75f4874ad1fba4dfd932ce8eb64e1caa39d44014
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 @c Free Software Foundation, Inc.
4
5 @c This is part of the GCC manual.
6 @c For copying conditions, see the file gcc.texi.
7
8 @node C Extensions
9 @chapter Extensions to the C Language Family
10 @cindex extensions, C language
11 @cindex C language extensions
12
13 @opindex pedantic
14 GNU C provides several language features not found in ISO standard C@.
15 (The @option{-pedantic} option directs GCC to print a warning message if
16 any of these features is used.) To test for the availability of these
17 features in conditional compilation, check for a predefined macro
18 @code{__GNUC__}, which is always defined under GCC@.
19
20 These extensions are available in C and Objective-C@. Most of them are
21 also available in C++. @xref{C++ Extensions,,Extensions to the
22 C++ Language}, for extensions that apply @emph{only} to C++.
23
24 Some features that are in ISO C99 but not C90 or C++ are also, as
25 extensions, accepted by GCC in C90 mode and in C++.
26
27 @menu
28 * Statement Exprs:: Putting statements and declarations inside expressions.
29 * Local Labels:: Labels local to a block.
30 * Labels as Values:: Getting pointers to labels, and computed gotos.
31 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
32 * Constructing Calls:: Dispatching a call to another function.
33 * Typeof:: @code{typeof}: referring to the type of an expression.
34 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
35 * Long Long:: Double-word integers---@code{long long int}.
36 * __int128:: 128-bit integers---@code{__int128}.
37 * Complex:: Data types for complex numbers.
38 * Floating Types:: Additional Floating Types.
39 * Half-Precision:: Half-Precision Floating Point.
40 * Decimal Float:: Decimal Floating Types.
41 * Hex Floats:: Hexadecimal floating-point constants.
42 * Fixed-Point:: Fixed-Point Types.
43 * Named Address Spaces::Named address spaces.
44 * Zero Length:: Zero-length arrays.
45 * Variable Length:: Arrays whose length is computed at run time.
46 * Empty Structures:: Structures with no members.
47 * Variadic Macros:: Macros with a variable number of arguments.
48 * Escaped Newlines:: Slightly looser rules for escaped newlines.
49 * Subscripting:: Any array can be subscripted, even if not an lvalue.
50 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
51 * Initializers:: Non-constant initializers.
52 * Compound Literals:: Compound literals give structures, unions
53 or arrays as values.
54 * Designated Inits:: Labeling elements of initializers.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Case Ranges:: `case 1 ... 9' and such.
57 * Mixed Declarations:: Mixing declarations and code.
58 * Function Attributes:: Declaring that functions have no side effects,
59 or that they can never return.
60 * Attribute Syntax:: Formal syntax for attributes.
61 * Function Prototypes:: Prototype declarations and old-style definitions.
62 * C++ Comments:: C++ comments are recognized.
63 * Dollar Signs:: Dollar sign is allowed in identifiers.
64 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
65 * Variable Attributes:: Specifying attributes of variables.
66 * Type Attributes:: Specifying attributes of types.
67 * Alignment:: Inquiring about the alignment of a type or variable.
68 * Inline:: Defining inline functions (as fast as macros).
69 * Volatiles:: What constitutes an access to a volatile object.
70 * Extended Asm:: Assembler instructions with C expressions as operands.
71 (With them you can define ``built-in'' functions.)
72 * Constraints:: Constraints for asm operands
73 * Asm Labels:: Specifying the assembler name to use for a C symbol.
74 * Explicit Reg Vars:: Defining variables residing in specified registers.
75 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
76 * Incomplete Enums:: @code{enum foo;}, with details to follow.
77 * Function Names:: Printable strings which are the name of the current
78 function.
79 * Return Address:: Getting the return or frame address of a function.
80 * Vector Extensions:: Using vector instructions through built-in functions.
81 * Offsetof:: Special syntax for implementing @code{offsetof}.
82 * Atomic Builtins:: Built-in functions for atomic memory access.
83 * Object Size Checking:: Built-in functions for limited buffer overflow
84 checking.
85 * Other Builtins:: Other built-in functions.
86 * Target Builtins:: Built-in functions specific to particular targets.
87 * Target Format Checks:: Format checks specific to particular targets.
88 * Pragmas:: Pragmas accepted by GCC.
89 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
90 * Thread-Local:: Per-thread variables.
91 * Binary constants:: Binary constants using the @samp{0b} prefix.
92 @end menu
93
94 @node Statement Exprs
95 @section Statements and Declarations in Expressions
96 @cindex statements inside expressions
97 @cindex declarations inside expressions
98 @cindex expressions containing statements
99 @cindex macros, statements in expressions
100
101 @c the above section title wrapped and causes an underfull hbox.. i
102 @c changed it from "within" to "in". --mew 4feb93
103 A compound statement enclosed in parentheses may appear as an expression
104 in GNU C@. This allows you to use loops, switches, and local variables
105 within an expression.
106
107 Recall that a compound statement is a sequence of statements surrounded
108 by braces; in this construct, parentheses go around the braces. For
109 example:
110
111 @smallexample
112 (@{ int y = foo (); int z;
113 if (y > 0) z = y;
114 else z = - y;
115 z; @})
116 @end smallexample
117
118 @noindent
119 is a valid (though slightly more complex than necessary) expression
120 for the absolute value of @code{foo ()}.
121
122 The last thing in the compound statement should be an expression
123 followed by a semicolon; the value of this subexpression serves as the
124 value of the entire construct. (If you use some other kind of statement
125 last within the braces, the construct has type @code{void}, and thus
126 effectively no value.)
127
128 This feature is especially useful in making macro definitions ``safe'' (so
129 that they evaluate each operand exactly once). For example, the
130 ``maximum'' function is commonly defined as a macro in standard C as
131 follows:
132
133 @smallexample
134 #define max(a,b) ((a) > (b) ? (a) : (b))
135 @end smallexample
136
137 @noindent
138 @cindex side effects, macro argument
139 But this definition computes either @var{a} or @var{b} twice, with bad
140 results if the operand has side effects. In GNU C, if you know the
141 type of the operands (here taken as @code{int}), you can define
142 the macro safely as follows:
143
144 @smallexample
145 #define maxint(a,b) \
146 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
147 @end smallexample
148
149 Embedded statements are not allowed in constant expressions, such as
150 the value of an enumeration constant, the width of a bit-field, or
151 the initial value of a static variable.
152
153 If you don't know the type of the operand, you can still do this, but you
154 must use @code{typeof} (@pxref{Typeof}).
155
156 In G++, the result value of a statement expression undergoes array and
157 function pointer decay, and is returned by value to the enclosing
158 expression. For instance, if @code{A} is a class, then
159
160 @smallexample
161 A a;
162
163 (@{a;@}).Foo ()
164 @end smallexample
165
166 @noindent
167 will construct a temporary @code{A} object to hold the result of the
168 statement expression, and that will be used to invoke @code{Foo}.
169 Therefore the @code{this} pointer observed by @code{Foo} will not be the
170 address of @code{a}.
171
172 Any temporaries created within a statement within a statement expression
173 will be destroyed at the statement's end. This makes statement
174 expressions inside macros slightly different from function calls. In
175 the latter case temporaries introduced during argument evaluation will
176 be destroyed at the end of the statement that includes the function
177 call. In the statement expression case they will be destroyed during
178 the statement expression. For instance,
179
180 @smallexample
181 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
182 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
183
184 void foo ()
185 @{
186 macro (X ());
187 function (X ());
188 @}
189 @end smallexample
190
191 @noindent
192 will have different places where temporaries are destroyed. For the
193 @code{macro} case, the temporary @code{X} will be destroyed just after
194 the initialization of @code{b}. In the @code{function} case that
195 temporary will be destroyed when the function returns.
196
197 These considerations mean that it is probably a bad idea to use
198 statement-expressions of this form in header files that are designed to
199 work with C++. (Note that some versions of the GNU C Library contained
200 header files using statement-expression that lead to precisely this
201 bug.)
202
203 Jumping into a statement expression with @code{goto} or using a
204 @code{switch} statement outside the statement expression with a
205 @code{case} or @code{default} label inside the statement expression is
206 not permitted. Jumping into a statement expression with a computed
207 @code{goto} (@pxref{Labels as Values}) yields undefined behavior.
208 Jumping out of a statement expression is permitted, but if the
209 statement expression is part of a larger expression then it is
210 unspecified which other subexpressions of that expression have been
211 evaluated except where the language definition requires certain
212 subexpressions to be evaluated before or after the statement
213 expression. In any case, as with a function call the evaluation of a
214 statement expression is not interleaved with the evaluation of other
215 parts of the containing expression. For example,
216
217 @smallexample
218 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
219 @end smallexample
220
221 @noindent
222 will call @code{foo} and @code{bar1} and will not call @code{baz} but
223 may or may not call @code{bar2}. If @code{bar2} is called, it will be
224 called after @code{foo} and before @code{bar1}
225
226 @node Local Labels
227 @section Locally Declared Labels
228 @cindex local labels
229 @cindex macros, local labels
230
231 GCC allows you to declare @dfn{local labels} in any nested block
232 scope. A local label is just like an ordinary label, but you can
233 only reference it (with a @code{goto} statement, or by taking its
234 address) within the block in which it was declared.
235
236 A local label declaration looks like this:
237
238 @smallexample
239 __label__ @var{label};
240 @end smallexample
241
242 @noindent
243 or
244
245 @smallexample
246 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
247 @end smallexample
248
249 Local label declarations must come at the beginning of the block,
250 before any ordinary declarations or statements.
251
252 The label declaration defines the label @emph{name}, but does not define
253 the label itself. You must do this in the usual way, with
254 @code{@var{label}:}, within the statements of the statement expression.
255
256 The local label feature is useful for complex macros. If a macro
257 contains nested loops, a @code{goto} can be useful for breaking out of
258 them. However, an ordinary label whose scope is the whole function
259 cannot be used: if the macro can be expanded several times in one
260 function, the label will be multiply defined in that function. A
261 local label avoids this problem. For example:
262
263 @smallexample
264 #define SEARCH(value, array, target) \
265 do @{ \
266 __label__ found; \
267 typeof (target) _SEARCH_target = (target); \
268 typeof (*(array)) *_SEARCH_array = (array); \
269 int i, j; \
270 int value; \
271 for (i = 0; i < max; i++) \
272 for (j = 0; j < max; j++) \
273 if (_SEARCH_array[i][j] == _SEARCH_target) \
274 @{ (value) = i; goto found; @} \
275 (value) = -1; \
276 found:; \
277 @} while (0)
278 @end smallexample
279
280 This could also be written using a statement-expression:
281
282 @smallexample
283 #define SEARCH(array, target) \
284 (@{ \
285 __label__ found; \
286 typeof (target) _SEARCH_target = (target); \
287 typeof (*(array)) *_SEARCH_array = (array); \
288 int i, j; \
289 int value; \
290 for (i = 0; i < max; i++) \
291 for (j = 0; j < max; j++) \
292 if (_SEARCH_array[i][j] == _SEARCH_target) \
293 @{ value = i; goto found; @} \
294 value = -1; \
295 found: \
296 value; \
297 @})
298 @end smallexample
299
300 Local label declarations also make the labels they declare visible to
301 nested functions, if there are any. @xref{Nested Functions}, for details.
302
303 @node Labels as Values
304 @section Labels as Values
305 @cindex labels as values
306 @cindex computed gotos
307 @cindex goto with computed label
308 @cindex address of a label
309
310 You can get the address of a label defined in the current function
311 (or a containing function) with the unary operator @samp{&&}. The
312 value has type @code{void *}. This value is a constant and can be used
313 wherever a constant of that type is valid. For example:
314
315 @smallexample
316 void *ptr;
317 /* @r{@dots{}} */
318 ptr = &&foo;
319 @end smallexample
320
321 To use these values, you need to be able to jump to one. This is done
322 with the computed goto statement@footnote{The analogous feature in
323 Fortran is called an assigned goto, but that name seems inappropriate in
324 C, where one can do more than simply store label addresses in label
325 variables.}, @code{goto *@var{exp};}. For example,
326
327 @smallexample
328 goto *ptr;
329 @end smallexample
330
331 @noindent
332 Any expression of type @code{void *} is allowed.
333
334 One way of using these constants is in initializing a static array that
335 will serve as a jump table:
336
337 @smallexample
338 static void *array[] = @{ &&foo, &&bar, &&hack @};
339 @end smallexample
340
341 Then you can select a label with indexing, like this:
342
343 @smallexample
344 goto *array[i];
345 @end smallexample
346
347 @noindent
348 Note that this does not check whether the subscript is in bounds---array
349 indexing in C never does that.
350
351 Such an array of label values serves a purpose much like that of the
352 @code{switch} statement. The @code{switch} statement is cleaner, so
353 use that rather than an array unless the problem does not fit a
354 @code{switch} statement very well.
355
356 Another use of label values is in an interpreter for threaded code.
357 The labels within the interpreter function can be stored in the
358 threaded code for super-fast dispatching.
359
360 You may not use this mechanism to jump to code in a different function.
361 If you do that, totally unpredictable things will happen. The best way to
362 avoid this is to store the label address only in automatic variables and
363 never pass it as an argument.
364
365 An alternate way to write the above example is
366
367 @smallexample
368 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
369 &&hack - &&foo @};
370 goto *(&&foo + array[i]);
371 @end smallexample
372
373 @noindent
374 This is more friendly to code living in shared libraries, as it reduces
375 the number of dynamic relocations that are needed, and by consequence,
376 allows the data to be read-only.
377
378 The @code{&&foo} expressions for the same label might have different
379 values if the containing function is inlined or cloned. If a program
380 relies on them being always the same,
381 @code{__attribute__((__noinline__,__noclone__))} should be used to
382 prevent inlining and cloning. If @code{&&foo} is used in a static
383 variable initializer, inlining and cloning is forbidden.
384
385 @node Nested Functions
386 @section Nested Functions
387 @cindex nested functions
388 @cindex downward funargs
389 @cindex thunks
390
391 A @dfn{nested function} is a function defined inside another function.
392 (Nested functions are not supported for GNU C++.) The nested function's
393 name is local to the block where it is defined. For example, here we
394 define a nested function named @code{square}, and call it twice:
395
396 @smallexample
397 @group
398 foo (double a, double b)
399 @{
400 double square (double z) @{ return z * z; @}
401
402 return square (a) + square (b);
403 @}
404 @end group
405 @end smallexample
406
407 The nested function can access all the variables of the containing
408 function that are visible at the point of its definition. This is
409 called @dfn{lexical scoping}. For example, here we show a nested
410 function which uses an inherited variable named @code{offset}:
411
412 @smallexample
413 @group
414 bar (int *array, int offset, int size)
415 @{
416 int access (int *array, int index)
417 @{ return array[index + offset]; @}
418 int i;
419 /* @r{@dots{}} */
420 for (i = 0; i < size; i++)
421 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
422 @}
423 @end group
424 @end smallexample
425
426 Nested function definitions are permitted within functions in the places
427 where variable definitions are allowed; that is, in any block, mixed
428 with the other declarations and statements in the block.
429
430 It is possible to call the nested function from outside the scope of its
431 name by storing its address or passing the address to another function:
432
433 @smallexample
434 hack (int *array, int size)
435 @{
436 void store (int index, int value)
437 @{ array[index] = value; @}
438
439 intermediate (store, size);
440 @}
441 @end smallexample
442
443 Here, the function @code{intermediate} receives the address of
444 @code{store} as an argument. If @code{intermediate} calls @code{store},
445 the arguments given to @code{store} are used to store into @code{array}.
446 But this technique works only so long as the containing function
447 (@code{hack}, in this example) does not exit.
448
449 If you try to call the nested function through its address after the
450 containing function has exited, all hell will break loose. If you try
451 to call it after a containing scope level has exited, and if it refers
452 to some of the variables that are no longer in scope, you may be lucky,
453 but it's not wise to take the risk. If, however, the nested function
454 does not refer to anything that has gone out of scope, you should be
455 safe.
456
457 GCC implements taking the address of a nested function using a technique
458 called @dfn{trampolines}. This technique was described in
459 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
460 C++ Conference Proceedings, October 17-21, 1988).
461
462 A nested function can jump to a label inherited from a containing
463 function, provided the label was explicitly declared in the containing
464 function (@pxref{Local Labels}). Such a jump returns instantly to the
465 containing function, exiting the nested function which did the
466 @code{goto} and any intermediate functions as well. Here is an example:
467
468 @smallexample
469 @group
470 bar (int *array, int offset, int size)
471 @{
472 __label__ failure;
473 int access (int *array, int index)
474 @{
475 if (index > size)
476 goto failure;
477 return array[index + offset];
478 @}
479 int i;
480 /* @r{@dots{}} */
481 for (i = 0; i < size; i++)
482 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
483 /* @r{@dots{}} */
484 return 0;
485
486 /* @r{Control comes here from @code{access}
487 if it detects an error.} */
488 failure:
489 return -1;
490 @}
491 @end group
492 @end smallexample
493
494 A nested function always has no linkage. Declaring one with
495 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
496 before its definition, use @code{auto} (which is otherwise meaningless
497 for function declarations).
498
499 @smallexample
500 bar (int *array, int offset, int size)
501 @{
502 __label__ failure;
503 auto int access (int *, int);
504 /* @r{@dots{}} */
505 int access (int *array, int index)
506 @{
507 if (index > size)
508 goto failure;
509 return array[index + offset];
510 @}
511 /* @r{@dots{}} */
512 @}
513 @end smallexample
514
515 @node Constructing Calls
516 @section Constructing Function Calls
517 @cindex constructing calls
518 @cindex forwarding calls
519
520 Using the built-in functions described below, you can record
521 the arguments a function received, and call another function
522 with the same arguments, without knowing the number or types
523 of the arguments.
524
525 You can also record the return value of that function call,
526 and later return that value, without knowing what data type
527 the function tried to return (as long as your caller expects
528 that data type).
529
530 However, these built-in functions may interact badly with some
531 sophisticated features or other extensions of the language. It
532 is, therefore, not recommended to use them outside very simple
533 functions acting as mere forwarders for their arguments.
534
535 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
536 This built-in function returns a pointer to data
537 describing how to perform a call with the same arguments as were passed
538 to the current function.
539
540 The function saves the arg pointer register, structure value address,
541 and all registers that might be used to pass arguments to a function
542 into a block of memory allocated on the stack. Then it returns the
543 address of that block.
544 @end deftypefn
545
546 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
547 This built-in function invokes @var{function}
548 with a copy of the parameters described by @var{arguments}
549 and @var{size}.
550
551 The value of @var{arguments} should be the value returned by
552 @code{__builtin_apply_args}. The argument @var{size} specifies the size
553 of the stack argument data, in bytes.
554
555 This function returns a pointer to data describing
556 how to return whatever value was returned by @var{function}. The data
557 is saved in a block of memory allocated on the stack.
558
559 It is not always simple to compute the proper value for @var{size}. The
560 value is used by @code{__builtin_apply} to compute the amount of data
561 that should be pushed on the stack and copied from the incoming argument
562 area.
563 @end deftypefn
564
565 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
566 This built-in function returns the value described by @var{result} from
567 the containing function. You should specify, for @var{result}, a value
568 returned by @code{__builtin_apply}.
569 @end deftypefn
570
571 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
572 This built-in function represents all anonymous arguments of an inline
573 function. It can be used only in inline functions which will be always
574 inlined, never compiled as a separate function, such as those using
575 @code{__attribute__ ((__always_inline__))} or
576 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
577 It must be only passed as last argument to some other function
578 with variable arguments. This is useful for writing small wrapper
579 inlines for variable argument functions, when using preprocessor
580 macros is undesirable. For example:
581 @smallexample
582 extern int myprintf (FILE *f, const char *format, ...);
583 extern inline __attribute__ ((__gnu_inline__)) int
584 myprintf (FILE *f, const char *format, ...)
585 @{
586 int r = fprintf (f, "myprintf: ");
587 if (r < 0)
588 return r;
589 int s = fprintf (f, format, __builtin_va_arg_pack ());
590 if (s < 0)
591 return s;
592 return r + s;
593 @}
594 @end smallexample
595 @end deftypefn
596
597 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
598 This built-in function returns the number of anonymous arguments of
599 an inline function. It can be used only in inline functions which
600 will be always inlined, never compiled as a separate function, such
601 as those using @code{__attribute__ ((__always_inline__))} or
602 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
603 For example following will do link or runtime checking of open
604 arguments for optimized code:
605 @smallexample
606 #ifdef __OPTIMIZE__
607 extern inline __attribute__((__gnu_inline__)) int
608 myopen (const char *path, int oflag, ...)
609 @{
610 if (__builtin_va_arg_pack_len () > 1)
611 warn_open_too_many_arguments ();
612
613 if (__builtin_constant_p (oflag))
614 @{
615 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
616 @{
617 warn_open_missing_mode ();
618 return __open_2 (path, oflag);
619 @}
620 return open (path, oflag, __builtin_va_arg_pack ());
621 @}
622
623 if (__builtin_va_arg_pack_len () < 1)
624 return __open_2 (path, oflag);
625
626 return open (path, oflag, __builtin_va_arg_pack ());
627 @}
628 #endif
629 @end smallexample
630 @end deftypefn
631
632 @node Typeof
633 @section Referring to a Type with @code{typeof}
634 @findex typeof
635 @findex sizeof
636 @cindex macros, types of arguments
637
638 Another way to refer to the type of an expression is with @code{typeof}.
639 The syntax of using of this keyword looks like @code{sizeof}, but the
640 construct acts semantically like a type name defined with @code{typedef}.
641
642 There are two ways of writing the argument to @code{typeof}: with an
643 expression or with a type. Here is an example with an expression:
644
645 @smallexample
646 typeof (x[0](1))
647 @end smallexample
648
649 @noindent
650 This assumes that @code{x} is an array of pointers to functions;
651 the type described is that of the values of the functions.
652
653 Here is an example with a typename as the argument:
654
655 @smallexample
656 typeof (int *)
657 @end smallexample
658
659 @noindent
660 Here the type described is that of pointers to @code{int}.
661
662 If you are writing a header file that must work when included in ISO C
663 programs, write @code{__typeof__} instead of @code{typeof}.
664 @xref{Alternate Keywords}.
665
666 A @code{typeof}-construct can be used anywhere a typedef name could be
667 used. For example, you can use it in a declaration, in a cast, or inside
668 of @code{sizeof} or @code{typeof}.
669
670 The operand of @code{typeof} is evaluated for its side effects if and
671 only if it is an expression of variably modified type or the name of
672 such a type.
673
674 @code{typeof} is often useful in conjunction with the
675 statements-within-expressions feature. Here is how the two together can
676 be used to define a safe ``maximum'' macro that operates on any
677 arithmetic type and evaluates each of its arguments exactly once:
678
679 @smallexample
680 #define max(a,b) \
681 (@{ typeof (a) _a = (a); \
682 typeof (b) _b = (b); \
683 _a > _b ? _a : _b; @})
684 @end smallexample
685
686 @cindex underscores in variables in macros
687 @cindex @samp{_} in variables in macros
688 @cindex local variables in macros
689 @cindex variables, local, in macros
690 @cindex macros, local variables in
691
692 The reason for using names that start with underscores for the local
693 variables is to avoid conflicts with variable names that occur within the
694 expressions that are substituted for @code{a} and @code{b}. Eventually we
695 hope to design a new form of declaration syntax that allows you to declare
696 variables whose scopes start only after their initializers; this will be a
697 more reliable way to prevent such conflicts.
698
699 @noindent
700 Some more examples of the use of @code{typeof}:
701
702 @itemize @bullet
703 @item
704 This declares @code{y} with the type of what @code{x} points to.
705
706 @smallexample
707 typeof (*x) y;
708 @end smallexample
709
710 @item
711 This declares @code{y} as an array of such values.
712
713 @smallexample
714 typeof (*x) y[4];
715 @end smallexample
716
717 @item
718 This declares @code{y} as an array of pointers to characters:
719
720 @smallexample
721 typeof (typeof (char *)[4]) y;
722 @end smallexample
723
724 @noindent
725 It is equivalent to the following traditional C declaration:
726
727 @smallexample
728 char *y[4];
729 @end smallexample
730
731 To see the meaning of the declaration using @code{typeof}, and why it
732 might be a useful way to write, rewrite it with these macros:
733
734 @smallexample
735 #define pointer(T) typeof(T *)
736 #define array(T, N) typeof(T [N])
737 @end smallexample
738
739 @noindent
740 Now the declaration can be rewritten this way:
741
742 @smallexample
743 array (pointer (char), 4) y;
744 @end smallexample
745
746 @noindent
747 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
748 pointers to @code{char}.
749 @end itemize
750
751 @emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
752 a more limited extension which permitted one to write
753
754 @smallexample
755 typedef @var{T} = @var{expr};
756 @end smallexample
757
758 @noindent
759 with the effect of declaring @var{T} to have the type of the expression
760 @var{expr}. This extension does not work with GCC 3 (versions between
761 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
762 relies on it should be rewritten to use @code{typeof}:
763
764 @smallexample
765 typedef typeof(@var{expr}) @var{T};
766 @end smallexample
767
768 @noindent
769 This will work with all versions of GCC@.
770
771 @node Conditionals
772 @section Conditionals with Omitted Operands
773 @cindex conditional expressions, extensions
774 @cindex omitted middle-operands
775 @cindex middle-operands, omitted
776 @cindex extensions, @code{?:}
777 @cindex @code{?:} extensions
778
779 The middle operand in a conditional expression may be omitted. Then
780 if the first operand is nonzero, its value is the value of the conditional
781 expression.
782
783 Therefore, the expression
784
785 @smallexample
786 x ? : y
787 @end smallexample
788
789 @noindent
790 has the value of @code{x} if that is nonzero; otherwise, the value of
791 @code{y}.
792
793 This example is perfectly equivalent to
794
795 @smallexample
796 x ? x : y
797 @end smallexample
798
799 @cindex side effect in @code{?:}
800 @cindex @code{?:} side effect
801 @noindent
802 In this simple case, the ability to omit the middle operand is not
803 especially useful. When it becomes useful is when the first operand does,
804 or may (if it is a macro argument), contain a side effect. Then repeating
805 the operand in the middle would perform the side effect twice. Omitting
806 the middle operand uses the value already computed without the undesirable
807 effects of recomputing it.
808
809 @node __int128
810 @section 128-bits integers
811 @cindex @code{__int128} data types
812
813 As an extension the integer scalar type @code{__int128} is supported for
814 targets having an integer mode wide enough to hold 128-bit.
815 Simply write @code{__int128} for a signed 128-bit integer, or
816 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
817 support in GCC to express an integer constant of type @code{__int128}
818 for targets having @code{long long} integer with less then 128 bit width.
819
820 @node Long Long
821 @section Double-Word Integers
822 @cindex @code{long long} data types
823 @cindex double-word arithmetic
824 @cindex multiprecision arithmetic
825 @cindex @code{LL} integer suffix
826 @cindex @code{ULL} integer suffix
827
828 ISO C99 supports data types for integers that are at least 64 bits wide,
829 and as an extension GCC supports them in C90 mode and in C++.
830 Simply write @code{long long int} for a signed integer, or
831 @code{unsigned long long int} for an unsigned integer. To make an
832 integer constant of type @code{long long int}, add the suffix @samp{LL}
833 to the integer. To make an integer constant of type @code{unsigned long
834 long int}, add the suffix @samp{ULL} to the integer.
835
836 You can use these types in arithmetic like any other integer types.
837 Addition, subtraction, and bitwise boolean operations on these types
838 are open-coded on all types of machines. Multiplication is open-coded
839 if the machine supports fullword-to-doubleword a widening multiply
840 instruction. Division and shifts are open-coded only on machines that
841 provide special support. The operations that are not open-coded use
842 special library routines that come with GCC@.
843
844 There may be pitfalls when you use @code{long long} types for function
845 arguments, unless you declare function prototypes. If a function
846 expects type @code{int} for its argument, and you pass a value of type
847 @code{long long int}, confusion will result because the caller and the
848 subroutine will disagree about the number of bytes for the argument.
849 Likewise, if the function expects @code{long long int} and you pass
850 @code{int}. The best way to avoid such problems is to use prototypes.
851
852 @node Complex
853 @section Complex Numbers
854 @cindex complex numbers
855 @cindex @code{_Complex} keyword
856 @cindex @code{__complex__} keyword
857
858 ISO C99 supports complex floating data types, and as an extension GCC
859 supports them in C90 mode and in C++, and supports complex integer data
860 types which are not part of ISO C99. You can declare complex types
861 using the keyword @code{_Complex}. As an extension, the older GNU
862 keyword @code{__complex__} is also supported.
863
864 For example, @samp{_Complex double x;} declares @code{x} as a
865 variable whose real part and imaginary part are both of type
866 @code{double}. @samp{_Complex short int y;} declares @code{y} to
867 have real and imaginary parts of type @code{short int}; this is not
868 likely to be useful, but it shows that the set of complex types is
869 complete.
870
871 To write a constant with a complex data type, use the suffix @samp{i} or
872 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
873 has type @code{_Complex float} and @code{3i} has type
874 @code{_Complex int}. Such a constant always has a pure imaginary
875 value, but you can form any complex value you like by adding one to a
876 real constant. This is a GNU extension; if you have an ISO C99
877 conforming C library (such as GNU libc), and want to construct complex
878 constants of floating type, you should include @code{<complex.h>} and
879 use the macros @code{I} or @code{_Complex_I} instead.
880
881 @cindex @code{__real__} keyword
882 @cindex @code{__imag__} keyword
883 To extract the real part of a complex-valued expression @var{exp}, write
884 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
885 extract the imaginary part. This is a GNU extension; for values of
886 floating type, you should use the ISO C99 functions @code{crealf},
887 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
888 @code{cimagl}, declared in @code{<complex.h>} and also provided as
889 built-in functions by GCC@.
890
891 @cindex complex conjugation
892 The operator @samp{~} performs complex conjugation when used on a value
893 with a complex type. This is a GNU extension; for values of
894 floating type, you should use the ISO C99 functions @code{conjf},
895 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
896 provided as built-in functions by GCC@.
897
898 GCC can allocate complex automatic variables in a noncontiguous
899 fashion; it's even possible for the real part to be in a register while
900 the imaginary part is on the stack (or vice-versa). Only the DWARF2
901 debug info format can represent this, so use of DWARF2 is recommended.
902 If you are using the stabs debug info format, GCC describes a noncontiguous
903 complex variable as if it were two separate variables of noncomplex type.
904 If the variable's actual name is @code{foo}, the two fictitious
905 variables are named @code{foo$real} and @code{foo$imag}. You can
906 examine and set these two fictitious variables with your debugger.
907
908 @node Floating Types
909 @section Additional Floating Types
910 @cindex additional floating types
911 @cindex @code{__float80} data type
912 @cindex @code{__float128} data type
913 @cindex @code{w} floating point suffix
914 @cindex @code{q} floating point suffix
915 @cindex @code{W} floating point suffix
916 @cindex @code{Q} floating point suffix
917
918 As an extension, the GNU C compiler supports additional floating
919 types, @code{__float80} and @code{__float128} to support 80bit
920 (@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
921 Support for additional types includes the arithmetic operators:
922 add, subtract, multiply, divide; unary arithmetic operators;
923 relational operators; equality operators; and conversions to and from
924 integer and other floating types. Use a suffix @samp{w} or @samp{W}
925 in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
926 for @code{_float128}. You can declare complex types using the
927 corresponding internal complex type, @code{XCmode} for @code{__float80}
928 type and @code{TCmode} for @code{__float128} type:
929
930 @smallexample
931 typedef _Complex float __attribute__((mode(TC))) _Complex128;
932 typedef _Complex float __attribute__((mode(XC))) _Complex80;
933 @end smallexample
934
935 Not all targets support additional floating point types. @code{__float80}
936 and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
937 The @code{__float128} type is supported on hppa HP-UX targets.
938
939 @node Half-Precision
940 @section Half-Precision Floating Point
941 @cindex half-precision floating point
942 @cindex @code{__fp16} data type
943
944 On ARM targets, GCC supports half-precision (16-bit) floating point via
945 the @code{__fp16} type. You must enable this type explicitly
946 with the @option{-mfp16-format} command-line option in order to use it.
947
948 ARM supports two incompatible representations for half-precision
949 floating-point values. You must choose one of the representations and
950 use it consistently in your program.
951
952 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
953 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
954 There are 11 bits of significand precision, approximately 3
955 decimal digits.
956
957 Specifying @option{-mfp16-format=alternative} selects the ARM
958 alternative format. This representation is similar to the IEEE
959 format, but does not support infinities or NaNs. Instead, the range
960 of exponents is extended, so that this format can represent normalized
961 values in the range of @math{2^{-14}} to 131008.
962
963 The @code{__fp16} type is a storage format only. For purposes
964 of arithmetic and other operations, @code{__fp16} values in C or C++
965 expressions are automatically promoted to @code{float}. In addition,
966 you cannot declare a function with a return value or parameters
967 of type @code{__fp16}.
968
969 Note that conversions from @code{double} to @code{__fp16}
970 involve an intermediate conversion to @code{float}. Because
971 of rounding, this can sometimes produce a different result than a
972 direct conversion.
973
974 ARM provides hardware support for conversions between
975 @code{__fp16} and @code{float} values
976 as an extension to VFP and NEON (Advanced SIMD). GCC generates
977 code using these hardware instructions if you compile with
978 options to select an FPU that provides them;
979 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
980 in addition to the @option{-mfp16-format} option to select
981 a half-precision format.
982
983 Language-level support for the @code{__fp16} data type is
984 independent of whether GCC generates code using hardware floating-point
985 instructions. In cases where hardware support is not specified, GCC
986 implements conversions between @code{__fp16} and @code{float} values
987 as library calls.
988
989 @node Decimal Float
990 @section Decimal Floating Types
991 @cindex decimal floating types
992 @cindex @code{_Decimal32} data type
993 @cindex @code{_Decimal64} data type
994 @cindex @code{_Decimal128} data type
995 @cindex @code{df} integer suffix
996 @cindex @code{dd} integer suffix
997 @cindex @code{dl} integer suffix
998 @cindex @code{DF} integer suffix
999 @cindex @code{DD} integer suffix
1000 @cindex @code{DL} integer suffix
1001
1002 As an extension, the GNU C compiler supports decimal floating types as
1003 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1004 floating types in GCC will evolve as the draft technical report changes.
1005 Calling conventions for any target might also change. Not all targets
1006 support decimal floating types.
1007
1008 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1009 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1010 @code{float}, @code{double}, and @code{long double} whose radix is not
1011 specified by the C standard but is usually two.
1012
1013 Support for decimal floating types includes the arithmetic operators
1014 add, subtract, multiply, divide; unary arithmetic operators;
1015 relational operators; equality operators; and conversions to and from
1016 integer and other floating types. Use a suffix @samp{df} or
1017 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1018 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1019 @code{_Decimal128}.
1020
1021 GCC support of decimal float as specified by the draft technical report
1022 is incomplete:
1023
1024 @itemize @bullet
1025 @item
1026 When the value of a decimal floating type cannot be represented in the
1027 integer type to which it is being converted, the result is undefined
1028 rather than the result value specified by the draft technical report.
1029
1030 @item
1031 GCC does not provide the C library functionality associated with
1032 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1033 @file{wchar.h}, which must come from a separate C library implementation.
1034 Because of this the GNU C compiler does not define macro
1035 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1036 the technical report.
1037 @end itemize
1038
1039 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1040 are supported by the DWARF2 debug information format.
1041
1042 @node Hex Floats
1043 @section Hex Floats
1044 @cindex hex floats
1045
1046 ISO C99 supports floating-point numbers written not only in the usual
1047 decimal notation, such as @code{1.55e1}, but also numbers such as
1048 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1049 supports this in C90 mode (except in some cases when strictly
1050 conforming) and in C++. In that format the
1051 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1052 mandatory. The exponent is a decimal number that indicates the power of
1053 2 by which the significant part will be multiplied. Thus @samp{0x1.f} is
1054 @tex
1055 $1 {15\over16}$,
1056 @end tex
1057 @ifnottex
1058 1 15/16,
1059 @end ifnottex
1060 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1061 is the same as @code{1.55e1}.
1062
1063 Unlike for floating-point numbers in the decimal notation the exponent
1064 is always required in the hexadecimal notation. Otherwise the compiler
1065 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1066 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1067 extension for floating-point constants of type @code{float}.
1068
1069 @node Fixed-Point
1070 @section Fixed-Point Types
1071 @cindex fixed-point types
1072 @cindex @code{_Fract} data type
1073 @cindex @code{_Accum} data type
1074 @cindex @code{_Sat} data type
1075 @cindex @code{hr} fixed-suffix
1076 @cindex @code{r} fixed-suffix
1077 @cindex @code{lr} fixed-suffix
1078 @cindex @code{llr} fixed-suffix
1079 @cindex @code{uhr} fixed-suffix
1080 @cindex @code{ur} fixed-suffix
1081 @cindex @code{ulr} fixed-suffix
1082 @cindex @code{ullr} fixed-suffix
1083 @cindex @code{hk} fixed-suffix
1084 @cindex @code{k} fixed-suffix
1085 @cindex @code{lk} fixed-suffix
1086 @cindex @code{llk} fixed-suffix
1087 @cindex @code{uhk} fixed-suffix
1088 @cindex @code{uk} fixed-suffix
1089 @cindex @code{ulk} fixed-suffix
1090 @cindex @code{ullk} fixed-suffix
1091 @cindex @code{HR} fixed-suffix
1092 @cindex @code{R} fixed-suffix
1093 @cindex @code{LR} fixed-suffix
1094 @cindex @code{LLR} fixed-suffix
1095 @cindex @code{UHR} fixed-suffix
1096 @cindex @code{UR} fixed-suffix
1097 @cindex @code{ULR} fixed-suffix
1098 @cindex @code{ULLR} fixed-suffix
1099 @cindex @code{HK} fixed-suffix
1100 @cindex @code{K} fixed-suffix
1101 @cindex @code{LK} fixed-suffix
1102 @cindex @code{LLK} fixed-suffix
1103 @cindex @code{UHK} fixed-suffix
1104 @cindex @code{UK} fixed-suffix
1105 @cindex @code{ULK} fixed-suffix
1106 @cindex @code{ULLK} fixed-suffix
1107
1108 As an extension, the GNU C compiler supports fixed-point types as
1109 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1110 types in GCC will evolve as the draft technical report changes.
1111 Calling conventions for any target might also change. Not all targets
1112 support fixed-point types.
1113
1114 The fixed-point types are
1115 @code{short _Fract},
1116 @code{_Fract},
1117 @code{long _Fract},
1118 @code{long long _Fract},
1119 @code{unsigned short _Fract},
1120 @code{unsigned _Fract},
1121 @code{unsigned long _Fract},
1122 @code{unsigned long long _Fract},
1123 @code{_Sat short _Fract},
1124 @code{_Sat _Fract},
1125 @code{_Sat long _Fract},
1126 @code{_Sat long long _Fract},
1127 @code{_Sat unsigned short _Fract},
1128 @code{_Sat unsigned _Fract},
1129 @code{_Sat unsigned long _Fract},
1130 @code{_Sat unsigned long long _Fract},
1131 @code{short _Accum},
1132 @code{_Accum},
1133 @code{long _Accum},
1134 @code{long long _Accum},
1135 @code{unsigned short _Accum},
1136 @code{unsigned _Accum},
1137 @code{unsigned long _Accum},
1138 @code{unsigned long long _Accum},
1139 @code{_Sat short _Accum},
1140 @code{_Sat _Accum},
1141 @code{_Sat long _Accum},
1142 @code{_Sat long long _Accum},
1143 @code{_Sat unsigned short _Accum},
1144 @code{_Sat unsigned _Accum},
1145 @code{_Sat unsigned long _Accum},
1146 @code{_Sat unsigned long long _Accum}.
1147
1148 Fixed-point data values contain fractional and optional integral parts.
1149 The format of fixed-point data varies and depends on the target machine.
1150
1151 Support for fixed-point types includes:
1152 @itemize @bullet
1153 @item
1154 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1155 @item
1156 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1157 @item
1158 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1159 @item
1160 binary shift operators (@code{<<}, @code{>>})
1161 @item
1162 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1163 @item
1164 equality operators (@code{==}, @code{!=})
1165 @item
1166 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1167 @code{<<=}, @code{>>=})
1168 @item
1169 conversions to and from integer, floating-point, or fixed-point types
1170 @end itemize
1171
1172 Use a suffix in a fixed-point literal constant:
1173 @itemize
1174 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1175 @code{_Sat short _Fract}
1176 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1177 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1178 @code{_Sat long _Fract}
1179 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1180 @code{_Sat long long _Fract}
1181 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1182 @code{_Sat unsigned short _Fract}
1183 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1184 @code{_Sat unsigned _Fract}
1185 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1186 @code{_Sat unsigned long _Fract}
1187 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1188 and @code{_Sat unsigned long long _Fract}
1189 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1190 @code{_Sat short _Accum}
1191 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1192 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1193 @code{_Sat long _Accum}
1194 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1195 @code{_Sat long long _Accum}
1196 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1197 @code{_Sat unsigned short _Accum}
1198 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1199 @code{_Sat unsigned _Accum}
1200 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1201 @code{_Sat unsigned long _Accum}
1202 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1203 and @code{_Sat unsigned long long _Accum}
1204 @end itemize
1205
1206 GCC support of fixed-point types as specified by the draft technical report
1207 is incomplete:
1208
1209 @itemize @bullet
1210 @item
1211 Pragmas to control overflow and rounding behaviors are not implemented.
1212 @end itemize
1213
1214 Fixed-point types are supported by the DWARF2 debug information format.
1215
1216 @node Named Address Spaces
1217 @section Named address spaces
1218 @cindex named address spaces
1219
1220 As an extension, the GNU C compiler supports named address spaces as
1221 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1222 address spaces in GCC will evolve as the draft technical report changes.
1223 Calling conventions for any target might also change. At present, only
1224 the SPU and M32C targets support other address spaces. On the SPU target, for
1225 example, variables may be declared as belonging to another address space
1226 by qualifying the type with the @code{__ea} address space identifier:
1227
1228 @smallexample
1229 extern int __ea i;
1230 @end smallexample
1231
1232 When the variable @code{i} is accessed, the compiler will generate
1233 special code to access this variable. It may use runtime library
1234 support, or generate special machine instructions to access that address
1235 space.
1236
1237 The @code{__ea} identifier may be used exactly like any other C type
1238 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1239 document for more details.
1240
1241 On the M32C target, with the R8C and M16C cpu variants, variables
1242 qualified with @code{__far} are accessed using 32-bit addresses in
1243 order to access memory beyond the first 64k bytes. If @code{__far} is
1244 used with the M32CM or M32C cpu variants, it has no effect.
1245
1246 @node Zero Length
1247 @section Arrays of Length Zero
1248 @cindex arrays of length zero
1249 @cindex zero-length arrays
1250 @cindex length-zero arrays
1251 @cindex flexible array members
1252
1253 Zero-length arrays are allowed in GNU C@. They are very useful as the
1254 last element of a structure which is really a header for a variable-length
1255 object:
1256
1257 @smallexample
1258 struct line @{
1259 int length;
1260 char contents[0];
1261 @};
1262
1263 struct line *thisline = (struct line *)
1264 malloc (sizeof (struct line) + this_length);
1265 thisline->length = this_length;
1266 @end smallexample
1267
1268 In ISO C90, you would have to give @code{contents} a length of 1, which
1269 means either you waste space or complicate the argument to @code{malloc}.
1270
1271 In ISO C99, you would use a @dfn{flexible array member}, which is
1272 slightly different in syntax and semantics:
1273
1274 @itemize @bullet
1275 @item
1276 Flexible array members are written as @code{contents[]} without
1277 the @code{0}.
1278
1279 @item
1280 Flexible array members have incomplete type, and so the @code{sizeof}
1281 operator may not be applied. As a quirk of the original implementation
1282 of zero-length arrays, @code{sizeof} evaluates to zero.
1283
1284 @item
1285 Flexible array members may only appear as the last member of a
1286 @code{struct} that is otherwise non-empty.
1287
1288 @item
1289 A structure containing a flexible array member, or a union containing
1290 such a structure (possibly recursively), may not be a member of a
1291 structure or an element of an array. (However, these uses are
1292 permitted by GCC as extensions.)
1293 @end itemize
1294
1295 GCC versions before 3.0 allowed zero-length arrays to be statically
1296 initialized, as if they were flexible arrays. In addition to those
1297 cases that were useful, it also allowed initializations in situations
1298 that would corrupt later data. Non-empty initialization of zero-length
1299 arrays is now treated like any case where there are more initializer
1300 elements than the array holds, in that a suitable warning about "excess
1301 elements in array" is given, and the excess elements (all of them, in
1302 this case) are ignored.
1303
1304 Instead GCC allows static initialization of flexible array members.
1305 This is equivalent to defining a new structure containing the original
1306 structure followed by an array of sufficient size to contain the data.
1307 I.e.@: in the following, @code{f1} is constructed as if it were declared
1308 like @code{f2}.
1309
1310 @smallexample
1311 struct f1 @{
1312 int x; int y[];
1313 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1314
1315 struct f2 @{
1316 struct f1 f1; int data[3];
1317 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1318 @end smallexample
1319
1320 @noindent
1321 The convenience of this extension is that @code{f1} has the desired
1322 type, eliminating the need to consistently refer to @code{f2.f1}.
1323
1324 This has symmetry with normal static arrays, in that an array of
1325 unknown size is also written with @code{[]}.
1326
1327 Of course, this extension only makes sense if the extra data comes at
1328 the end of a top-level object, as otherwise we would be overwriting
1329 data at subsequent offsets. To avoid undue complication and confusion
1330 with initialization of deeply nested arrays, we simply disallow any
1331 non-empty initialization except when the structure is the top-level
1332 object. For example:
1333
1334 @smallexample
1335 struct foo @{ int x; int y[]; @};
1336 struct bar @{ struct foo z; @};
1337
1338 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1339 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1340 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1341 struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1342 @end smallexample
1343
1344 @node Empty Structures
1345 @section Structures With No Members
1346 @cindex empty structures
1347 @cindex zero-size structures
1348
1349 GCC permits a C structure to have no members:
1350
1351 @smallexample
1352 struct empty @{
1353 @};
1354 @end smallexample
1355
1356 The structure will have size zero. In C++, empty structures are part
1357 of the language. G++ treats empty structures as if they had a single
1358 member of type @code{char}.
1359
1360 @node Variable Length
1361 @section Arrays of Variable Length
1362 @cindex variable-length arrays
1363 @cindex arrays of variable length
1364 @cindex VLAs
1365
1366 Variable-length automatic arrays are allowed in ISO C99, and as an
1367 extension GCC accepts them in C90 mode and in C++. These arrays are
1368 declared like any other automatic arrays, but with a length that is not
1369 a constant expression. The storage is allocated at the point of
1370 declaration and deallocated when the brace-level is exited. For
1371 example:
1372
1373 @smallexample
1374 FILE *
1375 concat_fopen (char *s1, char *s2, char *mode)
1376 @{
1377 char str[strlen (s1) + strlen (s2) + 1];
1378 strcpy (str, s1);
1379 strcat (str, s2);
1380 return fopen (str, mode);
1381 @}
1382 @end smallexample
1383
1384 @cindex scope of a variable length array
1385 @cindex variable-length array scope
1386 @cindex deallocating variable length arrays
1387 Jumping or breaking out of the scope of the array name deallocates the
1388 storage. Jumping into the scope is not allowed; you get an error
1389 message for it.
1390
1391 @cindex @code{alloca} vs variable-length arrays
1392 You can use the function @code{alloca} to get an effect much like
1393 variable-length arrays. The function @code{alloca} is available in
1394 many other C implementations (but not in all). On the other hand,
1395 variable-length arrays are more elegant.
1396
1397 There are other differences between these two methods. Space allocated
1398 with @code{alloca} exists until the containing @emph{function} returns.
1399 The space for a variable-length array is deallocated as soon as the array
1400 name's scope ends. (If you use both variable-length arrays and
1401 @code{alloca} in the same function, deallocation of a variable-length array
1402 will also deallocate anything more recently allocated with @code{alloca}.)
1403
1404 You can also use variable-length arrays as arguments to functions:
1405
1406 @smallexample
1407 struct entry
1408 tester (int len, char data[len][len])
1409 @{
1410 /* @r{@dots{}} */
1411 @}
1412 @end smallexample
1413
1414 The length of an array is computed once when the storage is allocated
1415 and is remembered for the scope of the array in case you access it with
1416 @code{sizeof}.
1417
1418 If you want to pass the array first and the length afterward, you can
1419 use a forward declaration in the parameter list---another GNU extension.
1420
1421 @smallexample
1422 struct entry
1423 tester (int len; char data[len][len], int len)
1424 @{
1425 /* @r{@dots{}} */
1426 @}
1427 @end smallexample
1428
1429 @cindex parameter forward declaration
1430 The @samp{int len} before the semicolon is a @dfn{parameter forward
1431 declaration}, and it serves the purpose of making the name @code{len}
1432 known when the declaration of @code{data} is parsed.
1433
1434 You can write any number of such parameter forward declarations in the
1435 parameter list. They can be separated by commas or semicolons, but the
1436 last one must end with a semicolon, which is followed by the ``real''
1437 parameter declarations. Each forward declaration must match a ``real''
1438 declaration in parameter name and data type. ISO C99 does not support
1439 parameter forward declarations.
1440
1441 @node Variadic Macros
1442 @section Macros with a Variable Number of Arguments.
1443 @cindex variable number of arguments
1444 @cindex macro with variable arguments
1445 @cindex rest argument (in macro)
1446 @cindex variadic macros
1447
1448 In the ISO C standard of 1999, a macro can be declared to accept a
1449 variable number of arguments much as a function can. The syntax for
1450 defining the macro is similar to that of a function. Here is an
1451 example:
1452
1453 @smallexample
1454 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1455 @end smallexample
1456
1457 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1458 such a macro, it represents the zero or more tokens until the closing
1459 parenthesis that ends the invocation, including any commas. This set of
1460 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1461 wherever it appears. See the CPP manual for more information.
1462
1463 GCC has long supported variadic macros, and used a different syntax that
1464 allowed you to give a name to the variable arguments just like any other
1465 argument. Here is an example:
1466
1467 @smallexample
1468 #define debug(format, args...) fprintf (stderr, format, args)
1469 @end smallexample
1470
1471 This is in all ways equivalent to the ISO C example above, but arguably
1472 more readable and descriptive.
1473
1474 GNU CPP has two further variadic macro extensions, and permits them to
1475 be used with either of the above forms of macro definition.
1476
1477 In standard C, you are not allowed to leave the variable argument out
1478 entirely; but you are allowed to pass an empty argument. For example,
1479 this invocation is invalid in ISO C, because there is no comma after
1480 the string:
1481
1482 @smallexample
1483 debug ("A message")
1484 @end smallexample
1485
1486 GNU CPP permits you to completely omit the variable arguments in this
1487 way. In the above examples, the compiler would complain, though since
1488 the expansion of the macro still has the extra comma after the format
1489 string.
1490
1491 To help solve this problem, CPP behaves specially for variable arguments
1492 used with the token paste operator, @samp{##}. If instead you write
1493
1494 @smallexample
1495 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1496 @end smallexample
1497
1498 and if the variable arguments are omitted or empty, the @samp{##}
1499 operator causes the preprocessor to remove the comma before it. If you
1500 do provide some variable arguments in your macro invocation, GNU CPP
1501 does not complain about the paste operation and instead places the
1502 variable arguments after the comma. Just like any other pasted macro
1503 argument, these arguments are not macro expanded.
1504
1505 @node Escaped Newlines
1506 @section Slightly Looser Rules for Escaped Newlines
1507 @cindex escaped newlines
1508 @cindex newlines (escaped)
1509
1510 Recently, the preprocessor has relaxed its treatment of escaped
1511 newlines. Previously, the newline had to immediately follow a
1512 backslash. The current implementation allows whitespace in the form
1513 of spaces, horizontal and vertical tabs, and form feeds between the
1514 backslash and the subsequent newline. The preprocessor issues a
1515 warning, but treats it as a valid escaped newline and combines the two
1516 lines to form a single logical line. This works within comments and
1517 tokens, as well as between tokens. Comments are @emph{not} treated as
1518 whitespace for the purposes of this relaxation, since they have not
1519 yet been replaced with spaces.
1520
1521 @node Subscripting
1522 @section Non-Lvalue Arrays May Have Subscripts
1523 @cindex subscripting
1524 @cindex arrays, non-lvalue
1525
1526 @cindex subscripting and function values
1527 In ISO C99, arrays that are not lvalues still decay to pointers, and
1528 may be subscripted, although they may not be modified or used after
1529 the next sequence point and the unary @samp{&} operator may not be
1530 applied to them. As an extension, GCC allows such arrays to be
1531 subscripted in C90 mode, though otherwise they do not decay to
1532 pointers outside C99 mode. For example,
1533 this is valid in GNU C though not valid in C90:
1534
1535 @smallexample
1536 @group
1537 struct foo @{int a[4];@};
1538
1539 struct foo f();
1540
1541 bar (int index)
1542 @{
1543 return f().a[index];
1544 @}
1545 @end group
1546 @end smallexample
1547
1548 @node Pointer Arith
1549 @section Arithmetic on @code{void}- and Function-Pointers
1550 @cindex void pointers, arithmetic
1551 @cindex void, size of pointer to
1552 @cindex function pointers, arithmetic
1553 @cindex function, size of pointer to
1554
1555 In GNU C, addition and subtraction operations are supported on pointers to
1556 @code{void} and on pointers to functions. This is done by treating the
1557 size of a @code{void} or of a function as 1.
1558
1559 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1560 and on function types, and returns 1.
1561
1562 @opindex Wpointer-arith
1563 The option @option{-Wpointer-arith} requests a warning if these extensions
1564 are used.
1565
1566 @node Initializers
1567 @section Non-Constant Initializers
1568 @cindex initializers, non-constant
1569 @cindex non-constant initializers
1570
1571 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1572 automatic variable are not required to be constant expressions in GNU C@.
1573 Here is an example of an initializer with run-time varying elements:
1574
1575 @smallexample
1576 foo (float f, float g)
1577 @{
1578 float beat_freqs[2] = @{ f-g, f+g @};
1579 /* @r{@dots{}} */
1580 @}
1581 @end smallexample
1582
1583 @node Compound Literals
1584 @section Compound Literals
1585 @cindex constructor expressions
1586 @cindex initializations in expressions
1587 @cindex structures, constructor expression
1588 @cindex expressions, constructor
1589 @cindex compound literals
1590 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1591
1592 ISO C99 supports compound literals. A compound literal looks like
1593 a cast containing an initializer. Its value is an object of the
1594 type specified in the cast, containing the elements specified in
1595 the initializer; it is an lvalue. As an extension, GCC supports
1596 compound literals in C90 mode and in C++.
1597
1598 Usually, the specified type is a structure. Assume that
1599 @code{struct foo} and @code{structure} are declared as shown:
1600
1601 @smallexample
1602 struct foo @{int a; char b[2];@} structure;
1603 @end smallexample
1604
1605 @noindent
1606 Here is an example of constructing a @code{struct foo} with a compound literal:
1607
1608 @smallexample
1609 structure = ((struct foo) @{x + y, 'a', 0@});
1610 @end smallexample
1611
1612 @noindent
1613 This is equivalent to writing the following:
1614
1615 @smallexample
1616 @{
1617 struct foo temp = @{x + y, 'a', 0@};
1618 structure = temp;
1619 @}
1620 @end smallexample
1621
1622 You can also construct an array. If all the elements of the compound literal
1623 are (made up of) simple constant expressions, suitable for use in
1624 initializers of objects of static storage duration, then the compound
1625 literal can be coerced to a pointer to its first element and used in
1626 such an initializer, as shown here:
1627
1628 @smallexample
1629 char **foo = (char *[]) @{ "x", "y", "z" @};
1630 @end smallexample
1631
1632 Compound literals for scalar types and union types are
1633 also allowed, but then the compound literal is equivalent
1634 to a cast.
1635
1636 As a GNU extension, GCC allows initialization of objects with static storage
1637 duration by compound literals (which is not possible in ISO C99, because
1638 the initializer is not a constant).
1639 It is handled as if the object was initialized only with the bracket
1640 enclosed list if the types of the compound literal and the object match.
1641 The initializer list of the compound literal must be constant.
1642 If the object being initialized has array type of unknown size, the size is
1643 determined by compound literal size.
1644
1645 @smallexample
1646 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1647 static int y[] = (int []) @{1, 2, 3@};
1648 static int z[] = (int [3]) @{1@};
1649 @end smallexample
1650
1651 @noindent
1652 The above lines are equivalent to the following:
1653 @smallexample
1654 static struct foo x = @{1, 'a', 'b'@};
1655 static int y[] = @{1, 2, 3@};
1656 static int z[] = @{1, 0, 0@};
1657 @end smallexample
1658
1659 @node Designated Inits
1660 @section Designated Initializers
1661 @cindex initializers with labeled elements
1662 @cindex labeled elements in initializers
1663 @cindex case labels in initializers
1664 @cindex designated initializers
1665
1666 Standard C90 requires the elements of an initializer to appear in a fixed
1667 order, the same as the order of the elements in the array or structure
1668 being initialized.
1669
1670 In ISO C99 you can give the elements in any order, specifying the array
1671 indices or structure field names they apply to, and GNU C allows this as
1672 an extension in C90 mode as well. This extension is not
1673 implemented in GNU C++.
1674
1675 To specify an array index, write
1676 @samp{[@var{index}] =} before the element value. For example,
1677
1678 @smallexample
1679 int a[6] = @{ [4] = 29, [2] = 15 @};
1680 @end smallexample
1681
1682 @noindent
1683 is equivalent to
1684
1685 @smallexample
1686 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1687 @end smallexample
1688
1689 @noindent
1690 The index values must be constant expressions, even if the array being
1691 initialized is automatic.
1692
1693 An alternative syntax for this which has been obsolete since GCC 2.5 but
1694 GCC still accepts is to write @samp{[@var{index}]} before the element
1695 value, with no @samp{=}.
1696
1697 To initialize a range of elements to the same value, write
1698 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1699 extension. For example,
1700
1701 @smallexample
1702 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1703 @end smallexample
1704
1705 @noindent
1706 If the value in it has side-effects, the side-effects will happen only once,
1707 not for each initialized field by the range initializer.
1708
1709 @noindent
1710 Note that the length of the array is the highest value specified
1711 plus one.
1712
1713 In a structure initializer, specify the name of a field to initialize
1714 with @samp{.@var{fieldname} =} before the element value. For example,
1715 given the following structure,
1716
1717 @smallexample
1718 struct point @{ int x, y; @};
1719 @end smallexample
1720
1721 @noindent
1722 the following initialization
1723
1724 @smallexample
1725 struct point p = @{ .y = yvalue, .x = xvalue @};
1726 @end smallexample
1727
1728 @noindent
1729 is equivalent to
1730
1731 @smallexample
1732 struct point p = @{ xvalue, yvalue @};
1733 @end smallexample
1734
1735 Another syntax which has the same meaning, obsolete since GCC 2.5, is
1736 @samp{@var{fieldname}:}, as shown here:
1737
1738 @smallexample
1739 struct point p = @{ y: yvalue, x: xvalue @};
1740 @end smallexample
1741
1742 @cindex designators
1743 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1744 @dfn{designator}. You can also use a designator (or the obsolete colon
1745 syntax) when initializing a union, to specify which element of the union
1746 should be used. For example,
1747
1748 @smallexample
1749 union foo @{ int i; double d; @};
1750
1751 union foo f = @{ .d = 4 @};
1752 @end smallexample
1753
1754 @noindent
1755 will convert 4 to a @code{double} to store it in the union using
1756 the second element. By contrast, casting 4 to type @code{union foo}
1757 would store it into the union as the integer @code{i}, since it is
1758 an integer. (@xref{Cast to Union}.)
1759
1760 You can combine this technique of naming elements with ordinary C
1761 initialization of successive elements. Each initializer element that
1762 does not have a designator applies to the next consecutive element of the
1763 array or structure. For example,
1764
1765 @smallexample
1766 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
1767 @end smallexample
1768
1769 @noindent
1770 is equivalent to
1771
1772 @smallexample
1773 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
1774 @end smallexample
1775
1776 Labeling the elements of an array initializer is especially useful
1777 when the indices are characters or belong to an @code{enum} type.
1778 For example:
1779
1780 @smallexample
1781 int whitespace[256]
1782 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1783 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
1784 @end smallexample
1785
1786 @cindex designator lists
1787 You can also write a series of @samp{.@var{fieldname}} and
1788 @samp{[@var{index}]} designators before an @samp{=} to specify a
1789 nested subobject to initialize; the list is taken relative to the
1790 subobject corresponding to the closest surrounding brace pair. For
1791 example, with the @samp{struct point} declaration above:
1792
1793 @smallexample
1794 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
1795 @end smallexample
1796
1797 @noindent
1798 If the same field is initialized multiple times, it will have value from
1799 the last initialization. If any such overridden initialization has
1800 side-effect, it is unspecified whether the side-effect happens or not.
1801 Currently, GCC will discard them and issue a warning.
1802
1803 @node Case Ranges
1804 @section Case Ranges
1805 @cindex case ranges
1806 @cindex ranges in case statements
1807
1808 You can specify a range of consecutive values in a single @code{case} label,
1809 like this:
1810
1811 @smallexample
1812 case @var{low} ... @var{high}:
1813 @end smallexample
1814
1815 @noindent
1816 This has the same effect as the proper number of individual @code{case}
1817 labels, one for each integer value from @var{low} to @var{high}, inclusive.
1818
1819 This feature is especially useful for ranges of ASCII character codes:
1820
1821 @smallexample
1822 case 'A' ... 'Z':
1823 @end smallexample
1824
1825 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
1826 it may be parsed wrong when you use it with integer values. For example,
1827 write this:
1828
1829 @smallexample
1830 case 1 ... 5:
1831 @end smallexample
1832
1833 @noindent
1834 rather than this:
1835
1836 @smallexample
1837 case 1...5:
1838 @end smallexample
1839
1840 @node Cast to Union
1841 @section Cast to a Union Type
1842 @cindex cast to a union
1843 @cindex union, casting to a
1844
1845 A cast to union type is similar to other casts, except that the type
1846 specified is a union type. You can specify the type either with
1847 @code{union @var{tag}} or with a typedef name. A cast to union is actually
1848 a constructor though, not a cast, and hence does not yield an lvalue like
1849 normal casts. (@xref{Compound Literals}.)
1850
1851 The types that may be cast to the union type are those of the members
1852 of the union. Thus, given the following union and variables:
1853
1854 @smallexample
1855 union foo @{ int i; double d; @};
1856 int x;
1857 double y;
1858 @end smallexample
1859
1860 @noindent
1861 both @code{x} and @code{y} can be cast to type @code{union foo}.
1862
1863 Using the cast as the right-hand side of an assignment to a variable of
1864 union type is equivalent to storing in a member of the union:
1865
1866 @smallexample
1867 union foo u;
1868 /* @r{@dots{}} */
1869 u = (union foo) x @equiv{} u.i = x
1870 u = (union foo) y @equiv{} u.d = y
1871 @end smallexample
1872
1873 You can also use the union cast as a function argument:
1874
1875 @smallexample
1876 void hack (union foo);
1877 /* @r{@dots{}} */
1878 hack ((union foo) x);
1879 @end smallexample
1880
1881 @node Mixed Declarations
1882 @section Mixed Declarations and Code
1883 @cindex mixed declarations and code
1884 @cindex declarations, mixed with code
1885 @cindex code, mixed with declarations
1886
1887 ISO C99 and ISO C++ allow declarations and code to be freely mixed
1888 within compound statements. As an extension, GCC also allows this in
1889 C90 mode. For example, you could do:
1890
1891 @smallexample
1892 int i;
1893 /* @r{@dots{}} */
1894 i++;
1895 int j = i + 2;
1896 @end smallexample
1897
1898 Each identifier is visible from where it is declared until the end of
1899 the enclosing block.
1900
1901 @node Function Attributes
1902 @section Declaring Attributes of Functions
1903 @cindex function attributes
1904 @cindex declaring attributes of functions
1905 @cindex functions that never return
1906 @cindex functions that return more than once
1907 @cindex functions that have no side effects
1908 @cindex functions in arbitrary sections
1909 @cindex functions that behave like malloc
1910 @cindex @code{volatile} applied to function
1911 @cindex @code{const} applied to function
1912 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
1913 @cindex functions with non-null pointer arguments
1914 @cindex functions that are passed arguments in registers on the 386
1915 @cindex functions that pop the argument stack on the 386
1916 @cindex functions that do not pop the argument stack on the 386
1917 @cindex functions that have different compilation options on the 386
1918 @cindex functions that have different optimization options
1919 @cindex functions that are dynamically resolved
1920
1921 In GNU C, you declare certain things about functions called in your program
1922 which help the compiler optimize function calls and check your code more
1923 carefully.
1924
1925 The keyword @code{__attribute__} allows you to specify special
1926 attributes when making a declaration. This keyword is followed by an
1927 attribute specification inside double parentheses. The following
1928 attributes are currently defined for functions on all targets:
1929 @code{aligned}, @code{alloc_size}, @code{noreturn},
1930 @code{returns_twice}, @code{noinline}, @code{noclone},
1931 @code{always_inline}, @code{flatten}, @code{pure}, @code{const},
1932 @code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
1933 @code{no_instrument_function}, @code{no_split_stack},
1934 @code{section}, @code{constructor},
1935 @code{destructor}, @code{used}, @code{unused}, @code{deprecated},
1936 @code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
1937 @code{warn_unused_result}, @code{nonnull}, @code{gnu_inline},
1938 @code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
1939 @code{error} and @code{warning}. Several other attributes are defined
1940 for functions on particular target systems. Other attributes,
1941 including @code{section} are supported for variables declarations
1942 (@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
1943
1944 GCC plugins may provide their own attributes.
1945
1946 You may also specify attributes with @samp{__} preceding and following
1947 each keyword. This allows you to use them in header files without
1948 being concerned about a possible macro of the same name. For example,
1949 you may use @code{__noreturn__} instead of @code{noreturn}.
1950
1951 @xref{Attribute Syntax}, for details of the exact syntax for using
1952 attributes.
1953
1954 @table @code
1955 @c Keep this table alphabetized by attribute name. Treat _ as space.
1956
1957 @item alias ("@var{target}")
1958 @cindex @code{alias} attribute
1959 The @code{alias} attribute causes the declaration to be emitted as an
1960 alias for another symbol, which must be specified. For instance,
1961
1962 @smallexample
1963 void __f () @{ /* @r{Do something.} */; @}
1964 void f () __attribute__ ((weak, alias ("__f")));
1965 @end smallexample
1966
1967 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
1968 mangled name for the target must be used. It is an error if @samp{__f}
1969 is not defined in the same translation unit.
1970
1971 Not all target machines support this attribute.
1972
1973 @item aligned (@var{alignment})
1974 @cindex @code{aligned} attribute
1975 This attribute specifies a minimum alignment for the function,
1976 measured in bytes.
1977
1978 You cannot use this attribute to decrease the alignment of a function,
1979 only to increase it. However, when you explicitly specify a function
1980 alignment this will override the effect of the
1981 @option{-falign-functions} (@pxref{Optimize Options}) option for this
1982 function.
1983
1984 Note that the effectiveness of @code{aligned} attributes may be
1985 limited by inherent limitations in your linker. On many systems, the
1986 linker is only able to arrange for functions to be aligned up to a
1987 certain maximum alignment. (For some linkers, the maximum supported
1988 alignment may be very very small.) See your linker documentation for
1989 further information.
1990
1991 The @code{aligned} attribute can also be used for variables and fields
1992 (@pxref{Variable Attributes}.)
1993
1994 @item alloc_size
1995 @cindex @code{alloc_size} attribute
1996 The @code{alloc_size} attribute is used to tell the compiler that the
1997 function return value points to memory, where the size is given by
1998 one or two of the functions parameters. GCC uses this
1999 information to improve the correctness of @code{__builtin_object_size}.
2000
2001 The function parameter(s) denoting the allocated size are specified by
2002 one or two integer arguments supplied to the attribute. The allocated size
2003 is either the value of the single function argument specified or the product
2004 of the two function arguments specified. Argument numbering starts at
2005 one.
2006
2007 For instance,
2008
2009 @smallexample
2010 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2011 void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2012 @end smallexample
2013
2014 declares that my_calloc will return memory of the size given by
2015 the product of parameter 1 and 2 and that my_realloc will return memory
2016 of the size given by parameter 2.
2017
2018 @item always_inline
2019 @cindex @code{always_inline} function attribute
2020 Generally, functions are not inlined unless optimization is specified.
2021 For functions declared inline, this attribute inlines the function even
2022 if no optimization level was specified.
2023
2024 @item gnu_inline
2025 @cindex @code{gnu_inline} function attribute
2026 This attribute should be used with a function which is also declared
2027 with the @code{inline} keyword. It directs GCC to treat the function
2028 as if it were defined in gnu90 mode even when compiling in C99 or
2029 gnu99 mode.
2030
2031 If the function is declared @code{extern}, then this definition of the
2032 function is used only for inlining. In no case is the function
2033 compiled as a standalone function, not even if you take its address
2034 explicitly. Such an address becomes an external reference, as if you
2035 had only declared the function, and had not defined it. This has
2036 almost the effect of a macro. The way to use this is to put a
2037 function definition in a header file with this attribute, and put
2038 another copy of the function, without @code{extern}, in a library
2039 file. The definition in the header file will cause most calls to the
2040 function to be inlined. If any uses of the function remain, they will
2041 refer to the single copy in the library. Note that the two
2042 definitions of the functions need not be precisely the same, although
2043 if they do not have the same effect your program may behave oddly.
2044
2045 In C, if the function is neither @code{extern} nor @code{static}, then
2046 the function is compiled as a standalone function, as well as being
2047 inlined where possible.
2048
2049 This is how GCC traditionally handled functions declared
2050 @code{inline}. Since ISO C99 specifies a different semantics for
2051 @code{inline}, this function attribute is provided as a transition
2052 measure and as a useful feature in its own right. This attribute is
2053 available in GCC 4.1.3 and later. It is available if either of the
2054 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2055 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2056 Function is As Fast As a Macro}.
