does not make the function an interrupt-handler type
5001 function (i.e. it retains the normal C function calling ABI). See the
5002 @code{interrupt} attribute for a description of its arguments.
5003 @end table
5004
5005 @node S/390 Function Attributes
5006 @subsection S/390 Function Attributes
5007
5008 These function attributes are supported on the S/390:
5009
5010 @table @code
5011 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
5012 @cindex @code{hotpatch} function attribute, S/390
5013
5014 On S/390 System z targets, you can use this function attribute to
5015 make GCC generate a ``hot-patching'' function prologue. If the
5016 @option{-mhotpatch=} command-line option is used at the same time,
5017 the @code{hotpatch} attribute takes precedence. The first of the
5018 two arguments specifies the number of halfwords to be added before
5019 the function label. A second argument can be used to specify the
5020 number of halfwords to be added after the function label. For
5021 both arguments the maximum allowed value is 1000000.
5022
5023 If both arguments are zero, hotpatching is disabled.
5024
5025 @item target (@var{options})
5026 @cindex @code{target} function attribute
5027 As discussed in @ref{Common Function Attributes}, this attribute
5028 allows specification of target-specific compilation options.
5029
5030 On S/390, the following options are supported:
5031
5032 @table @samp
5033 @item arch=
5034 @item tune=
5035 @item stack-guard=
5036 @item stack-size=
5037 @item branch-cost=
5038 @item warn-framesize=
5039 @item backchain
5040 @itemx no-backchain
5041 @item hard-dfp
5042 @itemx no-hard-dfp
5043 @item hard-float
5044 @itemx soft-float
5045 @item htm
5046 @itemx no-htm
5047 @item vx
5048 @itemx no-vx
5049 @item packed-stack
5050 @itemx no-packed-stack
5051 @item small-exec
5052 @itemx no-small-exec
5053 @item mvcle
5054 @itemx no-mvcle
5055 @item warn-dynamicstack
5056 @itemx no-warn-dynamicstack
5057 @end table
5058
5059 The options work exactly like the S/390 specific command line
5060 options (without the prefix @option{-m}) except that they do not
5061 change any feature macros. For example,
5062
5063 @smallexample
5064 @code{target("no-vx")}
5065 @end smallexample
5066
5067 does not undefine the @code{__VEC__} macro.
5068 @end table
5069
5070 @node SH Function Attributes
5071 @subsection SH Function Attributes
5072
5073 These function attributes are supported on the SH family of processors:
5074
5075 @table @code
5076 @item function_vector
5077 @cindex @code{function_vector} function attribute, SH
5078 @cindex calling functions through the function vector on SH2A
5079 On SH2A targets, this attribute declares a function to be called using the
5080 TBR relative addressing mode. The argument to this attribute is the entry
5081 number of the same function in a vector table containing all the TBR
5082 relative addressable functions. For correct operation the TBR must be setup
5083 accordingly to point to the start of the vector table before any functions with
5084 this attribute are invoked. Usually a good place to do the initialization is
5085 the startup routine. The TBR relative vector table can have at max 256 function
5086 entries. The jumps to these functions are generated using a SH2A specific,
5087 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5088 from GNU binutils version 2.7 or later for this attribute to work correctly.
5089
5090 In an application, for a function being called once, this attribute
5091 saves at least 8 bytes of code; and if other successive calls are being
5092 made to the same function, it saves 2 bytes of code per each of these
5093 calls.
5094
5095 @item interrupt_handler
5096 @cindex @code{interrupt_handler} function attribute, SH
5097 Use this attribute to
5098 indicate that the specified function is an interrupt handler. The compiler
5099 generates function entry and exit sequences suitable for use in an
5100 interrupt handler when this attribute is present.
5101
5102 @item nosave_low_regs
5103 @cindex @code{nosave_low_regs} function attribute, SH
5104 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5105 function should not save and restore registers R0..R7. This can be used on SH3*
5106 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5107 interrupt handlers.
5108
5109 @item renesas
5110 @cindex @code{renesas} function attribute, SH
5111 On SH targets this attribute specifies that the function or struct follows the
5112 Renesas ABI.
5113
5114 @item resbank
5115 @cindex @code{resbank} function attribute, SH
5116 On the SH2A target, this attribute enables the high-speed register
5117 saving and restoration using a register bank for @code{interrupt_handler}
5118 routines. Saving to the bank is performed automatically after the CPU
5119 accepts an interrupt that uses a register bank.
5120
5121 The nineteen 32-bit registers comprising general register R0 to R14,
5122 control register GBR, and system registers MACH, MACL, and PR and the
5123 vector table address offset are saved into a register bank. Register
5124 banks are stacked in first-in last-out (FILO) sequence. Restoration
5125 from the bank is executed by issuing a RESBANK instruction.
5126
5127 @item sp_switch
5128 @cindex @code{sp_switch} function attribute, SH
5129 Use this attribute on the SH to indicate an @code{interrupt_handler}
5130 function should switch to an alternate stack. It expects a string
5131 argument that names a global variable holding the address of the
5132 alternate stack.
5133
5134 @smallexample
5135 void *alt_stack;
5136 void f () __attribute__ ((interrupt_handler,
5137 sp_switch ("alt_stack")));
5138 @end smallexample
5139
5140 @item trap_exit
5141 @cindex @code{trap_exit} function attribute, SH
5142 Use this attribute on the SH for an @code{interrupt_handler} to return using
5143 @code{trapa} instead of @code{rte}. This attribute expects an integer
5144 argument specifying the trap number to be used.
5145
5146 @item trapa_handler
5147 @cindex @code{trapa_handler} function attribute, SH
5148 On SH targets this function attribute is similar to @code{interrupt_handler}
5149 but it does not save and restore all registers.
5150 @end table
5151
5152 @node SPU Function Attributes
5153 @subsection SPU Function Attributes
5154
5155 These function attributes are supported by the SPU back end:
5156
5157 @table @code
5158 @item naked
5159 @cindex @code{naked} function attribute, SPU
5160 This attribute allows the compiler to construct the
5161 requisite function declaration, while allowing the body of the
5162 function to be assembly code. The specified function will not have
5163 prologue/epilogue sequences generated by the compiler. Only basic
5164 @code{asm} statements can safely be included in naked functions
5165 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5166 basic @code{asm} and C code may appear to work, they cannot be
5167 depended upon to work reliably and are not supported.
5168 @end table
5169
5170 @node Symbian OS Function Attributes
5171 @subsection Symbian OS Function Attributes
5172
5173 @xref{Microsoft Windows Function Attributes}, for discussion of the
5174 @code{dllexport} and @code{dllimport} attributes.
5175
5176 @node V850 Function Attributes
5177 @subsection V850 Function Attributes
5178
5179 The V850 back end supports these function attributes:
5180
5181 @table @code
5182 @item interrupt
5183 @itemx interrupt_handler
5184 @cindex @code{interrupt} function attribute, V850
5185 @cindex @code{interrupt_handler} function attribute, V850
5186 Use these attributes to indicate
5187 that the specified function is an interrupt handler. The compiler generates
5188 function entry and exit sequences suitable for use in an interrupt handler
5189 when either attribute is present.
5190 @end table
5191
5192 @node Visium Function Attributes
5193 @subsection Visium Function Attributes
5194
5195 These function attributes are supported by the Visium back end:
5196
5197 @table @code
5198 @item interrupt
5199 @cindex @code{interrupt} function attribute, Visium
5200 Use this attribute to indicate
5201 that the specified function is an interrupt handler. The compiler generates
5202 function entry and exit sequences suitable for use in an interrupt handler
5203 when this attribute is present.
5204 @end table
5205
5206 @node x86 Function Attributes
5207 @subsection x86 Function Attributes
5208
5209 These function attributes are supported by the x86 back end:
5210
5211 @table @code
5212 @item cdecl
5213 @cindex @code{cdecl} function attribute, x86-32
5214 @cindex functions that pop the argument stack on x86-32
5215 @opindex mrtd
5216 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5217 assume that the calling function pops off the stack space used to
5218 pass arguments. This is
5219 useful to override the effects of the @option{-mrtd} switch.
5220
5221 @item fastcall
5222 @cindex @code{fastcall} function attribute, x86-32
5223 @cindex functions that pop the argument stack on x86-32
5224 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5225 pass the first argument (if of integral type) in the register ECX and
5226 the second argument (if of integral type) in the register EDX@. Subsequent
5227 and other typed arguments are passed on the stack. The called function
5228 pops the arguments off the stack. If the number of arguments is variable all
5229 arguments are pushed on the stack.
5230
5231 @item thiscall
5232 @cindex @code{thiscall} function attribute, x86-32
5233 @cindex functions that pop the argument stack on x86-32
5234 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5235 pass the first argument (if of integral type) in the register ECX.
5236 Subsequent and other typed arguments are passed on the stack. The called
5237 function pops the arguments off the stack.
5238 If the number of arguments is variable all arguments are pushed on the
5239 stack.
5240 The @code{thiscall} attribute is intended for C++ non-static member functions.
5241 As a GCC extension, this calling convention can be used for C functions
5242 and for static member methods.
5243
5244 @item ms_abi
5245 @itemx sysv_abi
5246 @cindex @code{ms_abi} function attribute, x86
5247 @cindex @code{sysv_abi} function attribute, x86
5248
5249 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5250 to indicate which calling convention should be used for a function. The
5251 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5252 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5253 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5254 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5255
5256 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5257 requires the @option{-maccumulate-outgoing-args} option.
5258
5259 @item callee_pop_aggregate_return (@var{number})
5260 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5261
5262 On x86-32 targets, you can use this attribute to control how
5263 aggregates are returned in memory. If the caller is responsible for
5264 popping the hidden pointer together with the rest of the arguments, specify
5265 @var{number} equal to zero. If callee is responsible for popping the
5266 hidden pointer, specify @var{number} equal to one.
5267
5268 The default x86-32 ABI assumes that the callee pops the
5269 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5270 the compiler assumes that the
5271 caller pops the stack for hidden pointer.
5272
5273 @item ms_hook_prologue
5274 @cindex @code{ms_hook_prologue} function attribute, x86
5275
5276 On 32-bit and 64-bit x86 targets, you can use
5277 this function attribute to make GCC generate the ``hot-patching'' function
5278 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5279 and newer.
5280
5281 @item regparm (@var{number})
5282 @cindex @code{regparm} function attribute, x86
5283 @cindex functions that are passed arguments in registers on x86-32
5284 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5285 pass arguments number one to @var{number} if they are of integral type
5286 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5287 take a variable number of arguments continue to be passed all of their
5288 arguments on the stack.
5289
5290 Beware that on some ELF systems this attribute is unsuitable for
5291 global functions in shared libraries with lazy binding (which is the
5292 default). Lazy binding sends the first call via resolving code in
5293 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5294 per the standard calling conventions. Solaris 8 is affected by this.
5295 Systems with the GNU C Library version 2.1 or higher
5296 and FreeBSD are believed to be
5297 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5298 disabled with the linker or the loader if desired, to avoid the
5299 problem.)
5300
5301 @item sseregparm
5302 @cindex @code{sseregparm} function attribute, x86
5303 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5304 causes the compiler to pass up to 3 floating-point arguments in
5305 SSE registers instead of on the stack. Functions that take a
5306 variable number of arguments continue to pass all of their
5307 floating-point arguments on the stack.
5308
5309 @item force_align_arg_pointer
5310 @cindex @code{force_align_arg_pointer} function attribute, x86
5311 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5312 applied to individual function definitions, generating an alternate
5313 prologue and epilogue that realigns the run-time stack if necessary.
5314 This supports mixing legacy codes that run with a 4-byte aligned stack
5315 with modern codes that keep a 16-byte stack for SSE compatibility.
5316
5317 @item stdcall
5318 @cindex @code{stdcall} function attribute, x86-32
5319 @cindex functions that pop the argument stack on x86-32
5320 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5321 assume that the called function pops off the stack space used to
5322 pass arguments, unless it takes a variable number of arguments.
5323
5324 @item no_caller_saved_registers
5325 @cindex @code{no_caller_saved_registers} function attribute, x86
5326 Use this attribute to indicate that the specified function has no
5327 caller-saved registers. That is, all registers are callee-saved. For
5328 example, this attribute can be used for a function called from an
5329 interrupt handler. The compiler generates proper function entry and
5330 exit sequences to save and restore any modified registers, except for
5331 the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87
5332 states, the GCC option @option{-mgeneral-regs-only} should be used to
5333 compile functions with @code{no_caller_saved_registers} attribute.
5334
5335 @item interrupt
5336 @cindex @code{interrupt} function attribute, x86
5337 Use this attribute to indicate that the specified function is an
5338 interrupt handler or an exception handler (depending on parameters passed
5339 to the function, explained further). The compiler generates function
5340 entry and exit sequences suitable for use in an interrupt handler when
5341 this attribute is present. The @code{IRET} instruction, instead of the
5342 @code{RET} instruction, is used to return from interrupt handlers. All
5343 registers, except for the EFLAGS register which is restored by the
5344 @code{IRET} instruction, are preserved by the compiler. Since GCC
5345 doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option
5346 @option{-mgeneral-regs-only} should be used to compile interrupt and
5347 exception handlers.
5348
5349 Any interruptible-without-stack-switch code must be compiled with
5350 @option{-mno-red-zone} since interrupt handlers can and will, because
5351 of the hardware design, touch the red zone.
5352
5353 An interrupt handler must be declared with a mandatory pointer
5354 argument:
5355
5356 @smallexample
5357 struct interrupt_frame;
5358
5359 __attribute__ ((interrupt))
5360 void
5361 f (struct interrupt_frame *frame)
5362 @{
5363 @}
5364 @end smallexample
5365
5366 @noindent
5367 and you must define @code{struct interrupt_frame} as described in the
5368 processor's manual.
5369
5370 Exception handlers differ from interrupt handlers because the system
5371 pushes an error code on the stack. An exception handler declaration is
5372 similar to that for an interrupt handler, but with a different mandatory
5373 function signature. The compiler arranges to pop the error code off the
5374 stack before the @code{IRET} instruction.
5375
5376 @smallexample
5377 #ifdef __x86_64__
5378 typedef unsigned long long int uword_t;
5379 #else
5380 typedef unsigned int uword_t;
5381 #endif
5382
5383 struct interrupt_frame;
5384
5385 __attribute__ ((interrupt))
5386 void
5387 f (struct interrupt_frame *frame, uword_t error_code)
5388 @{
5389 ...
5390 @}
5391 @end smallexample
5392
5393 Exception handlers should only be used for exceptions that push an error
5394 code; you should use an interrupt handler in other cases. The system
5395 will crash if the wrong kind of handler is used.
5396
5397 @item target (@var{options})
5398 @cindex @code{target} function attribute
5399 As discussed in @ref{Common Function Attributes}, this attribute
5400 allows specification of target-specific compilation options.
5401
5402 On the x86, the following options are allowed:
5403 @table @samp
5404 @item abm
5405 @itemx no-abm
5406 @cindex @code{target("abm")} function attribute, x86
5407 Enable/disable the generation of the advanced bit instructions.
5408
5409 @item aes
5410 @itemx no-aes
5411 @cindex @code{target("aes")} function attribute, x86
5412 Enable/disable the generation of the AES instructions.
5413
5414 @item default
5415 @cindex @code{target("default")} function attribute, x86
5416 @xref{Function Multiversioning}, where it is used to specify the
5417 default function version.
5418
5419 @item mmx
5420 @itemx no-mmx
5421 @cindex @code{target("mmx")} function attribute, x86
5422 Enable/disable the generation of the MMX instructions.
5423
5424 @item pclmul
5425 @itemx no-pclmul
5426 @cindex @code{target("pclmul")} function attribute, x86
5427 Enable/disable the generation of the PCLMUL instructions.
5428
5429 @item popcnt
5430 @itemx no-popcnt
5431 @cindex @code{target("popcnt")} function attribute, x86
5432 Enable/disable the generation of the POPCNT instruction.
5433
5434 @item sse
5435 @itemx no-sse
5436 @cindex @code{target("sse")} function attribute, x86
5437 Enable/disable the generation of the SSE instructions.
5438
5439 @item sse2
5440 @itemx no-sse2
5441 @cindex @code{target("sse2")} function attribute, x86
5442 Enable/disable the generation of the SSE2 instructions.
5443
5444 @item sse3
5445 @itemx no-sse3
5446 @cindex @code{target("sse3")} function attribute, x86
5447 Enable/disable the generation of the SSE3 instructions.
5448
5449 @item sse4
5450 @itemx no-sse4
5451 @cindex @code{target("sse4")} function attribute, x86
5452 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5453 and SSE4.2).
5454
5455 @item sse4.1
5456 @itemx no-sse4.1
5457 @cindex @code{target("sse4.1")} function attribute, x86
5458 Enable/disable the generation of the sse4.1 instructions.
5459
5460 @item sse4.2
5461 @itemx no-sse4.2
5462 @cindex @code{target("sse4.2")} function attribute, x86
5463 Enable/disable the generation of the sse4.2 instructions.
5464
5465 @item sse4a
5466 @itemx no-sse4a
5467 @cindex @code{target("sse4a")} function attribute, x86
5468 Enable/disable the generation of the SSE4A instructions.
5469
5470 @item fma4
5471 @itemx no-fma4
5472 @cindex @code{target("fma4")} function attribute, x86
5473 Enable/disable the generation of the FMA4 instructions.
5474
5475 @item xop
5476 @itemx no-xop
5477 @cindex @code{target("xop")} function attribute, x86
5478 Enable/disable the generation of the XOP instructions.
5479
5480 @item lwp
5481 @itemx no-lwp
5482 @cindex @code{target("lwp")} function attribute, x86
5483 Enable/disable the generation of the LWP instructions.
5484
5485 @item ssse3
5486 @itemx no-ssse3
5487 @cindex @code{target("ssse3")} function attribute, x86
5488 Enable/disable the generation of the SSSE3 instructions.
5489
5490 @item cld
5491 @itemx no-cld
5492 @cindex @code{target("cld")} function attribute, x86
5493 Enable/disable the generation of the CLD before string moves.
5494
5495 @item fancy-math-387
5496 @itemx no-fancy-math-387
5497 @cindex @code{target("fancy-math-387")} function attribute, x86
5498 Enable/disable the generation of the @code{sin}, @code{cos}, and
5499 @code{sqrt} instructions on the 387 floating-point unit.
5500
5501 @item ieee-fp
5502 @itemx no-ieee-fp
5503 @cindex @code{target("ieee-fp")} function attribute, x86
5504 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5505
5506 @item inline-all-stringops
5507 @itemx no-inline-all-stringops
5508 @cindex @code{target("inline-all-stringops")} function attribute, x86
5509 Enable/disable inlining of string operations.
5510
5511 @item inline-stringops-dynamically
5512 @itemx no-inline-stringops-dynamically
5513 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5514 Enable/disable the generation of the inline code to do small string
5515 operations and calling the library routines for large operations.
5516
5517 @item align-stringops
5518 @itemx no-align-stringops
5519 @cindex @code{target("align-stringops")} function attribute, x86
5520 Do/do not align destination of inlined string operations.
5521
5522 @item recip
5523 @itemx no-recip
5524 @cindex @code{target("recip")} function attribute, x86
5525 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5526 instructions followed an additional Newton-Raphson step instead of
5527 doing a floating-point division.
5528
5529 @item arch=@var{ARCH}
5530 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5531 Specify the architecture to generate code for in compiling the function.
5532
5533 @item tune=@var{TUNE}
5534 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5535 Specify the architecture to tune for in compiling the function.
5536
5537 @item fpmath=@var{FPMATH}
5538 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5539 Specify which floating-point unit to use. You must specify the
5540 @code{target("fpmath=sse,387")} option as
5541 @code{target("fpmath=sse+387")} because the comma would separate
5542 different options.
5543 @end table
5544
5545 On the x86, the inliner does not inline a
5546 function that has different target options than the caller, unless the
5547 callee has a subset of the target options of the caller. For example
5548 a function declared with @code{target("sse3")} can inline a function
5549 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5550 @end table
5551
5552 @node Xstormy16 Function Attributes
5553 @subsection Xstormy16 Function Attributes
5554
5555 These function attributes are supported by the Xstormy16 back end:
5556
5557 @table @code
5558 @item interrupt
5559 @cindex @code{interrupt} function attribute, Xstormy16
5560 Use this attribute to indicate
5561 that the specified function is an interrupt handler. The compiler generates
5562 function entry and exit sequences suitable for use in an interrupt handler
5563 when this attribute is present.
5564 @end table
5565
5566 @node Variable Attributes
5567 @section Specifying Attributes of Variables
5568 @cindex attribute of variables
5569 @cindex variable attributes
5570
5571 The keyword @code{__attribute__} allows you to specify special
5572 attributes of variables or structure fields. This keyword is followed
5573 by an attribute specification inside double parentheses. Some
5574 attributes are currently defined generically for variables.
5575 Other attributes are defined for variables on particular target
5576 systems. Other attributes are available for functions
5577 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5578 enumerators (@pxref{Enumerator Attributes}), statements
5579 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5580 Other front ends might define more attributes
5581 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5582
5583 @xref{Attribute Syntax}, for details of the exact syntax for using
5584 attributes.
5585
5586 @menu
5587 * Common Variable Attributes::
5588 * AVR Variable Attributes::
5589 * Blackfin Variable Attributes::
5590 * H8/300 Variable Attributes::
5591 * IA-64 Variable Attributes::
5592 * M32R/D Variable Attributes::
5593 * MeP Variable Attributes::
5594 * Microsoft Windows Variable Attributes::
5595 * MSP430 Variable Attributes::
5596 * Nvidia PTX Variable Attributes::
5597 * PowerPC Variable Attributes::
5598 * RL78 Variable Attributes::
5599 * SPU Variable Attributes::
5600 * V850 Variable Attributes::
5601 * x86 Variable Attributes::
5602 * Xstormy16 Variable Attributes::
5603 @end menu
5604
5605 @node Common Variable Attributes
5606 @subsection Common Variable Attributes
5607
5608 The following attributes are supported on most targets.
5609
5610 @table @code
5611 @cindex @code{aligned} variable attribute
5612 @item aligned (@var{alignment})
5613 This attribute specifies a minimum alignment for the variable or
5614 structure field, measured in bytes. For example, the declaration:
5615
5616 @smallexample
5617 int x __attribute__ ((aligned (16))) = 0;
5618 @end smallexample
5619
5620 @noindent
5621 causes the compiler to allocate the global variable @code{x} on a
5622 16-byte boundary. On a 68040, this could be used in conjunction with
5623 an @code{asm} expression to access the @code{move16} instruction which
5624 requires 16-byte aligned operands.
5625
5626 You can also specify the alignment of structure fields. For example, to
5627 create a double-word aligned @code{int} pair, you could write:
5628
5629 @smallexample
5630 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5631 @end smallexample
5632
5633 @noindent
5634 This is an alternative to creating a union with a @code{double} member,
5635 which forces the union to be double-word aligned.
5636
5637 As in the preceding examples, you can explicitly specify the alignment
5638 (in bytes) that you wish the compiler to use for a given variable or
5639 structure field. Alternatively, you can leave out the alignment factor
5640 and just ask the compiler to align a variable or field to the
5641 default alignment for the target architecture you are compiling for.
5642 The default alignment is sufficient for all scalar types, but may not be
5643 enough for all vector types on a target that supports vector operations.
5644 The default alignment is fixed for a particular target ABI.
5645
5646 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5647 which is the largest alignment ever used for any data type on the
5648 target machine you are compiling for. For example, you could write:
5649
5650 @smallexample
5651 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5652 @end smallexample
5653
5654 The compiler automatically sets the alignment for the declared
5655 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5656 often make copy operations more efficient, because the compiler can
5657 use whatever instructions copy the biggest chunks of memory when
5658 performing copies to or from the variables or fields that you have
5659 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5660 may change depending on command-line options.
5661
5662 When used on a struct, or struct member, the @code{aligned} attribute can
5663 only increase the alignment; in order to decrease it, the @code{packed}
5664 attribute must be specified as well. When used as part of a typedef, the
5665 @code{aligned} attribute can both increase and decrease alignment, and
5666 specifying the @code{packed} attribute generates a warning.
5667
5668 Note that the effectiveness of @code{aligned} attributes may be limited
5669 by inherent limitations in your linker. On many systems, the linker is
5670 only able to arrange for variables to be aligned up to a certain maximum
5671 alignment. (For some linkers, the maximum supported alignment may
5672 be very very small.) If your linker is only able to align variables
5673 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5674 in an @code{__attribute__} still only provides you with 8-byte
5675 alignment. See your linker documentation for further information.
5676
5677 The @code{aligned} attribute can also be used for functions
5678 (@pxref{Common Function Attributes}.)
5679
5680 @item cleanup (@var{cleanup_function})
5681 @cindex @code{cleanup} variable attribute
5682 The @code{cleanup} attribute runs a function when the variable goes
5683 out of scope. This attribute can only be applied to auto function
5684 scope variables; it may not be applied to parameters or variables
5685 with static storage duration. The function must take one parameter,
5686 a pointer to a type compatible with the variable. The return value
5687 of the function (if any) is ignored.
5688
5689 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5690 is run during the stack unwinding that happens during the
5691 processing of the exception. Note that the @code{cleanup} attribute
5692 does not allow the exception to be caught, only to perform an action.
5693 It is undefined what happens if @var{cleanup_function} does not
5694 return normally.
5695
5696 @item common
5697 @itemx nocommon
5698 @cindex @code{common} variable attribute
5699 @cindex @code{nocommon} variable attribute
5700 @opindex fcommon
5701 @opindex fno-common
5702 The @code{common} attribute requests GCC to place a variable in
5703 ``common'' storage. The @code{nocommon} attribute requests the
5704 opposite---to allocate space for it directly.
5705
5706 These attributes override the default chosen by the
5707 @option{-fno-common} and @option{-fcommon} flags respectively.
5708
5709 @item deprecated
5710 @itemx deprecated (@var{msg})
5711 @cindex @code{deprecated} variable attribute
5712 The @code{deprecated} attribute results in a warning if the variable
5713 is used anywhere in the source file. This is useful when identifying
5714 variables that are expected to be removed in a future version of a
5715 program. The warning also includes the location of the declaration
5716 of the deprecated variable, to enable users to easily find further
5717 information about why the variable is deprecated, or what they should
5718 do instead. Note that the warning only occurs for uses:
5719
5720 @smallexample
5721 extern int old_var __attribute__ ((deprecated));
5722 extern int old_var;
5723 int new_fn () @{ return old_var; @}
5724 @end smallexample
5725
5726 @noindent
5727 results in a warning on line 3 but not line 2. The optional @var{msg}
5728 argument, which must be a string, is printed in the warning if
5729 present.
5730
5731 The @code{deprecated} attribute can also be used for functions and
5732 types (@pxref{Common Function Attributes},
5733 @pxref{Common Type Attributes}).
5734
5735 @item mode (@var{mode})
5736 @cindex @code{mode} variable attribute
5737 This attribute specifies the data type for the declaration---whichever
5738 type corresponds to the mode @var{mode}. This in effect lets you
5739 request an integer or floating-point type according to its width.
5740
5741 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
5742 for a list of the possible keywords for @var{mode}.
5743 You may also specify a mode of @code{byte} or @code{__byte__} to
5744 indicate the mode corresponding to a one-byte integer, @code{word} or
5745 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5746 or @code{__pointer__} for the mode used to represent pointers.
5747
5748 @item packed
5749 @cindex @code{packed} variable attribute
5750 The @code{packed} attribute specifies that a variable or structure field
5751 should have the smallest possible alignment---one byte for a variable,
5752 and one bit for a field, unless you specify a larger value with the
5753 @code{aligned} attribute.
5754
5755 Here is a structure in which the field @code{x} is packed, so that it
5756 immediately follows @code{a}:
5757
5758 @smallexample
5759 struct foo
5760 @{
5761 char a;
5762 int x[2] __attribute__ ((packed));
5763 @};
5764 @end smallexample
5765
5766 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5767 @code{packed} attribute on bit-fields of type @code{char}. This has
5768 been fixed in GCC 4.4 but the change can lead to differences in the
5769 structure layout. See the documentation of
5770 @option{-Wpacked-bitfield-compat} for more information.
5771
5772 @item section ("@var{section-name}")
5773 @cindex @code{section} variable attribute
5774 Normally, the compiler places the objects it generates in sections like
5775 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5776 or you need certain particular variables to appear in special sections,
5777 for example to map to special hardware. The @code{section}
5778 attribute specifies that a variable (or function) lives in a particular
5779 section. For example, this small program uses several specific section names:
5780
5781 @smallexample
5782 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5783 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5784 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5785 int init_data __attribute__ ((section ("INITDATA")));
5786
5787 main()
5788 @{
5789 /* @r{Initialize stack pointer} */
5790 init_sp (stack + sizeof (stack));
5791
5792 /* @r{Initialize initialized data} */
5793 memcpy (&init_data, &data, &edata - &data);
5794
5795 /* @r{Turn on the serial ports} */
5796 init_duart (&a);
5797 init_duart (&b);
5798 @}
5799 @end smallexample
5800
5801 @noindent
5802 Use the @code{section} attribute with
5803 @emph{global} variables and not @emph{local} variables,
5804 as shown in the example.
5805
5806 You may use the @code{section} attribute with initialized or
5807 uninitialized global variables but the linker requires
5808 each object be defined once, with the exception that uninitialized
5809 variables tentatively go in the @code{common} (or @code{bss}) section
5810 and can be multiply ``defined''. Using the @code{section} attribute
5811 changes what section the variable goes into and may cause the
5812 linker to issue an error if an uninitialized variable has multiple
5813 definitions. You can force a variable to be initialized with the
5814 @option{-fno-common} flag or the @code{nocommon} attribute.
5815
5816 Some file formats do not support arbitrary sections so the @code{section}
5817 attribute is not available on all platforms.
5818 If you need to map the entire contents of a module to a particular
5819 section, consider using the facilities of the linker instead.
5820
5821 @item tls_model ("@var{tls_model}")
5822 @cindex @code{tls_model} variable attribute
5823 The @code{tls_model} attribute sets thread-local storage model
5824 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5825 overriding @option{-ftls-model=} command-line switch on a per-variable
5826 basis.
5827 The @var{tls_model} argument should be one of @code{global-dynamic},
5828 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5829
5830 Not all targets support this attribute.
5831
5832 @item unused
5833 @cindex @code{unused} variable attribute
5834 This attribute, attached to a variable, means that the variable is meant
5835 to be possibly unused. GCC does not produce a warning for this
5836 variable.
5837
5838 @item used
5839 @cindex @code{used} variable attribute
5840 This attribute, attached to a variable with static storage, means that
5841 the variable must be emitted even if it appears that the variable is not
5842 referenced.
5843
5844 When applied to a static data member of a C++ class template, the
5845 attribute also means that the member is instantiated if the
5846 class itself is instantiated.
5847
5848 @item vector_size (@var{bytes})
5849 @cindex @code{vector_size} variable attribute
5850 This attribute specifies the vector size for the variable, measured in
5851 bytes. For example, the declaration:
5852
5853 @smallexample
5854 int foo __attribute__ ((vector_size (16)));
5855 @end smallexample
5856
5857 @noindent
5858 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5859 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5860 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5861
5862 This attribute is only applicable to integral and float scalars,
5863 although arrays, pointers, and function return values are allowed in
5864 conjunction with this construct.
5865
5866 Aggregates with this attribute are invalid, even if they are of the same
5867 size as a corresponding scalar. For example, the declaration:
5868
5869 @smallexample
5870 struct S @{ int a; @};
5871 struct S __attribute__ ((vector_size (16))) foo;
5872 @end smallexample
5873
5874 @noindent
5875 is invalid even if the size of the structure is the same as the size of
5876 the @code{int}.
5877
5878 @item visibility ("@var{visibility_type}")
5879 @cindex @code{visibility} variable attribute
5880 This attribute affects the linkage of the declaration to which it is attached.
5881 The @code{visibility} attribute is described in
5882 @ref{Common Function Attributes}.
5883
5884 @item weak
5885 @cindex @code{weak} variable attribute
5886 The @code{weak} attribute is described in
5887 @ref{Common Function Attributes}.
5888
5889 @end table
5890
5891 @node AVR Variable Attributes
5892 @subsection AVR Variable Attributes
5893
5894 @table @code
5895 @item progmem
5896 @cindex @code{progmem} variable attribute, AVR
5897 The @code{progmem} attribute is used on the AVR to place read-only
5898 data in the non-volatile program memory (flash). The @code{progmem}
5899 attribute accomplishes this by putting respective variables into a
5900 section whose name starts with @code{.progmem}.
5901
5902 This attribute works similar to the @code{section} attribute
5903 but adds additional checking.
5904
5905 @table @asis
5906 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
5907 @code{progmem} affects the location
5908 of the data but not how this data is accessed.
5909 In order to read data located with the @code{progmem} attribute
5910 (inline) assembler must be used.
5911 @smallexample
5912 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5913 #include <avr/pgmspace.h>
5914
5915 /* Locate var in flash memory */
5916 const int var[2] PROGMEM = @{ 1, 2 @};
5917
5918 int read_var (int i)
5919 @{
5920 /* Access var[] by accessor macro from avr/pgmspace.h */
5921 return (int) pgm_read_word (& var[i]);
5922 @}
5923 @end smallexample
5924
5925 AVR is a Harvard architecture processor and data and read-only data
5926 normally resides in the data memory (RAM).
5927
5928 See also the @ref{AVR Named Address Spaces} section for
5929 an alternate way to locate and access data in flash memory.
5930
5931 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
5932 The compiler adds @code{0x4000}
5933 to the addresses of objects and declarations in @code{progmem} and locates
5934 the objects in flash memory, namely in section @code{.progmem.data}.
5935 The offset is needed because the flash memory is visible in the RAM
5936 address space starting at address @code{0x4000}.
5937
5938 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
5939 no special functions or macros are needed.
5940
5941 @smallexample
5942 /* var is located in flash memory */
5943 extern const int var[2] __attribute__((progmem));
5944
5945 int read_var (int i)
5946 @{
5947 return var[i];
5948 @}
5949 @end smallexample
5950
5951 Please notice that on these devices, there is no need for @code{progmem}
5952 at all. Just use an appropriate linker description file like outlined below.
5953
5954 @smallexample
5955 .text :
5956 @{ ...
5957 @} > text
5958 /* Leave .rodata in flash and add an offset of 0x4000 to all
5959 addresses so that respective objects can be accessed by
5960 LD instructions and open coded C/C++. This means there
5961 is no need for progmem in the source and no overhead by
5962 read-only data in RAM. */
5963 .rodata ADDR(.text) + SIZEOF (.text) + 0x4000 :
5964 @{
5965 *(.rodata)
5966 *(.rodata*)
5967 *(.gnu.linkonce.r*)
5968 @} AT> text
5969 /* No more need to put .rodata into .data:
5970 Removed all .rodata entries from .data. */
5971 .data :
5972 @{ ...
5973 @end smallexample
5974
5975 @end table
5976
5977 @item io
5978 @itemx io (@var{addr})
5979 @cindex @code{io} variable attribute, AVR
5980 Variables with the @code{io} attribute are used to address
5981 memory-mapped peripherals in the io address range.
5982 If an address is specified, the variable
5983 is assigned that address, and the value is interpreted as an
5984 address in the data address space.
5985 Example:
5986
5987 @smallexample
5988 volatile int porta __attribute__((io (0x22)));
5989 @end smallexample
5990
5991 The address specified in the address in the data address range.
5992
5993 Otherwise, the variable it is not assigned an address, but the
5994 compiler will still use in/out instructions where applicable,
5995 assuming some other module assigns an address in the io address range.
5996 Example:
5997
5998 @smallexample
5999 extern volatile int porta __attribute__((io));
6000 @end smallexample
6001
6002 @item io_low
6003 @itemx io_low (@var{addr})
6004 @cindex @code{io_low} variable attribute, AVR
6005 This is like the @code{io} attribute, but additionally it informs the
6006 compiler that the object lies in the lower half of the I/O area,
6007 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
6008 instructions.
6009
6010 @item address
6011 @itemx address (@var{addr})
6012 @cindex @code{address} variable attribute, AVR
6013 Variables with the @code{address} attribute are used to address
6014 memory-mapped peripherals that may lie outside the io address range.
6015
6016 @smallexample
6017 volatile int porta __attribute__((address (0x600)));
6018 @end smallexample
6019
6020 @item absdata
6021 @cindex @code{absdata} variable attribute, AVR
6022 Variables in static storage and with the @code{absdata} attribute can
6023 be accessed by the @code{LDS} and @code{STS} instructions which take
6024 absolute addresses.
6025
6026 @itemize @bullet
6027 @item
6028 This attribute is only supported for the reduced AVR Tiny core
6029 like ATtiny40.
6030
6031 @item
6032 You must make sure that respective data is located in the
6033 address range @code{0x40}@dots{}@code{0xbf} accessible by
6034 @code{LDS} and @code{STS}. One way to achieve this as an
6035 appropriate linker description file.
6036
6037 @item
6038 If the location does not fit the address range of @code{LDS}
6039 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
6040 warning like
6041 @quotation
6042 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6043 @end quotation
6044
6045 @end itemize
6046
6047 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
6048
6049 @end table
6050
6051 @node Blackfin Variable Attributes
6052 @subsection Blackfin Variable Attributes
6053
6054 Three attributes are currently defined for the Blackfin.
6055
6056 @table @code
6057 @item l1_data
6058 @itemx l1_data_A
6059 @itemx l1_data_B
6060 @cindex @code{l1_data} variable attribute, Blackfin
6061 @cindex @code{l1_data_A} variable attribute, Blackfin
6062 @cindex @code{l1_data_B} variable attribute, Blackfin
6063 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6064 Variables with @code{l1_data} attribute are put into the specific section
6065 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6066 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6067 attribute are put into the specific section named @code{.l1.data.B}.
6068
6069 @item l2
6070 @cindex @code{l2} variable attribute, Blackfin
6071 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6072 Variables with @code{l2} attribute are put into the specific section
6073 named @code{.l2.data}.
6074 @end table
6075
6076 @node H8/300 Variable Attributes
6077 @subsection H8/300 Variable Attributes
6078
6079 These variable attributes are available for H8/300 targets:
6080
6081 @table @code
6082 @item eightbit_data
6083 @cindex @code{eightbit_data} variable attribute, H8/300
6084 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6085 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6086 variable should be placed into the eight-bit data section.
6087 The compiler generates more efficient code for certain operations
6088 on data in the eight-bit data area. Note the eight-bit data area is limited to
6089 256 bytes of data.
6090
6091 You must use GAS and GLD from GNU binutils version 2.7 or later for
6092 this attribute to work correctly.
6093
6094 @item tiny_data
6095 @cindex @code{tiny_data} variable attribute, H8/300
6096 @cindex tiny data section on the H8/300H and H8S
6097 Use this attribute on the H8/300H and H8S to indicate that the specified
6098 variable should be placed into the tiny data section.
6099 The compiler generates more efficient code for loads and stores
6100 on data in the tiny data section. Note the tiny data area is limited to
6101 slightly under 32KB of data.
6102
6103 @end table
6104
6105 @node IA-64 Variable Attributes
6106 @subsection IA-64 Variable Attributes
6107
6108 The IA-64 back end supports the following variable attribute:
6109
6110 @table @code
6111 @item model (@var{model-name})
6112 @cindex @code{model} variable attribute, IA-64
6113
6114 On IA-64, use this attribute to set the addressability of an object.
6115 At present, the only supported identifier for @var{model-name} is
6116 @code{small}, indicating addressability via ``small'' (22-bit)
6117 addresses (so that their addresses can be loaded with the @code{addl}
6118 instruction). Caveat: such addressing is by definition not position
6119 independent and hence this attribute must not be used for objects
6120 defined by shared libraries.
6121
6122 @end table
6123
6124 @node M32R/D Variable Attributes
6125 @subsection M32R/D Variable Attributes
6126
6127 One attribute is currently defined for the M32R/D@.
6128
6129 @table @code
6130 @item model (@var{model-name})
6131 @cindex @code{model-name} variable attribute, M32R/D
6132 @cindex variable addressability on the M32R/D
6133 Use this attribute on the M32R/D to set the addressability of an object.
6134 The identifier @var{model-name} is one of @code{small}, @code{medium},
6135 or @code{large}, representing each of the code models.
6136
6137 Small model objects live in the lower 16MB of memory (so that their
6138 addresses can be loaded with the @code{ld24} instruction).
6139
6140 Medium and large model objects may live anywhere in the 32-bit address space
6141 (the compiler generates @code{seth/add3} instructions to load their
6142 addresses).
6143 @end table
6144
6145 @node MeP Variable Attributes
6146 @subsection MeP Variable Attributes
6147
6148 The MeP target has a number of addressing modes and busses. The
6149 @code{near} space spans the standard memory space's first 16 megabytes
6150 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6151 The @code{based} space is a 128-byte region in the memory space that
6152 is addressed relative to the @code{$tp} register. The @code{tiny}
6153 space is a 65536-byte region relative to the @code{$gp} register. In
6154 addition to these memory regions, the MeP target has a separate 16-bit
6155 control bus which is specified with @code{cb} attributes.
6156
6157 @table @code
6158
6159 @item based
6160 @cindex @code{based} variable attribute, MeP
6161 Any variable with the @code{based} attribute is assigned to the
6162 @code{.based} section, and is accessed with relative to the
6163 @code{$tp} register.
6164
6165 @item tiny
6166 @cindex @code{tiny} variable attribute, MeP
6167 Likewise, the @code{tiny} attribute assigned variables to the
6168 @code{.tiny} section, relative to the @code{$gp} register.
6169
6170 @item near
6171 @cindex @code{near} variable attribute, MeP
6172 Variables with the @code{near} attribute are assumed to have addresses
6173 that fit in a 24-bit addressing mode. This is the default for large
6174 variables (@code{-mtiny=4} is the default) but this attribute can
6175 override @code{-mtiny=} for small variables, or override @code{-ml}.
6176
6177 @item far
6178 @cindex @code{far} variable attribute, MeP
6179 Variables with the @code{far} attribute are addressed using a full
6180 32-bit address. Since this covers the entire memory space, this
6181 allows modules to make no assumptions about where variables might be
6182 stored.
6183
6184 @item io
6185 @cindex @code{io} variable attribute, MeP
6186 @itemx io (@var{addr})
6187 Variables with the @code{io} attribute are used to address
6188 memory-mapped peripherals. If an address is specified, the variable
6189 is assigned that address, else it is not assigned an address (it is
6190 assumed some other module assigns an address). Example:
6191
6192 @smallexample
6193 int timer_count __attribute__((io(0x123)));
6194 @end smallexample
6195
6196 @item cb
6197 @itemx cb (@var{addr})
6198 @cindex @code{cb} variable attribute, MeP
6199 Variables with the @code{cb} attribute are used to access the control
6200 bus, using special instructions. @code{addr} indicates the control bus
6201 address. Example:
6202
6203 @smallexample
6204 int cpu_clock __attribute__((cb(0x123)));
6205 @end smallexample
6206
6207 @end table
6208
6209 @node Microsoft Windows Variable Attributes
6210 @subsection Microsoft Windows Variable Attributes
6211
6212 You can use these attributes on Microsoft Windows targets.
6213 @ref{x86 Variable Attributes} for additional Windows compatibility
6214 attributes available on all x86 targets.
6215
6216 @table @code
6217 @item dllimport
6218 @itemx dllexport
6219 @cindex @code{dllimport} variable attribute
6220 @cindex @code{dllexport} variable attribute
6221 The @code{dllimport} and @code{dllexport} attributes are described in
6222 @ref{Microsoft Windows Function Attributes}.
6223
6224 @item selectany
6225 @cindex @code{selectany} variable attribute
6226 The @code{selectany} attribute causes an initialized global variable to
6227 have link-once semantics. When multiple definitions of the variable are
6228 encountered by the linker, the first is selected and the remainder are
6229 discarded. Following usage by the Microsoft compiler, the linker is told
6230 @emph{not} to warn about size or content differences of the multiple
6231 definitions.
6232
6233 Although the primary usage of this attribute is for POD types, the
6234 attribute can also be applied to global C++ objects that are initialized
6235 by a constructor. In this case, the static initialization and destruction
6236 code for the object is emitted in each translation defining the object,
6237 but the calls to the constructor and destructor are protected by a
6238 link-once guard variable.
6239
6240 The @code{selectany} attribute is only available on Microsoft Windows
6241 targets. You can use @code{__declspec (selectany)} as a synonym for
6242 @code{__attribute__ ((selectany))} for compatibility with other
6243 compilers.
6244
6245 @item shared
6246 @cindex @code{shared} variable attribute
6247 On Microsoft Windows, in addition to putting variable definitions in a named
6248 section, the section can also be shared among all running copies of an
6249 executable or DLL@. For example, this small program defines shared data
6250 by putting it in a named section @code{shared} and marking the section
6251 shareable:
6252
6253 @smallexample
6254 int foo __attribute__((section ("shared"), shared)) = 0;
6255
6256 int
6257 main()
6258 @{
6259 /* @r{Read and write foo. All running
6260 copies see the same value.} */
6261 return 0;
6262 @}
6263 @end smallexample
6264
6265 @noindent
6266 You may only use the @code{shared} attribute along with @code{section}
6267 attribute with a fully-initialized global definition because of the way
6268 linkers work. See @code{section} attribute for more information.
6269
6270 The @code{shared} attribute is only available on Microsoft Windows@.
6271
6272 @end table
6273
6274 @node MSP430 Variable Attributes
6275 @subsection MSP430 Variable Attributes
6276
6277 @table @code
6278 @item noinit
6279 @cindex @code{noinit} variable attribute, MSP430
6280 Any data with the @code{noinit} attribute will not be initialised by
6281 the C runtime startup code, or the program loader. Not initialising
6282 data in this way can reduce program startup times.
6283
6284 @item persistent
6285 @cindex @code{persistent} variable attribute, MSP430
6286 Any variable with the @code{persistent} attribute will not be
6287 initialised by the C runtime startup code. Instead its value will be
6288 set once, when the application is loaded, and then never initialised
6289 again, even if the processor is reset or the program restarts.
6290 Persistent data is intended to be placed into FLASH RAM, where its
6291 value will be retained across resets. The linker script being used to
6292 create the application should ensure that persistent data is correctly
6293 placed.
6294
6295 @item lower
6296 @itemx upper
6297 @itemx either
6298 @cindex @code{lower} variable attribute, MSP430
6299 @cindex @code{upper} variable attribute, MSP430
6300 @cindex @code{either} variable attribute, MSP430
6301 These attributes are the same as the MSP430 function attributes of the
6302 same name (@pxref{MSP430 Function Attributes}).
6303 These attributes can be applied to both functions and variables.
6304 @end table
6305
6306 @node Nvidia PTX Variable Attributes
6307 @subsection Nvidia PTX Variable Attributes
6308
6309 These variable attributes are supported by the Nvidia PTX back end:
6310
6311 @table @code
6312 @item shared
6313 @cindex @code{shared} attribute, Nvidia PTX
6314 Use this attribute to place a variable in the @code{.shared} memory space.
6315 This memory space is private to each cooperative thread array; only threads
6316 within one thread block refer to the same instance of the variable.
6317 The runtime does not initialize variables in this memory space.
6318 @end table
6319
6320 @node PowerPC Variable Attributes
6321 @subsection PowerPC Variable Attributes
6322
6323 Three attributes currently are defined for PowerPC configurations:
6324 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6325
6326 @cindex @code{ms_struct} variable attribute, PowerPC
6327 @cindex @code{gcc_struct} variable attribute, PowerPC
6328 For full documentation of the struct attributes please see the
6329 documentation in @ref{x86 Variable Attributes}.
6330
6331 @cindex @code{altivec} variable attribute, PowerPC
6332 For documentation of @code{altivec} attribute please see the
6333 documentation in @ref{PowerPC Type Attributes}.
6334
6335 @node RL78 Variable Attributes
6336 @subsection RL78 Variable Attributes
6337
6338 @cindex @code{saddr} variable attribute, RL78
6339 The RL78 back end supports the @code{saddr} variable attribute. This
6340 specifies placement of the corresponding variable in the SADDR area,
6341 which can be accessed more efficiently than the default memory region.
6342
6343 @node SPU Variable Attributes
6344 @subsection SPU Variable Attributes
6345
6346 @cindex @code{spu_vector} variable attribute, SPU
6347 The SPU supports the @code{spu_vector} attribute for variables. For
6348 documentation of this attribute please see the documentation in
6349 @ref{SPU Type Attributes}.
6350
6351 @node V850 Variable Attributes
6352 @subsection V850 Variable Attributes
6353
6354 These variable attributes are supported by the V850 back end:
6355
6356 @table @code
6357
6358 @item sda
6359 @cindex @code{sda} variable attribute, V850
6360 Use this attribute to explicitly place a variable in the small data area,
6361 which can hold up to 64 kilobytes.
6362
6363 @item tda
6364 @cindex @code{tda} variable attribute, V850
6365 Use this attribute to explicitly place a variable in the tiny data area,
6366 which can hold up to 256 bytes in total.
6367
6368 @item zda
6369 @cindex @code{zda} variable attribute, V850
6370 Use this attribute to explicitly place a variable in the first 32 kilobytes
6371 of memory.
6372 @end table
6373
6374 @node x86 Variable Attributes
6375 @subsection x86 Variable Attributes
6376
6377 Two attributes are currently defined for x86 configurations:
6378 @code{ms_struct} and @code{gcc_struct}.
6379
6380 @table @code
6381 @item ms_struct
6382 @itemx gcc_struct
6383 @cindex @code{ms_struct} variable attribute, x86
6384 @cindex @code{gcc_struct} variable attribute, x86
6385
6386 If @code{packed} is used on a structure, or if bit-fields are used,
6387 it may be that the Microsoft ABI lays out the structure differently
6388 than the way GCC normally does. Particularly when moving packed
6389 data between functions compiled with GCC and the native Microsoft compiler
6390 (either via function call or as data in a file), it may be necessary to access
6391 either format.
6392
6393 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6394 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6395 command-line options, respectively;
6396 see @ref{x86 Options}, for details of how structure layout is affected.
6397 @xref{x86 Type Attributes}, for information about the corresponding
6398 attributes on types.
6399
6400 @end table
6401
6402 @node Xstormy16 Variable Attributes
6403 @subsection Xstormy16 Variable Attributes
6404
6405 One attribute is currently defined for xstormy16 configurations:
6406 @code{below100}.
6407
6408 @table @code
6409 @item below100
6410 @cindex @code{below100} variable attribute, Xstormy16
6411
6412 If a variable has the @code{below100} attribute (@code{BELOW100} is
6413 allowed also), GCC places the variable in the first 0x100 bytes of
6414 memory and use special opcodes to access it. Such variables are
6415 placed in either the @code{.bss_below100} section or the
6416 @code{.data_below100} section.
6417
6418 @end table
6419
6420 @node Type Attributes
6421 @section Specifying Attributes of Types
6422 @cindex attribute of types
6423 @cindex type attributes
6424
6425 The keyword @code{__attribute__} allows you to specify special
6426 attributes of types. Some type attributes apply only to @code{struct}
6427 and @code{union} types, while others can apply to any type defined
6428 via a @code{typedef} declaration. Other attributes are defined for
6429 functions (@pxref{Function Attributes}), labels (@pxref{Label
6430 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6431 statements (@pxref{Statement Attributes}), and for
6432 variables (@pxref{Variable Attributes}).
6433
6434 The @code{__attribute__} keyword is followed by an attribute specification
6435 inside double parentheses.
6436
6437 You may specify type attributes in an enum, struct or union type
6438 declaration or definition by placing them immediately after the
6439 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6440 syntax is to place them just past the closing curly brace of the
6441 definition.
6442
6443 You can also include type attributes in a @code{typedef} declaration.
6444 @xref{Attribute Syntax}, for details of the exact syntax for using
6445 attributes.
6446
6447 @menu
6448 * Common Type Attributes::
6449 * ARM Type Attributes::
6450 * MeP Type Attributes::
6451 * PowerPC Type Attributes::
6452 * SPU Type Attributes::
6453 * x86 Type Attributes::
6454 @end menu
6455
6456 @node Common Type Attributes
6457 @subsection Common Type Attributes
6458
6459 The following type attributes are supported on most targets.
6460
6461 @table @code
6462 @cindex @code{aligned} type attribute
6463 @item aligned (@var{alignment})
6464 This attribute specifies a minimum alignment (in bytes) for variables
6465 of the specified type. For example, the declarations:
6466
6467 @smallexample
6468 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6469 typedef int more_aligned_int __attribute__ ((aligned (8)));
6470 @end smallexample
6471
6472 @noindent
6473 force the compiler to ensure (as far as it can) that each variable whose
6474 type is @code{struct S} or @code{more_aligned_int} is allocated and
6475 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6476 variables of type @code{struct S} aligned to 8-byte boundaries allows
6477 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6478 store) instructions when copying one variable of type @code{struct S} to
6479 another, thus improving run-time efficiency.
6480
6481 Note that the alignment of any given @code{struct} or @code{union} type
6482 is required by the ISO C standard to be at least a perfect multiple of
6483 the lowest common multiple of the alignments of all of the members of
6484 the @code{struct} or @code{union} in question. This means that you @emph{can}
6485 effectively adjust the alignment of a @code{struct} or @code{union}
6486 type by attaching an @code{aligned} attribute to any one of the members
6487 of such a type, but the notation illustrated in the example above is a
6488 more obvious, intuitive, and readable way to request the compiler to
6489 adjust the alignment of an entire @code{struct} or @code{union} type.
6490
6491 As in the preceding example, you can explicitly specify the alignment
6492 (in bytes) that you wish the compiler to use for a given @code{struct}
6493 or @code{union} type. Alternatively, you can leave out the alignment factor
6494 and just ask the compiler to align a type to the maximum
6495 useful alignment for the target machine you are compiling for. For
6496 example, you could write:
6497
6498 @smallexample
6499 struct S @{ short f[3]; @} __attribute__ ((aligned));
6500 @end smallexample
6501
6502 Whenever you leave out the alignment factor in an @code{aligned}
6503 attribute specification, the compiler automatically sets the alignment
6504 for the type to the largest alignment that is ever used for any data
6505 type on the target machine you are compiling for. Doing this can often
6506 make copy operations more efficient, because the compiler can use
6507 whatever instructions copy the biggest chunks of memory when performing
6508 copies to or from the variables that have types that you have aligned
6509 this way.
6510
6511 In the example above, if the size of each @code{short} is 2 bytes, then
6512 the size of the entire @code{struct S} type is 6 bytes. The smallest
6513 power of two that is greater than or equal to that is 8, so the
6514 compiler sets the alignment for the entire @code{struct S} type to 8
6515 bytes.
6516
6517 Note that although you can ask the compiler to select a time-efficient
6518 alignment for a given type and then declare only individual stand-alone
6519 objects of that type, the compiler's ability to select a time-efficient
6520 alignment is primarily useful only when you plan to create arrays of
6521 variables having the relevant (efficiently aligned) type. If you
6522 declare or use arrays of variables of an efficiently-aligned type, then
6523 it is likely that your program also does pointer arithmetic (or
6524 subscripting, which amounts to the same thing) on pointers to the
6525 relevant type, and the code that the compiler generates for these
6526 pointer arithmetic operations is often more efficient for
6527 efficiently-aligned types than for other types.
6528
6529 Note that the effectiveness of @code{aligned} attributes may be limited
6530 by inherent limitations in your linker. On many systems, the linker is
6531 only able to arrange for variables to be aligned up to a certain maximum
6532 alignment. (For some linkers, the maximum supported alignment may
6533 be very very small.) If your linker is only able to align variables
6534 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6535 in an @code{__attribute__} still only provides you with 8-byte
6536 alignment. See your linker documentation for further information.
6537
6538 The @code{aligned} attribute can only increase alignment. Alignment
6539 can be decreased by specifying the @code{packed} attribute. See below.
6540
6541 @item bnd_variable_size
6542 @cindex @code{bnd_variable_size} type attribute
6543 @cindex Pointer Bounds Checker attributes
6544 When applied to a structure field, this attribute tells Pointer
6545 Bounds Checker that the size of this field should not be computed
6546 using static type information. It may be used to mark variably-sized
6547 static array fields placed at the end of a structure.
6548
6549 @smallexample
6550 struct S
6551 @{
6552 int size;
6553 char data[1];
6554 @}
6555 S *p = (S *)malloc (sizeof(S) + 100);
6556 p->data[10] = 0; //Bounds violation
6557 @end smallexample
6558
6559 @noindent
6560 By using an attribute for the field we may avoid unwanted bound
6561 violation checks:
6562
6563 @smallexample
6564 struct S
6565 @{
6566 int size;
6567 char data[1] __attribute__((bnd_variable_size));
6568 @}
6569 S *p = (S *)malloc (sizeof(S) + 100);
6570 p->data[10] = 0; //OK
6571 @end smallexample
6572
6573 @item deprecated
6574 @itemx deprecated (@var{msg})
6575 @cindex @code{deprecated} type attribute
6576 The @code{deprecated} attribute results in a warning if the type
6577 is used anywhere in the source file. This is useful when identifying
6578 types that are expected to be removed in a future version of a program.
6579 If possible, the warning also includes the location of the declaration
6580 of the deprecated type, to enable users to easily find further
6581 information about why the type is deprecated, or what they should do
6582 instead. Note that the warnings only occur for uses and then only
6583 if the type is being applied to an identifier that itself is not being
6584 declared as deprecated.
6585
6586 @smallexample
6587 typedef int T1 __attribute__ ((deprecated));
6588 T1 x;
6589 typedef T1 T2;
6590 T2 y;
6591 typedef T1 T3 __attribute__ ((deprecated));
6592 T3 z __attribute__ ((deprecated));
6593 @end smallexample
6594
6595 @noindent
6596 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6597 warning is issued for line 4 because T2 is not explicitly
6598 deprecated. Line 5 has no warning because T3 is explicitly
6599 deprecated. Similarly for line 6. The optional @var{msg}
6600 argument, which must be a string, is printed in the warning if
6601 present.
6602
6603 The @code{deprecated} attribute can also be used for functions and
6604 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6605
6606 @item designated_init
6607 @cindex @code{designated_init} type attribute
6608 This attribute may only be applied to structure types. It indicates
6609 that any initialization of an object of this type must use designated
6610 initializers rather than positional initializers. The intent of this
6611 attribute is to allow the programmer to indicate that a structure's
6612 layout may change, and that therefore relying on positional
6613 initialization will result in future breakage.
6614
6615 GCC emits warnings based on this attribute by default; use
6616 @option{-Wno-designated-init} to suppress them.
6617
6618 @item may_alias
6619 @cindex @code{may_alias} type attribute
6620 Accesses through pointers to types with this attribute are not subject
6621 to type-based alias analysis, but are instead assumed to be able to alias
6622 any other type of objects.
6623 In the context of section 6.5 paragraph 7 of the C99 standard,
6624 an lvalue expression
6625 dereferencing such a pointer is treated like having a character type.
6626 See @option{-fstrict-aliasing} for more information on aliasing issues.
6627 This extension exists to support some vector APIs, in which pointers to
6628 one vector type are permitted to alias pointers to a different vector type.
6629
6630 Note that an object of a type with this attribute does not have any
6631 special semantics.
6632
6633 Example of use:
6634
6635 @smallexample
6636 typedef short __attribute__((__may_alias__)) short_a;
6637
6638 int
6639 main (void)
6640 @{
6641 int a = 0x12345678;
6642 short_a *b = (short_a *) &a;
6643
6644 b[1] = 0;
6645
6646 if (a == 0x12345678)
6647 abort();
6648
6649 exit(0);
6650 @}
6651 @end smallexample
6652
6653 @noindent
6654 If you replaced @code{short_a} with @code{short} in the variable
6655 declaration, the above program would abort when compiled with
6656 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6657 above.
6658
6659 @item packed
6660 @cindex @code{packed} type attribute
6661 This attribute, attached to @code{struct} or @code{union} type
6662 definition, specifies that each member (other than zero-width bit-fields)
6663 of the structure or union is placed to minimize the memory required. When
6664 attached to an @code{enum} definition, it indicates that the smallest
6665 integral type should be used.
6666
6667 @opindex fshort-enums
6668 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6669 types is equivalent to specifying the @code{packed} attribute on each
6670 of the structure or union members. Specifying the @option{-fshort-enums}
6671 flag on the command line is equivalent to specifying the @code{packed}
6672 attribute on all @code{enum} definitions.
6673
6674 In the following example @code{struct my_packed_struct}'s members are
6675 packed closely together, but the internal layout of its @code{s} member
6676 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6677 be packed too.
6678
6679 @smallexample
6680 struct my_unpacked_struct
6681 @{
6682 char c;
6683 int i;
6684 @};
6685
6686 struct __attribute__ ((__packed__)) my_packed_struct
6687 @{
6688 char c;
6689 int i;
6690 struct my_unpacked_struct s;
6691 @};
6692 @end smallexample
6693
6694 You may only specify the @code{packed} attribute attribute on the definition
6695 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
6696 that does not also define the enumerated type, structure or union.
6697
6698 @item scalar_storage_order ("@var{endianness}")
6699 @cindex @code{scalar_storage_order} type attribute
6700 When attached to a @code{union} or a @code{struct}, this attribute sets
6701 the storage order, aka endianness, of the scalar fields of the type, as
6702 well as the array fields whose component is scalar. The supported
6703 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
6704 has no effects on fields which are themselves a @code{union}, a @code{struct}
6705 or an array whose component is a @code{union} or a @code{struct}, and it is
6706 possible for these fields to have a different scalar storage order than the
6707 enclosing type.
6708
6709 This attribute is supported only for targets that use a uniform default
6710 scalar storage order (fortunately, most of them), i.e. targets that store
6711 the scalars either all in big-endian or all in little-endian.
6712
6713 Additional restrictions are enforced for types with the reverse scalar
6714 storage order with regard to the scalar storage order of the target:
6715
6716 @itemize
6717 @item Taking the address of a scalar field of a @code{union} or a
6718 @code{struct} with reverse scalar storage order is not permitted and yields
6719 an error.
6720 @item Taking the address of an array field, whose component is scalar, of
6721 a @code{union} or a @code{struct} with reverse scalar storage order is
6722 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
6723 is specified.
6724 @item Taking the address of a @code{union} or a @code{struct} with reverse
6725 scalar storage order is permitted.
6726 @end itemize
6727
6728 These restrictions exist because the storage order attribute is lost when
6729 the address of a scalar or the address of an array with scalar component is
6730 taken, so storing indirectly through this address generally does not work.
6731 The second case is nevertheless allowed to be able to perform a block copy
6732 from or to the array.
6733
6734 Moreover, the use of type punning or aliasing to toggle the storage order
6735 is not supported; that is to say, a given scalar object cannot be accessed
6736 through distinct types that assign a different storage order to it.
6737
6738 @item transparent_union
6739 @cindex @code{transparent_union} type attribute
6740
6741 This attribute, attached to a @code{union} type definition, indicates
6742 that any function parameter having that union type causes calls to that
6743 function to be treated in a special way.
6744
6745 First, the argument corresponding to a transparent union type can be of
6746 any type in the union; no cast is required. Also, if the union contains
6747 a pointer type, the corresponding argument can be a null pointer
6748 constant or a void pointer expression; and if the union contains a void
6749 pointer type, the corresponding argument can be any pointer expression.
6750 If the union member type is a pointer, qualifiers like @code{const} on
6751 the referenced type must be respected, just as with normal pointer
6752 conversions.
6753
6754 Second, the argument is passed to the function using the calling
6755 conventions of the first member of the transparent union, not the calling
6756 conventions of the union itself. All members of the union must have the
6757 same machine representation; this is necessary for this argument passing
6758 to work properly.
6759
6760 Transparent unions are designed for library functions that have multiple
6761 interfaces for compatibility reasons. For example, suppose the
6762 @code{wait} function must accept either a value of type @code{int *} to
6763 comply with POSIX, or a value of type @code{union wait *} to comply with
6764 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6765 @code{wait} would accept both kinds of arguments, but it would also
6766 accept any other pointer type and this would make argument type checking
6767 less useful. Instead, @code{<sys/wait.h>} might define the interface
6768 as follows:
6769
6770 @smallexample
6771 typedef union __attribute__ ((__transparent_union__))
6772 @{
6773 int *__ip;
6774 union wait *__up;
6775 @} wait_status_ptr_t;
6776
6777 pid_t wait (wait_status_ptr_t);
6778 @end smallexample
6779
6780 @noindent
6781 This interface allows either @code{int *} or @code{union wait *}
6782 arguments to be passed, using the @code{int *} calling convention.
6783 The program can call @code{wait} with arguments of either type:
6784
6785 @smallexample
6786 int w1 () @{ int w; return wait (&w); @}
6787 int w2 () @{ union wait w; return wait (&w); @}
6788 @end smallexample
6789
6790 @noindent
6791 With this interface, @code{wait}'s implementation might look like this:
6792
6793 @smallexample
6794 pid_t wait (wait_status_ptr_t p)
6795 @{
6796 return waitpid (-1, p.__ip, 0);
6797 @}
6798 @end smallexample
6799
6800 @item unused
6801 @cindex @code{unused} type attribute
6802 When attached to a type (including a @code{union} or a @code{struct}),
6803 this attribute means that variables of that type are meant to appear
6804 possibly unused. GCC does not produce a warning for any variables of
6805 that type, even if the variable appears to do nothing. This is often
6806 the case with lock or thread classes, which are usually defined and then
6807 not referenced, but contain constructors and destructors that have
6808 nontrivial bookkeeping functions.
6809
6810 @item visibility
6811 @cindex @code{visibility} type attribute
6812 In C++, attribute visibility (@pxref{Function Attributes}) can also be
6813 applied to class, struct, union and enum types. Unlike other type
6814 attributes, the attribute must appear between the initial keyword and
6815 the name of the type; it cannot appear after the body of the type.
6816
6817 Note that the type visibility is applied to vague linkage entities
6818 associated with the class (vtable, typeinfo node, etc.). In
6819 particular, if a class is thrown as an exception in one shared object
6820 and caught in another, the class must have default visibility.
6821 Otherwise the two shared objects are unable to use the same
6822 typeinfo node and exception handling will break.
6823
6824 @end table
6825
6826 To specify multiple attributes, separate them by commas within the
6827 double parentheses: for example, @samp{__attribute__ ((aligned (16),
6828 packed))}.
6829
6830 @node ARM Type Attributes
6831 @subsection ARM Type Attributes
6832
6833 @cindex @code{notshared} type attribute, ARM
6834 On those ARM targets that support @code{dllimport} (such as Symbian
6835 OS), you can use the @code{notshared} attribute to indicate that the
6836 virtual table and other similar data for a class should not be
6837 exported from a DLL@. For example:
6838
6839 @smallexample
6840 class __declspec(notshared) C @{
6841 public:
6842 __declspec(dllimport) C();
6843 virtual void f();
6844 @}
6845
6846 __declspec(dllexport)
6847 C::C() @{@}
6848 @end smallexample
6849
6850 @noindent
6851 In this code, @code{C::C} is exported from the current DLL, but the
6852 virtual table for @code{C} is not exported. (You can use
6853 @code{__attribute__} instead of @code{__declspec} if you prefer, but
6854 most Symbian OS code uses @code{__declspec}.)
6855
6856 @node MeP Type Attributes
6857 @subsection MeP Type Attributes
6858
6859 @cindex @code{based} type attribute, MeP
6860 @cindex @code{tiny} type attribute, MeP
6861 @cindex @code{near} type attribute, MeP
6862 @cindex @code{far} type attribute, MeP
6863 Many of the MeP variable attributes may be applied to types as well.
6864 Specifically, the @code{based}, @code{tiny}, @code{near}, and
6865 @code{far} attributes may be applied to either. The @code{io} and
6866 @code{cb} attributes may not be applied to types.
6867
6868 @node PowerPC Type Attributes
6869 @subsection PowerPC Type Attributes
6870
6871 Three attributes currently are defined for PowerPC configurations:
6872 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6873
6874 @cindex @code{ms_struct} type attribute, PowerPC
6875 @cindex @code{gcc_struct} type attribute, PowerPC
6876 For full documentation of the @code{ms_struct} and @code{gcc_struct}
6877 attributes please see the documentation in @ref{x86 Type Attributes}.
6878
6879 @cindex @code{altivec} type attribute, PowerPC
6880 The @code{altivec} attribute allows one to declare AltiVec vector data
6881 types supported by the AltiVec Programming Interface Manual. The
6882 attribute requires an argument to specify one of three vector types:
6883 @code{vector__}, @code{pixel__} (always followed by unsigned short),
6884 and @code{bool__} (always followed by unsigned).
6885
6886 @smallexample
6887 __attribute__((altivec(vector__)))
6888 __attribute__((altivec(pixel__))) unsigned short
6889 __attribute__((altivec(bool__))) unsigned
6890 @end smallexample
6891
6892 These attributes mainly are intended to support the @code{__vector},
6893 @code{__pixel}, and @code{__bool} AltiVec keywords.
6894
6895 @node SPU Type Attributes
6896 @subsection SPU Type Attributes
6897
6898 @cindex @code{spu_vector} type attribute, SPU
6899 The SPU supports the @code{spu_vector} attribute for types. This attribute
6900 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
6901 Language Extensions Specification. It is intended to support the
6902 @code{__vector} keyword.
6903
6904 @node x86 Type Attributes
6905 @subsection x86 Type Attributes
6906
6907 Two attributes are currently defined for x86 configurations:
6908 @code{ms_struct} and @code{gcc_struct}.
6909
6910 @table @code
6911
6912 @item ms_struct
6913 @itemx gcc_struct
6914 @cindex @code{ms_struct} type attribute, x86
6915 @cindex @code{gcc_struct} type attribute, x86
6916
6917 If @code{packed} is used on a structure, or if bit-fields are used
6918 it may be that the Microsoft ABI packs them differently
6919 than GCC normally packs them. Particularly when moving packed
6920 data between functions compiled with GCC and the native Microsoft compiler
6921 (either via function call or as data in a file), it may be necessary to access
6922 either format.
6923
6924 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6925 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6926 command-line options, respectively;
6927 see @ref{x86 Options}, for details of how structure layout is affected.
6928 @xref{x86 Variable Attributes}, for information about the corresponding
6929 attributes on variables.
6930
6931 @end table
6932
6933 @node Label Attributes
6934 @section Label Attributes
6935 @cindex Label Attributes
6936
6937 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
6938 details of the exact syntax for using attributes. Other attributes are
6939 available for functions (@pxref{Function Attributes}), variables
6940 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
6941 statements (@pxref{Statement Attributes}), and for types
6942 (@pxref{Type Attributes}).
6943
6944 This example uses the @code{cold} label attribute to indicate the
6945 @code{ErrorHandling} branch is unlikely to be taken and that the
6946 @code{ErrorHandling} label is unused:
6947
6948 @smallexample
6949
6950 asm goto ("some asm" : : : : NoError);
6951
6952 /* This branch (the fall-through from the asm) is less commonly used */
6953 ErrorHandling:
6954 __attribute__((cold, unused)); /* Semi-colon is required here */
6955 printf("error\n");
6956 return 0;
6957
6958 NoError:
6959 printf("no error\n");
6960 return 1;
6961 @end smallexample
6962
6963 @table @code
6964 @item unused
6965 @cindex @code{unused} label attribute
6966 This feature is intended for program-generated code that may contain
6967 unused labels, but which is compiled with @option{-Wall}. It is
6968 not normally appropriate to use in it human-written code, though it
6969 could be useful in cases where the code that jumps to the label is
6970 contained within an @code{#ifdef} conditional.
6971
6972 @item hot
6973 @cindex @code{hot} label attribute
6974 The @code{hot} attribute on a label is used to inform the compiler that
6975 the path following the label is more likely than paths that are not so
6976 annotated. This attribute is used in cases where @code{__builtin_expect}
6977 cannot be used, for instance with computed goto or @code{asm goto}.
6978
6979 @item cold
6980 @cindex @code{cold} label attribute
6981 The @code{cold} attribute on labels is used to inform the compiler that
6982 the path following the label is unlikely to be executed. This attribute
6983 is used in cases where @code{__builtin_expect} cannot be used, for instance
6984 with computed goto or @code{asm goto}.
6985
6986 @end table
6987
6988 @node Enumerator Attributes
6989 @section Enumerator Attributes
6990 @cindex Enumerator Attributes
6991
6992 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
6993 details of the exact syntax for using attributes. Other attributes are
6994 available for functions (@pxref{Function Attributes}), variables
6995 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
6996 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
6997
6998 This example uses the @code{deprecated} enumerator attribute to indicate the
6999 @code{oldval} enumerator is deprecated:
7000
7001 @smallexample
7002 enum E @{
7003 oldval __attribute__((deprecated)),
7004 newval
7005 @};
7006
7007 int
7008 fn (void)
7009 @{
7010 return oldval;
7011 @}
7012 @end smallexample
7013
7014 @table @code
7015 @item deprecated
7016 @cindex @code{deprecated} enumerator attribute
7017 The @code{deprecated} attribute results in a warning if the enumerator
7018 is used anywhere in the source file. This is useful when identifying
7019 enumerators that are expected to be removed in a future version of a
7020 program. The warning also includes the location of the declaration
7021 of the deprecated enumerator, to enable users to easily find further
7022 information about why the enumerator is deprecated, or what they should
7023 do instead. Note that the warnings only occurs for uses.
7024
7025 @end table
7026
7027 @node Statement Attributes
7028 @section Statement Attributes
7029 @cindex Statement Attributes
7030
7031 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
7032 for details of the exact syntax for using attributes. Other attributes are
7033 available for functions (@pxref{Function Attributes}), variables
7034 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
7035 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
7036
7037 This example uses the @code{fallthrough} statement attribute to indicate that
7038 the @option{-Wimplicit-fallthrough} warning should not be emitted:
7039
7040 @smallexample
7041 switch (cond)
7042 @{
7043 case 1:
7044 bar (1);
7045 __attribute__((fallthrough));
7046 case 2:
7047 @dots{}
7048 @}
7049 @end smallexample
7050
7051 @table @code
7052 @item fallthrough
7053 @cindex @code{fallthrough} statement attribute
7054 The @code{fallthrough} attribute with a null statement serves as a
7055 fallthrough statement. It hints to the compiler that a statement
7056 that falls through to another case label, or user-defined label
7057 in a switch statement is intentional and thus the
7058 @option{-Wimplicit-fallthrough} warning must not trigger. The
7059 fallthrough attribute may appear at most once in each attribute
7060 list, and may not be mixed with other attributes. It can only
7061 be used in a switch statement (the compiler will issue an error
7062 otherwise), after a preceding statement and before a logically
7063 succeeding case label, or user-defined label.
7064
7065 @end table
7066
7067 @node Attribute Syntax
7068 @section Attribute Syntax
7069 @cindex attribute syntax
7070
7071 This section describes the syntax with which @code{__attribute__} may be
7072 used, and the constructs to which attribute specifiers bind, for the C
7073 language. Some details may vary for C++ and Objective-C@. Because of
7074 infelicities in the grammar for attributes, some forms described here
7075 may not be successfully parsed in all cases.
7076
7077 There are some problems with the semantics of attributes in C++. For
7078 example, there are no manglings for attributes, although they may affect
7079 code generation, so problems may arise when attributed types are used in
7080 conjunction with templates or overloading. Similarly, @code{typeid}
7081 does not distinguish between types with different attributes. Support
7082 for attributes in C++ may be restricted in future to attributes on
7083 declarations only, but not on nested declarators.
7084
7085 @xref{Function Attributes}, for details of the semantics of attributes
7086 applying to functions. @xref{Variable Attributes}, for details of the
7087 semantics of attributes applying to variables. @xref{Type Attributes},
7088 for details of the semantics of attributes applying to structure, union
7089 and enumerated types.
7090 @xref{Label Attributes}, for details of the semantics of attributes
7091 applying to labels.
7092 @xref{Enumerator Attributes}, for details of the semantics of attributes
7093 applying to enumerators.
7094 @xref{Statement Attributes}, for details of the semantics of attributes
7095 applying to statements.
7096
7097 An @dfn{attribute specifier} is of the form
7098 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7099 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7100 each attribute is one of the following:
7101
7102 @itemize @bullet
7103 @item
7104 Empty. Empty attributes are ignored.
7105
7106 @item
7107 An attribute name
7108 (which may be an identifier such as @code{unused}, or a reserved
7109 word such as @code{const}).
7110
7111 @item
7112 An attribute name followed by a parenthesized list of
7113 parameters for the attribute.
7114 These parameters take one of the following forms:
7115
7116 @itemize @bullet
7117 @item
7118 An identifier. For example, @code{mode} attributes use this form.
7119
7120 @item
7121 An identifier followed by a comma and a non-empty comma-separated list
7122 of expressions. For example, @code{format} attributes use this form.
7123
7124 @item
7125 A possibly empty comma-separated list of expressions. For example,
7126 @code{format_arg} attributes use this form with the list being a single
7127 integer constant expression, and @code{alias} attributes use this form
7128 with the list being a single string constant.
7129 @end itemize
7130 @end itemize
7131
7132 An @dfn{attribute specifier list} is a sequence of one or more attribute
7133 specifiers, not separated by any other tokens.
7134
7135 You may optionally specify attribute names with @samp{__}
7136 preceding and following the name.
7137 This allows you to use them in header files without
7138 being concerned about a possible macro of the same name. For example,
7139 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7140
7141
7142 @subsubheading Label Attributes
7143
7144 In GNU C, an attribute specifier list may appear after the colon following a
7145 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7146 attributes on labels if the attribute specifier is immediately
7147 followed by a semicolon (i.e., the label applies to an empty
7148 statement). If the semicolon is missing, C++ label attributes are
7149 ambiguous, as it is permissible for a declaration, which could begin
7150 with an attribute list, to be labelled in C++. Declarations cannot be
7151 labelled in C90 or C99, so the ambiguity does not arise there.
7152
7153 @subsubheading Enumerator Attributes
7154
7155 In GNU C, an attribute specifier list may appear as part of an enumerator.
7156 The attribute goes after the enumeration constant, before @code{=}, if
7157 present. The optional attribute in the enumerator appertains to the
7158 enumeration constant. It is not possible to place the attribute after
7159 the constant expression, if present.
7160
7161 @subsubheading Statement Attributes
7162 In GNU C, an attribute specifier list may appear as part of a null
7163 statement. The attribute goes before the semicolon.
7164
7165 @subsubheading Type Attributes
7166
7167 An attribute specifier list may appear as part of a @code{struct},
7168 @code{union} or @code{enum} specifier. It may go either immediately
7169 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7170 the closing brace. The former syntax is preferred.
7171 Where attribute specifiers follow the closing brace, they are considered
7172 to relate to the structure, union or enumerated type defined, not to any
7173 enclosing declaration the type specifier appears in, and the type
7174 defined is not complete until after the attribute specifiers.
7175 @c Otherwise, there would be the following problems: a shift/reduce
7176 @c conflict between attributes binding the struct/union/enum and
7177 @c binding to the list of specifiers/qualifiers; and "aligned"
7178 @c attributes could use sizeof for the structure, but the size could be
7179 @c changed later by "packed" attributes.
7180
7181
7182 @subsubheading All other attributes
7183
7184 Otherwise, an attribute specifier appears as part of a declaration,
7185 counting declarations of unnamed parameters and type names, and relates
7186 to that declaration (which may be nested in another declaration, for
7187 example in the case of a parameter declaration), or to a particular declarator
7188 within a declaration. Where an
7189 attribute specifier is applied to a parameter declared as a function or
7190 an array, it should apply to the function or array rather than the
7191 pointer to which the parameter is implicitly converted, but this is not
7192 yet correctly implemented.
7193
7194 Any list of specifiers and qualifiers at the start of a declaration may
7195 contain attribute specifiers, whether or not such a list may in that
7196 context contain storage class specifiers. (Some attributes, however,
7197 are essentially in the nature of storage class specifiers, and only make
7198 sense where storage class specifiers may be used; for example,
7199 @code{section}.) There is one necessary limitation to this syntax: the
7200 first old-style parameter declaration in a function definition cannot
7201 begin with an attribute specifier, because such an attribute applies to
7202 the function instead by syntax described below (which, however, is not
7203 yet implemented in this case). In some other cases, attribute
7204 specifiers are permitted by this grammar but not yet supported by the
7205 compiler. All attribute specifiers in this place relate to the
7206 declaration as a whole. In the obsolescent usage where a type of
7207 @code{int} is implied by the absence of type specifiers, such a list of
7208 specifiers and qualifiers may be an attribute specifier list with no
7209 other specifiers or qualifiers.
7210
7211 At present, the first parameter in a function prototype must have some
7212 type specifier that is not an attribute specifier; this resolves an
7213 ambiguity in the interpretation of @code{void f(int
7214 (__attribute__((foo)) x))}, but is subject to change. At present, if
7215 the parentheses of a function declarator contain only attributes then
7216 those attributes are ignored, rather than yielding an error or warning
7217 or implying a single parameter of type int, but this is subject to
7218 change.
7219
7220 An attribute specifier list may appear immediately before a declarator
7221 (other than the first) in a comma-separated list of declarators in a
7222 declaration of more than one identifier using a single list of
7223 specifiers and qualifiers. Such attribute specifiers apply
7224 only to the identifier before whose declarator they appear. For
7225 example, in
7226
7227 @smallexample
7228 __attribute__((noreturn)) void d0 (void),
7229 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7230 d2 (void);
7231 @end smallexample
7232
7233 @noindent
7234 the @code{noreturn} attribute applies to all the functions
7235 declared; the @code{format} attribute only applies to @code{d1}.
7236
7237 An attribute specifier list may appear immediately before the comma,
7238 @code{=} or semicolon terminating the declaration of an identifier other
7239 than a function definition. Such attribute specifiers apply
7240 to the declared object or function. Where an
7241 assembler name for an object or function is specified (@pxref{Asm
7242 Labels}), the attribute must follow the @code{asm}
7243 specification.
7244
7245 An attribute specifier list may, in future, be permitted to appear after
7246 the declarator in a function definition (before any old-style parameter
7247 declarations or the function body).
7248
7249 Attribute specifiers may be mixed with type qualifiers appearing inside
7250 the @code{[]} of a parameter array declarator, in the C99 construct by
7251 which such qualifiers are applied to the pointer to which the array is
7252 implicitly converted. Such attribute specifiers apply to the pointer,
7253 not to the array, but at present this is not implemented and they are
7254 ignored.
7255
7256 An attribute specifier list may appear at the start of a nested
7257 declarator. At present, there are some limitations in this usage: the
7258 attributes correctly apply to the declarator, but for most individual
7259 attributes the semantics this implies are not implemented.
7260 When attribute specifiers follow the @code{*} of a pointer
7261 declarator, they may be mixed with any type qualifiers present.
7262 The following describes the formal semantics of this syntax. It makes the
7263 most sense if you are familiar with the formal specification of
7264 declarators in the ISO C standard.
7265
7266 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7267 D1}, where @code{T} contains declaration specifiers that specify a type
7268 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7269 contains an identifier @var{ident}. The type specified for @var{ident}
7270 for derived declarators whose type does not include an attribute
7271 specifier is as in the ISO C standard.
7272
7273 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7274 and the declaration @code{T D} specifies the type
7275 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7276 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7277 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7278
7279 If @code{D1} has the form @code{*
7280 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7281 declaration @code{T D} specifies the type
7282 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7283 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7284 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7285 @var{ident}.
7286
7287 For example,
7288
7289 @smallexample
7290 void (__attribute__((noreturn)) ****f) (void);
7291 @end smallexample
7292
7293 @noindent
7294 specifies the type ``pointer to pointer to pointer to pointer to
7295 non-returning function returning @code{void}''. As another example,
7296
7297 @smallexample
7298 char *__attribute__((aligned(8))) *f;
7299 @end smallexample
7300
7301 @noindent
7302 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7303 Note again that this does not work with most attributes; for example,
7304 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7305 is not yet supported.
7306
7307 For compatibility with existing code written for compiler versions that
7308 did not implement attributes on nested declarators, some laxity is
7309 allowed in the placing of attributes. If an attribute that only applies
7310 to types is applied to a declaration, it is treated as applying to
7311 the type of that declaration. If an attribute that only applies to
7312 declarations is applied to the type of a declaration, it is treated
7313 as applying to that declaration; and, for compatibility with code
7314 placing the attributes immediately before the identifier declared, such
7315 an attribute applied to a function return type is treated as
7316 applying to the function type, and such an attribute applied to an array
7317 element type is treated as applying to the array type. If an
7318 attribute that only applies to function types is applied to a
7319 pointer-to-function type, it is treated as applying to the pointer
7320 target type; if such an attribute is applied to a function return type
7321 that is not a pointer-to-function type, it is treated as applying
7322 to the function type.
7323
7324 @node Function Prototypes
7325 @section Prototypes and Old-Style Function Definitions
7326 @cindex function prototype declarations
7327 @cindex old-style function definitions
7328 @cindex promotion of formal parameters
7329
7330 GNU C extends ISO C to allow a function prototype to override a later
7331 old-style non-prototype definition. Consider the following example:
7332
7333 @smallexample
7334 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7335 #ifdef __STDC__
7336 #define P(x) x
7337 #else
7338 #define P(x) ()
7339 #endif
7340
7341 /* @r{Prototype function declaration.} */
7342 int isroot P((uid_t));
7343
7344 /* @r{Old-style function definition.} */
7345 int
7346 isroot (x) /* @r{??? lossage here ???} */
7347 uid_t x;
7348 @{
7349 return x == 0;
7350 @}
7351 @end smallexample
7352
7353 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7354 not allow this example, because subword arguments in old-style
7355 non-prototype definitions are promoted. Therefore in this example the
7356 function definition's argument is really an @code{int}, which does not
7357 match the prototype argument type of @code{short}.
7358
7359 This restriction of ISO C makes it hard to write code that is portable
7360 to traditional C compilers, because the programmer does not know
7361 whether the @code{uid_t} type is @code{short}, @code{int}, or
7362 @code{long}. Therefore, in cases like these GNU C allows a prototype
7363 to override a later old-style definition. More precisely, in GNU C, a
7364 function prototype argument type overrides the argument type specified
7365 by a later old-style definition if the former type is the same as the
7366 latter type before promotion. Thus in GNU C the above example is
7367 equivalent to the following:
7368
7369 @smallexample
7370 int isroot (uid_t);
7371
7372 int
7373 isroot (uid_t x)
7374 @{
7375 return x == 0;
7376 @}
7377 @end smallexample
7378
7379 @noindent
7380 GNU C++ does not support old-style function definitions, so this
7381 extension is irrelevant.
7382
7383 @node C++ Comments
7384 @section C++ Style Comments
7385 @cindex @code{//}
7386 @cindex C++ comments
7387 @cindex comments, C++ style
7388
7389 In GNU C, you may use C++ style comments, which start with @samp{//} and
7390 continue until the end of the line. Many other C implementations allow
7391 such comments, and they are included in the 1999 C standard. However,
7392 C++ style comments are not recognized if you specify an @option{-std}
7393 option specifying a version of ISO C before C99, or @option{-ansi}
7394 (equivalent to @option{-std=c90}).
7395
7396 @node Dollar Signs
7397 @section Dollar Signs in Identifier Names
7398 @cindex $
7399 @cindex dollar signs in identifier names
7400 @cindex identifier names, dollar signs in
7401
7402 In GNU C, you may normally use dollar signs in identifier names.
7403 This is because many traditional C implementations allow such identifiers.
7404 However, dollar signs in identifiers are not supported on a few target
7405 machines, typically because the target assembler does not allow them.
7406
7407 @node Character Escapes
7408 @section The Character @key{ESC} in Constants
7409
7410 You can use the sequence @samp{\e} in a string or character constant to
7411 stand for the ASCII character @key{ESC}.
7412
7413 @node Alignment
7414 @section Inquiring on Alignment of Types or Variables
7415 @cindex alignment
7416 @cindex type alignment
7417 @cindex variable alignment
7418
7419 The keyword @code{__alignof__} allows you to inquire about how an object
7420 is aligned, or the minimum alignment usually required by a type. Its
7421 syntax is just like @code{sizeof}.
7422
7423 For example, if the target machine requires a @code{double} value to be
7424 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7425 This is true on many RISC machines. On more traditional machine
7426 designs, @code{__alignof__ (double)} is 4 or even 2.
7427
7428 Some machines never actually require alignment; they allow reference to any
7429 data type even at an odd address. For these machines, @code{__alignof__}
7430 reports the smallest alignment that GCC gives the data type, usually as
7431 mandated by the target ABI.
7432
7433 If the operand of @code{__alignof__} is an lvalue rather than a type,
7434 its value is the required alignment for its type, taking into account
7435 any minimum alignment specified with GCC's @code{__attribute__}
7436 extension (@pxref{Variable Attributes}). For example, after this
7437 declaration:
7438
7439 @smallexample
7440 struct foo @{ int x; char y; @} foo1;
7441 @end smallexample
7442
7443 @noindent
7444 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7445 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7446
7447 It is an error to ask for the alignment of an incomplete type.
7448
7449
7450 @node Inline
7451 @section An Inline Function is As Fast As a Macro
7452 @cindex inline functions
7453 @cindex integrating function code
7454 @cindex open coding
7455 @cindex macros, inline alternative
7456
7457 By declaring a function inline, you can direct GCC to make
7458 calls to that function faster. One way GCC can achieve this is to
7459 integrate that function's code into the code for its callers. This
7460 makes execution faster by eliminating the function-call overhead; in
7461 addition, if any of the actual argument values are constant, their
7462 known values may permit simplifications at compile time so that not
7463 all of the inline function's code needs to be included. The effect on
7464 code size is less predictable; object code may be larger or smaller
7465 with function inlining, depending on the particular case. You can
7466 also direct GCC to try to integrate all ``simple enough'' functions
7467 into their callers with the option @option{-finline-functions}.
7468
7469 GCC implements three different semantics of declaring a function
7470 inline. One is available with @option{-std=gnu89} or
7471 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7472 on all inline declarations, another when
7473 @option{-std=c99}, @option{-std=c11},
7474 @option{-std=gnu99} or @option{-std=gnu11}
7475 (without @option{-fgnu89-inline}), and the third
7476 is used when compiling C++.
7477
7478 To declare a function inline, use the @code{inline} keyword in its
7479 declaration, like this:
7480
7481 @smallexample
7482 static inline int
7483 inc (int *a)
7484 @{
7485 return (*a)++;
7486 @}
7487 @end smallexample
7488
7489 If you are writing a header file to be included in ISO C90 programs, write
7490 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7491
7492 The three types of inlining behave similarly in two important cases:
7493 when the @code{inline} keyword is used on a @code{static} function,
7494 like the example above, and when a function is first declared without
7495 using the @code{inline} keyword and then is defined with
7496 @code{inline}, like this:
7497
7498 @smallexample
7499 extern int inc (int *a);
7500 inline int
7501 inc (int *a)
7502 @{
7503 return (*a)++;
7504 @}
7505 @end smallexample
7506
7507 In both of these common cases, the program behaves the same as if you
7508 had not used the @code{inline} keyword, except for its speed.
7509
7510 @cindex inline functions, omission of
7511 @opindex fkeep-inline-functions
7512 When a function is both inline and @code{static}, if all calls to the
7513 function are integrated into the caller, and the function's address is
7514 never used, then the function's own assembler code is never referenced.
7515 In this case, GCC does not actually output assembler code for the
7516 function, unless you specify the option @option{-fkeep-inline-functions}.
7517 If there is a nonintegrated call, then the function is compiled to
7518 assembler code as usual. The function must also be compiled as usual if
7519 the program refers to its address, because that cannot be inlined.
7520
7521 @opindex Winline
7522 Note that certain usages in a function definition can make it unsuitable
7523 for inline substitution. Among these usages are: variadic functions,
7524 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7525 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7526 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7527 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7528 function marked @code{inline} could not be substituted, and gives the
7529 reason for the failure.
7530
7531 @cindex automatic @code{inline} for C++ member fns
7532 @cindex @code{inline} automatic for C++ member fns
7533 @cindex member fns, automatically @code{inline}
7534 @cindex C++ member fns, automatically @code{inline}
7535 @opindex fno-default-inline
7536 As required by ISO C++, GCC considers member functions defined within
7537 the body of a class to be marked inline even if they are
7538 not explicitly declared with the @code{inline} keyword. You can
7539 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7540 Options,,Options Controlling C++ Dialect}.
7541
7542 GCC does not inline any functions when not optimizing unless you specify
7543 the @samp{always_inline} attribute for the function, like this:
7544
7545 @smallexample
7546 /* @r{Prototype.} */
7547 inline void foo (const char) __attribute__((always_inline));
7548 @end smallexample
7549
7550 The remainder of this section is specific to GNU C90 inlining.
7551
7552 @cindex non-static inline function
7553 When an inline function is not @code{static}, then the compiler must assume
7554 that there may be calls from other source files; since a global symbol can
7555 be defined only once in any program, the function must not be defined in
7556 the other source files, so the calls therein cannot be integrated.
7557 Therefore, a non-@code{static} inline function is always compiled on its
7558 own in the usual fashion.
7559
7560 If you specify both @code{inline} and @code{extern} in the function
7561 definition, then the definition is used only for inlining. In no case
7562 is the function compiled on its own, not even if you refer to its
7563 address explicitly. Such an address becomes an external reference, as
7564 if you had only declared the function, and had not defined it.
7565
7566 This combination of @code{inline} and @code{extern} has almost the
7567 effect of a macro. The way to use it is to put a function definition in
7568 a header file with these keywords, and put another copy of the
7569 definition (lacking @code{inline} and @code{extern}) in a library file.
7570 The definition in the header file causes most calls to the function
7571 to be inlined. If any uses of the function remain, they refer to
7572 the single copy in the library.
7573
7574 @node Volatiles
7575 @section When is a Volatile Object Accessed?
7576 @cindex accessing volatiles
7577 @cindex volatile read
7578 @cindex volatile write
7579 @cindex volatile access
7580
7581 C has the concept of volatile objects. These are normally accessed by
7582 pointers and used for accessing hardware or inter-thread
7583 communication. The standard encourages compilers to refrain from
7584 optimizations concerning accesses to volatile objects, but leaves it
7585 implementation defined as to what constitutes a volatile access. The
7586 minimum requirement is that at a sequence point all previous accesses
7587 to volatile objects have stabilized and no subsequent accesses have
7588 occurred. Thus an implementation is free to reorder and combine
7589 volatile accesses that occur between sequence points, but cannot do
7590 so for accesses across a sequence point. The use of volatile does
7591 not allow you to violate the restriction on updating objects multiple
7592 times between two sequence points.
7593
7594 Accesses to non-volatile objects are not ordered with respect to
7595 volatile accesses. You cannot use a volatile object as a memory
7596 barrier to order a sequence of writes to non-volatile memory. For
7597 instance:
7598
7599 @smallexample
7600 int *ptr = @var{something};
7601 volatile int vobj;
7602 *ptr = @var{something};
7603 vobj = 1;
7604 @end smallexample
7605
7606 @noindent
7607 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7608 that the write to @var{*ptr} occurs by the time the update
7609 of @var{vobj} happens. If you need this guarantee, you must use
7610 a stronger memory barrier such as:
7611
7612 @smallexample
7613 int *ptr = @var{something};
7614 volatile int vobj;
7615 *ptr = @var{something};
7616 asm volatile ("" : : : "memory");
7617 vobj = 1;
7618 @end smallexample
7619
7620 A scalar volatile object is read when it is accessed in a void context:
7621
7622 @smallexample
7623 volatile int *src = @var{somevalue};
7624 *src;
7625 @end smallexample
7626
7627 Such expressions are rvalues, and GCC implements this as a
7628 read of the volatile object being pointed to.
7629
7630 Assignments are also expressions and have an rvalue. However when
7631 assigning to a scalar volatile, the volatile object is not reread,
7632 regardless of whether the assignment expression's rvalue is used or
7633 not. If the assignment's rvalue is used, the value is that assigned
7634 to the volatile object. For instance, there is no read of @var{vobj}
7635 in all the following cases:
7636
7637 @smallexample
7638 int obj;
7639 volatile int vobj;
7640 vobj = @var{something};
7641 obj = vobj = @var{something};
7642 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7643 obj = (@var{something}, vobj = @var{anotherthing});
7644 @end smallexample
7645
7646 If you need to read the volatile object after an assignment has
7647 occurred, you must use a separate expression with an intervening
7648 sequence point.
7649
7650 As bit-fields are not individually addressable, volatile bit-fields may
7651 be implicitly read when written to, or when adjacent bit-fields are
7652 accessed. Bit-field operations may be optimized such that adjacent
7653 bit-fields are only partially accessed, if they straddle a storage unit
7654 boundary. For these reasons it is unwise to use volatile bit-fields to
7655 access hardware.
7656
7657 @node Using Assembly Language with C
7658 @section How to Use Inline Assembly Language in C Code
7659 @cindex @code{asm} keyword
7660 @cindex assembly language in C
7661 @cindex inline assembly language
7662 @cindex mixing assembly language and C
7663
7664 The @code{asm} keyword allows you to embed assembler instructions
7665 within C code. GCC provides two forms of inline @code{asm}
7666 statements. A @dfn{basic @code{asm}} statement is one with no
7667 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7668 statement (@pxref{Extended Asm}) includes one or more operands.
7669 The extended form is preferred for mixing C and assembly language
7670 within a function, but to include assembly language at
7671 top level you must use basic @code{asm}.
7672
7673 You can also use the @code{asm} keyword to override the assembler name
7674 for a C symbol, or to place a C variable in a specific register.
7675
7676 @menu
7677 * Basic Asm:: Inline assembler without operands.
7678 * Extended Asm:: Inline assembler with operands.
7679 * Constraints:: Constraints for @code{asm} operands
7680 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7681 * Explicit Register Variables:: Defining variables residing in specified
7682 registers.
7683 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7684 @end menu
7685
7686 @node Basic Asm
7687 @subsection Basic Asm --- Assembler Instructions Without Operands
7688 @cindex basic @code{asm}
7689 @cindex assembly language in C, basic
7690
7691 A basic @code{asm} statement has the following syntax:
7692
7693 @example
7694 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7695 @end example
7696
7697 The @code{asm} keyword is a GNU extension.
7698 When writing code that can be compiled with @option{-ansi} and the
7699 various @option{-std} options, use @code{__asm__} instead of
7700 @code{asm} (@pxref{Alternate Keywords}).
7701
7702 @subsubheading Qualifiers
7703 @table @code
7704 @item volatile
7705 The optional @code{volatile} qualifier has no effect.
7706 All basic @code{asm} blocks are implicitly volatile.
7707 @end table
7708
7709 @subsubheading Parameters
7710 @table @var
7711
7712 @item AssemblerInstructions
7713 This is a literal string that specifies the assembler code. The string can
7714 contain any instructions recognized by the assembler, including directives.
7715 GCC does not parse the assembler instructions themselves and
7716 does not know what they mean or even whether they are valid assembler input.
7717
7718 You may place multiple assembler instructions together in a single @code{asm}
7719 string, separated by the characters normally used in assembly code for the
7720 system. A combination that works in most places is a newline to break the
7721 line, plus a tab character (written as @samp{\n\t}).
7722 Some assemblers allow semicolons as a line separator. However,
7723 note that some assembler dialects use semicolons to start a comment.
7724 @end table
7725
7726 @subsubheading Remarks
7727 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
7728 smaller, safer, and more efficient code, and in most cases it is a
7729 better solution than basic @code{asm}. However, there are two
7730 situations where only basic @code{asm} can be used:
7731
7732 @itemize @bullet
7733 @item
7734 Extended @code{asm} statements have to be inside a C
7735 function, so to write inline assembly language at file scope (``top-level''),
7736 outside of C functions, you must use basic @code{asm}.
7737 You can use this technique to emit assembler directives,
7738 define assembly language macros that can be invoked elsewhere in the file,
7739 or write entire functions in assembly language.
7740
7741 @item
7742 Functions declared
7743 with the @code{naked} attribute also require basic @code{asm}
7744 (@pxref{Function Attributes}).
7745 @end itemize
7746
7747 Safely accessing C data and calling functions from basic @code{asm} is more
7748 complex than it may appear. To access C data, it is better to use extended
7749 @code{asm}.
7750
7751 Do not expect a sequence of @code{asm} statements to remain perfectly
7752 consecutive after compilation. If certain instructions need to remain
7753 consecutive in the output, put them in a single multi-instruction @code{asm}
7754 statement. Note that GCC's optimizers can move @code{asm} statements
7755 relative to other code, including across jumps.
7756
7757 @code{asm} statements may not perform jumps into other @code{asm} statements.
7758 GCC does not know about these jumps, and therefore cannot take
7759 account of them when deciding how to optimize. Jumps from @code{asm} to C
7760 labels are only supported in extended @code{asm}.
7761
7762 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7763 assembly code when optimizing. This can lead to unexpected duplicate
7764 symbol errors during compilation if your assembly code defines symbols or
7765 labels.
7766
7767 @strong{Warning:} The C standards do not specify semantics for @code{asm},
7768 making it a potential source of incompatibilities between compilers. These
7769 incompatibilities may not produce compiler warnings/errors.
7770
7771 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
7772 means there is no way to communicate to the compiler what is happening
7773 inside them. GCC has no visibility of symbols in the @code{asm} and may
7774 discard them as unreferenced. It also does not know about side effects of
7775 the assembler code, such as modifications to memory or registers. Unlike
7776 some compilers, GCC assumes that no changes to general purpose registers
7777 occur. This assumption may change in a future release.
7778
7779 To avoid complications from future changes to the semantics and the
7780 compatibility issues between compilers, consider replacing basic @code{asm}
7781 with extended @code{asm}. See
7782 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
7783 from basic asm to extended asm} for information about how to perform this
7784 conversion.
7785
7786 The compiler copies the assembler instructions in a basic @code{asm}
7787 verbatim to the assembly language output file, without
7788 processing dialects or any of the @samp{%} operators that are available with
7789 extended @code{asm}. This results in minor differences between basic
7790 @code{asm} strings and extended @code{asm} templates. For example, to refer to
7791 registers you might use @samp{%eax} in basic @code{asm} and
7792 @samp{%%eax} in extended @code{asm}.
7793
7794 On targets such as x86 that support multiple assembler dialects,
7795 all basic @code{asm} blocks use the assembler dialect specified by the
7796 @option{-masm} command-line option (@pxref{x86 Options}).
7797 Basic @code{asm} provides no
7798 mechanism to provide different assembler strings for different dialects.
7799
7800 For basic @code{asm} with non-empty assembler string GCC assumes
7801 the assembler block does not change any general purpose registers,
7802 but it may read or write any globally accessible variable.
7803
7804 Here is an example of basic @code{asm} for i386:
7805
7806 @example
7807 /* Note that this code will not compile with -masm=intel */
7808 #define DebugBreak() asm("int $3")
7809 @end example
7810
7811 @node Extended Asm
7812 @subsection Extended Asm - Assembler Instructions with C Expression Operands
7813 @cindex extended @code{asm}
7814 @cindex assembly language in C, extended
7815
7816 With extended @code{asm} you can read and write C variables from
7817 assembler and perform jumps from assembler code to C labels.
7818 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
7819 the operand parameters after the assembler template:
7820
7821 @example
7822 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
7823 : @var{OutputOperands}
7824 @r{[} : @var{InputOperands}
7825 @r{[} : @var{Clobbers} @r{]} @r{]})
7826
7827 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
7828 :
7829 : @var{InputOperands}
7830 : @var{Clobbers}
7831 : @var{GotoLabels})
7832 @end example
7833
7834 The @code{asm} keyword is a GNU extension.
7835 When writing code that can be compiled with @option{-ansi} and the
7836 various @option{-std} options, use @code{__asm__} instead of
7837 @code{asm} (@pxref{Alternate Keywords}).
7838
7839 @subsubheading Qualifiers
7840 @table @code
7841
7842 @item volatile
7843 The typical use of extended @code{asm} statements is to manipulate input
7844 values to produce output values. However, your @code{asm} statements may
7845 also produce side effects. If so, you may need to use the @code{volatile}
7846 qualifier to disable certain optimizations. @xref{Volatile}.
7847
7848 @item goto
7849 This qualifier informs the compiler that the @code{asm} statement may
7850 perform a jump to one of the labels listed in the @var{GotoLabels}.
7851 @xref{GotoLabels}.
7852 @end table
7853
7854 @subsubheading Parameters
7855 @table @var
7856 @item AssemblerTemplate
7857 This is a literal string that is the template for the assembler code. It is a
7858 combination of fixed text and tokens that refer to the input, output,
7859 and goto parameters. @xref{AssemblerTemplate}.
7860
7861 @item OutputOperands
7862 A comma-separated list of the C variables modified by the instructions in the
7863 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
7864
7865 @item InputOperands
7866 A comma-separated list of C expressions read by the instructions in the
7867 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
7868
7869 @item Clobbers
7870 A comma-separated list of registers or other values changed by the
7871 @var{AssemblerTemplate}, beyond those listed as outputs.
7872 An empty list is permitted. @xref{Clobbers}.
7873
7874 @item GotoLabels
7875 When you are using the @code{goto} form of @code{asm}, this section contains
7876 the list of all C labels to which the code in the
7877 @var{AssemblerTemplate} may jump.
7878 @xref{GotoLabels}.
7879
7880 @code{asm} statements may not perform jumps into other @code{asm} statements,
7881 only to the listed @var{GotoLabels}.
7882 GCC's optimizers do not know about other jumps; therefore they cannot take
7883 account of them when deciding how to optimize.
7884 @end table
7885
7886 The total number of input + output + goto operands is limited to 30.
7887
7888 @subsubheading Remarks
7889 The @code{asm} statement allows you to include assembly instructions directly
7890 within C code. This may help you to maximize performance in time-sensitive
7891 code or to access assembly instructions that are not readily available to C
7892 programs.
7893
7894 Note that extended @code{asm} statements must be inside a function. Only
7895 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
7896 Functions declared with the @code{naked} attribute also require basic
7897 @code{asm} (@pxref{Function Attributes}).
7898
7899 While the uses of @code{asm} are many and varied, it may help to think of an
7900 @code{asm} statement as a series of low-level instructions that convert input
7901 parameters to output parameters. So a simple (if not particularly useful)
7902 example for i386 using @code{asm} might look like this:
7903
7904 @example
7905 int src = 1;
7906 int dst;
7907
7908 asm ("mov %1, %0\n\t"
7909 "add $1, %0"
7910 : "=r" (dst)
7911 : "r" (src));
7912
7913 printf("%d\n", dst);
7914 @end example
7915
7916 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
7917
7918 @anchor{Volatile}
7919 @subsubsection Volatile
7920 @cindex volatile @code{asm}
7921 @cindex @code{asm} volatile
7922
7923 GCC's optimizers sometimes discard @code{asm} statements if they determine
7924 there is no need for the output variables. Also, the optimizers may move
7925 code out of loops if they believe that the code will always return the same
7926 result (i.e. none of its input values change between calls). Using the
7927 @code{volatile} qualifier disables these optimizations. @code{asm} statements
7928 that have no output operands, including @code{asm goto} statements,
7929 are implicitly volatile.
7930
7931 This i386 code demonstrates a case that does not use (or require) the
7932 @code{volatile} qualifier. If it is performing assertion checking, this code
7933 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
7934 unreferenced by any code. As a result, the optimizers can discard the
7935 @code{asm} statement, which in turn removes the need for the entire
7936 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
7937 isn't needed you allow the optimizers to produce the most efficient code
7938 possible.
7939
7940 @example
7941 void DoCheck(uint32_t dwSomeValue)
7942 @{
7943 uint32_t dwRes;
7944
7945 // Assumes dwSomeValue is not zero.
7946 asm ("bsfl %1,%0"
7947 : "=r" (dwRes)
7948 : "r" (dwSomeValue)
7949 : "cc");
7950
7951 assert(dwRes > 3);
7952 @}
7953 @end example
7954
7955 The next example shows a case where the optimizers can recognize that the input
7956 (@code{dwSomeValue}) never changes during the execution of the function and can
7957 therefore move the @code{asm} outside the loop to produce more efficient code.
7958 Again, using @code{volatile} disables this type of optimization.
7959
7960 @example
7961 void do_print(uint32_t dwSomeValue)
7962 @{
7963 uint32_t dwRes;
7964
7965 for (uint32_t x=0; x < 5; x++)
7966 @{
7967 // Assumes dwSomeValue is not zero.
7968 asm ("bsfl %1,%0"
7969 : "=r" (dwRes)
7970 : "r" (dwSomeValue)
7971 : "cc");
7972
7973 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
7974 @}
7975 @}
7976 @end example
7977
7978 The following example demonstrates a case where you need to use the
7979 @code{volatile} qualifier.
7980 It uses the x86 @code{rdtsc} instruction, which reads
7981 the computer's time-stamp counter. Without the @code{volatile} qualifier,
7982 the optimizers might assume that the @code{asm} block will always return the
7983 same value and therefore optimize away the second call.
7984
7985 @example
7986 uint64_t msr;
7987
7988 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7989 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7990 "or %%rdx, %0" // 'Or' in the lower bits.
7991 : "=a" (msr)
7992 :
7993 : "rdx");
7994
7995 printf("msr: %llx\n", msr);
7996
7997 // Do other work...
7998
7999 // Reprint the timestamp
8000 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8001 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8002 "or %%rdx, %0" // 'Or' in the lower bits.
8003 : "=a" (msr)
8004 :
8005 : "rdx");
8006
8007 printf("msr: %llx\n", msr);
8008 @end example
8009
8010 GCC's optimizers do not treat this code like the non-volatile code in the
8011 earlier examples. They do not move it out of loops or omit it on the
8012 assumption that the result from a previous call is still valid.
8013
8014 Note that the compiler can move even volatile @code{asm} instructions relative
8015 to other code, including across jump instructions. For example, on many
8016 targets there is a system register that controls the rounding mode of
8017 floating-point operations. Setting it with a volatile @code{asm}, as in the
8018 following PowerPC example, does not work reliably.
8019
8020 @example
8021 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
8022 sum = x + y;
8023 @end example
8024
8025 The compiler may move the addition back before the volatile @code{asm}. To
8026 make it work as expected, add an artificial dependency to the @code{asm} by
8027 referencing a variable in the subsequent code, for example:
8028
8029 @example
8030 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
8031 sum = x + y;
8032 @end example
8033
8034 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8035 assembly code when optimizing. This can lead to unexpected duplicate symbol
8036 errors during compilation if your asm code defines symbols or labels.
8037 Using @samp{%=}
8038 (@pxref{AssemblerTemplate}) may help resolve this problem.
8039
8040 @anchor{AssemblerTemplate}
8041 @subsubsection Assembler Template
8042 @cindex @code{asm} assembler template
8043
8044 An assembler template is a literal string containing assembler instructions.
8045 The compiler replaces tokens in the template that refer
8046 to inputs, outputs, and goto labels,
8047 and then outputs the resulting string to the assembler. The
8048 string can contain any instructions recognized by the assembler, including
8049 directives. GCC does not parse the assembler instructions
8050 themselves and does not know what they mean or even whether they are valid
8051 assembler input. However, it does count the statements
8052 (@pxref{Size of an asm}).
8053
8054 You may place multiple assembler instructions together in a single @code{asm}
8055 string, separated by the characters normally used in assembly code for the
8056 system. A combination that works in most places is a newline to break the
8057 line, plus a tab character to move to the instruction field (written as
8058 @samp{\n\t}).
8059 Some assemblers allow semicolons as a line separator. However, note
8060 that some assembler dialects use semicolons to start a comment.
8061
8062 Do not expect a sequence of @code{asm} statements to remain perfectly
8063 consecutive after compilation, even when you are using the @code{volatile}
8064 qualifier. If certain instructions need to remain consecutive in the output,
8065 put them in a single multi-instruction asm statement.
8066
8067 Accessing data from C programs without using input/output operands (such as
8068 by using global symbols directly from the assembler template) may not work as
8069 expected. Similarly, calling functions directly from an assembler template
8070 requires a detailed understanding of the target assembler and ABI.
8071
8072 Since GCC does not parse the assembler template,
8073 it has no visibility of any
8074 symbols it references. This may result in GCC discarding those symbols as
8075 unreferenced unless they are also listed as input, output, or goto operands.
8076
8077 @subsubheading Special format strings
8078
8079 In addition to the tokens described by the input, output, and goto operands,
8080 these tokens have special meanings in the assembler template:
8081
8082 @table @samp
8083 @item %%
8084 Outputs a single @samp{%} into the assembler code.
8085
8086 @item %=
8087 Outputs a number that is unique to each instance of the @code{asm}
8088 statement in the entire compilation. This option is useful when creating local
8089 labels and referring to them multiple times in a single template that
8090 generates multiple assembler instructions.
8091
8092 @item %@{
8093 @itemx %|
8094 @itemx %@}
8095 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8096 into the assembler code. When unescaped, these characters have special
8097 meaning to indicate multiple assembler dialects, as described below.
8098 @end table
8099
8100 @subsubheading Multiple assembler dialects in @code{asm} templates
8101
8102 On targets such as x86, GCC supports multiple assembler dialects.
8103 The @option{-masm} option controls which dialect GCC uses as its
8104 default for inline assembler. The target-specific documentation for the
8105 @option{-masm} option contains the list of supported dialects, as well as the
8106 default dialect if the option is not specified. This information may be
8107 important to understand, since assembler code that works correctly when
8108 compiled using one dialect will likely fail if compiled using another.
8109 @xref{x86 Options}.
8110
8111 If your code needs to support multiple assembler dialects (for example, if
8112 you are writing public headers that need to support a variety of compilation
8113 options), use constructs of this form:
8114
8115 @example
8116 @{ dialect0 | dialect1 | dialect2... @}
8117 @end example
8118
8119 This construct outputs @code{dialect0}
8120 when using dialect #0 to compile the code,
8121 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8122 braces than the number of dialects the compiler supports, the construct
8123 outputs nothing.
8124
8125 For example, if an x86 compiler supports two dialects
8126 (@samp{att}, @samp{intel}), an
8127 assembler template such as this:
8128
8129 @example
8130 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8131 @end example
8132
8133 @noindent
8134 is equivalent to one of
8135
8136 @example
8137 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8138 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8139 @end example
8140
8141 Using that same compiler, this code:
8142
8143 @example
8144 "xchg@{l@}\t@{%%@}ebx, %1"
8145 @end example
8146
8147 @noindent
8148 corresponds to either
8149
8150 @example
8151 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8152 "xchg\tebx, %1" @r{/* intel dialect */}
8153 @end example
8154
8155 There is no support for nesting dialect alternatives.
8156
8157 @anchor{OutputOperands}
8158 @subsubsection Output Operands
8159 @cindex @code{asm} output operands
8160
8161 An @code{asm} statement has zero or more output operands indicating the names
8162 of C variables modified by the assembler code.
8163
8164 In this i386 example, @code{old} (referred to in the template string as
8165 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8166 (@code{%2}) is an input:
8167
8168 @example
8169 bool old;
8170
8171 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8172 "sbb %0,%0" // Use the CF to calculate old.
8173 : "=r" (old), "+rm" (*Base)
8174 : "Ir" (Offset)
8175 : "cc");
8176
8177 return old;
8178 @end example
8179
8180 Operands are separated by commas. Each operand has this format:
8181
8182 @example
8183 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8184 @end example
8185
8186 @table @var
8187 @item asmSymbolicName
8188 Specifies a symbolic name for the operand.
8189 Reference the name in the assembler template
8190 by enclosing it in square brackets
8191 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8192 that contains the definition. Any valid C variable name is acceptable,
8193 including names already defined in the surrounding code. No two operands
8194 within the same @code{asm} statement can use the same symbolic name.
8195
8196 When not using an @var{asmSymbolicName}, use the (zero-based) position
8197 of the operand
8198 in the list of operands in the assembler template. For example if there are
8199 three output operands, use @samp{%0} in the template to refer to the first,
8200 @samp{%1} for the second, and @samp{%2} for the third.
8201
8202 @item constraint
8203 A string constant specifying constraints on the placement of the operand;
8204 @xref{Constraints}, for details.
8205
8206 Output constraints must begin with either @samp{=} (a variable overwriting an
8207 existing value) or @samp{+} (when reading and writing). When using
8208 @samp{=}, do not assume the location contains the existing value
8209 on entry to the @code{asm}, except
8210 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8211
8212 After the prefix, there must be one or more additional constraints
8213 (@pxref{Constraints}) that describe where the value resides. Common
8214 constraints include @samp{r} for register and @samp{m} for memory.
8215 When you list more than one possible location (for example, @code{"=rm"}),
8216 the compiler chooses the most efficient one based on the current context.
8217 If you list as many alternates as the @code{asm} statement allows, you permit
8218 the optimizers to produce the best possible code.
8219 If you must use a specific register, but your Machine Constraints do not
8220 provide sufficient control to select the specific register you want,
8221 local register variables may provide a solution (@pxref{Local Register
8222 Variables}).
8223
8224 @item cvariablename
8225 Specifies a C lvalue expression to hold the output, typically a variable name.
8226 The enclosing parentheses are a required part of the syntax.
8227
8228 @end table
8229
8230 When the compiler selects the registers to use to
8231 represent the output operands, it does not use any of the clobbered registers
8232 (@pxref{Clobbers}).
8233
8234 Output operand expressions must be lvalues. The compiler cannot check whether
8235 the operands have data types that are reasonable for the instruction being
8236 executed. For output expressions that are not directly addressable (for
8237 example a bit-field), the constraint must allow a register. In that case, GCC
8238 uses the register as the output of the @code{asm}, and then stores that
8239 register into the output.
8240
8241 Operands using the @samp{+} constraint modifier count as two operands
8242 (that is, both as input and output) towards the total maximum of 30 operands
8243 per @code{asm} statement.
8244
8245 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8246 operands that must not overlap an input. Otherwise,
8247 GCC may allocate the output operand in the same register as an unrelated
8248 input operand, on the assumption that the assembler code consumes its
8249 inputs before producing outputs. This assumption may be false if the assembler
8250 code actually consists of more than one instruction.
8251
8252 The same problem can occur if one output parameter (@var{a}) allows a register
8253 constraint and another output parameter (@var{b}) allows a memory constraint.
8254 The code generated by GCC to access the memory address in @var{b} can contain
8255 registers which @emph{might} be shared by @var{a}, and GCC considers those
8256 registers to be inputs to the asm. As above, GCC assumes that such input
8257 registers are consumed before any outputs are written. This assumption may
8258 result in incorrect behavior if the asm writes to @var{a} before using
8259 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8260 ensures that modifying @var{a} does not affect the address referenced by
8261 @var{b}. Otherwise, the location of @var{b}
8262 is undefined if @var{a} is modified before using @var{b}.
8263
8264 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8265 instead of simply @samp{%2}). Typically these qualifiers are hardware
8266 dependent. The list of supported modifiers for x86 is found at
8267 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8268
8269 If the C code that follows the @code{asm} makes no use of any of the output
8270 operands, use @code{volatile} for the @code{asm} statement to prevent the
8271 optimizers from discarding the @code{asm} statement as unneeded
8272 (see @ref{Volatile}).
8273
8274 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8275 references the first output operand as @code{%0} (were there a second, it
8276 would be @code{%1}, etc). The number of the first input operand is one greater
8277 than that of the last output operand. In this i386 example, that makes
8278 @code{Mask} referenced as @code{%1}:
8279
8280 @example
8281 uint32_t Mask = 1234;
8282 uint32_t Index;
8283
8284 asm ("bsfl %1, %0"
8285 : "=r" (Index)
8286 : "r" (Mask)
8287 : "cc");
8288 @end example
8289
8290 That code overwrites the variable @code{Index} (@samp{=}),
8291 placing the value in a register (@samp{r}).
8292 Using the generic @samp{r} constraint instead of a constraint for a specific
8293 register allows the compiler to pick the register to use, which can result
8294 in more efficient code. This may not be possible if an assembler instruction
8295 requires a specific register.
8296
8297 The following i386 example uses the @var{asmSymbolicName} syntax.
8298 It produces the
8299 same result as the code above, but some may consider it more readable or more
8300 maintainable since reordering index numbers is not necessary when adding or
8301 removing operands. The names @code{aIndex} and @code{aMask}
8302 are only used in this example to emphasize which
8303 names get used where.
8304 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8305
8306 @example
8307 uint32_t Mask = 1234;
8308 uint32_t Index;
8309
8310 asm ("bsfl %[aMask], %[aIndex]"
8311 : [aIndex] "=r" (Index)
8312 : [aMask] "r" (Mask)
8313 : "cc");
8314 @end example
8315
8316 Here are some more examples of output operands.
8317
8318 @example
8319 uint32_t c = 1;
8320 uint32_t d;
8321 uint32_t *e = &c;
8322
8323 asm ("mov %[e], %[d]"
8324 : [d] "=rm" (d)
8325 : [e] "rm" (*e));
8326 @end example
8327
8328 Here, @code{d} may either be in a register or in memory. Since the compiler
8329 might already have the current value of the @code{uint32_t} location
8330 pointed to by @code{e}
8331 in a register, you can enable it to choose the best location
8332 for @code{d} by specifying both constraints.
8333
8334 @anchor{FlagOutputOperands}
8335 @subsubsection Flag Output Operands
8336 @cindex @code{asm} flag output operands
8337
8338 Some targets have a special register that holds the ``flags'' for the
8339 result of an operation or comparison. Normally, the contents of that
8340 register are either unmodifed by the asm, or the asm is considered to
8341 clobber the contents.
8342
8343 On some targets, a special form of output operand exists by which
8344 conditions in the flags register may be outputs of the asm. The set of
8345 conditions supported are target specific, but the general rule is that
8346 the output variable must be a scalar integer, and the value is boolean.
8347 When supported, the target defines the preprocessor symbol
8348 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8349
8350 Because of the special nature of the flag output operands, the constraint
8351 may not include alternatives.
8352
8353 Most often, the target has only one flags register, and thus is an implied
8354 operand of many instructions. In this case, the operand should not be
8355 referenced within the assembler template via @code{%0} etc, as there's
8356 no corresponding text in the assembly language.
8357
8358 @table @asis
8359 @item x86 family
8360 The flag output constraints for the x86 family are of the form
8361 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8362 conditions defined in the ISA manual for @code{j@var{cc}} or
8363 @code{set@var{cc}}.
8364
8365 @table @code
8366 @item a
8367 ``above'' or unsigned greater than
8368 @item ae
8369 ``above or equal'' or unsigned greater than or equal
8370 @item b
8371 ``below'' or unsigned less than
8372 @item be
8373 ``below or equal'' or unsigned less than or equal
8374 @item c
8375 carry flag set
8376 @item e
8377 @itemx z
8378 ``equal'' or zero flag set
8379 @item g
8380 signed greater than
8381 @item ge
8382 signed greater than or equal
8383 @item l
8384 signed less than
8385 @item le
8386 signed less than or equal
8387 @item o
8388 overflow flag set
8389 @item p
8390 parity flag set
8391 @item s
8392 sign flag set
8393 @item na
8394 @itemx nae
8395 @itemx nb
8396 @itemx nbe
8397 @itemx nc
8398 @itemx ne
8399 @itemx ng
8400 @itemx nge
8401 @itemx nl
8402 @itemx nle
8403 @itemx no
8404 @itemx np
8405 @itemx ns
8406 @itemx nz
8407 ``not'' @var{flag}, or inverted versions of those above
8408 @end table
8409
8410 @end table
8411
8412 @anchor{InputOperands}
8413 @subsubsection Input Operands
8414 @cindex @code{asm} input operands
8415 @cindex @code{asm} expressions
8416
8417 Input operands make values from C variables and expressions available to the
8418 assembly code.
8419
8420 Operands are separated by commas. Each operand has this format:
8421
8422 @example
8423 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8424 @end example
8425
8426 @table @var
8427 @item asmSymbolicName
8428 Specifies a symbolic name for the operand.
8429 Reference the name in the assembler template
8430 by enclosing it in square brackets
8431 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8432 that contains the definition. Any valid C variable name is acceptable,
8433 including names already defined in the surrounding code. No two operands
8434 within the same @code{asm} statement can use the same symbolic name.
8435
8436 When not using an @var{asmSymbolicName}, use the (zero-based) position
8437 of the operand
8438 in the list of operands in the assembler template. For example if there are
8439 two output operands and three inputs,
8440 use @samp{%2} in the template to refer to the first input operand,
8441 @samp{%3} for the second, and @samp{%4} for the third.
8442
8443 @item constraint
8444 A string constant specifying constraints on the placement of the operand;
8445 @xref{Constraints}, for details.
8446
8447 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8448 When you list more than one possible location (for example, @samp{"irm"}),
8449 the compiler chooses the most efficient one based on the current context.
8450 If you must use a specific register, but your Machine Constraints do not
8451 provide sufficient control to select the specific register you want,
8452 local register variables may provide a solution (@pxref{Local Register
8453 Variables}).
8454
8455 Input constraints can also be digits (for example, @code{"0"}). This indicates
8456 that the specified input must be in the same place as the output constraint
8457 at the (zero-based) index in the output constraint list.
8458 When using @var{asmSymbolicName} syntax for the output operands,
8459 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8460
8461 @item cexpression
8462 This is the C variable or expression being passed to the @code{asm} statement
8463 as input. The enclosing parentheses are a required part of the syntax.
8464
8465 @end table
8466
8467 When the compiler selects the registers to use to represent the input
8468 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8469
8470 If there are no output operands but there are input operands, place two
8471 consecutive colons where the output operands would go:
8472
8473 @example
8474 __asm__ ("some instructions"
8475 : /* No outputs. */
8476 : "r" (Offset / 8));
8477 @end example
8478
8479 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8480 (except for inputs tied to outputs). The compiler assumes that on exit from
8481 the @code{asm} statement these operands contain the same values as they
8482 had before executing the statement.
8483 It is @emph{not} possible to use clobbers
8484 to inform the compiler that the values in these inputs are changing. One
8485 common work-around is to tie the changing input variable to an output variable
8486 that never gets used. Note, however, that if the code that follows the
8487 @code{asm} statement makes no use of any of the output operands, the GCC
8488 optimizers may discard the @code{asm} statement as unneeded
8489 (see @ref{Volatile}).
8490
8491 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8492 instead of simply @samp{%2}). Typically these qualifiers are hardware
8493 dependent. The list of supported modifiers for x86 is found at
8494 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8495
8496 In this example using the fictitious @code{combine} instruction, the
8497 constraint @code{"0"} for input operand 1 says that it must occupy the same
8498 location as output operand 0. Only input operands may use numbers in
8499 constraints, and they must each refer to an output operand. Only a number (or
8500 the symbolic assembler name) in the constraint can guarantee that one operand
8501 is in the same place as another. The mere fact that @code{foo} is the value of
8502 both operands is not enough to guarantee that they are in the same place in
8503 the generated assembler code.
8504
8505 @example
8506 asm ("combine %2, %0"
8507 : "=r" (foo)
8508 : "0" (foo), "g" (bar));
8509 @end example
8510
8511 Here is an example using symbolic names.
8512
8513 @example
8514 asm ("cmoveq %1, %2, %[result]"
8515 : [result] "=r"(result)
8516 : "r" (test), "r" (new), "[result]" (old));
8517 @end example
8518
8519 @anchor{Clobbers}
8520 @subsubsection Clobbers
8521 @cindex @code{asm} clobbers
8522
8523 While the compiler is aware of changes to entries listed in the output
8524 operands, the inline @code{asm} code may modify more than just the outputs. For
8525 example, calculations may require additional registers, or the processor may
8526 overwrite a register as a side effect of a particular assembler instruction.
8527 In order to inform the compiler of these changes, list them in the clobber
8528 list. Clobber list items are either register names or the special clobbers
8529 (listed below). Each clobber list item is a string constant
8530 enclosed in double quotes and separated by commas.
8531
8532 Clobber descriptions may not in any way overlap with an input or output
8533 operand. For example, you may not have an operand describing a register class
8534 with one member when listing that register in the clobber list. Variables
8535 declared to live in specific registers (@pxref{Explicit Register
8536 Variables}) and used
8537 as @code{asm} input or output operands must have no part mentioned in the
8538 clobber description. In particular, there is no way to specify that input
8539 operands get modified without also specifying them as output operands.
8540
8541 When the compiler selects which registers to use to represent input and output
8542 operands, it does not use any of the clobbered registers. As a result,
8543 clobbered registers are available for any use in the assembler code.
8544
8545 Here is a realistic example for the VAX showing the use of clobbered
8546 registers:
8547
8548 @example
8549 asm volatile ("movc3 %0, %1, %2"
8550 : /* No outputs. */
8551 : "g" (from), "g" (to), "g" (count)
8552 : "r0", "r1", "r2", "r3", "r4", "r5");
8553 @end example
8554
8555 Also, there are two special clobber arguments:
8556
8557 @table @code
8558 @item "cc"
8559 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8560 register. On some machines, GCC represents the condition codes as a specific
8561 hardware register; @code{"cc"} serves to name this register.
8562 On other machines, condition code handling is different,
8563 and specifying @code{"cc"} has no effect. But
8564 it is valid no matter what the target.
8565
8566 @item "memory"
8567 The @code{"memory"} clobber tells the compiler that the assembly code
8568 performs memory
8569 reads or writes to items other than those listed in the input and output
8570 operands (for example, accessing the memory pointed to by one of the input
8571 parameters). To ensure memory contains correct values, GCC may need to flush
8572 specific register values to memory before executing the @code{asm}. Further,
8573 the compiler does not assume that any values read from memory before an
8574 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8575 needed.
8576 Using the @code{"memory"} clobber effectively forms a read/write
8577 memory barrier for the compiler.
8578
8579 Note that this clobber does not prevent the @emph{processor} from doing
8580 speculative reads past the @code{asm} statement. To prevent that, you need
8581 processor-specific fence instructions.
8582
8583 Flushing registers to memory has performance implications and may be an issue
8584 for time-sensitive code. You can use a trick to avoid this if the size of
8585 the memory being accessed is known at compile time. For example, if accessing
8586 ten bytes of a string, use a memory input like:
8587
8588 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8589
8590 @end table
8591
8592 @anchor{GotoLabels}
8593 @subsubsection Goto Labels
8594 @cindex @code{asm} goto labels
8595
8596 @code{asm goto} allows assembly code to jump to one or more C labels. The
8597 @var{GotoLabels} section in an @code{asm goto} statement contains
8598 a comma-separated
8599 list of all C labels to which the assembler code may jump. GCC assumes that
8600 @code{asm} execution falls through to the next statement (if this is not the
8601 case, consider using the @code{__builtin_unreachable} intrinsic after the
8602 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8603 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8604 Attributes}).
8605
8606 An @code{asm goto} statement cannot have outputs.
8607 This is due to an internal restriction of
8608 the compiler: control transfer instructions cannot have outputs.
8609 If the assembler code does modify anything, use the @code{"memory"} clobber
8610 to force the
8611 optimizers to flush all register values to memory and reload them if
8612 necessary after the @code{asm} statement.
8613
8614 Also note that an @code{asm goto} statement is always implicitly
8615 considered volatile.
8616
8617 To reference a label in the assembler template,
8618 prefix it with @samp{%l} (lowercase @samp{L}) followed
8619 by its (zero-based) position in @var{GotoLabels} plus the number of input
8620 operands. For example, if the @code{asm} has three inputs and references two
8621 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8622
8623 Alternately, you can reference labels using the actual C label name enclosed
8624 in brackets. For example, to reference a label named @code{carry}, you can
8625 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8626 section when using this approach.
8627
8628 Here is an example of @code{asm goto} for i386:
8629
8630 @example
8631 asm goto (
8632 "btl %1, %0\n\t"
8633 "jc %l2"
8634 : /* No outputs. */
8635 : "r" (p1), "r" (p2)
8636 : "cc"
8637 : carry);
8638
8639 return 0;
8640
8641 carry:
8642 return 1;
8643 @end example
8644
8645 The following example shows an @code{asm goto} that uses a memory clobber.
8646
8647 @example
8648 int frob(int x)
8649 @{
8650 int y;
8651 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8652 : /* No outputs. */
8653 : "r"(x), "r"(&y)
8654 : "r5", "memory"
8655 : error);
8656 return y;
8657 error:
8658 return -1;
8659 @}
8660 @end example
8661
8662 @anchor{x86Operandmodifiers}
8663 @subsubsection x86 Operand Modifiers
8664
8665 References to input, output, and goto operands in the assembler template
8666 of extended @code{asm} statements can use
8667 modifiers to affect the way the operands are formatted in
8668 the code output to the assembler. For example, the
8669 following code uses the @samp{h} and @samp{b} modifiers for x86:
8670
8671 @example
8672 uint16_t num;
8673 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8674 @end example
8675
8676 @noindent
8677 These modifiers generate this assembler code:
8678
8679 @example
8680 xchg %ah, %al
8681 @end example
8682
8683 The rest of this discussion uses the following code for illustrative purposes.
8684
8685 @example
8686 int main()
8687 @{
8688 int iInt = 1;
8689
8690 top:
8691
8692 asm volatile goto ("some assembler instructions here"
8693 : /* No outputs. */
8694 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8695 : /* No clobbers. */
8696 : top);
8697 @}
8698 @end example
8699
8700 With no modifiers, this is what the output from the operands would be for the
8701 @samp{att} and @samp{intel} dialects of assembler:
8702
8703 @multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
8704 @headitem Operand @tab @samp{att} @tab @samp{intel}
8705 @item @code{%0}
8706 @tab @code{%eax}
8707 @tab @code{eax}
8708 @item @code{%1}
8709 @tab @code{$2}
8710 @tab @code{2}
8711 @item @code{%2}
8712 @tab @code{$.L2}
8713 @tab @code{OFFSET FLAT:.L2}
8714 @end multitable
8715
8716 The table below shows the list of supported modifiers and their effects.
8717
8718 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
8719 @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
8720 @item @code{z}
8721 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8722 @tab @code{%z0}
8723 @tab @code{l}
8724 @tab
8725 @item @code{b}
8726 @tab Print the QImode name of the register.
8727 @tab @code{%b0}
8728 @tab @code{%al}
8729 @tab @code{al}
8730 @item @code{h}
8731 @tab Print the QImode name for a ``high'' register.
8732 @tab @code{%h0}
8733 @tab @code{%ah}
8734 @tab @code{ah}
8735 @item @code{w}
8736 @tab Print the HImode name of the register.
8737 @tab @code{%w0}
8738 @tab @code{%ax}
8739 @tab @code{ax}
8740 @item @code{k}
8741 @tab Print the SImode name of the register.
8742 @tab @code{%k0}
8743 @tab @code{%eax}
8744 @tab @code{eax}
8745 @item @code{q}
8746 @tab Print the DImode name of the register.
8747 @tab @code{%q0}
8748 @tab @code{%rax}
8749 @tab @code{rax}
8750 @item @code{l}
8751 @tab Print the label name with no punctuation.
8752 @tab @code{%l2}
8753 @tab @code{.L2}
8754 @tab @code{.L2}
8755 @item @code{c}
8756 @tab Require a constant operand and print the constant expression with no punctuation.
8757 @tab @code{%c1}
8758 @tab @code{2}
8759 @tab @code{2}
8760 @end multitable
8761
8762 @anchor{x86floatingpointasmoperands}
8763 @subsubsection x86 Floating-Point @code{asm} Operands
8764
8765 On x86 targets, there are several rules on the usage of stack-like registers
8766 in the operands of an @code{asm}. These rules apply only to the operands
8767 that are stack-like registers:
8768
8769 @enumerate
8770 @item
8771 Given a set of input registers that die in an @code{asm}, it is
8772 necessary to know which are implicitly popped by the @code{asm}, and
8773 which must be explicitly popped by GCC@.
8774
8775 An input register that is implicitly popped by the @code{asm} must be
8776 explicitly clobbered, unless it is constrained to match an
8777 output operand.
8778
8779 @item
8780 For any input register that is implicitly popped by an @code{asm}, it is
8781 necessary to know how to adjust the stack to compensate for the pop.
8782 If any non-popped input is closer to the top of the reg-stack than
8783 the implicitly popped register, it would not be possible to know what the
8784 stack looked like---it's not clear how the rest of the stack ``slides
8785 up''.
8786
8787 All implicitly popped input registers must be closer to the top of
8788 the reg-stack than any input that is not implicitly popped.
8789
8790 It is possible that if an input dies in an @code{asm}, the compiler might
8791 use the input register for an output reload. Consider this example:
8792
8793 @smallexample
8794 asm ("foo" : "=t" (a) : "f" (b));
8795 @end smallexample
8796
8797 @noindent
8798 This code says that input @code{b} is not popped by the @code{asm}, and that
8799 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
8800 deeper after the @code{asm} than it was before. But, it is possible that
8801 reload may think that it can use the same register for both the input and
8802 the output.
8803
8804 To prevent this from happening,
8805 if any input operand uses the @samp{f} constraint, all output register
8806 constraints must use the @samp{&} early-clobber modifier.
8807
8808 The example above is correctly written as:
8809
8810 @smallexample
8811 asm ("foo" : "=&t" (a) : "f" (b));
8812 @end smallexample
8813
8814 @item
8815 Some operands need to be in particular places on the stack. All
8816 output operands fall in this category---GCC has no other way to
8817 know which registers the outputs appear in unless you indicate
8818 this in the constraints.
8819
8820 Output operands must specifically indicate which register an output
8821 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
8822 constraints must select a class with a single register.
8823
8824 @item
8825 Output operands may not be ``inserted'' between existing stack registers.
8826 Since no 387 opcode uses a read/write operand, all output operands
8827 are dead before the @code{asm}, and are pushed by the @code{asm}.
8828 It makes no sense to push anywhere but the top of the reg-stack.
8829
8830 Output operands must start at the top of the reg-stack: output
8831 operands may not ``skip'' a register.
8832
8833 @item
8834 Some @code{asm} statements may need extra stack space for internal
8835 calculations. This can be guaranteed by clobbering stack registers
8836 unrelated to the inputs and outputs.
8837
8838 @end enumerate
8839
8840 This @code{asm}
8841 takes one input, which is internally popped, and produces two outputs.
8842
8843 @smallexample
8844 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
8845 @end smallexample
8846
8847 @noindent
8848 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
8849 and replaces them with one output. The @code{st(1)} clobber is necessary
8850 for the compiler to know that @code{fyl2xp1} pops both inputs.
8851
8852 @smallexample
8853 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
8854 @end smallexample
8855
8856 @lowersections
8857 @include md.texi
8858 @raisesections
8859
8860 @node Asm Labels
8861 @subsection Controlling Names Used in Assembler Code
8862 @cindex assembler names for identifiers
8863 @cindex names used in assembler code
8864 @cindex identifiers, names in assembler code
8865
8866 You can specify the name to be used in the assembler code for a C
8867 function or variable by writing the @code{asm} (or @code{__asm__})
8868 keyword after the declarator.
8869 It is up to you to make sure that the assembler names you choose do not
8870 conflict with any other assembler symbols, or reference registers.
8871
8872 @subsubheading Assembler names for data:
8873
8874 This sample shows how to specify the assembler name for data:
8875
8876 @smallexample
8877 int foo asm ("myfoo") = 2;
8878 @end smallexample
8879
8880 @noindent
8881 This specifies that the name to be used for the variable @code{foo} in
8882 the assembler code should be @samp{myfoo} rather than the usual
8883 @samp{_foo}.
8884
8885 On systems where an underscore is normally prepended to the name of a C
8886 variable, this feature allows you to define names for the
8887 linker that do not start with an underscore.
8888
8889 GCC does not support using this feature with a non-static local variable
8890 since such variables do not have assembler names. If you are
8891 trying to put the variable in a particular register, see
8892 @ref{Explicit Register Variables}.
8893
8894 @subsubheading Assembler names for functions:
8895
8896 To specify the assembler name for functions, write a declaration for the
8897 function before its definition and put @code{asm} there, like this:
8898
8899 @smallexample
8900 int func (int x, int y) asm ("MYFUNC");
8901
8902 int func (int x, int y)
8903 @{
8904 /* @r{@dots{}} */
8905 @end smallexample
8906
8907 @noindent
8908 This specifies that the name to be used for the function @code{func} in
8909 the assembler code should be @code{MYFUNC}.
8910
8911 @node Explicit Register Variables
8912 @subsection Variables in Specified Registers
8913 @anchor{Explicit Reg Vars}
8914 @cindex explicit register variables
8915 @cindex variables in specified registers
8916 @cindex specified registers
8917
8918 GNU C allows you to associate specific hardware registers with C
8919 variables. In almost all cases, allowing the compiler to assign
8920 registers produces the best code. However under certain unusual
8921 circumstances, more precise control over the variable storage is
8922 required.
8923
8924 Both global and local variables can be associated with a register. The
8925 consequences of performing this association are very different between
8926 the two, as explained in the sections below.
8927
8928 @menu
8929 * Global Register Variables:: Variables declared at global scope.
8930 * Local Register Variables:: Variables declared within a function.
8931 @end menu
8932
8933 @node Global Register Variables
8934 @subsubsection Defining Global Register Variables
8935 @anchor{Global Reg Vars}
8936 @cindex global register variables
8937 @cindex registers, global variables in
8938 @cindex registers, global allocation
8939
8940 You can define a global register variable and associate it with a specified
8941 register like this:
8942
8943 @smallexample
8944 register int *foo asm ("r12");
8945 @end smallexample
8946
8947 @noindent
8948 Here @code{r12} is the name of the register that should be used. Note that
8949 this is the same syntax used for defining local register variables, but for
8950 a global variable the declaration appears outside a function. The
8951 @code{register} keyword is required, and cannot be combined with
8952 @code{static}. The register name must be a valid register name for the
8953 target platform.
8954
8955 Registers are a scarce resource on most systems and allowing the
8956 compiler to manage their usage usually results in the best code. However,
8957 under special circumstances it can make sense to reserve some globally.
8958 For example this may be useful in programs such as programming language
8959 interpreters that have a couple of global variables that are accessed
8960 very often.
8961
8962 After defining a global register variable, for the current compilation
8963 unit:
8964
8965 @itemize @bullet
8966 @item The register is reserved entirely for this use, and will not be
8967 allocated for any other purpose.
8968 @item The register is not saved and restored by any functions.
8969 @item Stores into this register are never deleted even if they appear to be
8970 dead, but references may be deleted, moved or simplified.
8971 @end itemize
8972
8973 Note that these points @emph{only} apply to code that is compiled with the
8974 definition. The behavior of code that is merely linked in (for example
8975 code from libraries) is not affected.
8976
8977 If you want to recompile source files that do not actually use your global
8978 register variable so they do not use the specified register for any other
8979 purpose, you need not actually add the global register declaration to
8980 their source code. It suffices to specify the compiler option
8981 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
8982 register.
8983
8984 @subsubheading Declaring the variable
8985
8986 Global register variables can not have initial values, because an
8987 executable file has no means to supply initial contents for a register.
8988
8989 When selecting a register, choose one that is normally saved and
8990 restored by function calls on your machine. This ensures that code
8991 which is unaware of this reservation (such as library routines) will
8992 restore it before returning.
8993
8994 On machines with register windows, be sure to choose a global
8995 register that is not affected magically by the function call mechanism.
8996
8997 @subsubheading Using the variable
8998
8999 @cindex @code{qsort}, and global register variables
9000 When calling routines that are not aware of the reservation, be
9001 cautious if those routines call back into code which uses them. As an
9002 example, if you call the system library version of @code{qsort}, it may
9003 clobber your registers during execution, but (if you have selected
9004 appropriate registers) it will restore them before returning. However
9005 it will @emph{not} restore them before calling @code{qsort}'s comparison
9006 function. As a result, global values will not reliably be available to
9007 the comparison function unless the @code{qsort} function itself is rebuilt.
9008
9009 Similarly, it is not safe to access the global register variables from signal
9010 handlers or from more than one thread of control. Unless you recompile
9011 them specially for the task at hand, the system library routines may
9012 temporarily use the register for other things.
9013
9014 @cindex register variable after @code{longjmp}
9015 @cindex global register after @code{longjmp}
9016 @cindex value after @code{longjmp}
9017 @findex longjmp
9018 @findex setjmp
9019 On most machines, @code{longjmp} restores to each global register
9020 variable the value it had at the time of the @code{setjmp}. On some
9021 machines, however, @code{longjmp} does not change the value of global
9022 register variables. To be portable, the function that called @code{setjmp}
9023 should make other arrangements to save the values of the global register
9024 variables, and to restore them in a @code{longjmp}. This way, the same
9025 thing happens regardless of what @code{longjmp} does.
9026
9027 Eventually there may be a way of asking the compiler to choose a register
9028 automatically, but first we need to figure out how it should choose and
9029 how to enable you to guide the choice. No solution is evident.
9030
9031 @node Local Register Variables
9032 @subsubsection Specifying Registers for Local Variables
9033 @anchor{Local Reg Vars}
9034 @cindex local variables, specifying registers
9035 @cindex specifying registers for local variables
9036 @cindex registers for local variables
9037
9038 You can define a local register variable and associate it with a specified
9039 register like this:
9040
9041 @smallexample
9042 register int *foo asm ("r12");
9043 @end smallexample
9044
9045 @noindent
9046 Here @code{r12} is the name of the register that should be used. Note
9047 that this is the same syntax used for defining global register variables,
9048 but for a local variable the declaration appears within a function. The
9049 @code{register} keyword is required, and cannot be combined with
9050 @code{static}. The register name must be a valid register name for the
9051 target platform.
9052
9053 As with global register variables, it is recommended that you choose
9054 a register that is normally saved and restored by function calls on your
9055 machine, so that calls to library routines will not clobber it.
9056
9057 The only supported use for this feature is to specify registers
9058 for input and output operands when calling Extended @code{asm}
9059 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9060 particular machine don't provide sufficient control to select the desired
9061 register. To force an operand into a register, create a local variable
9062 and specify the register name after the variable's declaration. Then use
9063 the local variable for the @code{asm} operand and specify any constraint
9064 letter that matches the register:
9065
9066 @smallexample
9067 register int *p1 asm ("r0") = @dots{};
9068 register int *p2 asm ("r1") = @dots{};
9069 register int *result asm ("r0");
9070 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9071 @end smallexample
9072
9073 @emph{Warning:} In the above example, be aware that a register (for example
9074 @code{r0}) can be call-clobbered by subsequent code, including function
9075 calls and library calls for arithmetic operators on other variables (for
9076 example the initialization of @code{p2}). In this case, use temporary
9077 variables for expressions between the register assignments:
9078
9079 @smallexample
9080 int t1 = @dots{};
9081 register int *p1 asm ("r0") = @dots{};
9082 register int *p2 asm ("r1") = t1;
9083 register int *result asm ("r0");
9084 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9085 @end smallexample
9086
9087 Defining a register variable does not reserve the register. Other than
9088 when invoking the Extended @code{asm}, the contents of the specified
9089 register are not guaranteed. For this reason, the following uses
9090 are explicitly @emph{not} supported. If they appear to work, it is only
9091 happenstance, and may stop working as intended due to (seemingly)
9092 unrelated changes in surrounding code, or even minor changes in the
9093 optimization of a future version of gcc:
9094
9095 @itemize @bullet
9096 @item Passing parameters to or from Basic @code{asm}
9097 @item Passing parameters to or from Extended @code{asm} without using input
9098 or output operands.
9099 @item Passing parameters to or from routines written in assembler (or
9100 other languages) using non-standard calling conventions.
9101 @end itemize
9102
9103 Some developers use Local Register Variables in an attempt to improve
9104 gcc's allocation of registers, especially in large functions. In this
9105 case the register name is essentially a hint to the register allocator.
9106 While in some instances this can generate better code, improvements are
9107 subject to the whims of the allocator/optimizers. Since there are no
9108 guarantees that your improvements won't be lost, this usage of Local
9109 Register Variables is discouraged.
9110
9111 On the MIPS platform, there is related use for local register variables
9112 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9113 Defining coprocessor specifics for MIPS targets, gccint,
9114 GNU Compiler Collection (GCC) Internals}).
9115
9116 @node Size of an asm
9117 @subsection Size of an @code{asm}
9118
9119 Some targets require that GCC track the size of each instruction used
9120 in order to generate correct code. Because the final length of the
9121 code produced by an @code{asm} statement is only known by the
9122 assembler, GCC must make an estimate as to how big it will be. It
9123 does this by counting the number of instructions in the pattern of the
9124 @code{asm} and multiplying that by the length of the longest
9125 instruction supported by that processor. (When working out the number
9126 of instructions, it assumes that any occurrence of a newline or of
9127 whatever statement separator character is supported by the assembler --
9128 typically @samp{;} --- indicates the end of an instruction.)
9129
9130 Normally, GCC's estimate is adequate to ensure that correct
9131 code is generated, but it is possible to confuse the compiler if you use
9132 pseudo instructions or assembler macros that expand into multiple real
9133 instructions, or if you use assembler directives that expand to more
9134 space in the object file than is needed for a single instruction.
9135 If this happens then the assembler may produce a diagnostic saying that
9136 a label is unreachable.
9137
9138 @node Alternate Keywords
9139 @section Alternate Keywords
9140 @cindex alternate keywords
9141 @cindex keywords, alternate
9142
9143 @option{-ansi} and the various @option{-std} options disable certain
9144 keywords. This causes trouble when you want to use GNU C extensions, or
9145 a general-purpose header file that should be usable by all programs,
9146 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9147 @code{inline} are not available in programs compiled with
9148 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9149 program compiled with @option{-std=c99} or @option{-std=c11}). The
9150 ISO C99 keyword
9151 @code{restrict} is only available when @option{-std=gnu99} (which will
9152 eventually be the default) or @option{-std=c99} (or the equivalent
9153 @option{-std=iso9899:1999}), or an option for a later standard
9154 version, is used.
9155
9156 The way to solve these problems is to put @samp{__} at the beginning and
9157 end of each problematical keyword. For example, use @code{__asm__}
9158 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9159
9160 Other C compilers won't accept these alternative keywords; if you want to
9161 compile with another compiler, you can define the alternate keywords as
9162 macros to replace them with the customary keywords. It looks like this:
9163
9164 @smallexample
9165 #ifndef __GNUC__
9166 #define __asm__ asm
9167 #endif
9168 @end smallexample
9169
9170 @findex __extension__
9171 @opindex pedantic
9172 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9173 You can
9174 prevent such warnings within one expression by writing
9175 @code{__extension__} before the expression. @code{__extension__} has no
9176 effect aside from this.
9177
9178 @node Incomplete Enums
9179 @section Incomplete @code{enum} Types
9180
9181 You can define an @code{enum} tag without specifying its possible values.
9182 This results in an incomplete type, much like what you get if you write
9183 @code{struct foo} without describing the elements. A later declaration
9184 that does specify the possible values completes the type.
9185
9186 You cannot allocate variables or storage using the type while it is
9187 incomplete. However, you can work with pointers to that type.
9188
9189 This extension may not be very useful, but it makes the handling of
9190 @code{enum} more consistent with the way @code{struct} and @code{union}
9191 are handled.
9192
9193 This extension is not supported by GNU C++.
9194
9195 @node Function Names
9196 @section Function Names as Strings
9197 @cindex @code{__func__} identifier
9198 @cindex @code{__FUNCTION__} identifier
9199 @cindex @code{__PRETTY_FUNCTION__} identifier
9200
9201 GCC provides three magic constants that hold the name of the current
9202 function as a string. In C++11 and later modes, all three are treated
9203 as constant expressions and can be used in @code{constexpr} constexts.
9204 The first of these constants is @code{__func__}, which is part of
9205 the C99 standard:
9206
9207 The identifier @code{__func__} is implicitly declared by the translator
9208 as if, immediately following the opening brace of each function
9209 definition, the declaration
9210
9211 @smallexample
9212 static const char __func__[] = "function-name";
9213 @end smallexample
9214
9215 @noindent
9216 appeared, where function-name is the name of the lexically-enclosing
9217 function. This name is the unadorned name of the function. As an
9218 extension, at file (or, in C++, namespace scope), @code{__func__}
9219 evaluates to the empty string.
9220
9221 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9222 backward compatibility with old versions of GCC.
9223
9224 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9225 @code{__func__}, except that at file (or, in C++, namespace scope),
9226 it evaluates to the string @code{"top level"}. In addition, in C++,
9227 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9228 well as its bare name. For example, this program:
9229
9230 @smallexample
9231 extern "C" int printf (const char *, ...);
9232
9233 class a @{
9234 public:
9235 void sub (int i)
9236 @{
9237 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9238 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9239 @}
9240 @};
9241
9242 int
9243 main (void)
9244 @{
9245 a ax;
9246 ax.sub (0);
9247 return 0;
9248 @}
9249 @end smallexample
9250
9251 @noindent
9252 gives this output:
9253
9254 @smallexample
9255 __FUNCTION__ = sub
9256 __PRETTY_FUNCTION__ = void a::sub(int)
9257 @end smallexample
9258
9259 These identifiers are variables, not preprocessor macros, and may not
9260 be used to initialize @code{char} arrays or be concatenated with string
9261 literals.
9262
9263 @node Return Address
9264 @section Getting the Return or Frame Address of a Function
9265
9266 These functions may be used to get information about the callers of a
9267 function.
9268
9269 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9270 This function returns the return address of the current function, or of
9271 one of its callers. The @var{level} argument is number of frames to
9272 scan up the call stack. A value of @code{0} yields the return address
9273 of the current function, a value of @code{1} yields the return address
9274 of the caller of the current function, and so forth. When inlining
9275 the expected behavior is that the function returns the address of
9276 the function that is returned to. To work around this behavior use
9277 the @code{noinline} function attribute.
9278
9279 The @var{level} argument must be a constant integer.
9280
9281 On some machines it may be impossible to determine the return address of
9282 any function other than the current one; in such cases, or when the top
9283 of the stack has been reached, this function returns @code{0} or a
9284 random value. In addition, @code{__builtin_frame_address} may be used
9285 to determine if the top of the stack has been reached.
9286
9287 Additional post-processing of the returned value may be needed, see
9288 @code{__builtin_extract_return_addr}.
9289
9290 Calling this function with a nonzero argument can have unpredictable
9291 effects, including crashing the calling program. As a result, calls
9292 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9293 option is in effect. Such calls should only be made in debugging
9294 situations.
9295 @end deftypefn
9296
9297 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9298 The address as returned by @code{__builtin_return_address} may have to be fed
9299 through this function to get the actual encoded address. For example, on the
9300 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9301 platforms an offset has to be added for the true next instruction to be
9302 executed.
9303
9304 If no fixup is needed, this function simply passes through @var{addr}.
9305 @end deftypefn
9306
9307 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9308 This function does the reverse of @code{__builtin_extract_return_addr}.
9309 @end deftypefn
9310
9311 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9312 This function is similar to @code{__builtin_return_address}, but it
9313 returns the address of the function frame rather than the return address
9314 of the function. Calling @code{__builtin_frame_address} with a value of
9315 @code{0} yields the frame address of the current function, a value of
9316 @code{1} yields the frame address of the caller of the current function,
9317 and so forth.
9318
9319 The frame is the area on the stack that holds local variables and saved
9320 registers. The frame address is normally the address of the first word
9321 pushed on to the stack by the function. However, the exact definition
9322 depends upon the processor and the calling convention. If the processor
9323 has a dedicated frame pointer register, and the function has a frame,
9324 then @code{__builtin_frame_address} returns the value of the frame
9325 pointer register.
9326
9327 On some machines it may be impossible to determine the frame address of
9328 any function other than the current one; in such cases, or when the top
9329 of the stack has been reached, this function returns @code{0} if
9330 the first frame pointer is properly initialized by the startup code.
9331
9332 Calling this function with a nonzero argument can have unpredictable
9333 effects, including crashing the calling program. As a result, calls
9334 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9335 option is in effect. Such calls should only be made in debugging
9336 situations.
9337 @end deftypefn
9338
9339 @node Vector Extensions
9340 @section Using Vector Instructions through Built-in Functions
9341
9342 On some targets, the instruction set contains SIMD vector instructions which
9343 operate on multiple values contained in one large register at the same time.
9344 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9345 this way.
9346
9347 The first step in using these extensions is to provide the necessary data
9348 types. This should be done using an appropriate @code{typedef}:
9349
9350 @smallexample
9351 typedef int v4si __attribute__ ((vector_size (16)));
9352 @end smallexample
9353
9354 @noindent
9355 The @code{int} type specifies the base type, while the attribute specifies
9356 the vector size for the variable, measured in bytes. For example, the
9357 declaration above causes the compiler to set the mode for the @code{v4si}
9358 type to be 16 bytes wide and divided into @code{int} sized units. For
9359 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9360 corresponding mode of @code{foo} is @acronym{V4SI}.
9361
9362 The @code{vector_size} attribute is only applicable to integral and
9363 float scalars, although arrays, pointers, and function return values
9364 are allowed in conjunction with this construct. Only sizes that are
9365 a power of two are currently allowed.
9366
9367 All the basic integer types can be used as base types, both as signed
9368 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9369 @code{long long}. In addition, @code{float} and @code{double} can be
9370 used to build floating-point vector types.
9371
9372 Specifying a combination that is not valid for the current architecture
9373 causes GCC to synthesize the instructions using a narrower mode.
9374 For example, if you specify a variable of type @code{V4SI} and your
9375 architecture does not allow for this specific SIMD type, GCC
9376 produces code that uses 4 @code{SIs}.
9377
9378 The types defined in this manner can be used with a subset of normal C
9379 operations. Currently, GCC allows using the following operators
9380 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9381
9382 The operations behave like C++ @code{valarrays}. Addition is defined as
9383 the addition of the corresponding elements of the operands. For
9384 example, in the code below, each of the 4 elements in @var{a} is
9385 added to the corresponding 4 elements in @var{b} and the resulting
9386 vector is stored in @var{c}.