2057
2058 In C++, this attribute does not depend on @code{extern} in any way,
2059 but it still requires the @code{inline} keyword to enable its special
2060 behavior.
2061
2062 @item artificial
2063 @cindex @code{artificial} function attribute
2064 This attribute is useful for small inline wrappers which if possible
2065 should appear during debugging as a unit, depending on the debug
2066 info format it will either mean marking the function as artificial
2067 or using the caller location for all instructions within the inlined
2068 body.
2069
2070 @item bank_switch
2071 @cindex interrupt handler functions
2072 When added to an interrupt handler with the M32C port, causes the
2073 prologue and epilogue to use bank switching to preserve the registers
2074 rather than saving them on the stack.
2075
2076 @item flatten
2077 @cindex @code{flatten} function attribute
2078 Generally, inlining into a function is limited. For a function marked with
2079 this attribute, every call inside this function will be inlined, if possible.
2080 Whether the function itself is considered for inlining depends on its size and
2081 the current inlining parameters.
2082
2083 @item error ("@var{message}")
2084 @cindex @code{error} function attribute
2085 If this attribute is used on a function declaration and a call to such a function
2086 is not eliminated through dead code elimination or other optimizations, an error
2087 which will include @var{message} will be diagnosed. This is useful
2088 for compile time checking, especially together with @code{__builtin_constant_p}
2089 and inline functions where checking the inline function arguments is not
2090 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2091 While it is possible to leave the function undefined and thus invoke
2092 a link failure, when using this attribute the problem will be diagnosed
2093 earlier and with exact location of the call even in presence of inline
2094 functions or when not emitting debugging information.
2095
2096 @item warning ("@var{message}")
2097 @cindex @code{warning} function attribute
2098 If this attribute is used on a function declaration and a call to such a function
2099 is not eliminated through dead code elimination or other optimizations, a warning
2100 which will include @var{message} will be diagnosed. This is useful
2101 for compile time checking, especially together with @code{__builtin_constant_p}
2102 and inline functions. While it is possible to define the function with
2103 a message in @code{.gnu.warning*} section, when using this attribute the problem
2104 will be diagnosed earlier and with exact location of the call even in presence
2105 of inline functions or when not emitting debugging information.
2106
2107 @item cdecl
2108 @cindex functions that do pop the argument stack on the 386
2109 @opindex mrtd
2110 On the Intel 386, the @code{cdecl} attribute causes the compiler to
2111 assume that the calling function will pop off the stack space used to
2112 pass arguments. This is
2113 useful to override the effects of the @option{-mrtd} switch.
2114
2115 @item const
2116 @cindex @code{const} function attribute
2117 Many functions do not examine any values except their arguments, and
2118 have no effects except the return value. Basically this is just slightly
2119 more strict class than the @code{pure} attribute below, since function is not
2120 allowed to read global memory.
2121
2122 @cindex pointer arguments
2123 Note that a function that has pointer arguments and examines the data
2124 pointed to must @emph{not} be declared @code{const}. Likewise, a
2125 function that calls a non-@code{const} function usually must not be
2126 @code{const}. It does not make sense for a @code{const} function to
2127 return @code{void}.
2128
2129 The attribute @code{const} is not implemented in GCC versions earlier
2130 than 2.5. An alternative way to declare that a function has no side
2131 effects, which works in the current version and in some older versions,
2132 is as follows:
2133
2134 @smallexample
2135 typedef int intfn ();
2136
2137 extern const intfn square;
2138 @end smallexample
2139
2140 This approach does not work in GNU C++ from 2.6.0 on, since the language
2141 specifies that the @samp{const} must be attached to the return value.
2142
2143 @item constructor
2144 @itemx destructor
2145 @itemx constructor (@var{priority})
2146 @itemx destructor (@var{priority})
2147 @cindex @code{constructor} function attribute
2148 @cindex @code{destructor} function attribute
2149 The @code{constructor} attribute causes the function to be called
2150 automatically before execution enters @code{main ()}. Similarly, the
2151 @code{destructor} attribute causes the function to be called
2152 automatically after @code{main ()} has completed or @code{exit ()} has
2153 been called. Functions with these attributes are useful for
2154 initializing data that will be used implicitly during the execution of
2155 the program.
2156
2157 You may provide an optional integer priority to control the order in
2158 which constructor and destructor functions are run. A constructor
2159 with a smaller priority number runs before a constructor with a larger
2160 priority number; the opposite relationship holds for destructors. So,
2161 if you have a constructor that allocates a resource and a destructor
2162 that deallocates the same resource, both functions typically have the
2163 same priority. The priorities for constructor and destructor
2164 functions are the same as those specified for namespace-scope C++
2165 objects (@pxref{C++ Attributes}).
2166
2167 These attributes are not currently implemented for Objective-C@.
2168
2169 @item deprecated
2170 @itemx deprecated (@var{msg})
2171 @cindex @code{deprecated} attribute.
2172 The @code{deprecated} attribute results in a warning if the function
2173 is used anywhere in the source file. This is useful when identifying
2174 functions that are expected to be removed in a future version of a
2175 program. The warning also includes the location of the declaration
2176 of the deprecated function, to enable users to easily find further
2177 information about why the function is deprecated, or what they should
2178 do instead. Note that the warnings only occurs for uses:
2179
2180 @smallexample
2181 int old_fn () __attribute__ ((deprecated));
2182 int old_fn ();
2183 int (*fn_ptr)() = old_fn;
2184 @end smallexample
2185
2186 results in a warning on line 3 but not line 2. The optional msg
2187 argument, which must be a string, will be printed in the warning if
2188 present.
2189
2190 The @code{deprecated} attribute can also be used for variables and
2191 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2192
2193 @item disinterrupt
2194 @cindex @code{disinterrupt} attribute
2195 On MeP targets, this attribute causes the compiler to emit
2196 instructions to disable interrupts for the duration of the given
2197 function.
2198
2199 @item dllexport
2200 @cindex @code{__declspec(dllexport)}
2201 On Microsoft Windows targets and Symbian OS targets the
2202 @code{dllexport} attribute causes the compiler to provide a global
2203 pointer to a pointer in a DLL, so that it can be referenced with the
2204 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
2205 name is formed by combining @code{_imp__} and the function or variable
2206 name.
2207
2208 You can use @code{__declspec(dllexport)} as a synonym for
2209 @code{__attribute__ ((dllexport))} for compatibility with other
2210 compilers.
2211
2212 On systems that support the @code{visibility} attribute, this
2213 attribute also implies ``default'' visibility. It is an error to
2214 explicitly specify any other visibility.
2215
2216 In previous versions of GCC, the @code{dllexport} attribute was ignored
2217 for inlined functions, unless the @option{-fkeep-inline-functions} flag
2218 had been used. The default behaviour now is to emit all dllexported
2219 inline functions; however, this can cause object file-size bloat, in
2220 which case the old behaviour can be restored by using
2221 @option{-fno-keep-inline-dllexport}.
2222
2223 The attribute is also ignored for undefined symbols.
2224
2225 When applied to C++ classes, the attribute marks defined non-inlined
2226 member functions and static data members as exports. Static consts
2227 initialized in-class are not marked unless they are also defined
2228 out-of-class.
2229
2230 For Microsoft Windows targets there are alternative methods for
2231 including the symbol in the DLL's export table such as using a
2232 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2233 the @option{--export-all} linker flag.
2234
2235 @item dllimport
2236 @cindex @code{__declspec(dllimport)}
2237 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2238 attribute causes the compiler to reference a function or variable via
2239 a global pointer to a pointer that is set up by the DLL exporting the
2240 symbol. The attribute implies @code{extern}. On Microsoft Windows
2241 targets, the pointer name is formed by combining @code{_imp__} and the
2242 function or variable name.
2243
2244 You can use @code{__declspec(dllimport)} as a synonym for
2245 @code{__attribute__ ((dllimport))} for compatibility with other
2246 compilers.
2247
2248 On systems that support the @code{visibility} attribute, this
2249 attribute also implies ``default'' visibility. It is an error to
2250 explicitly specify any other visibility.
2251
2252 Currently, the attribute is ignored for inlined functions. If the
2253 attribute is applied to a symbol @emph{definition}, an error is reported.
2254 If a symbol previously declared @code{dllimport} is later defined, the
2255 attribute is ignored in subsequent references, and a warning is emitted.
2256 The attribute is also overridden by a subsequent declaration as
2257 @code{dllexport}.
2258
2259 When applied to C++ classes, the attribute marks non-inlined
2260 member functions and static data members as imports. However, the
2261 attribute is ignored for virtual methods to allow creation of vtables
2262 using thunks.
2263
2264 On the SH Symbian OS target the @code{dllimport} attribute also has
2265 another affect---it can cause the vtable and run-time type information
2266 for a class to be exported. This happens when the class has a
2267 dllimport'ed constructor or a non-inline, non-pure virtual function
2268 and, for either of those two conditions, the class also has an inline
2269 constructor or destructor and has a key function that is defined in
2270 the current translation unit.
2271
2272 For Microsoft Windows based targets the use of the @code{dllimport}
2273 attribute on functions is not necessary, but provides a small
2274 performance benefit by eliminating a thunk in the DLL@. The use of the
2275 @code{dllimport} attribute on imported variables was required on older
2276 versions of the GNU linker, but can now be avoided by passing the
2277 @option{--enable-auto-import} switch to the GNU linker. As with
2278 functions, using the attribute for a variable eliminates a thunk in
2279 the DLL@.
2280
2281 One drawback to using this attribute is that a pointer to a
2282 @emph{variable} marked as @code{dllimport} cannot be used as a constant
2283 address. However, a pointer to a @emph{function} with the
2284 @code{dllimport} attribute can be used as a constant initializer; in
2285 this case, the address of a stub function in the import lib is
2286 referenced. On Microsoft Windows targets, the attribute can be disabled
2287 for functions by setting the @option{-mnop-fun-dllimport} flag.
2288
2289 @item eightbit_data
2290 @cindex eight bit data on the H8/300, H8/300H, and H8S
2291 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2292 variable should be placed into the eight bit data section.
2293 The compiler will generate more efficient code for certain operations
2294 on data in the eight bit data area. Note the eight bit data area is limited to
2295 256 bytes of data.
2296
2297 You must use GAS and GLD from GNU binutils version 2.7 or later for
2298 this attribute to work correctly.
2299
2300 @item exception_handler
2301 @cindex exception handler functions on the Blackfin processor
2302 Use this attribute on the Blackfin to indicate that the specified function
2303 is an exception handler. The compiler will generate function entry and
2304 exit sequences suitable for use in an exception handler when this
2305 attribute is present.
2306
2307 @item externally_visible
2308 @cindex @code{externally_visible} attribute.
2309 This attribute, attached to a global variable or function, nullifies
2310 the effect of the @option{-fwhole-program} command-line option, so the
2311 object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}. For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary.
2312
2313 @item far
2314 @cindex functions which handle memory bank switching
2315 On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2316 use a calling convention that takes care of switching memory banks when
2317 entering and leaving a function. This calling convention is also the
2318 default when using the @option{-mlong-calls} option.
2319
2320 On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2321 to call and return from a function.
2322
2323 On 68HC11 the compiler will generate a sequence of instructions
2324 to invoke a board-specific routine to switch the memory bank and call the
2325 real function. The board-specific routine simulates a @code{call}.
2326 At the end of a function, it will jump to a board-specific routine
2327 instead of using @code{rts}. The board-specific return routine simulates
2328 the @code{rtc}.
2329
2330 On MeP targets this causes the compiler to use a calling convention
2331 which assumes the called function is too far away for the built-in
2332 addressing modes.
2333
2334 @item fast_interrupt
2335 @cindex interrupt handler functions
2336 Use this attribute on the M32C and RX ports to indicate that the specified
2337 function is a fast interrupt handler. This is just like the
2338 @code{interrupt} attribute, except that @code{freit} is used to return
2339 instead of @code{reit}.
2340
2341 @item fastcall
2342 @cindex functions that pop the argument stack on the 386
2343 On the Intel 386, the @code{fastcall} attribute causes the compiler to
2344 pass the first argument (if of integral type) in the register ECX and
2345 the second argument (if of integral type) in the register EDX@. Subsequent
2346 and other typed arguments are passed on the stack. The called function will
2347 pop the arguments off the stack. If the number of arguments is variable all
2348 arguments are pushed on the stack.
2349
2350 @item thiscall
2351 @cindex functions that pop the argument stack on the 386
2352 On the Intel 386, the @code{thiscall} attribute causes the compiler to
2353 pass the first argument (if of integral type) in the register ECX.
2354 Subsequent and other typed arguments are passed on the stack. The called
2355 function will pop the arguments off the stack.
2356 If the number of arguments is variable all arguments are pushed on the
2357 stack.
2358 The @code{thiscall} attribute is intended for C++ non-static member functions.
2359 As gcc extension this calling convention can be used for C-functions
2360 and for static member methods.
2361
2362 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2363 @cindex @code{format} function attribute
2364 @opindex Wformat
2365 The @code{format} attribute specifies that a function takes @code{printf},
2366 @code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2367 should be type-checked against a format string. For example, the
2368 declaration:
2369
2370 @smallexample
2371 extern int
2372 my_printf (void *my_object, const char *my_format, ...)
2373 __attribute__ ((format (printf, 2, 3)));
2374 @end smallexample
2375
2376 @noindent
2377 causes the compiler to check the arguments in calls to @code{my_printf}
2378 for consistency with the @code{printf} style format string argument
2379 @code{my_format}.
2380
2381 The parameter @var{archetype} determines how the format string is
2382 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2383 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2384 @code{strfmon}. (You can also use @code{__printf__},
2385 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2386 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2387 @code{ms_strftime} are also present.
2388 @var{archtype} values such as @code{printf} refer to the formats accepted
2389 by the system's C run-time library, while @code{gnu_} values always refer
2390 to the formats accepted by the GNU C Library. On Microsoft Windows
2391 targets, @code{ms_} values refer to the formats accepted by the
2392 @file{msvcrt.dll} library.
2393 The parameter @var{string-index}
2394 specifies which argument is the format string argument (starting
2395 from 1), while @var{first-to-check} is the number of the first
2396 argument to check against the format string. For functions
2397 where the arguments are not available to be checked (such as
2398 @code{vprintf}), specify the third parameter as zero. In this case the
2399 compiler only checks the format string for consistency. For
2400 @code{strftime} formats, the third parameter is required to be zero.
2401 Since non-static C++ methods have an implicit @code{this} argument, the
2402 arguments of such methods should be counted from two, not one, when
2403 giving values for @var{string-index} and @var{first-to-check}.
2404
2405 In the example above, the format string (@code{my_format}) is the second
2406 argument of the function @code{my_print}, and the arguments to check
2407 start with the third argument, so the correct parameters for the format
2408 attribute are 2 and 3.
2409
2410 @opindex ffreestanding
2411 @opindex fno-builtin
2412 The @code{format} attribute allows you to identify your own functions
2413 which take format strings as arguments, so that GCC can check the
2414 calls to these functions for errors. The compiler always (unless
2415 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2416 for the standard library functions @code{printf}, @code{fprintf},
2417 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2418 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2419 warnings are requested (using @option{-Wformat}), so there is no need to
2420 modify the header file @file{stdio.h}. In C99 mode, the functions
2421 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2422 @code{vsscanf} are also checked. Except in strictly conforming C
2423 standard modes, the X/Open function @code{strfmon} is also checked as
2424 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2425 @xref{C Dialect Options,,Options Controlling C Dialect}.
2426
2427 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2428 recognized in the same context. Declarations including these format attributes
2429 will be parsed for correct syntax, however the result of checking of such format
2430 strings is not yet defined, and will not be carried out by this version of the
2431 compiler.
2432
2433 The target may also provide additional types of format checks.
2434 @xref{Target Format Checks,,Format Checks Specific to Particular
2435 Target Machines}.
2436
2437 @item format_arg (@var{string-index})
2438 @cindex @code{format_arg} function attribute
2439 @opindex Wformat-nonliteral
2440 The @code{format_arg} attribute specifies that a function takes a format
2441 string for a @code{printf}, @code{scanf}, @code{strftime} or
2442 @code{strfmon} style function and modifies it (for example, to translate
2443 it into another language), so the result can be passed to a
2444 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2445 function (with the remaining arguments to the format function the same
2446 as they would have been for the unmodified string). For example, the
2447 declaration:
2448
2449 @smallexample
2450 extern char *
2451 my_dgettext (char *my_domain, const char *my_format)
2452 __attribute__ ((format_arg (2)));
2453 @end smallexample
2454
2455 @noindent
2456 causes the compiler to check the arguments in calls to a @code{printf},
2457 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2458 format string argument is a call to the @code{my_dgettext} function, for
2459 consistency with the format string argument @code{my_format}. If the
2460 @code{format_arg} attribute had not been specified, all the compiler
2461 could tell in such calls to format functions would be that the format
2462 string argument is not constant; this would generate a warning when
2463 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2464 without the attribute.
2465
2466 The parameter @var{string-index} specifies which argument is the format
2467 string argument (starting from one). Since non-static C++ methods have
2468 an implicit @code{this} argument, the arguments of such methods should
2469 be counted from two.
2470
2471 The @code{format-arg} attribute allows you to identify your own
2472 functions which modify format strings, so that GCC can check the
2473 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2474 type function whose operands are a call to one of your own function.
2475 The compiler always treats @code{gettext}, @code{dgettext}, and
2476 @code{dcgettext} in this manner except when strict ISO C support is
2477 requested by @option{-ansi} or an appropriate @option{-std} option, or
2478 @option{-ffreestanding} or @option{-fno-builtin}
2479 is used. @xref{C Dialect Options,,Options
2480 Controlling C Dialect}.
2481
2482 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2483 @code{NSString} reference for compatibility with the @code{format} attribute
2484 above.
2485
2486 The target may also allow additional types in @code{format-arg} attributes.
2487 @xref{Target Format Checks,,Format Checks Specific to Particular
2488 Target Machines}.
2489
2490 @item function_vector
2491 @cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
2492 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2493 function should be called through the function vector. Calling a
2494 function through the function vector will reduce code size, however;
2495 the function vector has a limited size (maximum 128 entries on the H8/300
2496 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2497
2498 In SH2A target, this attribute declares a function to be called using the
2499 TBR relative addressing mode. The argument to this attribute is the entry
2500 number of the same function in a vector table containing all the TBR
2501 relative addressable functions. For the successful jump, register TBR
2502 should contain the start address of this TBR relative vector table.
2503 In the startup routine of the user application, user needs to care of this
2504 TBR register initialization. The TBR relative vector table can have at
2505 max 256 function entries. The jumps to these functions will be generated
2506 using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
2507 You must use GAS and GLD from GNU binutils version 2.7 or later for
2508 this attribute to work correctly.
2509
2510 Please refer the example of M16C target, to see the use of this
2511 attribute while declaring a function,
2512
2513 In an application, for a function being called once, this attribute will
2514 save at least 8 bytes of code; and if other successive calls are being
2515 made to the same function, it will save 2 bytes of code per each of these
2516 calls.
2517
2518 On M16C/M32C targets, the @code{function_vector} attribute declares a
2519 special page subroutine call function. Use of this attribute reduces
2520 the code size by 2 bytes for each call generated to the
2521 subroutine. The argument to the attribute is the vector number entry
2522 from the special page vector table which contains the 16 low-order
2523 bits of the subroutine's entry address. Each vector table has special
2524 page number (18 to 255) which are used in @code{jsrs} instruction.
2525 Jump addresses of the routines are generated by adding 0x0F0000 (in
2526 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2527 byte addresses set in the vector table. Therefore you need to ensure
2528 that all the special page vector routines should get mapped within the
2529 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2530 (for M32C).
2531
2532 In the following example 2 bytes will be saved for each call to
2533 function @code{foo}.
2534
2535 @smallexample
2536 void foo (void) __attribute__((function_vector(0x18)));
2537 void foo (void)
2538 @{
2539 @}
2540
2541 void bar (void)
2542 @{
2543 foo();
2544 @}
2545 @end smallexample
2546
2547 If functions are defined in one file and are called in another file,
2548 then be sure to write this declaration in both files.
2549
2550 This attribute is ignored for R8C target.
2551
2552 @item interrupt
2553 @cindex interrupt handler functions
2554 Use this attribute on the ARM, AVR, M32C, M32R/D, m68k, MeP, MIPS,
2555 RX and Xstormy16 ports to indicate that the specified function is an
2556 interrupt handler. The compiler will generate function entry and exit
2557 sequences suitable for use in an interrupt handler when this attribute
2558 is present.
2559
2560 Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2561 and SH processors can be specified via the @code{interrupt_handler} attribute.
2562
2563 Note, on the AVR, interrupts will be enabled inside the function.
2564
2565 Note, for the ARM, you can specify the kind of interrupt to be handled by
2566 adding an optional parameter to the interrupt attribute like this:
2567
2568 @smallexample
2569 void f () __attribute__ ((interrupt ("IRQ")));
2570 @end smallexample
2571
2572 Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
2573
2574 On ARMv7-M the interrupt type is ignored, and the attribute means the function
2575 may be called with a word aligned stack pointer.
2576
2577 On MIPS targets, you can use the following attributes to modify the behavior
2578 of an interrupt handler:
2579 @table @code
2580 @item use_shadow_register_set
2581 @cindex @code{use_shadow_register_set} attribute
2582 Assume that the handler uses a shadow register set, instead of
2583 the main general-purpose registers.
2584
2585 @item keep_interrupts_masked
2586 @cindex @code{keep_interrupts_masked} attribute
2587 Keep interrupts masked for the whole function. Without this attribute,
2588 GCC tries to reenable interrupts for as much of the function as it can.
2589
2590 @item use_debug_exception_return
2591 @cindex @code{use_debug_exception_return} attribute
2592 Return using the @code{deret} instruction. Interrupt handlers that don't
2593 have this attribute return using @code{eret} instead.
2594 @end table
2595
2596 You can use any combination of these attributes, as shown below:
2597 @smallexample
2598 void __attribute__ ((interrupt)) v0 ();
2599 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
2600 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
2601 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
2602 void __attribute__ ((interrupt, use_shadow_register_set,
2603 keep_interrupts_masked)) v4 ();
2604 void __attribute__ ((interrupt, use_shadow_register_set,
2605 use_debug_exception_return)) v5 ();
2606 void __attribute__ ((interrupt, keep_interrupts_masked,
2607 use_debug_exception_return)) v6 ();
2608 void __attribute__ ((interrupt, use_shadow_register_set,
2609 keep_interrupts_masked,
2610 use_debug_exception_return)) v7 ();
2611 @end smallexample
2612
2613 @item ifunc ("@var{resolver}")
2614 @cindex @code{ifunc} attribute
2615 The @code{ifunc} attribute is used to mark a function as an indirect
2616 function using the STT_GNU_IFUNC symbol type extension to the ELF
2617 standard. This allows the resolution of the symbol value to be
2618 determined dynamically at load time, and an optimized version of the
2619 routine can be selected for the particular processor or other system
2620 characteristics determined then. To use this attribute, first define
2621 the implementation functions available, and a resolver function that
2622 returns a pointer to the selected implementation function. The
2623 implementation functions' declarations must match the API of the
2624 function being implemented, the resolver's declaration is be a
2625 function returning pointer to void function returning void:
2626
2627 @smallexample
2628 void *my_memcpy (void *dst, const void *src, size_t len)
2629 @{
2630 @dots{}
2631 @}
2632
2633 static void (*resolve_memcpy (void)) (void)
2634 @{
2635 return my_memcpy; // we'll just always select this routine
2636 @}
2637 @end smallexample
2638
2639 The exported header file declaring the function the user calls would
2640 contain:
2641
2642 @smallexample
2643 extern void *memcpy (void *, const void *, size_t);
2644 @end smallexample
2645
2646 allowing the user to call this as a regular function, unaware of the
2647 implementation. Finally, the indirect function needs to be defined in
2648 the same translation unit as the resolver function:
2649
2650 @smallexample
2651 void *memcpy (void *, const void *, size_t)
2652 __attribute__ ((ifunc ("resolve_memcpy")));
2653 @end smallexample
2654
2655 Indirect functions cannot be weak, and require a recent binutils (at
2656 least version 2.20.1), and GNU C library (at least version 2.11.1).
2657
2658 @item interrupt_handler
2659 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2660 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2661 indicate that the specified function is an interrupt handler. The compiler
2662 will generate function entry and exit sequences suitable for use in an
2663 interrupt handler when this attribute is present.
2664
2665 @item interrupt_thread
2666 @cindex interrupt thread functions on fido
2667 Use this attribute on fido, a subarchitecture of the m68k, to indicate
2668 that the specified function is an interrupt handler that is designed
2669 to run as a thread. The compiler omits generate prologue/epilogue
2670 sequences and replaces the return instruction with a @code{sleep}
2671 instruction. This attribute is available only on fido.
2672
2673 @item isr
2674 @cindex interrupt service routines on ARM
2675 Use this attribute on ARM to write Interrupt Service Routines. This is an
2676 alias to the @code{interrupt} attribute above.
2677
2678 @item kspisusp
2679 @cindex User stack pointer in interrupts on the Blackfin
2680 When used together with @code{interrupt_handler}, @code{exception_handler}
2681 or @code{nmi_handler}, code will be generated to load the stack pointer
2682 from the USP register in the function prologue.
2683
2684 @item l1_text
2685 @cindex @code{l1_text} function attribute
2686 This attribute specifies a function to be placed into L1 Instruction
2687 SRAM@. The function will be put into a specific section named @code{.l1.text}.
2688 With @option{-mfdpic}, function calls with a such function as the callee
2689 or caller will use inlined PLT.
2690
2691 @item l2
2692 @cindex @code{l2} function attribute
2693 On the Blackfin, this attribute specifies a function to be placed into L2
2694 SRAM. The function will be put into a specific section named
2695 @code{.l1.text}. With @option{-mfdpic}, callers of such functions will use
2696 an inlined PLT.
2697
2698 @item leaf
2699 @cindex @code{leaf} function attribute
2700 Calls to external functions with this attribute must return to the current
2701 compilation unit only by return or by exception handling. In particular, leaf
2702 functions are not allowed to call callback function passed to it from the current
2703 compilation unit or directly call functions exported by the unit or longjmp
2704 into the unit. Leaf function might still call functions from other compilation
2705 units and thus they are not necessarily leaf in the sense that they contain no
2706 function calls at all.
2707
2708 The attribute is intended for library functions to improve dataflow analysis.
2709 The compiler takes the hint that any data not escaping the current compilation unit can
2710 not be used or modified by the leaf function. For example, the @code{sin} function
2711 is a leaf function, but @code{qsort} is not.
2712
2713 Note that leaf functions might invoke signals and signal handlers might be
2714 defined in the current compilation unit and use static variables. The only
2715 compliant way to write such a signal handler is to declare such variables
2716 @code{volatile}.
2717
2718 The attribute has no effect on functions defined within the current compilation
2719 unit. This is to allow easy merging of multiple compilation units into one,
2720 for example, by using the link time optimization. For this reason the
2721 attribute is not allowed on types to annotate indirect calls.
2722
2723 @item long_call/short_call
2724 @cindex indirect calls on ARM
2725 This attribute specifies how a particular function is called on
2726 ARM@. Both attributes override the @option{-mlong-calls} (@pxref{ARM Options})
2727 command-line switch and @code{#pragma long_calls} settings. The
2728 @code{long_call} attribute indicates that the function might be far
2729 away from the call site and require a different (more expensive)
2730 calling sequence. The @code{short_call} attribute always places
2731 the offset to the function from the call site into the @samp{BL}
2732 instruction directly.
2733
2734 @item longcall/shortcall
2735 @cindex functions called via pointer on the RS/6000 and PowerPC
2736 On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2737 indicates that the function might be far away from the call site and
2738 require a different (more expensive) calling sequence. The
2739 @code{shortcall} attribute indicates that the function is always close
2740 enough for the shorter calling sequence to be used. These attributes
2741 override both the @option{-mlongcall} switch and, on the RS/6000 and
2742 PowerPC, the @code{#pragma longcall} setting.
2743
2744 @xref{RS/6000 and PowerPC Options}, for more information on whether long
2745 calls are necessary.
2746
2747 @item long_call/near/far
2748 @cindex indirect calls on MIPS
2749 These attributes specify how a particular function is called on MIPS@.
2750 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2751 command-line switch. The @code{long_call} and @code{far} attributes are
2752 synonyms, and cause the compiler to always call
2753 the function by first loading its address into a register, and then using
2754 the contents of that register. The @code{near} attribute has the opposite
2755 effect; it specifies that non-PIC calls should be made using the more
2756 efficient @code{jal} instruction.
2757
2758 @item malloc
2759 @cindex @code{malloc} attribute
2760 The @code{malloc} attribute is used to tell the compiler that a function
2761 may be treated as if any non-@code{NULL} pointer it returns cannot
2762 alias any other pointer valid when the function returns.
2763 This will often improve optimization.
2764 Standard functions with this property include @code{malloc} and
2765 @code{calloc}. @code{realloc}-like functions have this property as
2766 long as the old pointer is never referred to (including comparing it
2767 to the new pointer) after the function returns a non-@code{NULL}
2768 value.
2769
2770 @item mips16/nomips16
2771 @cindex @code{mips16} attribute
2772 @cindex @code{nomips16} attribute
2773
2774 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2775 function attributes to locally select or turn off MIPS16 code generation.
2776 A function with the @code{mips16} attribute is emitted as MIPS16 code,
2777 while MIPS16 code generation is disabled for functions with the
2778 @code{nomips16} attribute. These attributes override the
2779 @option{-mips16} and @option{-mno-mips16} options on the command line
2780 (@pxref{MIPS Options}).
2781
2782 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2783 preprocessor symbol @code{__mips16} reflects the setting on the command line,
2784 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2785 may interact badly with some GCC extensions such as @code{__builtin_apply}
2786 (@pxref{Constructing Calls}).
2787
2788 @item model (@var{model-name})
2789 @cindex function addressability on the M32R/D
2790 @cindex variable addressability on the IA-64
2791
2792 On the M32R/D, use this attribute to set the addressability of an
2793 object, and of the code generated for a function. The identifier
2794 @var{model-name} is one of @code{small}, @code{medium}, or
2795 @code{large}, representing each of the code models.
2796
2797 Small model objects live in the lower 16MB of memory (so that their
2798 addresses can be loaded with the @code{ld24} instruction), and are
2799 callable with the @code{bl} instruction.
2800
2801 Medium model objects may live anywhere in the 32-bit address space (the
2802 compiler will generate @code{seth/add3} instructions to load their addresses),
2803 and are callable with the @code{bl} instruction.
2804
2805 Large model objects may live anywhere in the 32-bit address space (the
2806 compiler will generate @code{seth/add3} instructions to load their addresses),
2807 and may not be reachable with the @code{bl} instruction (the compiler will
2808 generate the much slower @code{seth/add3/jl} instruction sequence).
2809
2810 On IA-64, use this attribute to set the addressability of an object.
2811 At present, the only supported identifier for @var{model-name} is
2812 @code{small}, indicating addressability via ``small'' (22-bit)
2813 addresses (so that their addresses can be loaded with the @code{addl}
2814 instruction). Caveat: such addressing is by definition not position
2815 independent and hence this attribute must not be used for objects
2816 defined by shared libraries.
2817
2818 @item ms_abi/sysv_abi
2819 @cindex @code{ms_abi} attribute
2820 @cindex @code{sysv_abi} attribute
2821
2822 On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
2823 to indicate which calling convention should be used for a function. The
2824 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
2825 while the @code{sysv_abi} attribute tells the compiler to use the ABI
2826 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
2827 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
2828
2829 Note, the @code{ms_abi} attribute for Windows 64-bit targets currently
2830 requires the @option{-maccumulate-outgoing-args} option.
2831
2832 @item callee_pop_aggregate_return (@var{number})
2833 @cindex @code{callee_pop_aggregate_return} attribute
2834
2835 On 32-bit i?86-*-* targets, you can control by those attribute for
2836 aggregate return in memory, if the caller is responsible to pop the hidden
2837 pointer together with the rest of the arguments - @var{number} equal to
2838 zero -, or if the callee is responsible to pop hidden pointer - @var{number}
2839 equal to one. The default i386 ABI assumes that the callee pops the
2840 stack for hidden pointer.
2841
2842 Note, that on 32-bit i386 Windows targets the compiler assumes that the
2843 caller pops the stack for hidden pointer.
2844
2845 @item ms_hook_prologue
2846 @cindex @code{ms_hook_prologue} attribute
2847
2848 On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
2849 this function attribute to make gcc generate the "hot-patching" function
2850 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
2851 and newer.
2852
2853 @item naked
2854 @cindex function without a prologue/epilogue code
2855 Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
2856 the specified function does not need prologue/epilogue sequences generated by
2857 the compiler. It is up to the programmer to provide these sequences. The
2858 only statements that can be safely included in naked functions are
2859 @code{asm} statements that do not have operands. All other statements,
2860 including declarations of local variables, @code{if} statements, and so
2861 forth, should be avoided. Naked functions should be used to implement the
2862 body of an assembly function, while allowing the compiler to construct
2863 the requisite function declaration for the assembler.
2864
2865 @item near
2866 @cindex functions which do not handle memory bank switching on 68HC11/68HC12
2867 On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
2868 use the normal calling convention based on @code{jsr} and @code{rts}.
2869 This attribute can be used to cancel the effect of the @option{-mlong-calls}
2870 option.
2871
2872 On MeP targets this attribute causes the compiler to assume the called
2873 function is close enough to use the normal calling convention,
2874 overriding the @code{-mtf} command line option.
2875
2876 @item nesting
2877 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
2878 Use this attribute together with @code{interrupt_handler},
2879 @code{exception_handler} or @code{nmi_handler} to indicate that the function
2880 entry code should enable nested interrupts or exceptions.
2881
2882 @item nmi_handler
2883 @cindex NMI handler functions on the Blackfin processor
2884 Use this attribute on the Blackfin to indicate that the specified function
2885 is an NMI handler. The compiler will generate function entry and
2886 exit sequences suitable for use in an NMI handler when this
2887 attribute is present.
2888
2889 @item no_instrument_function
2890 @cindex @code{no_instrument_function} function attribute
2891 @opindex finstrument-functions
2892 If @option{-finstrument-functions} is given, profiling function calls will
2893 be generated at entry and exit of most user-compiled functions.
2894 Functions with this attribute will not be so instrumented.
2895
2896 @item no_split_stack
2897 @cindex @code{no_split_stack} function attribute
2898 @opindex fsplit-stack
2899 If @option{-fsplit-stack} is given, functions will have a small
2900 prologue which decides whether to split the stack. Functions with the
2901 @code{no_split_stack} attribute will not have that prologue, and thus
2902 may run with only a small amount of stack space available.
2903
2904 @item noinline
2905 @cindex @code{noinline} function attribute
2906 This function attribute prevents a function from being considered for
2907 inlining.
2908 @c Don't enumerate the optimizations by name here; we try to be
2909 @c future-compatible with this mechanism.
2910 If the function does not have side-effects, there are optimizations
2911 other than inlining that causes function calls to be optimized away,
2912 although the function call is live. To keep such calls from being
2913 optimized away, put
2914 @smallexample
2915 asm ("");
2916 @end smallexample
2917 (@pxref{Extended Asm}) in the called function, to serve as a special
2918 side-effect.
2919
2920 @item noclone
2921 @cindex @code{noclone} function attribute
2922 This function attribute prevents a function from being considered for
2923 cloning - a mechanism which produces specialized copies of functions
2924 and which is (currently) performed by interprocedural constant
2925 propagation.
2926
2927 @item nonnull (@var{arg-index}, @dots{})
2928 @cindex @code{nonnull} function attribute
2929 The @code{nonnull} attribute specifies that some function parameters should
2930 be non-null pointers. For instance, the declaration:
2931
2932 @smallexample
2933 extern void *
2934 my_memcpy (void *dest, const void *src, size_t len)
2935 __attribute__((nonnull (1, 2)));
2936 @end smallexample
2937
2938 @noindent
2939 causes the compiler to check that, in calls to @code{my_memcpy},
2940 arguments @var{dest} and @var{src} are non-null. If the compiler
2941 determines that a null pointer is passed in an argument slot marked
2942 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2943 is issued. The compiler may also choose to make optimizations based
2944 on the knowledge that certain function arguments will not be null.
2945
2946 If no argument index list is given to the @code{nonnull} attribute,
2947 all pointer arguments are marked as non-null. To illustrate, the
2948 following declaration is equivalent to the previous example:
2949
2950 @smallexample
2951 extern void *
2952 my_memcpy (void *dest, const void *src, size_t len)
2953 __attribute__((nonnull));
2954 @end smallexample
2955
2956 @item noreturn
2957 @cindex @code{noreturn} function attribute
2958 A few standard library functions, such as @code{abort} and @code{exit},
2959 cannot return. GCC knows this automatically. Some programs define
2960 their own functions that never return. You can declare them
2961 @code{noreturn} to tell the compiler this fact. For example,
2962
2963 @smallexample
2964 @group
2965 void fatal () __attribute__ ((noreturn));
2966
2967 void
2968 fatal (/* @r{@dots{}} */)
2969 @{
2970 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
2971 exit (1);
2972 @}
2973 @end group
2974 @end smallexample
2975
2976 The @code{noreturn} keyword tells the compiler to assume that
2977 @code{fatal} cannot return. It can then optimize without regard to what
2978 would happen if @code{fatal} ever did return. This makes slightly
2979 better code. More importantly, it helps avoid spurious warnings of
2980 uninitialized variables.
2981
2982 The @code{noreturn} keyword does not affect the exceptional path when that
2983 applies: a @code{noreturn}-marked function may still return to the caller
2984 by throwing an exception or calling @code{longjmp}.
2985
2986 Do not assume that registers saved by the calling function are
2987 restored before calling the @code{noreturn} function.
2988
2989 It does not make sense for a @code{noreturn} function to have a return
2990 type other than @code{void}.
2991
2992 The attribute @code{noreturn} is not implemented in GCC versions
2993 earlier than 2.5. An alternative way to declare that a function does
2994 not return, which works in the current version and in some older
2995 versions, is as follows:
2996
2997 @smallexample
2998 typedef void voidfn ();
2999
3000 volatile voidfn fatal;
3001 @end smallexample
3002
3003 This approach does not work in GNU C++.
3004
3005 @item nothrow
3006 @cindex @code{nothrow} function attribute
3007 The @code{nothrow} attribute is used to inform the compiler that a
3008 function cannot throw an exception. For example, most functions in
3009 the standard C library can be guaranteed not to throw an exception
3010 with the notable exceptions of @code{qsort} and @code{bsearch} that
3011 take function pointer arguments. The @code{nothrow} attribute is not
3012 implemented in GCC versions earlier than 3.3.
3013
3014 @item optimize
3015 @cindex @code{optimize} function attribute
3016 The @code{optimize} attribute is used to specify that a function is to
3017 be compiled with different optimization options than specified on the
3018 command line. Arguments can either be numbers or strings. Numbers
3019 are assumed to be an optimization level. Strings that begin with
3020 @code{O} are assumed to be an optimization option, while other options
3021 are assumed to be used with a @code{-f} prefix. You can also use the
3022 @samp{#pragma GCC optimize} pragma to set the optimization options
3023 that affect more than one function.
3024 @xref{Function Specific Option Pragmas}, for details about the
3025 @samp{#pragma GCC optimize} pragma.
3026
3027 This can be used for instance to have frequently executed functions
3028 compiled with more aggressive optimization options that produce faster
3029 and larger code, while other functions can be called with less
3030 aggressive options.
3031
3032 @item pcs
3033 @cindex @code{pcs} function attribute
3034
3035 The @code{pcs} attribute can be used to control the calling convention
3036 used for a function on ARM. The attribute takes an argument that specifies
3037 the calling convention to use.
3038
3039 When compiling using the AAPCS ABI (or a variant of that) then valid
3040 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3041 order to use a variant other than @code{"aapcs"} then the compiler must
3042 be permitted to use the appropriate co-processor registers (i.e., the
3043 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3044 For example,
3045
3046 @smallexample
3047 /* Argument passed in r0, and result returned in r0+r1. */
3048 double f2d (float) __attribute__((pcs("aapcs")));
3049 @end smallexample
3050
3051 Variadic functions always use the @code{"aapcs"} calling convention and
3052 the compiler will reject attempts to specify an alternative.
3053
3054 @item pure
3055 @cindex @code{pure} function attribute
3056 Many functions have no effects except the return value and their
3057 return value depends only on the parameters and/or global variables.
3058 Such a function can be subject
3059 to common subexpression elimination and loop optimization just as an
3060 arithmetic operator would be. These functions should be declared
3061 with the attribute @code{pure}. For example,
3062
3063 @smallexample
3064 int square (int) __attribute__ ((pure));
3065 @end smallexample
3066
3067 @noindent
3068 says that the hypothetical function @code{square} is safe to call
3069 fewer times than the program says.
3070
3071 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3072 Interesting non-pure functions are functions with infinite loops or those
3073 depending on volatile memory or other system resource, that may change between
3074 two consecutive calls (such as @code{feof} in a multithreading environment).
3075
3076 The attribute @code{pure} is not implemented in GCC versions earlier
3077 than 2.96.
3078
3079 @item hot
3080 @cindex @code{hot} function attribute
3081 The @code{hot} attribute is used to inform the compiler that a function is a
3082 hot spot of the compiled program. The function is optimized more aggressively
3083 and on many target it is placed into special subsection of the text section so
3084 all hot functions appears close together improving locality.
3085
3086 When profile feedback is available, via @option{-fprofile-use}, hot functions
3087 are automatically detected and this attribute is ignored.
3088
3089 The @code{hot} attribute is not implemented in GCC versions earlier
3090 than 4.3.
3091
3092 @item cold
3093 @cindex @code{cold} function attribute
3094 The @code{cold} attribute is used to inform the compiler that a function is
3095 unlikely executed. The function is optimized for size rather than speed and on
3096 many targets it is placed into special subsection of the text section so all
3097 cold functions appears close together improving code locality of non-cold parts
3098 of program. The paths leading to call of cold functions within code are marked
3099 as unlikely by the branch prediction mechanism. It is thus useful to mark
3100 functions used to handle unlikely conditions, such as @code{perror}, as cold to
3101 improve optimization of hot functions that do call marked functions in rare
3102 occasions.
3103
3104 When profile feedback is available, via @option{-fprofile-use}, hot functions
3105 are automatically detected and this attribute is ignored.
3106
3107 The @code{cold} attribute is not implemented in GCC versions earlier than 4.3.
3108
3109 @item regparm (@var{number})
3110 @cindex @code{regparm} attribute
3111 @cindex functions that are passed arguments in registers on the 386
3112 On the Intel 386, the @code{regparm} attribute causes the compiler to
3113 pass arguments number one to @var{number} if they are of integral type
3114 in registers EAX, EDX, and ECX instead of on the stack. Functions that
3115 take a variable number of arguments will continue to be passed all of their
3116 arguments on the stack.
3117
3118 Beware that on some ELF systems this attribute is unsuitable for
3119 global functions in shared libraries with lazy binding (which is the
3120 default). Lazy binding will send the first call via resolving code in
3121 the loader, which might assume EAX, EDX and ECX can be clobbered, as
3122 per the standard calling conventions. Solaris 8 is affected by this.
3123 GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
3124 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
3125 disabled with the linker or the loader if desired, to avoid the
3126 problem.)
3127
3128 @item sseregparm
3129 @cindex @code{sseregparm} attribute
3130 On the Intel 386 with SSE support, the @code{sseregparm} attribute
3131 causes the compiler to pass up to 3 floating point arguments in
3132 SSE registers instead of on the stack. Functions that take a
3133 variable number of arguments will continue to pass all of their
3134 floating point arguments on the stack.
3135
3136 @item force_align_arg_pointer
3137 @cindex @code{force_align_arg_pointer} attribute
3138 On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3139 applied to individual function definitions, generating an alternate
3140 prologue and epilogue that realigns the runtime stack if necessary.
3141 This supports mixing legacy codes that run with a 4-byte aligned stack
3142 with modern codes that keep a 16-byte stack for SSE compatibility.
3143
3144 @item resbank
3145 @cindex @code{resbank} attribute
3146 On the SH2A target, this attribute enables the high-speed register
3147 saving and restoration using a register bank for @code{interrupt_handler}
3148 routines. Saving to the bank is performed automatically after the CPU
3149 accepts an interrupt that uses a register bank.
3150
3151 The nineteen 32-bit registers comprising general register R0 to R14,
3152 control register GBR, and system registers MACH, MACL, and PR and the
3153 vector table address offset are saved into a register bank. Register
3154 banks are stacked in first-in last-out (FILO) sequence. Restoration
3155 from the bank is executed by issuing a RESBANK instruction.
3156
3157 @item returns_twice
3158 @cindex @code{returns_twice} attribute
3159 The @code{returns_twice} attribute tells the compiler that a function may
3160 return more than one time. The compiler will ensure that all registers
3161 are dead before calling such a function and will emit a warning about
3162 the variables that may be clobbered after the second return from the
3163 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3164 The @code{longjmp}-like counterpart of such function, if any, might need
3165 to be marked with the @code{noreturn} attribute.
3166
3167 @item saveall
3168 @cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3169 Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
3170 all registers except the stack pointer should be saved in the prologue
3171 regardless of whether they are used or not.
3172
3173 @item save_volatiles
3174 @cindex save volatile registers on the MicroBlaze
3175 Use this attribute on the MicroBlaze to indicate that the function is
3176 an interrupt handler. All volatile registers (in addition to non-volatile
3177 registers) will be saved in the function prologue. If the function is a leaf
3178 function, only volatiles used by the function are saved. A normal function
3179 return is generated instead of a return from interrupt.
3180
3181 @item section ("@var{section-name}")
3182 @cindex @code{section} function attribute
3183 Normally, the compiler places the code it generates in the @code{text} section.
3184 Sometimes, however, you need additional sections, or you need certain
3185 particular functions to appear in special sections. The @code{section}
3186 attribute specifies that a function lives in a particular section.
3187 For example, the declaration:
3188
3189 @smallexample
3190 extern void foobar (void) __attribute__ ((section ("bar")));
3191 @end smallexample
3192
3193 @noindent
3194 puts the function @code{foobar} in the @code{bar} section.
3195
3196 Some file formats do not support arbitrary sections so the @code{section}
3197 attribute is not available on all platforms.
3198 If you need to map the entire contents of a module to a particular
3199 section, consider using the facilities of the linker instead.
3200
3201 @item sentinel
3202 @cindex @code{sentinel} function attribute
3203 This function attribute ensures that a parameter in a function call is
3204 an explicit @code{NULL}. The attribute is only valid on variadic
3205 functions. By default, the sentinel is located at position zero, the
3206 last parameter of the function call. If an optional integer position
3207 argument P is supplied to the attribute, the sentinel must be located at
3208 position P counting backwards from the end of the argument list.
3209
3210 @smallexample
3211 __attribute__ ((sentinel))
3212 is equivalent to
3213 __attribute__ ((sentinel(0)))
3214 @end smallexample
3215
3216 The attribute is automatically set with a position of 0 for the built-in
3217 functions @code{execl} and @code{execlp}. The built-in function
3218 @code{execle} has the attribute set with a position of 1.
3219
3220 A valid @code{NULL} in this context is defined as zero with any pointer
3221 type. If your system defines the @code{NULL} macro with an integer type
3222 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3223 with a copy that redefines NULL appropriately.
3224
3225 The warnings for missing or incorrect sentinels are enabled with
3226 @option{-Wformat}.
3227
3228 @item short_call
3229 See long_call/short_call.
3230
3231 @item shortcall
3232 See longcall/shortcall.
3233
3234 @item signal
3235 @cindex signal handler functions on the AVR processors
3236 Use this attribute on the AVR to indicate that the specified
3237 function is a signal handler. The compiler will generate function
3238 entry and exit sequences suitable for use in a signal handler when this
3239 attribute is present. Interrupts will be disabled inside the function.
3240
3241 @item sp_switch
3242 Use this attribute on the SH to indicate an @code{interrupt_handler}
3243 function should switch to an alternate stack. It expects a string
3244 argument that names a global variable holding the address of the
3245 alternate stack.
3246
3247 @smallexample
3248 void *alt_stack;
3249 void f () __attribute__ ((interrupt_handler,
3250 sp_switch ("alt_stack")));
3251 @end smallexample
3252
3253 @item stdcall
3254 @cindex functions that pop the argument stack on the 386
3255 On the Intel 386, the @code{stdcall} attribute causes the compiler to
3256 assume that the called function will pop off the stack space used to
3257 pass arguments, unless it takes a variable number of arguments.
3258
3259 @item syscall_linkage
3260 @cindex @code{syscall_linkage} attribute
3261 This attribute is used to modify the IA64 calling convention by marking
3262 all input registers as live at all function exits. This makes it possible
3263 to restart a system call after an interrupt without having to save/restore
3264 the input registers. This also prevents kernel data from leaking into
3265 application code.
3266
3267 @item target
3268 @cindex @code{target} function attribute
3269 The @code{target} attribute is used to specify that a function is to
3270 be compiled with different target options than specified on the
3271 command line. This can be used for instance to have functions
3272 compiled with a different ISA (instruction set architecture) than the
3273 default. You can also use the @samp{#pragma GCC target} pragma to set
3274 more than one function to be compiled with specific target options.
3275 @xref{Function Specific Option Pragmas}, for details about the
3276 @samp{#pragma GCC target} pragma.
3277
3278 For instance on a 386, you could compile one function with
3279 @code{target("sse4.1,arch=core2")} and another with
3280 @code{target("sse4a,arch=amdfam10")} that would be equivalent to
3281 compiling the first function with @option{-msse4.1} and
3282 @option{-march=core2} options, and the second function with
3283 @option{-msse4a} and @option{-march=amdfam10} options. It is up to the
3284 user to make sure that a function is only invoked on a machine that
3285 supports the particular ISA it was compiled for (for example by using
3286 @code{cpuid} on 386 to determine what feature bits and architecture
3287 family are used).
3288
3289 @smallexample
3290 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3291 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3292 @end smallexample
3293
3294 On the 386, the following options are allowed:
3295
3296 @table @samp
3297 @item abm
3298 @itemx no-abm
3299 @cindex @code{target("abm")} attribute
3300 Enable/disable the generation of the advanced bit instructions.
3301
3302 @item aes
3303 @itemx no-aes
3304 @cindex @code{target("aes")} attribute
3305 Enable/disable the generation of the AES instructions.
3306
3307 @item mmx
3308 @itemx no-mmx
3309 @cindex @code{target("mmx")} attribute
3310 Enable/disable the generation of the MMX instructions.
3311
3312 @item pclmul
3313 @itemx no-pclmul
3314 @cindex @code{target("pclmul")} attribute
3315 Enable/disable the generation of the PCLMUL instructions.
3316
3317 @item popcnt
3318 @itemx no-popcnt
3319 @cindex @code{target("popcnt")} attribute
3320 Enable/disable the generation of the POPCNT instruction.
3321
3322 @item sse
3323 @itemx no-sse
3324 @cindex @code{target("sse")} attribute
3325 Enable/disable the generation of the SSE instructions.
3326
3327 @item sse2
3328 @itemx no-sse2
3329 @cindex @code{target("sse2")} attribute
3330 Enable/disable the generation of the SSE2 instructions.
3331
3332 @item sse3
3333 @itemx no-sse3
3334 @cindex @code{target("sse3")} attribute
3335 Enable/disable the generation of the SSE3 instructions.
3336
3337 @item sse4
3338 @itemx no-sse4
3339 @cindex @code{target("sse4")} attribute
3340 Enable/disable the generation of the SSE4 instructions (both SSE4.1
3341 and SSE4.2).
3342
3343 @item sse4.1
3344 @itemx no-sse4.1
3345 @cindex @code{target("sse4.1")} attribute
3346 Enable/disable the generation of the sse4.1 instructions.
3347
3348 @item sse4.2
3349 @itemx no-sse4.2
3350 @cindex @code{target("sse4.2")} attribute
3351 Enable/disable the generation of the sse4.2 instructions.
3352
3353 @item sse4a
3354 @itemx no-sse4a
3355 @cindex @code{target("sse4a")} attribute
3356 Enable/disable the generation of the SSE4A instructions.
3357
3358 @item fma4
3359 @itemx no-fma4
3360 @cindex @code{target("fma4")} attribute
3361 Enable/disable the generation of the FMA4 instructions.
3362
3363 @item xop
3364 @itemx no-xop
3365 @cindex @code{target("xop")} attribute
3366 Enable/disable the generation of the XOP instructions.
3367
3368 @item lwp
3369 @itemx no-lwp
3370 @cindex @code{target("lwp")} attribute
3371 Enable/disable the generation of the LWP instructions.
3372
3373 @item ssse3
3374 @itemx no-ssse3
3375 @cindex @code{target("ssse3")} attribute
3376 Enable/disable the generation of the SSSE3 instructions.
3377
3378 @item cld
3379 @itemx no-cld
3380 @cindex @code{target("cld")} attribute
3381 Enable/disable the generation of the CLD before string moves.
3382
3383 @item fancy-math-387
3384 @itemx no-fancy-math-387
3385 @cindex @code{target("fancy-math-387")} attribute
3386 Enable/disable the generation of the @code{sin}, @code{cos}, and
3387 @code{sqrt} instructions on the 387 floating point unit.
3388
3389 @item fused-madd
3390 @itemx no-fused-madd
3391 @cindex @code{target("fused-madd")} attribute
3392 Enable/disable the generation of the fused multiply/add instructions.
3393
3394 @item ieee-fp
3395 @itemx no-ieee-fp
3396 @cindex @code{target("ieee-fp")} attribute
3397 Enable/disable the generation of floating point that depends on IEEE arithmetic.
3398
3399 @item inline-all-stringops
3400 @itemx no-inline-all-stringops
3401 @cindex @code{target("inline-all-stringops")} attribute
3402 Enable/disable inlining of string operations.
3403
3404 @item inline-stringops-dynamically
3405 @itemx no-inline-stringops-dynamically
3406 @cindex @code{target("inline-stringops-dynamically")} attribute
3407 Enable/disable the generation of the inline code to do small string
3408 operations and calling the library routines for large operations.
3409
3410 @item align-stringops
3411 @itemx no-align-stringops
3412 @cindex @code{target("align-stringops")} attribute
3413 Do/do not align destination of inlined string operations.
3414
3415 @item recip
3416 @itemx no-recip
3417 @cindex @code{target("recip")} attribute
3418 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
3419 instructions followed an additional Newton-Raphson step instead of
3420 doing a floating point division.
3421
3422 @item arch=@var{ARCH}
3423 @cindex @code{target("arch=@var{ARCH}")} attribute
3424 Specify the architecture to generate code for in compiling the function.
3425
3426 @item tune=@var{TUNE}
3427 @cindex @code{target("tune=@var{TUNE}")} attribute
3428 Specify the architecture to tune for in compiling the function.
3429
3430 @item fpmath=@var{FPMATH}
3431 @cindex @code{target("fpmath=@var{FPMATH}")} attribute
3432 Specify which floating point unit to use. The
3433 @code{target("fpmath=sse,387")} option must be specified as
3434 @code{target("fpmath=sse+387")} because the comma would separate
3435 different options.
3436 @end table
3437
3438 On the PowerPC, the following options are allowed:
3439
3440 @table @samp
3441 @item altivec
3442 @itemx no-altivec
3443 @cindex @code{target("altivec")} attribute
3444 Generate code that uses (does not use) AltiVec instructions. In
3445 32-bit code, you cannot enable Altivec instructions unless
3446 @option{-mabi=altivec} was used on the command line.
3447
3448 @item cmpb
3449 @itemx no-cmpb
3450 @cindex @code{target("cmpb")} attribute
3451 Generate code that uses (does not use) the compare bytes instruction
3452 implemented on the POWER6 processor and other processors that support
3453 the PowerPC V2.05 architecture.
3454
3455 @item dlmzb
3456 @itemx no-dlmzb
3457 @cindex @code{target("dlmzb")} attribute
3458 Generate code that uses (does not use) the string-search @samp{dlmzb}
3459 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
3460 generated by default when targetting those processors.
3461
3462 @item fprnd
3463 @itemx no-fprnd
3464 @cindex @code{target("fprnd")} attribute
3465 Generate code that uses (does not use) the FP round to integer
3466 instructions implemented on the POWER5+ processor and other processors
3467 that support the PowerPC V2.03 architecture.
3468
3469 @item hard-dfp
3470 @itemx no-hard-dfp
3471 @cindex @code{target("hard-dfp")} attribute
3472 Generate code that uses (does not use) the decimal floating point
3473 instructions implemented on some POWER processors.
3474
3475 @item isel
3476 @itemx no-isel
3477 @cindex @code{target("isel")} attribute
3478 Generate code that uses (does not use) ISEL instruction.
3479
3480 @item mfcrf
3481 @itemx no-mfcrf
3482 @cindex @code{target("mfcrf")} attribute
3483 Generate code that uses (does not use) the move from condition
3484 register field instruction implemented on the POWER4 processor and
3485 other processors that support the PowerPC V2.01 architecture.
3486
3487 @item mfpgpr
3488 @itemx no-mfpgpr
3489 @cindex @code{target("mfpgpr")} attribute
3490 Generate code that uses (does not use) the FP move to/from general
3491 purpose register instructions implemented on the POWER6X processor and
3492 other processors that support the extended PowerPC V2.05 architecture.
3493
3494 @item mulhw
3495 @itemx no-mulhw
3496 @cindex @code{target("mulhw")} attribute
3497 Generate code that uses (does not use) the half-word multiply and
3498 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
3499 These instructions are generated by default when targetting those
3500 processors.
3501
3502 @item multiple
3503 @itemx no-multiple
3504 @cindex @code{target("multiple")} attribute
3505 Generate code that uses (does not use) the load multiple word
3506 instructions and the store multiple word instructions.
3507
3508 @item update
3509 @itemx no-update
3510 @cindex @code{target("update")} attribute
3511 Generate code that uses (does not use) the load or store instructions
3512 that update the base register to the address of the calculated memory
3513 location.
3514
3515 @item popcntb
3516 @itemx no-popcntb
3517 @cindex @code{target("popcntb")} attribute
3518 Generate code that uses (does not use) the popcount and double
3519 precision FP reciprocal estimate instruction implemented on the POWER5
3520 processor and other processors that support the PowerPC V2.02
3521 architecture.
3522
3523 @item popcntd
3524 @itemx no-popcntd
3525 @cindex @code{target("popcntd")} attribute
3526 Generate code that uses (does not use) the popcount instruction
3527 implemented on the POWER7 processor and other processors that support
3528 the PowerPC V2.06 architecture.
3529
3530 @item powerpc-gfxopt
3531 @itemx no-powerpc-gfxopt
3532 @cindex @code{target("powerpc-gfxopt")} attribute
3533 Generate code that uses (does not use) the optional PowerPC
3534 architecture instructions in the Graphics group, including
3535 floating-point select.
3536
3537 @item powerpc-gpopt
3538 @itemx no-powerpc-gpopt
3539 @cindex @code{target("powerpc-gpopt")} attribute
3540 Generate code that uses (does not use) the optional PowerPC
3541 architecture instructions in the General Purpose group, including
3542 floating-point square root.
3543
3544 @item recip-precision
3545 @itemx no-recip-precision
3546 @cindex @code{target("recip-precision")} attribute
3547 Assume (do not assume) that the reciprocal estimate instructions
3548 provide higher precision estimates than is mandated by the powerpc
3549 ABI.
3550
3551 @item string
3552 @itemx no-string
3553 @cindex @code{target("string")} attribute
3554 Generate code that uses (does not use) the load string instructions
3555 and the store string word instructions to save multiple registers and
3556 do small block moves.
3557
3558 @item vsx
3559 @itemx no-vsx
3560 @cindex @code{target("vsx")} attribute
3561 Generate code that uses (does not use) vector/scalar (VSX)
3562 instructions, and also enable the use of built-in functions that allow
3563 more direct access to the VSX instruction set. In 32-bit code, you
3564 cannot enable VSX or Altivec instructions unless
3565 @option{-mabi=altivec} was used on the command line.
3566
3567 @item friz
3568 @itemx no-friz
3569 @cindex @code{target("friz")} attribute
3570 Generate (do not generate) the @code{friz} instruction when the
3571 @option{-funsafe-math-optimizations} option is used to optimize
3572 rounding a floating point value to 64-bit integer and back to floating
3573 point. The @code{friz} instruction does not return the same value if
3574 the floating point number is too large to fit in an integer.
3575
3576 @item avoid-indexed-addresses
3577 @itemx no-avoid-indexed-addresses
3578 @cindex @code{target("avoid-indexed-addresses")} attribute
3579 Generate code that tries to avoid (not avoid) the use of indexed load
3580 or store instructions.
3581
3582 @item paired
3583 @itemx no-paired
3584 @cindex @code{target("paired")} attribute
3585 Generate code that uses (does not use) the generation of PAIRED simd
3586 instructions.
3587
3588 @item longcall
3589 @itemx no-longcall
3590 @cindex @code{target("longcall")} attribute
3591 Generate code that assumes (does not assume) that all calls are far
3592 away so that a longer more expensive calling sequence is required.
3593
3594 @item cpu=@var{CPU}
3595 @cindex @code{target("cpu=@var{CPU}")} attribute
3596 Specify the architecture to generate code for when compiling the
3597 function. If you select the @code{target("cpu=power7")} attribute when
3598 generating 32-bit code, VSX and Altivec instructions are not generated
3599 unless you use the @option{-mabi=altivec} option on the command line.
3600
3601 @item tune=@var{TUNE}
3602 @cindex @code{target("tune=@var{TUNE}")} attribute
3603 Specify the architecture to tune for when compiling the function. If
3604 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
3605 you do specify the @code{target("cpu=@var{CPU}")} attribute,
3606 compilation will tune for the @var{CPU} architecture, and not the
3607 default tuning specified on the command line.
3608 @end table
3609
3610 On the 386/x86_64 and PowerPC backends, you can use either multiple
3611 strings to specify multiple options, or you can separate the option
3612 with a comma (@code{,}).
3613
3614 On the 386/x86_64 and PowerPC backends, the inliner will not inline a
3615 function that has different target options than the caller, unless the
3616 callee has a subset of the target options of the caller. For example
3617 a function declared with @code{target("sse3")} can inline a function
3618 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
3619
3620 The @code{target} attribute is not implemented in GCC versions earlier
3621 than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. It is
3622 not currently implemented for other backends.
3623
3624 @item tiny_data
3625 @cindex tiny data section on the H8/300H and H8S
3626 Use this attribute on the H8/300H and H8S to indicate that the specified
3627 variable should be placed into the tiny data section.
3628 The compiler will generate more efficient code for loads and stores
3629 on data in the tiny data section. Note the tiny data area is limited to
3630 slightly under 32kbytes of data.
3631
3632 @item trap_exit
3633 Use this attribute on the SH for an @code{interrupt_handler} to return using
3634 @code{trapa} instead of @code{rte}. This attribute expects an integer
3635 argument specifying the trap number to be used.
3636
3637 @item unused
3638 @cindex @code{unused} attribute.
3639 This attribute, attached to a function, means that the function is meant
3640 to be possibly unused. GCC will not produce a warning for this
3641 function.
3642
3643 @item used
3644 @cindex @code{used} attribute.
3645 This attribute, attached to a function, means that code must be emitted
3646 for the function even if it appears that the function is not referenced.
3647 This is useful, for example, when the function is referenced only in
3648 inline assembly.
3649
3650 When applied to a member function of a C++ class template, the
3651 attribute also means that the function will be instantiated if the
3652 class itself is instantiated.
3653
3654 @item version_id
3655 @cindex @code{version_id} attribute
3656 This IA64 HP-UX attribute, attached to a global variable or function, renames a
3657 symbol to contain a version string, thus allowing for function level
3658 versioning. HP-UX system header files may use version level functioning
3659 for some system calls.
3660
3661 @smallexample
3662 extern int foo () __attribute__((version_id ("20040821")));
3663 @end smallexample
3664
3665 Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
3666
3667 @item visibility ("@var{visibility_type}")
3668 @cindex @code{visibility} attribute
3669 This attribute affects the linkage of the declaration to which it is attached.
3670 There are four supported @var{visibility_type} values: default,
3671 hidden, protected or internal visibility.
3672
3673 @smallexample
3674 void __attribute__ ((visibility ("protected")))
3675 f () @{ /* @r{Do something.} */; @}
3676 int i __attribute__ ((visibility ("hidden")));
3677 @end smallexample
3678
3679 The possible values of @var{visibility_type} correspond to the
3680 visibility settings in the ELF gABI.
3681
3682 @table @dfn
3683 @c keep this list of visibilities in alphabetical order.
3684
3685 @item default
3686 Default visibility is the normal case for the object file format.
3687 This value is available for the visibility attribute to override other
3688 options that may change the assumed visibility of entities.
3689
3690 On ELF, default visibility means that the declaration is visible to other
3691 modules and, in shared libraries, means that the declared entity may be
3692 overridden.
3693
3694 On Darwin, default visibility means that the declaration is visible to
3695 other modules.
3696
3697 Default visibility corresponds to ``external linkage'' in the language.
3698
3699 @item hidden
3700 Hidden visibility indicates that the entity declared will have a new
3701 form of linkage, which we'll call ``hidden linkage''. Two
3702 declarations of an object with hidden linkage refer to the same object
3703 if they are in the same shared object.
3704
3705 @item internal
3706 Internal visibility is like hidden visibility, but with additional
3707 processor specific semantics. Unless otherwise specified by the
3708 psABI, GCC defines internal visibility to mean that a function is
3709 @emph{never} called from another module. Compare this with hidden
3710 functions which, while they cannot be referenced directly by other
3711 modules, can be referenced indirectly via function pointers. By
3712 indicating that a function cannot be called from outside the module,
3713 GCC may for instance omit the load of a PIC register since it is known
3714 that the calling function loaded the correct value.
3715
3716 @item protected
3717 Protected visibility is like default visibility except that it
3718 indicates that references within the defining module will bind to the
3719 definition in that module. That is, the declared entity cannot be
3720 overridden by another module.
3721
3722 @end table
3723
3724 All visibilities are supported on many, but not all, ELF targets
3725 (supported when the assembler supports the @samp{.visibility}
3726 pseudo-op). Default visibility is supported everywhere. Hidden
3727 visibility is supported on Darwin targets.
3728
3729 The visibility attribute should be applied only to declarations which
3730 would otherwise have external linkage. The attribute should be applied
3731 consistently, so that the same entity should not be declared with
3732 different settings of the attribute.
3733
3734 In C++, the visibility attribute applies to types as well as functions
3735 and objects, because in C++ types have linkage. A class must not have
3736 greater visibility than its non-static data member types and bases,
3737 and class members default to the visibility of their class. Also, a
3738 declaration without explicit visibility is limited to the visibility
3739 of its type.
3740
3741 In C++, you can mark member functions and static member variables of a
3742 class with the visibility attribute. This is useful if you know a
3743 particular method or static member variable should only be used from
3744 one shared object; then you can mark it hidden while the rest of the
3745 class has default visibility. Care must be taken to avoid breaking
3746 the One Definition Rule; for example, it is usually not useful to mark
3747 an inline method as hidden without marking the whole class as hidden.
3748
3749 A C++ namespace declaration can also have the visibility attribute.
3750 This attribute applies only to the particular namespace body, not to
3751 other definitions of the same namespace; it is equivalent to using
3752 @samp{#pragma GCC visibility} before and after the namespace
3753 definition (@pxref{Visibility Pragmas}).
3754
3755 In C++, if a template argument has limited visibility, this
3756 restriction is implicitly propagated to the template instantiation.
3757 Otherwise, template instantiations and specializations default to the
3758 visibility of their template.
3759
3760 If both the template and enclosing class have explicit visibility, the
3761 visibility from the template is used.
3762
3763 @item vliw
3764 @cindex @code{vliw} attribute
3765 On MeP, the @code{vliw} attribute tells the compiler to emit
3766 instructions in VLIW mode instead of core mode. Note that this
3767 attribute is not allowed unless a VLIW coprocessor has been configured
3768 and enabled through command line options.
3769
3770 @item warn_unused_result
3771 @cindex @code{warn_unused_result} attribute
3772 The @code{warn_unused_result} attribute causes a warning to be emitted
3773 if a caller of the function with this attribute does not use its
3774 return value. This is useful for functions where not checking
3775 the result is either a security problem or always a bug, such as
3776 @code{realloc}.
3777
3778 @smallexample
3779 int fn () __attribute__ ((warn_unused_result));
3780 int foo ()
3781 @{
3782 if (fn () < 0) return -1;
3783 fn ();
3784 return 0;
3785 @}
3786 @end smallexample
3787
3788 results in warning on line 5.
3789
3790 @item weak
3791 @cindex @code{weak} attribute
3792 The @code{weak} attribute causes the declaration to be emitted as a weak
3793 symbol rather than a global. This is primarily useful in defining
3794 library functions which can be overridden in user code, though it can
3795 also be used with non-function declarations. Weak symbols are supported
3796 for ELF targets, and also for a.out targets when using the GNU assembler
3797 and linker.
3798
3799 @item weakref
3800 @itemx weakref ("@var{target}")
3801 @cindex @code{weakref} attribute
3802 The @code{weakref} attribute marks a declaration as a weak reference.
3803 Without arguments, it should be accompanied by an @code{alias} attribute
3804 naming the target symbol. Optionally, the @var{target} may be given as
3805 an argument to @code{weakref} itself. In either case, @code{weakref}
3806 implicitly marks the declaration as @code{weak}. Without a
3807 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3808 @code{weakref} is equivalent to @code{weak}.
3809
3810 @smallexample
3811 static int x() __attribute__ ((weakref ("y")));
3812 /* is equivalent to... */
3813 static int x() __attribute__ ((weak, weakref, alias ("y")));
3814 /* and to... */
3815 static int x() __attribute__ ((weakref));
3816 static int x() __attribute__ ((alias ("y")));
3817 @end smallexample
3818
3819 A weak reference is an alias that does not by itself require a
3820 definition to be given for the target symbol. If the target symbol is
3821 only referenced through weak references, then it becomes a @code{weak}
3822 undefined symbol. If it is directly referenced, however, then such
3823 strong references prevail, and a definition will be required for the
3824 symbol, not necessarily in the same translation unit.