9387
9388 @smallexample
9389 typedef int v4si __attribute__ ((vector_size (16)));
9390
9391 v4si a, b, c;
9392
9393 c = a + b;
9394 @end smallexample
9395
9396 Subtraction, multiplication, division, and the logical operations
9397 operate in a similar manner. Likewise, the result of using the unary
9398 minus or complement operators on a vector type is a vector whose
9399 elements are the negative or complemented values of the corresponding
9400 elements in the operand.
9401
9402 It is possible to use shifting operators @code{<<}, @code{>>} on
9403 integer-type vectors. The operation is defined as following: @code{@{a0,
9404 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9405 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9406 elements.
9407
9408 For convenience, it is allowed to use a binary vector operation
9409 where one operand is a scalar. In that case the compiler transforms
9410 the scalar operand into a vector where each element is the scalar from
9411 the operation. The transformation happens only if the scalar could be
9412 safely converted to the vector-element type.
9413 Consider the following code.
9414
9415 @smallexample
9416 typedef int v4si __attribute__ ((vector_size (16)));
9417
9418 v4si a, b, c;
9419 long l;
9420
9421 a = b + 1; /* a = b + @{1,1,1,1@}; */
9422 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9423
9424 a = l + a; /* Error, cannot convert long to int. */
9425 @end smallexample
9426
9427 Vectors can be subscripted as if the vector were an array with
9428 the same number of elements and base type. Out of bound accesses
9429 invoke undefined behavior at run time. Warnings for out of bound
9430 accesses for vector subscription can be enabled with
9431 @option{-Warray-bounds}.
9432
9433 Vector comparison is supported with standard comparison
9434 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9435 vector expressions of integer-type or real-type. Comparison between
9436 integer-type vectors and real-type vectors are not supported. The
9437 result of the comparison is a vector of the same width and number of
9438 elements as the comparison operands with a signed integral element
9439 type.
9440
9441 Vectors are compared element-wise producing 0 when comparison is false
9442 and -1 (constant of the appropriate type where all bits are set)
9443 otherwise. Consider the following example.
9444
9445 @smallexample
9446 typedef int v4si __attribute__ ((vector_size (16)));
9447
9448 v4si a = @{1,2,3,4@};
9449 v4si b = @{3,2,1,4@};
9450 v4si c;
9451
9452 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9453 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9454 @end smallexample
9455
9456 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9457 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9458 integer vector with the same number of elements of the same size as @code{b}
9459 and @code{c}, computes all three arguments and creates a vector
9460 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9461 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9462 As in the case of binary operations, this syntax is also accepted when
9463 one of @code{b} or @code{c} is a scalar that is then transformed into a
9464 vector. If both @code{b} and @code{c} are scalars and the type of
9465 @code{true?b:c} has the same size as the element type of @code{a}, then
9466 @code{b} and @code{c} are converted to a vector type whose elements have
9467 this type and with the same number of elements as @code{a}.
9468
9469 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9470 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9471 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9472 For mixed operations between a scalar @code{s} and a vector @code{v},
9473 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9474 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9475
9476 Vector shuffling is available using functions
9477 @code{__builtin_shuffle (vec, mask)} and
9478 @code{__builtin_shuffle (vec0, vec1, mask)}.
9479 Both functions construct a permutation of elements from one or two
9480 vectors and return a vector of the same type as the input vector(s).
9481 The @var{mask} is an integral vector with the same width (@var{W})
9482 and element count (@var{N}) as the output vector.
9483
9484 The elements of the input vectors are numbered in memory ordering of
9485 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9486 elements of @var{mask} are considered modulo @var{N} in the single-operand
9487 case and modulo @math{2*@var{N}} in the two-operand case.
9488
9489 Consider the following example,
9490
9491 @smallexample
9492 typedef int v4si __attribute__ ((vector_size (16)));
9493
9494 v4si a = @{1,2,3,4@};
9495 v4si b = @{5,6,7,8@};
9496 v4si mask1 = @{0,1,1,3@};
9497 v4si mask2 = @{0,4,2,5@};
9498 v4si res;
9499
9500 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9501 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9502 @end smallexample
9503
9504 Note that @code{__builtin_shuffle} is intentionally semantically
9505 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9506
9507 You can declare variables and use them in function calls and returns, as
9508 well as in assignments and some casts. You can specify a vector type as
9509 a return type for a function. Vector types can also be used as function
9510 arguments. It is possible to cast from one vector type to another,
9511 provided they are of the same size (in fact, you can also cast vectors
9512 to and from other datatypes of the same size).
9513
9514 You cannot operate between vectors of different lengths or different
9515 signedness without a cast.
9516
9517 @node Offsetof
9518 @section Support for @code{offsetof}
9519 @findex __builtin_offsetof
9520
9521 GCC implements for both C and C++ a syntactic extension to implement
9522 the @code{offsetof} macro.
9523
9524 @smallexample
9525 primary:
9526 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9527
9528 offsetof_member_designator:
9529 @code{identifier}
9530 | offsetof_member_designator "." @code{identifier}
9531 | offsetof_member_designator "[" @code{expr} "]"
9532 @end smallexample
9533
9534 This extension is sufficient such that
9535
9536 @smallexample
9537 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9538 @end smallexample
9539
9540 @noindent
9541 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9542 may be dependent. In either case, @var{member} may consist of a single
9543 identifier, or a sequence of member accesses and array references.
9544
9545 @node __sync Builtins
9546 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9547
9548 The following built-in functions
9549 are intended to be compatible with those described
9550 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9551 section 7.4. As such, they depart from normal GCC practice by not using
9552 the @samp{__builtin_} prefix and also by being overloaded so that they
9553 work on multiple types.
9554
9555 The definition given in the Intel documentation allows only for the use of
9556 the types @code{int}, @code{long}, @code{long long} or their unsigned
9557 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9558 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9559 Operations on pointer arguments are performed as if the operands were
9560 of the @code{uintptr_t} type. That is, they are not scaled by the size
9561 of the type to which the pointer points.
9562
9563 These functions are implemented in terms of the @samp{__atomic}
9564 builtins (@pxref{__atomic Builtins}). They should not be used for new
9565 code which should use the @samp{__atomic} builtins instead.
9566
9567 Not all operations are supported by all target processors. If a particular
9568 operation cannot be implemented on the target processor, a warning is
9569 generated and a call to an external function is generated. The external
9570 function carries the same name as the built-in version,
9571 with an additional suffix
9572 @samp{_@var{n}} where @var{n} is the size of the data type.
9573
9574 @c ??? Should we have a mechanism to suppress this warning? This is almost
9575 @c useful for implementing the operation under the control of an external
9576 @c mutex.
9577
9578 In most cases, these built-in functions are considered a @dfn{full barrier}.
9579 That is,
9580 no memory operand is moved across the operation, either forward or
9581 backward. Further, instructions are issued as necessary to prevent the
9582 processor from speculating loads across the operation and from queuing stores
9583 after the operation.
9584
9585 All of the routines are described in the Intel documentation to take
9586 ``an optional list of variables protected by the memory barrier''. It's
9587 not clear what is meant by that; it could mean that @emph{only} the
9588 listed variables are protected, or it could mean a list of additional
9589 variables to be protected. The list is ignored by GCC which treats it as
9590 empty. GCC interprets an empty list as meaning that all globally
9591 accessible variables should be protected.
9592
9593 @table @code
9594 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9595 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9596 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9597 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9598 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9599 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9600 @findex __sync_fetch_and_add
9601 @findex __sync_fetch_and_sub
9602 @findex __sync_fetch_and_or
9603 @findex __sync_fetch_and_and
9604 @findex __sync_fetch_and_xor
9605 @findex __sync_fetch_and_nand
9606 These built-in functions perform the operation suggested by the name, and
9607 returns the value that had previously been in memory. That is, operations
9608 on integer operands have the following semantics. Operations on pointer
9609 arguments are performed as if the operands were of the @code{uintptr_t}
9610 type. That is, they are not scaled by the size of the type to which
9611 the pointer points.
9612
9613 @smallexample
9614 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9615 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9616 @end smallexample
9617
9618 The object pointed to by the first argument must be of integer or pointer
9619 type. It must not be a boolean type.
9620
9621 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9622 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9623
9624 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9625 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9626 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9627 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9628 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9629 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9630 @findex __sync_add_and_fetch
9631 @findex __sync_sub_and_fetch
9632 @findex __sync_or_and_fetch
9633 @findex __sync_and_and_fetch
9634 @findex __sync_xor_and_fetch
9635 @findex __sync_nand_and_fetch
9636 These built-in functions perform the operation suggested by the name, and
9637 return the new value. That is, operations on integer operands have
9638 the following semantics. Operations on pointer operands are performed as
9639 if the operand's type were @code{uintptr_t}.
9640
9641 @smallexample
9642 @{ *ptr @var{op}= value; return *ptr; @}
9643 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9644 @end smallexample
9645
9646 The same constraints on arguments apply as for the corresponding
9647 @code{__sync_op_and_fetch} built-in functions.
9648
9649 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9650 as @code{*ptr = ~(*ptr & value)} instead of
9651 @code{*ptr = ~*ptr & value}.
9652
9653 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9654 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9655 @findex __sync_bool_compare_and_swap
9656 @findex __sync_val_compare_and_swap
9657 These built-in functions perform an atomic compare and swap.
9658 That is, if the current
9659 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9660 @code{*@var{ptr}}.
9661
9662 The ``bool'' version returns true if the comparison is successful and
9663 @var{newval} is written. The ``val'' version returns the contents
9664 of @code{*@var{ptr}} before the operation.
9665
9666 @item __sync_synchronize (...)
9667 @findex __sync_synchronize
9668 This built-in function issues a full memory barrier.
9669
9670 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9671 @findex __sync_lock_test_and_set
9672 This built-in function, as described by Intel, is not a traditional test-and-set
9673 operation, but rather an atomic exchange operation. It writes @var{value}
9674 into @code{*@var{ptr}}, and returns the previous contents of
9675 @code{*@var{ptr}}.
9676
9677 Many targets have only minimal support for such locks, and do not support
9678 a full exchange operation. In this case, a target may support reduced
9679 functionality here by which the @emph{only} valid value to store is the
9680 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9681 is implementation defined.
9682
9683 This built-in function is not a full barrier,
9684 but rather an @dfn{acquire barrier}.
9685 This means that references after the operation cannot move to (or be
9686 speculated to) before the operation, but previous memory stores may not
9687 be globally visible yet, and previous memory loads may not yet be
9688 satisfied.
9689
9690 @item void __sync_lock_release (@var{type} *ptr, ...)
9691 @findex __sync_lock_release
9692 This built-in function releases the lock acquired by
9693 @code{__sync_lock_test_and_set}.
9694 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9695
9696 This built-in function is not a full barrier,
9697 but rather a @dfn{release barrier}.
9698 This means that all previous memory stores are globally visible, and all
9699 previous memory loads have been satisfied, but following memory reads
9700 are not prevented from being speculated to before the barrier.
9701 @end table
9702
9703 @node __atomic Builtins
9704 @section Built-in Functions for Memory Model Aware Atomic Operations
9705
9706 The following built-in functions approximately match the requirements
9707 for the C++11 memory model. They are all
9708 identified by being prefixed with @samp{__atomic} and most are
9709 overloaded so that they work with multiple types.
9710
9711 These functions are intended to replace the legacy @samp{__sync}
9712 builtins. The main difference is that the memory order that is requested
9713 is a parameter to the functions. New code should always use the
9714 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9715
9716 Note that the @samp{__atomic} builtins assume that programs will
9717 conform to the C++11 memory model. In particular, they assume
9718 that programs are free of data races. See the C++11 standard for
9719 detailed requirements.
9720
9721 The @samp{__atomic} builtins can be used with any integral scalar or
9722 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9723 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9724 supported by the architecture.
9725
9726 The four non-arithmetic functions (load, store, exchange, and
9727 compare_exchange) all have a generic version as well. This generic
9728 version works on any data type. It uses the lock-free built-in function
9729 if the specific data type size makes that possible; otherwise, an
9730 external call is left to be resolved at run time. This external call is
9731 the same format with the addition of a @samp{size_t} parameter inserted
9732 as the first parameter indicating the size of the object being pointed to.
9733 All objects must be the same size.
9734
9735 There are 6 different memory orders that can be specified. These map
9736 to the C++11 memory orders with the same names, see the C++11 standard
9737 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9738 on atomic synchronization} for detailed definitions. Individual
9739 targets may also support additional memory orders for use on specific
9740 architectures. Refer to the target documentation for details of
9741 these.
9742
9743 An atomic operation can both constrain code motion and
9744 be mapped to hardware instructions for synchronization between threads
9745 (e.g., a fence). To which extent this happens is controlled by the
9746 memory orders, which are listed here in approximately ascending order of
9747 strength. The description of each memory order is only meant to roughly
9748 illustrate the effects and is not a specification; see the C++11
9749 memory model for precise semantics.
9750
9751 @table @code
9752 @item __ATOMIC_RELAXED
9753 Implies no inter-thread ordering constraints.
9754 @item __ATOMIC_CONSUME
9755 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9756 memory order because of a deficiency in C++11's semantics for
9757 @code{memory_order_consume}.
9758 @item __ATOMIC_ACQUIRE
9759 Creates an inter-thread happens-before constraint from the release (or
9760 stronger) semantic store to this acquire load. Can prevent hoisting
9761 of code to before the operation.
9762 @item __ATOMIC_RELEASE
9763 Creates an inter-thread happens-before constraint to acquire (or stronger)
9764 semantic loads that read from this release store. Can prevent sinking
9765 of code to after the operation.
9766 @item __ATOMIC_ACQ_REL
9767 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9768 @code{__ATOMIC_RELEASE}.
9769 @item __ATOMIC_SEQ_CST
9770 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9771 @end table
9772
9773 Note that in the C++11 memory model, @emph{fences} (e.g.,
9774 @samp{__atomic_thread_fence}) take effect in combination with other
9775 atomic operations on specific memory locations (e.g., atomic loads);
9776 operations on specific memory locations do not necessarily affect other
9777 operations in the same way.
9778
9779 Target architectures are encouraged to provide their own patterns for
9780 each of the atomic built-in functions. If no target is provided, the original
9781 non-memory model set of @samp{__sync} atomic built-in functions are
9782 used, along with any required synchronization fences surrounding it in
9783 order to achieve the proper behavior. Execution in this case is subject
9784 to the same restrictions as those built-in functions.
9785
9786 If there is no pattern or mechanism to provide a lock-free instruction
9787 sequence, a call is made to an external routine with the same parameters
9788 to be resolved at run time.
9789
9790 When implementing patterns for these built-in functions, the memory order
9791 parameter can be ignored as long as the pattern implements the most
9792 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
9793 orders execute correctly with this memory order but they may not execute as
9794 efficiently as they could with a more appropriate implementation of the
9795 relaxed requirements.
9796
9797 Note that the C++11 standard allows for the memory order parameter to be
9798 determined at run time rather than at compile time. These built-in
9799 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
9800 than invoke a runtime library call or inline a switch statement. This is
9801 standard compliant, safe, and the simplest approach for now.
9802
9803 The memory order parameter is a signed int, but only the lower 16 bits are
9804 reserved for the memory order. The remainder of the signed int is reserved
9805 for target use and should be 0. Use of the predefined atomic values
9806 ensures proper usage.
9807
9808 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
9809 This built-in function implements an atomic load operation. It returns the
9810 contents of @code{*@var{ptr}}.
9811
9812 The valid memory order variants are
9813 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9814 and @code{__ATOMIC_CONSUME}.
9815
9816 @end deftypefn
9817
9818 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
9819 This is the generic version of an atomic load. It returns the
9820 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
9821
9822 @end deftypefn
9823
9824 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
9825 This built-in function implements an atomic store operation. It writes
9826 @code{@var{val}} into @code{*@var{ptr}}.
9827
9828 The valid memory order variants are
9829 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
9830
9831 @end deftypefn
9832
9833 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
9834 This is the generic version of an atomic store. It stores the value
9835 of @code{*@var{val}} into @code{*@var{ptr}}.
9836
9837 @end deftypefn
9838
9839 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
9840 This built-in function implements an atomic exchange operation. It writes
9841 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
9842 @code{*@var{ptr}}.
9843
9844 The valid memory order variants are
9845 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9846 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
9847
9848 @end deftypefn
9849
9850 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
9851 This is the generic version of an atomic exchange. It stores the
9852 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
9853 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
9854
9855 @end deftypefn
9856
9857 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
9858 This built-in function implements an atomic compare and exchange operation.
9859 This compares the contents of @code{*@var{ptr}} with the contents of
9860 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
9861 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
9862 equal, the operation is a @emph{read} and the current contents of
9863 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
9864 for weak compare_exchange, which may fail spuriously, and false for
9865 the strong variation, which never fails spuriously. Many targets
9866 only offer the strong variation and ignore the parameter. When in doubt, use
9867 the strong variation.
9868
9869 If @var{desired} is written into @code{*@var{ptr}} then true is returned
9870 and memory is affected according to the
9871 memory order specified by @var{success_memorder}. There are no
9872 restrictions on what memory order can be used here.
9873
9874 Otherwise, false is returned and memory is affected according
9875 to @var{failure_memorder}. This memory order cannot be
9876 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
9877 stronger order than that specified by @var{success_memorder}.
9878
9879 @end deftypefn
9880
9881 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
9882 This built-in function implements the generic version of
9883 @code{__atomic_compare_exchange}. The function is virtually identical to
9884 @code{__atomic_compare_exchange_n}, except the desired value is also a
9885 pointer.
9886
9887 @end deftypefn
9888
9889 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
9890 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
9891 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
9892 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
9893 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
9894 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
9895 These built-in functions perform the operation suggested by the name, and
9896 return the result of the operation. Operations on pointer arguments are
9897 performed as if the operands were of the @code{uintptr_t} type. That is,
9898 they are not scaled by the size of the type to which the pointer points.
9899
9900 @smallexample
9901 @{ *ptr @var{op}= val; return *ptr; @}
9902 @end smallexample
9903
9904 The object pointed to by the first argument must be of integer or pointer
9905 type. It must not be a boolean type. All memory orders are valid.
9906
9907 @end deftypefn
9908
9909 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
9910 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
9911 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
9912 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
9913 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
9914 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
9915 These built-in functions perform the operation suggested by the name, and
9916 return the value that had previously been in @code{*@var{ptr}}. Operations
9917 on pointer arguments are performed as if the operands were of
9918 the @code{uintptr_t} type. That is, they are not scaled by the size of
9919 the type to which the pointer points.
9920
9921 @smallexample
9922 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
9923 @end smallexample
9924
9925 The same constraints on arguments apply as for the corresponding
9926 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
9927
9928 @end deftypefn
9929
9930 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
9931
9932 This built-in function performs an atomic test-and-set operation on
9933 the byte at @code{*@var{ptr}}. The byte is set to some implementation
9934 defined nonzero ``set'' value and the return value is @code{true} if and only
9935 if the previous contents were ``set''.
9936 It should be only used for operands of type @code{bool} or @code{char}. For
9937 other types only part of the value may be set.
9938
9939 All memory orders are valid.
9940
9941 @end deftypefn
9942
9943 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
9944
9945 This built-in function performs an atomic clear operation on
9946 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
9947 It should be only used for operands of type @code{bool} or @code{char} and
9948 in conjunction with @code{__atomic_test_and_set}.
9949 For other types it may only clear partially. If the type is not @code{bool}
9950 prefer using @code{__atomic_store}.
9951
9952 The valid memory order variants are
9953 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
9954 @code{__ATOMIC_RELEASE}.
9955
9956 @end deftypefn
9957
9958 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
9959
9960 This built-in function acts as a synchronization fence between threads
9961 based on the specified memory order.
9962
9963 All memory orders are valid.
9964
9965 @end deftypefn
9966
9967 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
9968
9969 This built-in function acts as a synchronization fence between a thread
9970 and signal handlers based in the same thread.
9971
9972 All memory orders are valid.
9973
9974 @end deftypefn
9975
9976 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
9977
9978 This built-in function returns true if objects of @var{size} bytes always
9979 generate lock-free atomic instructions for the target architecture.
9980 @var{size} must resolve to a compile-time constant and the result also
9981 resolves to a compile-time constant.
9982
9983 @var{ptr} is an optional pointer to the object that may be used to determine
9984 alignment. A value of 0 indicates typical alignment should be used. The
9985 compiler may also ignore this parameter.
9986
9987 @smallexample
9988 if (__atomic_always_lock_free (sizeof (long long), 0))
9989 @end smallexample
9990
9991 @end deftypefn
9992
9993 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
9994
9995 This built-in function returns true if objects of @var{size} bytes always
9996 generate lock-free atomic instructions for the target architecture. If
9997 the built-in function is not known to be lock-free, a call is made to a
9998 runtime routine named @code{__atomic_is_lock_free}.
9999
10000 @var{ptr} is an optional pointer to the object that may be used to determine
10001 alignment. A value of 0 indicates typical alignment should be used. The
10002 compiler may also ignore this parameter.
10003 @end deftypefn
10004
10005 @node Integer Overflow Builtins
10006 @section Built-in Functions to Perform Arithmetic with Overflow Checking
10007
10008 The following built-in functions allow performing simple arithmetic operations
10009 together with checking whether the operations overflowed.
10010
10011 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10012 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
10013 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
10014 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
10015 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
10016 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10017 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10018
10019 These built-in functions promote the first two operands into infinite precision signed
10020 type and perform addition on those promoted operands. The result is then
10021 cast to the type the third pointer argument points to and stored there.
10022 If the stored result is equal to the infinite precision result, the built-in
10023 functions return false, otherwise they return true. As the addition is
10024 performed in infinite signed precision, these built-in functions have fully defined
10025 behavior for all argument values.
10026
10027 The first built-in function allows arbitrary integral types for operands and
10028 the result type must be pointer to some integral type other than enumerated or
10029 boolean type, the rest of the built-in functions have explicit integer types.
10030
10031 The compiler will attempt to use hardware instructions to implement
10032 these built-in functions where possible, like conditional jump on overflow
10033 after addition, conditional jump on carry etc.
10034
10035 @end deftypefn
10036
10037 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10038 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
10039 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
10040 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
10041 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
10042 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10043 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10044
10045 These built-in functions are similar to the add overflow checking built-in
10046 functions above, except they perform subtraction, subtract the second argument
10047 from the first one, instead of addition.
10048
10049 @end deftypefn
10050
10051 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10052 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10053 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10054 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10055 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10056 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10057 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10058
10059 These built-in functions are similar to the add overflow checking built-in
10060 functions above, except they perform multiplication, instead of addition.
10061
10062 @end deftypefn
10063
10064 The following built-in functions allow checking if simple arithmetic operation
10065 would overflow.
10066
10067 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10068 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10069 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10070
10071 These built-in functions are similar to @code{__builtin_add_overflow},
10072 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10073 they don't store the result of the arithmetic operation anywhere and the
10074 last argument is not a pointer, but some expression with integral type other
10075 than enumerated or boolean type.
10076
10077 The built-in functions promote the first two operands into infinite precision signed type
10078 and perform addition on those promoted operands. The result is then
10079 cast to the type of the third argument. If the cast result is equal to the infinite
10080 precision result, the built-in functions return false, otherwise they return true.
10081 The value of the third argument is ignored, just the side-effects in the third argument
10082 are evaluated, and no integral argument promotions are performed on the last argument.
10083 If the third argument is a bit-field, the type used for the result cast has the
10084 precision and signedness of the given bit-field, rather than precision and signedness
10085 of the underlying type.
10086
10087 For example, the following macro can be used to portably check, at
10088 compile-time, whether or not adding two constant integers will overflow,
10089 and perform the addition only when it is known to be safe and not to trigger
10090 a @option{-Woverflow} warning.
10091
10092 @smallexample
10093 #define INT_ADD_OVERFLOW_P(a, b) \
10094 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10095
10096 enum @{
10097 A = INT_MAX, B = 3,
10098 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10099 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10100 @};
10101 @end smallexample
10102
10103 The compiler will attempt to use hardware instructions to implement
10104 these built-in functions where possible, like conditional jump on overflow
10105 after addition, conditional jump on carry etc.
10106
10107 @end deftypefn
10108
10109 @node x86 specific memory model extensions for transactional memory
10110 @section x86-Specific Memory Model Extensions for Transactional Memory
10111
10112 The x86 architecture supports additional memory ordering flags
10113 to mark critical sections for hardware lock elision.
10114 These must be specified in addition to an existing memory order to
10115 atomic intrinsics.
10116
10117 @table @code
10118 @item __ATOMIC_HLE_ACQUIRE
10119 Start lock elision on a lock variable.
10120 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10121 @item __ATOMIC_HLE_RELEASE
10122 End lock elision on a lock variable.
10123 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10124 @end table
10125
10126 When a lock acquire fails, it is required for good performance to abort
10127 the transaction quickly. This can be done with a @code{_mm_pause}.
10128
10129 @smallexample
10130 #include <immintrin.h> // For _mm_pause
10131
10132 int lockvar;
10133
10134 /* Acquire lock with lock elision */
10135 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10136 _mm_pause(); /* Abort failed transaction */
10137 ...
10138 /* Free lock with lock elision */
10139 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10140 @end smallexample
10141
10142 @node Object Size Checking
10143 @section Object Size Checking Built-in Functions
10144 @findex __builtin_object_size
10145 @findex __builtin___memcpy_chk
10146 @findex __builtin___mempcpy_chk
10147 @findex __builtin___memmove_chk
10148 @findex __builtin___memset_chk
10149 @findex __builtin___strcpy_chk
10150 @findex __builtin___stpcpy_chk
10151 @findex __builtin___strncpy_chk
10152 @findex __builtin___strcat_chk
10153 @findex __builtin___strncat_chk
10154 @findex __builtin___sprintf_chk
10155 @findex __builtin___snprintf_chk
10156 @findex __builtin___vsprintf_chk
10157 @findex __builtin___vsnprintf_chk
10158 @findex __builtin___printf_chk
10159 @findex __builtin___vprintf_chk
10160 @findex __builtin___fprintf_chk
10161 @findex __builtin___vfprintf_chk
10162
10163 GCC implements a limited buffer overflow protection mechanism that can
10164 prevent some buffer overflow attacks by determining the sizes of objects
10165 into which data is about to be written and preventing the writes when
10166 the size isn't sufficient. The built-in functions described below yield
10167 the best results when used together and when optimization is enabled.
10168 For example, to detect object sizes across function boundaries or to
10169 follow pointer assignments through non-trivial control flow they rely
10170 on various optimization passes enabled with @option{-O2}. However, to
10171 a limited extent, they can be used without optimization as well.
10172
10173 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
10174 is a built-in construct that returns a constant number of bytes from
10175 @var{ptr} to the end of the object @var{ptr} pointer points to
10176 (if known at compile time). @code{__builtin_object_size} never evaluates
10177 its arguments for side-effects. If there are any side-effects in them, it
10178 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10179 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10180 point to and all of them are known at compile time, the returned number
10181 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10182 0 and minimum if nonzero. If it is not possible to determine which objects
10183 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10184 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10185 for @var{type} 2 or 3.
10186
10187 @var{type} is an integer constant from 0 to 3. If the least significant
10188 bit is clear, objects are whole variables, if it is set, a closest
10189 surrounding subobject is considered the object a pointer points to.
10190 The second bit determines if maximum or minimum of remaining bytes
10191 is computed.
10192
10193 @smallexample
10194 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10195 char *p = &var.buf1[1], *q = &var.b;
10196
10197 /* Here the object p points to is var. */
10198 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10199 /* The subobject p points to is var.buf1. */
10200 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10201 /* The object q points to is var. */
10202 assert (__builtin_object_size (q, 0)
10203 == (char *) (&var + 1) - (char *) &var.b);
10204 /* The subobject q points to is var.b. */
10205 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10206 @end smallexample
10207 @end deftypefn
10208
10209 There are built-in functions added for many common string operation
10210 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10211 built-in is provided. This built-in has an additional last argument,
10212 which is the number of bytes remaining in object the @var{dest}
10213 argument points to or @code{(size_t) -1} if the size is not known.
10214
10215 The built-in functions are optimized into the normal string functions
10216 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10217 it is known at compile time that the destination object will not
10218 be overflown. If the compiler can determine at compile time the
10219 object will be always overflown, it issues a warning.
10220
10221 The intended use can be e.g.@:
10222
10223 @smallexample
10224 #undef memcpy
10225 #define bos0(dest) __builtin_object_size (dest, 0)
10226 #define memcpy(dest, src, n) \
10227 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10228
10229 char *volatile p;
10230 char buf[10];
10231 /* It is unknown what object p points to, so this is optimized
10232 into plain memcpy - no checking is possible. */
10233 memcpy (p, "abcde", n);
10234 /* Destination is known and length too. It is known at compile
10235 time there will be no overflow. */
10236 memcpy (&buf[5], "abcde", 5);
10237 /* Destination is known, but the length is not known at compile time.
10238 This will result in __memcpy_chk call that can check for overflow
10239 at run time. */
10240 memcpy (&buf[5], "abcde", n);
10241 /* Destination is known and it is known at compile time there will
10242 be overflow. There will be a warning and __memcpy_chk call that
10243 will abort the program at run time. */
10244 memcpy (&buf[6], "abcde", 5);
10245 @end smallexample
10246
10247 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10248 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10249 @code{strcat} and @code{strncat}.
10250
10251 There are also checking built-in functions for formatted output functions.
10252 @smallexample
10253 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10254 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10255 const char *fmt, ...);
10256 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10257 va_list ap);
10258 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10259 const char *fmt, va_list ap);
10260 @end smallexample
10261
10262 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10263 etc.@: functions and can contain implementation specific flags on what
10264 additional security measures the checking function might take, such as
10265 handling @code{%n} differently.
10266
10267 The @var{os} argument is the object size @var{s} points to, like in the
10268 other built-in functions. There is a small difference in the behavior
10269 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10270 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10271 the checking function is called with @var{os} argument set to
10272 @code{(size_t) -1}.
10273
10274 In addition to this, there are checking built-in functions
10275 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10276 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10277 These have just one additional argument, @var{flag}, right before
10278 format string @var{fmt}. If the compiler is able to optimize them to
10279 @code{fputc} etc.@: functions, it does, otherwise the checking function
10280 is called and the @var{flag} argument passed to it.
10281
10282 @node Pointer Bounds Checker builtins
10283 @section Pointer Bounds Checker Built-in Functions
10284 @cindex Pointer Bounds Checker builtins
10285 @findex __builtin___bnd_set_ptr_bounds
10286 @findex __builtin___bnd_narrow_ptr_bounds
10287 @findex __builtin___bnd_copy_ptr_bounds
10288 @findex __builtin___bnd_init_ptr_bounds
10289 @findex __builtin___bnd_null_ptr_bounds
10290 @findex __builtin___bnd_store_ptr_bounds
10291 @findex __builtin___bnd_chk_ptr_lbounds
10292 @findex __builtin___bnd_chk_ptr_ubounds
10293 @findex __builtin___bnd_chk_ptr_bounds
10294 @findex __builtin___bnd_get_ptr_lbound
10295 @findex __builtin___bnd_get_ptr_ubound
10296
10297 GCC provides a set of built-in functions to control Pointer Bounds Checker
10298 instrumentation. Note that all Pointer Bounds Checker builtins can be used
10299 even if you compile with Pointer Bounds Checker off
10300 (@option{-fno-check-pointer-bounds}).
10301 The behavior may differ in such case as documented below.
10302
10303 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
10304
10305 This built-in function returns a new pointer with the value of @var{q}, and
10306 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
10307 Bounds Checker off, the built-in function just returns the first argument.
10308
10309 @smallexample
10310 extern void *__wrap_malloc (size_t n)
10311 @{
10312 void *p = (void *)__real_malloc (n);
10313 if (!p) return __builtin___bnd_null_ptr_bounds (p);
10314 return __builtin___bnd_set_ptr_bounds (p, n);
10315 @}
10316 @end smallexample
10317
10318 @end deftypefn
10319
10320 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10321
10322 This built-in function returns a new pointer with the value of @var{p}
10323 and associates it with the narrowed bounds formed by the intersection
10324 of bounds associated with @var{q} and the bounds
10325 [@var{p}, @var{p} + @var{size} - 1].
10326 With Pointer Bounds Checker off, the built-in function just returns the first
10327 argument.
10328
10329 @smallexample
10330 void init_objects (object *objs, size_t size)
10331 @{
10332 size_t i;
10333 /* Initialize objects one-by-one passing pointers with bounds of
10334 an object, not the full array of objects. */
10335 for (i = 0; i < size; i++)
10336 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10337 sizeof(object)));
10338 @}
10339 @end smallexample
10340
10341 @end deftypefn
10342
10343 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10344
10345 This built-in function returns a new pointer with the value of @var{q},
10346 and associates it with the bounds already associated with pointer @var{r}.
10347 With Pointer Bounds Checker off, the built-in function just returns the first
10348 argument.
10349
10350 @smallexample
10351 /* Here is a way to get pointer to object's field but
10352 still with the full object's bounds. */
10353 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10354 objptr);
10355 @end smallexample
10356
10357 @end deftypefn
10358
10359 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10360
10361 This built-in function returns a new pointer with the value of @var{q}, and
10362 associates it with INIT (allowing full memory access) bounds. With Pointer
10363 Bounds Checker off, the built-in function just returns the first argument.
10364
10365 @end deftypefn
10366
10367 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10368
10369 This built-in function returns a new pointer with the value of @var{q}, and
10370 associates it with NULL (allowing no memory access) bounds. With Pointer
10371 Bounds Checker off, the built-in function just returns the first argument.
10372
10373 @end deftypefn
10374
10375 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10376
10377 This built-in function stores the bounds associated with pointer @var{ptr_val}
10378 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10379 bounds from legacy code without touching the associated pointer's memory when
10380 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10381 function call is ignored.
10382
10383 @end deftypefn
10384
10385 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10386
10387 This built-in function checks if the pointer @var{q} is within the lower
10388 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10389 function call is ignored.
10390
10391 @smallexample
10392 extern void *__wrap_memset (void *dst, int c, size_t len)
10393 @{
10394 if (len > 0)
10395 @{
10396 __builtin___bnd_chk_ptr_lbounds (dst);
10397 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10398 __real_memset (dst, c, len);
10399 @}
10400 return dst;
10401 @}
10402 @end smallexample
10403
10404 @end deftypefn
10405
10406 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10407
10408 This built-in function checks if the pointer @var{q} is within the upper
10409 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10410 function call is ignored.
10411
10412 @end deftypefn
10413
10414 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10415
10416 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10417 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10418 off, the built-in function call is ignored.
10419
10420 @smallexample
10421 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10422 @{
10423 if (n > 0)
10424 @{
10425 __bnd_chk_ptr_bounds (dst, n);
10426 __bnd_chk_ptr_bounds (src, n);
10427 __real_memcpy (dst, src, n);
10428 @}
10429 return dst;
10430 @}
10431 @end smallexample
10432
10433 @end deftypefn
10434
10435 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10436
10437 This built-in function returns the lower bound associated
10438 with the pointer @var{q}, as a pointer value.
10439 This is useful for debugging using @code{printf}.
10440 With Pointer Bounds Checker off, the built-in function returns 0.
10441
10442 @smallexample
10443 void *lb = __builtin___bnd_get_ptr_lbound (q);
10444 void *ub = __builtin___bnd_get_ptr_ubound (q);
10445 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10446 @end smallexample
10447
10448 @end deftypefn
10449
10450 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10451
10452 This built-in function returns the upper bound (which is a pointer) associated
10453 with the pointer @var{q}. With Pointer Bounds Checker off,
10454 the built-in function returns -1.
10455
10456 @end deftypefn
10457
10458 @node Cilk Plus Builtins
10459 @section Cilk Plus C/C++ Language Extension Built-in Functions
10460
10461 GCC provides support for the following built-in reduction functions if Cilk Plus
10462 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10463
10464 @itemize @bullet
10465 @item @code{__sec_implicit_index}
10466 @item @code{__sec_reduce}
10467 @item @code{__sec_reduce_add}
10468 @item @code{__sec_reduce_all_nonzero}
10469 @item @code{__sec_reduce_all_zero}
10470 @item @code{__sec_reduce_any_nonzero}
10471 @item @code{__sec_reduce_any_zero}
10472 @item @code{__sec_reduce_max}
10473 @item @code{__sec_reduce_min}
10474 @item @code{__sec_reduce_max_ind}
10475 @item @code{__sec_reduce_min_ind}
10476 @item @code{__sec_reduce_mul}
10477 @item @code{__sec_reduce_mutating}
10478 @end itemize
10479
10480 Further details and examples about these built-in functions are described
10481 in the Cilk Plus language manual which can be found at
10482 @uref{https://www.cilkplus.org}.
10483
10484 @node Other Builtins
10485 @section Other Built-in Functions Provided by GCC
10486 @cindex built-in functions
10487 @findex __builtin_alloca
10488 @findex __builtin_alloca_with_align
10489 @findex __builtin_call_with_static_chain
10490 @findex __builtin_fpclassify
10491 @findex __builtin_isfinite
10492 @findex __builtin_isnormal
10493 @findex __builtin_isgreater
10494 @findex __builtin_isgreaterequal
10495 @findex __builtin_isinf_sign
10496 @findex __builtin_isless
10497 @findex __builtin_islessequal
10498 @findex __builtin_islessgreater
10499 @findex __builtin_isunordered
10500 @findex __builtin_powi
10501 @findex __builtin_powif
10502 @findex __builtin_powil
10503 @findex _Exit
10504 @findex _exit
10505 @findex abort
10506 @findex abs
10507 @findex acos
10508 @findex acosf
10509 @findex acosh
10510 @findex acoshf
10511 @findex acoshl
10512 @findex acosl
10513 @findex alloca
10514 @findex asin
10515 @findex asinf
10516 @findex asinh
10517 @findex asinhf
10518 @findex asinhl
10519 @findex asinl
10520 @findex atan
10521 @findex atan2
10522 @findex atan2f
10523 @findex atan2l
10524 @findex atanf
10525 @findex atanh
10526 @findex atanhf
10527 @findex atanhl
10528 @findex atanl
10529 @findex bcmp
10530 @findex bzero
10531 @findex cabs
10532 @findex cabsf
10533 @findex cabsl
10534 @findex cacos
10535 @findex cacosf
10536 @findex cacosh
10537 @findex cacoshf
10538 @findex cacoshl
10539 @findex cacosl
10540 @findex calloc
10541 @findex carg
10542 @findex cargf
10543 @findex cargl
10544 @findex casin
10545 @findex casinf
10546 @findex casinh
10547 @findex casinhf
10548 @findex casinhl
10549 @findex casinl
10550 @findex catan
10551 @findex catanf
10552 @findex catanh
10553 @findex catanhf
10554 @findex catanhl
10555 @findex catanl
10556 @findex cbrt
10557 @findex cbrtf
10558 @findex cbrtl
10559 @findex ccos
10560 @findex ccosf
10561 @findex ccosh
10562 @findex ccoshf
10563 @findex ccoshl
10564 @findex ccosl
10565 @findex ceil
10566 @findex ceilf
10567 @findex ceill
10568 @findex cexp
10569 @findex cexpf
10570 @findex cexpl
10571 @findex cimag
10572 @findex cimagf
10573 @findex cimagl
10574 @findex clog
10575 @findex clogf
10576 @findex clogl
10577 @findex clog10
10578 @findex clog10f
10579 @findex clog10l
10580 @findex conj
10581 @findex conjf
10582 @findex conjl
10583 @findex copysign
10584 @findex copysignf
10585 @findex copysignl
10586 @findex cos
10587 @findex cosf
10588 @findex cosh
10589 @findex coshf
10590 @findex coshl
10591 @findex cosl
10592 @findex cpow
10593 @findex cpowf
10594 @findex cpowl
10595 @findex cproj
10596 @findex cprojf
10597 @findex cprojl
10598 @findex creal
10599 @findex crealf
10600 @findex creall
10601 @findex csin
10602 @findex csinf
10603 @findex csinh
10604 @findex csinhf
10605 @findex csinhl
10606 @findex csinl
10607 @findex csqrt
10608 @findex csqrtf
10609 @findex csqrtl
10610 @findex ctan
10611 @findex ctanf
10612 @findex ctanh
10613 @findex ctanhf
10614 @findex ctanhl
10615 @findex ctanl
10616 @findex dcgettext
10617 @findex dgettext
10618 @findex drem
10619 @findex dremf
10620 @findex dreml
10621 @findex erf
10622 @findex erfc
10623 @findex erfcf
10624 @findex erfcl
10625 @findex erff
10626 @findex erfl
10627 @findex exit
10628 @findex exp
10629 @findex exp10
10630 @findex exp10f
10631 @findex exp10l
10632 @findex exp2
10633 @findex exp2f
10634 @findex exp2l
10635 @findex expf
10636 @findex expl
10637 @findex expm1
10638 @findex expm1f
10639 @findex expm1l
10640 @findex fabs
10641 @findex fabsf
10642 @findex fabsl
10643 @findex fdim
10644 @findex fdimf
10645 @findex fdiml
10646 @findex ffs
10647 @findex floor
10648 @findex floorf
10649 @findex floorl
10650 @findex fma
10651 @findex fmaf
10652 @findex fmal
10653 @findex fmax
10654 @findex fmaxf
10655 @findex fmaxl
10656 @findex fmin
10657 @findex fminf
10658 @findex fminl
10659 @findex fmod
10660 @findex fmodf
10661 @findex fmodl
10662 @findex fprintf
10663 @findex fprintf_unlocked
10664 @findex fputs
10665 @findex fputs_unlocked
10666 @findex frexp
10667 @findex frexpf
10668 @findex frexpl
10669 @findex fscanf
10670 @findex gamma
10671 @findex gammaf
10672 @findex gammal
10673 @findex gamma_r
10674 @findex gammaf_r
10675 @findex gammal_r
10676 @findex gettext
10677 @findex hypot
10678 @findex hypotf
10679 @findex hypotl
10680 @findex ilogb
10681 @findex ilogbf
10682 @findex ilogbl
10683 @findex imaxabs
10684 @findex index
10685 @findex isalnum
10686 @findex isalpha
10687 @findex isascii
10688 @findex isblank
10689 @findex iscntrl
10690 @findex isdigit
10691 @findex isgraph
10692 @findex islower
10693 @findex isprint
10694 @findex ispunct
10695 @findex isspace
10696 @findex isupper
10697 @findex iswalnum
10698 @findex iswalpha
10699 @findex iswblank
10700 @findex iswcntrl
10701 @findex iswdigit
10702 @findex iswgraph
10703 @findex iswlower
10704 @findex iswprint
10705 @findex iswpunct
10706 @findex iswspace
10707 @findex iswupper
10708 @findex iswxdigit
10709 @findex isxdigit
10710 @findex j0
10711 @findex j0f
10712 @findex j0l
10713 @findex j1
10714 @findex j1f
10715 @findex j1l
10716 @findex jn
10717 @findex jnf
10718 @findex jnl
10719 @findex labs
10720 @findex ldexp
10721 @findex ldexpf
10722 @findex ldexpl
10723 @findex lgamma
10724 @findex lgammaf
10725 @findex lgammal
10726 @findex lgamma_r
10727 @findex lgammaf_r
10728 @findex lgammal_r
10729 @findex llabs
10730 @findex llrint
10731 @findex llrintf
10732 @findex llrintl
10733 @findex llround
10734 @findex llroundf
10735 @findex llroundl
10736 @findex log
10737 @findex log10
10738 @findex log10f
10739 @findex log10l
10740 @findex log1p
10741 @findex log1pf
10742 @findex log1pl
10743 @findex log2
10744 @findex log2f
10745 @findex log2l
10746 @findex logb
10747 @findex logbf
10748 @findex logbl
10749 @findex logf
10750 @findex logl
10751 @findex lrint
10752 @findex lrintf
10753 @findex lrintl
10754 @findex lround
10755 @findex lroundf
10756 @findex lroundl
10757 @findex malloc
10758 @findex memchr
10759 @findex memcmp
10760 @findex memcpy
10761 @findex mempcpy
10762 @findex memset
10763 @findex modf
10764 @findex modff
10765 @findex modfl
10766 @findex nearbyint
10767 @findex nearbyintf
10768 @findex nearbyintl
10769 @findex nextafter
10770 @findex nextafterf
10771 @findex nextafterl
10772 @findex nexttoward
10773 @findex nexttowardf
10774 @findex nexttowardl
10775 @findex pow
10776 @findex pow10
10777 @findex pow10f
10778 @findex pow10l
10779 @findex powf
10780 @findex powl
10781 @findex printf
10782 @findex printf_unlocked
10783 @findex putchar
10784 @findex puts
10785 @findex remainder
10786 @findex remainderf
10787 @findex remainderl
10788 @findex remquo
10789 @findex remquof
10790 @findex remquol
10791 @findex rindex
10792 @findex rint
10793 @findex rintf
10794 @findex rintl
10795 @findex round
10796 @findex roundf
10797 @findex roundl
10798 @findex scalb
10799 @findex scalbf
10800 @findex scalbl
10801 @findex scalbln
10802 @findex scalblnf
10803 @findex scalblnf
10804 @findex scalbn
10805 @findex scalbnf
10806 @findex scanfnl
10807 @findex signbit
10808 @findex signbitf
10809 @findex signbitl
10810 @findex signbitd32
10811 @findex signbitd64
10812 @findex signbitd128
10813 @findex significand
10814 @findex significandf
10815 @findex significandl
10816 @findex sin
10817 @findex sincos
10818 @findex sincosf
10819 @findex sincosl
10820 @findex sinf
10821 @findex sinh
10822 @findex sinhf
10823 @findex sinhl
10824 @findex sinl
10825 @findex snprintf
10826 @findex sprintf
10827 @findex sqrt
10828 @findex sqrtf
10829 @findex sqrtl
10830 @findex sscanf
10831 @findex stpcpy
10832 @findex stpncpy
10833 @findex strcasecmp
10834 @findex strcat
10835 @findex strchr
10836 @findex strcmp
10837 @findex strcpy
10838 @findex strcspn
10839 @findex strdup
10840 @findex strfmon
10841 @findex strftime
10842 @findex strlen
10843 @findex strncasecmp
10844 @findex strncat
10845 @findex strncmp
10846 @findex strncpy
10847 @findex strndup
10848 @findex strpbrk
10849 @findex strrchr
10850 @findex strspn
10851 @findex strstr
10852 @findex tan
10853 @findex tanf
10854 @findex tanh
10855 @findex tanhf
10856 @findex tanhl
10857 @findex tanl
10858 @findex tgamma
10859 @findex tgammaf
10860 @findex tgammal
10861 @findex toascii
10862 @findex tolower
10863 @findex toupper
10864 @findex towlower
10865 @findex towupper
10866 @findex trunc
10867 @findex truncf
10868 @findex truncl
10869 @findex vfprintf
10870 @findex vfscanf
10871 @findex vprintf
10872 @findex vscanf
10873 @findex vsnprintf
10874 @findex vsprintf
10875 @findex vsscanf
10876 @findex y0
10877 @findex y0f
10878 @findex y0l
10879 @findex y1
10880 @findex y1f
10881 @findex y1l
10882 @findex yn
10883 @findex ynf
10884 @findex ynl
10885
10886 GCC provides a large number of built-in functions other than the ones
10887 mentioned above. Some of these are for internal use in the processing
10888 of exceptions or variable-length argument lists and are not
10889 documented here because they may change from time to time; we do not
10890 recommend general use of these functions.
10891
10892 The remaining functions are provided for optimization purposes.
10893
10894 With the exception of built-ins that have library equivalents such as
10895 the standard C library functions discussed below, or that expand to
10896 library calls, GCC built-in functions are always expanded inline and
10897 thus do not have corresponding entry points and their address cannot
10898 be obtained. Attempting to use them in an expression other than
10899 a function call results in a compile-time error.
10900
10901 @opindex fno-builtin
10902 GCC includes built-in versions of many of the functions in the standard
10903 C library. These functions come in two forms: one whose names start with
10904 the @code{__builtin_} prefix, and the other without. Both forms have the
10905 same type (including prototype), the same address (when their address is
10906 taken), and the same meaning as the C library functions even if you specify
10907 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
10908 functions are only optimized in certain cases; if they are not optimized in
10909 a particular case, a call to the library function is emitted.
10910
10911 @opindex ansi
10912 @opindex std
10913 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
10914 @option{-std=c99} or @option{-std=c11}), the functions
10915 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
10916 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
10917 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
10918 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
10919 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
10920 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
10921 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
10922 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
10923 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
10924 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
10925 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
10926 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
10927 @code{signbitd64}, @code{signbitd128}, @code{significandf},
10928 @code{significandl}, @code{significand}, @code{sincosf},
10929 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
10930 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
10931 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
10932 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
10933 @code{yn}
10934 may be handled as built-in functions.
10935 All these functions have corresponding versions
10936 prefixed with @code{__builtin_}, which may be used even in strict C90
10937 mode.
10938
10939 The ISO C99 functions
10940 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
10941 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
10942 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
10943 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
10944 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
10945 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
10946 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
10947 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
10948 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
10949 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
10950 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
10951 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
10952 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
10953 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
10954 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
10955 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
10956 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
10957 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
10958 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
10959 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
10960 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
10961 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
10962 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
10963 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
10964 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
10965 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
10966 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
10967 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
10968 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
10969 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
10970 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
10971 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
10972 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
10973 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
10974 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
10975 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
10976 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
10977 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
10978 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
10979 are handled as built-in functions
10980 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10981
10982 There are also built-in versions of the ISO C99 functions
10983 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
10984 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
10985 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
10986 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
10987 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
10988 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
10989 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
10990 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
10991 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
10992 that are recognized in any mode since ISO C90 reserves these names for
10993 the purpose to which ISO C99 puts them. All these functions have
10994 corresponding versions prefixed with @code{__builtin_}.
10995
10996 There are also built-in functions @code{__builtin_fabsf@var{n}},
10997 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
10998 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
10999 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
11000 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
11001 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
11002
11003 There are also GNU extension functions @code{clog10}, @code{clog10f} and
11004 @code{clog10l} which names are reserved by ISO C99 for future use.
11005 All these functions have versions prefixed with @code{__builtin_}.
11006
11007 The ISO C94 functions
11008 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
11009 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
11010 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
11011 @code{towupper}
11012 are handled as built-in functions
11013 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11014
11015 The ISO C90 functions
11016 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
11017 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
11018 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
11019 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
11020 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
11021 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
11022 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
11023 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
11024 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
11025 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
11026 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
11027 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
11028 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
11029 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
11030 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
11031 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
11032 are all recognized as built-in functions unless
11033 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
11034 is specified for an individual function). All of these functions have
11035 corresponding versions prefixed with @code{__builtin_}.
11036
11037 GCC provides built-in versions of the ISO C99 floating-point comparison
11038 macros that avoid raising exceptions for unordered operands. They have
11039 the same names as the standard macros ( @code{isgreater},
11040 @code{isgreaterequal}, @code{isless}, @code{islessequal},
11041 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
11042 prefixed. We intend for a library implementor to be able to simply
11043 @code{#define} each standard macro to its built-in equivalent.
11044 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11045 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11046 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
11047 built-in functions appear both with and without the @code{__builtin_} prefix.
11048
11049 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11050 The @code{__builtin_alloca} function must be called at block scope.
11051 The function allocates an object @var{size} bytes large on the stack
11052 of the calling function. The object is aligned on the default stack
11053 alignment boundary for the target determined by the
11054 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
11055 function returns a pointer to the first byte of the allocated object.
11056 The lifetime of the allocated object ends just before the calling
11057 function returns to its caller. This is so even when
11058 @code{__builtin_alloca} is called within a nested block.
11059
11060 For example, the following function allocates eight objects of @code{n}
11061 bytes each on the stack, storing a pointer to each in consecutive elements
11062 of the array @code{a}. It then passes the array to function @code{g}
11063 which can safely use the storage pointed to by each of the array elements.
11064
11065 @smallexample
11066 void f (unsigned n)
11067 @{
11068 void *a [8];
11069 for (int i = 0; i != 8; ++i)
11070 a [i] = __builtin_alloca (n);
11071
11072 g (a, n); // @r{safe}
11073 @}
11074 @end smallexample
11075
11076 Since the @code{__builtin_alloca} function doesn't validate its argument
11077 it is the responsibility of its caller to make sure the argument doesn't
11078 cause it to exceed the stack size limit.
11079 The @code{__builtin_alloca} function is provided to make it possible to
11080 allocate on the stack arrays of bytes with an upper bound that may be
11081 computed at run time. Since C99 Variable Length Arrays offer
11082 similar functionality under a portable, more convenient, and safer
11083 interface they are recommended instead, in both C99 and C++ programs
11084 where GCC provides them as an extension.
11085 @xref{Variable Length}, for details.
11086
11087 @end deftypefn
11088
11089 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11090 The @code{__builtin_alloca_with_align} function must be called at block
11091 scope. The function allocates an object @var{size} bytes large on
11092 the stack of the calling function. The allocated object is aligned on
11093 the boundary specified by the argument @var{alignment} whose unit is given
11094 in bits (not bytes). The @var{size} argument must be positive and not
11095 exceed the stack size limit. The @var{alignment} argument must be a constant
11096 integer expression that evaluates to a power of 2 greater than or equal to
11097 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11098 with other values are rejected with an error indicating the valid bounds.
11099 The function returns a pointer to the first byte of the allocated object.
11100 The lifetime of the allocated object ends at the end of the block in which
11101 the function was called. The allocated storage is released no later than
11102 just before the calling function returns to its caller, but may be released
11103 at the end of the block in which the function was called.
11104
11105 For example, in the following function the call to @code{g} is unsafe
11106 because when @code{overalign} is non-zero, the space allocated by
11107 @code{__builtin_alloca_with_align} may have been released at the end
11108 of the @code{if} statement in which it was called.
11109
11110 @smallexample
11111 void f (unsigned n, bool overalign)
11112 @{
11113 void *p;
11114 if (overalign)
11115 p = __builtin_alloca_with_align (n, 64 /* bits */);
11116 else
11117 p = __builtin_alloc (n);
11118
11119 g (p, n); // @r{unsafe}
11120 @}
11121 @end smallexample
11122
11123 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11124 @var{size} argument it is the responsibility of its caller to make sure
11125 the argument doesn't cause it to exceed the stack size limit.
11126 The @code{__builtin_alloca_with_align} function is provided to make
11127 it possible to allocate on the stack overaligned arrays of bytes with
11128 an upper bound that may be computed at run time. Since C99
11129 Variable Length Arrays offer the same functionality under
11130 a portable, more convenient, and safer interface they are recommended
11131 instead, in both C99 and C++ programs where GCC provides them as
11132 an extension. @xref{Variable Length}, for details.
11133
11134 @end deftypefn
11135
11136 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11137
11138 You can use the built-in function @code{__builtin_types_compatible_p} to
11139 determine whether two types are the same.
11140
11141 This built-in function returns 1 if the unqualified versions of the
11142 types @var{type1} and @var{type2} (which are types, not expressions) are
11143 compatible, 0 otherwise. The result of this built-in function can be
11144 used in integer constant expressions.
11145
11146 This built-in function ignores top level qualifiers (e.g., @code{const},
11147 @code{volatile}). For example, @code{int} is equivalent to @code{const
11148 int}.
11149
11150 The type @code{int[]} and @code{int[5]} are compatible. On the other
11151 hand, @code{int} and @code{char *} are not compatible, even if the size
11152 of their types, on the particular architecture are the same. Also, the
11153 amount of pointer indirection is taken into account when determining
11154 similarity. Consequently, @code{short *} is not similar to
11155 @code{short **}. Furthermore, two types that are typedefed are
11156 considered compatible if their underlying types are compatible.
11157
11158 An @code{enum} type is not considered to be compatible with another
11159 @code{enum} type even if both are compatible with the same integer
11160 type; this is what the C standard specifies.
11161 For example, @code{enum @{foo, bar@}} is not similar to
11162 @code{enum @{hot, dog@}}.
11163
11164 You typically use this function in code whose execution varies
11165 depending on the arguments' types. For example:
11166
11167 @smallexample
11168 #define foo(x) \
11169 (@{ \
11170 typeof (x) tmp = (x); \
11171 if (__builtin_types_compatible_p (typeof (x), long double)) \
11172 tmp = foo_long_double (tmp); \
11173 else if (__builtin_types_compatible_p (typeof (x), double)) \
11174 tmp = foo_double (tmp); \
11175 else if (__builtin_types_compatible_p (typeof (x), float)) \
11176 tmp = foo_float (tmp); \
11177 else \
11178 abort (); \
11179 tmp; \
11180 @})
11181 @end smallexample
11182
11183 @emph{Note:} This construct is only available for C@.
11184
11185 @end deftypefn
11186
11187 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11188
11189 The @var{call_exp} expression must be a function call, and the
11190 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11191 is passed to the function call in the target's static chain location.
11192 The result of builtin is the result of the function call.
11193
11194 @emph{Note:} This builtin is only available for C@.
11195 This builtin can be used to call Go closures from C.
11196
11197 @end deftypefn
11198
11199 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11200
11201 You can use the built-in function @code{__builtin_choose_expr} to
11202 evaluate code depending on the value of a constant expression. This
11203 built-in function returns @var{exp1} if @var{const_exp}, which is an
11204 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11205
11206 This built-in function is analogous to the @samp{? :} operator in C,
11207 except that the expression returned has its type unaltered by promotion
11208 rules. Also, the built-in function does not evaluate the expression
11209 that is not chosen. For example, if @var{const_exp} evaluates to true,
11210 @var{exp2} is not evaluated even if it has side-effects.
11211
11212 This built-in function can return an lvalue if the chosen argument is an
11213 lvalue.
11214
11215 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11216 type. Similarly, if @var{exp2} is returned, its return type is the same
11217 as @var{exp2}.
11218
11219 Example:
11220
11221 @smallexample
11222 #define foo(x) \
11223 __builtin_choose_expr ( \
11224 __builtin_types_compatible_p (typeof (x), double), \
11225 foo_double (x), \
11226 __builtin_choose_expr ( \
11227 __builtin_types_compatible_p (typeof (x), float), \
11228 foo_float (x), \
11229 /* @r{The void expression results in a compile-time error} \
11230 @r{when assigning the result to something.} */ \
11231 (void)0))
11232 @end smallexample
11233
11234 @emph{Note:} This construct is only available for C@. Furthermore, the
11235 unused expression (@var{exp1} or @var{exp2} depending on the value of
11236 @var{const_exp}) may still generate syntax errors. This may change in
11237 future revisions.
11238
11239 @end deftypefn
11240
11241 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11242
11243 The built-in function @code{__builtin_complex} is provided for use in
11244 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11245 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11246 real binary floating-point type, and the result has the corresponding
11247 complex type with real and imaginary parts @var{real} and @var{imag}.
11248 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11249 infinities, NaNs and negative zeros are involved.
11250
11251 @end deftypefn
11252
11253 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11254 You can use the built-in function @code{__builtin_constant_p} to
11255 determine if a value is known to be constant at compile time and hence
11256 that GCC can perform constant-folding on expressions involving that
11257 value. The argument of the function is the value to test. The function
11258 returns the integer 1 if the argument is known to be a compile-time
11259 constant and 0 if it is not known to be a compile-time constant. A
11260 return of 0 does not indicate that the value is @emph{not} a constant,
11261 but merely that GCC cannot prove it is a constant with the specified
11262 value of the @option{-O} option.
11263
11264 You typically use this function in an embedded application where
11265 memory is a critical resource. If you have some complex calculation,
11266 you may want it to be folded if it involves constants, but need to call
11267 a function if it does not. For example:
11268
11269 @smallexample
11270 #define Scale_Value(X) \
11271 (__builtin_constant_p (X) \
11272 ? ((X) * SCALE + OFFSET) : Scale (X))
11273 @end smallexample
11274
11275 You may use this built-in function in either a macro or an inline
11276 function. However, if you use it in an inlined function and pass an
11277 argument of the function as the argument to the built-in, GCC
11278 never returns 1 when you call the inline function with a string constant
11279 or compound literal (@pxref{Compound Literals}) and does not return 1
11280 when you pass a constant numeric value to the inline function unless you
11281 specify the @option{-O} option.
11282
11283 You may also use @code{__builtin_constant_p} in initializers for static
11284 data. For instance, you can write
11285
11286 @smallexample
11287 static const int table[] = @{
11288 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11289 /* @r{@dots{}} */
11290 @};
11291 @end smallexample
11292
11293 @noindent
11294 This is an acceptable initializer even if @var{EXPRESSION} is not a
11295 constant expression, including the case where
11296 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11297 folded to a constant but @var{EXPRESSION} contains operands that are
11298 not otherwise permitted in a static initializer (for example,
11299 @code{0 && foo ()}). GCC must be more conservative about evaluating the
11300 built-in in this case, because it has no opportunity to perform
11301 optimization.
11302 @end deftypefn
11303
11304 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11305 @opindex fprofile-arcs
11306 You may use @code{__builtin_expect} to provide the compiler with
11307 branch prediction information. In general, you should prefer to
11308 use actual profile feedback for this (@option{-fprofile-arcs}), as
11309 programmers are notoriously bad at predicting how their programs
11310 actually perform. However, there are applications in which this
11311 data is hard to collect.
11312
11313 The return value is the value of @var{exp}, which should be an integral
11314 expression. The semantics of the built-in are that it is expected that
11315 @var{exp} == @var{c}. For example:
11316
11317 @smallexample
11318 if (__builtin_expect (x, 0))
11319 foo ();
11320 @end smallexample
11321
11322 @noindent
11323 indicates that we do not expect to call @code{foo}, since
11324 we expect @code{x} to be zero. Since you are limited to integral
11325 expressions for @var{exp}, you should use constructions such as
11326
11327 @smallexample
11328 if (__builtin_expect (ptr != NULL, 1))
11329 foo (*ptr);
11330 @end smallexample
11331
11332 @noindent
11333 when testing pointer or floating-point values.
11334 @end deftypefn
11335
11336 @deftypefn {Built-in Function} void __builtin_trap (void)
11337 This function causes the program to exit abnormally. GCC implements
11338 this function by using a target-dependent mechanism (such as
11339 intentionally executing an illegal instruction) or by calling
11340 @code{abort}. The mechanism used may vary from release to release so
11341 you should not rely on any particular implementation.
11342 @end deftypefn
11343
11344 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11345 If control flow reaches the point of the @code{__builtin_unreachable},
11346 the program is undefined. It is useful in situations where the
11347 compiler cannot deduce the unreachability of the code.
11348
11349 One such case is immediately following an @code{asm} statement that
11350 either never terminates, or one that transfers control elsewhere
11351 and never returns. In this example, without the
11352 @code{__builtin_unreachable}, GCC issues a warning that control
11353 reaches the end of a non-void function. It also generates code
11354 to return after the @code{asm}.
11355
11356 @smallexample
11357 int f (int c, int v)
11358 @{
11359 if (c)
11360 @{
11361 return v;
11362 @}
11363 else
11364 @{
11365 asm("jmp error_handler");
11366 __builtin_unreachable ();
11367 @}
11368 @}
11369 @end smallexample
11370
11371 @noindent
11372 Because the @code{asm} statement unconditionally transfers control out
11373 of the function, control never reaches the end of the function
11374 body. The @code{__builtin_unreachable} is in fact unreachable and
11375 communicates this fact to the compiler.
11376
11377 Another use for @code{__builtin_unreachable} is following a call a
11378 function that never returns but that is not declared
11379 @code{__attribute__((noreturn))}, as in this example:
11380
11381 @smallexample
11382 void function_that_never_returns (void);
11383
11384 int g (int c)
11385 @{
11386 if (c)
11387 @{
11388 return 1;
11389 @}
11390 else
11391 @{
11392 function_that_never_returns ();
11393 __builtin_unreachable ();
11394 @}
11395 @}
11396 @end smallexample
11397
11398 @end deftypefn
11399
11400 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11401 This function returns its first argument, and allows the compiler
11402 to assume that the returned pointer is at least @var{align} bytes
11403 aligned. This built-in can have either two or three arguments,
11404 if it has three, the third argument should have integer type, and
11405 if it is nonzero means misalignment offset. For example:
11406
11407 @smallexample
11408 void *x = __builtin_assume_aligned (arg, 16);
11409 @end smallexample
11410
11411 @noindent
11412 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11413 16-byte aligned, while:
11414
11415 @smallexample
11416 void *x = __builtin_assume_aligned (arg, 32, 8);
11417 @end smallexample
11418
11419 @noindent
11420 means that the compiler can assume for @code{x}, set to @code{arg}, that
11421 @code{(char *) x - 8} is 32-byte aligned.
11422 @end deftypefn
11423
11424 @deftypefn {Built-in Function} int __builtin_LINE ()
11425 This function is the equivalent of the preprocessor @code{__LINE__}
11426 macro and returns a constant integer expression that evaluates to
11427 the line number of the invocation of the built-in. When used as a C++
11428 default argument for a function @var{F}, it returns the line number
11429 of the call to @var{F}.
11430 @end deftypefn
11431
11432 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11433 This function is the equivalent of the @code{__FUNCTION__} symbol
11434 and returns an address constant pointing to the name of the function
11435 from which the built-in was invoked, or the empty string if
11436 the invocation is not at function scope. When used as a C++ default
11437 argument for a function @var{F}, it returns the name of @var{F}'s
11438 caller or the empty string if the call was not made at function
11439 scope.
11440 @end deftypefn
11441
11442 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11443 This function is the equivalent of the preprocessor @code{__FILE__}
11444 macro and returns an address constant pointing to the file name
11445 containing the invocation of the built-in, or the empty string if
11446 the invocation is not at function scope. When used as a C++ default
11447 argument for a function @var{F}, it returns the file name of the call
11448 to @var{F} or the empty string if the call was not made at function
11449 scope.
11450
11451 For example, in the following, each call to function @code{foo} will
11452 print a line similar to @code{"file.c:123: foo: message"} with the name
11453 of the file and the line number of the @code{printf} call, the name of
11454 the function @code{foo}, followed by the word @code{message}.
11455
11456 @smallexample
11457 const char*
11458 function (const char *func = __builtin_FUNCTION ())
11459 @{
11460 return func;
11461 @}
11462
11463 void foo (void)
11464 @{
11465 printf ("%s:%i: %s: message\n", file (), line (), function ());
11466 @}
11467 @end smallexample
11468
11469 @end deftypefn
11470
11471 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11472 This function is used to flush the processor's instruction cache for
11473 the region of memory between @var{begin} inclusive and @var{end}
11474 exclusive. Some targets require that the instruction cache be
11475 flushed, after modifying memory containing code, in order to obtain
11476 deterministic behavior.
11477
11478 If the target does not require instruction cache flushes,
11479 @code{__builtin___clear_cache} has no effect. Otherwise either
11480 instructions are emitted in-line to clear the instruction cache or a
11481 call to the @code{__clear_cache} function in libgcc is made.
11482 @end deftypefn
11483
11484 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11485 This function is used to minimize cache-miss latency by moving data into
11486 a cache before it is accessed.
11487 You can insert calls to @code{__builtin_prefetch} into code for which
11488 you know addresses of data in memory that is likely to be accessed soon.
11489 If the target supports them, data prefetch instructions are generated.
11490 If the prefetch is done early enough before the access then the data will
11491 be in the cache by the time it is accessed.
11492
11493 The value of @var{addr} is the address of the memory to prefetch.
11494 There are two optional arguments, @var{rw} and @var{locality}.
11495 The value of @var{rw} is a compile-time constant one or zero; one
11496 means that the prefetch is preparing for a write to the memory address
11497 and zero, the default, means that the prefetch is preparing for a read.
11498 The value @var{locality} must be a compile-time constant integer between
11499 zero and three. A value of zero means that the data has no temporal
11500 locality, so it need not be left in the cache after the access. A value
11501 of three means that the data has a high degree of temporal locality and
11502 should be left in all levels of cache possible. Values of one and two
11503 mean, respectively, a low or moderate degree of temporal locality. The
11504 default is three.
11505
11506 @smallexample
11507 for (i = 0; i < n; i++)
11508 @{
11509 a[i] = a[i] + b[i];
11510 __builtin_prefetch (&a[i+j], 1, 1);
11511 __builtin_prefetch (&b[i+j], 0, 1);
11512 /* @r{@dots{}} */
11513 @}
11514 @end smallexample
11515
11516 Data prefetch does not generate faults if @var{addr} is invalid, but
11517 the address expression itself must be valid. For example, a prefetch
11518 of @code{p->next} does not fault if @code{p->next} is not a valid
11519 address, but evaluation faults if @code{p} is not a valid address.
11520
11521 If the target does not support data prefetch, the address expression
11522 is evaluated if it includes side effects but no other code is generated
11523 and GCC does not issue a warning.
11524 @end deftypefn
11525
11526 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11527 Returns a positive infinity, if supported by the floating-point format,
11528 else @code{DBL_MAX}. This function is suitable for implementing the
11529 ISO C macro @code{HUGE_VAL}.
11530 @end deftypefn
11531
11532 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11533 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11534 @end deftypefn
11535
11536 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11537 Similar to @code{__builtin_huge_val}, except the return
11538 type is @code{long double}.
11539 @end deftypefn
11540
11541 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
11542 Similar to @code{__builtin_huge_val}, except the return type is
11543 @code{_Float@var{n}}.
11544 @end deftypefn
11545
11546 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
11547 Similar to @code{__builtin_huge_val}, except the return type is
11548 @code{_Float@var{n}x}.
11549 @end deftypefn
11550
11551 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11552 This built-in implements the C99 fpclassify functionality. The first
11553 five int arguments should be the target library's notion of the
11554 possible FP classes and are used for return values. They must be
11555 constant values and they must appear in this order: @code{FP_NAN},
11556 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
11557 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
11558 to classify. GCC treats the last argument as type-generic, which
11559 means it does not do default promotion from float to double.
11560 @end deftypefn
11561
11562 @deftypefn {Built-in Function} double __builtin_inf (void)
11563 Similar to @code{__builtin_huge_val}, except a warning is generated
11564 if the target floating-point format does not support infinities.
11565 @end deftypefn
11566
11567 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
11568 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11569 @end deftypefn
11570
11571 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11572 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11573 @end deftypefn
11574
11575 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11576 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11577 @end deftypefn
11578
11579 @deftypefn {Built-in Function} float __builtin_inff (void)
11580 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11581 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11582 @end deftypefn
11583
11584 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11585 Similar to @code{__builtin_inf}, except the return
11586 type is @code{long double}.
11587 @end deftypefn
11588
11589 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
11590 Similar to @code{__builtin_inf}, except the return
11591 type is @code{_Float@var{n}}.
11592 @end deftypefn
11593
11594 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
11595 Similar to @code{__builtin_inf}, except the return
11596 type is @code{_Float@var{n}x}.
11597 @end deftypefn
11598
11599 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11600 Similar to @code{isinf}, except the return value is -1 for
11601 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11602 Note while the parameter list is an
11603 ellipsis, this function only accepts exactly one floating-point
11604 argument. GCC treats this parameter as type-generic, which means it
11605 does not do default promotion from float to double.
11606 @end deftypefn
11607
11608 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11609 This is an implementation of the ISO C99 function @code{nan}.
11610
11611 Since ISO C99 defines this function in terms of @code{strtod}, which we
11612 do not implement, a description of the parsing is in order. The string
11613 is parsed as by @code{strtol}; that is, the base is recognized by
11614 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11615 in the significand such that the least significant bit of the number
11616 is at the least significant bit of the significand. The number is
11617 truncated to fit the significand field provided. The significand is
11618 forced to be a quiet NaN@.
11619
11620 This function, if given a string literal all of which would have been
11621 consumed by @code{strtol}, is evaluated early enough that it is considered a
11622 compile-time constant.
11623 @end deftypefn
11624
11625 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11626 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11627 @end deftypefn
11628
11629 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11630 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11631 @end deftypefn
11632
11633 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11634 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11635 @end deftypefn
11636
11637 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11638 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11639 @end deftypefn
11640
11641 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11642 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11643 @end deftypefn
11644
11645 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
11646 Similar to @code{__builtin_nan}, except the return type is
11647 @code{_Float@var{n}}.
11648 @end deftypefn
11649
11650 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
11651 Similar to @code{__builtin_nan}, except the return type is
11652 @code{_Float@var{n}x}.
11653 @end deftypefn
11654
11655 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11656 Similar to @code{__builtin_nan}, except the significand is forced
11657 to be a signaling NaN@. The @code{nans} function is proposed by
11658 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11659 @end deftypefn
11660
11661 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11662 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11663 @end deftypefn
11664
11665 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11666 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11667 @end deftypefn
11668
11669 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
11670 Similar to @code{__builtin_nans}, except the return type is
11671 @code{_Float@var{n}}.
11672 @end deftypefn
11673
11674 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
11675 Similar to @code{__builtin_nans}, except the return type is
11676 @code{_Float@var{n}x}.
11677 @end deftypefn
11678
11679 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11680 Returns one plus the index of the least significant 1-bit of @var{x}, or
11681 if @var{x} is zero, returns zero.
11682 @end deftypefn
11683
11684 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11685 Returns the number of leading 0-bits in @var{x}, starting at the most
11686 significant bit position. If @var{x} is 0, the result is undefined.
11687 @end deftypefn
11688
11689 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11690 Returns the number of trailing 0-bits in @var{x}, starting at the least
11691 significant bit position. If @var{x} is 0, the result is undefined.
11692 @end deftypefn
11693
11694 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11695 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11696 number of bits following the most significant bit that are identical
11697 to it. There are no special cases for 0 or other values.
11698 @end deftypefn
11699
11700 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11701 Returns the number of 1-bits in @var{x}.
11702 @end deftypefn
11703
11704 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11705 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11706 modulo 2.
11707 @end deftypefn
11708
11709 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11710 Similar to @code{__builtin_ffs}, except the argument type is
11711 @code{long}.
11712 @end deftypefn
11713
11714 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11715 Similar to @code{__builtin_clz}, except the argument type is
11716 @code{unsigned long}.
11717 @end deftypefn
11718
11719 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11720 Similar to @code{__builtin_ctz}, except the argument type is
11721 @code{unsigned long}.
11722 @end deftypefn
11723
11724 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11725 Similar to @code{__builtin_clrsb}, except the argument type is
11726 @code{long}.
11727 @end deftypefn
11728
11729 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11730 Similar to @code{__builtin_popcount}, except the argument type is
11731 @code{unsigned long}.
11732 @end deftypefn
11733
11734 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11735 Similar to @code{__builtin_parity}, except the argument type is
11736 @code{unsigned long}.
11737 @end deftypefn
11738
11739 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11740 Similar to @code{__builtin_ffs}, except the argument type is
11741 @code{long long}.
11742 @end deftypefn
11743
11744 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11745 Similar to @code{__builtin_clz}, except the argument type is
11746 @code{unsigned long long}.
11747 @end deftypefn
11748
11749 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11750 Similar to @code{__builtin_ctz}, except the argument type is
11751 @code{unsigned long long}.
11752 @end deftypefn
11753
11754 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11755 Similar to @code{__builtin_clrsb}, except the argument type is
11756 @code{long long}.
11757 @end deftypefn
11758
11759 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11760 Similar to @code{__builtin_popcount}, except the argument type is
11761 @code{unsigned long long}.
11762 @end deftypefn
11763
11764 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11765 Similar to @code{__builtin_parity}, except the argument type is
11766 @code{unsigned long long}.
11767 @end deftypefn
11768
11769 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11770 Returns the first argument raised to the power of the second. Unlike the
11771 @code{pow} function no guarantees about precision and rounding are made.
11772 @end deftypefn
11773
11774 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11775 Similar to @code{__builtin_powi}, except the argument and return types
11776 are @code{float}.
11777 @end deftypefn
11778
11779 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11780 Similar to @code{__builtin_powi}, except the argument and return types
11781 are @code{long double}.
11782 @end deftypefn
11783
11784 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11785 Returns @var{x} with the order of the bytes reversed; for example,
11786 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11787 exactly 8 bits.
11788 @end deftypefn
11789
11790 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
11791 Similar to @code{__builtin_bswap16}, except the argument and return types
11792 are 32 bit.
11793 @end deftypefn
11794
11795 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
11796 Similar to @code{__builtin_bswap32}, except the argument and return types
11797 are 64 bit.
11798 @end deftypefn
11799
11800 @node Target Builtins
11801 @section Built-in Functions Specific to Particular Target Machines
11802
11803 On some target machines, GCC supports many built-in functions specific
11804 to those machines. Generally these generate calls to specific machine
11805 instructions, but allow the compiler to schedule those calls.
11806
11807 @menu
11808 * AArch64 Built-in Functions::
11809 * Alpha Built-in Functions::
11810 * Altera Nios II Built-in Functions::
11811 * ARC Built-in Functions::
11812 * ARC SIMD Built-in Functions::
11813 * ARM iWMMXt Built-in Functions::
11814 * ARM C Language Extensions (ACLE)::
11815 * ARM Floating Point Status and Control Intrinsics::
11816 * ARM ARMv8-M Security Extensions::
11817 * AVR Built-in Functions::
11818 * Blackfin Built-in Functions::
11819 * FR-V Built-in Functions::
11820 * MIPS DSP Built-in Functions::
11821 * MIPS Paired-Single Support::
11822 * MIPS Loongson Built-in Functions::
11823 * MIPS SIMD Architecture (MSA) Support::
11824 * Other MIPS Built-in Functions::
11825 * MSP430 Built-in Functions::
11826 * NDS32 Built-in Functions::
11827 * picoChip Built-in Functions::
11828 * PowerPC Built-in Functions::
11829 * PowerPC AltiVec/VSX Built-in Functions::
11830 * PowerPC Hardware Transactional Memory Built-in Functions::
11831 * RX Built-in Functions::
11832 * S/390 System z Built-in Functions::
11833 * SH Built-in Functions::
11834 * SPARC VIS Built-in Functions::
11835 * SPU Built-in Functions::
11836 * TI C6X Built-in Functions::
11837 * TILE-Gx Built-in Functions::
11838 * TILEPro Built-in Functions::
11839 * x86 Built-in Functions::
11840 * x86 transactional memory intrinsics::
11841 @end menu
11842
11843 @node AArch64 Built-in Functions
11844 @subsection AArch64 Built-in Functions
11845
11846 These built-in functions are available for the AArch64 family of
11847 processors.
11848 @smallexample
11849 unsigned int __builtin_aarch64_get_fpcr ()
11850 void __builtin_aarch64_set_fpcr (unsigned int)
11851 unsigned int __builtin_aarch64_get_fpsr ()
11852 void __builtin_aarch64_set_fpsr (unsigned int)
11853 @end smallexample
11854
11855 @node Alpha Built-in Functions
11856 @subsection Alpha Built-in Functions
11857
11858 These built-in functions are available for the Alpha family of
11859 processors, depending on the command-line switches used.
11860
11861 The following built-in functions are always available. They
11862 all generate the machine instruction that is part of the name.
11863
11864 @smallexample
11865 long __builtin_alpha_implver (void)
11866 long __builtin_alpha_rpcc (void)
11867 long __builtin_alpha_amask (long)
11868 long __builtin_alpha_cmpbge (long, long)
11869 long __builtin_alpha_extbl (long, long)
11870 long __builtin_alpha_extwl (long, long)
11871 long __builtin_alpha_extll (long, long)
11872 long __builtin_alpha_extql (long, long)
11873 long __builtin_alpha_extwh (long, long)
11874 long __builtin_alpha_extlh (long, long)
11875 long __builtin_alpha_extqh (long, long)
11876 long __builtin_alpha_insbl (long, long)
11877 long __builtin_alpha_inswl (long, long)
11878 long __builtin_alpha_insll (long, long)
11879 long __builtin_alpha_insql (long, long)
11880 long __builtin_alpha_inswh (long, long)
11881 long __builtin_alpha_inslh (long, long)
11882 long __builtin_alpha_insqh (long, long)
11883 long __builtin_alpha_mskbl (long, long)
11884 long __builtin_alpha_mskwl (long, long)
11885 long __builtin_alpha_mskll (long, long)
11886 long __builtin_alpha_mskql (long, long)
11887 long __builtin_alpha_mskwh (long, long)
11888 long __builtin_alpha_msklh (long, long)
11889 long __builtin_alpha_mskqh (long, long)
11890 long __builtin_alpha_umulh (long, long)
11891 long __builtin_alpha_zap (long, long)
11892 long __builtin_alpha_zapnot (long, long)
11893 @end smallexample
11894
11895 The following built-in functions are always with @option{-mmax}
11896 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
11897 later. They all generate the machine instruction that is part
11898 of the name.
11899
11900 @smallexample
11901 long __builtin_alpha_pklb (long)
11902 long __builtin_alpha_pkwb (long)
11903 long __builtin_alpha_unpkbl (long)
11904 long __builtin_alpha_unpkbw (long)
11905 long __builtin_alpha_minub8 (long, long)
11906 long __builtin_alpha_minsb8 (long, long)
11907 long __builtin_alpha_minuw4 (long, long)
11908 long __builtin_alpha_minsw4 (long, long)
11909 long __builtin_alpha_maxub8 (long, long)
11910 long __builtin_alpha_maxsb8 (long, long)
11911 long __builtin_alpha_maxuw4 (long, long)
11912 long __builtin_alpha_maxsw4 (long, long)
11913 long __builtin_alpha_perr (long, long)
11914 @end smallexample
11915
11916 The following built-in functions are always with @option{-mcix}
11917 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
11918 later. They all generate the machine instruction that is part
11919 of the name.
11920
11921 @smallexample
11922 long __builtin_alpha_cttz (long)
11923 long __builtin_alpha_ctlz (long)
11924 long __builtin_alpha_ctpop (long)
11925 @end smallexample
11926
11927 The following built-in functions are available on systems that use the OSF/1
11928 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
11929 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
11930 @code{rdval} and @code{wrval}.
11931
11932 @smallexample
11933 void *__builtin_thread_pointer (void)
11934 void __builtin_set_thread_pointer (void *)
11935 @end smallexample
11936
11937 @node Altera Nios II Built-in Functions
11938 @subsection Altera Nios II Built-in Functions
11939
11940 These built-in functions are available for the Altera Nios II
11941 family of processors.
11942
11943 The following built-in functions are always available. They
11944 all generate the machine instruction that is part of the name.
11945
11946 @example
11947 int __builtin_ldbio (volatile const void *)
11948 int __builtin_ldbuio (volatile const void *)
11949 int __builtin_ldhio (volatile const void *)
11950 int __builtin_ldhuio (volatile const void *)
11951 int __builtin_ldwio (volatile const void *)
11952 void __builtin_stbio (volatile void *, int)
11953 void __builtin_sthio (volatile void *, int)
11954 void __builtin_stwio (volatile void *, int)
11955 void __builtin_sync (void)
11956 int __builtin_rdctl (int)
11957 int __builtin_rdprs (int, int)
11958 void __builtin_wrctl (int, int)
11959 void __builtin_flushd (volatile void *)
11960 void __builtin_flushda (volatile void *)
11961 int __builtin_wrpie (int);
11962 void __builtin_eni (int);
11963 int __builtin_ldex (volatile const void *)
11964 int __builtin_stex (volatile void *, int)
11965 int __builtin_ldsex (volatile const void *)
11966 int __builtin_stsex (volatile void *, int)
11967 @end example
11968
11969 The following built-in functions are always available. They
11970 all generate a Nios II Custom Instruction. The name of the
11971 function represents the types that the function takes and
11972 returns. The letter before the @code{n} is the return type
11973 or void if absent. The @code{n} represents the first parameter
11974 to all the custom instructions, the custom instruction number.
11975 The two letters after the @code{n} represent the up to two
11976 parameters to the function.
11977
11978 The letters represent the following data types:
11979 @table @code
11980 @item <no letter>
11981 @code{void} for return type and no parameter for parameter types.
11982
11983 @item i
11984 @code{int} for return type and parameter type
11985
11986 @item f
11987 @code{float} for return type and parameter type
11988
11989 @item p
11990 @code{void *} for return type and parameter type
11991
11992 @end table
11993
11994 And the function names are:
11995 @example
11996 void __builtin_custom_n (void)
11997 void __builtin_custom_ni (int)
11998 void __builtin_custom_nf (float)
11999 void __builtin_custom_np (void *)
12000 void __builtin_custom_nii (int, int)
12001 void __builtin_custom_nif (int, float)
12002 void __builtin_custom_nip (int, void *)
12003 void __builtin_custom_nfi (float, int)
12004 void __builtin_custom_nff (float, float)
12005 void __builtin_custom_nfp (float, void *)
12006 void __builtin_custom_npi (void *, int)
12007 void __builtin_custom_npf (void *, float)
12008 void __builtin_custom_npp (void *, void *)
12009 int __builtin_custom_in (void)
12010 int __builtin_custom_ini (int)
12011 int __builtin_custom_inf (float)
12012 int __builtin_custom_inp (void *)
12013 int __builtin_custom_inii (int, int)
12014 int __builtin_custom_inif (int, float)
12015 int __builtin_custom_inip (int, void *)
12016 int __builtin_custom_infi (float, int)
12017 int __builtin_custom_inff (float, float)
12018 int __builtin_custom_infp (float, void *)
12019 int __builtin_custom_inpi (void *, int)
12020 int __builtin_custom_inpf (void *, float)
12021 int __builtin_custom_inpp (void *, void *)
12022 float __builtin_custom_fn (void)
12023 float __builtin_custom_fni (int)
12024 float __builtin_custom_fnf (float)
12025 float __builtin_custom_fnp (void *)
12026 float __builtin_custom_fnii (int, int)
12027 float __builtin_custom_fnif (int, float)
12028 float __builtin_custom_fnip (int, void *)
12029 float __builtin_custom_fnfi (float, int)
12030 float __builtin_custom_fnff (float, float)
12031 float __builtin_custom_fnfp (float, void *)
12032 float __builtin_custom_fnpi (void *, int)
12033 float __builtin_custom_fnpf (void *, float)
12034 float __builtin_custom_fnpp (void *, void *)
12035 void * __builtin_custom_pn (void)
12036 void * __builtin_custom_pni (int)
12037 void * __builtin_custom_pnf (float)
12038 void * __builtin_custom_pnp (void *)
12039 void * __builtin_custom_pnii (int, int)
12040 void * __builtin_custom_pnif (int, float)
12041 void * __builtin_custom_pnip (int, void *)
12042 void * __builtin_custom_pnfi (float, int)
12043 void * __builtin_custom_pnff (float, float)
12044 void * __builtin_custom_pnfp (float, void *)
12045 void * __builtin_custom_pnpi (void *, int)
12046 void * __builtin_custom_pnpf (void *, float)
12047 void * __builtin_custom_pnpp (void *, void *)
12048 @end example
12049
12050 @node ARC Built-in Functions
12051 @subsection ARC Built-in Functions
12052
12053 The following built-in functions are provided for ARC targets. The
12054 built-ins generate the corresponding assembly instructions. In the
12055 examples given below, the generated code often requires an operand or
12056 result to be in a register. Where necessary further code will be
12057 generated to ensure this is true, but for brevity this is not
12058 described in each case.
12059
12060 @emph{Note:} Using a built-in to generate an instruction not supported
12061 by a target may cause problems. At present the compiler is not
12062 guaranteed to detect such misuse, and as a result an internal compiler
12063 error may be generated.
12064
12065 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12066 Return 1 if @var{val} is known to have the byte alignment given
12067 by @var{alignval}, otherwise return 0.
12068 Note that this is different from
12069 @smallexample
12070 __alignof__(*(char *)@var{val}) >= alignval
12071 @end smallexample
12072 because __alignof__ sees only the type of the dereference, whereas
12073 __builtin_arc_align uses alignment information from the pointer
12074 as well as from the pointed-to type.
12075 The information available will depend on optimization level.
12076 @end deftypefn
12077
12078 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12079 Generates
12080 @example
12081 brk
12082 @end example
12083 @end deftypefn
12084
12085 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12086 The operand is the number of a register to be read. Generates:
12087 @example
12088 mov @var{dest}, r@var{regno}
12089 @end example
12090 where the value in @var{dest} will be the result returned from the
12091 built-in.
12092 @end deftypefn
12093
12094 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12095 The first operand is the number of a register to be written, the
12096 second operand is a compile time constant to write into that
12097 register. Generates:
12098 @example
12099 mov r@var{regno}, @var{val}
12100 @end example
12101 @end deftypefn
12102
12103 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12104 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12105 Generates:
12106 @example
12107 divaw @var{dest}, @var{a}, @var{b}
12108 @end example
12109 where the value in @var{dest} will be the result returned from the
12110 built-in.
12111 @end deftypefn
12112
12113 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12114 Generates
12115 @example
12116 flag @var{a}
12117 @end example
12118 @end deftypefn
12119
12120 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12121 The operand, @var{auxv}, is the address of an auxiliary register and
12122 must be a compile time constant. Generates:
12123 @example
12124 lr @var{dest}, [@var{auxr}]
12125 @end example
12126 Where the value in @var{dest} will be the result returned from the
12127 built-in.
12128 @end deftypefn
12129
12130 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12131 Only available with @option{-mmul64}. Generates:
12132 @example
12133 mul64 @var{a}, @var{b}
12134 @end example
12135 @end deftypefn
12136
12137 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12138 Only available with @option{-mmul64}. Generates:
12139 @example
12140 mulu64 @var{a}, @var{b}
12141 @end example
12142 @end deftypefn
12143
12144 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12145 Generates:
12146 @example
12147 nop
12148 @end example
12149 @end deftypefn
12150
12151 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12152 Only valid if the @samp{norm} instruction is available through the
12153 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12154 Generates:
12155 @example
12156 norm @var{dest}, @var{src}
12157 @end example
12158 Where the value in @var{dest} will be the result returned from the
12159 built-in.
12160 @end deftypefn
12161
12162 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12163 Only valid if the @samp{normw} instruction is available through the
12164 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12165 Generates:
12166 @example
12167 normw @var{dest}, @var{src}
12168 @end example
12169 Where the value in @var{dest} will be the result returned from the
12170 built-in.
12171 @end deftypefn
12172
12173 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12174 Generates:
12175 @example
12176 rtie
12177 @end example
12178 @end deftypefn
12179
12180 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12181 Generates:
12182 @example
12183 sleep @var{a}
12184 @end example
12185 @end deftypefn
12186
12187 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12188 The first argument, @var{auxv}, is the address of an auxiliary
12189 register, the second argument, @var{val}, is a compile time constant
12190 to be written to the register. Generates:
12191 @example
12192 sr @var{auxr}, [@var{val}]
12193 @end example
12194 @end deftypefn
12195
12196 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12197 Only valid with @option{-mswap}. Generates:
12198 @example
12199 swap @var{dest}, @var{src}
12200 @end example
12201 Where the value in @var{dest} will be the result returned from the
12202 built-in.
12203 @end deftypefn
12204
12205 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12206 Generates:
12207 @example
12208 swi
12209 @end example
12210 @end deftypefn
12211
12212 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12213 Only available with @option{-mcpu=ARC700}. Generates:
12214 @example
12215 sync
12216 @end example
12217 @end deftypefn
12218
12219 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12220 Only available with @option{-mcpu=ARC700}. Generates:
12221 @example
12222 trap_s @var{c}
12223 @end example
12224 @end deftypefn
12225
12226 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12227 Only available with @option{-mcpu=ARC700}. Generates:
12228 @example
12229 unimp_s
12230 @end example
12231 @end deftypefn
12232
12233 The instructions generated by the following builtins are not
12234 considered as candidates for scheduling. They are not moved around by
12235 the compiler during scheduling, and thus can be expected to appear
12236 where they are put in the C code:
12237 @example
12238 __builtin_arc_brk()
12239 __builtin_arc_core_read()
12240 __builtin_arc_core_write()
12241 __builtin_arc_flag()
12242 __builtin_arc_lr()
12243 __builtin_arc_sleep()
12244 __builtin_arc_sr()
12245 __builtin_arc_swi()
12246 @end example
12247
12248 @node ARC SIMD Built-in Functions
12249 @subsection ARC SIMD Built-in Functions
12250
12251 SIMD builtins provided by the compiler can be used to generate the
12252 vector instructions. This section describes the available builtins
12253 and their usage in programs. With the @option{-msimd} option, the
12254 compiler provides 128-bit vector types, which can be specified using
12255 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12256 can be included to use the following predefined types:
12257 @example
12258 typedef int __v4si __attribute__((vector_size(16)));
12259 typedef short __v8hi __attribute__((vector_size(16)));
12260 @end example
12261
12262 These types can be used to define 128-bit variables. The built-in
12263 functions listed in the following section can be used on these
12264 variables to generate the vector operations.
12265
12266 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12267 @file{arc-simd.h} also provides equivalent macros called
12268 @code{_@var{someinsn}} that can be used for programming ease and
12269 improved readability. The following macros for DMA control are also
12270 provided:
12271 @example
12272 #define _setup_dma_in_channel_reg _vdiwr
12273 #define _setup_dma_out_channel_reg _vdowr
12274 @end example
12275
12276 The following is a complete list of all the SIMD built-ins provided
12277 for ARC, grouped by calling signature.
12278
12279 The following take two @code{__v8hi} arguments and return a
12280 @code{__v8hi} result:
12281 @example
12282 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12283 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12284 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12285 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12286 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12287 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12288 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12289 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12290 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12291 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12292 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12293 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12294 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12295 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12296 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
12297 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
12298 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
12299 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
12300 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
12301 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
12302 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
12303 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
12304 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
12305 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
12306 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
12307 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
12308 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
12309 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
12310 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
12311 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
12312 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
12313 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
12314 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
12315 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
12316 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
12317 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
12318 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
12319 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
12320 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
12321 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
12322 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
12323 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
12324 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
12325 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
12326 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
12327 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
12328 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
12329 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
12330 @end example
12331
12332 The following take one @code{__v8hi} and one @code{int} argument and return a
12333 @code{__v8hi} result:
12334
12335 @example
12336 __v8hi __builtin_arc_vbaddw (__v8hi, int)
12337 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
12338 __v8hi __builtin_arc_vbminw (__v8hi, int)
12339 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
12340 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
12341 __v8hi __builtin_arc_vbmulw (__v8hi, int)
12342 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
12343 __v8hi __builtin_arc_vbsubw (__v8hi, int)
12344 @end example
12345
12346 The following take one @code{__v8hi} argument and one @code{int} argument which
12347 must be a 3-bit compile time constant indicating a register number
12348 I0-I7. They return a @code{__v8hi} result.
12349 @example
12350 __v8hi __builtin_arc_vasrw (__v8hi, const int)
12351 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
12352 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
12353 @end example
12354
12355 The following take one @code{__v8hi} argument and one @code{int}
12356 argument which must be a 6-bit compile time constant. They return a
12357 @code{__v8hi} result.
12358 @example
12359 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
12360 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
12361 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
12362 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
12363 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
12364 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
12365 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
12366 @end example
12367
12368 The following take one @code{__v8hi} argument and one @code{int} argument which
12369 must be a 8-bit compile time constant. They return a @code{__v8hi}
12370 result.
12371 @example
12372 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12373 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12374 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12375 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12376 @end example
12377
12378 The following take two @code{int} arguments, the second of which which
12379 must be a 8-bit compile time constant. They return a @code{__v8hi}
12380 result:
12381 @example
12382 __v8hi __builtin_arc_vmovaw (int, const int)
12383 __v8hi __builtin_arc_vmovw (int, const int)
12384 __v8hi __builtin_arc_vmovzw (int, const int)
12385 @end example
12386
12387 The following take a single @code{__v8hi} argument and return a
12388 @code{__v8hi} result:
12389 @example
12390 __v8hi __builtin_arc_vabsaw (__v8hi)
12391 __v8hi __builtin_arc_vabsw (__v8hi)
12392 __v8hi __builtin_arc_vaddsuw (__v8hi)
12393 __v8hi __builtin_arc_vexch1 (__v8hi)
12394 __v8hi __builtin_arc_vexch2 (__v8hi)
12395 __v8hi __builtin_arc_vexch4 (__v8hi)
12396 __v8hi __builtin_arc_vsignw (__v8hi)
12397 __v8hi __builtin_arc_vupbaw (__v8hi)
12398 __v8hi __builtin_arc_vupbw (__v8hi)
12399 __v8hi __builtin_arc_vupsbaw (__v8hi)
12400 __v8hi __builtin_arc_vupsbw (__v8hi)
12401 @end example
12402
12403 The following take two @code{int} arguments and return no result:
12404 @example
12405 void __builtin_arc_vdirun (int, int)
12406 void __builtin_arc_vdorun (int, int)
12407 @end example
12408
12409 The following take two @code{int} arguments and return no result. The
12410 first argument must a 3-bit compile time constant indicating one of
12411 the DR0-DR7 DMA setup channels:
12412 @example
12413 void __builtin_arc_vdiwr (const int, int)
12414 void __builtin_arc_vdowr (const int, int)
12415 @end example
12416
12417 The following take an @code{int} argument and return no result:
12418 @example
12419 void __builtin_arc_vendrec (int)
12420 void __builtin_arc_vrec (int)
12421 void __builtin_arc_vrecrun (int)
12422 void __builtin_arc_vrun (int)
12423 @end example
12424
12425 The following take a @code{__v8hi} argument and two @code{int}
12426 arguments and return a @code{__v8hi} result. The second argument must
12427 be a 3-bit compile time constants, indicating one the registers I0-I7,
12428 and the third argument must be an 8-bit compile time constant.
12429
12430 @emph{Note:} Although the equivalent hardware instructions do not take
12431 an SIMD register as an operand, these builtins overwrite the relevant
12432 bits of the @code{__v8hi} register provided as the first argument with
12433 the value loaded from the @code{[Ib, u8]} location in the SDM.
12434
12435 @example
12436 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12437 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12438 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12439 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12440 @end example
12441
12442 The following take two @code{int} arguments and return a @code{__v8hi}
12443 result. The first argument must be a 3-bit compile time constants,
12444 indicating one the registers I0-I7, and the second argument must be an
12445 8-bit compile time constant.
12446
12447 @example
12448 __v8hi __builtin_arc_vld128 (const int, const int)
12449 __v8hi __builtin_arc_vld64w (const int, const int)
12450 @end example
12451
12452 The following take a @code{__v8hi} argument and two @code{int}
12453 arguments and return no result. The second argument must be a 3-bit
12454 compile time constants, indicating one the registers I0-I7, and the
12455 third argument must be an 8-bit compile time constant.
12456
12457 @example
12458 void __builtin_arc_vst128 (__v8hi, const int, const int)
12459 void __builtin_arc_vst64 (__v8hi, const int, const int)
12460 @end example
12461
12462 The following take a @code{__v8hi} argument and three @code{int}
12463 arguments and return no result. The second argument must be a 3-bit
12464 compile-time constant, identifying the 16-bit sub-register to be
12465 stored, the third argument must be a 3-bit compile time constants,
12466 indicating one the registers I0-I7, and the fourth argument must be an
12467 8-bit compile time constant.
12468
12469 @example
12470 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12471 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12472 @end example
12473
12474 @node ARM iWMMXt Built-in Functions
12475 @subsection ARM iWMMXt Built-in Functions
12476
12477 These built-in functions are available for the ARM family of
12478 processors when the @option{-mcpu=iwmmxt} switch is used:
12479
12480 @smallexample
12481 typedef int v2si __attribute__ ((vector_size (8)));
12482 typedef short v4hi __attribute__ ((vector_size (8)));
12483 typedef char v8qi __attribute__ ((vector_size (8)));
12484
12485 int __builtin_arm_getwcgr0 (void)
12486 void __builtin_arm_setwcgr0 (int)
12487 int __builtin_arm_getwcgr1 (void)
12488 void __builtin_arm_setwcgr1 (int)
12489 int __builtin_arm_getwcgr2 (void)
12490 void __builtin_arm_setwcgr2 (int)
12491 int __builtin_arm_getwcgr3 (void)
12492 void __builtin_arm_setwcgr3 (int)
12493 int __builtin_arm_textrmsb (v8qi, int)
12494 int __builtin_arm_textrmsh (v4hi, int)
12495 int __builtin_arm_textrmsw (v2si, int)
12496 int __builtin_arm_textrmub (v8qi, int)
12497 int __builtin_arm_textrmuh (v4hi, int)
12498 int __builtin_arm_textrmuw (v2si, int)
12499 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12500 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12501 v2si __builtin_arm_tinsrw (v2si, int, int)
12502 long long __builtin_arm_tmia (long long, int, int)
12503 long long __builtin_arm_tmiabb (long long, int, int)
12504 long long __builtin_arm_tmiabt (long long, int, int)
12505 long long __builtin_arm_tmiaph (long long, int, int)
12506 long long __builtin_arm_tmiatb (long long, int, int)
12507 long long __builtin_arm_tmiatt (long long, int, int)
12508 int __builtin_arm_tmovmskb (v8qi)
12509 int __builtin_arm_tmovmskh (v4hi)
12510 int __builtin_arm_tmovmskw (v2si)
12511 long long __builtin_arm_waccb (v8qi)
12512 long long __builtin_arm_wacch (v4hi)
12513 long long __builtin_arm_waccw (v2si)
12514 v8qi __builtin_arm_waddb (v8qi, v8qi)
12515 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12516 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12517 v4hi __builtin_arm_waddh (v4hi, v4hi)
12518 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12519 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12520 v2si __builtin_arm_waddw (v2si, v2si)
12521 v2si __builtin_arm_waddwss (v2si, v2si)
12522 v2si __builtin_arm_waddwus (v2si, v2si)
12523 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12524 long long __builtin_arm_wand(long long, long long)
12525 long long __builtin_arm_wandn (long long, long long)
12526 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12527 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12528 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12529 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12530 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12531 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12532 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12533 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12534 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12535 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12536 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12537 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12538 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12539 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12540 long long __builtin_arm_wmacsz (v4hi, v4hi)
12541 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12542 long long __builtin_arm_wmacuz (v4hi, v4hi)
12543 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12544 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12545 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12546 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12547 v2si __builtin_arm_wmaxsw (v2si, v2si)
12548 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12549 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12550 v2si __builtin_arm_wmaxuw (v2si, v2si)
12551 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12552 v4hi __builtin_arm_wminsh (v4hi, v4hi)
12553 v2si __builtin_arm_wminsw (v2si, v2si)
12554 v8qi __builtin_arm_wminub (v8qi, v8qi)
12555 v4hi __builtin_arm_wminuh (v4hi, v4hi)
12556 v2si __builtin_arm_wminuw (v2si, v2si)
12557 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
12558 v4hi __builtin_arm_wmulul (v4hi, v4hi)
12559 v4hi __builtin_arm_wmulum (v4hi, v4hi)
12560 long long __builtin_arm_wor (long long, long long)
12561 v2si __builtin_arm_wpackdss (long long, long long)
12562 v2si __builtin_arm_wpackdus (long long, long long)
12563 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
12564 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
12565 v4hi __builtin_arm_wpackwss (v2si, v2si)
12566 v4hi __builtin_arm_wpackwus (v2si, v2si)
12567 long long __builtin_arm_wrord (long long, long long)
12568 long long __builtin_arm_wrordi (long long, int)
12569 v4hi __builtin_arm_wrorh (v4hi, long long)
12570 v4hi __builtin_arm_wrorhi (v4hi, int)
12571 v2si __builtin_arm_wrorw (v2si, long long)
12572 v2si __builtin_arm_wrorwi (v2si, int)
12573 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
12574 v2si __builtin_arm_wsadbz (v8qi, v8qi)
12575 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
12576 v2si __builtin_arm_wsadhz (v4hi, v4hi)
12577 v4hi __builtin_arm_wshufh (v4hi, int)
12578 long long __builtin_arm_wslld (long long, long long)
12579 long long __builtin_arm_wslldi (long long, int)
12580 v4hi __builtin_arm_wsllh (v4hi, long long)
12581 v4hi __builtin_arm_wsllhi (v4hi, int)
12582 v2si __builtin_arm_wsllw (v2si, long long)
12583 v2si __builtin_arm_wsllwi (v2si, int)
12584 long long __builtin_arm_wsrad (long long, long long)
12585 long long __builtin_arm_wsradi (long long, int)
12586 v4hi __builtin_arm_wsrah (v4hi, long long)
12587 v4hi __builtin_arm_wsrahi (v4hi, int)
12588 v2si __builtin_arm_wsraw (v2si, long long)
12589 v2si __builtin_arm_wsrawi (v2si, int)
12590 long long __builtin_arm_wsrld (long long, long long)
12591 long long __builtin_arm_wsrldi (long long, int)
12592 v4hi __builtin_arm_wsrlh (v4hi, long long)
12593 v4hi __builtin_arm_wsrlhi (v4hi, int)
12594 v2si __builtin_arm_wsrlw (v2si, long long)
12595 v2si __builtin_arm_wsrlwi (v2si, int)
12596 v8qi __builtin_arm_wsubb (v8qi, v8qi)
12597 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
12598 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
12599 v4hi __builtin_arm_wsubh (v4hi, v4hi)
12600 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12601 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12602 v2si __builtin_arm_wsubw (v2si, v2si)
12603 v2si __builtin_arm_wsubwss (v2si, v2si)
12604 v2si __builtin_arm_wsubwus (v2si, v2si)
12605 v4hi __builtin_arm_wunpckehsb (v8qi)
12606 v2si __builtin_arm_wunpckehsh (v4hi)
12607 long long __builtin_arm_wunpckehsw (v2si)
12608 v4hi __builtin_arm_wunpckehub (v8qi)
12609 v2si __builtin_arm_wunpckehuh (v4hi)
12610 long long __builtin_arm_wunpckehuw (v2si)
12611 v4hi __builtin_arm_wunpckelsb (v8qi)
12612 v2si __builtin_arm_wunpckelsh (v4hi)
12613 long long __builtin_arm_wunpckelsw (v2si)
12614 v4hi __builtin_arm_wunpckelub (v8qi)
12615 v2si __builtin_arm_wunpckeluh (v4hi)
12616 long long __builtin_arm_wunpckeluw (v2si)
12617 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12618 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12619 v2si __builtin_arm_wunpckihw (v2si, v2si)
12620 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12621 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12622 v2si __builtin_arm_wunpckilw (v2si, v2si)
12623 long long __builtin_arm_wxor (long long, long long)
12624 long long __builtin_arm_wzero ()
12625 @end smallexample
12626
12627
12628 @node ARM C Language Extensions (ACLE)
12629 @subsection ARM C Language Extensions (ACLE)
12630
12631 GCC implements extensions for C as described in the ARM C Language
12632 Extensions (ACLE) specification, which can be found at
12633 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12634
12635 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12636 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12637 intrinsics can be found at
12638 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12639 The built-in intrinsics for the Advanced SIMD extension are available when
12640 NEON is enabled.
12641
12642 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12643 back ends support CRC32 intrinsics and the ARM back end supports the
12644 Coprocessor intrinsics, all from @file{arm_acle.h}. The ARM back end's 16-bit
12645 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12646 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12647 intrinsics yet.
12648
12649 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12650 availability of extensions.
12651
12652 @node ARM Floating Point Status and Control Intrinsics
12653 @subsection ARM Floating Point Status and Control Intrinsics
12654
12655 These built-in functions are available for the ARM family of
12656 processors with floating-point unit.
12657
12658 @smallexample
12659 unsigned int __builtin_arm_get_fpscr ()
12660 void __builtin_arm_set_fpscr (unsigned int)
12661 @end smallexample
12662
12663 @node ARM ARMv8-M Security Extensions
12664 @subsection ARM ARMv8-M Security Extensions
12665
12666 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
12667 Security Extensions: Requirements on Development Tools Engineering
12668 Specification, which can be found at
12669 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
12670
12671 As part of the Security Extensions GCC implements two new function attributes:
12672 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
12673
12674 As part of the Security Extensions GCC implements the intrinsics below. FPTR
12675 is used here to mean any function pointer type.
12676
12677 @smallexample
12678 cmse_address_info_t cmse_TT (void *)
12679 cmse_address_info_t cmse_TT_fptr (FPTR)
12680 cmse_address_info_t cmse_TTT (void *)
12681 cmse_address_info_t cmse_TTT_fptr (FPTR)
12682 cmse_address_info_t cmse_TTA (void *)
12683 cmse_address_info_t cmse_TTA_fptr (FPTR)
12684 cmse_address_info_t cmse_TTAT (void *)
12685 cmse_address_info_t cmse_TTAT_fptr (FPTR)
12686 void * cmse_check_address_range (void *, size_t, int)
12687 typeof(p) cmse_nsfptr_create (FPTR p)
12688 intptr_t cmse_is_nsfptr (FPTR)
12689 int cmse_nonsecure_caller (void)
12690 @end smallexample
12691
12692 @node AVR Built-in Functions
12693 @subsection AVR Built-in Functions
12694
12695 For each built-in function for AVR, there is an equally named,
12696 uppercase built-in macro defined. That way users can easily query if
12697 or if not a specific built-in is implemented or not. For example, if
12698 @code{__builtin_avr_nop} is available the macro
12699 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12700
12701 The following built-in functions map to the respective machine
12702 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12703 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12704 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12705 as library call if no hardware multiplier is available.
12706
12707 @smallexample
12708 void __builtin_avr_nop (void)
12709 void __builtin_avr_sei (void)
12710 void __builtin_avr_cli (void)
12711 void __builtin_avr_sleep (void)
12712 void __builtin_avr_wdr (void)
12713 unsigned char __builtin_avr_swap (unsigned char)
12714 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12715 int __builtin_avr_fmuls (char, char)
12716 int __builtin_avr_fmulsu (char, unsigned char)
12717 @end smallexample
12718
12719 In order to delay execution for a specific number of cycles, GCC
12720 implements
12721 @smallexample
12722 void __builtin_avr_delay_cycles (unsigned long ticks)
12723 @end smallexample
12724
12725 @noindent
12726 @code{ticks} is the number of ticks to delay execution. Note that this
12727 built-in does not take into account the effect of interrupts that
12728 might increase delay time. @code{ticks} must be a compile-time
12729 integer constant; delays with a variable number of cycles are not supported.
12730
12731 @smallexample
12732 char __builtin_avr_flash_segment (const __memx void*)
12733 @end smallexample
12734
12735 @noindent
12736 This built-in takes a byte address to the 24-bit
12737 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12738 the number of the flash segment (the 64 KiB chunk) where the address
12739 points to. Counting starts at @code{0}.
12740 If the address does not point to flash memory, return @code{-1}.
12741
12742 @smallexample
12743 unsigned char __builtin_avr_insert_bits (unsigned long map,
12744 unsigned char bits,
12745 unsigned char val)
12746 @end smallexample
12747
12748 @noindent
12749 Insert bits from @var{bits} into @var{val} and return the resulting
12750 value. The nibbles of @var{map} determine how the insertion is
12751 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12752 @enumerate
12753 @item If @var{X} is @code{0xf},
12754 then the @var{n}-th bit of @var{val} is returned unaltered.
12755
12756 @item If X is in the range 0@dots{}7,
12757 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12758
12759 @item If X is in the range 8@dots{}@code{0xe},
12760 then the @var{n}-th result bit is undefined.
12761 @end enumerate
12762
12763 @noindent
12764 One typical use case for this built-in is adjusting input and
12765 output values to non-contiguous port layouts. Some examples:
12766
12767 @smallexample
12768 // same as val, bits is unused
12769 __builtin_avr_insert_bits (0xffffffff, bits, val)
12770 @end smallexample
12771
12772 @smallexample
12773 // same as bits, val is unused
12774 __builtin_avr_insert_bits (0x76543210, bits, val)
12775 @end smallexample
12776
12777 @smallexample
12778 // same as rotating bits by 4
12779 __builtin_avr_insert_bits (0x32107654, bits, 0)
12780 @end smallexample
12781
12782 @smallexample
12783 // high nibble of result is the high nibble of val
12784 // low nibble of result is the low nibble of bits
12785 __builtin_avr_insert_bits (0xffff3210, bits, val)
12786 @end smallexample
12787
12788 @smallexample
12789 // reverse the bit order of bits
12790 __builtin_avr_insert_bits (0x01234567, bits, 0)
12791 @end smallexample
12792
12793 @smallexample
12794 void __builtin_avr_nops (unsigned count)
12795 @end smallexample
12796
12797 @noindent
12798 Insert @code{count} @code{NOP} instructions.
12799 The number of instructions must be a compile-time integer constant.
12800
12801 @node Blackfin Built-in Functions
12802 @subsection Blackfin Built-in Functions
12803
12804 Currently, there are two Blackfin-specific built-in functions. These are
12805 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
12806 using inline assembly; by using these built-in functions the compiler can
12807 automatically add workarounds for hardware errata involving these
12808 instructions. These functions are named as follows:
12809
12810 @smallexample
12811 void __builtin_bfin_csync (void)
12812 void __builtin_bfin_ssync (void)
12813 @end smallexample
12814
12815 @node FR-V Built-in Functions
12816 @subsection FR-V Built-in Functions
12817
12818 GCC provides many FR-V-specific built-in functions. In general,
12819 these functions are intended to be compatible with those described
12820 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
12821 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
12822 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
12823 pointer rather than by value.
12824
12825 Most of the functions are named after specific FR-V instructions.
12826 Such functions are said to be ``directly mapped'' and are summarized
12827 here in tabular form.
12828
12829 @menu
12830 * Argument Types::
12831 * Directly-mapped Integer Functions::
12832 * Directly-mapped Media Functions::
12833 * Raw read/write Functions::
12834 * Other Built-in Functions::
12835 @end menu
12836
12837 @node Argument Types
12838 @subsubsection Argument Types
12839
12840 The arguments to the built-in functions can be divided into three groups:
12841 register numbers, compile-time constants and run-time values. In order
12842 to make this classification clear at a glance, the arguments and return
12843 values are given the following pseudo types:
12844
12845 @multitable @columnfractions .20 .30 .15 .35
12846 @item Pseudo type @tab Real C type @tab Constant? @tab Description
12847 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
12848 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
12849 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
12850 @item @code{uw2} @tab @code{unsigned long long} @tab No
12851 @tab an unsigned doubleword
12852 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
12853 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
12854 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
12855 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
12856 @end multitable
12857
12858 These pseudo types are not defined by GCC, they are simply a notational
12859 convenience used in this manual.
12860
12861 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
12862 and @code{sw2} are evaluated at run time. They correspond to
12863 register operands in the underlying FR-V instructions.
12864
12865 @code{const} arguments represent immediate operands in the underlying
12866 FR-V instructions. They must be compile-time constants.
12867
12868 @code{acc} arguments are evaluated at compile time and specify the number
12869 of an accumulator register. For example, an @code{acc} argument of 2
12870 selects the ACC2 register.
12871
12872 @code{iacc} arguments are similar to @code{acc} arguments but specify the
12873 number of an IACC register. See @pxref{Other Built-in Functions}
12874 for more details.
12875
12876 @node Directly-mapped Integer Functions
12877 @subsubsection Directly-Mapped Integer Functions
12878
12879 The functions listed below map directly to FR-V I-type instructions.
12880
12881 @multitable @columnfractions .45 .32 .23
12882 @item Function prototype @tab Example usage @tab Assembly output
12883 @item @code{sw1 __ADDSS (sw1, sw1)}
12884 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
12885 @tab @code{ADDSS @var{a},@var{b},@var{c}}
12886 @item @code{sw1 __SCAN (sw1, sw1)}
12887 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
12888 @tab @code{SCAN @var{a},@var{b},@var{c}}
12889 @item @code{sw1 __SCUTSS (sw1)}
12890 @tab @code{@var{b} = __SCUTSS (@var{a})}
12891 @tab @code{SCUTSS @var{a},@var{b}}
12892 @item @code{sw1 __SLASS (sw1, sw1)}
12893 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
12894 @tab @code{SLASS @var{a},@var{b},@var{c}}
12895 @item @code{void __SMASS (sw1, sw1)}
12896 @tab @code{__SMASS (@var{a}, @var{b})}
12897 @tab @code{SMASS @var{a},@var{b}}
12898 @item @code{void __SMSSS (sw1, sw1)}
12899 @tab @code{__SMSSS (@var{a}, @var{b})}
12900 @tab @code{SMSSS @var{a},@var{b}}
12901 @item @code{void __SMU (sw1, sw1)}
12902 @tab @code{__SMU (@var{a}, @var{b})}
12903 @tab @code{SMU @var{a},@var{b}}
12904 @item @code{sw2 __SMUL (sw1, sw1)}
12905 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
12906 @tab @code{SMUL @var{a},@var{b},@var{c}}
12907 @item @code{sw1 __SUBSS (sw1, sw1)}
12908 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
12909 @tab @code{SUBSS @var{a},@var{b},@var{c}}
12910 @item @code{uw2 __UMUL (uw1, uw1)}
12911 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
12912 @tab @code{UMUL @var{a},@var{b},@var{c}}
12913 @end multitable
12914
12915 @node Directly-mapped Media Functions
12916 @subsubsection Directly-Mapped Media Functions
12917
12918 The functions listed below map directly to FR-V M-type instructions.
12919
12920 @multitable @columnfractions .45 .32 .23
12921 @item Function prototype @tab Example usage @tab Assembly output
12922 @item @code{uw1 __MABSHS (sw1)}
12923 @tab @code{@var{b} = __MABSHS (@var{a})}
12924 @tab @code{MABSHS @var{a},@var{b}}
12925 @item @code{void __MADDACCS (acc, acc)}
12926 @tab @code{__MADDACCS (@var{b}, @var{a})}
12927 @tab @code{MADDACCS @var{a},@var{b}}
12928 @item @code{sw1 __MADDHSS (sw1, sw1)}
12929 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
12930 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
12931 @item @code{uw1 __MADDHUS (uw1, uw1)}
12932 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
12933 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
12934 @item @code{uw1 __MAND (uw1, uw1)}
12935 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
12936 @tab @code{MAND @var{a},@var{b},@var{c}}
12937 @item @code{void __MASACCS (acc, acc)}
12938 @tab @code{__MASACCS (@var{b}, @var{a})}
12939 @tab @code{MASACCS @var{a},@var{b}}
12940 @item @code{uw1 __MAVEH (uw1, uw1)}
12941 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
12942 @tab @code{MAVEH @var{a},@var{b},@var{c}}
12943 @item @code{uw2 __MBTOH (uw1)}
12944 @tab @code{@var{b} = __MBTOH (@var{a})}
12945 @tab @code{MBTOH @var{a},@var{b}}
12946 @item @code{void __MBTOHE (uw1 *, uw1)}
12947 @tab @code{__MBTOHE (&@var{b}, @var{a})}
12948 @tab @code{MBTOHE @var{a},@var{b}}
12949 @item @code{void __MCLRACC (acc)}
12950 @tab @code{__MCLRACC (@var{a})}
12951 @tab @code{MCLRACC @var{a}}
12952 @item @code{void __MCLRACCA (void)}
12953 @tab @code{__MCLRACCA ()}
12954 @tab @code{MCLRACCA}
12955 @item @code{uw1 __Mcop1 (uw1, uw1)}
12956 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
12957 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
12958 @item @code{uw1 __Mcop2 (uw1, uw1)}
12959 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
12960 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
12961 @item @code{uw1 __MCPLHI (uw2, const)}
12962 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
12963 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
12964 @item @code{uw1 __MCPLI (uw2, const)}
12965 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
12966 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
12967 @item @code{void __MCPXIS (acc, sw1, sw1)}
12968 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
12969 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
12970 @item @code{void __MCPXIU (acc, uw1, uw1)}
12971 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
12972 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
12973 @item @code{void __MCPXRS (acc, sw1, sw1)}
12974 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
12975 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
12976 @item @code{void __MCPXRU (acc, uw1, uw1)}
12977 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
12978 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
12979 @item @code{uw1 __MCUT (acc, uw1)}
12980 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
12981 @tab @code{MCUT @var{a},@var{b},@var{c}}
12982 @item @code{uw1 __MCUTSS (acc, sw1)}
12983 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
12984 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
12985 @item @code{void __MDADDACCS (acc, acc)}
12986 @tab @code{__MDADDACCS (@var{b}, @var{a})}
12987 @tab @code{MDADDACCS @var{a},@var{b}}
12988 @item @code{void __MDASACCS (acc, acc)}
12989 @tab @code{__MDASACCS (@var{b}, @var{a})}
12990 @tab @code{MDASACCS @var{a},@var{b}}
12991 @item @code{uw2 __MDCUTSSI (acc, const)}
12992 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
12993 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
12994 @item @code{uw2 __MDPACKH (uw2, uw2)}
12995 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
12996 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
12997 @item @code{uw2 __MDROTLI (uw2, const)}
12998 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
12999 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
13000 @item @code{void __MDSUBACCS (acc, acc)}
13001 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
13002 @tab @code{MDSUBACCS @var{a},@var{b}}
13003 @item @code{void __MDUNPACKH (uw1 *, uw2)}
13004 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
13005 @tab @code{MDUNPACKH @var{a},@var{b}}
13006 @item @code{uw2 __MEXPDHD (uw1, const)}
13007 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
13008 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
13009 @item @code{uw1 __MEXPDHW (uw1, const)}
13010 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
13011 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
13012 @item @code{uw1 __MHDSETH (uw1, const)}
13013 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
13014 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
13015 @item @code{sw1 __MHDSETS (const)}
13016 @tab @code{@var{b} = __MHDSETS (@var{a})}
13017 @tab @code{MHDSETS #@var{a},@var{b}}
13018 @item @code{uw1 __MHSETHIH (uw1, const)}
13019 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
13020 @tab @code{MHSETHIH #@var{a},@var{b}}
13021 @item @code{sw1 __MHSETHIS (sw1, const)}
13022 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
13023 @tab @code{MHSETHIS #@var{a},@var{b}}
13024 @item @code{uw1 __MHSETLOH (uw1, const)}
13025 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
13026 @tab @code{MHSETLOH #@var{a},@var{b}}
13027 @item @code{sw1 __MHSETLOS (sw1, const)}
13028 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
13029 @tab @code{MHSETLOS #@var{a},@var{b}}
13030 @item @code{uw1 __MHTOB (uw2)}
13031 @tab @code{@var{b} = __MHTOB (@var{a})}
13032 @tab @code{MHTOB @var{a},@var{b}}
13033 @item @code{void __MMACHS (acc, sw1, sw1)}
13034 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
13035 @tab @code{MMACHS @var{a},@var{b},@var{c}}
13036 @item @code{void __MMACHU (acc, uw1, uw1)}
13037 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
13038 @tab @code{MMACHU @var{a},@var{b},@var{c}}
13039 @item @code{void __MMRDHS (acc, sw1, sw1)}
13040 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
13041 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
13042 @item @code{void __MMRDHU (acc, uw1, uw1)}
13043 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
13044 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
13045 @item @code{void __MMULHS (acc, sw1, sw1)}
13046 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
13047 @tab @code{MMULHS @var{a},@var{b},@var{c}}
13048 @item @code{void __MMULHU (acc, uw1, uw1)}
13049 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
13050 @tab @code{MMULHU @var{a},@var{b},@var{c}}
13051 @item @code{void __MMULXHS (acc, sw1, sw1)}
13052 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
13053 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
13054 @item @code{void __MMULXHU (acc, uw1, uw1)}
13055 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
13056 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
13057 @item @code{uw1 __MNOT (uw1)}
13058 @tab @code{@var{b} = __MNOT (@var{a})}
13059 @tab @code{MNOT @var{a},@var{b}}
13060 @item @code{uw1 __MOR (uw1, uw1)}
13061 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
13062 @tab @code{MOR @var{a},@var{b},@var{c}}
13063 @item @code{uw1 __MPACKH (uh, uh)}
13064 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
13065 @tab @code{MPACKH @var{a},@var{b},@var{c}}
13066 @item @code{sw2 __MQADDHSS (sw2, sw2)}
13067 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
13068 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
13069 @item @code{uw2 __MQADDHUS (uw2, uw2)}
13070 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
13071 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
13072 @item @code{void __MQCPXIS (acc, sw2, sw2)}
13073 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
13074 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
13075 @item @code{void __MQCPXIU (acc, uw2, uw2)}
13076 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
13077 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13078 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13079 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13080 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13081 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13082 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13083 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13084 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13085 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13086 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13087 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13088 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13089 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13090 @item @code{void __MQMACHS (acc, sw2, sw2)}
13091 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13092 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13093 @item @code{void __MQMACHU (acc, uw2, uw2)}
13094 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13095 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13096 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13097 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13098 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13099 @item @code{void __MQMULHS (acc, sw2, sw2)}
13100 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13101 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13102 @item @code{void __MQMULHU (acc, uw2, uw2)}
13103 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13104 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13105 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13106 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13107 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13108 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13109 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13110 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13111 @item @code{sw2 __MQSATHS (sw2, sw2)}
13112 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13113 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13114 @item @code{uw2 __MQSLLHI (uw2, int)}
13115 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13116 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13117 @item @code{sw2 __MQSRAHI (sw2, int)}
13118 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13119 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13120 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13121 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13122 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13123 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13124 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13125 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13126 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13127 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13128 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13129 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13130 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13131 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13132 @item @code{uw1 __MRDACC (acc)}
13133 @tab @code{@var{b} = __MRDACC (@var{a})}
13134 @tab @code{MRDACC @var{a},@var{b}}
13135 @item @code{uw1 __MRDACCG (acc)}
13136 @tab @code{@var{b} = __MRDACCG (@var{a})}
13137 @tab @code{MRDACCG @var{a},@var{b}}
13138 @item @code{uw1 __MROTLI (uw1, const)}
13139 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13140 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13141 @item @code{uw1 __MROTRI (uw1, const)}
13142 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13143 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13144 @item @code{sw1 __MSATHS (sw1, sw1)}
13145 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13146 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13147 @item @code{uw1 __MSATHU (uw1, uw1)}
13148 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13149 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13150 @item @code{uw1 __MSLLHI (uw1, const)}
13151 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13152 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13153 @item @code{sw1 __MSRAHI (sw1, const)}
13154 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13155 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13156 @item @code{uw1 __MSRLHI (uw1, const)}
13157 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13158 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13159 @item @code{void __MSUBACCS (acc, acc)}
13160 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13161 @tab @code{MSUBACCS @var{a},@var{b}}
13162 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13163 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13164 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13165 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13166 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13167 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13168 @item @code{void __MTRAP (void)}
13169 @tab @code{__MTRAP ()}
13170 @tab @code{MTRAP}
13171 @item @code{uw2 __MUNPACKH (uw1)}
13172 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13173 @tab @code{MUNPACKH @var{a},@var{b}}
13174 @item @code{uw1 __MWCUT (uw2, uw1)}
13175 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13176 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13177 @item @code{void __MWTACC (acc, uw1)}
13178 @tab @code{__MWTACC (@var{b}, @var{a})}
13179 @tab @code{MWTACC @var{a},@var{b}}
13180 @item @code{void __MWTACCG (acc, uw1)}
13181 @tab @code{__MWTACCG (@var{b}, @var{a})}
13182 @tab @code{MWTACCG @var{a},@var{b}}
13183 @item @code{uw1 __MXOR (uw1, uw1)}
13184 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13185 @tab @code{MXOR @var{a},@var{b},@var{c}}
13186 @end multitable
13187
13188 @node Raw read/write Functions
13189 @subsubsection Raw Read/Write Functions
13190
13191 This sections describes built-in functions related to read and write
13192 instructions to access memory. These functions generate
13193 @code{membar} instructions to flush the I/O load and stores where
13194 appropriate, as described in Fujitsu's manual described above.
13195
13196 @table @code
13197
13198 @item unsigned char __builtin_read8 (void *@var{data})
13199 @item unsigned short __builtin_read16 (void *@var{data})
13200 @item unsigned long __builtin_read32 (void *@var{data})
13201 @item unsigned long long __builtin_read64 (void *@var{data})
13202
13203 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13204 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13205 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13206 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13207 @end table
13208
13209 @node Other Built-in Functions
13210 @subsubsection Other Built-in Functions
13211
13212 This section describes built-in functions that are not named after
13213 a specific FR-V instruction.
13214
13215 @table @code
13216 @item sw2 __IACCreadll (iacc @var{reg})
13217 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13218 for future expansion and must be 0.
13219
13220 @item sw1 __IACCreadl (iacc @var{reg})
13221 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13222 Other values of @var{reg} are rejected as invalid.
13223
13224 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13225 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13226 is reserved for future expansion and must be 0.
13227
13228 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13229 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13230 is 1. Other values of @var{reg} are rejected as invalid.
13231
13232 @item void __data_prefetch0 (const void *@var{x})
13233 Use the @code{dcpl} instruction to load the contents of address @var{x}
13234 into the data cache.
13235
13236 @item void __data_prefetch (const void *@var{x})
13237 Use the @code{nldub} instruction to load the contents of address @var{x}
13238 into the data cache. The instruction is issued in slot I1@.
13239 @end table
13240
13241 @node MIPS DSP Built-in Functions
13242 @subsection MIPS DSP Built-in Functions
13243
13244 The MIPS DSP Application-Specific Extension (ASE) includes new
13245 instructions that are designed to improve the performance of DSP and
13246 media applications. It provides instructions that operate on packed
13247 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13248
13249 GCC supports MIPS DSP operations using both the generic
13250 vector extensions (@pxref{Vector Extensions}) and a collection of
13251 MIPS-specific built-in functions. Both kinds of support are
13252 enabled by the @option{-mdsp} command-line option.
13253
13254 Revision 2 of the ASE was introduced in the second half of 2006.
13255 This revision adds extra instructions to the original ASE, but is
13256 otherwise backwards-compatible with it. You can select revision 2
13257 using the command-line option @option{-mdspr2}; this option implies
13258 @option{-mdsp}.
13259
13260 The SCOUNT and POS bits of the DSP control register are global. The
13261 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13262 POS bits. During optimization, the compiler does not delete these
13263 instructions and it does not delete calls to functions containing
13264 these instructions.
13265
13266 At present, GCC only provides support for operations on 32-bit
13267 vectors. The vector type associated with 8-bit integer data is
13268 usually called @code{v4i8}, the vector type associated with Q7
13269 is usually called @code{v4q7}, the vector type associated with 16-bit
13270 integer data is usually called @code{v2i16}, and the vector type
13271 associated with Q15 is usually called @code{v2q15}. They can be
13272 defined in C as follows:
13273
13274 @smallexample
13275 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13276 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13277 typedef short v2i16 __attribute__ ((vector_size(4)));
13278 typedef short v2q15 __attribute__ ((vector_size(4)));
13279 @end smallexample
13280
13281 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13282 initialized in the same way as aggregates. For example:
13283
13284 @smallexample
13285 v4i8 a = @{1, 2, 3, 4@};
13286 v4i8 b;
13287 b = (v4i8) @{5, 6, 7, 8@};
13288
13289 v2q15 c = @{0x0fcb, 0x3a75@};
13290 v2q15 d;
13291 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13292 @end smallexample
13293
13294 @emph{Note:} The CPU's endianness determines the order in which values
13295 are packed. On little-endian targets, the first value is the least
13296 significant and the last value is the most significant. The opposite
13297 order applies to big-endian targets. For example, the code above
13298 sets the lowest byte of @code{a} to @code{1} on little-endian targets
13299 and @code{4} on big-endian targets.
13300
13301 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
13302 representation. As shown in this example, the integer representation
13303 of a Q7 value can be obtained by multiplying the fractional value by
13304 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
13305 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
13306 @code{0x1.0p31}.
13307
13308 The table below lists the @code{v4i8} and @code{v2q15} operations for which
13309 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
13310 and @code{c} and @code{d} are @code{v2q15} values.
13311
13312 @multitable @columnfractions .50 .50
13313 @item C code @tab MIPS instruction
13314 @item @code{a + b} @tab @code{addu.qb}
13315 @item @code{c + d} @tab @code{addq.ph}
13316 @item @code{a - b} @tab @code{subu.qb}
13317 @item @code{c - d} @tab @code{subq.ph}
13318 @end multitable
13319
13320 The table below lists the @code{v2i16} operation for which
13321 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
13322 @code{v2i16} values.
13323
13324 @multitable @columnfractions .50 .50
13325 @item C code @tab MIPS instruction
13326 @item @code{e * f} @tab @code{mul.ph}
13327 @end multitable
13328
13329 It is easier to describe the DSP built-in functions if we first define
13330 the following types:
13331
13332 @smallexample
13333 typedef int q31;
13334 typedef int i32;
13335 typedef unsigned int ui32;
13336 typedef long long a64;
13337 @end smallexample
13338
13339 @code{q31} and @code{i32} are actually the same as @code{int}, but we
13340 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
13341 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
13342 @code{long long}, but we use @code{a64} to indicate values that are
13343 placed in one of the four DSP accumulators (@code{$ac0},
13344 @code{$ac1}, @code{$ac2} or @code{$ac3}).
13345
13346 Also, some built-in functions prefer or require immediate numbers as
13347 parameters, because the corresponding DSP instructions accept both immediate
13348 numbers and register operands, or accept immediate numbers only. The
13349 immediate parameters are listed as follows.
13350
13351 @smallexample
13352 imm0_3: 0 to 3.
13353 imm0_7: 0 to 7.
13354 imm0_15: 0 to 15.
13355 imm0_31: 0 to 31.
13356 imm0_63: 0 to 63.
13357 imm0_255: 0 to 255.
13358 imm_n32_31: -32 to 31.
13359 imm_n512_511: -512 to 511.
13360 @end smallexample
13361
13362 The following built-in functions map directly to a particular MIPS DSP
13363 instruction. Please refer to the architecture specification
13364 for details on what each instruction does.
13365
13366 @smallexample
13367 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
13368 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
13369 q31 __builtin_mips_addq_s_w (q31, q31)
13370 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
13371 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
13372 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
13373 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
13374 q31 __builtin_mips_subq_s_w (q31, q31)
13375 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
13376 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
13377 i32 __builtin_mips_addsc (i32, i32)
13378 i32 __builtin_mips_addwc (i32, i32)
13379 i32 __builtin_mips_modsub (i32, i32)
13380 i32 __builtin_mips_raddu_w_qb (v4i8)
13381 v2q15 __builtin_mips_absq_s_ph (v2q15)
13382 q31 __builtin_mips_absq_s_w (q31)
13383 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
13384 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
13385 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
13386 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
13387 q31 __builtin_mips_preceq_w_phl (v2q15)
13388 q31 __builtin_mips_preceq_w_phr (v2q15)
13389 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
13390 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
13391 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
13392 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
13393 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
13394 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
13395 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
13396 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
13397 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
13398 v4i8 __builtin_mips_shll_qb (v4i8, i32)
13399 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
13400 v2q15 __builtin_mips_shll_ph (v2q15, i32)
13401 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
13402 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
13403 q31 __builtin_mips_shll_s_w (q31, imm0_31)
13404 q31 __builtin_mips_shll_s_w (q31, i32)
13405 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
13406 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
13407 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
13408 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13409 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13410 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13411 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13412 q31 __builtin_mips_shra_r_w (q31, i32)
13413 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13414 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13415 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13416 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13417 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13418 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13419 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13420 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13421 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13422 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13423 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13424 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13425 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13426 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13427 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13428 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13429 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13430 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13431 i32 __builtin_mips_bitrev (i32)
13432 i32 __builtin_mips_insv (i32, i32)
13433 v4i8 __builtin_mips_repl_qb (imm0_255)
13434 v4i8 __builtin_mips_repl_qb (i32)
13435 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13436 v2q15 __builtin_mips_repl_ph (i32)
13437 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13438 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13439 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13440 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13441 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13442 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13443 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13444 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13445 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13446 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13447 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13448 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13449 i32 __builtin_mips_extr_w (a64, imm0_31)
13450 i32 __builtin_mips_extr_w (a64, i32)
13451 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13452 i32 __builtin_mips_extr_s_h (a64, i32)
13453 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13454 i32 __builtin_mips_extr_rs_w (a64, i32)
13455 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13456 i32 __builtin_mips_extr_r_w (a64, i32)
13457 i32 __builtin_mips_extp (a64, imm0_31)
13458 i32 __builtin_mips_extp (a64, i32)
13459 i32 __builtin_mips_extpdp (a64, imm0_31)
13460 i32 __builtin_mips_extpdp (a64, i32)
13461 a64 __builtin_mips_shilo (a64, imm_n32_31)
13462 a64 __builtin_mips_shilo (a64, i32)
13463 a64 __builtin_mips_mthlip (a64, i32)
13464 void __builtin_mips_wrdsp (i32, imm0_63)
13465 i32 __builtin_mips_rddsp (imm0_63)
13466 i32 __builtin_mips_lbux (void *, i32)
13467 i32 __builtin_mips_lhx (void *, i32)
13468 i32 __builtin_mips_lwx (void *, i32)
13469 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13470 i32 __builtin_mips_bposge32 (void)
13471 a64 __builtin_mips_madd (a64, i32, i32);
13472 a64 __builtin_mips_maddu (a64, ui32, ui32);
13473 a64 __builtin_mips_msub (a64, i32, i32);
13474 a64 __builtin_mips_msubu (a64, ui32, ui32);
13475 a64 __builtin_mips_mult (i32, i32);
13476 a64 __builtin_mips_multu (ui32, ui32);
13477 @end smallexample
13478
13479 The following built-in functions map directly to a particular MIPS DSP REV 2
13480 instruction. Please refer to the architecture specification
13481 for details on what each instruction does.
13482
13483 @smallexample
13484 v4q7 __builtin_mips_absq_s_qb (v4q7);
13485 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13486 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13487 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13488 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13489 i32 __builtin_mips_append (i32, i32, imm0_31);
13490 i32 __builtin_mips_balign (i32, i32, imm0_3);
13491 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13492 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13493 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13494 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13495 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13496 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13497 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13498 q31 __builtin_mips_mulq_rs_w (q31, q31);
13499 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13500 q31 __builtin_mips_mulq_s_w (q31, q31);
13501 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13502 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13503 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13504 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13505 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13506 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13507 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13508 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13509 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13510 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13511 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13512 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13513 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13514 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13515 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13516 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13517 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13518 q31 __builtin_mips_addqh_w (q31, q31);
13519 q31 __builtin_mips_addqh_r_w (q31, q31);
13520 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13521 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13522 q31 __builtin_mips_subqh_w (q31, q31);
13523 q31 __builtin_mips_subqh_r_w (q31, q31);
13524 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13525 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13526 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13527 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13528 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13529 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13530 @end smallexample
13531
13532
13533 @node MIPS Paired-Single Support
13534 @subsection MIPS Paired-Single Support
13535
13536 The MIPS64 architecture includes a number of instructions that
13537 operate on pairs of single-precision floating-point values.
13538 Each pair is packed into a 64-bit floating-point register,
13539 with one element being designated the ``upper half'' and
13540 the other being designated the ``lower half''.
13541
13542 GCC supports paired-single operations using both the generic
13543 vector extensions (@pxref{Vector Extensions}) and a collection of
13544 MIPS-specific built-in functions. Both kinds of support are
13545 enabled by the @option{-mpaired-single} command-line option.
13546
13547 The vector type associated with paired-single values is usually
13548 called @code{v2sf}. It can be defined in C as follows:
13549
13550 @smallexample
13551 typedef float v2sf __attribute__ ((vector_size (8)));
13552 @end smallexample
13553
13554 @code{v2sf} values are initialized in the same way as aggregates.
13555 For example:
13556
13557 @smallexample
13558 v2sf a = @{1.5, 9.1@};
13559 v2sf b;
13560 float e, f;
13561 b = (v2sf) @{e, f@};
13562 @end smallexample
13563
13564 @emph{Note:} The CPU's endianness determines which value is stored in
13565 the upper half of a register and which value is stored in the lower half.
13566 On little-endian targets, the first value is the lower one and the second
13567 value is the upper one. The opposite order applies to big-endian targets.
13568 For example, the code above sets the lower half of @code{a} to
13569 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
13570
13571 @node MIPS Loongson Built-in Functions
13572 @subsection MIPS Loongson Built-in Functions
13573
13574 GCC provides intrinsics to access the SIMD instructions provided by the
13575 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
13576 available after inclusion of the @code{loongson.h} header file,
13577 operate on the following 64-bit vector types:
13578
13579 @itemize
13580 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
13581 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
13582 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
13583 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
13584 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
13585 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
13586 @end itemize
13587
13588 The intrinsics provided are listed below; each is named after the
13589 machine instruction to which it corresponds, with suffixes added as
13590 appropriate to distinguish intrinsics that expand to the same machine
13591 instruction yet have different argument types. Refer to the architecture
13592 documentation for a description of the functionality of each
13593 instruction.
13594
13595 @smallexample
13596 int16x4_t packsswh (int32x2_t s, int32x2_t t);
13597 int8x8_t packsshb (int16x4_t s, int16x4_t t);
13598 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
13599 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
13600 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
13601 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
13602 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
13603 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
13604 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
13605 uint64_t paddd_u (uint64_t s, uint64_t t);
13606 int64_t paddd_s (int64_t s, int64_t t);
13607 int16x4_t paddsh (int16x4_t s, int16x4_t t);
13608 int8x8_t paddsb (int8x8_t s, int8x8_t t);
13609 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
13610 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
13611 uint64_t pandn_ud (uint64_t s, uint64_t t);
13612 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
13613 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
13614 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
13615 int64_t pandn_sd (int64_t s, int64_t t);
13616 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
13617 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
13618 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
13619 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
13620 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
13621 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
13622 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
13623 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
13624 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
13625 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
13626 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
13627 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
13628 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
13629 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
13630 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
13631 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
13632 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
13633 uint16x4_t pextrh_u (uint16x4_t s, int field);
13634 int16x4_t pextrh_s (int16x4_t s, int field);
13635 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
13636 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
13637 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
13638 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
13639 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
13640 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13641 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13642 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13643 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13644 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13645 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13646 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13647 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13648 uint8x8_t pmovmskb_u (uint8x8_t s);
13649 int8x8_t pmovmskb_s (int8x8_t s);
13650 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13651 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13652 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13653 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13654 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13655 uint16x4_t biadd (uint8x8_t s);
13656 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13657 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13658 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13659 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13660 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13661 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13662 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13663 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13664 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13665 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13666 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13667 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13668 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13669 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13670 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13671 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13672 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13673 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13674 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13675 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13676 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13677 uint64_t psubd_u (uint64_t s, uint64_t t);
13678 int64_t psubd_s (int64_t s, int64_t t);
13679 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13680 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13681 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13682 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13683 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13684 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13685 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13686 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13687 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13688 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13689 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13690 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13691 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13692 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13693 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13694 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13695 @end smallexample
13696
13697 @menu
13698 * Paired-Single Arithmetic::
13699 * Paired-Single Built-in Functions::
13700 * MIPS-3D Built-in Functions::
13701 @end menu
13702
13703 @node Paired-Single Arithmetic
13704 @subsubsection Paired-Single Arithmetic
13705
13706 The table below lists the @code{v2sf} operations for which hardware
13707 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13708 values and @code{x} is an integral value.
13709
13710 @multitable @columnfractions .50 .50
13711 @item C code @tab MIPS instruction
13712 @item @code{a + b} @tab @code{add.ps}
13713 @item @code{a - b} @tab @code{sub.ps}
13714 @item @code{-a} @tab @code{neg.ps}
13715 @item @code{a * b} @tab @code{mul.ps}
13716 @item @code{a * b + c} @tab @code{madd.ps}
13717 @item @code{a * b - c} @tab @code{msub.ps}
13718 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13719 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13720 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13721 @end multitable
13722
13723 Note that the multiply-accumulate instructions can be disabled
13724 using the command-line option @code{-mno-fused-madd}.
13725
13726 @node Paired-Single Built-in Functions
13727 @subsubsection Paired-Single Built-in Functions
13728
13729 The following paired-single functions map directly to a particular
13730 MIPS instruction. Please refer to the architecture specification
13731 for details on what each instruction does.
13732
13733 @table @code
13734 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13735 Pair lower lower (@code{pll.ps}).
13736
13737 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13738 Pair upper lower (@code{pul.ps}).
13739
13740 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13741 Pair lower upper (@code{plu.ps}).
13742
13743 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13744 Pair upper upper (@code{puu.ps}).
13745
13746 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13747 Convert pair to paired single (@code{cvt.ps.s}).
13748
13749 @item float __builtin_mips_cvt_s_pl (v2sf)
13750 Convert pair lower to single (@code{cvt.s.pl}).
13751
13752 @item float __builtin_mips_cvt_s_pu (v2sf)
13753 Convert pair upper to single (@code{cvt.s.pu}).
13754
13755 @item v2sf __builtin_mips_abs_ps (v2sf)
13756 Absolute value (@code{abs.ps}).
13757
13758 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13759 Align variable (@code{alnv.ps}).
13760
13761 @emph{Note:} The value of the third parameter must be 0 or 4
13762 modulo 8, otherwise the result is unpredictable. Please read the
13763 instruction description for details.
13764 @end table
13765
13766 The following multi-instruction functions are also available.
13767 In each case, @var{cond} can be any of the 16 floating-point conditions:
13768 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13769 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13770 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13771
13772 @table @code
13773 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13774 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13775 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13776 @code{movt.ps}/@code{movf.ps}).
13777
13778 The @code{movt} functions return the value @var{x} computed by:
13779
13780 @smallexample
13781 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13782 mov.ps @var{x},@var{c}
13783 movt.ps @var{x},@var{d},@var{cc}
13784 @end smallexample
13785
13786 The @code{movf} functions are similar but use @code{movf.ps} instead
13787 of @code{movt.ps}.
13788
13789 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13790 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13791 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13792 @code{bc1t}/@code{bc1f}).
13793
13794 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13795 and return either the upper or lower half of the result. For example:
13796
13797 @smallexample
13798 v2sf a, b;
13799 if (__builtin_mips_upper_c_eq_ps (a, b))
13800 upper_halves_are_equal ();
13801 else
13802 upper_halves_are_unequal ();
13803
13804 if (__builtin_mips_lower_c_eq_ps (a, b))
13805 lower_halves_are_equal ();
13806 else
13807 lower_halves_are_unequal ();
13808 @end smallexample
13809 @end table
13810
13811 @node MIPS-3D Built-in Functions
13812 @subsubsection MIPS-3D Built-in Functions
13813
13814 The MIPS-3D Application-Specific Extension (ASE) includes additional
13815 paired-single instructions that are designed to improve the performance
13816 of 3D graphics operations. Support for these instructions is controlled
13817 by the @option{-mips3d} command-line option.
13818
13819 The functions listed below map directly to a particular MIPS-3D
13820 instruction. Please refer to the architecture specification for
13821 more details on what each instruction does.
13822
13823 @table @code
13824 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13825 Reduction add (@code{addr.ps}).
13826
13827 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13828 Reduction multiply (@code{mulr.ps}).
13829
13830 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13831 Convert paired single to paired word (@code{cvt.pw.ps}).
13832
13833 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13834 Convert paired word to paired single (@code{cvt.ps.pw}).
13835
13836 @item float __builtin_mips_recip1_s (float)
13837 @itemx double __builtin_mips_recip1_d (double)
13838 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13839 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13840
13841 @item float __builtin_mips_recip2_s (float, float)
13842 @itemx double __builtin_mips_recip2_d (double, double)
13843 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13844 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13845
13846 @item float __builtin_mips_rsqrt1_s (float)
13847 @itemx double __builtin_mips_rsqrt1_d (double)
13848 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13849 Reduced-precision reciprocal square root (sequence step 1)
13850 (@code{rsqrt1.@var{fmt}}).
13851
13852 @item float __builtin_mips_rsqrt2_s (float, float)
13853 @itemx double __builtin_mips_rsqrt2_d (double, double)
13854 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13855 Reduced-precision reciprocal square root (sequence step 2)
13856 (@code{rsqrt2.@var{fmt}}).
13857 @end table
13858
13859 The following multi-instruction functions are also available.
13860 In each case, @var{cond} can be any of the 16 floating-point conditions:
13861 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13862 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13863 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13864
13865 @table @code
13866 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13867 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13868 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13869 @code{bc1t}/@code{bc1f}).
13870
13871 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13872 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13873 For example:
13874
13875 @smallexample
13876 float a, b;
13877 if (__builtin_mips_cabs_eq_s (a, b))
13878 true ();
13879 else
13880 false ();
13881 @end smallexample
13882
13883 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13884 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13885 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13886 @code{bc1t}/@code{bc1f}).
13887
13888 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13889 and return either the upper or lower half of the result. For example:
13890
13891 @smallexample
13892 v2sf a, b;
13893 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13894 upper_halves_are_equal ();
13895 else
13896 upper_halves_are_unequal ();
13897
13898 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13899 lower_halves_are_equal ();
13900 else
13901 lower_halves_are_unequal ();
13902 @end smallexample
13903
13904 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13905 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13906 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13907 @code{movt.ps}/@code{movf.ps}).
13908
13909 The @code{movt} functions return the value @var{x} computed by:
13910
13911 @smallexample
13912 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13913 mov.ps @var{x},@var{c}
13914 movt.ps @var{x},@var{d},@var{cc}
13915 @end smallexample
13916
13917 The @code{movf} functions are similar but use @code{movf.ps} instead
13918 of @code{movt.ps}.
13919
13920 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13921 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13922 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13923 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13924 Comparison of two paired-single values
13925 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13926 @code{bc1any2t}/@code{bc1any2f}).
13927
13928 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13929 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13930 result is true and the @code{all} forms return true if both results are true.
13931 For example:
13932
13933 @smallexample
13934 v2sf a, b;
13935 if (__builtin_mips_any_c_eq_ps (a, b))
13936 one_is_true ();
13937 else
13938 both_are_false ();
13939
13940 if (__builtin_mips_all_c_eq_ps (a, b))
13941 both_are_true ();
13942 else
13943 one_is_false ();
13944 @end smallexample
13945
13946 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13947 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13948 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13949 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13950 Comparison of four paired-single values
13951 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13952 @code{bc1any4t}/@code{bc1any4f}).
13953
13954 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13955 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13956 The @code{any} forms return true if any of the four results are true
13957 and the @code{all} forms return true if all four results are true.
13958 For example:
13959
13960 @smallexample
13961 v2sf a, b, c, d;
13962 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13963 some_are_true ();
13964 else
13965 all_are_false ();
13966
13967 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13968 all_are_true ();
13969 else
13970 some_are_false ();
13971 @end smallexample
13972 @end table
13973
13974 @node MIPS SIMD Architecture (MSA) Support
13975 @subsection MIPS SIMD Architecture (MSA) Support
13976
13977 @menu
13978 * MIPS SIMD Architecture Built-in Functions::
13979 @end menu
13980
13981 GCC provides intrinsics to access the SIMD instructions provided by the
13982 MSA MIPS SIMD Architecture. The interface is made available by including
13983 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
13984 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
13985 @code{__msa_*}.
13986
13987 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
13988 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
13989 data elements. The following vectors typedefs are included in @code{msa.h}:
13990 @itemize
13991 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
13992 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
13993 @item @code{v8i16}, a vector of eight signed 16-bit integers;
13994 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
13995 @item @code{v4i32}, a vector of four signed 32-bit integers;
13996 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
13997 @item @code{v2i64}, a vector of two signed 64-bit integers;
13998 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
13999 @item @code{v4f32}, a vector of four 32-bit floats;
14000 @item @code{v2f64}, a vector of two 64-bit doubles.
14001 @end itemize
14002
14003 Instructions and corresponding built-ins may have additional restrictions and/or
14004 input/output values manipulated:
14005 @itemize
14006 @item @code{imm0_1}, an integer literal in range 0 to 1;
14007 @item @code{imm0_3}, an integer literal in range 0 to 3;
14008 @item @code{imm0_7}, an integer literal in range 0 to 7;
14009 @item @code{imm0_15}, an integer literal in range 0 to 15;
14010 @item @code{imm0_31}, an integer literal in range 0 to 31;
14011 @item @code{imm0_63}, an integer literal in range 0 to 63;
14012 @item @code{imm0_255}, an integer literal in range 0 to 255;
14013 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
14014 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
14015 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
14016 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
14017 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
14018 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
14019 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
14020 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
14021 @item @code{imm1_4}, an integer literal in range 1 to 4;
14022 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
14023 @end itemize
14024
14025 @smallexample
14026 @{
14027 typedef int i32;
14028 #if __LONG_MAX__ == __LONG_LONG_MAX__
14029 typedef long i64;
14030 #else
14031 typedef long long i64;
14032 #endif
14033
14034 typedef unsigned int u32;
14035 #if __LONG_MAX__ == __LONG_LONG_MAX__
14036 typedef unsigned long u64;
14037 #else
14038 typedef unsigned long long u64;
14039 #endif
14040
14041 typedef double f64;
14042 typedef float f32;
14043 @}
14044 @end smallexample
14045
14046 @node MIPS SIMD Architecture Built-in Functions
14047 @subsubsection MIPS SIMD Architecture Built-in Functions
14048
14049 The intrinsics provided are listed below; each is named after the
14050 machine instruction.