3825
3826 The effect is equivalent to moving all references to the alias to a
3827 separate translation unit, renaming the alias to the aliased symbol,
3828 declaring it as weak, compiling the two separate translation units and
3829 performing a reloadable link on them.
3830
3831 At present, a declaration to which @code{weakref} is attached can
3832 only be @code{static}.
3833
3834 @end table
3835
3836 You can specify multiple attributes in a declaration by separating them
3837 by commas within the double parentheses or by immediately following an
3838 attribute declaration with another attribute declaration.
3839
3840 @cindex @code{#pragma}, reason for not using
3841 @cindex pragma, reason for not using
3842 Some people object to the @code{__attribute__} feature, suggesting that
3843 ISO C's @code{#pragma} should be used instead. At the time
3844 @code{__attribute__} was designed, there were two reasons for not doing
3845 this.
3846
3847 @enumerate
3848 @item
3849 It is impossible to generate @code{#pragma} commands from a macro.
3850
3851 @item
3852 There is no telling what the same @code{#pragma} might mean in another
3853 compiler.
3854 @end enumerate
3855
3856 These two reasons applied to almost any application that might have been
3857 proposed for @code{#pragma}. It was basically a mistake to use
3858 @code{#pragma} for @emph{anything}.
3859
3860 The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
3861 to be generated from macros. In addition, a @code{#pragma GCC}
3862 namespace is now in use for GCC-specific pragmas. However, it has been
3863 found convenient to use @code{__attribute__} to achieve a natural
3864 attachment of attributes to their corresponding declarations, whereas
3865 @code{#pragma GCC} is of use for constructs that do not naturally form
3866 part of the grammar. @xref{Other Directives,,Miscellaneous
3867 Preprocessing Directives, cpp, The GNU C Preprocessor}.
3868
3869 @node Attribute Syntax
3870 @section Attribute Syntax
3871 @cindex attribute syntax
3872
3873 This section describes the syntax with which @code{__attribute__} may be
3874 used, and the constructs to which attribute specifiers bind, for the C
3875 language. Some details may vary for C++ and Objective-C@. Because of
3876 infelicities in the grammar for attributes, some forms described here
3877 may not be successfully parsed in all cases.
3878
3879 There are some problems with the semantics of attributes in C++. For
3880 example, there are no manglings for attributes, although they may affect
3881 code generation, so problems may arise when attributed types are used in
3882 conjunction with templates or overloading. Similarly, @code{typeid}
3883 does not distinguish between types with different attributes. Support
3884 for attributes in C++ may be restricted in future to attributes on
3885 declarations only, but not on nested declarators.
3886
3887 @xref{Function Attributes}, for details of the semantics of attributes
3888 applying to functions. @xref{Variable Attributes}, for details of the
3889 semantics of attributes applying to variables. @xref{Type Attributes},
3890 for details of the semantics of attributes applying to structure, union
3891 and enumerated types.
3892
3893 An @dfn{attribute specifier} is of the form
3894 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
3895 is a possibly empty comma-separated sequence of @dfn{attributes}, where
3896 each attribute is one of the following:
3897
3898 @itemize @bullet
3899 @item
3900 Empty. Empty attributes are ignored.
3901
3902 @item
3903 A word (which may be an identifier such as @code{unused}, or a reserved
3904 word such as @code{const}).
3905
3906 @item
3907 A word, followed by, in parentheses, parameters for the attribute.
3908 These parameters take one of the following forms:
3909
3910 @itemize @bullet
3911 @item
3912 An identifier. For example, @code{mode} attributes use this form.
3913
3914 @item
3915 An identifier followed by a comma and a non-empty comma-separated list
3916 of expressions. For example, @code{format} attributes use this form.
3917
3918 @item
3919 A possibly empty comma-separated list of expressions. For example,
3920 @code{format_arg} attributes use this form with the list being a single
3921 integer constant expression, and @code{alias} attributes use this form
3922 with the list being a single string constant.
3923 @end itemize
3924 @end itemize
3925
3926 An @dfn{attribute specifier list} is a sequence of one or more attribute
3927 specifiers, not separated by any other tokens.
3928
3929 In GNU C, an attribute specifier list may appear after the colon following a
3930 label, other than a @code{case} or @code{default} label. The only
3931 attribute it makes sense to use after a label is @code{unused}. This
3932 feature is intended for code generated by programs which contains labels
3933 that may be unused but which is compiled with @option{-Wall}. It would
3934 not normally be appropriate to use in it human-written code, though it
3935 could be useful in cases where the code that jumps to the label is
3936 contained within an @code{#ifdef} conditional. GNU C++ only permits
3937 attributes on labels if the attribute specifier is immediately
3938 followed by a semicolon (i.e., the label applies to an empty
3939 statement). If the semicolon is missing, C++ label attributes are
3940 ambiguous, as it is permissible for a declaration, which could begin
3941 with an attribute list, to be labelled in C++. Declarations cannot be
3942 labelled in C90 or C99, so the ambiguity does not arise there.
3943
3944 An attribute specifier list may appear as part of a @code{struct},
3945 @code{union} or @code{enum} specifier. It may go either immediately
3946 after the @code{struct}, @code{union} or @code{enum} keyword, or after
3947 the closing brace. The former syntax is preferred.
3948 Where attribute specifiers follow the closing brace, they are considered
3949 to relate to the structure, union or enumerated type defined, not to any
3950 enclosing declaration the type specifier appears in, and the type
3951 defined is not complete until after the attribute specifiers.
3952 @c Otherwise, there would be the following problems: a shift/reduce
3953 @c conflict between attributes binding the struct/union/enum and
3954 @c binding to the list of specifiers/qualifiers; and "aligned"
3955 @c attributes could use sizeof for the structure, but the size could be
3956 @c changed later by "packed" attributes.
3957
3958 Otherwise, an attribute specifier appears as part of a declaration,
3959 counting declarations of unnamed parameters and type names, and relates
3960 to that declaration (which may be nested in another declaration, for
3961 example in the case of a parameter declaration), or to a particular declarator
3962 within a declaration. Where an
3963 attribute specifier is applied to a parameter declared as a function or
3964 an array, it should apply to the function or array rather than the
3965 pointer to which the parameter is implicitly converted, but this is not
3966 yet correctly implemented.
3967
3968 Any list of specifiers and qualifiers at the start of a declaration may
3969 contain attribute specifiers, whether or not such a list may in that
3970 context contain storage class specifiers. (Some attributes, however,
3971 are essentially in the nature of storage class specifiers, and only make
3972 sense where storage class specifiers may be used; for example,
3973 @code{section}.) There is one necessary limitation to this syntax: the
3974 first old-style parameter declaration in a function definition cannot
3975 begin with an attribute specifier, because such an attribute applies to
3976 the function instead by syntax described below (which, however, is not
3977 yet implemented in this case). In some other cases, attribute
3978 specifiers are permitted by this grammar but not yet supported by the
3979 compiler. All attribute specifiers in this place relate to the
3980 declaration as a whole. In the obsolescent usage where a type of
3981 @code{int} is implied by the absence of type specifiers, such a list of
3982 specifiers and qualifiers may be an attribute specifier list with no
3983 other specifiers or qualifiers.
3984
3985 At present, the first parameter in a function prototype must have some
3986 type specifier which is not an attribute specifier; this resolves an
3987 ambiguity in the interpretation of @code{void f(int
3988 (__attribute__((foo)) x))}, but is subject to change. At present, if
3989 the parentheses of a function declarator contain only attributes then
3990 those attributes are ignored, rather than yielding an error or warning
3991 or implying a single parameter of type int, but this is subject to
3992 change.
3993
3994 An attribute specifier list may appear immediately before a declarator
3995 (other than the first) in a comma-separated list of declarators in a
3996 declaration of more than one identifier using a single list of
3997 specifiers and qualifiers. Such attribute specifiers apply
3998 only to the identifier before whose declarator they appear. For
3999 example, in
4000
4001 @smallexample
4002 __attribute__((noreturn)) void d0 (void),
4003 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4004 d2 (void)
4005 @end smallexample
4006
4007 @noindent
4008 the @code{noreturn} attribute applies to all the functions
4009 declared; the @code{format} attribute only applies to @code{d1}.
4010
4011 An attribute specifier list may appear immediately before the comma,
4012 @code{=} or semicolon terminating the declaration of an identifier other
4013 than a function definition. Such attribute specifiers apply
4014 to the declared object or function. Where an
4015 assembler name for an object or function is specified (@pxref{Asm
4016 Labels}), the attribute must follow the @code{asm}
4017 specification.
4018
4019 An attribute specifier list may, in future, be permitted to appear after
4020 the declarator in a function definition (before any old-style parameter
4021 declarations or the function body).
4022
4023 Attribute specifiers may be mixed with type qualifiers appearing inside
4024 the @code{[]} of a parameter array declarator, in the C99 construct by
4025 which such qualifiers are applied to the pointer to which the array is
4026 implicitly converted. Such attribute specifiers apply to the pointer,
4027 not to the array, but at present this is not implemented and they are
4028 ignored.
4029
4030 An attribute specifier list may appear at the start of a nested
4031 declarator. At present, there are some limitations in this usage: the
4032 attributes correctly apply to the declarator, but for most individual
4033 attributes the semantics this implies are not implemented.
4034 When attribute specifiers follow the @code{*} of a pointer
4035 declarator, they may be mixed with any type qualifiers present.
4036 The following describes the formal semantics of this syntax. It will make the
4037 most sense if you are familiar with the formal specification of
4038 declarators in the ISO C standard.
4039
4040 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4041 D1}, where @code{T} contains declaration specifiers that specify a type
4042 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
4043 contains an identifier @var{ident}. The type specified for @var{ident}
4044 for derived declarators whose type does not include an attribute
4045 specifier is as in the ISO C standard.
4046
4047 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4048 and the declaration @code{T D} specifies the type
4049 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4050 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4051 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4052
4053 If @code{D1} has the form @code{*
4054 @var{type-qualifier-and-attribute-specifier-list} D}, and the
4055 declaration @code{T D} specifies the type
4056 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4057 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4058 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
4059 @var{ident}.
4060
4061 For example,
4062
4063 @smallexample
4064 void (__attribute__((noreturn)) ****f) (void);
4065 @end smallexample
4066
4067 @noindent
4068 specifies the type ``pointer to pointer to pointer to pointer to
4069 non-returning function returning @code{void}''. As another example,
4070
4071 @smallexample
4072 char *__attribute__((aligned(8))) *f;
4073 @end smallexample
4074
4075 @noindent
4076 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
4077 Note again that this does not work with most attributes; for example,
4078 the usage of @samp{aligned} and @samp{noreturn} attributes given above
4079 is not yet supported.
4080
4081 For compatibility with existing code written for compiler versions that
4082 did not implement attributes on nested declarators, some laxity is
4083 allowed in the placing of attributes. If an attribute that only applies
4084 to types is applied to a declaration, it will be treated as applying to
4085 the type of that declaration. If an attribute that only applies to
4086 declarations is applied to the type of a declaration, it will be treated
4087 as applying to that declaration; and, for compatibility with code
4088 placing the attributes immediately before the identifier declared, such
4089 an attribute applied to a function return type will be treated as
4090 applying to the function type, and such an attribute applied to an array
4091 element type will be treated as applying to the array type. If an
4092 attribute that only applies to function types is applied to a
4093 pointer-to-function type, it will be treated as applying to the pointer
4094 target type; if such an attribute is applied to a function return type
4095 that is not a pointer-to-function type, it will be treated as applying
4096 to the function type.
4097
4098 @node Function Prototypes
4099 @section Prototypes and Old-Style Function Definitions
4100 @cindex function prototype declarations
4101 @cindex old-style function definitions
4102 @cindex promotion of formal parameters
4103
4104 GNU C extends ISO C to allow a function prototype to override a later
4105 old-style non-prototype definition. Consider the following example:
4106
4107 @smallexample
4108 /* @r{Use prototypes unless the compiler is old-fashioned.} */
4109 #ifdef __STDC__
4110 #define P(x) x
4111 #else
4112 #define P(x) ()
4113 #endif
4114
4115 /* @r{Prototype function declaration.} */
4116 int isroot P((uid_t));
4117
4118 /* @r{Old-style function definition.} */
4119 int
4120 isroot (x) /* @r{??? lossage here ???} */
4121 uid_t x;
4122 @{
4123 return x == 0;
4124 @}
4125 @end smallexample
4126
4127 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
4128 not allow this example, because subword arguments in old-style
4129 non-prototype definitions are promoted. Therefore in this example the
4130 function definition's argument is really an @code{int}, which does not
4131 match the prototype argument type of @code{short}.
4132
4133 This restriction of ISO C makes it hard to write code that is portable
4134 to traditional C compilers, because the programmer does not know
4135 whether the @code{uid_t} type is @code{short}, @code{int}, or
4136 @code{long}. Therefore, in cases like these GNU C allows a prototype
4137 to override a later old-style definition. More precisely, in GNU C, a
4138 function prototype argument type overrides the argument type specified
4139 by a later old-style definition if the former type is the same as the
4140 latter type before promotion. Thus in GNU C the above example is
4141 equivalent to the following:
4142
4143 @smallexample
4144 int isroot (uid_t);
4145
4146 int
4147 isroot (uid_t x)
4148 @{
4149 return x == 0;
4150 @}
4151 @end smallexample
4152
4153 @noindent
4154 GNU C++ does not support old-style function definitions, so this
4155 extension is irrelevant.
4156
4157 @node C++ Comments
4158 @section C++ Style Comments
4159 @cindex @code{//}
4160 @cindex C++ comments
4161 @cindex comments, C++ style
4162
4163 In GNU C, you may use C++ style comments, which start with @samp{//} and
4164 continue until the end of the line. Many other C implementations allow
4165 such comments, and they are included in the 1999 C standard. However,
4166 C++ style comments are not recognized if you specify an @option{-std}
4167 option specifying a version of ISO C before C99, or @option{-ansi}
4168 (equivalent to @option{-std=c90}).
4169
4170 @node Dollar Signs
4171 @section Dollar Signs in Identifier Names
4172 @cindex $
4173 @cindex dollar signs in identifier names
4174 @cindex identifier names, dollar signs in
4175
4176 In GNU C, you may normally use dollar signs in identifier names.
4177 This is because many traditional C implementations allow such identifiers.
4178 However, dollar signs in identifiers are not supported on a few target
4179 machines, typically because the target assembler does not allow them.
4180
4181 @node Character Escapes
4182 @section The Character @key{ESC} in Constants
4183
4184 You can use the sequence @samp{\e} in a string or character constant to
4185 stand for the ASCII character @key{ESC}.
4186
4187 @node Variable Attributes
4188 @section Specifying Attributes of Variables
4189 @cindex attribute of variables
4190 @cindex variable attributes
4191
4192 The keyword @code{__attribute__} allows you to specify special
4193 attributes of variables or structure fields. This keyword is followed
4194 by an attribute specification inside double parentheses. Some
4195 attributes are currently defined generically for variables.
4196 Other attributes are defined for variables on particular target
4197 systems. Other attributes are available for functions
4198 (@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4199 Other front ends might define more attributes
4200 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
4201
4202 You may also specify attributes with @samp{__} preceding and following
4203 each keyword. This allows you to use them in header files without
4204 being concerned about a possible macro of the same name. For example,
4205 you may use @code{__aligned__} instead of @code{aligned}.
4206
4207 @xref{Attribute Syntax}, for details of the exact syntax for using
4208 attributes.
4209
4210 @table @code
4211 @cindex @code{aligned} attribute
4212 @item aligned (@var{alignment})
4213 This attribute specifies a minimum alignment for the variable or
4214 structure field, measured in bytes. For example, the declaration:
4215
4216 @smallexample
4217 int x __attribute__ ((aligned (16))) = 0;
4218 @end smallexample
4219
4220 @noindent
4221 causes the compiler to allocate the global variable @code{x} on a
4222 16-byte boundary. On a 68040, this could be used in conjunction with
4223 an @code{asm} expression to access the @code{move16} instruction which
4224 requires 16-byte aligned operands.
4225
4226 You can also specify the alignment of structure fields. For example, to
4227 create a double-word aligned @code{int} pair, you could write:
4228
4229 @smallexample
4230 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4231 @end smallexample
4232
4233 @noindent
4234 This is an alternative to creating a union with a @code{double} member
4235 that forces the union to be double-word aligned.
4236
4237 As in the preceding examples, you can explicitly specify the alignment
4238 (in bytes) that you wish the compiler to use for a given variable or
4239 structure field. Alternatively, you can leave out the alignment factor
4240 and just ask the compiler to align a variable or field to the
4241 default alignment for the target architecture you are compiling for.
4242 The default alignment is sufficient for all scalar types, but may not be
4243 enough for all vector types on a target which supports vector operations.
4244 The default alignment is fixed for a particular target ABI.
4245
4246 Gcc also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4247 which is the largest alignment ever used for any data type on the
4248 target machine you are compiling for. For example, you could write:
4249
4250 @smallexample
4251 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
4252 @end smallexample
4253
4254 The compiler automatically sets the alignment for the declared
4255 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
4256 often make copy operations more efficient, because the compiler can
4257 use whatever instructions copy the biggest chunks of memory when
4258 performing copies to or from the variables or fields that you have
4259 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
4260 may change depending on command line options.
4261
4262 When used on a struct, or struct member, the @code{aligned} attribute can
4263 only increase the alignment; in order to decrease it, the @code{packed}
4264 attribute must be specified as well. When used as part of a typedef, the
4265 @code{aligned} attribute can both increase and decrease alignment, and
4266 specifying the @code{packed} attribute will generate a warning.
4267
4268 Note that the effectiveness of @code{aligned} attributes may be limited
4269 by inherent limitations in your linker. On many systems, the linker is
4270 only able to arrange for variables to be aligned up to a certain maximum
4271 alignment. (For some linkers, the maximum supported alignment may
4272 be very very small.) If your linker is only able to align variables
4273 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4274 in an @code{__attribute__} will still only provide you with 8 byte
4275 alignment. See your linker documentation for further information.
4276
4277 The @code{aligned} attribute can also be used for functions
4278 (@pxref{Function Attributes}.)
4279
4280 @item cleanup (@var{cleanup_function})
4281 @cindex @code{cleanup} attribute
4282 The @code{cleanup} attribute runs a function when the variable goes
4283 out of scope. This attribute can only be applied to auto function
4284 scope variables; it may not be applied to parameters or variables
4285 with static storage duration. The function must take one parameter,
4286 a pointer to a type compatible with the variable. The return value
4287 of the function (if any) is ignored.
4288
4289 If @option{-fexceptions} is enabled, then @var{cleanup_function}
4290 will be run during the stack unwinding that happens during the
4291 processing of the exception. Note that the @code{cleanup} attribute
4292 does not allow the exception to be caught, only to perform an action.
4293 It is undefined what happens if @var{cleanup_function} does not
4294 return normally.
4295
4296 @item common
4297 @itemx nocommon
4298 @cindex @code{common} attribute
4299 @cindex @code{nocommon} attribute
4300 @opindex fcommon
4301 @opindex fno-common
4302 The @code{common} attribute requests GCC to place a variable in
4303 ``common'' storage. The @code{nocommon} attribute requests the
4304 opposite---to allocate space for it directly.
4305
4306 These attributes override the default chosen by the
4307 @option{-fno-common} and @option{-fcommon} flags respectively.
4308
4309 @item deprecated
4310 @itemx deprecated (@var{msg})
4311 @cindex @code{deprecated} attribute
4312 The @code{deprecated} attribute results in a warning if the variable
4313 is used anywhere in the source file. This is useful when identifying
4314 variables that are expected to be removed in a future version of a
4315 program. The warning also includes the location of the declaration
4316 of the deprecated variable, to enable users to easily find further
4317 information about why the variable is deprecated, or what they should
4318 do instead. Note that the warning only occurs for uses:
4319
4320 @smallexample
4321 extern int old_var __attribute__ ((deprecated));
4322 extern int old_var;
4323 int new_fn () @{ return old_var; @}
4324 @end smallexample
4325
4326 results in a warning on line 3 but not line 2. The optional msg
4327 argument, which must be a string, will be printed in the warning if
4328 present.
4329
4330 The @code{deprecated} attribute can also be used for functions and
4331 types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4332
4333 @item mode (@var{mode})
4334 @cindex @code{mode} attribute
4335 This attribute specifies the data type for the declaration---whichever
4336 type corresponds to the mode @var{mode}. This in effect lets you
4337 request an integer or floating point type according to its width.
4338
4339 You may also specify a mode of @samp{byte} or @samp{__byte__} to
4340 indicate the mode corresponding to a one-byte integer, @samp{word} or
4341 @samp{__word__} for the mode of a one-word integer, and @samp{pointer}
4342 or @samp{__pointer__} for the mode used to represent pointers.
4343
4344 @item packed
4345 @cindex @code{packed} attribute
4346 The @code{packed} attribute specifies that a variable or structure field
4347 should have the smallest possible alignment---one byte for a variable,
4348 and one bit for a field, unless you specify a larger value with the
4349 @code{aligned} attribute.
4350
4351 Here is a structure in which the field @code{x} is packed, so that it
4352 immediately follows @code{a}:
4353
4354 @smallexample
4355 struct foo
4356 @{
4357 char a;
4358 int x[2] __attribute__ ((packed));
4359 @};
4360 @end smallexample
4361
4362 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
4363 @code{packed} attribute on bit-fields of type @code{char}. This has
4364 been fixed in GCC 4.4 but the change can lead to differences in the
4365 structure layout. See the documentation of
4366 @option{-Wpacked-bitfield-compat} for more information.
4367
4368 @item section ("@var{section-name}")
4369 @cindex @code{section} variable attribute
4370 Normally, the compiler places the objects it generates in sections like
4371 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
4372 or you need certain particular variables to appear in special sections,
4373 for example to map to special hardware. The @code{section}
4374 attribute specifies that a variable (or function) lives in a particular
4375 section. For example, this small program uses several specific section names:
4376
4377 @smallexample
4378 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
4379 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
4380 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
4381 int init_data __attribute__ ((section ("INITDATA")));
4382
4383 main()
4384 @{
4385 /* @r{Initialize stack pointer} */
4386 init_sp (stack + sizeof (stack));
4387
4388 /* @r{Initialize initialized data} */
4389 memcpy (&init_data, &data, &edata - &data);
4390
4391 /* @r{Turn on the serial ports} */
4392 init_duart (&a);
4393 init_duart (&b);
4394 @}
4395 @end smallexample
4396
4397 @noindent
4398 Use the @code{section} attribute with
4399 @emph{global} variables and not @emph{local} variables,
4400 as shown in the example.
4401
4402 You may use the @code{section} attribute with initialized or
4403 uninitialized global variables but the linker requires
4404 each object be defined once, with the exception that uninitialized
4405 variables tentatively go in the @code{common} (or @code{bss}) section
4406 and can be multiply ``defined''. Using the @code{section} attribute
4407 will change what section the variable goes into and may cause the
4408 linker to issue an error if an uninitialized variable has multiple
4409 definitions. You can force a variable to be initialized with the
4410 @option{-fno-common} flag or the @code{nocommon} attribute.
4411
4412 Some file formats do not support arbitrary sections so the @code{section}
4413 attribute is not available on all platforms.
4414 If you need to map the entire contents of a module to a particular
4415 section, consider using the facilities of the linker instead.
4416
4417 @item shared
4418 @cindex @code{shared} variable attribute
4419 On Microsoft Windows, in addition to putting variable definitions in a named
4420 section, the section can also be shared among all running copies of an
4421 executable or DLL@. For example, this small program defines shared data
4422 by putting it in a named section @code{shared} and marking the section
4423 shareable:
4424
4425 @smallexample
4426 int foo __attribute__((section ("shared"), shared)) = 0;
4427
4428 int
4429 main()
4430 @{
4431 /* @r{Read and write foo. All running
4432 copies see the same value.} */
4433 return 0;
4434 @}
4435 @end smallexample
4436
4437 @noindent
4438 You may only use the @code{shared} attribute along with @code{section}
4439 attribute with a fully initialized global definition because of the way
4440 linkers work. See @code{section} attribute for more information.
4441
4442 The @code{shared} attribute is only available on Microsoft Windows@.
4443
4444 @item tls_model ("@var{tls_model}")
4445 @cindex @code{tls_model} attribute
4446 The @code{tls_model} attribute sets thread-local storage model
4447 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
4448 overriding @option{-ftls-model=} command-line switch on a per-variable
4449 basis.
4450 The @var{tls_model} argument should be one of @code{global-dynamic},
4451 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
4452
4453 Not all targets support this attribute.
4454
4455 @item unused
4456 This attribute, attached to a variable, means that the variable is meant
4457 to be possibly unused. GCC will not produce a warning for this
4458 variable.
4459
4460 @item used
4461 This attribute, attached to a variable, means that the variable must be
4462 emitted even if it appears that the variable is not referenced.
4463
4464 When applied to a static data member of a C++ class template, the
4465 attribute also means that the member will be instantiated if the
4466 class itself is instantiated.
4467
4468 @item vector_size (@var{bytes})
4469 This attribute specifies the vector size for the variable, measured in
4470 bytes. For example, the declaration:
4471
4472 @smallexample
4473 int foo __attribute__ ((vector_size (16)));
4474 @end smallexample
4475
4476 @noindent
4477 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
4478 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
4479 4 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
4480
4481 This attribute is only applicable to integral and float scalars,
4482 although arrays, pointers, and function return values are allowed in
4483 conjunction with this construct.
4484
4485 Aggregates with this attribute are invalid, even if they are of the same
4486 size as a corresponding scalar. For example, the declaration:
4487
4488 @smallexample
4489 struct S @{ int a; @};
4490 struct S __attribute__ ((vector_size (16))) foo;
4491 @end smallexample
4492
4493 @noindent
4494 is invalid even if the size of the structure is the same as the size of
4495 the @code{int}.
4496
4497 @item selectany
4498 The @code{selectany} attribute causes an initialized global variable to
4499 have link-once semantics. When multiple definitions of the variable are
4500 encountered by the linker, the first is selected and the remainder are
4501 discarded. Following usage by the Microsoft compiler, the linker is told
4502 @emph{not} to warn about size or content differences of the multiple
4503 definitions.
4504
4505 Although the primary usage of this attribute is for POD types, the
4506 attribute can also be applied to global C++ objects that are initialized
4507 by a constructor. In this case, the static initialization and destruction
4508 code for the object is emitted in each translation defining the object,
4509 but the calls to the constructor and destructor are protected by a
4510 link-once guard variable.
4511
4512 The @code{selectany} attribute is only available on Microsoft Windows
4513 targets. You can use @code{__declspec (selectany)} as a synonym for
4514 @code{__attribute__ ((selectany))} for compatibility with other
4515 compilers.
4516
4517 @item weak
4518 The @code{weak} attribute is described in @ref{Function Attributes}.
4519
4520 @item dllimport
4521 The @code{dllimport} attribute is described in @ref{Function Attributes}.
4522
4523 @item dllexport
4524 The @code{dllexport} attribute is described in @ref{Function Attributes}.
4525
4526 @end table
4527
4528 @subsection Blackfin Variable Attributes
4529
4530 Three attributes are currently defined for the Blackfin.
4531
4532 @table @code
4533 @item l1_data
4534 @itemx l1_data_A
4535 @itemx l1_data_B
4536 @cindex @code{l1_data} variable attribute
4537 @cindex @code{l1_data_A} variable attribute
4538 @cindex @code{l1_data_B} variable attribute
4539 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
4540 Variables with @code{l1_data} attribute will be put into the specific section
4541 named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
4542 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
4543 attribute will be put into the specific section named @code{.l1.data.B}.
4544
4545 @item l2
4546 @cindex @code{l2} variable attribute
4547 Use this attribute on the Blackfin to place the variable into L2 SRAM.
4548 Variables with @code{l2} attribute will be put into the specific section
4549 named @code{.l2.data}.
4550 @end table
4551
4552 @subsection M32R/D Variable Attributes
4553
4554 One attribute is currently defined for the M32R/D@.
4555
4556 @table @code
4557 @item model (@var{model-name})
4558 @cindex variable addressability on the M32R/D
4559 Use this attribute on the M32R/D to set the addressability of an object.
4560 The identifier @var{model-name} is one of @code{small}, @code{medium},
4561 or @code{large}, representing each of the code models.
4562
4563 Small model objects live in the lower 16MB of memory (so that their
4564 addresses can be loaded with the @code{ld24} instruction).
4565
4566 Medium and large model objects may live anywhere in the 32-bit address space
4567 (the compiler will generate @code{seth/add3} instructions to load their
4568 addresses).
4569 @end table
4570
4571 @anchor{MeP Variable Attributes}
4572 @subsection MeP Variable Attributes
4573
4574 The MeP target has a number of addressing modes and busses. The
4575 @code{near} space spans the standard memory space's first 16 megabytes
4576 (24 bits). The @code{far} space spans the entire 32-bit memory space.
4577 The @code{based} space is a 128 byte region in the memory space which
4578 is addressed relative to the @code{$tp} register. The @code{tiny}
4579 space is a 65536 byte region relative to the @code{$gp} register. In
4580 addition to these memory regions, the MeP target has a separate 16-bit
4581 control bus which is specified with @code{cb} attributes.
4582
4583 @table @code
4584
4585 @item based
4586 Any variable with the @code{based} attribute will be assigned to the
4587 @code{.based} section, and will be accessed with relative to the
4588 @code{$tp} register.
4589
4590 @item tiny
4591 Likewise, the @code{tiny} attribute assigned variables to the
4592 @code{.tiny} section, relative to the @code{$gp} register.
4593
4594 @item near
4595 Variables with the @code{near} attribute are assumed to have addresses
4596 that fit in a 24-bit addressing mode. This is the default for large
4597 variables (@code{-mtiny=4} is the default) but this attribute can
4598 override @code{-mtiny=} for small variables, or override @code{-ml}.
4599
4600 @item far
4601 Variables with the @code{far} attribute are addressed using a full
4602 32-bit address. Since this covers the entire memory space, this
4603 allows modules to make no assumptions about where variables might be
4604 stored.
4605
4606 @item io
4607 @itemx io (@var{addr})
4608 Variables with the @code{io} attribute are used to address
4609 memory-mapped peripherals. If an address is specified, the variable
4610 is assigned that address, else it is not assigned an address (it is
4611 assumed some other module will assign an address). Example:
4612
4613 @example
4614 int timer_count __attribute__((io(0x123)));
4615 @end example
4616
4617 @item cb
4618 @itemx cb (@var{addr})
4619 Variables with the @code{cb} attribute are used to access the control
4620 bus, using special instructions. @code{addr} indicates the control bus
4621 address. Example:
4622
4623 @example
4624 int cpu_clock __attribute__((cb(0x123)));
4625 @end example
4626
4627 @end table
4628
4629 @anchor{i386 Variable Attributes}
4630 @subsection i386 Variable Attributes
4631
4632 Two attributes are currently defined for i386 configurations:
4633 @code{ms_struct} and @code{gcc_struct}
4634
4635 @table @code
4636 @item ms_struct
4637 @itemx gcc_struct
4638 @cindex @code{ms_struct} attribute
4639 @cindex @code{gcc_struct} attribute
4640
4641 If @code{packed} is used on a structure, or if bit-fields are used
4642 it may be that the Microsoft ABI packs them differently
4643 than GCC would normally pack them. Particularly when moving packed
4644 data between functions compiled with GCC and the native Microsoft compiler
4645 (either via function call or as data in a file), it may be necessary to access
4646 either format.
4647
4648 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
4649 compilers to match the native Microsoft compiler.
4650
4651 The Microsoft structure layout algorithm is fairly simple with the exception
4652 of the bitfield packing:
4653
4654 The padding and alignment of members of structures and whether a bit field
4655 can straddle a storage-unit boundary
4656
4657 @enumerate
4658 @item Structure members are stored sequentially in the order in which they are
4659 declared: the first member has the lowest memory address and the last member
4660 the highest.
4661
4662 @item Every data object has an alignment-requirement. The alignment-requirement
4663 for all data except structures, unions, and arrays is either the size of the
4664 object or the current packing size (specified with either the aligned attribute
4665 or the pack pragma), whichever is less. For structures, unions, and arrays,
4666 the alignment-requirement is the largest alignment-requirement of its members.
4667 Every object is allocated an offset so that:
4668
4669 offset % alignment-requirement == 0
4670
4671 @item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
4672 unit if the integral types are the same size and if the next bit field fits
4673 into the current allocation unit without crossing the boundary imposed by the
4674 common alignment requirements of the bit fields.
4675 @end enumerate
4676
4677 Handling of zero-length bitfields:
4678
4679 MSVC interprets zero-length bitfields in the following ways:
4680
4681 @enumerate
4682 @item If a zero-length bitfield is inserted between two bitfields that would
4683 normally be coalesced, the bitfields will not be coalesced.
4684
4685 For example:
4686
4687 @smallexample
4688 struct
4689 @{
4690 unsigned long bf_1 : 12;
4691 unsigned long : 0;
4692 unsigned long bf_2 : 12;
4693 @} t1;
4694 @end smallexample
4695
4696 The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
4697 zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
4698
4699 @item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
4700 alignment of the zero-length bitfield is greater than the member that follows it,
4701 @code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
4702
4703 For example:
4704
4705 @smallexample
4706 struct
4707 @{
4708 char foo : 4;
4709 short : 0;
4710 char bar;
4711 @} t2;
4712
4713 struct
4714 @{
4715 char foo : 4;
4716 short : 0;
4717 double bar;
4718 @} t3;
4719 @end smallexample
4720
4721 For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
4722 Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
4723 bitfield will not affect the alignment of @code{bar} or, as a result, the size
4724 of the structure.
4725
4726 Taking this into account, it is important to note the following:
4727
4728 @enumerate
4729 @item If a zero-length bitfield follows a normal bitfield, the type of the
4730 zero-length bitfield may affect the alignment of the structure as whole. For
4731 example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
4732 normal bitfield, and is of type short.
4733
4734 @item Even if a zero-length bitfield is not followed by a normal bitfield, it may
4735 still affect the alignment of the structure:
4736
4737 @smallexample
4738 struct
4739 @{
4740 char foo : 6;
4741 long : 0;
4742 @} t4;
4743 @end smallexample
4744
4745 Here, @code{t4} will take up 4 bytes.
4746 @end enumerate
4747
4748 @item Zero-length bitfields following non-bitfield members are ignored:
4749
4750 @smallexample
4751 struct
4752 @{
4753 char foo;
4754 long : 0;
4755 char bar;
4756 @} t5;
4757 @end smallexample
4758
4759 Here, @code{t5} will take up 2 bytes.
4760 @end enumerate
4761 @end table
4762
4763 @subsection PowerPC Variable Attributes
4764
4765 Three attributes currently are defined for PowerPC configurations:
4766 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
4767
4768 For full documentation of the struct attributes please see the
4769 documentation in @ref{i386 Variable Attributes}.
4770
4771 For documentation of @code{altivec} attribute please see the
4772 documentation in @ref{PowerPC Type Attributes}.
4773
4774 @subsection SPU Variable Attributes
4775
4776 The SPU supports the @code{spu_vector} attribute for variables. For
4777 documentation of this attribute please see the documentation in
4778 @ref{SPU Type Attributes}.
4779
4780 @subsection Xstormy16 Variable Attributes
4781
4782 One attribute is currently defined for xstormy16 configurations:
4783 @code{below100}.
4784
4785 @table @code
4786 @item below100
4787 @cindex @code{below100} attribute
4788
4789 If a variable has the @code{below100} attribute (@code{BELOW100} is
4790 allowed also), GCC will place the variable in the first 0x100 bytes of
4791 memory and use special opcodes to access it. Such variables will be
4792 placed in either the @code{.bss_below100} section or the
4793 @code{.data_below100} section.
4794
4795 @end table
4796
4797 @subsection AVR Variable Attributes
4798
4799 @table @code
4800 @item progmem
4801 @cindex @code{progmem} variable attribute
4802 The @code{progmem} attribute is used on the AVR to place data in the Program
4803 Memory address space. The AVR is a Harvard Architecture processor and data
4804 normally resides in the Data Memory address space.
4805 @end table
4806
4807 @node Type Attributes
4808 @section Specifying Attributes of Types
4809 @cindex attribute of types
4810 @cindex type attributes
4811
4812 The keyword @code{__attribute__} allows you to specify special
4813 attributes of @code{struct} and @code{union} types when you define
4814 such types. This keyword is followed by an attribute specification
4815 inside double parentheses. Seven attributes are currently defined for
4816 types: @code{aligned}, @code{packed}, @code{transparent_union},
4817 @code{unused}, @code{deprecated}, @code{visibility}, and
4818 @code{may_alias}. Other attributes are defined for functions
4819 (@pxref{Function Attributes}) and for variables (@pxref{Variable
4820 Attributes}).
4821
4822 You may also specify any one of these attributes with @samp{__}
4823 preceding and following its keyword. This allows you to use these
4824 attributes in header files without being concerned about a possible
4825 macro of the same name. For example, you may use @code{__aligned__}
4826 instead of @code{aligned}.
4827
4828 You may specify type attributes in an enum, struct or union type
4829 declaration or definition, or for other types in a @code{typedef}
4830 declaration.
4831
4832 For an enum, struct or union type, you may specify attributes either
4833 between the enum, struct or union tag and the name of the type, or
4834 just past the closing curly brace of the @emph{definition}. The
4835 former syntax is preferred.
4836
4837 @xref{Attribute Syntax}, for details of the exact syntax for using
4838 attributes.
4839
4840 @table @code
4841 @cindex @code{aligned} attribute
4842 @item aligned (@var{alignment})
4843 This attribute specifies a minimum alignment (in bytes) for variables
4844 of the specified type. For example, the declarations:
4845
4846 @smallexample
4847 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
4848 typedef int more_aligned_int __attribute__ ((aligned (8)));
4849 @end smallexample
4850
4851 @noindent
4852 force the compiler to insure (as far as it can) that each variable whose
4853 type is @code{struct S} or @code{more_aligned_int} will be allocated and
4854 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
4855 variables of type @code{struct S} aligned to 8-byte boundaries allows
4856 the compiler to use the @code{ldd} and @code{std} (doubleword load and
4857 store) instructions when copying one variable of type @code{struct S} to
4858 another, thus improving run-time efficiency.
4859
4860 Note that the alignment of any given @code{struct} or @code{union} type
4861 is required by the ISO C standard to be at least a perfect multiple of
4862 the lowest common multiple of the alignments of all of the members of
4863 the @code{struct} or @code{union} in question. This means that you @emph{can}
4864 effectively adjust the alignment of a @code{struct} or @code{union}
4865 type by attaching an @code{aligned} attribute to any one of the members
4866 of such a type, but the notation illustrated in the example above is a
4867 more obvious, intuitive, and readable way to request the compiler to
4868 adjust the alignment of an entire @code{struct} or @code{union} type.
4869
4870 As in the preceding example, you can explicitly specify the alignment
4871 (in bytes) that you wish the compiler to use for a given @code{struct}
4872 or @code{union} type. Alternatively, you can leave out the alignment factor
4873 and just ask the compiler to align a type to the maximum
4874 useful alignment for the target machine you are compiling for. For
4875 example, you could write:
4876
4877 @smallexample
4878 struct S @{ short f[3]; @} __attribute__ ((aligned));
4879 @end smallexample
4880
4881 Whenever you leave out the alignment factor in an @code{aligned}
4882 attribute specification, the compiler automatically sets the alignment
4883 for the type to the largest alignment which is ever used for any data
4884 type on the target machine you are compiling for. Doing this can often
4885 make copy operations more efficient, because the compiler can use
4886 whatever instructions copy the biggest chunks of memory when performing
4887 copies to or from the variables which have types that you have aligned
4888 this way.
4889
4890 In the example above, if the size of each @code{short} is 2 bytes, then
4891 the size of the entire @code{struct S} type is 6 bytes. The smallest
4892 power of two which is greater than or equal to that is 8, so the
4893 compiler sets the alignment for the entire @code{struct S} type to 8
4894 bytes.
4895
4896 Note that although you can ask the compiler to select a time-efficient
4897 alignment for a given type and then declare only individual stand-alone
4898 objects of that type, the compiler's ability to select a time-efficient
4899 alignment is primarily useful only when you plan to create arrays of
4900 variables having the relevant (efficiently aligned) type. If you
4901 declare or use arrays of variables of an efficiently-aligned type, then
4902 it is likely that your program will also be doing pointer arithmetic (or
4903 subscripting, which amounts to the same thing) on pointers to the
4904 relevant type, and the code that the compiler generates for these
4905 pointer arithmetic operations will often be more efficient for
4906 efficiently-aligned types than for other types.
4907
4908 The @code{aligned} attribute can only increase the alignment; but you
4909 can decrease it by specifying @code{packed} as well. See below.
4910
4911 Note that the effectiveness of @code{aligned} attributes may be limited
4912 by inherent limitations in your linker. On many systems, the linker is
4913 only able to arrange for variables to be aligned up to a certain maximum
4914 alignment. (For some linkers, the maximum supported alignment may
4915 be very very small.) If your linker is only able to align variables
4916 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4917 in an @code{__attribute__} will still only provide you with 8 byte
4918 alignment. See your linker documentation for further information.
4919
4920 @item packed
4921 This attribute, attached to @code{struct} or @code{union} type
4922 definition, specifies that each member (other than zero-width bitfields)
4923 of the structure or union is placed to minimize the memory required. When
4924 attached to an @code{enum} definition, it indicates that the smallest
4925 integral type should be used.
4926
4927 @opindex fshort-enums
4928 Specifying this attribute for @code{struct} and @code{union} types is
4929 equivalent to specifying the @code{packed} attribute on each of the
4930 structure or union members. Specifying the @option{-fshort-enums}
4931 flag on the line is equivalent to specifying the @code{packed}
4932 attribute on all @code{enum} definitions.
4933
4934 In the following example @code{struct my_packed_struct}'s members are
4935 packed closely together, but the internal layout of its @code{s} member
4936 is not packed---to do that, @code{struct my_unpacked_struct} would need to
4937 be packed too.
4938
4939 @smallexample
4940 struct my_unpacked_struct
4941 @{
4942 char c;
4943 int i;
4944 @};
4945
4946 struct __attribute__ ((__packed__)) my_packed_struct
4947 @{
4948 char c;
4949 int i;
4950 struct my_unpacked_struct s;
4951 @};
4952 @end smallexample
4953
4954 You may only specify this attribute on the definition of an @code{enum},
4955 @code{struct} or @code{union}, not on a @code{typedef} which does not
4956 also define the enumerated type, structure or union.
4957
4958 @item transparent_union
4959 This attribute, attached to a @code{union} type definition, indicates
4960 that any function parameter having that union type causes calls to that
4961 function to be treated in a special way.
4962
4963 First, the argument corresponding to a transparent union type can be of
4964 any type in the union; no cast is required. Also, if the union contains
4965 a pointer type, the corresponding argument can be a null pointer
4966 constant or a void pointer expression; and if the union contains a void
4967 pointer type, the corresponding argument can be any pointer expression.
4968 If the union member type is a pointer, qualifiers like @code{const} on
4969 the referenced type must be respected, just as with normal pointer
4970 conversions.
4971
4972 Second, the argument is passed to the function using the calling
4973 conventions of the first member of the transparent union, not the calling
4974 conventions of the union itself. All members of the union must have the
4975 same machine representation; this is necessary for this argument passing
4976 to work properly.
4977
4978 Transparent unions are designed for library functions that have multiple
4979 interfaces for compatibility reasons. For example, suppose the
4980 @code{wait} function must accept either a value of type @code{int *} to
4981 comply with Posix, or a value of type @code{union wait *} to comply with
4982 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
4983 @code{wait} would accept both kinds of arguments, but it would also
4984 accept any other pointer type and this would make argument type checking
4985 less useful. Instead, @code{<sys/wait.h>} might define the interface
4986 as follows:
4987
4988 @smallexample
4989 typedef union __attribute__ ((__transparent_union__))
4990 @{
4991 int *__ip;
4992 union wait *__up;
4993 @} wait_status_ptr_t;
4994
4995 pid_t wait (wait_status_ptr_t);
4996 @end smallexample
4997
4998 This interface allows either @code{int *} or @code{union wait *}
4999 arguments to be passed, using the @code{int *} calling convention.
5000 The program can call @code{wait} with arguments of either type:
5001
5002 @smallexample
5003 int w1 () @{ int w; return wait (&w); @}
5004 int w2 () @{ union wait w; return wait (&w); @}
5005 @end smallexample
5006
5007 With this interface, @code{wait}'s implementation might look like this:
5008
5009 @smallexample
5010 pid_t wait (wait_status_ptr_t p)
5011 @{
5012 return waitpid (-1, p.__ip, 0);
5013 @}
5014 @end smallexample
5015
5016 @item unused
5017 When attached to a type (including a @code{union} or a @code{struct}),
5018 this attribute means that variables of that type are meant to appear
5019 possibly unused. GCC will not produce a warning for any variables of
5020 that type, even if the variable appears to do nothing. This is often
5021 the case with lock or thread classes, which are usually defined and then
5022 not referenced, but contain constructors and destructors that have
5023 nontrivial bookkeeping functions.
5024
5025 @item deprecated
5026 @itemx deprecated (@var{msg})
5027 The @code{deprecated} attribute results in a warning if the type
5028 is used anywhere in the source file. This is useful when identifying
5029 types that are expected to be removed in a future version of a program.
5030 If possible, the warning also includes the location of the declaration
5031 of the deprecated type, to enable users to easily find further
5032 information about why the type is deprecated, or what they should do
5033 instead. Note that the warnings only occur for uses and then only
5034 if the type is being applied to an identifier that itself is not being
5035 declared as deprecated.
5036
5037 @smallexample
5038 typedef int T1 __attribute__ ((deprecated));
5039 T1 x;
5040 typedef T1 T2;
5041 T2 y;
5042 typedef T1 T3 __attribute__ ((deprecated));
5043 T3 z __attribute__ ((deprecated));
5044 @end smallexample
5045
5046 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
5047 warning is issued for line 4 because T2 is not explicitly
5048 deprecated. Line 5 has no warning because T3 is explicitly
5049 deprecated. Similarly for line 6. The optional msg
5050 argument, which must be a string, will be printed in the warning if
5051 present.
5052
5053 The @code{deprecated} attribute can also be used for functions and
5054 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5055
5056 @item may_alias
5057 Accesses through pointers to types with this attribute are not subject
5058 to type-based alias analysis, but are instead assumed to be able to alias
5059 any other type of objects. In the context of 6.5/7 an lvalue expression
5060 dereferencing such a pointer is treated like having a character type.
5061 See @option{-fstrict-aliasing} for more information on aliasing issues.
5062 This extension exists to support some vector APIs, in which pointers to
5063 one vector type are permitted to alias pointers to a different vector type.
5064
5065 Note that an object of a type with this attribute does not have any
5066 special semantics.
5067
5068 Example of use:
5069
5070 @smallexample
5071 typedef short __attribute__((__may_alias__)) short_a;
5072
5073 int
5074 main (void)
5075 @{
5076 int a = 0x12345678;
5077 short_a *b = (short_a *) &a;
5078
5079 b[1] = 0;
5080
5081 if (a == 0x12345678)
5082 abort();
5083
5084 exit(0);
5085 @}
5086 @end smallexample
5087
5088 If you replaced @code{short_a} with @code{short} in the variable
5089 declaration, the above program would abort when compiled with
5090 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5091 above in recent GCC versions.
5092
5093 @item visibility
5094 In C++, attribute visibility (@pxref{Function Attributes}) can also be
5095 applied to class, struct, union and enum types. Unlike other type
5096 attributes, the attribute must appear between the initial keyword and
5097 the name of the type; it cannot appear after the body of the type.
5098
5099 Note that the type visibility is applied to vague linkage entities
5100 associated with the class (vtable, typeinfo node, etc.). In
5101 particular, if a class is thrown as an exception in one shared object
5102 and caught in another, the class must have default visibility.
5103 Otherwise the two shared objects will be unable to use the same
5104 typeinfo node and exception handling will break.
5105
5106 @end table
5107
5108 @subsection ARM Type Attributes
5109
5110 On those ARM targets that support @code{dllimport} (such as Symbian
5111 OS), you can use the @code{notshared} attribute to indicate that the
5112 virtual table and other similar data for a class should not be
5113 exported from a DLL@. For example:
5114
5115 @smallexample
5116 class __declspec(notshared) C @{
5117 public:
5118 __declspec(dllimport) C();
5119 virtual void f();
5120 @}
5121
5122 __declspec(dllexport)
5123 C::C() @{@}
5124 @end smallexample
5125
5126 In this code, @code{C::C} is exported from the current DLL, but the
5127 virtual table for @code{C} is not exported. (You can use
5128 @code{__attribute__} instead of @code{__declspec} if you prefer, but
5129 most Symbian OS code uses @code{__declspec}.)
5130
5131 @anchor{MeP Type Attributes}
5132 @subsection MeP Type Attributes
5133
5134 Many of the MeP variable attributes may be applied to types as well.
5135 Specifically, the @code{based}, @code{tiny}, @code{near}, and
5136 @code{far} attributes may be applied to either. The @code{io} and
5137 @code{cb} attributes may not be applied to types.
5138
5139 @anchor{i386 Type Attributes}
5140 @subsection i386 Type Attributes
5141
5142 Two attributes are currently defined for i386 configurations:
5143 @code{ms_struct} and @code{gcc_struct}.
5144
5145 @table @code
5146
5147 @item ms_struct
5148 @itemx gcc_struct
5149 @cindex @code{ms_struct}
5150 @cindex @code{gcc_struct}
5151
5152 If @code{packed} is used on a structure, or if bit-fields are used
5153 it may be that the Microsoft ABI packs them differently
5154 than GCC would normally pack them. Particularly when moving packed
5155 data between functions compiled with GCC and the native Microsoft compiler
5156 (either via function call or as data in a file), it may be necessary to access
5157 either format.
5158
5159 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5160 compilers to match the native Microsoft compiler.
5161 @end table
5162
5163 To specify multiple attributes, separate them by commas within the
5164 double parentheses: for example, @samp{__attribute__ ((aligned (16),
5165 packed))}.
5166
5167 @anchor{PowerPC Type Attributes}
5168 @subsection PowerPC Type Attributes
5169
5170 Three attributes currently are defined for PowerPC configurations:
5171 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5172
5173 For full documentation of the @code{ms_struct} and @code{gcc_struct}
5174 attributes please see the documentation in @ref{i386 Type Attributes}.
5175
5176 The @code{altivec} attribute allows one to declare AltiVec vector data
5177 types supported by the AltiVec Programming Interface Manual. The
5178 attribute requires an argument to specify one of three vector types:
5179 @code{vector__}, @code{pixel__} (always followed by unsigned short),
5180 and @code{bool__} (always followed by unsigned).
5181
5182 @smallexample
5183 __attribute__((altivec(vector__)))
5184 __attribute__((altivec(pixel__))) unsigned short
5185 __attribute__((altivec(bool__))) unsigned
5186 @end smallexample
5187
5188 These attributes mainly are intended to support the @code{__vector},
5189 @code{__pixel}, and @code{__bool} AltiVec keywords.
5190
5191 @anchor{SPU Type Attributes}
5192 @subsection SPU Type Attributes
5193
5194 The SPU supports the @code{spu_vector} attribute for types. This attribute
5195 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5196 Language Extensions Specification. It is intended to support the
5197 @code{__vector} keyword.
5198
5199 @node Alignment
5200 @section Inquiring on Alignment of Types or Variables
5201 @cindex alignment
5202 @cindex type alignment
5203 @cindex variable alignment
5204
5205 The keyword @code{__alignof__} allows you to inquire about how an object
5206 is aligned, or the minimum alignment usually required by a type. Its
5207 syntax is just like @code{sizeof}.
5208
5209 For example, if the target machine requires a @code{double} value to be
5210 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5211 This is true on many RISC machines. On more traditional machine
5212 designs, @code{__alignof__ (double)} is 4 or even 2.
5213
5214 Some machines never actually require alignment; they allow reference to any
5215 data type even at an odd address. For these machines, @code{__alignof__}
5216 reports the smallest alignment that GCC will give the data type, usually as
5217 mandated by the target ABI.
5218
5219 If the operand of @code{__alignof__} is an lvalue rather than a type,
5220 its value is the required alignment for its type, taking into account
5221 any minimum alignment specified with GCC's @code{__attribute__}
5222 extension (@pxref{Variable Attributes}). For example, after this
5223 declaration:
5224
5225 @smallexample
5226 struct foo @{ int x; char y; @} foo1;
5227 @end smallexample
5228
5229 @noindent
5230 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5231 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5232
5233 It is an error to ask for the alignment of an incomplete type.
5234
5235
5236 @node Inline
5237 @section An Inline Function is As Fast As a Macro
5238 @cindex inline functions
5239 @cindex integrating function code
5240 @cindex open coding
5241 @cindex macros, inline alternative
5242
5243 By declaring a function inline, you can direct GCC to make
5244 calls to that function faster. One way GCC can achieve this is to
5245 integrate that function's code into the code for its callers. This
5246 makes execution faster by eliminating the function-call overhead; in
5247 addition, if any of the actual argument values are constant, their
5248 known values may permit simplifications at compile time so that not
5249 all of the inline function's code needs to be included. The effect on
5250 code size is less predictable; object code may be larger or smaller
5251 with function inlining, depending on the particular case. You can
5252 also direct GCC to try to integrate all ``simple enough'' functions
5253 into their callers with the option @option{-finline-functions}.
5254
5255 GCC implements three different semantics of declaring a function
5256 inline. One is available with @option{-std=gnu89} or
5257 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
5258 on all inline declarations, another when
5259 @option{-std=c99}, @option{-std=c1x},
5260 @option{-std=gnu99} or @option{-std=gnu1x}
5261 (without @option{-fgnu89-inline}), and the third
5262 is used when compiling C++.
5263
5264 To declare a function inline, use the @code{inline} keyword in its
5265 declaration, like this:
5266
5267 @smallexample
5268 static inline int
5269 inc (int *a)
5270 @{
5271 return (*a)++;
5272 @}
5273 @end smallexample
5274
5275 If you are writing a header file to be included in ISO C90 programs, write
5276 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
5277
5278 The three types of inlining behave similarly in two important cases:
5279 when the @code{inline} keyword is used on a @code{static} function,
5280 like the example above, and when a function is first declared without
5281 using the @code{inline} keyword and then is defined with
5282 @code{inline}, like this:
5283
5284 @smallexample
5285 extern int inc (int *a);
5286 inline int
5287 inc (int *a)
5288 @{
5289 return (*a)++;
5290 @}
5291 @end smallexample
5292
5293 In both of these common cases, the program behaves the same as if you
5294 had not used the @code{inline} keyword, except for its speed.
5295
5296 @cindex inline functions, omission of
5297 @opindex fkeep-inline-functions
5298 When a function is both inline and @code{static}, if all calls to the
5299 function are integrated into the caller, and the function's address is
5300 never used, then the function's own assembler code is never referenced.
5301 In this case, GCC does not actually output assembler code for the
5302 function, unless you specify the option @option{-fkeep-inline-functions}.
5303 Some calls cannot be integrated for various reasons (in particular,
5304 calls that precede the function's definition cannot be integrated, and
5305 neither can recursive calls within the definition). If there is a
5306 nonintegrated call, then the function is compiled to assembler code as
5307 usual. The function must also be compiled as usual if the program
5308 refers to its address, because that can't be inlined.
5309
5310 @opindex Winline
5311 Note that certain usages in a function definition can make it unsuitable
5312 for inline substitution. Among these usages are: use of varargs, use of
5313 alloca, use of variable sized data types (@pxref{Variable Length}),
5314 use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
5315 and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
5316 will warn when a function marked @code{inline} could not be substituted,
5317 and will give the reason for the failure.
5318
5319 @cindex automatic @code{inline} for C++ member fns
5320 @cindex @code{inline} automatic for C++ member fns
5321 @cindex member fns, automatically @code{inline}
5322 @cindex C++ member fns, automatically @code{inline}
5323 @opindex fno-default-inline
5324 As required by ISO C++, GCC considers member functions defined within
5325 the body of a class to be marked inline even if they are
5326 not explicitly declared with the @code{inline} keyword. You can
5327 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
5328 Options,,Options Controlling C++ Dialect}.
5329
5330 GCC does not inline any functions when not optimizing unless you specify
5331 the @samp{always_inline} attribute for the function, like this:
5332
5333 @smallexample
5334 /* @r{Prototype.} */
5335 inline void foo (const char) __attribute__((always_inline));
5336 @end smallexample
5337
5338 The remainder of this section is specific to GNU C90 inlining.
5339
5340 @cindex non-static inline function
5341 When an inline function is not @code{static}, then the compiler must assume
5342 that there may be calls from other source files; since a global symbol can
5343 be defined only once in any program, the function must not be defined in
5344 the other source files, so the calls therein cannot be integrated.
5345 Therefore, a non-@code{static} inline function is always compiled on its
5346 own in the usual fashion.
5347
5348 If you specify both @code{inline} and @code{extern} in the function
5349 definition, then the definition is used only for inlining. In no case
5350 is the function compiled on its own, not even if you refer to its
5351 address explicitly. Such an address becomes an external reference, as
5352 if you had only declared the function, and had not defined it.
5353
5354 This combination of @code{inline} and @code{extern} has almost the
5355 effect of a macro. The way to use it is to put a function definition in
5356 a header file with these keywords, and put another copy of the
5357 definition (lacking @code{inline} and @code{extern}) in a library file.
5358 The definition in the header file will cause most calls to the function
5359 to be inlined. If any uses of the function remain, they will refer to
5360 the single copy in the library.
5361
5362 @node Volatiles
5363 @section When is a Volatile Object Accessed?
5364 @cindex accessing volatiles
5365 @cindex volatile read
5366 @cindex volatile write
5367 @cindex volatile access
5368
5369 C has the concept of volatile objects. These are normally accessed by
5370 pointers and used for accessing hardware or inter-thread
5371 communication. The standard encourages compilers to refrain from
5372 optimizations concerning accesses to volatile objects, but leaves it
5373 implementation defined as to what constitutes a volatile access. The
5374 minimum requirement is that at a sequence point all previous accesses
5375 to volatile objects have stabilized and no subsequent accesses have
5376 occurred. Thus an implementation is free to reorder and combine
5377 volatile accesses which occur between sequence points, but cannot do
5378 so for accesses across a sequence point. The use of volatile does
5379 not allow you to violate the restriction on updating objects multiple
5380 times between two sequence points.
5381
5382 Accesses to non-volatile objects are not ordered with respect to
5383 volatile accesses. You cannot use a volatile object as a memory
5384 barrier to order a sequence of writes to non-volatile memory. For
5385 instance:
5386
5387 @smallexample
5388 int *ptr = @var{something};
5389 volatile int vobj;
5390 *ptr = @var{something};
5391 vobj = 1;
5392 @end smallexample
5393
5394 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
5395 that the write to @var{*ptr} will have occurred by the time the update
5396 of @var{vobj} has happened. If you need this guarantee, you must use
5397 a stronger memory barrier such as:
5398
5399 @smallexample
5400 int *ptr = @var{something};
5401 volatile int vobj;
5402 *ptr = @var{something};
5403 asm volatile ("" : : : "memory");
5404 vobj = 1;
5405 @end smallexample
5406
5407 A scalar volatile object is read when it is accessed in a void context:
5408
5409 @smallexample
5410 volatile int *src = @var{somevalue};
5411 *src;
5412 @end smallexample
5413
5414 Such expressions are rvalues, and GCC implements this as a
5415 read of the volatile object being pointed to.
5416
5417 Assignments are also expressions and have an rvalue. However when
5418 assigning to a scalar volatile, the volatile object is not reread,
5419 regardless of whether the assignment expression's rvalue is used or
5420 not. If the assignment's rvalue is used, the value is that assigned
5421 to the volatile object. For instance, there is no read of @var{vobj}
5422 in all the following cases:
5423
5424 @smallexample
5425 int obj;
5426 volatile int vobj;
5427 vobj = @var{something};
5428 obj = vobj = @var{something};
5429 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
5430 obj = (@var{something}, vobj = @var{anotherthing});
5431 @end smallexample
5432
5433 If you need to read the volatile object after an assignment has
5434 occurred, you must use a separate expression with an intervening
5435 sequence point.
5436
5437 As bitfields are not individually addressable, volatile bitfields may
5438 be implicitly read when written to, or when adjacent bitfields are
5439 accessed. Bitfield operations may be optimized such that adjacent
5440 bitfields are only partially accessed, if they straddle a storage unit
5441 boundary. For these reasons it is unwise to use volatile bitfields to
5442 access hardware.
5443
5444 @node Extended Asm
5445 @section Assembler Instructions with C Expression Operands
5446 @cindex extended @code{asm}
5447 @cindex @code{asm} expressions
5448 @cindex assembler instructions
5449 @cindex registers
5450
5451 In an assembler instruction using @code{asm}, you can specify the
5452 operands of the instruction using C expressions. This means you need not
5453 guess which registers or memory locations will contain the data you want
5454 to use.
5455
5456 You must specify an assembler instruction template much like what
5457 appears in a machine description, plus an operand constraint string for
5458 each operand.
5459
5460 For example, here is how to use the 68881's @code{fsinx} instruction:
5461
5462 @smallexample
5463 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
5464 @end smallexample
5465
5466 @noindent
5467 Here @code{angle} is the C expression for the input operand while
5468 @code{result} is that of the output operand. Each has @samp{"f"} as its
5469 operand constraint, saying that a floating point register is required.
5470 The @samp{=} in @samp{=f} indicates that the operand is an output; all
5471 output operands' constraints must use @samp{=}. The constraints use the
5472 same language used in the machine description (@pxref{Constraints}).
5473
5474 Each operand is described by an operand-constraint string followed by
5475 the C expression in parentheses. A colon separates the assembler
5476 template from the first output operand and another separates the last
5477 output operand from the first input, if any. Commas separate the
5478 operands within each group. The total number of operands is currently
5479 limited to 30; this limitation may be lifted in some future version of
5480 GCC@.
5481
5482 If there are no output operands but there are input operands, you must
5483 place two consecutive colons surrounding the place where the output
5484 operands would go.
5485
5486 As of GCC version 3.1, it is also possible to specify input and output
5487 operands using symbolic names which can be referenced within the
5488 assembler code. These names are specified inside square brackets
5489 preceding the constraint string, and can be referenced inside the
5490 assembler code using @code{%[@var{name}]} instead of a percentage sign
5491 followed by the operand number. Using named operands the above example
5492 could look like:
5493
5494 @smallexample
5495 asm ("fsinx %[angle],%[output]"
5496 : [output] "=f" (result)
5497 : [angle] "f" (angle));
5498 @end smallexample
5499
5500 @noindent
5501 Note that the symbolic operand names have no relation whatsoever to
5502 other C identifiers. You may use any name you like, even those of
5503 existing C symbols, but you must ensure that no two operands within the same
5504 assembler construct use the same symbolic name.
5505
5506 Output operand expressions must be lvalues; the compiler can check this.
5507 The input operands need not be lvalues. The compiler cannot check
5508 whether the operands have data types that are reasonable for the
5509 instruction being executed. It does not parse the assembler instruction
5510 template and does not know what it means or even whether it is valid
5511 assembler input. The extended @code{asm} feature is most often used for
5512 machine instructions the compiler itself does not know exist. If
5513 the output expression cannot be directly addressed (for example, it is a
5514 bit-field), your constraint must allow a register. In that case, GCC
5515 will use the register as the output of the @code{asm}, and then store
5516 that register into the output.
5517
5518 The ordinary output operands must be write-only; GCC will assume that
5519 the values in these operands before the instruction are dead and need
5520 not be generated. Extended asm supports input-output or read-write
5521 operands. Use the constraint character @samp{+} to indicate such an
5522 operand and list it with the output operands. You should only use
5523 read-write operands when the constraints for the operand (or the
5524 operand in which only some of the bits are to be changed) allow a
5525 register.
5526
5527 You may, as an alternative, logically split its function into two
5528 separate operands, one input operand and one write-only output
5529 operand. The connection between them is expressed by constraints
5530 which say they need to be in the same location when the instruction
5531 executes. You can use the same C expression for both operands, or
5532 different expressions. For example, here we write the (fictitious)
5533 @samp{combine} instruction with @code{bar} as its read-only source
5534 operand and @code{foo} as its read-write destination:
5535
5536 @smallexample
5537 asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
5538 @end smallexample
5539
5540 @noindent
5541 The constraint @samp{"0"} for operand 1 says that it must occupy the
5542 same location as operand 0. A number in constraint is allowed only in
5543 an input operand and it must refer to an output operand.
5544
5545 Only a number in the constraint can guarantee that one operand will be in
5546 the same place as another. The mere fact that @code{foo} is the value
5547 of both operands is not enough to guarantee that they will be in the
5548 same place in the generated assembler code. The following would not
5549 work reliably:
5550
5551 @smallexample
5552 asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
5553 @end smallexample
5554
5555 Various optimizations or reloading could cause operands 0 and 1 to be in
5556 different registers; GCC knows no reason not to do so. For example, the
5557 compiler might find a copy of the value of @code{foo} in one register and
5558 use it for operand 1, but generate the output operand 0 in a different
5559 register (copying it afterward to @code{foo}'s own address). Of course,
5560 since the register for operand 1 is not even mentioned in the assembler
5561 code, the result will not work, but GCC can't tell that.
5562
5563 As of GCC version 3.1, one may write @code{[@var{name}]} instead of
5564 the operand number for a matching constraint. For example:
5565
5566 @smallexample
5567 asm ("cmoveq %1,%2,%[result]"
5568 : [result] "=r"(result)
5569 : "r" (test), "r"(new), "[result]"(old));
5570 @end smallexample
5571
5572 Sometimes you need to make an @code{asm} operand be a specific register,
5573 but there's no matching constraint letter for that register @emph{by
5574 itself}. To force the operand into that register, use a local variable
5575 for the operand and specify the register in the variable declaration.
5576 @xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
5577 register constraint letter that matches the register:
5578
5579 @smallexample
5580 register int *p1 asm ("r0") = @dots{};
5581 register int *p2 asm ("r1") = @dots{};
5582 register int *result asm ("r0");
5583 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5584 @end smallexample
5585
5586 @anchor{Example of asm with clobbered asm reg}
5587 In the above example, beware that a register that is call-clobbered by
5588 the target ABI will be overwritten by any function call in the
5589 assignment, including library calls for arithmetic operators.
5590 Also a register may be clobbered when generating some operations,
5591 like variable shift, memory copy or memory move on x86.
5592 Assuming it is a call-clobbered register, this may happen to @code{r0}
5593 above by the assignment to @code{p2}. If you have to use such a
5594 register, use temporary variables for expressions between the register
5595 assignment and use:
5596
5597 @smallexample
5598 int t1 = @dots{};
5599 register int *p1 asm ("r0") = @dots{};
5600 register int *p2 asm ("r1") = t1;
5601 register int *result asm ("r0");
5602 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5603 @end smallexample
5604
5605 Some instructions clobber specific hard registers. To describe this,
5606 write a third colon after the input operands, followed by the names of
5607 the clobbered hard registers (given as strings). Here is a realistic
5608 example for the VAX:
5609
5610 @smallexample
5611 asm volatile ("movc3 %0,%1,%2"
5612 : /* @r{no outputs} */
5613 : "g" (from), "g" (to), "g" (count)
5614 : "r0", "r1", "r2", "r3", "r4", "r5");
5615 @end smallexample
5616
5617 You may not write a clobber description in a way that overlaps with an
5618 input or output operand. For example, you may not have an operand
5619 describing a register class with one member if you mention that register
5620 in the clobber list. Variables declared to live in specific registers
5621 (@pxref{Explicit Reg Vars}), and used as asm input or output operands must
5622 have no part mentioned in the clobber description.
5623 There is no way for you to specify that an input
5624 operand is modified without also specifying it as an output
5625 operand. Note that if all the output operands you specify are for this
5626 purpose (and hence unused), you will then also need to specify
5627 @code{volatile} for the @code{asm} construct, as described below, to
5628 prevent GCC from deleting the @code{asm} statement as unused.
5629
5630 If you refer to a particular hardware register from the assembler code,
5631 you will probably have to list the register after the third colon to
5632 tell the compiler the register's value is modified. In some assemblers,
5633 the register names begin with @samp{%}; to produce one @samp{%} in the
5634 assembler code, you must write @samp{%%} in the input.
5635
5636 If your assembler instruction can alter the condition code register, add
5637 @samp{cc} to the list of clobbered registers. GCC on some machines
5638 represents the condition codes as a specific hardware register;
5639 @samp{cc} serves to name this register. On other machines, the
5640 condition code is handled differently, and specifying @samp{cc} has no
5641 effect. But it is valid no matter what the machine.
5642
5643 If your assembler instructions access memory in an unpredictable
5644 fashion, add @samp{memory} to the list of clobbered registers. This
5645 will cause GCC to not keep memory values cached in registers across the
5646 assembler instruction and not optimize stores or loads to that memory.
5647 You will also want to add the @code{volatile} keyword if the memory
5648 affected is not listed in the inputs or outputs of the @code{asm}, as
5649 the @samp{memory} clobber does not count as a side-effect of the
5650 @code{asm}. If you know how large the accessed memory is, you can add
5651 it as input or output but if this is not known, you should add
5652 @samp{memory}. As an example, if you access ten bytes of a string, you
5653 can use a memory input like:
5654
5655 @smallexample
5656 @{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
5657 @end smallexample
5658
5659 Note that in the following example the memory input is necessary,
5660 otherwise GCC might optimize the store to @code{x} away:
5661 @smallexample
5662 int foo ()
5663 @{
5664 int x = 42;
5665 int *y = &x;
5666 int result;
5667 asm ("magic stuff accessing an 'int' pointed to by '%1'"
5668 "=&d" (r) : "a" (y), "m" (*y));
5669 return result;
5670 @}
5671 @end smallexample
5672
5673 You can put multiple assembler instructions together in a single
5674 @code{asm} template, separated by the characters normally used in assembly
5675 code for the system. A combination that works in most places is a newline
5676 to break the line, plus a tab character to move to the instruction field
5677 (written as @samp{\n\t}). Sometimes semicolons can be used, if the
5678 assembler allows semicolons as a line-breaking character. Note that some
5679 assembler dialects use semicolons to start a comment.