14051
14052 @smallexample
14053 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
14054 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
14055 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
14056 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
14057
14058 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
14059 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
14060 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
14061 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
14062
14063 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
14064 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
14065 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
14066 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
14067
14068 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
14069 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
14070 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
14071 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
14072
14073 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
14074 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
14075 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
14076 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
14077
14078 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14079 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14080 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14081 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14082
14083 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14084
14085 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14086
14087 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14088 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14089 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14090 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14091
14092 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14093 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14094 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14095 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14096
14097 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14098 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14099 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14100 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14101
14102 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14103 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14104 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14105 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14106
14107 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14108 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14109 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14110 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14111
14112 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14113 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14114 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14115 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14116
14117 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14118 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14119 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14120 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14121
14122 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14123 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14124 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14125 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14126
14127 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14128 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14129 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14130 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14131
14132 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14133 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14134 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14135 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14136
14137 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14138 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14139 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14140 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14141
14142 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14143 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14144 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14145 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14146
14147 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14148
14149 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14150
14151 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14152
14153 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14154
14155 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14156 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14157 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14158 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14159
14160 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14161 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14162 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14163 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14164
14165 i32 __builtin_msa_bnz_b (v16u8);
14166 i32 __builtin_msa_bnz_h (v8u16);
14167 i32 __builtin_msa_bnz_w (v4u32);
14168 i32 __builtin_msa_bnz_d (v2u64);
14169
14170 i32 __builtin_msa_bnz_v (v16u8);
14171
14172 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14173
14174 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14175
14176 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14177 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14178 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14179 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14180
14181 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14182 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14183 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14184 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14185
14186 i32 __builtin_msa_bz_b (v16u8);
14187 i32 __builtin_msa_bz_h (v8u16);
14188 i32 __builtin_msa_bz_w (v4u32);
14189 i32 __builtin_msa_bz_d (v2u64);
14190
14191 i32 __builtin_msa_bz_v (v16u8);
14192
14193 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14194 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14195 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14196 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14197
14198 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14199 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14200 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14201 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14202
14203 i32 __builtin_msa_cfcmsa (imm0_31);
14204
14205 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14206 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14207 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14208 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14209
14210 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14211 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14212 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14213 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14214
14215 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14216 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14217 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14218 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14219
14220 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14221 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14222 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14223 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14224
14225 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14226 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14227 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14228 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14229
14230 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14231 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14232 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14233 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14234
14235 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14236 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14237 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14238 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14239
14240 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14241 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14242 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14243 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14244
14245 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14246 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14247 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14248 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14249
14250 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14251 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14252 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14253 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14254
14255 void __builtin_msa_ctcmsa (imm0_31, i32);
14256
14257 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14258 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14259 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14260 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14261
14262 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14263 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14264 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14265 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14266
14267 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14268 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14269 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14270
14271 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14272 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14273 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14274
14275 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14276 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14277 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14278
14279 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14280 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14281 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14282
14283 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14284 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14285 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14286
14287 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14288 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14289 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14290
14291 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14292 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14293
14294 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14295 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14296
14297 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
14298 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
14299
14300 v4i32 __builtin_msa_fclass_w (v4f32);
14301 v2i64 __builtin_msa_fclass_d (v2f64);
14302
14303 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
14304 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
14305
14306 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
14307 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
14308
14309 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
14310 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
14311
14312 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
14313 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
14314
14315 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
14316 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
14317
14318 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
14319 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
14320
14321 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
14322 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
14323
14324 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
14325 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
14326
14327 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
14328 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
14329
14330 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
14331 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
14332
14333 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
14334 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
14335
14336 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
14337 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
14338
14339 v4f32 __builtin_msa_fexupl_w (v8i16);
14340 v2f64 __builtin_msa_fexupl_d (v4f32);
14341
14342 v4f32 __builtin_msa_fexupr_w (v8i16);
14343 v2f64 __builtin_msa_fexupr_d (v4f32);
14344
14345 v4f32 __builtin_msa_ffint_s_w (v4i32);
14346 v2f64 __builtin_msa_ffint_s_d (v2i64);
14347
14348 v4f32 __builtin_msa_ffint_u_w (v4u32);
14349 v2f64 __builtin_msa_ffint_u_d (v2u64);
14350
14351 v4f32 __builtin_msa_ffql_w (v8i16);
14352 v2f64 __builtin_msa_ffql_d (v4i32);
14353
14354 v4f32 __builtin_msa_ffqr_w (v8i16);
14355 v2f64 __builtin_msa_ffqr_d (v4i32);
14356
14357 v16i8 __builtin_msa_fill_b (i32);
14358 v8i16 __builtin_msa_fill_h (i32);
14359 v4i32 __builtin_msa_fill_w (i32);
14360 v2i64 __builtin_msa_fill_d (i64);
14361
14362 v4f32 __builtin_msa_flog2_w (v4f32);
14363 v2f64 __builtin_msa_flog2_d (v2f64);
14364
14365 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
14366 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
14367
14368 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
14369 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
14370
14371 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
14372 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
14373
14374 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
14375 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
14376
14377 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
14378 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
14379
14380 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
14381 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
14382
14383 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
14384 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
14385
14386 v4f32 __builtin_msa_frint_w (v4f32);
14387 v2f64 __builtin_msa_frint_d (v2f64);
14388
14389 v4f32 __builtin_msa_frcp_w (v4f32);
14390 v2f64 __builtin_msa_frcp_d (v2f64);
14391
14392 v4f32 __builtin_msa_frsqrt_w (v4f32);
14393 v2f64 __builtin_msa_frsqrt_d (v2f64);
14394
14395 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
14396 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
14397
14398 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
14399 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
14400
14401 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
14402 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
14403
14404 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
14405 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
14406
14407 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
14408 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14409
14410 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14411 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14412
14413 v4f32 __builtin_msa_fsqrt_w (v4f32);
14414 v2f64 __builtin_msa_fsqrt_d (v2f64);
14415
14416 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14417 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14418
14419 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14420 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14421
14422 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14423 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14424
14425 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14426 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14427
14428 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14429 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14430
14431 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14432 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14433
14434 v4i32 __builtin_msa_ftint_s_w (v4f32);
14435 v2i64 __builtin_msa_ftint_s_d (v2f64);
14436
14437 v4u32 __builtin_msa_ftint_u_w (v4f32);
14438 v2u64 __builtin_msa_ftint_u_d (v2f64);
14439
14440 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14441 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14442
14443 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14444 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14445
14446 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14447 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14448
14449 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14450 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14451 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14452
14453 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14454 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14455 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14456
14457 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14458 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14459 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14460
14461 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14462 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14463 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14464
14465 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14466 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14467 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14468 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14469
14470 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14471 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14472 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14473 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14474
14475 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14476 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14477 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14478 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14479
14480 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14481 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14482 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14483 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14484
14485 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14486 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14487 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14488 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14489
14490 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14491 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14492 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14493 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14494
14495 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14496 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14497 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14498 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14499
14500 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14501 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14502 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14503 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14504
14505 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14506 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14507
14508 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14509 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14510
14511 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14512 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14513 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14514 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14515
14516 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14517 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14518 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14519 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14520
14521 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14522 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14523 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14524 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14525
14526 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14527 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14528 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14529 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14530
14531 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14532 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14533 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14534 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14535
14536 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14537 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14538 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14539 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14540
14541 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14542 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14543 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14544 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14545
14546 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14547 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14548 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14549 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14550
14551 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14552 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14553 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
14554 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
14555
14556 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
14557 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
14558 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
14559 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
14560
14561 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
14562 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
14563 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
14564 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
14565
14566 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
14567 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
14568 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
14569 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
14570
14571 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
14572 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
14573 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
14574 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
14575
14576 v16i8 __builtin_msa_move_v (v16i8);
14577
14578 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
14579 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
14580
14581 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
14582 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
14583
14584 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
14585 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
14586 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
14587 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
14588
14589 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
14590 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
14591
14592 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
14593 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
14594
14595 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
14596 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
14597 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
14598 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
14599
14600 v16i8 __builtin_msa_nloc_b (v16i8);
14601 v8i16 __builtin_msa_nloc_h (v8i16);
14602 v4i32 __builtin_msa_nloc_w (v4i32);
14603 v2i64 __builtin_msa_nloc_d (v2i64);
14604
14605 v16i8 __builtin_msa_nlzc_b (v16i8);
14606 v8i16 __builtin_msa_nlzc_h (v8i16);
14607 v4i32 __builtin_msa_nlzc_w (v4i32);
14608 v2i64 __builtin_msa_nlzc_d (v2i64);
14609
14610 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
14611
14612 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
14613
14614 v16u8 __builtin_msa_or_v (v16u8, v16u8);
14615
14616 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
14617
14618 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
14619 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
14620 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
14621 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
14622
14623 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
14624 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
14625 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
14626 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
14627
14628 v16i8 __builtin_msa_pcnt_b (v16i8);
14629 v8i16 __builtin_msa_pcnt_h (v8i16);
14630 v4i32 __builtin_msa_pcnt_w (v4i32);
14631 v2i64 __builtin_msa_pcnt_d (v2i64);
14632
14633 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
14634 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
14635 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
14636 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
14637
14638 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
14639 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
14640 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
14641 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
14642
14643 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
14644 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
14645 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
14646
14647 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
14648 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
14649 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
14650 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
14651
14652 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
14653 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
14654 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
14655 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
14656
14657 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
14658 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
14659 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
14660 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
14661
14662 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
14663 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
14664 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
14665 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
14666
14667 v16i8 __builtin_msa_splat_b (v16i8, i32);
14668 v8i16 __builtin_msa_splat_h (v8i16, i32);
14669 v4i32 __builtin_msa_splat_w (v4i32, i32);
14670 v2i64 __builtin_msa_splat_d (v2i64, i32);
14671
14672 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
14673 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
14674 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
14675 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
14676
14677 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
14678 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
14679 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
14680 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
14681
14682 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
14683 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
14684 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
14685 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
14686
14687 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
14688 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
14689 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
14690 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
14691
14692 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
14693 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
14694 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
14695 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
14696
14697 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
14698 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
14699 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
14700 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
14701
14702 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
14703 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
14704 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
14705 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
14706
14707 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
14708 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
14709 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
14710 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
14711
14712 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
14713 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
14714 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
14715 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
14716
14717 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
14718 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
14719 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
14720 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
14721
14722 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
14723 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
14724 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
14725 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
14726
14727 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
14728 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
14729 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
14730 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
14731
14732 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
14733 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
14734 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
14735 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
14736
14737 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
14738 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
14739 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
14740 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
14741
14742 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
14743 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
14744 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
14745 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
14746
14747 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
14748 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
14749 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
14750 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
14751
14752 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
14753 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
14754 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
14755 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
14756
14757 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
14758
14759 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
14760 @end smallexample
14761
14762 @node Other MIPS Built-in Functions
14763 @subsection Other MIPS Built-in Functions
14764
14765 GCC provides other MIPS-specific built-in functions:
14766
14767 @table @code
14768 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
14769 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
14770 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
14771 when this function is available.
14772
14773 @item unsigned int __builtin_mips_get_fcsr (void)
14774 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
14775 Get and set the contents of the floating-point control and status register
14776 (FPU control register 31). These functions are only available in hard-float
14777 code but can be called in both MIPS16 and non-MIPS16 contexts.
14778
14779 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
14780 register except the condition codes, which GCC assumes are preserved.
14781 @end table
14782
14783 @node MSP430 Built-in Functions
14784 @subsection MSP430 Built-in Functions
14785
14786 GCC provides a couple of special builtin functions to aid in the
14787 writing of interrupt handlers in C.
14788
14789 @table @code
14790 @item __bic_SR_register_on_exit (int @var{mask})
14791 This clears the indicated bits in the saved copy of the status register
14792 currently residing on the stack. This only works inside interrupt
14793 handlers and the changes to the status register will only take affect
14794 once the handler returns.
14795
14796 @item __bis_SR_register_on_exit (int @var{mask})
14797 This sets the indicated bits in the saved copy of the status register
14798 currently residing on the stack. This only works inside interrupt
14799 handlers and the changes to the status register will only take affect
14800 once the handler returns.
14801
14802 @item __delay_cycles (long long @var{cycles})
14803 This inserts an instruction sequence that takes exactly @var{cycles}
14804 cycles (between 0 and about 17E9) to complete. The inserted sequence
14805 may use jumps, loops, or no-ops, and does not interfere with any other
14806 instructions. Note that @var{cycles} must be a compile-time constant
14807 integer - that is, you must pass a number, not a variable that may be
14808 optimized to a constant later. The number of cycles delayed by this
14809 builtin is exact.
14810 @end table
14811
14812 @node NDS32 Built-in Functions
14813 @subsection NDS32 Built-in Functions
14814
14815 These built-in functions are available for the NDS32 target:
14816
14817 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
14818 Insert an ISYNC instruction into the instruction stream where
14819 @var{addr} is an instruction address for serialization.
14820 @end deftypefn
14821
14822 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
14823 Insert an ISB instruction into the instruction stream.
14824 @end deftypefn
14825
14826 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
14827 Return the content of a system register which is mapped by @var{sr}.
14828 @end deftypefn
14829
14830 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
14831 Return the content of a user space register which is mapped by @var{usr}.
14832 @end deftypefn
14833
14834 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
14835 Move the @var{value} to a system register which is mapped by @var{sr}.
14836 @end deftypefn
14837
14838 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
14839 Move the @var{value} to a user space register which is mapped by @var{usr}.
14840 @end deftypefn
14841
14842 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
14843 Enable global interrupt.
14844 @end deftypefn
14845
14846 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
14847 Disable global interrupt.
14848 @end deftypefn
14849
14850 @node picoChip Built-in Functions
14851 @subsection picoChip Built-in Functions
14852
14853 GCC provides an interface to selected machine instructions from the
14854 picoChip instruction set.
14855
14856 @table @code
14857 @item int __builtin_sbc (int @var{value})
14858 Sign bit count. Return the number of consecutive bits in @var{value}
14859 that have the same value as the sign bit. The result is the number of
14860 leading sign bits minus one, giving the number of redundant sign bits in
14861 @var{value}.
14862
14863 @item int __builtin_byteswap (int @var{value})
14864 Byte swap. Return the result of swapping the upper and lower bytes of
14865 @var{value}.
14866
14867 @item int __builtin_brev (int @var{value})
14868 Bit reversal. Return the result of reversing the bits in
14869 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
14870 and so on.
14871
14872 @item int __builtin_adds (int @var{x}, int @var{y})
14873 Saturating addition. Return the result of adding @var{x} and @var{y},
14874 storing the value 32767 if the result overflows.
14875
14876 @item int __builtin_subs (int @var{x}, int @var{y})
14877 Saturating subtraction. Return the result of subtracting @var{y} from
14878 @var{x}, storing the value @minus{}32768 if the result overflows.
14879
14880 @item void __builtin_halt (void)
14881 Halt. The processor stops execution. This built-in is useful for
14882 implementing assertions.
14883
14884 @end table
14885
14886 @node PowerPC Built-in Functions
14887 @subsection PowerPC Built-in Functions
14888
14889 The following built-in functions are always available and can be used to
14890 check the PowerPC target platform type:
14891
14892 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
14893 This function is a @code{nop} on the PowerPC platform and is included solely
14894 to maintain API compatibility with the x86 builtins.
14895 @end deftypefn
14896
14897 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
14898 This function returns a value of @code{1} if the run-time CPU is of type
14899 @var{cpuname} and returns @code{0} otherwise. The following CPU names can be
14900 detected:
14901
14902 @table @samp
14903 @item power9
14904 IBM POWER9 Server CPU.
14905 @item power8
14906 IBM POWER8 Server CPU.
14907 @item power7
14908 IBM POWER7 Server CPU.
14909 @item power6x
14910 IBM POWER6 Server CPU (RAW mode).
14911 @item power6
14912 IBM POWER6 Server CPU (Architected mode).
14913 @item power5+
14914 IBM POWER5+ Server CPU.
14915 @item power5
14916 IBM POWER5 Server CPU.
14917 @item ppc970
14918 IBM 970 Server CPU (ie, Apple G5).
14919 @item power4
14920 IBM POWER4 Server CPU.
14921 @item ppca2
14922 IBM A2 64-bit Embedded CPU
14923 @item ppc476
14924 IBM PowerPC 476FP 32-bit Embedded CPU.
14925 @item ppc464
14926 IBM PowerPC 464 32-bit Embedded CPU.
14927 @item ppc440
14928 PowerPC 440 32-bit Embedded CPU.
14929 @item ppc405
14930 PowerPC 405 32-bit Embedded CPU.
14931 @item ppc-cell-be
14932 IBM PowerPC Cell Broadband Engine Architecture CPU.
14933 @end table
14934
14935 Here is an example:
14936 @smallexample
14937 if (__builtin_cpu_is ("power8"))
14938 @{
14939 do_power8 (); // POWER8 specific implementation.
14940 @}
14941 else
14942 @{
14943 do_generic (); // Generic implementation.
14944 @}
14945 @end smallexample
14946 @end deftypefn
14947
14948 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
14949 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
14950 feature @var{feature} and returns @code{0} otherwise. The following features can be
14951 detected:
14952
14953 @table @samp
14954 @item 4xxmac
14955 4xx CPU has a Multiply Accumulator.
14956 @item altivec
14957 CPU has a SIMD/Vector Unit.
14958 @item arch_2_05
14959 CPU supports ISA 2.05 (eg, POWER6)
14960 @item arch_2_06
14961 CPU supports ISA 2.06 (eg, POWER7)
14962 @item arch_2_07
14963 CPU supports ISA 2.07 (eg, POWER8)
14964 @item arch_3_00
14965 CPU supports ISA 3.0 (eg, POWER9)
14966 @item archpmu
14967 CPU supports the set of compatible performance monitoring events.
14968 @item booke
14969 CPU supports the Embedded ISA category.
14970 @item cellbe
14971 CPU has a CELL broadband engine.
14972 @item dfp
14973 CPU has a decimal floating point unit.
14974 @item dscr
14975 CPU supports the data stream control register.
14976 @item ebb
14977 CPU supports event base branching.
14978 @item efpdouble
14979 CPU has a SPE double precision floating point unit.
14980 @item efpsingle
14981 CPU has a SPE single precision floating point unit.
14982 @item fpu
14983 CPU has a floating point unit.
14984 @item htm
14985 CPU has hardware transaction memory instructions.
14986 @item htm-nosc
14987 Kernel aborts hardware transactions when a syscall is made.
14988 @item ic_snoop
14989 CPU supports icache snooping capabilities.
14990 @item ieee128
14991 CPU supports 128-bit IEEE binary floating point instructions.
14992 @item isel
14993 CPU supports the integer select instruction.
14994 @item mmu
14995 CPU has a memory management unit.
14996 @item notb
14997 CPU does not have a timebase (eg, 601 and 403gx).
14998 @item pa6t
14999 CPU supports the PA Semi 6T CORE ISA.
15000 @item power4
15001 CPU supports ISA 2.00 (eg, POWER4)
15002 @item power5
15003 CPU supports ISA 2.02 (eg, POWER5)
15004 @item power5+
15005 CPU supports ISA 2.03 (eg, POWER5+)
15006 @item power6x
15007 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
15008 @item ppc32
15009 CPU supports 32-bit mode execution.
15010 @item ppc601
15011 CPU supports the old POWER ISA (eg, 601)
15012 @item ppc64
15013 CPU supports 64-bit mode execution.
15014 @item ppcle
15015 CPU supports a little-endian mode that uses address swizzling.
15016 @item smt
15017 CPU support simultaneous multi-threading.
15018 @item spe
15019 CPU has a signal processing extension unit.
15020 @item tar
15021 CPU supports the target address register.
15022 @item true_le
15023 CPU supports true little-endian mode.
15024 @item ucache
15025 CPU has unified I/D cache.
15026 @item vcrypto
15027 CPU supports the vector cryptography instructions.
15028 @item vsx
15029 CPU supports the vector-scalar extension.
15030 @end table
15031
15032 Here is an example:
15033 @smallexample
15034 if (__builtin_cpu_supports ("fpu"))
15035 @{
15036 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
15037 @}
15038 else
15039 @{
15040 dst = __fadd (src1, src2); // Software FP addition function.
15041 @}
15042 @end smallexample
15043 @end deftypefn
15044
15045 These built-in functions are available for the PowerPC family of
15046 processors:
15047 @smallexample
15048 float __builtin_recipdivf (float, float);
15049 float __builtin_rsqrtf (float);
15050 double __builtin_recipdiv (double, double);
15051 double __builtin_rsqrt (double);
15052 uint64_t __builtin_ppc_get_timebase ();
15053 unsigned long __builtin_ppc_mftb ();
15054 double __builtin_unpack_longdouble (long double, int);
15055 long double __builtin_pack_longdouble (double, double);
15056 @end smallexample
15057
15058 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
15059 @code{__builtin_rsqrtf} functions generate multiple instructions to
15060 implement the reciprocal sqrt functionality using reciprocal sqrt
15061 estimate instructions.
15062
15063 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
15064 functions generate multiple instructions to implement division using
15065 the reciprocal estimate instructions.
15066
15067 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
15068 functions generate instructions to read the Time Base Register. The
15069 @code{__builtin_ppc_get_timebase} function may generate multiple
15070 instructions and always returns the 64 bits of the Time Base Register.
15071 The @code{__builtin_ppc_mftb} function always generates one instruction and
15072 returns the Time Base Register value as an unsigned long, throwing away
15073 the most significant word on 32-bit environments.
15074
15075 Additional built-in functions are available for the 64-bit PowerPC
15076 family of processors, for efficient use of 128-bit floating point
15077 (@code{__float128}) values.
15078
15079 The following floating-point built-in functions are available with
15080 @code{-mfloat128} and Altivec support. All of them implement the
15081 function that is part of the name.
15082
15083 @smallexample
15084 __float128 __builtin_fabsq (__float128)
15085 __float128 __builtin_copysignq (__float128, __float128)
15086 @end smallexample
15087
15088 The following built-in functions are available with @code{-mfloat128}
15089 and Altivec support.
15090
15091 @table @code
15092 @item __float128 __builtin_infq (void)
15093 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
15094 @findex __builtin_infq
15095
15096 @item __float128 __builtin_huge_valq (void)
15097 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
15098 @findex __builtin_huge_valq
15099
15100 @item __float128 __builtin_nanq (void)
15101 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
15102 @findex __builtin_nanq
15103
15104 @item __float128 __builtin_nansq (void)
15105 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
15106 @findex __builtin_nansq
15107 @end table
15108
15109 The following built-in functions are available for the PowerPC family
15110 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
15111 or @option{-mpopcntd}):
15112 @smallexample
15113 long __builtin_bpermd (long, long);
15114 int __builtin_divwe (int, int);
15115 int __builtin_divweo (int, int);
15116 unsigned int __builtin_divweu (unsigned int, unsigned int);
15117 unsigned int __builtin_divweuo (unsigned int, unsigned int);
15118 long __builtin_divde (long, long);
15119 long __builtin_divdeo (long, long);
15120 unsigned long __builtin_divdeu (unsigned long, unsigned long);
15121 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
15122 unsigned int cdtbcd (unsigned int);
15123 unsigned int cbcdtd (unsigned int);
15124 unsigned int addg6s (unsigned int, unsigned int);
15125 @end smallexample
15126
15127 The @code{__builtin_divde}, @code{__builtin_divdeo},
15128 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
15129 64-bit environment support ISA 2.06 or later.
15130
15131 The following built-in functions are available for the PowerPC family
15132 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
15133 @smallexample
15134 long long __builtin_darn (void);
15135 long long __builtin_darn_raw (void);
15136 int __builtin_darn_32 (void);
15137
15138 unsigned int scalar_extract_exp (double source);
15139 unsigned long long int scalar_extract_sig (double source);
15140
15141 double
15142 scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
15143 double
15144 scalar_insert_exp (double significand, unsigned long long int exponent);
15145
15146 int scalar_cmp_exp_gt (double arg1, double arg2);
15147 int scalar_cmp_exp_lt (double arg1, double arg2);
15148 int scalar_cmp_exp_eq (double arg1, double arg2);
15149 int scalar_cmp_exp_unordered (double arg1, double arg2);
15150
15151 bool scalar_test_data_class (float source, const int condition);
15152 bool scalar_test_data_class (double source, const int condition);
15153
15154 bool scalar_test_neg (float source);
15155 bool scalar_test_neg (double source);
15156
15157 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
15158 int __builtin_byte_in_range (unsigned char u, unsigned int range);
15159 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
15160
15161 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
15162 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
15163 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
15164 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
15165
15166 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
15167 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
15168 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
15169 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
15170
15171 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
15172 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
15173 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
15174 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
15175
15176 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
15177 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
15178 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
15179 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
15180 @end smallexample
15181
15182 The @code{__builtin_darn} and @code{__builtin_darn_raw}
15183 functions require a
15184 64-bit environment supporting ISA 3.0 or later.
15185 The @code{__builtin_darn} function provides a 64-bit conditioned
15186 random number. The @code{__builtin_darn_raw} function provides a
15187 64-bit raw random number. The @code{__builtin_darn_32} function
15188 provides a 32-bit random number.
15189
15190 The @code{scalar_extract_exp} and @code{scalar_extract_sig}
15191 functions require a 64-bit environment supporting ISA 3.0 or later.
15192 The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
15193 functions return the significand and the biased exponent value
15194 respectively of their @code{source} arguments.
15195 Within the result returned by @code{scalar_extract_sig},
15196 the @code{0x10000000000000} bit is set if the
15197 function's @code{source} argument is in normalized form.
15198 Otherwise, this bit is set to 0.
15199 Note that the sign of the significand is not represented in the result
15200 returned from the @code{scalar_extract_sig} function. Use the
15201 @code{scalar_test_neg} function to test the sign of its @code{double}
15202 argument.
15203
15204 The @code{scalar_insert_exp}
15205 function requires a 64-bit environment supporting ISA 3.0 or later.
15206 The @code{scalar_insert_exp} built-in function returns a double-precision
15207 floating point value that is constructed by assembling the values of its
15208 @code{significand} and @code{exponent} arguments. The sign of the
15209 result is copied from the most significant bit of the
15210 @code{significand} argument. The significand and exponent components
15211 of the result are composed of the least significant 11 bits of the
15212 @code{exponent} argument and the least significant 52 bits of the
15213 @code{significand} argument.
15214
15215 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
15216 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
15217 functions return a non-zero value if @code{arg1} is greater than, less
15218 than, equal to, or not comparable to @code{arg2} respectively. The
15219 arguments are not comparable if one or the other equals NaN (not a
15220 number).
15221
15222 The @code{scalar_test_data_class} built-in function returns 1
15223 if any of the condition tests enabled by the value of the
15224 @code{condition} variable are true, and 0 otherwise. The
15225 @code{condition} argument must be a compile-time constant integer with
15226 value not exceeding 127. The
15227 @code{condition} argument is encoded as a bitmask with each bit
15228 enabling the testing of a different condition, as characterized by the
15229 following:
15230 @smallexample
15231 0x40 Test for NaN
15232 0x20 Test for +Infinity
15233 0x10 Test for -Infinity
15234 0x08 Test for +Zero
15235 0x04 Test for -Zero
15236 0x02 Test for +Denormal
15237 0x01 Test for -Denormal
15238 @end smallexample
15239
15240 The @code{scalar_test_neg} built-in function returns 1 if its
15241 @code{source} argument holds a negative value, 0 otherwise.
15242
15243 The @code{__builtin_byte_in_set} function requires a
15244 64-bit environment supporting ISA 3.0 or later. This function returns
15245 a non-zero value if and only if its @code{u} argument exactly equals one of
15246 the eight bytes contained within its 64-bit @code{set} argument.
15247
15248 The @code{__builtin_byte_in_range} and
15249 @code{__builtin_byte_in_either_range} require an environment
15250 supporting ISA 3.0 or later. For these two functions, the
15251 @code{range} argument is encoded as 4 bytes, organized as
15252 @code{hi_1:lo_1:hi_2:lo_2}.
15253 The @code{__builtin_byte_in_range} function returns a
15254 non-zero value if and only if its @code{u} argument is within the
15255 range bounded between @code{lo_2} and @code{hi_2} inclusive.
15256 The @code{__builtin_byte_in_either_range} function returns non-zero if
15257 and only if its @code{u} argument is within either the range bounded
15258 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
15259 between @code{lo_2} and @code{hi_2} inclusive.
15260
15261 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
15262 if and only if the number of signficant digits of its @code{value} argument
15263 is less than its @code{comparison} argument. The
15264 @code{__builtin_dfp_dtstsfi_lt_dd} and
15265 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
15266 require that the type of the @code{value} argument be
15267 @code{__Decimal64} and @code{__Decimal128} respectively.
15268
15269 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
15270 if and only if the number of signficant digits of its @code{value} argument
15271 is greater than its @code{comparison} argument. The
15272 @code{__builtin_dfp_dtstsfi_gt_dd} and
15273 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
15274 require that the type of the @code{value} argument be
15275 @code{__Decimal64} and @code{__Decimal128} respectively.
15276
15277 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
15278 if and only if the number of signficant digits of its @code{value} argument
15279 equals its @code{comparison} argument. The
15280 @code{__builtin_dfp_dtstsfi_eq_dd} and
15281 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
15282 require that the type of the @code{value} argument be
15283 @code{__Decimal64} and @code{__Decimal128} respectively.
15284
15285 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
15286 if and only if its @code{value} argument has an undefined number of
15287 significant digits, such as when @code{value} is an encoding of @code{NaN}.
15288 The @code{__builtin_dfp_dtstsfi_ov_dd} and
15289 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
15290 require that the type of the @code{value} argument be
15291 @code{__Decimal64} and @code{__Decimal128} respectively.
15292
15293 The following built-in functions are also available for the PowerPC family
15294 of processors, starting with ISA 3.0 or later
15295 (@option{-mcpu=power9}). These string functions are described
15296 separately in order to group the descriptions closer to the function
15297 prototypes:
15298 @smallexample
15299 int vec_all_nez (vector signed char, vector signed char);
15300 int vec_all_nez (vector unsigned char, vector unsigned char);
15301 int vec_all_nez (vector signed short, vector signed short);
15302 int vec_all_nez (vector unsigned short, vector unsigned short);
15303 int vec_all_nez (vector signed int, vector signed int);
15304 int vec_all_nez (vector unsigned int, vector unsigned int);
15305
15306 int vec_any_eqz (vector signed char, vector signed char);
15307 int vec_any_eqz (vector unsigned char, vector unsigned char);
15308 int vec_any_eqz (vector signed short, vector signed short);
15309 int vec_any_eqz (vector unsigned short, vector unsigned short);
15310 int vec_any_eqz (vector signed int, vector signed int);
15311 int vec_any_eqz (vector unsigned int, vector unsigned int);
15312
15313 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
15314 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
15315 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
15316 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
15317 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
15318 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
15319
15320 signed int vec_cntlz_lsbb (vector signed char);
15321 signed int vec_cntlz_lsbb (vector unsigned char);
15322
15323 signed int vec_cnttz_lsbb (vector signed char);
15324 signed int vec_cnttz_lsbb (vector unsigned char);
15325
15326 vector signed char vec_xl_len (signed char *addr, size_t len);
15327 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
15328 vector signed int vec_xl_len (signed int *addr, size_t len);
15329 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
15330 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
15331 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
15332 vector signed long long vec_xl_len (signed long long *addr, size_t len);
15333 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
15334 vector signed short vec_xl_len (signed short *addr, size_t len);
15335 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
15336 vector double vec_xl_len (double *addr, size_t len);
15337 vector float vec_xl_len (float *addr, size_t len);
15338
15339 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
15340 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
15341 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
15342 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
15343 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
15344 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
15345 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
15346 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
15347 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
15348 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
15349 void vec_xst_len (vector double data, double *addr, size_t len);
15350 void vec_xst_len (vector float data, float *addr, size_t len);
15351
15352 signed char vec_xlx (unsigned int index, vector signed char data);
15353 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
15354 signed short vec_xlx (unsigned int index, vector signed short data);
15355 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
15356 signed int vec_xlx (unsigned int index, vector signed int data);
15357 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
15358 float vec_xlx (unsigned int index, vector float data);
15359
15360 signed char vec_xrx (unsigned int index, vector signed char data);
15361 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
15362 signed short vec_xrx (unsigned int index, vector signed short data);
15363 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
15364 signed int vec_xrx (unsigned int index, vector signed int data);
15365 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
15366 float vec_xrx (unsigned int index, vector float data);
15367 @end smallexample
15368
15369 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
15370 perform pairwise comparisons between the elements at the same
15371 positions within their two vector arguments.
15372 The @code{vec_all_nez} function returns a
15373 non-zero value if and only if all pairwise comparisons are not
15374 equal and no element of either vector argument contains a zero.
15375 The @code{vec_any_eqz} function returns a
15376 non-zero value if and only if at least one pairwise comparison is equal
15377 or if at least one element of either vector argument contains a zero.
15378 The @code{vec_cmpnez} function returns a vector of the same type as
15379 its two arguments, within which each element consists of all ones to
15380 denote that either the corresponding elements of the incoming arguments are
15381 not equal or that at least one of the corresponding elements contains
15382 zero. Otherwise, the element of the returned vector contains all zeros.
15383
15384 The @code{vec_cntlz_lsbb} function returns the count of the number of
15385 consecutive leading byte elements (starting from position 0 within the
15386 supplied vector argument) for which the least-significant bit
15387 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
15388 the number of consecutive trailing byte elements (starting from
15389 position 15 and counting backwards within the supplied vector
15390 argument) for which the least-significant bit equals zero.
15391
15392 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
15393 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
15394 function loads a variable length vector from memory. The
15395 @code{vec_xst_len} function stores a variable length vector to memory.
15396 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
15397 @code{addr} argument represents the memory address to or from which
15398 data will be transferred, and the
15399 @code{len} argument represents the number of bytes to be
15400 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
15401 If this expression's value is not a multiple of the vector element's
15402 size, the behavior of this function is undefined.
15403 In the case that the underlying computer is configured to run in
15404 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
15405 the corresponding vector. In little-endian mode, the data transfer
15406 moves bytes @code{(16 - len)} to @code{15} of the corresponding
15407 vector. For the load function, any bytes of the result vector that
15408 are not loaded from memory are set to zero.
15409 The value of the @code{addr} argument need not be aligned on a
15410 multiple of the vector's element size.
15411
15412 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
15413 element selected by the @code{index} argument from the vector
15414 represented by the @code{data} argument. The @code{index} argument
15415 always specifies a byte offset, regardless of the size of the vector
15416 element. With @code{vec_xlx}, @code{index} is the offset of the first
15417 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
15418 represents the last byte of the element to be extracted, measured
15419 from the right end of the vector. In other words, the last byte of
15420 the element to be extracted is found at position @code{(15 - index)}.
15421 There is no requirement that @code{index} be a multiple of the vector
15422 element size. However, if the size of the vector element added to
15423 @code{index} is greater than 15, the content of the returned value is
15424 undefined.
15425
15426 The following built-in functions are available for the PowerPC family
15427 of processors when hardware decimal floating point
15428 (@option{-mhard-dfp}) is available:
15429 @smallexample
15430 long long __builtin_dxex (_Decimal64);
15431 long long __builtin_dxexq (_Decimal128);
15432 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15433 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15434 _Decimal64 __builtin_denbcd (int, _Decimal64);
15435 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15436 _Decimal64 __builtin_diex (long long, _Decimal64);
15437 _Decimal128 _builtin_diexq (long long, _Decimal128);
15438 _Decimal64 __builtin_dscli (_Decimal64, int);
15439 _Decimal128 __builtin_dscliq (_Decimal128, int);
15440 _Decimal64 __builtin_dscri (_Decimal64, int);
15441 _Decimal128 __builtin_dscriq (_Decimal128, int);
15442 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15443 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15444 @end smallexample
15445
15446 The following built-in functions are available for the PowerPC family
15447 of processors when the Vector Scalar (vsx) instruction set is
15448 available:
15449 @smallexample
15450 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
15451 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
15452 unsigned long long);
15453 @end smallexample
15454
15455 @node PowerPC AltiVec/VSX Built-in Functions
15456 @subsection PowerPC AltiVec Built-in Functions
15457
15458 GCC provides an interface for the PowerPC family of processors to access
15459 the AltiVec operations described in Motorola's AltiVec Programming
15460 Interface Manual. The interface is made available by including
15461 @code{<altivec.h>} and using @option{-maltivec} and
15462 @option{-mabi=altivec}. The interface supports the following vector
15463 types.
15464
15465 @smallexample
15466 vector unsigned char
15467 vector signed char
15468 vector bool char
15469
15470 vector unsigned short
15471 vector signed short
15472 vector bool short
15473 vector pixel
15474
15475 vector unsigned int
15476 vector signed int
15477 vector bool int
15478 vector float
15479 @end smallexample
15480
15481 If @option{-mvsx} is used the following additional vector types are
15482 implemented.
15483
15484 @smallexample
15485 vector unsigned long
15486 vector signed long
15487 vector double
15488 @end smallexample
15489
15490 The long types are only implemented for 64-bit code generation, and
15491 the long type is only used in the floating point/integer conversion
15492 instructions.
15493
15494 GCC's implementation of the high-level language interface available from
15495 C and C++ code differs from Motorola's documentation in several ways.
15496
15497 @itemize @bullet
15498
15499 @item
15500 A vector constant is a list of constant expressions within curly braces.
15501
15502 @item
15503 A vector initializer requires no cast if the vector constant is of the
15504 same type as the variable it is initializing.
15505
15506 @item
15507 If @code{signed} or @code{unsigned} is omitted, the signedness of the
15508 vector type is the default signedness of the base type. The default
15509 varies depending on the operating system, so a portable program should
15510 always specify the signedness.
15511
15512 @item
15513 Compiling with @option{-maltivec} adds keywords @code{__vector},
15514 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
15515 @code{bool}. When compiling ISO C, the context-sensitive substitution
15516 of the keywords @code{vector}, @code{pixel} and @code{bool} is
15517 disabled. To use them, you must include @code{<altivec.h>} instead.
15518
15519 @item
15520 GCC allows using a @code{typedef} name as the type specifier for a
15521 vector type.
15522
15523 @item
15524 For C, overloaded functions are implemented with macros so the following
15525 does not work:
15526
15527 @smallexample
15528 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
15529 @end smallexample
15530
15531 @noindent
15532 Since @code{vec_add} is a macro, the vector constant in the example
15533 is treated as four separate arguments. Wrap the entire argument in
15534 parentheses for this to work.
15535 @end itemize
15536
15537 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
15538 Internally, GCC uses built-in functions to achieve the functionality in
15539 the aforementioned header file, but they are not supported and are
15540 subject to change without notice.
15541
15542 GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
15543 which may be found at
15544 @uref{http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html}.
15545 Appendix A of this document lists the vector API interfaces that must be
15546 provided by compliant compilers. Programmers should preferentially use
15547 the interfaces described therein. However, historically GCC has provided
15548 additional interfaces for access to vector instructions. These are
15549 described briefly below.
15550
15551 The following interfaces are supported for the generic and specific
15552 AltiVec operations and the AltiVec predicates. In cases where there
15553 is a direct mapping between generic and specific operations, only the
15554 generic names are shown here, although the specific operations can also
15555 be used.
15556
15557 Arguments that are documented as @code{const int} require literal
15558 integral values within the range required for that operation.
15559
15560 @smallexample
15561 vector signed char vec_abs (vector signed char);
15562 vector signed short vec_abs (vector signed short);
15563 vector signed int vec_abs (vector signed int);
15564 vector float vec_abs (vector float);
15565
15566 vector signed char vec_abss (vector signed char);
15567 vector signed short vec_abss (vector signed short);
15568 vector signed int vec_abss (vector signed int);
15569
15570 vector signed char vec_add (vector bool char, vector signed char);
15571 vector signed char vec_add (vector signed char, vector bool char);
15572 vector signed char vec_add (vector signed char, vector signed char);
15573 vector unsigned char vec_add (vector bool char, vector unsigned char);
15574 vector unsigned char vec_add (vector unsigned char, vector bool char);
15575 vector unsigned char vec_add (vector unsigned char,
15576 vector unsigned char);
15577 vector signed short vec_add (vector bool short, vector signed short);
15578 vector signed short vec_add (vector signed short, vector bool short);
15579 vector signed short vec_add (vector signed short, vector signed short);
15580 vector unsigned short vec_add (vector bool short,
15581 vector unsigned short);
15582 vector unsigned short vec_add (vector unsigned short,
15583 vector bool short);
15584 vector unsigned short vec_add (vector unsigned short,
15585 vector unsigned short);
15586 vector signed int vec_add (vector bool int, vector signed int);
15587 vector signed int vec_add (vector signed int, vector bool int);
15588 vector signed int vec_add (vector signed int, vector signed int);
15589 vector unsigned int vec_add (vector bool int, vector unsigned int);
15590 vector unsigned int vec_add (vector unsigned int, vector bool int);
15591 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
15592 vector float vec_add (vector float, vector float);
15593
15594 vector float vec_vaddfp (vector float, vector float);
15595
15596 vector signed int vec_vadduwm (vector bool int, vector signed int);
15597 vector signed int vec_vadduwm (vector signed int, vector bool int);
15598 vector signed int vec_vadduwm (vector signed int, vector signed int);
15599 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
15600 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
15601 vector unsigned int vec_vadduwm (vector unsigned int,
15602 vector unsigned int);
15603
15604 vector signed short vec_vadduhm (vector bool short,
15605 vector signed short);
15606 vector signed short vec_vadduhm (vector signed short,
15607 vector bool short);
15608 vector signed short vec_vadduhm (vector signed short,
15609 vector signed short);
15610 vector unsigned short vec_vadduhm (vector bool short,
15611 vector unsigned short);
15612 vector unsigned short vec_vadduhm (vector unsigned short,
15613 vector bool short);
15614 vector unsigned short vec_vadduhm (vector unsigned short,
15615 vector unsigned short);
15616
15617 vector signed char vec_vaddubm (vector bool char, vector signed char);
15618 vector signed char vec_vaddubm (vector signed char, vector bool char);
15619 vector signed char vec_vaddubm (vector signed char, vector signed char);
15620 vector unsigned char vec_vaddubm (vector bool char,
15621 vector unsigned char);
15622 vector unsigned char vec_vaddubm (vector unsigned char,
15623 vector bool char);
15624 vector unsigned char vec_vaddubm (vector unsigned char,
15625 vector unsigned char);
15626
15627 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
15628
15629 vector unsigned char vec_adds (vector bool char, vector unsigned char);
15630 vector unsigned char vec_adds (vector unsigned char, vector bool char);
15631 vector unsigned char vec_adds (vector unsigned char,
15632 vector unsigned char);
15633 vector signed char vec_adds (vector bool char, vector signed char);
15634 vector signed char vec_adds (vector signed char, vector bool char);
15635 vector signed char vec_adds (vector signed char, vector signed char);
15636 vector unsigned short vec_adds (vector bool short,
15637 vector unsigned short);
15638 vector unsigned short vec_adds (vector unsigned short,
15639 vector bool short);
15640 vector unsigned short vec_adds (vector unsigned short,
15641 vector unsigned short);
15642 vector signed short vec_adds (vector bool short, vector signed short);
15643 vector signed short vec_adds (vector signed short, vector bool short);
15644 vector signed short vec_adds (vector signed short, vector signed short);
15645 vector unsigned int vec_adds (vector bool int, vector unsigned int);
15646 vector unsigned int vec_adds (vector unsigned int, vector bool int);
15647 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
15648 vector signed int vec_adds (vector bool int, vector signed int);
15649 vector signed int vec_adds (vector signed int, vector bool int);
15650 vector signed int vec_adds (vector signed int, vector signed int);
15651
15652 vector signed int vec_vaddsws (vector bool int, vector signed int);
15653 vector signed int vec_vaddsws (vector signed int, vector bool int);
15654 vector signed int vec_vaddsws (vector signed int, vector signed int);
15655
15656 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
15657 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
15658 vector unsigned int vec_vadduws (vector unsigned int,
15659 vector unsigned int);
15660
15661 vector signed short vec_vaddshs (vector bool short,
15662 vector signed short);
15663 vector signed short vec_vaddshs (vector signed short,
15664 vector bool short);
15665 vector signed short vec_vaddshs (vector signed short,
15666 vector signed short);
15667
15668 vector unsigned short vec_vadduhs (vector bool short,
15669 vector unsigned short);
15670 vector unsigned short vec_vadduhs (vector unsigned short,
15671 vector bool short);
15672 vector unsigned short vec_vadduhs (vector unsigned short,
15673 vector unsigned short);
15674
15675 vector signed char vec_vaddsbs (vector bool char, vector signed char);
15676 vector signed char vec_vaddsbs (vector signed char, vector bool char);
15677 vector signed char vec_vaddsbs (vector signed char, vector signed char);
15678
15679 vector unsigned char vec_vaddubs (vector bool char,
15680 vector unsigned char);
15681 vector unsigned char vec_vaddubs (vector unsigned char,
15682 vector bool char);
15683 vector unsigned char vec_vaddubs (vector unsigned char,
15684 vector unsigned char);
15685
15686 vector float vec_and (vector float, vector float);
15687 vector float vec_and (vector float, vector bool int);
15688 vector float vec_and (vector bool int, vector float);
15689 vector bool int vec_and (vector bool int, vector bool int);
15690 vector signed int vec_and (vector bool int, vector signed int);
15691 vector signed int vec_and (vector signed int, vector bool int);
15692 vector signed int vec_and (vector signed int, vector signed int);
15693 vector unsigned int vec_and (vector bool int, vector unsigned int);
15694 vector unsigned int vec_and (vector unsigned int, vector bool int);
15695 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
15696 vector bool short vec_and (vector bool short, vector bool short);
15697 vector signed short vec_and (vector bool short, vector signed short);
15698 vector signed short vec_and (vector signed short, vector bool short);
15699 vector signed short vec_and (vector signed short, vector signed short);
15700 vector unsigned short vec_and (vector bool short,
15701 vector unsigned short);
15702 vector unsigned short vec_and (vector unsigned short,
15703 vector bool short);
15704 vector unsigned short vec_and (vector unsigned short,
15705 vector unsigned short);
15706 vector signed char vec_and (vector bool char, vector signed char);
15707 vector bool char vec_and (vector bool char, vector bool char);
15708 vector signed char vec_and (vector signed char, vector bool char);
15709 vector signed char vec_and (vector signed char, vector signed char);
15710 vector unsigned char vec_and (vector bool char, vector unsigned char);
15711 vector unsigned char vec_and (vector unsigned char, vector bool char);
15712 vector unsigned char vec_and (vector unsigned char,
15713 vector unsigned char);
15714
15715 vector float vec_andc (vector float, vector float);
15716 vector float vec_andc (vector float, vector bool int);
15717 vector float vec_andc (vector bool int, vector float);
15718 vector bool int vec_andc (vector bool int, vector bool int);
15719 vector signed int vec_andc (vector bool int, vector signed int);
15720 vector signed int vec_andc (vector signed int, vector bool int);
15721 vector signed int vec_andc (vector signed int, vector signed int);
15722 vector unsigned int vec_andc (vector bool int, vector unsigned int);
15723 vector unsigned int vec_andc (vector unsigned int, vector bool int);
15724 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
15725 vector bool short vec_andc (vector bool short, vector bool short);
15726 vector signed short vec_andc (vector bool short, vector signed short);
15727 vector signed short vec_andc (vector signed short, vector bool short);
15728 vector signed short vec_andc (vector signed short, vector signed short);
15729 vector unsigned short vec_andc (vector bool short,
15730 vector unsigned short);
15731 vector unsigned short vec_andc (vector unsigned short,
15732 vector bool short);
15733 vector unsigned short vec_andc (vector unsigned short,
15734 vector unsigned short);
15735 vector signed char vec_andc (vector bool char, vector signed char);
15736 vector bool char vec_andc (vector bool char, vector bool char);
15737 vector signed char vec_andc (vector signed char, vector bool char);
15738 vector signed char vec_andc (vector signed char, vector signed char);
15739 vector unsigned char vec_andc (vector bool char, vector unsigned char);
15740 vector unsigned char vec_andc (vector unsigned char, vector bool char);
15741 vector unsigned char vec_andc (vector unsigned char,
15742 vector unsigned char);
15743
15744 vector unsigned char vec_avg (vector unsigned char,
15745 vector unsigned char);
15746 vector signed char vec_avg (vector signed char, vector signed char);
15747 vector unsigned short vec_avg (vector unsigned short,
15748 vector unsigned short);
15749 vector signed short vec_avg (vector signed short, vector signed short);
15750 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
15751 vector signed int vec_avg (vector signed int, vector signed int);
15752
15753 vector signed int vec_vavgsw (vector signed int, vector signed int);
15754
15755 vector unsigned int vec_vavguw (vector unsigned int,
15756 vector unsigned int);
15757
15758 vector signed short vec_vavgsh (vector signed short,
15759 vector signed short);
15760
15761 vector unsigned short vec_vavguh (vector unsigned short,
15762 vector unsigned short);
15763
15764 vector signed char vec_vavgsb (vector signed char, vector signed char);
15765
15766 vector unsigned char vec_vavgub (vector unsigned char,
15767 vector unsigned char);
15768
15769 vector float vec_copysign (vector float);
15770
15771 vector float vec_ceil (vector float);
15772
15773 vector signed int vec_cmpb (vector float, vector float);
15774
15775 vector bool char vec_cmpeq (vector bool char, vector bool char);
15776 vector bool short vec_cmpeq (vector bool short, vector bool short);
15777 vector bool int vec_cmpeq (vector bool int, vector bool int);
15778 vector bool char vec_cmpeq (vector signed char, vector signed char);
15779 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
15780 vector bool short vec_cmpeq (vector signed short, vector signed short);
15781 vector bool short vec_cmpeq (vector unsigned short,
15782 vector unsigned short);
15783 vector bool int vec_cmpeq (vector signed int, vector signed int);
15784 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
15785 vector bool int vec_cmpeq (vector float, vector float);
15786
15787 vector bool int vec_vcmpeqfp (vector float, vector float);
15788
15789 vector bool int vec_vcmpequw (vector signed int, vector signed int);
15790 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
15791
15792 vector bool short vec_vcmpequh (vector signed short,
15793 vector signed short);
15794 vector bool short vec_vcmpequh (vector unsigned short,
15795 vector unsigned short);
15796
15797 vector bool char vec_vcmpequb (vector signed char, vector signed char);
15798 vector bool char vec_vcmpequb (vector unsigned char,
15799 vector unsigned char);
15800
15801 vector bool int vec_cmpge (vector float, vector float);
15802
15803 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
15804 vector bool char vec_cmpgt (vector signed char, vector signed char);
15805 vector bool short vec_cmpgt (vector unsigned short,
15806 vector unsigned short);
15807 vector bool short vec_cmpgt (vector signed short, vector signed short);
15808 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
15809 vector bool int vec_cmpgt (vector signed int, vector signed int);
15810 vector bool int vec_cmpgt (vector float, vector float);
15811
15812 vector bool int vec_vcmpgtfp (vector float, vector float);
15813
15814 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
15815
15816 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
15817
15818 vector bool short vec_vcmpgtsh (vector signed short,
15819 vector signed short);
15820
15821 vector bool short vec_vcmpgtuh (vector unsigned short,
15822 vector unsigned short);
15823
15824 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
15825
15826 vector bool char vec_vcmpgtub (vector unsigned char,
15827 vector unsigned char);
15828
15829 vector bool int vec_cmple (vector float, vector float);
15830
15831 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
15832 vector bool char vec_cmplt (vector signed char, vector signed char);
15833 vector bool short vec_cmplt (vector unsigned short,
15834 vector unsigned short);
15835 vector bool short vec_cmplt (vector signed short, vector signed short);
15836 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
15837 vector bool int vec_cmplt (vector signed int, vector signed int);
15838 vector bool int vec_cmplt (vector float, vector float);
15839
15840 vector float vec_cpsgn (vector float, vector float);
15841
15842 vector float vec_ctf (vector unsigned int, const int);
15843 vector float vec_ctf (vector signed int, const int);
15844 vector double vec_ctf (vector unsigned long, const int);
15845 vector double vec_ctf (vector signed long, const int);
15846
15847 vector float vec_vcfsx (vector signed int, const int);
15848
15849 vector float vec_vcfux (vector unsigned int, const int);
15850
15851 vector signed int vec_cts (vector float, const int);
15852 vector signed long vec_cts (vector double, const int);
15853
15854 vector unsigned int vec_ctu (vector float, const int);
15855 vector unsigned long vec_ctu (vector double, const int);
15856
15857 void vec_dss (const int);
15858
15859 void vec_dssall (void);
15860
15861 void vec_dst (const vector unsigned char *, int, const int);
15862 void vec_dst (const vector signed char *, int, const int);
15863 void vec_dst (const vector bool char *, int, const int);
15864 void vec_dst (const vector unsigned short *, int, const int);
15865 void vec_dst (const vector signed short *, int, const int);
15866 void vec_dst (const vector bool short *, int, const int);
15867 void vec_dst (const vector pixel *, int, const int);
15868 void vec_dst (const vector unsigned int *, int, const int);
15869 void vec_dst (const vector signed int *, int, const int);
15870 void vec_dst (const vector bool int *, int, const int);
15871 void vec_dst (const vector float *, int, const int);
15872 void vec_dst (const unsigned char *, int, const int);
15873 void vec_dst (const signed char *, int, const int);
15874 void vec_dst (const unsigned short *, int, const int);
15875 void vec_dst (const short *, int, const int);
15876 void vec_dst (const unsigned int *, int, const int);
15877 void vec_dst (const int *, int, const int);
15878 void vec_dst (const unsigned long *, int, const int);
15879 void vec_dst (const long *, int, const int);
15880 void vec_dst (const float *, int, const int);
15881
15882 void vec_dstst (const vector unsigned char *, int, const int);
15883 void vec_dstst (const vector signed char *, int, const int);
15884 void vec_dstst (const vector bool char *, int, const int);
15885 void vec_dstst (const vector unsigned short *, int, const int);
15886 void vec_dstst (const vector signed short *, int, const int);
15887 void vec_dstst (const vector bool short *, int, const int);
15888 void vec_dstst (const vector pixel *, int, const int);
15889 void vec_dstst (const vector unsigned int *, int, const int);
15890 void vec_dstst (const vector signed int *, int, const int);
15891 void vec_dstst (const vector bool int *, int, const int);
15892 void vec_dstst (const vector float *, int, const int);
15893 void vec_dstst (const unsigned char *, int, const int);
15894 void vec_dstst (const signed char *, int, const int);
15895 void vec_dstst (const unsigned short *, int, const int);
15896 void vec_dstst (const short *, int, const int);
15897 void vec_dstst (const unsigned int *, int, const int);
15898 void vec_dstst (const int *, int, const int);
15899 void vec_dstst (const unsigned long *, int, const int);
15900 void vec_dstst (const long *, int, const int);
15901 void vec_dstst (const float *, int, const int);
15902
15903 void vec_dststt (const vector unsigned char *, int, const int);
15904 void vec_dststt (const vector signed char *, int, const int);
15905 void vec_dststt (const vector bool char *, int, const int);
15906 void vec_dststt (const vector unsigned short *, int, const int);
15907 void vec_dststt (const vector signed short *, int, const int);
15908 void vec_dststt (const vector bool short *, int, const int);
15909 void vec_dststt (const vector pixel *, int, const int);
15910 void vec_dststt (const vector unsigned int *, int, const int);
15911 void vec_dststt (const vector signed int *, int, const int);
15912 void vec_dststt (const vector bool int *, int, const int);
15913 void vec_dststt (const vector float *, int, const int);
15914 void vec_dststt (const unsigned char *, int, const int);
15915 void vec_dststt (const signed char *, int, const int);
15916 void vec_dststt (const unsigned short *, int, const int);
15917 void vec_dststt (const short *, int, const int);
15918 void vec_dststt (const unsigned int *, int, const int);
15919 void vec_dststt (const int *, int, const int);
15920 void vec_dststt (const unsigned long *, int, const int);
15921 void vec_dststt (const long *, int, const int);
15922 void vec_dststt (const float *, int, const int);
15923
15924 void vec_dstt (const vector unsigned char *, int, const int);
15925 void vec_dstt (const vector signed char *, int, const int);
15926 void vec_dstt (const vector bool char *, int, const int);
15927 void vec_dstt (const vector unsigned short *, int, const int);
15928 void vec_dstt (const vector signed short *, int, const int);
15929 void vec_dstt (const vector bool short *, int, const int);
15930 void vec_dstt (const vector pixel *, int, const int);
15931 void vec_dstt (const vector unsigned int *, int, const int);
15932 void vec_dstt (const vector signed int *, int, const int);
15933 void vec_dstt (const vector bool int *, int, const int);
15934 void vec_dstt (const vector float *, int, const int);
15935 void vec_dstt (const unsigned char *, int, const int);
15936 void vec_dstt (const signed char *, int, const int);
15937 void vec_dstt (const unsigned short *, int, const int);
15938 void vec_dstt (const short *, int, const int);
15939 void vec_dstt (const unsigned int *, int, const int);
15940 void vec_dstt (const int *, int, const int);
15941 void vec_dstt (const unsigned long *, int, const int);
15942 void vec_dstt (const long *, int, const int);
15943 void vec_dstt (const float *, int, const int);
15944
15945 vector float vec_expte (vector float);
15946
15947 vector float vec_floor (vector float);
15948
15949 vector float vec_ld (int, const vector float *);
15950 vector float vec_ld (int, const float *);
15951 vector bool int vec_ld (int, const vector bool int *);
15952 vector signed int vec_ld (int, const vector signed int *);
15953 vector signed int vec_ld (int, const int *);
15954 vector signed int vec_ld (int, const long *);
15955 vector unsigned int vec_ld (int, const vector unsigned int *);
15956 vector unsigned int vec_ld (int, const unsigned int *);
15957 vector unsigned int vec_ld (int, const unsigned long *);
15958 vector bool short vec_ld (int, const vector bool short *);
15959 vector pixel vec_ld (int, const vector pixel *);
15960 vector signed short vec_ld (int, const vector signed short *);
15961 vector signed short vec_ld (int, const short *);
15962 vector unsigned short vec_ld (int, const vector unsigned short *);
15963 vector unsigned short vec_ld (int, const unsigned short *);
15964 vector bool char vec_ld (int, const vector bool char *);
15965 vector signed char vec_ld (int, const vector signed char *);
15966 vector signed char vec_ld (int, const signed char *);
15967 vector unsigned char vec_ld (int, const vector unsigned char *);
15968 vector unsigned char vec_ld (int, const unsigned char *);
15969
15970 vector signed char vec_lde (int, const signed char *);
15971 vector unsigned char vec_lde (int, const unsigned char *);
15972 vector signed short vec_lde (int, const short *);
15973 vector unsigned short vec_lde (int, const unsigned short *);
15974 vector float vec_lde (int, const float *);
15975 vector signed int vec_lde (int, const int *);
15976 vector unsigned int vec_lde (int, const unsigned int *);
15977 vector signed int vec_lde (int, const long *);
15978 vector unsigned int vec_lde (int, const unsigned long *);
15979
15980 vector float vec_lvewx (int, float *);
15981 vector signed int vec_lvewx (int, int *);
15982 vector unsigned int vec_lvewx (int, unsigned int *);
15983 vector signed int vec_lvewx (int, long *);
15984 vector unsigned int vec_lvewx (int, unsigned long *);
15985
15986 vector signed short vec_lvehx (int, short *);
15987 vector unsigned short vec_lvehx (int, unsigned short *);
15988
15989 vector signed char vec_lvebx (int, char *);
15990 vector unsigned char vec_lvebx (int, unsigned char *);
15991
15992 vector float vec_ldl (int, const vector float *);
15993 vector float vec_ldl (int, const float *);
15994 vector bool int vec_ldl (int, const vector bool int *);
15995 vector signed int vec_ldl (int, const vector signed int *);
15996 vector signed int vec_ldl (int, const int *);
15997 vector signed int vec_ldl (int, const long *);
15998 vector unsigned int vec_ldl (int, const vector unsigned int *);
15999 vector unsigned int vec_ldl (int, const unsigned int *);
16000 vector unsigned int vec_ldl (int, const unsigned long *);
16001 vector bool short vec_ldl (int, const vector bool short *);
16002 vector pixel vec_ldl (int, const vector pixel *);
16003 vector signed short vec_ldl (int, const vector signed short *);
16004 vector signed short vec_ldl (int, const short *);
16005 vector unsigned short vec_ldl (int, const vector unsigned short *);
16006 vector unsigned short vec_ldl (int, const unsigned short *);
16007 vector bool char vec_ldl (int, const vector bool char *);
16008 vector signed char vec_ldl (int, const vector signed char *);
16009 vector signed char vec_ldl (int, const signed char *);
16010 vector unsigned char vec_ldl (int, const vector unsigned char *);
16011 vector unsigned char vec_ldl (int, const unsigned char *);
16012
16013 vector float vec_loge (vector float);
16014
16015 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
16016 vector unsigned char vec_lvsl (int, const volatile signed char *);
16017 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
16018 vector unsigned char vec_lvsl (int, const volatile short *);
16019 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
16020 vector unsigned char vec_lvsl (int, const volatile int *);
16021 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
16022 vector unsigned char vec_lvsl (int, const volatile long *);
16023 vector unsigned char vec_lvsl (int, const volatile float *);
16024
16025 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
16026 vector unsigned char vec_lvsr (int, const volatile signed char *);
16027 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
16028 vector unsigned char vec_lvsr (int, const volatile short *);
16029 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
16030 vector unsigned char vec_lvsr (int, const volatile int *);
16031 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
16032 vector unsigned char vec_lvsr (int, const volatile long *);
16033 vector unsigned char vec_lvsr (int, const volatile float *);
16034
16035 vector float vec_madd (vector float, vector float, vector float);
16036
16037 vector signed short vec_madds (vector signed short,
16038 vector signed short,
16039 vector signed short);
16040
16041 vector unsigned char vec_max (vector bool char, vector unsigned char);
16042 vector unsigned char vec_max (vector unsigned char, vector bool char);
16043 vector unsigned char vec_max (vector unsigned char,
16044 vector unsigned char);
16045 vector signed char vec_max (vector bool char, vector signed char);
16046 vector signed char vec_max (vector signed char, vector bool char);
16047 vector signed char vec_max (vector signed char, vector signed char);
16048 vector unsigned short vec_max (vector bool short,
16049 vector unsigned short);
16050 vector unsigned short vec_max (vector unsigned short,
16051 vector bool short);
16052 vector unsigned short vec_max (vector unsigned short,
16053 vector unsigned short);
16054 vector signed short vec_max (vector bool short, vector signed short);
16055 vector signed short vec_max (vector signed short, vector bool short);
16056 vector signed short vec_max (vector signed short, vector signed short);
16057 vector unsigned int vec_max (vector bool int, vector unsigned int);
16058 vector unsigned int vec_max (vector unsigned int, vector bool int);
16059 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
16060 vector signed int vec_max (vector bool int, vector signed int);
16061 vector signed int vec_max (vector signed int, vector bool int);
16062 vector signed int vec_max (vector signed int, vector signed int);
16063 vector float vec_max (vector float, vector float);
16064
16065 vector float vec_vmaxfp (vector float, vector float);
16066
16067 vector signed int vec_vmaxsw (vector bool int, vector signed int);
16068 vector signed int vec_vmaxsw (vector signed int, vector bool int);
16069 vector signed int vec_vmaxsw (vector signed int, vector signed int);
16070
16071 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
16072 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
16073 vector unsigned int vec_vmaxuw (vector unsigned int,
16074 vector unsigned int);
16075
16076 vector signed short vec_vmaxsh (vector bool short, vector signed short);
16077 vector signed short vec_vmaxsh (vector signed short, vector bool short);
16078 vector signed short vec_vmaxsh (vector signed short,
16079 vector signed short);
16080
16081 vector unsigned short vec_vmaxuh (vector bool short,
16082 vector unsigned short);
16083 vector unsigned short vec_vmaxuh (vector unsigned short,
16084 vector bool short);
16085 vector unsigned short vec_vmaxuh (vector unsigned short,
16086 vector unsigned short);
16087
16088 vector signed char vec_vmaxsb (vector bool char, vector signed char);
16089 vector signed char vec_vmaxsb (vector signed char, vector bool char);
16090 vector signed char vec_vmaxsb (vector signed char, vector signed char);
16091
16092 vector unsigned char vec_vmaxub (vector bool char,
16093 vector unsigned char);
16094 vector unsigned char vec_vmaxub (vector unsigned char,
16095 vector bool char);
16096 vector unsigned char vec_vmaxub (vector unsigned char,
16097 vector unsigned char);
16098
16099 vector bool char vec_mergeh (vector bool char, vector bool char);
16100 vector signed char vec_mergeh (vector signed char, vector signed char);
16101 vector unsigned char vec_mergeh (vector unsigned char,
16102 vector unsigned char);
16103 vector bool short vec_mergeh (vector bool short, vector bool short);
16104 vector pixel vec_mergeh (vector pixel, vector pixel);
16105 vector signed short vec_mergeh (vector signed short,
16106 vector signed short);
16107 vector unsigned short vec_mergeh (vector unsigned short,
16108 vector unsigned short);
16109 vector float vec_mergeh (vector float, vector float);
16110 vector bool int vec_mergeh (vector bool int, vector bool int);
16111 vector signed int vec_mergeh (vector signed int, vector signed int);
16112 vector unsigned int vec_mergeh (vector unsigned int,
16113 vector unsigned int);
16114
16115 vector float vec_vmrghw (vector float, vector float);
16116 vector bool int vec_vmrghw (vector bool int, vector bool int);
16117 vector signed int vec_vmrghw (vector signed int, vector signed int);
16118 vector unsigned int vec_vmrghw (vector unsigned int,
16119 vector unsigned int);
16120
16121 vector bool short vec_vmrghh (vector bool short, vector bool short);
16122 vector signed short vec_vmrghh (vector signed short,
16123 vector signed short);
16124 vector unsigned short vec_vmrghh (vector unsigned short,
16125 vector unsigned short);
16126 vector pixel vec_vmrghh (vector pixel, vector pixel);
16127
16128 vector bool char vec_vmrghb (vector bool char, vector bool char);
16129 vector signed char vec_vmrghb (vector signed char, vector signed char);
16130 vector unsigned char vec_vmrghb (vector unsigned char,
16131 vector unsigned char);
16132
16133 vector bool char vec_mergel (vector bool char, vector bool char);
16134 vector signed char vec_mergel (vector signed char, vector signed char);
16135 vector unsigned char vec_mergel (vector unsigned char,
16136 vector unsigned char);
16137 vector bool short vec_mergel (vector bool short, vector bool short);
16138 vector pixel vec_mergel (vector pixel, vector pixel);
16139 vector signed short vec_mergel (vector signed short,
16140 vector signed short);
16141 vector unsigned short vec_mergel (vector unsigned short,
16142 vector unsigned short);
16143 vector float vec_mergel (vector float, vector float);
16144 vector bool int vec_mergel (vector bool int, vector bool int);
16145 vector signed int vec_mergel (vector signed int, vector signed int);
16146 vector unsigned int vec_mergel (vector unsigned int,
16147 vector unsigned int);
16148
16149 vector float vec_vmrglw (vector float, vector float);
16150 vector signed int vec_vmrglw (vector signed int, vector signed int);
16151 vector unsigned int vec_vmrglw (vector unsigned int,
16152 vector unsigned int);
16153 vector bool int vec_vmrglw (vector bool int, vector bool int);
16154
16155 vector bool short vec_vmrglh (vector bool short, vector bool short);
16156 vector signed short vec_vmrglh (vector signed short,
16157 vector signed short);
16158 vector unsigned short vec_vmrglh (vector unsigned short,
16159 vector unsigned short);
16160 vector pixel vec_vmrglh (vector pixel, vector pixel);
16161
16162 vector bool char vec_vmrglb (vector bool char, vector bool char);
16163 vector signed char vec_vmrglb (vector signed char, vector signed char);
16164 vector unsigned char vec_vmrglb (vector unsigned char,
16165 vector unsigned char);
16166
16167 vector unsigned short vec_mfvscr (void);
16168
16169 vector unsigned char vec_min (vector bool char, vector unsigned char);
16170 vector unsigned char vec_min (vector unsigned char, vector bool char);
16171 vector unsigned char vec_min (vector unsigned char,
16172 vector unsigned char);
16173 vector signed char vec_min (vector bool char, vector signed char);
16174 vector signed char vec_min (vector signed char, vector bool char);
16175 vector signed char vec_min (vector signed char, vector signed char);
16176 vector unsigned short vec_min (vector bool short,
16177 vector unsigned short);
16178 vector unsigned short vec_min (vector unsigned short,
16179 vector bool short);
16180 vector unsigned short vec_min (vector unsigned short,
16181 vector unsigned short);
16182 vector signed short vec_min (vector bool short, vector signed short);
16183 vector signed short vec_min (vector signed short, vector bool short);
16184 vector signed short vec_min (vector signed short, vector signed short);
16185 vector unsigned int vec_min (vector bool int, vector unsigned int);
16186 vector unsigned int vec_min (vector unsigned int, vector bool int);
16187 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16188 vector signed int vec_min (vector bool int, vector signed int);
16189 vector signed int vec_min (vector signed int, vector bool int);
16190 vector signed int vec_min (vector signed int, vector signed int);
16191 vector float vec_min (vector float, vector float);
16192
16193 vector float vec_vminfp (vector float, vector float);
16194
16195 vector signed int vec_vminsw (vector bool int, vector signed int);
16196 vector signed int vec_vminsw (vector signed int, vector bool int);
16197 vector signed int vec_vminsw (vector signed int, vector signed int);
16198
16199 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
16200 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
16201 vector unsigned int vec_vminuw (vector unsigned int,
16202 vector unsigned int);
16203
16204 vector signed short vec_vminsh (vector bool short, vector signed short);
16205 vector signed short vec_vminsh (vector signed short, vector bool short);
16206 vector signed short vec_vminsh (vector signed short,
16207 vector signed short);
16208
16209 vector unsigned short vec_vminuh (vector bool short,
16210 vector unsigned short);
16211 vector unsigned short vec_vminuh (vector unsigned short,
16212 vector bool short);
16213 vector unsigned short vec_vminuh (vector unsigned short,
16214 vector unsigned short);
16215
16216 vector signed char vec_vminsb (vector bool char, vector signed char);
16217 vector signed char vec_vminsb (vector signed char, vector bool char);
16218 vector signed char vec_vminsb (vector signed char, vector signed char);
16219
16220 vector unsigned char vec_vminub (vector bool char,
16221 vector unsigned char);
16222 vector unsigned char vec_vminub (vector unsigned char,
16223 vector bool char);
16224 vector unsigned char vec_vminub (vector unsigned char,
16225 vector unsigned char);
16226
16227 vector signed short vec_mladd (vector signed short,
16228 vector signed short,
16229 vector signed short);
16230 vector signed short vec_mladd (vector signed short,
16231 vector unsigned short,
16232 vector unsigned short);
16233 vector signed short vec_mladd (vector unsigned short,
16234 vector signed short,
16235 vector signed short);
16236 vector unsigned short vec_mladd (vector unsigned short,
16237 vector unsigned short,
16238 vector unsigned short);
16239
16240 vector signed short vec_mradds (vector signed short,
16241 vector signed short,
16242 vector signed short);
16243
16244 vector unsigned int vec_msum (vector unsigned char,
16245 vector unsigned char,
16246 vector unsigned int);
16247 vector signed int vec_msum (vector signed char,
16248 vector unsigned char,
16249 vector signed int);
16250 vector unsigned int vec_msum (vector unsigned short,
16251 vector unsigned short,
16252 vector unsigned int);
16253 vector signed int vec_msum (vector signed short,
16254 vector signed short,
16255 vector signed int);
16256
16257 vector signed int vec_vmsumshm (vector signed short,
16258 vector signed short,
16259 vector signed int);
16260
16261 vector unsigned int vec_vmsumuhm (vector unsigned short,
16262 vector unsigned short,
16263 vector unsigned int);
16264
16265 vector signed int vec_vmsummbm (vector signed char,
16266 vector unsigned char,
16267 vector signed int);
16268
16269 vector unsigned int vec_vmsumubm (vector unsigned char,
16270 vector unsigned char,
16271 vector unsigned int);
16272
16273 vector unsigned int vec_msums (vector unsigned short,
16274 vector unsigned short,
16275 vector unsigned int);
16276 vector signed int vec_msums (vector signed short,
16277 vector signed short,
16278 vector signed int);
16279
16280 vector signed int vec_vmsumshs (vector signed short,
16281 vector signed short,
16282 vector signed int);
16283
16284 vector unsigned int vec_vmsumuhs (vector unsigned short,
16285 vector unsigned short,
16286 vector unsigned int);
16287
16288 void vec_mtvscr (vector signed int);
16289 void vec_mtvscr (vector unsigned int);
16290 void vec_mtvscr (vector bool int);
16291 void vec_mtvscr (vector signed short);
16292 void vec_mtvscr (vector unsigned short);
16293 void vec_mtvscr (vector bool short);
16294 void vec_mtvscr (vector pixel);
16295 void vec_mtvscr (vector signed char);
16296 void vec_mtvscr (vector unsigned char);
16297 void vec_mtvscr (vector bool char);
16298
16299 vector unsigned short vec_mule (vector unsigned char,
16300 vector unsigned char);
16301 vector signed short vec_mule (vector signed char,
16302 vector signed char);
16303 vector unsigned int vec_mule (vector unsigned short,
16304 vector unsigned short);
16305 vector signed int vec_mule (vector signed short, vector signed short);
16306
16307 vector signed int vec_vmulesh (vector signed short,
16308 vector signed short);
16309
16310 vector unsigned int vec_vmuleuh (vector unsigned short,
16311 vector unsigned short);
16312
16313 vector signed short vec_vmulesb (vector signed char,
16314 vector signed char);
16315
16316 vector unsigned short vec_vmuleub (vector unsigned char,
16317 vector unsigned char);
16318
16319 vector unsigned short vec_mulo (vector unsigned char,
16320 vector unsigned char);
16321 vector signed short vec_mulo (vector signed char, vector signed char);
16322 vector unsigned int vec_mulo (vector unsigned short,
16323 vector unsigned short);
16324 vector signed int vec_mulo (vector signed short, vector signed short);
16325
16326 vector signed int vec_vmulosh (vector signed short,
16327 vector signed short);
16328
16329 vector unsigned int vec_vmulouh (vector unsigned short,
16330 vector unsigned short);
16331
16332 vector signed short vec_vmulosb (vector signed char,
16333 vector signed char);
16334
16335 vector unsigned short vec_vmuloub (vector unsigned char,
16336 vector unsigned char);
16337
16338 vector float vec_nmsub (vector float, vector float, vector float);
16339
16340 vector signed char vec_nabs (vector signed char);
16341 vector signed short vec_nabs (vector signed short);
16342 vector signed int vec_nabs (vector signed int);
16343 vector float vec_nabs (vector float);
16344 vector double vec_nabs (vector double);
16345
16346 vector float vec_nor (vector float, vector float);
16347 vector signed int vec_nor (vector signed int, vector signed int);
16348 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16349 vector bool int vec_nor (vector bool int, vector bool int);
16350 vector signed short vec_nor (vector signed short, vector signed short);
16351 vector unsigned short vec_nor (vector unsigned short,
16352 vector unsigned short);
16353 vector bool short vec_nor (vector bool short, vector bool short);
16354 vector signed char vec_nor (vector signed char, vector signed char);
16355 vector unsigned char vec_nor (vector unsigned char,
16356 vector unsigned char);
16357 vector bool char vec_nor (vector bool char, vector bool char);
16358
16359 vector float vec_or (vector float, vector float);
16360 vector float vec_or (vector float, vector bool int);
16361 vector float vec_or (vector bool int, vector float);
16362 vector bool int vec_or (vector bool int, vector bool int);
16363 vector signed int vec_or (vector bool int, vector signed int);
16364 vector signed int vec_or (vector signed int, vector bool int);
16365 vector signed int vec_or (vector signed int, vector signed int);
16366 vector unsigned int vec_or (vector bool int, vector unsigned int);
16367 vector unsigned int vec_or (vector unsigned int, vector bool int);
16368 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
16369 vector bool short vec_or (vector bool short, vector bool short);
16370 vector signed short vec_or (vector bool short, vector signed short);
16371 vector signed short vec_or (vector signed short, vector bool short);
16372 vector signed short vec_or (vector signed short, vector signed short);
16373 vector unsigned short vec_or (vector bool short, vector unsigned short);
16374 vector unsigned short vec_or (vector unsigned short, vector bool short);
16375 vector unsigned short vec_or (vector unsigned short,
16376 vector unsigned short);
16377 vector signed char vec_or (vector bool char, vector signed char);
16378 vector bool char vec_or (vector bool char, vector bool char);
16379 vector signed char vec_or (vector signed char, vector bool char);
16380 vector signed char vec_or (vector signed char, vector signed char);
16381 vector unsigned char vec_or (vector bool char, vector unsigned char);
16382 vector unsigned char vec_or (vector unsigned char, vector bool char);
16383 vector unsigned char vec_or (vector unsigned char,
16384 vector unsigned char);
16385
16386 vector signed char vec_pack (vector signed short, vector signed short);
16387 vector unsigned char vec_pack (vector unsigned short,
16388 vector unsigned short);
16389 vector bool char vec_pack (vector bool short, vector bool short);
16390 vector signed short vec_pack (vector signed int, vector signed int);
16391 vector unsigned short vec_pack (vector unsigned int,
16392 vector unsigned int);
16393 vector bool short vec_pack (vector bool int, vector bool int);
16394
16395 vector bool short vec_vpkuwum (vector bool int, vector bool int);
16396 vector signed short vec_vpkuwum (vector signed int, vector signed int);
16397 vector unsigned short vec_vpkuwum (vector unsigned int,
16398 vector unsigned int);
16399
16400 vector bool char vec_vpkuhum (vector bool short, vector bool short);
16401 vector signed char vec_vpkuhum (vector signed short,
16402 vector signed short);
16403 vector unsigned char vec_vpkuhum (vector unsigned short,
16404 vector unsigned short);
16405
16406 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
16407
16408 vector unsigned char vec_packs (vector unsigned short,
16409 vector unsigned short);
16410 vector signed char vec_packs (vector signed short, vector signed short);
16411 vector unsigned short vec_packs (vector unsigned int,
16412 vector unsigned int);
16413 vector signed short vec_packs (vector signed int, vector signed int);
16414
16415 vector signed short vec_vpkswss (vector signed int, vector signed int);
16416
16417 vector unsigned short vec_vpkuwus (vector unsigned int,
16418 vector unsigned int);
16419
16420 vector signed char vec_vpkshss (vector signed short,
16421 vector signed short);
16422
16423 vector unsigned char vec_vpkuhus (vector unsigned short,
16424 vector unsigned short);
16425
16426 vector unsigned char vec_packsu (vector unsigned short,
16427 vector unsigned short);
16428 vector unsigned char vec_packsu (vector signed short,
16429 vector signed short);
16430 vector unsigned short vec_packsu (vector unsigned int,
16431 vector unsigned int);
16432 vector unsigned short vec_packsu (vector signed int, vector signed int);
16433
16434 vector unsigned short vec_vpkswus (vector signed int,
16435 vector signed int);
16436
16437 vector unsigned char vec_vpkshus (vector signed short,
16438 vector signed short);
16439
16440 vector float vec_perm (vector float,
16441 vector float,
16442 vector unsigned char);
16443 vector signed int vec_perm (vector signed int,
16444 vector signed int,
16445 vector unsigned char);
16446 vector unsigned int vec_perm (vector unsigned int,
16447 vector unsigned int,
16448 vector unsigned char);
16449 vector bool int vec_perm (vector bool int,
16450 vector bool int,
16451 vector unsigned char);
16452 vector signed short vec_perm (vector signed short,
16453 vector signed short,
16454 vector unsigned char);
16455 vector unsigned short vec_perm (vector unsigned short,
16456 vector unsigned short,
16457 vector unsigned char);
16458 vector bool short vec_perm (vector bool short,
16459 vector bool short,
16460 vector unsigned char);
16461 vector pixel vec_perm (vector pixel,
16462 vector pixel,
16463 vector unsigned char);
16464 vector signed char vec_perm (vector signed char,
16465 vector signed char,
16466 vector unsigned char);
16467 vector unsigned char vec_perm (vector unsigned char,
16468 vector unsigned char,
16469 vector unsigned char);
16470 vector bool char vec_perm (vector bool char,
16471 vector bool char,
16472 vector unsigned char);
16473
16474 vector float vec_re (vector float);
16475
16476 vector signed char vec_rl (vector signed char,
16477 vector unsigned char);
16478 vector unsigned char vec_rl (vector unsigned char,
16479 vector unsigned char);
16480 vector signed short vec_rl (vector signed short, vector unsigned short);
16481 vector unsigned short vec_rl (vector unsigned short,
16482 vector unsigned short);
16483 vector signed int vec_rl (vector signed int, vector unsigned int);
16484 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
16485
16486 vector signed int vec_vrlw (vector signed int, vector unsigned int);
16487 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
16488
16489 vector signed short vec_vrlh (vector signed short,
16490 vector unsigned short);
16491 vector unsigned short vec_vrlh (vector unsigned short,
16492 vector unsigned short);
16493
16494 vector signed char vec_vrlb (vector signed char, vector unsigned char);
16495 vector unsigned char vec_vrlb (vector unsigned char,
16496 vector unsigned char);
16497
16498 vector float vec_round (vector float);
16499
16500 vector float vec_recip (vector float, vector float);
16501
16502 vector float vec_rsqrt (vector float);
16503
16504 vector float vec_rsqrte (vector float);
16505
16506 vector float vec_sel (vector float, vector float, vector bool int);
16507 vector float vec_sel (vector float, vector float, vector unsigned int);
16508 vector signed int vec_sel (vector signed int,
16509 vector signed int,
16510 vector bool int);
16511 vector signed int vec_sel (vector signed int,
16512 vector signed int,
16513 vector unsigned int);
16514 vector unsigned int vec_sel (vector unsigned int,
16515 vector unsigned int,
16516 vector bool int);
16517 vector unsigned int vec_sel (vector unsigned int,
16518 vector unsigned int,
16519 vector unsigned int);
16520 vector bool int vec_sel (vector bool int,
16521 vector bool int,
16522 vector bool int);
16523 vector bool int vec_sel (vector bool int,
16524 vector bool int,
16525 vector unsigned int);
16526 vector signed short vec_sel (vector signed short,
16527 vector signed short,
16528 vector bool short);
16529 vector signed short vec_sel (vector signed short,
16530 vector signed short,
16531 vector unsigned short);
16532 vector unsigned short vec_sel (vector unsigned short,
16533 vector unsigned short,
16534 vector bool short);
16535 vector unsigned short vec_sel (vector unsigned short,
16536 vector unsigned short,
16537 vector unsigned short);
16538 vector bool short vec_sel (vector bool short,
16539 vector bool short,
16540 vector bool short);
16541 vector bool short vec_sel (vector bool short,
16542 vector bool short,
16543 vector unsigned short);
16544 vector signed char vec_sel (vector signed char,
16545 vector signed char,
16546 vector bool char);
16547 vector signed char vec_sel (vector signed char,
16548 vector signed char,
16549 vector unsigned char);
16550 vector unsigned char vec_sel (vector unsigned char,
16551 vector unsigned char,
16552 vector bool char);
16553 vector unsigned char vec_sel (vector unsigned char,
16554 vector unsigned char,
16555 vector unsigned char);
16556 vector bool char vec_sel (vector bool char,
16557 vector bool char,
16558 vector bool char);
16559 vector bool char vec_sel (vector bool char,
16560 vector bool char,
16561 vector unsigned char);
16562
16563 vector signed char vec_sl (vector signed char,
16564 vector unsigned char);
16565 vector unsigned char vec_sl (vector unsigned char,
16566 vector unsigned char);
16567 vector signed short vec_sl (vector signed short, vector unsigned short);
16568 vector unsigned short vec_sl (vector unsigned short,
16569 vector unsigned short);
16570 vector signed int vec_sl (vector signed int, vector unsigned int);
16571 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
16572
16573 vector signed int vec_vslw (vector signed int, vector unsigned int);
16574 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
16575
16576 vector signed short vec_vslh (vector signed short,
16577 vector unsigned short);
16578 vector unsigned short vec_vslh (vector unsigned short,
16579 vector unsigned short);
16580
16581 vector signed char vec_vslb (vector signed char, vector unsigned char);
16582 vector unsigned char vec_vslb (vector unsigned char,
16583 vector unsigned char);
16584
16585 vector float vec_sld (vector float, vector float, const int);
16586 vector double vec_sld (vector double, vector double, const int);
16587
16588 vector signed int vec_sld (vector signed int,
16589 vector signed int,
16590 const int);
16591 vector unsigned int vec_sld (vector unsigned int,
16592 vector unsigned int,
16593 const int);
16594 vector bool int vec_sld (vector bool int,
16595 vector bool int,
16596 const int);
16597 vector signed short vec_sld (vector signed short,
16598 vector signed short,
16599 const int);
16600 vector unsigned short vec_sld (vector unsigned short,
16601 vector unsigned short,
16602 const int);
16603 vector bool short vec_sld (vector bool short,
16604 vector bool short,
16605 const int);
16606 vector pixel vec_sld (vector pixel,
16607 vector pixel,
16608 const int);
16609 vector signed char vec_sld (vector signed char,
16610 vector signed char,
16611 const int);
16612 vector unsigned char vec_sld (vector unsigned char,
16613 vector unsigned char,
16614 const int);
16615 vector bool char vec_sld (vector bool char,
16616 vector bool char,
16617 const int);
16618
16619 vector signed int vec_sll (vector signed int,
16620 vector unsigned int);
16621 vector signed int vec_sll (vector signed int,
16622 vector unsigned short);
16623 vector signed int vec_sll (vector signed int,
16624 vector unsigned char);
16625 vector unsigned int vec_sll (vector unsigned int,
16626 vector unsigned int);
16627 vector unsigned int vec_sll (vector unsigned int,
16628 vector unsigned short);
16629 vector unsigned int vec_sll (vector unsigned int,
16630 vector unsigned char);
16631 vector bool int vec_sll (vector bool int,
16632 vector unsigned int);
16633 vector bool int vec_sll (vector bool int,
16634 vector unsigned short);
16635 vector bool int vec_sll (vector bool int,
16636 vector unsigned char);
16637 vector signed short vec_sll (vector signed short,
16638 vector unsigned int);
16639 vector signed short vec_sll (vector signed short,
16640 vector unsigned short);
16641 vector signed short vec_sll (vector signed short,
16642 vector unsigned char);
16643 vector unsigned short vec_sll (vector unsigned short,
16644 vector unsigned int);
16645 vector unsigned short vec_sll (vector unsigned short,
16646 vector unsigned short);
16647 vector unsigned short vec_sll (vector unsigned short,
16648 vector unsigned char);
16649 vector bool short vec_sll (vector bool short, vector unsigned int);
16650 vector bool short vec_sll (vector bool short, vector unsigned short);
16651 vector bool short vec_sll (vector bool short, vector unsigned char);
16652 vector pixel vec_sll (vector pixel, vector unsigned int);
16653 vector pixel vec_sll (vector pixel, vector unsigned short);
16654 vector pixel vec_sll (vector pixel, vector unsigned char);
16655 vector signed char vec_sll (vector signed char, vector unsigned int);
16656 vector signed char vec_sll (vector signed char, vector unsigned short);
16657 vector signed char vec_sll (vector signed char, vector unsigned char);
16658 vector unsigned char vec_sll (vector unsigned char,
16659 vector unsigned int);
16660 vector unsigned char vec_sll (vector unsigned char,
16661 vector unsigned short);
16662 vector unsigned char vec_sll (vector unsigned char,
16663 vector unsigned char);
16664 vector bool char vec_sll (vector bool char, vector unsigned int);
16665 vector bool char vec_sll (vector bool char, vector unsigned short);
16666 vector bool char vec_sll (vector bool char, vector unsigned char);
16667
16668 vector float vec_slo (vector float, vector signed char);
16669 vector float vec_slo (vector float, vector unsigned char);
16670 vector signed int vec_slo (vector signed int, vector signed char);
16671 vector signed int vec_slo (vector signed int, vector unsigned char);
16672 vector unsigned int vec_slo (vector unsigned int, vector signed char);
16673 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
16674 vector signed short vec_slo (vector signed short, vector signed char);
16675 vector signed short vec_slo (vector signed short, vector unsigned char);
16676 vector unsigned short vec_slo (vector unsigned short,
16677 vector signed char);
16678 vector unsigned short vec_slo (vector unsigned short,
16679 vector unsigned char);
16680 vector pixel vec_slo (vector pixel, vector signed char);
16681 vector pixel vec_slo (vector pixel, vector unsigned char);
16682 vector signed char vec_slo (vector signed char, vector signed char);
16683 vector signed char vec_slo (vector signed char, vector unsigned char);
16684 vector unsigned char vec_slo (vector unsigned char, vector signed char);
16685 vector unsigned char vec_slo (vector unsigned char,
16686 vector unsigned char);
16687
16688 vector signed char vec_splat (vector signed char, const int);
16689 vector unsigned char vec_splat (vector unsigned char, const int);
16690 vector bool char vec_splat (vector bool char, const int);
16691 vector signed short vec_splat (vector signed short, const int);
16692 vector unsigned short vec_splat (vector unsigned short, const int);
16693 vector bool short vec_splat (vector bool short, const int);
16694 vector pixel vec_splat (vector pixel, const int);
16695 vector float vec_splat (vector float, const int);
16696 vector signed int vec_splat (vector signed int, const int);
16697 vector unsigned int vec_splat (vector unsigned int, const int);
16698 vector bool int vec_splat (vector bool int, const int);
16699 vector signed long vec_splat (vector signed long, const int);
16700 vector unsigned long vec_splat (vector unsigned long, const int);
16701
16702 vector signed char vec_splats (signed char);
16703 vector unsigned char vec_splats (unsigned char);
16704 vector signed short vec_splats (signed short);
16705 vector unsigned short vec_splats (unsigned short);
16706 vector signed int vec_splats (signed int);
16707 vector unsigned int vec_splats (unsigned int);
16708 vector float vec_splats (float);
16709
16710 vector float vec_vspltw (vector float, const int);
16711 vector signed int vec_vspltw (vector signed int, const int);
16712 vector unsigned int vec_vspltw (vector unsigned int, const int);
16713 vector bool int vec_vspltw (vector bool int, const int);
16714
16715 vector bool short vec_vsplth (vector bool short, const int);
16716 vector signed short vec_vsplth (vector signed short, const int);
16717 vector unsigned short vec_vsplth (vector unsigned short, const int);
16718 vector pixel vec_vsplth (vector pixel, const int);
16719
16720 vector signed char vec_vspltb (vector signed char, const int);
16721 vector unsigned char vec_vspltb (vector unsigned char, const int);
16722 vector bool char vec_vspltb (vector bool char, const int);
16723
16724 vector signed char vec_splat_s8 (const int);
16725
16726 vector signed short vec_splat_s16 (const int);
16727
16728 vector signed int vec_splat_s32 (const int);
16729
16730 vector unsigned char vec_splat_u8 (const int);
16731
16732 vector unsigned short vec_splat_u16 (const int);
16733
16734 vector unsigned int vec_splat_u32 (const int);
16735
16736 vector signed char vec_sr (vector signed char, vector unsigned char);
16737 vector unsigned char vec_sr (vector unsigned char,
16738 vector unsigned char);
16739 vector signed short vec_sr (vector signed short,
16740 vector unsigned short);
16741 vector unsigned short vec_sr (vector unsigned short,
16742 vector unsigned short);
16743 vector signed int vec_sr (vector signed int, vector unsigned int);
16744 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
16745
16746 vector signed int vec_vsrw (vector signed int, vector unsigned int);
16747 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
16748
16749 vector signed short vec_vsrh (vector signed short,
16750 vector unsigned short);
16751 vector unsigned short vec_vsrh (vector unsigned short,
16752 vector unsigned short);
16753
16754 vector signed char vec_vsrb (vector signed char, vector unsigned char);
16755 vector unsigned char vec_vsrb (vector unsigned char,
16756 vector unsigned char);
16757
16758 vector signed char vec_sra (vector signed char, vector unsigned char);
16759 vector unsigned char vec_sra (vector unsigned char,
16760 vector unsigned char);
16761 vector signed short vec_sra (vector signed short,
16762 vector unsigned short);
16763 vector unsigned short vec_sra (vector unsigned short,
16764 vector unsigned short);
16765 vector signed int vec_sra (vector signed int, vector unsigned int);
16766 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
16767
16768 vector signed int vec_vsraw (vector signed int, vector unsigned int);
16769 vector unsigned int vec_vsraw (vector unsigned int,
16770 vector unsigned int);
16771
16772 vector signed short vec_vsrah (vector signed short,
16773 vector unsigned short);
16774 vector unsigned short vec_vsrah (vector unsigned short,
16775 vector unsigned short);
16776
16777 vector signed char vec_vsrab (vector signed char, vector unsigned char);
16778 vector unsigned char vec_vsrab (vector unsigned char,
16779 vector unsigned char);
16780
16781 vector signed int vec_srl (vector signed int, vector unsigned int);
16782 vector signed int vec_srl (vector signed int, vector unsigned short);
16783 vector signed int vec_srl (vector signed int, vector unsigned char);
16784 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
16785 vector unsigned int vec_srl (vector unsigned int,
16786 vector unsigned short);
16787 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
16788 vector bool int vec_srl (vector bool int, vector unsigned int);
16789 vector bool int vec_srl (vector bool int, vector unsigned short);
16790 vector bool int vec_srl (vector bool int, vector unsigned char);
16791 vector signed short vec_srl (vector signed short, vector unsigned int);
16792 vector signed short vec_srl (vector signed short,
16793 vector unsigned short);
16794 vector signed short vec_srl (vector signed short, vector unsigned char);
16795 vector unsigned short vec_srl (vector unsigned short,
16796 vector unsigned int);
16797 vector unsigned short vec_srl (vector unsigned short,
16798 vector unsigned short);
16799 vector unsigned short vec_srl (vector unsigned short,
16800 vector unsigned char);
16801 vector bool short vec_srl (vector bool short, vector unsigned int);
16802 vector bool short vec_srl (vector bool short, vector unsigned short);
16803 vector bool short vec_srl (vector bool short, vector unsigned char);
16804 vector pixel vec_srl (vector pixel, vector unsigned int);
16805 vector pixel vec_srl (vector pixel, vector unsigned short);
16806 vector pixel vec_srl (vector pixel, vector unsigned char);
16807 vector signed char vec_srl (vector signed char, vector unsigned int);
16808 vector signed char vec_srl (vector signed char, vector unsigned short);
16809 vector signed char vec_srl (vector signed char, vector unsigned char);
16810 vector unsigned char vec_srl (vector unsigned char,
16811 vector unsigned int);
16812 vector unsigned char vec_srl (vector unsigned char,
16813 vector unsigned short);
16814 vector unsigned char vec_srl (vector unsigned char,
16815 vector unsigned char);
16816 vector bool char vec_srl (vector bool char, vector unsigned int);
16817 vector bool char vec_srl (vector bool char, vector unsigned short);
16818 vector bool char vec_srl (vector bool char, vector unsigned char);
16819
16820 vector float vec_sro (vector float, vector signed char);
16821 vector float vec_sro (vector float, vector unsigned char);
16822 vector signed int vec_sro (vector signed int, vector signed char);
16823 vector signed int vec_sro (vector signed int, vector unsigned char);
16824 vector unsigned int vec_sro (vector unsigned int, vector signed char);
16825 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
16826 vector signed short vec_sro (vector signed short, vector signed char);
16827 vector signed short vec_sro (vector signed short, vector unsigned char);
16828 vector unsigned short vec_sro (vector unsigned short,
16829 vector signed char);
16830 vector unsigned short vec_sro (vector unsigned short,
16831 vector unsigned char);
16832 vector pixel vec_sro (vector pixel, vector signed char);
16833 vector pixel vec_sro (vector pixel, vector unsigned char);
16834 vector signed char vec_sro (vector signed char, vector signed char);
16835 vector signed char vec_sro (vector signed char, vector unsigned char);
16836 vector unsigned char vec_sro (vector unsigned char, vector signed char);
16837 vector unsigned char vec_sro (vector unsigned char,
16838 vector unsigned char);
16839
16840 void vec_st (vector float, int, vector float *);
16841 void vec_st (vector float, int, float *);
16842 void vec_st (vector signed int, int, vector signed int *);
16843 void vec_st (vector signed int, int, int *);
16844 void vec_st (vector unsigned int, int, vector unsigned int *);
16845 void vec_st (vector unsigned int, int, unsigned int *);
16846 void vec_st (vector bool int, int, vector bool int *);
16847 void vec_st (vector bool int, int, unsigned int *);
16848 void vec_st (vector bool int, int, int *);
16849 void vec_st (vector signed short, int, vector signed short *);
16850 void vec_st (vector signed short, int, short *);
16851 void vec_st (vector unsigned short, int, vector unsigned short *);
16852 void vec_st (vector unsigned short, int, unsigned short *);
16853 void vec_st (vector bool short, int, vector bool short *);
16854 void vec_st (vector bool short, int, unsigned short *);
16855 void vec_st (vector pixel, int, vector pixel *);
16856 void vec_st (vector pixel, int, unsigned short *);
16857 void vec_st (vector pixel, int, short *);
16858 void vec_st (vector bool short, int, short *);
16859 void vec_st (vector signed char, int, vector signed char *);
16860 void vec_st (vector signed char, int, signed char *);
16861 void vec_st (vector unsigned char, int, vector unsigned char *);
16862 void vec_st (vector unsigned char, int, unsigned char *);
16863 void vec_st (vector bool char, int, vector bool char *);
16864 void vec_st (vector bool char, int, unsigned char *);
16865 void vec_st (vector bool char, int, signed char *);
16866
16867 void vec_ste (vector signed char, int, signed char *);
16868 void vec_ste (vector unsigned char, int, unsigned char *);
16869 void vec_ste (vector bool char, int, signed char *);
16870 void vec_ste (vector bool char, int, unsigned char *);
16871 void vec_ste (vector signed short, int, short *);
16872 void vec_ste (vector unsigned short, int, unsigned short *);
16873 void vec_ste (vector bool short, int, short *);
16874 void vec_ste (vector bool short, int, unsigned short *);
16875 void vec_ste (vector pixel, int, short *);
16876 void vec_ste (vector pixel, int, unsigned short *);
16877 void vec_ste (vector float, int, float *);
16878 void vec_ste (vector signed int, int, int *);
16879 void vec_ste (vector unsigned int, int, unsigned int *);
16880 void vec_ste (vector bool int, int, int *);
16881 void vec_ste (vector bool int, int, unsigned int *);
16882
16883 void vec_stvewx (vector float, int, float *);
16884 void vec_stvewx (vector signed int, int, int *);
16885 void vec_stvewx (vector unsigned int, int, unsigned int *);
16886 void vec_stvewx (vector bool int, int, int *);
16887 void vec_stvewx (vector bool int, int, unsigned int *);
16888
16889 void vec_stvehx (vector signed short, int, short *);
16890 void vec_stvehx (vector unsigned short, int, unsigned short *);
16891 void vec_stvehx (vector bool short, int, short *);
16892 void vec_stvehx (vector bool short, int, unsigned short *);
16893 void vec_stvehx (vector pixel, int, short *);
16894 void vec_stvehx (vector pixel, int, unsigned short *);
16895
16896 void vec_stvebx (vector signed char, int, signed char *);
16897 void vec_stvebx (vector unsigned char, int, unsigned char *);
16898 void vec_stvebx (vector bool char, int, signed char *);
16899 void vec_stvebx (vector bool char, int, unsigned char *);
16900
16901 void vec_stl (vector float, int, vector float *);
16902 void vec_stl (vector float, int, float *);
16903 void vec_stl (vector signed int, int, vector signed int *);
16904 void vec_stl (vector signed int, int, int *);
16905 void vec_stl (vector unsigned int, int, vector unsigned int *);
16906 void vec_stl (vector unsigned int, int, unsigned int *);
16907 void vec_stl (vector bool int, int, vector bool int *);
16908 void vec_stl (vector bool int, int, unsigned int *);
16909 void vec_stl (vector bool int, int, int *);
16910 void vec_stl (vector signed short, int, vector signed short *);
16911 void vec_stl (vector signed short, int, short *);
16912 void vec_stl (vector unsigned short, int, vector unsigned short *);
16913 void vec_stl (vector unsigned short, int, unsigned short *);
16914 void vec_stl (vector bool short, int, vector bool short *);
16915 void vec_stl (vector bool short, int, unsigned short *);
16916 void vec_stl (vector bool short, int, short *);
16917 void vec_stl (vector pixel, int, vector pixel *);
16918 void vec_stl (vector pixel, int, unsigned short *);
16919 void vec_stl (vector pixel, int, short *);
16920 void vec_stl (vector signed char, int, vector signed char *);
16921 void vec_stl (vector signed char, int, signed char *);
16922 void vec_stl (vector unsigned char, int, vector unsigned char *);
16923 void vec_stl (vector unsigned char, int, unsigned char *);
16924 void vec_stl (vector bool char, int, vector bool char *);
16925 void vec_stl (vector bool char, int, unsigned char *);
16926 void vec_stl (vector bool char, int, signed char *);
16927
16928 vector signed char vec_sub (vector bool char, vector signed char);
16929 vector signed char vec_sub (vector signed char, vector bool char);
16930 vector signed char vec_sub (vector signed char, vector signed char);
16931 vector unsigned char vec_sub (vector bool char, vector unsigned char);
16932 vector unsigned char vec_sub (vector unsigned char, vector bool char);
16933 vector unsigned char vec_sub (vector unsigned char,
16934 vector unsigned char);
16935 vector signed short vec_sub (vector bool short, vector signed short);
16936 vector signed short vec_sub (vector signed short, vector bool short);
16937 vector signed short vec_sub (vector signed short, vector signed short);
16938 vector unsigned short vec_sub (vector bool short,
16939 vector unsigned short);
16940 vector unsigned short vec_sub (vector unsigned short,
16941 vector bool short);
16942 vector unsigned short vec_sub (vector unsigned short,
16943 vector unsigned short);
16944 vector signed int vec_sub (vector bool int, vector signed int);
16945 vector signed int vec_sub (vector signed int, vector bool int);
16946 vector signed int vec_sub (vector signed int, vector signed int);
16947 vector unsigned int vec_sub (vector bool int, vector unsigned int);
16948 vector unsigned int vec_sub (vector unsigned int, vector bool int);
16949 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
16950 vector float vec_sub (vector float, vector float);
16951
16952 vector float vec_vsubfp (vector float, vector float);
16953
16954 vector signed int vec_vsubuwm (vector bool int, vector signed int);
16955 vector signed int vec_vsubuwm (vector signed int, vector bool int);
16956 vector signed int vec_vsubuwm (vector signed int, vector signed int);
16957 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
16958 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
16959 vector unsigned int vec_vsubuwm (vector unsigned int,
16960 vector unsigned int);
16961
16962 vector signed short vec_vsubuhm (vector bool short,
16963 vector signed short);
16964 vector signed short vec_vsubuhm (vector signed short,
16965 vector bool short);
16966 vector signed short vec_vsubuhm (vector signed short,
16967 vector signed short);
16968 vector unsigned short vec_vsubuhm (vector bool short,
16969 vector unsigned short);
16970 vector unsigned short vec_vsubuhm (vector unsigned short,
16971 vector bool short);
16972 vector unsigned short vec_vsubuhm (vector unsigned short,
16973 vector unsigned short);
16974
16975 vector signed char vec_vsububm (vector bool char, vector signed char);
16976 vector signed char vec_vsububm (vector signed char, vector bool char);
16977 vector signed char vec_vsububm (vector signed char, vector signed char);
16978 vector unsigned char vec_vsububm (vector bool char,
16979 vector unsigned char);
16980 vector unsigned char vec_vsububm (vector unsigned char,
16981 vector bool char);
16982 vector unsigned char vec_vsububm (vector unsigned char,
16983 vector unsigned char);
16984
16985 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
16986
16987 vector unsigned char vec_subs (vector bool char, vector unsigned char);
16988 vector unsigned char vec_subs (vector unsigned char, vector bool char);
16989 vector unsigned char vec_subs (vector unsigned char,
16990 vector unsigned char);
16991 vector signed char vec_subs (vector bool char, vector signed char);
16992 vector signed char vec_subs (vector signed char, vector bool char);
16993 vector signed char vec_subs (vector signed char, vector signed char);
16994 vector unsigned short vec_subs (vector bool short,
16995 vector unsigned short);
16996 vector unsigned short vec_subs (vector unsigned short,
16997 vector bool short);
16998 vector unsigned short vec_subs (vector unsigned short,
16999 vector unsigned short);
17000 vector signed short vec_subs (vector bool short, vector signed short);
17001 vector signed short vec_subs (vector signed short, vector bool short);
17002 vector signed short vec_subs (vector signed short, vector signed short);
17003 vector unsigned int vec_subs (vector bool int, vector unsigned int);
17004 vector unsigned int vec_subs (vector unsigned int, vector bool int);
17005 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
17006 vector signed int vec_subs (vector bool int, vector signed int);
17007 vector signed int vec_subs (vector signed int, vector bool int);
17008 vector signed int vec_subs (vector signed int, vector signed int);
17009
17010 vector signed int vec_vsubsws (vector bool int, vector signed int);
17011 vector signed int vec_vsubsws (vector signed int, vector bool int);
17012 vector signed int vec_vsubsws (vector signed int, vector signed int);
17013
17014 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
17015 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
17016 vector unsigned int vec_vsubuws (vector unsigned int,
17017 vector unsigned int);
17018
17019 vector signed short vec_vsubshs (vector bool short,
17020 vector signed short);
17021 vector signed short vec_vsubshs (vector signed short,
17022 vector bool short);
17023 vector signed short vec_vsubshs (vector signed short,
17024 vector signed short);
17025
17026 vector unsigned short vec_vsubuhs (vector bool short,
17027 vector unsigned short);
17028 vector unsigned short vec_vsubuhs (vector unsigned short,
17029 vector bool short);
17030 vector unsigned short vec_vsubuhs (vector unsigned short,
17031 vector unsigned short);
17032
17033 vector signed char vec_vsubsbs (vector bool char, vector signed char);
17034 vector signed char vec_vsubsbs (vector signed char, vector bool char);
17035 vector signed char vec_vsubsbs (vector signed char, vector signed char);
17036
17037 vector unsigned char vec_vsububs (vector bool char,
17038 vector unsigned char);
17039 vector unsigned char vec_vsububs (vector unsigned char,
17040 vector bool char);
17041 vector unsigned char vec_vsububs (vector unsigned char,
17042 vector unsigned char);
17043
17044 vector unsigned int vec_sum4s (vector unsigned char,
17045 vector unsigned int);
17046 vector signed int vec_sum4s (vector signed char, vector signed int);
17047 vector signed int vec_sum4s (vector signed short, vector signed int);
17048
17049 vector signed int vec_vsum4shs (vector signed short, vector signed int);
17050
17051 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
17052
17053 vector unsigned int vec_vsum4ubs (vector unsigned char,
17054 vector unsigned int);
17055
17056 vector signed int vec_sum2s (vector signed int, vector signed int);
17057
17058 vector signed int vec_sums (vector signed int, vector signed int);
17059
17060 vector float vec_trunc (vector float);
17061
17062 vector signed short vec_unpackh (vector signed char);
17063 vector bool short vec_unpackh (vector bool char);
17064 vector signed int vec_unpackh (vector signed short);
17065 vector bool int vec_unpackh (vector bool short);
17066 vector unsigned int vec_unpackh (vector pixel);
17067
17068 vector bool int vec_vupkhsh (vector bool short);
17069 vector signed int vec_vupkhsh (vector signed short);
17070
17071 vector unsigned int vec_vupkhpx (vector pixel);
17072
17073 vector bool short vec_vupkhsb (vector bool char);
17074 vector signed short vec_vupkhsb (vector signed char);
17075
17076 vector signed short vec_unpackl (vector signed char);
17077 vector bool short vec_unpackl (vector bool char);
17078 vector unsigned int vec_unpackl (vector pixel);
17079 vector signed int vec_unpackl (vector signed short);
17080 vector bool int vec_unpackl (vector bool short);
17081
17082 vector unsigned int vec_vupklpx (vector pixel);
17083
17084 vector bool int vec_vupklsh (vector bool short);
17085 vector signed int vec_vupklsh (vector signed short);
17086
17087 vector bool short vec_vupklsb (vector bool char);
17088 vector signed short vec_vupklsb (vector signed char);
17089
17090 vector float vec_xor (vector float, vector float);
17091 vector float vec_xor (vector float, vector bool int);
17092 vector float vec_xor (vector bool int, vector float);
17093 vector bool int vec_xor (vector bool int, vector bool int);
17094 vector signed int vec_xor (vector bool int, vector signed int);
17095 vector signed int vec_xor (vector signed int, vector bool int);
17096 vector signed int vec_xor (vector signed int, vector signed int);
17097 vector unsigned int vec_xor (vector bool int, vector unsigned int);
17098 vector unsigned int vec_xor (vector unsigned int, vector bool int);
17099 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
17100 vector bool short vec_xor (vector bool short, vector bool short);
17101 vector signed short vec_xor (vector bool short, vector signed short);
17102 vector signed short vec_xor (vector signed short, vector bool short);
17103 vector signed short vec_xor (vector signed short, vector signed short);
17104 vector unsigned short vec_xor (vector bool short,
17105 vector unsigned short);
17106 vector unsigned short vec_xor (vector unsigned short,
17107 vector bool short);
17108 vector unsigned short vec_xor (vector unsigned short,
17109 vector unsigned short);
17110 vector signed char vec_xor (vector bool char, vector signed char);
17111 vector bool char vec_xor (vector bool char, vector bool char);
17112 vector signed char vec_xor (vector signed char, vector bool char);
17113 vector signed char vec_xor (vector signed char, vector signed char);
17114 vector unsigned char vec_xor (vector bool char, vector unsigned char);
17115 vector unsigned char vec_xor (vector unsigned char, vector bool char);
17116 vector unsigned char vec_xor (vector unsigned char,
17117 vector unsigned char);
17118
17119 int vec_all_eq (vector signed char, vector bool char);
17120 int vec_all_eq (vector signed char, vector signed char);
17121 int vec_all_eq (vector unsigned char, vector bool char);
17122 int vec_all_eq (vector unsigned char, vector unsigned char);
17123 int vec_all_eq (vector bool char, vector bool char);
17124 int vec_all_eq (vector bool char, vector unsigned char);
17125 int vec_all_eq (vector bool char, vector signed char);
17126 int vec_all_eq (vector signed short, vector bool short);
17127 int vec_all_eq (vector signed short, vector signed short);
17128 int vec_all_eq (vector unsigned short, vector bool short);
17129 int vec_all_eq (vector unsigned short, vector unsigned short);
17130 int vec_all_eq (vector bool short, vector bool short);
17131 int vec_all_eq (vector bool short, vector unsigned short);
17132 int vec_all_eq (vector bool short, vector signed short);
17133 int vec_all_eq (vector pixel, vector pixel);
17134 int vec_all_eq (vector signed int, vector bool int);
17135 int vec_all_eq (vector signed int, vector signed int);
17136 int vec_all_eq (vector unsigned int, vector bool int);
17137 int vec_all_eq (vector unsigned int, vector unsigned int);
17138 int vec_all_eq (vector bool int, vector bool int);
17139 int vec_all_eq (vector bool int, vector unsigned int);
17140 int vec_all_eq (vector bool int, vector signed int);
17141 int vec_all_eq (vector float, vector float);
17142
17143 int vec_all_ge (vector bool char, vector unsigned char);
17144 int vec_all_ge (vector unsigned char, vector bool char);
17145 int vec_all_ge (vector unsigned char, vector unsigned char);
17146 int vec_all_ge (vector bool char, vector signed char);
17147 int vec_all_ge (vector signed char, vector bool char);
17148 int vec_all_ge (vector signed char, vector signed char);
17149 int vec_all_ge (vector bool short, vector unsigned short);
17150 int vec_all_ge (vector unsigned short, vector bool short);
17151 int vec_all_ge (vector unsigned short, vector unsigned short);
17152 int vec_all_ge (vector signed short, vector signed short);
17153 int vec_all_ge (vector bool short, vector signed short);
17154 int vec_all_ge (vector signed short, vector bool short);
17155 int vec_all_ge (vector bool int, vector unsigned int);
17156 int vec_all_ge (vector unsigned int, vector bool int);
17157 int vec_all_ge (vector unsigned int, vector unsigned int);
17158 int vec_all_ge (vector bool int, vector signed int);
17159 int vec_all_ge (vector signed int, vector bool int);
17160 int vec_all_ge (vector signed int, vector signed int);
17161 int vec_all_ge (vector float, vector float);
17162
17163 int vec_all_gt (vector bool char, vector unsigned char);
17164 int vec_all_gt (vector unsigned char, vector bool char);
17165 int vec_all_gt (vector unsigned char, vector unsigned char);
17166 int vec_all_gt (vector bool char, vector signed char);
17167 int vec_all_gt (vector signed char, vector bool char);
17168 int vec_all_gt (vector signed char, vector signed char);
17169 int vec_all_gt (vector bool short, vector unsigned short);
17170 int vec_all_gt (vector unsigned short, vector bool short);
17171 int vec_all_gt (vector unsigned short, vector unsigned short);
17172 int vec_all_gt (vector bool short, vector signed short);
17173 int vec_all_gt (vector signed short, vector bool short);
17174 int vec_all_gt (vector signed short, vector signed short);
17175 int vec_all_gt (vector bool int, vector unsigned int);
17176 int vec_all_gt (vector unsigned int, vector bool int);
17177 int vec_all_gt (vector unsigned int, vector unsigned int);
17178 int vec_all_gt (vector bool int, vector signed int);
17179 int vec_all_gt (vector signed int, vector bool int);
17180 int vec_all_gt (vector signed int, vector signed int);
17181 int vec_all_gt (vector float, vector float);
17182
17183 int vec_all_in (vector float, vector float);
17184
17185 int vec_all_le (vector bool char, vector unsigned char);
17186 int vec_all_le (vector unsigned char, vector bool char);
17187 int vec_all_le (vector unsigned char, vector unsigned char);
17188 int vec_all_le (vector bool char, vector signed char);
17189 int vec_all_le (vector signed char, vector bool char);
17190 int vec_all_le (vector signed char, vector signed char);
17191 int vec_all_le (vector bool short, vector unsigned short);
17192 int vec_all_le (vector unsigned short, vector bool short);
17193 int vec_all_le (vector unsigned short, vector unsigned short);
17194 int vec_all_le (vector bool short, vector signed short);
17195 int vec_all_le (vector signed short, vector bool short);
17196 int vec_all_le (vector signed short, vector signed short);
17197 int vec_all_le (vector bool int, vector unsigned int);
17198 int vec_all_le (vector unsigned int, vector bool int);
17199 int vec_all_le (vector unsigned int, vector unsigned int);
17200 int vec_all_le (vector bool int, vector signed int);
17201 int vec_all_le (vector signed int, vector bool int);
17202 int vec_all_le (vector signed int, vector signed int);
17203 int vec_all_le (vector float, vector float);
17204
17205 int vec_all_lt (vector bool char, vector unsigned char);
17206 int vec_all_lt (vector unsigned char, vector bool char);
17207 int vec_all_lt (vector unsigned char, vector unsigned char);
17208 int vec_all_lt (vector bool char, vector signed char);
17209 int vec_all_lt (vector signed char, vector bool char);
17210 int vec_all_lt (vector signed char, vector signed char);
17211 int vec_all_lt (vector bool short, vector unsigned short);
17212 int vec_all_lt (vector unsigned short, vector bool short);
17213 int vec_all_lt (vector unsigned short, vector unsigned short);
17214 int vec_all_lt (vector bool short, vector signed short);
17215 int vec_all_lt (vector signed short, vector bool short);
17216 int vec_all_lt (vector signed short, vector signed short);
17217 int vec_all_lt (vector bool int, vector unsigned int);
17218 int vec_all_lt (vector unsigned int, vector bool int);
17219 int vec_all_lt (vector unsigned int, vector unsigned int);
17220 int vec_all_lt (vector bool int, vector signed int);
17221 int vec_all_lt (vector signed int, vector bool int);
17222 int vec_all_lt (vector signed int, vector signed int);
17223 int vec_all_lt (vector float, vector float);
17224
17225 int vec_all_nan (vector float);
17226
17227 int vec_all_ne (vector signed char, vector bool char);
17228 int vec_all_ne (vector signed char, vector signed char);
17229 int vec_all_ne (vector unsigned char, vector bool char);
17230 int vec_all_ne (vector unsigned char, vector unsigned char);
17231 int vec_all_ne (vector bool char, vector bool char);
17232 int vec_all_ne (vector bool char, vector unsigned char);
17233 int vec_all_ne (vector bool char, vector signed char);
17234 int vec_all_ne (vector signed short, vector bool short);
17235 int vec_all_ne (vector signed short, vector signed short);
17236 int vec_all_ne (vector unsigned short, vector bool short);
17237 int vec_all_ne (vector unsigned short, vector unsigned short);
17238 int vec_all_ne (vector bool short, vector bool short);
17239 int vec_all_ne (vector bool short, vector unsigned short);
17240 int vec_all_ne (vector bool short, vector signed short);
17241 int vec_all_ne (vector pixel, vector pixel);
17242 int vec_all_ne (vector signed int, vector bool int);
17243 int vec_all_ne (vector signed int, vector signed int);
17244 int vec_all_ne (vector unsigned int, vector bool int);
17245 int vec_all_ne (vector unsigned int, vector unsigned int);
17246 int vec_all_ne (vector bool int, vector bool int);
17247 int vec_all_ne (vector bool int, vector unsigned int);
17248 int vec_all_ne (vector bool int, vector signed int);
17249 int vec_all_ne (vector float, vector float);
17250
17251 int vec_all_nge (vector float, vector float);
17252
17253 int vec_all_ngt (vector float, vector float);
17254
17255 int vec_all_nle (vector float, vector float);
17256
17257 int vec_all_nlt (vector float, vector float);
17258
17259 int vec_all_numeric (vector float);
17260
17261 int vec_any_eq (vector signed char, vector bool char);
17262 int vec_any_eq (vector signed char, vector signed char);
17263 int vec_any_eq (vector unsigned char, vector bool char);
17264 int vec_any_eq (vector unsigned char, vector unsigned char);
17265 int vec_any_eq (vector bool char, vector bool char);
17266 int vec_any_eq (vector bool char, vector unsigned char);
17267 int vec_any_eq (vector bool char, vector signed char);
17268 int vec_any_eq (vector signed short, vector bool short);
17269 int vec_any_eq (vector signed short, vector signed short);
17270 int vec_any_eq (vector unsigned short, vector bool short);
17271 int vec_any_eq (vector unsigned short, vector unsigned short);
17272 int vec_any_eq (vector bool short, vector bool short);
17273 int vec_any_eq (vector bool short, vector unsigned short);
17274 int vec_any_eq (vector bool short, vector signed short);
17275 int vec_any_eq (vector pixel, vector pixel);
17276 int vec_any_eq (vector signed int, vector bool int);
17277 int vec_any_eq (vector signed int, vector signed int);
17278 int vec_any_eq (vector unsigned int, vector bool int);
17279 int vec_any_eq (vector unsigned int, vector unsigned int);
17280 int vec_any_eq (vector bool int, vector bool int);
17281 int vec_any_eq (vector bool int, vector unsigned int);
17282 int vec_any_eq (vector bool int, vector signed int);
17283 int vec_any_eq (vector float, vector float);
17284
17285 int vec_any_ge (vector signed char, vector bool char);
17286 int vec_any_ge (vector unsigned char, vector bool char);
17287 int vec_any_ge (vector unsigned char, vector unsigned char);
17288 int vec_any_ge (vector signed char, vector signed char);
17289 int vec_any_ge (vector bool char, vector unsigned char);
17290 int vec_any_ge (vector bool char, vector signed char);
17291 int vec_any_ge (vector unsigned short, vector bool short);
17292 int vec_any_ge (vector unsigned short, vector unsigned short);
17293 int vec_any_ge (vector signed short, vector signed short);
17294 int vec_any_ge (vector signed short, vector bool short);
17295 int vec_any_ge (vector bool short, vector unsigned short);
17296 int vec_any_ge (vector bool short, vector signed short);
17297 int vec_any_ge (vector signed int, vector bool int);
17298 int vec_any_ge (vector unsigned int, vector bool int);
17299 int vec_any_ge (vector unsigned int, vector unsigned int);
17300 int vec_any_ge (vector signed int, vector signed int);
17301 int vec_any_ge (vector bool int, vector unsigned int);
17302 int vec_any_ge (vector bool int, vector signed int);
17303 int vec_any_ge (vector float, vector float);
17304
17305 int vec_any_gt (vector bool char, vector unsigned char);
17306 int vec_any_gt (vector unsigned char, vector bool char);
17307 int vec_any_gt (vector unsigned char, vector unsigned char);
17308 int vec_any_gt (vector bool char, vector signed char);
17309 int vec_any_gt (vector signed char, vector bool char);
17310 int vec_any_gt (vector signed char, vector signed char);
17311 int vec_any_gt (vector bool short, vector unsigned short);
17312 int vec_any_gt (vector unsigned short, vector bool short);
17313 int vec_any_gt (vector unsigned short, vector unsigned short);
17314 int vec_any_gt (vector bool short, vector signed short);
17315 int vec_any_gt (vector signed short, vector bool short);
17316 int vec_any_gt (vector signed short, vector signed short);
17317 int vec_any_gt (vector bool int, vector unsigned int);
17318 int vec_any_gt (vector unsigned int, vector bool int);
17319 int vec_any_gt (vector unsigned int, vector unsigned int);
17320 int vec_any_gt (vector bool int, vector signed int);
17321 int vec_any_gt (vector signed int, vector bool int);
17322 int vec_any_gt (vector signed int, vector signed int);
17323 int vec_any_gt (vector float, vector float);
17324
17325 int vec_any_le (vector bool char, vector unsigned char);
17326 int vec_any_le (vector unsigned char, vector bool char);
17327 int vec_any_le (vector unsigned char, vector unsigned char);
17328 int vec_any_le (vector bool char, vector signed char);
17329 int vec_any_le (vector signed char, vector bool char);
17330 int vec_any_le (vector signed char, vector signed char);
17331 int vec_any_le (vector bool short, vector unsigned short);
17332 int vec_any_le (vector unsigned short, vector bool short);
17333 int vec_any_le (vector unsigned short, vector unsigned short);
17334 int vec_any_le (vector bool short, vector signed short);
17335 int vec_any_le (vector signed short, vector bool short);
17336 int vec_any_le (vector signed short, vector signed short);
17337 int vec_any_le (vector bool int, vector unsigned int);
17338 int vec_any_le (vector unsigned int, vector bool int);
17339 int vec_any_le (vector unsigned int, vector unsigned int);
17340 int vec_any_le (vector bool int, vector signed int);
17341 int vec_any_le (vector signed int, vector bool int);
17342 int vec_any_le (vector signed int, vector signed int);
17343 int vec_any_le (vector float, vector float);
17344
17345 int vec_any_lt (vector bool char, vector unsigned char);
17346 int vec_any_lt (vector unsigned char, vector bool char);
17347 int vec_any_lt (vector unsigned char, vector unsigned char);
17348 int vec_any_lt (vector bool char, vector signed char);
17349 int vec_any_lt (vector signed char, vector bool char);
17350 int vec_any_lt (vector signed char, vector signed char);
17351 int vec_any_lt (vector bool short, vector unsigned short);
17352 int vec_any_lt (vector unsigned short, vector bool short);
17353 int vec_any_lt (vector unsigned short, vector unsigned short);
17354 int vec_any_lt (vector bool short, vector signed short);
17355 int vec_any_lt (vector signed short, vector bool short);
17356 int vec_any_lt (vector signed short, vector signed short);
17357 int vec_any_lt (vector bool int, vector unsigned int);
17358 int vec_any_lt (vector unsigned int, vector bool int);
17359 int vec_any_lt (vector unsigned int, vector unsigned int);
17360 int vec_any_lt (vector bool int, vector signed int);
17361 int vec_any_lt (vector signed int, vector bool int);
17362 int vec_any_lt (vector signed int, vector signed int);
17363 int vec_any_lt (vector float, vector float);
17364
17365 int vec_any_nan (vector float);
17366
17367 int vec_any_ne (vector signed char, vector bool char);
17368 int vec_any_ne (vector signed char, vector signed char);
17369 int vec_any_ne (vector unsigned char, vector bool char);
17370 int vec_any_ne (vector unsigned char, vector unsigned char);
17371 int vec_any_ne (vector bool char, vector bool char);
17372 int vec_any_ne (vector bool char, vector unsigned char);
17373 int vec_any_ne (vector bool char, vector signed char);
17374 int vec_any_ne (vector signed short, vector bool short);
17375 int vec_any_ne (vector signed short, vector signed short);
17376 int vec_any_ne (vector unsigned short, vector bool short);
17377 int vec_any_ne (vector unsigned short, vector unsigned short);
17378 int vec_any_ne (vector bool short, vector bool short);
17379 int vec_any_ne (vector bool short, vector unsigned short);
17380 int vec_any_ne (vector bool short, vector signed short);
17381 int vec_any_ne (vector pixel, vector pixel);
17382 int vec_any_ne (vector signed int, vector bool int);
17383 int vec_any_ne (vector signed int, vector signed int);
17384 int vec_any_ne (vector unsigned int, vector bool int);
17385 int vec_any_ne (vector unsigned int, vector unsigned int);
17386 int vec_any_ne (vector bool int, vector bool int);
17387 int vec_any_ne (vector bool int, vector unsigned int);
17388 int vec_any_ne (vector bool int, vector signed int);
17389 int vec_any_ne (vector float, vector float);
17390
17391 int vec_any_nge (vector float, vector float);
17392
17393 int vec_any_ngt (vector float, vector float);
17394
17395 int vec_any_nle (vector float, vector float);
17396
17397 int vec_any_nlt (vector float, vector float);
17398
17399 int vec_any_numeric (vector float);
17400
17401 int vec_any_out (vector float, vector float);
17402 @end smallexample
17403
17404 If the vector/scalar (VSX) instruction set is available, the following
17405 additional functions are available:
17406
17407 @smallexample
17408 vector double vec_abs (vector double);
17409 vector double vec_add (vector double, vector double);
17410 vector double vec_and (vector double, vector double);
17411 vector double vec_and (vector double, vector bool long);
17412 vector double vec_and (vector bool long, vector double);
17413 vector long vec_and (vector long, vector long);
17414 vector long vec_and (vector long, vector bool long);
17415 vector long vec_and (vector bool long, vector long);
17416 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17417 vector unsigned long vec_and (vector unsigned long, vector bool long);
17418 vector unsigned long vec_and (vector bool long, vector unsigned long);
17419 vector double vec_andc (vector double, vector double);
17420 vector double vec_andc (vector double, vector bool long);
17421 vector double vec_andc (vector bool long, vector double);
17422 vector long vec_andc (vector long, vector long);
17423 vector long vec_andc (vector long, vector bool long);
17424 vector long vec_andc (vector bool long, vector long);
17425 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17426 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17427 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17428 vector double vec_ceil (vector double);
17429 vector bool long vec_cmpeq (vector double, vector double);
17430 vector bool long vec_cmpge (vector double, vector double);
17431 vector bool long vec_cmpgt (vector double, vector double);
17432 vector bool long vec_cmple (vector double, vector double);
17433 vector bool long vec_cmplt (vector double, vector double);
17434 vector double vec_cpsgn (vector double, vector double);
17435 vector float vec_div (vector float, vector float);
17436 vector double vec_div (vector double, vector double);
17437 vector long vec_div (vector long, vector long);
17438 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
17439 vector double vec_floor (vector double);
17440 vector double vec_ld (int, const vector double *);
17441 vector double vec_ld (int, const double *);
17442 vector double vec_ldl (int, const vector double *);
17443 vector double vec_ldl (int, const double *);
17444 vector unsigned char vec_lvsl (int, const volatile double *);
17445 vector unsigned char vec_lvsr (int, const volatile double *);
17446 vector double vec_madd (vector double, vector double, vector double);
17447 vector double vec_max (vector double, vector double);
17448 vector signed long vec_mergeh (vector signed long, vector signed long);
17449 vector signed long vec_mergeh (vector signed long, vector bool long);
17450 vector signed long vec_mergeh (vector bool long, vector signed long);
17451 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
17452 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
17453 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
17454 vector signed long vec_mergel (vector signed long, vector signed long);
17455 vector signed long vec_mergel (vector signed long, vector bool long);
17456 vector signed long vec_mergel (vector bool long, vector signed long);
17457 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
17458 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
17459 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
17460 vector double vec_min (vector double, vector double);
17461 vector float vec_msub (vector float, vector float, vector float);
17462 vector double vec_msub (vector double, vector double, vector double);
17463 vector float vec_mul (vector float, vector float);
17464 vector double vec_mul (vector double, vector double);
17465 vector long vec_mul (vector long, vector long);
17466 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17467 vector float vec_nearbyint (vector float);
17468 vector double vec_nearbyint (vector double);
17469 vector float vec_nmadd (vector float, vector float, vector float);
17470 vector double vec_nmadd (vector double, vector double, vector double);
17471 vector double vec_nmsub (vector double, vector double, vector double);
17472 vector double vec_nor (vector double, vector double);
17473 vector long vec_nor (vector long, vector long);
17474 vector long vec_nor (vector long, vector bool long);
17475 vector long vec_nor (vector bool long, vector long);
17476 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
17477 vector unsigned long vec_nor (vector unsigned long, vector bool long);
17478 vector unsigned long vec_nor (vector bool long, vector unsigned long);
17479 vector double vec_or (vector double, vector double);
17480 vector double vec_or (vector double, vector bool long);
17481 vector double vec_or (vector bool long, vector double);
17482 vector long vec_or (vector long, vector long);
17483 vector long vec_or (vector long, vector bool long);
17484 vector long vec_or (vector bool long, vector long);
17485 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
17486 vector unsigned long vec_or (vector unsigned long, vector bool long);
17487 vector unsigned long vec_or (vector bool long, vector unsigned long);
17488 vector double vec_perm (vector double, vector double, vector unsigned char);
17489 vector long vec_perm (vector long, vector long, vector unsigned char);
17490 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
17491 vector unsigned char);
17492 vector double vec_rint (vector double);
17493 vector double vec_recip (vector double, vector double);
17494 vector double vec_rsqrt (vector double);
17495 vector double vec_rsqrte (vector double);
17496 vector double vec_sel (vector double, vector double, vector bool long);
17497 vector double vec_sel (vector double, vector double, vector unsigned long);
17498 vector long vec_sel (vector long, vector long, vector long);
17499 vector long vec_sel (vector long, vector long, vector unsigned long);
17500 vector long vec_sel (vector long, vector long, vector bool long);
17501 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17502 vector long);
17503 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17504 vector unsigned long);
17505 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17506 vector bool long);
17507 vector double vec_splats (double);
17508 vector signed long vec_splats (signed long);
17509 vector unsigned long vec_splats (unsigned long);
17510 vector float vec_sqrt (vector float);
17511 vector double vec_sqrt (vector double);
17512 void vec_st (vector double, int, vector double *);
17513 void vec_st (vector double, int, double *);
17514 vector double vec_sub (vector double, vector double);
17515 vector double vec_trunc (vector double);
17516 vector double vec_xl (int, vector double *);
17517 vector double vec_xl (int, double *);
17518 vector long long vec_xl (int, vector long long *);
17519 vector long long vec_xl (int, long long *);
17520 vector unsigned long long vec_xl (int, vector unsigned long long *);
17521 vector unsigned long long vec_xl (int, unsigned long long *);
17522 vector float vec_xl (int, vector float *);
17523 vector float vec_xl (int, float *);
17524 vector int vec_xl (int, vector int *);
17525 vector int vec_xl (int, int *);
17526 vector unsigned int vec_xl (int, vector unsigned int *);
17527 vector unsigned int vec_xl (int, unsigned int *);
17528 vector double vec_xor (vector double, vector double);
17529 vector double vec_xor (vector double, vector bool long);
17530 vector double vec_xor (vector bool long, vector double);
17531 vector long vec_xor (vector long, vector long);
17532 vector long vec_xor (vector long, vector bool long);
17533 vector long vec_xor (vector bool long, vector long);
17534 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
17535 vector unsigned long vec_xor (vector unsigned long, vector bool long);
17536 vector unsigned long vec_xor (vector bool long, vector unsigned long);
17537 void vec_xst (vector double, int, vector double *);
17538 void vec_xst (vector double, int, double *);
17539 void vec_xst (vector long long, int, vector long long *);
17540 void vec_xst (vector long long, int, long long *);
17541 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
17542 void vec_xst (vector unsigned long long, int, unsigned long long *);
17543 void vec_xst (vector float, int, vector float *);
17544 void vec_xst (vector float, int, float *);
17545 void vec_xst (vector int, int, vector int *);
17546 void vec_xst (vector int, int, int *);
17547 void vec_xst (vector unsigned int, int, vector unsigned int *);
17548 void vec_xst (vector unsigned int, int, unsigned int *);
17549 int vec_all_eq (vector double, vector double);
17550 int vec_all_ge (vector double, vector double);
17551 int vec_all_gt (vector double, vector double);
17552 int vec_all_le (vector double, vector double);
17553 int vec_all_lt (vector double, vector double);
17554 int vec_all_nan (vector double);
17555 int vec_all_ne (vector double, vector double);
17556 int vec_all_nge (vector double, vector double);
17557 int vec_all_ngt (vector double, vector double);
17558 int vec_all_nle (vector double, vector double);
17559 int vec_all_nlt (vector double, vector double);
17560 int vec_all_numeric (vector double);
17561 int vec_any_eq (vector double, vector double);
17562 int vec_any_ge (vector double, vector double);
17563 int vec_any_gt (vector double, vector double);
17564 int vec_any_le (vector double, vector double);
17565 int vec_any_lt (vector double, vector double);
17566 int vec_any_nan (vector double);
17567 int vec_any_ne (vector double, vector double);
17568 int vec_any_nge (vector double, vector double);
17569 int vec_any_ngt (vector double, vector double);
17570 int vec_any_nle (vector double, vector double);
17571 int vec_any_nlt (vector double, vector double);
17572 int vec_any_numeric (vector double);
17573
17574 vector double vec_vsx_ld (int, const vector double *);
17575 vector double vec_vsx_ld (int, const double *);
17576 vector float vec_vsx_ld (int, const vector float *);
17577 vector float vec_vsx_ld (int, const float *);
17578 vector bool int vec_vsx_ld (int, const vector bool int *);
17579 vector signed int vec_vsx_ld (int, const vector signed int *);
17580 vector signed int vec_vsx_ld (int, const int *);
17581 vector signed int vec_vsx_ld (int, const long *);
17582 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
17583 vector unsigned int vec_vsx_ld (int, const unsigned int *);
17584 vector unsigned int vec_vsx_ld (int, const unsigned long *);
17585 vector bool short vec_vsx_ld (int, const vector bool short *);
17586 vector pixel vec_vsx_ld (int, const vector pixel *);
17587 vector signed short vec_vsx_ld (int, const vector signed short *);
17588 vector signed short vec_vsx_ld (int, const short *);
17589 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
17590 vector unsigned short vec_vsx_ld (int, const unsigned short *);
17591 vector bool char vec_vsx_ld (int, const vector bool char *);
17592 vector signed char vec_vsx_ld (int, const vector signed char *);
17593 vector signed char vec_vsx_ld (int, const signed char *);
17594 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
17595 vector unsigned char vec_vsx_ld (int, const unsigned char *);
17596
17597 void vec_vsx_st (vector double, int, vector double *);
17598 void vec_vsx_st (vector double, int, double *);
17599 void vec_vsx_st (vector float, int, vector float *);
17600 void vec_vsx_st (vector float, int, float *);
17601 void vec_vsx_st (vector signed int, int, vector signed int *);
17602 void vec_vsx_st (vector signed int, int, int *);
17603 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
17604 void vec_vsx_st (vector unsigned int, int, unsigned int *);
17605 void vec_vsx_st (vector bool int, int, vector bool int *);
17606 void vec_vsx_st (vector bool int, int, unsigned int *);
17607 void vec_vsx_st (vector bool int, int, int *);
17608 void vec_vsx_st (vector signed short, int, vector signed short *);
17609 void vec_vsx_st (vector signed short, int, short *);
17610 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
17611 void vec_vsx_st (vector unsigned short, int, unsigned short *);
17612 void vec_vsx_st (vector bool short, int, vector bool short *);
17613 void vec_vsx_st (vector bool short, int, unsigned short *);
17614 void vec_vsx_st (vector pixel, int, vector pixel *);
17615 void vec_vsx_st (vector pixel, int, unsigned short *);
17616 void vec_vsx_st (vector pixel, int, short *);
17617 void vec_vsx_st (vector bool short, int, short *);
17618 void vec_vsx_st (vector signed char, int, vector signed char *);
17619 void vec_vsx_st (vector signed char, int, signed char *);
17620 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
17621 void vec_vsx_st (vector unsigned char, int, unsigned char *);
17622 void vec_vsx_st (vector bool char, int, vector bool char *);
17623 void vec_vsx_st (vector bool char, int, unsigned char *);
17624 void vec_vsx_st (vector bool char, int, signed char *);
17625
17626 vector double vec_xxpermdi (vector double, vector double, int);
17627 vector float vec_xxpermdi (vector float, vector float, int);
17628 vector long long vec_xxpermdi (vector long long, vector long long, int);
17629 vector unsigned long long vec_xxpermdi (vector unsigned long long,
17630 vector unsigned long long, int);
17631 vector int vec_xxpermdi (vector int, vector int, int);
17632 vector unsigned int vec_xxpermdi (vector unsigned int,
17633 vector unsigned int, int);
17634 vector short vec_xxpermdi (vector short, vector short, int);
17635 vector unsigned short vec_xxpermdi (vector unsigned short,
17636 vector unsigned short, int);
17637 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
17638 vector unsigned char vec_xxpermdi (vector unsigned char,
17639 vector unsigned char, int);
17640
17641 vector double vec_xxsldi (vector double, vector double, int);
17642 vector float vec_xxsldi (vector float, vector float, int);
17643 vector long long vec_xxsldi (vector long long, vector long long, int);
17644 vector unsigned long long vec_xxsldi (vector unsigned long long,
17645 vector unsigned long long, int);
17646 vector int vec_xxsldi (vector int, vector int, int);
17647 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
17648 vector short vec_xxsldi (vector short, vector short, int);
17649 vector unsigned short vec_xxsldi (vector unsigned short,
17650 vector unsigned short, int);
17651 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
17652 vector unsigned char vec_xxsldi (vector unsigned char,
17653 vector unsigned char, int);
17654 @end smallexample
17655
17656 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
17657 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
17658 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
17659 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
17660 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
17661
17662 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17663 instruction set are available, the following additional functions are
17664 available for both 32-bit and 64-bit targets. For 64-bit targets, you
17665 can use @var{vector long} instead of @var{vector long long},
17666 @var{vector bool long} instead of @var{vector bool long long}, and
17667 @var{vector unsigned long} instead of @var{vector unsigned long long}.
17668
17669 @smallexample
17670 vector long long vec_abs (vector long long);
17671
17672 vector long long vec_add (vector long long, vector long long);
17673 vector unsigned long long vec_add (vector unsigned long long,
17674 vector unsigned long long);
17675
17676 int vec_all_eq (vector long long, vector long long);
17677 int vec_all_eq (vector unsigned long long, vector unsigned long long);
17678 int vec_all_ge (vector long long, vector long long);
17679 int vec_all_ge (vector unsigned long long, vector unsigned long long);
17680 int vec_all_gt (vector long long, vector long long);
17681 int vec_all_gt (vector unsigned long long, vector unsigned long long);
17682 int vec_all_le (vector long long, vector long long);
17683 int vec_all_le (vector unsigned long long, vector unsigned long long);
17684 int vec_all_lt (vector long long, vector long long);
17685 int vec_all_lt (vector unsigned long long, vector unsigned long long);
17686 int vec_all_ne (vector long long, vector long long);
17687 int vec_all_ne (vector unsigned long long, vector unsigned long long);
17688
17689 int vec_any_eq (vector long long, vector long long);
17690 int vec_any_eq (vector unsigned long long, vector unsigned long long);
17691 int vec_any_ge (vector long long, vector long long);
17692 int vec_any_ge (vector unsigned long long, vector unsigned long long);
17693 int vec_any_gt (vector long long, vector long long);
17694 int vec_any_gt (vector unsigned long long, vector unsigned long long);
17695 int vec_any_le (vector long long, vector long long);
17696 int vec_any_le (vector unsigned long long, vector unsigned long long);
17697 int vec_any_lt (vector long long, vector long long);
17698 int vec_any_lt (vector unsigned long long, vector unsigned long long);
17699 int vec_any_ne (vector long long, vector long long);
17700 int vec_any_ne (vector unsigned long long, vector unsigned long long);
17701
17702 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
17703
17704 vector long long vec_eqv (vector long long, vector long long);
17705 vector long long vec_eqv (vector bool long long, vector long long);
17706 vector long long vec_eqv (vector long long, vector bool long long);
17707 vector unsigned long long vec_eqv (vector unsigned long long,
17708 vector unsigned long long);
17709 vector unsigned long long vec_eqv (vector bool long long,
17710 vector unsigned long long);
17711 vector unsigned long long vec_eqv (vector unsigned long long,
17712 vector bool long long);
17713 vector int vec_eqv (vector int, vector int);
17714 vector int vec_eqv (vector bool int, vector int);
17715 vector int vec_eqv (vector int, vector bool int);
17716 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
17717 vector unsigned int vec_eqv (vector bool unsigned int,
17718 vector unsigned int);
17719 vector unsigned int vec_eqv (vector unsigned int,
17720 vector bool unsigned int);
17721 vector short vec_eqv (vector short, vector short);
17722 vector short vec_eqv (vector bool short, vector short);
17723 vector short vec_eqv (vector short, vector bool short);
17724 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
17725 vector unsigned short vec_eqv (vector bool unsigned short,
17726 vector unsigned short);
17727 vector unsigned short vec_eqv (vector unsigned short,
17728 vector bool unsigned short);
17729 vector signed char vec_eqv (vector signed char, vector signed char);
17730 vector signed char vec_eqv (vector bool signed char, vector signed char);
17731 vector signed char vec_eqv (vector signed char, vector bool signed char);
17732 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
17733 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
17734 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
17735
17736 vector long long vec_max (vector long long, vector long long);
17737 vector unsigned long long vec_max (vector unsigned long long,
17738 vector unsigned long long);
17739
17740 vector signed int vec_mergee (vector signed int, vector signed int);
17741 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
17742 vector bool int vec_mergee (vector bool int, vector bool int);
17743
17744 vector signed int vec_mergeo (vector signed int, vector signed int);
17745 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
17746 vector bool int vec_mergeo (vector bool int, vector bool int);
17747
17748 vector long long vec_min (vector long long, vector long long);
17749 vector unsigned long long vec_min (vector unsigned long long,
17750 vector unsigned long long);
17751
17752 vector signed long long vec_nabs (vector signed long long);
17753
17754 vector long long vec_nand (vector long long, vector long long);
17755 vector long long vec_nand (vector bool long long, vector long long);
17756 vector long long vec_nand (vector long long, vector bool long long);
17757 vector unsigned long long vec_nand (vector unsigned long long,
17758 vector unsigned long long);
17759 vector unsigned long long vec_nand (vector bool long long,
17760 vector unsigned long long);
17761 vector unsigned long long vec_nand (vector unsigned long long,
17762 vector bool long long);
17763 vector int vec_nand (vector int, vector int);
17764 vector int vec_nand (vector bool int, vector int);
17765 vector int vec_nand (vector int, vector bool int);
17766 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
17767 vector unsigned int vec_nand (vector bool unsigned int,
17768 vector unsigned int);
17769 vector unsigned int vec_nand (vector unsigned int,
17770 vector bool unsigned int);
17771 vector short vec_nand (vector short, vector short);
17772 vector short vec_nand (vector bool short, vector short);
17773 vector short vec_nand (vector short, vector bool short);
17774 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
17775 vector unsigned short vec_nand (vector bool unsigned short,
17776 vector unsigned short);
17777 vector unsigned short vec_nand (vector unsigned short,
17778 vector bool unsigned short);
17779 vector signed char vec_nand (vector signed char, vector signed char);
17780 vector signed char vec_nand (vector bool signed char, vector signed char);
17781 vector signed char vec_nand (vector signed char, vector bool signed char);
17782 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
17783 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
17784 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
17785
17786 vector long long vec_orc (vector long long, vector long long);
17787 vector long long vec_orc (vector bool long long, vector long long);
17788 vector long long vec_orc (vector long long, vector bool long long);
17789 vector unsigned long long vec_orc (vector unsigned long long,
17790 vector unsigned long long);
17791 vector unsigned long long vec_orc (vector bool long long,
17792 vector unsigned long long);
17793 vector unsigned long long vec_orc (vector unsigned long long,
17794 vector bool long long);
17795 vector int vec_orc (vector int, vector int);
17796 vector int vec_orc (vector bool int, vector int);
17797 vector int vec_orc (vector int, vector bool int);
17798 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
17799 vector unsigned int vec_orc (vector bool unsigned int,
17800 vector unsigned int);
17801 vector unsigned int vec_orc (vector unsigned int,
17802 vector bool unsigned int);
17803 vector short vec_orc (vector short, vector short);
17804 vector short vec_orc (vector bool short, vector short);
17805 vector short vec_orc (vector short, vector bool short);
17806 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
17807 vector unsigned short vec_orc (vector bool unsigned short,
17808 vector unsigned short);
17809 vector unsigned short vec_orc (vector unsigned short,
17810 vector bool unsigned short);
17811 vector signed char vec_orc (vector signed char, vector signed char);
17812 vector signed char vec_orc (vector bool signed char, vector signed char);
17813 vector signed char vec_orc (vector signed char, vector bool signed char);
17814 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
17815 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
17816 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
17817
17818 vector int vec_pack (vector long long, vector long long);
17819 vector unsigned int vec_pack (vector unsigned long long,
17820 vector unsigned long long);
17821 vector bool int vec_pack (vector bool long long, vector bool long long);
17822 vector float vec_pack (vector double, vector double);
17823
17824 vector int vec_packs (vector long long, vector long long);
17825 vector unsigned int vec_packs (vector unsigned long long,
17826 vector unsigned long long);
17827
17828 vector unsigned int vec_packsu (vector long long, vector long long);
17829 vector unsigned int vec_packsu (vector unsigned long long,
17830 vector unsigned long long);
17831
17832 vector long long vec_rl (vector long long,
17833 vector unsigned long long);
17834 vector long long vec_rl (vector unsigned long long,
17835 vector unsigned long long);
17836
17837 vector long long vec_sl (vector long long, vector unsigned long long);
17838 vector long long vec_sl (vector unsigned long long,
17839 vector unsigned long long);
17840
17841 vector long long vec_sr (vector long long, vector unsigned long long);
17842 vector unsigned long long char vec_sr (vector unsigned long long,
17843 vector unsigned long long);
17844
17845 vector long long vec_sra (vector long long, vector unsigned long long);
17846 vector unsigned long long vec_sra (vector unsigned long long,
17847 vector unsigned long long);
17848
17849 vector long long vec_sub (vector long long, vector long long);
17850 vector unsigned long long vec_sub (vector unsigned long long,
17851 vector unsigned long long);
17852
17853 vector long long vec_unpackh (vector int);
17854 vector unsigned long long vec_unpackh (vector unsigned int);
17855
17856 vector long long vec_unpackl (vector int);
17857 vector unsigned long long vec_unpackl (vector unsigned int);
17858
17859 vector long long vec_vaddudm (vector long long, vector long long);
17860 vector long long vec_vaddudm (vector bool long long, vector long long);
17861 vector long long vec_vaddudm (vector long long, vector bool long long);
17862 vector unsigned long long vec_vaddudm (vector unsigned long long,
17863 vector unsigned long long);
17864 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
17865 vector unsigned long long);
17866 vector unsigned long long vec_vaddudm (vector unsigned long long,
17867 vector bool unsigned long long);
17868
17869 vector long long vec_vbpermq (vector signed char, vector signed char);
17870 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
17871
17872 vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
17873 vector unsigned long long vec_bperm (vector unsigned __int128,
17874 vector unsigned char);
17875
17876 vector long long vec_cntlz (vector long long);
17877 vector unsigned long long vec_cntlz (vector unsigned long long);
17878 vector int vec_cntlz (vector int);
17879 vector unsigned int vec_cntlz (vector int);
17880 vector short vec_cntlz (vector short);
17881 vector unsigned short vec_cntlz (vector unsigned short);
17882 vector signed char vec_cntlz (vector signed char);
17883 vector unsigned char vec_cntlz (vector unsigned char);
17884
17885 vector long long vec_vclz (vector long long);
17886 vector unsigned long long vec_vclz (vector unsigned long long);
17887 vector int vec_vclz (vector int);
17888 vector unsigned int vec_vclz (vector int);
17889 vector short vec_vclz (vector short);
17890 vector unsigned short vec_vclz (vector unsigned short);
17891 vector signed char vec_vclz (vector signed char);
17892 vector unsigned char vec_vclz (vector unsigned char);
17893
17894 vector signed char vec_vclzb (vector signed char);
17895 vector unsigned char vec_vclzb (vector unsigned char);
17896
17897 vector long long vec_vclzd (vector long long);
17898 vector unsigned long long vec_vclzd (vector unsigned long long);
17899
17900 vector short vec_vclzh (vector short);
17901 vector unsigned short vec_vclzh (vector unsigned short);
17902
17903 vector int vec_vclzw (vector int);
17904 vector unsigned int vec_vclzw (vector int);
17905
17906 vector signed char vec_vgbbd (vector signed char);
17907 vector unsigned char vec_vgbbd (vector unsigned char);
17908
17909 vector long long vec_vmaxsd (vector long long, vector long long);
17910
17911 vector unsigned long long vec_vmaxud (vector unsigned long long,
17912 unsigned vector long long);
17913
17914 vector long long vec_vminsd (vector long long, vector long long);
17915
17916 vector unsigned long long vec_vminud (vector long long,
17917 vector long long);
17918
17919 vector int vec_vpksdss (vector long long, vector long long);
17920 vector unsigned int vec_vpksdss (vector long long, vector long long);
17921
17922 vector unsigned int vec_vpkudus (vector unsigned long long,
17923 vector unsigned long long);
17924
17925 vector int vec_vpkudum (vector long long, vector long long);
17926 vector unsigned int vec_vpkudum (vector unsigned long long,
17927 vector unsigned long long);
17928 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
17929
17930 vector long long vec_vpopcnt (vector long long);
17931 vector unsigned long long vec_vpopcnt (vector unsigned long long);
17932 vector int vec_vpopcnt (vector int);
17933 vector unsigned int vec_vpopcnt (vector int);
17934 vector short vec_vpopcnt (vector short);
17935 vector unsigned short vec_vpopcnt (vector unsigned short);
17936 vector signed char vec_vpopcnt (vector signed char);
17937 vector unsigned char vec_vpopcnt (vector unsigned char);
17938
17939 vector signed char vec_vpopcntb (vector signed char);
17940 vector unsigned char vec_vpopcntb (vector unsigned char);
17941
17942 vector long long vec_vpopcntd (vector long long);
17943 vector unsigned long long vec_vpopcntd (vector unsigned long long);
17944
17945 vector short vec_vpopcnth (vector short);
17946 vector unsigned short vec_vpopcnth (vector unsigned short);
17947
17948 vector int vec_vpopcntw (vector int);
17949 vector unsigned int vec_vpopcntw (vector int);
17950
17951 vector long long vec_vrld (vector long long, vector unsigned long long);
17952 vector unsigned long long vec_vrld (vector unsigned long long,
17953 vector unsigned long long);
17954
17955 vector long long vec_vsld (vector long long, vector unsigned long long);
17956 vector long long vec_vsld (vector unsigned long long,
17957 vector unsigned long long);
17958
17959 vector long long vec_vsrad (vector long long, vector unsigned long long);
17960 vector unsigned long long vec_vsrad (vector unsigned long long,
17961 vector unsigned long long);
17962
17963 vector long long vec_vsrd (vector long long, vector unsigned long long);
17964 vector unsigned long long char vec_vsrd (vector unsigned long long,
17965 vector unsigned long long);
17966
17967 vector long long vec_vsubudm (vector long long, vector long long);
17968 vector long long vec_vsubudm (vector bool long long, vector long long);
17969 vector long long vec_vsubudm (vector long long, vector bool long long);
17970 vector unsigned long long vec_vsubudm (vector unsigned long long,
17971 vector unsigned long long);
17972 vector unsigned long long vec_vsubudm (vector bool long long,
17973 vector unsigned long long);
17974 vector unsigned long long vec_vsubudm (vector unsigned long long,
17975 vector bool long long);
17976
17977 vector long long vec_vupkhsw (vector int);
17978 vector unsigned long long vec_vupkhsw (vector unsigned int);
17979
17980 vector long long vec_vupklsw (vector int);
17981 vector unsigned long long vec_vupklsw (vector int);
17982 @end smallexample
17983
17984 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17985 instruction set are available, the following additional functions are
17986 available for 64-bit targets. New vector types
17987 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
17988 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
17989 builtins.
17990
17991 The normal vector extract, and set operations work on
17992 @var{vector __int128_t} and @var{vector __uint128_t} types,
17993 but the index value must be 0.
17994
17995 @smallexample
17996 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
17997 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
17998
17999 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
18000 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
18001
18002 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
18003 vector __int128_t);
18004 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
18005 vector __uint128_t);
18006
18007 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
18008 vector __int128_t);
18009 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
18010 vector __uint128_t);
18011
18012 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
18013 vector __int128_t);
18014 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
18015 vector __uint128_t);
18016
18017 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
18018 vector __int128_t);
18019 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
18020 vector __uint128_t);
18021
18022 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
18023 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
18024
18025 __int128_t vec_vsubuqm (__int128_t, __int128_t);
18026 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
18027
18028 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
18029 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
18030 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
18031 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
18032 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
18033 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
18034 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
18035 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
18036 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
18037 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
18038 @end smallexample
18039
18040 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18041 are available:
18042
18043 @smallexample
18044 vector unsigned long long vec_bperm (vector unsigned long long,
18045 vector unsigned char);
18046
18047 vector bool char vec_cmpne (vector bool char, vector bool char);
18048 vector bool short vec_cmpne (vector bool short, vector bool short);
18049 vector bool int vec_cmpne (vector bool int, vector bool int);
18050 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
18051
18052 vector long long vec_vctz (vector long long);
18053 vector unsigned long long vec_vctz (vector unsigned long long);
18054 vector int vec_vctz (vector int);
18055 vector unsigned int vec_vctz (vector int);
18056 vector short vec_vctz (vector short);
18057 vector unsigned short vec_vctz (vector unsigned short);
18058 vector signed char vec_vctz (vector signed char);
18059 vector unsigned char vec_vctz (vector unsigned char);
18060
18061 vector signed char vec_vctzb (vector signed char);
18062 vector unsigned char vec_vctzb (vector unsigned char);
18063
18064 vector long long vec_vctzd (vector long long);
18065 vector unsigned long long vec_vctzd (vector unsigned long long);
18066
18067 vector short vec_vctzh (vector short);
18068 vector unsigned short vec_vctzh (vector unsigned short);
18069
18070 vector int vec_vctzw (vector int);
18071 vector unsigned int vec_vctzw (vector int);
18072
18073 long long vec_vextract4b (const vector signed char, const int);
18074 long long vec_vextract4b (const vector unsigned char, const int);
18075
18076 vector signed char vec_insert4b (vector int, vector signed char, const int);
18077 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
18078 const int);
18079 vector signed char vec_insert4b (long long, vector signed char, const int);
18080 vector unsigned char vec_insert4b (long long, vector unsigned char, const int);
18081
18082 vector int vec_vprtyb (vector int);
18083 vector unsigned int vec_vprtyb (vector unsigned int);
18084 vector long long vec_vprtyb (vector long long);
18085 vector unsigned long long vec_vprtyb (vector unsigned long long);
18086
18087 vector int vec_vprtybw (vector int);
18088 vector unsigned int vec_vprtybw (vector unsigned int);
18089
18090 vector long long vec_vprtybd (vector long long);
18091 vector unsigned long long vec_vprtybd (vector unsigned long long);
18092 @end smallexample
18093
18094 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18095 are available:
18096
18097 @smallexample
18098 vector long vec_vprtyb (vector long);
18099 vector unsigned long vec_vprtyb (vector unsigned long);
18100 vector __int128_t vec_vprtyb (vector __int128_t);
18101 vector __uint128_t vec_vprtyb (vector __uint128_t);
18102
18103 vector long vec_vprtybd (vector long);
18104 vector unsigned long vec_vprtybd (vector unsigned long);
18105
18106 vector __int128_t vec_vprtybq (vector __int128_t);
18107 vector __uint128_t vec_vprtybd (vector __uint128_t);
18108 @end smallexample
18109
18110 The following built-in vector functions are available for the PowerPC family
18111 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18112 @smallexample
18113 __vector unsigned char
18114 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
18115 __vector unsigned char
18116 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
18117 @end smallexample
18118
18119 The @code{vec_slv} and @code{vec_srv} functions operate on
18120 all of the bytes of their @code{src} and @code{shift_distance}
18121 arguments in parallel. The behavior of the @code{vec_slv} is as if
18122 there existed a temporary array of 17 unsigned characters
18123 @code{slv_array} within which elements 0 through 15 are the same as
18124 the entries in the @code{src} array and element 16 equals 0. The
18125 result returned from the @code{vec_slv} function is a
18126 @code{__vector} of 16 unsigned characters within which element
18127 @code{i} is computed using the C expression
18128 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
18129 shift_distance[i]))},
18130 with this resulting value coerced to the @code{unsigned char} type.
18131 The behavior of the @code{vec_srv} is as if
18132 there existed a temporary array of 17 unsigned characters
18133 @code{srv_array} within which element 0 equals zero and
18134 elements 1 through 16 equal the elements 0 through 15 of
18135 the @code{src} array. The
18136 result returned from the @code{vec_srv} function is a
18137 @code{__vector} of 16 unsigned characters within which element
18138 @code{i} is computed using the C expression
18139 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
18140 (0x07 & shift_distance[i]))},
18141 with this resulting value coerced to the @code{unsigned char} type.
18142
18143 The following built-in functions are available for the PowerPC family
18144 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18145 @smallexample
18146 __vector unsigned char
18147 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
18148 __vector unsigned short
18149 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
18150 __vector unsigned int
18151 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
18152
18153 __vector unsigned char
18154 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
18155 __vector unsigned short
18156 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
18157 __vector unsigned int
18158 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
18159 @end smallexample
18160
18161 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
18162 @code{vec_absdw} built-in functions each computes the absolute
18163 differences of the pairs of vector elements supplied in its two vector
18164 arguments, placing the absolute differences into the corresponding
18165 elements of the vector result.
18166
18167 The following built-in functions are available for the PowerPC family
18168 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18169 @smallexample
18170 __vector unsigned int
18171 vec_extract_exp (__vector float source);
18172 __vector unsigned long long int
18173 vec_extract_exp (__vector double source);
18174
18175 __vector unsigned int
18176 vec_extract_sig (__vector float source);
18177 __vector unsigned long long int
18178 vec_extract_sig (__vector double source);
18179
18180 __vector float
18181 vec_insert_exp (__vector unsigned int significands,
18182 __vector unsigned int exponents);
18183 __vector float
18184 vec_insert_exp (__vector unsigned float significands,
18185 __vector unsigned int exponents);
18186 __vector double
18187 vec_insert_exp (__vector unsigned long long int significands,
18188 __vector unsigned long long int exponents);
18189 __vector double
18190 vec_insert_exp (__vector unsigned double significands,
18191 __vector unsigned long long int exponents);
18192
18193 __vector bool int vec_test_data_class (__vector float source,
18194 const int condition);
18195 __vector bool long long int vec_test_data_class (__vector double source,
18196 const int condition);
18197 @end smallexample
18198
18199 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
18200 functions return vectors representing the significands and biased
18201 exponent values of their @code{source} arguments respectively.
18202 Within the result vector returned by @code{vec_extract_sig}, the
18203 @code{0x800000} bit of each vector element returned when the
18204 function's @code{source} argument is of type @code{float} is set to 1
18205 if the corresponding floating point value is in normalized form.
18206 Otherwise, this bit is set to 0. When the @code{source} argument is
18207 of type @code{double}, the @code{0x10000000000000} bit within each of
18208 the result vector's elements is set according to the same rules.
18209 Note that the sign of the significand is not represented in the result
18210 returned from the @code{vec_extract_sig} function. To extract the
18211 sign bits, use the
18212 @code{vec_cpsgn} function, which returns a new vector within which all
18213 of the sign bits of its second argument vector are overwritten with the
18214 sign bits copied from the coresponding elements of its first argument
18215 vector, and all other (non-sign) bits of the second argument vector
18216 are copied unchanged into the result vector.
18217
18218 The @code{vec_insert_exp} built-in functions return a vector of
18219 single- or double-precision floating
18220 point values constructed by assembling the values of their
18221 @code{significands} and @code{exponents} arguments into the
18222 corresponding elements of the returned vector.
18223 The sign of each
18224 element of the result is copied from the most significant bit of the
18225 corresponding entry within the @code{significands} argument.
18226 Note that the relevant
18227 bits of the @code{significands} argument are the same, for both integer
18228 and floating point types.
18229 The
18230 significand and exponent components of each element of the result are
18231 composed of the least significant bits of the corresponding
18232 @code{significands} element and the least significant bits of the
18233 corresponding @code{exponents} element.
18234
18235 The @code{vec_test_data_class} built-in function returns a vector
18236 representing the results of testing the @code{source} vector for the
18237 condition selected by the @code{condition} argument. The
18238 @code{condition} argument must be a compile-time constant integer with
18239 value not exceeding 127. The
18240 @code{condition} argument is encoded as a bitmask with each bit
18241 enabling the testing of a different condition, as characterized by the
18242 following:
18243 @smallexample
18244 0x40 Test for NaN
18245 0x20 Test for +Infinity
18246 0x10 Test for -Infinity
18247 0x08 Test for +Zero
18248 0x04 Test for -Zero
18249 0x02 Test for +Denormal
18250 0x01 Test for -Denormal
18251 @end smallexample
18252
18253 If any of the enabled test conditions is true, the corresponding entry
18254 in the result vector is -1. Otherwise (all of the enabled test
18255 conditions are false), the corresponding entry of the result vector is 0.