5680 The input operands are guaranteed not to use any of the clobbered
5681 registers, and neither will the output operands' addresses, so you can
5682 read and write the clobbered registers as many times as you like. Here
5683 is an example of multiple instructions in a template; it assumes the
5684 subroutine @code{_foo} accepts arguments in registers 9 and 10:
5685
5686 @smallexample
5687 asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
5688 : /* no outputs */
5689 : "g" (from), "g" (to)
5690 : "r9", "r10");
5691 @end smallexample
5692
5693 Unless an output operand has the @samp{&} constraint modifier, GCC
5694 may allocate it in the same register as an unrelated input operand, on
5695 the assumption the inputs are consumed before the outputs are produced.
5696 This assumption may be false if the assembler code actually consists of
5697 more than one instruction. In such a case, use @samp{&} for each output
5698 operand that may not overlap an input. @xref{Modifiers}.
5699
5700 If you want to test the condition code produced by an assembler
5701 instruction, you must include a branch and a label in the @code{asm}
5702 construct, as follows:
5703
5704 @smallexample
5705 asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
5706 : "g" (result)
5707 : "g" (input));
5708 @end smallexample
5709
5710 @noindent
5711 This assumes your assembler supports local labels, as the GNU assembler
5712 and most Unix assemblers do.
5713
5714 Speaking of labels, jumps from one @code{asm} to another are not
5715 supported. The compiler's optimizers do not know about these jumps, and
5716 therefore they cannot take account of them when deciding how to
5717 optimize. @xref{Extended asm with goto}.
5718
5719 @cindex macros containing @code{asm}
5720 Usually the most convenient way to use these @code{asm} instructions is to
5721 encapsulate them in macros that look like functions. For example,
5722
5723 @smallexample
5724 #define sin(x) \
5725 (@{ double __value, __arg = (x); \
5726 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
5727 __value; @})
5728 @end smallexample
5729
5730 @noindent
5731 Here the variable @code{__arg} is used to make sure that the instruction
5732 operates on a proper @code{double} value, and to accept only those
5733 arguments @code{x} which can convert automatically to a @code{double}.
5734
5735 Another way to make sure the instruction operates on the correct data
5736 type is to use a cast in the @code{asm}. This is different from using a
5737 variable @code{__arg} in that it converts more different types. For
5738 example, if the desired type were @code{int}, casting the argument to
5739 @code{int} would accept a pointer with no complaint, while assigning the
5740 argument to an @code{int} variable named @code{__arg} would warn about
5741 using a pointer unless the caller explicitly casts it.
5742
5743 If an @code{asm} has output operands, GCC assumes for optimization
5744 purposes the instruction has no side effects except to change the output
5745 operands. This does not mean instructions with a side effect cannot be
5746 used, but you must be careful, because the compiler may eliminate them
5747 if the output operands aren't used, or move them out of loops, or
5748 replace two with one if they constitute a common subexpression. Also,
5749 if your instruction does have a side effect on a variable that otherwise
5750 appears not to change, the old value of the variable may be reused later
5751 if it happens to be found in a register.
5752
5753 You can prevent an @code{asm} instruction from being deleted
5754 by writing the keyword @code{volatile} after
5755 the @code{asm}. For example:
5756
5757 @smallexample
5758 #define get_and_set_priority(new) \
5759 (@{ int __old; \
5760 asm volatile ("get_and_set_priority %0, %1" \
5761 : "=g" (__old) : "g" (new)); \
5762 __old; @})
5763 @end smallexample
5764
5765 @noindent
5766 The @code{volatile} keyword indicates that the instruction has
5767 important side-effects. GCC will not delete a volatile @code{asm} if
5768 it is reachable. (The instruction can still be deleted if GCC can
5769 prove that control-flow will never reach the location of the
5770 instruction.) Note that even a volatile @code{asm} instruction
5771 can be moved relative to other code, including across jump
5772 instructions. For example, on many targets there is a system
5773 register which can be set to control the rounding mode of
5774 floating point operations. You might try
5775 setting it with a volatile @code{asm}, like this PowerPC example:
5776
5777 @smallexample
5778 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
5779 sum = x + y;
5780 @end smallexample
5781
5782 @noindent
5783 This will not work reliably, as the compiler may move the addition back
5784 before the volatile @code{asm}. To make it work you need to add an
5785 artificial dependency to the @code{asm} referencing a variable in the code
5786 you don't want moved, for example:
5787
5788 @smallexample
5789 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
5790 sum = x + y;
5791 @end smallexample
5792
5793 Similarly, you can't expect a
5794 sequence of volatile @code{asm} instructions to remain perfectly
5795 consecutive. If you want consecutive output, use a single @code{asm}.
5796 Also, GCC will perform some optimizations across a volatile @code{asm}
5797 instruction; GCC does not ``forget everything'' when it encounters
5798 a volatile @code{asm} instruction the way some other compilers do.
5799
5800 An @code{asm} instruction without any output operands will be treated
5801 identically to a volatile @code{asm} instruction.
5802
5803 It is a natural idea to look for a way to give access to the condition
5804 code left by the assembler instruction. However, when we attempted to
5805 implement this, we found no way to make it work reliably. The problem
5806 is that output operands might need reloading, which would result in
5807 additional following ``store'' instructions. On most machines, these
5808 instructions would alter the condition code before there was time to
5809 test it. This problem doesn't arise for ordinary ``test'' and
5810 ``compare'' instructions because they don't have any output operands.
5811
5812 For reasons similar to those described above, it is not possible to give
5813 an assembler instruction access to the condition code left by previous
5814 instructions.
5815
5816 @anchor{Extended asm with goto}
5817 As of GCC version 4.5, @code{asm goto} may be used to have the assembly
5818 jump to one or more C labels. In this form, a fifth section after the
5819 clobber list contains a list of all C labels to which the assembly may jump.
5820 Each label operand is implicitly self-named. The @code{asm} is also assumed
5821 to fall through to the next statement.
5822
5823 This form of @code{asm} is restricted to not have outputs. This is due
5824 to a internal restriction in the compiler that control transfer instructions
5825 cannot have outputs. This restriction on @code{asm goto} may be lifted
5826 in some future version of the compiler. In the mean time, @code{asm goto}
5827 may include a memory clobber, and so leave outputs in memory.
5828
5829 @smallexample
5830 int frob(int x)
5831 @{
5832 int y;
5833 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
5834 : : "r"(x), "r"(&y) : "r5", "memory" : error);
5835 return y;
5836 error:
5837 return -1;
5838 @}
5839 @end smallexample
5840
5841 In this (inefficient) example, the @code{frob} instruction sets the
5842 carry bit to indicate an error. The @code{jc} instruction detects
5843 this and branches to the @code{error} label. Finally, the output
5844 of the @code{frob} instruction (@code{%r5}) is stored into the memory
5845 for variable @code{y}, which is later read by the @code{return} statement.
5846
5847 @smallexample
5848 void doit(void)
5849 @{
5850 int i = 0;
5851 asm goto ("mfsr %%r1, 123; jmp %%r1;"
5852 ".pushsection doit_table;"
5853 ".long %l0, %l1, %l2, %l3;"
5854 ".popsection"
5855 : : : "r1" : label1, label2, label3, label4);
5856 __builtin_unreachable ();
5857
5858 label1:
5859 f1();
5860 return;
5861 label2:
5862 f2();
5863 return;
5864 label3:
5865 i = 1;
5866 label4:
5867 f3(i);
5868 @}
5869 @end smallexample
5870
5871 In this (also inefficient) example, the @code{mfsr} instruction reads
5872 an address from some out-of-band machine register, and the following
5873 @code{jmp} instruction branches to that address. The address read by
5874 the @code{mfsr} instruction is assumed to have been previously set via
5875 some application-specific mechanism to be one of the four values stored
5876 in the @code{doit_table} section. Finally, the @code{asm} is followed
5877 by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
5878 does not in fact fall through.
5879
5880 @smallexample
5881 #define TRACE1(NUM) \
5882 do @{ \
5883 asm goto ("0: nop;" \
5884 ".pushsection trace_table;" \
5885 ".long 0b, %l0;" \
5886 ".popsection" \
5887 : : : : trace#NUM); \
5888 if (0) @{ trace#NUM: trace(); @} \
5889 @} while (0)
5890 #define TRACE TRACE1(__COUNTER__)
5891 @end smallexample
5892
5893 In this example (which in fact inspired the @code{asm goto} feature)
5894 we want on rare occasions to call the @code{trace} function; on other
5895 occasions we'd like to keep the overhead to the absolute minimum.
5896 The normal code path consists of a single @code{nop} instruction.
5897 However, we record the address of this @code{nop} together with the
5898 address of a label that calls the @code{trace} function. This allows
5899 the @code{nop} instruction to be patched at runtime to be an
5900 unconditional branch to the stored label. It is assumed that an
5901 optimizing compiler will move the labeled block out of line, to
5902 optimize the fall through path from the @code{asm}.
5903
5904 If you are writing a header file that should be includable in ISO C
5905 programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
5906 Keywords}.
5907
5908 @subsection Size of an @code{asm}
5909
5910 Some targets require that GCC track the size of each instruction used in
5911 order to generate correct code. Because the final length of an
5912 @code{asm} is only known by the assembler, GCC must make an estimate as
5913 to how big it will be. The estimate is formed by counting the number of
5914 statements in the pattern of the @code{asm} and multiplying that by the
5915 length of the longest instruction on that processor. Statements in the
5916 @code{asm} are identified by newline characters and whatever statement
5917 separator characters are supported by the assembler; on most processors
5918 this is the `@code{;}' character.
5919
5920 Normally, GCC's estimate is perfectly adequate to ensure that correct
5921 code is generated, but it is possible to confuse the compiler if you use
5922 pseudo instructions or assembler macros that expand into multiple real
5923 instructions or if you use assembler directives that expand to more
5924 space in the object file than would be needed for a single instruction.
5925 If this happens then the assembler will produce a diagnostic saying that
5926 a label is unreachable.
5927
5928 @subsection i386 floating point asm operands
5929
5930 There are several rules on the usage of stack-like regs in
5931 asm_operands insns. These rules apply only to the operands that are
5932 stack-like regs:
5933
5934 @enumerate
5935 @item
5936 Given a set of input regs that die in an asm_operands, it is
5937 necessary to know which are implicitly popped by the asm, and
5938 which must be explicitly popped by gcc.
5939
5940 An input reg that is implicitly popped by the asm must be
5941 explicitly clobbered, unless it is constrained to match an
5942 output operand.
5943
5944 @item
5945 For any input reg that is implicitly popped by an asm, it is
5946 necessary to know how to adjust the stack to compensate for the pop.
5947 If any non-popped input is closer to the top of the reg-stack than
5948 the implicitly popped reg, it would not be possible to know what the
5949 stack looked like---it's not clear how the rest of the stack ``slides
5950 up''.
5951
5952 All implicitly popped input regs must be closer to the top of
5953 the reg-stack than any input that is not implicitly popped.
5954
5955 It is possible that if an input dies in an insn, reload might
5956 use the input reg for an output reload. Consider this example:
5957
5958 @smallexample
5959 asm ("foo" : "=t" (a) : "f" (b));
5960 @end smallexample
5961
5962 This asm says that input B is not popped by the asm, and that
5963 the asm pushes a result onto the reg-stack, i.e., the stack is one
5964 deeper after the asm than it was before. But, it is possible that
5965 reload will think that it can use the same reg for both the input and
5966 the output, if input B dies in this insn.
5967
5968 If any input operand uses the @code{f} constraint, all output reg
5969 constraints must use the @code{&} earlyclobber.
5970
5971 The asm above would be written as
5972
5973 @smallexample
5974 asm ("foo" : "=&t" (a) : "f" (b));
5975 @end smallexample
5976
5977 @item
5978 Some operands need to be in particular places on the stack. All
5979 output operands fall in this category---there is no other way to
5980 know which regs the outputs appear in unless the user indicates
5981 this in the constraints.
5982
5983 Output operands must specifically indicate which reg an output
5984 appears in after an asm. @code{=f} is not allowed: the operand
5985 constraints must select a class with a single reg.
5986
5987 @item
5988 Output operands may not be ``inserted'' between existing stack regs.
5989 Since no 387 opcode uses a read/write operand, all output operands
5990 are dead before the asm_operands, and are pushed by the asm_operands.
5991 It makes no sense to push anywhere but the top of the reg-stack.
5992
5993 Output operands must start at the top of the reg-stack: output
5994 operands may not ``skip'' a reg.
5995
5996 @item
5997 Some asm statements may need extra stack space for internal
5998 calculations. This can be guaranteed by clobbering stack registers
5999 unrelated to the inputs and outputs.
6000
6001 @end enumerate
6002
6003 Here are a couple of reasonable asms to want to write. This asm
6004 takes one input, which is internally popped, and produces two outputs.
6005
6006 @smallexample
6007 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
6008 @end smallexample
6009
6010 This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6011 and replaces them with one output. The user must code the @code{st(1)}
6012 clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
6013
6014 @smallexample
6015 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
6016 @end smallexample
6017
6018 @include md.texi
6019
6020 @node Asm Labels
6021 @section Controlling Names Used in Assembler Code
6022 @cindex assembler names for identifiers
6023 @cindex names used in assembler code
6024 @cindex identifiers, names in assembler code
6025
6026 You can specify the name to be used in the assembler code for a C
6027 function or variable by writing the @code{asm} (or @code{__asm__})
6028 keyword after the declarator as follows:
6029
6030 @smallexample
6031 int foo asm ("myfoo") = 2;
6032 @end smallexample
6033
6034 @noindent
6035 This specifies that the name to be used for the variable @code{foo} in
6036 the assembler code should be @samp{myfoo} rather than the usual
6037 @samp{_foo}.
6038
6039 On systems where an underscore is normally prepended to the name of a C
6040 function or variable, this feature allows you to define names for the
6041 linker that do not start with an underscore.
6042
6043 It does not make sense to use this feature with a non-static local
6044 variable since such variables do not have assembler names. If you are
6045 trying to put the variable in a particular register, see @ref{Explicit
6046 Reg Vars}. GCC presently accepts such code with a warning, but will
6047 probably be changed to issue an error, rather than a warning, in the
6048 future.
6049
6050 You cannot use @code{asm} in this way in a function @emph{definition}; but
6051 you can get the same effect by writing a declaration for the function
6052 before its definition and putting @code{asm} there, like this:
6053
6054 @smallexample
6055 extern func () asm ("FUNC");
6056
6057 func (x, y)
6058 int x, y;
6059 /* @r{@dots{}} */
6060 @end smallexample
6061
6062 It is up to you to make sure that the assembler names you choose do not
6063 conflict with any other assembler symbols. Also, you must not use a
6064 register name; that would produce completely invalid assembler code. GCC
6065 does not as yet have the ability to store static variables in registers.
6066 Perhaps that will be added.
6067
6068 @node Explicit Reg Vars
6069 @section Variables in Specified Registers
6070 @cindex explicit register variables
6071 @cindex variables in specified registers
6072 @cindex specified registers
6073 @cindex registers, global allocation
6074
6075 GNU C allows you to put a few global variables into specified hardware
6076 registers. You can also specify the register in which an ordinary
6077 register variable should be allocated.
6078
6079 @itemize @bullet
6080 @item
6081 Global register variables reserve registers throughout the program.
6082 This may be useful in programs such as programming language
6083 interpreters which have a couple of global variables that are accessed
6084 very often.
6085
6086 @item
6087 Local register variables in specific registers do not reserve the
6088 registers, except at the point where they are used as input or output
6089 operands in an @code{asm} statement and the @code{asm} statement itself is
6090 not deleted. The compiler's data flow analysis is capable of determining
6091 where the specified registers contain live values, and where they are
6092 available for other uses. Stores into local register variables may be deleted
6093 when they appear to be dead according to dataflow analysis. References
6094 to local register variables may be deleted or moved or simplified.
6095
6096 These local variables are sometimes convenient for use with the extended
6097 @code{asm} feature (@pxref{Extended Asm}), if you want to write one
6098 output of the assembler instruction directly into a particular register.
6099 (This will work provided the register you specify fits the constraints
6100 specified for that operand in the @code{asm}.)
6101 @end itemize
6102
6103 @menu
6104 * Global Reg Vars::
6105 * Local Reg Vars::
6106 @end menu
6107
6108 @node Global Reg Vars
6109 @subsection Defining Global Register Variables
6110 @cindex global register variables
6111 @cindex registers, global variables in
6112
6113 You can define a global register variable in GNU C like this:
6114
6115 @smallexample
6116 register int *foo asm ("a5");
6117 @end smallexample
6118
6119 @noindent
6120 Here @code{a5} is the name of the register which should be used. Choose a
6121 register which is normally saved and restored by function calls on your
6122 machine, so that library routines will not clobber it.
6123
6124 Naturally the register name is cpu-dependent, so you would need to
6125 conditionalize your program according to cpu type. The register
6126 @code{a5} would be a good choice on a 68000 for a variable of pointer
6127 type. On machines with register windows, be sure to choose a ``global''
6128 register that is not affected magically by the function call mechanism.
6129
6130 In addition, operating systems on one type of cpu may differ in how they
6131 name the registers; then you would need additional conditionals. For
6132 example, some 68000 operating systems call this register @code{%a5}.
6133
6134 Eventually there may be a way of asking the compiler to choose a register
6135 automatically, but first we need to figure out how it should choose and
6136 how to enable you to guide the choice. No solution is evident.
6137
6138 Defining a global register variable in a certain register reserves that
6139 register entirely for this use, at least within the current compilation.
6140 The register will not be allocated for any other purpose in the functions
6141 in the current compilation. The register will not be saved and restored by
6142 these functions. Stores into this register are never deleted even if they
6143 would appear to be dead, but references may be deleted or moved or
6144 simplified.
6145
6146 It is not safe to access the global register variables from signal
6147 handlers, or from more than one thread of control, because the system
6148 library routines may temporarily use the register for other things (unless
6149 you recompile them specially for the task at hand).
6150
6151 @cindex @code{qsort}, and global register variables
6152 It is not safe for one function that uses a global register variable to
6153 call another such function @code{foo} by way of a third function
6154 @code{lose} that was compiled without knowledge of this variable (i.e.@: in a
6155 different source file in which the variable wasn't declared). This is
6156 because @code{lose} might save the register and put some other value there.
6157 For example, you can't expect a global register variable to be available in
6158 the comparison-function that you pass to @code{qsort}, since @code{qsort}
6159 might have put something else in that register. (If you are prepared to
6160 recompile @code{qsort} with the same global register variable, you can
6161 solve this problem.)
6162
6163 If you want to recompile @code{qsort} or other source files which do not
6164 actually use your global register variable, so that they will not use that
6165 register for any other purpose, then it suffices to specify the compiler
6166 option @option{-ffixed-@var{reg}}. You need not actually add a global
6167 register declaration to their source code.
6168
6169 A function which can alter the value of a global register variable cannot
6170 safely be called from a function compiled without this variable, because it
6171 could clobber the value the caller expects to find there on return.
6172 Therefore, the function which is the entry point into the part of the
6173 program that uses the global register variable must explicitly save and
6174 restore the value which belongs to its caller.
6175
6176 @cindex register variable after @code{longjmp}
6177 @cindex global register after @code{longjmp}
6178 @cindex value after @code{longjmp}
6179 @findex longjmp
6180 @findex setjmp
6181 On most machines, @code{longjmp} will restore to each global register
6182 variable the value it had at the time of the @code{setjmp}. On some
6183 machines, however, @code{longjmp} will not change the value of global
6184 register variables. To be portable, the function that called @code{setjmp}
6185 should make other arrangements to save the values of the global register
6186 variables, and to restore them in a @code{longjmp}. This way, the same
6187 thing will happen regardless of what @code{longjmp} does.
6188
6189 All global register variable declarations must precede all function
6190 definitions. If such a declaration could appear after function
6191 definitions, the declaration would be too late to prevent the register from
6192 being used for other purposes in the preceding functions.
6193
6194 Global register variables may not have initial values, because an
6195 executable file has no means to supply initial contents for a register.
6196
6197 On the SPARC, there are reports that g3 @dots{} g7 are suitable
6198 registers, but certain library functions, such as @code{getwd}, as well
6199 as the subroutines for division and remainder, modify g3 and g4. g1 and
6200 g2 are local temporaries.
6201
6202 On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6203 Of course, it will not do to use more than a few of those.
6204
6205 @node Local Reg Vars
6206 @subsection Specifying Registers for Local Variables
6207 @cindex local variables, specifying registers
6208 @cindex specifying registers for local variables
6209 @cindex registers for local variables
6210
6211 You can define a local register variable with a specified register
6212 like this:
6213
6214 @smallexample
6215 register int *foo asm ("a5");
6216 @end smallexample
6217
6218 @noindent
6219 Here @code{a5} is the name of the register which should be used. Note
6220 that this is the same syntax used for defining global register
6221 variables, but for a local variable it would appear within a function.
6222
6223 Naturally the register name is cpu-dependent, but this is not a
6224 problem, since specific registers are most often useful with explicit
6225 assembler instructions (@pxref{Extended Asm}). Both of these things
6226 generally require that you conditionalize your program according to
6227 cpu type.
6228
6229 In addition, operating systems on one type of cpu may differ in how they
6230 name the registers; then you would need additional conditionals. For
6231 example, some 68000 operating systems call this register @code{%a5}.
6232
6233 Defining such a register variable does not reserve the register; it
6234 remains available for other uses in places where flow control determines
6235 the variable's value is not live.
6236
6237 This option does not guarantee that GCC will generate code that has
6238 this variable in the register you specify at all times. You may not
6239 code an explicit reference to this register in the @emph{assembler
6240 instruction template} part of an @code{asm} statement and assume it will
6241 always refer to this variable. However, using the variable as an
6242 @code{asm} @emph{operand} guarantees that the specified register is used
6243 for the operand.
6244
6245 Stores into local register variables may be deleted when they appear to be dead
6246 according to dataflow analysis. References to local register variables may
6247 be deleted or moved or simplified.
6248
6249 As for global register variables, it's recommended that you choose a
6250 register which is normally saved and restored by function calls on
6251 your machine, so that library routines will not clobber it. A common
6252 pitfall is to initialize multiple call-clobbered registers with
6253 arbitrary expressions, where a function call or library call for an
6254 arithmetic operator will overwrite a register value from a previous
6255 assignment, for example @code{r0} below:
6256 @smallexample
6257 register int *p1 asm ("r0") = @dots{};
6258 register int *p2 asm ("r1") = @dots{};
6259 @end smallexample
6260 In those cases, a solution is to use a temporary variable for
6261 each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
6262
6263 @node Alternate Keywords
6264 @section Alternate Keywords
6265 @cindex alternate keywords
6266 @cindex keywords, alternate
6267
6268 @option{-ansi} and the various @option{-std} options disable certain
6269 keywords. This causes trouble when you want to use GNU C extensions, or
6270 a general-purpose header file that should be usable by all programs,
6271 including ISO C programs. The keywords @code{asm}, @code{typeof} and
6272 @code{inline} are not available in programs compiled with
6273 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
6274 program compiled with @option{-std=c99} or @option{-std=c1x}). The
6275 ISO C99 keyword
6276 @code{restrict} is only available when @option{-std=gnu99} (which will
6277 eventually be the default) or @option{-std=c99} (or the equivalent
6278 @option{-std=iso9899:1999}), or an option for a later standard
6279 version, is used.
6280
6281 The way to solve these problems is to put @samp{__} at the beginning and
6282 end of each problematical keyword. For example, use @code{__asm__}
6283 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
6284
6285 Other C compilers won't accept these alternative keywords; if you want to
6286 compile with another compiler, you can define the alternate keywords as
6287 macros to replace them with the customary keywords. It looks like this:
6288
6289 @smallexample
6290 #ifndef __GNUC__
6291 #define __asm__ asm
6292 #endif
6293 @end smallexample
6294
6295 @findex __extension__
6296 @opindex pedantic
6297 @option{-pedantic} and other options cause warnings for many GNU C extensions.
6298 You can
6299 prevent such warnings within one expression by writing
6300 @code{__extension__} before the expression. @code{__extension__} has no
6301 effect aside from this.
6302
6303 @node Incomplete Enums
6304 @section Incomplete @code{enum} Types
6305
6306 You can define an @code{enum} tag without specifying its possible values.
6307 This results in an incomplete type, much like what you get if you write
6308 @code{struct foo} without describing the elements. A later declaration
6309 which does specify the possible values completes the type.
6310
6311 You can't allocate variables or storage using the type while it is
6312 incomplete. However, you can work with pointers to that type.
6313
6314 This extension may not be very useful, but it makes the handling of
6315 @code{enum} more consistent with the way @code{struct} and @code{union}
6316 are handled.
6317
6318 This extension is not supported by GNU C++.
6319
6320 @node Function Names
6321 @section Function Names as Strings
6322 @cindex @code{__func__} identifier
6323 @cindex @code{__FUNCTION__} identifier
6324 @cindex @code{__PRETTY_FUNCTION__} identifier
6325
6326 GCC provides three magic variables which hold the name of the current
6327 function, as a string. The first of these is @code{__func__}, which
6328 is part of the C99 standard:
6329
6330 The identifier @code{__func__} is implicitly declared by the translator
6331 as if, immediately following the opening brace of each function
6332 definition, the declaration
6333
6334 @smallexample
6335 static const char __func__[] = "function-name";
6336 @end smallexample
6337
6338 @noindent
6339 appeared, where function-name is the name of the lexically-enclosing
6340 function. This name is the unadorned name of the function.
6341
6342 @code{__FUNCTION__} is another name for @code{__func__}. Older
6343 versions of GCC recognize only this name. However, it is not
6344 standardized. For maximum portability, we recommend you use
6345 @code{__func__}, but provide a fallback definition with the
6346 preprocessor:
6347
6348 @smallexample
6349 #if __STDC_VERSION__ < 199901L
6350 # if __GNUC__ >= 2
6351 # define __func__ __FUNCTION__
6352 # else
6353 # define __func__ "<unknown>"
6354 # endif
6355 #endif
6356 @end smallexample
6357
6358 In C, @code{__PRETTY_FUNCTION__} is yet another name for
6359 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
6360 the type signature of the function as well as its bare name. For
6361 example, this program:
6362
6363 @smallexample
6364 extern "C" @{
6365 extern int printf (char *, ...);
6366 @}
6367
6368 class a @{
6369 public:
6370 void sub (int i)
6371 @{
6372 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
6373 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
6374 @}
6375 @};
6376
6377 int
6378 main (void)
6379 @{
6380 a ax;
6381 ax.sub (0);
6382 return 0;
6383 @}
6384 @end smallexample
6385
6386 @noindent
6387 gives this output:
6388
6389 @smallexample
6390 __FUNCTION__ = sub
6391 __PRETTY_FUNCTION__ = void a::sub(int)
6392 @end smallexample
6393
6394 These identifiers are not preprocessor macros. In GCC 3.3 and
6395 earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
6396 were treated as string literals; they could be used to initialize
6397 @code{char} arrays, and they could be concatenated with other string
6398 literals. GCC 3.4 and later treat them as variables, like
6399 @code{__func__}. In C++, @code{__FUNCTION__} and
6400 @code{__PRETTY_FUNCTION__} have always been variables.
6401
6402 @node Return Address
6403 @section Getting the Return or Frame Address of a Function
6404
6405 These functions may be used to get information about the callers of a
6406 function.
6407
6408 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
6409 This function returns the return address of the current function, or of
6410 one of its callers. The @var{level} argument is number of frames to
6411 scan up the call stack. A value of @code{0} yields the return address
6412 of the current function, a value of @code{1} yields the return address
6413 of the caller of the current function, and so forth. When inlining
6414 the expected behavior is that the function will return the address of
6415 the function that will be returned to. To work around this behavior use
6416 the @code{noinline} function attribute.
6417
6418 The @var{level} argument must be a constant integer.
6419
6420 On some machines it may be impossible to determine the return address of
6421 any function other than the current one; in such cases, or when the top
6422 of the stack has been reached, this function will return @code{0} or a
6423 random value. In addition, @code{__builtin_frame_address} may be used
6424 to determine if the top of the stack has been reached.
6425
6426 Additional post-processing of the returned value may be needed, see
6427 @code{__builtin_extract_return_address}.
6428
6429 This function should only be used with a nonzero argument for debugging
6430 purposes.
6431 @end deftypefn
6432
6433 @deftypefn {Built-in Function} {void *} __builtin_extract_return_address (void *@var{addr})
6434 The address as returned by @code{__builtin_return_address} may have to be fed
6435 through this function to get the actual encoded address. For example, on the
6436 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
6437 platforms an offset has to be added for the true next instruction to be
6438 executed.
6439
6440 If no fixup is needed, this function simply passes through @var{addr}.
6441 @end deftypefn
6442
6443 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
6444 This function does the reverse of @code{__builtin_extract_return_address}.
6445 @end deftypefn
6446
6447 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
6448 This function is similar to @code{__builtin_return_address}, but it
6449 returns the address of the function frame rather than the return address
6450 of the function. Calling @code{__builtin_frame_address} with a value of
6451 @code{0} yields the frame address of the current function, a value of
6452 @code{1} yields the frame address of the caller of the current function,
6453 and so forth.
6454
6455 The frame is the area on the stack which holds local variables and saved
6456 registers. The frame address is normally the address of the first word
6457 pushed on to the stack by the function. However, the exact definition
6458 depends upon the processor and the calling convention. If the processor
6459 has a dedicated frame pointer register, and the function has a frame,
6460 then @code{__builtin_frame_address} will return the value of the frame
6461 pointer register.
6462
6463 On some machines it may be impossible to determine the frame address of
6464 any function other than the current one; in such cases, or when the top
6465 of the stack has been reached, this function will return @code{0} if
6466 the first frame pointer is properly initialized by the startup code.
6467
6468 This function should only be used with a nonzero argument for debugging
6469 purposes.
6470 @end deftypefn
6471
6472 @node Vector Extensions
6473 @section Using vector instructions through built-in functions
6474
6475 On some targets, the instruction set contains SIMD vector instructions that
6476 operate on multiple values contained in one large register at the same time.
6477 For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
6478 this way.
6479
6480 The first step in using these extensions is to provide the necessary data
6481 types. This should be done using an appropriate @code{typedef}:
6482
6483 @smallexample
6484 typedef int v4si __attribute__ ((vector_size (16)));
6485 @end smallexample
6486
6487 The @code{int} type specifies the base type, while the attribute specifies
6488 the vector size for the variable, measured in bytes. For example, the
6489 declaration above causes the compiler to set the mode for the @code{v4si}
6490 type to be 16 bytes wide and divided into @code{int} sized units. For
6491 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
6492 corresponding mode of @code{foo} will be @acronym{V4SI}.
6493
6494 The @code{vector_size} attribute is only applicable to integral and
6495 float scalars, although arrays, pointers, and function return values
6496 are allowed in conjunction with this construct.
6497
6498 All the basic integer types can be used as base types, both as signed
6499 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
6500 @code{long long}. In addition, @code{float} and @code{double} can be
6501 used to build floating-point vector types.
6502
6503 Specifying a combination that is not valid for the current architecture
6504 will cause GCC to synthesize the instructions using a narrower mode.
6505 For example, if you specify a variable of type @code{V4SI} and your
6506 architecture does not allow for this specific SIMD type, GCC will
6507 produce code that uses 4 @code{SIs}.
6508
6509 The types defined in this manner can be used with a subset of normal C
6510 operations. Currently, GCC will allow using the following operators
6511 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
6512
6513 The operations behave like C++ @code{valarrays}. Addition is defined as
6514 the addition of the corresponding elements of the operands. For
6515 example, in the code below, each of the 4 elements in @var{a} will be
6516 added to the corresponding 4 elements in @var{b} and the resulting
6517 vector will be stored in @var{c}.
6518
6519 @smallexample
6520 typedef int v4si __attribute__ ((vector_size (16)));
6521
6522 v4si a, b, c;
6523
6524 c = a + b;
6525 @end smallexample
6526
6527 Subtraction, multiplication, division, and the logical operations
6528 operate in a similar manner. Likewise, the result of using the unary
6529 minus or complement operators on a vector type is a vector whose
6530 elements are the negative or complemented values of the corresponding
6531 elements in the operand.
6532
6533 In C it is possible to use shifting operators @code{<<}, @code{>>} on
6534 integer-type vectors. The operation is defined as following: @code{@{a0,
6535 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
6536 @dots{}, an >> bn@}}@. Vector operands must have the same number of
6537 elements.
6538
6539 For the convenience in C it is allowed to use a binary vector operation
6540 where one operand is a scalar. In that case the compiler will transform
6541 the scalar operand into a vector where each element is the scalar from
6542 the operation. The transformation will happen only if the scalar could be
6543 safely converted to the vector-element type.
6544 Consider the following code.
6545
6546 @smallexample
6547 typedef int v4si __attribute__ ((vector_size (16)));
6548
6549 v4si a, b, c;
6550 long l;
6551
6552 a = b + 1; /* a = b + @{1,1,1,1@}; */
6553 a = 2 * b; /* a = @{2,2,2,2@} * b; */
6554
6555 a = l + a; /* Error, cannot convert long to int. */
6556 @end smallexample
6557
6558 In C vectors can be subscripted as if the vector were an array with
6559 the same number of elements and base type. Out of bound accesses
6560 invoke undefined behavior at runtime. Warnings for out of bound
6561 accesses for vector subscription can be enabled with
6562 @option{-Warray-bounds}.
6563
6564 You can declare variables and use them in function calls and returns, as
6565 well as in assignments and some casts. You can specify a vector type as
6566 a return type for a function. Vector types can also be used as function
6567 arguments. It is possible to cast from one vector type to another,
6568 provided they are of the same size (in fact, you can also cast vectors
6569 to and from other datatypes of the same size).
6570
6571 You cannot operate between vectors of different lengths or different
6572 signedness without a cast.
6573
6574 A port that supports hardware vector operations, usually provides a set
6575 of built-in functions that can be used to operate on vectors. For
6576 example, a function to add two vectors and multiply the result by a
6577 third could look like this:
6578
6579 @smallexample
6580 v4si f (v4si a, v4si b, v4si c)
6581 @{
6582 v4si tmp = __builtin_addv4si (a, b);
6583 return __builtin_mulv4si (tmp, c);
6584 @}
6585
6586 @end smallexample
6587
6588 @node Offsetof
6589 @section Offsetof
6590 @findex __builtin_offsetof
6591
6592 GCC implements for both C and C++ a syntactic extension to implement
6593 the @code{offsetof} macro.
6594
6595 @smallexample
6596 primary:
6597 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
6598
6599 offsetof_member_designator:
6600 @code{identifier}
6601 | offsetof_member_designator "." @code{identifier}
6602 | offsetof_member_designator "[" @code{expr} "]"
6603 @end smallexample
6604
6605 This extension is sufficient such that
6606
6607 @smallexample
6608 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
6609 @end smallexample
6610
6611 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
6612 may be dependent. In either case, @var{member} may consist of a single
6613 identifier, or a sequence of member accesses and array references.
6614
6615 @node Atomic Builtins
6616 @section Built-in functions for atomic memory access
6617
6618 The following builtins are intended to be compatible with those described
6619 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
6620 section 7.4. As such, they depart from the normal GCC practice of using
6621 the ``__builtin_'' prefix, and further that they are overloaded such that
6622 they work on multiple types.
6623
6624 The definition given in the Intel documentation allows only for the use of
6625 the types @code{int}, @code{long}, @code{long long} as well as their unsigned
6626 counterparts. GCC will allow any integral scalar or pointer type that is
6627 1, 2, 4 or 8 bytes in length.
6628
6629 Not all operations are supported by all target processors. If a particular
6630 operation cannot be implemented on the target processor, a warning will be
6631 generated and a call an external function will be generated. The external
6632 function will carry the same name as the builtin, with an additional suffix
6633 @samp{_@var{n}} where @var{n} is the size of the data type.
6634
6635 @c ??? Should we have a mechanism to suppress this warning? This is almost
6636 @c useful for implementing the operation under the control of an external
6637 @c mutex.
6638
6639 In most cases, these builtins are considered a @dfn{full barrier}. That is,
6640 no memory operand will be moved across the operation, either forward or
6641 backward. Further, instructions will be issued as necessary to prevent the
6642 processor from speculating loads across the operation and from queuing stores
6643 after the operation.
6644
6645 All of the routines are described in the Intel documentation to take
6646 ``an optional list of variables protected by the memory barrier''. It's
6647 not clear what is meant by that; it could mean that @emph{only} the
6648 following variables are protected, or it could mean that these variables
6649 should in addition be protected. At present GCC ignores this list and
6650 protects all variables which are globally accessible. If in the future
6651 we make some use of this list, an empty list will continue to mean all
6652 globally accessible variables.
6653
6654 @table @code
6655 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
6656 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
6657 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
6658 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
6659 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
6660 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
6661 @findex __sync_fetch_and_add
6662 @findex __sync_fetch_and_sub
6663 @findex __sync_fetch_and_or
6664 @findex __sync_fetch_and_and
6665 @findex __sync_fetch_and_xor
6666 @findex __sync_fetch_and_nand
6667 These builtins perform the operation suggested by the name, and
6668 returns the value that had previously been in memory. That is,
6669
6670 @smallexample
6671 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
6672 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
6673 @end smallexample
6674
6675 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
6676 builtin as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
6677
6678 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
6679 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
6680 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
6681 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
6682 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
6683 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
6684 @findex __sync_add_and_fetch
6685 @findex __sync_sub_and_fetch
6686 @findex __sync_or_and_fetch
6687 @findex __sync_and_and_fetch
6688 @findex __sync_xor_and_fetch
6689 @findex __sync_nand_and_fetch
6690 These builtins perform the operation suggested by the name, and
6691 return the new value. That is,
6692
6693 @smallexample
6694 @{ *ptr @var{op}= value; return *ptr; @}
6695 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
6696 @end smallexample
6697
6698 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
6699 builtin as @code{*ptr = ~(*ptr & value)} instead of
6700 @code{*ptr = ~*ptr & value}.
6701
6702 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
6703 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
6704 @findex __sync_bool_compare_and_swap
6705 @findex __sync_val_compare_and_swap
6706 These builtins perform an atomic compare and swap. That is, if the current
6707 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
6708 @code{*@var{ptr}}.
6709
6710 The ``bool'' version returns true if the comparison is successful and
6711 @var{newval} was written. The ``val'' version returns the contents
6712 of @code{*@var{ptr}} before the operation.
6713
6714 @item __sync_synchronize (...)
6715 @findex __sync_synchronize
6716 This builtin issues a full memory barrier.
6717
6718 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
6719 @findex __sync_lock_test_and_set
6720 This builtin, as described by Intel, is not a traditional test-and-set
6721 operation, but rather an atomic exchange operation. It writes @var{value}
6722 into @code{*@var{ptr}}, and returns the previous contents of
6723 @code{*@var{ptr}}.
6724
6725 Many targets have only minimal support for such locks, and do not support
6726 a full exchange operation. In this case, a target may support reduced
6727 functionality here by which the @emph{only} valid value to store is the
6728 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
6729 is implementation defined.
6730
6731 This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
6732 This means that references after the builtin cannot move to (or be
6733 speculated to) before the builtin, but previous memory stores may not
6734 be globally visible yet, and previous memory loads may not yet be
6735 satisfied.
6736
6737 @item void __sync_lock_release (@var{type} *ptr, ...)
6738 @findex __sync_lock_release
6739 This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
6740 Normally this means writing the constant 0 to @code{*@var{ptr}}.
6741
6742 This builtin is not a full barrier, but rather a @dfn{release barrier}.
6743 This means that all previous memory stores are globally visible, and all
6744 previous memory loads have been satisfied, but following memory reads
6745 are not prevented from being speculated to before the barrier.
6746 @end table
6747
6748 @node Object Size Checking
6749 @section Object Size Checking Builtins
6750 @findex __builtin_object_size
6751 @findex __builtin___memcpy_chk
6752 @findex __builtin___mempcpy_chk
6753 @findex __builtin___memmove_chk
6754 @findex __builtin___memset_chk
6755 @findex __builtin___strcpy_chk
6756 @findex __builtin___stpcpy_chk
6757 @findex __builtin___strncpy_chk
6758 @findex __builtin___strcat_chk
6759 @findex __builtin___strncat_chk
6760 @findex __builtin___sprintf_chk
6761 @findex __builtin___snprintf_chk
6762 @findex __builtin___vsprintf_chk
6763 @findex __builtin___vsnprintf_chk
6764 @findex __builtin___printf_chk
6765 @findex __builtin___vprintf_chk
6766 @findex __builtin___fprintf_chk
6767 @findex __builtin___vfprintf_chk
6768
6769 GCC implements a limited buffer overflow protection mechanism
6770 that can prevent some buffer overflow attacks.
6771
6772 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
6773 is a built-in construct that returns a constant number of bytes from
6774 @var{ptr} to the end of the object @var{ptr} pointer points to
6775 (if known at compile time). @code{__builtin_object_size} never evaluates
6776 its arguments for side-effects. If there are any side-effects in them, it
6777 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
6778 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
6779 point to and all of them are known at compile time, the returned number
6780 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
6781 0 and minimum if nonzero. If it is not possible to determine which objects
6782 @var{ptr} points to at compile time, @code{__builtin_object_size} should
6783 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
6784 for @var{type} 2 or 3.
6785
6786 @var{type} is an integer constant from 0 to 3. If the least significant
6787 bit is clear, objects are whole variables, if it is set, a closest
6788 surrounding subobject is considered the object a pointer points to.
6789 The second bit determines if maximum or minimum of remaining bytes
6790 is computed.
6791
6792 @smallexample
6793 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
6794 char *p = &var.buf1[1], *q = &var.b;
6795
6796 /* Here the object p points to is var. */
6797 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
6798 /* The subobject p points to is var.buf1. */
6799 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
6800 /* The object q points to is var. */
6801 assert (__builtin_object_size (q, 0)
6802 == (char *) (&var + 1) - (char *) &var.b);
6803 /* The subobject q points to is var.b. */
6804 assert (__builtin_object_size (q, 1) == sizeof (var.b));
6805 @end smallexample
6806 @end deftypefn
6807
6808 There are built-in functions added for many common string operation
6809 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
6810 built-in is provided. This built-in has an additional last argument,
6811 which is the number of bytes remaining in object the @var{dest}
6812 argument points to or @code{(size_t) -1} if the size is not known.
6813
6814 The built-in functions are optimized into the normal string functions
6815 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
6816 it is known at compile time that the destination object will not
6817 be overflown. If the compiler can determine at compile time the
6818 object will be always overflown, it issues a warning.
6819
6820 The intended use can be e.g.
6821
6822 @smallexample
6823 #undef memcpy
6824 #define bos0(dest) __builtin_object_size (dest, 0)
6825 #define memcpy(dest, src, n) \
6826 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
6827
6828 char *volatile p;
6829 char buf[10];
6830 /* It is unknown what object p points to, so this is optimized
6831 into plain memcpy - no checking is possible. */
6832 memcpy (p, "abcde", n);
6833 /* Destination is known and length too. It is known at compile
6834 time there will be no overflow. */
6835 memcpy (&buf[5], "abcde", 5);
6836 /* Destination is known, but the length is not known at compile time.
6837 This will result in __memcpy_chk call that can check for overflow
6838 at runtime. */
6839 memcpy (&buf[5], "abcde", n);
6840 /* Destination is known and it is known at compile time there will
6841 be overflow. There will be a warning and __memcpy_chk call that
6842 will abort the program at runtime. */
6843 memcpy (&buf[6], "abcde", 5);
6844 @end smallexample
6845
6846 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
6847 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
6848 @code{strcat} and @code{strncat}.
6849
6850 There are also checking built-in functions for formatted output functions.
6851 @smallexample
6852 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
6853 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6854 const char *fmt, ...);
6855 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
6856 va_list ap);
6857 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6858 const char *fmt, va_list ap);
6859 @end smallexample
6860
6861 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
6862 etc.@: functions and can contain implementation specific flags on what
6863 additional security measures the checking function might take, such as
6864 handling @code{%n} differently.
6865
6866 The @var{os} argument is the object size @var{s} points to, like in the
6867 other built-in functions. There is a small difference in the behavior
6868 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
6869 optimized into the non-checking functions only if @var{flag} is 0, otherwise
6870 the checking function is called with @var{os} argument set to
6871 @code{(size_t) -1}.
6872
6873 In addition to this, there are checking built-in functions
6874 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
6875 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
6876 These have just one additional argument, @var{flag}, right before
6877 format string @var{fmt}. If the compiler is able to optimize them to
6878 @code{fputc} etc.@: functions, it will, otherwise the checking function
6879 should be called and the @var{flag} argument passed to it.
6880
6881 @node Other Builtins
6882 @section Other built-in functions provided by GCC
6883 @cindex built-in functions
6884 @findex __builtin_fpclassify
6885 @findex __builtin_isfinite
6886 @findex __builtin_isnormal
6887 @findex __builtin_isgreater
6888 @findex __builtin_isgreaterequal
6889 @findex __builtin_isinf_sign
6890 @findex __builtin_isless
6891 @findex __builtin_islessequal
6892 @findex __builtin_islessgreater
6893 @findex __builtin_isunordered
6894 @findex __builtin_powi
6895 @findex __builtin_powif
6896 @findex __builtin_powil
6897 @findex _Exit
6898 @findex _exit
6899 @findex abort
6900 @findex abs
6901 @findex acos
6902 @findex acosf
6903 @findex acosh
6904 @findex acoshf
6905 @findex acoshl
6906 @findex acosl
6907 @findex alloca
6908 @findex asin
6909 @findex asinf
6910 @findex asinh
6911 @findex asinhf
6912 @findex asinhl
6913 @findex asinl
6914 @findex atan
6915 @findex atan2
6916 @findex atan2f
6917 @findex atan2l
6918 @findex atanf
6919 @findex atanh
6920 @findex atanhf
6921 @findex atanhl
6922 @findex atanl
6923 @findex bcmp
6924 @findex bzero
6925 @findex cabs
6926 @findex cabsf
6927 @findex cabsl
6928 @findex cacos
6929 @findex cacosf
6930 @findex cacosh
6931 @findex cacoshf
6932 @findex cacoshl
6933 @findex cacosl
6934 @findex calloc
6935 @findex carg
6936 @findex cargf
6937 @findex cargl
6938 @findex casin
6939 @findex casinf
6940 @findex casinh
6941 @findex casinhf
6942 @findex casinhl
6943 @findex casinl
6944 @findex catan
6945 @findex catanf
6946 @findex catanh
6947 @findex catanhf
6948 @findex catanhl
6949 @findex catanl
6950 @findex cbrt
6951 @findex cbrtf
6952 @findex cbrtl
6953 @findex ccos
6954 @findex ccosf
6955 @findex ccosh
6956 @findex ccoshf
6957 @findex ccoshl
6958 @findex ccosl
6959 @findex ceil
6960 @findex ceilf
6961 @findex ceill
6962 @findex cexp
6963 @findex cexpf
6964 @findex cexpl
6965 @findex cimag
6966 @findex cimagf
6967 @findex cimagl
6968 @findex clog
6969 @findex clogf
6970 @findex clogl
6971 @findex conj
6972 @findex conjf
6973 @findex conjl
6974 @findex copysign
6975 @findex copysignf
6976 @findex copysignl
6977 @findex cos
6978 @findex cosf
6979 @findex cosh
6980 @findex coshf
6981 @findex coshl
6982 @findex cosl
6983 @findex cpow
6984 @findex cpowf
6985 @findex cpowl
6986 @findex cproj
6987 @findex cprojf
6988 @findex cprojl
6989 @findex creal
6990 @findex crealf
6991 @findex creall
6992 @findex csin
6993 @findex csinf
6994 @findex csinh
6995 @findex csinhf
6996 @findex csinhl
6997 @findex csinl
6998 @findex csqrt
6999 @findex csqrtf
7000 @findex csqrtl
7001 @findex ctan
7002 @findex ctanf
7003 @findex ctanh
7004 @findex ctanhf
7005 @findex ctanhl
7006 @findex ctanl
7007 @findex dcgettext
7008 @findex dgettext
7009 @findex drem
7010 @findex dremf
7011 @findex dreml
7012 @findex erf
7013 @findex erfc
7014 @findex erfcf
7015 @findex erfcl
7016 @findex erff
7017 @findex erfl
7018 @findex exit
7019 @findex exp
7020 @findex exp10
7021 @findex exp10f
7022 @findex exp10l
7023 @findex exp2
7024 @findex exp2f
7025 @findex exp2l
7026 @findex expf
7027 @findex expl
7028 @findex expm1
7029 @findex expm1f
7030 @findex expm1l
7031 @findex fabs
7032 @findex fabsf
7033 @findex fabsl
7034 @findex fdim
7035 @findex fdimf
7036 @findex fdiml
7037 @findex ffs
7038 @findex floor
7039 @findex floorf
7040 @findex floorl
7041 @findex fma
7042 @findex fmaf
7043 @findex fmal
7044 @findex fmax
7045 @findex fmaxf
7046 @findex fmaxl
7047 @findex fmin
7048 @findex fminf
7049 @findex fminl
7050 @findex fmod
7051 @findex fmodf
7052 @findex fmodl
7053 @findex fprintf
7054 @findex fprintf_unlocked
7055 @findex fputs
7056 @findex fputs_unlocked
7057 @findex frexp
7058 @findex frexpf
7059 @findex frexpl
7060 @findex fscanf
7061 @findex gamma
7062 @findex gammaf
7063 @findex gammal
7064 @findex gamma_r
7065 @findex gammaf_r
7066 @findex gammal_r
7067 @findex gettext
7068 @findex hypot
7069 @findex hypotf
7070 @findex hypotl
7071 @findex ilogb
7072 @findex ilogbf
7073 @findex ilogbl
7074 @findex imaxabs
7075 @findex index
7076 @findex isalnum
7077 @findex isalpha
7078 @findex isascii
7079 @findex isblank
7080 @findex iscntrl
7081 @findex isdigit
7082 @findex isgraph
7083 @findex islower
7084 @findex isprint
7085 @findex ispunct
7086 @findex isspace
7087 @findex isupper
7088 @findex iswalnum
7089 @findex iswalpha
7090 @findex iswblank
7091 @findex iswcntrl
7092 @findex iswdigit
7093 @findex iswgraph
7094 @findex iswlower
7095 @findex iswprint
7096 @findex iswpunct
7097 @findex iswspace
7098 @findex iswupper
7099 @findex iswxdigit
7100 @findex isxdigit
7101 @findex j0
7102 @findex j0f
7103 @findex j0l
7104 @findex j1
7105 @findex j1f
7106 @findex j1l
7107 @findex jn
7108 @findex jnf
7109 @findex jnl
7110 @findex labs
7111 @findex ldexp
7112 @findex ldexpf
7113 @findex ldexpl
7114 @findex lgamma
7115 @findex lgammaf
7116 @findex lgammal
7117 @findex lgamma_r
7118 @findex lgammaf_r
7119 @findex lgammal_r
7120 @findex llabs
7121 @findex llrint
7122 @findex llrintf
7123 @findex llrintl
7124 @findex llround
7125 @findex llroundf
7126 @findex llroundl
7127 @findex log
7128 @findex log10
7129 @findex log10f
7130 @findex log10l
7131 @findex log1p
7132 @findex log1pf
7133 @findex log1pl
7134 @findex log2
7135 @findex log2f
7136 @findex log2l
7137 @findex logb
7138 @findex logbf
7139 @findex logbl
7140 @findex logf
7141 @findex logl
7142 @findex lrint
7143 @findex lrintf
7144 @findex lrintl
7145 @findex lround
7146 @findex lroundf
7147 @findex lroundl
7148 @findex malloc
7149 @findex memchr
7150 @findex memcmp
7151 @findex memcpy
7152 @findex mempcpy
7153 @findex memset
7154 @findex modf
7155 @findex modff
7156 @findex modfl
7157 @findex nearbyint
7158 @findex nearbyintf
7159 @findex nearbyintl
7160 @findex nextafter
7161 @findex nextafterf
7162 @findex nextafterl
7163 @findex nexttoward
7164 @findex nexttowardf
7165 @findex nexttowardl
7166 @findex pow
7167 @findex pow10
7168 @findex pow10f
7169 @findex pow10l
7170 @findex powf
7171 @findex powl
7172 @findex printf
7173 @findex printf_unlocked
7174 @findex putchar
7175 @findex puts
7176 @findex remainder
7177 @findex remainderf
7178 @findex remainderl
7179 @findex remquo
7180 @findex remquof
7181 @findex remquol
7182 @findex rindex
7183 @findex rint
7184 @findex rintf
7185 @findex rintl
7186 @findex round
7187 @findex roundf
7188 @findex roundl
7189 @findex scalb
7190 @findex scalbf
7191 @findex scalbl
7192 @findex scalbln
7193 @findex scalblnf
7194 @findex scalblnf
7195 @findex scalbn
7196 @findex scalbnf
7197 @findex scanfnl
7198 @findex signbit
7199 @findex signbitf
7200 @findex signbitl
7201 @findex signbitd32
7202 @findex signbitd64
7203 @findex signbitd128
7204 @findex significand
7205 @findex significandf
7206 @findex significandl
7207 @findex sin
7208 @findex sincos
7209 @findex sincosf
7210 @findex sincosl
7211 @findex sinf
7212 @findex sinh
7213 @findex sinhf
7214 @findex sinhl
7215 @findex sinl
7216 @findex snprintf
7217 @findex sprintf
7218 @findex sqrt
7219 @findex sqrtf
7220 @findex sqrtl
7221 @findex sscanf
7222 @findex stpcpy
7223 @findex stpncpy
7224 @findex strcasecmp
7225 @findex strcat
7226 @findex strchr
7227 @findex strcmp
7228 @findex strcpy
7229 @findex strcspn
7230 @findex strdup
7231 @findex strfmon
7232 @findex strftime
7233 @findex strlen
7234 @findex strncasecmp
7235 @findex strncat
7236 @findex strncmp
7237 @findex strncpy
7238 @findex strndup
7239 @findex strpbrk
7240 @findex strrchr
7241 @findex strspn
7242 @findex strstr
7243 @findex tan
7244 @findex tanf
7245 @findex tanh
7246 @findex tanhf
7247 @findex tanhl
7248 @findex tanl
7249 @findex tgamma
7250 @findex tgammaf
7251 @findex tgammal
7252 @findex toascii
7253 @findex tolower
7254 @findex toupper
7255 @findex towlower
7256 @findex towupper
7257 @findex trunc
7258 @findex truncf
7259 @findex truncl
7260 @findex vfprintf
7261 @findex vfscanf
7262 @findex vprintf
7263 @findex vscanf
7264 @findex vsnprintf
7265 @findex vsprintf
7266 @findex vsscanf
7267 @findex y0
7268 @findex y0f
7269 @findex y0l
7270 @findex y1
7271 @findex y1f
7272 @findex y1l
7273 @findex yn
7274 @findex ynf
7275 @findex ynl
7276
7277 GCC provides a large number of built-in functions other than the ones
7278 mentioned above. Some of these are for internal use in the processing
7279 of exceptions or variable-length argument lists and will not be
7280 documented here because they may change from time to time; we do not
7281 recommend general use of these functions.
7282
7283 The remaining functions are provided for optimization purposes.
7284
7285 @opindex fno-builtin
7286 GCC includes built-in versions of many of the functions in the standard
7287 C library. The versions prefixed with @code{__builtin_} will always be
7288 treated as having the same meaning as the C library function even if you
7289 specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
7290 Many of these functions are only optimized in certain cases; if they are
7291 not optimized in a particular case, a call to the library function will
7292 be emitted.
7293
7294 @opindex ansi
7295 @opindex std
7296 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
7297 @option{-std=c99} or @option{-std=c1x}), the functions
7298 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
7299 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
7300 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
7301 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
7302 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
7303 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
7304 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
7305 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
7306 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
7307 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
7308 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
7309 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
7310 @code{signbitd64}, @code{signbitd128}, @code{significandf},
7311 @code{significandl}, @code{significand}, @code{sincosf},
7312 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
7313 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
7314 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
7315 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
7316 @code{yn}
7317 may be handled as built-in functions.
7318 All these functions have corresponding versions
7319 prefixed with @code{__builtin_}, which may be used even in strict C90
7320 mode.
7321
7322 The ISO C99 functions
7323 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
7324 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
7325 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
7326 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
7327 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
7328 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
7329 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
7330 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
7331 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
7332 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
7333 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
7334 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
7335 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
7336 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
7337 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
7338 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
7339 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
7340 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
7341 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
7342 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
7343 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
7344 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
7345 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
7346 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
7347 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
7348 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
7349 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
7350 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
7351 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
7352 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
7353 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
7354 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
7355 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
7356 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
7357 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
7358 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
7359 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
7360 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
7361 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
7362 are handled as built-in functions
7363 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7364
7365 There are also built-in versions of the ISO C99 functions
7366 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
7367 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
7368 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
7369 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
7370 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
7371 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
7372 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
7373 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
7374 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
7375 that are recognized in any mode since ISO C90 reserves these names for
7376 the purpose to which ISO C99 puts them. All these functions have
7377 corresponding versions prefixed with @code{__builtin_}.
7378
7379 The ISO C94 functions
7380 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
7381 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
7382 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
7383 @code{towupper}
7384 are handled as built-in functions
7385 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7386
7387 The ISO C90 functions
7388 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
7389 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
7390 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
7391 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
7392 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
7393 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
7394 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
7395 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
7396 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
7397 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
7398 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
7399 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
7400 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
7401 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
7402 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
7403 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
7404 are all recognized as built-in functions unless
7405 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
7406 is specified for an individual function). All of these functions have
7407 corresponding versions prefixed with @code{__builtin_}.
7408
7409 GCC provides built-in versions of the ISO C99 floating point comparison
7410 macros that avoid raising exceptions for unordered operands. They have
7411 the same names as the standard macros ( @code{isgreater},
7412 @code{isgreaterequal}, @code{isless}, @code{islessequal},
7413 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
7414 prefixed. We intend for a library implementor to be able to simply
7415 @code{#define} each standard macro to its built-in equivalent.
7416 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
7417 @code{isinf_sign} and @code{isnormal} built-ins used with
7418 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
7419 builtins appear both with and without the @code{__builtin_} prefix.
7420
7421 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
7422
7423 You can use the built-in function @code{__builtin_types_compatible_p} to
7424 determine whether two types are the same.
7425
7426 This built-in function returns 1 if the unqualified versions of the
7427 types @var{type1} and @var{type2} (which are types, not expressions) are
7428 compatible, 0 otherwise. The result of this built-in function can be
7429 used in integer constant expressions.
7430
7431 This built-in function ignores top level qualifiers (e.g., @code{const},
7432 @code{volatile}). For example, @code{int} is equivalent to @code{const
7433 int}.
7434
7435 The type @code{int[]} and @code{int[5]} are compatible. On the other
7436 hand, @code{int} and @code{char *} are not compatible, even if the size
7437 of their types, on the particular architecture are the same. Also, the
7438 amount of pointer indirection is taken into account when determining
7439 similarity. Consequently, @code{short *} is not similar to
7440 @code{short **}. Furthermore, two types that are typedefed are
7441 considered compatible if their underlying types are compatible.
7442
7443 An @code{enum} type is not considered to be compatible with another
7444 @code{enum} type even if both are compatible with the same integer
7445 type; this is what the C standard specifies.
7446 For example, @code{enum @{foo, bar@}} is not similar to
7447 @code{enum @{hot, dog@}}.
7448
7449 You would typically use this function in code whose execution varies
7450 depending on the arguments' types. For example:
7451
7452 @smallexample
7453 #define foo(x) \
7454 (@{ \
7455 typeof (x) tmp = (x); \
7456 if (__builtin_types_compatible_p (typeof (x), long double)) \
7457 tmp = foo_long_double (tmp); \
7458 else if (__builtin_types_compatible_p (typeof (x), double)) \
7459 tmp = foo_double (tmp); \
7460 else if (__builtin_types_compatible_p (typeof (x), float)) \
7461 tmp = foo_float (tmp); \
7462 else \
7463 abort (); \
7464 tmp; \
7465 @})
7466 @end smallexample
7467
7468 @emph{Note:} This construct is only available for C@.
7469
7470 @end deftypefn
7471
7472 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
7473
7474 You can use the built-in function @code{__builtin_choose_expr} to
7475 evaluate code depending on the value of a constant expression. This
7476 built-in function returns @var{exp1} if @var{const_exp}, which is an
7477 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
7478
7479 This built-in function is analogous to the @samp{? :} operator in C,
7480 except that the expression returned has its type unaltered by promotion
7481 rules. Also, the built-in function does not evaluate the expression
7482 that was not chosen. For example, if @var{const_exp} evaluates to true,
7483 @var{exp2} is not evaluated even if it has side-effects.
7484
7485 This built-in function can return an lvalue if the chosen argument is an
7486 lvalue.
7487
7488 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
7489 type. Similarly, if @var{exp2} is returned, its return type is the same
7490 as @var{exp2}.
7491
7492 Example:
7493
7494 @smallexample
7495 #define foo(x) \
7496 __builtin_choose_expr ( \
7497 __builtin_types_compatible_p (typeof (x), double), \
7498 foo_double (x), \
7499 __builtin_choose_expr ( \
7500 __builtin_types_compatible_p (typeof (x), float), \
7501 foo_float (x), \
7502 /* @r{The void expression results in a compile-time error} \
7503 @r{when assigning the result to something.} */ \
7504 (void)0))
7505 @end smallexample
7506
7507 @emph{Note:} This construct is only available for C@. Furthermore, the
7508 unused expression (@var{exp1} or @var{exp2} depending on the value of
7509 @var{const_exp}) may still generate syntax errors. This may change in
7510 future revisions.
7511
7512 @end deftypefn
7513
7514 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
7515
7516 The built-in function @code{__builtin_complex} is provided for use in
7517 implementing the ISO C1X macros @code{CMPLXF}, @code{CMPLX} and
7518 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
7519 real binary floating-point type, and the result has the corresponding
7520 complex type with real and imaginary parts @var{real} and @var{imag}.
7521 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
7522 infinities, NaNs and negative zeros are involved.
7523
7524 @end deftypefn
7525
7526 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
7527 You can use the built-in function @code{__builtin_constant_p} to
7528 determine if a value is known to be constant at compile-time and hence
7529 that GCC can perform constant-folding on expressions involving that
7530 value. The argument of the function is the value to test. The function
7531 returns the integer 1 if the argument is known to be a compile-time
7532 constant and 0 if it is not known to be a compile-time constant. A
7533 return of 0 does not indicate that the value is @emph{not} a constant,
7534 but merely that GCC cannot prove it is a constant with the specified
7535 value of the @option{-O} option.
7536
7537 You would typically use this function in an embedded application where
7538 memory was a critical resource. If you have some complex calculation,
7539 you may want it to be folded if it involves constants, but need to call
7540 a function if it does not. For example:
7541
7542 @smallexample
7543 #define Scale_Value(X) \
7544 (__builtin_constant_p (X) \
7545 ? ((X) * SCALE + OFFSET) : Scale (X))
7546 @end smallexample
7547
7548 You may use this built-in function in either a macro or an inline
7549 function. However, if you use it in an inlined function and pass an
7550 argument of the function as the argument to the built-in, GCC will
7551 never return 1 when you call the inline function with a string constant
7552 or compound literal (@pxref{Compound Literals}) and will not return 1
7553 when you pass a constant numeric value to the inline function unless you
7554 specify the @option{-O} option.
7555
7556 You may also use @code{__builtin_constant_p} in initializers for static
7557 data. For instance, you can write
7558
7559 @smallexample
7560 static const int table[] = @{
7561 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
7562 /* @r{@dots{}} */
7563 @};
7564 @end smallexample
7565
7566 @noindent
7567 This is an acceptable initializer even if @var{EXPRESSION} is not a
7568 constant expression, including the case where
7569 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
7570 folded to a constant but @var{EXPRESSION} contains operands that would
7571 not otherwise be permitted in a static initializer (for example,
7572 @code{0 && foo ()}). GCC must be more conservative about evaluating the
7573 built-in in this case, because it has no opportunity to perform
7574 optimization.
7575
7576 Previous versions of GCC did not accept this built-in in data
7577 initializers. The earliest version where it is completely safe is
7578 3.0.1.
7579 @end deftypefn
7580
7581 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
7582 @opindex fprofile-arcs
7583 You may use @code{__builtin_expect} to provide the compiler with
7584 branch prediction information. In general, you should prefer to
7585 use actual profile feedback for this (@option{-fprofile-arcs}), as
7586 programmers are notoriously bad at predicting how their programs
7587 actually perform. However, there are applications in which this
7588 data is hard to collect.
7589
7590 The return value is the value of @var{exp}, which should be an integral
7591 expression. The semantics of the built-in are that it is expected that
7592 @var{exp} == @var{c}. For example:
7593
7594 @smallexample
7595 if (__builtin_expect (x, 0))
7596 foo ();
7597 @end smallexample
7598
7599 @noindent
7600 would indicate that we do not expect to call @code{foo}, since
7601 we expect @code{x} to be zero. Since you are limited to integral
7602 expressions for @var{exp}, you should use constructions such as
7603
7604 @smallexample
7605 if (__builtin_expect (ptr != NULL, 1))
7606 error ();
7607 @end smallexample
7608
7609 @noindent
7610 when testing pointer or floating-point values.
7611 @end deftypefn
7612
7613 @deftypefn {Built-in Function} void __builtin_trap (void)
7614 This function causes the program to exit abnormally. GCC implements
7615 this function by using a target-dependent mechanism (such as
7616 intentionally executing an illegal instruction) or by calling
7617 @code{abort}. The mechanism used may vary from release to release so
7618 you should not rely on any particular implementation.
7619 @end deftypefn
7620
7621 @deftypefn {Built-in Function} void __builtin_unreachable (void)
7622 If control flow reaches the point of the @code{__builtin_unreachable},
7623 the program is undefined. It is useful in situations where the
7624 compiler cannot deduce the unreachability of the code.
7625
7626 One such case is immediately following an @code{asm} statement that
7627 will either never terminate, or one that transfers control elsewhere
7628 and never returns. In this example, without the
7629 @code{__builtin_unreachable}, GCC would issue a warning that control
7630 reaches the end of a non-void function. It would also generate code
7631 to return after the @code{asm}.
7632
7633 @smallexample
7634 int f (int c, int v)
7635 @{
7636 if (c)
7637 @{
7638 return v;
7639 @}
7640 else
7641 @{
7642 asm("jmp error_handler");
7643 __builtin_unreachable ();
7644 @}
7645 @}
7646 @end smallexample
7647
7648 Because the @code{asm} statement unconditionally transfers control out
7649 of the function, control will never reach the end of the function
7650 body. The @code{__builtin_unreachable} is in fact unreachable and
7651 communicates this fact to the compiler.
7652
7653 Another use for @code{__builtin_unreachable} is following a call a
7654 function that never returns but that is not declared
7655 @code{__attribute__((noreturn))}, as in this example:
7656
7657 @smallexample
7658 void function_that_never_returns (void);
7659
7660 int g (int c)
7661 @{
7662 if (c)
7663 @{
7664 return 1;
7665 @}
7666 else
7667 @{
7668 function_that_never_returns ();
7669 __builtin_unreachable ();
7670 @}
7671 @}
7672 @end smallexample
7673
7674 @end deftypefn
7675
7676 @deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
7677 This function returns its first argument, and allows the compiler
7678 to assume that the returned pointer is at least @var{align} bytes
7679 aligned. This built-in can have either two or three arguments,
7680 if it has three, the third argument should have integer type, and
7681 if it is non-zero means misalignment offset. For example:
7682
7683 @smallexample
7684 void *x = __builtin_assume_aligned (arg, 16);
7685 @end smallexample
7686
7687 means that the compiler can assume x, set to arg, is at least
7688 16 byte aligned, while:
7689
7690 @smallexample
7691 void *x = __builtin_assume_aligned (arg, 32, 8);
7692 @end smallexample
7693
7694 means that the compiler can assume for x, set to arg, that
7695 (char *) x - 8 is 32 byte aligned.
7696 @end deftypefn
7697
7698 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
7699 This function is used to flush the processor's instruction cache for
7700 the region of memory between @var{begin} inclusive and @var{end}
7701 exclusive. Some targets require that the instruction cache be
7702 flushed, after modifying memory containing code, in order to obtain
7703 deterministic behavior.
7704
7705 If the target does not require instruction cache flushes,
7706 @code{__builtin___clear_cache} has no effect. Otherwise either
7707 instructions are emitted in-line to clear the instruction cache or a
7708 call to the @code{__clear_cache} function in libgcc is made.
7709 @end deftypefn
7710
7711 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
7712 This function is used to minimize cache-miss latency by moving data into
7713 a cache before it is accessed.
7714 You can insert calls to @code{__builtin_prefetch} into code for which
7715 you know addresses of data in memory that is likely to be accessed soon.
7716 If the target supports them, data prefetch instructions will be generated.
7717 If the prefetch is done early enough before the access then the data will
7718 be in the cache by the time it is accessed.
7719
7720 The value of @var{addr} is the address of the memory to prefetch.
7721 There are two optional arguments, @var{rw} and @var{locality}.
7722 The value of @var{rw} is a compile-time constant one or zero; one
7723 means that the prefetch is preparing for a write to the memory address
7724 and zero, the default, means that the prefetch is preparing for a read.
7725 The value @var{locality} must be a compile-time constant integer between
7726 zero and three. A value of zero means that the data has no temporal
7727 locality, so it need not be left in the cache after the access. A value
7728 of three means that the data has a high degree of temporal locality and
7729 should be left in all levels of cache possible. Values of one and two
7730 mean, respectively, a low or moderate degree of temporal locality. The
7731 default is three.
7732
7733 @smallexample
7734 for (i = 0; i < n; i++)
7735 @{
7736 a[i] = a[i] + b[i];
7737 __builtin_prefetch (&a[i+j], 1, 1);
7738 __builtin_prefetch (&b[i+j], 0, 1);
7739 /* @r{@dots{}} */
7740 @}
7741 @end smallexample
7742
7743 Data prefetch does not generate faults if @var{addr} is invalid, but
7744 the address expression itself must be valid. For example, a prefetch
7745 of @code{p->next} will not fault if @code{p->next} is not a valid
7746 address, but evaluation will fault if @code{p} is not a valid address.
7747
7748 If the target does not support data prefetch, the address expression
7749 is evaluated if it includes side effects but no other code is generated
7750 and GCC does not issue a warning.
7751 @end deftypefn
7752
7753 @deftypefn {Built-in Function} double __builtin_huge_val (void)
7754 Returns a positive infinity, if supported by the floating-point format,
7755 else @code{DBL_MAX}. This function is suitable for implementing the
7756 ISO C macro @code{HUGE_VAL}.
7757 @end deftypefn
7758
7759 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
7760 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
7761 @end deftypefn
7762
7763 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
7764 Similar to @code{__builtin_huge_val}, except the return
7765 type is @code{long double}.
7766 @end deftypefn
7767
7768 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
7769 This built-in implements the C99 fpclassify functionality. The first
7770 five int arguments should be the target library's notion of the
7771 possible FP classes and are used for return values. They must be
7772 constant values and they must appear in this order: @code{FP_NAN},
7773 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
7774 @code{FP_ZERO}. The ellipsis is for exactly one floating point value
7775 to classify. GCC treats the last argument as type-generic, which
7776 means it does not do default promotion from float to double.
7777 @end deftypefn
7778
7779 @deftypefn {Built-in Function} double __builtin_inf (void)
7780 Similar to @code{__builtin_huge_val}, except a warning is generated
7781 if the target floating-point format does not support infinities.
7782 @end deftypefn
7783
7784 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
7785 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
7786 @end deftypefn
7787
7788 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
7789 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
7790 @end deftypefn
7791
7792 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
7793 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
7794 @end deftypefn
7795
7796 @deftypefn {Built-in Function} float __builtin_inff (void)
7797 Similar to @code{__builtin_inf}, except the return type is @code{float}.
7798 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
7799 @end deftypefn
7800
7801 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
7802 Similar to @code{__builtin_inf}, except the return
7803 type is @code{long double}.
7804 @end deftypefn
7805
7806 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
7807 Similar to @code{isinf}, except the return value will be negative for
7808 an argument of @code{-Inf}. Note while the parameter list is an
7809 ellipsis, this function only accepts exactly one floating point
7810 argument. GCC treats this parameter as type-generic, which means it
7811 does not do default promotion from float to double.
7812 @end deftypefn
7813
7814 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
7815 This is an implementation of the ISO C99 function @code{nan}.
7816
7817 Since ISO C99 defines this function in terms of @code{strtod}, which we
7818 do not implement, a description of the parsing is in order. The string
7819 is parsed as by @code{strtol}; that is, the base is recognized by
7820 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
7821 in the significand such that the least significant bit of the number
7822 is at the least significant bit of the significand. The number is
7823 truncated to fit the significand field provided. The significand is
7824 forced to be a quiet NaN@.
7825
7826 This function, if given a string literal all of which would have been
7827 consumed by strtol, is evaluated early enough that it is considered a
7828 compile-time constant.
7829 @end deftypefn
7830
7831 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
7832 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
7833 @end deftypefn
7834
7835 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
7836 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
7837 @end deftypefn
7838
7839 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
7840 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
7841 @end deftypefn
7842
7843 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
7844 Similar to @code{__builtin_nan}, except the return type is @code{float}.
7845 @end deftypefn
7846
7847 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
7848 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
7849 @end deftypefn
7850
7851 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
7852 Similar to @code{__builtin_nan}, except the significand is forced
7853 to be a signaling NaN@. The @code{nans} function is proposed by
7854 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
7855 @end deftypefn
7856
7857 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
7858 Similar to @code{__builtin_nans}, except the return type is @code{float}.
7859 @end deftypefn
7860
7861 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
7862 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
7863 @end deftypefn
7864
7865 @deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
7866 Returns one plus the index of the least significant 1-bit of @var{x}, or
7867 if @var{x} is zero, returns zero.
7868 @end deftypefn
7869
7870 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
7871 Returns the number of leading 0-bits in @var{x}, starting at the most
7872 significant bit position. If @var{x} is 0, the result is undefined.
7873 @end deftypefn
7874
7875 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
7876 Returns the number of trailing 0-bits in @var{x}, starting at the least
7877 significant bit position. If @var{x} is 0, the result is undefined.
7878 @end deftypefn
7879
7880 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
7881 Returns the number of leading redundant sign bits in @var{x}, i.e. the
7882 number of bits following the most significant bit which are identical
7883 to it. There are no special cases for 0 or other values.
7884 @end deftypefn
7885
7886 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
7887 Returns the number of 1-bits in @var{x}.
7888 @end deftypefn
7889
7890 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
7891 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
7892 modulo 2.
7893 @end deftypefn
7894
7895 @deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
7896 Similar to @code{__builtin_ffs}, except the argument type is
7897 @code{unsigned long}.
7898 @end deftypefn
7899
7900 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
7901 Similar to @code{__builtin_clz}, except the argument type is
7902 @code{unsigned long}.
7903 @end deftypefn
7904
7905 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
7906 Similar to @code{__builtin_ctz}, except the argument type is
7907 @code{unsigned long}.
7908 @end deftypefn
7909
7910 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
7911 Similar to @code{__builtin_clrsb}, except the argument type is
7912 @code{long}.
7913 @end deftypefn
7914
7915 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
7916 Similar to @code{__builtin_popcount}, except the argument type is
7917 @code{unsigned long}.
7918 @end deftypefn
7919
7920 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
7921 Similar to @code{__builtin_parity}, except the argument type is
7922 @code{unsigned long}.
7923 @end deftypefn
7924
7925 @deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
7926 Similar to @code{__builtin_ffs}, except the argument type is
7927 @code{unsigned long long}.
7928 @end deftypefn
7929
7930 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
7931 Similar to @code{__builtin_clz}, except the argument type is
7932 @code{unsigned long long}.
7933 @end deftypefn
7934
7935 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
7936 Similar to @code{__builtin_ctz}, except the argument type is
7937 @code{unsigned long long}.
7938 @end deftypefn
7939
7940 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
7941 Similar to @code{__builtin_clrsb}, except the argument type is
7942 @code{long long}.
7943 @end deftypefn
7944
7945 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
7946 Similar to @code{__builtin_popcount}, except the argument type is
7947 @code{unsigned long long}.
7948 @end deftypefn
7949
7950 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
7951 Similar to @code{__builtin_parity}, except the argument type is
7952 @code{unsigned long long}.
7953 @end deftypefn
7954
7955 @deftypefn {Built-in Function} double __builtin_powi (double, int)
7956 Returns the first argument raised to the power of the second. Unlike the
7957 @code{pow} function no guarantees about precision and rounding are made.
7958 @end deftypefn
7959
7960 @deftypefn {Built-in Function} float __builtin_powif (float, int)
7961 Similar to @code{__builtin_powi}, except the argument and return types
7962 are @code{float}.
7963 @end deftypefn
7964
7965 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
7966 Similar to @code{__builtin_powi}, except the argument and return types
7967 are @code{long double}.
7968 @end deftypefn
7969
7970 @deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
7971 Returns @var{x} with the order of the bytes reversed; for example,
7972 @code{0xaabbccdd} becomes @code{0xddccbbaa}. Byte here always means
7973 exactly 8 bits.
7974 @end deftypefn
7975
7976 @deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
7977 Similar to @code{__builtin_bswap32}, except the argument and return types
7978 are 64-bit.
7979 @end deftypefn
7980
7981 @node Target Builtins
7982 @section Built-in Functions Specific to Particular Target Machines
7983
7984 On some target machines, GCC supports many built-in functions specific
7985 to those machines. Generally these generate calls to specific machine
7986 instructions, but allow the compiler to schedule those calls.
7987
7988 @menu
7989 * Alpha Built-in Functions::
7990 * ARM iWMMXt Built-in Functions::
7991 * ARM NEON Intrinsics::
7992 * AVR Built-in Functions::
7993 * Blackfin Built-in Functions::
7994 * FR-V Built-in Functions::
7995 * X86 Built-in Functions::
7996 * MIPS DSP Built-in Functions::
7997 * MIPS Paired-Single Support::
7998 * MIPS Loongson Built-in Functions::
7999 * Other MIPS Built-in Functions::
8000 * picoChip Built-in Functions::
8001 * PowerPC AltiVec/VSX Built-in Functions::
8002 * RX Built-in Functions::
8003 * SPARC VIS Built-in Functions::
8004 * SPU Built-in Functions::
8005 * TI C6X Built-in Functions::
8006 @end menu
8007
8008 @node Alpha Built-in Functions
8009 @subsection Alpha Built-in Functions
8010
8011 These built-in functions are available for the Alpha family of
8012 processors, depending on the command-line switches used.
8013
8014 The following built-in functions are always available. They
8015 all generate the machine instruction that is part of the name.
8016
8017 @smallexample
8018 long __builtin_alpha_implver (void)
8019 long __builtin_alpha_rpcc (void)
8020 long __builtin_alpha_amask (long)
8021 long __builtin_alpha_cmpbge (long, long)
8022 long __builtin_alpha_extbl (long, long)
8023 long __builtin_alpha_extwl (long, long)
8024 long __builtin_alpha_extll (long, long)
8025 long __builtin_alpha_extql (long, long)
8026 long __builtin_alpha_extwh (long, long)
8027 long __builtin_alpha_extlh (long, long)
8028 long __builtin_alpha_extqh (long, long)
8029 long __builtin_alpha_insbl (long, long)
8030 long __builtin_alpha_inswl (long, long)
8031 long __builtin_alpha_insll (long, long)
8032 long __builtin_alpha_insql (long, long)
8033 long __builtin_alpha_inswh (long, long)
8034 long __builtin_alpha_inslh (long, long)
8035 long __builtin_alpha_insqh (long, long)
8036 long __builtin_alpha_mskbl (long, long)
8037 long __builtin_alpha_mskwl (long, long)
8038 long __builtin_alpha_mskll (long, long)
8039 long __builtin_alpha_mskql (long, long)
8040 long __builtin_alpha_mskwh (long, long)
8041 long __builtin_alpha_msklh (long, long)
8042 long __builtin_alpha_mskqh (long, long)
8043 long __builtin_alpha_umulh (long, long)
8044 long __builtin_alpha_zap (long, long)
8045 long __builtin_alpha_zapnot (long, long)
8046 @end smallexample
8047
8048 The following built-in functions are always with @option{-mmax}
8049 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
8050 later. They all generate the machine instruction that is part
8051 of the name.
8052
8053 @smallexample
8054 long __builtin_alpha_pklb (long)
8055 long __builtin_alpha_pkwb (long)
8056 long __builtin_alpha_unpkbl (long)
8057 long __builtin_alpha_unpkbw (long)
8058 long __builtin_alpha_minub8 (long, long)
8059 long __builtin_alpha_minsb8 (long, long)
8060 long __builtin_alpha_minuw4 (long, long)
8061 long __builtin_alpha_minsw4 (long, long)
8062 long __builtin_alpha_maxub8 (long, long)
8063 long __builtin_alpha_maxsb8 (long, long)
8064 long __builtin_alpha_maxuw4 (long, long)
8065 long __builtin_alpha_maxsw4 (long, long)
8066 long __builtin_alpha_perr (long, long)
8067 @end smallexample
8068
8069 The following built-in functions are always with @option{-mcix}
8070 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
8071 later. They all generate the machine instruction that is part
8072 of the name.
8073
8074 @smallexample
8075 long __builtin_alpha_cttz (long)
8076 long __builtin_alpha_ctlz (long)
8077 long __builtin_alpha_ctpop (long)
8078 @end smallexample
8079
8080 The following builtins are available on systems that use the OSF/1
8081 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
8082 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
8083 @code{rdval} and @code{wrval}.
8084
8085 @smallexample
8086 void *__builtin_thread_pointer (void)
8087 void __builtin_set_thread_pointer (void *)
8088 @end smallexample
8089
8090 @node ARM iWMMXt Built-in Functions
8091 @subsection ARM iWMMXt Built-in Functions
8092
8093 These built-in functions are available for the ARM family of
8094 processors when the @option{-mcpu=iwmmxt} switch is used:
8095
8096 @smallexample
8097 typedef int v2si __attribute__ ((vector_size (8)));
8098 typedef short v4hi __attribute__ ((vector_size (8)));
8099 typedef char v8qi __attribute__ ((vector_size (8)));
8100
8101 int __builtin_arm_getwcx (int)
8102 void __builtin_arm_setwcx (int, int)
8103 int __builtin_arm_textrmsb (v8qi, int)
8104 int __builtin_arm_textrmsh (v4hi, int)
8105 int __builtin_arm_textrmsw (v2si, int)
8106 int __builtin_arm_textrmub (v8qi, int)
8107 int __builtin_arm_textrmuh (v4hi, int)
8108 int __builtin_arm_textrmuw (v2si, int)
8109 v8qi __builtin_arm_tinsrb (v8qi, int)
8110 v4hi __builtin_arm_tinsrh (v4hi, int)
8111 v2si __builtin_arm_tinsrw (v2si, int)
8112 long long __builtin_arm_tmia (long long, int, int)
8113 long long __builtin_arm_tmiabb (long long, int, int)
8114 long long __builtin_arm_tmiabt (long long, int, int)
8115 long long __builtin_arm_tmiaph (long long, int, int)
8116 long long __builtin_arm_tmiatb (long long, int, int)
8117 long long __builtin_arm_tmiatt (long long, int, int)
8118 int __builtin_arm_tmovmskb (v8qi)
8119 int __builtin_arm_tmovmskh (v4hi)
8120 int __builtin_arm_tmovmskw (v2si)
8121 long long __builtin_arm_waccb (v8qi)
8122 long long __builtin_arm_wacch (v4hi)
8123 long long __builtin_arm_waccw (v2si)
8124 v8qi __builtin_arm_waddb (v8qi, v8qi)
8125 v8qi __builtin_arm_waddbss (v8qi, v8qi)
8126 v8qi __builtin_arm_waddbus (v8qi, v8qi)
8127 v4hi __builtin_arm_waddh (v4hi, v4hi)
8128 v4hi __builtin_arm_waddhss (v4hi, v4hi)
8129 v4hi __builtin_arm_waddhus (v4hi, v4hi)
8130 v2si __builtin_arm_waddw (v2si, v2si)
8131 v2si __builtin_arm_waddwss (v2si, v2si)
8132 v2si __builtin_arm_waddwus (v2si, v2si)
8133 v8qi __builtin_arm_walign (v8qi, v8qi, int)
8134 long long __builtin_arm_wand(long long, long long)
8135 long long __builtin_arm_wandn (long long, long long)
8136 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
8137 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
8138 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
8139 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
8140 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
8141 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
8142 v2si __builtin_arm_wcmpeqw (v2si, v2si)
8143 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
8144 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
8145 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
8146 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
8147 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
8148 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
8149 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
8150 long long __builtin_arm_wmacsz (v4hi, v4hi)
8151 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
8152 long long __builtin_arm_wmacuz (v4hi, v4hi)
8153 v4hi __builtin_arm_wmadds (v4hi, v4hi)
8154 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
8155 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
8156 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
8157 v2si __builtin_arm_wmaxsw (v2si, v2si)
8158 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
8159 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
8160 v2si __builtin_arm_wmaxuw (v2si, v2si)
8161 v8qi __builtin_arm_wminsb (v8qi, v8qi)
8162 v4hi __builtin_arm_wminsh (v4hi, v4hi)
8163 v2si __builtin_arm_wminsw (v2si, v2si)
8164 v8qi __builtin_arm_wminub (v8qi, v8qi)
8165 v4hi __builtin_arm_wminuh (v4hi, v4hi)
8166 v2si __builtin_arm_wminuw (v2si, v2si)
8167 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
8168 v4hi __builtin_arm_wmulul (v4hi, v4hi)
8169 v4hi __builtin_arm_wmulum (v4hi, v4hi)
8170 long long __builtin_arm_wor (long long, long long)
8171 v2si __builtin_arm_wpackdss (long long, long long)
8172 v2si __builtin_arm_wpackdus (long long, long long)
8173 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
8174 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
8175 v4hi __builtin_arm_wpackwss (v2si, v2si)
8176 v4hi __builtin_arm_wpackwus (v2si, v2si)
8177 long long __builtin_arm_wrord (long long, long long)
8178 long long __builtin_arm_wrordi (long long, int)
8179 v4hi __builtin_arm_wrorh (v4hi, long long)
8180 v4hi __builtin_arm_wrorhi (v4hi, int)
8181 v2si __builtin_arm_wrorw (v2si, long long)
8182 v2si __builtin_arm_wrorwi (v2si, int)
8183 v2si __builtin_arm_wsadb (v8qi, v8qi)
8184 v2si __builtin_arm_wsadbz (v8qi, v8qi)
8185 v2si __builtin_arm_wsadh (v4hi, v4hi)
8186 v2si __builtin_arm_wsadhz (v4hi, v4hi)
8187 v4hi __builtin_arm_wshufh (v4hi, int)
8188 long long __builtin_arm_wslld (long long, long long)
8189 long long __builtin_arm_wslldi (long long, int)
8190 v4hi __builtin_arm_wsllh (v4hi, long long)
8191 v4hi __builtin_arm_wsllhi (v4hi, int)
8192 v2si __builtin_arm_wsllw (v2si, long long)
8193 v2si __builtin_arm_wsllwi (v2si, int)
8194 long long __builtin_arm_wsrad (long long, long long)
8195 long long __builtin_arm_wsradi (long long, int)
8196 v4hi __builtin_arm_wsrah (v4hi, long long)
8197 v4hi __builtin_arm_wsrahi (v4hi, int)
8198 v2si __builtin_arm_wsraw (v2si, long long)
8199 v2si __builtin_arm_wsrawi (v2si, int)
8200 long long __builtin_arm_wsrld (long long, long long)
8201 long long __builtin_arm_wsrldi (long long, int)
8202 v4hi __builtin_arm_wsrlh (v4hi, long long)
8203 v4hi __builtin_arm_wsrlhi (v4hi, int)
8204 v2si __builtin_arm_wsrlw (v2si, long long)
8205 v2si __builtin_arm_wsrlwi (v2si, int)
8206 v8qi __builtin_arm_wsubb (v8qi, v8qi)
8207 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
8208 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
8209 v4hi __builtin_arm_wsubh (v4hi, v4hi)
8210 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
8211 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
8212 v2si __builtin_arm_wsubw (v2si, v2si)
8213 v2si __builtin_arm_wsubwss (v2si, v2si)
8214 v2si __builtin_arm_wsubwus (v2si, v2si)
8215 v4hi __builtin_arm_wunpckehsb (v8qi)
8216 v2si __builtin_arm_wunpckehsh (v4hi)
8217 long long __builtin_arm_wunpckehsw (v2si)
8218 v4hi __builtin_arm_wunpckehub (v8qi)
8219 v2si __builtin_arm_wunpckehuh (v4hi)
8220 long long __builtin_arm_wunpckehuw (v2si)
8221 v4hi __builtin_arm_wunpckelsb (v8qi)
8222 v2si __builtin_arm_wunpckelsh (v4hi)
8223 long long __builtin_arm_wunpckelsw (v2si)
8224 v4hi __builtin_arm_wunpckelub (v8qi)
8225 v2si __builtin_arm_wunpckeluh (v4hi)
8226 long long __builtin_arm_wunpckeluw (v2si)
8227 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
8228 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
8229 v2si __builtin_arm_wunpckihw (v2si, v2si)
8230 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
8231 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
8232 v2si __builtin_arm_wunpckilw (v2si, v2si)
8233 long long __builtin_arm_wxor (long long, long long)
8234 long long __builtin_arm_wzero ()
8235 @end smallexample
8236
8237 @node ARM NEON Intrinsics
8238 @subsection ARM NEON Intrinsics
8239
8240 These built-in intrinsics for the ARM Advanced SIMD extension are available
8241 when the @option{-mfpu=neon} switch is used:
8242
8243 @include arm-neon-intrinsics.texi
8244
8245 @node AVR Built-in Functions
8246 @subsection AVR Built-in Functions
8247
8248 For each built-in function for AVR, there is an equally named,
8249 uppercase built-in macro defined. That way users can easily query if
8250 or if not a specific built-in is implemented or not. For example, if
8251 @code{__builtin_avr_nop} is available the macro
8252 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
8253
8254 The following built-in functions map to the respective machine
8255 instruction, i.e. @code{nop}, @code{sei}, @code{cli}, @code{sleep},
8256 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
8257 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
8258 as library call if no hardware multiplier is available.
8259
8260 @smallexample
8261 void __builtin_avr_nop (void)
8262 void __builtin_avr_sei (void)
8263 void __builtin_avr_cli (void)
8264 void __builtin_avr_sleep (void)
8265 void __builtin_avr_wdr (void)
8266 unsigned char __builtin_avr_swap (unsigned char)
8267 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
8268 int __builtin_avr_fmuls (char, char)
8269 int __builtin_avr_fmulsu (char, unsigned char)
8270 @end smallexample
8271
8272 In order to delay execution for a specific number of cycles, GCC
8273 implements
8274 @smallexample
8275 void __builtin_avr_delay_cycles (unsigned long ticks)
8276 @end smallexample
8277
8278 @code{ticks} is the number of ticks to delay execution. Note that this
8279 built-in does not take into account the effect of interrupts which
8280 might increase delay time. @code{ticks} must be a compile time
8281 integer constant; delays with a variable number of cycles are not supported.
8282
8283 @node Blackfin Built-in Functions
8284 @subsection Blackfin Built-in Functions
8285
8286 Currently, there are two Blackfin-specific built-in functions. These are
8287 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
8288 using inline assembly; by using these built-in functions the compiler can
8289 automatically add workarounds for hardware errata involving these
8290 instructions. These functions are named as follows:
8291
8292 @smallexample
8293 void __builtin_bfin_csync (void)
8294 void __builtin_bfin_ssync (void)
8295 @end smallexample
8296
8297 @node FR-V Built-in Functions
8298 @subsection FR-V Built-in Functions
8299
8300 GCC provides many FR-V-specific built-in functions. In general,
8301 these functions are intended to be compatible with those described
8302 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
8303 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
8304 @code{__MBTOHE}, the gcc forms of which pass 128-bit values by
8305 pointer rather than by value.
8306
8307 Most of the functions are named after specific FR-V instructions.
8308 Such functions are said to be ``directly mapped'' and are summarized
8309 here in tabular form.
8310
8311 @menu
8312 * Argument Types::
8313 * Directly-mapped Integer Functions::
8314 * Directly-mapped Media Functions::
8315 * Raw read/write Functions::
8316 * Other Built-in Functions::
8317 @end menu
8318
8319 @node Argument Types
8320 @subsubsection Argument Types
8321
8322 The arguments to the built-in functions can be divided into three groups:
8323 register numbers, compile-time constants and run-time values. In order
8324 to make this classification clear at a glance, the arguments and return
8325 values are given the following pseudo types:
8326
8327 @multitable @columnfractions .20 .30 .15 .35
8328 @item Pseudo type @tab Real C type @tab Constant? @tab Description
8329 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
8330 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
8331 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
8332 @item @code{uw2} @tab @code{unsigned long long} @tab No
8333 @tab an unsigned doubleword
8334 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
8335 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
8336 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
8337 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
8338 @end multitable
8339
8340 These pseudo types are not defined by GCC, they are simply a notational
8341 convenience used in this manual.
8342
8343 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
8344 and @code{sw2} are evaluated at run time. They correspond to
8345 register operands in the underlying FR-V instructions.
8346
8347 @code{const} arguments represent immediate operands in the underlying
8348 FR-V instructions. They must be compile-time constants.
8349
8350 @code{acc} arguments are evaluated at compile time and specify the number
8351 of an accumulator register. For example, an @code{acc} argument of 2
8352 will select the ACC2 register.
8353
8354 @code{iacc} arguments are similar to @code{acc} arguments but specify the
8355 number of an IACC register. See @pxref{Other Built-in Functions}
8356 for more details.
8357
8358 @node Directly-mapped Integer Functions
8359 @subsubsection Directly-mapped Integer Functions
8360
8361 The functions listed below map directly to FR-V I-type instructions.
8362
8363 @multitable @columnfractions .45 .32 .23
8364 @item Function prototype @tab Example usage @tab Assembly output
8365 @item @code{sw1 __ADDSS (sw1, sw1)}
8366 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
8367 @tab @code{ADDSS @var{a},@var{b},@var{c}}
8368 @item @code{sw1 __SCAN (sw1, sw1)}
8369 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
8370 @tab @code{SCAN @var{a},@var{b},@var{c}}
8371 @item @code{sw1 __SCUTSS (sw1)}
8372 @tab @code{@var{b} = __SCUTSS (@var{a})}
8373 @tab @code{SCUTSS @var{a},@var{b}}
8374 @item @code{sw1 __SLASS (sw1, sw1)}
8375 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
8376 @tab @code{SLASS @var{a},@var{b},@var{c}}
8377 @item @code{void __SMASS (sw1, sw1)}
8378 @tab @code{__SMASS (@var{a}, @var{b})}
8379 @tab @code{SMASS @var{a},@var{b}}
8380 @item @code{void __SMSSS (sw1, sw1)}
8381 @tab @code{__SMSSS (@var{a}, @var{b})}
8382 @tab @code{SMSSS @var{a},@var{b}}
8383 @item @code{void __SMU (sw1, sw1)}
8384 @tab @code{__SMU (@var{a}, @var{b})}
8385 @tab @code{SMU @var{a},@var{b}}
8386 @item @code{sw2 __SMUL (sw1, sw1)}
8387 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
8388 @tab @code{SMUL @var{a},@var{b},@var{c}}
8389 @item @code{sw1 __SUBSS (sw1, sw1)}
8390 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
8391 @tab @code{SUBSS @var{a},@var{b},@var{c}}
8392 @item @code{uw2 __UMUL (uw1, uw1)}
8393 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
8394 @tab @code{UMUL @var{a},@var{b},@var{c}}
8395 @end multitable
8396
8397 @node Directly-mapped Media Functions
8398 @subsubsection Directly-mapped Media Functions
8399
8400 The functions listed below map directly to FR-V M-type instructions.
8401
8402 @multitable @columnfractions .45 .32 .23
8403 @item Function prototype @tab Example usage @tab Assembly output
8404 @item @code{uw1 __MABSHS (sw1)}
8405 @tab @code{@var{b} = __MABSHS (@var{a})}
8406 @tab @code{MABSHS @var{a},@var{b}}
8407 @item @code{void __MADDACCS (acc, acc)}
8408 @tab @code{__MADDACCS (@var{b}, @var{a})}
8409 @tab @code{MADDACCS @var{a},@var{b}}
8410 @item @code{sw1 __MADDHSS (sw1, sw1)}
8411 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
8412 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
8413 @item @code{uw1 __MADDHUS (uw1, uw1)}
8414 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
8415 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
8416 @item @code{uw1 __MAND (uw1, uw1)}
8417 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
8418 @tab @code{MAND @var{a},@var{b},@var{c}}
8419 @item @code{void __MASACCS (acc, acc)}
8420 @tab @code{__MASACCS (@var{b}, @var{a})}
8421 @tab @code{MASACCS @var{a},@var{b}}
8422 @item @code{uw1 __MAVEH (uw1, uw1)}
8423 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
8424 @tab @code{MAVEH @var{a},@var{b},@var{c}}
8425 @item @code{uw2 __MBTOH (uw1)}
8426 @tab @code{@var{b} = __MBTOH (@var{a})}
8427 @tab @code{MBTOH @var{a},@var{b}}
8428 @item @code{void __MBTOHE (uw1 *, uw1)}
8429 @tab @code{__MBTOHE (&@var{b}, @var{a})}
8430 @tab @code{MBTOHE @var{a},@var{b}}
8431 @item @code{void __MCLRACC (acc)}
8432 @tab @code{__MCLRACC (@var{a})}
8433 @tab @code{MCLRACC @var{a}}
8434 @item @code{void __MCLRACCA (void)}
8435 @tab @code{__MCLRACCA ()}
8436 @tab @code{MCLRACCA}
8437 @item @code{uw1 __Mcop1 (uw1, uw1)}
8438 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
8439 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
8440 @item @code{uw1 __Mcop2 (uw1, uw1)}
8441 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
8442 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
8443 @item @code{uw1 __MCPLHI (uw2, const)}
8444 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
8445 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
8446 @item @code{uw1 __MCPLI (uw2, const)}
8447 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
8448 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
8449 @item @code{void __MCPXIS (acc, sw1, sw1)}
8450 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
8451 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
8452 @item @code{void __MCPXIU (acc, uw1, uw1)}
8453 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
8454 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
8455 @item @code{void __MCPXRS (acc, sw1, sw1)}
8456 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
8457 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
8458 @item @code{void __MCPXRU (acc, uw1, uw1)}
8459 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
8460 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
8461 @item @code{uw1 __MCUT (acc, uw1)}
8462 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
8463 @tab @code{MCUT @var{a},@var{b},@var{c}}
8464 @item @code{uw1 __MCUTSS (acc, sw1)}
8465 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
8466 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
8467 @item @code{void __MDADDACCS (acc, acc)}
8468 @tab @code{__MDADDACCS (@var{b}, @var{a})}
8469 @tab @code{MDADDACCS @var{a},@var{b}}
8470 @item @code{void __MDASACCS (acc, acc)}
8471 @tab @code{__MDASACCS (@var{b}, @var{a})}
8472 @tab @code{MDASACCS @var{a},@var{b}}
8473 @item @code{uw2 __MDCUTSSI (acc, const)}
8474 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
8475 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
8476 @item @code{uw2 __MDPACKH (uw2, uw2)}
8477 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
8478 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
8479 @item @code{uw2 __MDROTLI (uw2, const)}
8480 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
8481 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
8482 @item @code{void __MDSUBACCS (acc, acc)}
8483 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
8484 @tab @code{MDSUBACCS @var{a},@var{b}}
8485 @item @code{void __MDUNPACKH (uw1 *, uw2)}
8486 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
8487 @tab @code{MDUNPACKH @var{a},@var{b}}
8488 @item @code{uw2 __MEXPDHD (uw1, const)}
8489 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
8490 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
8491 @item @code{uw1 __MEXPDHW (uw1, const)}
8492 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
8493 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
8494 @item @code{uw1 __MHDSETH (uw1, const)}
8495 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
8496 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
8497 @item @code{sw1 __MHDSETS (const)}
8498 @tab @code{@var{b} = __MHDSETS (@var{a})}
8499 @tab @code{MHDSETS #@var{a},@var{b}}
8500 @item @code{uw1 __MHSETHIH (uw1, const)}
8501 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
8502 @tab @code{MHSETHIH #@var{a},@var{b}}
8503 @item @code{sw1 __MHSETHIS (sw1, const)}
8504 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
8505 @tab @code{MHSETHIS #@var{a},@var{b}}
8506 @item @code{uw1 __MHSETLOH (uw1, const)}
8507 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
8508 @tab @code{MHSETLOH #@var{a},@var{b}}
8509 @item @code{sw1 __MHSETLOS (sw1, const)}
8510 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
8511 @tab @code{MHSETLOS #@var{a},@var{b}}
8512 @item @code{uw1 __MHTOB (uw2)}
8513 @tab @code{@var{b} = __MHTOB (@var{a})}
8514 @tab @code{MHTOB @var{a},@var{b}}
8515 @item @code{void __MMACHS (acc, sw1, sw1)}
8516 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
8517 @tab @code{MMACHS @var{a},@var{b},@var{c}}
8518 @item @code{void __MMACHU (acc, uw1, uw1)}
8519 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
8520 @tab @code{MMACHU @var{a},@var{b},@var{c}}
8521 @item @code{void __MMRDHS (acc, sw1, sw1)}
8522 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
8523 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
8524 @item @code{void __MMRDHU (acc, uw1, uw1)}
8525 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
8526 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
8527 @item @code{void __MMULHS (acc, sw1, sw1)}
8528 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
8529 @tab @code{MMULHS @var{a},@var{b},@var{c}}
8530 @item @code{void __MMULHU (acc, uw1, uw1)}
8531 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
8532 @tab @code{MMULHU @var{a},@var{b},@var{c}}
8533 @item @code{void __MMULXHS (acc, sw1, sw1)}
8534 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
8535 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
8536 @item @code{void __MMULXHU (acc, uw1, uw1)}
8537 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
8538 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
8539 @item @code{uw1 __MNOT (uw1)}
8540 @tab @code{@var{b} = __MNOT (@var{a})}
8541 @tab @code{MNOT @var{a},@var{b}}
8542 @item @code{uw1 __MOR (uw1, uw1)}
8543 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
8544 @tab @code{MOR @var{a},@var{b},@var{c}}
8545 @item @code{uw1 __MPACKH (uh, uh)}
8546 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
8547 @tab @code{MPACKH @var{a},@var{b},@var{c}}
8548 @item @code{sw2 __MQADDHSS (sw2, sw2)}
8549 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
8550 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
8551 @item @code{uw2 __MQADDHUS (uw2, uw2)}
8552 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
8553 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
8554 @item @code{void __MQCPXIS (acc, sw2, sw2)}
8555 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
8556 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
8557 @item @code{void __MQCPXIU (acc, uw2, uw2)}
8558 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
8559 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
8560 @item @code{void __MQCPXRS (acc, sw2, sw2)}
8561 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
8562 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
8563 @item @code{void __MQCPXRU (acc, uw2, uw2)}
8564 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
8565 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
8566 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
8567 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
8568 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
8569 @item @code{sw2 __MQLMTHS (sw2, sw2)}
8570 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
8571 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
8572 @item @code{void __MQMACHS (acc, sw2, sw2)}
8573 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
8574 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
8575 @item @code{void __MQMACHU (acc, uw2, uw2)}
8576 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
8577 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
8578 @item @code{void __MQMACXHS (acc, sw2, sw2)}
8579 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
8580 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
8581 @item @code{void __MQMULHS (acc, sw2, sw2)}
8582 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
8583 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
8584 @item @code{void __MQMULHU (acc, uw2, uw2)}
8585 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
8586 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
8587 @item @code{void __MQMULXHS (acc, sw2, sw2)}
8588 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
8589 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
8590 @item @code{void __MQMULXHU (acc, uw2, uw2)}
8591 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
8592 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
8593 @item @code{sw2 __MQSATHS (sw2, sw2)}
8594 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
8595 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
8596 @item @code{uw2 __MQSLLHI (uw2, int)}
8597 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
8598 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
8599 @item @code{sw2 __MQSRAHI (sw2, int)}
8600 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
8601 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
8602 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
8603 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
8604 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
8605 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
8606 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
8607 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
8608 @item @code{void __MQXMACHS (acc, sw2, sw2)}
8609 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
8610 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
8611 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
8612 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
8613 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
8614 @item @code{uw1 __MRDACC (acc)}
8615 @tab @code{@var{b} = __MRDACC (@var{a})}
8616 @tab @code{MRDACC @var{a},@var{b}}
8617 @item @code{uw1 __MRDACCG (acc)}
8618 @tab @code{@var{b} = __MRDACCG (@var{a})}
8619 @tab @code{MRDACCG @var{a},@var{b}}
8620 @item @code{uw1 __MROTLI (uw1, const)}
8621 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
8622 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
8623 @item @code{uw1 __MROTRI (uw1, const)}
8624 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
8625 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
8626 @item @code{sw1 __MSATHS (sw1, sw1)}
8627 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
8628 @tab @code{MSATHS @var{a},@var{b},@var{c}}
8629 @item @code{uw1 __MSATHU (uw1, uw1)}
8630 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
8631 @tab @code{MSATHU @var{a},@var{b},@var{c}}
8632 @item @code{uw1 __MSLLHI (uw1, const)}
8633 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
8634 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
8635 @item @code{sw1 __MSRAHI (sw1, const)}
8636 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
8637 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
8638 @item @code{uw1 __MSRLHI (uw1, const)}
8639 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
8640 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
8641 @item @code{void __MSUBACCS (acc, acc)}
8642 @tab @code{__MSUBACCS (@var{b}, @var{a})}
8643 @tab @code{MSUBACCS @var{a},@var{b}}
8644 @item @code{sw1 __MSUBHSS (sw1, sw1)}
8645 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
8646 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
8647 @item @code{uw1 __MSUBHUS (uw1, uw1)}
8648 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
8649 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
8650 @item @code{void __MTRAP (void)}
8651 @tab @code{__MTRAP ()}
8652 @tab @code{MTRAP}
8653 @item @code{uw2 __MUNPACKH (uw1)}
8654 @tab @code{@var{b} = __MUNPACKH (@var{a})}
8655 @tab @code{MUNPACKH @var{a},@var{b}}
8656 @item @code{uw1 __MWCUT (uw2, uw1)}
8657 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
8658 @tab @code{MWCUT @var{a},@var{b},@var{c}}
8659 @item @code{void __MWTACC (acc, uw1)}
8660 @tab @code{__MWTACC (@var{b}, @var{a})}
8661 @tab @code{MWTACC @var{a},@var{b}}
8662 @item @code{void __MWTACCG (acc, uw1)}
8663 @tab @code{__MWTACCG (@var{b}, @var{a})}
8664 @tab @code{MWTACCG @var{a},@var{b}}
8665 @item @code{uw1 __MXOR (uw1, uw1)}
8666 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
8667 @tab @code{MXOR @var{a},@var{b},@var{c}}
8668 @end multitable
8669
8670 @node Raw read/write Functions
8671 @subsubsection Raw read/write Functions
8672
8673 This sections describes built-in functions related to read and write
8674 instructions to access memory. These functions generate
8675 @code{membar} instructions to flush the I/O load and stores where
8676 appropriate, as described in Fujitsu's manual described above.
8677
8678 @table @code
8679
8680 @item unsigned char __builtin_read8 (void *@var{data})
8681 @item unsigned short __builtin_read16 (void *@var{data})
8682 @item unsigned long __builtin_read32 (void *@var{data})
8683 @item unsigned long long __builtin_read64 (void *@var{data})
8684
8685 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
8686 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
8687 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
8688 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
8689 @end table
8690
8691 @node Other Built-in Functions
8692 @subsubsection Other Built-in Functions
8693
8694 This section describes built-in functions that are not named after
8695 a specific FR-V instruction.
8696
8697 @table @code
8698 @item sw2 __IACCreadll (iacc @var{reg})
8699 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
8700 for future expansion and must be 0.
8701
8702 @item sw1 __IACCreadl (iacc @var{reg})
8703 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
8704 Other values of @var{reg} are rejected as invalid.
8705
8706 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
8707 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
8708 is reserved for future expansion and must be 0.
8709
8710 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
8711 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
8712 is 1. Other values of @var{reg} are rejected as invalid.
8713
8714 @item void __data_prefetch0 (const void *@var{x})
8715 Use the @code{dcpl} instruction to load the contents of address @var{x}
8716 into the data cache.
8717
8718 @item void __data_prefetch (const void *@var{x})
8719 Use the @code{nldub} instruction to load the contents of address @var{x}
8720 into the data cache. The instruction will be issued in slot I1@.
8721 @end table
8722
8723 @node X86 Built-in Functions
8724 @subsection X86 Built-in Functions
8725
8726 These built-in functions are available for the i386 and x86-64 family
8727 of computers, depending on the command-line switches used.
8728
8729 Note that, if you specify command-line switches such as @option{-msse},
8730 the compiler could use the extended instruction sets even if the built-ins
8731 are not used explicitly in the program. For this reason, applications
8732 which perform runtime CPU detection must compile separate files for each
8733 supported architecture, using the appropriate flags. In particular,
8734 the file containing the CPU detection code should be compiled without
8735 these options.
8736
8737 The following machine modes are available for use with MMX built-in functions
8738 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
8739 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
8740 vector of eight 8-bit integers. Some of the built-in functions operate on
8741 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
8742
8743 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
8744 of two 32-bit floating point values.
8745
8746 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
8747 floating point values. Some instructions use a vector of four 32-bit
8748 integers, these use @code{V4SI}. Finally, some instructions operate on an
8749 entire vector register, interpreting it as a 128-bit integer, these use mode
8750 @code{TI}.
8751
8752 In 64-bit mode, the x86-64 family of processors uses additional built-in
8753 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
8754 floating point and @code{TC} 128-bit complex floating point values.
8755
8756 The following floating point built-in functions are available in 64-bit
8757 mode. All of them implement the function that is part of the name.
8758
8759 @smallexample
8760 __float128 __builtin_fabsq (__float128)
8761 __float128 __builtin_copysignq (__float128, __float128)
8762 @end smallexample
8763
8764 The following built-in function is always available.
8765
8766 @table @code
8767 @item void __builtin_ia32_pause (void)
8768 Generates the @code{pause} machine instruction with a compiler memory
8769 barrier.
8770 @end table
8771
8772 The following floating point built-in functions are made available in the
8773 64-bit mode.
8774
8775 @table @code
8776 @item __float128 __builtin_infq (void)
8777 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
8778 @findex __builtin_infq
8779
8780 @item __float128 __builtin_huge_valq (void)
8781 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
8782 @findex __builtin_huge_valq
8783 @end table
8784
8785 The following built-in functions are made available by @option{-mmmx}.
8786 All of them generate the machine instruction that is part of the name.
8787
8788 @smallexample
8789 v8qi __builtin_ia32_paddb (v8qi, v8qi)
8790 v4hi __builtin_ia32_paddw (v4hi, v4hi)
8791 v2si __builtin_ia32_paddd (v2si, v2si)
8792 v8qi __builtin_ia32_psubb (v8qi, v8qi)
8793 v4hi __builtin_ia32_psubw (v4hi, v4hi)
8794 v2si __builtin_ia32_psubd (v2si, v2si)
8795 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
8796 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
8797 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
8798 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
8799 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
8800 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
8801 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
8802 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
8803 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
8804 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
8805 di __builtin_ia32_pand (di, di)
8806 di __builtin_ia32_pandn (di,di)
8807 di __builtin_ia32_por (di, di)
8808 di __builtin_ia32_pxor (di, di)
8809 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
8810 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
8811 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
8812 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
8813 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
8814 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
8815 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
8816 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
8817 v2si __builtin_ia32_punpckhdq (v2si, v2si)
8818 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
8819 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
8820 v2si __builtin_ia32_punpckldq (v2si, v2si)
8821 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
8822 v4hi __builtin_ia32_packssdw (v2si, v2si)
8823 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
8824
8825 v4hi __builtin_ia32_psllw (v4hi, v4hi)
8826 v2si __builtin_ia32_pslld (v2si, v2si)
8827 v1di __builtin_ia32_psllq (v1di, v1di)
8828 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
8829 v2si __builtin_ia32_psrld (v2si, v2si)
8830 v1di __builtin_ia32_psrlq (v1di, v1di)
8831 v4hi __builtin_ia32_psraw (v4hi, v4hi)
8832 v2si __builtin_ia32_psrad (v2si, v2si)
8833 v4hi __builtin_ia32_psllwi (v4hi, int)
8834 v2si __builtin_ia32_pslldi (v2si, int)
8835 v1di __builtin_ia32_psllqi (v1di, int)
8836 v4hi __builtin_ia32_psrlwi (v4hi, int)
8837 v2si __builtin_ia32_psrldi (v2si, int)
8838 v1di __builtin_ia32_psrlqi (v1di, int)
8839 v4hi __builtin_ia32_psrawi (v4hi, int)
8840 v2si __builtin_ia32_psradi (v2si, int)
8841
8842 @end smallexample
8843
8844 The following built-in functions are made available either with
8845 @option{-msse}, or with a combination of @option{-m3dnow} and
8846 @option{-march=athlon}. All of them generate the machine
8847 instruction that is part of the name.
8848
8849 @smallexample
8850 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
8851 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
8852 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
8853 v1di __builtin_ia32_psadbw (v8qi, v8qi)
8854 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
8855 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
8856 v8qi __builtin_ia32_pminub (v8qi, v8qi)
8857 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
8858 int __builtin_ia32_pextrw (v4hi, int)
8859 v4hi __builtin_ia32_pinsrw (v4hi, int, int)
8860 int __builtin_ia32_pmovmskb (v8qi)
8861 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
8862 void __builtin_ia32_movntq (di *, di)
8863 void __builtin_ia32_sfence (void)
8864 @end smallexample
8865
8866 The following built-in functions are available when @option{-msse} is used.
8867 All of them generate the machine instruction that is part of the name.
8868
8869 @smallexample
8870 int __builtin_ia32_comieq (v4sf, v4sf)
8871 int __builtin_ia32_comineq (v4sf, v4sf)
8872 int __builtin_ia32_comilt (v4sf, v4sf)
8873 int __builtin_ia32_comile (v4sf, v4sf)
8874 int __builtin_ia32_comigt (v4sf, v4sf)
8875 int __builtin_ia32_comige (v4sf, v4sf)
8876 int __builtin_ia32_ucomieq (v4sf, v4sf)
8877 int __builtin_ia32_ucomineq (v4sf, v4sf)
8878 int __builtin_ia32_ucomilt (v4sf, v4sf)
8879 int __builtin_ia32_ucomile (v4sf, v4sf)
8880 int __builtin_ia32_ucomigt (v4sf, v4sf)
8881 int __builtin_ia32_ucomige (v4sf, v4sf)
8882 v4sf __builtin_ia32_addps (v4sf, v4sf)
8883 v4sf __builtin_ia32_subps (v4sf, v4sf)
8884 v4sf __builtin_ia32_mulps (v4sf, v4sf)
8885 v4sf __builtin_ia32_divps (v4sf, v4sf)
8886 v4sf __builtin_ia32_addss (v4sf, v4sf)
8887 v4sf __builtin_ia32_subss (v4sf, v4sf)
8888 v4sf __builtin_ia32_mulss (v4sf, v4sf)
8889 v4sf __builtin_ia32_divss (v4sf, v4sf)
8890 v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
8891 v4si __builtin_ia32_cmpltps (v4sf, v4sf)
8892 v4si __builtin_ia32_cmpleps (v4sf, v4sf)
8893 v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
8894 v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
8895 v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
8896 v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
8897 v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
8898 v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
8899 v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
8900 v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
8901 v4si __builtin_ia32_cmpordps (v4sf, v4sf)
8902 v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
8903 v4si __builtin_ia32_cmpltss (v4sf, v4sf)
8904 v4si __builtin_ia32_cmpless (v4sf, v4sf)
8905 v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
8906 v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
8907 v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
8908 v4si __builtin_ia32_cmpnless (v4sf, v4sf)
8909 v4si __builtin_ia32_cmpordss (v4sf, v4sf)
8910 v4sf __builtin_ia32_maxps (v4sf, v4sf)
8911 v4sf __builtin_ia32_maxss (v4sf, v4sf)
8912 v4sf __builtin_ia32_minps (v4sf, v4sf)
8913 v4sf __builtin_ia32_minss (v4sf, v4sf)
8914 v4sf __builtin_ia32_andps (v4sf, v4sf)
8915 v4sf __builtin_ia32_andnps (v4sf, v4sf)
8916 v4sf __builtin_ia32_orps (v4sf, v4sf)
8917 v4sf __builtin_ia32_xorps (v4sf, v4sf)
8918 v4sf __builtin_ia32_movss (v4sf, v4sf)
8919 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
8920 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
8921 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
8922 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
8923 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
8924 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
8925 v2si __builtin_ia32_cvtps2pi (v4sf)
8926 int __builtin_ia32_cvtss2si (v4sf)
8927 v2si __builtin_ia32_cvttps2pi (v4sf)
8928 int __builtin_ia32_cvttss2si (v4sf)
8929 v4sf __builtin_ia32_rcpps (v4sf)
8930 v4sf __builtin_ia32_rsqrtps (v4sf)
8931 v4sf __builtin_ia32_sqrtps (v4sf)
8932 v4sf __builtin_ia32_rcpss (v4sf)
8933 v4sf __builtin_ia32_rsqrtss (v4sf)
8934 v4sf __builtin_ia32_sqrtss (v4sf)
8935 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
8936 void __builtin_ia32_movntps (float *, v4sf)
8937 int __builtin_ia32_movmskps (v4sf)
8938 @end smallexample
8939
8940 The following built-in functions are available when @option{-msse} is used.
8941
8942 @table @code
8943 @item v4sf __builtin_ia32_loadaps (float *)
8944 Generates the @code{movaps} machine instruction as a load from memory.
8945 @item void __builtin_ia32_storeaps (float *, v4sf)
8946 Generates the @code{movaps} machine instruction as a store to memory.
8947 @item v4sf __builtin_ia32_loadups (float *)
8948 Generates the @code{movups} machine instruction as a load from memory.
8949 @item void __builtin_ia32_storeups (float *, v4sf)
8950 Generates the @code{movups} machine instruction as a store to memory.
8951 @item v4sf __builtin_ia32_loadsss (float *)
8952 Generates the @code{movss} machine instruction as a load from memory.
8953 @item void __builtin_ia32_storess (float *, v4sf)
8954 Generates the @code{movss} machine instruction as a store to memory.
8955 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
8956 Generates the @code{movhps} machine instruction as a load from memory.
8957 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
8958 Generates the @code{movlps} machine instruction as a load from memory
8959 @item void __builtin_ia32_storehps (v2sf *, v4sf)
8960 Generates the @code{movhps} machine instruction as a store to memory.
8961 @item void __builtin_ia32_storelps (v2sf *, v4sf)
8962 Generates the @code{movlps} machine instruction as a store to memory.
8963 @end table
8964
8965 The following built-in functions are available when @option{-msse2} is used.
8966 All of them generate the machine instruction that is part of the name.
8967
8968 @smallexample
8969 int __builtin_ia32_comisdeq (v2df, v2df)
8970 int __builtin_ia32_comisdlt (v2df, v2df)
8971 int __builtin_ia32_comisdle (v2df, v2df)
8972 int __builtin_ia32_comisdgt (v2df, v2df)
8973 int __builtin_ia32_comisdge (v2df, v2df)
8974 int __builtin_ia32_comisdneq (v2df, v2df)
8975 int __builtin_ia32_ucomisdeq (v2df, v2df)
8976 int __builtin_ia32_ucomisdlt (v2df, v2df)
8977 int __builtin_ia32_ucomisdle (v2df, v2df)
8978 int __builtin_ia32_ucomisdgt (v2df, v2df)
8979 int __builtin_ia32_ucomisdge (v2df, v2df)
8980 int __builtin_ia32_ucomisdneq (v2df, v2df)
8981 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
8982 v2df __builtin_ia32_cmpltpd (v2df, v2df)
8983 v2df __builtin_ia32_cmplepd (v2df, v2df)
8984 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
8985 v2df __builtin_ia32_cmpgepd (v2df, v2df)
8986 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
8987 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
8988 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
8989 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
8990 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
8991 v2df __builtin_ia32_cmpngepd (v2df, v2df)
8992 v2df __builtin_ia32_cmpordpd (v2df, v2df)
8993 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
8994 v2df __builtin_ia32_cmpltsd (v2df, v2df)
8995 v2df __builtin_ia32_cmplesd (v2df, v2df)
8996 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
8997 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
8998 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
8999 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
9000 v2df __builtin_ia32_cmpordsd (v2df, v2df)
9001 v2di __builtin_ia32_paddq (v2di, v2di)
9002 v2di __builtin_ia32_psubq (v2di, v2di)
9003 v2df __builtin_ia32_addpd (v2df, v2df)
9004 v2df __builtin_ia32_subpd (v2df, v2df)
9005 v2df __builtin_ia32_mulpd (v2df, v2df)
9006 v2df __builtin_ia32_divpd (v2df, v2df)
9007 v2df __builtin_ia32_addsd (v2df, v2df)
9008 v2df __builtin_ia32_subsd (v2df, v2df)
9009 v2df __builtin_ia32_mulsd (v2df, v2df)
9010 v2df __builtin_ia32_divsd (v2df, v2df)
9011 v2df __builtin_ia32_minpd (v2df, v2df)
9012 v2df __builtin_ia32_maxpd (v2df, v2df)
9013 v2df __builtin_ia32_minsd (v2df, v2df)
9014 v2df __builtin_ia32_maxsd (v2df, v2df)
9015 v2df __builtin_ia32_andpd (v2df, v2df)
9016 v2df __builtin_ia32_andnpd (v2df, v2df)
9017 v2df __builtin_ia32_orpd (v2df, v2df)
9018 v2df __builtin_ia32_xorpd (v2df, v2df)
9019 v2df __builtin_ia32_movsd (v2df, v2df)
9020 v2df __builtin_ia32_unpckhpd (v2df, v2df)
9021 v2df __builtin_ia32_unpcklpd (v2df, v2df)
9022 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
9023 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
9024 v4si __builtin_ia32_paddd128 (v4si, v4si)
9025 v2di __builtin_ia32_paddq128 (v2di, v2di)
9026 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
9027 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
9028 v4si __builtin_ia32_psubd128 (v4si, v4si)
9029 v2di __builtin_ia32_psubq128 (v2di, v2di)
9030 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
9031 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
9032 v2di __builtin_ia32_pand128 (v2di, v2di)
9033 v2di __builtin_ia32_pandn128 (v2di, v2di)
9034 v2di __builtin_ia32_por128 (v2di, v2di)
9035 v2di __builtin_ia32_pxor128 (v2di, v2di)
9036 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
9037 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
9038 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
9039 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
9040 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
9041 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
9042 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
9043 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
9044 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
9045 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
9046 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
9047 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
9048 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
9049 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
9050 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
9051 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
9052 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
9053 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
9054 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
9055 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
9056 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
9057 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
9058 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
9059 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
9060 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
9061 v2df __builtin_ia32_loadupd (double *)
9062 void __builtin_ia32_storeupd (double *, v2df)
9063 v2df __builtin_ia32_loadhpd (v2df, double const *)
9064 v2df __builtin_ia32_loadlpd (v2df, double const *)
9065 int __builtin_ia32_movmskpd (v2df)
9066 int __builtin_ia32_pmovmskb128 (v16qi)
9067 void __builtin_ia32_movnti (int *, int)
9068 void __builtin_ia32_movntpd (double *, v2df)
9069 void __builtin_ia32_movntdq (v2df *, v2df)
9070 v4si __builtin_ia32_pshufd (v4si, int)
9071 v8hi __builtin_ia32_pshuflw (v8hi, int)
9072 v8hi __builtin_ia32_pshufhw (v8hi, int)
9073 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
9074 v2df __builtin_ia32_sqrtpd (v2df)
9075 v2df __builtin_ia32_sqrtsd (v2df)
9076 v2df __builtin_ia32_shufpd (v2df, v2df, int)
9077 v2df __builtin_ia32_cvtdq2pd (v4si)
9078 v4sf __builtin_ia32_cvtdq2ps (v4si)
9079 v4si __builtin_ia32_cvtpd2dq (v2df)
9080 v2si __builtin_ia32_cvtpd2pi (v2df)
9081 v4sf __builtin_ia32_cvtpd2ps (v2df)
9082 v4si __builtin_ia32_cvttpd2dq (v2df)
9083 v2si __builtin_ia32_cvttpd2pi (v2df)
9084 v2df __builtin_ia32_cvtpi2pd (v2si)
9085 int __builtin_ia32_cvtsd2si (v2df)
9086 int __builtin_ia32_cvttsd2si (v2df)
9087 long long __builtin_ia32_cvtsd2si64 (v2df)
9088 long long __builtin_ia32_cvttsd2si64 (v2df)
9089 v4si __builtin_ia32_cvtps2dq (v4sf)
9090 v2df __builtin_ia32_cvtps2pd (v4sf)
9091 v4si __builtin_ia32_cvttps2dq (v4sf)
9092 v2df __builtin_ia32_cvtsi2sd (v2df, int)
9093 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
9094 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
9095 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
9096 void __builtin_ia32_clflush (const void *)
9097 void __builtin_ia32_lfence (void)
9098 void __builtin_ia32_mfence (void)
9099 v16qi __builtin_ia32_loaddqu (const char *)
9100 void __builtin_ia32_storedqu (char *, v16qi)
9101 v1di __builtin_ia32_pmuludq (v2si, v2si)
9102 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
9103 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
9104 v4si __builtin_ia32_pslld128 (v4si, v4si)
9105 v2di __builtin_ia32_psllq128 (v2di, v2di)
9106 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
9107 v4si __builtin_ia32_psrld128 (v4si, v4si)
9108 v2di __builtin_ia32_psrlq128 (v2di, v2di)
9109 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
9110 v4si __builtin_ia32_psrad128 (v4si, v4si)
9111 v2di __builtin_ia32_pslldqi128 (v2di, int)
9112 v8hi __builtin_ia32_psllwi128 (v8hi, int)
9113 v4si __builtin_ia32_pslldi128 (v4si, int)
9114 v2di __builtin_ia32_psllqi128 (v2di, int)
9115 v2di __builtin_ia32_psrldqi128 (v2di, int)
9116 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
9117 v4si __builtin_ia32_psrldi128 (v4si, int)
9118 v2di __builtin_ia32_psrlqi128 (v2di, int)
9119 v8hi __builtin_ia32_psrawi128 (v8hi, int)
9120 v4si __builtin_ia32_psradi128 (v4si, int)
9121 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
9122 v2di __builtin_ia32_movq128 (v2di)
9123 @end smallexample
9124
9125 The following built-in functions are available when @option{-msse3} is used.
9126 All of them generate the machine instruction that is part of the name.
9127
9128 @smallexample
9129 v2df __builtin_ia32_addsubpd (v2df, v2df)
9130 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
9131 v2df __builtin_ia32_haddpd (v2df, v2df)
9132 v4sf __builtin_ia32_haddps (v4sf, v4sf)
9133 v2df __builtin_ia32_hsubpd (v2df, v2df)
9134 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
9135 v16qi __builtin_ia32_lddqu (char const *)
9136 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
9137 v2df __builtin_ia32_movddup (v2df)
9138 v4sf __builtin_ia32_movshdup (v4sf)
9139 v4sf __builtin_ia32_movsldup (v4sf)
9140 void __builtin_ia32_mwait (unsigned int, unsigned int)
9141 @end smallexample
9142
9143 The following built-in functions are available when @option{-msse3} is used.
9144
9145 @table @code
9146 @item v2df __builtin_ia32_loadddup (double const *)
9147 Generates the @code{movddup} machine instruction as a load from memory.
9148 @end table
9149
9150 The following built-in functions are available when @option{-mssse3} is used.
9151 All of them generate the machine instruction that is part of the name
9152 with MMX registers.
9153
9154 @smallexample
9155 v2si __builtin_ia32_phaddd (v2si, v2si)
9156 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
9157 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
9158 v2si __builtin_ia32_phsubd (v2si, v2si)
9159 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
9160 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
9161 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
9162 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
9163 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
9164 v8qi __builtin_ia32_psignb (v8qi, v8qi)
9165 v2si __builtin_ia32_psignd (v2si, v2si)
9166 v4hi __builtin_ia32_psignw (v4hi, v4hi)
9167 v1di __builtin_ia32_palignr (v1di, v1di, int)
9168 v8qi __builtin_ia32_pabsb (v8qi)
9169 v2si __builtin_ia32_pabsd (v2si)
9170 v4hi __builtin_ia32_pabsw (v4hi)
9171 @end smallexample
9172
9173 The following built-in functions are available when @option{-mssse3} is used.
9174 All of them generate the machine instruction that is part of the name
9175 with SSE registers.
9176
9177 @smallexample
9178 v4si __builtin_ia32_phaddd128 (v4si, v4si)
9179 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
9180 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
9181 v4si __builtin_ia32_phsubd128 (v4si, v4si)
9182 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
9183 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
9184 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
9185 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
9186 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
9187 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
9188 v4si __builtin_ia32_psignd128 (v4si, v4si)
9189 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
9190 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
9191 v16qi __builtin_ia32_pabsb128 (v16qi)
9192 v4si __builtin_ia32_pabsd128 (v4si)
9193 v8hi __builtin_ia32_pabsw128 (v8hi)
9194 @end smallexample
9195
9196 The following built-in functions are available when @option{-msse4.1} is
9197 used. All of them generate the machine instruction that is part of the
9198 name.
9199
9200 @smallexample
9201 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
9202 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
9203 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
9204 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
9205 v2df __builtin_ia32_dppd (v2df, v2df, const int)
9206 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
9207 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
9208 v2di __builtin_ia32_movntdqa (v2di *);
9209 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
9210 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
9211 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
9212 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
9213 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
9214 v8hi __builtin_ia32_phminposuw128 (v8hi)
9215 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
9216 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
9217 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
9218 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
9219 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
9220 v4si __builtin_ia32_pminsd128 (v4si, v4si)
9221 v4si __builtin_ia32_pminud128 (v4si, v4si)
9222 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
9223 v4si __builtin_ia32_pmovsxbd128 (v16qi)
9224 v2di __builtin_ia32_pmovsxbq128 (v16qi)
9225 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
9226 v2di __builtin_ia32_pmovsxdq128 (v4si)
9227 v4si __builtin_ia32_pmovsxwd128 (v8hi)
9228 v2di __builtin_ia32_pmovsxwq128 (v8hi)
9229 v4si __builtin_ia32_pmovzxbd128 (v16qi)
9230 v2di __builtin_ia32_pmovzxbq128 (v16qi)
9231 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
9232 v2di __builtin_ia32_pmovzxdq128 (v4si)
9233 v4si __builtin_ia32_pmovzxwd128 (v8hi)
9234 v2di __builtin_ia32_pmovzxwq128 (v8hi)
9235 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
9236 v4si __builtin_ia32_pmulld128 (v4si, v4si)
9237 int __builtin_ia32_ptestc128 (v2di, v2di)
9238 int __builtin_ia32_ptestnzc128 (v2di, v2di)
9239 int __builtin_ia32_ptestz128 (v2di, v2di)
9240 v2df __builtin_ia32_roundpd (v2df, const int)
9241 v4sf __builtin_ia32_roundps (v4sf, const int)
9242 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
9243 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
9244 @end smallexample
9245
9246 The following built-in functions are available when @option{-msse4.1} is
9247 used.
9248
9249 @table @code
9250 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
9251 Generates the @code{insertps} machine instruction.
9252 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
9253 Generates the @code{pextrb} machine instruction.
9254 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
9255 Generates the @code{pinsrb} machine instruction.
9256 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
9257 Generates the @code{pinsrd} machine instruction.
9258 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
9259 Generates the @code{pinsrq} machine instruction in 64bit mode.
9260 @end table
9261
9262 The following built-in functions are changed to generate new SSE4.1
9263 instructions when @option{-msse4.1} is used.
9264
9265 @table @code
9266 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
9267 Generates the @code{extractps} machine instruction.
9268 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
9269 Generates the @code{pextrd} machine instruction.
9270 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
9271 Generates the @code{pextrq} machine instruction in 64bit mode.
9272 @end table
9273
9274 The following built-in functions are available when @option{-msse4.2} is
9275 used. All of them generate the machine instruction that is part of the
9276 name.
9277
9278 @smallexample
9279 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
9280 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
9281 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
9282 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
9283 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
9284 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
9285 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
9286 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
9287 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
9288 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
9289 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
9290 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
9291 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
9292 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
9293 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
9294 @end smallexample
9295
9296 The following built-in functions are available when @option{-msse4.2} is
9297 used.
9298
9299 @table @code
9300 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
9301 Generates the @code{crc32b} machine instruction.
9302 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
9303 Generates the @code{crc32w} machine instruction.
9304 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
9305 Generates the @code{crc32l} machine instruction.
9306 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
9307 Generates the @code{crc32q} machine instruction.
9308 @end table
9309
9310 The following built-in functions are changed to generate new SSE4.2
9311 instructions when @option{-msse4.2} is used.
9312
9313 @table @code
9314 @item int __builtin_popcount (unsigned int)
9315 Generates the @code{popcntl} machine instruction.
9316 @item int __builtin_popcountl (unsigned long)
9317 Generates the @code{popcntl} or @code{popcntq} machine instruction,
9318 depending on the size of @code{unsigned long}.
9319 @item int __builtin_popcountll (unsigned long long)
9320 Generates the @code{popcntq} machine instruction.
9321 @end table
9322
9323 The following built-in functions are available when @option{-mavx} is
9324 used. All of them generate the machine instruction that is part of the
9325 name.
9326
9327 @smallexample
9328 v4df __builtin_ia32_addpd256 (v4df,v4df)
9329 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
9330 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
9331 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
9332 v4df __builtin_ia32_andnpd256 (v4df,v4df)
9333 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
9334 v4df __builtin_ia32_andpd256 (v4df,v4df)
9335 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
9336 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
9337 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
9338 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
9339 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
9340 v2df __builtin_ia32_cmppd (v2df,v2df,int)
9341 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
9342 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
9343 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
9344 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
9345 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
9346 v4df __builtin_ia32_cvtdq2pd256 (v4si)
9347 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
9348 v4si __builtin_ia32_cvtpd2dq256 (v4df)
9349 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
9350 v8si __builtin_ia32_cvtps2dq256 (v8sf)
9351 v4df __builtin_ia32_cvtps2pd256 (v4sf)
9352 v4si __builtin_ia32_cvttpd2dq256 (v4df)
9353 v8si __builtin_ia32_cvttps2dq256 (v8sf)
9354 v4df __builtin_ia32_divpd256 (v4df,v4df)
9355 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
9356 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
9357 v4df __builtin_ia32_haddpd256 (v4df,v4df)
9358 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
9359 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
9360 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
9361 v32qi __builtin_ia32_lddqu256 (pcchar)
9362 v32qi __builtin_ia32_loaddqu256 (pcchar)
9363 v4df __builtin_ia32_loadupd256 (pcdouble)
9364 v8sf __builtin_ia32_loadups256 (pcfloat)
9365 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
9366 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
9367 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
9368 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
9369 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
9370 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
9371 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
9372 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
9373 v4df __builtin_ia32_maxpd256 (v4df,v4df)
9374 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
9375 v4df __builtin_ia32_minpd256 (v4df,v4df)
9376 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
9377 v4df __builtin_ia32_movddup256 (v4df)
9378 int __builtin_ia32_movmskpd256 (v4df)
9379 int __builtin_ia32_movmskps256 (v8sf)
9380 v8sf __builtin_ia32_movshdup256 (v8sf)
9381 v8sf __builtin_ia32_movsldup256 (v8sf)
9382 v4df __builtin_ia32_mulpd256 (v4df,v4df)
9383 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
9384 v4df __builtin_ia32_orpd256 (v4df,v4df)
9385 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
9386 v2df __builtin_ia32_pd_pd256 (v4df)
9387 v4df __builtin_ia32_pd256_pd (v2df)
9388 v4sf __builtin_ia32_ps_ps256 (v8sf)
9389 v8sf __builtin_ia32_ps256_ps (v4sf)
9390 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
9391 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
9392 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
9393 v8sf __builtin_ia32_rcpps256 (v8sf)
9394 v4df __builtin_ia32_roundpd256 (v4df,int)
9395 v8sf __builtin_ia32_roundps256 (v8sf,int)
9396 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
9397 v8sf __builtin_ia32_rsqrtps256 (v8sf)
9398 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
9399 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
9400 v4si __builtin_ia32_si_si256 (v8si)
9401 v8si __builtin_ia32_si256_si (v4si)
9402 v4df __builtin_ia32_sqrtpd256 (v4df)
9403 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
9404 v8sf __builtin_ia32_sqrtps256 (v8sf)
9405 void __builtin_ia32_storedqu256 (pchar,v32qi)
9406 void __builtin_ia32_storeupd256 (pdouble,v4df)
9407 void __builtin_ia32_storeups256 (pfloat,v8sf)
9408 v4df __builtin_ia32_subpd256 (v4df,v4df)
9409 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
9410 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
9411 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
9412 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
9413 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
9414 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
9415 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
9416 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
9417 v4sf __builtin_ia32_vbroadcastss (pcfloat)
9418 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
9419 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
9420 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
9421 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
9422 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
9423 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
9424 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
9425 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
9426 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
9427 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
9428 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
9429 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
9430 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
9431 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
9432 v2df __builtin_ia32_vpermilpd (v2df,int)
9433 v4df __builtin_ia32_vpermilpd256 (v4df,int)
9434 v4sf __builtin_ia32_vpermilps (v4sf,int)
9435 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
9436 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
9437 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
9438 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
9439 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
9440 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
9441 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
9442 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
9443 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
9444 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
9445 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
9446 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
9447 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
9448 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
9449 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
9450 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
9451 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
9452 void __builtin_ia32_vzeroall (void)
9453 void __builtin_ia32_vzeroupper (void)
9454 v4df __builtin_ia32_xorpd256 (v4df,v4df)
9455 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
9456 @end smallexample
9457
9458 The following built-in functions are available when @option{-mavx2} is
9459 used. All of them generate the machine instruction that is part of the
9460 name.
9461
9462 @smallexample
9463 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
9464 v32qi __builtin_ia32_pabsb256 (v32qi)
9465 v16hi __builtin_ia32_pabsw256 (v16hi)
9466 v8si __builtin_ia32_pabsd256 (v8si)
9467 v16hi builtin_ia32_packssdw256 (v8si,v8si)
9468 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
9469 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
9470 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
9471 v32qi__builtin_ia32_paddb256 (v32qi,v32qi)
9472 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
9473 v8si __builtin_ia32_paddd256 (v8si,v8si)
9474 v4di __builtin_ia32_paddq256 (v4di,v4di)
9475 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
9476 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
9477 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
9478 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
9479 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
9480 v4di __builtin_ia32_andsi256 (v4di,v4di)
9481 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
9482 v32qi__builtin_ia32_pavgb256 (v32qi,v32qi)
9483 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
9484 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
9485 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
9486 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
9487 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
9488 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
9489 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
9490 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
9491 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
9492 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
9493 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
9494 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
9495 v8si __builtin_ia32_phaddd256 (v8si,v8si)
9496 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
9497 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
9498 v8si __builtin_ia32_phsubd256 (v8si,v8si)
9499 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
9500 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
9501 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
9502 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
9503 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
9504 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
9505 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
9506 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
9507 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
9508 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
9509 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
9510 v8si __builtin_ia32_pminsd256 (v8si,v8si)
9511 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
9512 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
9513 v8si __builtin_ia32_pminud256 (v8si,v8si)
9514 int __builtin_ia32_pmovmskb256 (v32qi)
9515 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
9516 v8si __builtin_ia32_pmovsxbd256 (v16qi)
9517 v4di __builtin_ia32_pmovsxbq256 (v16qi)
9518 v8si __builtin_ia32_pmovsxwd256 (v8hi)
9519 v4di __builtin_ia32_pmovsxwq256 (v8hi)
9520 v4di __builtin_ia32_pmovsxdq256 (v4si)
9521 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
9522 v8si __builtin_ia32_pmovzxbd256 (v16qi)
9523 v4di __builtin_ia32_pmovzxbq256 (v16qi)
9524 v8si __builtin_ia32_pmovzxwd256 (v8hi)
9525 v4di __builtin_ia32_pmovzxwq256 (v8hi)
9526 v4di __builtin_ia32_pmovzxdq256 (v4si)
9527 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
9528 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
9529 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
9530 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
9531 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
9532 v8si __builtin_ia32_pmulld256 (v8si,v8si)
9533 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
9534 v4di __builtin_ia32_por256 (v4di,v4di)
9535 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
9536 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
9537 v8si __builtin_ia32_pshufd256 (v8si,int)
9538 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
9539 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
9540 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
9541 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
9542 v8si __builtin_ia32_psignd256 (v8si,v8si)
9543 v4di __builtin_ia32_pslldqi256 (v4di,int)
9544 v16hi __builtin_ia32_psllwi256 (16hi,int)
9545 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
9546 v8si __builtin_ia32_pslldi256 (v8si,int)
9547 v8si __builtin_ia32_pslld256(v8si,v4si)
9548 v4di __builtin_ia32_psllqi256 (v4di,int)
9549 v4di __builtin_ia32_psllq256(v4di,v2di)
9550 v16hi __builtin_ia32_psrawi256 (v16hi,int)
9551 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
9552 v8si __builtin_ia32_psradi256 (v8si,int)
9553 v8si __builtin_ia32_psrad256 (v8si,v4si)
9554 v4di __builtin_ia32_psrldqi256 (v4di, int)
9555 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
9556 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
9557 v8si __builtin_ia32_psrldi256 (v8si,int)
9558 v8si __builtin_ia32_psrld256 (v8si,v4si)
9559 v4di __builtin_ia32_psrlqi256 (v4di,int)
9560 v4di __builtin_ia32_psrlq256(v4di,v2di)
9561 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
9562 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
9563 v8si __builtin_ia32_psubd256 (v8si,v8si)
9564 v4di __builtin_ia32_psubq256 (v4di,v4di)
9565 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
9566 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
9567 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
9568 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
9569 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
9570 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
9571 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
9572 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
9573 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
9574 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
9575 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
9576 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
9577 v4di __builtin_ia32_pxor256 (v4di,v4di)
9578 v4di __builtin_ia32_movntdqa256 (pv4di)
9579 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
9580 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
9581 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
9582 v4di __builtin_ia32_vbroadcastsi256 (v2di)
9583 v4si __builtin_ia32_pblendd128 (v4si,v4si)
9584 v8si __builtin_ia32_pblendd256 (v8si,v8si)
9585 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
9586 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
9587 v8si __builtin_ia32_pbroadcastd256 (v4si)
9588 v4di __builtin_ia32_pbroadcastq256 (v2di)
9589 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
9590 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
9591 v4si __builtin_ia32_pbroadcastd128 (v4si)
9592 v2di __builtin_ia32_pbroadcastq128 (v2di)
9593 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
9594 v4df __builtin_ia32_permdf256 (v4df,int)
9595 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
9596 v4di __builtin_ia32_permdi256 (v4di,int)
9597 v4di __builtin_ia32_permti256 (v4di,v4di,int)
9598 v4di __builtin_ia32_extract128i256 (v4di,int)
9599 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
9600 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
9601 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
9602 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
9603 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
9604 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
9605 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
9606 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
9607 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
9608 v8si __builtin_ia32_psllv8si (v8si,v8si)
9609 v4si __builtin_ia32_psllv4si (v4si,v4si)
9610 v4di __builtin_ia32_psllv4di (v4di,v4di)
9611 v2di __builtin_ia32_psllv2di (v2di,v2di)
9612 v8si __builtin_ia32_psrav8si (v8si,v8si)
9613 v4si __builtin_ia32_psrav4si (v4si,v4si)
9614 v8si __builtin_ia32_psrlv8si (v8si,v8si)
9615 v4si __builtin_ia32_psrlv4si (v4si,v4si)
9616 v4di __builtin_ia32_psrlv4di (v4di,v4di)
9617 v2di __builtin_ia32_psrlv2di (v2di,v2di)
9618 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
9619 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
9620 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
9621 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
9622 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
9623 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
9624 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
9625 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
9626 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
9627 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
9628 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
9629 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
9630 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
9631 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
9632 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
9633 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
9634 @end smallexample
9635
9636 The following built-in functions are available when @option{-maes} is
9637 used. All of them generate the machine instruction that is part of the
9638 name.
9639
9640 @smallexample
9641 v2di __builtin_ia32_aesenc128 (v2di, v2di)
9642 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
9643 v2di __builtin_ia32_aesdec128 (v2di, v2di)
9644 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
9645 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
9646 v2di __builtin_ia32_aesimc128 (v2di)
9647 @end smallexample
9648
9649 The following built-in function is available when @option{-mpclmul} is
9650 used.
9651
9652 @table @code
9653 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
9654 Generates the @code{pclmulqdq} machine instruction.
9655 @end table
9656
9657 The following built-in function is available when @option{-mfsgsbase} is
9658 used. All of them generate the machine instruction that is part of the
9659 name.
9660
9661 @smallexample
9662 unsigned int __builtin_ia32_rdfsbase32 (void)
9663 unsigned long long __builtin_ia32_rdfsbase64 (void)
9664 unsigned int __builtin_ia32_rdgsbase32 (void)
9665 unsigned long long __builtin_ia32_rdgsbase64 (void)
9666 void _writefsbase_u32 (unsigned int)
9667 void _writefsbase_u64 (unsigned long long)
9668 void _writegsbase_u32 (unsigned int)
9669 void _writegsbase_u64 (unsigned long long)
9670 @end smallexample
9671
9672 The following built-in function is available when @option{-mrdrnd} is
9673 used. All of them generate the machine instruction that is part of the
9674 name.
9675
9676 @smallexample
9677 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
9678 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
9679 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
9680 @end smallexample
9681
9682 The following built-in functions are available when @option{-msse4a} is used.
9683 All of them generate the machine instruction that is part of the name.
9684
9685 @smallexample
9686 void __builtin_ia32_movntsd (double *, v2df)
9687 void __builtin_ia32_movntss (float *, v4sf)
9688 v2di __builtin_ia32_extrq (v2di, v16qi)
9689 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
9690 v2di __builtin_ia32_insertq (v2di, v2di)
9691 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
9692 @end smallexample
9693
9694 The following built-in functions are available when @option{-mxop} is used.
9695 @smallexample
9696 v2df __builtin_ia32_vfrczpd (v2df)
9697 v4sf __builtin_ia32_vfrczps (v4sf)
9698 v2df __builtin_ia32_vfrczsd (v2df, v2df)
9699 v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
9700 v4df __builtin_ia32_vfrczpd256 (v4df)
9701 v8sf __builtin_ia32_vfrczps256 (v8sf)
9702 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
9703 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
9704 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
9705 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
9706 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
9707 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
9708 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
9709 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
9710 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
9711 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
9712 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
9713 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
9714 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
9715 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
9716 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
9717 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
9718 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
9719 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
9720 v4si __builtin_ia32_vpcomequd (v4si, v4si)
9721 v2di __builtin_ia32_vpcomequq (v2di, v2di)
9722 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
9723 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
9724 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
9725 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
9726 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
9727 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
9728 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
9729 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
9730 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
9731 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
9732 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
9733 v4si __builtin_ia32_vpcomged (v4si, v4si)
9734 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
9735 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
9736 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
9737 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
9738 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
9739 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
9740 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
9741 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
9742 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
9743 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
9744 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
9745 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
9746 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
9747 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
9748 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
9749 v4si __builtin_ia32_vpcomled (v4si, v4si)
9750 v2di __builtin_ia32_vpcomleq (v2di, v2di)
9751 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
9752 v4si __builtin_ia32_vpcomleud (v4si, v4si)
9753 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
9754 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
9755 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
9756 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
9757 v4si __builtin_ia32_vpcomltd (v4si, v4si)
9758 v2di __builtin_ia32_vpcomltq (v2di, v2di)
9759 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
9760 v4si __builtin_ia32_vpcomltud (v4si, v4si)
9761 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
9762 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
9763 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
9764 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
9765 v4si __builtin_ia32_vpcomned (v4si, v4si)
9766 v2di __builtin_ia32_vpcomneq (v2di, v2di)
9767 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
9768 v4si __builtin_ia32_vpcomneud (v4si, v4si)
9769 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
9770 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
9771 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
9772 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
9773 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
9774 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
9775 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
9776 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
9777 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
9778 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
9779 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
9780 v4si __builtin_ia32_vphaddbd (v16qi)
9781 v2di __builtin_ia32_vphaddbq (v16qi)
9782 v8hi __builtin_ia32_vphaddbw (v16qi)
9783 v2di __builtin_ia32_vphadddq (v4si)
9784 v4si __builtin_ia32_vphaddubd (v16qi)
9785 v2di __builtin_ia32_vphaddubq (v16qi)
9786 v8hi __builtin_ia32_vphaddubw (v16qi)
9787 v2di __builtin_ia32_vphaddudq (v4si)
9788 v4si __builtin_ia32_vphadduwd (v8hi)
9789 v2di __builtin_ia32_vphadduwq (v8hi)
9790 v4si __builtin_ia32_vphaddwd (v8hi)
9791 v2di __builtin_ia32_vphaddwq (v8hi)
9792 v8hi __builtin_ia32_vphsubbw (v16qi)
9793 v2di __builtin_ia32_vphsubdq (v4si)
9794 v4si __builtin_ia32_vphsubwd (v8hi)
9795 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
9796 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
9797 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
9798 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
9799 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
9800 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
9801 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
9802 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
9803 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
9804 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
9805 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
9806 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
9807 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
9808 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
9809 v4si __builtin_ia32_vprotd (v4si, v4si)
9810 v2di __builtin_ia32_vprotq (v2di, v2di)
9811 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
9812 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
9813 v4si __builtin_ia32_vpshad (v4si, v4si)
9814 v2di __builtin_ia32_vpshaq (v2di, v2di)
9815 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
9816 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
9817 v4si __builtin_ia32_vpshld (v4si, v4si)
9818 v2di __builtin_ia32_vpshlq (v2di, v2di)
9819 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
9820 @end smallexample
9821
9822 The following built-in functions are available when @option{-mfma4} is used.
9823 All of them generate the machine instruction that is part of the name
9824 with MMX registers.
9825
9826 @smallexample
9827 v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
9828 v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
9829 v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
9830 v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
9831 v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
9832 v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
9833 v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
9834 v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
9835 v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
9836 v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
9837 v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
9838 v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
9839 v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
9840 v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
9841 v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
9842 v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
9843 v2df __builtin_ia32_fmaddsubpd (v2df, v2df, v2df)
9844 v4sf __builtin_ia32_fmaddsubps (v4sf, v4sf, v4sf)
9845 v2df __builtin_ia32_fmsubaddpd (v2df, v2df, v2df)
9846 v4sf __builtin_ia32_fmsubaddps (v4sf, v4sf, v4sf)
9847 v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
9848 v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
9849 v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
9850 v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
9851 v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
9852 v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
9853 v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
9854 v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
9855 v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
9856 v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
9857 v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
9858 v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
9859
9860 @end smallexample
9861
9862 The following built-in functions are available when @option{-mlwp} is used.
9863
9864 @smallexample
9865 void __builtin_ia32_llwpcb16 (void *);
9866 void __builtin_ia32_llwpcb32 (void *);
9867 void __builtin_ia32_llwpcb64 (void *);
9868 void * __builtin_ia32_llwpcb16 (void);
9869 void * __builtin_ia32_llwpcb32 (void);
9870 void * __builtin_ia32_llwpcb64 (void);
9871 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
9872 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
9873 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
9874 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
9875 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
9876 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
9877 @end smallexample
9878
9879 The following built-in functions are available when @option{-mbmi} is used.
9880 All of them generate the machine instruction that is part of the name.
9881 @smallexample
9882 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
9883 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
9884 @end smallexample
9885
9886 The following built-in functions are available when @option{-mbmi2} is used.
9887 All of them generate the machine instruction that is part of the name.
9888 @smallexample
9889 unsigned int _bzhi_u32 (unsigned int, unsigned int)
9890 unsigned int _pdep_u32 (unsigned int, unsigned int)
9891 unsigned int _pext_u32 (unsigned int, unsigned int)
9892 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
9893 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
9894 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
9895 @end smallexample
9896
9897 The following built-in functions are available when @option{-mlzcnt} is used.
9898 All of them generate the machine instruction that is part of the name.
9899 @smallexample
9900 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
9901 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
9902 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
9903 @end smallexample
9904
9905 The following built-in functions are available when @option{-mtbm} is used.
9906 Both of them generate the immediate form of the bextr machine instruction.
9907 @smallexample
9908 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
9909 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
9910 @end smallexample
9911
9912
9913 The following built-in functions are available when @option{-m3dnow} is used.
9914 All of them generate the machine instruction that is part of the name.
9915
9916 @smallexample
9917 void __builtin_ia32_femms (void)
9918 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
9919 v2si __builtin_ia32_pf2id (v2sf)
9920 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
9921 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
9922 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
9923 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
9924 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
9925 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
9926 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
9927 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
9928 v2sf __builtin_ia32_pfrcp (v2sf)
9929 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
9930 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
9931 v2sf __builtin_ia32_pfrsqrt (v2sf)
9932 v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
9933 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
9934 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
9935 v2sf __builtin_ia32_pi2fd (v2si)
9936 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
9937 @end smallexample
9938
9939 The following built-in functions are available when both @option{-m3dnow}
9940 and @option{-march=athlon} are used. All of them generate the machine
9941 instruction that is part of the name.
9942
9943 @smallexample
9944 v2si __builtin_ia32_pf2iw (v2sf)
9945 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
9946 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
9947 v2sf __builtin_ia32_pi2fw (v2si)
9948 v2sf __builtin_ia32_pswapdsf (v2sf)
9949 v2si __builtin_ia32_pswapdsi (v2si)
9950 @end smallexample
9951
9952 @node MIPS DSP Built-in Functions
9953 @subsection MIPS DSP Built-in Functions
9954
9955 The MIPS DSP Application-Specific Extension (ASE) includes new
9956 instructions that are designed to improve the performance of DSP and
9957 media applications. It provides instructions that operate on packed
9958 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
9959
9960 GCC supports MIPS DSP operations using both the generic
9961 vector extensions (@pxref{Vector Extensions}) and a collection of
9962 MIPS-specific built-in functions. Both kinds of support are
9963 enabled by the @option{-mdsp} command-line option.
9964
9965 Revision 2 of the ASE was introduced in the second half of 2006.
9966 This revision adds extra instructions to the original ASE, but is
9967 otherwise backwards-compatible with it. You can select revision 2
9968 using the command-line option @option{-mdspr2}; this option implies
9969 @option{-mdsp}.
9970
9971 The SCOUNT and POS bits of the DSP control register are global. The
9972 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
9973 POS bits. During optimization, the compiler will not delete these
9974 instructions and it will not delete calls to functions containing
9975 these instructions.
9976
9977 At present, GCC only provides support for operations on 32-bit
9978 vectors. The vector type associated with 8-bit integer data is
9979 usually called @code{v4i8}, the vector type associated with Q7
9980 is usually called @code{v4q7}, the vector type associated with 16-bit
9981 integer data is usually called @code{v2i16}, and the vector type
9982 associated with Q15 is usually called @code{v2q15}. They can be
9983 defined in C as follows:
9984
9985 @smallexample
9986 typedef signed char v4i8 __attribute__ ((vector_size(4)));
9987 typedef signed char v4q7 __attribute__ ((vector_size(4)));
9988 typedef short v2i16 __attribute__ ((vector_size(4)));
9989 typedef short v2q15 __attribute__ ((vector_size(4)));
9990 @end smallexample
9991
9992 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
9993 initialized in the same way as aggregates. For example:
9994
9995 @smallexample
9996 v4i8 a = @{1, 2, 3, 4@};
9997 v4i8 b;
9998 b = (v4i8) @{5, 6, 7, 8@};
9999
10000 v2q15 c = @{0x0fcb, 0x3a75@};
10001 v2q15 d;
10002 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
10003 @end smallexample
10004
10005 @emph{Note:} The CPU's endianness determines the order in which values
10006 are packed. On little-endian targets, the first value is the least
10007 significant and the last value is the most significant. The opposite
10008 order applies to big-endian targets. For example, the code above will
10009 set the lowest byte of @code{a} to @code{1} on little-endian targets
10010 and @code{4} on big-endian targets.
10011
10012 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
10013 representation. As shown in this example, the integer representation
10014 of a Q7 value can be obtained by multiplying the fractional value by
10015 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
10016 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
10017 @code{0x1.0p31}.
10018
10019 The table below lists the @code{v4i8} and @code{v2q15} operations for which
10020 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
10021 and @code{c} and @code{d} are @code{v2q15} values.
10022
10023 @multitable @columnfractions .50 .50
10024 @item C code @tab MIPS instruction
10025 @item @code{a + b} @tab @code{addu.qb}
10026 @item @code{c + d} @tab @code{addq.ph}
10027 @item @code{a - b} @tab @code{subu.qb}
10028 @item @code{c - d} @tab @code{subq.ph}
10029 @end multitable
10030
10031 The table below lists the @code{v2i16} operation for which
10032 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
10033 @code{v2i16} values.
10034
10035 @multitable @columnfractions .50 .50
10036 @item C code @tab MIPS instruction
10037 @item @code{e * f} @tab @code{mul.ph}
10038 @end multitable
10039
10040 It is easier to describe the DSP built-in functions if we first define
10041 the following types:
10042
10043 @smallexample
10044 typedef int q31;
10045 typedef int i32;
10046 typedef unsigned int ui32;
10047 typedef long long a64;
10048 @end smallexample
10049
10050 @code{q31} and @code{i32} are actually the same as @code{int}, but we
10051 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
10052 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
10053 @code{long long}, but we use @code{a64} to indicate values that will
10054 be placed in one of the four DSP accumulators (@code{$ac0},
10055 @code{$ac1}, @code{$ac2} or @code{$ac3}).
10056
10057 Also, some built-in functions prefer or require immediate numbers as
10058 parameters, because the corresponding DSP instructions accept both immediate
10059 numbers and register operands, or accept immediate numbers only. The
10060 immediate parameters are listed as follows.
10061
10062 @smallexample
10063 imm0_3: 0 to 3.
10064 imm0_7: 0 to 7.
10065 imm0_15: 0 to 15.
10066 imm0_31: 0 to 31.
10067 imm0_63: 0 to 63.
10068 imm0_255: 0 to 255.
10069 imm_n32_31: -32 to 31.
10070 imm_n512_511: -512 to 511.
10071 @end smallexample
10072
10073 The following built-in functions map directly to a particular MIPS DSP
10074 instruction. Please refer to the architecture specification
10075 for details on what each instruction does.
10076
10077 @smallexample
10078 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
10079 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
10080 q31 __builtin_mips_addq_s_w (q31, q31)
10081 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
10082 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
10083 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
10084 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
10085 q31 __builtin_mips_subq_s_w (q31, q31)
10086 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
10087 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
10088 i32 __builtin_mips_addsc (i32, i32)
10089 i32 __builtin_mips_addwc (i32, i32)
10090 i32 __builtin_mips_modsub (i32, i32)
10091 i32 __builtin_mips_raddu_w_qb (v4i8)
10092 v2q15 __builtin_mips_absq_s_ph (v2q15)
10093 q31 __builtin_mips_absq_s_w (q31)
10094 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
10095 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
10096 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
10097 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
10098 q31 __builtin_mips_preceq_w_phl (v2q15)
10099 q31 __builtin_mips_preceq_w_phr (v2q15)
10100 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
10101 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
10102 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
10103 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
10104 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
10105 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
10106 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
10107 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
10108 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
10109 v4i8 __builtin_mips_shll_qb (v4i8, i32)
10110 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
10111 v2q15 __builtin_mips_shll_ph (v2q15, i32)
10112 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
10113 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
10114 q31 __builtin_mips_shll_s_w (q31, imm0_31)
10115 q31 __builtin_mips_shll_s_w (q31, i32)
10116 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
10117 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
10118 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
10119 v2q15 __builtin_mips_shra_ph (v2q15, i32)
10120 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
10121 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
10122 q31 __builtin_mips_shra_r_w (q31, imm0_31)
10123 q31 __builtin_mips_shra_r_w (q31, i32)
10124 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
10125 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
10126 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
10127 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
10128 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
10129 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
10130 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
10131 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
10132 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
10133 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
10134 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
10135 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
10136 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
10137 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
10138 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
10139 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
10140 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
10141 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
10142 i32 __builtin_mips_bitrev (i32)
10143 i32 __builtin_mips_insv (i32, i32)
10144 v4i8 __builtin_mips_repl_qb (imm0_255)
10145 v4i8 __builtin_mips_repl_qb (i32)
10146 v2q15 __builtin_mips_repl_ph (imm_n512_511)
10147 v2q15 __builtin_mips_repl_ph (i32)
10148 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
10149 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
10150 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
10151 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
10152 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
10153 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
10154 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
10155 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
10156 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
10157 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
10158 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
10159 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
10160 i32 __builtin_mips_extr_w (a64, imm0_31)
10161 i32 __builtin_mips_extr_w (a64, i32)
10162 i32 __builtin_mips_extr_r_w (a64, imm0_31)
10163 i32 __builtin_mips_extr_s_h (a64, i32)
10164 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
10165 i32 __builtin_mips_extr_rs_w (a64, i32)
10166 i32 __builtin_mips_extr_s_h (a64, imm0_31)
10167 i32 __builtin_mips_extr_r_w (a64, i32)
10168 i32 __builtin_mips_extp (a64, imm0_31)
10169 i32 __builtin_mips_extp (a64, i32)
10170 i32 __builtin_mips_extpdp (a64, imm0_31)
10171 i32 __builtin_mips_extpdp (a64, i32)
10172 a64 __builtin_mips_shilo (a64, imm_n32_31)
10173 a64 __builtin_mips_shilo (a64, i32)
10174 a64 __builtin_mips_mthlip (a64, i32)
10175 void __builtin_mips_wrdsp (i32, imm0_63)
10176 i32 __builtin_mips_rddsp (imm0_63)
10177 i32 __builtin_mips_lbux (void *, i32)
10178 i32 __builtin_mips_lhx (void *, i32)
10179 i32 __builtin_mips_lwx (void *, i32)
10180 i32 __builtin_mips_bposge32 (void)
10181 a64 __builtin_mips_madd (a64, i32, i32);
10182 a64 __builtin_mips_maddu (a64, ui32, ui32);
10183 a64 __builtin_mips_msub (a64, i32, i32);
10184 a64 __builtin_mips_msubu (a64, ui32, ui32);
10185 a64 __builtin_mips_mult (i32, i32);
10186 a64 __builtin_mips_multu (ui32, ui32);
10187 @end smallexample
10188
10189 The following built-in functions map directly to a particular MIPS DSP REV 2
10190 instruction. Please refer to the architecture specification
10191 for details on what each instruction does.
10192
10193 @smallexample
10194 v4q7 __builtin_mips_absq_s_qb (v4q7);
10195 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
10196 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
10197 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
10198 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
10199 i32 __builtin_mips_append (i32, i32, imm0_31);
10200 i32 __builtin_mips_balign (i32, i32, imm0_3);
10201 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
10202 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
10203 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
10204 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
10205 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
10206 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
10207 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
10208 q31 __builtin_mips_mulq_rs_w (q31, q31);
10209 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
10210 q31 __builtin_mips_mulq_s_w (q31, q31);
10211 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
10212 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
10213 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
10214 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
10215 i32 __builtin_mips_prepend (i32, i32, imm0_31);
10216 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
10217 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
10218 v4i8 __builtin_mips_shra_qb (v4i8, i32);
10219 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
10220 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
10221 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
10222 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
10223 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
10224 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
10225 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
10226 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
10227 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
10228 q31 __builtin_mips_addqh_w (q31, q31);
10229 q31 __builtin_mips_addqh_r_w (q31, q31);
10230 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
10231 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
10232 q31 __builtin_mips_subqh_w (q31, q31);
10233 q31 __builtin_mips_subqh_r_w (q31, q31);
10234 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
10235 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
10236 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
10237 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
10238 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
10239 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
10240 @end smallexample
10241
10242
10243 @node MIPS Paired-Single Support
10244 @subsection MIPS Paired-Single Support
10245
10246 The MIPS64 architecture includes a number of instructions that
10247 operate on pairs of single-precision floating-point values.
10248 Each pair is packed into a 64-bit floating-point register,
10249 with one element being designated the ``upper half'' and
10250 the other being designated the ``lower half''.
10251
10252 GCC supports paired-single operations using both the generic
10253 vector extensions (@pxref{Vector Extensions}) and a collection of
10254 MIPS-specific built-in functions. Both kinds of support are
10255 enabled by the @option{-mpaired-single} command-line option.
10256
10257 The vector type associated with paired-single values is usually
10258 called @code{v2sf}. It can be defined in C as follows:
10259
10260 @smallexample
10261 typedef float v2sf __attribute__ ((vector_size (8)));
10262 @end smallexample
10263
10264 @code{v2sf} values are initialized in the same way as aggregates.
10265 For example:
10266
10267 @smallexample
10268 v2sf a = @{1.5, 9.1@};
10269 v2sf b;
10270 float e, f;
10271 b = (v2sf) @{e, f@};
10272 @end smallexample
10273
10274 @emph{Note:} The CPU's endianness determines which value is stored in
10275 the upper half of a register and which value is stored in the lower half.
10276 On little-endian targets, the first value is the lower one and the second
10277 value is the upper one. The opposite order applies to big-endian targets.
10278 For example, the code above will set the lower half of @code{a} to
10279 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
10280
10281 @node MIPS Loongson Built-in Functions
10282 @subsection MIPS Loongson Built-in Functions
10283
10284 GCC provides intrinsics to access the SIMD instructions provided by the
10285 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
10286 available after inclusion of the @code{loongson.h} header file,
10287 operate on the following 64-bit vector types:
10288
10289 @itemize
10290 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
10291 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
10292 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
10293 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
10294 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
10295 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
10296 @end itemize
10297
10298 The intrinsics provided are listed below; each is named after the
10299 machine instruction to which it corresponds, with suffixes added as
10300 appropriate to distinguish intrinsics that expand to the same machine
10301 instruction yet have different argument types. Refer to the architecture
10302 documentation for a description of the functionality of each
10303 instruction.
10304
10305 @smallexample
10306 int16x4_t packsswh (int32x2_t s, int32x2_t t);
10307 int8x8_t packsshb (int16x4_t s, int16x4_t t);
10308 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
10309 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
10310 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
10311 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
10312 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
10313 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
10314 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
10315 uint64_t paddd_u (uint64_t s, uint64_t t);
10316 int64_t paddd_s (int64_t s, int64_t t);
10317 int16x4_t paddsh (int16x4_t s, int16x4_t t);
10318 int8x8_t paddsb (int8x8_t s, int8x8_t t);
10319 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
10320 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
10321 uint64_t pandn_ud (uint64_t s, uint64_t t);
10322 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
10323 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
10324 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
10325 int64_t pandn_sd (int64_t s, int64_t t);
10326 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
10327 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
10328 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
10329 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
10330 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
10331 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
10332 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
10333 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
10334 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
10335 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
10336 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
10337 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
10338 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
10339 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
10340 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
10341 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
10342 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
10343 uint16x4_t pextrh_u (uint16x4_t s, int field);
10344 int16x4_t pextrh_s (int16x4_t s, int field);
10345 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
10346 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
10347 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
10348 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
10349 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
10350 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
10351 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
10352 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
10353 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
10354 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
10355 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
10356 int16x4_t pminsh (int16x4_t s, int16x4_t t);
10357 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
10358 uint8x8_t pmovmskb_u (uint8x8_t s);
10359 int8x8_t pmovmskb_s (int8x8_t s);
10360 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
10361 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
10362 int16x4_t pmullh (int16x4_t s, int16x4_t t);
10363 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
10364 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
10365 uint16x4_t biadd (uint8x8_t s);
10366 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
10367 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
10368 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
10369 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
10370 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
10371 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
10372 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
10373 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
10374 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
10375 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
10376 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
10377 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
10378 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
10379 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
10380 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
10381 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
10382 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
10383 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
10384 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
10385 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
10386 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
10387 uint64_t psubd_u (uint64_t s, uint64_t t);
10388 int64_t psubd_s (int64_t s, int64_t t);
10389 int16x4_t psubsh (int16x4_t s, int16x4_t t);
10390 int8x8_t psubsb (int8x8_t s, int8x8_t t);
10391 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
10392 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
10393 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
10394 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
10395 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
10396 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
10397 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
10398 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
10399 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
10400 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
10401 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
10402 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
10403 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
10404 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
10405 @end smallexample
10406
10407 @menu
10408 * Paired-Single Arithmetic::
10409 * Paired-Single Built-in Functions::
10410 * MIPS-3D Built-in Functions::
10411 @end menu
10412
10413 @node Paired-Single Arithmetic
10414 @subsubsection Paired-Single Arithmetic
10415
10416 The table below lists the @code{v2sf} operations for which hardware
10417 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
10418 values and @code{x} is an integral value.
10419
10420 @multitable @columnfractions .50 .50
10421 @item C code @tab MIPS instruction
10422 @item @code{a + b} @tab @code{add.ps}
10423 @item @code{a - b} @tab @code{sub.ps}
10424 @item @code{-a} @tab @code{neg.ps}
10425 @item @code{a * b} @tab @code{mul.ps}
10426 @item @code{a * b + c} @tab @code{madd.ps}
10427 @item @code{a * b - c} @tab @code{msub.ps}
10428 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
10429 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
10430 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
10431 @end multitable
10432
10433 Note that the multiply-accumulate instructions can be disabled
10434 using the command-line option @code{-mno-fused-madd}.
10435
10436 @node Paired-Single Built-in Functions
10437 @subsubsection Paired-Single Built-in Functions
10438
10439 The following paired-single functions map directly to a particular
10440 MIPS instruction. Please refer to the architecture specification
10441 for details on what each instruction does.
10442
10443 @table @code
10444 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
10445 Pair lower lower (@code{pll.ps}).
10446
10447 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
10448 Pair upper lower (@code{pul.ps}).
10449
10450 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
10451 Pair lower upper (@code{plu.ps}).
10452
10453 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
10454 Pair upper upper (@code{puu.ps}).
10455
10456 @item v2sf __builtin_mips_cvt_ps_s (float, float)
10457 Convert pair to paired single (@code{cvt.ps.s}).
10458
10459 @item float __builtin_mips_cvt_s_pl (v2sf)
10460 Convert pair lower to single (@code{cvt.s.pl}).
10461
10462 @item float __builtin_mips_cvt_s_pu (v2sf)
10463 Convert pair upper to single (@code{cvt.s.pu}).
10464
10465 @item v2sf __builtin_mips_abs_ps (v2sf)
10466 Absolute value (@code{abs.ps}).
10467
10468 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
10469 Align variable (@code{alnv.ps}).
10470
10471 @emph{Note:} The value of the third parameter must be 0 or 4
10472 modulo 8, otherwise the result will be unpredictable. Please read the
10473 instruction description for details.
10474 @end table
10475
10476 The following multi-instruction functions are also available.
10477 In each case, @var{cond} can be any of the 16 floating-point conditions:
10478 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
10479 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
10480 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
10481
10482 @table @code
10483 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10484 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10485 Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
10486 @code{movt.ps}/@code{movf.ps}).
10487
10488 The @code{movt} functions return the value @var{x} computed by:
10489
10490 @smallexample
10491 c.@var{cond}.ps @var{cc},@var{a},@var{b}
10492 mov.ps @var{x},@var{c}
10493 movt.ps @var{x},@var{d},@var{cc}
10494 @end smallexample
10495
10496 The @code{movf} functions are similar but use @code{movf.ps} instead
10497 of @code{movt.ps}.
10498
10499 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10500 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10501 Comparison of two paired-single values (@code{c.@var{cond}.ps},
10502 @code{bc1t}/@code{bc1f}).
10503
10504 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
10505 and return either the upper or lower half of the result. For example:
10506
10507 @smallexample
10508 v2sf a, b;
10509 if (__builtin_mips_upper_c_eq_ps (a, b))
10510 upper_halves_are_equal ();
10511 else
10512 upper_halves_are_unequal ();
10513
10514 if (__builtin_mips_lower_c_eq_ps (a, b))
10515 lower_halves_are_equal ();
10516 else
10517 lower_halves_are_unequal ();
10518 @end smallexample
10519 @end table
10520
10521 @node MIPS-3D Built-in Functions
10522 @subsubsection MIPS-3D Built-in Functions
10523
10524 The MIPS-3D Application-Specific Extension (ASE) includes additional
10525 paired-single instructions that are designed to improve the performance
10526 of 3D graphics operations. Support for these instructions is controlled
10527 by the @option{-mips3d} command-line option.
10528
10529 The functions listed below map directly to a particular MIPS-3D
10530 instruction. Please refer to the architecture specification for
10531 more details on what each instruction does.
10532
10533 @table @code
10534 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
10535 Reduction add (@code{addr.ps}).
10536
10537 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
10538 Reduction multiply (@code{mulr.ps}).
10539
10540 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
10541 Convert paired single to paired word (@code{cvt.pw.ps}).
10542
10543 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
10544 Convert paired word to paired single (@code{cvt.ps.pw}).
10545
10546 @item float __builtin_mips_recip1_s (float)
10547 @itemx double __builtin_mips_recip1_d (double)
10548 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
10549 Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
10550
10551 @item float __builtin_mips_recip2_s (float, float)
10552 @itemx double __builtin_mips_recip2_d (double, double)
10553 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
10554 Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
10555
10556 @item float __builtin_mips_rsqrt1_s (float)
10557 @itemx double __builtin_mips_rsqrt1_d (double)
10558 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
10559 Reduced precision reciprocal square root (sequence step 1)
10560 (@code{rsqrt1.@var{fmt}}).
10561
10562 @item float __builtin_mips_rsqrt2_s (float, float)
10563 @itemx double __builtin_mips_rsqrt2_d (double, double)
10564 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
10565 Reduced precision reciprocal square root (sequence step 2)
10566 (@code{rsqrt2.@var{fmt}}).
10567 @end table
10568
10569 The following multi-instruction functions are also available.
10570 In each case, @var{cond} can be any of the 16 floating-point conditions:
10571 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
10572 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
10573 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
10574
10575 @table @code
10576 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
10577 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
10578 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
10579 @code{bc1t}/@code{bc1f}).
10580
10581 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
10582 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
10583 For example:
10584
10585 @smallexample
10586 float a, b;
10587 if (__builtin_mips_cabs_eq_s (a, b))
10588 true ();
10589 else
10590 false ();
10591 @end smallexample
10592
10593 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10594 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10595 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
10596 @code{bc1t}/@code{bc1f}).
10597
10598 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
10599 and return either the upper or lower half of the result. For example:
10600
10601 @smallexample
10602 v2sf a, b;
10603 if (__builtin_mips_upper_cabs_eq_ps (a, b))
10604 upper_halves_are_equal ();
10605 else
10606 upper_halves_are_unequal ();
10607
10608 if (__builtin_mips_lower_cabs_eq_ps (a, b))
10609 lower_halves_are_equal ();
10610 else
10611 lower_halves_are_unequal ();
10612 @end smallexample
10613
10614 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10615 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10616 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
10617 @code{movt.ps}/@code{movf.ps}).
10618
10619 The @code{movt} functions return the value @var{x} computed by:
10620
10621 @smallexample
10622 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
10623 mov.ps @var{x},@var{c}
10624 movt.ps @var{x},@var{d},@var{cc}
10625 @end smallexample
10626
10627 The @code{movf} functions are similar but use @code{movf.ps} instead
10628 of @code{movt.ps}.
10629
10630 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10631 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10632 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10633 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
10634 Comparison of two paired-single values
10635 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
10636 @code{bc1any2t}/@code{bc1any2f}).
10637
10638 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
10639 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
10640 result is true and the @code{all} forms return true if both results are true.
10641 For example:
10642
10643 @smallexample
10644 v2sf a, b;
10645 if (__builtin_mips_any_c_eq_ps (a, b))
10646 one_is_true ();
10647 else
10648 both_are_false ();
10649
10650 if (__builtin_mips_all_c_eq_ps (a, b))
10651 both_are_true ();
10652 else
10653 one_is_false ();
10654 @end smallexample
10655
10656 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10657 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10658 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10659 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
10660 Comparison of four paired-single values
10661 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
10662 @code{bc1any4t}/@code{bc1any4f}).
10663
10664 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
10665 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
10666 The @code{any} forms return true if any of the four results are true
10667 and the @code{all} forms return true if all four results are true.
10668 For example:
10669
10670 @smallexample
10671 v2sf a, b, c, d;
10672 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
10673 some_are_true ();
10674 else
10675 all_are_false ();
10676
10677 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
10678 all_are_true ();
10679 else
10680 some_are_false ();
10681 @end smallexample
10682 @end table
10683
10684 @node picoChip Built-in Functions
10685 @subsection picoChip Built-in Functions
10686
10687 GCC provides an interface to selected machine instructions from the
10688 picoChip instruction set.
10689
10690 @table @code
10691 @item int __builtin_sbc (int @var{value})
10692 Sign bit count. Return the number of consecutive bits in @var{value}
10693 which have the same value as the sign-bit. The result is the number of
10694 leading sign bits minus one, giving the number of redundant sign bits in
10695 @var{value}.
10696
10697 @item int __builtin_byteswap (int @var{value})
10698 Byte swap. Return the result of swapping the upper and lower bytes of
10699 @var{value}.
10700
10701 @item int __builtin_brev (int @var{value})
10702 Bit reversal. Return the result of reversing the bits in
10703 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
10704 and so on.
10705
10706 @item int __builtin_adds (int @var{x}, int @var{y})
10707 Saturating addition. Return the result of adding @var{x} and @var{y},
10708 storing the value 32767 if the result overflows.
10709
10710 @item int __builtin_subs (int @var{x}, int @var{y})
10711 Saturating subtraction. Return the result of subtracting @var{y} from
10712 @var{x}, storing the value @minus{}32768 if the result overflows.
10713
10714 @item void __builtin_halt (void)
10715 Halt. The processor will stop execution. This built-in is useful for
10716 implementing assertions.
10717
10718 @end table
10719
10720 @node Other MIPS Built-in Functions
10721 @subsection Other MIPS Built-in Functions
10722
10723 GCC provides other MIPS-specific built-in functions:
10724
10725 @table @code
10726 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
10727 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
10728 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
10729 when this function is available.
10730 @end table
10731
10732 @node PowerPC AltiVec/VSX Built-in Functions
10733 @subsection PowerPC AltiVec Built-in Functions
10734
10735 GCC provides an interface for the PowerPC family of processors to access
10736 the AltiVec operations described in Motorola's AltiVec Programming
10737 Interface Manual. The interface is made available by including
10738 @code{<altivec.h>} and using @option{-maltivec} and
10739 @option{-mabi=altivec}. The interface supports the following vector
10740 types.
10741
10742 @smallexample
10743 vector unsigned char
10744 vector signed char
10745 vector bool char
10746
10747 vector unsigned short
10748 vector signed short
10749 vector bool short
10750 vector pixel
10751
10752 vector unsigned int
10753 vector signed int
10754 vector bool int
10755 vector float
10756 @end smallexample
10757
10758 If @option{-mvsx} is used the following additional vector types are
10759 implemented.
10760
10761 @smallexample
10762 vector unsigned long
10763 vector signed long
10764 vector double
10765 @end smallexample
10766
10767 The long types are only implemented for 64-bit code generation, and
10768 the long type is only used in the floating point/integer conversion
10769 instructions.
10770
10771 GCC's implementation of the high-level language interface available from
10772 C and C++ code differs from Motorola's documentation in several ways.
10773
10774 @itemize @bullet
10775
10776 @item
10777 A vector constant is a list of constant expressions within curly braces.
10778
10779 @item
10780 A vector initializer requires no cast if the vector constant is of the
10781 same type as the variable it is initializing.
10782
10783 @item
10784 If @code{signed} or @code{unsigned} is omitted, the signedness of the
10785 vector type is the default signedness of the base type. The default
10786 varies depending on the operating system, so a portable program should
10787 always specify the signedness.
10788
10789 @item
10790 Compiling with @option{-maltivec} adds keywords @code{__vector},
10791 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
10792 @code{bool}. When compiling ISO C, the context-sensitive substitution
10793 of the keywords @code{vector}, @code{pixel} and @code{bool} is
10794 disabled. To use them, you must include @code{<altivec.h>} instead.
10795
10796 @item
10797 GCC allows using a @code{typedef} name as the type specifier for a
10798 vector type.
10799
10800 @item
10801 For C, overloaded functions are implemented with macros so the following
10802 does not work:
10803
10804 @smallexample
10805 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
10806 @end smallexample
10807
10808 Since @code{vec_add} is a macro, the vector constant in the example
10809 is treated as four separate arguments. Wrap the entire argument in
10810 parentheses for this to work.
10811 @end itemize
10812
10813 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
10814 Internally, GCC uses built-in functions to achieve the functionality in
10815 the aforementioned header file, but they are not supported and are
10816 subject to change without notice.
10817
10818 The following interfaces are supported for the generic and specific
10819 AltiVec operations and the AltiVec predicates. In cases where there
10820 is a direct mapping between generic and specific operations, only the
10821 generic names are shown here, although the specific operations can also
10822 be used.
10823
10824 Arguments that are documented as @code{const int} require literal
10825 integral values within the range required for that operation.
10826
10827 @smallexample
10828 vector signed char vec_abs (vector signed char);
10829 vector signed short vec_abs (vector signed short);
10830 vector signed int vec_abs (vector signed int);
10831 vector float vec_abs (vector float);
10832
10833 vector signed char vec_abss (vector signed char);
10834 vector signed short vec_abss (vector signed short);
10835 vector signed int vec_abss (vector signed int);
10836
10837 vector signed char vec_add (vector bool char, vector signed char);
10838 vector signed char vec_add (vector signed char, vector bool char);
10839 vector signed char vec_add (vector signed char, vector signed char);
10840 vector unsigned char vec_add (vector bool char, vector unsigned char);
10841 vector unsigned char vec_add (vector unsigned char, vector bool char);
10842 vector unsigned char vec_add (vector unsigned char,
10843 vector unsigned char);
10844 vector signed short vec_add (vector bool short, vector signed short);
10845 vector signed short vec_add (vector signed short, vector bool short);
10846 vector signed short vec_add (vector signed short, vector signed short);
10847 vector unsigned short vec_add (vector bool short,
10848 vector unsigned short);
10849 vector unsigned short vec_add (vector unsigned short,
10850 vector bool short);
10851 vector unsigned short vec_add (vector unsigned short,
10852 vector unsigned short);
10853 vector signed int vec_add (vector bool int, vector signed int);
10854 vector signed int vec_add (vector signed int, vector bool int);
10855 vector signed int vec_add (vector signed int, vector signed int);
10856 vector unsigned int vec_add (vector bool int, vector unsigned int);
10857 vector unsigned int vec_add (vector unsigned int, vector bool int);
10858 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
10859 vector float vec_add (vector float, vector float);
10860
10861 vector float vec_vaddfp (vector float, vector float);
10862
10863 vector signed int vec_vadduwm (vector bool int, vector signed int);
10864 vector signed int vec_vadduwm (vector signed int, vector bool int);
10865 vector signed int vec_vadduwm (vector signed int, vector signed int);
10866 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
10867 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
10868 vector unsigned int vec_vadduwm (vector unsigned int,
10869 vector unsigned int);
10870
10871 vector signed short vec_vadduhm (vector bool short,
10872 vector signed short);
10873 vector signed short vec_vadduhm (vector signed short,
10874 vector bool short);
10875 vector signed short vec_vadduhm (vector signed short,
10876 vector signed short);
10877 vector unsigned short vec_vadduhm (vector bool short,
10878 vector unsigned short);
10879 vector unsigned short vec_vadduhm (vector unsigned short,
10880 vector bool short);
10881 vector unsigned short vec_vadduhm (vector unsigned short,
10882 vector unsigned short);
10883
10884 vector signed char vec_vaddubm (vector bool char, vector signed char);
10885 vector signed char vec_vaddubm (vector signed char, vector bool char);
10886 vector signed char vec_vaddubm (vector signed char, vector signed char);
10887 vector unsigned char vec_vaddubm (vector bool char,
10888 vector unsigned char);
10889 vector unsigned char vec_vaddubm (vector unsigned char,
10890 vector bool char);
10891 vector unsigned char vec_vaddubm (vector unsigned char,
10892 vector unsigned char);
10893
10894 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
10895
10896 vector unsigned char vec_adds (vector bool char, vector unsigned char);
10897 vector unsigned char vec_adds (vector unsigned char, vector bool char);
10898 vector unsigned char vec_adds (vector unsigned char,
10899 vector unsigned char);
10900 vector signed char vec_adds (vector bool char, vector signed char);
10901 vector signed char vec_adds (vector signed char, vector bool char);
10902 vector signed char vec_adds (vector signed char, vector signed char);
10903 vector unsigned short vec_adds (vector bool short,
10904 vector unsigned short);
10905 vector unsigned short vec_adds (vector unsigned short,
10906 vector bool short);
10907 vector unsigned short vec_adds (vector unsigned short,
10908 vector unsigned short);
10909 vector signed short vec_adds (vector bool short, vector signed short);
10910 vector signed short vec_adds (vector signed short, vector bool short);
10911 vector signed short vec_adds (vector signed short, vector signed short);
10912 vector unsigned int vec_adds (vector bool int, vector unsigned int);
10913 vector unsigned int vec_adds (vector unsigned int, vector bool int);
10914 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
10915 vector signed int vec_adds (vector bool int, vector signed int);
10916 vector signed int vec_adds (vector signed int, vector bool int);
10917 vector signed int vec_adds (vector signed int, vector signed int);
10918
10919 vector signed int vec_vaddsws (vector bool int, vector signed int);
10920 vector signed int vec_vaddsws (vector signed int, vector bool int);
10921 vector signed int vec_vaddsws (vector signed int, vector signed int);
10922
10923 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
10924 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
10925 vector unsigned int vec_vadduws (vector unsigned int,
10926 vector unsigned int);
10927
10928 vector signed short vec_vaddshs (vector bool short,
10929 vector signed short);
10930 vector signed short vec_vaddshs (vector signed short,
10931 vector bool short);
10932 vector signed short vec_vaddshs (vector signed short,
10933 vector signed short);
10934
10935 vector unsigned short vec_vadduhs (vector bool short,
10936 vector unsigned short);
10937 vector unsigned short vec_vadduhs (vector unsigned short,
10938 vector bool short);
10939 vector unsigned short vec_vadduhs (vector unsigned short,
10940 vector unsigned short);
10941
10942 vector signed char vec_vaddsbs (vector bool char, vector signed char);
10943 vector signed char vec_vaddsbs (vector signed char, vector bool char);
10944 vector signed char vec_vaddsbs (vector signed char, vector signed char);
10945
10946 vector unsigned char vec_vaddubs (vector bool char,
10947 vector unsigned char);
10948 vector unsigned char vec_vaddubs (vector unsigned char,
10949 vector bool char);
10950 vector unsigned char vec_vaddubs (vector unsigned char,
10951 vector unsigned char);
10952
10953 vector float vec_and (vector float, vector float);
10954 vector float vec_and (vector float, vector bool int);
10955 vector float vec_and (vector bool int, vector float);
10956 vector bool int vec_and (vector bool int, vector bool int);
10957 vector signed int vec_and (vector bool int, vector signed int);
10958 vector signed int vec_and (vector signed int, vector bool int);
10959 vector signed int vec_and (vector signed int, vector signed int);
10960 vector unsigned int vec_and (vector bool int, vector unsigned int);
10961 vector unsigned int vec_and (vector unsigned int, vector bool int);
10962 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
10963 vector bool short vec_and (vector bool short, vector bool short);
10964 vector signed short vec_and (vector bool short, vector signed short);
10965 vector signed short vec_and (vector signed short, vector bool short);
10966 vector signed short vec_and (vector signed short, vector signed short);
10967 vector unsigned short vec_and (vector bool short,
10968 vector unsigned short);
10969 vector unsigned short vec_and (vector unsigned short,
10970 vector bool short);
10971 vector unsigned short vec_and (vector unsigned short,
10972 vector unsigned short);
10973 vector signed char vec_and (vector bool char, vector signed char);
10974 vector bool char vec_and (vector bool char, vector bool char);
10975 vector signed char vec_and (vector signed char, vector bool char);
10976 vector signed char vec_and (vector signed char, vector signed char);
10977 vector unsigned char vec_and (vector bool char, vector unsigned char);
10978 vector unsigned char vec_and (vector unsigned char, vector bool char);
10979 vector unsigned char vec_and (vector unsigned char,
10980 vector unsigned char);
10981
10982 vector float vec_andc (vector float, vector float);
10983 vector float vec_andc (vector float, vector bool int);
10984 vector float vec_andc (vector bool int, vector float);
10985 vector bool int vec_andc (vector bool int, vector bool int);
10986 vector signed int vec_andc (vector bool int, vector signed int);
10987 vector signed int vec_andc (vector signed int, vector bool int);
10988 vector signed int vec_andc (vector signed int, vector signed int);
10989 vector unsigned int vec_andc (vector bool int, vector unsigned int);
10990 vector unsigned int vec_andc (vector unsigned int, vector bool int);
10991 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
10992 vector bool short vec_andc (vector bool short, vector bool short);
10993 vector signed short vec_andc (vector bool short, vector signed short);
10994 vector signed short vec_andc (vector signed short, vector bool short);
10995 vector signed short vec_andc (vector signed short, vector signed short);
10996 vector unsigned short vec_andc (vector bool short,
10997 vector unsigned short);
10998 vector unsigned short vec_andc (vector unsigned short,
10999 vector bool short);
11000 vector unsigned short vec_andc (vector unsigned short,
11001 vector unsigned short);
11002 vector signed char vec_andc (vector bool char, vector signed char);
11003 vector bool char vec_andc (vector bool char, vector bool char);
11004 vector signed char vec_andc (vector signed char, vector bool char);
11005 vector signed char vec_andc (vector signed char, vector signed char);
11006 vector unsigned char vec_andc (vector bool char, vector unsigned char);
11007 vector unsigned char vec_andc (vector unsigned char, vector bool char);
11008 vector unsigned char vec_andc (vector unsigned char,
11009 vector unsigned char);
11010
11011 vector unsigned char vec_avg (vector unsigned char,
11012 vector unsigned char);
11013 vector signed char vec_avg (vector signed char, vector signed char);
11014 vector unsigned short vec_avg (vector unsigned short,
11015 vector unsigned short);
11016 vector signed short vec_avg (vector signed short, vector signed short);
11017 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
11018 vector signed int vec_avg (vector signed int, vector signed int);
11019
11020 vector signed int vec_vavgsw (vector signed int, vector signed int);
11021
11022 vector unsigned int vec_vavguw (vector unsigned int,
11023 vector unsigned int);
11024
11025 vector signed short vec_vavgsh (vector signed short,
11026 vector signed short);
11027
11028 vector unsigned short vec_vavguh (vector unsigned short,
11029 vector unsigned short);
11030
11031 vector signed char vec_vavgsb (vector signed char, vector signed char);
11032
11033 vector unsigned char vec_vavgub (vector unsigned char,
11034 vector unsigned char);
11035
11036 vector float vec_copysign (vector float);
11037
11038 vector float vec_ceil (vector float);
11039
11040 vector signed int vec_cmpb (vector float, vector float);
11041
11042 vector bool char vec_cmpeq (vector signed char, vector signed char);
11043 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
11044 vector bool short vec_cmpeq (vector signed short, vector signed short);
11045 vector bool short vec_cmpeq (vector unsigned short,
11046 vector unsigned short);
11047 vector bool int vec_cmpeq (vector signed int, vector signed int);
11048 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
11049 vector bool int vec_cmpeq (vector float, vector float);
11050
11051 vector bool int vec_vcmpeqfp (vector float, vector float);
11052
11053 vector bool int vec_vcmpequw (vector signed int, vector signed int);
11054 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
11055
11056 vector bool short vec_vcmpequh (vector signed short,
11057 vector signed short);
11058 vector bool short vec_vcmpequh (vector unsigned short,
11059 vector unsigned short);
11060
11061 vector bool char vec_vcmpequb (vector signed char, vector signed char);
11062 vector bool char vec_vcmpequb (vector unsigned char,
11063 vector unsigned char);
11064
11065 vector bool int vec_cmpge (vector float, vector float);
11066
11067 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
11068 vector bool char vec_cmpgt (vector signed char, vector signed char);
11069 vector bool short vec_cmpgt (vector unsigned short,
11070 vector unsigned short);
11071 vector bool short vec_cmpgt (vector signed short, vector signed short);
11072 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
11073 vector bool int vec_cmpgt (vector signed int, vector signed int);
11074 vector bool int vec_cmpgt (vector float, vector float);
11075
11076 vector bool int vec_vcmpgtfp (vector float, vector float);
11077
11078 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
11079
11080 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
11081
11082 vector bool short vec_vcmpgtsh (vector signed short,
11083 vector signed short);
11084
11085 vector bool short vec_vcmpgtuh (vector unsigned short,
11086 vector unsigned short);
11087
11088 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
11089
11090 vector bool char vec_vcmpgtub (vector unsigned char,
11091 vector unsigned char);
11092
11093 vector bool int vec_cmple (vector float, vector float);
11094
11095 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
11096 vector bool char vec_cmplt (vector signed char, vector signed char);
11097 vector bool short vec_cmplt (vector unsigned short,
11098 vector unsigned short);
11099 vector bool short vec_cmplt (vector signed short, vector signed short);
11100 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
11101 vector bool int vec_cmplt (vector signed int, vector signed int);
11102 vector bool int vec_cmplt (vector float, vector float);
11103
11104 vector float vec_ctf (vector unsigned int, const int);
11105 vector float vec_ctf (vector signed int, const int);
11106
11107 vector float vec_vcfsx (vector signed int, const int);
11108
11109 vector float vec_vcfux (vector unsigned int, const int);
11110
11111 vector signed int vec_cts (vector float, const int);
11112
11113 vector unsigned int vec_ctu (vector float, const int);
11114
11115 void vec_dss (const int);
11116
11117 void vec_dssall (void);
11118
11119 void vec_dst (const vector unsigned char *, int, const int);
11120 void vec_dst (const vector signed char *, int, const int);
11121 void vec_dst (const vector bool char *, int, const int);
11122 void vec_dst (const vector unsigned short *, int, const int);
11123 void vec_dst (const vector signed short *, int, const int);
11124 void vec_dst (const vector bool short *, int, const int);
11125 void vec_dst (const vector pixel *, int, const int);
11126 void vec_dst (const vector unsigned int *, int, const int);
11127 void vec_dst (const vector signed int *, int, const int);
11128 void vec_dst (const vector bool int *, int, const int);
11129 void vec_dst (const vector float *, int, const int);
11130 void vec_dst (const unsigned char *, int, const int);
11131 void vec_dst (const signed char *, int, const int);
11132 void vec_dst (const unsigned short *, int, const int);
11133 void vec_dst (const short *, int, const int);
11134 void vec_dst (const unsigned int *, int, const int);
11135 void vec_dst (const int *, int, const int);
11136 void vec_dst (const unsigned long *, int, const int);
11137 void vec_dst (const long *, int, const int);
11138 void vec_dst (const float *, int, const int);
11139
11140 void vec_dstst (const vector unsigned char *, int, const int);
11141 void vec_dstst (const vector signed char *, int, const int);
11142 void vec_dstst (const vector bool char *, int, const int);
11143 void vec_dstst (const vector unsigned short *, int, const int);
11144 void vec_dstst (const vector signed short *, int, const int);
11145 void vec_dstst (const vector bool short *, int, const int);
11146 void vec_dstst (const vector pixel *, int, const int);
11147 void vec_dstst (const vector unsigned int *, int, const int);
11148 void vec_dstst (const vector signed int *, int, const int);
11149 void vec_dstst (const vector bool int *, int, const int);
11150 void vec_dstst (const vector float *, int, const int);
11151 void vec_dstst (const unsigned char *, int, const int);
11152 void vec_dstst (const signed char *, int, const int);
11153 void vec_dstst (const unsigned short *, int, const int);
11154 void vec_dstst (const short *, int, const int);
11155 void vec_dstst (const unsigned int *, int, const int);
11156 void vec_dstst (const int *, int, const int);
11157 void vec_dstst (const unsigned long *, int, const int);
11158 void vec_dstst (const long *, int, const int);
11159 void vec_dstst (const float *, int, const int);
11160
11161 void vec_dststt (const vector unsigned char *, int, const int);
11162 void vec_dststt (const vector signed char *, int, const int);
11163 void vec_dststt (const vector bool char *, int, const int);
11164 void vec_dststt (const vector unsigned short *, int, const int);
11165 void vec_dststt (const vector signed short *, int, const int);
11166 void vec_dststt (const vector bool short *, int, const int);
11167 void vec_dststt (const vector pixel *, int, const int);
11168 void vec_dststt (const vector unsigned int *, int, const int);
11169 void vec_dststt (const vector signed int *, int, const int);
11170 void vec_dststt (const vector bool int *, int, const int);
11171 void vec_dststt (const vector float *, int, const int);
11172 void vec_dststt (const unsigned char *, int, const int);
11173 void vec_dststt (const signed char *, int, const int);
11174 void vec_dststt (const unsigned short *, int, const int);
11175 void vec_dststt (const short *, int, const int);
11176 void vec_dststt (const unsigned int *, int, const int);
11177 void vec_dststt (const int *, int, const int);
11178 void vec_dststt (const unsigned long *, int, const int);
11179 void vec_dststt (const long *, int, const int);
11180 void vec_dststt (const float *, int, const int);
11181
11182 void vec_dstt (const vector unsigned char *, int, const int);
11183 void vec_dstt (const vector signed char *, int, const int);
11184 void vec_dstt (const vector bool char *, int, const int);
11185 void vec_dstt (const vector unsigned short *, int, const int);
11186 void vec_dstt (const vector signed short *, int, const int);
11187 void vec_dstt (const vector bool short *, int, const int);
11188 void vec_dstt (const vector pixel *, int, const int);
11189 void vec_dstt (const vector unsigned int *, int, const int);
11190 void vec_dstt (const vector signed int *, int, const int);
11191 void vec_dstt (const vector bool int *, int, const int);
11192 void vec_dstt (const vector float *, int, const int);
11193 void vec_dstt (const unsigned char *, int, const int);
11194 void vec_dstt (const signed char *, int, const int);
11195 void vec_dstt (const unsigned short *, int, const int);
11196 void vec_dstt (const short *, int, const int);
11197 void vec_dstt (const unsigned int *, int, const int);
11198 void vec_dstt (const int *, int, const int);
11199 void vec_dstt (const unsigned long *, int, const int);
11200 void vec_dstt (const long *, int, const int);
11201 void vec_dstt (const float *, int, const int);
11202
11203 vector float vec_expte (vector float);
11204
11205 vector float vec_floor (vector float);
11206
11207 vector float vec_ld (int, const vector float *);
11208 vector float vec_ld (int, const float *);
11209 vector bool int vec_ld (int, const vector bool int *);
11210 vector signed int vec_ld (int, const vector signed int *);
11211 vector signed int vec_ld (int, const int *);
11212 vector signed int vec_ld (int, const long *);
11213 vector unsigned int vec_ld (int, const vector unsigned int *);
11214 vector unsigned int vec_ld (int, const unsigned int *);
11215 vector unsigned int vec_ld (int, const unsigned long *);
11216 vector bool short vec_ld (int, const vector bool short *);
11217 vector pixel vec_ld (int, const vector pixel *);
11218 vector signed short vec_ld (int, const vector signed short *);
11219 vector signed short vec_ld (int, const short *);
11220 vector unsigned short vec_ld (int, const vector unsigned short *);
11221 vector unsigned short vec_ld (int, const unsigned short *);
11222 vector bool char vec_ld (int, const vector bool char *);
11223 vector signed char vec_ld (int, const vector signed char *);
11224 vector signed char vec_ld (int, const signed char *);
11225 vector unsigned char vec_ld (int, const vector unsigned char *);
11226 vector unsigned char vec_ld (int, const unsigned char *);
11227
11228 vector signed char vec_lde (int, const signed char *);
11229 vector unsigned char vec_lde (int, const unsigned char *);
11230 vector signed short vec_lde (int, const short *);
11231 vector unsigned short vec_lde (int, const unsigned short *);
11232 vector float vec_lde (int, const float *);
11233 vector signed int vec_lde (int, const int *);
11234 vector unsigned int vec_lde (int, const unsigned int *);
11235 vector signed int vec_lde (int, const long *);
11236 vector unsigned int vec_lde (int, const unsigned long *);
11237
11238 vector float vec_lvewx (int, float *);
11239 vector signed int vec_lvewx (int, int *);
11240 vector unsigned int vec_lvewx (int, unsigned int *);
11241 vector signed int vec_lvewx (int, long *);
11242 vector unsigned int vec_lvewx (int, unsigned long *);
11243
11244 vector signed short vec_lvehx (int, short *);
11245 vector unsigned short vec_lvehx (int, unsigned short *);
11246
11247 vector signed char vec_lvebx (int, char *);
11248 vector unsigned char vec_lvebx (int, unsigned char *);
11249
11250 vector float vec_ldl (int, const vector float *);
11251 vector float vec_ldl (int, const float *);
11252 vector bool int vec_ldl (int, const vector bool int *);
11253 vector signed int vec_ldl (int, const vector signed int *);
11254 vector signed int vec_ldl (int, const int *);
11255 vector signed int vec_ldl (int, const long *);
11256 vector unsigned int vec_ldl (int, const vector unsigned int *);
11257 vector unsigned int vec_ldl (int, const unsigned int *);
11258 vector unsigned int vec_ldl (int, const unsigned long *);
11259 vector bool short vec_ldl (int, const vector bool short *);
11260 vector pixel vec_ldl (int, const vector pixel *);
11261 vector signed short vec_ldl (int, const vector signed short *);
11262 vector signed short vec_ldl (int, const short *);
11263 vector unsigned short vec_ldl (int, const vector unsigned short *);
11264 vector unsigned short vec_ldl (int, const unsigned short *);
11265 vector bool char vec_ldl (int, const vector bool char *);
11266 vector signed char vec_ldl (int, const vector signed char *);
11267 vector signed char vec_ldl (int, const signed char *);
11268 vector unsigned char vec_ldl (int, const vector unsigned char *);
11269 vector unsigned char vec_ldl (int, const unsigned char *);
11270
11271 vector float vec_loge (vector float);
11272
11273 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
11274 vector unsigned char vec_lvsl (int, const volatile signed char *);
11275 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
11276 vector unsigned char vec_lvsl (int, const volatile short *);
11277 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
11278 vector unsigned char vec_lvsl (int, const volatile int *);
11279 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
11280 vector unsigned char vec_lvsl (int, const volatile long *);
11281 vector unsigned char vec_lvsl (int, const volatile float *);
11282
11283 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
11284 vector unsigned char vec_lvsr (int, const volatile signed char *);
11285 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
11286 vector unsigned char vec_lvsr (int, const volatile short *);
11287 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
11288 vector unsigned char vec_lvsr (int, const volatile int *);
11289 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
11290 vector unsigned char vec_lvsr (int, const volatile long *);
11291 vector unsigned char vec_lvsr (int, const volatile float *);
11292
11293 vector float vec_madd (vector float, vector float, vector float);
11294
11295 vector signed short vec_madds (vector signed short,
11296 vector signed short,
11297 vector signed short);
11298
11299 vector unsigned char vec_max (vector bool char, vector unsigned char);
11300 vector unsigned char vec_max (vector unsigned char, vector bool char);
11301 vector unsigned char vec_max (vector unsigned char,
11302 vector unsigned char);
11303 vector signed char vec_max (vector bool char, vector signed char);
11304 vector signed char vec_max (vector signed char, vector bool char);
11305 vector signed char vec_max (vector signed char, vector signed char);
11306 vector unsigned short vec_max (vector bool short,
11307 vector unsigned short);
11308 vector unsigned short vec_max (vector unsigned short,
11309 vector bool short);
11310 vector unsigned short vec_max (vector unsigned short,
11311 vector unsigned short);
11312 vector signed short vec_max (vector bool short, vector signed short);
11313 vector signed short vec_max (vector signed short, vector bool short);
11314 vector signed short vec_max (vector signed short, vector signed short);
11315 vector unsigned int vec_max (vector bool int, vector unsigned int);
11316 vector unsigned int vec_max (vector unsigned int, vector bool int);
11317 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
11318 vector signed int vec_max (vector bool int, vector signed int);
11319 vector signed int vec_max (vector signed int, vector bool int);
11320 vector signed int vec_max (vector signed int, vector signed int);
11321 vector float vec_max (vector float, vector float);
11322
11323 vector float vec_vmaxfp (vector float, vector float);
11324
11325 vector signed int vec_vmaxsw (vector bool int, vector signed int);
11326 vector signed int vec_vmaxsw (vector signed int, vector bool int);
11327 vector signed int vec_vmaxsw (vector signed int, vector signed int);
11328
11329 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
11330 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
11331 vector unsigned int vec_vmaxuw (vector unsigned int,
11332 vector unsigned int);
11333
11334 vector signed short vec_vmaxsh (vector bool short, vector signed short);
11335 vector signed short vec_vmaxsh (vector signed short, vector bool short);
11336 vector signed short vec_vmaxsh (vector signed short,
11337 vector signed short);
11338
11339 vector unsigned short vec_vmaxuh (vector bool short,
11340 vector unsigned short);
11341 vector unsigned short vec_vmaxuh (vector unsigned short,
11342 vector bool short);
11343 vector unsigned short vec_vmaxuh (vector unsigned short,
11344 vector unsigned short);
11345
11346 vector signed char vec_vmaxsb (vector bool char, vector signed char);
11347 vector signed char vec_vmaxsb (vector signed char, vector bool char);
11348 vector signed char vec_vmaxsb (vector signed char, vector signed char);
11349
11350 vector unsigned char vec_vmaxub (vector bool char,
11351 vector unsigned char);
11352 vector unsigned char vec_vmaxub (vector unsigned char,
11353 vector bool char);
11354 vector unsigned char vec_vmaxub (vector unsigned char,
11355 vector unsigned char);
11356
11357 vector bool char vec_mergeh (vector bool char, vector bool char);
11358 vector signed char vec_mergeh (vector signed char, vector signed char);
11359 vector unsigned char vec_mergeh (vector unsigned char,
11360 vector unsigned char);
11361 vector bool short vec_mergeh (vector bool short, vector bool short);
11362 vector pixel vec_mergeh (vector pixel, vector pixel);
11363 vector signed short vec_mergeh (vector signed short,
11364 vector signed short);
11365 vector unsigned short vec_mergeh (vector unsigned short,
11366 vector unsigned short);
11367 vector float vec_mergeh (vector float, vector float);
11368 vector bool int vec_mergeh (vector bool int, vector bool int);
11369 vector signed int vec_mergeh (vector signed int, vector signed int);
11370 vector unsigned int vec_mergeh (vector unsigned int,
11371 vector unsigned int);
11372
11373 vector float vec_vmrghw (vector float, vector float);
11374 vector bool int vec_vmrghw (vector bool int, vector bool int);
11375 vector signed int vec_vmrghw (vector signed int, vector signed int);
11376 vector unsigned int vec_vmrghw (vector unsigned int,
11377 vector unsigned int);
11378
11379 vector bool short vec_vmrghh (vector bool short, vector bool short);
11380 vector signed short vec_vmrghh (vector signed short,
11381 vector signed short);
11382 vector unsigned short vec_vmrghh (vector unsigned short,
11383 vector unsigned short);
11384 vector pixel vec_vmrghh (vector pixel, vector pixel);
11385
11386 vector bool char vec_vmrghb (vector bool char, vector bool char);
11387 vector signed char vec_vmrghb (vector signed char, vector signed char);
11388 vector unsigned char vec_vmrghb (vector unsigned char,
11389 vector unsigned char);
11390
11391 vector bool char vec_mergel (vector bool char, vector bool char);
11392 vector signed char vec_mergel (vector signed char, vector signed char);
11393 vector unsigned char vec_mergel (vector unsigned char,
11394 vector unsigned char);
11395 vector bool short vec_mergel (vector bool short, vector bool short);
11396 vector pixel vec_mergel (vector pixel, vector pixel);
11397 vector signed short vec_mergel (vector signed short,
11398 vector signed short);
11399 vector unsigned short vec_mergel (vector unsigned short,
11400 vector unsigned short);
11401 vector float vec_mergel (vector float, vector float);
11402 vector bool int vec_mergel (vector bool int, vector bool int);
11403 vector signed int vec_mergel (vector signed int, vector signed int);
11404 vector unsigned int vec_mergel (vector unsigned int,
11405 vector unsigned int);
11406
11407 vector float vec_vmrglw (vector float, vector float);
11408 vector signed int vec_vmrglw (vector signed int, vector signed int);
11409 vector unsigned int vec_vmrglw (vector unsigned int,
11410 vector unsigned int);
11411 vector bool int vec_vmrglw (vector bool int, vector bool int);
11412
11413 vector bool short vec_vmrglh (vector bool short, vector bool short);
11414 vector signed short vec_vmrglh (vector signed short,
11415 vector signed short);
11416 vector unsigned short vec_vmrglh (vector unsigned short,
11417 vector unsigned short);
11418 vector pixel vec_vmrglh (vector pixel, vector pixel);
11419
11420 vector bool char vec_vmrglb (vector bool char, vector bool char);
11421 vector signed char vec_vmrglb (vector signed char, vector signed char);
11422 vector unsigned char vec_vmrglb (vector unsigned char,
11423 vector unsigned char);
11424
11425 vector unsigned short vec_mfvscr (void);
11426
11427 vector unsigned char vec_min (vector bool char, vector unsigned char);
11428 vector unsigned char vec_min (vector unsigned char, vector bool char);
11429 vector unsigned char vec_min (vector unsigned char,
11430 vector unsigned char);
11431 vector signed char vec_min (vector bool char, vector signed char);
11432 vector signed char vec_min (vector signed char, vector bool char);
11433 vector signed char vec_min (vector signed char, vector signed char);
11434 vector unsigned short vec_min (vector bool short,
11435 vector unsigned short);
11436 vector unsigned short vec_min (vector unsigned short,
11437 vector bool short);
11438 vector unsigned short vec_min (vector unsigned short,
11439 vector unsigned short);
11440 vector signed short vec_min (vector bool short, vector signed short);
11441 vector signed short vec_min (vector signed short, vector bool short);
11442 vector signed short vec_min (vector signed short, vector signed short);
11443 vector unsigned int vec_min (vector bool int, vector unsigned int);
11444 vector unsigned int vec_min (vector unsigned int, vector bool int);
11445 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
11446 vector signed int vec_min (vector bool int, vector signed int);
11447 vector signed int vec_min (vector signed int, vector bool int);
11448 vector signed int vec_min (vector signed int, vector signed int);
11449 vector float vec_min (vector float, vector float);
11450
11451 vector float vec_vminfp (vector float, vector float);
11452
11453 vector signed int vec_vminsw (vector bool int, vector signed int);
11454 vector signed int vec_vminsw (vector signed int, vector bool int);
11455 vector signed int vec_vminsw (vector signed int, vector signed int);
11456
11457 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
11458 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
11459 vector unsigned int vec_vminuw (vector unsigned int,
11460 vector unsigned int);
11461
11462 vector signed short vec_vminsh (vector bool short, vector signed short);
11463 vector signed short vec_vminsh (vector signed short, vector bool short);
11464 vector signed short vec_vminsh (vector signed short,
11465 vector signed short);
11466
11467 vector unsigned short vec_vminuh (vector bool short,
11468 vector unsigned short);
11469 vector unsigned short vec_vminuh (vector unsigned short,
11470 vector bool short);
11471 vector unsigned short vec_vminuh (vector unsigned short,
11472 vector unsigned short);
11473
11474 vector signed char vec_vminsb (vector bool char, vector signed char);
11475 vector signed char vec_vminsb (vector signed char, vector bool char);
11476 vector signed char vec_vminsb (vector signed char, vector signed char);
11477
11478 vector unsigned char vec_vminub (vector bool char,
11479 vector unsigned char);
11480 vector unsigned char vec_vminub (vector unsigned char,
11481 vector bool char);
11482 vector unsigned char vec_vminub (vector unsigned char,
11483 vector unsigned char);
11484
11485 vector signed short vec_mladd (vector signed short,
11486 vector signed short,
11487 vector signed short);
11488 vector signed short vec_mladd (vector signed short,
11489 vector unsigned short,
11490 vector unsigned short);
11491 vector signed short vec_mladd (vector unsigned short,
11492 vector signed short,
11493 vector signed short);
11494 vector unsigned short vec_mladd (vector unsigned short,
11495 vector unsigned short,
11496 vector unsigned short);
11497
11498 vector signed short vec_mradds (vector signed short,
11499 vector signed short,
11500 vector signed short);
11501
11502 vector unsigned int vec_msum (vector unsigned char,
11503 vector unsigned char,
11504 vector unsigned int);
11505 vector signed int vec_msum (vector signed char,
11506 vector unsigned char,
11507 vector signed int);
11508 vector unsigned int vec_msum (vector unsigned short,
11509 vector unsigned short,
11510 vector unsigned int);
11511 vector signed int vec_msum (vector signed short,
11512 vector signed short,
11513 vector signed int);
11514
11515 vector signed int vec_vmsumshm (vector signed short,
11516 vector signed short,
11517 vector signed int);
11518
11519 vector unsigned int vec_vmsumuhm (vector unsigned short,
11520 vector unsigned short,
11521 vector unsigned int);
11522
11523 vector signed int vec_vmsummbm (vector signed char,
11524 vector unsigned char,
11525 vector signed int);
11526
11527 vector unsigned int vec_vmsumubm (vector unsigned char,
11528 vector unsigned char,
11529 vector unsigned int);
11530
11531 vector unsigned int vec_msums (vector unsigned short,
11532 vector unsigned short,
11533 vector unsigned int);
11534 vector signed int vec_msums (vector signed short,
11535 vector signed short,
11536 vector signed int);
11537
11538 vector signed int vec_vmsumshs (vector signed short,
11539 vector signed short,
11540 vector signed int);
11541
11542 vector unsigned int vec_vmsumuhs (vector unsigned short,
11543 vector unsigned short,
11544 vector unsigned int);
11545
11546 void vec_mtvscr (vector signed int);
11547 void vec_mtvscr (vector unsigned int);
11548 void vec_mtvscr (vector bool int);
11549 void vec_mtvscr (vector signed short);
11550 void vec_mtvscr (vector unsigned short);
11551 void vec_mtvscr (vector bool short);
11552 void vec_mtvscr (vector pixel);
11553 void vec_mtvscr (vector signed char);
11554 void vec_mtvscr (vector unsigned char);
11555 void vec_mtvscr (vector bool char);
11556
11557 vector unsigned short vec_mule (vector unsigned char,
11558 vector unsigned char);
11559 vector signed short vec_mule (vector signed char,
11560 vector signed char);
11561 vector unsigned int vec_mule (vector unsigned short,
11562 vector unsigned short);
11563 vector signed int vec_mule (vector signed short, vector signed short);
11564
11565 vector signed int vec_vmulesh (vector signed short,
11566 vector signed short);
11567
11568 vector unsigned int vec_vmuleuh (vector unsigned short,
11569 vector unsigned short);
11570
11571 vector signed short vec_vmulesb (vector signed char,
11572 vector signed char);
11573
11574 vector unsigned short vec_vmuleub (vector unsigned char,
11575 vector unsigned char);
11576
11577 vector unsigned short vec_mulo (vector unsigned char,
11578 vector unsigned char);
11579 vector signed short vec_mulo (vector signed char, vector signed char);
11580 vector unsigned int vec_mulo (vector unsigned short,
11581 vector unsigned short);
11582 vector signed int vec_mulo (vector signed short, vector signed short);
11583
11584 vector signed int vec_vmulosh (vector signed short,
11585 vector signed short);
11586
11587 vector unsigned int vec_vmulouh (vector unsigned short,
11588 vector unsigned short);
11589
11590 vector signed short vec_vmulosb (vector signed char,
11591 vector signed char);
11592
11593 vector unsigned short vec_vmuloub (vector unsigned char,
11594 vector unsigned char);
11595
11596 vector float vec_nmsub (vector float, vector float, vector float);
11597
11598 vector float vec_nor (vector float, vector float);
11599 vector signed int vec_nor (vector signed int, vector signed int);
11600 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
11601 vector bool int vec_nor (vector bool int, vector bool int);
11602 vector signed short vec_nor (vector signed short, vector signed short);
11603 vector unsigned short vec_nor (vector unsigned short,
11604 vector unsigned short);
11605 vector bool short vec_nor (vector bool short, vector bool short);
11606 vector signed char vec_nor (vector signed char, vector signed char);
11607 vector unsigned char vec_nor (vector unsigned char,
11608 vector unsigned char);
11609 vector bool char vec_nor (vector bool char, vector bool char);
11610
11611 vector float vec_or (vector float, vector float);
11612 vector float vec_or (vector float, vector bool int);
11613 vector float vec_or (vector bool int, vector float);
11614 vector bool int vec_or (vector bool int, vector bool int);
11615 vector signed int vec_or (vector bool int, vector signed int);
11616 vector signed int vec_or (vector signed int, vector bool int);
11617 vector signed int vec_or (vector signed int, vector signed int);
11618 vector unsigned int vec_or (vector bool int, vector unsigned int);
11619 vector unsigned int vec_or (vector unsigned int, vector bool int);
11620 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
11621 vector bool short vec_or (vector bool short, vector bool short);
11622 vector signed short vec_or (vector bool short, vector signed short);
11623 vector signed short vec_or (vector signed short, vector bool short);
11624 vector signed short vec_or (vector signed short, vector signed short);
11625 vector unsigned short vec_or (vector bool short, vector unsigned short);
11626 vector unsigned short vec_or (vector unsigned short, vector bool short);
11627 vector unsigned short vec_or (vector unsigned short,
11628 vector unsigned short);
11629 vector signed char vec_or (vector bool char, vector signed char);
11630 vector bool char vec_or (vector bool char, vector bool char);
11631 vector signed char vec_or (vector signed char, vector bool char);
11632 vector signed char vec_or (vector signed char, vector signed char);
11633 vector unsigned char vec_or (vector bool char, vector unsigned char);
11634 vector unsigned char vec_or (vector unsigned char, vector bool char);
11635 vector unsigned char vec_or (vector unsigned char,
11636 vector unsigned char);
11637
11638 vector signed char vec_pack (vector signed short, vector signed short);
11639 vector unsigned char vec_pack (vector unsigned short,
11640 vector unsigned short);
11641 vector bool char vec_pack (vector bool short, vector bool short);
11642 vector signed short vec_pack (vector signed int, vector signed int);
11643 vector unsigned short vec_pack (vector unsigned int,
11644 vector unsigned int);
11645 vector bool short vec_pack (vector bool int, vector bool int);
11646
11647 vector bool short vec_vpkuwum (vector bool int, vector bool int);
11648 vector signed short vec_vpkuwum (vector signed int, vector signed int);
11649 vector unsigned short vec_vpkuwum (vector unsigned int,
11650 vector unsigned int);
11651
11652 vector bool char vec_vpkuhum (vector bool short, vector bool short);
11653 vector signed char vec_vpkuhum (vector signed short,
11654 vector signed short);
11655 vector unsigned char vec_vpkuhum (vector unsigned short,
11656 vector unsigned short);
11657
11658 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
11659
11660 vector unsigned char vec_packs (vector unsigned short,
11661 vector unsigned short);
11662 vector signed char vec_packs (vector signed short, vector signed short);
11663 vector unsigned short vec_packs (vector unsigned int,
11664 vector unsigned int);
11665 vector signed short vec_packs (vector signed int, vector signed int);
11666
11667 vector signed short vec_vpkswss (vector signed int, vector signed int);
11668
11669 vector unsigned short vec_vpkuwus (vector unsigned int,
11670 vector unsigned int);
11671
11672 vector signed char vec_vpkshss (vector signed short,
11673 vector signed short);
11674
11675 vector unsigned char vec_vpkuhus (vector unsigned short,
11676 vector unsigned short);
11677
11678 vector unsigned char vec_packsu (vector unsigned short,
11679 vector unsigned short);
11680 vector unsigned char vec_packsu (vector signed short,
11681 vector signed short);
11682 vector unsigned short vec_packsu (vector unsigned int,
11683 vector unsigned int);
11684 vector unsigned short vec_packsu (vector signed int, vector signed int);
11685
11686 vector unsigned short vec_vpkswus (vector signed int,
11687 vector signed int);
11688
11689 vector unsigned char vec_vpkshus (vector signed short,
11690 vector signed short);
11691
11692 vector float vec_perm (vector float,
11693 vector float,
11694 vector unsigned char);
11695 vector signed int vec_perm (vector signed int,
11696 vector signed int,
11697 vector unsigned char);
11698 vector unsigned int vec_perm (vector unsigned int,
11699 vector unsigned int,
11700 vector unsigned char);
11701 vector bool int vec_perm (vector bool int,
11702 vector bool int,
11703 vector unsigned char);
11704 vector signed short vec_perm (vector signed short,
11705 vector signed short,
11706 vector unsigned char);
11707 vector unsigned short vec_perm (vector unsigned short,
11708 vector unsigned short,
11709 vector unsigned char);
11710 vector bool short vec_perm (vector bool short,
11711 vector bool short,
11712 vector unsigned char);
11713 vector pixel vec_perm (vector pixel,
11714 vector pixel,
11715 vector unsigned char);
11716 vector signed char vec_perm (vector signed char,
11717 vector signed char,
11718 vector unsigned char);
11719 vector unsigned char vec_perm (vector unsigned char,
11720 vector unsigned char,
11721 vector unsigned char);
11722 vector bool char vec_perm (vector bool char,
11723 vector bool char,
11724 vector unsigned char);
11725
11726 vector float vec_re (vector float);
11727
11728 vector signed char vec_rl (vector signed char,
11729 vector unsigned char);
11730 vector unsigned char vec_rl (vector unsigned char,
11731 vector unsigned char);
11732 vector signed short vec_rl (vector signed short, vector unsigned short);
11733 vector unsigned short vec_rl (vector unsigned short,
11734 vector unsigned short);
11735 vector signed int vec_rl (vector signed int, vector unsigned int);
11736 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
11737
11738 vector signed int vec_vrlw (vector signed int, vector unsigned int);
11739 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
11740
11741 vector signed short vec_vrlh (vector signed short,
11742 vector unsigned short);
11743 vector unsigned short vec_vrlh (vector unsigned short,
11744 vector unsigned short);
11745
11746 vector signed char vec_vrlb (vector signed char, vector unsigned char);
11747 vector unsigned char vec_vrlb (vector unsigned char,
11748 vector unsigned char);
11749
11750 vector float vec_round (vector float);
11751
11752 vector float vec_recip (vector float, vector float);
11753
11754 vector float vec_rsqrt (vector float);
11755
11756 vector float vec_rsqrte (vector float);
11757
11758 vector float vec_sel (vector float, vector float, vector bool int);
11759 vector float vec_sel (vector float, vector float, vector unsigned int);
11760 vector signed int vec_sel (vector signed int,
11761 vector signed int,
11762 vector bool int);
11763 vector signed int vec_sel (vector signed int,
11764 vector signed int,
11765 vector unsigned int);
11766 vector unsigned int vec_sel (vector unsigned int,
11767 vector unsigned int,
11768 vector bool int);
11769 vector unsigned int vec_sel (vector unsigned int,
11770 vector unsigned int,
11771 vector unsigned int);
11772 vector bool int vec_sel (vector bool int,
11773 vector bool int,
11774 vector bool int);
11775 vector bool int vec_sel (vector bool int,
11776 vector bool int,
11777 vector unsigned int);
11778 vector signed short vec_sel (vector signed short,
11779 vector signed short,
11780 vector bool short);
11781 vector signed short vec_sel (vector signed short,
11782 vector signed short,
11783 vector unsigned short);
11784 vector unsigned short vec_sel (vector unsigned short,
11785 vector unsigned short,
11786 vector bool short);
11787 vector unsigned short vec_sel (vector unsigned short,
11788 vector unsigned short,
11789 vector unsigned short);
11790 vector bool short vec_sel (vector bool short,
11791 vector bool short,
11792 vector bool short);
11793 vector bool short vec_sel (vector bool short,
11794 vector bool short,
11795 vector unsigned short);
11796 vector signed char vec_sel (vector signed char,
11797 vector signed char,
11798 vector bool char);
11799 vector signed char vec_sel (vector signed char,
11800 vector signed char,
11801 vector unsigned char);
11802 vector unsigned char vec_sel (vector unsigned char,
11803 vector unsigned char,
11804 vector bool char);
11805 vector unsigned char vec_sel (vector unsigned char,
11806 vector unsigned char,
11807 vector unsigned char);
11808 vector bool char vec_sel (vector bool char,
11809 vector bool char,
11810 vector bool char);
11811 vector bool char vec_sel (vector bool char,
11812 vector bool char,
11813 vector unsigned char);
11814
11815 vector signed char vec_sl (vector signed char,
11816 vector unsigned char);
11817 vector unsigned char vec_sl (vector unsigned char,
11818 vector unsigned char);
11819 vector signed short vec_sl (vector signed short, vector unsigned short);
11820 vector unsigned short vec_sl (vector unsigned short,
11821 vector unsigned short);
11822 vector signed int vec_sl (vector signed int, vector unsigned int);
11823 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
11824
11825 vector signed int vec_vslw (vector signed int, vector unsigned int);
11826 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
11827
11828 vector signed short vec_vslh (vector signed short,
11829 vector unsigned short);
11830 vector unsigned short vec_vslh (vector unsigned short,
11831 vector unsigned short);
11832
11833 vector signed char vec_vslb (vector signed char, vector unsigned char);
11834 vector unsigned char vec_vslb (vector unsigned char,
11835 vector unsigned char);
11836
11837 vector float vec_sld (vector float, vector float, const int);
11838 vector signed int vec_sld (vector signed int,
11839 vector signed int,
11840 const int);
11841 vector unsigned int vec_sld (vector unsigned int,
11842 vector unsigned int,
11843 const int);
11844 vector bool int vec_sld (vector bool int,
11845 vector bool int,
11846 const int);
11847 vector signed short vec_sld (vector signed short,
11848 vector signed short,
11849 const int);
11850 vector unsigned short vec_sld (vector unsigned short,
11851 vector unsigned short,
11852 const int);
11853 vector bool short vec_sld (vector bool short,
11854 vector bool short,
11855 const int);
11856 vector pixel vec_sld (vector pixel,
11857 vector pixel,
11858 const int);
11859 vector signed char vec_sld (vector signed char,
11860 vector signed char,
11861 const int);
11862 vector unsigned char vec_sld (vector unsigned char,
11863 vector unsigned char,
11864 const int);
11865 vector bool char vec_sld (vector bool char,
11866 vector bool char,
11867 const int);
11868
11869 vector signed int vec_sll (vector signed int,
11870 vector unsigned int);
11871 vector signed int vec_sll (vector signed int,
11872 vector unsigned short);
11873 vector signed int vec_sll (vector signed int,
11874 vector unsigned char);
11875 vector unsigned int vec_sll (vector unsigned int,
11876 vector unsigned int);
11877 vector unsigned int vec_sll (vector unsigned int,
11878 vector unsigned short);
11879 vector unsigned int vec_sll (vector unsigned int,
11880 vector unsigned char);
11881 vector bool int vec_sll (vector bool int,
11882 vector unsigned int);
11883 vector bool int vec_sll (vector bool int,
11884 vector unsigned short);
11885 vector bool int vec_sll (vector bool int,
11886 vector unsigned char);
11887 vector signed short vec_sll (vector signed short,
11888 vector unsigned int);
11889 vector signed short vec_sll (vector signed short,
11890 vector unsigned short);
11891 vector signed short vec_sll (vector signed short,
11892 vector unsigned char);
11893 vector unsigned short vec_sll (vector unsigned short,
11894 vector unsigned int);
11895 vector unsigned short vec_sll (vector unsigned short,
11896 vector unsigned short);
11897 vector unsigned short vec_sll (vector unsigned short,
11898 vector unsigned char);
11899 vector bool short vec_sll (vector bool short, vector unsigned int);
11900 vector bool short vec_sll (vector bool short, vector unsigned short);
11901 vector bool short vec_sll (vector bool short, vector unsigned char);
11902 vector pixel vec_sll (vector pixel, vector unsigned int);
11903 vector pixel vec_sll (vector pixel, vector unsigned short);
11904 vector pixel vec_sll (vector pixel, vector unsigned char);
11905 vector signed char vec_sll (vector signed char, vector unsigned int);
11906 vector signed char vec_sll (vector signed char, vector unsigned short);
11907 vector signed char vec_sll (vector signed char, vector unsigned char);
11908 vector unsigned char vec_sll (vector unsigned char,
11909 vector unsigned int);
11910 vector unsigned char vec_sll (vector unsigned char,
11911 vector unsigned short);
11912 vector unsigned char vec_sll (vector unsigned char,
11913 vector unsigned char);
11914 vector bool char vec_sll (vector bool char, vector unsigned int);
11915 vector bool char vec_sll (vector bool char, vector unsigned short);
11916 vector bool char vec_sll (vector bool char, vector unsigned char);
11917
11918 vector float vec_slo (vector float, vector signed char);
11919 vector float vec_slo (vector float, vector unsigned char);
11920 vector signed int vec_slo (vector signed int, vector signed char);
11921 vector signed int vec_slo (vector signed int, vector unsigned char);
11922 vector unsigned int vec_slo (vector unsigned int, vector signed char);
11923 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
11924 vector signed short vec_slo (vector signed short, vector signed char);
11925 vector signed short vec_slo (vector signed short, vector unsigned char);
11926 vector unsigned short vec_slo (vector unsigned short,
11927 vector signed char);
11928 vector unsigned short vec_slo (vector unsigned short,
11929 vector unsigned char);
11930 vector pixel vec_slo (vector pixel, vector signed char);
11931 vector pixel vec_slo (vector pixel, vector unsigned char);
11932 vector signed char vec_slo (vector signed char, vector signed char);
11933 vector signed char vec_slo (vector signed char, vector unsigned char);
11934 vector unsigned char vec_slo (vector unsigned char, vector signed char);
11935 vector unsigned char vec_slo (vector unsigned char,
11936 vector unsigned char);
11937
11938 vector signed char vec_splat (vector signed char, const int);
11939 vector unsigned char vec_splat (vector unsigned char, const int);
11940 vector bool char vec_splat (vector bool char, const int);
11941 vector signed short vec_splat (vector signed short, const int);
11942 vector unsigned short vec_splat (vector unsigned short, const int);
11943 vector bool short vec_splat (vector bool short, const int);
11944 vector pixel vec_splat (vector pixel, const int);
11945 vector float vec_splat (vector float, const int);
11946 vector signed int vec_splat (vector signed int, const int);
11947 vector unsigned int vec_splat (vector unsigned int, const int);
11948 vector bool int vec_splat (vector bool int, const int);
11949
11950 vector float vec_vspltw (vector float, const int);
11951 vector signed int vec_vspltw (vector signed int, const int);
11952 vector unsigned int vec_vspltw (vector unsigned int, const int);
11953 vector bool int vec_vspltw (vector bool int, const int);
11954
11955 vector bool short vec_vsplth (vector bool short, const int);
11956 vector signed short vec_vsplth (vector signed short, const int);
11957 vector unsigned short vec_vsplth (vector unsigned short, const int);
11958 vector pixel vec_vsplth (vector pixel, const int);
11959
11960 vector signed char vec_vspltb (vector signed char, const int);
11961 vector unsigned char vec_vspltb (vector unsigned char, const int);
11962 vector bool char vec_vspltb (vector bool char, const int);
11963
11964 vector signed char vec_splat_s8 (const int);
11965
11966 vector signed short vec_splat_s16 (const int);
11967
11968 vector signed int vec_splat_s32 (const int);
11969
11970 vector unsigned char vec_splat_u8 (const int);
11971
11972 vector unsigned short vec_splat_u16 (const int);
11973
11974 vector unsigned int vec_splat_u32 (const int);
11975
11976 vector signed char vec_sr (vector signed char, vector unsigned char);
11977 vector unsigned char vec_sr (vector unsigned char,
11978 vector unsigned char);
11979 vector signed short vec_sr (vector signed short,
11980 vector unsigned short);
11981 vector unsigned short vec_sr (vector unsigned short,
11982 vector unsigned short);
11983 vector signed int vec_sr (vector signed int, vector unsigned int);
11984 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
11985
11986 vector signed int vec_vsrw (vector signed int, vector unsigned int);
11987 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
11988
11989 vector signed short vec_vsrh (vector signed short,
11990 vector unsigned short);
11991 vector unsigned short vec_vsrh (vector unsigned short,
11992 vector unsigned short);
11993
11994 vector signed char vec_vsrb (vector signed char, vector unsigned char);
11995 vector unsigned char vec_vsrb (vector unsigned char,
11996 vector unsigned char);
11997
11998 vector signed char vec_sra (vector signed char, vector unsigned char);
11999 vector unsigned char vec_sra (vector unsigned char,
12000 vector unsigned char);
12001 vector signed short vec_sra (vector signed short,
12002 vector unsigned short);
12003 vector unsigned short vec_sra (vector unsigned short,
12004 vector unsigned short);
12005 vector signed int vec_sra (vector signed int, vector unsigned int);
12006 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
12007
12008 vector signed int vec_vsraw (vector signed int, vector unsigned int);
12009 vector unsigned int vec_vsraw (vector unsigned int,
12010 vector unsigned int);
12011
12012 vector signed short vec_vsrah (vector signed short,
12013 vector unsigned short);
12014 vector unsigned short vec_vsrah (vector unsigned short,
12015 vector unsigned short);
12016
12017 vector signed char vec_vsrab (vector signed char, vector unsigned char);
12018 vector unsigned char vec_vsrab (vector unsigned char,
12019 vector unsigned char);
12020
12021 vector signed int vec_srl (vector signed int, vector unsigned int);
12022 vector signed int vec_srl (vector signed int, vector unsigned short);
12023 vector signed int vec_srl (vector signed int, vector unsigned char);
12024 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
12025 vector unsigned int vec_srl (vector unsigned int,
12026 vector unsigned short);
12027 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
12028 vector bool int vec_srl (vector bool int, vector unsigned int);
12029 vector bool int vec_srl (vector bool int, vector unsigned short);
12030 vector bool int vec_srl (vector bool int, vector unsigned char);
12031 vector signed short vec_srl (vector signed short, vector unsigned int);
12032 vector signed short vec_srl (vector signed short,
12033 vector unsigned short);
12034 vector signed short vec_srl (vector signed short, vector unsigned char);
12035 vector unsigned short vec_srl (vector unsigned short,
12036 vector unsigned int);
12037 vector unsigned short vec_srl (vector unsigned short,
12038 vector unsigned short);
12039 vector unsigned short vec_srl (vector unsigned short,
12040 vector unsigned char);
12041 vector bool short vec_srl (vector bool short, vector unsigned int);
12042 vector bool short vec_srl (vector bool short, vector unsigned short);
12043 vector bool short vec_srl (vector bool short, vector unsigned char);
12044 vector pixel vec_srl (vector pixel, vector unsigned int);
12045 vector pixel vec_srl (vector pixel, vector unsigned short);
12046 vector pixel vec_srl (vector pixel, vector unsigned char);
12047 vector signed char vec_srl (vector signed char, vector unsigned int);
12048 vector signed char vec_srl (vector signed char, vector unsigned short);
12049 vector signed char vec_srl (vector signed char, vector unsigned char);
12050 vector unsigned char vec_srl (vector unsigned char,
12051 vector unsigned int);
12052 vector unsigned char vec_srl (vector unsigned char,
12053 vector unsigned short);
12054 vector unsigned char vec_srl (vector unsigned char,
12055 vector unsigned char);
12056 vector bool char vec_srl (vector bool char, vector unsigned int);
12057 vector bool char vec_srl (vector bool char, vector unsigned short);
12058 vector bool char vec_srl (vector bool char, vector unsigned char);
12059
12060 vector float vec_sro (vector float, vector signed char);
12061 vector float vec_sro (vector float, vector unsigned char);
12062 vector signed int vec_sro (vector signed int, vector signed char);
12063 vector signed int vec_sro (vector signed int, vector unsigned char);
12064 vector unsigned int vec_sro (vector unsigned int, vector signed char);
12065 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
12066 vector signed short vec_sro (vector signed short, vector signed char);
12067 vector signed short vec_sro (vector signed short, vector unsigned char);
12068 vector unsigned short vec_sro (vector unsigned short,
12069 vector signed char);
12070 vector unsigned short vec_sro (vector unsigned short,
12071 vector unsigned char);
12072 vector pixel vec_sro (vector pixel, vector signed char);
12073 vector pixel vec_sro (vector pixel, vector unsigned char);
12074 vector signed char vec_sro (vector signed char, vector signed char);
12075 vector signed char vec_sro (vector signed char, vector unsigned char);
12076 vector unsigned char vec_sro (vector unsigned char, vector signed char);
12077 vector unsigned char vec_sro (vector unsigned char,
12078 vector unsigned char);
12079
12080 void vec_st (vector float, int, vector float *);
12081 void vec_st (vector float, int, float *);
12082 void vec_st (vector signed int, int, vector signed int *);
12083 void vec_st (vector signed int, int, int *);
12084 void vec_st (vector unsigned int, int, vector unsigned int *);
12085 void vec_st (vector unsigned int, int, unsigned int *);
12086 void vec_st (vector bool int, int, vector bool int *);
12087 void vec_st (vector bool int, int, unsigned int *);
12088 void vec_st (vector bool int, int, int *);
12089 void vec_st (vector signed short, int, vector signed short *);
12090 void vec_st (vector signed short, int, short *);
12091 void vec_st (vector unsigned short, int, vector unsigned short *);
12092 void vec_st (vector unsigned short, int, unsigned short *);
12093 void vec_st (vector bool short, int, vector bool short *);
12094 void vec_st (vector bool short, int, unsigned short *);
12095 void vec_st (vector pixel, int, vector pixel *);
12096 void vec_st (vector pixel, int, unsigned short *);
12097 void vec_st (vector pixel, int, short *);
12098 void vec_st (vector bool short, int, short *);
12099 void vec_st (vector signed char, int, vector signed char *);
12100 void vec_st (vector signed char, int, signed char *);
12101 void vec_st (vector unsigned char, int, vector unsigned char *);
12102 void vec_st (vector unsigned char, int, unsigned char *);
12103 void vec_st (vector bool char, int, vector bool char *);
12104 void vec_st (vector bool char, int, unsigned char *);
12105 void vec_st (vector bool char, int, signed char *);
12106
12107 void vec_ste (vector signed char, int, signed char *);
12108 void vec_ste (vector unsigned char, int, unsigned char *);
12109 void vec_ste (vector bool char, int, signed char *);
12110 void vec_ste (vector bool char, int, unsigned char *);
12111 void vec_ste (vector signed short, int, short *);
12112 void vec_ste (vector unsigned short, int, unsigned short *);
12113 void vec_ste (vector bool short, int, short *);
12114 void vec_ste (vector bool short, int, unsigned short *);
12115 void vec_ste (vector pixel, int, short *);
12116 void vec_ste (vector pixel, int, unsigned short *);
12117 void vec_ste (vector float, int, float *);
12118 void vec_ste (vector signed int, int, int *);
12119 void vec_ste (vector unsigned int, int, unsigned int *);
12120 void vec_ste (vector bool int, int, int *);
12121 void vec_ste (vector bool int, int, unsigned int *);
12122
12123 void vec_stvewx (vector float, int, float *);
12124 void vec_stvewx (vector signed int, int, int *);
12125 void vec_stvewx (vector unsigned int, int, unsigned int *);
12126 void vec_stvewx (vector bool int, int, int *);
12127 void vec_stvewx (vector bool int, int, unsigned int *);
12128
12129 void vec_stvehx (vector signed short, int, short *);
12130 void vec_stvehx (vector unsigned short, int, unsigned short *);
12131 void vec_stvehx (vector bool short, int, short *);
12132 void vec_stvehx (vector bool short, int, unsigned short *);
12133 void vec_stvehx (vector pixel, int, short *);
12134 void vec_stvehx (vector pixel, int, unsigned short *);
12135
12136 void vec_stvebx (vector signed char, int, signed char *);
12137 void vec_stvebx (vector unsigned char, int, unsigned char *);
12138 void vec_stvebx (vector bool char, int, signed char *);
12139 void vec_stvebx (vector bool char, int, unsigned char *);
12140
12141 void vec_stl (vector float, int, vector float *);
12142 void vec_stl (vector float, int, float *);
12143 void vec_stl (vector signed int, int, vector signed int *);
12144 void vec_stl (vector signed int, int, int *);
12145 void vec_stl (vector unsigned int, int, vector unsigned int *);
12146 void vec_stl (vector unsigned int, int, unsigned int *);
12147 void vec_stl (vector bool int, int, vector bool int *);
12148 void vec_stl (vector bool int, int, unsigned int *);
12149 void vec_stl (vector bool int, int, int *);
12150 void vec_stl (vector signed short, int, vector signed short *);
12151 void vec_stl (vector signed short, int, short *);
12152 void vec_stl (vector unsigned short, int, vector unsigned short *);
12153 void vec_stl (vector unsigned short, int, unsigned short *);
12154 void vec_stl (vector bool short, int, vector bool short *);
12155 void vec_stl (vector bool short, int, unsigned short *);
12156 void vec_stl (vector bool short, int, short *);
12157 void vec_stl (vector pixel, int, vector pixel *);
12158 void vec_stl (vector pixel, int, unsigned short *);
12159 void vec_stl (vector pixel, int, short *);
12160 void vec_stl (vector signed char, int, vector signed char *);
12161 void vec_stl (vector signed char, int, signed char *);
12162 void vec_stl (vector unsigned char, int, vector unsigned char *);
12163 void vec_stl (vector unsigned char, int, unsigned char *);
12164 void vec_stl (vector bool char, int, vector bool char *);
12165 void vec_stl (vector bool char, int, unsigned char *);
12166 void vec_stl (vector bool char, int, signed char *);
12167
12168 vector signed char vec_sub (vector bool char, vector signed char);
12169 vector signed char vec_sub (vector signed char, vector bool char);
12170 vector signed char vec_sub (vector signed char, vector signed char);
12171 vector unsigned char vec_sub (vector bool char, vector unsigned char);
12172 vector unsigned char vec_sub (vector unsigned char, vector bool char);
12173 vector unsigned char vec_sub (vector unsigned char,
12174 vector unsigned char);
12175 vector signed short vec_sub (vector bool short, vector signed short);
12176 vector signed short vec_sub (vector signed short, vector bool short);
12177 vector signed short vec_sub (vector signed short, vector signed short);
12178 vector unsigned short vec_sub (vector bool short,
12179 vector unsigned short);
12180 vector unsigned short vec_sub (vector unsigned short,
12181 vector bool short);
12182 vector unsigned short vec_sub (vector unsigned short,
12183 vector unsigned short);
12184 vector signed int vec_sub (vector bool int, vector signed int);
12185 vector signed int vec_sub (vector signed int, vector bool int);
12186 vector signed int vec_sub (vector signed int, vector signed int);
12187 vector unsigned int vec_sub (vector bool int, vector unsigned int);
12188 vector unsigned int vec_sub (vector unsigned int, vector bool int);
12189 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
12190 vector float vec_sub (vector float, vector float);
12191
12192 vector float vec_vsubfp (vector float, vector float);
12193
12194 vector signed int vec_vsubuwm (vector bool int, vector signed int);
12195 vector signed int vec_vsubuwm (vector signed int, vector bool int);
12196 vector signed int vec_vsubuwm (vector signed int, vector signed int);
12197 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
12198 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
12199 vector unsigned int vec_vsubuwm (vector unsigned int,
12200 vector unsigned int);
12201
12202 vector signed short vec_vsubuhm (vector bool short,
12203 vector signed short);
12204 vector signed short vec_vsubuhm (vector signed short,
12205 vector bool short);
12206 vector signed short vec_vsubuhm (vector signed short,
12207 vector signed short);
12208 vector unsigned short vec_vsubuhm (vector bool short,
12209 vector unsigned short);
12210 vector unsigned short vec_vsubuhm (vector unsigned short,
12211 vector bool short);
12212 vector unsigned short vec_vsubuhm (vector unsigned short,
12213 vector unsigned short);
12214
12215 vector signed char vec_vsububm (vector bool char, vector signed char);
12216 vector signed char vec_vsububm (vector signed char, vector bool char);
12217 vector signed char vec_vsububm (vector signed char, vector signed char);
12218 vector unsigned char vec_vsububm (vector bool char,
12219 vector unsigned char);
12220 vector unsigned char vec_vsububm (vector unsigned char,
12221 vector bool char);
12222 vector unsigned char vec_vsububm (vector unsigned char,
12223 vector unsigned char);
12224
12225 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
12226
12227 vector unsigned char vec_subs (vector bool char, vector unsigned char);
12228 vector unsigned char vec_subs (vector unsigned char, vector bool char);
12229 vector unsigned char vec_subs (vector unsigned char,
12230 vector unsigned char);
12231 vector signed char vec_subs (vector bool char, vector signed char);
12232 vector signed char vec_subs (vector signed char, vector bool char);
12233 vector signed char vec_subs (vector signed char, vector signed char);
12234 vector unsigned short vec_subs (vector bool short,
12235 vector unsigned short);
12236 vector unsigned short vec_subs (vector unsigned short,
12237 vector bool short);
12238 vector unsigned short vec_subs (vector unsigned short,
12239 vector unsigned short);
12240 vector signed short vec_subs (vector bool short, vector signed short);
12241 vector signed short vec_subs (vector signed short, vector bool short);
12242 vector signed short vec_subs (vector signed short, vector signed short);
12243 vector unsigned int vec_subs (vector bool int, vector unsigned int);
12244 vector unsigned int vec_subs (vector unsigned int, vector bool int);
12245 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
12246 vector signed int vec_subs (vector bool int, vector signed int);
12247 vector signed int vec_subs (vector signed int, vector bool int);
12248 vector signed int vec_subs (vector signed int, vector signed int);
12249
12250 vector signed int vec_vsubsws (vector bool int, vector signed int);
12251 vector signed int vec_vsubsws (vector signed int, vector bool int);
12252 vector signed int vec_vsubsws (vector signed int, vector signed int);
12253
12254 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
12255 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
12256 vector unsigned int vec_vsubuws (vector unsigned int,
12257 vector unsigned int);
12258
12259 vector signed short vec_vsubshs (vector bool short,
12260 vector signed short);
12261 vector signed short vec_vsubshs (vector signed short,
12262 vector bool short);
12263 vector signed short vec_vsubshs (vector signed short,
12264 vector signed short);
12265
12266 vector unsigned short vec_vsubuhs (vector bool short,
12267 vector unsigned short);
12268 vector unsigned short vec_vsubuhs (vector unsigned short,
12269 vector bool short);
12270 vector unsigned short vec_vsubuhs (vector unsigned short,
12271 vector unsigned short);
12272
12273 vector signed char vec_vsubsbs (vector bool char, vector signed char);
12274 vector signed char vec_vsubsbs (vector signed char, vector bool char);
12275 vector signed char vec_vsubsbs (vector signed char, vector signed char);
12276
12277 vector unsigned char vec_vsububs (vector bool char,
12278 vector unsigned char);
12279 vector unsigned char vec_vsububs (vector unsigned char,
12280 vector bool char);
12281 vector unsigned char vec_vsububs (vector unsigned char,
12282 vector unsigned char);
12283
12284 vector unsigned int vec_sum4s (vector unsigned char,
12285 vector unsigned int);
12286 vector signed int vec_sum4s (vector signed char, vector signed int);
12287 vector signed int vec_sum4s (vector signed short, vector signed int);
12288
12289 vector signed int vec_vsum4shs (vector signed short, vector signed int);
12290
12291 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
12292
12293 vector unsigned int vec_vsum4ubs (vector unsigned char,
12294 vector unsigned int);
12295
12296 vector signed int vec_sum2s (vector signed int, vector signed int);
12297
12298 vector signed int vec_sums (vector signed int, vector signed int);
12299
12300 vector float vec_trunc (vector float);
12301
12302 vector signed short vec_unpackh (vector signed char);
12303 vector bool short vec_unpackh (vector bool char);
12304 vector signed int vec_unpackh (vector signed short);
12305 vector bool int vec_unpackh (vector bool short);
12306 vector unsigned int vec_unpackh (vector pixel);
12307
12308 vector bool int vec_vupkhsh (vector bool short);
12309 vector signed int vec_vupkhsh (vector signed short);
12310
12311 vector unsigned int vec_vupkhpx (vector pixel);
12312
12313 vector bool short vec_vupkhsb (vector bool char);
12314 vector signed short vec_vupkhsb (vector signed char);
12315
12316 vector signed short vec_unpackl (vector signed char);
12317 vector bool short vec_unpackl (vector bool char);
12318 vector unsigned int vec_unpackl (vector pixel);
12319 vector signed int vec_unpackl (vector signed short);
12320 vector bool int vec_unpackl (vector bool short);
12321
12322 vector unsigned int vec_vupklpx (vector pixel);
12323
12324 vector bool int vec_vupklsh (vector bool short);
12325 vector signed int vec_vupklsh (vector signed short);
12326
12327 vector bool short vec_vupklsb (vector bool char);
12328 vector signed short vec_vupklsb (vector signed char);
12329
12330 vector float vec_xor (vector float, vector float);
12331 vector float vec_xor (vector float, vector bool int);
12332 vector float vec_xor (vector bool int, vector float);
12333 vector bool int vec_xor (vector bool int, vector bool int);
12334 vector signed int vec_xor (vector bool int, vector signed int);
12335 vector signed int vec_xor (vector signed int, vector bool int);
12336 vector signed int vec_xor (vector signed int, vector signed int);
12337 vector unsigned int vec_xor (vector bool int, vector unsigned int);
12338 vector unsigned int vec_xor (vector unsigned int, vector bool int);
12339 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
12340 vector bool short vec_xor (vector bool short, vector bool short);
12341 vector signed short vec_xor (vector bool short, vector signed short);
12342 vector signed short vec_xor (vector signed short, vector bool short);
12343 vector signed short vec_xor (vector signed short, vector signed short);
12344 vector unsigned short vec_xor (vector bool short,
12345 vector unsigned short);
12346 vector unsigned short vec_xor (vector unsigned short,
12347 vector bool short);
12348 vector unsigned short vec_xor (vector unsigned short,
12349 vector unsigned short);
12350 vector signed char vec_xor (vector bool char, vector signed char);
12351 vector bool char vec_xor (vector bool char, vector bool char);
12352 vector signed char vec_xor (vector signed char, vector bool char);
12353 vector signed char vec_xor (vector signed char, vector signed char);
12354 vector unsigned char vec_xor (vector bool char, vector unsigned char);
12355 vector unsigned char vec_xor (vector unsigned char, vector bool char);
12356 vector unsigned char vec_xor (vector unsigned char,
12357 vector unsigned char);
12358
12359 int vec_all_eq (vector signed char, vector bool char);
12360 int vec_all_eq (vector signed char, vector signed char);
12361 int vec_all_eq (vector unsigned char, vector bool char);
12362 int vec_all_eq (vector unsigned char, vector unsigned char);
12363 int vec_all_eq (vector bool char, vector bool char);
12364 int vec_all_eq (vector bool char, vector unsigned char);
12365 int vec_all_eq (vector bool char, vector signed char);
12366 int vec_all_eq (vector signed short, vector bool short);
12367 int vec_all_eq (vector signed short, vector signed short);
12368 int vec_all_eq (vector unsigned short, vector bool short);
12369 int vec_all_eq (vector unsigned short, vector unsigned short);
12370 int vec_all_eq (vector bool short, vector bool short);
12371 int vec_all_eq (vector bool short, vector unsigned short);
12372 int vec_all_eq (vector bool short, vector signed short);
12373 int vec_all_eq (vector pixel, vector pixel);
12374 int vec_all_eq (vector signed int, vector bool int);
12375 int vec_all_eq (vector signed int, vector signed int);
12376 int vec_all_eq (vector unsigned int, vector bool int);
12377 int vec_all_eq (vector unsigned int, vector unsigned int);
12378 int vec_all_eq (vector bool int, vector bool int);
12379 int vec_all_eq (vector bool int, vector unsigned int);
12380 int vec_all_eq (vector bool int, vector signed int);
12381 int vec_all_eq (vector float, vector float);
12382
12383 int vec_all_ge (vector bool char, vector unsigned char);
12384 int vec_all_ge (vector unsigned char, vector bool char);
12385 int vec_all_ge (vector unsigned char, vector unsigned char);
12386 int vec_all_ge (vector bool char, vector signed char);
12387 int vec_all_ge (vector signed char, vector bool char);
12388 int vec_all_ge (vector signed char, vector signed char);
12389 int vec_all_ge (vector bool short, vector unsigned short);
12390 int vec_all_ge (vector unsigned short, vector bool short);
12391 int vec_all_ge (vector unsigned short, vector unsigned short);
12392 int vec_all_ge (vector signed short, vector signed short);
12393 int vec_all_ge (vector bool short, vector signed short);
12394 int vec_all_ge (vector signed short, vector bool short);
12395 int vec_all_ge (vector bool int, vector unsigned int);
12396 int vec_all_ge (vector unsigned int, vector bool int);
12397 int vec_all_ge (vector unsigned int, vector unsigned int);
12398 int vec_all_ge (vector bool int, vector signed int);
12399 int vec_all_ge (vector signed int, vector bool int);
12400 int vec_all_ge (vector signed int, vector signed int);
12401 int vec_all_ge (vector float, vector float);
12402
12403 int vec_all_gt (vector bool char, vector unsigned char);
12404 int vec_all_gt (vector unsigned char, vector bool char);
12405 int vec_all_gt (vector unsigned char, vector unsigned char);
12406 int vec_all_gt (vector bool char, vector signed char);
12407 int vec_all_gt (vector signed char, vector bool char);
12408 int vec_all_gt (vector signed char, vector signed char);
12409 int vec_all_gt (vector bool short, vector unsigned short);
12410 int vec_all_gt (vector unsigned short, vector bool short);
12411 int vec_all_gt (vector unsigned short, vector unsigned short);
12412 int vec_all_gt (vector bool short, vector signed short);
12413 int vec_all_gt (vector signed short, vector bool short);
12414 int vec_all_gt (vector signed short, vector signed short);
12415 int vec_all_gt (vector bool int, vector unsigned int);
12416 int vec_all_gt (vector unsigned int, vector bool int);
12417 int vec_all_gt (vector unsigned int, vector unsigned int);
12418 int vec_all_gt (vector bool int, vector signed int);
12419 int vec_all_gt (vector signed int, vector bool int);
12420 int vec_all_gt (vector signed int, vector signed int);
12421 int vec_all_gt (vector float, vector float);
12422
12423 int vec_all_in (vector float, vector float);
12424
12425 int vec_all_le (vector bool char, vector unsigned char);
12426 int vec_all_le (vector unsigned char, vector bool char);
12427 int vec_all_le (vector unsigned char, vector unsigned char);
12428 int vec_all_le (vector bool char, vector signed char);
12429 int vec_all_le (vector signed char, vector bool char);
12430 int vec_all_le (vector signed char, vector signed char);
12431 int vec_all_le (vector bool short, vector unsigned short);
12432 int vec_all_le (vector unsigned short, vector bool short);
12433 int vec_all_le (vector unsigned short, vector unsigned short);
12434 int vec_all_le (vector bool short, vector signed short);
12435 int vec_all_le (vector signed short, vector bool short);
12436 int vec_all_le (vector signed short, vector signed short);
12437 int vec_all_le (vector bool int, vector unsigned int);
12438 int vec_all_le (vector unsigned int, vector bool int);
12439 int vec_all_le (vector unsigned int, vector unsigned int);
12440 int vec_all_le (vector bool int, vector signed int);
12441 int vec_all_le (vector signed int, vector bool int);
12442 int vec_all_le (vector signed int, vector signed int);
12443 int vec_all_le (vector float, vector float);
12444
12445 int vec_all_lt (vector bool char, vector unsigned char);
12446 int vec_all_lt (vector unsigned char, vector bool char);
12447 int vec_all_lt (vector unsigned char, vector unsigned char);
12448 int vec_all_lt (vector bool char, vector signed char);
12449 int vec_all_lt (vector signed char, vector bool char);
12450 int vec_all_lt (vector signed char, vector signed char);
12451 int vec_all_lt (vector bool short, vector unsigned short);
12452 int vec_all_lt (vector unsigned short, vector bool short);
12453 int vec_all_lt (vector unsigned short, vector unsigned short);
12454 int vec_all_lt (vector bool short, vector signed short);
12455 int vec_all_lt (vector signed short, vector bool short);
12456 int vec_all_lt (vector signed short, vector signed short);
12457 int vec_all_lt (vector bool int, vector unsigned int);
12458 int vec_all_lt (vector unsigned int, vector bool int);
12459 int vec_all_lt (vector unsigned int, vector unsigned int);
12460 int vec_all_lt (vector bool int, vector signed int);
12461 int vec_all_lt (vector signed int, vector bool int);
12462 int vec_all_lt (vector signed int, vector signed int);
12463 int vec_all_lt (vector float, vector float);
12464
12465 int vec_all_nan (vector float);
12466
12467 int vec_all_ne (vector signed char, vector bool char);
12468 int vec_all_ne (vector signed char, vector signed char);
12469 int vec_all_ne (vector unsigned char, vector bool char);
12470 int vec_all_ne (vector unsigned char, vector unsigned char);
12471 int vec_all_ne (vector bool char, vector bool char);
12472 int vec_all_ne (vector bool char, vector unsigned char);
12473 int vec_all_ne (vector bool char, vector signed char);
12474 int vec_all_ne (vector signed short, vector bool short);
12475 int vec_all_ne (vector signed short, vector signed short);
12476 int vec_all_ne (vector unsigned short, vector bool short);
12477 int vec_all_ne (vector unsigned short, vector unsigned short);
12478 int vec_all_ne (vector bool short, vector bool short);
12479 int vec_all_ne (vector bool short, vector unsigned short);
12480 int vec_all_ne (vector bool short, vector signed short);
12481 int vec_all_ne (vector pixel, vector pixel);
12482 int vec_all_ne (vector signed int, vector bool int);
12483 int vec_all_ne (vector signed int, vector signed int);
12484 int vec_all_ne (vector unsigned int, vector bool int);
12485 int vec_all_ne (vector unsigned int, vector unsigned int);
12486 int vec_all_ne (vector bool int, vector bool int);
12487 int vec_all_ne (vector bool int, vector unsigned int);
12488 int vec_all_ne (vector bool int, vector signed int);
12489 int vec_all_ne (vector float, vector float);
12490
12491 int vec_all_nge (vector float, vector float);
12492
12493 int vec_all_ngt (vector float, vector float);
12494
12495 int vec_all_nle (vector float, vector float);
12496
12497 int vec_all_nlt (vector float, vector float);
12498
12499 int vec_all_numeric (vector float);
12500
12501 int vec_any_eq (vector signed char, vector bool char);
12502 int vec_any_eq (vector signed char, vector signed char);
12503 int vec_any_eq (vector unsigned char, vector bool char);
12504 int vec_any_eq (vector unsigned char, vector unsigned char);
12505 int vec_any_eq (vector bool char, vector bool char);
12506 int vec_any_eq (vector bool char, vector unsigned char);
12507 int vec_any_eq (vector bool char, vector signed char);
12508 int vec_any_eq (vector signed short, vector bool short);
12509 int vec_any_eq (vector signed short, vector signed short);
12510 int vec_any_eq (vector unsigned short, vector bool short);
12511 int vec_any_eq (vector unsigned short, vector unsigned short);
12512 int vec_any_eq (vector bool short, vector bool short);
12513 int vec_any_eq (vector bool short, vector unsigned short);
12514 int vec_any_eq (vector bool short, vector signed short);
12515 int vec_any_eq (vector pixel, vector pixel);
12516 int vec_any_eq (vector signed int, vector bool int);
12517 int vec_any_eq (vector signed int, vector signed int);
12518 int vec_any_eq (vector unsigned int, vector bool int);
12519 int vec_any_eq (vector unsigned int, vector unsigned int);
12520 int vec_any_eq (vector bool int, vector bool int);
12521 int vec_any_eq (vector bool int, vector unsigned int);
12522 int vec_any_eq (vector bool int, vector signed int);
12523 int vec_any_eq (vector float, vector float);
12524
12525 int vec_any_ge (vector signed char, vector bool char);
12526 int vec_any_ge (vector unsigned char, vector bool char);
12527 int vec_any_ge (vector unsigned char, vector unsigned char);
12528 int vec_any_ge (vector signed char, vector signed char);
12529 int vec_any_ge (vector bool char, vector unsigned char);
12530 int vec_any_ge (vector bool char, vector signed char);
12531 int vec_any_ge (vector unsigned short, vector bool short);
12532 int vec_any_ge (vector unsigned short, vector unsigned short);
12533 int vec_any_ge (vector signed short, vector signed short);
12534 int vec_any_ge (vector signed short, vector bool short);
12535 int vec_any_ge (vector bool short, vector unsigned short);
12536 int vec_any_ge (vector bool short, vector signed short);
12537 int vec_any_ge (vector signed int, vector bool int);
12538 int vec_any_ge (vector unsigned int, vector bool int);
12539 int vec_any_ge (vector unsigned int, vector unsigned int);
12540 int vec_any_ge (vector signed int, vector signed int);
12541 int vec_any_ge (vector bool int, vector unsigned int);
12542 int vec_any_ge (vector bool int, vector signed int);
12543 int vec_any_ge (vector float, vector float);
12544
12545 int vec_any_gt (vector bool char, vector unsigned char);
12546 int vec_any_gt (vector unsigned char, vector bool char);
12547 int vec_any_gt (vector unsigned char, vector unsigned char);
12548 int vec_any_gt (vector bool char, vector signed char);
12549 int vec_any_gt (vector signed char, vector bool char);
12550 int vec_any_gt (vector signed char, vector signed char);
12551 int vec_any_gt (vector bool short, vector unsigned short);
12552 int vec_any_gt (vector unsigned short, vector bool short);
12553 int vec_any_gt (vector unsigned short, vector unsigned short);
12554 int vec_any_gt (vector bool short, vector signed short);
12555 int vec_any_gt (vector signed short, vector bool short);
12556 int vec_any_gt (vector signed short, vector signed short);
12557 int vec_any_gt (vector bool int, vector unsigned int);
12558 int vec_any_gt (vector unsigned int, vector bool int);
12559 int vec_any_gt (vector unsigned int, vector unsigned int);
12560 int vec_any_gt (vector bool int, vector signed int);
12561 int vec_any_gt (vector signed int, vector bool int);
12562 int vec_any_gt (vector signed int, vector signed int);
12563 int vec_any_gt (vector float, vector float);
12564
12565 int vec_any_le (vector bool char, vector unsigned char);
12566 int vec_any_le (vector unsigned char, vector bool char);
12567 int vec_any_le (vector unsigned char, vector unsigned char);
12568 int vec_any_le (vector bool char, vector signed char);
12569 int vec_any_le (vector signed char, vector bool char);
12570 int vec_any_le (vector signed char, vector signed char);
12571 int vec_any_le (vector bool short, vector unsigned short);
12572 int vec_any_le (vector unsigned short, vector bool short);
12573 int vec_any_le (vector unsigned short, vector unsigned short);
12574 int vec_any_le (vector bool short, vector signed short);
12575 int vec_any_le (vector signed short, vector bool short);
12576 int vec_any_le (vector signed short, vector signed short);
12577 int vec_any_le (vector bool int, vector unsigned int);
12578 int vec_any_le (vector unsigned int, vector bool int);
12579 int vec_any_le (vector unsigned int, vector unsigned int);
12580 int vec_any_le (vector bool int, vector signed int);
12581 int vec_any_le (vector signed int, vector bool int);
12582 int vec_any_le (vector signed int, vector signed int);
12583 int vec_any_le (vector float, vector float);
12584
12585 int vec_any_lt (vector bool char, vector unsigned char);
12586 int vec_any_lt (vector unsigned char, vector bool char);
12587 int vec_any_lt (vector unsigned char, vector unsigned char);
12588 int vec_any_lt (vector bool char, vector signed char);
12589 int vec_any_lt (vector signed char, vector bool char);
12590 int vec_any_lt (vector signed char, vector signed char);
12591 int vec_any_lt (vector bool short, vector unsigned short);
12592 int vec_any_lt (vector unsigned short, vector bool short);
12593 int vec_any_lt (vector unsigned short, vector unsigned short);
12594 int vec_any_lt (vector bool short, vector signed short);
12595 int vec_any_lt (vector signed short, vector bool short);
12596 int vec_any_lt (vector signed short, vector signed short);
12597 int vec_any_lt (vector bool int, vector unsigned int);
12598 int vec_any_lt (vector unsigned int, vector bool int);
12599 int vec_any_lt (vector unsigned int, vector unsigned int);
12600 int vec_any_lt (vector bool int, vector signed int);
12601 int vec_any_lt (vector signed int, vector bool int);
12602 int vec_any_lt (vector signed int, vector signed int);
12603 int vec_any_lt (vector float, vector float);
12604
12605 int vec_any_nan (vector float);
12606
12607 int vec_any_ne (vector signed char, vector bool char);
12608 int vec_any_ne (vector signed char, vector signed char);
12609 int vec_any_ne (vector unsigned char, vector bool char);
12610 int vec_any_ne (vector unsigned char, vector unsigned char);
12611 int vec_any_ne (vector bool char, vector bool char);
12612 int vec_any_ne (vector bool char, vector unsigned char);
12613 int vec_any_ne (vector bool char, vector signed char);
12614 int vec_any_ne (vector signed short, vector bool short);
12615 int vec_any_ne (vector signed short, vector signed short);
12616 int vec_any_ne (vector unsigned short, vector bool short);
12617 int vec_any_ne (vector unsigned short, vector unsigned short);
12618 int vec_any_ne (vector bool short, vector bool short);
12619 int vec_any_ne (vector bool short, vector unsigned short);
12620 int vec_any_ne (vector bool short, vector signed short);
12621 int vec_any_ne (vector pixel, vector pixel);
12622 int vec_any_ne (vector signed int, vector bool int);
12623 int vec_any_ne (vector signed int, vector signed int);
12624 int vec_any_ne (vector unsigned int, vector bool int);
12625 int vec_any_ne (vector unsigned int, vector unsigned int);
12626 int vec_any_ne (vector bool int, vector bool int);
12627 int vec_any_ne (vector bool int, vector unsigned int);
12628 int vec_any_ne (vector bool int, vector signed int);
12629 int vec_any_ne (vector float, vector float);
12630
12631 int vec_any_nge (vector float, vector float);
12632
12633 int vec_any_ngt (vector float, vector float);
12634
12635 int vec_any_nle (vector float, vector float);
12636
12637 int vec_any_nlt (vector float, vector float);
12638
12639 int vec_any_numeric (vector float);
12640
12641 int vec_any_out (vector float, vector float);
12642 @end smallexample
12643
12644 If the vector/scalar (VSX) instruction set is available, the following
12645 additional functions are available:
12646
12647 @smallexample
12648 vector double vec_abs (vector double);
12649 vector double vec_add (vector double, vector double);
12650 vector double vec_and (vector double, vector double);
12651 vector double vec_and (vector double, vector bool long);
12652 vector double vec_and (vector bool long, vector double);
12653 vector double vec_andc (vector double, vector double);
12654 vector double vec_andc (vector double, vector bool long);
12655 vector double vec_andc (vector bool long, vector double);
12656 vector double vec_ceil (vector double);
12657 vector bool long vec_cmpeq (vector double, vector double);
12658 vector bool long vec_cmpge (vector double, vector double);
12659 vector bool long vec_cmpgt (vector double, vector double);
12660 vector bool long vec_cmple (vector double, vector double);
12661 vector bool long vec_cmplt (vector double, vector double);
12662 vector float vec_div (vector float, vector float);
12663 vector double vec_div (vector double, vector double);
12664 vector double vec_floor (vector double);
12665 vector double vec_ld (int, const vector double *);
12666 vector double vec_ld (int, const double *);
12667 vector double vec_ldl (int, const vector double *);
12668 vector double vec_ldl (int, const double *);
12669 vector unsigned char vec_lvsl (int, const volatile double *);
12670 vector unsigned char vec_lvsr (int, const volatile double *);
12671 vector double vec_madd (vector double, vector double, vector double);
12672 vector double vec_max (vector double, vector double);
12673 vector double vec_min (vector double, vector double);
12674 vector float vec_msub (vector float, vector float, vector float);
12675 vector double vec_msub (vector double, vector double, vector double);
12676 vector float vec_mul (vector float, vector float);
12677 vector double vec_mul (vector double, vector double);
12678 vector float vec_nearbyint (vector float);
12679 vector double vec_nearbyint (vector double);
12680 vector float vec_nmadd (vector float, vector float, vector float);
12681 vector double vec_nmadd (vector double, vector double, vector double);
12682 vector double vec_nmsub (vector double, vector double, vector double);
12683 vector double vec_nor (vector double, vector double);
12684 vector double vec_or (vector double, vector double);
12685 vector double vec_or (vector double, vector bool long);
12686 vector double vec_or (vector bool long, vector double);
12687 vector double vec_perm (vector double,
12688 vector double,
12689 vector unsigned char);
12690 vector double vec_rint (vector double);
12691 vector double vec_recip (vector double, vector double);
12692 vector double vec_rsqrt (vector double);
12693 vector double vec_rsqrte (vector double);
12694 vector double vec_sel (vector double, vector double, vector bool long);
12695 vector double vec_sel (vector double, vector double, vector unsigned long);
12696 vector double vec_sub (vector double, vector double);
12697 vector float vec_sqrt (vector float);
12698 vector double vec_sqrt (vector double);
12699 void vec_st (vector double, int, vector double *);
12700 void vec_st (vector double, int, double *);
12701 vector double vec_trunc (vector double);
12702 vector double vec_xor (vector double, vector double);
12703 vector double vec_xor (vector double, vector bool long);
12704 vector double vec_xor (vector bool long, vector double);
12705 int vec_all_eq (vector double, vector double);
12706 int vec_all_ge (vector double, vector double);
12707 int vec_all_gt (vector double, vector double);
12708 int vec_all_le (vector double, vector double);
12709 int vec_all_lt (vector double, vector double);
12710 int vec_all_nan (vector double);
12711 int vec_all_ne (vector double, vector double);
12712 int vec_all_nge (vector double, vector double);
12713 int vec_all_ngt (vector double, vector double);
12714 int vec_all_nle (vector double, vector double);
12715 int vec_all_nlt (vector double, vector double);
12716 int vec_all_numeric (vector double);
12717 int vec_any_eq (vector double, vector double);
12718 int vec_any_ge (vector double, vector double);
12719 int vec_any_gt (vector double, vector double);
12720 int vec_any_le (vector double, vector double);
12721 int vec_any_lt (vector double, vector double);
12722 int vec_any_nan (vector double);
12723 int vec_any_ne (vector double, vector double);
12724 int vec_any_nge (vector double, vector double);
12725 int vec_any_ngt (vector double, vector double);
12726 int vec_any_nle (vector double, vector double);
12727 int vec_any_nlt (vector double, vector double);
12728 int vec_any_numeric (vector double);
12729
12730 vector double vec_vsx_ld (int, const vector double *);
12731 vector double vec_vsx_ld (int, const double *);
12732 vector float vec_vsx_ld (int, const vector float *);
12733 vector float vec_vsx_ld (int, const float *);
12734 vector bool int vec_vsx_ld (int, const vector bool int *);
12735 vector signed int vec_vsx_ld (int, const vector signed int *);
12736 vector signed int vec_vsx_ld (int, const int *);
12737 vector signed int vec_vsx_ld (int, const long *);
12738 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
12739 vector unsigned int vec_vsx_ld (int, const unsigned int *);
12740 vector unsigned int vec_vsx_ld (int, const unsigned long *);
12741 vector bool short vec_vsx_ld (int, const vector bool short *);
12742 vector pixel vec_vsx_ld (int, const vector pixel *);
12743 vector signed short vec_vsx_ld (int, const vector signed short *);
12744 vector signed short vec_vsx_ld (int, const short *);
12745 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
12746 vector unsigned short vec_vsx_ld (int, const unsigned short *);
12747 vector bool char vec_vsx_ld (int, const vector bool char *);
12748 vector signed char vec_vsx_ld (int, const vector signed char *);
12749 vector signed char vec_vsx_ld (int, const signed char *);
12750 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
12751 vector unsigned char vec_vsx_ld (int, const unsigned char *);
12752
12753 void vec_vsx_st (vector double, int, vector double *);
12754 void vec_vsx_st (vector double, int, double *);
12755 void vec_vsx_st (vector float, int, vector float *);
12756 void vec_vsx_st (vector float, int, float *);
12757 void vec_vsx_st (vector signed int, int, vector signed int *);
12758 void vec_vsx_st (vector signed int, int, int *);
12759 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
12760 void vec_vsx_st (vector unsigned int, int, unsigned int *);
12761 void vec_vsx_st (vector bool int, int, vector bool int *);
12762 void vec_vsx_st (vector bool int, int, unsigned int *);
12763 void vec_vsx_st (vector bool int, int, int *);
12764 void vec_vsx_st (vector signed short, int, vector signed short *);
12765 void vec_vsx_st (vector signed short, int, short *);
12766 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
12767 void vec_vsx_st (vector unsigned short, int, unsigned short *);
12768 void vec_vsx_st (vector bool short, int, vector bool short *);
12769 void vec_vsx_st (vector bool short, int, unsigned short *);
12770 void vec_vsx_st (vector pixel, int, vector pixel *);
12771 void vec_vsx_st (vector pixel, int, unsigned short *);
12772 void vec_vsx_st (vector pixel, int, short *);
12773 void vec_vsx_st (vector bool short, int, short *);
12774 void vec_vsx_st (vector signed char, int, vector signed char *);
12775 void vec_vsx_st (vector signed char, int, signed char *);
12776 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
12777 void vec_vsx_st (vector unsigned char, int, unsigned char *);
12778 void vec_vsx_st (vector bool char, int, vector bool char *);
12779 void vec_vsx_st (vector bool char, int, unsigned char *);
12780 void vec_vsx_st (vector bool char, int, signed char *);
12781 @end smallexample
12782
12783 Note that the @samp{vec_ld} and @samp{vec_st} builtins will always
12784 generate the Altivec @samp{LVX} and @samp{STVX} instructions even
12785 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
12786 @samp{vec_vsx_st} builtins will always generate the VSX @samp{LXVD2X},
12787 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
12788
12789 GCC provides a few other builtins on Powerpc to access certain instructions:
12790 @smallexample
12791 float __builtin_recipdivf (float, float);
12792 float __builtin_rsqrtf (float);
12793 double __builtin_recipdiv (double, double);
12794 double __builtin_rsqrt (double);
12795 long __builtin_bpermd (long, long);
12796 int __builtin_bswap16 (int);
12797 @end smallexample
12798
12799 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
12800 @code{__builtin_rsqrtf} functions generate multiple instructions to
12801 implement the reciprocal sqrt functionality using reciprocal sqrt
12802 estimate instructions.
12803
12804 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
12805 functions generate multiple instructions to implement division using
12806 the reciprocal estimate instructions.
12807
12808 @node RX Built-in Functions
12809 @subsection RX Built-in Functions
12810 GCC supports some of the RX instructions which cannot be expressed in
12811 the C programming language via the use of built-in functions. The
12812 following functions are supported:
12813
12814 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
12815 Generates the @code{brk} machine instruction.
12816 @end deftypefn
12817
12818 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
12819 Generates the @code{clrpsw} machine instruction to clear the specified
12820 bit in the processor status word.
12821 @end deftypefn
12822
12823 @deftypefn {Built-in Function} void __builtin_rx_int (int)
12824 Generates the @code{int} machine instruction to generate an interrupt
12825 with the specified value.
12826 @end deftypefn
12827
12828 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
12829 Generates the @code{machi} machine instruction to add the result of
12830 multiplying the top 16-bits of the two arguments into the
12831 accumulator.
12832 @end deftypefn
12833
12834 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
12835 Generates the @code{maclo} machine instruction to add the result of
12836 multiplying the bottom 16-bits of the two arguments into the
12837 accumulator.
12838 @end deftypefn
12839
12840 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
12841 Generates the @code{mulhi} machine instruction to place the result of
12842 multiplying the top 16-bits of the two arguments into the
12843 accumulator.
12844 @end deftypefn
12845
12846 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
12847 Generates the @code{mullo} machine instruction to place the result of
12848 multiplying the bottom 16-bits of the two arguments into the
12849 accumulator.
12850 @end deftypefn
12851
12852 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
12853 Generates the @code{mvfachi} machine instruction to read the top
12854 32-bits of the accumulator.
12855 @end deftypefn
12856
12857 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
12858 Generates the @code{mvfacmi} machine instruction to read the middle
12859 32-bits of the accumulator.
12860 @end deftypefn
12861
12862 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
12863 Generates the @code{mvfc} machine instruction which reads the control
12864 register specified in its argument and returns its value.
12865 @end deftypefn
12866
12867 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
12868 Generates the @code{mvtachi} machine instruction to set the top
12869 32-bits of the accumulator.
12870 @end deftypefn
12871
12872 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
12873 Generates the @code{mvtaclo} machine instruction to set the bottom
12874 32-bits of the accumulator.
12875 @end deftypefn
12876
12877 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
12878 Generates the @code{mvtc} machine instruction which sets control
12879 register number @code{reg} to @code{val}.
12880 @end deftypefn
12881
12882 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
12883 Generates the @code{mvtipl} machine instruction set the interrupt
12884 priority level.
12885 @end deftypefn
12886
12887 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
12888 Generates the @code{racw} machine instruction to round the accumulator
12889 according to the specified mode.
12890 @end deftypefn
12891
12892 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
12893 Generates the @code{revw} machine instruction which swaps the bytes in
12894 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
12895 and also bits 16--23 occupy bits 24--31 and vice versa.
12896 @end deftypefn
12897
12898 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
12899 Generates the @code{rmpa} machine instruction which initiates a
12900 repeated multiply and accumulate sequence.
12901 @end deftypefn
12902
12903 @deftypefn {Built-in Function} void __builtin_rx_round (float)
12904 Generates the @code{round} machine instruction which returns the
12905 floating point argument rounded according to the current rounding mode
12906 set in the floating point status word register.
12907 @end deftypefn
12908
12909 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
12910 Generates the @code{sat} machine instruction which returns the
12911 saturated value of the argument.
12912 @end deftypefn
12913
12914 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
12915 Generates the @code{setpsw} machine instruction to set the specified
12916 bit in the processor status word.
12917 @end deftypefn
12918
12919 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
12920 Generates the @code{wait} machine instruction.
12921 @end deftypefn
12922
12923 @node SPARC VIS Built-in Functions
12924 @subsection SPARC VIS Built-in Functions
12925
12926 GCC supports SIMD operations on the SPARC using both the generic vector
12927 extensions (@pxref{Vector Extensions}) as well as built-in functions for
12928 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
12929 switch, the VIS extension is exposed as the following built-in functions:
12930
12931 @smallexample
12932 typedef int v2si __attribute__ ((vector_size (8)));
12933 typedef short v4hi __attribute__ ((vector_size (8)));
12934 typedef short v2hi __attribute__ ((vector_size (4)));
12935 typedef char v8qi __attribute__ ((vector_size (8)));
12936 typedef char v4qi __attribute__ ((vector_size (4)));
12937
12938 void * __builtin_vis_alignaddr (void *, long);
12939 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
12940 v2si __builtin_vis_faligndatav2si (v2si, v2si);
12941 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
12942 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
12943
12944 v4hi __builtin_vis_fexpand (v4qi);
12945
12946 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
12947 v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);
12948 v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);
12949 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
12950 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
12951 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
12952 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
12953
12954 v4qi __builtin_vis_fpack16 (v4hi);
12955 v8qi __builtin_vis_fpack32 (v2si, v2si);
12956 v2hi __builtin_vis_fpackfix (v2si);
12957 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
12958
12959 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
12960
12961 int64_t __builtin_vis_edge8 (int64_t, int64_t);
12962 int64_t __builtin_vis_edge8l (int64_t, int64_t);
12963 int64_t __builtin_vis_edge16 (int64_t, int64_t);
12964 int64_t __builtin_vis_edge16l (int64_t, int64_t);
12965 int64_t __builtin_vis_edge32 (int64_t, int64_t);
12966 int64_t __builtin_vis_edge32l (int64_t, int64_t);
12967 @end smallexample
12968
12969 @node SPU Built-in Functions
12970 @subsection SPU Built-in Functions
12971
12972 GCC provides extensions for the SPU processor as described in the
12973 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
12974 found at @uref{http://cell.scei.co.jp/} or
12975 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
12976 implementation differs in several ways.
12977
12978 @itemize @bullet
12979
12980 @item
12981 The optional extension of specifying vector constants in parentheses is
12982 not supported.
12983
12984 @item
12985 A vector initializer requires no cast if the vector constant is of the
12986 same type as the variable it is initializing.
12987
12988 @item
12989 If @code{signed} or @code{unsigned} is omitted, the signedness of the
12990 vector type is the default signedness of the base type. The default
12991 varies depending on the operating system, so a portable program should
12992 always specify the signedness.
12993
12994 @item
12995 By default, the keyword @code{__vector} is added. The macro
12996 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
12997 undefined.
12998
12999 @item
13000 GCC allows using a @code{typedef} name as the type specifier for a
13001 vector type.
13002
13003 @item
13004 For C, overloaded functions are implemented with macros so the following
13005 does not work:
13006
13007 @smallexample
13008 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13009 @end smallexample
13010
13011 Since @code{spu_add} is a macro, the vector constant in the example
13012 is treated as four separate arguments. Wrap the entire argument in
13013 parentheses for this to work.
13014
13015 @item
13016 The extended version of @code{__builtin_expect} is not supported.
13017
13018 @end itemize
13019
13020 @emph{Note:} Only the interface described in the aforementioned
13021 specification is supported. Internally, GCC uses built-in functions to
13022 implement the required functionality, but these are not supported and
13023 are subject to change without notice.
13024
13025 @node TI C6X Built-in Functions
13026 @subsection TI C6X Built-in Functions
13027
13028 GCC provides intrinsics to access certain instructions of the TI C6X
13029 processors. These intrinsics, listed below, are available after
13030 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
13031 to C6X instructions.
13032
13033 @smallexample
13034
13035 int _sadd (int, int)
13036 int _ssub (int, int)
13037 int _sadd2 (int, int)
13038 int _ssub2 (int, int)
13039 long long _mpy2 (int, int)
13040 long long _smpy2 (int, int)
13041 int _add4 (int, int)
13042 int _sub4 (int, int)
13043 int _saddu4 (int, int)
13044
13045 int _smpy (int, int)
13046 int _smpyh (int, int)
13047 int _smpyhl (int, int)
13048 int _smpylh (int, int)
13049
13050 int _sshl (int, int)
13051 int _subc (int, int)
13052
13053 int _avg2 (int, int)
13054 int _avgu4 (int, int)
13055
13056 int _clrr (int, int)
13057 int _extr (int, int)
13058 int _extru (int, int)
13059 int _abs (int)
13060 int _abs2 (int)
13061
13062 @end smallexample
13063
13064 @node Target Format Checks
13065 @section Format Checks Specific to Particular Target Machines
13066
13067 For some target machines, GCC supports additional options to the
13068 format attribute
13069 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
13070
13071 @menu
13072 * Solaris Format Checks::
13073 * Darwin Format Checks::
13074 @end menu
13075
13076 @node Solaris Format Checks
13077 @subsection Solaris Format Checks
13078
13079 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
13080 check. @code{cmn_err} accepts a subset of the standard @code{printf}
13081 conversions, and the two-argument @code{%b} conversion for displaying
13082 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
13083
13084 @node Darwin Format Checks
13085 @subsection Darwin Format Checks
13086
13087 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
13088 attribute context. Declarations made with such attribution will be parsed for correct syntax
13089 and format argument types. However, parsing of the format string itself is currently undefined
13090 and will not be carried out by this version of the compiler.
13091
13092 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
13093 also be used as format arguments. Note that the relevant headers are only likely to be
13094 available on Darwin (OSX) installations. On such installations, the XCode and system
13095 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
13096 associated functions.
13097
13098 @node Pragmas
13099 @section Pragmas Accepted by GCC
13100 @cindex pragmas
13101 @cindex @code{#pragma}
13102
13103 GCC supports several types of pragmas, primarily in order to compile
13104 code originally written for other compilers. Note that in general
13105 we do not recommend the use of pragmas; @xref{Function Attributes},
13106 for further explanation.
13107
13108 @menu
13109 * ARM Pragmas::
13110 * M32C Pragmas::
13111 * MeP Pragmas::
13112 * RS/6000 and PowerPC Pragmas::
13113 * Darwin Pragmas::
13114 * Solaris Pragmas::
13115 * Symbol-Renaming Pragmas::
13116 * Structure-Packing Pragmas::
13117 * Weak Pragmas::
13118 * Diagnostic Pragmas::
13119 * Visibility Pragmas::
13120 * Push/Pop Macro Pragmas::
13121 * Function Specific Option Pragmas::
13122 @end menu
13123
13124 @node ARM Pragmas
13125 @subsection ARM Pragmas
13126
13127 The ARM target defines pragmas for controlling the default addition of
13128 @code{long_call} and @code{short_call} attributes to functions.
13129 @xref{Function Attributes}, for information about the effects of these
13130 attributes.
13131
13132 @table @code
13133 @item long_calls
13134 @cindex pragma, long_calls
13135 Set all subsequent functions to have the @code{long_call} attribute.
13136
13137 @item no_long_calls
13138 @cindex pragma, no_long_calls
13139 Set all subsequent functions to have the @code{short_call} attribute.
13140
13141 @item long_calls_off
13142 @cindex pragma, long_calls_off
13143 Do not affect the @code{long_call} or @code{short_call} attributes of
13144 subsequent functions.
13145 @end table
13146
13147 @node M32C Pragmas
13148 @subsection M32C Pragmas
13149
13150 @table @code
13151 @item GCC memregs @var{number}
13152 @cindex pragma, memregs
13153 Overrides the command-line option @code{-memregs=} for the current
13154 file. Use with care! This pragma must be before any function in the
13155 file, and mixing different memregs values in different objects may
13156 make them incompatible. This pragma is useful when a
13157 performance-critical function uses a memreg for temporary values,
13158 as it may allow you to reduce the number of memregs used.
13159
13160 @item ADDRESS @var{name} @var{address}
13161 @cindex pragma, address
13162 For any declared symbols matching @var{name}, this does three things
13163 to that symbol: it forces the symbol to be located at the given
13164 address (a number), it forces the symbol to be volatile, and it
13165 changes the symbol's scope to be static. This pragma exists for
13166 compatibility with other compilers, but note that the common
13167 @code{1234H} numeric syntax is not supported (use @code{0x1234}
13168 instead). Example:
13169
13170 @example
13171 #pragma ADDRESS port3 0x103
13172 char port3;
13173 @end example
13174
13175 @end table
13176
13177 @node MeP Pragmas
13178 @subsection MeP Pragmas
13179
13180 @table @code
13181
13182 @item custom io_volatile (on|off)
13183 @cindex pragma, custom io_volatile
13184 Overrides the command line option @code{-mio-volatile} for the current
13185 file. Note that for compatibility with future GCC releases, this
13186 option should only be used once before any @code{io} variables in each
13187 file.
13188
13189 @item GCC coprocessor available @var{registers}
13190 @cindex pragma, coprocessor available
13191 Specifies which coprocessor registers are available to the register
13192 allocator. @var{registers} may be a single register, register range
13193 separated by ellipses, or comma-separated list of those. Example:
13194
13195 @example
13196 #pragma GCC coprocessor available $c0...$c10, $c28
13197 @end example
13198
13199 @item GCC coprocessor call_saved @var{registers}
13200 @cindex pragma, coprocessor call_saved
13201 Specifies which coprocessor registers are to be saved and restored by
13202 any function using them. @var{registers} may be a single register,
13203 register range separated by ellipses, or comma-separated list of
13204 those. Example:
13205
13206 @example
13207 #pragma GCC coprocessor call_saved $c4...$c6, $c31
13208 @end example
13209
13210 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
13211 @cindex pragma, coprocessor subclass
13212 Creates and defines a register class. These register classes can be
13213 used by inline @code{asm} constructs. @var{registers} may be a single
13214 register, register range separated by ellipses, or comma-separated
13215 list of those. Example:
13216
13217 @example
13218 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
13219
13220 asm ("cpfoo %0" : "=B" (x));
13221 @end example
13222
13223 @item GCC disinterrupt @var{name} , @var{name} @dots{}
13224 @cindex pragma, disinterrupt
13225 For the named functions, the compiler adds code to disable interrupts
13226 for the duration of those functions. Any functions so named, which
13227 are not encountered in the source, cause a warning that the pragma was
13228 not used. Examples:
13229
13230 @example
13231 #pragma disinterrupt foo
13232 #pragma disinterrupt bar, grill
13233 int foo () @{ @dots{} @}
13234 @end example
13235
13236 @item GCC call @var{name} , @var{name} @dots{}
13237 @cindex pragma, call
13238 For the named functions, the compiler always uses a register-indirect
13239 call model when calling the named functions. Examples:
13240
13241 @example
13242 extern int foo ();
13243 #pragma call foo
13244 @end example
13245
13246 @end table
13247
13248 @node RS/6000 and PowerPC Pragmas
13249 @subsection RS/6000 and PowerPC Pragmas
13250
13251 The RS/6000 and PowerPC targets define one pragma for controlling
13252 whether or not the @code{longcall} attribute is added to function
13253 declarations by default. This pragma overrides the @option{-mlongcall}
13254 option, but not the @code{longcall} and @code{shortcall} attributes.
13255 @xref{RS/6000 and PowerPC Options}, for more information about when long
13256 calls are and are not necessary.
13257
13258 @table @code
13259 @item longcall (1)
13260 @cindex pragma, longcall
13261 Apply the @code{longcall} attribute to all subsequent function
13262 declarations.
13263
13264 @item longcall (0)
13265 Do not apply the @code{longcall} attribute to subsequent function
13266 declarations.
13267 @end table
13268
13269 @c Describe h8300 pragmas here.
13270 @c Describe sh pragmas here.
13271 @c Describe v850 pragmas here.
13272
13273 @node Darwin Pragmas
13274 @subsection Darwin Pragmas
13275
13276 The following pragmas are available for all architectures running the
13277 Darwin operating system. These are useful for compatibility with other
13278 Mac OS compilers.
13279
13280 @table @code
13281 @item mark @var{tokens}@dots{}
13282 @cindex pragma, mark
13283 This pragma is accepted, but has no effect.
13284
13285 @item options align=@var{alignment}
13286 @cindex pragma, options align
13287 This pragma sets the alignment of fields in structures. The values of
13288 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
13289 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
13290 properly; to restore the previous setting, use @code{reset} for the
13291 @var{alignment}.
13292
13293 @item segment @var{tokens}@dots{}
13294 @cindex pragma, segment
13295 This pragma is accepted, but has no effect.
13296
13297 @item unused (@var{var} [, @var{var}]@dots{})
13298 @cindex pragma, unused
13299 This pragma declares variables to be possibly unused. GCC will not
13300 produce warnings for the listed variables. The effect is similar to
13301 that of the @code{unused} attribute, except that this pragma may appear
13302 anywhere within the variables' scopes.
13303 @end table
13304
13305 @node Solaris Pragmas
13306 @subsection Solaris Pragmas
13307
13308 The Solaris target supports @code{#pragma redefine_extname}
13309 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
13310 @code{#pragma} directives for compatibility with the system compiler.
13311
13312 @table @code
13313 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
13314 @cindex pragma, align
13315
13316 Increase the minimum alignment of each @var{variable} to @var{alignment}.
13317 This is the same as GCC's @code{aligned} attribute @pxref{Variable
13318 Attributes}). Macro expansion occurs on the arguments to this pragma
13319 when compiling C and Objective-C@. It does not currently occur when
13320 compiling C++, but this is a bug which may be fixed in a future
13321 release.
13322
13323 @item fini (@var{function} [, @var{function}]...)
13324 @cindex pragma, fini
13325
13326 This pragma causes each listed @var{function} to be called after
13327 main, or during shared module unloading, by adding a call to the
13328 @code{.fini} section.
13329
13330 @item init (@var{function} [, @var{function}]...)
13331 @cindex pragma, init
13332
13333 This pragma causes each listed @var{function} to be called during
13334 initialization (before @code{main}) or during shared module loading, by
13335 adding a call to the @code{.init} section.
13336
13337 @end table
13338
13339 @node Symbol-Renaming Pragmas
13340 @subsection Symbol-Renaming Pragmas
13341
13342 For compatibility with the Solaris and Tru64 UNIX system headers, GCC
13343 supports two @code{#pragma} directives which change the name used in
13344 assembly for a given declaration. @code{#pragma extern_prefix} is only
13345 available on platforms whose system headers need it. To get this effect
13346 on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
13347 Labels}).
13348
13349 @table @code
13350 @item redefine_extname @var{oldname} @var{newname}
13351 @cindex pragma, redefine_extname
13352
13353 This pragma gives the C function @var{oldname} the assembly symbol
13354 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
13355 will be defined if this pragma is available (currently on all platforms).
13356
13357 @item extern_prefix @var{string}
13358 @cindex pragma, extern_prefix
13359
13360 This pragma causes all subsequent external function and variable
13361 declarations to have @var{string} prepended to their assembly symbols.
13362 This effect may be terminated with another @code{extern_prefix} pragma
13363 whose argument is an empty string. The preprocessor macro
13364 @code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
13365 available (currently only on Tru64 UNIX)@.
13366 @end table
13367
13368 These pragmas and the asm labels extension interact in a complicated
13369 manner. Here are some corner cases you may want to be aware of.
13370
13371 @enumerate
13372 @item Both pragmas silently apply only to declarations with external
13373 linkage. Asm labels do not have this restriction.
13374
13375 @item In C++, both pragmas silently apply only to declarations with
13376 ``C'' linkage. Again, asm labels do not have this restriction.
13377
13378 @item If any of the three ways of changing the assembly name of a
13379 declaration is applied to a declaration whose assembly name has
13380 already been determined (either by a previous use of one of these
13381 features, or because the compiler needed the assembly name in order to
13382 generate code), and the new name is different, a warning issues and
13383 the name does not change.
13384
13385 @item The @var{oldname} used by @code{#pragma redefine_extname} is
13386 always the C-language name.
13387
13388 @item If @code{#pragma extern_prefix} is in effect, and a declaration
13389 occurs with an asm label attached, the prefix is silently ignored for
13390 that declaration.
13391
13392 @item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
13393 apply to the same declaration, whichever triggered first wins, and a
13394 warning issues if they contradict each other. (We would like to have
13395 @code{#pragma redefine_extname} always win, for consistency with asm
13396 labels, but if @code{#pragma extern_prefix} triggers first we have no
13397 way of knowing that that happened.)
13398 @end enumerate
13399
13400 @node Structure-Packing Pragmas
13401 @subsection Structure-Packing Pragmas
13402
13403 For compatibility with Microsoft Windows compilers, GCC supports a
13404 set of @code{#pragma} directives which change the maximum alignment of
13405 members of structures (other than zero-width bitfields), unions, and
13406 classes subsequently defined. The @var{n} value below always is required
13407 to be a small power of two and specifies the new alignment in bytes.
13408
13409 @enumerate
13410 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
13411 @item @code{#pragma pack()} sets the alignment to the one that was in
13412 effect when compilation started (see also command-line option
13413 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
13414 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
13415 setting on an internal stack and then optionally sets the new alignment.
13416 @item @code{#pragma pack(pop)} restores the alignment setting to the one
13417 saved at the top of the internal stack (and removes that stack entry).
13418 Note that @code{#pragma pack([@var{n}])} does not influence this internal
13419 stack; thus it is possible to have @code{#pragma pack(push)} followed by
13420 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
13421 @code{#pragma pack(pop)}.
13422 @end enumerate
13423
13424 Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
13425 @code{#pragma} which lays out a structure as the documented
13426 @code{__attribute__ ((ms_struct))}.
13427 @enumerate
13428 @item @code{#pragma ms_struct on} turns on the layout for structures
13429 declared.
13430 @item @code{#pragma ms_struct off} turns off the layout for structures
13431 declared.
13432 @item @code{#pragma ms_struct reset} goes back to the default layout.
13433 @end enumerate
13434
13435 @node Weak Pragmas
13436 @subsection Weak Pragmas
13437
13438 For compatibility with SVR4, GCC supports a set of @code{#pragma}
13439 directives for declaring symbols to be weak, and defining weak
13440 aliases.
13441
13442 @table @code
13443 @item #pragma weak @var{symbol}
13444 @cindex pragma, weak
13445 This pragma declares @var{symbol} to be weak, as if the declaration
13446 had the attribute of the same name. The pragma may appear before
13447 or after the declaration of @var{symbol}. It is not an error for
13448 @var{symbol} to never be defined at all.
13449
13450 @item #pragma weak @var{symbol1} = @var{symbol2}
13451 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
13452 It is an error if @var{symbol2} is not defined in the current
13453 translation unit.
13454 @end table
13455
13456 @node Diagnostic Pragmas
13457 @subsection Diagnostic Pragmas
13458
13459 GCC allows the user to selectively enable or disable certain types of
13460 diagnostics, and change the kind of the diagnostic. For example, a
13461 project's policy might require that all sources compile with
13462 @option{-Werror} but certain files might have exceptions allowing
13463 specific types of warnings. Or, a project might selectively enable
13464 diagnostics and treat them as errors depending on which preprocessor
13465 macros are defined.
13466
13467 @table @code
13468 @item #pragma GCC diagnostic @var{kind} @var{option}
13469 @cindex pragma, diagnostic
13470
13471 Modifies the disposition of a diagnostic. Note that not all
13472 diagnostics are modifiable; at the moment only warnings (normally
13473 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
13474 Use @option{-fdiagnostics-show-option} to determine which diagnostics
13475 are controllable and which option controls them.
13476
13477 @var{kind} is @samp{error} to treat this diagnostic as an error,
13478 @samp{warning} to treat it like a warning (even if @option{-Werror} is
13479 in effect), or @samp{ignored} if the diagnostic is to be ignored.
13480 @var{option} is a double quoted string which matches the command-line
13481 option.
13482
13483 @example
13484 #pragma GCC diagnostic warning "-Wformat"
13485 #pragma GCC diagnostic error "-Wformat"
13486 #pragma GCC diagnostic ignored "-Wformat"
13487 @end example
13488
13489 Note that these pragmas override any command-line options. GCC keeps
13490 track of the location of each pragma, and issues diagnostics according
13491 to the state as of that point in the source file. Thus, pragmas occurring
13492 after a line do not affect diagnostics caused by that line.
13493
13494 @item #pragma GCC diagnostic push
13495 @itemx #pragma GCC diagnostic pop
13496
13497 Causes GCC to remember the state of the diagnostics as of each
13498 @code{push}, and restore to that point at each @code{pop}. If a
13499 @code{pop} has no matching @code{push}, the command line options are
13500 restored.
13501
13502 @example
13503 #pragma GCC diagnostic error "-Wuninitialized"
13504 foo(a); /* error is given for this one */
13505 #pragma GCC diagnostic push
13506 #pragma GCC diagnostic ignored "-Wuninitialized"
13507 foo(b); /* no diagnostic for this one */
13508 #pragma GCC diagnostic pop
13509 foo(c); /* error is given for this one */
13510 #pragma GCC diagnostic pop
13511 foo(d); /* depends on command line options */
13512 @end example
13513
13514 @end table
13515
13516 GCC also offers a simple mechanism for printing messages during
13517 compilation.
13518
13519 @table @code
13520 @item #pragma message @var{string}
13521 @cindex pragma, diagnostic
13522
13523 Prints @var{string} as a compiler message on compilation. The message
13524 is informational only, and is neither a compilation warning nor an error.
13525
13526 @smallexample
13527 #pragma message "Compiling " __FILE__ "..."
13528 @end smallexample
13529
13530 @var{string} may be parenthesized, and is printed with location
13531 information. For example,
13532
13533 @smallexample
13534 #define DO_PRAGMA(x) _Pragma (#x)
13535 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
13536
13537 TODO(Remember to fix this)
13538 @end smallexample
13539
13540 prints @samp{/tmp/file.c:4: note: #pragma message:
13541 TODO - Remember to fix this}.
13542
13543 @end table
13544
13545 @node Visibility Pragmas
13546 @subsection Visibility Pragmas
13547
13548 @table @code
13549 @item #pragma GCC visibility push(@var{visibility})
13550 @itemx #pragma GCC visibility pop
13551 @cindex pragma, visibility
13552
13553 This pragma allows the user to set the visibility for multiple
13554 declarations without having to give each a visibility attribute
13555 @xref{Function Attributes}, for more information about visibility and
13556 the attribute syntax.
13557
13558 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
13559 declarations. Class members and template specializations are not
13560 affected; if you want to override the visibility for a particular
13561 member or instantiation, you must use an attribute.
13562
13563 @end table
13564
13565
13566 @node Push/Pop Macro Pragmas
13567 @subsection Push/Pop Macro Pragmas
13568
13569 For compatibility with Microsoft Windows compilers, GCC supports
13570 @samp{#pragma push_macro(@var{"macro_name"})}
13571 and @samp{#pragma pop_macro(@var{"macro_name"})}.
13572
13573 @table @code
13574 @item #pragma push_macro(@var{"macro_name"})
13575 @cindex pragma, push_macro
13576 This pragma saves the value of the macro named as @var{macro_name} to
13577 the top of the stack for this macro.
13578
13579 @item #pragma pop_macro(@var{"macro_name"})
13580 @cindex pragma, pop_macro
13581 This pragma sets the value of the macro named as @var{macro_name} to
13582 the value on top of the stack for this macro. If the stack for
13583 @var{macro_name} is empty, the value of the macro remains unchanged.
13584 @end table
13585
13586 For example:
13587
13588 @smallexample
13589 #define X 1
13590 #pragma push_macro("X")
13591 #undef X
13592 #define X -1
13593 #pragma pop_macro("X")
13594 int x [X];
13595 @end smallexample
13596
13597 In this example, the definition of X as 1 is saved by @code{#pragma
13598 push_macro} and restored by @code{#pragma pop_macro}.
13599
13600 @node Function Specific Option Pragmas
13601 @subsection Function Specific Option Pragmas
13602
13603 @table @code
13604 @item #pragma GCC target (@var{"string"}...)
13605 @cindex pragma GCC target
13606
13607 This pragma allows you to set target specific options for functions
13608 defined later in the source file. One or more strings can be
13609 specified. Each function that is defined after this point will be as
13610 if @code{attribute((target("STRING")))} was specified for that
13611 function. The parenthesis around the options is optional.
13612 @xref{Function Attributes}, for more information about the
13613 @code{target} attribute and the attribute syntax.
13614
13615 The @code{#pragma GCC target} attribute is not implemented in GCC versions earlier
13616 than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. At
13617 present, it is not implemented for other backends.
13618 @end table
13619
13620 @table @code
13621 @item #pragma GCC optimize (@var{"string"}...)
13622 @cindex pragma GCC optimize
13623
13624 This pragma allows you to set global optimization options for functions
13625 defined later in the source file. One or more strings can be
13626 specified. Each function that is defined after this point will be as
13627 if @code{attribute((optimize("STRING")))} was specified for that
13628 function. The parenthesis around the options is optional.
13629 @xref{Function Attributes}, for more information about the
13630 @code{optimize} attribute and the attribute syntax.
13631
13632 The @samp{#pragma GCC optimize} pragma is not implemented in GCC
13633 versions earlier than 4.4.
13634 @end table
13635
13636 @table @code
13637 @item #pragma GCC push_options
13638 @itemx #pragma GCC pop_options
13639 @cindex pragma GCC push_options
13640 @cindex pragma GCC pop_options
13641
13642 These pragmas maintain a stack of the current target and optimization
13643 options. It is intended for include files where you temporarily want
13644 to switch to using a different @samp{#pragma GCC target} or
13645 @samp{#pragma GCC optimize} and then to pop back to the previous
13646 options.
13647
13648 The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
13649 pragmas are not implemented in GCC versions earlier than 4.4.
13650 @end table
13651
13652 @table @code
13653 @item #pragma GCC reset_options
13654 @cindex pragma GCC reset_options
13655
13656 This pragma clears the current @code{#pragma GCC target} and
13657 @code{#pragma GCC optimize} to use the default switches as specified
13658 on the command line.
13659
13660 The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
13661 versions earlier than 4.4.
13662 @end table
13663
13664 @node Unnamed Fields
13665 @section Unnamed struct/union fields within structs/unions
13666 @cindex @code{struct}
13667 @cindex @code{union}
13668
13669 As permitted by ISO C1X and for compatibility with other compilers,
13670 GCC allows you to define
13671 a structure or union that contains, as fields, structures and unions
13672 without names. For example:
13673
13674 @smallexample
13675 struct @{
13676 int a;
13677 union @{
13678 int b;
13679 float c;
13680 @};
13681 int d;
13682 @} foo;
13683 @end smallexample
13684
13685 In this example, the user would be able to access members of the unnamed
13686 union with code like @samp{foo.b}. Note that only unnamed structs and
13687 unions are allowed, you may not have, for example, an unnamed
13688 @code{int}.
13689
13690 You must never create such structures that cause ambiguous field definitions.
13691 For example, this structure:
13692
13693 @smallexample
13694 struct @{
13695 int a;
13696 struct @{
13697 int a;
13698 @};
13699 @} foo;
13700 @end smallexample
13701
13702 It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
13703 The compiler gives errors for such constructs.
13704
13705 @opindex fms-extensions
13706 Unless @option{-fms-extensions} is used, the unnamed field must be a
13707 structure or union definition without a tag (for example, @samp{struct
13708 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
13709 also be a definition with a tag such as @samp{struct foo @{ int a;
13710 @};}, a reference to a previously defined structure or union such as
13711 @samp{struct foo;}, or a reference to a @code{typedef} name for a
13712 previously defined structure or union type.
13713
13714 @opindex fplan9-extensions
13715 The option @option{-fplan9-extensions} enables
13716 @option{-fms-extensions} as well as two other extensions. First, a
13717 pointer to a structure is automatically converted to a pointer to an
13718 anonymous field for assignments and function calls. For example:
13719
13720 @smallexample
13721 struct s1 @{ int a; @};
13722 struct s2 @{ struct s1; @};
13723 extern void f1 (struct s1 *);
13724 void f2 (struct s2 *p) @{ f1 (p); @}
13725 @end smallexample
13726
13727 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
13728 converted into a pointer to the anonymous field.
13729
13730 Second, when the type of an anonymous field is a @code{typedef} for a
13731 @code{struct} or @code{union}, code may refer to the field using the
13732 name of the @code{typedef}.
13733
13734 @smallexample
13735 typedef struct @{ int a; @} s1;
13736 struct s2 @{ s1; @};
13737 s1 f1 (struct s2 *p) @{ return p->s1; @}
13738 @end smallexample
13739
13740 These usages are only permitted when they are not ambiguous.
13741
13742 @node Thread-Local
13743 @section Thread-Local Storage
13744 @cindex Thread-Local Storage
13745 @cindex @acronym{TLS}
13746 @cindex @code{__thread}
13747
13748 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
13749 are allocated such that there is one instance of the variable per extant
13750 thread. The run-time model GCC uses to implement this originates
13751 in the IA-64 processor-specific ABI, but has since been migrated
13752 to other processors as well. It requires significant support from
13753 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
13754 system libraries (@file{libc.so} and @file{libpthread.so}), so it
13755 is not available everywhere.
13756
13757 At the user level, the extension is visible with a new storage
13758 class keyword: @code{__thread}. For example:
13759
13760 @smallexample
13761 __thread int i;
13762 extern __thread struct state s;
13763 static __thread char *p;
13764 @end smallexample
13765
13766 The @code{__thread} specifier may be used alone, with the @code{extern}
13767 or @code{static} specifiers, but with no other storage class specifier.
13768 When used with @code{extern} or @code{static}, @code{__thread} must appear
13769 immediately after the other storage class specifier.
13770
13771 The @code{__thread} specifier may be applied to any global, file-scoped
13772 static, function-scoped static, or static data member of a class. It may
13773 not be applied to block-scoped automatic or non-static data member.
13774
13775 When the address-of operator is applied to a thread-local variable, it is
13776 evaluated at run-time and returns the address of the current thread's
13777 instance of that variable. An address so obtained may be used by any
13778 thread. When a thread terminates, any pointers to thread-local variables
13779 in that thread become invalid.
13780
13781 No static initialization may refer to the address of a thread-local variable.
13782
13783 In C++, if an initializer is present for a thread-local variable, it must
13784 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
13785 standard.
13786
13787 See @uref{http://www.akkadia.org/drepper/tls.pdf,
13788 ELF Handling For Thread-Local Storage} for a detailed explanation of
13789 the four thread-local storage addressing models, and how the run-time
13790 is expected to function.
13791
13792 @menu
13793 * C99 Thread-Local Edits::
13794 * C++98 Thread-Local Edits::
13795 @end menu
13796
13797 @node C99 Thread-Local Edits
13798 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
13799
13800 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
13801 that document the exact semantics of the language extension.
13802
13803 @itemize @bullet
13804 @item
13805 @cite{5.1.2 Execution environments}
13806
13807 Add new text after paragraph 1
13808
13809 @quotation
13810 Within either execution environment, a @dfn{thread} is a flow of
13811 control within a program. It is implementation defined whether
13812 or not there may be more than one thread associated with a program.
13813 It is implementation defined how threads beyond the first are
13814 created, the name and type of the function called at thread
13815 startup, and how threads may be terminated. However, objects
13816 with thread storage duration shall be initialized before thread
13817 startup.
13818 @end quotation
13819
13820 @item
13821 @cite{6.2.4 Storage durations of objects}
13822
13823 Add new text before paragraph 3
13824
13825 @quotation
13826 An object whose identifier is declared with the storage-class
13827 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
13828 Its lifetime is the entire execution of the thread, and its
13829 stored value is initialized only once, prior to thread startup.
13830 @end quotation
13831
13832 @item
13833 @cite{6.4.1 Keywords}
13834
13835 Add @code{__thread}.
13836
13837 @item
13838 @cite{6.7.1 Storage-class specifiers}
13839
13840 Add @code{__thread} to the list of storage class specifiers in
13841 paragraph 1.
13842
13843 Change paragraph 2 to
13844
13845 @quotation
13846 With the exception of @code{__thread}, at most one storage-class
13847 specifier may be given [@dots{}]. The @code{__thread} specifier may
13848 be used alone, or immediately following @code{extern} or
13849 @code{static}.
13850 @end quotation
13851
13852 Add new text after paragraph 6
13853
13854 @quotation
13855 The declaration of an identifier for a variable that has
13856 block scope that specifies @code{__thread} shall also
13857 specify either @code{extern} or @code{static}.
13858
13859 The @code{__thread} specifier shall be used only with
13860 variables.
13861 @end quotation
13862 @end itemize
13863
13864 @node C++98 Thread-Local Edits
13865 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
13866
13867 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
13868 that document the exact semantics of the language extension.
13869
13870 @itemize @bullet
13871 @item
13872 @b{[intro.execution]}
13873
13874 New text after paragraph 4
13875
13876 @quotation
13877 A @dfn{thread} is a flow of control within the abstract machine.
13878 It is implementation defined whether or not there may be more than
13879 one thread.
13880 @end quotation
13881
13882 New text after paragraph 7
13883
13884 @quotation
13885 It is unspecified whether additional action must be taken to
13886 ensure when and whether side effects are visible to other threads.
13887 @end quotation
13888
13889 @item
13890 @b{[lex.key]}
13891
13892 Add @code{__thread}.
13893
13894 @item
13895 @b{[basic.start.main]}
13896
13897 Add after paragraph 5
13898
13899 @quotation
13900 The thread that begins execution at the @code{main} function is called
13901 the @dfn{main thread}. It is implementation defined how functions
13902 beginning threads other than the main thread are designated or typed.
13903 A function so designated, as well as the @code{main} function, is called
13904 a @dfn{thread startup function}. It is implementation defined what
13905 happens if a thread startup function returns. It is implementation
13906 defined what happens to other threads when any thread calls @code{exit}.
13907 @end quotation
13908
13909 @item
13910 @b{[basic.start.init]}
13911
13912 Add after paragraph 4
13913
13914 @quotation
13915 The storage for an object of thread storage duration shall be
13916 statically initialized before the first statement of the thread startup
13917 function. An object of thread storage duration shall not require
13918 dynamic initialization.
13919 @end quotation
13920
13921 @item
13922 @b{[basic.start.term]}
13923
13924 Add after paragraph 3
13925
13926 @quotation
13927 The type of an object with thread storage duration shall not have a
13928 non-trivial destructor, nor shall it be an array type whose elements
13929 (directly or indirectly) have non-trivial destructors.
13930 @end quotation
13931
13932 @item
13933 @b{[basic.stc]}
13934
13935 Add ``thread storage duration'' to the list in paragraph 1.
13936
13937 Change paragraph 2
13938
13939 @quotation
13940 Thread, static, and automatic storage durations are associated with
13941 objects introduced by declarations [@dots{}].
13942 @end quotation
13943
13944 Add @code{__thread} to the list of specifiers in paragraph 3.
13945
13946 @item
13947 @b{[basic.stc.thread]}
13948
13949 New section before @b{[basic.stc.static]}
13950
13951 @quotation
13952 The keyword @code{__thread} applied to a non-local object gives the
13953 object thread storage duration.
13954
13955 A local variable or class data member declared both @code{static}
13956 and @code{__thread} gives the variable or member thread storage
13957 duration.
13958 @end quotation
13959
13960 @item
13961 @b{[basic.stc.static]}
13962
13963 Change paragraph 1
13964
13965 @quotation
13966 All objects which have neither thread storage duration, dynamic
13967 storage duration nor are local [@dots{}].
13968 @end quotation
13969
13970 @item
13971 @b{[dcl.stc]}
13972
13973 Add @code{__thread} to the list in paragraph 1.
13974
13975 Change paragraph 1
13976
13977 @quotation
13978 With the exception of @code{__thread}, at most one
13979 @var{storage-class-specifier} shall appear in a given
13980 @var{decl-specifier-seq}. The @code{__thread} specifier may
13981 be used alone, or immediately following the @code{extern} or
13982 @code{static} specifiers. [@dots{}]
13983 @end quotation
13984
13985 Add after paragraph 5
13986
13987 @quotation
13988 The @code{__thread} specifier can be applied only to the names of objects
13989 and to anonymous unions.
13990 @end quotation
13991
13992 @item
13993 @b{[class.mem]}
13994
13995 Add after paragraph 6
13996
13997 @quotation
13998 Non-@code{static} members shall not be @code{__thread}.
13999 @end quotation
14000 @end itemize
14001
14002 @node Binary constants
14003 @section Binary constants using the @samp{0b} prefix
14004 @cindex Binary constants using the @samp{0b} prefix
14005
14006 Integer constants can be written as binary constants, consisting of a
14007 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
14008 @samp{0B}. This is particularly useful in environments that operate a
14009 lot on the bit-level (like microcontrollers).
14010
14011 The following statements are identical:
14012
14013 @smallexample
14014 i = 42;
14015 i = 0x2a;
14016 i = 052;
14017 i = 0b101010;
14018 @end smallexample
14019
14020 The type of these constants follows the same rules as for octal or
14021 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
14022 can be applied.
14023
14024 @node C++ Extensions
14025 @chapter Extensions to the C++ Language
14026 @cindex extensions, C++ language
14027 @cindex C++ language extensions
14028
14029 The GNU compiler provides these extensions to the C++ language (and you
14030 can also use most of the C language extensions in your C++ programs). If you
14031 want to write code that checks whether these features are available, you can
14032 test for the GNU compiler the same way as for C programs: check for a
14033 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
14034 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
14035 Predefined Macros,cpp,The GNU C Preprocessor}).
14036
14037 @menu
14038 * C++ Volatiles:: What constitutes an access to a volatile object.
14039 * Restricted Pointers:: C99 restricted pointers and references.
14040 * Vague Linkage:: Where G++ puts inlines, vtables and such.
14041 * C++ Interface:: You can use a single C++ header file for both
14042 declarations and definitions.
14043 * Template Instantiation:: Methods for ensuring that exactly one copy of
14044 each needed template instantiation is emitted.
14045 * Bound member functions:: You can extract a function pointer to the
14046 method denoted by a @samp{->*} or @samp{.*} expression.
14047 * C++ Attributes:: Variable, function, and type attributes for C++ only.
14048 * Namespace Association:: Strong using-directives for namespace association.
14049 * Type Traits:: Compiler support for type traits
14050 * Java Exceptions:: Tweaking exception handling to work with Java.
14051 * Deprecated Features:: Things will disappear from g++.
14052 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
14053 @end menu
14054
14055 @node C++ Volatiles
14056 @section When is a Volatile C++ Object Accessed?
14057 @cindex accessing volatiles
14058 @cindex volatile read
14059 @cindex volatile write
14060 @cindex volatile access
14061
14062 The C++ standard differs from the C standard in its treatment of
14063 volatile objects. It fails to specify what constitutes a volatile
14064 access, except to say that C++ should behave in a similar manner to C
14065 with respect to volatiles, where possible. However, the different
14066 lvalueness of expressions between C and C++ complicate the behavior.
14067 G++ behaves the same as GCC for volatile access, @xref{C
14068 Extensions,,Volatiles}, for a description of GCC's behavior.
14069
14070 The C and C++ language specifications differ when an object is
14071 accessed in a void context:
14072
14073 @smallexample
14074 volatile int *src = @var{somevalue};
14075 *src;
14076 @end smallexample
14077
14078 The C++ standard specifies that such expressions do not undergo lvalue
14079 to rvalue conversion, and that the type of the dereferenced object may
14080 be incomplete. The C++ standard does not specify explicitly that it
14081 is lvalue to rvalue conversion which is responsible for causing an
14082 access. There is reason to believe that it is, because otherwise
14083 certain simple expressions become undefined. However, because it
14084 would surprise most programmers, G++ treats dereferencing a pointer to
14085 volatile object of complete type as GCC would do for an equivalent
14086 type in C@. When the object has incomplete type, G++ issues a
14087 warning; if you wish to force an error, you must force a conversion to
14088 rvalue with, for instance, a static cast.
14089
14090 When using a reference to volatile, G++ does not treat equivalent
14091 expressions as accesses to volatiles, but instead issues a warning that
14092 no volatile is accessed. The rationale for this is that otherwise it
14093 becomes difficult to determine where volatile access occur, and not
14094 possible to ignore the return value from functions returning volatile
14095 references. Again, if you wish to force a read, cast the reference to
14096 an rvalue.
14097
14098 G++ implements the same behavior as GCC does when assigning to a
14099 volatile object -- there is no reread of the assigned-to object, the
14100 assigned rvalue is reused. Note that in C++ assignment expressions
14101 are lvalues, and if used as an lvalue, the volatile object will be
14102 referred to. For instance, @var{vref} will refer to @var{vobj}, as
14103 expected, in the following example:
14104
14105 @smallexample
14106 volatile int vobj;
14107 volatile int &vref = vobj = @var{something};
14108 @end smallexample
14109
14110 @node Restricted Pointers
14111 @section Restricting Pointer Aliasing
14112 @cindex restricted pointers
14113 @cindex restricted references
14114 @cindex restricted this pointer
14115
14116 As with the C front end, G++ understands the C99 feature of restricted pointers,
14117 specified with the @code{__restrict__}, or @code{__restrict} type
14118 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
14119 language flag, @code{restrict} is not a keyword in C++.
14120
14121 In addition to allowing restricted pointers, you can specify restricted
14122 references, which indicate that the reference is not aliased in the local
14123 context.
14124
14125 @smallexample
14126 void fn (int *__restrict__ rptr, int &__restrict__ rref)
14127 @{
14128 /* @r{@dots{}} */
14129 @}
14130 @end smallexample
14131
14132 @noindent
14133 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
14134 @var{rref} refers to a (different) unaliased integer.
14135
14136 You may also specify whether a member function's @var{this} pointer is
14137 unaliased by using @code{__restrict__} as a member function qualifier.
14138
14139 @smallexample
14140 void T::fn () __restrict__
14141 @{
14142 /* @r{@dots{}} */
14143 @}
14144 @end smallexample
14145
14146 @noindent
14147 Within the body of @code{T::fn}, @var{this} will have the effective
14148 definition @code{T *__restrict__ const this}. Notice that the
14149 interpretation of a @code{__restrict__} member function qualifier is
14150 different to that of @code{const} or @code{volatile} qualifier, in that it
14151 is applied to the pointer rather than the object. This is consistent with
14152 other compilers which implement restricted pointers.
14153
14154 As with all outermost parameter qualifiers, @code{__restrict__} is
14155 ignored in function definition matching. This means you only need to
14156 specify @code{__restrict__} in a function definition, rather than
14157 in a function prototype as well.
14158
14159 @node Vague Linkage
14160 @section Vague Linkage
14161 @cindex vague linkage
14162
14163 There are several constructs in C++ which require space in the object
14164 file but are not clearly tied to a single translation unit. We say that
14165 these constructs have ``vague linkage''. Typically such constructs are
14166 emitted wherever they are needed, though sometimes we can be more
14167 clever.
14168
14169 @table @asis
14170 @item Inline Functions
14171 Inline functions are typically defined in a header file which can be
14172 included in many different compilations. Hopefully they can usually be
14173 inlined, but sometimes an out-of-line copy is necessary, if the address
14174 of the function is taken or if inlining fails. In general, we emit an
14175 out-of-line copy in all translation units where one is needed. As an
14176 exception, we only emit inline virtual functions with the vtable, since
14177 it will always require a copy.
14178
14179 Local static variables and string constants used in an inline function
14180 are also considered to have vague linkage, since they must be shared
14181 between all inlined and out-of-line instances of the function.
14182
14183 @item VTables
14184 @cindex vtable
14185 C++ virtual functions are implemented in most compilers using a lookup
14186 table, known as a vtable. The vtable contains pointers to the virtual
14187 functions provided by a class, and each object of the class contains a
14188 pointer to its vtable (or vtables, in some multiple-inheritance
14189 situations). If the class declares any non-inline, non-pure virtual
14190 functions, the first one is chosen as the ``key method'' for the class,
14191 and the vtable is only emitted in the translation unit where the key
14192 method is defined.
14193
14194 @emph{Note:} If the chosen key method is later defined as inline, the
14195 vtable will still be emitted in every translation unit which defines it.
14196 Make sure that any inline virtuals are declared inline in the class
14197 body, even if they are not defined there.
14198
14199 @item @code{type_info} objects
14200 @cindex @code{type_info}
14201 @cindex RTTI
14202 C++ requires information about types to be written out in order to
14203 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
14204 For polymorphic classes (classes with virtual functions), the @samp{type_info}
14205 object is written out along with the vtable so that @samp{dynamic_cast}
14206 can determine the dynamic type of a class object at runtime. For all
14207 other types, we write out the @samp{type_info} object when it is used: when
14208 applying @samp{typeid} to an expression, throwing an object, or
14209 referring to a type in a catch clause or exception specification.
14210
14211 @item Template Instantiations
14212 Most everything in this section also applies to template instantiations,
14213 but there are other options as well.
14214 @xref{Template Instantiation,,Where's the Template?}.
14215
14216 @end table
14217
14218 When used with GNU ld version 2.8 or later on an ELF system such as
14219 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
14220 these constructs will be discarded at link time. This is known as
14221 COMDAT support.
14222
14223 On targets that don't support COMDAT, but do support weak symbols, GCC
14224 will use them. This way one copy will override all the others, but
14225 the unused copies will still take up space in the executable.
14226
14227 For targets which do not support either COMDAT or weak symbols,
14228 most entities with vague linkage will be emitted as local symbols to
14229 avoid duplicate definition errors from the linker. This will not happen
14230 for local statics in inlines, however, as having multiple copies will
14231 almost certainly break things.
14232
14233 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
14234 another way to control placement of these constructs.
14235
14236 @node C++ Interface
14237 @section #pragma interface and implementation
14238
14239 @cindex interface and implementation headers, C++
14240 @cindex C++ interface and implementation headers
14241 @cindex pragmas, interface and implementation
14242
14243 @code{#pragma interface} and @code{#pragma implementation} provide the
14244 user with a way of explicitly directing the compiler to emit entities
14245 with vague linkage (and debugging information) in a particular
14246 translation unit.
14247
14248 @emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
14249 most cases, because of COMDAT support and the ``key method'' heuristic
14250 mentioned in @ref{Vague Linkage}. Using them can actually cause your
14251 program to grow due to unnecessary out-of-line copies of inline
14252 functions. Currently (3.4) the only benefit of these
14253 @code{#pragma}s is reduced duplication of debugging information, and
14254 that should be addressed soon on DWARF 2 targets with the use of
14255 COMDAT groups.
14256
14257 @table @code
14258 @item #pragma interface
14259 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
14260 @kindex #pragma interface
14261 Use this directive in @emph{header files} that define object classes, to save
14262 space in most of the object files that use those classes. Normally,
14263 local copies of certain information (backup copies of inline member
14264 functions, debugging information, and the internal tables that implement
14265 virtual functions) must be kept in each object file that includes class
14266 definitions. You can use this pragma to avoid such duplication. When a
14267 header file containing @samp{#pragma interface} is included in a
14268 compilation, this auxiliary information will not be generated (unless
14269 the main input source file itself uses @samp{#pragma implementation}).
14270 Instead, the object files will contain references to be resolved at link
14271 time.
14272
14273 The second form of this directive is useful for the case where you have
14274 multiple headers with the same name in different directories. If you
14275 use this form, you must specify the same string to @samp{#pragma
14276 implementation}.
14277
14278 @item #pragma implementation
14279 @itemx #pragma implementation "@var{objects}.h"
14280 @kindex #pragma implementation
14281 Use this pragma in a @emph{main input file}, when you want full output from
14282 included header files to be generated (and made globally visible). The
14283 included header file, in turn, should use @samp{#pragma interface}.
14284 Backup copies of inline member functions, debugging information, and the
14285 internal tables used to implement virtual functions are all generated in
14286 implementation files.
14287
14288 @cindex implied @code{#pragma implementation}
14289 @cindex @code{#pragma implementation}, implied
14290 @cindex naming convention, implementation headers
14291 If you use @samp{#pragma implementation} with no argument, it applies to
14292 an include file with the same basename@footnote{A file's @dfn{basename}
14293 was the name stripped of all leading path information and of trailing
14294 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
14295 file. For example, in @file{allclass.cc}, giving just
14296 @samp{#pragma implementation}
14297 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
14298
14299 In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
14300 an implementation file whenever you would include it from
14301 @file{allclass.cc} even if you never specified @samp{#pragma
14302 implementation}. This was deemed to be more trouble than it was worth,
14303 however, and disabled.
14304
14305 Use the string argument if you want a single implementation file to
14306 include code from multiple header files. (You must also use
14307 @samp{#include} to include the header file; @samp{#pragma
14308 implementation} only specifies how to use the file---it doesn't actually
14309 include it.)
14310
14311 There is no way to split up the contents of a single header file into
14312 multiple implementation files.
14313 @end table
14314
14315 @cindex inlining and C++ pragmas
14316 @cindex C++ pragmas, effect on inlining
14317 @cindex pragmas in C++, effect on inlining
14318 @samp{#pragma implementation} and @samp{#pragma interface} also have an
14319 effect on function inlining.
14320
14321 If you define a class in a header file marked with @samp{#pragma
14322 interface}, the effect on an inline function defined in that class is
14323 similar to an explicit @code{extern} declaration---the compiler emits
14324 no code at all to define an independent version of the function. Its
14325 definition is used only for inlining with its callers.
14326
14327 @opindex fno-implement-inlines
14328 Conversely, when you include the same header file in a main source file
14329 that declares it as @samp{#pragma implementation}, the compiler emits
14330 code for the function itself; this defines a version of the function
14331 that can be found via pointers (or by callers compiled without
14332 inlining). If all calls to the function can be inlined, you can avoid
14333 emitting the function by compiling with @option{-fno-implement-inlines}.
14334 If any calls were not inlined, you will get linker errors.
14335
14336 @node Template Instantiation
14337 @section Where's the Template?
14338 @cindex template instantiation
14339
14340 C++ templates are the first language feature to require more
14341 intelligence from the environment than one usually finds on a UNIX
14342 system. Somehow the compiler and linker have to make sure that each
14343 template instance occurs exactly once in the executable if it is needed,
14344 and not at all otherwise. There are two basic approaches to this
14345 problem, which are referred to as the Borland model and the Cfront model.
14346
14347 @table @asis
14348 @item Borland model
14349 Borland C++ solved the template instantiation problem by adding the code
14350 equivalent of common blocks to their linker; the compiler emits template
14351 instances in each translation unit that uses them, and the linker
14352 collapses them together. The advantage of this model is that the linker
14353 only has to consider the object files themselves; there is no external
14354 complexity to worry about. This disadvantage is that compilation time
14355 is increased because the template code is being compiled repeatedly.
14356 Code written for this model tends to include definitions of all
14357 templates in the header file, since they must be seen to be
14358 instantiated.
14359
14360 @item Cfront model
14361 The AT&T C++ translator, Cfront, solved the template instantiation
14362 problem by creating the notion of a template repository, an
14363 automatically maintained place where template instances are stored. A
14364 more modern version of the repository works as follows: As individual
14365 object files are built, the compiler places any template definitions and
14366 instantiations encountered in the repository. At link time, the link
14367 wrapper adds in the objects in the repository and compiles any needed
14368 instances that were not previously emitted. The advantages of this
14369 model are more optimal compilation speed and the ability to use the
14370 system linker; to implement the Borland model a compiler vendor also
14371 needs to replace the linker. The disadvantages are vastly increased
14372 complexity, and thus potential for error; for some code this can be
14373 just as transparent, but in practice it can been very difficult to build
14374 multiple programs in one directory and one program in multiple
14375 directories. Code written for this model tends to separate definitions
14376 of non-inline member templates into a separate file, which should be
14377 compiled separately.
14378 @end table
14379
14380 When used with GNU ld version 2.8 or later on an ELF system such as
14381 GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
14382 Borland model. On other systems, G++ implements neither automatic
14383 model.
14384
14385 A future version of G++ will support a hybrid model whereby the compiler
14386 will emit any instantiations for which the template definition is
14387 included in the compile, and store template definitions and
14388 instantiation context information into the object file for the rest.
14389 The link wrapper will extract that information as necessary and invoke
14390 the compiler to produce the remaining instantiations. The linker will
14391 then combine duplicate instantiations.
14392
14393 In the mean time, you have the following options for dealing with
14394 template instantiations:
14395
14396 @enumerate
14397 @item
14398 @opindex frepo
14399 Compile your template-using code with @option{-frepo}. The compiler will
14400 generate files with the extension @samp{.rpo} listing all of the
14401 template instantiations used in the corresponding object files which
14402 could be instantiated there; the link wrapper, @samp{collect2}, will
14403 then update the @samp{.rpo} files to tell the compiler where to place
14404 those instantiations and rebuild any affected object files. The
14405 link-time overhead is negligible after the first pass, as the compiler
14406 will continue to place the instantiations in the same files.
14407
14408 This is your best option for application code written for the Borland
14409 model, as it will just work. Code written for the Cfront model will
14410 need to be modified so that the template definitions are available at
14411 one or more points of instantiation; usually this is as simple as adding
14412 @code{#include <tmethods.cc>} to the end of each template header.
14413
14414 For library code, if you want the library to provide all of the template
14415 instantiations it needs, just try to link all of its object files
14416 together; the link will fail, but cause the instantiations to be
14417 generated as a side effect. Be warned, however, that this may cause
14418 conflicts if multiple libraries try to provide the same instantiations.
14419 For greater control, use explicit instantiation as described in the next
14420 option.
14421
14422 @item
14423 @opindex fno-implicit-templates
14424 Compile your code with @option{-fno-implicit-templates} to disable the
14425 implicit generation of template instances, and explicitly instantiate
14426 all the ones you use. This approach requires more knowledge of exactly
14427 which instances you need than do the others, but it's less
14428 mysterious and allows greater control. You can scatter the explicit
14429 instantiations throughout your program, perhaps putting them in the
14430 translation units where the instances are used or the translation units
14431 that define the templates themselves; you can put all of the explicit
14432 instantiations you need into one big file; or you can create small files
14433 like
14434
14435 @smallexample
14436 #include "Foo.h"
14437 #include "Foo.cc"
14438
14439 template class Foo<int>;
14440 template ostream& operator <<
14441 (ostream&, const Foo<int>&);
14442 @end smallexample
14443
14444 for each of the instances you need, and create a template instantiation
14445 library from those.
14446
14447 If you are using Cfront-model code, you can probably get away with not
14448 using @option{-fno-implicit-templates} when compiling files that don't
14449 @samp{#include} the member template definitions.
14450
14451 If you use one big file to do the instantiations, you may want to
14452 compile it without @option{-fno-implicit-templates} so you get all of the
14453 instances required by your explicit instantiations (but not by any
14454 other files) without having to specify them as well.
14455
14456 G++ has extended the template instantiation syntax given in the ISO
14457 standard to allow forward declaration of explicit instantiations
14458 (with @code{extern}), instantiation of the compiler support data for a
14459 template class (i.e.@: the vtable) without instantiating any of its
14460 members (with @code{inline}), and instantiation of only the static data
14461 members of a template class, without the support data or member
14462 functions (with (@code{static}):
14463
14464 @smallexample
14465 extern template int max (int, int);
14466 inline template class Foo<int>;
14467 static template class Foo<int>;
14468 @end smallexample
14469
14470 @item
14471 Do nothing. Pretend G++ does implement automatic instantiation
14472 management. Code written for the Borland model will work fine, but
14473 each translation unit will contain instances of each of the templates it
14474 uses. In a large program, this can lead to an unacceptable amount of code
14475 duplication.
14476 @end enumerate
14477
14478 @node Bound member functions
14479 @section Extracting the function pointer from a bound pointer to member function
14480 @cindex pmf
14481 @cindex pointer to member function
14482 @cindex bound pointer to member function
14483
14484 In C++, pointer to member functions (PMFs) are implemented using a wide
14485 pointer of sorts to handle all the possible call mechanisms; the PMF
14486 needs to store information about how to adjust the @samp{this} pointer,
14487 and if the function pointed to is virtual, where to find the vtable, and
14488 where in the vtable to look for the member function. If you are using
14489 PMFs in an inner loop, you should really reconsider that decision. If
14490 that is not an option, you can extract the pointer to the function that
14491 would be called for a given object/PMF pair and call it directly inside
14492 the inner loop, to save a bit of time.
14493
14494 Note that you will still be paying the penalty for the call through a
14495 function pointer; on most modern architectures, such a call defeats the
14496 branch prediction features of the CPU@. This is also true of normal
14497 virtual function calls.
14498
14499 The syntax for this extension is
14500
14501 @smallexample
14502 extern A a;
14503 extern int (A::*fp)();
14504 typedef int (*fptr)(A *);
14505
14506 fptr p = (fptr)(a.*fp);
14507 @end smallexample
14508
14509 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
14510 no object is needed to obtain the address of the function. They can be
14511 converted to function pointers directly:
14512
14513 @smallexample
14514 fptr p1 = (fptr)(&A::foo);
14515 @end smallexample
14516
14517 @opindex Wno-pmf-conversions
14518 You must specify @option{-Wno-pmf-conversions} to use this extension.
14519
14520 @node C++ Attributes
14521 @section C++-Specific Variable, Function, and Type Attributes
14522
14523 Some attributes only make sense for C++ programs.
14524
14525 @table @code
14526 @item init_priority (@var{priority})
14527 @cindex @code{init_priority} attribute
14528
14529
14530 In Standard C++, objects defined at namespace scope are guaranteed to be
14531 initialized in an order in strict accordance with that of their definitions
14532 @emph{in a given translation unit}. No guarantee is made for initializations
14533 across translation units. However, GNU C++ allows users to control the
14534 order of initialization of objects defined at namespace scope with the
14535 @code{init_priority} attribute by specifying a relative @var{priority},
14536 a constant integral expression currently bounded between 101 and 65535
14537 inclusive. Lower numbers indicate a higher priority.
14538
14539 In the following example, @code{A} would normally be created before
14540 @code{B}, but the @code{init_priority} attribute has reversed that order:
14541
14542 @smallexample
14543 Some_Class A __attribute__ ((init_priority (2000)));
14544 Some_Class B __attribute__ ((init_priority (543)));
14545 @end smallexample
14546
14547 @noindent
14548 Note that the particular values of @var{priority} do not matter; only their
14549 relative ordering.
14550
14551 @item java_interface
14552 @cindex @code{java_interface} attribute
14553
14554 This type attribute informs C++ that the class is a Java interface. It may
14555 only be applied to classes declared within an @code{extern "Java"} block.
14556 Calls to methods declared in this interface will be dispatched using GCJ's
14557 interface table mechanism, instead of regular virtual table dispatch.
14558
14559 @end table
14560
14561 See also @ref{Namespace Association}.
14562
14563 @node Namespace Association
14564 @section Namespace Association
14565
14566 @strong{Caution:} The semantics of this extension are not fully
14567 defined. Users should refrain from using this extension as its
14568 semantics may change subtly over time. It is possible that this
14569 extension will be removed in future versions of G++.
14570
14571 A using-directive with @code{__attribute ((strong))} is stronger
14572 than a normal using-directive in two ways:
14573
14574 @itemize @bullet
14575 @item
14576 Templates from the used namespace can be specialized and explicitly
14577 instantiated as though they were members of the using namespace.
14578
14579 @item
14580 The using namespace is considered an associated namespace of all
14581 templates in the used namespace for purposes of argument-dependent
14582 name lookup.
14583 @end itemize
14584
14585 The used namespace must be nested within the using namespace so that
14586 normal unqualified lookup works properly.
14587
14588 This is useful for composing a namespace transparently from
14589 implementation namespaces. For example:
14590
14591 @smallexample
14592 namespace std @{
14593 namespace debug @{
14594 template <class T> struct A @{ @};
14595 @}
14596 using namespace debug __attribute ((__strong__));
14597 template <> struct A<int> @{ @}; // @r{ok to specialize}
14598
14599 template <class T> void f (A<T>);
14600 @}
14601
14602 int main()
14603 @{
14604 f (std::A<float>()); // @r{lookup finds} std::f
14605 f (std::A<int>());
14606 @}
14607 @end smallexample
14608
14609 @node Type Traits
14610 @section Type Traits
14611
14612 The C++ front-end implements syntactic extensions that allow to
14613 determine at compile time various characteristics of a type (or of a
14614 pair of types).
14615
14616 @table @code
14617 @item __has_nothrow_assign (type)
14618 If @code{type} is const qualified or is a reference type then the trait is
14619 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
14620 is true, else if @code{type} is a cv class or union type with copy assignment
14621 operators that are known not to throw an exception then the trait is true,
14622 else it is false. Requires: @code{type} shall be a complete type,
14623 (possibly cv-qualified) @code{void}, or an array of unknown bound.
14624
14625 @item __has_nothrow_copy (type)
14626 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
14627 @code{type} is a cv class or union type with copy constructors that
14628 are known not to throw an exception then the trait is true, else it is false.
14629 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
14630 @code{void}, or an array of unknown bound.
14631
14632 @item __has_nothrow_constructor (type)
14633 If @code{__has_trivial_constructor (type)} is true then the trait is
14634 true, else if @code{type} is a cv class or union type (or array
14635 thereof) with a default constructor that is known not to throw an
14636 exception then the trait is true, else it is false. Requires:
14637 @code{type} shall be a complete type, (possibly cv-qualified)
14638 @code{void}, or an array of unknown bound.
14639
14640 @item __has_trivial_assign (type)
14641 If @code{type} is const qualified or is a reference type then the trait is
14642 false. Otherwise if @code{__is_pod (type)} is true then the trait is
14643 true, else if @code{type} is a cv class or union type with a trivial
14644 copy assignment ([class.copy]) then the trait is true, else it is
14645 false. Requires: @code{type} shall be a complete type, (possibly
14646 cv-qualified) @code{void}, or an array of unknown bound.
14647
14648 @item __has_trivial_copy (type)
14649 If @code{__is_pod (type)} is true or @code{type} is a reference type
14650 then the trait is true, else if @code{type} is a cv class or union type
14651 with a trivial copy constructor ([class.copy]) then the trait
14652 is true, else it is false. Requires: @code{type} shall be a complete
14653 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14654
14655 @item __has_trivial_constructor (type)
14656 If @code{__is_pod (type)} is true then the trait is true, else if
14657 @code{type} is a cv class or union type (or array thereof) with a
14658 trivial default constructor ([class.ctor]) then the trait is true,
14659 else it is false. Requires: @code{type} shall be a complete
14660 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14661
14662 @item __has_trivial_destructor (type)
14663 If @code{__is_pod (type)} is true or @code{type} is a reference type then
14664 the trait is true, else if @code{type} is a cv class or union type (or
14665 array thereof) with a trivial destructor ([class.dtor]) then the trait
14666 is true, else it is false. Requires: @code{type} shall be a complete
14667 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14668
14669 @item __has_virtual_destructor (type)
14670 If @code{type} is a class type with a virtual destructor
14671 ([class.dtor]) then the trait is true, else it is false. Requires:
14672 @code{type} shall be a complete type, (possibly cv-qualified)
14673 @code{void}, or an array of unknown bound.
14674
14675 @item __is_abstract (type)
14676 If @code{type} is an abstract class ([class.abstract]) then the trait
14677 is true, else it is false. Requires: @code{type} shall be a complete
14678 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14679
14680 @item __is_base_of (base_type, derived_type)
14681 If @code{base_type} is a base class of @code{derived_type}
14682 ([class.derived]) then the trait is true, otherwise it is false.
14683 Top-level cv qualifications of @code{base_type} and
14684 @code{derived_type} are ignored. For the purposes of this trait, a
14685 class type is considered is own base. Requires: if @code{__is_class
14686 (base_type)} and @code{__is_class (derived_type)} are true and
14687 @code{base_type} and @code{derived_type} are not the same type
14688 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
14689 type. Diagnostic is produced if this requirement is not met.
14690
14691 @item __is_class (type)
14692 If @code{type} is a cv class type, and not a union type
14693 ([basic.compound]) the trait is true, else it is false.
14694
14695 @item __is_empty (type)
14696 If @code{__is_class (type)} is false then the trait is false.
14697 Otherwise @code{type} is considered empty if and only if: @code{type}
14698 has no non-static data members, or all non-static data members, if
14699 any, are bit-fields of length 0, and @code{type} has no virtual
14700 members, and @code{type} has no virtual base classes, and @code{type}
14701 has no base classes @code{base_type} for which
14702 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
14703 be a complete type, (possibly cv-qualified) @code{void}, or an array
14704 of unknown bound.
14705
14706 @item __is_enum (type)
14707 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
14708 true, else it is false.
14709
14710 @item __is_literal_type (type)
14711 If @code{type} is a literal type ([basic.types]) the trait is
14712 true, else it is false. Requires: @code{type} shall be a complete type,
14713 (possibly cv-qualified) @code{void}, or an array of unknown bound.
14714
14715 @item __is_pod (type)
14716 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
14717 else it is false. Requires: @code{type} shall be a complete type,
14718 (possibly cv-qualified) @code{void}, or an array of unknown bound.
14719
14720 @item __is_polymorphic (type)
14721 If @code{type} is a polymorphic class ([class.virtual]) then the trait
14722 is true, else it is false. Requires: @code{type} shall be a complete
14723 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14724
14725 @item __is_standard_layout (type)
14726 If @code{type} is a standard-layout type ([basic.types]) the trait is
14727 true, else it is false. Requires: @code{type} shall be a complete
14728 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14729
14730 @item __is_trivial (type)
14731 If @code{type} is a trivial type ([basic.types]) the trait is
14732 true, else it is false. Requires: @code{type} shall be a complete
14733 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
14734
14735 @item __is_union (type)
14736 If @code{type} is a cv union type ([basic.compound]) the trait is
14737 true, else it is false.
14738
14739 @item __underlying_type (type)
14740 The underlying type of @code{type}. Requires: @code{type} shall be
14741 an enumeration type ([dcl.enum]).
14742
14743 @end table
14744
14745 @node Java Exceptions
14746 @section Java Exceptions
14747
14748 The Java language uses a slightly different exception handling model
14749 from C++. Normally, GNU C++ will automatically detect when you are
14750 writing C++ code that uses Java exceptions, and handle them
14751 appropriately. However, if C++ code only needs to execute destructors
14752 when Java exceptions are thrown through it, GCC will guess incorrectly.
14753 Sample problematic code is:
14754
14755 @smallexample
14756 struct S @{ ~S(); @};
14757 extern void bar(); // @r{is written in Java, and may throw exceptions}
14758 void foo()
14759 @{
14760 S s;
14761 bar();
14762 @}
14763 @end smallexample
14764
14765 @noindent
14766 The usual effect of an incorrect guess is a link failure, complaining of
14767 a missing routine called @samp{__gxx_personality_v0}.
14768
14769 You can inform the compiler that Java exceptions are to be used in a
14770 translation unit, irrespective of what it might think, by writing
14771 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
14772 @samp{#pragma} must appear before any functions that throw or catch
14773 exceptions, or run destructors when exceptions are thrown through them.
14774
14775 You cannot mix Java and C++ exceptions in the same translation unit. It
14776 is believed to be safe to throw a C++ exception from one file through
14777 another file compiled for the Java exception model, or vice versa, but
14778 there may be bugs in this area.
14779
14780 @node Deprecated Features
14781 @section Deprecated Features
14782
14783 In the past, the GNU C++ compiler was extended to experiment with new
14784 features, at a time when the C++ language was still evolving. Now that
14785 the C++ standard is complete, some of those features are superseded by
14786 superior alternatives. Using the old features might cause a warning in
14787 some cases that the feature will be dropped in the future. In other
14788 cases, the feature might be gone already.
14789
14790 While the list below is not exhaustive, it documents some of the options
14791 that are now deprecated:
14792
14793 @table @code
14794 @item -fexternal-templates
14795 @itemx -falt-external-templates
14796 These are two of the many ways for G++ to implement template
14797 instantiation. @xref{Template Instantiation}. The C++ standard clearly
14798 defines how template definitions have to be organized across
14799 implementation units. G++ has an implicit instantiation mechanism that
14800 should work just fine for standard-conforming code.
14801
14802 @item -fstrict-prototype
14803 @itemx -fno-strict-prototype
14804 Previously it was possible to use an empty prototype parameter list to
14805 indicate an unspecified number of parameters (like C), rather than no
14806 parameters, as C++ demands. This feature has been removed, except where
14807 it is required for backwards compatibility. @xref{Backwards Compatibility}.
14808 @end table
14809
14810 G++ allows a virtual function returning @samp{void *} to be overridden
14811 by one returning a different pointer type. This extension to the
14812 covariant return type rules is now deprecated and will be removed from a
14813 future version.
14814
14815 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
14816 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
14817 and are now removed from G++. Code using these operators should be
14818 modified to use @code{std::min} and @code{std::max} instead.
14819
14820 The named return value extension has been deprecated, and is now
14821 removed from G++.
14822
14823 The use of initializer lists with new expressions has been deprecated,
14824 and is now removed from G++.
14825
14826 Floating and complex non-type template parameters have been deprecated,
14827 and are now removed from G++.
14828
14829 The implicit typename extension has been deprecated and is now
14830 removed from G++.
14831
14832 The use of default arguments in function pointers, function typedefs
14833 and other places where they are not permitted by the standard is
14834 deprecated and will be removed from a future version of G++.
14835
14836 G++ allows floating-point literals to appear in integral constant expressions,
14837 e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
14838 This extension is deprecated and will be removed from a future version.
14839
14840 G++ allows static data members of const floating-point type to be declared
14841 with an initializer in a class definition. The standard only allows
14842 initializers for static members of const integral types and const
14843 enumeration types so this extension has been deprecated and will be removed
14844 from a future version.
14845
14846 @node Backwards Compatibility
14847 @section Backwards Compatibility
14848 @cindex Backwards Compatibility
14849 @cindex ARM [Annotated C++ Reference Manual]
14850
14851 Now that there is a definitive ISO standard C++, G++ has a specification
14852 to adhere to. The C++ language evolved over time, and features that
14853 used to be acceptable in previous drafts of the standard, such as the ARM
14854 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
14855 compilation of C++ written to such drafts, G++ contains some backwards
14856 compatibilities. @emph{All such backwards compatibility features are
14857 liable to disappear in future versions of G++.} They should be considered
14858 deprecated. @xref{Deprecated Features}.
14859
14860 @table @code
14861 @item For scope
14862 If a variable is declared at for scope, it used to remain in scope until
14863 the end of the scope which contained the for statement (rather than just
14864 within the for scope). G++ retains this, but issues a warning, if such a
14865 variable is accessed outside the for scope.
14866
14867 @item Implicit C language
14868 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
14869 scope to set the language. On such systems, all header files are
14870 implicitly scoped inside a C language scope. Also, an empty prototype
14871 @code{()} will be treated as an unspecified number of arguments, rather
14872 than no arguments, as C++ demands.
14873 @end table