18256
18257 The following built-in functions are available for the PowerPC family
18258 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18259 @smallexample
18260 vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
18261 vector unsigned int);
18262 vector unsigned long long vec_rlmi (vector unsigned long long,
18263 vector unsigned long long,
18264 vector unsigned long long);
18265 vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
18266 vector unsigned int);
18267 vector unsigned long long vec_rlnm (vector unsigned long long,
18268 vector unsigned long long,
18269 vector unsigned long long);
18270 vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
18271 vector unsigned long long vec_vrlnm (vector unsigned long long,
18272 vector unsigned long long);
18273 @end smallexample
18274
18275 The result of @code{vec_rlmi} is obtained by rotating each element of
18276 the first argument vector left and inserting it under mask into the
18277 second argument vector. The third argument vector contains the mask
18278 beginning in bits 11:15, the mask end in bits 19:23, and the shift
18279 count in bits 27:31, of each element.
18280
18281 The result of @code{vec_rlnm} is obtained by rotating each element of
18282 the first argument vector left and ANDing it with a mask specified by
18283 the second and third argument vectors. The second argument vector
18284 contains the shift count for each element in the low-order byte. The
18285 third argument vector contains the mask end for each element in the
18286 low-order byte, with the mask begin in the next higher byte.
18287
18288 The result of @code{vec_vrlnm} is obtained by rotating each element
18289 of the first argument vector left and ANDing it with a mask. The
18290 second argument vector contains the mask beginning in bits 11:15,
18291 the mask end in bits 19:23, and the shift count in bits 27:31,
18292 of each element.
18293
18294 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18295 are available:
18296 @smallexample
18297 vector signed char vec_revb (vector signed char);
18298 vector unsigned char vec_revb (vector unsigned char);
18299 vector short vec_revb (vector short);
18300 vector unsigned short vec_revb (vector unsigned short);
18301 vector int vec_revb (vector int);
18302 vector unsigned int vec_revb (vector unsigned int);
18303 vector float vec_revb (vector float);
18304 vector long long vec_revb (vector long long);
18305 vector unsigned long long vec_revb (vector unsigned long long);
18306 vector double vec_revb (vector double);
18307 @end smallexample
18308
18309 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18310 are available:
18311 @smallexample
18312 vector long vec_revb (vector long);
18313 vector unsigned long vec_revb (vector unsigned long);
18314 vector __int128_t vec_revb (vector __int128_t);
18315 vector __uint128_t vec_revb (vector __uint128_t);
18316 @end smallexample
18317
18318 The @code{vec_revb} built-in function reverses the bytes on an element
18319 by element basis. A vector of @code{vector unsigned char} or
18320 @code{vector signed char} reverses the bytes in the whole word.
18321
18322 If the cryptographic instructions are enabled (@option{-mcrypto} or
18323 @option{-mcpu=power8}), the following builtins are enabled.
18324
18325 @smallexample
18326 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
18327
18328 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
18329 vector unsigned long long);
18330
18331 vector unsigned long long __builtin_crypto_vcipherlast
18332 (vector unsigned long long,
18333 vector unsigned long long);
18334
18335 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
18336 vector unsigned long long);
18337
18338 vector unsigned long long __builtin_crypto_vncipherlast
18339 (vector unsigned long long,
18340 vector unsigned long long);
18341
18342 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
18343 vector unsigned char,
18344 vector unsigned char);
18345
18346 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
18347 vector unsigned short,
18348 vector unsigned short);
18349
18350 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
18351 vector unsigned int,
18352 vector unsigned int);
18353
18354 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
18355 vector unsigned long long,
18356 vector unsigned long long);
18357
18358 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
18359 vector unsigned char);
18360
18361 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
18362 vector unsigned short);
18363
18364 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
18365 vector unsigned int);
18366
18367 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
18368 vector unsigned long long);
18369
18370 vector unsigned long long __builtin_crypto_vshasigmad
18371 (vector unsigned long long, int, int);
18372
18373 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
18374 int, int);
18375 @end smallexample
18376
18377 The second argument to @var{__builtin_crypto_vshasigmad} and
18378 @var{__builtin_crypto_vshasigmaw} must be a constant
18379 integer that is 0 or 1. The third argument to these built-in functions
18380 must be a constant integer in the range of 0 to 15.
18381
18382 If the ISA 3.0 instruction set additions
18383 are enabled (@option{-mcpu=power9}), the following additional
18384 functions are available for both 32-bit and 64-bit targets.
18385
18386 vector short vec_xl (int, vector short *);
18387 vector short vec_xl (int, short *);
18388 vector unsigned short vec_xl (int, vector unsigned short *);
18389 vector unsigned short vec_xl (int, unsigned short *);
18390 vector char vec_xl (int, vector char *);
18391 vector char vec_xl (int, char *);
18392 vector unsigned char vec_xl (int, vector unsigned char *);
18393 vector unsigned char vec_xl (int, unsigned char *);
18394
18395 void vec_xst (vector short, int, vector short *);
18396 void vec_xst (vector short, int, short *);
18397 void vec_xst (vector unsigned short, int, vector unsigned short *);
18398 void vec_xst (vector unsigned short, int, unsigned short *);
18399 void vec_xst (vector char, int, vector char *);
18400 void vec_xst (vector char, int, char *);
18401 void vec_xst (vector unsigned char, int, vector unsigned char *);
18402 void vec_xst (vector unsigned char, int, unsigned char *);
18403
18404 @node PowerPC Hardware Transactional Memory Built-in Functions
18405 @subsection PowerPC Hardware Transactional Memory Built-in Functions
18406 GCC provides two interfaces for accessing the Hardware Transactional
18407 Memory (HTM) instructions available on some of the PowerPC family
18408 of processors (eg, POWER8). The two interfaces come in a low level
18409 interface, consisting of built-in functions specific to PowerPC and a
18410 higher level interface consisting of inline functions that are common
18411 between PowerPC and S/390.
18412
18413 @subsubsection PowerPC HTM Low Level Built-in Functions
18414
18415 The following low level built-in functions are available with
18416 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
18417 They all generate the machine instruction that is part of the name.
18418
18419 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
18420 the full 4-bit condition register value set by their associated hardware
18421 instruction. The header file @code{htmintrin.h} defines some macros that can
18422 be used to decipher the return value. The @code{__builtin_tbegin} builtin
18423 returns a simple true or false value depending on whether a transaction was
18424 successfully started or not. The arguments of the builtins match exactly the
18425 type and order of the associated hardware instruction's operands, except for
18426 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
18427 Refer to the ISA manual for a description of each instruction's operands.
18428
18429 @smallexample
18430 unsigned int __builtin_tbegin (unsigned int)
18431 unsigned int __builtin_tend (unsigned int)
18432
18433 unsigned int __builtin_tabort (unsigned int)
18434 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
18435 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
18436 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
18437 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
18438
18439 unsigned int __builtin_tcheck (void)
18440 unsigned int __builtin_treclaim (unsigned int)
18441 unsigned int __builtin_trechkpt (void)
18442 unsigned int __builtin_tsr (unsigned int)
18443 @end smallexample
18444
18445 In addition to the above HTM built-ins, we have added built-ins for
18446 some common extended mnemonics of the HTM instructions:
18447
18448 @smallexample
18449 unsigned int __builtin_tendall (void)
18450 unsigned int __builtin_tresume (void)
18451 unsigned int __builtin_tsuspend (void)
18452 @end smallexample
18453
18454 Note that the semantics of the above HTM builtins are required to mimic
18455 the locking semantics used for critical sections. Builtins that are used
18456 to create a new transaction or restart a suspended transaction must have
18457 lock acquisition like semantics while those builtins that end or suspend a
18458 transaction must have lock release like semantics. Specifically, this must
18459 mimic lock semantics as specified by C++11, for example: Lock acquisition is
18460 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
18461 that returns 0, and lock release is as-if an execution of
18462 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
18463 implicit implementation-defined lock used for all transactions. The HTM
18464 instructions associated with with the builtins inherently provide the
18465 correct acquisition and release hardware barriers required. However,
18466 the compiler must also be prohibited from moving loads and stores across
18467 the builtins in a way that would violate their semantics. This has been
18468 accomplished by adding memory barriers to the associated HTM instructions
18469 (which is a conservative approach to provide acquire and release semantics).
18470 Earlier versions of the compiler did not treat the HTM instructions as
18471 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
18472 be used to determine whether the current compiler treats HTM instructions
18473 as memory barriers or not. This allows the user to explicitly add memory
18474 barriers to their code when using an older version of the compiler.
18475
18476 The following set of built-in functions are available to gain access
18477 to the HTM specific special purpose registers.
18478
18479 @smallexample
18480 unsigned long __builtin_get_texasr (void)
18481 unsigned long __builtin_get_texasru (void)
18482 unsigned long __builtin_get_tfhar (void)
18483 unsigned long __builtin_get_tfiar (void)
18484
18485 void __builtin_set_texasr (unsigned long);
18486 void __builtin_set_texasru (unsigned long);
18487 void __builtin_set_tfhar (unsigned long);
18488 void __builtin_set_tfiar (unsigned long);
18489 @end smallexample
18490
18491 Example usage of these low level built-in functions may look like:
18492
18493 @smallexample
18494 #include <htmintrin.h>
18495
18496 int num_retries = 10;
18497
18498 while (1)
18499 @{
18500 if (__builtin_tbegin (0))
18501 @{
18502 /* Transaction State Initiated. */
18503 if (is_locked (lock))
18504 __builtin_tabort (0);
18505 ... transaction code...
18506 __builtin_tend (0);
18507 break;
18508 @}
18509 else
18510 @{
18511 /* Transaction State Failed. Use locks if the transaction
18512 failure is "persistent" or we've tried too many times. */
18513 if (num_retries-- <= 0
18514 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
18515 @{
18516 acquire_lock (lock);
18517 ... non transactional fallback path...
18518 release_lock (lock);
18519 break;
18520 @}
18521 @}
18522 @}
18523 @end smallexample
18524
18525 One final built-in function has been added that returns the value of
18526 the 2-bit Transaction State field of the Machine Status Register (MSR)
18527 as stored in @code{CR0}.
18528
18529 @smallexample
18530 unsigned long __builtin_ttest (void)
18531 @end smallexample
18532
18533 This built-in can be used to determine the current transaction state
18534 using the following code example:
18535
18536 @smallexample
18537 #include <htmintrin.h>
18538
18539 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
18540
18541 if (tx_state == _HTM_TRANSACTIONAL)
18542 @{
18543 /* Code to use in transactional state. */
18544 @}
18545 else if (tx_state == _HTM_NONTRANSACTIONAL)
18546 @{
18547 /* Code to use in non-transactional state. */
18548 @}
18549 else if (tx_state == _HTM_SUSPENDED)
18550 @{
18551 /* Code to use in transaction suspended state. */
18552 @}
18553 @end smallexample
18554
18555 @subsubsection PowerPC HTM High Level Inline Functions
18556
18557 The following high level HTM interface is made available by including
18558 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
18559 where CPU is `power8' or later. This interface is common between PowerPC
18560 and S/390, allowing users to write one HTM source implementation that
18561 can be compiled and executed on either system.
18562
18563 @smallexample
18564 long __TM_simple_begin (void)
18565 long __TM_begin (void* const TM_buff)
18566 long __TM_end (void)
18567 void __TM_abort (void)
18568 void __TM_named_abort (unsigned char const code)
18569 void __TM_resume (void)
18570 void __TM_suspend (void)
18571
18572 long __TM_is_user_abort (void* const TM_buff)
18573 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
18574 long __TM_is_illegal (void* const TM_buff)
18575 long __TM_is_footprint_exceeded (void* const TM_buff)
18576 long __TM_nesting_depth (void* const TM_buff)
18577 long __TM_is_nested_too_deep(void* const TM_buff)
18578 long __TM_is_conflict(void* const TM_buff)
18579 long __TM_is_failure_persistent(void* const TM_buff)
18580 long __TM_failure_address(void* const TM_buff)
18581 long long __TM_failure_code(void* const TM_buff)
18582 @end smallexample
18583
18584 Using these common set of HTM inline functions, we can create
18585 a more portable version of the HTM example in the previous
18586 section that will work on either PowerPC or S/390:
18587
18588 @smallexample
18589 #include <htmxlintrin.h>
18590
18591 int num_retries = 10;
18592 TM_buff_type TM_buff;
18593
18594 while (1)
18595 @{
18596 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
18597 @{
18598 /* Transaction State Initiated. */
18599 if (is_locked (lock))
18600 __TM_abort ();
18601 ... transaction code...
18602 __TM_end ();
18603 break;
18604 @}
18605 else
18606 @{
18607 /* Transaction State Failed. Use locks if the transaction
18608 failure is "persistent" or we've tried too many times. */
18609 if (num_retries-- <= 0
18610 || __TM_is_failure_persistent (TM_buff))
18611 @{
18612 acquire_lock (lock);
18613 ... non transactional fallback path...
18614 release_lock (lock);
18615 break;
18616 @}
18617 @}
18618 @}
18619 @end smallexample
18620
18621 @node RX Built-in Functions
18622 @subsection RX Built-in Functions
18623 GCC supports some of the RX instructions which cannot be expressed in
18624 the C programming language via the use of built-in functions. The
18625 following functions are supported:
18626
18627 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
18628 Generates the @code{brk} machine instruction.
18629 @end deftypefn
18630
18631 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
18632 Generates the @code{clrpsw} machine instruction to clear the specified
18633 bit in the processor status word.
18634 @end deftypefn
18635
18636 @deftypefn {Built-in Function} void __builtin_rx_int (int)
18637 Generates the @code{int} machine instruction to generate an interrupt
18638 with the specified value.
18639 @end deftypefn
18640
18641 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
18642 Generates the @code{machi} machine instruction to add the result of
18643 multiplying the top 16 bits of the two arguments into the
18644 accumulator.
18645 @end deftypefn
18646
18647 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
18648 Generates the @code{maclo} machine instruction to add the result of
18649 multiplying the bottom 16 bits of the two arguments into the
18650 accumulator.
18651 @end deftypefn
18652
18653 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
18654 Generates the @code{mulhi} machine instruction to place the result of
18655 multiplying the top 16 bits of the two arguments into the
18656 accumulator.
18657 @end deftypefn
18658
18659 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
18660 Generates the @code{mullo} machine instruction to place the result of
18661 multiplying the bottom 16 bits of the two arguments into the
18662 accumulator.
18663 @end deftypefn
18664
18665 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
18666 Generates the @code{mvfachi} machine instruction to read the top
18667 32 bits of the accumulator.
18668 @end deftypefn
18669
18670 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
18671 Generates the @code{mvfacmi} machine instruction to read the middle
18672 32 bits of the accumulator.
18673 @end deftypefn
18674
18675 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
18676 Generates the @code{mvfc} machine instruction which reads the control
18677 register specified in its argument and returns its value.
18678 @end deftypefn
18679
18680 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
18681 Generates the @code{mvtachi} machine instruction to set the top
18682 32 bits of the accumulator.
18683 @end deftypefn
18684
18685 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
18686 Generates the @code{mvtaclo} machine instruction to set the bottom
18687 32 bits of the accumulator.
18688 @end deftypefn
18689
18690 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
18691 Generates the @code{mvtc} machine instruction which sets control
18692 register number @code{reg} to @code{val}.
18693 @end deftypefn
18694
18695 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
18696 Generates the @code{mvtipl} machine instruction set the interrupt
18697 priority level.
18698 @end deftypefn
18699
18700 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
18701 Generates the @code{racw} machine instruction to round the accumulator
18702 according to the specified mode.
18703 @end deftypefn
18704
18705 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
18706 Generates the @code{revw} machine instruction which swaps the bytes in
18707 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
18708 and also bits 16--23 occupy bits 24--31 and vice versa.
18709 @end deftypefn
18710
18711 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
18712 Generates the @code{rmpa} machine instruction which initiates a
18713 repeated multiply and accumulate sequence.
18714 @end deftypefn
18715
18716 @deftypefn {Built-in Function} void __builtin_rx_round (float)
18717 Generates the @code{round} machine instruction which returns the
18718 floating-point argument rounded according to the current rounding mode
18719 set in the floating-point status word register.
18720 @end deftypefn
18721
18722 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
18723 Generates the @code{sat} machine instruction which returns the
18724 saturated value of the argument.
18725 @end deftypefn
18726
18727 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
18728 Generates the @code{setpsw} machine instruction to set the specified
18729 bit in the processor status word.
18730 @end deftypefn
18731
18732 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
18733 Generates the @code{wait} machine instruction.
18734 @end deftypefn
18735
18736 @node S/390 System z Built-in Functions
18737 @subsection S/390 System z Built-in Functions
18738 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
18739 Generates the @code{tbegin} machine instruction starting a
18740 non-constrained hardware transaction. If the parameter is non-NULL the
18741 memory area is used to store the transaction diagnostic buffer and
18742 will be passed as first operand to @code{tbegin}. This buffer can be
18743 defined using the @code{struct __htm_tdb} C struct defined in
18744 @code{htmintrin.h} and must reside on a double-word boundary. The
18745 second tbegin operand is set to @code{0xff0c}. This enables
18746 save/restore of all GPRs and disables aborts for FPR and AR
18747 manipulations inside the transaction body. The condition code set by
18748 the tbegin instruction is returned as integer value. The tbegin
18749 instruction by definition overwrites the content of all FPRs. The
18750 compiler will generate code which saves and restores the FPRs. For
18751 soft-float code it is recommended to used the @code{*_nofloat}
18752 variant. In order to prevent a TDB from being written it is required
18753 to pass a constant zero value as parameter. Passing a zero value
18754 through a variable is not sufficient. Although modifications of
18755 access registers inside the transaction will not trigger an
18756 transaction abort it is not supported to actually modify them. Access
18757 registers do not get saved when entering a transaction. They will have
18758 undefined state when reaching the abort code.
18759 @end deftypefn
18760
18761 Macros for the possible return codes of tbegin are defined in the
18762 @code{htmintrin.h} header file:
18763
18764 @table @code
18765 @item _HTM_TBEGIN_STARTED
18766 @code{tbegin} has been executed as part of normal processing. The
18767 transaction body is supposed to be executed.
18768 @item _HTM_TBEGIN_INDETERMINATE
18769 The transaction was aborted due to an indeterminate condition which
18770 might be persistent.
18771 @item _HTM_TBEGIN_TRANSIENT
18772 The transaction aborted due to a transient failure. The transaction
18773 should be re-executed in that case.
18774 @item _HTM_TBEGIN_PERSISTENT
18775 The transaction aborted due to a persistent failure. Re-execution
18776 under same circumstances will not be productive.
18777 @end table
18778
18779 @defmac _HTM_FIRST_USER_ABORT_CODE
18780 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
18781 specifies the first abort code which can be used for
18782 @code{__builtin_tabort}. Values below this threshold are reserved for
18783 machine use.
18784 @end defmac
18785
18786 @deftp {Data type} {struct __htm_tdb}
18787 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
18788 the structure of the transaction diagnostic block as specified in the
18789 Principles of Operation manual chapter 5-91.
18790 @end deftp
18791
18792 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
18793 Same as @code{__builtin_tbegin} but without FPR saves and restores.
18794 Using this variant in code making use of FPRs will leave the FPRs in
18795 undefined state when entering the transaction abort handler code.
18796 @end deftypefn
18797
18798 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
18799 In addition to @code{__builtin_tbegin} a loop for transient failures
18800 is generated. If tbegin returns a condition code of 2 the transaction
18801 will be retried as often as specified in the second argument. The
18802 perform processor assist instruction is used to tell the CPU about the
18803 number of fails so far.
18804 @end deftypefn
18805
18806 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
18807 Same as @code{__builtin_tbegin_retry} but without FPR saves and
18808 restores. Using this variant in code making use of FPRs will leave
18809 the FPRs in undefined state when entering the transaction abort
18810 handler code.
18811 @end deftypefn
18812
18813 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
18814 Generates the @code{tbeginc} machine instruction starting a constrained
18815 hardware transaction. The second operand is set to @code{0xff08}.
18816 @end deftypefn
18817
18818 @deftypefn {Built-in Function} int __builtin_tend (void)
18819 Generates the @code{tend} machine instruction finishing a transaction
18820 and making the changes visible to other threads. The condition code
18821 generated by tend is returned as integer value.
18822 @end deftypefn
18823
18824 @deftypefn {Built-in Function} void __builtin_tabort (int)
18825 Generates the @code{tabort} machine instruction with the specified
18826 abort code. Abort codes from 0 through 255 are reserved and will
18827 result in an error message.
18828 @end deftypefn
18829
18830 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
18831 Generates the @code{ppa rX,rY,1} machine instruction. Where the
18832 integer parameter is loaded into rX and a value of zero is loaded into
18833 rY. The integer parameter specifies the number of times the
18834 transaction repeatedly aborted.
18835 @end deftypefn
18836
18837 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
18838 Generates the @code{etnd} machine instruction. The current nesting
18839 depth is returned as integer value. For a nesting depth of 0 the code
18840 is not executed as part of an transaction.
18841 @end deftypefn
18842
18843 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
18844
18845 Generates the @code{ntstg} machine instruction. The second argument
18846 is written to the first arguments location. The store operation will
18847 not be rolled-back in case of an transaction abort.
18848 @end deftypefn
18849
18850 @node SH Built-in Functions
18851 @subsection SH Built-in Functions
18852 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
18853 families of processors:
18854
18855 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
18856 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
18857 used by system code that manages threads and execution contexts. The compiler
18858 normally does not generate code that modifies the contents of @samp{GBR} and
18859 thus the value is preserved across function calls. Changing the @samp{GBR}
18860 value in user code must be done with caution, since the compiler might use
18861 @samp{GBR} in order to access thread local variables.
18862
18863 @end deftypefn
18864
18865 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
18866 Returns the value that is currently set in the @samp{GBR} register.
18867 Memory loads and stores that use the thread pointer as a base address are
18868 turned into @samp{GBR} based displacement loads and stores, if possible.
18869 For example:
18870 @smallexample
18871 struct my_tcb
18872 @{
18873 int a, b, c, d, e;
18874 @};
18875
18876 int get_tcb_value (void)
18877 @{
18878 // Generate @samp{mov.l @@(8,gbr),r0} instruction
18879 return ((my_tcb*)__builtin_thread_pointer ())->c;
18880 @}
18881
18882 @end smallexample
18883 @end deftypefn
18884
18885 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
18886 Returns the value that is currently set in the @samp{FPSCR} register.
18887 @end deftypefn
18888
18889 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
18890 Sets the @samp{FPSCR} register to the specified value @var{val}, while
18891 preserving the current values of the FR, SZ and PR bits.
18892 @end deftypefn
18893
18894 @node SPARC VIS Built-in Functions
18895 @subsection SPARC VIS Built-in Functions
18896
18897 GCC supports SIMD operations on the SPARC using both the generic vector
18898 extensions (@pxref{Vector Extensions}) as well as built-in functions for
18899 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
18900 switch, the VIS extension is exposed as the following built-in functions:
18901
18902 @smallexample
18903 typedef int v1si __attribute__ ((vector_size (4)));
18904 typedef int v2si __attribute__ ((vector_size (8)));
18905 typedef short v4hi __attribute__ ((vector_size (8)));
18906 typedef short v2hi __attribute__ ((vector_size (4)));
18907 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
18908 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
18909
18910 void __builtin_vis_write_gsr (int64_t);
18911 int64_t __builtin_vis_read_gsr (void);
18912
18913 void * __builtin_vis_alignaddr (void *, long);
18914 void * __builtin_vis_alignaddrl (void *, long);
18915 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
18916 v2si __builtin_vis_faligndatav2si (v2si, v2si);
18917 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
18918 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
18919
18920 v4hi __builtin_vis_fexpand (v4qi);
18921
18922 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
18923 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
18924 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
18925 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
18926 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
18927 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
18928 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
18929
18930 v4qi __builtin_vis_fpack16 (v4hi);
18931 v8qi __builtin_vis_fpack32 (v2si, v8qi);
18932 v2hi __builtin_vis_fpackfix (v2si);
18933 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
18934
18935 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
18936
18937 long __builtin_vis_edge8 (void *, void *);
18938 long __builtin_vis_edge8l (void *, void *);
18939 long __builtin_vis_edge16 (void *, void *);
18940 long __builtin_vis_edge16l (void *, void *);
18941 long __builtin_vis_edge32 (void *, void *);
18942 long __builtin_vis_edge32l (void *, void *);
18943
18944 long __builtin_vis_fcmple16 (v4hi, v4hi);
18945 long __builtin_vis_fcmple32 (v2si, v2si);
18946 long __builtin_vis_fcmpne16 (v4hi, v4hi);
18947 long __builtin_vis_fcmpne32 (v2si, v2si);
18948 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
18949 long __builtin_vis_fcmpgt32 (v2si, v2si);
18950 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
18951 long __builtin_vis_fcmpeq32 (v2si, v2si);
18952
18953 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
18954 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
18955 v2si __builtin_vis_fpadd32 (v2si, v2si);
18956 v1si __builtin_vis_fpadd32s (v1si, v1si);
18957 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
18958 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
18959 v2si __builtin_vis_fpsub32 (v2si, v2si);
18960 v1si __builtin_vis_fpsub32s (v1si, v1si);
18961
18962 long __builtin_vis_array8 (long, long);
18963 long __builtin_vis_array16 (long, long);
18964 long __builtin_vis_array32 (long, long);
18965 @end smallexample
18966
18967 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
18968 functions also become available:
18969
18970 @smallexample
18971 long __builtin_vis_bmask (long, long);
18972 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
18973 v2si __builtin_vis_bshufflev2si (v2si, v2si);
18974 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
18975 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
18976
18977 long __builtin_vis_edge8n (void *, void *);
18978 long __builtin_vis_edge8ln (void *, void *);
18979 long __builtin_vis_edge16n (void *, void *);
18980 long __builtin_vis_edge16ln (void *, void *);
18981 long __builtin_vis_edge32n (void *, void *);
18982 long __builtin_vis_edge32ln (void *, void *);
18983 @end smallexample
18984
18985 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
18986 functions also become available:
18987
18988 @smallexample
18989 void __builtin_vis_cmask8 (long);
18990 void __builtin_vis_cmask16 (long);
18991 void __builtin_vis_cmask32 (long);
18992
18993 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
18994
18995 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
18996 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
18997 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
18998 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
18999 v2si __builtin_vis_fsll16 (v2si, v2si);
19000 v2si __builtin_vis_fslas16 (v2si, v2si);
19001 v2si __builtin_vis_fsrl16 (v2si, v2si);
19002 v2si __builtin_vis_fsra16 (v2si, v2si);
19003
19004 long __builtin_vis_pdistn (v8qi, v8qi);
19005
19006 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
19007
19008 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
19009 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
19010
19011 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
19012 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
19013 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
19014 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
19015 v2si __builtin_vis_fpadds32 (v2si, v2si);
19016 v1si __builtin_vis_fpadds32s (v1si, v1si);
19017 v2si __builtin_vis_fpsubs32 (v2si, v2si);
19018 v1si __builtin_vis_fpsubs32s (v1si, v1si);
19019
19020 long __builtin_vis_fucmple8 (v8qi, v8qi);
19021 long __builtin_vis_fucmpne8 (v8qi, v8qi);
19022 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
19023 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
19024
19025 float __builtin_vis_fhadds (float, float);
19026 double __builtin_vis_fhaddd (double, double);
19027 float __builtin_vis_fhsubs (float, float);
19028 double __builtin_vis_fhsubd (double, double);
19029 float __builtin_vis_fnhadds (float, float);
19030 double __builtin_vis_fnhaddd (double, double);
19031
19032 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
19033 int64_t __builtin_vis_xmulx (int64_t, int64_t);
19034 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
19035 @end smallexample
19036
19037 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
19038 functions also become available:
19039
19040 @smallexample
19041 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
19042 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
19043 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
19044 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
19045
19046 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
19047 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
19048 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
19049 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
19050
19051 long __builtin_vis_fpcmple8 (v8qi, v8qi);
19052 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
19053 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
19054 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
19055 long __builtin_vis_fpcmpule32 (v2si, v2si);
19056 long __builtin_vis_fpcmpugt32 (v2si, v2si);
19057
19058 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
19059 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
19060 v2si __builtin_vis_fpmax32 (v2si, v2si);
19061
19062 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
19063 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
19064 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
19065
19066
19067 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
19068 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
19069 v2si __builtin_vis_fpmin32 (v2si, v2si);
19070
19071 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
19072 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
19073 v2si __builtin_vis_fpminu32 (v2si, v2si);
19074 @end smallexample
19075
19076 @node SPU Built-in Functions
19077 @subsection SPU Built-in Functions
19078
19079 GCC provides extensions for the SPU processor as described in the
19080 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
19081 implementation differs in several ways.
19082
19083 @itemize @bullet
19084
19085 @item
19086 The optional extension of specifying vector constants in parentheses is
19087 not supported.
19088
19089 @item
19090 A vector initializer requires no cast if the vector constant is of the
19091 same type as the variable it is initializing.
19092
19093 @item
19094 If @code{signed} or @code{unsigned} is omitted, the signedness of the
19095 vector type is the default signedness of the base type. The default
19096 varies depending on the operating system, so a portable program should
19097 always specify the signedness.
19098
19099 @item
19100 By default, the keyword @code{__vector} is added. The macro
19101 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
19102 undefined.
19103
19104 @item
19105 GCC allows using a @code{typedef} name as the type specifier for a
19106 vector type.
19107
19108 @item
19109 For C, overloaded functions are implemented with macros so the following
19110 does not work:
19111
19112 @smallexample
19113 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
19114 @end smallexample
19115
19116 @noindent
19117 Since @code{spu_add} is a macro, the vector constant in the example
19118 is treated as four separate arguments. Wrap the entire argument in
19119 parentheses for this to work.
19120
19121 @item
19122 The extended version of @code{__builtin_expect} is not supported.
19123
19124 @end itemize
19125
19126 @emph{Note:} Only the interface described in the aforementioned
19127 specification is supported. Internally, GCC uses built-in functions to
19128 implement the required functionality, but these are not supported and
19129 are subject to change without notice.
19130
19131 @node TI C6X Built-in Functions
19132 @subsection TI C6X Built-in Functions
19133
19134 GCC provides intrinsics to access certain instructions of the TI C6X
19135 processors. These intrinsics, listed below, are available after
19136 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
19137 to C6X instructions.
19138
19139 @smallexample
19140
19141 int _sadd (int, int)
19142 int _ssub (int, int)
19143 int _sadd2 (int, int)
19144 int _ssub2 (int, int)
19145 long long _mpy2 (int, int)
19146 long long _smpy2 (int, int)
19147 int _add4 (int, int)
19148 int _sub4 (int, int)
19149 int _saddu4 (int, int)
19150
19151 int _smpy (int, int)
19152 int _smpyh (int, int)
19153 int _smpyhl (int, int)
19154 int _smpylh (int, int)
19155
19156 int _sshl (int, int)
19157 int _subc (int, int)
19158
19159 int _avg2 (int, int)
19160 int _avgu4 (int, int)
19161
19162 int _clrr (int, int)
19163 int _extr (int, int)
19164 int _extru (int, int)
19165 int _abs (int)
19166 int _abs2 (int)
19167
19168 @end smallexample
19169
19170 @node TILE-Gx Built-in Functions
19171 @subsection TILE-Gx Built-in Functions
19172
19173 GCC provides intrinsics to access every instruction of the TILE-Gx
19174 processor. The intrinsics are of the form:
19175
19176 @smallexample
19177
19178 unsigned long long __insn_@var{op} (...)
19179
19180 @end smallexample
19181
19182 Where @var{op} is the name of the instruction. Refer to the ISA manual
19183 for the complete list of instructions.
19184
19185 GCC also provides intrinsics to directly access the network registers.
19186 The intrinsics are:
19187
19188 @smallexample
19189
19190 unsigned long long __tile_idn0_receive (void)
19191 unsigned long long __tile_idn1_receive (void)
19192 unsigned long long __tile_udn0_receive (void)
19193 unsigned long long __tile_udn1_receive (void)
19194 unsigned long long __tile_udn2_receive (void)
19195 unsigned long long __tile_udn3_receive (void)
19196 void __tile_idn_send (unsigned long long)
19197 void __tile_udn_send (unsigned long long)
19198
19199 @end smallexample
19200
19201 The intrinsic @code{void __tile_network_barrier (void)} is used to
19202 guarantee that no network operations before it are reordered with
19203 those after it.
19204
19205 @node TILEPro Built-in Functions
19206 @subsection TILEPro Built-in Functions
19207
19208 GCC provides intrinsics to access every instruction of the TILEPro
19209 processor. The intrinsics are of the form:
19210
19211 @smallexample
19212
19213 unsigned __insn_@var{op} (...)
19214
19215 @end smallexample
19216
19217 @noindent
19218 where @var{op} is the name of the instruction. Refer to the ISA manual
19219 for the complete list of instructions.
19220
19221 GCC also provides intrinsics to directly access the network registers.
19222 The intrinsics are:
19223
19224 @smallexample
19225
19226 unsigned __tile_idn0_receive (void)
19227 unsigned __tile_idn1_receive (void)
19228 unsigned __tile_sn_receive (void)
19229 unsigned __tile_udn0_receive (void)
19230 unsigned __tile_udn1_receive (void)
19231 unsigned __tile_udn2_receive (void)
19232 unsigned __tile_udn3_receive (void)
19233 void __tile_idn_send (unsigned)
19234 void __tile_sn_send (unsigned)
19235 void __tile_udn_send (unsigned)
19236
19237 @end smallexample
19238
19239 The intrinsic @code{void __tile_network_barrier (void)} is used to
19240 guarantee that no network operations before it are reordered with
19241 those after it.
19242
19243 @node x86 Built-in Functions
19244 @subsection x86 Built-in Functions
19245
19246 These built-in functions are available for the x86-32 and x86-64 family
19247 of computers, depending on the command-line switches used.
19248
19249 If you specify command-line switches such as @option{-msse},
19250 the compiler could use the extended instruction sets even if the built-ins
19251 are not used explicitly in the program. For this reason, applications
19252 that perform run-time CPU detection must compile separate files for each
19253 supported architecture, using the appropriate flags. In particular,
19254 the file containing the CPU detection code should be compiled without
19255 these options.
19256
19257 The following machine modes are available for use with MMX built-in functions
19258 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
19259 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
19260 vector of eight 8-bit integers. Some of the built-in functions operate on
19261 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
19262
19263 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
19264 of two 32-bit floating-point values.
19265
19266 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
19267 floating-point values. Some instructions use a vector of four 32-bit
19268 integers, these use @code{V4SI}. Finally, some instructions operate on an
19269 entire vector register, interpreting it as a 128-bit integer, these use mode
19270 @code{TI}.
19271
19272 The x86-32 and x86-64 family of processors use additional built-in
19273 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
19274 floating point and @code{TC} 128-bit complex floating-point values.
19275
19276 The following floating-point built-in functions are always available. All
19277 of them implement the function that is part of the name.
19278
19279 @smallexample
19280 __float128 __builtin_fabsq (__float128)
19281 __float128 __builtin_copysignq (__float128, __float128)
19282 @end smallexample
19283
19284 The following built-in functions are always available.
19285
19286 @table @code
19287 @item __float128 __builtin_infq (void)
19288 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
19289 @findex __builtin_infq
19290
19291 @item __float128 __builtin_huge_valq (void)
19292 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
19293 @findex __builtin_huge_valq
19294
19295 @item __float128 __builtin_nanq (void)
19296 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
19297 @findex __builtin_nanq
19298
19299 @item __float128 __builtin_nansq (void)
19300 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
19301 @findex __builtin_nansq
19302 @end table
19303
19304 The following built-in function is always available.
19305
19306 @table @code
19307 @item void __builtin_ia32_pause (void)
19308 Generates the @code{pause} machine instruction with a compiler memory
19309 barrier.
19310 @end table
19311
19312 The following built-in functions are always available and can be used to
19313 check the target platform type.
19314
19315 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
19316 This function runs the CPU detection code to check the type of CPU and the
19317 features supported. This built-in function needs to be invoked along with the built-in functions
19318 to check CPU type and features, @code{__builtin_cpu_is} and
19319 @code{__builtin_cpu_supports}, only when used in a function that is
19320 executed before any constructors are called. The CPU detection code is
19321 automatically executed in a very high priority constructor.
19322
19323 For example, this function has to be used in @code{ifunc} resolvers that
19324 check for CPU type using the built-in functions @code{__builtin_cpu_is}
19325 and @code{__builtin_cpu_supports}, or in constructors on targets that
19326 don't support constructor priority.
19327 @smallexample
19328
19329 static void (*resolve_memcpy (void)) (void)
19330 @{
19331 // ifunc resolvers fire before constructors, explicitly call the init
19332 // function.
19333 __builtin_cpu_init ();
19334 if (__builtin_cpu_supports ("ssse3"))
19335 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
19336 else
19337 return default_memcpy;
19338 @}
19339
19340 void *memcpy (void *, const void *, size_t)
19341 __attribute__ ((ifunc ("resolve_memcpy")));
19342 @end smallexample
19343
19344 @end deftypefn
19345
19346 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
19347 This function returns a positive integer if the run-time CPU
19348 is of type @var{cpuname}
19349 and returns @code{0} otherwise. The following CPU names can be detected:
19350
19351 @table @samp
19352 @item intel
19353 Intel CPU.
19354
19355 @item atom
19356 Intel Atom CPU.
19357
19358 @item core2
19359 Intel Core 2 CPU.
19360
19361 @item corei7
19362 Intel Core i7 CPU.
19363
19364 @item nehalem
19365 Intel Core i7 Nehalem CPU.
19366
19367 @item westmere
19368 Intel Core i7 Westmere CPU.
19369
19370 @item sandybridge
19371 Intel Core i7 Sandy Bridge CPU.
19372
19373 @item amd
19374 AMD CPU.
19375
19376 @item amdfam10h
19377 AMD Family 10h CPU.
19378
19379 @item barcelona
19380 AMD Family 10h Barcelona CPU.
19381
19382 @item shanghai
19383 AMD Family 10h Shanghai CPU.
19384
19385 @item istanbul
19386 AMD Family 10h Istanbul CPU.
19387
19388 @item btver1
19389 AMD Family 14h CPU.
19390
19391 @item amdfam15h
19392 AMD Family 15h CPU.
19393
19394 @item bdver1
19395 AMD Family 15h Bulldozer version 1.
19396
19397 @item bdver2
19398 AMD Family 15h Bulldozer version 2.
19399
19400 @item bdver3
19401 AMD Family 15h Bulldozer version 3.
19402
19403 @item bdver4
19404 AMD Family 15h Bulldozer version 4.
19405
19406 @item btver2
19407 AMD Family 16h CPU.
19408
19409 @item znver1
19410 AMD Family 17h CPU.
19411 @end table
19412
19413 Here is an example:
19414 @smallexample
19415 if (__builtin_cpu_is ("corei7"))
19416 @{
19417 do_corei7 (); // Core i7 specific implementation.
19418 @}
19419 else
19420 @{
19421 do_generic (); // Generic implementation.
19422 @}
19423 @end smallexample
19424 @end deftypefn
19425
19426 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
19427 This function returns a positive integer if the run-time CPU
19428 supports @var{feature}
19429 and returns @code{0} otherwise. The following features can be detected:
19430
19431 @table @samp
19432 @item cmov
19433 CMOV instruction.
19434 @item mmx
19435 MMX instructions.
19436 @item popcnt
19437 POPCNT instruction.
19438 @item sse
19439 SSE instructions.
19440 @item sse2
19441 SSE2 instructions.
19442 @item sse3
19443 SSE3 instructions.
19444 @item ssse3
19445 SSSE3 instructions.
19446 @item sse4.1
19447 SSE4.1 instructions.
19448 @item sse4.2
19449 SSE4.2 instructions.
19450 @item avx
19451 AVX instructions.
19452 @item avx2
19453 AVX2 instructions.
19454 @item avx512f
19455 AVX512F instructions.
19456 @end table
19457
19458 Here is an example:
19459 @smallexample
19460 if (__builtin_cpu_supports ("popcnt"))
19461 @{
19462 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
19463 @}
19464 else
19465 @{
19466 count = generic_countbits (n); //generic implementation.
19467 @}
19468 @end smallexample
19469 @end deftypefn
19470
19471
19472 The following built-in functions are made available by @option{-mmmx}.
19473 All of them generate the machine instruction that is part of the name.
19474
19475 @smallexample
19476 v8qi __builtin_ia32_paddb (v8qi, v8qi)
19477 v4hi __builtin_ia32_paddw (v4hi, v4hi)
19478 v2si __builtin_ia32_paddd (v2si, v2si)
19479 v8qi __builtin_ia32_psubb (v8qi, v8qi)
19480 v4hi __builtin_ia32_psubw (v4hi, v4hi)
19481 v2si __builtin_ia32_psubd (v2si, v2si)
19482 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
19483 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
19484 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
19485 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
19486 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
19487 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
19488 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
19489 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
19490 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
19491 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
19492 di __builtin_ia32_pand (di, di)
19493 di __builtin_ia32_pandn (di,di)
19494 di __builtin_ia32_por (di, di)
19495 di __builtin_ia32_pxor (di, di)
19496 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
19497 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
19498 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
19499 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
19500 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
19501 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
19502 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
19503 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
19504 v2si __builtin_ia32_punpckhdq (v2si, v2si)
19505 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
19506 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
19507 v2si __builtin_ia32_punpckldq (v2si, v2si)
19508 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
19509 v4hi __builtin_ia32_packssdw (v2si, v2si)
19510 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
19511
19512 v4hi __builtin_ia32_psllw (v4hi, v4hi)
19513 v2si __builtin_ia32_pslld (v2si, v2si)
19514 v1di __builtin_ia32_psllq (v1di, v1di)
19515 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
19516 v2si __builtin_ia32_psrld (v2si, v2si)
19517 v1di __builtin_ia32_psrlq (v1di, v1di)
19518 v4hi __builtin_ia32_psraw (v4hi, v4hi)
19519 v2si __builtin_ia32_psrad (v2si, v2si)
19520 v4hi __builtin_ia32_psllwi (v4hi, int)
19521 v2si __builtin_ia32_pslldi (v2si, int)
19522 v1di __builtin_ia32_psllqi (v1di, int)
19523 v4hi __builtin_ia32_psrlwi (v4hi, int)
19524 v2si __builtin_ia32_psrldi (v2si, int)
19525 v1di __builtin_ia32_psrlqi (v1di, int)
19526 v4hi __builtin_ia32_psrawi (v4hi, int)
19527 v2si __builtin_ia32_psradi (v2si, int)
19528
19529 @end smallexample
19530
19531 The following built-in functions are made available either with
19532 @option{-msse}, or with @option{-m3dnowa}. All of them generate
19533 the machine instruction that is part of the name.
19534
19535 @smallexample
19536 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
19537 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
19538 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
19539 v1di __builtin_ia32_psadbw (v8qi, v8qi)
19540 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
19541 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
19542 v8qi __builtin_ia32_pminub (v8qi, v8qi)
19543 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
19544 int __builtin_ia32_pmovmskb (v8qi)
19545 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
19546 void __builtin_ia32_movntq (di *, di)
19547 void __builtin_ia32_sfence (void)
19548 @end smallexample
19549
19550 The following built-in functions are available when @option{-msse} is used.
19551 All of them generate the machine instruction that is part of the name.
19552
19553 @smallexample
19554 int __builtin_ia32_comieq (v4sf, v4sf)
19555 int __builtin_ia32_comineq (v4sf, v4sf)
19556 int __builtin_ia32_comilt (v4sf, v4sf)
19557 int __builtin_ia32_comile (v4sf, v4sf)
19558 int __builtin_ia32_comigt (v4sf, v4sf)
19559 int __builtin_ia32_comige (v4sf, v4sf)
19560 int __builtin_ia32_ucomieq (v4sf, v4sf)
19561 int __builtin_ia32_ucomineq (v4sf, v4sf)
19562 int __builtin_ia32_ucomilt (v4sf, v4sf)
19563 int __builtin_ia32_ucomile (v4sf, v4sf)
19564 int __builtin_ia32_ucomigt (v4sf, v4sf)
19565 int __builtin_ia32_ucomige (v4sf, v4sf)
19566 v4sf __builtin_ia32_addps (v4sf, v4sf)
19567 v4sf __builtin_ia32_subps (v4sf, v4sf)
19568 v4sf __builtin_ia32_mulps (v4sf, v4sf)
19569 v4sf __builtin_ia32_divps (v4sf, v4sf)
19570 v4sf __builtin_ia32_addss (v4sf, v4sf)
19571 v4sf __builtin_ia32_subss (v4sf, v4sf)
19572 v4sf __builtin_ia32_mulss (v4sf, v4sf)
19573 v4sf __builtin_ia32_divss (v4sf, v4sf)
19574 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
19575 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
19576 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
19577 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
19578 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
19579 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
19580 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
19581 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
19582 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
19583 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
19584 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
19585 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
19586 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
19587 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
19588 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
19589 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
19590 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
19591 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
19592 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
19593 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
19594 v4sf __builtin_ia32_maxps (v4sf, v4sf)
19595 v4sf __builtin_ia32_maxss (v4sf, v4sf)
19596 v4sf __builtin_ia32_minps (v4sf, v4sf)
19597 v4sf __builtin_ia32_minss (v4sf, v4sf)
19598 v4sf __builtin_ia32_andps (v4sf, v4sf)
19599 v4sf __builtin_ia32_andnps (v4sf, v4sf)
19600 v4sf __builtin_ia32_orps (v4sf, v4sf)
19601 v4sf __builtin_ia32_xorps (v4sf, v4sf)
19602 v4sf __builtin_ia32_movss (v4sf, v4sf)
19603 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
19604 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
19605 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
19606 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
19607 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
19608 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
19609 v2si __builtin_ia32_cvtps2pi (v4sf)
19610 int __builtin_ia32_cvtss2si (v4sf)
19611 v2si __builtin_ia32_cvttps2pi (v4sf)
19612 int __builtin_ia32_cvttss2si (v4sf)
19613 v4sf __builtin_ia32_rcpps (v4sf)
19614 v4sf __builtin_ia32_rsqrtps (v4sf)
19615 v4sf __builtin_ia32_sqrtps (v4sf)
19616 v4sf __builtin_ia32_rcpss (v4sf)
19617 v4sf __builtin_ia32_rsqrtss (v4sf)
19618 v4sf __builtin_ia32_sqrtss (v4sf)
19619 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
19620 void __builtin_ia32_movntps (float *, v4sf)
19621 int __builtin_ia32_movmskps (v4sf)
19622 @end smallexample
19623
19624 The following built-in functions are available when @option{-msse} is used.
19625
19626 @table @code
19627 @item v4sf __builtin_ia32_loadups (float *)
19628 Generates the @code{movups} machine instruction as a load from memory.
19629 @item void __builtin_ia32_storeups (float *, v4sf)
19630 Generates the @code{movups} machine instruction as a store to memory.
19631 @item v4sf __builtin_ia32_loadss (float *)
19632 Generates the @code{movss} machine instruction as a load from memory.
19633 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
19634 Generates the @code{movhps} machine instruction as a load from memory.
19635 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
19636 Generates the @code{movlps} machine instruction as a load from memory
19637 @item void __builtin_ia32_storehps (v2sf *, v4sf)
19638 Generates the @code{movhps} machine instruction as a store to memory.
19639 @item void __builtin_ia32_storelps (v2sf *, v4sf)
19640 Generates the @code{movlps} machine instruction as a store to memory.
19641 @end table
19642
19643 The following built-in functions are available when @option{-msse2} is used.
19644 All of them generate the machine instruction that is part of the name.
19645
19646 @smallexample
19647 int __builtin_ia32_comisdeq (v2df, v2df)
19648 int __builtin_ia32_comisdlt (v2df, v2df)
19649 int __builtin_ia32_comisdle (v2df, v2df)
19650 int __builtin_ia32_comisdgt (v2df, v2df)
19651 int __builtin_ia32_comisdge (v2df, v2df)
19652 int __builtin_ia32_comisdneq (v2df, v2df)
19653 int __builtin_ia32_ucomisdeq (v2df, v2df)
19654 int __builtin_ia32_ucomisdlt (v2df, v2df)
19655 int __builtin_ia32_ucomisdle (v2df, v2df)
19656 int __builtin_ia32_ucomisdgt (v2df, v2df)
19657 int __builtin_ia32_ucomisdge (v2df, v2df)
19658 int __builtin_ia32_ucomisdneq (v2df, v2df)
19659 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
19660 v2df __builtin_ia32_cmpltpd (v2df, v2df)
19661 v2df __builtin_ia32_cmplepd (v2df, v2df)
19662 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
19663 v2df __builtin_ia32_cmpgepd (v2df, v2df)
19664 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
19665 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
19666 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
19667 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
19668 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
19669 v2df __builtin_ia32_cmpngepd (v2df, v2df)
19670 v2df __builtin_ia32_cmpordpd (v2df, v2df)
19671 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
19672 v2df __builtin_ia32_cmpltsd (v2df, v2df)
19673 v2df __builtin_ia32_cmplesd (v2df, v2df)
19674 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
19675 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
19676 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
19677 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
19678 v2df __builtin_ia32_cmpordsd (v2df, v2df)
19679 v2di __builtin_ia32_paddq (v2di, v2di)
19680 v2di __builtin_ia32_psubq (v2di, v2di)
19681 v2df __builtin_ia32_addpd (v2df, v2df)
19682 v2df __builtin_ia32_subpd (v2df, v2df)
19683 v2df __builtin_ia32_mulpd (v2df, v2df)
19684 v2df __builtin_ia32_divpd (v2df, v2df)
19685 v2df __builtin_ia32_addsd (v2df, v2df)
19686 v2df __builtin_ia32_subsd (v2df, v2df)
19687 v2df __builtin_ia32_mulsd (v2df, v2df)
19688 v2df __builtin_ia32_divsd (v2df, v2df)
19689 v2df __builtin_ia32_minpd (v2df, v2df)
19690 v2df __builtin_ia32_maxpd (v2df, v2df)
19691 v2df __builtin_ia32_minsd (v2df, v2df)
19692 v2df __builtin_ia32_maxsd (v2df, v2df)
19693 v2df __builtin_ia32_andpd (v2df, v2df)
19694 v2df __builtin_ia32_andnpd (v2df, v2df)
19695 v2df __builtin_ia32_orpd (v2df, v2df)
19696 v2df __builtin_ia32_xorpd (v2df, v2df)
19697 v2df __builtin_ia32_movsd (v2df, v2df)
19698 v2df __builtin_ia32_unpckhpd (v2df, v2df)
19699 v2df __builtin_ia32_unpcklpd (v2df, v2df)
19700 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
19701 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
19702 v4si __builtin_ia32_paddd128 (v4si, v4si)
19703 v2di __builtin_ia32_paddq128 (v2di, v2di)
19704 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
19705 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
19706 v4si __builtin_ia32_psubd128 (v4si, v4si)
19707 v2di __builtin_ia32_psubq128 (v2di, v2di)
19708 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
19709 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
19710 v2di __builtin_ia32_pand128 (v2di, v2di)
19711 v2di __builtin_ia32_pandn128 (v2di, v2di)
19712 v2di __builtin_ia32_por128 (v2di, v2di)
19713 v2di __builtin_ia32_pxor128 (v2di, v2di)
19714 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
19715 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
19716 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
19717 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
19718 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
19719 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
19720 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
19721 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
19722 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
19723 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
19724 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
19725 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
19726 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
19727 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
19728 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
19729 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
19730 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
19731 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
19732 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
19733 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
19734 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
19735 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
19736 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
19737 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
19738 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
19739 v2df __builtin_ia32_loadupd (double *)
19740 void __builtin_ia32_storeupd (double *, v2df)
19741 v2df __builtin_ia32_loadhpd (v2df, double const *)
19742 v2df __builtin_ia32_loadlpd (v2df, double const *)
19743 int __builtin_ia32_movmskpd (v2df)
19744 int __builtin_ia32_pmovmskb128 (v16qi)
19745 void __builtin_ia32_movnti (int *, int)
19746 void __builtin_ia32_movnti64 (long long int *, long long int)
19747 void __builtin_ia32_movntpd (double *, v2df)
19748 void __builtin_ia32_movntdq (v2df *, v2df)
19749 v4si __builtin_ia32_pshufd (v4si, int)
19750 v8hi __builtin_ia32_pshuflw (v8hi, int)
19751 v8hi __builtin_ia32_pshufhw (v8hi, int)
19752 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
19753 v2df __builtin_ia32_sqrtpd (v2df)
19754 v2df __builtin_ia32_sqrtsd (v2df)
19755 v2df __builtin_ia32_shufpd (v2df, v2df, int)
19756 v2df __builtin_ia32_cvtdq2pd (v4si)
19757 v4sf __builtin_ia32_cvtdq2ps (v4si)
19758 v4si __builtin_ia32_cvtpd2dq (v2df)
19759 v2si __builtin_ia32_cvtpd2pi (v2df)
19760 v4sf __builtin_ia32_cvtpd2ps (v2df)
19761 v4si __builtin_ia32_cvttpd2dq (v2df)
19762 v2si __builtin_ia32_cvttpd2pi (v2df)
19763 v2df __builtin_ia32_cvtpi2pd (v2si)
19764 int __builtin_ia32_cvtsd2si (v2df)
19765 int __builtin_ia32_cvttsd2si (v2df)
19766 long long __builtin_ia32_cvtsd2si64 (v2df)
19767 long long __builtin_ia32_cvttsd2si64 (v2df)
19768 v4si __builtin_ia32_cvtps2dq (v4sf)
19769 v2df __builtin_ia32_cvtps2pd (v4sf)
19770 v4si __builtin_ia32_cvttps2dq (v4sf)
19771 v2df __builtin_ia32_cvtsi2sd (v2df, int)
19772 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
19773 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
19774 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
19775 void __builtin_ia32_clflush (const void *)
19776 void __builtin_ia32_lfence (void)
19777 void __builtin_ia32_mfence (void)
19778 v16qi __builtin_ia32_loaddqu (const char *)
19779 void __builtin_ia32_storedqu (char *, v16qi)
19780 v1di __builtin_ia32_pmuludq (v2si, v2si)
19781 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
19782 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
19783 v4si __builtin_ia32_pslld128 (v4si, v4si)
19784 v2di __builtin_ia32_psllq128 (v2di, v2di)
19785 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
19786 v4si __builtin_ia32_psrld128 (v4si, v4si)
19787 v2di __builtin_ia32_psrlq128 (v2di, v2di)
19788 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
19789 v4si __builtin_ia32_psrad128 (v4si, v4si)
19790 v2di __builtin_ia32_pslldqi128 (v2di, int)
19791 v8hi __builtin_ia32_psllwi128 (v8hi, int)
19792 v4si __builtin_ia32_pslldi128 (v4si, int)
19793 v2di __builtin_ia32_psllqi128 (v2di, int)
19794 v2di __builtin_ia32_psrldqi128 (v2di, int)
19795 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
19796 v4si __builtin_ia32_psrldi128 (v4si, int)
19797 v2di __builtin_ia32_psrlqi128 (v2di, int)
19798 v8hi __builtin_ia32_psrawi128 (v8hi, int)
19799 v4si __builtin_ia32_psradi128 (v4si, int)
19800 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
19801 v2di __builtin_ia32_movq128 (v2di)
19802 @end smallexample
19803
19804 The following built-in functions are available when @option{-msse3} is used.
19805 All of them generate the machine instruction that is part of the name.
19806
19807 @smallexample
19808 v2df __builtin_ia32_addsubpd (v2df, v2df)
19809 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
19810 v2df __builtin_ia32_haddpd (v2df, v2df)
19811 v4sf __builtin_ia32_haddps (v4sf, v4sf)
19812 v2df __builtin_ia32_hsubpd (v2df, v2df)
19813 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
19814 v16qi __builtin_ia32_lddqu (char const *)
19815 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
19816 v4sf __builtin_ia32_movshdup (v4sf)
19817 v4sf __builtin_ia32_movsldup (v4sf)
19818 void __builtin_ia32_mwait (unsigned int, unsigned int)
19819 @end smallexample
19820
19821 The following built-in functions are available when @option{-mssse3} is used.
19822 All of them generate the machine instruction that is part of the name.
19823
19824 @smallexample
19825 v2si __builtin_ia32_phaddd (v2si, v2si)
19826 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
19827 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
19828 v2si __builtin_ia32_phsubd (v2si, v2si)
19829 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
19830 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
19831 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
19832 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
19833 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
19834 v8qi __builtin_ia32_psignb (v8qi, v8qi)
19835 v2si __builtin_ia32_psignd (v2si, v2si)
19836 v4hi __builtin_ia32_psignw (v4hi, v4hi)
19837 v1di __builtin_ia32_palignr (v1di, v1di, int)
19838 v8qi __builtin_ia32_pabsb (v8qi)
19839 v2si __builtin_ia32_pabsd (v2si)
19840 v4hi __builtin_ia32_pabsw (v4hi)
19841 @end smallexample
19842
19843 The following built-in functions are available when @option{-mssse3} is used.
19844 All of them generate the machine instruction that is part of the name.
19845
19846 @smallexample
19847 v4si __builtin_ia32_phaddd128 (v4si, v4si)
19848 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
19849 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
19850 v4si __builtin_ia32_phsubd128 (v4si, v4si)
19851 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
19852 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
19853 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
19854 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
19855 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
19856 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
19857 v4si __builtin_ia32_psignd128 (v4si, v4si)
19858 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
19859 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
19860 v16qi __builtin_ia32_pabsb128 (v16qi)
19861 v4si __builtin_ia32_pabsd128 (v4si)
19862 v8hi __builtin_ia32_pabsw128 (v8hi)
19863 @end smallexample
19864
19865 The following built-in functions are available when @option{-msse4.1} is
19866 used. All of them generate the machine instruction that is part of the
19867 name.
19868
19869 @smallexample
19870 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
19871 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
19872 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
19873 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
19874 v2df __builtin_ia32_dppd (v2df, v2df, const int)
19875 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
19876 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
19877 v2di __builtin_ia32_movntdqa (v2di *);
19878 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
19879 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
19880 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
19881 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
19882 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
19883 v8hi __builtin_ia32_phminposuw128 (v8hi)
19884 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
19885 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
19886 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
19887 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
19888 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
19889 v4si __builtin_ia32_pminsd128 (v4si, v4si)
19890 v4si __builtin_ia32_pminud128 (v4si, v4si)
19891 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
19892 v4si __builtin_ia32_pmovsxbd128 (v16qi)
19893 v2di __builtin_ia32_pmovsxbq128 (v16qi)
19894 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
19895 v2di __builtin_ia32_pmovsxdq128 (v4si)
19896 v4si __builtin_ia32_pmovsxwd128 (v8hi)
19897 v2di __builtin_ia32_pmovsxwq128 (v8hi)
19898 v4si __builtin_ia32_pmovzxbd128 (v16qi)
19899 v2di __builtin_ia32_pmovzxbq128 (v16qi)
19900 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
19901 v2di __builtin_ia32_pmovzxdq128 (v4si)
19902 v4si __builtin_ia32_pmovzxwd128 (v8hi)
19903 v2di __builtin_ia32_pmovzxwq128 (v8hi)
19904 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
19905 v4si __builtin_ia32_pmulld128 (v4si, v4si)
19906 int __builtin_ia32_ptestc128 (v2di, v2di)
19907 int __builtin_ia32_ptestnzc128 (v2di, v2di)
19908 int __builtin_ia32_ptestz128 (v2di, v2di)
19909 v2df __builtin_ia32_roundpd (v2df, const int)
19910 v4sf __builtin_ia32_roundps (v4sf, const int)
19911 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
19912 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
19913 @end smallexample
19914
19915 The following built-in functions are available when @option{-msse4.1} is
19916 used.
19917
19918 @table @code
19919 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
19920 Generates the @code{insertps} machine instruction.
19921 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
19922 Generates the @code{pextrb} machine instruction.
19923 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
19924 Generates the @code{pinsrb} machine instruction.
19925 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
19926 Generates the @code{pinsrd} machine instruction.
19927 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
19928 Generates the @code{pinsrq} machine instruction in 64bit mode.
19929 @end table
19930
19931 The following built-in functions are changed to generate new SSE4.1
19932 instructions when @option{-msse4.1} is used.
19933
19934 @table @code
19935 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
19936 Generates the @code{extractps} machine instruction.
19937 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
19938 Generates the @code{pextrd} machine instruction.
19939 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
19940 Generates the @code{pextrq} machine instruction in 64bit mode.
19941 @end table
19942
19943 The following built-in functions are available when @option{-msse4.2} is
19944 used. All of them generate the machine instruction that is part of the
19945 name.
19946
19947 @smallexample
19948 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
19949 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
19950 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
19951 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
19952 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
19953 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
19954 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
19955 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
19956 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
19957 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
19958 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
19959 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
19960 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
19961 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
19962 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
19963 @end smallexample
19964
19965 The following built-in functions are available when @option{-msse4.2} is
19966 used.
19967
19968 @table @code
19969 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
19970 Generates the @code{crc32b} machine instruction.
19971 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
19972 Generates the @code{crc32w} machine instruction.
19973 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
19974 Generates the @code{crc32l} machine instruction.
19975 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
19976 Generates the @code{crc32q} machine instruction.
19977 @end table
19978
19979 The following built-in functions are changed to generate new SSE4.2
19980 instructions when @option{-msse4.2} is used.
19981
19982 @table @code
19983 @item int __builtin_popcount (unsigned int)
19984 Generates the @code{popcntl} machine instruction.
19985 @item int __builtin_popcountl (unsigned long)
19986 Generates the @code{popcntl} or @code{popcntq} machine instruction,
19987 depending on the size of @code{unsigned long}.
19988 @item int __builtin_popcountll (unsigned long long)
19989 Generates the @code{popcntq} machine instruction.
19990 @end table
19991
19992 The following built-in functions are available when @option{-mavx} is
19993 used. All of them generate the machine instruction that is part of the
19994 name.
19995
19996 @smallexample
19997 v4df __builtin_ia32_addpd256 (v4df,v4df)
19998 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
19999 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
20000 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
20001 v4df __builtin_ia32_andnpd256 (v4df,v4df)
20002 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
20003 v4df __builtin_ia32_andpd256 (v4df,v4df)
20004 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
20005 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
20006 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
20007 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
20008 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
20009 v2df __builtin_ia32_cmppd (v2df,v2df,int)
20010 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
20011 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
20012 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
20013 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
20014 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
20015 v4df __builtin_ia32_cvtdq2pd256 (v4si)
20016 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
20017 v4si __builtin_ia32_cvtpd2dq256 (v4df)
20018 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
20019 v8si __builtin_ia32_cvtps2dq256 (v8sf)
20020 v4df __builtin_ia32_cvtps2pd256 (v4sf)
20021 v4si __builtin_ia32_cvttpd2dq256 (v4df)
20022 v8si __builtin_ia32_cvttps2dq256 (v8sf)
20023 v4df __builtin_ia32_divpd256 (v4df,v4df)
20024 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
20025 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
20026 v4df __builtin_ia32_haddpd256 (v4df,v4df)
20027 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
20028 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
20029 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
20030 v32qi __builtin_ia32_lddqu256 (pcchar)
20031 v32qi __builtin_ia32_loaddqu256 (pcchar)
20032 v4df __builtin_ia32_loadupd256 (pcdouble)
20033 v8sf __builtin_ia32_loadups256 (pcfloat)
20034 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
20035 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
20036 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
20037 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
20038 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
20039 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
20040 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
20041 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
20042 v4df __builtin_ia32_maxpd256 (v4df,v4df)
20043 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
20044 v4df __builtin_ia32_minpd256 (v4df,v4df)
20045 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
20046 v4df __builtin_ia32_movddup256 (v4df)
20047 int __builtin_ia32_movmskpd256 (v4df)
20048 int __builtin_ia32_movmskps256 (v8sf)
20049 v8sf __builtin_ia32_movshdup256 (v8sf)
20050 v8sf __builtin_ia32_movsldup256 (v8sf)
20051 v4df __builtin_ia32_mulpd256 (v4df,v4df)
20052 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
20053 v4df __builtin_ia32_orpd256 (v4df,v4df)
20054 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
20055 v2df __builtin_ia32_pd_pd256 (v4df)
20056 v4df __builtin_ia32_pd256_pd (v2df)
20057 v4sf __builtin_ia32_ps_ps256 (v8sf)
20058 v8sf __builtin_ia32_ps256_ps (v4sf)
20059 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
20060 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
20061 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
20062 v8sf __builtin_ia32_rcpps256 (v8sf)
20063 v4df __builtin_ia32_roundpd256 (v4df,int)
20064 v8sf __builtin_ia32_roundps256 (v8sf,int)
20065 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
20066 v8sf __builtin_ia32_rsqrtps256 (v8sf)
20067 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
20068 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
20069 v4si __builtin_ia32_si_si256 (v8si)
20070 v8si __builtin_ia32_si256_si (v4si)
20071 v4df __builtin_ia32_sqrtpd256 (v4df)
20072 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
20073 v8sf __builtin_ia32_sqrtps256 (v8sf)
20074 void __builtin_ia32_storedqu256 (pchar,v32qi)
20075 void __builtin_ia32_storeupd256 (pdouble,v4df)
20076 void __builtin_ia32_storeups256 (pfloat,v8sf)
20077 v4df __builtin_ia32_subpd256 (v4df,v4df)
20078 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
20079 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
20080 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
20081 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
20082 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
20083 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
20084 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
20085 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
20086 v4sf __builtin_ia32_vbroadcastss (pcfloat)
20087 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
20088 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
20089 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
20090 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
20091 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
20092 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
20093 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
20094 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
20095 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
20096 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
20097 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
20098 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
20099 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
20100 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
20101 v2df __builtin_ia32_vpermilpd (v2df,int)
20102 v4df __builtin_ia32_vpermilpd256 (v4df,int)
20103 v4sf __builtin_ia32_vpermilps (v4sf,int)
20104 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
20105 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
20106 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
20107 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
20108 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
20109 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
20110 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
20111 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
20112 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
20113 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
20114 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
20115 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
20116 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
20117 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
20118 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
20119 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
20120 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
20121 void __builtin_ia32_vzeroall (void)
20122 void __builtin_ia32_vzeroupper (void)
20123 v4df __builtin_ia32_xorpd256 (v4df,v4df)
20124 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
20125 @end smallexample
20126
20127 The following built-in functions are available when @option{-mavx2} is
20128 used. All of them generate the machine instruction that is part of the
20129 name.
20130
20131 @smallexample
20132 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
20133 v32qi __builtin_ia32_pabsb256 (v32qi)
20134 v16hi __builtin_ia32_pabsw256 (v16hi)
20135 v8si __builtin_ia32_pabsd256 (v8si)
20136 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
20137 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
20138 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
20139 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
20140 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
20141 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
20142 v8si __builtin_ia32_paddd256 (v8si,v8si)
20143 v4di __builtin_ia32_paddq256 (v4di,v4di)
20144 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
20145 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
20146 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
20147 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
20148 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
20149 v4di __builtin_ia32_andsi256 (v4di,v4di)
20150 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
20151 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
20152 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
20153 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
20154 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
20155 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
20156 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
20157 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
20158 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
20159 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
20160 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
20161 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
20162 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
20163 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
20164 v8si __builtin_ia32_phaddd256 (v8si,v8si)
20165 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
20166 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
20167 v8si __builtin_ia32_phsubd256 (v8si,v8si)
20168 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
20169 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
20170 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
20171 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
20172 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
20173 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
20174 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
20175 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
20176 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
20177 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
20178 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
20179 v8si __builtin_ia32_pminsd256 (v8si,v8si)
20180 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
20181 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
20182 v8si __builtin_ia32_pminud256 (v8si,v8si)
20183 int __builtin_ia32_pmovmskb256 (v32qi)
20184 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
20185 v8si __builtin_ia32_pmovsxbd256 (v16qi)
20186 v4di __builtin_ia32_pmovsxbq256 (v16qi)
20187 v8si __builtin_ia32_pmovsxwd256 (v8hi)
20188 v4di __builtin_ia32_pmovsxwq256 (v8hi)
20189 v4di __builtin_ia32_pmovsxdq256 (v4si)
20190 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
20191 v8si __builtin_ia32_pmovzxbd256 (v16qi)
20192 v4di __builtin_ia32_pmovzxbq256 (v16qi)
20193 v8si __builtin_ia32_pmovzxwd256 (v8hi)
20194 v4di __builtin_ia32_pmovzxwq256 (v8hi)
20195 v4di __builtin_ia32_pmovzxdq256 (v4si)
20196 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
20197 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
20198 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
20199 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
20200 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
20201 v8si __builtin_ia32_pmulld256 (v8si,v8si)
20202 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
20203 v4di __builtin_ia32_por256 (v4di,v4di)
20204 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
20205 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
20206 v8si __builtin_ia32_pshufd256 (v8si,int)
20207 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
20208 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
20209 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
20210 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
20211 v8si __builtin_ia32_psignd256 (v8si,v8si)
20212 v4di __builtin_ia32_pslldqi256 (v4di,int)
20213 v16hi __builtin_ia32_psllwi256 (16hi,int)
20214 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
20215 v8si __builtin_ia32_pslldi256 (v8si,int)
20216 v8si __builtin_ia32_pslld256(v8si,v4si)
20217 v4di __builtin_ia32_psllqi256 (v4di,int)
20218 v4di __builtin_ia32_psllq256(v4di,v2di)
20219 v16hi __builtin_ia32_psrawi256 (v16hi,int)
20220 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
20221 v8si __builtin_ia32_psradi256 (v8si,int)
20222 v8si __builtin_ia32_psrad256 (v8si,v4si)
20223 v4di __builtin_ia32_psrldqi256 (v4di, int)
20224 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
20225 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
20226 v8si __builtin_ia32_psrldi256 (v8si,int)
20227 v8si __builtin_ia32_psrld256 (v8si,v4si)
20228 v4di __builtin_ia32_psrlqi256 (v4di,int)
20229 v4di __builtin_ia32_psrlq256(v4di,v2di)
20230 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
20231 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
20232 v8si __builtin_ia32_psubd256 (v8si,v8si)
20233 v4di __builtin_ia32_psubq256 (v4di,v4di)
20234 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
20235 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
20236 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
20237 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
20238 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
20239 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
20240 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
20241 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
20242 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
20243 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
20244 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
20245 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
20246 v4di __builtin_ia32_pxor256 (v4di,v4di)
20247 v4di __builtin_ia32_movntdqa256 (pv4di)
20248 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
20249 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
20250 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
20251 v4di __builtin_ia32_vbroadcastsi256 (v2di)
20252 v4si __builtin_ia32_pblendd128 (v4si,v4si)
20253 v8si __builtin_ia32_pblendd256 (v8si,v8si)
20254 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
20255 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
20256 v8si __builtin_ia32_pbroadcastd256 (v4si)
20257 v4di __builtin_ia32_pbroadcastq256 (v2di)
20258 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
20259 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
20260 v4si __builtin_ia32_pbroadcastd128 (v4si)
20261 v2di __builtin_ia32_pbroadcastq128 (v2di)
20262 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
20263 v4df __builtin_ia32_permdf256 (v4df,int)
20264 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
20265 v4di __builtin_ia32_permdi256 (v4di,int)
20266 v4di __builtin_ia32_permti256 (v4di,v4di,int)
20267 v4di __builtin_ia32_extract128i256 (v4di,int)
20268 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
20269 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
20270 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
20271 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
20272 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
20273 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
20274 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
20275 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
20276 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
20277 v8si __builtin_ia32_psllv8si (v8si,v8si)
20278 v4si __builtin_ia32_psllv4si (v4si,v4si)
20279 v4di __builtin_ia32_psllv4di (v4di,v4di)
20280 v2di __builtin_ia32_psllv2di (v2di,v2di)
20281 v8si __builtin_ia32_psrav8si (v8si,v8si)
20282 v4si __builtin_ia32_psrav4si (v4si,v4si)
20283 v8si __builtin_ia32_psrlv8si (v8si,v8si)
20284 v4si __builtin_ia32_psrlv4si (v4si,v4si)
20285 v4di __builtin_ia32_psrlv4di (v4di,v4di)
20286 v2di __builtin_ia32_psrlv2di (v2di,v2di)
20287 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
20288 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
20289 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
20290 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
20291 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
20292 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
20293 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
20294 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
20295 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
20296 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
20297 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
20298 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
20299 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
20300 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
20301 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
20302 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
20303 @end smallexample
20304
20305 The following built-in functions are available when @option{-maes} is
20306 used. All of them generate the machine instruction that is part of the
20307 name.
20308
20309 @smallexample
20310 v2di __builtin_ia32_aesenc128 (v2di, v2di)
20311 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
20312 v2di __builtin_ia32_aesdec128 (v2di, v2di)
20313 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
20314 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
20315 v2di __builtin_ia32_aesimc128 (v2di)
20316 @end smallexample
20317
20318 The following built-in function is available when @option{-mpclmul} is
20319 used.
20320
20321 @table @code
20322 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
20323 Generates the @code{pclmulqdq} machine instruction.
20324 @end table
20325
20326 The following built-in function is available when @option{-mfsgsbase} is
20327 used. All of them generate the machine instruction that is part of the
20328 name.
20329
20330 @smallexample
20331 unsigned int __builtin_ia32_rdfsbase32 (void)
20332 unsigned long long __builtin_ia32_rdfsbase64 (void)
20333 unsigned int __builtin_ia32_rdgsbase32 (void)
20334 unsigned long long __builtin_ia32_rdgsbase64 (void)
20335 void _writefsbase_u32 (unsigned int)
20336 void _writefsbase_u64 (unsigned long long)
20337 void _writegsbase_u32 (unsigned int)
20338 void _writegsbase_u64 (unsigned long long)
20339 @end smallexample
20340
20341 The following built-in function is available when @option{-mrdrnd} is
20342 used. All of them generate the machine instruction that is part of the
20343 name.
20344
20345 @smallexample
20346 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
20347 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
20348 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
20349 @end smallexample
20350
20351 The following built-in functions are available when @option{-msse4a} is used.
20352 All of them generate the machine instruction that is part of the name.
20353
20354 @smallexample
20355 void __builtin_ia32_movntsd (double *, v2df)
20356 void __builtin_ia32_movntss (float *, v4sf)
20357 v2di __builtin_ia32_extrq (v2di, v16qi)
20358 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
20359 v2di __builtin_ia32_insertq (v2di, v2di)
20360 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
20361 @end smallexample
20362
20363 The following built-in functions are available when @option{-mxop} is used.
20364 @smallexample
20365 v2df __builtin_ia32_vfrczpd (v2df)
20366 v4sf __builtin_ia32_vfrczps (v4sf)
20367 v2df __builtin_ia32_vfrczsd (v2df)
20368 v4sf __builtin_ia32_vfrczss (v4sf)
20369 v4df __builtin_ia32_vfrczpd256 (v4df)
20370 v8sf __builtin_ia32_vfrczps256 (v8sf)
20371 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
20372 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
20373 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
20374 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
20375 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
20376 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
20377 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
20378 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
20379 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
20380 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
20381 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
20382 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
20383 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
20384 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
20385 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20386 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
20387 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
20388 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
20389 v4si __builtin_ia32_vpcomequd (v4si, v4si)
20390 v2di __builtin_ia32_vpcomequq (v2di, v2di)
20391 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
20392 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20393 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
20394 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
20395 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
20396 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
20397 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
20398 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
20399 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
20400 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
20401 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
20402 v4si __builtin_ia32_vpcomged (v4si, v4si)
20403 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
20404 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
20405 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
20406 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
20407 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
20408 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
20409 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
20410 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
20411 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
20412 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
20413 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
20414 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
20415 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
20416 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
20417 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
20418 v4si __builtin_ia32_vpcomled (v4si, v4si)
20419 v2di __builtin_ia32_vpcomleq (v2di, v2di)
20420 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
20421 v4si __builtin_ia32_vpcomleud (v4si, v4si)
20422 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
20423 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
20424 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
20425 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
20426 v4si __builtin_ia32_vpcomltd (v4si, v4si)
20427 v2di __builtin_ia32_vpcomltq (v2di, v2di)
20428 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
20429 v4si __builtin_ia32_vpcomltud (v4si, v4si)
20430 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
20431 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
20432 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
20433 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
20434 v4si __builtin_ia32_vpcomned (v4si, v4si)
20435 v2di __builtin_ia32_vpcomneq (v2di, v2di)
20436 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
20437 v4si __builtin_ia32_vpcomneud (v4si, v4si)
20438 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
20439 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
20440 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
20441 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
20442 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
20443 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
20444 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
20445 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
20446 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
20447 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
20448 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
20449 v4si __builtin_ia32_vphaddbd (v16qi)
20450 v2di __builtin_ia32_vphaddbq (v16qi)
20451 v8hi __builtin_ia32_vphaddbw (v16qi)
20452 v2di __builtin_ia32_vphadddq (v4si)
20453 v4si __builtin_ia32_vphaddubd (v16qi)
20454 v2di __builtin_ia32_vphaddubq (v16qi)
20455 v8hi __builtin_ia32_vphaddubw (v16qi)
20456 v2di __builtin_ia32_vphaddudq (v4si)
20457 v4si __builtin_ia32_vphadduwd (v8hi)
20458 v2di __builtin_ia32_vphadduwq (v8hi)
20459 v4si __builtin_ia32_vphaddwd (v8hi)
20460 v2di __builtin_ia32_vphaddwq (v8hi)
20461 v8hi __builtin_ia32_vphsubbw (v16qi)
20462 v2di __builtin_ia32_vphsubdq (v4si)
20463 v4si __builtin_ia32_vphsubwd (v8hi)
20464 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
20465 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
20466 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
20467 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
20468 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
20469 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
20470 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
20471 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
20472 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
20473 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
20474 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
20475 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
20476 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
20477 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
20478 v4si __builtin_ia32_vprotd (v4si, v4si)
20479 v2di __builtin_ia32_vprotq (v2di, v2di)
20480 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
20481 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
20482 v4si __builtin_ia32_vpshad (v4si, v4si)
20483 v2di __builtin_ia32_vpshaq (v2di, v2di)
20484 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
20485 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
20486 v4si __builtin_ia32_vpshld (v4si, v4si)
20487 v2di __builtin_ia32_vpshlq (v2di, v2di)
20488 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
20489 @end smallexample
20490
20491 The following built-in functions are available when @option{-mfma4} is used.
20492 All of them generate the machine instruction that is part of the name.
20493
20494 @smallexample
20495 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
20496 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
20497 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
20498 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
20499 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
20500 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
20501 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
20502 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
20503 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
20504 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
20505 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
20506 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
20507 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
20508 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
20509 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
20510 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
20511 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
20512 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
20513 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
20514 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
20515 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
20516 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
20517 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
20518 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
20519 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
20520 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
20521 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
20522 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
20523 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
20524 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
20525 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
20526 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
20527
20528 @end smallexample
20529
20530 The following built-in functions are available when @option{-mlwp} is used.
20531
20532 @smallexample
20533 void __builtin_ia32_llwpcb16 (void *);
20534 void __builtin_ia32_llwpcb32 (void *);
20535 void __builtin_ia32_llwpcb64 (void *);
20536 void * __builtin_ia32_llwpcb16 (void);
20537 void * __builtin_ia32_llwpcb32 (void);
20538 void * __builtin_ia32_llwpcb64 (void);
20539 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
20540 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
20541 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
20542 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
20543 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
20544 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
20545 @end smallexample
20546
20547 The following built-in functions are available when @option{-mbmi} is used.
20548 All of them generate the machine instruction that is part of the name.
20549 @smallexample
20550 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
20551 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
20552 @end smallexample
20553
20554 The following built-in functions are available when @option{-mbmi2} is used.
20555 All of them generate the machine instruction that is part of the name.
20556 @smallexample
20557 unsigned int _bzhi_u32 (unsigned int, unsigned int)
20558 unsigned int _pdep_u32 (unsigned int, unsigned int)
20559 unsigned int _pext_u32 (unsigned int, unsigned int)
20560 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
20561 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
20562 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
20563 @end smallexample
20564
20565 The following built-in functions are available when @option{-mlzcnt} is used.
20566 All of them generate the machine instruction that is part of the name.
20567 @smallexample
20568 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
20569 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
20570 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
20571 @end smallexample
20572
20573 The following built-in functions are available when @option{-mfxsr} is used.
20574 All of them generate the machine instruction that is part of the name.
20575 @smallexample
20576 void __builtin_ia32_fxsave (void *)
20577 void __builtin_ia32_fxrstor (void *)
20578 void __builtin_ia32_fxsave64 (void *)
20579 void __builtin_ia32_fxrstor64 (void *)
20580 @end smallexample
20581
20582 The following built-in functions are available when @option{-mxsave} is used.
20583 All of them generate the machine instruction that is part of the name.
20584 @smallexample
20585 void __builtin_ia32_xsave (void *, long long)
20586 void __builtin_ia32_xrstor (void *, long long)
20587 void __builtin_ia32_xsave64 (void *, long long)
20588 void __builtin_ia32_xrstor64 (void *, long long)
20589 @end smallexample
20590
20591 The following built-in functions are available when @option{-mxsaveopt} is used.
20592 All of them generate the machine instruction that is part of the name.
20593 @smallexample
20594 void __builtin_ia32_xsaveopt (void *, long long)
20595 void __builtin_ia32_xsaveopt64 (void *, long long)
20596 @end smallexample
20597
20598 The following built-in functions are available when @option{-mtbm} is used.
20599 Both of them generate the immediate form of the bextr machine instruction.
20600 @smallexample
20601 unsigned int __builtin_ia32_bextri_u32 (unsigned int,
20602 const unsigned int);
20603 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
20604 const unsigned long long);
20605 @end smallexample
20606
20607
20608 The following built-in functions are available when @option{-m3dnow} is used.
20609 All of them generate the machine instruction that is part of the name.
20610
20611 @smallexample
20612 void __builtin_ia32_femms (void)
20613 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
20614 v2si __builtin_ia32_pf2id (v2sf)
20615 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
20616 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
20617 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
20618 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
20619 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
20620 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
20621 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
20622 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
20623 v2sf __builtin_ia32_pfrcp (v2sf)
20624 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
20625 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
20626 v2sf __builtin_ia32_pfrsqrt (v2sf)
20627 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
20628 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
20629 v2sf __builtin_ia32_pi2fd (v2si)
20630 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
20631 @end smallexample
20632
20633 The following built-in functions are available when @option{-m3dnowa} is used.
20634 All of them generate the machine instruction that is part of the name.
20635
20636 @smallexample
20637 v2si __builtin_ia32_pf2iw (v2sf)
20638 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
20639 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
20640 v2sf __builtin_ia32_pi2fw (v2si)
20641 v2sf __builtin_ia32_pswapdsf (v2sf)
20642 v2si __builtin_ia32_pswapdsi (v2si)
20643 @end smallexample
20644
20645 The following built-in functions are available when @option{-mrtm} is used
20646 They are used for restricted transactional memory. These are the internal
20647 low level functions. Normally the functions in
20648 @ref{x86 transactional memory intrinsics} should be used instead.
20649
20650 @smallexample
20651 int __builtin_ia32_xbegin ()
20652 void __builtin_ia32_xend ()
20653 void __builtin_ia32_xabort (status)
20654 int __builtin_ia32_xtest ()
20655 @end smallexample
20656
20657 The following built-in functions are available when @option{-mmwaitx} is used.
20658 All of them generate the machine instruction that is part of the name.
20659 @smallexample
20660 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
20661 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
20662 @end smallexample
20663
20664 The following built-in functions are available when @option{-mclzero} is used.
20665 All of them generate the machine instruction that is part of the name.
20666 @smallexample
20667 void __builtin_i32_clzero (void *)
20668 @end smallexample
20669
20670 The following built-in functions are available when @option{-mpku} is used.
20671 They generate reads and writes to PKRU.
20672 @smallexample
20673 void __builtin_ia32_wrpkru (unsigned int)
20674 unsigned int __builtin_ia32_rdpkru ()
20675 @end smallexample
20676
20677 @node x86 transactional memory intrinsics
20678 @subsection x86 Transactional Memory Intrinsics
20679
20680 These hardware transactional memory intrinsics for x86 allow you to use
20681 memory transactions with RTM (Restricted Transactional Memory).
20682 This support is enabled with the @option{-mrtm} option.
20683 For using HLE (Hardware Lock Elision) see
20684 @ref{x86 specific memory model extensions for transactional memory} instead.
20685
20686 A memory transaction commits all changes to memory in an atomic way,
20687 as visible to other threads. If the transaction fails it is rolled back
20688 and all side effects discarded.
20689
20690 Generally there is no guarantee that a memory transaction ever succeeds
20691 and suitable fallback code always needs to be supplied.
20692
20693 @deftypefn {RTM Function} {unsigned} _xbegin ()
20694 Start a RTM (Restricted Transactional Memory) transaction.
20695 Returns @code{_XBEGIN_STARTED} when the transaction
20696 started successfully (note this is not 0, so the constant has to be
20697 explicitly tested).
20698
20699 If the transaction aborts, all side-effects
20700 are undone and an abort code encoded as a bit mask is returned.
20701 The following macros are defined:
20702
20703 @table @code
20704 @item _XABORT_EXPLICIT
20705 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
20706 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
20707 @item _XABORT_RETRY
20708 Transaction retry is possible.
20709 @item _XABORT_CONFLICT
20710 Transaction abort due to a memory conflict with another thread.
20711 @item _XABORT_CAPACITY
20712 Transaction abort due to the transaction using too much memory.
20713 @item _XABORT_DEBUG
20714 Transaction abort due to a debug trap.
20715 @item _XABORT_NESTED
20716 Transaction abort in an inner nested transaction.
20717 @end table
20718
20719 There is no guarantee
20720 any transaction ever succeeds, so there always needs to be a valid
20721 fallback path.
20722 @end deftypefn
20723
20724 @deftypefn {RTM Function} {void} _xend ()
20725 Commit the current transaction. When no transaction is active this faults.
20726 All memory side-effects of the transaction become visible
20727 to other threads in an atomic manner.
20728 @end deftypefn
20729
20730 @deftypefn {RTM Function} {int} _xtest ()
20731 Return a nonzero value if a transaction is currently active, otherwise 0.
20732 @end deftypefn
20733
20734 @deftypefn {RTM Function} {void} _xabort (status)
20735 Abort the current transaction. When no transaction is active this is a no-op.
20736 The @var{status} is an 8-bit constant; its value is encoded in the return
20737 value from @code{_xbegin}.
20738 @end deftypefn
20739
20740 Here is an example showing handling for @code{_XABORT_RETRY}
20741 and a fallback path for other failures:
20742
20743 @smallexample
20744 #include <immintrin.h>
20745
20746 int n_tries, max_tries;
20747 unsigned status = _XABORT_EXPLICIT;
20748 ...
20749
20750 for (n_tries = 0; n_tries < max_tries; n_tries++)
20751 @{
20752 status = _xbegin ();
20753 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
20754 break;
20755 @}
20756 if (status == _XBEGIN_STARTED)
20757 @{
20758 ... transaction code...
20759 _xend ();
20760 @}
20761 else
20762 @{
20763 ... non-transactional fallback path...
20764 @}
20765 @end smallexample
20766
20767 @noindent
20768 Note that, in most cases, the transactional and non-transactional code
20769 must synchronize together to ensure consistency.
20770
20771 @node Target Format Checks
20772 @section Format Checks Specific to Particular Target Machines
20773
20774 For some target machines, GCC supports additional options to the
20775 format attribute
20776 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
20777
20778 @menu
20779 * Solaris Format Checks::
20780 * Darwin Format Checks::
20781 @end menu
20782
20783 @node Solaris Format Checks
20784 @subsection Solaris Format Checks
20785
20786 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
20787 check. @code{cmn_err} accepts a subset of the standard @code{printf}
20788 conversions, and the two-argument @code{%b} conversion for displaying
20789 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
20790
20791 @node Darwin Format Checks
20792 @subsection Darwin Format Checks
20793
20794 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
20795 attribute context. Declarations made with such attribution are parsed for correct syntax
20796 and format argument types. However, parsing of the format string itself is currently undefined
20797 and is not carried out by this version of the compiler.
20798
20799 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
20800 also be used as format arguments. Note that the relevant headers are only likely to be
20801 available on Darwin (OSX) installations. On such installations, the XCode and system
20802 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
20803 associated functions.
20804
20805 @node Pragmas
20806 @section Pragmas Accepted by GCC
20807 @cindex pragmas
20808 @cindex @code{#pragma}
20809
20810 GCC supports several types of pragmas, primarily in order to compile
20811 code originally written for other compilers. Note that in general
20812 we do not recommend the use of pragmas; @xref{Function Attributes},
20813 for further explanation.
20814
20815 @menu
20816 * AArch64 Pragmas::
20817 * ARM Pragmas::
20818 * M32C Pragmas::
20819 * MeP Pragmas::
20820 * RS/6000 and PowerPC Pragmas::
20821 * S/390 Pragmas::
20822 * Darwin Pragmas::
20823 * Solaris Pragmas::
20824 * Symbol-Renaming Pragmas::
20825 * Structure-Layout Pragmas::
20826 * Weak Pragmas::
20827 * Diagnostic Pragmas::
20828 * Visibility Pragmas::
20829 * Push/Pop Macro Pragmas::
20830 * Function Specific Option Pragmas::
20831 * Loop-Specific Pragmas::
20832 @end menu
20833
20834 @node AArch64 Pragmas
20835 @subsection AArch64 Pragmas
20836
20837 The pragmas defined by the AArch64 target correspond to the AArch64
20838 target function attributes. They can be specified as below:
20839 @smallexample
20840 #pragma GCC target("string")
20841 @end smallexample
20842
20843 where @code{@var{string}} can be any string accepted as an AArch64 target
20844 attribute. @xref{AArch64 Function Attributes}, for more details
20845 on the permissible values of @code{string}.
20846
20847 @node ARM Pragmas
20848 @subsection ARM Pragmas
20849
20850 The ARM target defines pragmas for controlling the default addition of
20851 @code{long_call} and @code{short_call} attributes to functions.
20852 @xref{Function Attributes}, for information about the effects of these
20853 attributes.
20854
20855 @table @code
20856 @item long_calls
20857 @cindex pragma, long_calls
20858 Set all subsequent functions to have the @code{long_call} attribute.
20859
20860 @item no_long_calls
20861 @cindex pragma, no_long_calls
20862 Set all subsequent functions to have the @code{short_call} attribute.
20863
20864 @item long_calls_off
20865 @cindex pragma, long_calls_off
20866 Do not affect the @code{long_call} or @code{short_call} attributes of
20867 subsequent functions.
20868 @end table
20869
20870 @node M32C Pragmas
20871 @subsection M32C Pragmas
20872
20873 @table @code
20874 @item GCC memregs @var{number}
20875 @cindex pragma, memregs
20876 Overrides the command-line option @code{-memregs=} for the current
20877 file. Use with care! This pragma must be before any function in the
20878 file, and mixing different memregs values in different objects may
20879 make them incompatible. This pragma is useful when a
20880 performance-critical function uses a memreg for temporary values,
20881 as it may allow you to reduce the number of memregs used.
20882
20883 @item ADDRESS @var{name} @var{address}
20884 @cindex pragma, address
20885 For any declared symbols matching @var{name}, this does three things
20886 to that symbol: it forces the symbol to be located at the given
20887 address (a number), it forces the symbol to be volatile, and it
20888 changes the symbol's scope to be static. This pragma exists for
20889 compatibility with other compilers, but note that the common
20890 @code{1234H} numeric syntax is not supported (use @code{0x1234}
20891 instead). Example:
20892
20893 @smallexample
20894 #pragma ADDRESS port3 0x103
20895 char port3;
20896 @end smallexample
20897
20898 @end table
20899
20900 @node MeP Pragmas
20901 @subsection MeP Pragmas
20902
20903 @table @code
20904
20905 @item custom io_volatile (on|off)
20906 @cindex pragma, custom io_volatile
20907 Overrides the command-line option @code{-mio-volatile} for the current
20908 file. Note that for compatibility with future GCC releases, this
20909 option should only be used once before any @code{io} variables in each
20910 file.
20911
20912 @item GCC coprocessor available @var{registers}
20913 @cindex pragma, coprocessor available
20914 Specifies which coprocessor registers are available to the register
20915 allocator. @var{registers} may be a single register, register range
20916 separated by ellipses, or comma-separated list of those. Example:
20917
20918 @smallexample
20919 #pragma GCC coprocessor available $c0...$c10, $c28
20920 @end smallexample
20921
20922 @item GCC coprocessor call_saved @var{registers}
20923 @cindex pragma, coprocessor call_saved
20924 Specifies which coprocessor registers are to be saved and restored by
20925 any function using them. @var{registers} may be a single register,
20926 register range separated by ellipses, or comma-separated list of
20927 those. Example:
20928
20929 @smallexample
20930 #pragma GCC coprocessor call_saved $c4...$c6, $c31
20931 @end smallexample
20932
20933 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
20934 @cindex pragma, coprocessor subclass
20935 Creates and defines a register class. These register classes can be
20936 used by inline @code{asm} constructs. @var{registers} may be a single
20937 register, register range separated by ellipses, or comma-separated
20938 list of those. Example:
20939
20940 @smallexample
20941 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
20942
20943 asm ("cpfoo %0" : "=B" (x));
20944 @end smallexample
20945
20946 @item GCC disinterrupt @var{name} , @var{name} @dots{}
20947 @cindex pragma, disinterrupt
20948 For the named functions, the compiler adds code to disable interrupts
20949 for the duration of those functions. If any functions so named
20950 are not encountered in the source, a warning is emitted that the pragma is
20951 not used. Examples:
20952
20953 @smallexample
20954 #pragma disinterrupt foo
20955 #pragma disinterrupt bar, grill
20956 int foo () @{ @dots{} @}
20957 @end smallexample
20958
20959 @item GCC call @var{name} , @var{name} @dots{}
20960 @cindex pragma, call
20961 For the named functions, the compiler always uses a register-indirect
20962 call model when calling the named functions. Examples:
20963
20964 @smallexample
20965 extern int foo ();
20966 #pragma call foo
20967 @end smallexample
20968
20969 @end table
20970
20971 @node RS/6000 and PowerPC Pragmas
20972 @subsection RS/6000 and PowerPC Pragmas
20973
20974 The RS/6000 and PowerPC targets define one pragma for controlling
20975 whether or not the @code{longcall} attribute is added to function
20976 declarations by default. This pragma overrides the @option{-mlongcall}
20977 option, but not the @code{longcall} and @code{shortcall} attributes.
20978 @xref{RS/6000 and PowerPC Options}, for more information about when long
20979 calls are and are not necessary.
20980
20981 @table @code
20982 @item longcall (1)
20983 @cindex pragma, longcall
20984 Apply the @code{longcall} attribute to all subsequent function
20985 declarations.
20986
20987 @item longcall (0)
20988 Do not apply the @code{longcall} attribute to subsequent function
20989 declarations.
20990 @end table
20991
20992 @c Describe h8300 pragmas here.
20993 @c Describe sh pragmas here.
20994 @c Describe v850 pragmas here.
20995
20996 @node S/390 Pragmas
20997 @subsection S/390 Pragmas
20998
20999 The pragmas defined by the S/390 target correspond to the S/390
21000 target function attributes and some the additional options:
21001
21002 @table @samp
21003 @item zvector
21004 @itemx no-zvector
21005 @end table
21006
21007 Note that options of the pragma, unlike options of the target
21008 attribute, do change the value of preprocessor macros like
21009 @code{__VEC__}. They can be specified as below:
21010
21011 @smallexample
21012 #pragma GCC target("string[,string]...")
21013 #pragma GCC target("string"[,"string"]...)
21014 @end smallexample
21015
21016 @node Darwin Pragmas
21017 @subsection Darwin Pragmas
21018
21019 The following pragmas are available for all architectures running the
21020 Darwin operating system. These are useful for compatibility with other
21021 Mac OS compilers.
21022
21023 @table @code
21024 @item mark @var{tokens}@dots{}
21025 @cindex pragma, mark
21026 This pragma is accepted, but has no effect.
21027
21028 @item options align=@var{alignment}
21029 @cindex pragma, options align
21030 This pragma sets the alignment of fields in structures. The values of
21031 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
21032 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
21033 properly; to restore the previous setting, use @code{reset} for the
21034 @var{alignment}.
21035
21036 @item segment @var{tokens}@dots{}
21037 @cindex pragma, segment
21038 This pragma is accepted, but has no effect.
21039
21040 @item unused (@var{var} [, @var{var}]@dots{})
21041 @cindex pragma, unused
21042 This pragma declares variables to be possibly unused. GCC does not
21043 produce warnings for the listed variables. The effect is similar to
21044 that of the @code{unused} attribute, except that this pragma may appear
21045 anywhere within the variables' scopes.
21046 @end table
21047
21048 @node Solaris Pragmas
21049 @subsection Solaris Pragmas
21050
21051 The Solaris target supports @code{#pragma redefine_extname}
21052 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
21053 @code{#pragma} directives for compatibility with the system compiler.
21054
21055 @table @code
21056 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
21057 @cindex pragma, align
21058
21059 Increase the minimum alignment of each @var{variable} to @var{alignment}.
21060 This is the same as GCC's @code{aligned} attribute @pxref{Variable
21061 Attributes}). Macro expansion occurs on the arguments to this pragma
21062 when compiling C and Objective-C@. It does not currently occur when
21063 compiling C++, but this is a bug which may be fixed in a future
21064 release.
21065
21066 @item fini (@var{function} [, @var{function}]...)
21067 @cindex pragma, fini
21068
21069 This pragma causes each listed @var{function} to be called after
21070 main, or during shared module unloading, by adding a call to the
21071 @code{.fini} section.
21072
21073 @item init (@var{function} [, @var{function}]...)
21074 @cindex pragma, init
21075
21076 This pragma causes each listed @var{function} to be called during
21077 initialization (before @code{main}) or during shared module loading, by
21078 adding a call to the @code{.init} section.
21079
21080 @end table
21081
21082 @node Symbol-Renaming Pragmas
21083 @subsection Symbol-Renaming Pragmas
21084
21085 GCC supports a @code{#pragma} directive that changes the name used in
21086 assembly for a given declaration. While this pragma is supported on all
21087 platforms, it is intended primarily to provide compatibility with the
21088 Solaris system headers. This effect can also be achieved using the asm
21089 labels extension (@pxref{Asm Labels}).
21090
21091 @table @code
21092 @item redefine_extname @var{oldname} @var{newname}
21093 @cindex pragma, redefine_extname
21094
21095 This pragma gives the C function @var{oldname} the assembly symbol
21096 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
21097 is defined if this pragma is available (currently on all platforms).
21098 @end table
21099
21100 This pragma and the asm labels extension interact in a complicated
21101 manner. Here are some corner cases you may want to be aware of:
21102
21103 @enumerate
21104 @item This pragma silently applies only to declarations with external
21105 linkage. Asm labels do not have this restriction.
21106
21107 @item In C++, this pragma silently applies only to declarations with
21108 ``C'' linkage. Again, asm labels do not have this restriction.
21109
21110 @item If either of the ways of changing the assembly name of a
21111 declaration are applied to a declaration whose assembly name has
21112 already been determined (either by a previous use of one of these
21113 features, or because the compiler needed the assembly name in order to
21114 generate code), and the new name is different, a warning issues and
21115 the name does not change.
21116
21117 @item The @var{oldname} used by @code{#pragma redefine_extname} is
21118 always the C-language name.
21119 @end enumerate
21120
21121 @node Structure-Layout Pragmas
21122 @subsection Structure-Layout Pragmas
21123
21124 For compatibility with Microsoft Windows compilers, GCC supports a
21125 set of @code{#pragma} directives that change the maximum alignment of
21126 members of structures (other than zero-width bit-fields), unions, and
21127 classes subsequently defined. The @var{n} value below always is required
21128 to be a small power of two and specifies the new alignment in bytes.
21129
21130 @enumerate
21131 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
21132 @item @code{#pragma pack()} sets the alignment to the one that was in
21133 effect when compilation started (see also command-line option
21134 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
21135 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
21136 setting on an internal stack and then optionally sets the new alignment.
21137 @item @code{#pragma pack(pop)} restores the alignment setting to the one
21138 saved at the top of the internal stack (and removes that stack entry).
21139 Note that @code{#pragma pack([@var{n}])} does not influence this internal
21140 stack; thus it is possible to have @code{#pragma pack(push)} followed by
21141 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
21142 @code{#pragma pack(pop)}.
21143 @end enumerate
21144
21145 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
21146 directive which lays out structures and unions subsequently defined as the
21147 documented @code{__attribute__ ((ms_struct))}.
21148
21149 @enumerate
21150 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
21151 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
21152 @item @code{#pragma ms_struct reset} goes back to the default layout.
21153 @end enumerate
21154
21155 Most targets also support the @code{#pragma scalar_storage_order} directive
21156 which lays out structures and unions subsequently defined as the documented
21157 @code{__attribute__ ((scalar_storage_order))}.
21158
21159 @enumerate
21160 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
21161 of the scalar fields to big-endian.
21162 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
21163 of the scalar fields to little-endian.
21164 @item @code{#pragma scalar_storage_order default} goes back to the endianness
21165 that was in effect when compilation started (see also command-line option
21166 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
21167 @end enumerate
21168
21169 @node Weak Pragmas
21170 @subsection Weak Pragmas
21171
21172 For compatibility with SVR4, GCC supports a set of @code{#pragma}
21173 directives for declaring symbols to be weak, and defining weak
21174 aliases.
21175
21176 @table @code
21177 @item #pragma weak @var{symbol}
21178 @cindex pragma, weak
21179 This pragma declares @var{symbol} to be weak, as if the declaration
21180 had the attribute of the same name. The pragma may appear before
21181 or after the declaration of @var{symbol}. It is not an error for
21182 @var{symbol} to never be defined at all.
21183
21184 @item #pragma weak @var{symbol1} = @var{symbol2}
21185 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
21186 It is an error if @var{symbol2} is not defined in the current
21187 translation unit.
21188 @end table
21189
21190 @node Diagnostic Pragmas
21191 @subsection Diagnostic Pragmas
21192
21193 GCC allows the user to selectively enable or disable certain types of
21194 diagnostics, and change the kind of the diagnostic. For example, a
21195 project's policy might require that all sources compile with
21196 @option{-Werror} but certain files might have exceptions allowing
21197 specific types of warnings. Or, a project might selectively enable
21198 diagnostics and treat them as errors depending on which preprocessor
21199 macros are defined.
21200
21201 @table @code
21202 @item #pragma GCC diagnostic @var{kind} @var{option}
21203 @cindex pragma, diagnostic
21204
21205 Modifies the disposition of a diagnostic. Note that not all
21206 diagnostics are modifiable; at the moment only warnings (normally
21207 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
21208 Use @option{-fdiagnostics-show-option} to determine which diagnostics
21209 are controllable and which option controls them.
21210
21211 @var{kind} is @samp{error} to treat this diagnostic as an error,
21212 @samp{warning} to treat it like a warning (even if @option{-Werror} is
21213 in effect), or @samp{ignored} if the diagnostic is to be ignored.
21214 @var{option} is a double quoted string that matches the command-line
21215 option.
21216
21217 @smallexample
21218 #pragma GCC diagnostic warning "-Wformat"
21219 #pragma GCC diagnostic error "-Wformat"
21220 #pragma GCC diagnostic ignored "-Wformat"
21221 @end smallexample
21222
21223 Note that these pragmas override any command-line options. GCC keeps
21224 track of the location of each pragma, and issues diagnostics according
21225 to the state as of that point in the source file. Thus, pragmas occurring
21226 after a line do not affect diagnostics caused by that line.
21227
21228 @item #pragma GCC diagnostic push
21229 @itemx #pragma GCC diagnostic pop
21230
21231 Causes GCC to remember the state of the diagnostics as of each
21232 @code{push}, and restore to that point at each @code{pop}. If a
21233 @code{pop} has no matching @code{push}, the command-line options are
21234 restored.
21235
21236 @smallexample
21237 #pragma GCC diagnostic error "-Wuninitialized"
21238 foo(a); /* error is given for this one */
21239 #pragma GCC diagnostic push
21240 #pragma GCC diagnostic ignored "-Wuninitialized"
21241 foo(b); /* no diagnostic for this one */
21242 #pragma GCC diagnostic pop
21243 foo(c); /* error is given for this one */
21244 #pragma GCC diagnostic pop
21245 foo(d); /* depends on command-line options */
21246 @end smallexample
21247
21248 @end table
21249
21250 GCC also offers a simple mechanism for printing messages during
21251 compilation.
21252
21253 @table @code
21254 @item #pragma message @var{string}
21255 @cindex pragma, diagnostic
21256
21257 Prints @var{string} as a compiler message on compilation. The message
21258 is informational only, and is neither a compilation warning nor an error.
21259
21260 @smallexample
21261 #pragma message "Compiling " __FILE__ "..."
21262 @end smallexample
21263
21264 @var{string} may be parenthesized, and is printed with location
21265 information. For example,
21266
21267 @smallexample
21268 #define DO_PRAGMA(x) _Pragma (#x)
21269 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
21270
21271 TODO(Remember to fix this)
21272 @end smallexample
21273
21274 @noindent
21275 prints @samp{/tmp/file.c:4: note: #pragma message:
21276 TODO - Remember to fix this}.
21277
21278 @end table
21279
21280 @node Visibility Pragmas
21281 @subsection Visibility Pragmas
21282
21283 @table @code
21284 @item #pragma GCC visibility push(@var{visibility})
21285 @itemx #pragma GCC visibility pop
21286 @cindex pragma, visibility
21287
21288 This pragma allows the user to set the visibility for multiple
21289 declarations without having to give each a visibility attribute
21290 (@pxref{Function Attributes}).
21291
21292 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
21293 declarations. Class members and template specializations are not
21294 affected; if you want to override the visibility for a particular
21295 member or instantiation, you must use an attribute.
21296
21297 @end table
21298
21299
21300 @node Push/Pop Macro Pragmas
21301 @subsection Push/Pop Macro Pragmas
21302
21303 For compatibility with Microsoft Windows compilers, GCC supports
21304 @samp{#pragma push_macro(@var{"macro_name"})}
21305 and @samp{#pragma pop_macro(@var{"macro_name"})}.
21306
21307 @table @code
21308 @item #pragma push_macro(@var{"macro_name"})
21309 @cindex pragma, push_macro
21310 This pragma saves the value of the macro named as @var{macro_name} to
21311 the top of the stack for this macro.
21312
21313 @item #pragma pop_macro(@var{"macro_name"})
21314 @cindex pragma, pop_macro
21315 This pragma sets the value of the macro named as @var{macro_name} to
21316 the value on top of the stack for this macro. If the stack for
21317 @var{macro_name} is empty, the value of the macro remains unchanged.
21318 @end table
21319
21320 For example:
21321
21322 @smallexample
21323 #define X 1
21324 #pragma push_macro("X")
21325 #undef X
21326 #define X -1
21327 #pragma pop_macro("X")
21328 int x [X];
21329 @end smallexample
21330
21331 @noindent
21332 In this example, the definition of X as 1 is saved by @code{#pragma
21333 push_macro} and restored by @code{#pragma pop_macro}.
21334
21335 @node Function Specific Option Pragmas
21336 @subsection Function Specific Option Pragmas
21337
21338 @table @code
21339 @item #pragma GCC target (@var{"string"}...)
21340 @cindex pragma GCC target
21341
21342 This pragma allows you to set target specific options for functions
21343 defined later in the source file. One or more strings can be
21344 specified. Each function that is defined after this point is as
21345 if @code{attribute((target("STRING")))} was specified for that
21346 function. The parenthesis around the options is optional.
21347 @xref{Function Attributes}, for more information about the
21348 @code{target} attribute and the attribute syntax.
21349
21350 The @code{#pragma GCC target} pragma is presently implemented for
21351 x86, PowerPC, and Nios II targets only.
21352 @end table
21353
21354 @table @code
21355 @item #pragma GCC optimize (@var{"string"}...)
21356 @cindex pragma GCC optimize
21357
21358 This pragma allows you to set global optimization options for functions
21359 defined later in the source file. One or more strings can be
21360 specified. Each function that is defined after this point is as
21361 if @code{attribute((optimize("STRING")))} was specified for that
21362 function. The parenthesis around the options is optional.
21363 @xref{Function Attributes}, for more information about the
21364 @code{optimize} attribute and the attribute syntax.
21365 @end table
21366
21367 @table @code
21368 @item #pragma GCC push_options
21369 @itemx #pragma GCC pop_options
21370 @cindex pragma GCC push_options
21371 @cindex pragma GCC pop_options
21372
21373 These pragmas maintain a stack of the current target and optimization
21374 options. It is intended for include files where you temporarily want
21375 to switch to using a different @samp{#pragma GCC target} or
21376 @samp{#pragma GCC optimize} and then to pop back to the previous
21377 options.
21378 @end table
21379
21380 @table @code
21381 @item #pragma GCC reset_options
21382 @cindex pragma GCC reset_options
21383
21384 This pragma clears the current @code{#pragma GCC target} and
21385 @code{#pragma GCC optimize} to use the default switches as specified
21386 on the command line.
21387 @end table
21388
21389 @node Loop-Specific Pragmas
21390 @subsection Loop-Specific Pragmas
21391
21392 @table @code
21393 @item #pragma GCC ivdep
21394 @cindex pragma GCC ivdep
21395 @end table
21396
21397 With this pragma, the programmer asserts that there are no loop-carried
21398 dependencies which would prevent consecutive iterations of
21399 the following loop from executing concurrently with SIMD
21400 (single instruction multiple data) instructions.
21401
21402 For example, the compiler can only unconditionally vectorize the following
21403 loop with the pragma:
21404
21405 @smallexample
21406 void foo (int n, int *a, int *b, int *c)
21407 @{
21408 int i, j;
21409 #pragma GCC ivdep
21410 for (i = 0; i < n; ++i)
21411 a[i] = b[i] + c[i];
21412 @}
21413 @end smallexample
21414
21415 @noindent
21416 In this example, using the @code{restrict} qualifier had the same
21417 effect. In the following example, that would not be possible. Assume
21418 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
21419 that it can unconditionally vectorize the following loop:
21420
21421 @smallexample
21422 void ignore_vec_dep (int *a, int k, int c, int m)
21423 @{
21424 #pragma GCC ivdep
21425 for (int i = 0; i < m; i++)
21426 a[i] = a[i + k] * c;
21427 @}
21428 @end smallexample
21429
21430
21431 @node Unnamed Fields
21432 @section Unnamed Structure and Union Fields
21433 @cindex @code{struct}
21434 @cindex @code{union}
21435
21436 As permitted by ISO C11 and for compatibility with other compilers,
21437 GCC allows you to define
21438 a structure or union that contains, as fields, structures and unions
21439 without names. For example:
21440
21441 @smallexample
21442 struct @{
21443 int a;
21444 union @{
21445 int b;
21446 float c;
21447 @};
21448 int d;
21449 @} foo;
21450 @end smallexample
21451
21452 @noindent
21453 In this example, you are able to access members of the unnamed
21454 union with code like @samp{foo.b}. Note that only unnamed structs and
21455 unions are allowed, you may not have, for example, an unnamed
21456 @code{int}.
21457
21458 You must never create such structures that cause ambiguous field definitions.
21459 For example, in this structure:
21460
21461 @smallexample
21462 struct @{
21463 int a;
21464 struct @{
21465 int a;
21466 @};
21467 @} foo;
21468 @end smallexample
21469
21470 @noindent
21471 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
21472 The compiler gives errors for such constructs.
21473
21474 @opindex fms-extensions
21475 Unless @option{-fms-extensions} is used, the unnamed field must be a
21476 structure or union definition without a tag (for example, @samp{struct
21477 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
21478 also be a definition with a tag such as @samp{struct foo @{ int a;
21479 @};}, a reference to a previously defined structure or union such as
21480 @samp{struct foo;}, or a reference to a @code{typedef} name for a
21481 previously defined structure or union type.
21482
21483 @opindex fplan9-extensions
21484 The option @option{-fplan9-extensions} enables
21485 @option{-fms-extensions} as well as two other extensions. First, a
21486 pointer to a structure is automatically converted to a pointer to an
21487 anonymous field for assignments and function calls. For example:
21488
21489 @smallexample
21490 struct s1 @{ int a; @};
21491 struct s2 @{ struct s1; @};
21492 extern void f1 (struct s1 *);
21493 void f2 (struct s2 *p) @{ f1 (p); @}
21494 @end smallexample
21495
21496 @noindent
21497 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
21498 converted into a pointer to the anonymous field.
21499
21500 Second, when the type of an anonymous field is a @code{typedef} for a
21501 @code{struct} or @code{union}, code may refer to the field using the
21502 name of the @code{typedef}.
21503
21504 @smallexample
21505 typedef struct @{ int a; @} s1;
21506 struct s2 @{ s1; @};
21507 s1 f1 (struct s2 *p) @{ return p->s1; @}
21508 @end smallexample
21509
21510 These usages are only permitted when they are not ambiguous.
21511
21512 @node Thread-Local
21513 @section Thread-Local Storage
21514 @cindex Thread-Local Storage
21515 @cindex @acronym{TLS}
21516 @cindex @code{__thread}
21517
21518 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
21519 are allocated such that there is one instance of the variable per extant
21520 thread. The runtime model GCC uses to implement this originates
21521 in the IA-64 processor-specific ABI, but has since been migrated
21522 to other processors as well. It requires significant support from
21523 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
21524 system libraries (@file{libc.so} and @file{libpthread.so}), so it
21525 is not available everywhere.
21526
21527 At the user level, the extension is visible with a new storage
21528 class keyword: @code{__thread}. For example:
21529
21530 @smallexample
21531 __thread int i;
21532 extern __thread struct state s;
21533 static __thread char *p;
21534 @end smallexample
21535
21536 The @code{__thread} specifier may be used alone, with the @code{extern}
21537 or @code{static} specifiers, but with no other storage class specifier.
21538 When used with @code{extern} or @code{static}, @code{__thread} must appear
21539 immediately after the other storage class specifier.
21540
21541 The @code{__thread} specifier may be applied to any global, file-scoped
21542 static, function-scoped static, or static data member of a class. It may
21543 not be applied to block-scoped automatic or non-static data member.
21544
21545 When the address-of operator is applied to a thread-local variable, it is
21546 evaluated at run time and returns the address of the current thread's
21547 instance of that variable. An address so obtained may be used by any
21548 thread. When a thread terminates, any pointers to thread-local variables
21549 in that thread become invalid.
21550
21551 No static initialization may refer to the address of a thread-local variable.
21552
21553 In C++, if an initializer is present for a thread-local variable, it must
21554 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
21555 standard.
21556
21557 See @uref{https://www.akkadia.org/drepper/tls.pdf,
21558 ELF Handling For Thread-Local Storage} for a detailed explanation of
21559 the four thread-local storage addressing models, and how the runtime
21560 is expected to function.
21561
21562 @menu
21563 * C99 Thread-Local Edits::
21564 * C++98 Thread-Local Edits::
21565 @end menu
21566
21567 @node C99 Thread-Local Edits
21568 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
21569
21570 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
21571 that document the exact semantics of the language extension.
21572
21573 @itemize @bullet
21574 @item
21575 @cite{5.1.2 Execution environments}
21576
21577 Add new text after paragraph 1
21578
21579 @quotation
21580 Within either execution environment, a @dfn{thread} is a flow of
21581 control within a program. It is implementation defined whether
21582 or not there may be more than one thread associated with a program.
21583 It is implementation defined how threads beyond the first are
21584 created, the name and type of the function called at thread
21585 startup, and how threads may be terminated. However, objects
21586 with thread storage duration shall be initialized before thread
21587 startup.
21588 @end quotation
21589
21590 @item
21591 @cite{6.2.4 Storage durations of objects}
21592
21593 Add new text before paragraph 3
21594
21595 @quotation
21596 An object whose identifier is declared with the storage-class
21597 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
21598 Its lifetime is the entire execution of the thread, and its
21599 stored value is initialized only once, prior to thread startup.
21600 @end quotation
21601
21602 @item
21603 @cite{6.4.1 Keywords}
21604
21605 Add @code{__thread}.
21606
21607 @item
21608 @cite{6.7.1 Storage-class specifiers}
21609
21610 Add @code{__thread} to the list of storage class specifiers in
21611 paragraph 1.
21612
21613 Change paragraph 2 to
21614
21615 @quotation
21616 With the exception of @code{__thread}, at most one storage-class
21617 specifier may be given [@dots{}]. The @code{__thread} specifier may
21618 be used alone, or immediately following @code{extern} or
21619 @code{static}.
21620 @end quotation
21621
21622 Add new text after paragraph 6
21623
21624 @quotation
21625 The declaration of an identifier for a variable that has
21626 block scope that specifies @code{__thread} shall also
21627 specify either @code{extern} or @code{static}.
21628
21629 The @code{__thread} specifier shall be used only with
21630 variables.
21631 @end quotation
21632 @end itemize
21633
21634 @node C++98 Thread-Local Edits
21635 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
21636
21637 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
21638 that document the exact semantics of the language extension.
21639
21640 @itemize @bullet
21641 @item
21642 @b{[intro.execution]}
21643
21644 New text after paragraph 4
21645
21646 @quotation
21647 A @dfn{thread} is a flow of control within the abstract machine.
21648 It is implementation defined whether or not there may be more than
21649 one thread.
21650 @end quotation
21651
21652 New text after paragraph 7
21653
21654 @quotation
21655 It is unspecified whether additional action must be taken to
21656 ensure when and whether side effects are visible to other threads.
21657 @end quotation
21658
21659 @item
21660 @b{[lex.key]}
21661
21662 Add @code{__thread}.
21663
21664 @item
21665 @b{[basic.start.main]}
21666
21667 Add after paragraph 5
21668
21669 @quotation
21670 The thread that begins execution at the @code{main} function is called
21671 the @dfn{main thread}. It is implementation defined how functions
21672 beginning threads other than the main thread are designated or typed.
21673 A function so designated, as well as the @code{main} function, is called
21674 a @dfn{thread startup function}. It is implementation defined what
21675 happens if a thread startup function returns. It is implementation
21676 defined what happens to other threads when any thread calls @code{exit}.
21677 @end quotation
21678
21679 @item
21680 @b{[basic.start.init]}
21681
21682 Add after paragraph 4
21683
21684 @quotation
21685 The storage for an object of thread storage duration shall be
21686 statically initialized before the first statement of the thread startup
21687 function. An object of thread storage duration shall not require
21688 dynamic initialization.
21689 @end quotation
21690
21691 @item
21692 @b{[basic.start.term]}
21693
21694 Add after paragraph 3
21695
21696 @quotation
21697 The type of an object with thread storage duration shall not have a
21698 non-trivial destructor, nor shall it be an array type whose elements
21699 (directly or indirectly) have non-trivial destructors.
21700 @end quotation
21701
21702 @item
21703 @b{[basic.stc]}
21704
21705 Add ``thread storage duration'' to the list in paragraph 1.
21706
21707 Change paragraph 2
21708
21709 @quotation
21710 Thread, static, and automatic storage durations are associated with
21711 objects introduced by declarations [@dots{}].
21712 @end quotation
21713
21714 Add @code{__thread} to the list of specifiers in paragraph 3.
21715
21716 @item
21717 @b{[basic.stc.thread]}
21718
21719 New section before @b{[basic.stc.static]}
21720
21721 @quotation
21722 The keyword @code{__thread} applied to a non-local object gives the
21723 object thread storage duration.
21724
21725 A local variable or class data member declared both @code{static}
21726 and @code{__thread} gives the variable or member thread storage
21727 duration.
21728 @end quotation
21729
21730 @item
21731 @b{[basic.stc.static]}
21732
21733 Change paragraph 1
21734
21735 @quotation
21736 All objects that have neither thread storage duration, dynamic
21737 storage duration nor are local [@dots{}].
21738 @end quotation
21739
21740 @item
21741 @b{[dcl.stc]}
21742
21743 Add @code{__thread} to the list in paragraph 1.
21744
21745 Change paragraph 1
21746
21747 @quotation
21748 With the exception of @code{__thread}, at most one
21749 @var{storage-class-specifier} shall appear in a given
21750 @var{decl-specifier-seq}. The @code{__thread} specifier may
21751 be used alone, or immediately following the @code{extern} or
21752 @code{static} specifiers. [@dots{}]
21753 @end quotation
21754
21755 Add after paragraph 5
21756
21757 @quotation
21758 The @code{__thread} specifier can be applied only to the names of objects
21759 and to anonymous unions.
21760 @end quotation
21761
21762 @item
21763 @b{[class.mem]}
21764
21765 Add after paragraph 6
21766
21767 @quotation
21768 Non-@code{static} members shall not be @code{__thread}.
21769 @end quotation
21770 @end itemize
21771
21772 @node Binary constants
21773 @section Binary Constants using the @samp{0b} Prefix
21774 @cindex Binary constants using the @samp{0b} prefix
21775
21776 Integer constants can be written as binary constants, consisting of a
21777 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
21778 @samp{0B}. This is particularly useful in environments that operate a
21779 lot on the bit level (like microcontrollers).
21780
21781 The following statements are identical:
21782
21783 @smallexample
21784 i = 42;
21785 i = 0x2a;
21786 i = 052;
21787 i = 0b101010;
21788 @end smallexample
21789
21790 The type of these constants follows the same rules as for octal or
21791 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
21792 can be applied.
21793
21794 @node C++ Extensions
21795 @chapter Extensions to the C++ Language
21796 @cindex extensions, C++ language
21797 @cindex C++ language extensions
21798
21799 The GNU compiler provides these extensions to the C++ language (and you
21800 can also use most of the C language extensions in your C++ programs). If you
21801 want to write code that checks whether these features are available, you can
21802 test for the GNU compiler the same way as for C programs: check for a
21803 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
21804 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
21805 Predefined Macros,cpp,The GNU C Preprocessor}).
21806
21807 @menu
21808 * C++ Volatiles:: What constitutes an access to a volatile object.
21809 * Restricted Pointers:: C99 restricted pointers and references.
21810 * Vague Linkage:: Where G++ puts inlines, vtables and such.
21811 * C++ Interface:: You can use a single C++ header file for both
21812 declarations and definitions.
21813 * Template Instantiation:: Methods for ensuring that exactly one copy of
21814 each needed template instantiation is emitted.
21815 * Bound member functions:: You can extract a function pointer to the
21816 method denoted by a @samp{->*} or @samp{.*} expression.
21817 * C++ Attributes:: Variable, function, and type attributes for C++ only.
21818 * Function Multiversioning:: Declaring multiple function versions.
21819 * Type Traits:: Compiler support for type traits.
21820 * C++ Concepts:: Improved support for generic programming.
21821 * Deprecated Features:: Things will disappear from G++.
21822 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
21823 @end menu
21824
21825 @node C++ Volatiles
21826 @section When is a Volatile C++ Object Accessed?
21827 @cindex accessing volatiles
21828 @cindex volatile read
21829 @cindex volatile write
21830 @cindex volatile access
21831
21832 The C++ standard differs from the C standard in its treatment of
21833 volatile objects. It fails to specify what constitutes a volatile
21834 access, except to say that C++ should behave in a similar manner to C
21835 with respect to volatiles, where possible. However, the different
21836 lvalueness of expressions between C and C++ complicate the behavior.
21837 G++ behaves the same as GCC for volatile access, @xref{C
21838 Extensions,,Volatiles}, for a description of GCC's behavior.
21839
21840 The C and C++ language specifications differ when an object is
21841 accessed in a void context:
21842
21843 @smallexample
21844 volatile int *src = @var{somevalue};
21845 *src;
21846 @end smallexample
21847
21848 The C++ standard specifies that such expressions do not undergo lvalue
21849 to rvalue conversion, and that the type of the dereferenced object may
21850 be incomplete. The C++ standard does not specify explicitly that it
21851 is lvalue to rvalue conversion that is responsible for causing an
21852 access. There is reason to believe that it is, because otherwise
21853 certain simple expressions become undefined. However, because it
21854 would surprise most programmers, G++ treats dereferencing a pointer to
21855 volatile object of complete type as GCC would do for an equivalent
21856 type in C@. When the object has incomplete type, G++ issues a
21857 warning; if you wish to force an error, you must force a conversion to
21858 rvalue with, for instance, a static cast.
21859
21860 When using a reference to volatile, G++ does not treat equivalent
21861 expressions as accesses to volatiles, but instead issues a warning that
21862 no volatile is accessed. The rationale for this is that otherwise it
21863 becomes difficult to determine where volatile access occur, and not
21864 possible to ignore the return value from functions returning volatile
21865 references. Again, if you wish to force a read, cast the reference to
21866 an rvalue.
21867
21868 G++ implements the same behavior as GCC does when assigning to a
21869 volatile object---there is no reread of the assigned-to object, the
21870 assigned rvalue is reused. Note that in C++ assignment expressions
21871 are lvalues, and if used as an lvalue, the volatile object is
21872 referred to. For instance, @var{vref} refers to @var{vobj}, as
21873 expected, in the following example:
21874
21875 @smallexample
21876 volatile int vobj;
21877 volatile int &vref = vobj = @var{something};
21878 @end smallexample
21879
21880 @node Restricted Pointers
21881 @section Restricting Pointer Aliasing
21882 @cindex restricted pointers
21883 @cindex restricted references
21884 @cindex restricted this pointer
21885
21886 As with the C front end, G++ understands the C99 feature of restricted pointers,
21887 specified with the @code{__restrict__}, or @code{__restrict} type
21888 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
21889 language flag, @code{restrict} is not a keyword in C++.
21890
21891 In addition to allowing restricted pointers, you can specify restricted
21892 references, which indicate that the reference is not aliased in the local
21893 context.
21894
21895 @smallexample
21896 void fn (int *__restrict__ rptr, int &__restrict__ rref)
21897 @{
21898 /* @r{@dots{}} */
21899 @}
21900 @end smallexample
21901
21902 @noindent
21903 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
21904 @var{rref} refers to a (different) unaliased integer.
21905
21906 You may also specify whether a member function's @var{this} pointer is
21907 unaliased by using @code{__restrict__} as a member function qualifier.
21908
21909 @smallexample
21910 void T::fn () __restrict__
21911 @{
21912 /* @r{@dots{}} */
21913 @}
21914 @end smallexample
21915
21916 @noindent
21917 Within the body of @code{T::fn}, @var{this} has the effective
21918 definition @code{T *__restrict__ const this}. Notice that the
21919 interpretation of a @code{__restrict__} member function qualifier is
21920 different to that of @code{const} or @code{volatile} qualifier, in that it
21921 is applied to the pointer rather than the object. This is consistent with
21922 other compilers that implement restricted pointers.
21923
21924 As with all outermost parameter qualifiers, @code{__restrict__} is
21925 ignored in function definition matching. This means you only need to
21926 specify @code{__restrict__} in a function definition, rather than
21927 in a function prototype as well.
21928
21929 @node Vague Linkage
21930 @section Vague Linkage
21931 @cindex vague linkage
21932
21933 There are several constructs in C++ that require space in the object
21934 file but are not clearly tied to a single translation unit. We say that
21935 these constructs have ``vague linkage''. Typically such constructs are
21936 emitted wherever they are needed, though sometimes we can be more
21937 clever.
21938
21939 @table @asis
21940 @item Inline Functions
21941 Inline functions are typically defined in a header file which can be
21942 included in many different compilations. Hopefully they can usually be
21943 inlined, but sometimes an out-of-line copy is necessary, if the address
21944 of the function is taken or if inlining fails. In general, we emit an
21945 out-of-line copy in all translation units where one is needed. As an
21946 exception, we only emit inline virtual functions with the vtable, since
21947 it always requires a copy.
21948
21949 Local static variables and string constants used in an inline function
21950 are also considered to have vague linkage, since they must be shared
21951 between all inlined and out-of-line instances of the function.
21952
21953 @item VTables
21954 @cindex vtable
21955 C++ virtual functions are implemented in most compilers using a lookup
21956 table, known as a vtable. The vtable contains pointers to the virtual
21957 functions provided by a class, and each object of the class contains a
21958 pointer to its vtable (or vtables, in some multiple-inheritance
21959 situations). If the class declares any non-inline, non-pure virtual
21960 functions, the first one is chosen as the ``key method'' for the class,
21961 and the vtable is only emitted in the translation unit where the key
21962 method is defined.
21963
21964 @emph{Note:} If the chosen key method is later defined as inline, the
21965 vtable is still emitted in every translation unit that defines it.
21966 Make sure that any inline virtuals are declared inline in the class
21967 body, even if they are not defined there.
21968
21969 @item @code{type_info} objects
21970 @cindex @code{type_info}
21971 @cindex RTTI
21972 C++ requires information about types to be written out in order to
21973 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
21974 For polymorphic classes (classes with virtual functions), the @samp{type_info}
21975 object is written out along with the vtable so that @samp{dynamic_cast}
21976 can determine the dynamic type of a class object at run time. For all
21977 other types, we write out the @samp{type_info} object when it is used: when
21978 applying @samp{typeid} to an expression, throwing an object, or
21979 referring to a type in a catch clause or exception specification.
21980
21981 @item Template Instantiations
21982 Most everything in this section also applies to template instantiations,
21983 but there are other options as well.
21984 @xref{Template Instantiation,,Where's the Template?}.
21985
21986 @end table
21987
21988 When used with GNU ld version 2.8 or later on an ELF system such as
21989 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
21990 these constructs will be discarded at link time. This is known as
21991 COMDAT support.
21992
21993 On targets that don't support COMDAT, but do support weak symbols, GCC
21994 uses them. This way one copy overrides all the others, but
21995 the unused copies still take up space in the executable.
21996
21997 For targets that do not support either COMDAT or weak symbols,
21998 most entities with vague linkage are emitted as local symbols to
21999 avoid duplicate definition errors from the linker. This does not happen
22000 for local statics in inlines, however, as having multiple copies
22001 almost certainly breaks things.
22002
22003 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
22004 another way to control placement of these constructs.
22005
22006 @node C++ Interface
22007 @section C++ Interface and Implementation Pragmas
22008
22009 @cindex interface and implementation headers, C++
22010 @cindex C++ interface and implementation headers
22011 @cindex pragmas, interface and implementation
22012
22013 @code{#pragma interface} and @code{#pragma implementation} provide the
22014 user with a way of explicitly directing the compiler to emit entities
22015 with vague linkage (and debugging information) in a particular
22016 translation unit.
22017
22018 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
22019 by COMDAT support and the ``key method'' heuristic
22020 mentioned in @ref{Vague Linkage}. Using them can actually cause your
22021 program to grow due to unnecessary out-of-line copies of inline
22022 functions.
22023
22024 @table @code
22025 @item #pragma interface
22026 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
22027 @kindex #pragma interface
22028 Use this directive in @emph{header files} that define object classes, to save
22029 space in most of the object files that use those classes. Normally,
22030 local copies of certain information (backup copies of inline member
22031 functions, debugging information, and the internal tables that implement
22032 virtual functions) must be kept in each object file that includes class
22033 definitions. You can use this pragma to avoid such duplication. When a
22034 header file containing @samp{#pragma interface} is included in a
22035 compilation, this auxiliary information is not generated (unless
22036 the main input source file itself uses @samp{#pragma implementation}).
22037 Instead, the object files contain references to be resolved at link
22038 time.
22039
22040 The second form of this directive is useful for the case where you have
22041 multiple headers with the same name in different directories. If you
22042 use this form, you must specify the same string to @samp{#pragma
22043 implementation}.
22044
22045 @item #pragma implementation
22046 @itemx #pragma implementation "@var{objects}.h"
22047 @kindex #pragma implementation
22048 Use this pragma in a @emph{main input file}, when you want full output from
22049 included header files to be generated (and made globally visible). The
22050 included header file, in turn, should use @samp{#pragma interface}.
22051 Backup copies of inline member functions, debugging information, and the
22052 internal tables used to implement virtual functions are all generated in
22053 implementation files.
22054
22055 @cindex implied @code{#pragma implementation}
22056 @cindex @code{#pragma implementation}, implied
22057 @cindex naming convention, implementation headers
22058 If you use @samp{#pragma implementation} with no argument, it applies to
22059 an include file with the same basename@footnote{A file's @dfn{basename}
22060 is the name stripped of all leading path information and of trailing
22061 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
22062 file. For example, in @file{allclass.cc}, giving just
22063 @samp{#pragma implementation}
22064 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
22065
22066 Use the string argument if you want a single implementation file to
22067 include code from multiple header files. (You must also use
22068 @samp{#include} to include the header file; @samp{#pragma
22069 implementation} only specifies how to use the file---it doesn't actually
22070 include it.)
22071
22072 There is no way to split up the contents of a single header file into
22073 multiple implementation files.
22074 @end table
22075
22076 @cindex inlining and C++ pragmas
22077 @cindex C++ pragmas, effect on inlining
22078 @cindex pragmas in C++, effect on inlining
22079 @samp{#pragma implementation} and @samp{#pragma interface} also have an
22080 effect on function inlining.
22081
22082 If you define a class in a header file marked with @samp{#pragma
22083 interface}, the effect on an inline function defined in that class is
22084 similar to an explicit @code{extern} declaration---the compiler emits
22085 no code at all to define an independent version of the function. Its
22086 definition is used only for inlining with its callers.
22087
22088 @opindex fno-implement-inlines
22089 Conversely, when you include the same header file in a main source file
22090 that declares it as @samp{#pragma implementation}, the compiler emits
22091 code for the function itself; this defines a version of the function
22092 that can be found via pointers (or by callers compiled without
22093 inlining). If all calls to the function can be inlined, you can avoid
22094 emitting the function by compiling with @option{-fno-implement-inlines}.
22095 If any calls are not inlined, you will get linker errors.
22096
22097 @node Template Instantiation
22098 @section Where's the Template?
22099 @cindex template instantiation
22100
22101 C++ templates were the first language feature to require more
22102 intelligence from the environment than was traditionally found on a UNIX
22103 system. Somehow the compiler and linker have to make sure that each
22104 template instance occurs exactly once in the executable if it is needed,
22105 and not at all otherwise. There are two basic approaches to this
22106 problem, which are referred to as the Borland model and the Cfront model.
22107
22108 @table @asis
22109 @item Borland model
22110 Borland C++ solved the template instantiation problem by adding the code
22111 equivalent of common blocks to their linker; the compiler emits template
22112 instances in each translation unit that uses them, and the linker
22113 collapses them together. The advantage of this model is that the linker
22114 only has to consider the object files themselves; there is no external
22115 complexity to worry about. The disadvantage is that compilation time
22116 is increased because the template code is being compiled repeatedly.
22117 Code written for this model tends to include definitions of all
22118 templates in the header file, since they must be seen to be
22119 instantiated.
22120
22121 @item Cfront model
22122 The AT&T C++ translator, Cfront, solved the template instantiation
22123 problem by creating the notion of a template repository, an
22124 automatically maintained place where template instances are stored. A
22125 more modern version of the repository works as follows: As individual
22126 object files are built, the compiler places any template definitions and
22127 instantiations encountered in the repository. At link time, the link
22128 wrapper adds in the objects in the repository and compiles any needed
22129 instances that were not previously emitted. The advantages of this
22130 model are more optimal compilation speed and the ability to use the
22131 system linker; to implement the Borland model a compiler vendor also
22132 needs to replace the linker. The disadvantages are vastly increased
22133 complexity, and thus potential for error; for some code this can be
22134 just as transparent, but in practice it can been very difficult to build
22135 multiple programs in one directory and one program in multiple
22136 directories. Code written for this model tends to separate definitions
22137 of non-inline member templates into a separate file, which should be
22138 compiled separately.
22139 @end table
22140
22141 G++ implements the Borland model on targets where the linker supports it,
22142 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
22143 Otherwise G++ implements neither automatic model.
22144
22145 You have the following options for dealing with template instantiations:
22146
22147 @enumerate
22148 @item
22149 Do nothing. Code written for the Borland model works fine, but
22150 each translation unit contains instances of each of the templates it
22151 uses. The duplicate instances will be discarded by the linker, but in
22152 a large program, this can lead to an unacceptable amount of code
22153 duplication in object files or shared libraries.
22154
22155 Duplicate instances of a template can be avoided by defining an explicit
22156 instantiation in one object file, and preventing the compiler from doing
22157 implicit instantiations in any other object files by using an explicit
22158 instantiation declaration, using the @code{extern template} syntax:
22159
22160 @smallexample
22161 extern template int max (int, int);
22162 @end smallexample
22163
22164 This syntax is defined in the C++ 2011 standard, but has been supported by
22165 G++ and other compilers since well before 2011.
22166
22167 Explicit instantiations can be used for the largest or most frequently
22168 duplicated instances, without having to know exactly which other instances
22169 are used in the rest of the program. You can scatter the explicit
22170 instantiations throughout your program, perhaps putting them in the
22171 translation units where the instances are used or the translation units
22172 that define the templates themselves; you can put all of the explicit
22173 instantiations you need into one big file; or you can create small files
22174 like
22175
22176 @smallexample
22177 #include "Foo.h"
22178 #include "Foo.cc"
22179
22180 template class Foo<int>;
22181 template ostream& operator <<
22182 (ostream&, const Foo<int>&);
22183 @end smallexample
22184
22185 @noindent
22186 for each of the instances you need, and create a template instantiation
22187 library from those.
22188
22189 This is the simplest option, but also offers flexibility and
22190 fine-grained control when necessary. It is also the most portable
22191 alternative and programs using this approach will work with most modern
22192 compilers.
22193
22194 @item
22195 @opindex frepo
22196 Compile your template-using code with @option{-frepo}. The compiler
22197 generates files with the extension @samp{.rpo} listing all of the
22198 template instantiations used in the corresponding object files that
22199 could be instantiated there; the link wrapper, @samp{collect2},
22200 then updates the @samp{.rpo} files to tell the compiler where to place
22201 those instantiations and rebuild any affected object files. The
22202 link-time overhead is negligible after the first pass, as the compiler
22203 continues to place the instantiations in the same files.
22204
22205 This can be a suitable option for application code written for the Borland
22206 model, as it usually just works. Code written for the Cfront model
22207 needs to be modified so that the template definitions are available at
22208 one or more points of instantiation; usually this is as simple as adding
22209 @code{#include <tmethods.cc>} to the end of each template header.
22210
22211 For library code, if you want the library to provide all of the template
22212 instantiations it needs, just try to link all of its object files
22213 together; the link will fail, but cause the instantiations to be
22214 generated as a side effect. Be warned, however, that this may cause
22215 conflicts if multiple libraries try to provide the same instantiations.
22216 For greater control, use explicit instantiation as described in the next
22217 option.
22218
22219 @item
22220 @opindex fno-implicit-templates
22221 Compile your code with @option{-fno-implicit-templates} to disable the
22222 implicit generation of template instances, and explicitly instantiate
22223 all the ones you use. This approach requires more knowledge of exactly
22224 which instances you need than do the others, but it's less
22225 mysterious and allows greater control if you want to ensure that only
22226 the intended instances are used.
22227
22228 If you are using Cfront-model code, you can probably get away with not
22229 using @option{-fno-implicit-templates} when compiling files that don't
22230 @samp{#include} the member template definitions.
22231
22232 If you use one big file to do the instantiations, you may want to
22233 compile it without @option{-fno-implicit-templates} so you get all of the
22234 instances required by your explicit instantiations (but not by any
22235 other files) without having to specify them as well.
22236
22237 In addition to forward declaration of explicit instantiations
22238 (with @code{extern}), G++ has extended the template instantiation
22239 syntax to support instantiation of the compiler support data for a
22240 template class (i.e.@: the vtable) without instantiating any of its
22241 members (with @code{inline}), and instantiation of only the static data
22242 members of a template class, without the support data or member
22243 functions (with @code{static}):
22244
22245 @smallexample
22246 inline template class Foo<int>;
22247 static template class Foo<int>;
22248 @end smallexample
22249 @end enumerate
22250
22251 @node Bound member functions
22252 @section Extracting the Function Pointer from a Bound Pointer to Member Function
22253 @cindex pmf
22254 @cindex pointer to member function
22255 @cindex bound pointer to member function
22256
22257 In C++, pointer to member functions (PMFs) are implemented using a wide
22258 pointer of sorts to handle all the possible call mechanisms; the PMF
22259 needs to store information about how to adjust the @samp{this} pointer,
22260 and if the function pointed to is virtual, where to find the vtable, and
22261 where in the vtable to look for the member function. If you are using
22262 PMFs in an inner loop, you should really reconsider that decision. If
22263 that is not an option, you can extract the pointer to the function that
22264 would be called for a given object/PMF pair and call it directly inside
22265 the inner loop, to save a bit of time.
22266
22267 Note that you still pay the penalty for the call through a
22268 function pointer; on most modern architectures, such a call defeats the
22269 branch prediction features of the CPU@. This is also true of normal
22270 virtual function calls.
22271
22272 The syntax for this extension is
22273
22274 @smallexample
22275 extern A a;
22276 extern int (A::*fp)();
22277 typedef int (*fptr)(A *);
22278
22279 fptr p = (fptr)(a.*fp);
22280 @end smallexample
22281
22282 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
22283 no object is needed to obtain the address of the function. They can be
22284 converted to function pointers directly:
22285
22286 @smallexample
22287 fptr p1 = (fptr)(&A::foo);
22288 @end smallexample
22289
22290 @opindex Wno-pmf-conversions
22291 You must specify @option{-Wno-pmf-conversions} to use this extension.
22292
22293 @node C++ Attributes
22294 @section C++-Specific Variable, Function, and Type Attributes
22295
22296 Some attributes only make sense for C++ programs.
22297
22298 @table @code
22299 @item abi_tag ("@var{tag}", ...)
22300 @cindex @code{abi_tag} function attribute
22301 @cindex @code{abi_tag} variable attribute
22302 @cindex @code{abi_tag} type attribute
22303 The @code{abi_tag} attribute can be applied to a function, variable, or class
22304 declaration. It modifies the mangled name of the entity to
22305 incorporate the tag name, in order to distinguish the function or
22306 class from an earlier version with a different ABI; perhaps the class
22307 has changed size, or the function has a different return type that is
22308 not encoded in the mangled name.
22309
22310 The attribute can also be applied to an inline namespace, but does not
22311 affect the mangled name of the namespace; in this case it is only used
22312 for @option{-Wabi-tag} warnings and automatic tagging of functions and
22313 variables. Tagging inline namespaces is generally preferable to
22314 tagging individual declarations, but the latter is sometimes
22315 necessary, such as when only certain members of a class need to be
22316 tagged.
22317
22318 The argument can be a list of strings of arbitrary length. The
22319 strings are sorted on output, so the order of the list is
22320 unimportant.
22321
22322 A redeclaration of an entity must not add new ABI tags,
22323 since doing so would change the mangled name.
22324
22325 The ABI tags apply to a name, so all instantiations and
22326 specializations of a template have the same tags. The attribute will
22327 be ignored if applied to an explicit specialization or instantiation.
22328
22329 The @option{-Wabi-tag} flag enables a warning about a class which does
22330 not have all the ABI tags used by its subobjects and virtual functions; for users with code
22331 that needs to coexist with an earlier ABI, using this option can help
22332 to find all affected types that need to be tagged.
22333
22334 When a type involving an ABI tag is used as the type of a variable or
22335 return type of a function where that tag is not already present in the
22336 signature of the function, the tag is automatically applied to the
22337 variable or function. @option{-Wabi-tag} also warns about this
22338 situation; this warning can be avoided by explicitly tagging the
22339 variable or function or moving it into a tagged inline namespace.
22340
22341 @item init_priority (@var{priority})
22342 @cindex @code{init_priority} variable attribute
22343
22344 In Standard C++, objects defined at namespace scope are guaranteed to be
22345 initialized in an order in strict accordance with that of their definitions
22346 @emph{in a given translation unit}. No guarantee is made for initializations
22347 across translation units. However, GNU C++ allows users to control the
22348 order of initialization of objects defined at namespace scope with the
22349 @code{init_priority} attribute by specifying a relative @var{priority},
22350 a constant integral expression currently bounded between 101 and 65535
22351 inclusive. Lower numbers indicate a higher priority.
22352
22353 In the following example, @code{A} would normally be created before
22354 @code{B}, but the @code{init_priority} attribute reverses that order:
22355
22356 @smallexample
22357 Some_Class A __attribute__ ((init_priority (2000)));
22358 Some_Class B __attribute__ ((init_priority (543)));
22359 @end smallexample
22360
22361 @noindent
22362 Note that the particular values of @var{priority} do not matter; only their
22363 relative ordering.
22364
22365 @item warn_unused
22366 @cindex @code{warn_unused} type attribute
22367
22368 For C++ types with non-trivial constructors and/or destructors it is
22369 impossible for the compiler to determine whether a variable of this
22370 type is truly unused if it is not referenced. This type attribute
22371 informs the compiler that variables of this type should be warned
22372 about if they appear to be unused, just like variables of fundamental
22373 types.
22374
22375 This attribute is appropriate for types which just represent a value,
22376 such as @code{std::string}; it is not appropriate for types which
22377 control a resource, such as @code{std::lock_guard}.
22378
22379 This attribute is also accepted in C, but it is unnecessary because C
22380 does not have constructors or destructors.
22381
22382 @end table
22383
22384 @node Function Multiversioning
22385 @section Function Multiversioning
22386 @cindex function versions
22387
22388 With the GNU C++ front end, for x86 targets, you may specify multiple
22389 versions of a function, where each function is specialized for a
22390 specific target feature. At runtime, the appropriate version of the
22391 function is automatically executed depending on the characteristics of
22392 the execution platform. Here is an example.
22393
22394 @smallexample
22395 __attribute__ ((target ("default")))
22396 int foo ()
22397 @{
22398 // The default version of foo.
22399 return 0;
22400 @}
22401
22402 __attribute__ ((target ("sse4.2")))
22403 int foo ()
22404 @{
22405 // foo version for SSE4.2
22406 return 1;
22407 @}
22408
22409 __attribute__ ((target ("arch=atom")))
22410 int foo ()
22411 @{
22412 // foo version for the Intel ATOM processor
22413 return 2;
22414 @}
22415
22416 __attribute__ ((target ("arch=amdfam10")))
22417 int foo ()
22418 @{
22419 // foo version for the AMD Family 0x10 processors.
22420 return 3;
22421 @}
22422
22423 int main ()
22424 @{
22425 int (*p)() = &foo;
22426 assert ((*p) () == foo ());
22427 return 0;
22428 @}
22429 @end smallexample
22430
22431 In the above example, four versions of function foo are created. The
22432 first version of foo with the target attribute "default" is the default
22433 version. This version gets executed when no other target specific
22434 version qualifies for execution on a particular platform. A new version
22435 of foo is created by using the same function signature but with a
22436 different target string. Function foo is called or a pointer to it is
22437 taken just like a regular function. GCC takes care of doing the
22438 dispatching to call the right version at runtime. Refer to the
22439 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
22440 Function Multiversioning} for more details.
22441
22442 @node Type Traits
22443 @section Type Traits
22444
22445 The C++ front end implements syntactic extensions that allow
22446 compile-time determination of
22447 various characteristics of a type (or of a
22448 pair of types).
22449
22450 @table @code
22451 @item __has_nothrow_assign (type)
22452 If @code{type} is const qualified or is a reference type then the trait is
22453 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
22454 is true, else if @code{type} is a cv class or union type with copy assignment
22455 operators that are known not to throw an exception then the trait is true,
22456 else it is false. Requires: @code{type} shall be a complete type,
22457 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22458
22459 @item __has_nothrow_copy (type)
22460 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
22461 @code{type} is a cv class or union type with copy constructors that
22462 are known not to throw an exception then the trait is true, else it is false.
22463 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
22464 @code{void}, or an array of unknown bound.
22465
22466 @item __has_nothrow_constructor (type)
22467 If @code{__has_trivial_constructor (type)} is true then the trait is
22468 true, else if @code{type} is a cv class or union type (or array
22469 thereof) with a default constructor that is known not to throw an
22470 exception then the trait is true, else it is false. Requires:
22471 @code{type} shall be a complete type, (possibly cv-qualified)
22472 @code{void}, or an array of unknown bound.
22473
22474 @item __has_trivial_assign (type)
22475 If @code{type} is const qualified or is a reference type then the trait is
22476 false. Otherwise if @code{__is_pod (type)} is true then the trait is
22477 true, else if @code{type} is a cv class or union type with a trivial
22478 copy assignment ([class.copy]) then the trait is true, else it is
22479 false. Requires: @code{type} shall be a complete type, (possibly
22480 cv-qualified) @code{void}, or an array of unknown bound.
22481
22482 @item __has_trivial_copy (type)
22483 If @code{__is_pod (type)} is true or @code{type} is a reference type
22484 then the trait is true, else if @code{type} is a cv class or union type
22485 with a trivial copy constructor ([class.copy]) then the trait
22486 is true, else it is false. Requires: @code{type} shall be a complete
22487 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22488
22489 @item __has_trivial_constructor (type)
22490 If @code{__is_pod (type)} is true then the trait is true, else if
22491 @code{type} is a cv class or union type (or array thereof) with a
22492 trivial default constructor ([class.ctor]) then the trait is true,
22493 else it is false. Requires: @code{type} shall be a complete
22494 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22495
22496 @item __has_trivial_destructor (type)
22497 If @code{__is_pod (type)} is true or @code{type} is a reference type then
22498 the trait is true, else if @code{type} is a cv class or union type (or
22499 array thereof) with a trivial destructor ([class.dtor]) then the trait
22500 is true, else it is false. Requires: @code{type} shall be a complete
22501 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22502
22503 @item __has_virtual_destructor (type)
22504 If @code{type} is a class type with a virtual destructor
22505 ([class.dtor]) then the trait is true, else it is false. Requires:
22506 @code{type} shall be a complete type, (possibly cv-qualified)
22507 @code{void}, or an array of unknown bound.
22508
22509 @item __is_abstract (type)
22510 If @code{type} is an abstract class ([class.abstract]) then the trait
22511 is true, else it is false. Requires: @code{type} shall be a complete
22512 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22513
22514 @item __is_base_of (base_type, derived_type)
22515 If @code{base_type} is a base class of @code{derived_type}
22516 ([class.derived]) then the trait is true, otherwise it is false.
22517 Top-level cv qualifications of @code{base_type} and
22518 @code{derived_type} are ignored. For the purposes of this trait, a
22519 class type is considered is own base. Requires: if @code{__is_class
22520 (base_type)} and @code{__is_class (derived_type)} are true and
22521 @code{base_type} and @code{derived_type} are not the same type
22522 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
22523 type. A diagnostic is produced if this requirement is not met.
22524
22525 @item __is_class (type)
22526 If @code{type} is a cv class type, and not a union type
22527 ([basic.compound]) the trait is true, else it is false.
22528
22529 @item __is_empty (type)
22530 If @code{__is_class (type)} is false then the trait is false.
22531 Otherwise @code{type} is considered empty if and only if: @code{type}
22532 has no non-static data members, or all non-static data members, if
22533 any, are bit-fields of length 0, and @code{type} has no virtual
22534 members, and @code{type} has no virtual base classes, and @code{type}
22535 has no base classes @code{base_type} for which
22536 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
22537 be a complete type, (possibly cv-qualified) @code{void}, or an array
22538 of unknown bound.
22539
22540 @item __is_enum (type)
22541 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
22542 true, else it is false.
22543
22544 @item __is_literal_type (type)
22545 If @code{type} is a literal type ([basic.types]) the trait is
22546 true, else it is false. Requires: @code{type} shall be a complete type,
22547 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22548
22549 @item __is_pod (type)
22550 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
22551 else it is false. Requires: @code{type} shall be a complete type,
22552 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22553
22554 @item __is_polymorphic (type)
22555 If @code{type} is a polymorphic class ([class.virtual]) then the trait
22556 is true, else it is false. Requires: @code{type} shall be a complete
22557 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22558
22559 @item __is_standard_layout (type)
22560 If @code{type} is a standard-layout type ([basic.types]) the trait is
22561 true, else it is false. Requires: @code{type} shall be a complete
22562 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22563
22564 @item __is_trivial (type)
22565 If @code{type} is a trivial type ([basic.types]) the trait is
22566 true, else it is false. Requires: @code{type} shall be a complete
22567 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22568
22569 @item __is_union (type)
22570 If @code{type} is a cv union type ([basic.compound]) the trait is
22571 true, else it is false.
22572
22573 @item __underlying_type (type)
22574 The underlying type of @code{type}. Requires: @code{type} shall be
22575 an enumeration type ([dcl.enum]).
22576
22577 @end table
22578
22579
22580 @node C++ Concepts
22581 @section C++ Concepts
22582
22583 C++ concepts provide much-improved support for generic programming. In
22584 particular, they allow the specification of constraints on template arguments.
22585 The constraints are used to extend the usual overloading and partial
22586 specialization capabilities of the language, allowing generic data structures
22587 and algorithms to be ``refined'' based on their properties rather than their
22588 type names.
22589
22590 The following keywords are reserved for concepts.
22591
22592 @table @code
22593 @item assumes
22594 States an expression as an assumption, and if possible, verifies that the
22595 assumption is valid. For example, @code{assume(n > 0)}.
22596
22597 @item axiom
22598 Introduces an axiom definition. Axioms introduce requirements on values.
22599
22600 @item forall
22601 Introduces a universally quantified object in an axiom. For example,
22602 @code{forall (int n) n + 0 == n}).
22603
22604 @item concept
22605 Introduces a concept definition. Concepts are sets of syntactic and semantic
22606 requirements on types and their values.
22607
22608 @item requires
22609 Introduces constraints on template arguments or requirements for a member
22610 function of a class template.
22611
22612 @end table
22613
22614 The front end also exposes a number of internal mechanism that can be used
22615 to simplify the writing of type traits. Note that some of these traits are
22616 likely to be removed in the future.
22617
22618 @table @code
22619 @item __is_same (type1, type2)
22620 A binary type trait: true whenever the type arguments are the same.
22621
22622 @end table
22623
22624
22625 @node Deprecated Features
22626 @section Deprecated Features
22627
22628 In the past, the GNU C++ compiler was extended to experiment with new
22629 features, at a time when the C++ language was still evolving. Now that
22630 the C++ standard is complete, some of those features are superseded by
22631 superior alternatives. Using the old features might cause a warning in
22632 some cases that the feature will be dropped in the future. In other
22633 cases, the feature might be gone already.
22634
22635 While the list below is not exhaustive, it documents some of the options
22636 that are now deprecated:
22637
22638 @table @code
22639 @item -fexternal-templates
22640 @itemx -falt-external-templates
22641 These are two of the many ways for G++ to implement template
22642 instantiation. @xref{Template Instantiation}. The C++ standard clearly
22643 defines how template definitions have to be organized across
22644 implementation units. G++ has an implicit instantiation mechanism that
22645 should work just fine for standard-conforming code.
22646
22647 @item -fstrict-prototype
22648 @itemx -fno-strict-prototype
22649 Previously it was possible to use an empty prototype parameter list to
22650 indicate an unspecified number of parameters (like C), rather than no
22651 parameters, as C++ demands. This feature has been removed, except where
22652 it is required for backwards compatibility. @xref{Backwards Compatibility}.
22653 @end table
22654
22655 G++ allows a virtual function returning @samp{void *} to be overridden
22656 by one returning a different pointer type. This extension to the
22657 covariant return type rules is now deprecated and will be removed from a
22658 future version.
22659
22660 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
22661 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
22662 and are now removed from G++. Code using these operators should be
22663 modified to use @code{std::min} and @code{std::max} instead.
22664
22665 The named return value extension has been deprecated, and is now
22666 removed from G++.
22667
22668 The use of initializer lists with new expressions has been deprecated,
22669 and is now removed from G++.
22670
22671 Floating and complex non-type template parameters have been deprecated,
22672 and are now removed from G++.
22673
22674 The implicit typename extension has been deprecated and is now
22675 removed from G++.
22676
22677 The use of default arguments in function pointers, function typedefs
22678 and other places where they are not permitted by the standard is
22679 deprecated and will be removed from a future version of G++.
22680
22681 G++ allows floating-point literals to appear in integral constant expressions,
22682 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
22683 This extension is deprecated and will be removed from a future version.
22684
22685 G++ allows static data members of const floating-point type to be declared
22686 with an initializer in a class definition. The standard only allows
22687 initializers for static members of const integral types and const
22688 enumeration types so this extension has been deprecated and will be removed
22689 from a future version.
22690
22691 @node Backwards Compatibility
22692 @section Backwards Compatibility
22693 @cindex Backwards Compatibility
22694 @cindex ARM [Annotated C++ Reference Manual]
22695
22696 Now that there is a definitive ISO standard C++, G++ has a specification
22697 to adhere to. The C++ language evolved over time, and features that
22698 used to be acceptable in previous drafts of the standard, such as the ARM
22699 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
22700 compilation of C++ written to such drafts, G++ contains some backwards
22701 compatibilities. @emph{All such backwards compatibility features are
22702 liable to disappear in future versions of G++.} They should be considered
22703 deprecated. @xref{Deprecated Features}.
22704
22705 @table @code
22706 @item For scope
22707 If a variable is declared at for scope, it used to remain in scope until
22708 the end of the scope that contained the for statement (rather than just
22709 within the for scope). G++ retains this, but issues a warning, if such a
22710 variable is accessed outside the for scope.
22711
22712 @item Implicit C language
22713 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
22714 scope to set the language. On such systems, all header files are
22715 implicitly scoped inside a C language scope. Also, an empty prototype
22716 @code{()} is treated as an unspecified number of arguments, rather
22717 than no arguments, as C++ demands.
22718 @end table
22719
22720 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
22721 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr