re PR c/50347 (unexpected -Wconversion error from gcc builtin)
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2014 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Initializers:: Non-constant initializers.
50 * Compound Literals:: Compound literals give structures, unions
51 or arrays as values.
52 * Designated Inits:: Labeling elements of initializers.
53 * Case Ranges:: `case 1 ... 9' and such.
54 * Cast to Union:: Casting to union type from any member of the union.
55 * Mixed Declarations:: Mixing declarations and code.
56 * Function Attributes:: Declaring that functions have no side effects,
57 or that they can never return.
58 * Attribute Syntax:: Formal syntax for attributes.
59 * Function Prototypes:: Prototype declarations and old-style definitions.
60 * C++ Comments:: C++ comments are recognized.
61 * Dollar Signs:: Dollar sign is allowed in identifiers.
62 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
63 * Variable Attributes:: Specifying attributes of variables.
64 * Type Attributes:: Specifying attributes of types.
65 * Alignment:: Inquiring about the alignment of a type or variable.
66 * Inline:: Defining inline functions (as fast as macros).
67 * Volatiles:: What constitutes an access to a volatile object.
68 * Extended Asm:: Assembler instructions with C expressions as operands.
69 (With them you can define ``built-in'' functions.)
70 * Constraints:: Constraints for asm operands
71 * Asm Labels:: Specifying the assembler name to use for a C symbol.
72 * Explicit Reg Vars:: Defining variables residing in specified registers.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
76 function.
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * x86 specific memory model extensions for transactional memory:: x86 memory models.
83 * Object Size Checking:: Built-in functions for limited buffer overflow
84 checking.
85 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
86 * Other Builtins:: Other built-in functions.
87 * Target Builtins:: Built-in functions specific to particular targets.
88 * Target Format Checks:: Format checks specific to particular targets.
89 * Pragmas:: Pragmas accepted by GCC.
90 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
91 * Thread-Local:: Per-thread variables.
92 * Binary constants:: Binary constants using the @samp{0b} prefix.
93 @end menu
94
95 @node Statement Exprs
96 @section Statements and Declarations in Expressions
97 @cindex statements inside expressions
98 @cindex declarations inside expressions
99 @cindex expressions containing statements
100 @cindex macros, statements in expressions
101
102 @c the above section title wrapped and causes an underfull hbox.. i
103 @c changed it from "within" to "in". --mew 4feb93
104 A compound statement enclosed in parentheses may appear as an expression
105 in GNU C@. This allows you to use loops, switches, and local variables
106 within an expression.
107
108 Recall that a compound statement is a sequence of statements surrounded
109 by braces; in this construct, parentheses go around the braces. For
110 example:
111
112 @smallexample
113 (@{ int y = foo (); int z;
114 if (y > 0) z = y;
115 else z = - y;
116 z; @})
117 @end smallexample
118
119 @noindent
120 is a valid (though slightly more complex than necessary) expression
121 for the absolute value of @code{foo ()}.
122
123 The last thing in the compound statement should be an expression
124 followed by a semicolon; the value of this subexpression serves as the
125 value of the entire construct. (If you use some other kind of statement
126 last within the braces, the construct has type @code{void}, and thus
127 effectively no value.)
128
129 This feature is especially useful in making macro definitions ``safe'' (so
130 that they evaluate each operand exactly once). For example, the
131 ``maximum'' function is commonly defined as a macro in standard C as
132 follows:
133
134 @smallexample
135 #define max(a,b) ((a) > (b) ? (a) : (b))
136 @end smallexample
137
138 @noindent
139 @cindex side effects, macro argument
140 But this definition computes either @var{a} or @var{b} twice, with bad
141 results if the operand has side effects. In GNU C, if you know the
142 type of the operands (here taken as @code{int}), you can define
143 the macro safely as follows:
144
145 @smallexample
146 #define maxint(a,b) \
147 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
148 @end smallexample
149
150 Embedded statements are not allowed in constant expressions, such as
151 the value of an enumeration constant, the width of a bit-field, or
152 the initial value of a static variable.
153
154 If you don't know the type of the operand, you can still do this, but you
155 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
156
157 In G++, the result value of a statement expression undergoes array and
158 function pointer decay, and is returned by value to the enclosing
159 expression. For instance, if @code{A} is a class, then
160
161 @smallexample
162 A a;
163
164 (@{a;@}).Foo ()
165 @end smallexample
166
167 @noindent
168 constructs a temporary @code{A} object to hold the result of the
169 statement expression, and that is used to invoke @code{Foo}.
170 Therefore the @code{this} pointer observed by @code{Foo} is not the
171 address of @code{a}.
172
173 In a statement expression, any temporaries created within a statement
174 are destroyed at that statement's end. This makes statement
175 expressions inside macros slightly different from function calls. In
176 the latter case temporaries introduced during argument evaluation are
177 destroyed at the end of the statement that includes the function
178 call. In the statement expression case they are destroyed during
179 the statement expression. For instance,
180
181 @smallexample
182 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
183 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
184
185 void foo ()
186 @{
187 macro (X ());
188 function (X ());
189 @}
190 @end smallexample
191
192 @noindent
193 has different places where temporaries are destroyed. For the
194 @code{macro} case, the temporary @code{X} is destroyed just after
195 the initialization of @code{b}. In the @code{function} case that
196 temporary is destroyed when the function returns.
197
198 These considerations mean that it is probably a bad idea to use
199 statement expressions of this form in header files that are designed to
200 work with C++. (Note that some versions of the GNU C Library contained
201 header files using statement expressions that lead to precisely this
202 bug.)
203
204 Jumping into a statement expression with @code{goto} or using a
205 @code{switch} statement outside the statement expression with a
206 @code{case} or @code{default} label inside the statement expression is
207 not permitted. Jumping into a statement expression with a computed
208 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
209 Jumping out of a statement expression is permitted, but if the
210 statement expression is part of a larger expression then it is
211 unspecified which other subexpressions of that expression have been
212 evaluated except where the language definition requires certain
213 subexpressions to be evaluated before or after the statement
214 expression. In any case, as with a function call, the evaluation of a
215 statement expression is not interleaved with the evaluation of other
216 parts of the containing expression. For example,
217
218 @smallexample
219 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
220 @end smallexample
221
222 @noindent
223 calls @code{foo} and @code{bar1} and does not call @code{baz} but
224 may or may not call @code{bar2}. If @code{bar2} is called, it is
225 called after @code{foo} and before @code{bar1}.
226
227 @node Local Labels
228 @section Locally Declared Labels
229 @cindex local labels
230 @cindex macros, local labels
231
232 GCC allows you to declare @dfn{local labels} in any nested block
233 scope. A local label is just like an ordinary label, but you can
234 only reference it (with a @code{goto} statement, or by taking its
235 address) within the block in which it is declared.
236
237 A local label declaration looks like this:
238
239 @smallexample
240 __label__ @var{label};
241 @end smallexample
242
243 @noindent
244 or
245
246 @smallexample
247 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
248 @end smallexample
249
250 Local label declarations must come at the beginning of the block,
251 before any ordinary declarations or statements.
252
253 The label declaration defines the label @emph{name}, but does not define
254 the label itself. You must do this in the usual way, with
255 @code{@var{label}:}, within the statements of the statement expression.
256
257 The local label feature is useful for complex macros. If a macro
258 contains nested loops, a @code{goto} can be useful for breaking out of
259 them. However, an ordinary label whose scope is the whole function
260 cannot be used: if the macro can be expanded several times in one
261 function, the label is multiply defined in that function. A
262 local label avoids this problem. For example:
263
264 @smallexample
265 #define SEARCH(value, array, target) \
266 do @{ \
267 __label__ found; \
268 typeof (target) _SEARCH_target = (target); \
269 typeof (*(array)) *_SEARCH_array = (array); \
270 int i, j; \
271 int value; \
272 for (i = 0; i < max; i++) \
273 for (j = 0; j < max; j++) \
274 if (_SEARCH_array[i][j] == _SEARCH_target) \
275 @{ (value) = i; goto found; @} \
276 (value) = -1; \
277 found:; \
278 @} while (0)
279 @end smallexample
280
281 This could also be written using a statement expression:
282
283 @smallexample
284 #define SEARCH(array, target) \
285 (@{ \
286 __label__ found; \
287 typeof (target) _SEARCH_target = (target); \
288 typeof (*(array)) *_SEARCH_array = (array); \
289 int i, j; \
290 int value; \
291 for (i = 0; i < max; i++) \
292 for (j = 0; j < max; j++) \
293 if (_SEARCH_array[i][j] == _SEARCH_target) \
294 @{ value = i; goto found; @} \
295 value = -1; \
296 found: \
297 value; \
298 @})
299 @end smallexample
300
301 Local label declarations also make the labels they declare visible to
302 nested functions, if there are any. @xref{Nested Functions}, for details.
303
304 @node Labels as Values
305 @section Labels as Values
306 @cindex labels as values
307 @cindex computed gotos
308 @cindex goto with computed label
309 @cindex address of a label
310
311 You can get the address of a label defined in the current function
312 (or a containing function) with the unary operator @samp{&&}. The
313 value has type @code{void *}. This value is a constant and can be used
314 wherever a constant of that type is valid. For example:
315
316 @smallexample
317 void *ptr;
318 /* @r{@dots{}} */
319 ptr = &&foo;
320 @end smallexample
321
322 To use these values, you need to be able to jump to one. This is done
323 with the computed goto statement@footnote{The analogous feature in
324 Fortran is called an assigned goto, but that name seems inappropriate in
325 C, where one can do more than simply store label addresses in label
326 variables.}, @code{goto *@var{exp};}. For example,
327
328 @smallexample
329 goto *ptr;
330 @end smallexample
331
332 @noindent
333 Any expression of type @code{void *} is allowed.
334
335 One way of using these constants is in initializing a static array that
336 serves as a jump table:
337
338 @smallexample
339 static void *array[] = @{ &&foo, &&bar, &&hack @};
340 @end smallexample
341
342 @noindent
343 Then you can select a label with indexing, like this:
344
345 @smallexample
346 goto *array[i];
347 @end smallexample
348
349 @noindent
350 Note that this does not check whether the subscript is in bounds---array
351 indexing in C never does that.
352
353 Such an array of label values serves a purpose much like that of the
354 @code{switch} statement. The @code{switch} statement is cleaner, so
355 use that rather than an array unless the problem does not fit a
356 @code{switch} statement very well.
357
358 Another use of label values is in an interpreter for threaded code.
359 The labels within the interpreter function can be stored in the
360 threaded code for super-fast dispatching.
361
362 You may not use this mechanism to jump to code in a different function.
363 If you do that, totally unpredictable things happen. The best way to
364 avoid this is to store the label address only in automatic variables and
365 never pass it as an argument.
366
367 An alternate way to write the above example is
368
369 @smallexample
370 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
371 &&hack - &&foo @};
372 goto *(&&foo + array[i]);
373 @end smallexample
374
375 @noindent
376 This is more friendly to code living in shared libraries, as it reduces
377 the number of dynamic relocations that are needed, and by consequence,
378 allows the data to be read-only.
379
380 The @code{&&foo} expressions for the same label might have different
381 values if the containing function is inlined or cloned. If a program
382 relies on them being always the same,
383 @code{__attribute__((__noinline__,__noclone__))} should be used to
384 prevent inlining and cloning. If @code{&&foo} is used in a static
385 variable initializer, inlining and cloning is forbidden.
386
387 @node Nested Functions
388 @section Nested Functions
389 @cindex nested functions
390 @cindex downward funargs
391 @cindex thunks
392
393 A @dfn{nested function} is a function defined inside another function.
394 Nested functions are supported as an extension in GNU C, but are not
395 supported by GNU C++.
396
397 The nested function's name is local to the block where it is defined.
398 For example, here we define a nested function named @code{square}, and
399 call it twice:
400
401 @smallexample
402 @group
403 foo (double a, double b)
404 @{
405 double square (double z) @{ return z * z; @}
406
407 return square (a) + square (b);
408 @}
409 @end group
410 @end smallexample
411
412 The nested function can access all the variables of the containing
413 function that are visible at the point of its definition. This is
414 called @dfn{lexical scoping}. For example, here we show a nested
415 function which uses an inherited variable named @code{offset}:
416
417 @smallexample
418 @group
419 bar (int *array, int offset, int size)
420 @{
421 int access (int *array, int index)
422 @{ return array[index + offset]; @}
423 int i;
424 /* @r{@dots{}} */
425 for (i = 0; i < size; i++)
426 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
427 @}
428 @end group
429 @end smallexample
430
431 Nested function definitions are permitted within functions in the places
432 where variable definitions are allowed; that is, in any block, mixed
433 with the other declarations and statements in the block.
434
435 It is possible to call the nested function from outside the scope of its
436 name by storing its address or passing the address to another function:
437
438 @smallexample
439 hack (int *array, int size)
440 @{
441 void store (int index, int value)
442 @{ array[index] = value; @}
443
444 intermediate (store, size);
445 @}
446 @end smallexample
447
448 Here, the function @code{intermediate} receives the address of
449 @code{store} as an argument. If @code{intermediate} calls @code{store},
450 the arguments given to @code{store} are used to store into @code{array}.
451 But this technique works only so long as the containing function
452 (@code{hack}, in this example) does not exit.
453
454 If you try to call the nested function through its address after the
455 containing function exits, all hell breaks loose. If you try
456 to call it after a containing scope level exits, and if it refers
457 to some of the variables that are no longer in scope, you may be lucky,
458 but it's not wise to take the risk. If, however, the nested function
459 does not refer to anything that has gone out of scope, you should be
460 safe.
461
462 GCC implements taking the address of a nested function using a technique
463 called @dfn{trampolines}. This technique was described in
464 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
465 C++ Conference Proceedings, October 17-21, 1988).
466
467 A nested function can jump to a label inherited from a containing
468 function, provided the label is explicitly declared in the containing
469 function (@pxref{Local Labels}). Such a jump returns instantly to the
470 containing function, exiting the nested function that did the
471 @code{goto} and any intermediate functions as well. Here is an example:
472
473 @smallexample
474 @group
475 bar (int *array, int offset, int size)
476 @{
477 __label__ failure;
478 int access (int *array, int index)
479 @{
480 if (index > size)
481 goto failure;
482 return array[index + offset];
483 @}
484 int i;
485 /* @r{@dots{}} */
486 for (i = 0; i < size; i++)
487 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
488 /* @r{@dots{}} */
489 return 0;
490
491 /* @r{Control comes here from @code{access}
492 if it detects an error.} */
493 failure:
494 return -1;
495 @}
496 @end group
497 @end smallexample
498
499 A nested function always has no linkage. Declaring one with
500 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
501 before its definition, use @code{auto} (which is otherwise meaningless
502 for function declarations).
503
504 @smallexample
505 bar (int *array, int offset, int size)
506 @{
507 __label__ failure;
508 auto int access (int *, int);
509 /* @r{@dots{}} */
510 int access (int *array, int index)
511 @{
512 if (index > size)
513 goto failure;
514 return array[index + offset];
515 @}
516 /* @r{@dots{}} */
517 @}
518 @end smallexample
519
520 @node Constructing Calls
521 @section Constructing Function Calls
522 @cindex constructing calls
523 @cindex forwarding calls
524
525 Using the built-in functions described below, you can record
526 the arguments a function received, and call another function
527 with the same arguments, without knowing the number or types
528 of the arguments.
529
530 You can also record the return value of that function call,
531 and later return that value, without knowing what data type
532 the function tried to return (as long as your caller expects
533 that data type).
534
535 However, these built-in functions may interact badly with some
536 sophisticated features or other extensions of the language. It
537 is, therefore, not recommended to use them outside very simple
538 functions acting as mere forwarders for their arguments.
539
540 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
541 This built-in function returns a pointer to data
542 describing how to perform a call with the same arguments as are passed
543 to the current function.
544
545 The function saves the arg pointer register, structure value address,
546 and all registers that might be used to pass arguments to a function
547 into a block of memory allocated on the stack. Then it returns the
548 address of that block.
549 @end deftypefn
550
551 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
552 This built-in function invokes @var{function}
553 with a copy of the parameters described by @var{arguments}
554 and @var{size}.
555
556 The value of @var{arguments} should be the value returned by
557 @code{__builtin_apply_args}. The argument @var{size} specifies the size
558 of the stack argument data, in bytes.
559
560 This function returns a pointer to data describing
561 how to return whatever value is returned by @var{function}. The data
562 is saved in a block of memory allocated on the stack.
563
564 It is not always simple to compute the proper value for @var{size}. The
565 value is used by @code{__builtin_apply} to compute the amount of data
566 that should be pushed on the stack and copied from the incoming argument
567 area.
568 @end deftypefn
569
570 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
571 This built-in function returns the value described by @var{result} from
572 the containing function. You should specify, for @var{result}, a value
573 returned by @code{__builtin_apply}.
574 @end deftypefn
575
576 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
577 This built-in function represents all anonymous arguments of an inline
578 function. It can be used only in inline functions that are always
579 inlined, never compiled as a separate function, such as those using
580 @code{__attribute__ ((__always_inline__))} or
581 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
582 It must be only passed as last argument to some other function
583 with variable arguments. This is useful for writing small wrapper
584 inlines for variable argument functions, when using preprocessor
585 macros is undesirable. For example:
586 @smallexample
587 extern int myprintf (FILE *f, const char *format, ...);
588 extern inline __attribute__ ((__gnu_inline__)) int
589 myprintf (FILE *f, const char *format, ...)
590 @{
591 int r = fprintf (f, "myprintf: ");
592 if (r < 0)
593 return r;
594 int s = fprintf (f, format, __builtin_va_arg_pack ());
595 if (s < 0)
596 return s;
597 return r + s;
598 @}
599 @end smallexample
600 @end deftypefn
601
602 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
603 This built-in function returns the number of anonymous arguments of
604 an inline function. It can be used only in inline functions that
605 are always inlined, never compiled as a separate function, such
606 as those using @code{__attribute__ ((__always_inline__))} or
607 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
608 For example following does link- or run-time checking of open
609 arguments for optimized code:
610 @smallexample
611 #ifdef __OPTIMIZE__
612 extern inline __attribute__((__gnu_inline__)) int
613 myopen (const char *path, int oflag, ...)
614 @{
615 if (__builtin_va_arg_pack_len () > 1)
616 warn_open_too_many_arguments ();
617
618 if (__builtin_constant_p (oflag))
619 @{
620 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
621 @{
622 warn_open_missing_mode ();
623 return __open_2 (path, oflag);
624 @}
625 return open (path, oflag, __builtin_va_arg_pack ());
626 @}
627
628 if (__builtin_va_arg_pack_len () < 1)
629 return __open_2 (path, oflag);
630
631 return open (path, oflag, __builtin_va_arg_pack ());
632 @}
633 #endif
634 @end smallexample
635 @end deftypefn
636
637 @node Typeof
638 @section Referring to a Type with @code{typeof}
639 @findex typeof
640 @findex sizeof
641 @cindex macros, types of arguments
642
643 Another way to refer to the type of an expression is with @code{typeof}.
644 The syntax of using of this keyword looks like @code{sizeof}, but the
645 construct acts semantically like a type name defined with @code{typedef}.
646
647 There are two ways of writing the argument to @code{typeof}: with an
648 expression or with a type. Here is an example with an expression:
649
650 @smallexample
651 typeof (x[0](1))
652 @end smallexample
653
654 @noindent
655 This assumes that @code{x} is an array of pointers to functions;
656 the type described is that of the values of the functions.
657
658 Here is an example with a typename as the argument:
659
660 @smallexample
661 typeof (int *)
662 @end smallexample
663
664 @noindent
665 Here the type described is that of pointers to @code{int}.
666
667 If you are writing a header file that must work when included in ISO C
668 programs, write @code{__typeof__} instead of @code{typeof}.
669 @xref{Alternate Keywords}.
670
671 A @code{typeof} construct can be used anywhere a typedef name can be
672 used. For example, you can use it in a declaration, in a cast, or inside
673 of @code{sizeof} or @code{typeof}.
674
675 The operand of @code{typeof} is evaluated for its side effects if and
676 only if it is an expression of variably modified type or the name of
677 such a type.
678
679 @code{typeof} is often useful in conjunction with
680 statement expressions (@pxref{Statement Exprs}).
681 Here is how the two together can
682 be used to define a safe ``maximum'' macro which operates on any
683 arithmetic type and evaluates each of its arguments exactly once:
684
685 @smallexample
686 #define max(a,b) \
687 (@{ typeof (a) _a = (a); \
688 typeof (b) _b = (b); \
689 _a > _b ? _a : _b; @})
690 @end smallexample
691
692 @cindex underscores in variables in macros
693 @cindex @samp{_} in variables in macros
694 @cindex local variables in macros
695 @cindex variables, local, in macros
696 @cindex macros, local variables in
697
698 The reason for using names that start with underscores for the local
699 variables is to avoid conflicts with variable names that occur within the
700 expressions that are substituted for @code{a} and @code{b}. Eventually we
701 hope to design a new form of declaration syntax that allows you to declare
702 variables whose scopes start only after their initializers; this will be a
703 more reliable way to prevent such conflicts.
704
705 @noindent
706 Some more examples of the use of @code{typeof}:
707
708 @itemize @bullet
709 @item
710 This declares @code{y} with the type of what @code{x} points to.
711
712 @smallexample
713 typeof (*x) y;
714 @end smallexample
715
716 @item
717 This declares @code{y} as an array of such values.
718
719 @smallexample
720 typeof (*x) y[4];
721 @end smallexample
722
723 @item
724 This declares @code{y} as an array of pointers to characters:
725
726 @smallexample
727 typeof (typeof (char *)[4]) y;
728 @end smallexample
729
730 @noindent
731 It is equivalent to the following traditional C declaration:
732
733 @smallexample
734 char *y[4];
735 @end smallexample
736
737 To see the meaning of the declaration using @code{typeof}, and why it
738 might be a useful way to write, rewrite it with these macros:
739
740 @smallexample
741 #define pointer(T) typeof(T *)
742 #define array(T, N) typeof(T [N])
743 @end smallexample
744
745 @noindent
746 Now the declaration can be rewritten this way:
747
748 @smallexample
749 array (pointer (char), 4) y;
750 @end smallexample
751
752 @noindent
753 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
754 pointers to @code{char}.
755 @end itemize
756
757 In GNU C, but not GNU C++, you may also declare the type of a variable
758 as @code{__auto_type}. In that case, the declaration must declare
759 only one variable, whose declarator must just be an identifier, the
760 declaration must be initialized, and the type of the variable is
761 determined by the initializer; the name of the variable is not in
762 scope until after the initializer. (In C++, you should use C++11
763 @code{auto} for this purpose.) Using @code{__auto_type}, the
764 ``maximum'' macro above could be written as:
765
766 @smallexample
767 #define max(a,b) \
768 (@{ __auto_type _a = (a); \
769 __auto_type _b = (b); \
770 _a > _b ? _a : _b; @})
771 @end smallexample
772
773 Using @code{__auto_type} instead of @code{typeof} has two advantages:
774
775 @itemize @bullet
776 @item Each argument to the macro appears only once in the expansion of
777 the macro. This prevents the size of the macro expansion growing
778 exponentially when calls to such macros are nested inside arguments of
779 such macros.
780
781 @item If the argument to the macro has variably modified type, it is
782 evaluated only once when using @code{__auto_type}, but twice if
783 @code{typeof} is used.
784 @end itemize
785
786 @emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
787 a more limited extension that permitted one to write
788
789 @smallexample
790 typedef @var{T} = @var{expr};
791 @end smallexample
792
793 @noindent
794 with the effect of declaring @var{T} to have the type of the expression
795 @var{expr}. This extension does not work with GCC 3 (versions between
796 3.0 and 3.2 crash; 3.2.1 and later give an error). Code that
797 relies on it should be rewritten to use @code{typeof}:
798
799 @smallexample
800 typedef typeof(@var{expr}) @var{T};
801 @end smallexample
802
803 @noindent
804 This works with all versions of GCC@.
805
806 @node Conditionals
807 @section Conditionals with Omitted Operands
808 @cindex conditional expressions, extensions
809 @cindex omitted middle-operands
810 @cindex middle-operands, omitted
811 @cindex extensions, @code{?:}
812 @cindex @code{?:} extensions
813
814 The middle operand in a conditional expression may be omitted. Then
815 if the first operand is nonzero, its value is the value of the conditional
816 expression.
817
818 Therefore, the expression
819
820 @smallexample
821 x ? : y
822 @end smallexample
823
824 @noindent
825 has the value of @code{x} if that is nonzero; otherwise, the value of
826 @code{y}.
827
828 This example is perfectly equivalent to
829
830 @smallexample
831 x ? x : y
832 @end smallexample
833
834 @cindex side effect in @code{?:}
835 @cindex @code{?:} side effect
836 @noindent
837 In this simple case, the ability to omit the middle operand is not
838 especially useful. When it becomes useful is when the first operand does,
839 or may (if it is a macro argument), contain a side effect. Then repeating
840 the operand in the middle would perform the side effect twice. Omitting
841 the middle operand uses the value already computed without the undesirable
842 effects of recomputing it.
843
844 @node __int128
845 @section 128-bit integers
846 @cindex @code{__int128} data types
847
848 As an extension the integer scalar type @code{__int128} is supported for
849 targets which have an integer mode wide enough to hold 128 bits.
850 Simply write @code{__int128} for a signed 128-bit integer, or
851 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
852 support in GCC for expressing an integer constant of type @code{__int128}
853 for targets with @code{long long} integer less than 128 bits wide.
854
855 @node Long Long
856 @section Double-Word Integers
857 @cindex @code{long long} data types
858 @cindex double-word arithmetic
859 @cindex multiprecision arithmetic
860 @cindex @code{LL} integer suffix
861 @cindex @code{ULL} integer suffix
862
863 ISO C99 supports data types for integers that are at least 64 bits wide,
864 and as an extension GCC supports them in C90 mode and in C++.
865 Simply write @code{long long int} for a signed integer, or
866 @code{unsigned long long int} for an unsigned integer. To make an
867 integer constant of type @code{long long int}, add the suffix @samp{LL}
868 to the integer. To make an integer constant of type @code{unsigned long
869 long int}, add the suffix @samp{ULL} to the integer.
870
871 You can use these types in arithmetic like any other integer types.
872 Addition, subtraction, and bitwise boolean operations on these types
873 are open-coded on all types of machines. Multiplication is open-coded
874 if the machine supports a fullword-to-doubleword widening multiply
875 instruction. Division and shifts are open-coded only on machines that
876 provide special support. The operations that are not open-coded use
877 special library routines that come with GCC@.
878
879 There may be pitfalls when you use @code{long long} types for function
880 arguments without function prototypes. If a function
881 expects type @code{int} for its argument, and you pass a value of type
882 @code{long long int}, confusion results because the caller and the
883 subroutine disagree about the number of bytes for the argument.
884 Likewise, if the function expects @code{long long int} and you pass
885 @code{int}. The best way to avoid such problems is to use prototypes.
886
887 @node Complex
888 @section Complex Numbers
889 @cindex complex numbers
890 @cindex @code{_Complex} keyword
891 @cindex @code{__complex__} keyword
892
893 ISO C99 supports complex floating data types, and as an extension GCC
894 supports them in C90 mode and in C++. GCC also supports complex integer data
895 types which are not part of ISO C99. You can declare complex types
896 using the keyword @code{_Complex}. As an extension, the older GNU
897 keyword @code{__complex__} is also supported.
898
899 For example, @samp{_Complex double x;} declares @code{x} as a
900 variable whose real part and imaginary part are both of type
901 @code{double}. @samp{_Complex short int y;} declares @code{y} to
902 have real and imaginary parts of type @code{short int}; this is not
903 likely to be useful, but it shows that the set of complex types is
904 complete.
905
906 To write a constant with a complex data type, use the suffix @samp{i} or
907 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
908 has type @code{_Complex float} and @code{3i} has type
909 @code{_Complex int}. Such a constant always has a pure imaginary
910 value, but you can form any complex value you like by adding one to a
911 real constant. This is a GNU extension; if you have an ISO C99
912 conforming C library (such as the GNU C Library), and want to construct complex
913 constants of floating type, you should include @code{<complex.h>} and
914 use the macros @code{I} or @code{_Complex_I} instead.
915
916 @cindex @code{__real__} keyword
917 @cindex @code{__imag__} keyword
918 To extract the real part of a complex-valued expression @var{exp}, write
919 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
920 extract the imaginary part. This is a GNU extension; for values of
921 floating type, you should use the ISO C99 functions @code{crealf},
922 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
923 @code{cimagl}, declared in @code{<complex.h>} and also provided as
924 built-in functions by GCC@.
925
926 @cindex complex conjugation
927 The operator @samp{~} performs complex conjugation when used on a value
928 with a complex type. This is a GNU extension; for values of
929 floating type, you should use the ISO C99 functions @code{conjf},
930 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
931 provided as built-in functions by GCC@.
932
933 GCC can allocate complex automatic variables in a noncontiguous
934 fashion; it's even possible for the real part to be in a register while
935 the imaginary part is on the stack (or vice versa). Only the DWARF 2
936 debug info format can represent this, so use of DWARF 2 is recommended.
937 If you are using the stabs debug info format, GCC describes a noncontiguous
938 complex variable as if it were two separate variables of noncomplex type.
939 If the variable's actual name is @code{foo}, the two fictitious
940 variables are named @code{foo$real} and @code{foo$imag}. You can
941 examine and set these two fictitious variables with your debugger.
942
943 @node Floating Types
944 @section Additional Floating Types
945 @cindex additional floating types
946 @cindex @code{__float80} data type
947 @cindex @code{__float128} data type
948 @cindex @code{w} floating point suffix
949 @cindex @code{q} floating point suffix
950 @cindex @code{W} floating point suffix
951 @cindex @code{Q} floating point suffix
952
953 As an extension, GNU C supports additional floating
954 types, @code{__float80} and @code{__float128} to support 80-bit
955 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types.
956 Support for additional types includes the arithmetic operators:
957 add, subtract, multiply, divide; unary arithmetic operators;
958 relational operators; equality operators; and conversions to and from
959 integer and other floating types. Use a suffix @samp{w} or @samp{W}
960 in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
961 for @code{_float128}. You can declare complex types using the
962 corresponding internal complex type, @code{XCmode} for @code{__float80}
963 type and @code{TCmode} for @code{__float128} type:
964
965 @smallexample
966 typedef _Complex float __attribute__((mode(TC))) _Complex128;
967 typedef _Complex float __attribute__((mode(XC))) _Complex80;
968 @end smallexample
969
970 Not all targets support additional floating-point types. @code{__float80}
971 and @code{__float128} types are supported on i386, x86_64 and IA-64 targets.
972 The @code{__float128} type is supported on hppa HP-UX targets.
973
974 @node Half-Precision
975 @section Half-Precision Floating Point
976 @cindex half-precision floating point
977 @cindex @code{__fp16} data type
978
979 On ARM targets, GCC supports half-precision (16-bit) floating point via
980 the @code{__fp16} type. You must enable this type explicitly
981 with the @option{-mfp16-format} command-line option in order to use it.
982
983 ARM supports two incompatible representations for half-precision
984 floating-point values. You must choose one of the representations and
985 use it consistently in your program.
986
987 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
988 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
989 There are 11 bits of significand precision, approximately 3
990 decimal digits.
991
992 Specifying @option{-mfp16-format=alternative} selects the ARM
993 alternative format. This representation is similar to the IEEE
994 format, but does not support infinities or NaNs. Instead, the range
995 of exponents is extended, so that this format can represent normalized
996 values in the range of @math{2^{-14}} to 131008.
997
998 The @code{__fp16} type is a storage format only. For purposes
999 of arithmetic and other operations, @code{__fp16} values in C or C++
1000 expressions are automatically promoted to @code{float}. In addition,
1001 you cannot declare a function with a return value or parameters
1002 of type @code{__fp16}.
1003
1004 Note that conversions from @code{double} to @code{__fp16}
1005 involve an intermediate conversion to @code{float}. Because
1006 of rounding, this can sometimes produce a different result than a
1007 direct conversion.
1008
1009 ARM provides hardware support for conversions between
1010 @code{__fp16} and @code{float} values
1011 as an extension to VFP and NEON (Advanced SIMD). GCC generates
1012 code using these hardware instructions if you compile with
1013 options to select an FPU that provides them;
1014 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1015 in addition to the @option{-mfp16-format} option to select
1016 a half-precision format.
1017
1018 Language-level support for the @code{__fp16} data type is
1019 independent of whether GCC generates code using hardware floating-point
1020 instructions. In cases where hardware support is not specified, GCC
1021 implements conversions between @code{__fp16} and @code{float} values
1022 as library calls.
1023
1024 @node Decimal Float
1025 @section Decimal Floating Types
1026 @cindex decimal floating types
1027 @cindex @code{_Decimal32} data type
1028 @cindex @code{_Decimal64} data type
1029 @cindex @code{_Decimal128} data type
1030 @cindex @code{df} integer suffix
1031 @cindex @code{dd} integer suffix
1032 @cindex @code{dl} integer suffix
1033 @cindex @code{DF} integer suffix
1034 @cindex @code{DD} integer suffix
1035 @cindex @code{DL} integer suffix
1036
1037 As an extension, GNU C supports decimal floating types as
1038 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1039 floating types in GCC will evolve as the draft technical report changes.
1040 Calling conventions for any target might also change. Not all targets
1041 support decimal floating types.
1042
1043 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1044 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1045 @code{float}, @code{double}, and @code{long double} whose radix is not
1046 specified by the C standard but is usually two.
1047
1048 Support for decimal floating types includes the arithmetic operators
1049 add, subtract, multiply, divide; unary arithmetic operators;
1050 relational operators; equality operators; and conversions to and from
1051 integer and other floating types. Use a suffix @samp{df} or
1052 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1053 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1054 @code{_Decimal128}.
1055
1056 GCC support of decimal float as specified by the draft technical report
1057 is incomplete:
1058
1059 @itemize @bullet
1060 @item
1061 When the value of a decimal floating type cannot be represented in the
1062 integer type to which it is being converted, the result is undefined
1063 rather than the result value specified by the draft technical report.
1064
1065 @item
1066 GCC does not provide the C library functionality associated with
1067 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1068 @file{wchar.h}, which must come from a separate C library implementation.
1069 Because of this the GNU C compiler does not define macro
1070 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1071 the technical report.
1072 @end itemize
1073
1074 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1075 are supported by the DWARF 2 debug information format.
1076
1077 @node Hex Floats
1078 @section Hex Floats
1079 @cindex hex floats
1080
1081 ISO C99 supports floating-point numbers written not only in the usual
1082 decimal notation, such as @code{1.55e1}, but also numbers such as
1083 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1084 supports this in C90 mode (except in some cases when strictly
1085 conforming) and in C++. In that format the
1086 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1087 mandatory. The exponent is a decimal number that indicates the power of
1088 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1089 @tex
1090 $1 {15\over16}$,
1091 @end tex
1092 @ifnottex
1093 1 15/16,
1094 @end ifnottex
1095 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1096 is the same as @code{1.55e1}.
1097
1098 Unlike for floating-point numbers in the decimal notation the exponent
1099 is always required in the hexadecimal notation. Otherwise the compiler
1100 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1101 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1102 extension for floating-point constants of type @code{float}.
1103
1104 @node Fixed-Point
1105 @section Fixed-Point Types
1106 @cindex fixed-point types
1107 @cindex @code{_Fract} data type
1108 @cindex @code{_Accum} data type
1109 @cindex @code{_Sat} data type
1110 @cindex @code{hr} fixed-suffix
1111 @cindex @code{r} fixed-suffix
1112 @cindex @code{lr} fixed-suffix
1113 @cindex @code{llr} fixed-suffix
1114 @cindex @code{uhr} fixed-suffix
1115 @cindex @code{ur} fixed-suffix
1116 @cindex @code{ulr} fixed-suffix
1117 @cindex @code{ullr} fixed-suffix
1118 @cindex @code{hk} fixed-suffix
1119 @cindex @code{k} fixed-suffix
1120 @cindex @code{lk} fixed-suffix
1121 @cindex @code{llk} fixed-suffix
1122 @cindex @code{uhk} fixed-suffix
1123 @cindex @code{uk} fixed-suffix
1124 @cindex @code{ulk} fixed-suffix
1125 @cindex @code{ullk} fixed-suffix
1126 @cindex @code{HR} fixed-suffix
1127 @cindex @code{R} fixed-suffix
1128 @cindex @code{LR} fixed-suffix
1129 @cindex @code{LLR} fixed-suffix
1130 @cindex @code{UHR} fixed-suffix
1131 @cindex @code{UR} fixed-suffix
1132 @cindex @code{ULR} fixed-suffix
1133 @cindex @code{ULLR} fixed-suffix
1134 @cindex @code{HK} fixed-suffix
1135 @cindex @code{K} fixed-suffix
1136 @cindex @code{LK} fixed-suffix
1137 @cindex @code{LLK} fixed-suffix
1138 @cindex @code{UHK} fixed-suffix
1139 @cindex @code{UK} fixed-suffix
1140 @cindex @code{ULK} fixed-suffix
1141 @cindex @code{ULLK} fixed-suffix
1142
1143 As an extension, GNU C supports fixed-point types as
1144 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1145 types in GCC will evolve as the draft technical report changes.
1146 Calling conventions for any target might also change. Not all targets
1147 support fixed-point types.
1148
1149 The fixed-point types are
1150 @code{short _Fract},
1151 @code{_Fract},
1152 @code{long _Fract},
1153 @code{long long _Fract},
1154 @code{unsigned short _Fract},
1155 @code{unsigned _Fract},
1156 @code{unsigned long _Fract},
1157 @code{unsigned long long _Fract},
1158 @code{_Sat short _Fract},
1159 @code{_Sat _Fract},
1160 @code{_Sat long _Fract},
1161 @code{_Sat long long _Fract},
1162 @code{_Sat unsigned short _Fract},
1163 @code{_Sat unsigned _Fract},
1164 @code{_Sat unsigned long _Fract},
1165 @code{_Sat unsigned long long _Fract},
1166 @code{short _Accum},
1167 @code{_Accum},
1168 @code{long _Accum},
1169 @code{long long _Accum},
1170 @code{unsigned short _Accum},
1171 @code{unsigned _Accum},
1172 @code{unsigned long _Accum},
1173 @code{unsigned long long _Accum},
1174 @code{_Sat short _Accum},
1175 @code{_Sat _Accum},
1176 @code{_Sat long _Accum},
1177 @code{_Sat long long _Accum},
1178 @code{_Sat unsigned short _Accum},
1179 @code{_Sat unsigned _Accum},
1180 @code{_Sat unsigned long _Accum},
1181 @code{_Sat unsigned long long _Accum}.
1182
1183 Fixed-point data values contain fractional and optional integral parts.
1184 The format of fixed-point data varies and depends on the target machine.
1185
1186 Support for fixed-point types includes:
1187 @itemize @bullet
1188 @item
1189 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1190 @item
1191 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1192 @item
1193 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1194 @item
1195 binary shift operators (@code{<<}, @code{>>})
1196 @item
1197 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1198 @item
1199 equality operators (@code{==}, @code{!=})
1200 @item
1201 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1202 @code{<<=}, @code{>>=})
1203 @item
1204 conversions to and from integer, floating-point, or fixed-point types
1205 @end itemize
1206
1207 Use a suffix in a fixed-point literal constant:
1208 @itemize
1209 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1210 @code{_Sat short _Fract}
1211 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1212 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1213 @code{_Sat long _Fract}
1214 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1215 @code{_Sat long long _Fract}
1216 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1217 @code{_Sat unsigned short _Fract}
1218 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1219 @code{_Sat unsigned _Fract}
1220 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1221 @code{_Sat unsigned long _Fract}
1222 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1223 and @code{_Sat unsigned long long _Fract}
1224 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1225 @code{_Sat short _Accum}
1226 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1227 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1228 @code{_Sat long _Accum}
1229 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1230 @code{_Sat long long _Accum}
1231 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1232 @code{_Sat unsigned short _Accum}
1233 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1234 @code{_Sat unsigned _Accum}
1235 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1236 @code{_Sat unsigned long _Accum}
1237 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1238 and @code{_Sat unsigned long long _Accum}
1239 @end itemize
1240
1241 GCC support of fixed-point types as specified by the draft technical report
1242 is incomplete:
1243
1244 @itemize @bullet
1245 @item
1246 Pragmas to control overflow and rounding behaviors are not implemented.
1247 @end itemize
1248
1249 Fixed-point types are supported by the DWARF 2 debug information format.
1250
1251 @node Named Address Spaces
1252 @section Named Address Spaces
1253 @cindex Named Address Spaces
1254
1255 As an extension, GNU C supports named address spaces as
1256 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1257 address spaces in GCC will evolve as the draft technical report
1258 changes. Calling conventions for any target might also change. At
1259 present, only the AVR, SPU, M32C, and RL78 targets support address
1260 spaces other than the generic address space.
1261
1262 Address space identifiers may be used exactly like any other C type
1263 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1264 document for more details.
1265
1266 @anchor{AVR Named Address Spaces}
1267 @subsection AVR Named Address Spaces
1268
1269 On the AVR target, there are several address spaces that can be used
1270 in order to put read-only data into the flash memory and access that
1271 data by means of the special instructions @code{LPM} or @code{ELPM}
1272 needed to read from flash.
1273
1274 Per default, any data including read-only data is located in RAM
1275 (the generic address space) so that non-generic address spaces are
1276 needed to locate read-only data in flash memory
1277 @emph{and} to generate the right instructions to access this data
1278 without using (inline) assembler code.
1279
1280 @table @code
1281 @item __flash
1282 @cindex @code{__flash} AVR Named Address Spaces
1283 The @code{__flash} qualifier locates data in the
1284 @code{.progmem.data} section. Data is read using the @code{LPM}
1285 instruction. Pointers to this address space are 16 bits wide.
1286
1287 @item __flash1
1288 @itemx __flash2
1289 @itemx __flash3
1290 @itemx __flash4
1291 @itemx __flash5
1292 @cindex @code{__flash1} AVR Named Address Spaces
1293 @cindex @code{__flash2} AVR Named Address Spaces
1294 @cindex @code{__flash3} AVR Named Address Spaces
1295 @cindex @code{__flash4} AVR Named Address Spaces
1296 @cindex @code{__flash5} AVR Named Address Spaces
1297 These are 16-bit address spaces locating data in section
1298 @code{.progmem@var{N}.data} where @var{N} refers to
1299 address space @code{__flash@var{N}}.
1300 The compiler sets the @code{RAMPZ} segment register appropriately
1301 before reading data by means of the @code{ELPM} instruction.
1302
1303 @item __memx
1304 @cindex @code{__memx} AVR Named Address Spaces
1305 This is a 24-bit address space that linearizes flash and RAM:
1306 If the high bit of the address is set, data is read from
1307 RAM using the lower two bytes as RAM address.
1308 If the high bit of the address is clear, data is read from flash
1309 with @code{RAMPZ} set according to the high byte of the address.
1310 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1311
1312 Objects in this address space are located in @code{.progmemx.data}.
1313 @end table
1314
1315 @b{Example}
1316
1317 @smallexample
1318 char my_read (const __flash char ** p)
1319 @{
1320 /* p is a pointer to RAM that points to a pointer to flash.
1321 The first indirection of p reads that flash pointer
1322 from RAM and the second indirection reads a char from this
1323 flash address. */
1324
1325 return **p;
1326 @}
1327
1328 /* Locate array[] in flash memory */
1329 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1330
1331 int i = 1;
1332
1333 int main (void)
1334 @{
1335 /* Return 17 by reading from flash memory */
1336 return array[array[i]];
1337 @}
1338 @end smallexample
1339
1340 @noindent
1341 For each named address space supported by avr-gcc there is an equally
1342 named but uppercase built-in macro defined.
1343 The purpose is to facilitate testing if respective address space
1344 support is available or not:
1345
1346 @smallexample
1347 #ifdef __FLASH
1348 const __flash int var = 1;
1349
1350 int read_var (void)
1351 @{
1352 return var;
1353 @}
1354 #else
1355 #include <avr/pgmspace.h> /* From AVR-LibC */
1356
1357 const int var PROGMEM = 1;
1358
1359 int read_var (void)
1360 @{
1361 return (int) pgm_read_word (&var);
1362 @}
1363 #endif /* __FLASH */
1364 @end smallexample
1365
1366 @noindent
1367 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1368 locates data in flash but
1369 accesses to these data read from generic address space, i.e.@:
1370 from RAM,
1371 so that you need special accessors like @code{pgm_read_byte}
1372 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1373 together with attribute @code{progmem}.
1374
1375 @noindent
1376 @b{Limitations and caveats}
1377
1378 @itemize
1379 @item
1380 Reading across the 64@tie{}KiB section boundary of
1381 the @code{__flash} or @code{__flash@var{N}} address spaces
1382 shows undefined behavior. The only address space that
1383 supports reading across the 64@tie{}KiB flash segment boundaries is
1384 @code{__memx}.
1385
1386 @item
1387 If you use one of the @code{__flash@var{N}} address spaces
1388 you must arrange your linker script to locate the
1389 @code{.progmem@var{N}.data} sections according to your needs.
1390
1391 @item
1392 Any data or pointers to the non-generic address spaces must
1393 be qualified as @code{const}, i.e.@: as read-only data.
1394 This still applies if the data in one of these address
1395 spaces like software version number or calibration lookup table are intended to
1396 be changed after load time by, say, a boot loader. In this case
1397 the right qualification is @code{const} @code{volatile} so that the compiler
1398 must not optimize away known values or insert them
1399 as immediates into operands of instructions.
1400
1401 @item
1402 The following code initializes a variable @code{pfoo}
1403 located in static storage with a 24-bit address:
1404 @smallexample
1405 extern const __memx char foo;
1406 const __memx void *pfoo = &foo;
1407 @end smallexample
1408
1409 @noindent
1410 Such code requires at least binutils 2.23, see
1411 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1412
1413 @end itemize
1414
1415 @subsection M32C Named Address Spaces
1416 @cindex @code{__far} M32C Named Address Spaces
1417
1418 On the M32C target, with the R8C and M16C CPU variants, variables
1419 qualified with @code{__far} are accessed using 32-bit addresses in
1420 order to access memory beyond the first 64@tie{}Ki bytes. If
1421 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1422 effect.
1423
1424 @subsection RL78 Named Address Spaces
1425 @cindex @code{__far} RL78 Named Address Spaces
1426
1427 On the RL78 target, variables qualified with @code{__far} are accessed
1428 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1429 addresses. Non-far variables are assumed to appear in the topmost
1430 64@tie{}KiB of the address space.
1431
1432 @subsection SPU Named Address Spaces
1433 @cindex @code{__ea} SPU Named Address Spaces
1434
1435 On the SPU target variables may be declared as
1436 belonging to another address space by qualifying the type with the
1437 @code{__ea} address space identifier:
1438
1439 @smallexample
1440 extern int __ea i;
1441 @end smallexample
1442
1443 @noindent
1444 The compiler generates special code to access the variable @code{i}.
1445 It may use runtime library
1446 support, or generate special machine instructions to access that address
1447 space.
1448
1449 @node Zero Length
1450 @section Arrays of Length Zero
1451 @cindex arrays of length zero
1452 @cindex zero-length arrays
1453 @cindex length-zero arrays
1454 @cindex flexible array members
1455
1456 Zero-length arrays are allowed in GNU C@. They are very useful as the
1457 last element of a structure that is really a header for a variable-length
1458 object:
1459
1460 @smallexample
1461 struct line @{
1462 int length;
1463 char contents[0];
1464 @};
1465
1466 struct line *thisline = (struct line *)
1467 malloc (sizeof (struct line) + this_length);
1468 thisline->length = this_length;
1469 @end smallexample
1470
1471 In ISO C90, you would have to give @code{contents} a length of 1, which
1472 means either you waste space or complicate the argument to @code{malloc}.
1473
1474 In ISO C99, you would use a @dfn{flexible array member}, which is
1475 slightly different in syntax and semantics:
1476
1477 @itemize @bullet
1478 @item
1479 Flexible array members are written as @code{contents[]} without
1480 the @code{0}.
1481
1482 @item
1483 Flexible array members have incomplete type, and so the @code{sizeof}
1484 operator may not be applied. As a quirk of the original implementation
1485 of zero-length arrays, @code{sizeof} evaluates to zero.
1486
1487 @item
1488 Flexible array members may only appear as the last member of a
1489 @code{struct} that is otherwise non-empty.
1490
1491 @item
1492 A structure containing a flexible array member, or a union containing
1493 such a structure (possibly recursively), may not be a member of a
1494 structure or an element of an array. (However, these uses are
1495 permitted by GCC as extensions.)
1496 @end itemize
1497
1498 GCC versions before 3.0 allowed zero-length arrays to be statically
1499 initialized, as if they were flexible arrays. In addition to those
1500 cases that were useful, it also allowed initializations in situations
1501 that would corrupt later data. Non-empty initialization of zero-length
1502 arrays is now treated like any case where there are more initializer
1503 elements than the array holds, in that a suitable warning about ``excess
1504 elements in array'' is given, and the excess elements (all of them, in
1505 this case) are ignored.
1506
1507 Instead GCC allows static initialization of flexible array members.
1508 This is equivalent to defining a new structure containing the original
1509 structure followed by an array of sufficient size to contain the data.
1510 E.g.@: in the following, @code{f1} is constructed as if it were declared
1511 like @code{f2}.
1512
1513 @smallexample
1514 struct f1 @{
1515 int x; int y[];
1516 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1517
1518 struct f2 @{
1519 struct f1 f1; int data[3];
1520 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1521 @end smallexample
1522
1523 @noindent
1524 The convenience of this extension is that @code{f1} has the desired
1525 type, eliminating the need to consistently refer to @code{f2.f1}.
1526
1527 This has symmetry with normal static arrays, in that an array of
1528 unknown size is also written with @code{[]}.
1529
1530 Of course, this extension only makes sense if the extra data comes at
1531 the end of a top-level object, as otherwise we would be overwriting
1532 data at subsequent offsets. To avoid undue complication and confusion
1533 with initialization of deeply nested arrays, we simply disallow any
1534 non-empty initialization except when the structure is the top-level
1535 object. For example:
1536
1537 @smallexample
1538 struct foo @{ int x; int y[]; @};
1539 struct bar @{ struct foo z; @};
1540
1541 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1542 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1543 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1544 struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1545 @end smallexample
1546
1547 @node Empty Structures
1548 @section Structures With No Members
1549 @cindex empty structures
1550 @cindex zero-size structures
1551
1552 GCC permits a C structure to have no members:
1553
1554 @smallexample
1555 struct empty @{
1556 @};
1557 @end smallexample
1558
1559 The structure has size zero. In C++, empty structures are part
1560 of the language. G++ treats empty structures as if they had a single
1561 member of type @code{char}.
1562
1563 @node Variable Length
1564 @section Arrays of Variable Length
1565 @cindex variable-length arrays
1566 @cindex arrays of variable length
1567 @cindex VLAs
1568
1569 Variable-length automatic arrays are allowed in ISO C99, and as an
1570 extension GCC accepts them in C90 mode and in C++. These arrays are
1571 declared like any other automatic arrays, but with a length that is not
1572 a constant expression. The storage is allocated at the point of
1573 declaration and deallocated when the block scope containing the declaration
1574 exits. For
1575 example:
1576
1577 @smallexample
1578 FILE *
1579 concat_fopen (char *s1, char *s2, char *mode)
1580 @{
1581 char str[strlen (s1) + strlen (s2) + 1];
1582 strcpy (str, s1);
1583 strcat (str, s2);
1584 return fopen (str, mode);
1585 @}
1586 @end smallexample
1587
1588 @cindex scope of a variable length array
1589 @cindex variable-length array scope
1590 @cindex deallocating variable length arrays
1591 Jumping or breaking out of the scope of the array name deallocates the
1592 storage. Jumping into the scope is not allowed; you get an error
1593 message for it.
1594
1595 @cindex variable-length array in a structure
1596 As an extension, GCC accepts variable-length arrays as a member of
1597 a structure or a union. For example:
1598
1599 @smallexample
1600 void
1601 foo (int n)
1602 @{
1603 struct S @{ int x[n]; @};
1604 @}
1605 @end smallexample
1606
1607 @cindex @code{alloca} vs variable-length arrays
1608 You can use the function @code{alloca} to get an effect much like
1609 variable-length arrays. The function @code{alloca} is available in
1610 many other C implementations (but not in all). On the other hand,
1611 variable-length arrays are more elegant.
1612
1613 There are other differences between these two methods. Space allocated
1614 with @code{alloca} exists until the containing @emph{function} returns.
1615 The space for a variable-length array is deallocated as soon as the array
1616 name's scope ends. (If you use both variable-length arrays and
1617 @code{alloca} in the same function, deallocation of a variable-length array
1618 also deallocates anything more recently allocated with @code{alloca}.)
1619
1620 You can also use variable-length arrays as arguments to functions:
1621
1622 @smallexample
1623 struct entry
1624 tester (int len, char data[len][len])
1625 @{
1626 /* @r{@dots{}} */
1627 @}
1628 @end smallexample
1629
1630 The length of an array is computed once when the storage is allocated
1631 and is remembered for the scope of the array in case you access it with
1632 @code{sizeof}.
1633
1634 If you want to pass the array first and the length afterward, you can
1635 use a forward declaration in the parameter list---another GNU extension.
1636
1637 @smallexample
1638 struct entry
1639 tester (int len; char data[len][len], int len)
1640 @{
1641 /* @r{@dots{}} */
1642 @}
1643 @end smallexample
1644
1645 @cindex parameter forward declaration
1646 The @samp{int len} before the semicolon is a @dfn{parameter forward
1647 declaration}, and it serves the purpose of making the name @code{len}
1648 known when the declaration of @code{data} is parsed.
1649
1650 You can write any number of such parameter forward declarations in the
1651 parameter list. They can be separated by commas or semicolons, but the
1652 last one must end with a semicolon, which is followed by the ``real''
1653 parameter declarations. Each forward declaration must match a ``real''
1654 declaration in parameter name and data type. ISO C99 does not support
1655 parameter forward declarations.
1656
1657 @node Variadic Macros
1658 @section Macros with a Variable Number of Arguments.
1659 @cindex variable number of arguments
1660 @cindex macro with variable arguments
1661 @cindex rest argument (in macro)
1662 @cindex variadic macros
1663
1664 In the ISO C standard of 1999, a macro can be declared to accept a
1665 variable number of arguments much as a function can. The syntax for
1666 defining the macro is similar to that of a function. Here is an
1667 example:
1668
1669 @smallexample
1670 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1671 @end smallexample
1672
1673 @noindent
1674 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1675 such a macro, it represents the zero or more tokens until the closing
1676 parenthesis that ends the invocation, including any commas. This set of
1677 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1678 wherever it appears. See the CPP manual for more information.
1679
1680 GCC has long supported variadic macros, and used a different syntax that
1681 allowed you to give a name to the variable arguments just like any other
1682 argument. Here is an example:
1683
1684 @smallexample
1685 #define debug(format, args...) fprintf (stderr, format, args)
1686 @end smallexample
1687
1688 @noindent
1689 This is in all ways equivalent to the ISO C example above, but arguably
1690 more readable and descriptive.
1691
1692 GNU CPP has two further variadic macro extensions, and permits them to
1693 be used with either of the above forms of macro definition.
1694
1695 In standard C, you are not allowed to leave the variable argument out
1696 entirely; but you are allowed to pass an empty argument. For example,
1697 this invocation is invalid in ISO C, because there is no comma after
1698 the string:
1699
1700 @smallexample
1701 debug ("A message")
1702 @end smallexample
1703
1704 GNU CPP permits you to completely omit the variable arguments in this
1705 way. In the above examples, the compiler would complain, though since
1706 the expansion of the macro still has the extra comma after the format
1707 string.
1708
1709 To help solve this problem, CPP behaves specially for variable arguments
1710 used with the token paste operator, @samp{##}. If instead you write
1711
1712 @smallexample
1713 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1714 @end smallexample
1715
1716 @noindent
1717 and if the variable arguments are omitted or empty, the @samp{##}
1718 operator causes the preprocessor to remove the comma before it. If you
1719 do provide some variable arguments in your macro invocation, GNU CPP
1720 does not complain about the paste operation and instead places the
1721 variable arguments after the comma. Just like any other pasted macro
1722 argument, these arguments are not macro expanded.
1723
1724 @node Escaped Newlines
1725 @section Slightly Looser Rules for Escaped Newlines
1726 @cindex escaped newlines
1727 @cindex newlines (escaped)
1728
1729 Recently, the preprocessor has relaxed its treatment of escaped
1730 newlines. Previously, the newline had to immediately follow a
1731 backslash. The current implementation allows whitespace in the form
1732 of spaces, horizontal and vertical tabs, and form feeds between the
1733 backslash and the subsequent newline. The preprocessor issues a
1734 warning, but treats it as a valid escaped newline and combines the two
1735 lines to form a single logical line. This works within comments and
1736 tokens, as well as between tokens. Comments are @emph{not} treated as
1737 whitespace for the purposes of this relaxation, since they have not
1738 yet been replaced with spaces.
1739
1740 @node Subscripting
1741 @section Non-Lvalue Arrays May Have Subscripts
1742 @cindex subscripting
1743 @cindex arrays, non-lvalue
1744
1745 @cindex subscripting and function values
1746 In ISO C99, arrays that are not lvalues still decay to pointers, and
1747 may be subscripted, although they may not be modified or used after
1748 the next sequence point and the unary @samp{&} operator may not be
1749 applied to them. As an extension, GNU C allows such arrays to be
1750 subscripted in C90 mode, though otherwise they do not decay to
1751 pointers outside C99 mode. For example,
1752 this is valid in GNU C though not valid in C90:
1753
1754 @smallexample
1755 @group
1756 struct foo @{int a[4];@};
1757
1758 struct foo f();
1759
1760 bar (int index)
1761 @{
1762 return f().a[index];
1763 @}
1764 @end group
1765 @end smallexample
1766
1767 @node Pointer Arith
1768 @section Arithmetic on @code{void}- and Function-Pointers
1769 @cindex void pointers, arithmetic
1770 @cindex void, size of pointer to
1771 @cindex function pointers, arithmetic
1772 @cindex function, size of pointer to
1773
1774 In GNU C, addition and subtraction operations are supported on pointers to
1775 @code{void} and on pointers to functions. This is done by treating the
1776 size of a @code{void} or of a function as 1.
1777
1778 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1779 and on function types, and returns 1.
1780
1781 @opindex Wpointer-arith
1782 The option @option{-Wpointer-arith} requests a warning if these extensions
1783 are used.
1784
1785 @node Initializers
1786 @section Non-Constant Initializers
1787 @cindex initializers, non-constant
1788 @cindex non-constant initializers
1789
1790 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1791 automatic variable are not required to be constant expressions in GNU C@.
1792 Here is an example of an initializer with run-time varying elements:
1793
1794 @smallexample
1795 foo (float f, float g)
1796 @{
1797 float beat_freqs[2] = @{ f-g, f+g @};
1798 /* @r{@dots{}} */
1799 @}
1800 @end smallexample
1801
1802 @node Compound Literals
1803 @section Compound Literals
1804 @cindex constructor expressions
1805 @cindex initializations in expressions
1806 @cindex structures, constructor expression
1807 @cindex expressions, constructor
1808 @cindex compound literals
1809 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1810
1811 ISO C99 supports compound literals. A compound literal looks like
1812 a cast containing an initializer. Its value is an object of the
1813 type specified in the cast, containing the elements specified in
1814 the initializer; it is an lvalue. As an extension, GCC supports
1815 compound literals in C90 mode and in C++, though the semantics are
1816 somewhat different in C++.
1817
1818 Usually, the specified type is a structure. Assume that
1819 @code{struct foo} and @code{structure} are declared as shown:
1820
1821 @smallexample
1822 struct foo @{int a; char b[2];@} structure;
1823 @end smallexample
1824
1825 @noindent
1826 Here is an example of constructing a @code{struct foo} with a compound literal:
1827
1828 @smallexample
1829 structure = ((struct foo) @{x + y, 'a', 0@});
1830 @end smallexample
1831
1832 @noindent
1833 This is equivalent to writing the following:
1834
1835 @smallexample
1836 @{
1837 struct foo temp = @{x + y, 'a', 0@};
1838 structure = temp;
1839 @}
1840 @end smallexample
1841
1842 You can also construct an array, though this is dangerous in C++, as
1843 explained below. If all the elements of the compound literal are
1844 (made up of) simple constant expressions, suitable for use in
1845 initializers of objects of static storage duration, then the compound
1846 literal can be coerced to a pointer to its first element and used in
1847 such an initializer, as shown here:
1848
1849 @smallexample
1850 char **foo = (char *[]) @{ "x", "y", "z" @};
1851 @end smallexample
1852
1853 Compound literals for scalar types and union types are
1854 also allowed, but then the compound literal is equivalent
1855 to a cast.
1856
1857 As a GNU extension, GCC allows initialization of objects with static storage
1858 duration by compound literals (which is not possible in ISO C99, because
1859 the initializer is not a constant).
1860 It is handled as if the object is initialized only with the bracket
1861 enclosed list if the types of the compound literal and the object match.
1862 The initializer list of the compound literal must be constant.
1863 If the object being initialized has array type of unknown size, the size is
1864 determined by compound literal size.
1865
1866 @smallexample
1867 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1868 static int y[] = (int []) @{1, 2, 3@};
1869 static int z[] = (int [3]) @{1@};
1870 @end smallexample
1871
1872 @noindent
1873 The above lines are equivalent to the following:
1874 @smallexample
1875 static struct foo x = @{1, 'a', 'b'@};
1876 static int y[] = @{1, 2, 3@};
1877 static int z[] = @{1, 0, 0@};
1878 @end smallexample
1879
1880 In C, a compound literal designates an unnamed object with static or
1881 automatic storage duration. In C++, a compound literal designates a
1882 temporary object, which only lives until the end of its
1883 full-expression. As a result, well-defined C code that takes the
1884 address of a subobject of a compound literal can be undefined in C++.
1885 For instance, if the array compound literal example above appeared
1886 inside a function, any subsequent use of @samp{foo} in C++ has
1887 undefined behavior because the lifetime of the array ends after the
1888 declaration of @samp{foo}. As a result, the C++ compiler now rejects
1889 the conversion of a temporary array to a pointer.
1890
1891 As an optimization, the C++ compiler sometimes gives array compound
1892 literals longer lifetimes: when the array either appears outside a
1893 function or has const-qualified type. If @samp{foo} and its
1894 initializer had elements of @samp{char *const} type rather than
1895 @samp{char *}, or if @samp{foo} were a global variable, the array
1896 would have static storage duration. But it is probably safest just to
1897 avoid the use of array compound literals in code compiled as C++.
1898
1899 @node Designated Inits
1900 @section Designated Initializers
1901 @cindex initializers with labeled elements
1902 @cindex labeled elements in initializers
1903 @cindex case labels in initializers
1904 @cindex designated initializers
1905
1906 Standard C90 requires the elements of an initializer to appear in a fixed
1907 order, the same as the order of the elements in the array or structure
1908 being initialized.
1909
1910 In ISO C99 you can give the elements in any order, specifying the array
1911 indices or structure field names they apply to, and GNU C allows this as
1912 an extension in C90 mode as well. This extension is not
1913 implemented in GNU C++.
1914
1915 To specify an array index, write
1916 @samp{[@var{index}] =} before the element value. For example,
1917
1918 @smallexample
1919 int a[6] = @{ [4] = 29, [2] = 15 @};
1920 @end smallexample
1921
1922 @noindent
1923 is equivalent to
1924
1925 @smallexample
1926 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1927 @end smallexample
1928
1929 @noindent
1930 The index values must be constant expressions, even if the array being
1931 initialized is automatic.
1932
1933 An alternative syntax for this that has been obsolete since GCC 2.5 but
1934 GCC still accepts is to write @samp{[@var{index}]} before the element
1935 value, with no @samp{=}.
1936
1937 To initialize a range of elements to the same value, write
1938 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1939 extension. For example,
1940
1941 @smallexample
1942 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1943 @end smallexample
1944
1945 @noindent
1946 If the value in it has side-effects, the side-effects happen only once,
1947 not for each initialized field by the range initializer.
1948
1949 @noindent
1950 Note that the length of the array is the highest value specified
1951 plus one.
1952
1953 In a structure initializer, specify the name of a field to initialize
1954 with @samp{.@var{fieldname} =} before the element value. For example,
1955 given the following structure,
1956
1957 @smallexample
1958 struct point @{ int x, y; @};
1959 @end smallexample
1960
1961 @noindent
1962 the following initialization
1963
1964 @smallexample
1965 struct point p = @{ .y = yvalue, .x = xvalue @};
1966 @end smallexample
1967
1968 @noindent
1969 is equivalent to
1970
1971 @smallexample
1972 struct point p = @{ xvalue, yvalue @};
1973 @end smallexample
1974
1975 Another syntax that has the same meaning, obsolete since GCC 2.5, is
1976 @samp{@var{fieldname}:}, as shown here:
1977
1978 @smallexample
1979 struct point p = @{ y: yvalue, x: xvalue @};
1980 @end smallexample
1981
1982 Omitted field members are implicitly initialized the same as objects
1983 that have static storage duration.
1984
1985 @cindex designators
1986 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1987 @dfn{designator}. You can also use a designator (or the obsolete colon
1988 syntax) when initializing a union, to specify which element of the union
1989 should be used. For example,
1990
1991 @smallexample
1992 union foo @{ int i; double d; @};
1993
1994 union foo f = @{ .d = 4 @};
1995 @end smallexample
1996
1997 @noindent
1998 converts 4 to a @code{double} to store it in the union using
1999 the second element. By contrast, casting 4 to type @code{union foo}
2000 stores it into the union as the integer @code{i}, since it is
2001 an integer. (@xref{Cast to Union}.)
2002
2003 You can combine this technique of naming elements with ordinary C
2004 initialization of successive elements. Each initializer element that
2005 does not have a designator applies to the next consecutive element of the
2006 array or structure. For example,
2007
2008 @smallexample
2009 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2010 @end smallexample
2011
2012 @noindent
2013 is equivalent to
2014
2015 @smallexample
2016 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2017 @end smallexample
2018
2019 Labeling the elements of an array initializer is especially useful
2020 when the indices are characters or belong to an @code{enum} type.
2021 For example:
2022
2023 @smallexample
2024 int whitespace[256]
2025 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2026 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2027 @end smallexample
2028
2029 @cindex designator lists
2030 You can also write a series of @samp{.@var{fieldname}} and
2031 @samp{[@var{index}]} designators before an @samp{=} to specify a
2032 nested subobject to initialize; the list is taken relative to the
2033 subobject corresponding to the closest surrounding brace pair. For
2034 example, with the @samp{struct point} declaration above:
2035
2036 @smallexample
2037 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2038 @end smallexample
2039
2040 @noindent
2041 If the same field is initialized multiple times, it has the value from
2042 the last initialization. If any such overridden initialization has
2043 side-effect, it is unspecified whether the side-effect happens or not.
2044 Currently, GCC discards them and issues a warning.
2045
2046 @node Case Ranges
2047 @section Case Ranges
2048 @cindex case ranges
2049 @cindex ranges in case statements
2050
2051 You can specify a range of consecutive values in a single @code{case} label,
2052 like this:
2053
2054 @smallexample
2055 case @var{low} ... @var{high}:
2056 @end smallexample
2057
2058 @noindent
2059 This has the same effect as the proper number of individual @code{case}
2060 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2061
2062 This feature is especially useful for ranges of ASCII character codes:
2063
2064 @smallexample
2065 case 'A' ... 'Z':
2066 @end smallexample
2067
2068 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2069 it may be parsed wrong when you use it with integer values. For example,
2070 write this:
2071
2072 @smallexample
2073 case 1 ... 5:
2074 @end smallexample
2075
2076 @noindent
2077 rather than this:
2078
2079 @smallexample
2080 case 1...5:
2081 @end smallexample
2082
2083 @node Cast to Union
2084 @section Cast to a Union Type
2085 @cindex cast to a union
2086 @cindex union, casting to a
2087
2088 A cast to union type is similar to other casts, except that the type
2089 specified is a union type. You can specify the type either with
2090 @code{union @var{tag}} or with a typedef name. A cast to union is actually
2091 a constructor, not a cast, and hence does not yield an lvalue like
2092 normal casts. (@xref{Compound Literals}.)
2093
2094 The types that may be cast to the union type are those of the members
2095 of the union. Thus, given the following union and variables:
2096
2097 @smallexample
2098 union foo @{ int i; double d; @};
2099 int x;
2100 double y;
2101 @end smallexample
2102
2103 @noindent
2104 both @code{x} and @code{y} can be cast to type @code{union foo}.
2105
2106 Using the cast as the right-hand side of an assignment to a variable of
2107 union type is equivalent to storing in a member of the union:
2108
2109 @smallexample
2110 union foo u;
2111 /* @r{@dots{}} */
2112 u = (union foo) x @equiv{} u.i = x
2113 u = (union foo) y @equiv{} u.d = y
2114 @end smallexample
2115
2116 You can also use the union cast as a function argument:
2117
2118 @smallexample
2119 void hack (union foo);
2120 /* @r{@dots{}} */
2121 hack ((union foo) x);
2122 @end smallexample
2123
2124 @node Mixed Declarations
2125 @section Mixed Declarations and Code
2126 @cindex mixed declarations and code
2127 @cindex declarations, mixed with code
2128 @cindex code, mixed with declarations
2129
2130 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2131 within compound statements. As an extension, GNU C also allows this in
2132 C90 mode. For example, you could do:
2133
2134 @smallexample
2135 int i;
2136 /* @r{@dots{}} */
2137 i++;
2138 int j = i + 2;
2139 @end smallexample
2140
2141 Each identifier is visible from where it is declared until the end of
2142 the enclosing block.
2143
2144 @node Function Attributes
2145 @section Declaring Attributes of Functions
2146 @cindex function attributes
2147 @cindex declaring attributes of functions
2148 @cindex functions that never return
2149 @cindex functions that return more than once
2150 @cindex functions that have no side effects
2151 @cindex functions in arbitrary sections
2152 @cindex functions that behave like malloc
2153 @cindex @code{volatile} applied to function
2154 @cindex @code{const} applied to function
2155 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2156 @cindex functions with non-null pointer arguments
2157 @cindex functions that are passed arguments in registers on the 386
2158 @cindex functions that pop the argument stack on the 386
2159 @cindex functions that do not pop the argument stack on the 386
2160 @cindex functions that have different compilation options on the 386
2161 @cindex functions that have different optimization options
2162 @cindex functions that are dynamically resolved
2163
2164 In GNU C, you declare certain things about functions called in your program
2165 which help the compiler optimize function calls and check your code more
2166 carefully.
2167
2168 The keyword @code{__attribute__} allows you to specify special
2169 attributes when making a declaration. This keyword is followed by an
2170 attribute specification inside double parentheses. The following
2171 attributes are currently defined for functions on all targets:
2172 @code{aligned}, @code{alloc_size}, @code{alloc_align}, @code{assume_aligned},
2173 @code{noreturn}, @code{returns_twice}, @code{noinline}, @code{noclone},
2174 @code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2175 @code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
2176 @code{no_instrument_function}, @code{no_split_stack},
2177 @code{section}, @code{constructor},
2178 @code{destructor}, @code{used}, @code{unused}, @code{deprecated},
2179 @code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2180 @code{warn_unused_result}, @code{nonnull},
2181 @code{returns_nonnull}, @code{gnu_inline},
2182 @code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2183 @code{no_sanitize_address}, @code{no_address_safety_analysis},
2184 @code{no_sanitize_undefined},
2185 @code{error} and @code{warning}.
2186 Several other attributes are defined for functions on particular
2187 target systems. Other attributes, including @code{section} are
2188 supported for variables declarations (@pxref{Variable Attributes})
2189 and for types (@pxref{Type Attributes}).
2190
2191 GCC plugins may provide their own attributes.
2192
2193 You may also specify attributes with @samp{__} preceding and following
2194 each keyword. This allows you to use them in header files without
2195 being concerned about a possible macro of the same name. For example,
2196 you may use @code{__noreturn__} instead of @code{noreturn}.
2197
2198 @xref{Attribute Syntax}, for details of the exact syntax for using
2199 attributes.
2200
2201 @table @code
2202 @c Keep this table alphabetized by attribute name. Treat _ as space.
2203
2204 @item alias ("@var{target}")
2205 @cindex @code{alias} attribute
2206 The @code{alias} attribute causes the declaration to be emitted as an
2207 alias for another symbol, which must be specified. For instance,
2208
2209 @smallexample
2210 void __f () @{ /* @r{Do something.} */; @}
2211 void f () __attribute__ ((weak, alias ("__f")));
2212 @end smallexample
2213
2214 @noindent
2215 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2216 mangled name for the target must be used. It is an error if @samp{__f}
2217 is not defined in the same translation unit.
2218
2219 Not all target machines support this attribute.
2220
2221 @item aligned (@var{alignment})
2222 @cindex @code{aligned} attribute
2223 This attribute specifies a minimum alignment for the function,
2224 measured in bytes.
2225
2226 You cannot use this attribute to decrease the alignment of a function,
2227 only to increase it. However, when you explicitly specify a function
2228 alignment this overrides the effect of the
2229 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2230 function.
2231
2232 Note that the effectiveness of @code{aligned} attributes may be
2233 limited by inherent limitations in your linker. On many systems, the
2234 linker is only able to arrange for functions to be aligned up to a
2235 certain maximum alignment. (For some linkers, the maximum supported
2236 alignment may be very very small.) See your linker documentation for
2237 further information.
2238
2239 The @code{aligned} attribute can also be used for variables and fields
2240 (@pxref{Variable Attributes}.)
2241
2242 @item alloc_size
2243 @cindex @code{alloc_size} attribute
2244 The @code{alloc_size} attribute is used to tell the compiler that the
2245 function return value points to memory, where the size is given by
2246 one or two of the functions parameters. GCC uses this
2247 information to improve the correctness of @code{__builtin_object_size}.
2248
2249 The function parameter(s) denoting the allocated size are specified by
2250 one or two integer arguments supplied to the attribute. The allocated size
2251 is either the value of the single function argument specified or the product
2252 of the two function arguments specified. Argument numbering starts at
2253 one.
2254
2255 For instance,
2256
2257 @smallexample
2258 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2259 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2260 @end smallexample
2261
2262 @noindent
2263 declares that @code{my_calloc} returns memory of the size given by
2264 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2265 of the size given by parameter 2.
2266
2267 @item alloc_align
2268 @cindex @code{alloc_align} attribute
2269 The @code{alloc_align} attribute is used to tell the compiler that the
2270 function return value points to memory, where the returned pointer minimum
2271 alignment is given by one of the functions parameters. GCC uses this
2272 information to improve pointer alignment analysis.
2273
2274 The function parameter denoting the allocated alignment is specified by
2275 one integer argument, whose number is the argument of the attribute.
2276 Argument numbering starts at one.
2277
2278 For instance,
2279
2280 @smallexample
2281 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2282 @end smallexample
2283
2284 @noindent
2285 declares that @code{my_memalign} returns memory with minimum alignment
2286 given by parameter 1.
2287
2288 @item assume_aligned
2289 @cindex @code{assume_aligned} attribute
2290 The @code{assume_aligned} attribute is used to tell the compiler that the
2291 function return value points to memory, where the returned pointer minimum
2292 alignment is given by the first argument.
2293 If the attribute has two arguments, the second argument is misalignment offset.
2294
2295 For instance
2296
2297 @smallexample
2298 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2299 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2300 @end smallexample
2301
2302 @noindent
2303 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2304 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2305 to 8.
2306
2307 @item always_inline
2308 @cindex @code{always_inline} function attribute
2309 Generally, functions are not inlined unless optimization is specified.
2310 For functions declared inline, this attribute inlines the function even
2311 if no optimization level is specified.
2312
2313 @item gnu_inline
2314 @cindex @code{gnu_inline} function attribute
2315 This attribute should be used with a function that is also declared
2316 with the @code{inline} keyword. It directs GCC to treat the function
2317 as if it were defined in gnu90 mode even when compiling in C99 or
2318 gnu99 mode.
2319
2320 If the function is declared @code{extern}, then this definition of the
2321 function is used only for inlining. In no case is the function
2322 compiled as a standalone function, not even if you take its address
2323 explicitly. Such an address becomes an external reference, as if you
2324 had only declared the function, and had not defined it. This has
2325 almost the effect of a macro. The way to use this is to put a
2326 function definition in a header file with this attribute, and put
2327 another copy of the function, without @code{extern}, in a library
2328 file. The definition in the header file causes most calls to the
2329 function to be inlined. If any uses of the function remain, they
2330 refer to the single copy in the library. Note that the two
2331 definitions of the functions need not be precisely the same, although
2332 if they do not have the same effect your program may behave oddly.
2333
2334 In C, if the function is neither @code{extern} nor @code{static}, then
2335 the function is compiled as a standalone function, as well as being
2336 inlined where possible.
2337
2338 This is how GCC traditionally handled functions declared
2339 @code{inline}. Since ISO C99 specifies a different semantics for
2340 @code{inline}, this function attribute is provided as a transition
2341 measure and as a useful feature in its own right. This attribute is
2342 available in GCC 4.1.3 and later. It is available if either of the
2343 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2344 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2345 Function is As Fast As a Macro}.
2346
2347 In C++, this attribute does not depend on @code{extern} in any way,
2348 but it still requires the @code{inline} keyword to enable its special
2349 behavior.
2350
2351 @item artificial
2352 @cindex @code{artificial} function attribute
2353 This attribute is useful for small inline wrappers that if possible
2354 should appear during debugging as a unit. Depending on the debug
2355 info format it either means marking the function as artificial
2356 or using the caller location for all instructions within the inlined
2357 body.
2358
2359 @item bank_switch
2360 @cindex interrupt handler functions
2361 When added to an interrupt handler with the M32C port, causes the
2362 prologue and epilogue to use bank switching to preserve the registers
2363 rather than saving them on the stack.
2364
2365 @item flatten
2366 @cindex @code{flatten} function attribute
2367 Generally, inlining into a function is limited. For a function marked with
2368 this attribute, every call inside this function is inlined, if possible.
2369 Whether the function itself is considered for inlining depends on its size and
2370 the current inlining parameters.
2371
2372 @item error ("@var{message}")
2373 @cindex @code{error} function attribute
2374 If this attribute is used on a function declaration and a call to such a function
2375 is not eliminated through dead code elimination or other optimizations, an error
2376 that includes @var{message} is diagnosed. This is useful
2377 for compile-time checking, especially together with @code{__builtin_constant_p}
2378 and inline functions where checking the inline function arguments is not
2379 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2380 While it is possible to leave the function undefined and thus invoke
2381 a link failure, when using this attribute the problem is diagnosed
2382 earlier and with exact location of the call even in presence of inline
2383 functions or when not emitting debugging information.
2384
2385 @item warning ("@var{message}")
2386 @cindex @code{warning} function attribute
2387 If this attribute is used on a function declaration and a call to such a function
2388 is not eliminated through dead code elimination or other optimizations, a warning
2389 that includes @var{message} is diagnosed. This is useful
2390 for compile-time checking, especially together with @code{__builtin_constant_p}
2391 and inline functions. While it is possible to define the function with
2392 a message in @code{.gnu.warning*} section, when using this attribute the problem
2393 is diagnosed earlier and with exact location of the call even in presence
2394 of inline functions or when not emitting debugging information.
2395
2396 @item cdecl
2397 @cindex functions that do pop the argument stack on the 386
2398 @opindex mrtd
2399 On the Intel 386, the @code{cdecl} attribute causes the compiler to
2400 assume that the calling function pops off the stack space used to
2401 pass arguments. This is
2402 useful to override the effects of the @option{-mrtd} switch.
2403
2404 @item const
2405 @cindex @code{const} function attribute
2406 Many functions do not examine any values except their arguments, and
2407 have no effects except the return value. Basically this is just slightly
2408 more strict class than the @code{pure} attribute below, since function is not
2409 allowed to read global memory.
2410
2411 @cindex pointer arguments
2412 Note that a function that has pointer arguments and examines the data
2413 pointed to must @emph{not} be declared @code{const}. Likewise, a
2414 function that calls a non-@code{const} function usually must not be
2415 @code{const}. It does not make sense for a @code{const} function to
2416 return @code{void}.
2417
2418 The attribute @code{const} is not implemented in GCC versions earlier
2419 than 2.5. An alternative way to declare that a function has no side
2420 effects, which works in the current version and in some older versions,
2421 is as follows:
2422
2423 @smallexample
2424 typedef int intfn ();
2425
2426 extern const intfn square;
2427 @end smallexample
2428
2429 @noindent
2430 This approach does not work in GNU C++ from 2.6.0 on, since the language
2431 specifies that the @samp{const} must be attached to the return value.
2432
2433 @item constructor
2434 @itemx destructor
2435 @itemx constructor (@var{priority})
2436 @itemx destructor (@var{priority})
2437 @cindex @code{constructor} function attribute
2438 @cindex @code{destructor} function attribute
2439 The @code{constructor} attribute causes the function to be called
2440 automatically before execution enters @code{main ()}. Similarly, the
2441 @code{destructor} attribute causes the function to be called
2442 automatically after @code{main ()} completes or @code{exit ()} is
2443 called. Functions with these attributes are useful for
2444 initializing data that is used implicitly during the execution of
2445 the program.
2446
2447 You may provide an optional integer priority to control the order in
2448 which constructor and destructor functions are run. A constructor
2449 with a smaller priority number runs before a constructor with a larger
2450 priority number; the opposite relationship holds for destructors. So,
2451 if you have a constructor that allocates a resource and a destructor
2452 that deallocates the same resource, both functions typically have the
2453 same priority. The priorities for constructor and destructor
2454 functions are the same as those specified for namespace-scope C++
2455 objects (@pxref{C++ Attributes}).
2456
2457 These attributes are not currently implemented for Objective-C@.
2458
2459 @item deprecated
2460 @itemx deprecated (@var{msg})
2461 @cindex @code{deprecated} attribute.
2462 The @code{deprecated} attribute results in a warning if the function
2463 is used anywhere in the source file. This is useful when identifying
2464 functions that are expected to be removed in a future version of a
2465 program. The warning also includes the location of the declaration
2466 of the deprecated function, to enable users to easily find further
2467 information about why the function is deprecated, or what they should
2468 do instead. Note that the warnings only occurs for uses:
2469
2470 @smallexample
2471 int old_fn () __attribute__ ((deprecated));
2472 int old_fn ();
2473 int (*fn_ptr)() = old_fn;
2474 @end smallexample
2475
2476 @noindent
2477 results in a warning on line 3 but not line 2. The optional @var{msg}
2478 argument, which must be a string, is printed in the warning if
2479 present.
2480
2481 The @code{deprecated} attribute can also be used for variables and
2482 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2483
2484 @item disinterrupt
2485 @cindex @code{disinterrupt} attribute
2486 On Epiphany and MeP targets, this attribute causes the compiler to emit
2487 instructions to disable interrupts for the duration of the given
2488 function.
2489
2490 @item dllexport
2491 @cindex @code{__declspec(dllexport)}
2492 On Microsoft Windows targets and Symbian OS targets the
2493 @code{dllexport} attribute causes the compiler to provide a global
2494 pointer to a pointer in a DLL, so that it can be referenced with the
2495 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
2496 name is formed by combining @code{_imp__} and the function or variable
2497 name.
2498
2499 You can use @code{__declspec(dllexport)} as a synonym for
2500 @code{__attribute__ ((dllexport))} for compatibility with other
2501 compilers.
2502
2503 On systems that support the @code{visibility} attribute, this
2504 attribute also implies ``default'' visibility. It is an error to
2505 explicitly specify any other visibility.
2506
2507 In previous versions of GCC, the @code{dllexport} attribute was ignored
2508 for inlined functions, unless the @option{-fkeep-inline-functions} flag
2509 had been used. The default behavior now is to emit all dllexported
2510 inline functions; however, this can cause object file-size bloat, in
2511 which case the old behavior can be restored by using
2512 @option{-fno-keep-inline-dllexport}.
2513
2514 The attribute is also ignored for undefined symbols.
2515
2516 When applied to C++ classes, the attribute marks defined non-inlined
2517 member functions and static data members as exports. Static consts
2518 initialized in-class are not marked unless they are also defined
2519 out-of-class.
2520
2521 For Microsoft Windows targets there are alternative methods for
2522 including the symbol in the DLL's export table such as using a
2523 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2524 the @option{--export-all} linker flag.
2525
2526 @item dllimport
2527 @cindex @code{__declspec(dllimport)}
2528 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2529 attribute causes the compiler to reference a function or variable via
2530 a global pointer to a pointer that is set up by the DLL exporting the
2531 symbol. The attribute implies @code{extern}. On Microsoft Windows
2532 targets, the pointer name is formed by combining @code{_imp__} and the
2533 function or variable name.
2534
2535 You can use @code{__declspec(dllimport)} as a synonym for
2536 @code{__attribute__ ((dllimport))} for compatibility with other
2537 compilers.
2538
2539 On systems that support the @code{visibility} attribute, this
2540 attribute also implies ``default'' visibility. It is an error to
2541 explicitly specify any other visibility.
2542
2543 Currently, the attribute is ignored for inlined functions. If the
2544 attribute is applied to a symbol @emph{definition}, an error is reported.
2545 If a symbol previously declared @code{dllimport} is later defined, the
2546 attribute is ignored in subsequent references, and a warning is emitted.
2547 The attribute is also overridden by a subsequent declaration as
2548 @code{dllexport}.
2549
2550 When applied to C++ classes, the attribute marks non-inlined
2551 member functions and static data members as imports. However, the
2552 attribute is ignored for virtual methods to allow creation of vtables
2553 using thunks.
2554
2555 On the SH Symbian OS target the @code{dllimport} attribute also has
2556 another affect---it can cause the vtable and run-time type information
2557 for a class to be exported. This happens when the class has a
2558 dllimported constructor or a non-inline, non-pure virtual function
2559 and, for either of those two conditions, the class also has an inline
2560 constructor or destructor and has a key function that is defined in
2561 the current translation unit.
2562
2563 For Microsoft Windows targets the use of the @code{dllimport}
2564 attribute on functions is not necessary, but provides a small
2565 performance benefit by eliminating a thunk in the DLL@. The use of the
2566 @code{dllimport} attribute on imported variables was required on older
2567 versions of the GNU linker, but can now be avoided by passing the
2568 @option{--enable-auto-import} switch to the GNU linker. As with
2569 functions, using the attribute for a variable eliminates a thunk in
2570 the DLL@.
2571
2572 One drawback to using this attribute is that a pointer to a
2573 @emph{variable} marked as @code{dllimport} cannot be used as a constant
2574 address. However, a pointer to a @emph{function} with the
2575 @code{dllimport} attribute can be used as a constant initializer; in
2576 this case, the address of a stub function in the import lib is
2577 referenced. On Microsoft Windows targets, the attribute can be disabled
2578 for functions by setting the @option{-mnop-fun-dllimport} flag.
2579
2580 @item eightbit_data
2581 @cindex eight-bit data on the H8/300, H8/300H, and H8S
2582 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2583 variable should be placed into the eight-bit data section.
2584 The compiler generates more efficient code for certain operations
2585 on data in the eight-bit data area. Note the eight-bit data area is limited to
2586 256 bytes of data.
2587
2588 You must use GAS and GLD from GNU binutils version 2.7 or later for
2589 this attribute to work correctly.
2590
2591 @item exception
2592 @cindex exception handler functions
2593 Use this attribute on the NDS32 target to indicate that the specified function
2594 is an exception handler. The compiler will generate corresponding sections
2595 for use in an exception handler.
2596
2597 @item exception_handler
2598 @cindex exception handler functions on the Blackfin processor
2599 Use this attribute on the Blackfin to indicate that the specified function
2600 is an exception handler. The compiler generates function entry and
2601 exit sequences suitable for use in an exception handler when this
2602 attribute is present.
2603
2604 @item externally_visible
2605 @cindex @code{externally_visible} attribute.
2606 This attribute, attached to a global variable or function, nullifies
2607 the effect of the @option{-fwhole-program} command-line option, so the
2608 object remains visible outside the current compilation unit.
2609
2610 If @option{-fwhole-program} is used together with @option{-flto} and
2611 @command{gold} is used as the linker plugin,
2612 @code{externally_visible} attributes are automatically added to functions
2613 (not variable yet due to a current @command{gold} issue)
2614 that are accessed outside of LTO objects according to resolution file
2615 produced by @command{gold}.
2616 For other linkers that cannot generate resolution file,
2617 explicit @code{externally_visible} attributes are still necessary.
2618
2619 @item far
2620 @cindex functions that handle memory bank switching
2621 On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2622 use a calling convention that takes care of switching memory banks when
2623 entering and leaving a function. This calling convention is also the
2624 default when using the @option{-mlong-calls} option.
2625
2626 On 68HC12 the compiler uses the @code{call} and @code{rtc} instructions
2627 to call and return from a function.
2628
2629 On 68HC11 the compiler generates a sequence of instructions
2630 to invoke a board-specific routine to switch the memory bank and call the
2631 real function. The board-specific routine simulates a @code{call}.
2632 At the end of a function, it jumps to a board-specific routine
2633 instead of using @code{rts}. The board-specific return routine simulates
2634 the @code{rtc}.
2635
2636 On MeP targets this causes the compiler to use a calling convention
2637 that assumes the called function is too far away for the built-in
2638 addressing modes.
2639
2640 @item fast_interrupt
2641 @cindex interrupt handler functions
2642 Use this attribute on the M32C and RX ports to indicate that the specified
2643 function is a fast interrupt handler. This is just like the
2644 @code{interrupt} attribute, except that @code{freit} is used to return
2645 instead of @code{reit}.
2646
2647 @item fastcall
2648 @cindex functions that pop the argument stack on the 386
2649 On the Intel 386, the @code{fastcall} attribute causes the compiler to
2650 pass the first argument (if of integral type) in the register ECX and
2651 the second argument (if of integral type) in the register EDX@. Subsequent
2652 and other typed arguments are passed on the stack. The called function
2653 pops the arguments off the stack. If the number of arguments is variable all
2654 arguments are pushed on the stack.
2655
2656 @item thiscall
2657 @cindex functions that pop the argument stack on the 386
2658 On the Intel 386, the @code{thiscall} attribute causes the compiler to
2659 pass the first argument (if of integral type) in the register ECX.
2660 Subsequent and other typed arguments are passed on the stack. The called
2661 function pops the arguments off the stack.
2662 If the number of arguments is variable all arguments are pushed on the
2663 stack.
2664 The @code{thiscall} attribute is intended for C++ non-static member functions.
2665 As a GCC extension, this calling convention can be used for C functions
2666 and for static member methods.
2667
2668 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2669 @cindex @code{format} function attribute
2670 @opindex Wformat
2671 The @code{format} attribute specifies that a function takes @code{printf},
2672 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2673 should be type-checked against a format string. For example, the
2674 declaration:
2675
2676 @smallexample
2677 extern int
2678 my_printf (void *my_object, const char *my_format, ...)
2679 __attribute__ ((format (printf, 2, 3)));
2680 @end smallexample
2681
2682 @noindent
2683 causes the compiler to check the arguments in calls to @code{my_printf}
2684 for consistency with the @code{printf} style format string argument
2685 @code{my_format}.
2686
2687 The parameter @var{archetype} determines how the format string is
2688 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2689 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2690 @code{strfmon}. (You can also use @code{__printf__},
2691 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2692 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2693 @code{ms_strftime} are also present.
2694 @var{archetype} values such as @code{printf} refer to the formats accepted
2695 by the system's C runtime library,
2696 while values prefixed with @samp{gnu_} always refer
2697 to the formats accepted by the GNU C Library. On Microsoft Windows
2698 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2699 @file{msvcrt.dll} library.
2700 The parameter @var{string-index}
2701 specifies which argument is the format string argument (starting
2702 from 1), while @var{first-to-check} is the number of the first
2703 argument to check against the format string. For functions
2704 where the arguments are not available to be checked (such as
2705 @code{vprintf}), specify the third parameter as zero. In this case the
2706 compiler only checks the format string for consistency. For
2707 @code{strftime} formats, the third parameter is required to be zero.
2708 Since non-static C++ methods have an implicit @code{this} argument, the
2709 arguments of such methods should be counted from two, not one, when
2710 giving values for @var{string-index} and @var{first-to-check}.
2711
2712 In the example above, the format string (@code{my_format}) is the second
2713 argument of the function @code{my_print}, and the arguments to check
2714 start with the third argument, so the correct parameters for the format
2715 attribute are 2 and 3.
2716
2717 @opindex ffreestanding
2718 @opindex fno-builtin
2719 The @code{format} attribute allows you to identify your own functions
2720 that take format strings as arguments, so that GCC can check the
2721 calls to these functions for errors. The compiler always (unless
2722 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2723 for the standard library functions @code{printf}, @code{fprintf},
2724 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2725 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2726 warnings are requested (using @option{-Wformat}), so there is no need to
2727 modify the header file @file{stdio.h}. In C99 mode, the functions
2728 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2729 @code{vsscanf} are also checked. Except in strictly conforming C
2730 standard modes, the X/Open function @code{strfmon} is also checked as
2731 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2732 @xref{C Dialect Options,,Options Controlling C Dialect}.
2733
2734 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2735 recognized in the same context. Declarations including these format attributes
2736 are parsed for correct syntax, however the result of checking of such format
2737 strings is not yet defined, and is not carried out by this version of the
2738 compiler.
2739
2740 The target may also provide additional types of format checks.
2741 @xref{Target Format Checks,,Format Checks Specific to Particular
2742 Target Machines}.
2743
2744 @item format_arg (@var{string-index})
2745 @cindex @code{format_arg} function attribute
2746 @opindex Wformat-nonliteral
2747 The @code{format_arg} attribute specifies that a function takes a format
2748 string for a @code{printf}, @code{scanf}, @code{strftime} or
2749 @code{strfmon} style function and modifies it (for example, to translate
2750 it into another language), so the result can be passed to a
2751 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2752 function (with the remaining arguments to the format function the same
2753 as they would have been for the unmodified string). For example, the
2754 declaration:
2755
2756 @smallexample
2757 extern char *
2758 my_dgettext (char *my_domain, const char *my_format)
2759 __attribute__ ((format_arg (2)));
2760 @end smallexample
2761
2762 @noindent
2763 causes the compiler to check the arguments in calls to a @code{printf},
2764 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2765 format string argument is a call to the @code{my_dgettext} function, for
2766 consistency with the format string argument @code{my_format}. If the
2767 @code{format_arg} attribute had not been specified, all the compiler
2768 could tell in such calls to format functions would be that the format
2769 string argument is not constant; this would generate a warning when
2770 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2771 without the attribute.
2772
2773 The parameter @var{string-index} specifies which argument is the format
2774 string argument (starting from one). Since non-static C++ methods have
2775 an implicit @code{this} argument, the arguments of such methods should
2776 be counted from two.
2777
2778 The @code{format_arg} attribute allows you to identify your own
2779 functions that modify format strings, so that GCC can check the
2780 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2781 type function whose operands are a call to one of your own function.
2782 The compiler always treats @code{gettext}, @code{dgettext}, and
2783 @code{dcgettext} in this manner except when strict ISO C support is
2784 requested by @option{-ansi} or an appropriate @option{-std} option, or
2785 @option{-ffreestanding} or @option{-fno-builtin}
2786 is used. @xref{C Dialect Options,,Options
2787 Controlling C Dialect}.
2788
2789 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2790 @code{NSString} reference for compatibility with the @code{format} attribute
2791 above.
2792
2793 The target may also allow additional types in @code{format-arg} attributes.
2794 @xref{Target Format Checks,,Format Checks Specific to Particular
2795 Target Machines}.
2796
2797 @item function_vector
2798 @cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
2799 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2800 function should be called through the function vector. Calling a
2801 function through the function vector reduces code size, however;
2802 the function vector has a limited size (maximum 128 entries on the H8/300
2803 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2804
2805 On SH2A targets, this attribute declares a function to be called using the
2806 TBR relative addressing mode. The argument to this attribute is the entry
2807 number of the same function in a vector table containing all the TBR
2808 relative addressable functions. For correct operation the TBR must be setup
2809 accordingly to point to the start of the vector table before any functions with
2810 this attribute are invoked. Usually a good place to do the initialization is
2811 the startup routine. The TBR relative vector table can have at max 256 function
2812 entries. The jumps to these functions are generated using a SH2A specific,
2813 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
2814 from GNU binutils version 2.7 or later for this attribute to work correctly.
2815
2816 Please refer the example of M16C target, to see the use of this
2817 attribute while declaring a function,
2818
2819 In an application, for a function being called once, this attribute
2820 saves at least 8 bytes of code; and if other successive calls are being
2821 made to the same function, it saves 2 bytes of code per each of these
2822 calls.
2823
2824 On M16C/M32C targets, the @code{function_vector} attribute declares a
2825 special page subroutine call function. Use of this attribute reduces
2826 the code size by 2 bytes for each call generated to the
2827 subroutine. The argument to the attribute is the vector number entry
2828 from the special page vector table which contains the 16 low-order
2829 bits of the subroutine's entry address. Each vector table has special
2830 page number (18 to 255) that is used in @code{jsrs} instructions.
2831 Jump addresses of the routines are generated by adding 0x0F0000 (in
2832 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
2833 2-byte addresses set in the vector table. Therefore you need to ensure
2834 that all the special page vector routines should get mapped within the
2835 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2836 (for M32C).
2837
2838 In the following example 2 bytes are saved for each call to
2839 function @code{foo}.
2840
2841 @smallexample
2842 void foo (void) __attribute__((function_vector(0x18)));
2843 void foo (void)
2844 @{
2845 @}
2846
2847 void bar (void)
2848 @{
2849 foo();
2850 @}
2851 @end smallexample
2852
2853 If functions are defined in one file and are called in another file,
2854 then be sure to write this declaration in both files.
2855
2856 This attribute is ignored for R8C target.
2857
2858 @item ifunc ("@var{resolver}")
2859 @cindex @code{ifunc} attribute
2860 The @code{ifunc} attribute is used to mark a function as an indirect
2861 function using the STT_GNU_IFUNC symbol type extension to the ELF
2862 standard. This allows the resolution of the symbol value to be
2863 determined dynamically at load time, and an optimized version of the
2864 routine can be selected for the particular processor or other system
2865 characteristics determined then. To use this attribute, first define
2866 the implementation functions available, and a resolver function that
2867 returns a pointer to the selected implementation function. The
2868 implementation functions' declarations must match the API of the
2869 function being implemented, the resolver's declaration is be a
2870 function returning pointer to void function returning void:
2871
2872 @smallexample
2873 void *my_memcpy (void *dst, const void *src, size_t len)
2874 @{
2875 @dots{}
2876 @}
2877
2878 static void (*resolve_memcpy (void)) (void)
2879 @{
2880 return my_memcpy; // we'll just always select this routine
2881 @}
2882 @end smallexample
2883
2884 @noindent
2885 The exported header file declaring the function the user calls would
2886 contain:
2887
2888 @smallexample
2889 extern void *memcpy (void *, const void *, size_t);
2890 @end smallexample
2891
2892 @noindent
2893 allowing the user to call this as a regular function, unaware of the
2894 implementation. Finally, the indirect function needs to be defined in
2895 the same translation unit as the resolver function:
2896
2897 @smallexample
2898 void *memcpy (void *, const void *, size_t)
2899 __attribute__ ((ifunc ("resolve_memcpy")));
2900 @end smallexample
2901
2902 Indirect functions cannot be weak, and require a recent binutils (at
2903 least version 2.20.1), and GNU C library (at least version 2.11.1).
2904
2905 @item interrupt
2906 @cindex interrupt handler functions
2907 Use this attribute on the ARC, ARM, AVR, CR16, Epiphany, M32C, M32R/D,
2908 m68k, MeP, MIPS, MSP430, RL78, RX and Xstormy16 ports to indicate that
2909 the specified function is an
2910 interrupt handler. The compiler generates function entry and exit
2911 sequences suitable for use in an interrupt handler when this attribute
2912 is present. With Epiphany targets it may also generate a special section with
2913 code to initialize the interrupt vector table.
2914
2915 Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2916 and SH processors can be specified via the @code{interrupt_handler} attribute.
2917
2918 Note, on the ARC, you must specify the kind of interrupt to be handled
2919 in a parameter to the interrupt attribute like this:
2920
2921 @smallexample
2922 void f () __attribute__ ((interrupt ("ilink1")));
2923 @end smallexample
2924
2925 Permissible values for this parameter are: @w{@code{ilink1}} and
2926 @w{@code{ilink2}}.
2927
2928 Note, on the AVR, the hardware globally disables interrupts when an
2929 interrupt is executed. The first instruction of an interrupt handler
2930 declared with this attribute is a @code{SEI} instruction to
2931 re-enable interrupts. See also the @code{signal} function attribute
2932 that does not insert a @code{SEI} instruction. If both @code{signal} and
2933 @code{interrupt} are specified for the same function, @code{signal}
2934 is silently ignored.
2935
2936 Note, for the ARM, you can specify the kind of interrupt to be handled by
2937 adding an optional parameter to the interrupt attribute like this:
2938
2939 @smallexample
2940 void f () __attribute__ ((interrupt ("IRQ")));
2941 @end smallexample
2942
2943 @noindent
2944 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
2945 @code{SWI}, @code{ABORT} and @code{UNDEF}.
2946
2947 On ARMv7-M the interrupt type is ignored, and the attribute means the function
2948 may be called with a word-aligned stack pointer.
2949
2950 Note, for the MSP430 you can provide an argument to the interrupt
2951 attribute which specifies a name or number. If the argument is a
2952 number it indicates the slot in the interrupt vector table (0 - 31) to
2953 which this handler should be assigned. If the argument is a name it
2954 is treated as a symbolic name for the vector slot. These names should
2955 match up with appropriate entries in the linker script. By default
2956 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
2957 @code{reset} for vector 31 are recognised.
2958
2959 You can also use the following function attributes to modify how
2960 normal functions interact with interrupt functions:
2961
2962 @table @code
2963 @item critical
2964 @cindex @code{critical} attribute
2965 Critical functions disable interrupts upon entry and restore the
2966 previous interrupt state upon exit. Critical functions cannot also
2967 have the @code{naked} or @code{reentrant} attributes. They can have
2968 the @code{interrupt} attribute.
2969
2970 @item reentrant
2971 @cindex @code{reentrant} attribute
2972 Reentrant functions disable interrupts upon entry and enable them
2973 upon exit. Reentrant functions cannot also have the @code{naked}
2974 or @code{critical} attributes. They can have the @code{interrupt}
2975 attribute.
2976
2977 @item wakeup
2978 @cindex @code{wakeup} attribute
2979 This attribute only applies to interrupt functions. It is silently
2980 ignored if applied to a non-interrupt function. A wakeup interrupt
2981 function will rouse the processor from any low-power state that it
2982 might be in when the function exits.
2983
2984 @end table
2985
2986 On Epiphany targets one or more optional parameters can be added like this:
2987
2988 @smallexample
2989 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2990 @end smallexample
2991
2992 Permissible values for these parameters are: @w{@code{reset}},
2993 @w{@code{software_exception}}, @w{@code{page_miss}},
2994 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
2995 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
2996 Multiple parameters indicate that multiple entries in the interrupt
2997 vector table should be initialized for this function, i.e.@: for each
2998 parameter @w{@var{name}}, a jump to the function is emitted in
2999 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3000 entirely, in which case no interrupt vector table entry is provided.
3001
3002 Note, on Epiphany targets, interrupts are enabled inside the function
3003 unless the @code{disinterrupt} attribute is also specified.
3004
3005 On Epiphany targets, you can also use the following attribute to
3006 modify the behavior of an interrupt handler:
3007 @table @code
3008 @item forwarder_section
3009 @cindex @code{forwarder_section} attribute
3010 The interrupt handler may be in external memory which cannot be
3011 reached by a branch instruction, so generate a local memory trampoline
3012 to transfer control. The single parameter identifies the section where
3013 the trampoline is placed.
3014 @end table
3015
3016 The following examples are all valid uses of these attributes on
3017 Epiphany targets:
3018 @smallexample
3019 void __attribute__ ((interrupt)) universal_handler ();
3020 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3021 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3022 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3023 fast_timer_handler ();
3024 void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))
3025 external_dma_handler ();
3026 @end smallexample
3027
3028 On MIPS targets, you can use the following attributes to modify the behavior
3029 of an interrupt handler:
3030 @table @code
3031 @item use_shadow_register_set
3032 @cindex @code{use_shadow_register_set} attribute
3033 Assume that the handler uses a shadow register set, instead of
3034 the main general-purpose registers.
3035
3036 @item keep_interrupts_masked
3037 @cindex @code{keep_interrupts_masked} attribute
3038 Keep interrupts masked for the whole function. Without this attribute,
3039 GCC tries to reenable interrupts for as much of the function as it can.
3040
3041 @item use_debug_exception_return
3042 @cindex @code{use_debug_exception_return} attribute
3043 Return using the @code{deret} instruction. Interrupt handlers that don't
3044 have this attribute return using @code{eret} instead.
3045 @end table
3046
3047 You can use any combination of these attributes, as shown below:
3048 @smallexample
3049 void __attribute__ ((interrupt)) v0 ();
3050 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
3051 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
3052 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
3053 void __attribute__ ((interrupt, use_shadow_register_set,
3054 keep_interrupts_masked)) v4 ();
3055 void __attribute__ ((interrupt, use_shadow_register_set,
3056 use_debug_exception_return)) v5 ();
3057 void __attribute__ ((interrupt, keep_interrupts_masked,
3058 use_debug_exception_return)) v6 ();
3059 void __attribute__ ((interrupt, use_shadow_register_set,
3060 keep_interrupts_masked,
3061 use_debug_exception_return)) v7 ();
3062 @end smallexample
3063
3064 On NDS32 target, this attribute is to indicate that the specified function
3065 is an interrupt handler. The compiler will generate corresponding sections
3066 for use in an interrupt handler. You can use the following attributes
3067 to modify the behavior:
3068 @table @code
3069 @item nested
3070 @cindex @code{nested} attribute
3071 This interrupt service routine is interruptible.
3072 @item not_nested
3073 @cindex @code{not_nested} attribute
3074 This interrupt service routine is not interruptible.
3075 @item nested_ready
3076 @cindex @code{nested_ready} attribute
3077 This interrupt service routine is interruptible after @code{PSW.GIE}
3078 (global interrupt enable) is set. This allows interrupt service routine to
3079 finish some short critical code before enabling interrupts.
3080 @item save_all
3081 @cindex @code{save_all} attribute
3082 The system will help save all registers into stack before entering
3083 interrupt handler.
3084 @item partial_save
3085 @cindex @code{partial_save} attribute
3086 The system will help save caller registers into stack before entering
3087 interrupt handler.
3088 @end table
3089
3090 On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
3091 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
3092 that must end with @code{RETB} instead of @code{RETI}).
3093
3094 @item interrupt_handler
3095 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
3096 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
3097 indicate that the specified function is an interrupt handler. The compiler
3098 generates function entry and exit sequences suitable for use in an
3099 interrupt handler when this attribute is present.
3100
3101 @item interrupt_thread
3102 @cindex interrupt thread functions on fido
3103 Use this attribute on fido, a subarchitecture of the m68k, to indicate
3104 that the specified function is an interrupt handler that is designed
3105 to run as a thread. The compiler omits generate prologue/epilogue
3106 sequences and replaces the return instruction with a @code{sleep}
3107 instruction. This attribute is available only on fido.
3108
3109 @item isr
3110 @cindex interrupt service routines on ARM
3111 Use this attribute on ARM to write Interrupt Service Routines. This is an
3112 alias to the @code{interrupt} attribute above.
3113
3114 @item kspisusp
3115 @cindex User stack pointer in interrupts on the Blackfin
3116 When used together with @code{interrupt_handler}, @code{exception_handler}
3117 or @code{nmi_handler}, code is generated to load the stack pointer
3118 from the USP register in the function prologue.
3119
3120 @item l1_text
3121 @cindex @code{l1_text} function attribute
3122 This attribute specifies a function to be placed into L1 Instruction
3123 SRAM@. The function is put into a specific section named @code{.l1.text}.
3124 With @option{-mfdpic}, function calls with a such function as the callee
3125 or caller uses inlined PLT.
3126
3127 @item l2
3128 @cindex @code{l2} function attribute
3129 On the Blackfin, this attribute specifies a function to be placed into L2
3130 SRAM. The function is put into a specific section named
3131 @code{.l1.text}. With @option{-mfdpic}, callers of such functions use
3132 an inlined PLT.
3133
3134 @item leaf
3135 @cindex @code{leaf} function attribute
3136 Calls to external functions with this attribute must return to the current
3137 compilation unit only by return or by exception handling. In particular, leaf
3138 functions are not allowed to call callback function passed to it from the current
3139 compilation unit or directly call functions exported by the unit or longjmp
3140 into the unit. Leaf function might still call functions from other compilation
3141 units and thus they are not necessarily leaf in the sense that they contain no
3142 function calls at all.
3143
3144 The attribute is intended for library functions to improve dataflow analysis.
3145 The compiler takes the hint that any data not escaping the current compilation unit can
3146 not be used or modified by the leaf function. For example, the @code{sin} function
3147 is a leaf function, but @code{qsort} is not.
3148
3149 Note that leaf functions might invoke signals and signal handlers might be
3150 defined in the current compilation unit and use static variables. The only
3151 compliant way to write such a signal handler is to declare such variables
3152 @code{volatile}.
3153
3154 The attribute has no effect on functions defined within the current compilation
3155 unit. This is to allow easy merging of multiple compilation units into one,
3156 for example, by using the link-time optimization. For this reason the
3157 attribute is not allowed on types to annotate indirect calls.
3158
3159 @item long_call/medium_call/short_call
3160 @cindex indirect calls on ARC
3161 @cindex indirect calls on ARM
3162 @cindex indirect calls on Epiphany
3163 These attributes specify how a particular function is called on
3164 ARC, ARM and Epiphany - with @code{medium_call} being specific to ARC.
3165 These attributes override the
3166 @option{-mlong-calls} (@pxref{ARM Options} and @ref{ARC Options})
3167 and @option{-mmedium-calls} (@pxref{ARC Options})
3168 command-line switches and @code{#pragma long_calls} settings. For ARM, the
3169 @code{long_call} attribute indicates that the function might be far
3170 away from the call site and require a different (more expensive)
3171 calling sequence. The @code{short_call} attribute always places
3172 the offset to the function from the call site into the @samp{BL}
3173 instruction directly.
3174
3175 For ARC, a function marked with the @code{long_call} attribute is
3176 always called using register-indirect jump-and-link instructions,
3177 thereby enabling the called function to be placed anywhere within the
3178 32-bit address space. A function marked with the @code{medium_call}
3179 attribute will always be close enough to be called with an unconditional
3180 branch-and-link instruction, which has a 25-bit offset from
3181 the call site. A function marked with the @code{short_call}
3182 attribute will always be close enough to be called with a conditional
3183 branch-and-link instruction, which has a 21-bit offset from
3184 the call site.
3185
3186 @item longcall/shortcall
3187 @cindex functions called via pointer on the RS/6000 and PowerPC
3188 On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
3189 indicates that the function might be far away from the call site and
3190 require a different (more expensive) calling sequence. The
3191 @code{shortcall} attribute indicates that the function is always close
3192 enough for the shorter calling sequence to be used. These attributes
3193 override both the @option{-mlongcall} switch and, on the RS/6000 and
3194 PowerPC, the @code{#pragma longcall} setting.
3195
3196 @xref{RS/6000 and PowerPC Options}, for more information on whether long
3197 calls are necessary.
3198
3199 @item long_call/near/far
3200 @cindex indirect calls on MIPS
3201 These attributes specify how a particular function is called on MIPS@.
3202 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
3203 command-line switch. The @code{long_call} and @code{far} attributes are
3204 synonyms, and cause the compiler to always call
3205 the function by first loading its address into a register, and then using
3206 the contents of that register. The @code{near} attribute has the opposite
3207 effect; it specifies that non-PIC calls should be made using the more
3208 efficient @code{jal} instruction.
3209
3210 @item malloc
3211 @cindex @code{malloc} attribute
3212 The @code{malloc} attribute is used to tell the compiler that a function
3213 may be treated as if any non-@code{NULL} pointer it returns cannot
3214 alias any other pointer valid when the function returns and that the memory
3215 has undefined content.
3216 This often improves optimization.
3217 Standard functions with this property include @code{malloc} and
3218 @code{calloc}. @code{realloc}-like functions do not have this
3219 property as the memory pointed to does not have undefined content.
3220
3221 @item mips16/nomips16
3222 @cindex @code{mips16} attribute
3223 @cindex @code{nomips16} attribute
3224
3225 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
3226 function attributes to locally select or turn off MIPS16 code generation.
3227 A function with the @code{mips16} attribute is emitted as MIPS16 code,
3228 while MIPS16 code generation is disabled for functions with the
3229 @code{nomips16} attribute. These attributes override the
3230 @option{-mips16} and @option{-mno-mips16} options on the command line
3231 (@pxref{MIPS Options}).
3232
3233 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
3234 preprocessor symbol @code{__mips16} reflects the setting on the command line,
3235 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
3236 may interact badly with some GCC extensions such as @code{__builtin_apply}
3237 (@pxref{Constructing Calls}).
3238
3239 @item micromips/nomicromips
3240 @cindex @code{micromips} attribute
3241 @cindex @code{nomicromips} attribute
3242
3243 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
3244 function attributes to locally select or turn off microMIPS code generation.
3245 A function with the @code{micromips} attribute is emitted as microMIPS code,
3246 while microMIPS code generation is disabled for functions with the
3247 @code{nomicromips} attribute. These attributes override the
3248 @option{-mmicromips} and @option{-mno-micromips} options on the command line
3249 (@pxref{MIPS Options}).
3250
3251 When compiling files containing mixed microMIPS and non-microMIPS code, the
3252 preprocessor symbol @code{__mips_micromips} reflects the setting on the
3253 command line,
3254 not that within individual functions. Mixed microMIPS and non-microMIPS code
3255 may interact badly with some GCC extensions such as @code{__builtin_apply}
3256 (@pxref{Constructing Calls}).
3257
3258 @item model (@var{model-name})
3259 @cindex function addressability on the M32R/D
3260 @cindex variable addressability on the IA-64
3261
3262 On the M32R/D, use this attribute to set the addressability of an
3263 object, and of the code generated for a function. The identifier
3264 @var{model-name} is one of @code{small}, @code{medium}, or
3265 @code{large}, representing each of the code models.
3266
3267 Small model objects live in the lower 16MB of memory (so that their
3268 addresses can be loaded with the @code{ld24} instruction), and are
3269 callable with the @code{bl} instruction.
3270
3271 Medium model objects may live anywhere in the 32-bit address space (the
3272 compiler generates @code{seth/add3} instructions to load their addresses),
3273 and are callable with the @code{bl} instruction.
3274
3275 Large model objects may live anywhere in the 32-bit address space (the
3276 compiler generates @code{seth/add3} instructions to load their addresses),
3277 and may not be reachable with the @code{bl} instruction (the compiler
3278 generates the much slower @code{seth/add3/jl} instruction sequence).
3279
3280 On IA-64, use this attribute to set the addressability of an object.
3281 At present, the only supported identifier for @var{model-name} is
3282 @code{small}, indicating addressability via ``small'' (22-bit)
3283 addresses (so that their addresses can be loaded with the @code{addl}
3284 instruction). Caveat: such addressing is by definition not position
3285 independent and hence this attribute must not be used for objects
3286 defined by shared libraries.
3287
3288 @item ms_abi/sysv_abi
3289 @cindex @code{ms_abi} attribute
3290 @cindex @code{sysv_abi} attribute
3291
3292 On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
3293 to indicate which calling convention should be used for a function. The
3294 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
3295 while the @code{sysv_abi} attribute tells the compiler to use the ABI
3296 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
3297 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
3298
3299 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
3300 requires the @option{-maccumulate-outgoing-args} option.
3301
3302 @item callee_pop_aggregate_return (@var{number})
3303 @cindex @code{callee_pop_aggregate_return} attribute
3304
3305 On 32-bit i?86-*-* targets, you can use this attribute to control how
3306 aggregates are returned in memory. If the caller is responsible for
3307 popping the hidden pointer together with the rest of the arguments, specify
3308 @var{number} equal to zero. If callee is responsible for popping the
3309 hidden pointer, specify @var{number} equal to one.
3310
3311 The default i386 ABI assumes that the callee pops the
3312 stack for hidden pointer. However, on 32-bit i386 Microsoft Windows targets,
3313 the compiler assumes that the
3314 caller pops the stack for hidden pointer.
3315
3316 @item ms_hook_prologue
3317 @cindex @code{ms_hook_prologue} attribute
3318
3319 On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, you can use
3320 this function attribute to make GCC generate the ``hot-patching'' function
3321 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3322 and newer.
3323
3324 @item hotpatch [(@var{prologue-halfwords})]
3325 @cindex @code{hotpatch} attribute
3326
3327 On S/390 System z targets, you can use this function attribute to
3328 make GCC generate a ``hot-patching'' function prologue. The
3329 @code{hotpatch} has no effect on funtions that are explicitly
3330 inline. If the @option{-mhotpatch} or @option{-mno-hotpatch}
3331 command-line option is used at the same time, the @code{hotpatch}
3332 attribute takes precedence. If an argument is given, the maximum
3333 allowed value is 1000000.
3334
3335 @item naked
3336 @cindex function without a prologue/epilogue code
3337 Use this attribute on the ARM, AVR, MCORE, MSP430, NDS32, RL78, RX and SPU
3338 ports to indicate that the specified function does not need prologue/epilogue
3339 sequences generated by the compiler.
3340 It is up to the programmer to provide these sequences. The
3341 only statements that can be safely included in naked functions are
3342 @code{asm} statements that do not have operands. All other statements,
3343 including declarations of local variables, @code{if} statements, and so
3344 forth, should be avoided. Naked functions should be used to implement the
3345 body of an assembly function, while allowing the compiler to construct
3346 the requisite function declaration for the assembler.
3347
3348 @item near
3349 @cindex functions that do not handle memory bank switching on 68HC11/68HC12
3350 On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3351 use the normal calling convention based on @code{jsr} and @code{rts}.
3352 This attribute can be used to cancel the effect of the @option{-mlong-calls}
3353 option.
3354
3355 On MeP targets this attribute causes the compiler to assume the called
3356 function is close enough to use the normal calling convention,
3357 overriding the @option{-mtf} command-line option.
3358
3359 @item nesting
3360 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
3361 Use this attribute together with @code{interrupt_handler},
3362 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3363 entry code should enable nested interrupts or exceptions.
3364
3365 @item nmi_handler
3366 @cindex NMI handler functions on the Blackfin processor
3367 Use this attribute on the Blackfin to indicate that the specified function
3368 is an NMI handler. The compiler generates function entry and
3369 exit sequences suitable for use in an NMI handler when this
3370 attribute is present.
3371
3372 @item nocompression
3373 @cindex @code{nocompression} attribute
3374 On MIPS targets, you can use the @code{nocompression} function attribute
3375 to locally turn off MIPS16 and microMIPS code generation. This attribute
3376 overrides the @option{-mips16} and @option{-mmicromips} options on the
3377 command line (@pxref{MIPS Options}).
3378
3379 @item no_instrument_function
3380 @cindex @code{no_instrument_function} function attribute
3381 @opindex finstrument-functions
3382 If @option{-finstrument-functions} is given, profiling function calls are
3383 generated at entry and exit of most user-compiled functions.
3384 Functions with this attribute are not so instrumented.
3385
3386 @item no_split_stack
3387 @cindex @code{no_split_stack} function attribute
3388 @opindex fsplit-stack
3389 If @option{-fsplit-stack} is given, functions have a small
3390 prologue which decides whether to split the stack. Functions with the
3391 @code{no_split_stack} attribute do not have that prologue, and thus
3392 may run with only a small amount of stack space available.
3393
3394 @item noinline
3395 @cindex @code{noinline} function attribute
3396 This function attribute prevents a function from being considered for
3397 inlining.
3398 @c Don't enumerate the optimizations by name here; we try to be
3399 @c future-compatible with this mechanism.
3400 If the function does not have side-effects, there are optimizations
3401 other than inlining that cause function calls to be optimized away,
3402 although the function call is live. To keep such calls from being
3403 optimized away, put
3404 @smallexample
3405 asm ("");
3406 @end smallexample
3407
3408 @noindent
3409 (@pxref{Extended Asm}) in the called function, to serve as a special
3410 side-effect.
3411
3412 @item noclone
3413 @cindex @code{noclone} function attribute
3414 This function attribute prevents a function from being considered for
3415 cloning---a mechanism that produces specialized copies of functions
3416 and which is (currently) performed by interprocedural constant
3417 propagation.
3418
3419 @item nonnull (@var{arg-index}, @dots{})
3420 @cindex @code{nonnull} function attribute
3421 The @code{nonnull} attribute specifies that some function parameters should
3422 be non-null pointers. For instance, the declaration:
3423
3424 @smallexample
3425 extern void *
3426 my_memcpy (void *dest, const void *src, size_t len)
3427 __attribute__((nonnull (1, 2)));
3428 @end smallexample
3429
3430 @noindent
3431 causes the compiler to check that, in calls to @code{my_memcpy},
3432 arguments @var{dest} and @var{src} are non-null. If the compiler
3433 determines that a null pointer is passed in an argument slot marked
3434 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3435 is issued. The compiler may also choose to make optimizations based
3436 on the knowledge that certain function arguments will never be null.
3437
3438 If no argument index list is given to the @code{nonnull} attribute,
3439 all pointer arguments are marked as non-null. To illustrate, the
3440 following declaration is equivalent to the previous example:
3441
3442 @smallexample
3443 extern void *
3444 my_memcpy (void *dest, const void *src, size_t len)
3445 __attribute__((nonnull));
3446 @end smallexample
3447
3448 @item returns_nonnull
3449 @cindex @code{returns_nonnull} function attribute
3450 The @code{returns_nonnull} attribute specifies that the function
3451 return value should be a non-null pointer. For instance, the declaration:
3452
3453 @smallexample
3454 extern void *
3455 mymalloc (size_t len) __attribute__((returns_nonnull));
3456 @end smallexample
3457
3458 @noindent
3459 lets the compiler optimize callers based on the knowledge
3460 that the return value will never be null.
3461
3462 @item noreturn
3463 @cindex @code{noreturn} function attribute
3464 A few standard library functions, such as @code{abort} and @code{exit},
3465 cannot return. GCC knows this automatically. Some programs define
3466 their own functions that never return. You can declare them
3467 @code{noreturn} to tell the compiler this fact. For example,
3468
3469 @smallexample
3470 @group
3471 void fatal () __attribute__ ((noreturn));
3472
3473 void
3474 fatal (/* @r{@dots{}} */)
3475 @{
3476 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3477 exit (1);
3478 @}
3479 @end group
3480 @end smallexample
3481
3482 The @code{noreturn} keyword tells the compiler to assume that
3483 @code{fatal} cannot return. It can then optimize without regard to what
3484 would happen if @code{fatal} ever did return. This makes slightly
3485 better code. More importantly, it helps avoid spurious warnings of
3486 uninitialized variables.
3487
3488 The @code{noreturn} keyword does not affect the exceptional path when that
3489 applies: a @code{noreturn}-marked function may still return to the caller
3490 by throwing an exception or calling @code{longjmp}.
3491
3492 Do not assume that registers saved by the calling function are
3493 restored before calling the @code{noreturn} function.
3494
3495 It does not make sense for a @code{noreturn} function to have a return
3496 type other than @code{void}.
3497
3498 The attribute @code{noreturn} is not implemented in GCC versions
3499 earlier than 2.5. An alternative way to declare that a function does
3500 not return, which works in the current version and in some older
3501 versions, is as follows:
3502
3503 @smallexample
3504 typedef void voidfn ();
3505
3506 volatile voidfn fatal;
3507 @end smallexample
3508
3509 @noindent
3510 This approach does not work in GNU C++.
3511
3512 @item nothrow
3513 @cindex @code{nothrow} function attribute
3514 The @code{nothrow} attribute is used to inform the compiler that a
3515 function cannot throw an exception. For example, most functions in
3516 the standard C library can be guaranteed not to throw an exception
3517 with the notable exceptions of @code{qsort} and @code{bsearch} that
3518 take function pointer arguments. The @code{nothrow} attribute is not
3519 implemented in GCC versions earlier than 3.3.
3520
3521 @item nosave_low_regs
3522 @cindex @code{nosave_low_regs} attribute
3523 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
3524 function should not save and restore registers R0..R7. This can be used on SH3*
3525 and SH4* targets that have a second R0..R7 register bank for non-reentrant
3526 interrupt handlers.
3527
3528 @item optimize
3529 @cindex @code{optimize} function attribute
3530 The @code{optimize} attribute is used to specify that a function is to
3531 be compiled with different optimization options than specified on the
3532 command line. Arguments can either be numbers or strings. Numbers
3533 are assumed to be an optimization level. Strings that begin with
3534 @code{O} are assumed to be an optimization option, while other options
3535 are assumed to be used with a @code{-f} prefix. You can also use the
3536 @samp{#pragma GCC optimize} pragma to set the optimization options
3537 that affect more than one function.
3538 @xref{Function Specific Option Pragmas}, for details about the
3539 @samp{#pragma GCC optimize} pragma.
3540
3541 This can be used for instance to have frequently-executed functions
3542 compiled with more aggressive optimization options that produce faster
3543 and larger code, while other functions can be compiled with less
3544 aggressive options.
3545
3546 @item OS_main/OS_task
3547 @cindex @code{OS_main} AVR function attribute
3548 @cindex @code{OS_task} AVR function attribute
3549 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3550 do not save/restore any call-saved register in their prologue/epilogue.
3551
3552 The @code{OS_main} attribute can be used when there @emph{is
3553 guarantee} that interrupts are disabled at the time when the function
3554 is entered. This saves resources when the stack pointer has to be
3555 changed to set up a frame for local variables.
3556
3557 The @code{OS_task} attribute can be used when there is @emph{no
3558 guarantee} that interrupts are disabled at that time when the function
3559 is entered like for, e@.g@. task functions in a multi-threading operating
3560 system. In that case, changing the stack pointer register is
3561 guarded by save/clear/restore of the global interrupt enable flag.
3562
3563 The differences to the @code{naked} function attribute are:
3564 @itemize @bullet
3565 @item @code{naked} functions do not have a return instruction whereas
3566 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3567 @code{RETI} return instruction.
3568 @item @code{naked} functions do not set up a frame for local variables
3569 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3570 as needed.
3571 @end itemize
3572
3573 @item pcs
3574 @cindex @code{pcs} function attribute
3575
3576 The @code{pcs} attribute can be used to control the calling convention
3577 used for a function on ARM. The attribute takes an argument that specifies
3578 the calling convention to use.
3579
3580 When compiling using the AAPCS ABI (or a variant of it) then valid
3581 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3582 order to use a variant other than @code{"aapcs"} then the compiler must
3583 be permitted to use the appropriate co-processor registers (i.e., the
3584 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3585 For example,
3586
3587 @smallexample
3588 /* Argument passed in r0, and result returned in r0+r1. */
3589 double f2d (float) __attribute__((pcs("aapcs")));
3590 @end smallexample
3591
3592 Variadic functions always use the @code{"aapcs"} calling convention and
3593 the compiler rejects attempts to specify an alternative.
3594
3595 @item pure
3596 @cindex @code{pure} function attribute
3597 Many functions have no effects except the return value and their
3598 return value depends only on the parameters and/or global variables.
3599 Such a function can be subject
3600 to common subexpression elimination and loop optimization just as an
3601 arithmetic operator would be. These functions should be declared
3602 with the attribute @code{pure}. For example,
3603
3604 @smallexample
3605 int square (int) __attribute__ ((pure));
3606 @end smallexample
3607
3608 @noindent
3609 says that the hypothetical function @code{square} is safe to call
3610 fewer times than the program says.
3611
3612 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3613 Interesting non-pure functions are functions with infinite loops or those
3614 depending on volatile memory or other system resource, that may change between
3615 two consecutive calls (such as @code{feof} in a multithreading environment).
3616
3617 The attribute @code{pure} is not implemented in GCC versions earlier
3618 than 2.96.
3619
3620 @item hot
3621 @cindex @code{hot} function attribute
3622 The @code{hot} attribute on a function is used to inform the compiler that
3623 the function is a hot spot of the compiled program. The function is
3624 optimized more aggressively and on many target it is placed into special
3625 subsection of the text section so all hot functions appears close together
3626 improving locality.
3627
3628 When profile feedback is available, via @option{-fprofile-use}, hot functions
3629 are automatically detected and this attribute is ignored.
3630
3631 The @code{hot} attribute on functions is not implemented in GCC versions
3632 earlier than 4.3.
3633
3634 @cindex @code{hot} label attribute
3635 The @code{hot} attribute on a label is used to inform the compiler that
3636 path following the label are more likely than paths that are not so
3637 annotated. This attribute is used in cases where @code{__builtin_expect}
3638 cannot be used, for instance with computed goto or @code{asm goto}.
3639
3640 The @code{hot} attribute on labels is not implemented in GCC versions
3641 earlier than 4.8.
3642
3643 @item cold
3644 @cindex @code{cold} function attribute
3645 The @code{cold} attribute on functions is used to inform the compiler that
3646 the function is unlikely to be executed. The function is optimized for
3647 size rather than speed and on many targets it is placed into special
3648 subsection of the text section so all cold functions appears close together
3649 improving code locality of non-cold parts of program. The paths leading
3650 to call of cold functions within code are marked as unlikely by the branch
3651 prediction mechanism. It is thus useful to mark functions used to handle
3652 unlikely conditions, such as @code{perror}, as cold to improve optimization
3653 of hot functions that do call marked functions in rare occasions.
3654
3655 When profile feedback is available, via @option{-fprofile-use}, cold functions
3656 are automatically detected and this attribute is ignored.
3657
3658 The @code{cold} attribute on functions is not implemented in GCC versions
3659 earlier than 4.3.
3660
3661 @cindex @code{cold} label attribute
3662 The @code{cold} attribute on labels is used to inform the compiler that
3663 the path following the label is unlikely to be executed. This attribute
3664 is used in cases where @code{__builtin_expect} cannot be used, for instance
3665 with computed goto or @code{asm goto}.
3666
3667 The @code{cold} attribute on labels is not implemented in GCC versions
3668 earlier than 4.8.
3669
3670 @item no_sanitize_address
3671 @itemx no_address_safety_analysis
3672 @cindex @code{no_sanitize_address} function attribute
3673 The @code{no_sanitize_address} attribute on functions is used
3674 to inform the compiler that it should not instrument memory accesses
3675 in the function when compiling with the @option{-fsanitize=address} option.
3676 The @code{no_address_safety_analysis} is a deprecated alias of the
3677 @code{no_sanitize_address} attribute, new code should use
3678 @code{no_sanitize_address}.
3679
3680 @item no_sanitize_undefined
3681 @cindex @code{no_sanitize_undefined} function attribute
3682 The @code{no_sanitize_undefined} attribute on functions is used
3683 to inform the compiler that it should not check for undefined behavior
3684 in the function when compiling with the @option{-fsanitize=undefined} option.
3685
3686 @item regparm (@var{number})
3687 @cindex @code{regparm} attribute
3688 @cindex functions that are passed arguments in registers on the 386
3689 On the Intel 386, the @code{regparm} attribute causes the compiler to
3690 pass arguments number one to @var{number} if they are of integral type
3691 in registers EAX, EDX, and ECX instead of on the stack. Functions that
3692 take a variable number of arguments continue to be passed all of their
3693 arguments on the stack.
3694
3695 Beware that on some ELF systems this attribute is unsuitable for
3696 global functions in shared libraries with lazy binding (which is the
3697 default). Lazy binding sends the first call via resolving code in
3698 the loader, which might assume EAX, EDX and ECX can be clobbered, as
3699 per the standard calling conventions. Solaris 8 is affected by this.
3700 Systems with the GNU C Library version 2.1 or higher
3701 and FreeBSD are believed to be
3702 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
3703 disabled with the linker or the loader if desired, to avoid the
3704 problem.)
3705
3706 @item reset
3707 @cindex reset handler functions
3708 Use this attribute on the NDS32 target to indicate that the specified function
3709 is a reset handler. The compiler will generate corresponding sections
3710 for use in a reset handler. You can use the following attributes
3711 to provide extra exception handling:
3712 @table @code
3713 @item nmi
3714 @cindex @code{nmi} attribute
3715 Provide a user-defined function to handle NMI exception.
3716 @item warm
3717 @cindex @code{warm} attribute
3718 Provide a user-defined function to handle warm reset exception.
3719 @end table
3720
3721 @item sseregparm
3722 @cindex @code{sseregparm} attribute
3723 On the Intel 386 with SSE support, the @code{sseregparm} attribute
3724 causes the compiler to pass up to 3 floating-point arguments in
3725 SSE registers instead of on the stack. Functions that take a
3726 variable number of arguments continue to pass all of their
3727 floating-point arguments on the stack.
3728
3729 @item force_align_arg_pointer
3730 @cindex @code{force_align_arg_pointer} attribute
3731 On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3732 applied to individual function definitions, generating an alternate
3733 prologue and epilogue that realigns the run-time stack if necessary.
3734 This supports mixing legacy codes that run with a 4-byte aligned stack
3735 with modern codes that keep a 16-byte stack for SSE compatibility.
3736
3737 @item renesas
3738 @cindex @code{renesas} attribute
3739 On SH targets this attribute specifies that the function or struct follows the
3740 Renesas ABI.
3741
3742 @item resbank
3743 @cindex @code{resbank} attribute
3744 On the SH2A target, this attribute enables the high-speed register
3745 saving and restoration using a register bank for @code{interrupt_handler}
3746 routines. Saving to the bank is performed automatically after the CPU
3747 accepts an interrupt that uses a register bank.
3748
3749 The nineteen 32-bit registers comprising general register R0 to R14,
3750 control register GBR, and system registers MACH, MACL, and PR and the
3751 vector table address offset are saved into a register bank. Register
3752 banks are stacked in first-in last-out (FILO) sequence. Restoration
3753 from the bank is executed by issuing a RESBANK instruction.
3754
3755 @item returns_twice
3756 @cindex @code{returns_twice} attribute
3757 The @code{returns_twice} attribute tells the compiler that a function may
3758 return more than one time. The compiler ensures that all registers
3759 are dead before calling such a function and emits a warning about
3760 the variables that may be clobbered after the second return from the
3761 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3762 The @code{longjmp}-like counterpart of such function, if any, might need
3763 to be marked with the @code{noreturn} attribute.
3764
3765 @item saveall
3766 @cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3767 Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
3768 all registers except the stack pointer should be saved in the prologue
3769 regardless of whether they are used or not.
3770
3771 @item save_volatiles
3772 @cindex save volatile registers on the MicroBlaze
3773 Use this attribute on the MicroBlaze to indicate that the function is
3774 an interrupt handler. All volatile registers (in addition to non-volatile
3775 registers) are saved in the function prologue. If the function is a leaf
3776 function, only volatiles used by the function are saved. A normal function
3777 return is generated instead of a return from interrupt.
3778
3779 @item section ("@var{section-name}")
3780 @cindex @code{section} function attribute
3781 Normally, the compiler places the code it generates in the @code{text} section.
3782 Sometimes, however, you need additional sections, or you need certain
3783 particular functions to appear in special sections. The @code{section}
3784 attribute specifies that a function lives in a particular section.
3785 For example, the declaration:
3786
3787 @smallexample
3788 extern void foobar (void) __attribute__ ((section ("bar")));
3789 @end smallexample
3790
3791 @noindent
3792 puts the function @code{foobar} in the @code{bar} section.
3793
3794 Some file formats do not support arbitrary sections so the @code{section}
3795 attribute is not available on all platforms.
3796 If you need to map the entire contents of a module to a particular
3797 section, consider using the facilities of the linker instead.
3798
3799 @item sentinel
3800 @cindex @code{sentinel} function attribute
3801 This function attribute ensures that a parameter in a function call is
3802 an explicit @code{NULL}. The attribute is only valid on variadic
3803 functions. By default, the sentinel is located at position zero, the
3804 last parameter of the function call. If an optional integer position
3805 argument P is supplied to the attribute, the sentinel must be located at
3806 position P counting backwards from the end of the argument list.
3807
3808 @smallexample
3809 __attribute__ ((sentinel))
3810 is equivalent to
3811 __attribute__ ((sentinel(0)))
3812 @end smallexample
3813
3814 The attribute is automatically set with a position of 0 for the built-in
3815 functions @code{execl} and @code{execlp}. The built-in function
3816 @code{execle} has the attribute set with a position of 1.
3817
3818 A valid @code{NULL} in this context is defined as zero with any pointer
3819 type. If your system defines the @code{NULL} macro with an integer type
3820 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3821 with a copy that redefines NULL appropriately.
3822
3823 The warnings for missing or incorrect sentinels are enabled with
3824 @option{-Wformat}.
3825
3826 @item short_call
3827 See @code{long_call/short_call}.
3828
3829 @item shortcall
3830 See @code{longcall/shortcall}.
3831
3832 @item signal
3833 @cindex interrupt handler functions on the AVR processors
3834 Use this attribute on the AVR to indicate that the specified
3835 function is an interrupt handler. The compiler generates function
3836 entry and exit sequences suitable for use in an interrupt handler when this
3837 attribute is present.
3838
3839 See also the @code{interrupt} function attribute.
3840
3841 The AVR hardware globally disables interrupts when an interrupt is executed.
3842 Interrupt handler functions defined with the @code{signal} attribute
3843 do not re-enable interrupts. It is save to enable interrupts in a
3844 @code{signal} handler. This ``save'' only applies to the code
3845 generated by the compiler and not to the IRQ layout of the
3846 application which is responsibility of the application.
3847
3848 If both @code{signal} and @code{interrupt} are specified for the same
3849 function, @code{signal} is silently ignored.
3850
3851 @item sp_switch
3852 @cindex @code{sp_switch} attribute
3853 Use this attribute on the SH to indicate an @code{interrupt_handler}
3854 function should switch to an alternate stack. It expects a string
3855 argument that names a global variable holding the address of the
3856 alternate stack.
3857
3858 @smallexample
3859 void *alt_stack;
3860 void f () __attribute__ ((interrupt_handler,
3861 sp_switch ("alt_stack")));
3862 @end smallexample
3863
3864 @item stdcall
3865 @cindex functions that pop the argument stack on the 386
3866 On the Intel 386, the @code{stdcall} attribute causes the compiler to
3867 assume that the called function pops off the stack space used to
3868 pass arguments, unless it takes a variable number of arguments.
3869
3870 @item syscall_linkage
3871 @cindex @code{syscall_linkage} attribute
3872 This attribute is used to modify the IA-64 calling convention by marking
3873 all input registers as live at all function exits. This makes it possible
3874 to restart a system call after an interrupt without having to save/restore
3875 the input registers. This also prevents kernel data from leaking into
3876 application code.
3877
3878 @item target
3879 @cindex @code{target} function attribute
3880 The @code{target} attribute is used to specify that a function is to
3881 be compiled with different target options than specified on the
3882 command line. This can be used for instance to have functions
3883 compiled with a different ISA (instruction set architecture) than the
3884 default. You can also use the @samp{#pragma GCC target} pragma to set
3885 more than one function to be compiled with specific target options.
3886 @xref{Function Specific Option Pragmas}, for details about the
3887 @samp{#pragma GCC target} pragma.
3888
3889 For instance on a 386, you could compile one function with
3890 @code{target("sse4.1,arch=core2")} and another with
3891 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3892 compiling the first function with @option{-msse4.1} and
3893 @option{-march=core2} options, and the second function with
3894 @option{-msse4a} and @option{-march=amdfam10} options. It is up to the
3895 user to make sure that a function is only invoked on a machine that
3896 supports the particular ISA it is compiled for (for example by using
3897 @code{cpuid} on 386 to determine what feature bits and architecture
3898 family are used).
3899
3900 @smallexample
3901 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3902 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3903 @end smallexample
3904
3905 You can either use multiple
3906 strings to specify multiple options, or separate the options
3907 with a comma (@samp{,}).
3908
3909 The @code{target} attribute is presently implemented for
3910 i386/x86_64, PowerPC, and Nios II targets only.
3911 The options supported are specific to each target.
3912
3913 On the 386, the following options are allowed:
3914
3915 @table @samp
3916 @item abm
3917 @itemx no-abm
3918 @cindex @code{target("abm")} attribute
3919 Enable/disable the generation of the advanced bit instructions.
3920
3921 @item aes
3922 @itemx no-aes
3923 @cindex @code{target("aes")} attribute
3924 Enable/disable the generation of the AES instructions.
3925
3926 @item default
3927 @cindex @code{target("default")} attribute
3928 @xref{Function Multiversioning}, where it is used to specify the
3929 default function version.
3930
3931 @item mmx
3932 @itemx no-mmx
3933 @cindex @code{target("mmx")} attribute
3934 Enable/disable the generation of the MMX instructions.
3935
3936 @item pclmul
3937 @itemx no-pclmul
3938 @cindex @code{target("pclmul")} attribute
3939 Enable/disable the generation of the PCLMUL instructions.
3940
3941 @item popcnt
3942 @itemx no-popcnt
3943 @cindex @code{target("popcnt")} attribute
3944 Enable/disable the generation of the POPCNT instruction.
3945
3946 @item sse
3947 @itemx no-sse
3948 @cindex @code{target("sse")} attribute
3949 Enable/disable the generation of the SSE instructions.
3950
3951 @item sse2
3952 @itemx no-sse2
3953 @cindex @code{target("sse2")} attribute
3954 Enable/disable the generation of the SSE2 instructions.
3955
3956 @item sse3
3957 @itemx no-sse3
3958 @cindex @code{target("sse3")} attribute
3959 Enable/disable the generation of the SSE3 instructions.
3960
3961 @item sse4
3962 @itemx no-sse4
3963 @cindex @code{target("sse4")} attribute
3964 Enable/disable the generation of the SSE4 instructions (both SSE4.1
3965 and SSE4.2).
3966
3967 @item sse4.1
3968 @itemx no-sse4.1
3969 @cindex @code{target("sse4.1")} attribute
3970 Enable/disable the generation of the sse4.1 instructions.
3971
3972 @item sse4.2
3973 @itemx no-sse4.2
3974 @cindex @code{target("sse4.2")} attribute
3975 Enable/disable the generation of the sse4.2 instructions.
3976
3977 @item sse4a
3978 @itemx no-sse4a
3979 @cindex @code{target("sse4a")} attribute
3980 Enable/disable the generation of the SSE4A instructions.
3981
3982 @item fma4
3983 @itemx no-fma4
3984 @cindex @code{target("fma4")} attribute
3985 Enable/disable the generation of the FMA4 instructions.
3986
3987 @item xop
3988 @itemx no-xop
3989 @cindex @code{target("xop")} attribute
3990 Enable/disable the generation of the XOP instructions.
3991
3992 @item lwp
3993 @itemx no-lwp
3994 @cindex @code{target("lwp")} attribute
3995 Enable/disable the generation of the LWP instructions.
3996
3997 @item ssse3
3998 @itemx no-ssse3
3999 @cindex @code{target("ssse3")} attribute
4000 Enable/disable the generation of the SSSE3 instructions.
4001
4002 @item cld
4003 @itemx no-cld
4004 @cindex @code{target("cld")} attribute
4005 Enable/disable the generation of the CLD before string moves.
4006
4007 @item fancy-math-387
4008 @itemx no-fancy-math-387
4009 @cindex @code{target("fancy-math-387")} attribute
4010 Enable/disable the generation of the @code{sin}, @code{cos}, and
4011 @code{sqrt} instructions on the 387 floating-point unit.
4012
4013 @item fused-madd
4014 @itemx no-fused-madd
4015 @cindex @code{target("fused-madd")} attribute
4016 Enable/disable the generation of the fused multiply/add instructions.
4017
4018 @item ieee-fp
4019 @itemx no-ieee-fp
4020 @cindex @code{target("ieee-fp")} attribute
4021 Enable/disable the generation of floating point that depends on IEEE arithmetic.
4022
4023 @item inline-all-stringops
4024 @itemx no-inline-all-stringops
4025 @cindex @code{target("inline-all-stringops")} attribute
4026 Enable/disable inlining of string operations.
4027
4028 @item inline-stringops-dynamically
4029 @itemx no-inline-stringops-dynamically
4030 @cindex @code{target("inline-stringops-dynamically")} attribute
4031 Enable/disable the generation of the inline code to do small string
4032 operations and calling the library routines for large operations.
4033
4034 @item align-stringops
4035 @itemx no-align-stringops
4036 @cindex @code{target("align-stringops")} attribute
4037 Do/do not align destination of inlined string operations.
4038
4039 @item recip
4040 @itemx no-recip
4041 @cindex @code{target("recip")} attribute
4042 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
4043 instructions followed an additional Newton-Raphson step instead of
4044 doing a floating-point division.
4045
4046 @item arch=@var{ARCH}
4047 @cindex @code{target("arch=@var{ARCH}")} attribute
4048 Specify the architecture to generate code for in compiling the function.
4049
4050 @item tune=@var{TUNE}
4051 @cindex @code{target("tune=@var{TUNE}")} attribute
4052 Specify the architecture to tune for in compiling the function.
4053
4054 @item fpmath=@var{FPMATH}
4055 @cindex @code{target("fpmath=@var{FPMATH}")} attribute
4056 Specify which floating-point unit to use. The
4057 @code{target("fpmath=sse,387")} option must be specified as
4058 @code{target("fpmath=sse+387")} because the comma would separate
4059 different options.
4060 @end table
4061
4062 On the PowerPC, the following options are allowed:
4063
4064 @table @samp
4065 @item altivec
4066 @itemx no-altivec
4067 @cindex @code{target("altivec")} attribute
4068 Generate code that uses (does not use) AltiVec instructions. In
4069 32-bit code, you cannot enable AltiVec instructions unless
4070 @option{-mabi=altivec} is used on the command line.
4071
4072 @item cmpb
4073 @itemx no-cmpb
4074 @cindex @code{target("cmpb")} attribute
4075 Generate code that uses (does not use) the compare bytes instruction
4076 implemented on the POWER6 processor and other processors that support
4077 the PowerPC V2.05 architecture.
4078
4079 @item dlmzb
4080 @itemx no-dlmzb
4081 @cindex @code{target("dlmzb")} attribute
4082 Generate code that uses (does not use) the string-search @samp{dlmzb}
4083 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4084 generated by default when targeting those processors.
4085
4086 @item fprnd
4087 @itemx no-fprnd
4088 @cindex @code{target("fprnd")} attribute
4089 Generate code that uses (does not use) the FP round to integer
4090 instructions implemented on the POWER5+ processor and other processors
4091 that support the PowerPC V2.03 architecture.
4092
4093 @item hard-dfp
4094 @itemx no-hard-dfp
4095 @cindex @code{target("hard-dfp")} attribute
4096 Generate code that uses (does not use) the decimal floating-point
4097 instructions implemented on some POWER processors.
4098
4099 @item isel
4100 @itemx no-isel
4101 @cindex @code{target("isel")} attribute
4102 Generate code that uses (does not use) ISEL instruction.
4103
4104 @item mfcrf
4105 @itemx no-mfcrf
4106 @cindex @code{target("mfcrf")} attribute
4107 Generate code that uses (does not use) the move from condition
4108 register field instruction implemented on the POWER4 processor and
4109 other processors that support the PowerPC V2.01 architecture.
4110
4111 @item mfpgpr
4112 @itemx no-mfpgpr
4113 @cindex @code{target("mfpgpr")} attribute
4114 Generate code that uses (does not use) the FP move to/from general
4115 purpose register instructions implemented on the POWER6X processor and
4116 other processors that support the extended PowerPC V2.05 architecture.
4117
4118 @item mulhw
4119 @itemx no-mulhw
4120 @cindex @code{target("mulhw")} attribute
4121 Generate code that uses (does not use) the half-word multiply and
4122 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4123 These instructions are generated by default when targeting those
4124 processors.
4125
4126 @item multiple
4127 @itemx no-multiple
4128 @cindex @code{target("multiple")} attribute
4129 Generate code that uses (does not use) the load multiple word
4130 instructions and the store multiple word instructions.
4131
4132 @item update
4133 @itemx no-update
4134 @cindex @code{target("update")} attribute
4135 Generate code that uses (does not use) the load or store instructions
4136 that update the base register to the address of the calculated memory
4137 location.
4138
4139 @item popcntb
4140 @itemx no-popcntb
4141 @cindex @code{target("popcntb")} attribute
4142 Generate code that uses (does not use) the popcount and double-precision
4143 FP reciprocal estimate instruction implemented on the POWER5
4144 processor and other processors that support the PowerPC V2.02
4145 architecture.
4146
4147 @item popcntd
4148 @itemx no-popcntd
4149 @cindex @code{target("popcntd")} attribute
4150 Generate code that uses (does not use) the popcount instruction
4151 implemented on the POWER7 processor and other processors that support
4152 the PowerPC V2.06 architecture.
4153
4154 @item powerpc-gfxopt
4155 @itemx no-powerpc-gfxopt
4156 @cindex @code{target("powerpc-gfxopt")} attribute
4157 Generate code that uses (does not use) the optional PowerPC
4158 architecture instructions in the Graphics group, including
4159 floating-point select.
4160
4161 @item powerpc-gpopt
4162 @itemx no-powerpc-gpopt
4163 @cindex @code{target("powerpc-gpopt")} attribute
4164 Generate code that uses (does not use) the optional PowerPC
4165 architecture instructions in the General Purpose group, including
4166 floating-point square root.
4167
4168 @item recip-precision
4169 @itemx no-recip-precision
4170 @cindex @code{target("recip-precision")} attribute
4171 Assume (do not assume) that the reciprocal estimate instructions
4172 provide higher-precision estimates than is mandated by the powerpc
4173 ABI.
4174
4175 @item string
4176 @itemx no-string
4177 @cindex @code{target("string")} attribute
4178 Generate code that uses (does not use) the load string instructions
4179 and the store string word instructions to save multiple registers and
4180 do small block moves.
4181
4182 @item vsx
4183 @itemx no-vsx
4184 @cindex @code{target("vsx")} attribute
4185 Generate code that uses (does not use) vector/scalar (VSX)
4186 instructions, and also enable the use of built-in functions that allow
4187 more direct access to the VSX instruction set. In 32-bit code, you
4188 cannot enable VSX or AltiVec instructions unless
4189 @option{-mabi=altivec} is used on the command line.
4190
4191 @item friz
4192 @itemx no-friz
4193 @cindex @code{target("friz")} attribute
4194 Generate (do not generate) the @code{friz} instruction when the
4195 @option{-funsafe-math-optimizations} option is used to optimize
4196 rounding a floating-point value to 64-bit integer and back to floating
4197 point. The @code{friz} instruction does not return the same value if
4198 the floating-point number is too large to fit in an integer.
4199
4200 @item avoid-indexed-addresses
4201 @itemx no-avoid-indexed-addresses
4202 @cindex @code{target("avoid-indexed-addresses")} attribute
4203 Generate code that tries to avoid (not avoid) the use of indexed load
4204 or store instructions.
4205
4206 @item paired
4207 @itemx no-paired
4208 @cindex @code{target("paired")} attribute
4209 Generate code that uses (does not use) the generation of PAIRED simd
4210 instructions.
4211
4212 @item longcall
4213 @itemx no-longcall
4214 @cindex @code{target("longcall")} attribute
4215 Generate code that assumes (does not assume) that all calls are far
4216 away so that a longer more expensive calling sequence is required.
4217
4218 @item cpu=@var{CPU}
4219 @cindex @code{target("cpu=@var{CPU}")} attribute
4220 Specify the architecture to generate code for when compiling the
4221 function. If you select the @code{target("cpu=power7")} attribute when
4222 generating 32-bit code, VSX and AltiVec instructions are not generated
4223 unless you use the @option{-mabi=altivec} option on the command line.
4224
4225 @item tune=@var{TUNE}
4226 @cindex @code{target("tune=@var{TUNE}")} attribute
4227 Specify the architecture to tune for when compiling the function. If
4228 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4229 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4230 compilation tunes for the @var{CPU} architecture, and not the
4231 default tuning specified on the command line.
4232 @end table
4233
4234 When compiling for Nios II, the following options are allowed:
4235
4236 @table @samp
4237 @item custom-@var{insn}=@var{N}
4238 @itemx no-custom-@var{insn}
4239 @cindex @code{target("custom-@var{insn}=@var{N}")} attribute
4240 @cindex @code{target("no-custom-@var{insn}")} attribute
4241 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4242 custom instruction with encoding @var{N} when generating code that uses
4243 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4244 the custom instruction @var{insn}.
4245 These target attributes correspond to the
4246 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4247 command-line options, and support the same set of @var{insn} keywords.
4248 @xref{Nios II Options}, for more information.
4249
4250 @item custom-fpu-cfg=@var{name}
4251 @cindex @code{target("custom-fpu-cfg=@var{name}")} attribute
4252 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4253 command-line option, to select a predefined set of custom instructions
4254 named @var{name}.
4255 @xref{Nios II Options}, for more information.
4256 @end table
4257
4258 On the 386/x86_64 and PowerPC back ends, the inliner does not inline a
4259 function that has different target options than the caller, unless the
4260 callee has a subset of the target options of the caller. For example
4261 a function declared with @code{target("sse3")} can inline a function
4262 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
4263
4264 @item tiny_data
4265 @cindex tiny data section on the H8/300H and H8S
4266 Use this attribute on the H8/300H and H8S to indicate that the specified
4267 variable should be placed into the tiny data section.
4268 The compiler generates more efficient code for loads and stores
4269 on data in the tiny data section. Note the tiny data area is limited to
4270 slightly under 32KB of data.
4271
4272 @item trap_exit
4273 @cindex @code{trap_exit} attribute
4274 Use this attribute on the SH for an @code{interrupt_handler} to return using
4275 @code{trapa} instead of @code{rte}. This attribute expects an integer
4276 argument specifying the trap number to be used.
4277
4278 @item trapa_handler
4279 @cindex @code{trapa_handler} attribute
4280 On SH targets this function attribute is similar to @code{interrupt_handler}
4281 but it does not save and restore all registers.
4282
4283 @item unused
4284 @cindex @code{unused} attribute.
4285 This attribute, attached to a function, means that the function is meant
4286 to be possibly unused. GCC does not produce a warning for this
4287 function.
4288
4289 @item used
4290 @cindex @code{used} attribute.
4291 This attribute, attached to a function, means that code must be emitted
4292 for the function even if it appears that the function is not referenced.
4293 This is useful, for example, when the function is referenced only in
4294 inline assembly.
4295
4296 When applied to a member function of a C++ class template, the
4297 attribute also means that the function is instantiated if the
4298 class itself is instantiated.
4299
4300 @item version_id
4301 @cindex @code{version_id} attribute
4302 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4303 symbol to contain a version string, thus allowing for function level
4304 versioning. HP-UX system header files may use function level versioning
4305 for some system calls.
4306
4307 @smallexample
4308 extern int foo () __attribute__((version_id ("20040821")));
4309 @end smallexample
4310
4311 @noindent
4312 Calls to @var{foo} are mapped to calls to @var{foo@{20040821@}}.
4313
4314 @item visibility ("@var{visibility_type}")
4315 @cindex @code{visibility} attribute
4316 This attribute affects the linkage of the declaration to which it is attached.
4317 There are four supported @var{visibility_type} values: default,
4318 hidden, protected or internal visibility.
4319
4320 @smallexample
4321 void __attribute__ ((visibility ("protected")))
4322 f () @{ /* @r{Do something.} */; @}
4323 int i __attribute__ ((visibility ("hidden")));
4324 @end smallexample
4325
4326 The possible values of @var{visibility_type} correspond to the
4327 visibility settings in the ELF gABI.
4328
4329 @table @dfn
4330 @c keep this list of visibilities in alphabetical order.
4331
4332 @item default
4333 Default visibility is the normal case for the object file format.
4334 This value is available for the visibility attribute to override other
4335 options that may change the assumed visibility of entities.
4336
4337 On ELF, default visibility means that the declaration is visible to other
4338 modules and, in shared libraries, means that the declared entity may be
4339 overridden.
4340
4341 On Darwin, default visibility means that the declaration is visible to
4342 other modules.
4343
4344 Default visibility corresponds to ``external linkage'' in the language.
4345
4346 @item hidden
4347 Hidden visibility indicates that the entity declared has a new
4348 form of linkage, which we call ``hidden linkage''. Two
4349 declarations of an object with hidden linkage refer to the same object
4350 if they are in the same shared object.
4351
4352 @item internal
4353 Internal visibility is like hidden visibility, but with additional
4354 processor specific semantics. Unless otherwise specified by the
4355 psABI, GCC defines internal visibility to mean that a function is
4356 @emph{never} called from another module. Compare this with hidden
4357 functions which, while they cannot be referenced directly by other
4358 modules, can be referenced indirectly via function pointers. By
4359 indicating that a function cannot be called from outside the module,
4360 GCC may for instance omit the load of a PIC register since it is known
4361 that the calling function loaded the correct value.
4362
4363 @item protected
4364 Protected visibility is like default visibility except that it
4365 indicates that references within the defining module bind to the
4366 definition in that module. That is, the declared entity cannot be
4367 overridden by another module.
4368
4369 @end table
4370
4371 All visibilities are supported on many, but not all, ELF targets
4372 (supported when the assembler supports the @samp{.visibility}
4373 pseudo-op). Default visibility is supported everywhere. Hidden
4374 visibility is supported on Darwin targets.
4375
4376 The visibility attribute should be applied only to declarations that
4377 would otherwise have external linkage. The attribute should be applied
4378 consistently, so that the same entity should not be declared with
4379 different settings of the attribute.
4380
4381 In C++, the visibility attribute applies to types as well as functions
4382 and objects, because in C++ types have linkage. A class must not have
4383 greater visibility than its non-static data member types and bases,
4384 and class members default to the visibility of their class. Also, a
4385 declaration without explicit visibility is limited to the visibility
4386 of its type.
4387
4388 In C++, you can mark member functions and static member variables of a
4389 class with the visibility attribute. This is useful if you know a
4390 particular method or static member variable should only be used from
4391 one shared object; then you can mark it hidden while the rest of the
4392 class has default visibility. Care must be taken to avoid breaking
4393 the One Definition Rule; for example, it is usually not useful to mark
4394 an inline method as hidden without marking the whole class as hidden.
4395
4396 A C++ namespace declaration can also have the visibility attribute.
4397
4398 @smallexample
4399 namespace nspace1 __attribute__ ((visibility ("protected")))
4400 @{ /* @r{Do something.} */; @}
4401 @end smallexample
4402
4403 This attribute applies only to the particular namespace body, not to
4404 other definitions of the same namespace; it is equivalent to using
4405 @samp{#pragma GCC visibility} before and after the namespace
4406 definition (@pxref{Visibility Pragmas}).
4407
4408 In C++, if a template argument has limited visibility, this
4409 restriction is implicitly propagated to the template instantiation.
4410 Otherwise, template instantiations and specializations default to the
4411 visibility of their template.
4412
4413 If both the template and enclosing class have explicit visibility, the
4414 visibility from the template is used.
4415
4416 @item vliw
4417 @cindex @code{vliw} attribute
4418 On MeP, the @code{vliw} attribute tells the compiler to emit
4419 instructions in VLIW mode instead of core mode. Note that this
4420 attribute is not allowed unless a VLIW coprocessor has been configured
4421 and enabled through command-line options.
4422
4423 @item warn_unused_result
4424 @cindex @code{warn_unused_result} attribute
4425 The @code{warn_unused_result} attribute causes a warning to be emitted
4426 if a caller of the function with this attribute does not use its
4427 return value. This is useful for functions where not checking
4428 the result is either a security problem or always a bug, such as
4429 @code{realloc}.
4430
4431 @smallexample
4432 int fn () __attribute__ ((warn_unused_result));
4433 int foo ()
4434 @{
4435 if (fn () < 0) return -1;
4436 fn ();
4437 return 0;
4438 @}
4439 @end smallexample
4440
4441 @noindent
4442 results in warning on line 5.
4443
4444 @item weak
4445 @cindex @code{weak} attribute
4446 The @code{weak} attribute causes the declaration to be emitted as a weak
4447 symbol rather than a global. This is primarily useful in defining
4448 library functions that can be overridden in user code, though it can
4449 also be used with non-function declarations. Weak symbols are supported
4450 for ELF targets, and also for a.out targets when using the GNU assembler
4451 and linker.
4452
4453 @item weakref
4454 @itemx weakref ("@var{target}")
4455 @cindex @code{weakref} attribute
4456 The @code{weakref} attribute marks a declaration as a weak reference.
4457 Without arguments, it should be accompanied by an @code{alias} attribute
4458 naming the target symbol. Optionally, the @var{target} may be given as
4459 an argument to @code{weakref} itself. In either case, @code{weakref}
4460 implicitly marks the declaration as @code{weak}. Without a
4461 @var{target}, given as an argument to @code{weakref} or to @code{alias},
4462 @code{weakref} is equivalent to @code{weak}.
4463
4464 @smallexample
4465 static int x() __attribute__ ((weakref ("y")));
4466 /* is equivalent to... */
4467 static int x() __attribute__ ((weak, weakref, alias ("y")));
4468 /* and to... */
4469 static int x() __attribute__ ((weakref));
4470 static int x() __attribute__ ((alias ("y")));
4471 @end smallexample
4472
4473 A weak reference is an alias that does not by itself require a
4474 definition to be given for the target symbol. If the target symbol is
4475 only referenced through weak references, then it becomes a @code{weak}
4476 undefined symbol. If it is directly referenced, however, then such
4477 strong references prevail, and a definition is required for the
4478 symbol, not necessarily in the same translation unit.
4479
4480 The effect is equivalent to moving all references to the alias to a
4481 separate translation unit, renaming the alias to the aliased symbol,
4482 declaring it as weak, compiling the two separate translation units and
4483 performing a reloadable link on them.
4484
4485 At present, a declaration to which @code{weakref} is attached can
4486 only be @code{static}.
4487
4488 @end table
4489
4490 You can specify multiple attributes in a declaration by separating them
4491 by commas within the double parentheses or by immediately following an
4492 attribute declaration with another attribute declaration.
4493
4494 @cindex @code{#pragma}, reason for not using
4495 @cindex pragma, reason for not using
4496 Some people object to the @code{__attribute__} feature, suggesting that
4497 ISO C's @code{#pragma} should be used instead. At the time
4498 @code{__attribute__} was designed, there were two reasons for not doing
4499 this.
4500
4501 @enumerate
4502 @item
4503 It is impossible to generate @code{#pragma} commands from a macro.
4504
4505 @item
4506 There is no telling what the same @code{#pragma} might mean in another
4507 compiler.
4508 @end enumerate
4509
4510 These two reasons applied to almost any application that might have been
4511 proposed for @code{#pragma}. It was basically a mistake to use
4512 @code{#pragma} for @emph{anything}.
4513
4514 The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4515 to be generated from macros. In addition, a @code{#pragma GCC}
4516 namespace is now in use for GCC-specific pragmas. However, it has been
4517 found convenient to use @code{__attribute__} to achieve a natural
4518 attachment of attributes to their corresponding declarations, whereas
4519 @code{#pragma GCC} is of use for constructs that do not naturally form
4520 part of the grammar. @xref{Pragmas,,Pragmas Accepted by GCC}.
4521
4522 @node Attribute Syntax
4523 @section Attribute Syntax
4524 @cindex attribute syntax
4525
4526 This section describes the syntax with which @code{__attribute__} may be
4527 used, and the constructs to which attribute specifiers bind, for the C
4528 language. Some details may vary for C++ and Objective-C@. Because of
4529 infelicities in the grammar for attributes, some forms described here
4530 may not be successfully parsed in all cases.
4531
4532 There are some problems with the semantics of attributes in C++. For
4533 example, there are no manglings for attributes, although they may affect
4534 code generation, so problems may arise when attributed types are used in
4535 conjunction with templates or overloading. Similarly, @code{typeid}
4536 does not distinguish between types with different attributes. Support
4537 for attributes in C++ may be restricted in future to attributes on
4538 declarations only, but not on nested declarators.
4539
4540 @xref{Function Attributes}, for details of the semantics of attributes
4541 applying to functions. @xref{Variable Attributes}, for details of the
4542 semantics of attributes applying to variables. @xref{Type Attributes},
4543 for details of the semantics of attributes applying to structure, union
4544 and enumerated types.
4545
4546 An @dfn{attribute specifier} is of the form
4547 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
4548 is a possibly empty comma-separated sequence of @dfn{attributes}, where
4549 each attribute is one of the following:
4550
4551 @itemize @bullet
4552 @item
4553 Empty. Empty attributes are ignored.
4554
4555 @item
4556 A word (which may be an identifier such as @code{unused}, or a reserved
4557 word such as @code{const}).
4558
4559 @item
4560 A word, followed by, in parentheses, parameters for the attribute.
4561 These parameters take one of the following forms:
4562
4563 @itemize @bullet
4564 @item
4565 An identifier. For example, @code{mode} attributes use this form.
4566
4567 @item
4568 An identifier followed by a comma and a non-empty comma-separated list
4569 of expressions. For example, @code{format} attributes use this form.
4570
4571 @item
4572 A possibly empty comma-separated list of expressions. For example,
4573 @code{format_arg} attributes use this form with the list being a single
4574 integer constant expression, and @code{alias} attributes use this form
4575 with the list being a single string constant.
4576 @end itemize
4577 @end itemize
4578
4579 An @dfn{attribute specifier list} is a sequence of one or more attribute
4580 specifiers, not separated by any other tokens.
4581
4582 In GNU C, an attribute specifier list may appear after the colon following a
4583 label, other than a @code{case} or @code{default} label. The only
4584 attribute it makes sense to use after a label is @code{unused}. This
4585 feature is intended for program-generated code that may contain unused labels,
4586 but which is compiled with @option{-Wall}. It is
4587 not normally appropriate to use in it human-written code, though it
4588 could be useful in cases where the code that jumps to the label is
4589 contained within an @code{#ifdef} conditional. GNU C++ only permits
4590 attributes on labels if the attribute specifier is immediately
4591 followed by a semicolon (i.e., the label applies to an empty
4592 statement). If the semicolon is missing, C++ label attributes are
4593 ambiguous, as it is permissible for a declaration, which could begin
4594 with an attribute list, to be labelled in C++. Declarations cannot be
4595 labelled in C90 or C99, so the ambiguity does not arise there.
4596
4597 An attribute specifier list may appear as part of a @code{struct},
4598 @code{union} or @code{enum} specifier. It may go either immediately
4599 after the @code{struct}, @code{union} or @code{enum} keyword, or after
4600 the closing brace. The former syntax is preferred.
4601 Where attribute specifiers follow the closing brace, they are considered
4602 to relate to the structure, union or enumerated type defined, not to any
4603 enclosing declaration the type specifier appears in, and the type
4604 defined is not complete until after the attribute specifiers.
4605 @c Otherwise, there would be the following problems: a shift/reduce
4606 @c conflict between attributes binding the struct/union/enum and
4607 @c binding to the list of specifiers/qualifiers; and "aligned"
4608 @c attributes could use sizeof for the structure, but the size could be
4609 @c changed later by "packed" attributes.
4610
4611 Otherwise, an attribute specifier appears as part of a declaration,
4612 counting declarations of unnamed parameters and type names, and relates
4613 to that declaration (which may be nested in another declaration, for
4614 example in the case of a parameter declaration), or to a particular declarator
4615 within a declaration. Where an
4616 attribute specifier is applied to a parameter declared as a function or
4617 an array, it should apply to the function or array rather than the
4618 pointer to which the parameter is implicitly converted, but this is not
4619 yet correctly implemented.
4620
4621 Any list of specifiers and qualifiers at the start of a declaration may
4622 contain attribute specifiers, whether or not such a list may in that
4623 context contain storage class specifiers. (Some attributes, however,
4624 are essentially in the nature of storage class specifiers, and only make
4625 sense where storage class specifiers may be used; for example,
4626 @code{section}.) There is one necessary limitation to this syntax: the
4627 first old-style parameter declaration in a function definition cannot
4628 begin with an attribute specifier, because such an attribute applies to
4629 the function instead by syntax described below (which, however, is not
4630 yet implemented in this case). In some other cases, attribute
4631 specifiers are permitted by this grammar but not yet supported by the
4632 compiler. All attribute specifiers in this place relate to the
4633 declaration as a whole. In the obsolescent usage where a type of
4634 @code{int} is implied by the absence of type specifiers, such a list of
4635 specifiers and qualifiers may be an attribute specifier list with no
4636 other specifiers or qualifiers.
4637
4638 At present, the first parameter in a function prototype must have some
4639 type specifier that is not an attribute specifier; this resolves an
4640 ambiguity in the interpretation of @code{void f(int
4641 (__attribute__((foo)) x))}, but is subject to change. At present, if
4642 the parentheses of a function declarator contain only attributes then
4643 those attributes are ignored, rather than yielding an error or warning
4644 or implying a single parameter of type int, but this is subject to
4645 change.
4646
4647 An attribute specifier list may appear immediately before a declarator
4648 (other than the first) in a comma-separated list of declarators in a
4649 declaration of more than one identifier using a single list of
4650 specifiers and qualifiers. Such attribute specifiers apply
4651 only to the identifier before whose declarator they appear. For
4652 example, in
4653
4654 @smallexample
4655 __attribute__((noreturn)) void d0 (void),
4656 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4657 d2 (void)
4658 @end smallexample
4659
4660 @noindent
4661 the @code{noreturn} attribute applies to all the functions
4662 declared; the @code{format} attribute only applies to @code{d1}.
4663
4664 An attribute specifier list may appear immediately before the comma,
4665 @code{=} or semicolon terminating the declaration of an identifier other
4666 than a function definition. Such attribute specifiers apply
4667 to the declared object or function. Where an
4668 assembler name for an object or function is specified (@pxref{Asm
4669 Labels}), the attribute must follow the @code{asm}
4670 specification.
4671
4672 An attribute specifier list may, in future, be permitted to appear after
4673 the declarator in a function definition (before any old-style parameter
4674 declarations or the function body).
4675
4676 Attribute specifiers may be mixed with type qualifiers appearing inside
4677 the @code{[]} of a parameter array declarator, in the C99 construct by
4678 which such qualifiers are applied to the pointer to which the array is
4679 implicitly converted. Such attribute specifiers apply to the pointer,
4680 not to the array, but at present this is not implemented and they are
4681 ignored.
4682
4683 An attribute specifier list may appear at the start of a nested
4684 declarator. At present, there are some limitations in this usage: the
4685 attributes correctly apply to the declarator, but for most individual
4686 attributes the semantics this implies are not implemented.
4687 When attribute specifiers follow the @code{*} of a pointer
4688 declarator, they may be mixed with any type qualifiers present.
4689 The following describes the formal semantics of this syntax. It makes the
4690 most sense if you are familiar with the formal specification of
4691 declarators in the ISO C standard.
4692
4693 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4694 D1}, where @code{T} contains declaration specifiers that specify a type
4695 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
4696 contains an identifier @var{ident}. The type specified for @var{ident}
4697 for derived declarators whose type does not include an attribute
4698 specifier is as in the ISO C standard.
4699
4700 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4701 and the declaration @code{T D} specifies the type
4702 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4703 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4704 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4705
4706 If @code{D1} has the form @code{*
4707 @var{type-qualifier-and-attribute-specifier-list} D}, and the
4708 declaration @code{T D} specifies the type
4709 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4710 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4711 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
4712 @var{ident}.
4713
4714 For example,
4715
4716 @smallexample
4717 void (__attribute__((noreturn)) ****f) (void);
4718 @end smallexample
4719
4720 @noindent
4721 specifies the type ``pointer to pointer to pointer to pointer to
4722 non-returning function returning @code{void}''. As another example,
4723
4724 @smallexample
4725 char *__attribute__((aligned(8))) *f;
4726 @end smallexample
4727
4728 @noindent
4729 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
4730 Note again that this does not work with most attributes; for example,
4731 the usage of @samp{aligned} and @samp{noreturn} attributes given above
4732 is not yet supported.
4733
4734 For compatibility with existing code written for compiler versions that
4735 did not implement attributes on nested declarators, some laxity is
4736 allowed in the placing of attributes. If an attribute that only applies
4737 to types is applied to a declaration, it is treated as applying to
4738 the type of that declaration. If an attribute that only applies to
4739 declarations is applied to the type of a declaration, it is treated
4740 as applying to that declaration; and, for compatibility with code
4741 placing the attributes immediately before the identifier declared, such
4742 an attribute applied to a function return type is treated as
4743 applying to the function type, and such an attribute applied to an array
4744 element type is treated as applying to the array type. If an
4745 attribute that only applies to function types is applied to a
4746 pointer-to-function type, it is treated as applying to the pointer
4747 target type; if such an attribute is applied to a function return type
4748 that is not a pointer-to-function type, it is treated as applying
4749 to the function type.
4750
4751 @node Function Prototypes
4752 @section Prototypes and Old-Style Function Definitions
4753 @cindex function prototype declarations
4754 @cindex old-style function definitions
4755 @cindex promotion of formal parameters
4756
4757 GNU C extends ISO C to allow a function prototype to override a later
4758 old-style non-prototype definition. Consider the following example:
4759
4760 @smallexample
4761 /* @r{Use prototypes unless the compiler is old-fashioned.} */
4762 #ifdef __STDC__
4763 #define P(x) x
4764 #else
4765 #define P(x) ()
4766 #endif
4767
4768 /* @r{Prototype function declaration.} */
4769 int isroot P((uid_t));
4770
4771 /* @r{Old-style function definition.} */
4772 int
4773 isroot (x) /* @r{??? lossage here ???} */
4774 uid_t x;
4775 @{
4776 return x == 0;
4777 @}
4778 @end smallexample
4779
4780 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
4781 not allow this example, because subword arguments in old-style
4782 non-prototype definitions are promoted. Therefore in this example the
4783 function definition's argument is really an @code{int}, which does not
4784 match the prototype argument type of @code{short}.
4785
4786 This restriction of ISO C makes it hard to write code that is portable
4787 to traditional C compilers, because the programmer does not know
4788 whether the @code{uid_t} type is @code{short}, @code{int}, or
4789 @code{long}. Therefore, in cases like these GNU C allows a prototype
4790 to override a later old-style definition. More precisely, in GNU C, a
4791 function prototype argument type overrides the argument type specified
4792 by a later old-style definition if the former type is the same as the
4793 latter type before promotion. Thus in GNU C the above example is
4794 equivalent to the following:
4795
4796 @smallexample
4797 int isroot (uid_t);
4798
4799 int
4800 isroot (uid_t x)
4801 @{
4802 return x == 0;
4803 @}
4804 @end smallexample
4805
4806 @noindent
4807 GNU C++ does not support old-style function definitions, so this
4808 extension is irrelevant.
4809
4810 @node C++ Comments
4811 @section C++ Style Comments
4812 @cindex @code{//}
4813 @cindex C++ comments
4814 @cindex comments, C++ style
4815
4816 In GNU C, you may use C++ style comments, which start with @samp{//} and
4817 continue until the end of the line. Many other C implementations allow
4818 such comments, and they are included in the 1999 C standard. However,
4819 C++ style comments are not recognized if you specify an @option{-std}
4820 option specifying a version of ISO C before C99, or @option{-ansi}
4821 (equivalent to @option{-std=c90}).
4822
4823 @node Dollar Signs
4824 @section Dollar Signs in Identifier Names
4825 @cindex $
4826 @cindex dollar signs in identifier names
4827 @cindex identifier names, dollar signs in
4828
4829 In GNU C, you may normally use dollar signs in identifier names.
4830 This is because many traditional C implementations allow such identifiers.
4831 However, dollar signs in identifiers are not supported on a few target
4832 machines, typically because the target assembler does not allow them.
4833
4834 @node Character Escapes
4835 @section The Character @key{ESC} in Constants
4836
4837 You can use the sequence @samp{\e} in a string or character constant to
4838 stand for the ASCII character @key{ESC}.
4839
4840 @node Variable Attributes
4841 @section Specifying Attributes of Variables
4842 @cindex attribute of variables
4843 @cindex variable attributes
4844
4845 The keyword @code{__attribute__} allows you to specify special
4846 attributes of variables or structure fields. This keyword is followed
4847 by an attribute specification inside double parentheses. Some
4848 attributes are currently defined generically for variables.
4849 Other attributes are defined for variables on particular target
4850 systems. Other attributes are available for functions
4851 (@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4852 Other front ends might define more attributes
4853 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
4854
4855 You may also specify attributes with @samp{__} preceding and following
4856 each keyword. This allows you to use them in header files without
4857 being concerned about a possible macro of the same name. For example,
4858 you may use @code{__aligned__} instead of @code{aligned}.
4859
4860 @xref{Attribute Syntax}, for details of the exact syntax for using
4861 attributes.
4862
4863 @table @code
4864 @cindex @code{aligned} attribute
4865 @item aligned (@var{alignment})
4866 This attribute specifies a minimum alignment for the variable or
4867 structure field, measured in bytes. For example, the declaration:
4868
4869 @smallexample
4870 int x __attribute__ ((aligned (16))) = 0;
4871 @end smallexample
4872
4873 @noindent
4874 causes the compiler to allocate the global variable @code{x} on a
4875 16-byte boundary. On a 68040, this could be used in conjunction with
4876 an @code{asm} expression to access the @code{move16} instruction which
4877 requires 16-byte aligned operands.
4878
4879 You can also specify the alignment of structure fields. For example, to
4880 create a double-word aligned @code{int} pair, you could write:
4881
4882 @smallexample
4883 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4884 @end smallexample
4885
4886 @noindent
4887 This is an alternative to creating a union with a @code{double} member,
4888 which forces the union to be double-word aligned.
4889
4890 As in the preceding examples, you can explicitly specify the alignment
4891 (in bytes) that you wish the compiler to use for a given variable or
4892 structure field. Alternatively, you can leave out the alignment factor
4893 and just ask the compiler to align a variable or field to the
4894 default alignment for the target architecture you are compiling for.
4895 The default alignment is sufficient for all scalar types, but may not be
4896 enough for all vector types on a target that supports vector operations.
4897 The default alignment is fixed for a particular target ABI.
4898
4899 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4900 which is the largest alignment ever used for any data type on the
4901 target machine you are compiling for. For example, you could write:
4902
4903 @smallexample
4904 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
4905 @end smallexample
4906
4907 The compiler automatically sets the alignment for the declared
4908 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
4909 often make copy operations more efficient, because the compiler can
4910 use whatever instructions copy the biggest chunks of memory when
4911 performing copies to or from the variables or fields that you have
4912 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
4913 may change depending on command-line options.
4914
4915 When used on a struct, or struct member, the @code{aligned} attribute can
4916 only increase the alignment; in order to decrease it, the @code{packed}
4917 attribute must be specified as well. When used as part of a typedef, the
4918 @code{aligned} attribute can both increase and decrease alignment, and
4919 specifying the @code{packed} attribute generates a warning.
4920
4921 Note that the effectiveness of @code{aligned} attributes may be limited
4922 by inherent limitations in your linker. On many systems, the linker is
4923 only able to arrange for variables to be aligned up to a certain maximum
4924 alignment. (For some linkers, the maximum supported alignment may
4925 be very very small.) If your linker is only able to align variables
4926 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
4927 in an @code{__attribute__} still only provides you with 8-byte
4928 alignment. See your linker documentation for further information.
4929
4930 The @code{aligned} attribute can also be used for functions
4931 (@pxref{Function Attributes}.)
4932
4933 @item cleanup (@var{cleanup_function})
4934 @cindex @code{cleanup} attribute
4935 The @code{cleanup} attribute runs a function when the variable goes
4936 out of scope. This attribute can only be applied to auto function
4937 scope variables; it may not be applied to parameters or variables
4938 with static storage duration. The function must take one parameter,
4939 a pointer to a type compatible with the variable. The return value
4940 of the function (if any) is ignored.
4941
4942 If @option{-fexceptions} is enabled, then @var{cleanup_function}
4943 is run during the stack unwinding that happens during the
4944 processing of the exception. Note that the @code{cleanup} attribute
4945 does not allow the exception to be caught, only to perform an action.
4946 It is undefined what happens if @var{cleanup_function} does not
4947 return normally.
4948
4949 @item common
4950 @itemx nocommon
4951 @cindex @code{common} attribute
4952 @cindex @code{nocommon} attribute
4953 @opindex fcommon
4954 @opindex fno-common
4955 The @code{common} attribute requests GCC to place a variable in
4956 ``common'' storage. The @code{nocommon} attribute requests the
4957 opposite---to allocate space for it directly.
4958
4959 These attributes override the default chosen by the
4960 @option{-fno-common} and @option{-fcommon} flags respectively.
4961
4962 @item deprecated
4963 @itemx deprecated (@var{msg})
4964 @cindex @code{deprecated} attribute
4965 The @code{deprecated} attribute results in a warning if the variable
4966 is used anywhere in the source file. This is useful when identifying
4967 variables that are expected to be removed in a future version of a
4968 program. The warning also includes the location of the declaration
4969 of the deprecated variable, to enable users to easily find further
4970 information about why the variable is deprecated, or what they should
4971 do instead. Note that the warning only occurs for uses:
4972
4973 @smallexample
4974 extern int old_var __attribute__ ((deprecated));
4975 extern int old_var;
4976 int new_fn () @{ return old_var; @}
4977 @end smallexample
4978
4979 @noindent
4980 results in a warning on line 3 but not line 2. The optional @var{msg}
4981 argument, which must be a string, is printed in the warning if
4982 present.
4983
4984 The @code{deprecated} attribute can also be used for functions and
4985 types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4986
4987 @item mode (@var{mode})
4988 @cindex @code{mode} attribute
4989 This attribute specifies the data type for the declaration---whichever
4990 type corresponds to the mode @var{mode}. This in effect lets you
4991 request an integer or floating-point type according to its width.
4992
4993 You may also specify a mode of @code{byte} or @code{__byte__} to
4994 indicate the mode corresponding to a one-byte integer, @code{word} or
4995 @code{__word__} for the mode of a one-word integer, and @code{pointer}
4996 or @code{__pointer__} for the mode used to represent pointers.
4997
4998 @item packed
4999 @cindex @code{packed} attribute
5000 The @code{packed} attribute specifies that a variable or structure field
5001 should have the smallest possible alignment---one byte for a variable,
5002 and one bit for a field, unless you specify a larger value with the
5003 @code{aligned} attribute.
5004
5005 Here is a structure in which the field @code{x} is packed, so that it
5006 immediately follows @code{a}:
5007
5008 @smallexample
5009 struct foo
5010 @{
5011 char a;
5012 int x[2] __attribute__ ((packed));
5013 @};
5014 @end smallexample
5015
5016 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5017 @code{packed} attribute on bit-fields of type @code{char}. This has
5018 been fixed in GCC 4.4 but the change can lead to differences in the
5019 structure layout. See the documentation of
5020 @option{-Wpacked-bitfield-compat} for more information.
5021
5022 @item section ("@var{section-name}")
5023 @cindex @code{section} variable attribute
5024 Normally, the compiler places the objects it generates in sections like
5025 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5026 or you need certain particular variables to appear in special sections,
5027 for example to map to special hardware. The @code{section}
5028 attribute specifies that a variable (or function) lives in a particular
5029 section. For example, this small program uses several specific section names:
5030
5031 @smallexample
5032 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5033 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5034 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5035 int init_data __attribute__ ((section ("INITDATA")));
5036
5037 main()
5038 @{
5039 /* @r{Initialize stack pointer} */
5040 init_sp (stack + sizeof (stack));
5041
5042 /* @r{Initialize initialized data} */
5043 memcpy (&init_data, &data, &edata - &data);
5044
5045 /* @r{Turn on the serial ports} */
5046 init_duart (&a);
5047 init_duart (&b);
5048 @}
5049 @end smallexample
5050
5051 @noindent
5052 Use the @code{section} attribute with
5053 @emph{global} variables and not @emph{local} variables,
5054 as shown in the example.
5055
5056 You may use the @code{section} attribute with initialized or
5057 uninitialized global variables but the linker requires
5058 each object be defined once, with the exception that uninitialized
5059 variables tentatively go in the @code{common} (or @code{bss}) section
5060 and can be multiply ``defined''. Using the @code{section} attribute
5061 changes what section the variable goes into and may cause the
5062 linker to issue an error if an uninitialized variable has multiple
5063 definitions. You can force a variable to be initialized with the
5064 @option{-fno-common} flag or the @code{nocommon} attribute.
5065
5066 Some file formats do not support arbitrary sections so the @code{section}
5067 attribute is not available on all platforms.
5068 If you need to map the entire contents of a module to a particular
5069 section, consider using the facilities of the linker instead.
5070
5071 @item shared
5072 @cindex @code{shared} variable attribute
5073 On Microsoft Windows, in addition to putting variable definitions in a named
5074 section, the section can also be shared among all running copies of an
5075 executable or DLL@. For example, this small program defines shared data
5076 by putting it in a named section @code{shared} and marking the section
5077 shareable:
5078
5079 @smallexample
5080 int foo __attribute__((section ("shared"), shared)) = 0;
5081
5082 int
5083 main()
5084 @{
5085 /* @r{Read and write foo. All running
5086 copies see the same value.} */
5087 return 0;
5088 @}
5089 @end smallexample
5090
5091 @noindent
5092 You may only use the @code{shared} attribute along with @code{section}
5093 attribute with a fully-initialized global definition because of the way
5094 linkers work. See @code{section} attribute for more information.
5095
5096 The @code{shared} attribute is only available on Microsoft Windows@.
5097
5098 @item tls_model ("@var{tls_model}")
5099 @cindex @code{tls_model} attribute
5100 The @code{tls_model} attribute sets thread-local storage model
5101 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5102 overriding @option{-ftls-model=} command-line switch on a per-variable
5103 basis.
5104 The @var{tls_model} argument should be one of @code{global-dynamic},
5105 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5106
5107 Not all targets support this attribute.
5108
5109 @item unused
5110 This attribute, attached to a variable, means that the variable is meant
5111 to be possibly unused. GCC does not produce a warning for this
5112 variable.
5113
5114 @item used
5115 This attribute, attached to a variable with the static storage, means that
5116 the variable must be emitted even if it appears that the variable is not
5117 referenced.
5118
5119 When applied to a static data member of a C++ class template, the
5120 attribute also means that the member is instantiated if the
5121 class itself is instantiated.
5122
5123 @item vector_size (@var{bytes})
5124 This attribute specifies the vector size for the variable, measured in
5125 bytes. For example, the declaration:
5126
5127 @smallexample
5128 int foo __attribute__ ((vector_size (16)));
5129 @end smallexample
5130
5131 @noindent
5132 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5133 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5134 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5135
5136 This attribute is only applicable to integral and float scalars,
5137 although arrays, pointers, and function return values are allowed in
5138 conjunction with this construct.
5139
5140 Aggregates with this attribute are invalid, even if they are of the same
5141 size as a corresponding scalar. For example, the declaration:
5142
5143 @smallexample
5144 struct S @{ int a; @};
5145 struct S __attribute__ ((vector_size (16))) foo;
5146 @end smallexample
5147
5148 @noindent
5149 is invalid even if the size of the structure is the same as the size of
5150 the @code{int}.
5151
5152 @item selectany
5153 The @code{selectany} attribute causes an initialized global variable to
5154 have link-once semantics. When multiple definitions of the variable are
5155 encountered by the linker, the first is selected and the remainder are
5156 discarded. Following usage by the Microsoft compiler, the linker is told
5157 @emph{not} to warn about size or content differences of the multiple
5158 definitions.
5159
5160 Although the primary usage of this attribute is for POD types, the
5161 attribute can also be applied to global C++ objects that are initialized
5162 by a constructor. In this case, the static initialization and destruction
5163 code for the object is emitted in each translation defining the object,
5164 but the calls to the constructor and destructor are protected by a
5165 link-once guard variable.
5166
5167 The @code{selectany} attribute is only available on Microsoft Windows
5168 targets. You can use @code{__declspec (selectany)} as a synonym for
5169 @code{__attribute__ ((selectany))} for compatibility with other
5170 compilers.
5171
5172 @item weak
5173 The @code{weak} attribute is described in @ref{Function Attributes}.
5174
5175 @item dllimport
5176 The @code{dllimport} attribute is described in @ref{Function Attributes}.
5177
5178 @item dllexport
5179 The @code{dllexport} attribute is described in @ref{Function Attributes}.
5180
5181 @end table
5182
5183 @anchor{AVR Variable Attributes}
5184 @subsection AVR Variable Attributes
5185
5186 @table @code
5187 @item progmem
5188 @cindex @code{progmem} AVR variable attribute
5189 The @code{progmem} attribute is used on the AVR to place read-only
5190 data in the non-volatile program memory (flash). The @code{progmem}
5191 attribute accomplishes this by putting respective variables into a
5192 section whose name starts with @code{.progmem}.
5193
5194 This attribute works similar to the @code{section} attribute
5195 but adds additional checking. Notice that just like the
5196 @code{section} attribute, @code{progmem} affects the location
5197 of the data but not how this data is accessed.
5198
5199 In order to read data located with the @code{progmem} attribute
5200 (inline) assembler must be used.
5201 @smallexample
5202 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5203 #include <avr/pgmspace.h>
5204
5205 /* Locate var in flash memory */
5206 const int var[2] PROGMEM = @{ 1, 2 @};
5207
5208 int read_var (int i)
5209 @{
5210 /* Access var[] by accessor macro from avr/pgmspace.h */
5211 return (int) pgm_read_word (& var[i]);
5212 @}
5213 @end smallexample
5214
5215 AVR is a Harvard architecture processor and data and read-only data
5216 normally resides in the data memory (RAM).
5217
5218 See also the @ref{AVR Named Address Spaces} section for
5219 an alternate way to locate and access data in flash memory.
5220 @end table
5221
5222 @subsection Blackfin Variable Attributes
5223
5224 Three attributes are currently defined for the Blackfin.
5225
5226 @table @code
5227 @item l1_data
5228 @itemx l1_data_A
5229 @itemx l1_data_B
5230 @cindex @code{l1_data} variable attribute
5231 @cindex @code{l1_data_A} variable attribute
5232 @cindex @code{l1_data_B} variable attribute
5233 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
5234 Variables with @code{l1_data} attribute are put into the specific section
5235 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
5236 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
5237 attribute are put into the specific section named @code{.l1.data.B}.
5238
5239 @item l2
5240 @cindex @code{l2} variable attribute
5241 Use this attribute on the Blackfin to place the variable into L2 SRAM.
5242 Variables with @code{l2} attribute are put into the specific section
5243 named @code{.l2.data}.
5244 @end table
5245
5246 @subsection M32R/D Variable Attributes
5247
5248 One attribute is currently defined for the M32R/D@.
5249
5250 @table @code
5251 @item model (@var{model-name})
5252 @cindex variable addressability on the M32R/D
5253 Use this attribute on the M32R/D to set the addressability of an object.
5254 The identifier @var{model-name} is one of @code{small}, @code{medium},
5255 or @code{large}, representing each of the code models.
5256
5257 Small model objects live in the lower 16MB of memory (so that their
5258 addresses can be loaded with the @code{ld24} instruction).
5259
5260 Medium and large model objects may live anywhere in the 32-bit address space
5261 (the compiler generates @code{seth/add3} instructions to load their
5262 addresses).
5263 @end table
5264
5265 @anchor{MeP Variable Attributes}
5266 @subsection MeP Variable Attributes
5267
5268 The MeP target has a number of addressing modes and busses. The
5269 @code{near} space spans the standard memory space's first 16 megabytes
5270 (24 bits). The @code{far} space spans the entire 32-bit memory space.
5271 The @code{based} space is a 128-byte region in the memory space that
5272 is addressed relative to the @code{$tp} register. The @code{tiny}
5273 space is a 65536-byte region relative to the @code{$gp} register. In
5274 addition to these memory regions, the MeP target has a separate 16-bit
5275 control bus which is specified with @code{cb} attributes.
5276
5277 @table @code
5278
5279 @item based
5280 Any variable with the @code{based} attribute is assigned to the
5281 @code{.based} section, and is accessed with relative to the
5282 @code{$tp} register.
5283
5284 @item tiny
5285 Likewise, the @code{tiny} attribute assigned variables to the
5286 @code{.tiny} section, relative to the @code{$gp} register.
5287
5288 @item near
5289 Variables with the @code{near} attribute are assumed to have addresses
5290 that fit in a 24-bit addressing mode. This is the default for large
5291 variables (@code{-mtiny=4} is the default) but this attribute can
5292 override @code{-mtiny=} for small variables, or override @code{-ml}.
5293
5294 @item far
5295 Variables with the @code{far} attribute are addressed using a full
5296 32-bit address. Since this covers the entire memory space, this
5297 allows modules to make no assumptions about where variables might be
5298 stored.
5299
5300 @item io
5301 @itemx io (@var{addr})
5302 Variables with the @code{io} attribute are used to address
5303 memory-mapped peripherals. If an address is specified, the variable
5304 is assigned that address, else it is not assigned an address (it is
5305 assumed some other module assigns an address). Example:
5306
5307 @smallexample
5308 int timer_count __attribute__((io(0x123)));
5309 @end smallexample
5310
5311 @item cb
5312 @itemx cb (@var{addr})
5313 Variables with the @code{cb} attribute are used to access the control
5314 bus, using special instructions. @code{addr} indicates the control bus
5315 address. Example:
5316
5317 @smallexample
5318 int cpu_clock __attribute__((cb(0x123)));
5319 @end smallexample
5320
5321 @end table
5322
5323 @anchor{i386 Variable Attributes}
5324 @subsection i386 Variable Attributes
5325
5326 Two attributes are currently defined for i386 configurations:
5327 @code{ms_struct} and @code{gcc_struct}
5328
5329 @table @code
5330 @item ms_struct
5331 @itemx gcc_struct
5332 @cindex @code{ms_struct} attribute
5333 @cindex @code{gcc_struct} attribute
5334
5335 If @code{packed} is used on a structure, or if bit-fields are used,
5336 it may be that the Microsoft ABI lays out the structure differently
5337 than the way GCC normally does. Particularly when moving packed
5338 data between functions compiled with GCC and the native Microsoft compiler
5339 (either via function call or as data in a file), it may be necessary to access
5340 either format.
5341
5342 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5343 compilers to match the native Microsoft compiler.
5344
5345 The Microsoft structure layout algorithm is fairly simple with the exception
5346 of the bit-field packing.
5347 The padding and alignment of members of structures and whether a bit-field
5348 can straddle a storage-unit boundary are determine by these rules:
5349
5350 @enumerate
5351 @item Structure members are stored sequentially in the order in which they are
5352 declared: the first member has the lowest memory address and the last member
5353 the highest.
5354
5355 @item Every data object has an alignment requirement. The alignment requirement
5356 for all data except structures, unions, and arrays is either the size of the
5357 object or the current packing size (specified with either the
5358 @code{aligned} attribute or the @code{pack} pragma),
5359 whichever is less. For structures, unions, and arrays,
5360 the alignment requirement is the largest alignment requirement of its members.
5361 Every object is allocated an offset so that:
5362
5363 @smallexample
5364 offset % alignment_requirement == 0
5365 @end smallexample
5366
5367 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
5368 unit if the integral types are the same size and if the next bit-field fits
5369 into the current allocation unit without crossing the boundary imposed by the
5370 common alignment requirements of the bit-fields.
5371 @end enumerate
5372
5373 MSVC interprets zero-length bit-fields in the following ways:
5374
5375 @enumerate
5376 @item If a zero-length bit-field is inserted between two bit-fields that
5377 are normally coalesced, the bit-fields are not coalesced.
5378
5379 For example:
5380
5381 @smallexample
5382 struct
5383 @{
5384 unsigned long bf_1 : 12;
5385 unsigned long : 0;
5386 unsigned long bf_2 : 12;
5387 @} t1;
5388 @end smallexample
5389
5390 @noindent
5391 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
5392 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
5393
5394 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
5395 alignment of the zero-length bit-field is greater than the member that follows it,
5396 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
5397
5398 For example:
5399
5400 @smallexample
5401 struct
5402 @{
5403 char foo : 4;
5404 short : 0;
5405 char bar;
5406 @} t2;
5407
5408 struct
5409 @{
5410 char foo : 4;
5411 short : 0;
5412 double bar;
5413 @} t3;
5414 @end smallexample
5415
5416 @noindent
5417 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
5418 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
5419 bit-field does not affect the alignment of @code{bar} or, as a result, the size
5420 of the structure.
5421
5422 Taking this into account, it is important to note the following:
5423
5424 @enumerate
5425 @item If a zero-length bit-field follows a normal bit-field, the type of the
5426 zero-length bit-field may affect the alignment of the structure as whole. For
5427 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
5428 normal bit-field, and is of type short.
5429
5430 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
5431 still affect the alignment of the structure:
5432
5433 @smallexample
5434 struct
5435 @{
5436 char foo : 6;
5437 long : 0;
5438 @} t4;
5439 @end smallexample
5440
5441 @noindent
5442 Here, @code{t4} takes up 4 bytes.
5443 @end enumerate
5444
5445 @item Zero-length bit-fields following non-bit-field members are ignored:
5446
5447 @smallexample
5448 struct
5449 @{
5450 char foo;
5451 long : 0;
5452 char bar;
5453 @} t5;
5454 @end smallexample
5455
5456 @noindent
5457 Here, @code{t5} takes up 2 bytes.
5458 @end enumerate
5459 @end table
5460
5461 @subsection PowerPC Variable Attributes
5462
5463 Three attributes currently are defined for PowerPC configurations:
5464 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5465
5466 For full documentation of the struct attributes please see the
5467 documentation in @ref{i386 Variable Attributes}.
5468
5469 For documentation of @code{altivec} attribute please see the
5470 documentation in @ref{PowerPC Type Attributes}.
5471
5472 @subsection SPU Variable Attributes
5473
5474 The SPU supports the @code{spu_vector} attribute for variables. For
5475 documentation of this attribute please see the documentation in
5476 @ref{SPU Type Attributes}.
5477
5478 @subsection Xstormy16 Variable Attributes
5479
5480 One attribute is currently defined for xstormy16 configurations:
5481 @code{below100}.
5482
5483 @table @code
5484 @item below100
5485 @cindex @code{below100} attribute
5486
5487 If a variable has the @code{below100} attribute (@code{BELOW100} is
5488 allowed also), GCC places the variable in the first 0x100 bytes of
5489 memory and use special opcodes to access it. Such variables are
5490 placed in either the @code{.bss_below100} section or the
5491 @code{.data_below100} section.
5492
5493 @end table
5494
5495 @node Type Attributes
5496 @section Specifying Attributes of Types
5497 @cindex attribute of types
5498 @cindex type attributes
5499
5500 The keyword @code{__attribute__} allows you to specify special
5501 attributes of @code{struct} and @code{union} types when you define
5502 such types. This keyword is followed by an attribute specification
5503 inside double parentheses. Seven attributes are currently defined for
5504 types: @code{aligned}, @code{packed}, @code{transparent_union},
5505 @code{unused}, @code{deprecated}, @code{visibility}, and
5506 @code{may_alias}. Other attributes are defined for functions
5507 (@pxref{Function Attributes}) and for variables (@pxref{Variable
5508 Attributes}).
5509
5510 You may also specify any one of these attributes with @samp{__}
5511 preceding and following its keyword. This allows you to use these
5512 attributes in header files without being concerned about a possible
5513 macro of the same name. For example, you may use @code{__aligned__}
5514 instead of @code{aligned}.
5515
5516 You may specify type attributes in an enum, struct or union type
5517 declaration or definition, or for other types in a @code{typedef}
5518 declaration.
5519
5520 For an enum, struct or union type, you may specify attributes either
5521 between the enum, struct or union tag and the name of the type, or
5522 just past the closing curly brace of the @emph{definition}. The
5523 former syntax is preferred.
5524
5525 @xref{Attribute Syntax}, for details of the exact syntax for using
5526 attributes.
5527
5528 @table @code
5529 @cindex @code{aligned} attribute
5530 @item aligned (@var{alignment})
5531 This attribute specifies a minimum alignment (in bytes) for variables
5532 of the specified type. For example, the declarations:
5533
5534 @smallexample
5535 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5536 typedef int more_aligned_int __attribute__ ((aligned (8)));
5537 @end smallexample
5538
5539 @noindent
5540 force the compiler to ensure (as far as it can) that each variable whose
5541 type is @code{struct S} or @code{more_aligned_int} is allocated and
5542 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
5543 variables of type @code{struct S} aligned to 8-byte boundaries allows
5544 the compiler to use the @code{ldd} and @code{std} (doubleword load and
5545 store) instructions when copying one variable of type @code{struct S} to
5546 another, thus improving run-time efficiency.
5547
5548 Note that the alignment of any given @code{struct} or @code{union} type
5549 is required by the ISO C standard to be at least a perfect multiple of
5550 the lowest common multiple of the alignments of all of the members of
5551 the @code{struct} or @code{union} in question. This means that you @emph{can}
5552 effectively adjust the alignment of a @code{struct} or @code{union}
5553 type by attaching an @code{aligned} attribute to any one of the members
5554 of such a type, but the notation illustrated in the example above is a
5555 more obvious, intuitive, and readable way to request the compiler to
5556 adjust the alignment of an entire @code{struct} or @code{union} type.
5557
5558 As in the preceding example, you can explicitly specify the alignment
5559 (in bytes) that you wish the compiler to use for a given @code{struct}
5560 or @code{union} type. Alternatively, you can leave out the alignment factor
5561 and just ask the compiler to align a type to the maximum
5562 useful alignment for the target machine you are compiling for. For
5563 example, you could write:
5564
5565 @smallexample
5566 struct S @{ short f[3]; @} __attribute__ ((aligned));
5567 @end smallexample
5568
5569 Whenever you leave out the alignment factor in an @code{aligned}
5570 attribute specification, the compiler automatically sets the alignment
5571 for the type to the largest alignment that is ever used for any data
5572 type on the target machine you are compiling for. Doing this can often
5573 make copy operations more efficient, because the compiler can use
5574 whatever instructions copy the biggest chunks of memory when performing
5575 copies to or from the variables that have types that you have aligned
5576 this way.
5577
5578 In the example above, if the size of each @code{short} is 2 bytes, then
5579 the size of the entire @code{struct S} type is 6 bytes. The smallest
5580 power of two that is greater than or equal to that is 8, so the
5581 compiler sets the alignment for the entire @code{struct S} type to 8
5582 bytes.
5583
5584 Note that although you can ask the compiler to select a time-efficient
5585 alignment for a given type and then declare only individual stand-alone
5586 objects of that type, the compiler's ability to select a time-efficient
5587 alignment is primarily useful only when you plan to create arrays of
5588 variables having the relevant (efficiently aligned) type. If you
5589 declare or use arrays of variables of an efficiently-aligned type, then
5590 it is likely that your program also does pointer arithmetic (or
5591 subscripting, which amounts to the same thing) on pointers to the
5592 relevant type, and the code that the compiler generates for these
5593 pointer arithmetic operations is often more efficient for
5594 efficiently-aligned types than for other types.
5595
5596 The @code{aligned} attribute can only increase the alignment; but you
5597 can decrease it by specifying @code{packed} as well. See below.
5598
5599 Note that the effectiveness of @code{aligned} attributes may be limited
5600 by inherent limitations in your linker. On many systems, the linker is
5601 only able to arrange for variables to be aligned up to a certain maximum
5602 alignment. (For some linkers, the maximum supported alignment may
5603 be very very small.) If your linker is only able to align variables
5604 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5605 in an @code{__attribute__} still only provides you with 8-byte
5606 alignment. See your linker documentation for further information.
5607
5608 @item packed
5609 This attribute, attached to @code{struct} or @code{union} type
5610 definition, specifies that each member (other than zero-width bit-fields)
5611 of the structure or union is placed to minimize the memory required. When
5612 attached to an @code{enum} definition, it indicates that the smallest
5613 integral type should be used.
5614
5615 @opindex fshort-enums
5616 Specifying this attribute for @code{struct} and @code{union} types is
5617 equivalent to specifying the @code{packed} attribute on each of the
5618 structure or union members. Specifying the @option{-fshort-enums}
5619 flag on the line is equivalent to specifying the @code{packed}
5620 attribute on all @code{enum} definitions.
5621
5622 In the following example @code{struct my_packed_struct}'s members are
5623 packed closely together, but the internal layout of its @code{s} member
5624 is not packed---to do that, @code{struct my_unpacked_struct} needs to
5625 be packed too.
5626
5627 @smallexample
5628 struct my_unpacked_struct
5629 @{
5630 char c;
5631 int i;
5632 @};
5633
5634 struct __attribute__ ((__packed__)) my_packed_struct
5635 @{
5636 char c;
5637 int i;
5638 struct my_unpacked_struct s;
5639 @};
5640 @end smallexample
5641
5642 You may only specify this attribute on the definition of an @code{enum},
5643 @code{struct} or @code{union}, not on a @code{typedef} that does not
5644 also define the enumerated type, structure or union.
5645
5646 @item transparent_union
5647 This attribute, attached to a @code{union} type definition, indicates
5648 that any function parameter having that union type causes calls to that
5649 function to be treated in a special way.
5650
5651 First, the argument corresponding to a transparent union type can be of
5652 any type in the union; no cast is required. Also, if the union contains
5653 a pointer type, the corresponding argument can be a null pointer
5654 constant or a void pointer expression; and if the union contains a void
5655 pointer type, the corresponding argument can be any pointer expression.
5656 If the union member type is a pointer, qualifiers like @code{const} on
5657 the referenced type must be respected, just as with normal pointer
5658 conversions.
5659
5660 Second, the argument is passed to the function using the calling
5661 conventions of the first member of the transparent union, not the calling
5662 conventions of the union itself. All members of the union must have the
5663 same machine representation; this is necessary for this argument passing
5664 to work properly.
5665
5666 Transparent unions are designed for library functions that have multiple
5667 interfaces for compatibility reasons. For example, suppose the
5668 @code{wait} function must accept either a value of type @code{int *} to
5669 comply with POSIX, or a value of type @code{union wait *} to comply with
5670 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
5671 @code{wait} would accept both kinds of arguments, but it would also
5672 accept any other pointer type and this would make argument type checking
5673 less useful. Instead, @code{<sys/wait.h>} might define the interface
5674 as follows:
5675
5676 @smallexample
5677 typedef union __attribute__ ((__transparent_union__))
5678 @{
5679 int *__ip;
5680 union wait *__up;
5681 @} wait_status_ptr_t;
5682
5683 pid_t wait (wait_status_ptr_t);
5684 @end smallexample
5685
5686 @noindent
5687 This interface allows either @code{int *} or @code{union wait *}
5688 arguments to be passed, using the @code{int *} calling convention.
5689 The program can call @code{wait} with arguments of either type:
5690
5691 @smallexample
5692 int w1 () @{ int w; return wait (&w); @}
5693 int w2 () @{ union wait w; return wait (&w); @}
5694 @end smallexample
5695
5696 @noindent
5697 With this interface, @code{wait}'s implementation might look like this:
5698
5699 @smallexample
5700 pid_t wait (wait_status_ptr_t p)
5701 @{
5702 return waitpid (-1, p.__ip, 0);
5703 @}
5704 @end smallexample
5705
5706 @item unused
5707 When attached to a type (including a @code{union} or a @code{struct}),
5708 this attribute means that variables of that type are meant to appear
5709 possibly unused. GCC does not produce a warning for any variables of
5710 that type, even if the variable appears to do nothing. This is often
5711 the case with lock or thread classes, which are usually defined and then
5712 not referenced, but contain constructors and destructors that have
5713 nontrivial bookkeeping functions.
5714
5715 @item deprecated
5716 @itemx deprecated (@var{msg})
5717 The @code{deprecated} attribute results in a warning if the type
5718 is used anywhere in the source file. This is useful when identifying
5719 types that are expected to be removed in a future version of a program.
5720 If possible, the warning also includes the location of the declaration
5721 of the deprecated type, to enable users to easily find further
5722 information about why the type is deprecated, or what they should do
5723 instead. Note that the warnings only occur for uses and then only
5724 if the type is being applied to an identifier that itself is not being
5725 declared as deprecated.
5726
5727 @smallexample
5728 typedef int T1 __attribute__ ((deprecated));
5729 T1 x;
5730 typedef T1 T2;
5731 T2 y;
5732 typedef T1 T3 __attribute__ ((deprecated));
5733 T3 z __attribute__ ((deprecated));
5734 @end smallexample
5735
5736 @noindent
5737 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
5738 warning is issued for line 4 because T2 is not explicitly
5739 deprecated. Line 5 has no warning because T3 is explicitly
5740 deprecated. Similarly for line 6. The optional @var{msg}
5741 argument, which must be a string, is printed in the warning if
5742 present.
5743
5744 The @code{deprecated} attribute can also be used for functions and
5745 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5746
5747 @item may_alias
5748 Accesses through pointers to types with this attribute are not subject
5749 to type-based alias analysis, but are instead assumed to be able to alias
5750 any other type of objects.
5751 In the context of section 6.5 paragraph 7 of the C99 standard,
5752 an lvalue expression
5753 dereferencing such a pointer is treated like having a character type.
5754 See @option{-fstrict-aliasing} for more information on aliasing issues.
5755 This extension exists to support some vector APIs, in which pointers to
5756 one vector type are permitted to alias pointers to a different vector type.
5757
5758 Note that an object of a type with this attribute does not have any
5759 special semantics.
5760
5761 Example of use:
5762
5763 @smallexample
5764 typedef short __attribute__((__may_alias__)) short_a;
5765
5766 int
5767 main (void)
5768 @{
5769 int a = 0x12345678;
5770 short_a *b = (short_a *) &a;
5771
5772 b[1] = 0;
5773
5774 if (a == 0x12345678)
5775 abort();
5776
5777 exit(0);
5778 @}
5779 @end smallexample
5780
5781 @noindent
5782 If you replaced @code{short_a} with @code{short} in the variable
5783 declaration, the above program would abort when compiled with
5784 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5785 above in recent GCC versions.
5786
5787 @item visibility
5788 In C++, attribute visibility (@pxref{Function Attributes}) can also be
5789 applied to class, struct, union and enum types. Unlike other type
5790 attributes, the attribute must appear between the initial keyword and
5791 the name of the type; it cannot appear after the body of the type.
5792
5793 Note that the type visibility is applied to vague linkage entities
5794 associated with the class (vtable, typeinfo node, etc.). In
5795 particular, if a class is thrown as an exception in one shared object
5796 and caught in another, the class must have default visibility.
5797 Otherwise the two shared objects are unable to use the same
5798 typeinfo node and exception handling will break.
5799
5800 @end table
5801
5802 To specify multiple attributes, separate them by commas within the
5803 double parentheses: for example, @samp{__attribute__ ((aligned (16),
5804 packed))}.
5805
5806 @subsection ARM Type Attributes
5807
5808 On those ARM targets that support @code{dllimport} (such as Symbian
5809 OS), you can use the @code{notshared} attribute to indicate that the
5810 virtual table and other similar data for a class should not be
5811 exported from a DLL@. For example:
5812
5813 @smallexample
5814 class __declspec(notshared) C @{
5815 public:
5816 __declspec(dllimport) C();
5817 virtual void f();
5818 @}
5819
5820 __declspec(dllexport)
5821 C::C() @{@}
5822 @end smallexample
5823
5824 @noindent
5825 In this code, @code{C::C} is exported from the current DLL, but the
5826 virtual table for @code{C} is not exported. (You can use
5827 @code{__attribute__} instead of @code{__declspec} if you prefer, but
5828 most Symbian OS code uses @code{__declspec}.)
5829
5830 @anchor{MeP Type Attributes}
5831 @subsection MeP Type Attributes
5832
5833 Many of the MeP variable attributes may be applied to types as well.
5834 Specifically, the @code{based}, @code{tiny}, @code{near}, and
5835 @code{far} attributes may be applied to either. The @code{io} and
5836 @code{cb} attributes may not be applied to types.
5837
5838 @anchor{i386 Type Attributes}
5839 @subsection i386 Type Attributes
5840
5841 Two attributes are currently defined for i386 configurations:
5842 @code{ms_struct} and @code{gcc_struct}.
5843
5844 @table @code
5845
5846 @item ms_struct
5847 @itemx gcc_struct
5848 @cindex @code{ms_struct}
5849 @cindex @code{gcc_struct}
5850
5851 If @code{packed} is used on a structure, or if bit-fields are used
5852 it may be that the Microsoft ABI packs them differently
5853 than GCC normally packs them. Particularly when moving packed
5854 data between functions compiled with GCC and the native Microsoft compiler
5855 (either via function call or as data in a file), it may be necessary to access
5856 either format.
5857
5858 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5859 compilers to match the native Microsoft compiler.
5860 @end table
5861
5862 @anchor{PowerPC Type Attributes}
5863 @subsection PowerPC Type Attributes
5864
5865 Three attributes currently are defined for PowerPC configurations:
5866 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5867
5868 For full documentation of the @code{ms_struct} and @code{gcc_struct}
5869 attributes please see the documentation in @ref{i386 Type Attributes}.
5870
5871 The @code{altivec} attribute allows one to declare AltiVec vector data
5872 types supported by the AltiVec Programming Interface Manual. The
5873 attribute requires an argument to specify one of three vector types:
5874 @code{vector__}, @code{pixel__} (always followed by unsigned short),
5875 and @code{bool__} (always followed by unsigned).
5876
5877 @smallexample
5878 __attribute__((altivec(vector__)))
5879 __attribute__((altivec(pixel__))) unsigned short
5880 __attribute__((altivec(bool__))) unsigned
5881 @end smallexample
5882
5883 These attributes mainly are intended to support the @code{__vector},
5884 @code{__pixel}, and @code{__bool} AltiVec keywords.
5885
5886 @anchor{SPU Type Attributes}
5887 @subsection SPU Type Attributes
5888
5889 The SPU supports the @code{spu_vector} attribute for types. This attribute
5890 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5891 Language Extensions Specification. It is intended to support the
5892 @code{__vector} keyword.
5893
5894 @node Alignment
5895 @section Inquiring on Alignment of Types or Variables
5896 @cindex alignment
5897 @cindex type alignment
5898 @cindex variable alignment
5899
5900 The keyword @code{__alignof__} allows you to inquire about how an object
5901 is aligned, or the minimum alignment usually required by a type. Its
5902 syntax is just like @code{sizeof}.
5903
5904 For example, if the target machine requires a @code{double} value to be
5905 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5906 This is true on many RISC machines. On more traditional machine
5907 designs, @code{__alignof__ (double)} is 4 or even 2.
5908
5909 Some machines never actually require alignment; they allow reference to any
5910 data type even at an odd address. For these machines, @code{__alignof__}
5911 reports the smallest alignment that GCC gives the data type, usually as
5912 mandated by the target ABI.
5913
5914 If the operand of @code{__alignof__} is an lvalue rather than a type,
5915 its value is the required alignment for its type, taking into account
5916 any minimum alignment specified with GCC's @code{__attribute__}
5917 extension (@pxref{Variable Attributes}). For example, after this
5918 declaration:
5919
5920 @smallexample
5921 struct foo @{ int x; char y; @} foo1;
5922 @end smallexample
5923
5924 @noindent
5925 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5926 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5927
5928 It is an error to ask for the alignment of an incomplete type.
5929
5930
5931 @node Inline
5932 @section An Inline Function is As Fast As a Macro
5933 @cindex inline functions
5934 @cindex integrating function code
5935 @cindex open coding
5936 @cindex macros, inline alternative
5937
5938 By declaring a function inline, you can direct GCC to make
5939 calls to that function faster. One way GCC can achieve this is to
5940 integrate that function's code into the code for its callers. This
5941 makes execution faster by eliminating the function-call overhead; in
5942 addition, if any of the actual argument values are constant, their
5943 known values may permit simplifications at compile time so that not
5944 all of the inline function's code needs to be included. The effect on
5945 code size is less predictable; object code may be larger or smaller
5946 with function inlining, depending on the particular case. You can
5947 also direct GCC to try to integrate all ``simple enough'' functions
5948 into their callers with the option @option{-finline-functions}.
5949
5950 GCC implements three different semantics of declaring a function
5951 inline. One is available with @option{-std=gnu89} or
5952 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
5953 on all inline declarations, another when
5954 @option{-std=c99}, @option{-std=c11},
5955 @option{-std=gnu99} or @option{-std=gnu11}
5956 (without @option{-fgnu89-inline}), and the third
5957 is used when compiling C++.
5958
5959 To declare a function inline, use the @code{inline} keyword in its
5960 declaration, like this:
5961
5962 @smallexample
5963 static inline int
5964 inc (int *a)
5965 @{
5966 return (*a)++;
5967 @}
5968 @end smallexample
5969
5970 If you are writing a header file to be included in ISO C90 programs, write
5971 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
5972
5973 The three types of inlining behave similarly in two important cases:
5974 when the @code{inline} keyword is used on a @code{static} function,
5975 like the example above, and when a function is first declared without
5976 using the @code{inline} keyword and then is defined with
5977 @code{inline}, like this:
5978
5979 @smallexample
5980 extern int inc (int *a);
5981 inline int
5982 inc (int *a)
5983 @{
5984 return (*a)++;
5985 @}
5986 @end smallexample
5987
5988 In both of these common cases, the program behaves the same as if you
5989 had not used the @code{inline} keyword, except for its speed.
5990
5991 @cindex inline functions, omission of
5992 @opindex fkeep-inline-functions
5993 When a function is both inline and @code{static}, if all calls to the
5994 function are integrated into the caller, and the function's address is
5995 never used, then the function's own assembler code is never referenced.
5996 In this case, GCC does not actually output assembler code for the
5997 function, unless you specify the option @option{-fkeep-inline-functions}.
5998 Some calls cannot be integrated for various reasons (in particular,
5999 calls that precede the function's definition cannot be integrated, and
6000 neither can recursive calls within the definition). If there is a
6001 nonintegrated call, then the function is compiled to assembler code as
6002 usual. The function must also be compiled as usual if the program
6003 refers to its address, because that can't be inlined.
6004
6005 @opindex Winline
6006 Note that certain usages in a function definition can make it unsuitable
6007 for inline substitution. Among these usages are: variadic functions, use of
6008 @code{alloca}, use of variable-length data types (@pxref{Variable Length}),
6009 use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
6010 and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
6011 warns when a function marked @code{inline} could not be substituted,
6012 and gives the reason for the failure.
6013
6014 @cindex automatic @code{inline} for C++ member fns
6015 @cindex @code{inline} automatic for C++ member fns
6016 @cindex member fns, automatically @code{inline}
6017 @cindex C++ member fns, automatically @code{inline}
6018 @opindex fno-default-inline
6019 As required by ISO C++, GCC considers member functions defined within
6020 the body of a class to be marked inline even if they are
6021 not explicitly declared with the @code{inline} keyword. You can
6022 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
6023 Options,,Options Controlling C++ Dialect}.
6024
6025 GCC does not inline any functions when not optimizing unless you specify
6026 the @samp{always_inline} attribute for the function, like this:
6027
6028 @smallexample
6029 /* @r{Prototype.} */
6030 inline void foo (const char) __attribute__((always_inline));
6031 @end smallexample
6032
6033 The remainder of this section is specific to GNU C90 inlining.
6034
6035 @cindex non-static inline function
6036 When an inline function is not @code{static}, then the compiler must assume
6037 that there may be calls from other source files; since a global symbol can
6038 be defined only once in any program, the function must not be defined in
6039 the other source files, so the calls therein cannot be integrated.
6040 Therefore, a non-@code{static} inline function is always compiled on its
6041 own in the usual fashion.
6042
6043 If you specify both @code{inline} and @code{extern} in the function
6044 definition, then the definition is used only for inlining. In no case
6045 is the function compiled on its own, not even if you refer to its
6046 address explicitly. Such an address becomes an external reference, as
6047 if you had only declared the function, and had not defined it.
6048
6049 This combination of @code{inline} and @code{extern} has almost the
6050 effect of a macro. The way to use it is to put a function definition in
6051 a header file with these keywords, and put another copy of the
6052 definition (lacking @code{inline} and @code{extern}) in a library file.
6053 The definition in the header file causes most calls to the function
6054 to be inlined. If any uses of the function remain, they refer to
6055 the single copy in the library.
6056
6057 @node Volatiles
6058 @section When is a Volatile Object Accessed?
6059 @cindex accessing volatiles
6060 @cindex volatile read
6061 @cindex volatile write
6062 @cindex volatile access
6063
6064 C has the concept of volatile objects. These are normally accessed by
6065 pointers and used for accessing hardware or inter-thread
6066 communication. The standard encourages compilers to refrain from
6067 optimizations concerning accesses to volatile objects, but leaves it
6068 implementation defined as to what constitutes a volatile access. The
6069 minimum requirement is that at a sequence point all previous accesses
6070 to volatile objects have stabilized and no subsequent accesses have
6071 occurred. Thus an implementation is free to reorder and combine
6072 volatile accesses that occur between sequence points, but cannot do
6073 so for accesses across a sequence point. The use of volatile does
6074 not allow you to violate the restriction on updating objects multiple
6075 times between two sequence points.
6076
6077 Accesses to non-volatile objects are not ordered with respect to
6078 volatile accesses. You cannot use a volatile object as a memory
6079 barrier to order a sequence of writes to non-volatile memory. For
6080 instance:
6081
6082 @smallexample
6083 int *ptr = @var{something};
6084 volatile int vobj;
6085 *ptr = @var{something};
6086 vobj = 1;
6087 @end smallexample
6088
6089 @noindent
6090 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
6091 that the write to @var{*ptr} occurs by the time the update
6092 of @var{vobj} happens. If you need this guarantee, you must use
6093 a stronger memory barrier such as:
6094
6095 @smallexample
6096 int *ptr = @var{something};
6097 volatile int vobj;
6098 *ptr = @var{something};
6099 asm volatile ("" : : : "memory");
6100 vobj = 1;
6101 @end smallexample
6102
6103 A scalar volatile object is read when it is accessed in a void context:
6104
6105 @smallexample
6106 volatile int *src = @var{somevalue};
6107 *src;
6108 @end smallexample
6109
6110 Such expressions are rvalues, and GCC implements this as a
6111 read of the volatile object being pointed to.
6112
6113 Assignments are also expressions and have an rvalue. However when
6114 assigning to a scalar volatile, the volatile object is not reread,
6115 regardless of whether the assignment expression's rvalue is used or
6116 not. If the assignment's rvalue is used, the value is that assigned
6117 to the volatile object. For instance, there is no read of @var{vobj}
6118 in all the following cases:
6119
6120 @smallexample
6121 int obj;
6122 volatile int vobj;
6123 vobj = @var{something};
6124 obj = vobj = @var{something};
6125 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
6126 obj = (@var{something}, vobj = @var{anotherthing});
6127 @end smallexample
6128
6129 If you need to read the volatile object after an assignment has
6130 occurred, you must use a separate expression with an intervening
6131 sequence point.
6132
6133 As bit-fields are not individually addressable, volatile bit-fields may
6134 be implicitly read when written to, or when adjacent bit-fields are
6135 accessed. Bit-field operations may be optimized such that adjacent
6136 bit-fields are only partially accessed, if they straddle a storage unit
6137 boundary. For these reasons it is unwise to use volatile bit-fields to
6138 access hardware.
6139
6140 @node Extended Asm
6141 @section Assembler Instructions with C Expression Operands
6142 @cindex extended @code{asm}
6143 @cindex @code{asm} expressions
6144 @cindex assembler instructions
6145 @cindex registers
6146
6147 In an assembler instruction using @code{asm}, you can specify the
6148 operands of the instruction using C expressions. This means you need not
6149 guess which registers or memory locations contain the data you want
6150 to use.
6151
6152 You must specify an assembler instruction template much like what
6153 appears in a machine description, plus an operand constraint string for
6154 each operand.
6155
6156 For example, here is how to use the 68881's @code{fsinx} instruction:
6157
6158 @smallexample
6159 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
6160 @end smallexample
6161
6162 @noindent
6163 Here @code{angle} is the C expression for the input operand while
6164 @code{result} is that of the output operand. Each has @samp{"f"} as its
6165 operand constraint, saying that a floating-point register is required.
6166 The @samp{=} in @samp{=f} indicates that the operand is an output; all
6167 output operands' constraints must use @samp{=}. The constraints use the
6168 same language used in the machine description (@pxref{Constraints}).
6169
6170 Each operand is described by an operand-constraint string followed by
6171 the C expression in parentheses. A colon separates the assembler
6172 template from the first output operand and another separates the last
6173 output operand from the first input, if any. Commas separate the
6174 operands within each group. The total number of operands is currently
6175 limited to 30; this limitation may be lifted in some future version of
6176 GCC@.
6177
6178 If there are no output operands but there are input operands, you must
6179 place two consecutive colons surrounding the place where the output
6180 operands would go.
6181
6182 As of GCC version 3.1, it is also possible to specify input and output
6183 operands using symbolic names which can be referenced within the
6184 assembler code. These names are specified inside square brackets
6185 preceding the constraint string, and can be referenced inside the
6186 assembler code using @code{%[@var{name}]} instead of a percentage sign
6187 followed by the operand number. Using named operands the above example
6188 could look like:
6189
6190 @smallexample
6191 asm ("fsinx %[angle],%[output]"
6192 : [output] "=f" (result)
6193 : [angle] "f" (angle));
6194 @end smallexample
6195
6196 @noindent
6197 Note that the symbolic operand names have no relation whatsoever to
6198 other C identifiers. You may use any name you like, even those of
6199 existing C symbols, but you must ensure that no two operands within the same
6200 assembler construct use the same symbolic name.
6201
6202 Output operand expressions must be lvalues; the compiler can check this.
6203 The input operands need not be lvalues. The compiler cannot check
6204 whether the operands have data types that are reasonable for the
6205 instruction being executed. It does not parse the assembler instruction
6206 template and does not know what it means or even whether it is valid
6207 assembler input. The extended @code{asm} feature is most often used for
6208 machine instructions the compiler itself does not know exist. If
6209 the output expression cannot be directly addressed (for example, it is a
6210 bit-field), your constraint must allow a register. In that case, GCC
6211 uses the register as the output of the @code{asm}, and then stores
6212 that register into the output.
6213
6214 The ordinary output operands must be write-only; GCC assumes that
6215 the values in these operands before the instruction are dead and need
6216 not be generated. Extended asm supports input-output or read-write
6217 operands. Use the constraint character @samp{+} to indicate such an
6218 operand and list it with the output operands.
6219
6220 You may, as an alternative, logically split its function into two
6221 separate operands, one input operand and one write-only output
6222 operand. The connection between them is expressed by constraints
6223 that say they need to be in the same location when the instruction
6224 executes. You can use the same C expression for both operands, or
6225 different expressions. For example, here we write the (fictitious)
6226 @samp{combine} instruction with @code{bar} as its read-only source
6227 operand and @code{foo} as its read-write destination:
6228
6229 @smallexample
6230 asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
6231 @end smallexample
6232
6233 @noindent
6234 The constraint @samp{"0"} for operand 1 says that it must occupy the
6235 same location as operand 0. A number in constraint is allowed only in
6236 an input operand and it must refer to an output operand.
6237
6238 Only a number in the constraint can guarantee that one operand is in
6239 the same place as another. The mere fact that @code{foo} is the value
6240 of both operands is not enough to guarantee that they are in the
6241 same place in the generated assembler code. The following does not
6242 work reliably:
6243
6244 @smallexample
6245 asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
6246 @end smallexample
6247
6248 Various optimizations or reloading could cause operands 0 and 1 to be in
6249 different registers; GCC knows no reason not to do so. For example, the
6250 compiler might find a copy of the value of @code{foo} in one register and
6251 use it for operand 1, but generate the output operand 0 in a different
6252 register (copying it afterward to @code{foo}'s own address). Of course,
6253 since the register for operand 1 is not even mentioned in the assembler
6254 code, the result will not work, but GCC can't tell that.
6255
6256 As of GCC version 3.1, one may write @code{[@var{name}]} instead of
6257 the operand number for a matching constraint. For example:
6258
6259 @smallexample
6260 asm ("cmoveq %1,%2,%[result]"
6261 : [result] "=r"(result)
6262 : "r" (test), "r"(new), "[result]"(old));
6263 @end smallexample
6264
6265 Sometimes you need to make an @code{asm} operand be a specific register,
6266 but there's no matching constraint letter for that register @emph{by
6267 itself}. To force the operand into that register, use a local variable
6268 for the operand and specify the register in the variable declaration.
6269 @xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
6270 register constraint letter that matches the register:
6271
6272 @smallexample
6273 register int *p1 asm ("r0") = @dots{};
6274 register int *p2 asm ("r1") = @dots{};
6275 register int *result asm ("r0");
6276 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
6277 @end smallexample
6278
6279 @anchor{Example of asm with clobbered asm reg}
6280 In the above example, beware that a register that is call-clobbered by
6281 the target ABI will be overwritten by any function call in the
6282 assignment, including library calls for arithmetic operators.
6283 Also a register may be clobbered when generating some operations,
6284 like variable shift, memory copy or memory move on x86.
6285 Assuming it is a call-clobbered register, this may happen to @code{r0}
6286 above by the assignment to @code{p2}. If you have to use such a
6287 register, use temporary variables for expressions between the register
6288 assignment and use:
6289
6290 @smallexample
6291 int t1 = @dots{};
6292 register int *p1 asm ("r0") = @dots{};
6293 register int *p2 asm ("r1") = t1;
6294 register int *result asm ("r0");
6295 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
6296 @end smallexample
6297
6298 Some instructions clobber specific hard registers. To describe this,
6299 write a third colon after the input operands, followed by the names of
6300 the clobbered hard registers (given as strings). Here is a realistic
6301 example for the VAX:
6302
6303 @smallexample
6304 asm volatile ("movc3 %0,%1,%2"
6305 : /* @r{no outputs} */
6306 : "g" (from), "g" (to), "g" (count)
6307 : "r0", "r1", "r2", "r3", "r4", "r5");
6308 @end smallexample
6309
6310 You may not write a clobber description in a way that overlaps with an
6311 input or output operand. For example, you may not have an operand
6312 describing a register class with one member if you mention that register
6313 in the clobber list. Variables declared to live in specific registers
6314 (@pxref{Explicit Reg Vars}), and used as asm input or output operands must
6315 have no part mentioned in the clobber description.
6316 There is no way for you to specify that an input
6317 operand is modified without also specifying it as an output
6318 operand. Note that if all the output operands you specify are for this
6319 purpose (and hence unused), you then also need to specify
6320 @code{volatile} for the @code{asm} construct, as described below, to
6321 prevent GCC from deleting the @code{asm} statement as unused.
6322
6323 If you refer to a particular hardware register from the assembler code,
6324 you probably have to list the register after the third colon to
6325 tell the compiler the register's value is modified. In some assemblers,
6326 the register names begin with @samp{%}; to produce one @samp{%} in the
6327 assembler code, you must write @samp{%%} in the input.
6328
6329 If your assembler instruction can alter the condition code register, add
6330 @samp{cc} to the list of clobbered registers. GCC on some machines
6331 represents the condition codes as a specific hardware register;
6332 @samp{cc} serves to name this register. On other machines, the
6333 condition code is handled differently, and specifying @samp{cc} has no
6334 effect. But it is valid no matter what the machine.
6335
6336 If your assembler instructions access memory in an unpredictable
6337 fashion, add @samp{memory} to the list of clobbered registers. This
6338 causes GCC to not keep memory values cached in registers across the
6339 assembler instruction and not optimize stores or loads to that memory.
6340 You also should add the @code{volatile} keyword if the memory
6341 affected is not listed in the inputs or outputs of the @code{asm}, as
6342 the @samp{memory} clobber does not count as a side-effect of the
6343 @code{asm}. If you know how large the accessed memory is, you can add
6344 it as input or output but if this is not known, you should add
6345 @samp{memory}. As an example, if you access ten bytes of a string, you
6346 can use a memory input like:
6347
6348 @smallexample
6349 @{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
6350 @end smallexample
6351
6352 Note that in the following example the memory input is necessary,
6353 otherwise GCC might optimize the store to @code{x} away:
6354 @smallexample
6355 int foo ()
6356 @{
6357 int x = 42;
6358 int *y = &x;
6359 int result;
6360 asm ("magic stuff accessing an 'int' pointed to by '%1'"
6361 : "=&d" (result) : "a" (y), "m" (*y));
6362 return result;
6363 @}
6364 @end smallexample
6365
6366 You can put multiple assembler instructions together in a single
6367 @code{asm} template, separated by the characters normally used in assembly
6368 code for the system. A combination that works in most places is a newline
6369 to break the line, plus a tab character to move to the instruction field
6370 (written as @samp{\n\t}). Sometimes semicolons can be used, if the
6371 assembler allows semicolons as a line-breaking character. Note that some
6372 assembler dialects use semicolons to start a comment.
6373 The input operands are guaranteed not to use any of the clobbered
6374 registers, and neither do the output operands' addresses, so you can
6375 read and write the clobbered registers as many times as you like. Here
6376 is an example of multiple instructions in a template; it assumes the
6377 subroutine @code{_foo} accepts arguments in registers 9 and 10:
6378
6379 @smallexample
6380 asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
6381 : /* no outputs */
6382 : "g" (from), "g" (to)
6383 : "r9", "r10");
6384 @end smallexample
6385
6386 Unless an output operand has the @samp{&} constraint modifier, GCC
6387 may allocate it in the same register as an unrelated input operand, on
6388 the assumption the inputs are consumed before the outputs are produced.
6389 This assumption may be false if the assembler code actually consists of
6390 more than one instruction. In such a case, use @samp{&} for each output
6391 operand that may not overlap an input. @xref{Modifiers}.
6392
6393 If you want to test the condition code produced by an assembler
6394 instruction, you must include a branch and a label in the @code{asm}
6395 construct, as follows:
6396
6397 @smallexample
6398 asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
6399 : "g" (result)
6400 : "g" (input));
6401 @end smallexample
6402
6403 @noindent
6404 This assumes your assembler supports local labels, as the GNU assembler
6405 and most Unix assemblers do.
6406
6407 Speaking of labels, jumps from one @code{asm} to another are not
6408 supported. The compiler's optimizers do not know about these jumps, and
6409 therefore they cannot take account of them when deciding how to
6410 optimize. @xref{Extended asm with goto}.
6411
6412 @cindex macros containing @code{asm}
6413 Usually the most convenient way to use these @code{asm} instructions is to
6414 encapsulate them in macros that look like functions. For example,
6415
6416 @smallexample
6417 #define sin(x) \
6418 (@{ double __value, __arg = (x); \
6419 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
6420 __value; @})
6421 @end smallexample
6422
6423 @noindent
6424 Here the variable @code{__arg} is used to make sure that the instruction
6425 operates on a proper @code{double} value, and to accept only those
6426 arguments @code{x} that can convert automatically to a @code{double}.
6427
6428 Another way to make sure the instruction operates on the correct data
6429 type is to use a cast in the @code{asm}. This is different from using a
6430 variable @code{__arg} in that it converts more different types. For
6431 example, if the desired type is @code{int}, casting the argument to
6432 @code{int} accepts a pointer with no complaint, while assigning the
6433 argument to an @code{int} variable named @code{__arg} warns about
6434 using a pointer unless the caller explicitly casts it.
6435
6436 If an @code{asm} has output operands, GCC assumes for optimization
6437 purposes the instruction has no side effects except to change the output
6438 operands. This does not mean instructions with a side effect cannot be
6439 used, but you must be careful, because the compiler may eliminate them
6440 if the output operands aren't used, or move them out of loops, or
6441 replace two with one if they constitute a common subexpression. Also,
6442 if your instruction does have a side effect on a variable that otherwise
6443 appears not to change, the old value of the variable may be reused later
6444 if it happens to be found in a register.
6445
6446 You can prevent an @code{asm} instruction from being deleted
6447 by writing the keyword @code{volatile} after
6448 the @code{asm}. For example:
6449
6450 @smallexample
6451 #define get_and_set_priority(new) \
6452 (@{ int __old; \
6453 asm volatile ("get_and_set_priority %0, %1" \
6454 : "=g" (__old) : "g" (new)); \
6455 __old; @})
6456 @end smallexample
6457
6458 @noindent
6459 The @code{volatile} keyword indicates that the instruction has
6460 important side-effects. GCC does not delete a volatile @code{asm} if
6461 it is reachable. (The instruction can still be deleted if GCC can
6462 prove that control flow never reaches the location of the
6463 instruction.) Note that even a volatile @code{asm} instruction
6464 can be moved relative to other code, including across jump
6465 instructions. For example, on many targets there is a system
6466 register that can be set to control the rounding mode of
6467 floating-point operations. You might try
6468 setting it with a volatile @code{asm}, like this PowerPC example:
6469
6470 @smallexample
6471 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
6472 sum = x + y;
6473 @end smallexample
6474
6475 @noindent
6476 This does not work reliably, as the compiler may move the addition back
6477 before the volatile @code{asm}. To make it work you need to add an
6478 artificial dependency to the @code{asm} referencing a variable in the code
6479 you don't want moved, for example:
6480
6481 @smallexample
6482 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
6483 sum = x + y;
6484 @end smallexample
6485
6486 Similarly, you can't expect a
6487 sequence of volatile @code{asm} instructions to remain perfectly
6488 consecutive. If you want consecutive output, use a single @code{asm}.
6489 Also, GCC performs some optimizations across a volatile @code{asm}
6490 instruction; GCC does not ``forget everything'' when it encounters
6491 a volatile @code{asm} instruction the way some other compilers do.
6492
6493 An @code{asm} instruction without any output operands is treated
6494 identically to a volatile @code{asm} instruction.
6495
6496 It is a natural idea to look for a way to give access to the condition
6497 code left by the assembler instruction. However, when we attempted to
6498 implement this, we found no way to make it work reliably. The problem
6499 is that output operands might need reloading, which result in
6500 additional following ``store'' instructions. On most machines, these
6501 instructions alter the condition code before there is time to
6502 test it. This problem doesn't arise for ordinary ``test'' and
6503 ``compare'' instructions because they don't have any output operands.
6504
6505 For reasons similar to those described above, it is not possible to give
6506 an assembler instruction access to the condition code left by previous
6507 instructions.
6508
6509 @anchor{Extended asm with goto}
6510 As of GCC version 4.5, @code{asm goto} may be used to have the assembly
6511 jump to one or more C labels. In this form, a fifth section after the
6512 clobber list contains a list of all C labels to which the assembly may jump.
6513 Each label operand is implicitly self-named. The @code{asm} is also assumed
6514 to fall through to the next statement.
6515
6516 This form of @code{asm} is restricted to not have outputs. This is due
6517 to a internal restriction in the compiler that control transfer instructions
6518 cannot have outputs. This restriction on @code{asm goto} may be lifted
6519 in some future version of the compiler. In the meantime, @code{asm goto}
6520 may include a memory clobber, and so leave outputs in memory.
6521
6522 @smallexample
6523 int frob(int x)
6524 @{
6525 int y;
6526 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
6527 : : "r"(x), "r"(&y) : "r5", "memory" : error);
6528 return y;
6529 error:
6530 return -1;
6531 @}
6532 @end smallexample
6533
6534 @noindent
6535 In this (inefficient) example, the @code{frob} instruction sets the
6536 carry bit to indicate an error. The @code{jc} instruction detects
6537 this and branches to the @code{error} label. Finally, the output
6538 of the @code{frob} instruction (@code{%r5}) is stored into the memory
6539 for variable @code{y}, which is later read by the @code{return} statement.
6540
6541 @smallexample
6542 void doit(void)
6543 @{
6544 int i = 0;
6545 asm goto ("mfsr %%r1, 123; jmp %%r1;"
6546 ".pushsection doit_table;"
6547 ".long %l0, %l1, %l2, %l3;"
6548 ".popsection"
6549 : : : "r1" : label1, label2, label3, label4);
6550 __builtin_unreachable ();
6551
6552 label1:
6553 f1();
6554 return;
6555 label2:
6556 f2();
6557 return;
6558 label3:
6559 i = 1;
6560 label4:
6561 f3(i);
6562 @}
6563 @end smallexample
6564
6565 @noindent
6566 In this (also inefficient) example, the @code{mfsr} instruction reads
6567 an address from some out-of-band machine register, and the following
6568 @code{jmp} instruction branches to that address. The address read by
6569 the @code{mfsr} instruction is assumed to have been previously set via
6570 some application-specific mechanism to be one of the four values stored
6571 in the @code{doit_table} section. Finally, the @code{asm} is followed
6572 by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
6573 does not in fact fall through.
6574
6575 @smallexample
6576 #define TRACE1(NUM) \
6577 do @{ \
6578 asm goto ("0: nop;" \
6579 ".pushsection trace_table;" \
6580 ".long 0b, %l0;" \
6581 ".popsection" \
6582 : : : : trace#NUM); \
6583 if (0) @{ trace#NUM: trace(); @} \
6584 @} while (0)
6585 #define TRACE TRACE1(__COUNTER__)
6586 @end smallexample
6587
6588 @noindent
6589 In this example (which in fact inspired the @code{asm goto} feature)
6590 we want on rare occasions to call the @code{trace} function; on other
6591 occasions we'd like to keep the overhead to the absolute minimum.
6592 The normal code path consists of a single @code{nop} instruction.
6593 However, we record the address of this @code{nop} together with the
6594 address of a label that calls the @code{trace} function. This allows
6595 the @code{nop} instruction to be patched at run time to be an
6596 unconditional branch to the stored label. It is assumed that an
6597 optimizing compiler moves the labeled block out of line, to
6598 optimize the fall through path from the @code{asm}.
6599
6600 If you are writing a header file that should be includable in ISO C
6601 programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
6602 Keywords}.
6603
6604 @subsection Size of an @code{asm}
6605
6606 Some targets require that GCC track the size of each instruction used in
6607 order to generate correct code. Because the final length of an
6608 @code{asm} is only known by the assembler, GCC must make an estimate as
6609 to how big it will be. The estimate is formed by counting the number of
6610 statements in the pattern of the @code{asm} and multiplying that by the
6611 length of the longest instruction on that processor. Statements in the
6612 @code{asm} are identified by newline characters and whatever statement
6613 separator characters are supported by the assembler; on most processors
6614 this is the @samp{;} character.
6615
6616 Normally, GCC's estimate is perfectly adequate to ensure that correct
6617 code is generated, but it is possible to confuse the compiler if you use
6618 pseudo instructions or assembler macros that expand into multiple real
6619 instructions or if you use assembler directives that expand to more
6620 space in the object file than is needed for a single instruction.
6621 If this happens then the assembler produces a diagnostic saying that
6622 a label is unreachable.
6623
6624 @subsection i386 floating-point asm operands
6625
6626 On i386 targets, there are several rules on the usage of stack-like registers
6627 in the operands of an @code{asm}. These rules apply only to the operands
6628 that are stack-like registers:
6629
6630 @enumerate
6631 @item
6632 Given a set of input registers that die in an @code{asm}, it is
6633 necessary to know which are implicitly popped by the @code{asm}, and
6634 which must be explicitly popped by GCC@.
6635
6636 An input register that is implicitly popped by the @code{asm} must be
6637 explicitly clobbered, unless it is constrained to match an
6638 output operand.
6639
6640 @item
6641 For any input register that is implicitly popped by an @code{asm}, it is
6642 necessary to know how to adjust the stack to compensate for the pop.
6643 If any non-popped input is closer to the top of the reg-stack than
6644 the implicitly popped register, it would not be possible to know what the
6645 stack looked like---it's not clear how the rest of the stack ``slides
6646 up''.
6647
6648 All implicitly popped input registers must be closer to the top of
6649 the reg-stack than any input that is not implicitly popped.
6650
6651 It is possible that if an input dies in an @code{asm}, the compiler might
6652 use the input register for an output reload. Consider this example:
6653
6654 @smallexample
6655 asm ("foo" : "=t" (a) : "f" (b));
6656 @end smallexample
6657
6658 @noindent
6659 This code says that input @code{b} is not popped by the @code{asm}, and that
6660 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
6661 deeper after the @code{asm} than it was before. But, it is possible that
6662 reload may think that it can use the same register for both the input and
6663 the output.
6664
6665 To prevent this from happening,
6666 if any input operand uses the @code{f} constraint, all output register
6667 constraints must use the @code{&} early-clobber modifier.
6668
6669 The example above would be correctly written as:
6670
6671 @smallexample
6672 asm ("foo" : "=&t" (a) : "f" (b));
6673 @end smallexample
6674
6675 @item
6676 Some operands need to be in particular places on the stack. All
6677 output operands fall in this category---GCC has no other way to
6678 know which registers the outputs appear in unless you indicate
6679 this in the constraints.
6680
6681 Output operands must specifically indicate which register an output
6682 appears in after an @code{asm}. @code{=f} is not allowed: the operand
6683 constraints must select a class with a single register.
6684
6685 @item
6686 Output operands may not be ``inserted'' between existing stack registers.
6687 Since no 387 opcode uses a read/write operand, all output operands
6688 are dead before the @code{asm}, and are pushed by the @code{asm}.
6689 It makes no sense to push anywhere but the top of the reg-stack.
6690
6691 Output operands must start at the top of the reg-stack: output
6692 operands may not ``skip'' a register.
6693
6694 @item
6695 Some @code{asm} statements may need extra stack space for internal
6696 calculations. This can be guaranteed by clobbering stack registers
6697 unrelated to the inputs and outputs.
6698
6699 @end enumerate
6700
6701 Here are a couple of reasonable @code{asm}s to want to write. This
6702 @code{asm}
6703 takes one input, which is internally popped, and produces two outputs.
6704
6705 @smallexample
6706 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
6707 @end smallexample
6708
6709 @noindent
6710 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6711 and replaces them with one output. The @code{st(1)} clobber is necessary
6712 for the compiler to know that @code{fyl2xp1} pops both inputs.
6713
6714 @smallexample
6715 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
6716 @end smallexample
6717
6718 @include md.texi
6719
6720 @node Asm Labels
6721 @section Controlling Names Used in Assembler Code
6722 @cindex assembler names for identifiers
6723 @cindex names used in assembler code
6724 @cindex identifiers, names in assembler code
6725
6726 You can specify the name to be used in the assembler code for a C
6727 function or variable by writing the @code{asm} (or @code{__asm__})
6728 keyword after the declarator as follows:
6729
6730 @smallexample
6731 int foo asm ("myfoo") = 2;
6732 @end smallexample
6733
6734 @noindent
6735 This specifies that the name to be used for the variable @code{foo} in
6736 the assembler code should be @samp{myfoo} rather than the usual
6737 @samp{_foo}.
6738
6739 On systems where an underscore is normally prepended to the name of a C
6740 function or variable, this feature allows you to define names for the
6741 linker that do not start with an underscore.
6742
6743 It does not make sense to use this feature with a non-static local
6744 variable since such variables do not have assembler names. If you are
6745 trying to put the variable in a particular register, see @ref{Explicit
6746 Reg Vars}. GCC presently accepts such code with a warning, but will
6747 probably be changed to issue an error, rather than a warning, in the
6748 future.
6749
6750 You cannot use @code{asm} in this way in a function @emph{definition}; but
6751 you can get the same effect by writing a declaration for the function
6752 before its definition and putting @code{asm} there, like this:
6753
6754 @smallexample
6755 extern func () asm ("FUNC");
6756
6757 func (x, y)
6758 int x, y;
6759 /* @r{@dots{}} */
6760 @end smallexample
6761
6762 It is up to you to make sure that the assembler names you choose do not
6763 conflict with any other assembler symbols. Also, you must not use a
6764 register name; that would produce completely invalid assembler code. GCC
6765 does not as yet have the ability to store static variables in registers.
6766 Perhaps that will be added.
6767
6768 @node Explicit Reg Vars
6769 @section Variables in Specified Registers
6770 @cindex explicit register variables
6771 @cindex variables in specified registers
6772 @cindex specified registers
6773 @cindex registers, global allocation
6774
6775 GNU C allows you to put a few global variables into specified hardware
6776 registers. You can also specify the register in which an ordinary
6777 register variable should be allocated.
6778
6779 @itemize @bullet
6780 @item
6781 Global register variables reserve registers throughout the program.
6782 This may be useful in programs such as programming language
6783 interpreters that have a couple of global variables that are accessed
6784 very often.
6785
6786 @item
6787 Local register variables in specific registers do not reserve the
6788 registers, except at the point where they are used as input or output
6789 operands in an @code{asm} statement and the @code{asm} statement itself is
6790 not deleted. The compiler's data flow analysis is capable of determining
6791 where the specified registers contain live values, and where they are
6792 available for other uses. Stores into local register variables may be deleted
6793 when they appear to be dead according to dataflow analysis. References
6794 to local register variables may be deleted or moved or simplified.
6795
6796 These local variables are sometimes convenient for use with the extended
6797 @code{asm} feature (@pxref{Extended Asm}), if you want to write one
6798 output of the assembler instruction directly into a particular register.
6799 (This works provided the register you specify fits the constraints
6800 specified for that operand in the @code{asm}.)
6801 @end itemize
6802
6803 @menu
6804 * Global Reg Vars::
6805 * Local Reg Vars::
6806 @end menu
6807
6808 @node Global Reg Vars
6809 @subsection Defining Global Register Variables
6810 @cindex global register variables
6811 @cindex registers, global variables in
6812
6813 You can define a global register variable in GNU C like this:
6814
6815 @smallexample
6816 register int *foo asm ("a5");
6817 @end smallexample
6818
6819 @noindent
6820 Here @code{a5} is the name of the register that should be used. Choose a
6821 register that is normally saved and restored by function calls on your
6822 machine, so that library routines will not clobber it.
6823
6824 Naturally the register name is cpu-dependent, so you need to
6825 conditionalize your program according to cpu type. The register
6826 @code{a5} is a good choice on a 68000 for a variable of pointer
6827 type. On machines with register windows, be sure to choose a ``global''
6828 register that is not affected magically by the function call mechanism.
6829
6830 In addition, different operating systems on the same CPU may differ in how they
6831 name the registers; then you need additional conditionals. For
6832 example, some 68000 operating systems call this register @code{%a5}.
6833
6834 Eventually there may be a way of asking the compiler to choose a register
6835 automatically, but first we need to figure out how it should choose and
6836 how to enable you to guide the choice. No solution is evident.
6837
6838 Defining a global register variable in a certain register reserves that
6839 register entirely for this use, at least within the current compilation.
6840 The register is not allocated for any other purpose in the functions
6841 in the current compilation, and is not saved and restored by
6842 these functions. Stores into this register are never deleted even if they
6843 appear to be dead, but references may be deleted or moved or
6844 simplified.
6845
6846 It is not safe to access the global register variables from signal
6847 handlers, or from more than one thread of control, because the system
6848 library routines may temporarily use the register for other things (unless
6849 you recompile them specially for the task at hand).
6850
6851 @cindex @code{qsort}, and global register variables
6852 It is not safe for one function that uses a global register variable to
6853 call another such function @code{foo} by way of a third function
6854 @code{lose} that is compiled without knowledge of this variable (i.e.@: in a
6855 different source file in which the variable isn't declared). This is
6856 because @code{lose} might save the register and put some other value there.
6857 For example, you can't expect a global register variable to be available in
6858 the comparison-function that you pass to @code{qsort}, since @code{qsort}
6859 might have put something else in that register. (If you are prepared to
6860 recompile @code{qsort} with the same global register variable, you can
6861 solve this problem.)
6862
6863 If you want to recompile @code{qsort} or other source files that do not
6864 actually use your global register variable, so that they do not use that
6865 register for any other purpose, then it suffices to specify the compiler
6866 option @option{-ffixed-@var{reg}}. You need not actually add a global
6867 register declaration to their source code.
6868
6869 A function that can alter the value of a global register variable cannot
6870 safely be called from a function compiled without this variable, because it
6871 could clobber the value the caller expects to find there on return.
6872 Therefore, the function that is the entry point into the part of the
6873 program that uses the global register variable must explicitly save and
6874 restore the value that belongs to its caller.
6875
6876 @cindex register variable after @code{longjmp}
6877 @cindex global register after @code{longjmp}
6878 @cindex value after @code{longjmp}
6879 @findex longjmp
6880 @findex setjmp
6881 On most machines, @code{longjmp} restores to each global register
6882 variable the value it had at the time of the @code{setjmp}. On some
6883 machines, however, @code{longjmp} does not change the value of global
6884 register variables. To be portable, the function that called @code{setjmp}
6885 should make other arrangements to save the values of the global register
6886 variables, and to restore them in a @code{longjmp}. This way, the same
6887 thing happens regardless of what @code{longjmp} does.
6888
6889 All global register variable declarations must precede all function
6890 definitions. If such a declaration could appear after function
6891 definitions, the declaration would be too late to prevent the register from
6892 being used for other purposes in the preceding functions.
6893
6894 Global register variables may not have initial values, because an
6895 executable file has no means to supply initial contents for a register.
6896
6897 On the SPARC, there are reports that g3 @dots{} g7 are suitable
6898 registers, but certain library functions, such as @code{getwd}, as well
6899 as the subroutines for division and remainder, modify g3 and g4. g1 and
6900 g2 are local temporaries.
6901
6902 On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6903 Of course, it does not do to use more than a few of those.
6904
6905 @node Local Reg Vars
6906 @subsection Specifying Registers for Local Variables
6907 @cindex local variables, specifying registers
6908 @cindex specifying registers for local variables
6909 @cindex registers for local variables
6910
6911 You can define a local register variable with a specified register
6912 like this:
6913
6914 @smallexample
6915 register int *foo asm ("a5");
6916 @end smallexample
6917
6918 @noindent
6919 Here @code{a5} is the name of the register that should be used. Note
6920 that this is the same syntax used for defining global register
6921 variables, but for a local variable it appears within a function.
6922
6923 Naturally the register name is cpu-dependent, but this is not a
6924 problem, since specific registers are most often useful with explicit
6925 assembler instructions (@pxref{Extended Asm}). Both of these things
6926 generally require that you conditionalize your program according to
6927 cpu type.
6928
6929 In addition, operating systems on one type of cpu may differ in how they
6930 name the registers; then you need additional conditionals. For
6931 example, some 68000 operating systems call this register @code{%a5}.
6932
6933 Defining such a register variable does not reserve the register; it
6934 remains available for other uses in places where flow control determines
6935 the variable's value is not live.
6936
6937 This option does not guarantee that GCC generates code that has
6938 this variable in the register you specify at all times. You may not
6939 code an explicit reference to this register in the @emph{assembler
6940 instruction template} part of an @code{asm} statement and assume it
6941 always refers to this variable. However, using the variable as an
6942 @code{asm} @emph{operand} guarantees that the specified register is used
6943 for the operand.
6944
6945 Stores into local register variables may be deleted when they appear to be dead
6946 according to dataflow analysis. References to local register variables may
6947 be deleted or moved or simplified.
6948
6949 As for global register variables, it's recommended that you choose a
6950 register that is normally saved and restored by function calls on
6951 your machine, so that library routines will not clobber it. A common
6952 pitfall is to initialize multiple call-clobbered registers with
6953 arbitrary expressions, where a function call or library call for an
6954 arithmetic operator overwrites a register value from a previous
6955 assignment, for example @code{r0} below:
6956 @smallexample
6957 register int *p1 asm ("r0") = @dots{};
6958 register int *p2 asm ("r1") = @dots{};
6959 @end smallexample
6960
6961 @noindent
6962 In those cases, a solution is to use a temporary variable for
6963 each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
6964
6965 @node Alternate Keywords
6966 @section Alternate Keywords
6967 @cindex alternate keywords
6968 @cindex keywords, alternate
6969
6970 @option{-ansi} and the various @option{-std} options disable certain
6971 keywords. This causes trouble when you want to use GNU C extensions, or
6972 a general-purpose header file that should be usable by all programs,
6973 including ISO C programs. The keywords @code{asm}, @code{typeof} and
6974 @code{inline} are not available in programs compiled with
6975 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
6976 program compiled with @option{-std=c99} or @option{-std=c11}). The
6977 ISO C99 keyword
6978 @code{restrict} is only available when @option{-std=gnu99} (which will
6979 eventually be the default) or @option{-std=c99} (or the equivalent
6980 @option{-std=iso9899:1999}), or an option for a later standard
6981 version, is used.
6982
6983 The way to solve these problems is to put @samp{__} at the beginning and
6984 end of each problematical keyword. For example, use @code{__asm__}
6985 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
6986
6987 Other C compilers won't accept these alternative keywords; if you want to
6988 compile with another compiler, you can define the alternate keywords as
6989 macros to replace them with the customary keywords. It looks like this:
6990
6991 @smallexample
6992 #ifndef __GNUC__
6993 #define __asm__ asm
6994 #endif
6995 @end smallexample
6996
6997 @findex __extension__
6998 @opindex pedantic
6999 @option{-pedantic} and other options cause warnings for many GNU C extensions.
7000 You can
7001 prevent such warnings within one expression by writing
7002 @code{__extension__} before the expression. @code{__extension__} has no
7003 effect aside from this.
7004
7005 @node Incomplete Enums
7006 @section Incomplete @code{enum} Types
7007
7008 You can define an @code{enum} tag without specifying its possible values.
7009 This results in an incomplete type, much like what you get if you write
7010 @code{struct foo} without describing the elements. A later declaration
7011 that does specify the possible values completes the type.
7012
7013 You can't allocate variables or storage using the type while it is
7014 incomplete. However, you can work with pointers to that type.
7015
7016 This extension may not be very useful, but it makes the handling of
7017 @code{enum} more consistent with the way @code{struct} and @code{union}
7018 are handled.
7019
7020 This extension is not supported by GNU C++.
7021
7022 @node Function Names
7023 @section Function Names as Strings
7024 @cindex @code{__func__} identifier
7025 @cindex @code{__FUNCTION__} identifier
7026 @cindex @code{__PRETTY_FUNCTION__} identifier
7027
7028 GCC provides three magic variables that hold the name of the current
7029 function, as a string. The first of these is @code{__func__}, which
7030 is part of the C99 standard:
7031
7032 The identifier @code{__func__} is implicitly declared by the translator
7033 as if, immediately following the opening brace of each function
7034 definition, the declaration
7035
7036 @smallexample
7037 static const char __func__[] = "function-name";
7038 @end smallexample
7039
7040 @noindent
7041 appeared, where function-name is the name of the lexically-enclosing
7042 function. This name is the unadorned name of the function.
7043
7044 @code{__FUNCTION__} is another name for @code{__func__}. Older
7045 versions of GCC recognize only this name. However, it is not
7046 standardized. For maximum portability, we recommend you use
7047 @code{__func__}, but provide a fallback definition with the
7048 preprocessor:
7049
7050 @smallexample
7051 #if __STDC_VERSION__ < 199901L
7052 # if __GNUC__ >= 2
7053 # define __func__ __FUNCTION__
7054 # else
7055 # define __func__ "<unknown>"
7056 # endif
7057 #endif
7058 @end smallexample
7059
7060 In C, @code{__PRETTY_FUNCTION__} is yet another name for
7061 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
7062 the type signature of the function as well as its bare name. For
7063 example, this program:
7064
7065 @smallexample
7066 extern "C" @{
7067 extern int printf (char *, ...);
7068 @}
7069
7070 class a @{
7071 public:
7072 void sub (int i)
7073 @{
7074 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
7075 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
7076 @}
7077 @};
7078
7079 int
7080 main (void)
7081 @{
7082 a ax;
7083 ax.sub (0);
7084 return 0;
7085 @}
7086 @end smallexample
7087
7088 @noindent
7089 gives this output:
7090
7091 @smallexample
7092 __FUNCTION__ = sub
7093 __PRETTY_FUNCTION__ = void a::sub(int)
7094 @end smallexample
7095
7096 These identifiers are not preprocessor macros. In GCC 3.3 and
7097 earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
7098 were treated as string literals; they could be used to initialize
7099 @code{char} arrays, and they could be concatenated with other string
7100 literals. GCC 3.4 and later treat them as variables, like
7101 @code{__func__}. In C++, @code{__FUNCTION__} and
7102 @code{__PRETTY_FUNCTION__} have always been variables.
7103
7104 @node Return Address
7105 @section Getting the Return or Frame Address of a Function
7106
7107 These functions may be used to get information about the callers of a
7108 function.
7109
7110 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
7111 This function returns the return address of the current function, or of
7112 one of its callers. The @var{level} argument is number of frames to
7113 scan up the call stack. A value of @code{0} yields the return address
7114 of the current function, a value of @code{1} yields the return address
7115 of the caller of the current function, and so forth. When inlining
7116 the expected behavior is that the function returns the address of
7117 the function that is returned to. To work around this behavior use
7118 the @code{noinline} function attribute.
7119
7120 The @var{level} argument must be a constant integer.
7121
7122 On some machines it may be impossible to determine the return address of
7123 any function other than the current one; in such cases, or when the top
7124 of the stack has been reached, this function returns @code{0} or a
7125 random value. In addition, @code{__builtin_frame_address} may be used
7126 to determine if the top of the stack has been reached.
7127
7128 Additional post-processing of the returned value may be needed, see
7129 @code{__builtin_extract_return_addr}.
7130
7131 This function should only be used with a nonzero argument for debugging
7132 purposes.
7133 @end deftypefn
7134
7135 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
7136 The address as returned by @code{__builtin_return_address} may have to be fed
7137 through this function to get the actual encoded address. For example, on the
7138 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
7139 platforms an offset has to be added for the true next instruction to be
7140 executed.
7141
7142 If no fixup is needed, this function simply passes through @var{addr}.
7143 @end deftypefn
7144
7145 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
7146 This function does the reverse of @code{__builtin_extract_return_addr}.
7147 @end deftypefn
7148
7149 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
7150 This function is similar to @code{__builtin_return_address}, but it
7151 returns the address of the function frame rather than the return address
7152 of the function. Calling @code{__builtin_frame_address} with a value of
7153 @code{0} yields the frame address of the current function, a value of
7154 @code{1} yields the frame address of the caller of the current function,
7155 and so forth.
7156
7157 The frame is the area on the stack that holds local variables and saved
7158 registers. The frame address is normally the address of the first word
7159 pushed on to the stack by the function. However, the exact definition
7160 depends upon the processor and the calling convention. If the processor
7161 has a dedicated frame pointer register, and the function has a frame,
7162 then @code{__builtin_frame_address} returns the value of the frame
7163 pointer register.
7164
7165 On some machines it may be impossible to determine the frame address of
7166 any function other than the current one; in such cases, or when the top
7167 of the stack has been reached, this function returns @code{0} if
7168 the first frame pointer is properly initialized by the startup code.
7169
7170 This function should only be used with a nonzero argument for debugging
7171 purposes.
7172 @end deftypefn
7173
7174 @node Vector Extensions
7175 @section Using Vector Instructions through Built-in Functions
7176
7177 On some targets, the instruction set contains SIMD vector instructions which
7178 operate on multiple values contained in one large register at the same time.
7179 For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
7180 this way.
7181
7182 The first step in using these extensions is to provide the necessary data
7183 types. This should be done using an appropriate @code{typedef}:
7184
7185 @smallexample
7186 typedef int v4si __attribute__ ((vector_size (16)));
7187 @end smallexample
7188
7189 @noindent
7190 The @code{int} type specifies the base type, while the attribute specifies
7191 the vector size for the variable, measured in bytes. For example, the
7192 declaration above causes the compiler to set the mode for the @code{v4si}
7193 type to be 16 bytes wide and divided into @code{int} sized units. For
7194 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
7195 corresponding mode of @code{foo} is @acronym{V4SI}.
7196
7197 The @code{vector_size} attribute is only applicable to integral and
7198 float scalars, although arrays, pointers, and function return values
7199 are allowed in conjunction with this construct. Only sizes that are
7200 a power of two are currently allowed.
7201
7202 All the basic integer types can be used as base types, both as signed
7203 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
7204 @code{long long}. In addition, @code{float} and @code{double} can be
7205 used to build floating-point vector types.
7206
7207 Specifying a combination that is not valid for the current architecture
7208 causes GCC to synthesize the instructions using a narrower mode.
7209 For example, if you specify a variable of type @code{V4SI} and your
7210 architecture does not allow for this specific SIMD type, GCC
7211 produces code that uses 4 @code{SIs}.
7212
7213 The types defined in this manner can be used with a subset of normal C
7214 operations. Currently, GCC allows using the following operators
7215 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
7216
7217 The operations behave like C++ @code{valarrays}. Addition is defined as
7218 the addition of the corresponding elements of the operands. For
7219 example, in the code below, each of the 4 elements in @var{a} is
7220 added to the corresponding 4 elements in @var{b} and the resulting
7221 vector is stored in @var{c}.
7222
7223 @smallexample
7224 typedef int v4si __attribute__ ((vector_size (16)));
7225
7226 v4si a, b, c;
7227
7228 c = a + b;
7229 @end smallexample
7230
7231 Subtraction, multiplication, division, and the logical operations
7232 operate in a similar manner. Likewise, the result of using the unary
7233 minus or complement operators on a vector type is a vector whose
7234 elements are the negative or complemented values of the corresponding
7235 elements in the operand.
7236
7237 It is possible to use shifting operators @code{<<}, @code{>>} on
7238 integer-type vectors. The operation is defined as following: @code{@{a0,
7239 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
7240 @dots{}, an >> bn@}}@. Vector operands must have the same number of
7241 elements.
7242
7243 For convenience, it is allowed to use a binary vector operation
7244 where one operand is a scalar. In that case the compiler transforms
7245 the scalar operand into a vector where each element is the scalar from
7246 the operation. The transformation happens only if the scalar could be
7247 safely converted to the vector-element type.
7248 Consider the following code.
7249
7250 @smallexample
7251 typedef int v4si __attribute__ ((vector_size (16)));
7252
7253 v4si a, b, c;
7254 long l;
7255
7256 a = b + 1; /* a = b + @{1,1,1,1@}; */
7257 a = 2 * b; /* a = @{2,2,2,2@} * b; */
7258
7259 a = l + a; /* Error, cannot convert long to int. */
7260 @end smallexample
7261
7262 Vectors can be subscripted as if the vector were an array with
7263 the same number of elements and base type. Out of bound accesses
7264 invoke undefined behavior at run time. Warnings for out of bound
7265 accesses for vector subscription can be enabled with
7266 @option{-Warray-bounds}.
7267
7268 Vector comparison is supported with standard comparison
7269 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
7270 vector expressions of integer-type or real-type. Comparison between
7271 integer-type vectors and real-type vectors are not supported. The
7272 result of the comparison is a vector of the same width and number of
7273 elements as the comparison operands with a signed integral element
7274 type.
7275
7276 Vectors are compared element-wise producing 0 when comparison is false
7277 and -1 (constant of the appropriate type where all bits are set)
7278 otherwise. Consider the following example.
7279
7280 @smallexample
7281 typedef int v4si __attribute__ ((vector_size (16)));
7282
7283 v4si a = @{1,2,3,4@};
7284 v4si b = @{3,2,1,4@};
7285 v4si c;
7286
7287 c = a > b; /* The result would be @{0, 0,-1, 0@} */
7288 c = a == b; /* The result would be @{0,-1, 0,-1@} */
7289 @end smallexample
7290
7291 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
7292 @code{b} and @code{c} are vectors of the same type and @code{a} is an
7293 integer vector with the same number of elements of the same size as @code{b}
7294 and @code{c}, computes all three arguments and creates a vector
7295 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
7296 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
7297 As in the case of binary operations, this syntax is also accepted when
7298 one of @code{b} or @code{c} is a scalar that is then transformed into a
7299 vector. If both @code{b} and @code{c} are scalars and the type of
7300 @code{true?b:c} has the same size as the element type of @code{a}, then
7301 @code{b} and @code{c} are converted to a vector type whose elements have
7302 this type and with the same number of elements as @code{a}.
7303
7304 Vector shuffling is available using functions
7305 @code{__builtin_shuffle (vec, mask)} and
7306 @code{__builtin_shuffle (vec0, vec1, mask)}.
7307 Both functions construct a permutation of elements from one or two
7308 vectors and return a vector of the same type as the input vector(s).
7309 The @var{mask} is an integral vector with the same width (@var{W})
7310 and element count (@var{N}) as the output vector.
7311
7312 The elements of the input vectors are numbered in memory ordering of
7313 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
7314 elements of @var{mask} are considered modulo @var{N} in the single-operand
7315 case and modulo @math{2*@var{N}} in the two-operand case.
7316
7317 Consider the following example,
7318
7319 @smallexample
7320 typedef int v4si __attribute__ ((vector_size (16)));
7321
7322 v4si a = @{1,2,3,4@};
7323 v4si b = @{5,6,7,8@};
7324 v4si mask1 = @{0,1,1,3@};
7325 v4si mask2 = @{0,4,2,5@};
7326 v4si res;
7327
7328 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
7329 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
7330 @end smallexample
7331
7332 Note that @code{__builtin_shuffle} is intentionally semantically
7333 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
7334
7335 You can declare variables and use them in function calls and returns, as
7336 well as in assignments and some casts. You can specify a vector type as
7337 a return type for a function. Vector types can also be used as function
7338 arguments. It is possible to cast from one vector type to another,
7339 provided they are of the same size (in fact, you can also cast vectors
7340 to and from other datatypes of the same size).
7341
7342 You cannot operate between vectors of different lengths or different
7343 signedness without a cast.
7344
7345 @node Offsetof
7346 @section Offsetof
7347 @findex __builtin_offsetof
7348
7349 GCC implements for both C and C++ a syntactic extension to implement
7350 the @code{offsetof} macro.
7351
7352 @smallexample
7353 primary:
7354 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
7355
7356 offsetof_member_designator:
7357 @code{identifier}
7358 | offsetof_member_designator "." @code{identifier}
7359 | offsetof_member_designator "[" @code{expr} "]"
7360 @end smallexample
7361
7362 This extension is sufficient such that
7363
7364 @smallexample
7365 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
7366 @end smallexample
7367
7368 @noindent
7369 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
7370 may be dependent. In either case, @var{member} may consist of a single
7371 identifier, or a sequence of member accesses and array references.
7372
7373 @node __sync Builtins
7374 @section Legacy __sync Built-in Functions for Atomic Memory Access
7375
7376 The following built-in functions
7377 are intended to be compatible with those described
7378 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
7379 section 7.4. As such, they depart from the normal GCC practice of using
7380 the @samp{__builtin_} prefix, and further that they are overloaded such that
7381 they work on multiple types.
7382
7383 The definition given in the Intel documentation allows only for the use of
7384 the types @code{int}, @code{long}, @code{long long} as well as their unsigned
7385 counterparts. GCC allows any integral scalar or pointer type that is
7386 1, 2, 4 or 8 bytes in length.
7387
7388 Not all operations are supported by all target processors. If a particular
7389 operation cannot be implemented on the target processor, a warning is
7390 generated and a call an external function is generated. The external
7391 function carries the same name as the built-in version,
7392 with an additional suffix
7393 @samp{_@var{n}} where @var{n} is the size of the data type.
7394
7395 @c ??? Should we have a mechanism to suppress this warning? This is almost
7396 @c useful for implementing the operation under the control of an external
7397 @c mutex.
7398
7399 In most cases, these built-in functions are considered a @dfn{full barrier}.
7400 That is,
7401 no memory operand is moved across the operation, either forward or
7402 backward. Further, instructions are issued as necessary to prevent the
7403 processor from speculating loads across the operation and from queuing stores
7404 after the operation.
7405
7406 All of the routines are described in the Intel documentation to take
7407 ``an optional list of variables protected by the memory barrier''. It's
7408 not clear what is meant by that; it could mean that @emph{only} the
7409 following variables are protected, or it could mean that these variables
7410 should in addition be protected. At present GCC ignores this list and
7411 protects all variables that are globally accessible. If in the future
7412 we make some use of this list, an empty list will continue to mean all
7413 globally accessible variables.
7414
7415 @table @code
7416 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
7417 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
7418 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
7419 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
7420 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
7421 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
7422 @findex __sync_fetch_and_add
7423 @findex __sync_fetch_and_sub
7424 @findex __sync_fetch_and_or
7425 @findex __sync_fetch_and_and
7426 @findex __sync_fetch_and_xor
7427 @findex __sync_fetch_and_nand
7428 These built-in functions perform the operation suggested by the name, and
7429 returns the value that had previously been in memory. That is,
7430
7431 @smallexample
7432 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
7433 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
7434 @end smallexample
7435
7436 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
7437 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
7438
7439 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
7440 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
7441 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
7442 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
7443 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
7444 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
7445 @findex __sync_add_and_fetch
7446 @findex __sync_sub_and_fetch
7447 @findex __sync_or_and_fetch
7448 @findex __sync_and_and_fetch
7449 @findex __sync_xor_and_fetch
7450 @findex __sync_nand_and_fetch
7451 These built-in functions perform the operation suggested by the name, and
7452 return the new value. That is,
7453
7454 @smallexample
7455 @{ *ptr @var{op}= value; return *ptr; @}
7456 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
7457 @end smallexample
7458
7459 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
7460 as @code{*ptr = ~(*ptr & value)} instead of
7461 @code{*ptr = ~*ptr & value}.
7462
7463 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7464 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7465 @findex __sync_bool_compare_and_swap
7466 @findex __sync_val_compare_and_swap
7467 These built-in functions perform an atomic compare and swap.
7468 That is, if the current
7469 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
7470 @code{*@var{ptr}}.
7471
7472 The ``bool'' version returns true if the comparison is successful and
7473 @var{newval} is written. The ``val'' version returns the contents
7474 of @code{*@var{ptr}} before the operation.
7475
7476 @item __sync_synchronize (...)
7477 @findex __sync_synchronize
7478 This built-in function issues a full memory barrier.
7479
7480 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
7481 @findex __sync_lock_test_and_set
7482 This built-in function, as described by Intel, is not a traditional test-and-set
7483 operation, but rather an atomic exchange operation. It writes @var{value}
7484 into @code{*@var{ptr}}, and returns the previous contents of
7485 @code{*@var{ptr}}.
7486
7487 Many targets have only minimal support for such locks, and do not support
7488 a full exchange operation. In this case, a target may support reduced
7489 functionality here by which the @emph{only} valid value to store is the
7490 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
7491 is implementation defined.
7492
7493 This built-in function is not a full barrier,
7494 but rather an @dfn{acquire barrier}.
7495 This means that references after the operation cannot move to (or be
7496 speculated to) before the operation, but previous memory stores may not
7497 be globally visible yet, and previous memory loads may not yet be
7498 satisfied.
7499
7500 @item void __sync_lock_release (@var{type} *ptr, ...)
7501 @findex __sync_lock_release
7502 This built-in function releases the lock acquired by
7503 @code{__sync_lock_test_and_set}.
7504 Normally this means writing the constant 0 to @code{*@var{ptr}}.
7505
7506 This built-in function is not a full barrier,
7507 but rather a @dfn{release barrier}.
7508 This means that all previous memory stores are globally visible, and all
7509 previous memory loads have been satisfied, but following memory reads
7510 are not prevented from being speculated to before the barrier.
7511 @end table
7512
7513 @node __atomic Builtins
7514 @section Built-in functions for memory model aware atomic operations
7515
7516 The following built-in functions approximately match the requirements for
7517 C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
7518 functions, but all also have a memory model parameter. These are all
7519 identified by being prefixed with @samp{__atomic}, and most are overloaded
7520 such that they work with multiple types.
7521
7522 GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8
7523 bytes in length. 16-byte integral types are also allowed if
7524 @samp{__int128} (@pxref{__int128}) is supported by the architecture.
7525
7526 Target architectures are encouraged to provide their own patterns for
7527 each of these built-in functions. If no target is provided, the original
7528 non-memory model set of @samp{__sync} atomic built-in functions are
7529 utilized, along with any required synchronization fences surrounding it in
7530 order to achieve the proper behavior. Execution in this case is subject
7531 to the same restrictions as those built-in functions.
7532
7533 If there is no pattern or mechanism to provide a lock free instruction
7534 sequence, a call is made to an external routine with the same parameters
7535 to be resolved at run time.
7536
7537 The four non-arithmetic functions (load, store, exchange, and
7538 compare_exchange) all have a generic version as well. This generic
7539 version works on any data type. If the data type size maps to one
7540 of the integral sizes that may have lock free support, the generic
7541 version utilizes the lock free built-in function. Otherwise an
7542 external call is left to be resolved at run time. This external call is
7543 the same format with the addition of a @samp{size_t} parameter inserted
7544 as the first parameter indicating the size of the object being pointed to.
7545 All objects must be the same size.
7546
7547 There are 6 different memory models that can be specified. These map
7548 to the same names in the C++11 standard. Refer there or to the
7549 @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
7550 atomic synchronization} for more detailed definitions. These memory
7551 models integrate both barriers to code motion as well as synchronization
7552 requirements with other threads. These are listed in approximately
7553 ascending order of strength. It is also possible to use target specific
7554 flags for memory model flags, like Hardware Lock Elision.
7555
7556 @table @code
7557 @item __ATOMIC_RELAXED
7558 No barriers or synchronization.
7559 @item __ATOMIC_CONSUME
7560 Data dependency only for both barrier and synchronization with another
7561 thread.
7562 @item __ATOMIC_ACQUIRE
7563 Barrier to hoisting of code and synchronizes with release (or stronger)
7564 semantic stores from another thread.
7565 @item __ATOMIC_RELEASE
7566 Barrier to sinking of code and synchronizes with acquire (or stronger)
7567 semantic loads from another thread.
7568 @item __ATOMIC_ACQ_REL
7569 Full barrier in both directions and synchronizes with acquire loads and
7570 release stores in another thread.
7571 @item __ATOMIC_SEQ_CST
7572 Full barrier in both directions and synchronizes with acquire loads and
7573 release stores in all threads.
7574 @end table
7575
7576 When implementing patterns for these built-in functions, the memory model
7577 parameter can be ignored as long as the pattern implements the most
7578 restrictive @code{__ATOMIC_SEQ_CST} model. Any of the other memory models
7579 execute correctly with this memory model but they may not execute as
7580 efficiently as they could with a more appropriate implementation of the
7581 relaxed requirements.
7582
7583 Note that the C++11 standard allows for the memory model parameter to be
7584 determined at run time rather than at compile time. These built-in
7585 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
7586 than invoke a runtime library call or inline a switch statement. This is
7587 standard compliant, safe, and the simplest approach for now.
7588
7589 The memory model parameter is a signed int, but only the lower 8 bits are
7590 reserved for the memory model. The remainder of the signed int is reserved
7591 for future use and should be 0. Use of the predefined atomic values
7592 ensures proper usage.
7593
7594 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
7595 This built-in function implements an atomic load operation. It returns the
7596 contents of @code{*@var{ptr}}.
7597
7598 The valid memory model variants are
7599 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7600 and @code{__ATOMIC_CONSUME}.
7601
7602 @end deftypefn
7603
7604 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
7605 This is the generic version of an atomic load. It returns the
7606 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
7607
7608 @end deftypefn
7609
7610 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
7611 This built-in function implements an atomic store operation. It writes
7612 @code{@var{val}} into @code{*@var{ptr}}.
7613
7614 The valid memory model variants are
7615 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
7616
7617 @end deftypefn
7618
7619 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
7620 This is the generic version of an atomic store. It stores the value
7621 of @code{*@var{val}} into @code{*@var{ptr}}.
7622
7623 @end deftypefn
7624
7625 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
7626 This built-in function implements an atomic exchange operation. It writes
7627 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
7628 @code{*@var{ptr}}.
7629
7630 The valid memory model variants are
7631 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7632 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
7633
7634 @end deftypefn
7635
7636 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
7637 This is the generic version of an atomic exchange. It stores the
7638 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
7639 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
7640
7641 @end deftypefn
7642
7643 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
7644 This built-in function implements an atomic compare and exchange operation.
7645 This compares the contents of @code{*@var{ptr}} with the contents of
7646 @code{*@var{expected}} and if equal, writes @var{desired} into
7647 @code{*@var{ptr}}. If they are not equal, the current contents of
7648 @code{*@var{ptr}} is written into @code{*@var{expected}}. @var{weak} is true
7649 for weak compare_exchange, and false for the strong variation. Many targets
7650 only offer the strong variation and ignore the parameter. When in doubt, use
7651 the strong variation.
7652
7653 True is returned if @var{desired} is written into
7654 @code{*@var{ptr}} and the execution is considered to conform to the
7655 memory model specified by @var{success_memmodel}. There are no
7656 restrictions on what memory model can be used here.
7657
7658 False is returned otherwise, and the execution is considered to conform
7659 to @var{failure_memmodel}. This memory model cannot be
7660 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
7661 stronger model than that specified by @var{success_memmodel}.
7662
7663 @end deftypefn
7664
7665 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
7666 This built-in function implements the generic version of
7667 @code{__atomic_compare_exchange}. The function is virtually identical to
7668 @code{__atomic_compare_exchange_n}, except the desired value is also a
7669 pointer.
7670
7671 @end deftypefn
7672
7673 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7674 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7675 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7676 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7677 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7678 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7679 These built-in functions perform the operation suggested by the name, and
7680 return the result of the operation. That is,
7681
7682 @smallexample
7683 @{ *ptr @var{op}= val; return *ptr; @}
7684 @end smallexample
7685
7686 All memory models are valid.
7687
7688 @end deftypefn
7689
7690 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
7691 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
7692 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
7693 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
7694 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
7695 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
7696 These built-in functions perform the operation suggested by the name, and
7697 return the value that had previously been in @code{*@var{ptr}}. That is,
7698
7699 @smallexample
7700 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
7701 @end smallexample
7702
7703 All memory models are valid.
7704
7705 @end deftypefn
7706
7707 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
7708
7709 This built-in function performs an atomic test-and-set operation on
7710 the byte at @code{*@var{ptr}}. The byte is set to some implementation
7711 defined nonzero ``set'' value and the return value is @code{true} if and only
7712 if the previous contents were ``set''.
7713 It should be only used for operands of type @code{bool} or @code{char}. For
7714 other types only part of the value may be set.
7715
7716 All memory models are valid.
7717
7718 @end deftypefn
7719
7720 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
7721
7722 This built-in function performs an atomic clear operation on
7723 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
7724 It should be only used for operands of type @code{bool} or @code{char} and
7725 in conjunction with @code{__atomic_test_and_set}.
7726 For other types it may only clear partially. If the type is not @code{bool}
7727 prefer using @code{__atomic_store}.
7728
7729 The valid memory model variants are
7730 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
7731 @code{__ATOMIC_RELEASE}.
7732
7733 @end deftypefn
7734
7735 @deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
7736
7737 This built-in function acts as a synchronization fence between threads
7738 based on the specified memory model.
7739
7740 All memory orders are valid.
7741
7742 @end deftypefn
7743
7744 @deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
7745
7746 This built-in function acts as a synchronization fence between a thread
7747 and signal handlers based in the same thread.
7748
7749 All memory orders are valid.
7750
7751 @end deftypefn
7752
7753 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
7754
7755 This built-in function returns true if objects of @var{size} bytes always
7756 generate lock free atomic instructions for the target architecture.
7757 @var{size} must resolve to a compile-time constant and the result also
7758 resolves to a compile-time constant.
7759
7760 @var{ptr} is an optional pointer to the object that may be used to determine
7761 alignment. A value of 0 indicates typical alignment should be used. The
7762 compiler may also ignore this parameter.
7763
7764 @smallexample
7765 if (_atomic_always_lock_free (sizeof (long long), 0))
7766 @end smallexample
7767
7768 @end deftypefn
7769
7770 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
7771
7772 This built-in function returns true if objects of @var{size} bytes always
7773 generate lock free atomic instructions for the target architecture. If
7774 it is not known to be lock free a call is made to a runtime routine named
7775 @code{__atomic_is_lock_free}.
7776
7777 @var{ptr} is an optional pointer to the object that may be used to determine
7778 alignment. A value of 0 indicates typical alignment should be used. The
7779 compiler may also ignore this parameter.
7780 @end deftypefn
7781
7782 @node x86 specific memory model extensions for transactional memory
7783 @section x86 specific memory model extensions for transactional memory
7784
7785 The i386 architecture supports additional memory ordering flags
7786 to mark lock critical sections for hardware lock elision.
7787 These must be specified in addition to an existing memory model to
7788 atomic intrinsics.
7789
7790 @table @code
7791 @item __ATOMIC_HLE_ACQUIRE
7792 Start lock elision on a lock variable.
7793 Memory model must be @code{__ATOMIC_ACQUIRE} or stronger.
7794 @item __ATOMIC_HLE_RELEASE
7795 End lock elision on a lock variable.
7796 Memory model must be @code{__ATOMIC_RELEASE} or stronger.
7797 @end table
7798
7799 When a lock acquire fails it is required for good performance to abort
7800 the transaction quickly. This can be done with a @code{_mm_pause}
7801
7802 @smallexample
7803 #include <immintrin.h> // For _mm_pause
7804
7805 int lockvar;
7806
7807 /* Acquire lock with lock elision */
7808 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
7809 _mm_pause(); /* Abort failed transaction */
7810 ...
7811 /* Free lock with lock elision */
7812 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
7813 @end smallexample
7814
7815 @node Object Size Checking
7816 @section Object Size Checking Built-in Functions
7817 @findex __builtin_object_size
7818 @findex __builtin___memcpy_chk
7819 @findex __builtin___mempcpy_chk
7820 @findex __builtin___memmove_chk
7821 @findex __builtin___memset_chk
7822 @findex __builtin___strcpy_chk
7823 @findex __builtin___stpcpy_chk
7824 @findex __builtin___strncpy_chk
7825 @findex __builtin___strcat_chk
7826 @findex __builtin___strncat_chk
7827 @findex __builtin___sprintf_chk
7828 @findex __builtin___snprintf_chk
7829 @findex __builtin___vsprintf_chk
7830 @findex __builtin___vsnprintf_chk
7831 @findex __builtin___printf_chk
7832 @findex __builtin___vprintf_chk
7833 @findex __builtin___fprintf_chk
7834 @findex __builtin___vfprintf_chk
7835
7836 GCC implements a limited buffer overflow protection mechanism
7837 that can prevent some buffer overflow attacks.
7838
7839 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
7840 is a built-in construct that returns a constant number of bytes from
7841 @var{ptr} to the end of the object @var{ptr} pointer points to
7842 (if known at compile time). @code{__builtin_object_size} never evaluates
7843 its arguments for side-effects. If there are any side-effects in them, it
7844 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7845 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
7846 point to and all of them are known at compile time, the returned number
7847 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
7848 0 and minimum if nonzero. If it is not possible to determine which objects
7849 @var{ptr} points to at compile time, @code{__builtin_object_size} should
7850 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7851 for @var{type} 2 or 3.
7852
7853 @var{type} is an integer constant from 0 to 3. If the least significant
7854 bit is clear, objects are whole variables, if it is set, a closest
7855 surrounding subobject is considered the object a pointer points to.
7856 The second bit determines if maximum or minimum of remaining bytes
7857 is computed.
7858
7859 @smallexample
7860 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
7861 char *p = &var.buf1[1], *q = &var.b;
7862
7863 /* Here the object p points to is var. */
7864 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
7865 /* The subobject p points to is var.buf1. */
7866 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
7867 /* The object q points to is var. */
7868 assert (__builtin_object_size (q, 0)
7869 == (char *) (&var + 1) - (char *) &var.b);
7870 /* The subobject q points to is var.b. */
7871 assert (__builtin_object_size (q, 1) == sizeof (var.b));
7872 @end smallexample
7873 @end deftypefn
7874
7875 There are built-in functions added for many common string operation
7876 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
7877 built-in is provided. This built-in has an additional last argument,
7878 which is the number of bytes remaining in object the @var{dest}
7879 argument points to or @code{(size_t) -1} if the size is not known.
7880
7881 The built-in functions are optimized into the normal string functions
7882 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
7883 it is known at compile time that the destination object will not
7884 be overflown. If the compiler can determine at compile time the
7885 object will be always overflown, it issues a warning.
7886
7887 The intended use can be e.g.@:
7888
7889 @smallexample
7890 #undef memcpy
7891 #define bos0(dest) __builtin_object_size (dest, 0)
7892 #define memcpy(dest, src, n) \
7893 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
7894
7895 char *volatile p;
7896 char buf[10];
7897 /* It is unknown what object p points to, so this is optimized
7898 into plain memcpy - no checking is possible. */
7899 memcpy (p, "abcde", n);
7900 /* Destination is known and length too. It is known at compile
7901 time there will be no overflow. */
7902 memcpy (&buf[5], "abcde", 5);
7903 /* Destination is known, but the length is not known at compile time.
7904 This will result in __memcpy_chk call that can check for overflow
7905 at run time. */
7906 memcpy (&buf[5], "abcde", n);
7907 /* Destination is known and it is known at compile time there will
7908 be overflow. There will be a warning and __memcpy_chk call that
7909 will abort the program at run time. */
7910 memcpy (&buf[6], "abcde", 5);
7911 @end smallexample
7912
7913 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
7914 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
7915 @code{strcat} and @code{strncat}.
7916
7917 There are also checking built-in functions for formatted output functions.
7918 @smallexample
7919 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
7920 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7921 const char *fmt, ...);
7922 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
7923 va_list ap);
7924 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7925 const char *fmt, va_list ap);
7926 @end smallexample
7927
7928 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
7929 etc.@: functions and can contain implementation specific flags on what
7930 additional security measures the checking function might take, such as
7931 handling @code{%n} differently.
7932
7933 The @var{os} argument is the object size @var{s} points to, like in the
7934 other built-in functions. There is a small difference in the behavior
7935 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
7936 optimized into the non-checking functions only if @var{flag} is 0, otherwise
7937 the checking function is called with @var{os} argument set to
7938 @code{(size_t) -1}.
7939
7940 In addition to this, there are checking built-in functions
7941 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
7942 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
7943 These have just one additional argument, @var{flag}, right before
7944 format string @var{fmt}. If the compiler is able to optimize them to
7945 @code{fputc} etc.@: functions, it does, otherwise the checking function
7946 is called and the @var{flag} argument passed to it.
7947
7948 @node Cilk Plus Builtins
7949 @section Cilk Plus C/C++ language extension Built-in Functions.
7950
7951 GCC provides support for the following built-in reduction funtions if Cilk Plus
7952 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
7953
7954 @itemize @bullet
7955 @item __sec_implicit_index
7956 @item __sec_reduce
7957 @item __sec_reduce_add
7958 @item __sec_reduce_all_nonzero
7959 @item __sec_reduce_all_zero
7960 @item __sec_reduce_any_nonzero
7961 @item __sec_reduce_any_zero
7962 @item __sec_reduce_max
7963 @item __sec_reduce_min
7964 @item __sec_reduce_max_ind
7965 @item __sec_reduce_min_ind
7966 @item __sec_reduce_mul
7967 @item __sec_reduce_mutating
7968 @end itemize
7969
7970 Further details and examples about these built-in functions are described
7971 in the Cilk Plus language manual which can be found at
7972 @uref{http://www.cilkplus.org}.
7973
7974 @node Other Builtins
7975 @section Other Built-in Functions Provided by GCC
7976 @cindex built-in functions
7977 @findex __builtin_fpclassify
7978 @findex __builtin_isfinite
7979 @findex __builtin_isnormal
7980 @findex __builtin_isgreater
7981 @findex __builtin_isgreaterequal
7982 @findex __builtin_isinf_sign
7983 @findex __builtin_isless
7984 @findex __builtin_islessequal
7985 @findex __builtin_islessgreater
7986 @findex __builtin_isunordered
7987 @findex __builtin_powi
7988 @findex __builtin_powif
7989 @findex __builtin_powil
7990 @findex _Exit
7991 @findex _exit
7992 @findex abort
7993 @findex abs
7994 @findex acos
7995 @findex acosf
7996 @findex acosh
7997 @findex acoshf
7998 @findex acoshl
7999 @findex acosl
8000 @findex alloca
8001 @findex asin
8002 @findex asinf
8003 @findex asinh
8004 @findex asinhf
8005 @findex asinhl
8006 @findex asinl
8007 @findex atan
8008 @findex atan2
8009 @findex atan2f
8010 @findex atan2l
8011 @findex atanf
8012 @findex atanh
8013 @findex atanhf
8014 @findex atanhl
8015 @findex atanl
8016 @findex bcmp
8017 @findex bzero
8018 @findex cabs
8019 @findex cabsf
8020 @findex cabsl
8021 @findex cacos
8022 @findex cacosf
8023 @findex cacosh
8024 @findex cacoshf
8025 @findex cacoshl
8026 @findex cacosl
8027 @findex calloc
8028 @findex carg
8029 @findex cargf
8030 @findex cargl
8031 @findex casin
8032 @findex casinf
8033 @findex casinh
8034 @findex casinhf
8035 @findex casinhl
8036 @findex casinl
8037 @findex catan
8038 @findex catanf
8039 @findex catanh
8040 @findex catanhf
8041 @findex catanhl
8042 @findex catanl
8043 @findex cbrt
8044 @findex cbrtf
8045 @findex cbrtl
8046 @findex ccos
8047 @findex ccosf
8048 @findex ccosh
8049 @findex ccoshf
8050 @findex ccoshl
8051 @findex ccosl
8052 @findex ceil
8053 @findex ceilf
8054 @findex ceill
8055 @findex cexp
8056 @findex cexpf
8057 @findex cexpl
8058 @findex cimag
8059 @findex cimagf
8060 @findex cimagl
8061 @findex clog
8062 @findex clogf
8063 @findex clogl
8064 @findex conj
8065 @findex conjf
8066 @findex conjl
8067 @findex copysign
8068 @findex copysignf
8069 @findex copysignl
8070 @findex cos
8071 @findex cosf
8072 @findex cosh
8073 @findex coshf
8074 @findex coshl
8075 @findex cosl
8076 @findex cpow
8077 @findex cpowf
8078 @findex cpowl
8079 @findex cproj
8080 @findex cprojf
8081 @findex cprojl
8082 @findex creal
8083 @findex crealf
8084 @findex creall
8085 @findex csin
8086 @findex csinf
8087 @findex csinh
8088 @findex csinhf
8089 @findex csinhl
8090 @findex csinl
8091 @findex csqrt
8092 @findex csqrtf
8093 @findex csqrtl
8094 @findex ctan
8095 @findex ctanf
8096 @findex ctanh
8097 @findex ctanhf
8098 @findex ctanhl
8099 @findex ctanl
8100 @findex dcgettext
8101 @findex dgettext
8102 @findex drem
8103 @findex dremf
8104 @findex dreml
8105 @findex erf
8106 @findex erfc
8107 @findex erfcf
8108 @findex erfcl
8109 @findex erff
8110 @findex erfl
8111 @findex exit
8112 @findex exp
8113 @findex exp10
8114 @findex exp10f
8115 @findex exp10l
8116 @findex exp2
8117 @findex exp2f
8118 @findex exp2l
8119 @findex expf
8120 @findex expl
8121 @findex expm1
8122 @findex expm1f
8123 @findex expm1l
8124 @findex fabs
8125 @findex fabsf
8126 @findex fabsl
8127 @findex fdim
8128 @findex fdimf
8129 @findex fdiml
8130 @findex ffs
8131 @findex floor
8132 @findex floorf
8133 @findex floorl
8134 @findex fma
8135 @findex fmaf
8136 @findex fmal
8137 @findex fmax
8138 @findex fmaxf
8139 @findex fmaxl
8140 @findex fmin
8141 @findex fminf
8142 @findex fminl
8143 @findex fmod
8144 @findex fmodf
8145 @findex fmodl
8146 @findex fprintf
8147 @findex fprintf_unlocked
8148 @findex fputs
8149 @findex fputs_unlocked
8150 @findex frexp
8151 @findex frexpf
8152 @findex frexpl
8153 @findex fscanf
8154 @findex gamma
8155 @findex gammaf
8156 @findex gammal
8157 @findex gamma_r
8158 @findex gammaf_r
8159 @findex gammal_r
8160 @findex gettext
8161 @findex hypot
8162 @findex hypotf
8163 @findex hypotl
8164 @findex ilogb
8165 @findex ilogbf
8166 @findex ilogbl
8167 @findex imaxabs
8168 @findex index
8169 @findex isalnum
8170 @findex isalpha
8171 @findex isascii
8172 @findex isblank
8173 @findex iscntrl
8174 @findex isdigit
8175 @findex isgraph
8176 @findex islower
8177 @findex isprint
8178 @findex ispunct
8179 @findex isspace
8180 @findex isupper
8181 @findex iswalnum
8182 @findex iswalpha
8183 @findex iswblank
8184 @findex iswcntrl
8185 @findex iswdigit
8186 @findex iswgraph
8187 @findex iswlower
8188 @findex iswprint
8189 @findex iswpunct
8190 @findex iswspace
8191 @findex iswupper
8192 @findex iswxdigit
8193 @findex isxdigit
8194 @findex j0
8195 @findex j0f
8196 @findex j0l
8197 @findex j1
8198 @findex j1f
8199 @findex j1l
8200 @findex jn
8201 @findex jnf
8202 @findex jnl
8203 @findex labs
8204 @findex ldexp
8205 @findex ldexpf
8206 @findex ldexpl
8207 @findex lgamma
8208 @findex lgammaf
8209 @findex lgammal
8210 @findex lgamma_r
8211 @findex lgammaf_r
8212 @findex lgammal_r
8213 @findex llabs
8214 @findex llrint
8215 @findex llrintf
8216 @findex llrintl
8217 @findex llround
8218 @findex llroundf
8219 @findex llroundl
8220 @findex log
8221 @findex log10
8222 @findex log10f
8223 @findex log10l
8224 @findex log1p
8225 @findex log1pf
8226 @findex log1pl
8227 @findex log2
8228 @findex log2f
8229 @findex log2l
8230 @findex logb
8231 @findex logbf
8232 @findex logbl
8233 @findex logf
8234 @findex logl
8235 @findex lrint
8236 @findex lrintf
8237 @findex lrintl
8238 @findex lround
8239 @findex lroundf
8240 @findex lroundl
8241 @findex malloc
8242 @findex memchr
8243 @findex memcmp
8244 @findex memcpy
8245 @findex mempcpy
8246 @findex memset
8247 @findex modf
8248 @findex modff
8249 @findex modfl
8250 @findex nearbyint
8251 @findex nearbyintf
8252 @findex nearbyintl
8253 @findex nextafter
8254 @findex nextafterf
8255 @findex nextafterl
8256 @findex nexttoward
8257 @findex nexttowardf
8258 @findex nexttowardl
8259 @findex pow
8260 @findex pow10
8261 @findex pow10f
8262 @findex pow10l
8263 @findex powf
8264 @findex powl
8265 @findex printf
8266 @findex printf_unlocked
8267 @findex putchar
8268 @findex puts
8269 @findex remainder
8270 @findex remainderf
8271 @findex remainderl
8272 @findex remquo
8273 @findex remquof
8274 @findex remquol
8275 @findex rindex
8276 @findex rint
8277 @findex rintf
8278 @findex rintl
8279 @findex round
8280 @findex roundf
8281 @findex roundl
8282 @findex scalb
8283 @findex scalbf
8284 @findex scalbl
8285 @findex scalbln
8286 @findex scalblnf
8287 @findex scalblnf
8288 @findex scalbn
8289 @findex scalbnf
8290 @findex scanfnl
8291 @findex signbit
8292 @findex signbitf
8293 @findex signbitl
8294 @findex signbitd32
8295 @findex signbitd64
8296 @findex signbitd128
8297 @findex significand
8298 @findex significandf
8299 @findex significandl
8300 @findex sin
8301 @findex sincos
8302 @findex sincosf
8303 @findex sincosl
8304 @findex sinf
8305 @findex sinh
8306 @findex sinhf
8307 @findex sinhl
8308 @findex sinl
8309 @findex snprintf
8310 @findex sprintf
8311 @findex sqrt
8312 @findex sqrtf
8313 @findex sqrtl
8314 @findex sscanf
8315 @findex stpcpy
8316 @findex stpncpy
8317 @findex strcasecmp
8318 @findex strcat
8319 @findex strchr
8320 @findex strcmp
8321 @findex strcpy
8322 @findex strcspn
8323 @findex strdup
8324 @findex strfmon
8325 @findex strftime
8326 @findex strlen
8327 @findex strncasecmp
8328 @findex strncat
8329 @findex strncmp
8330 @findex strncpy
8331 @findex strndup
8332 @findex strpbrk
8333 @findex strrchr
8334 @findex strspn
8335 @findex strstr
8336 @findex tan
8337 @findex tanf
8338 @findex tanh
8339 @findex tanhf
8340 @findex tanhl
8341 @findex tanl
8342 @findex tgamma
8343 @findex tgammaf
8344 @findex tgammal
8345 @findex toascii
8346 @findex tolower
8347 @findex toupper
8348 @findex towlower
8349 @findex towupper
8350 @findex trunc
8351 @findex truncf
8352 @findex truncl
8353 @findex vfprintf
8354 @findex vfscanf
8355 @findex vprintf
8356 @findex vscanf
8357 @findex vsnprintf
8358 @findex vsprintf
8359 @findex vsscanf
8360 @findex y0
8361 @findex y0f
8362 @findex y0l
8363 @findex y1
8364 @findex y1f
8365 @findex y1l
8366 @findex yn
8367 @findex ynf
8368 @findex ynl
8369
8370 GCC provides a large number of built-in functions other than the ones
8371 mentioned above. Some of these are for internal use in the processing
8372 of exceptions or variable-length argument lists and are not
8373 documented here because they may change from time to time; we do not
8374 recommend general use of these functions.
8375
8376 The remaining functions are provided for optimization purposes.
8377
8378 @opindex fno-builtin
8379 GCC includes built-in versions of many of the functions in the standard
8380 C library. The versions prefixed with @code{__builtin_} are always
8381 treated as having the same meaning as the C library function even if you
8382 specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
8383 Many of these functions are only optimized in certain cases; if they are
8384 not optimized in a particular case, a call to the library function is
8385 emitted.
8386
8387 @opindex ansi
8388 @opindex std
8389 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
8390 @option{-std=c99} or @option{-std=c11}), the functions
8391 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
8392 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
8393 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
8394 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
8395 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
8396 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
8397 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
8398 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
8399 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
8400 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
8401 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
8402 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
8403 @code{signbitd64}, @code{signbitd128}, @code{significandf},
8404 @code{significandl}, @code{significand}, @code{sincosf},
8405 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
8406 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
8407 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
8408 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
8409 @code{yn}
8410 may be handled as built-in functions.
8411 All these functions have corresponding versions
8412 prefixed with @code{__builtin_}, which may be used even in strict C90
8413 mode.
8414
8415 The ISO C99 functions
8416 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
8417 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
8418 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
8419 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
8420 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
8421 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
8422 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
8423 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
8424 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
8425 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
8426 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
8427 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
8428 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
8429 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
8430 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
8431 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
8432 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
8433 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
8434 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
8435 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
8436 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
8437 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
8438 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
8439 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
8440 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
8441 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
8442 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
8443 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
8444 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
8445 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
8446 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
8447 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
8448 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
8449 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
8450 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
8451 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
8452 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
8453 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
8454 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
8455 are handled as built-in functions
8456 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
8457
8458 There are also built-in versions of the ISO C99 functions
8459 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
8460 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
8461 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
8462 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
8463 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
8464 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
8465 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
8466 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
8467 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
8468 that are recognized in any mode since ISO C90 reserves these names for
8469 the purpose to which ISO C99 puts them. All these functions have
8470 corresponding versions prefixed with @code{__builtin_}.
8471
8472 The ISO C94 functions
8473 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
8474 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
8475 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
8476 @code{towupper}
8477 are handled as built-in functions
8478 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
8479
8480 The ISO C90 functions
8481 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
8482 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
8483 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
8484 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
8485 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
8486 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
8487 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
8488 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
8489 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
8490 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
8491 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
8492 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
8493 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
8494 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
8495 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
8496 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
8497 are all recognized as built-in functions unless
8498 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
8499 is specified for an individual function). All of these functions have
8500 corresponding versions prefixed with @code{__builtin_}.
8501
8502 GCC provides built-in versions of the ISO C99 floating-point comparison
8503 macros that avoid raising exceptions for unordered operands. They have
8504 the same names as the standard macros ( @code{isgreater},
8505 @code{isgreaterequal}, @code{isless}, @code{islessequal},
8506 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
8507 prefixed. We intend for a library implementor to be able to simply
8508 @code{#define} each standard macro to its built-in equivalent.
8509 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
8510 @code{isinf_sign} and @code{isnormal} built-ins used with
8511 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
8512 built-in functions appear both with and without the @code{__builtin_} prefix.
8513
8514 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
8515
8516 You can use the built-in function @code{__builtin_types_compatible_p} to
8517 determine whether two types are the same.
8518
8519 This built-in function returns 1 if the unqualified versions of the
8520 types @var{type1} and @var{type2} (which are types, not expressions) are
8521 compatible, 0 otherwise. The result of this built-in function can be
8522 used in integer constant expressions.
8523
8524 This built-in function ignores top level qualifiers (e.g., @code{const},
8525 @code{volatile}). For example, @code{int} is equivalent to @code{const
8526 int}.
8527
8528 The type @code{int[]} and @code{int[5]} are compatible. On the other
8529 hand, @code{int} and @code{char *} are not compatible, even if the size
8530 of their types, on the particular architecture are the same. Also, the
8531 amount of pointer indirection is taken into account when determining
8532 similarity. Consequently, @code{short *} is not similar to
8533 @code{short **}. Furthermore, two types that are typedefed are
8534 considered compatible if their underlying types are compatible.
8535
8536 An @code{enum} type is not considered to be compatible with another
8537 @code{enum} type even if both are compatible with the same integer
8538 type; this is what the C standard specifies.
8539 For example, @code{enum @{foo, bar@}} is not similar to
8540 @code{enum @{hot, dog@}}.
8541
8542 You typically use this function in code whose execution varies
8543 depending on the arguments' types. For example:
8544
8545 @smallexample
8546 #define foo(x) \
8547 (@{ \
8548 typeof (x) tmp = (x); \
8549 if (__builtin_types_compatible_p (typeof (x), long double)) \
8550 tmp = foo_long_double (tmp); \
8551 else if (__builtin_types_compatible_p (typeof (x), double)) \
8552 tmp = foo_double (tmp); \
8553 else if (__builtin_types_compatible_p (typeof (x), float)) \
8554 tmp = foo_float (tmp); \
8555 else \
8556 abort (); \
8557 tmp; \
8558 @})
8559 @end smallexample
8560
8561 @emph{Note:} This construct is only available for C@.
8562
8563 @end deftypefn
8564
8565 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
8566
8567 You can use the built-in function @code{__builtin_choose_expr} to
8568 evaluate code depending on the value of a constant expression. This
8569 built-in function returns @var{exp1} if @var{const_exp}, which is an
8570 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
8571
8572 This built-in function is analogous to the @samp{? :} operator in C,
8573 except that the expression returned has its type unaltered by promotion
8574 rules. Also, the built-in function does not evaluate the expression
8575 that is not chosen. For example, if @var{const_exp} evaluates to true,
8576 @var{exp2} is not evaluated even if it has side-effects.
8577
8578 This built-in function can return an lvalue if the chosen argument is an
8579 lvalue.
8580
8581 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
8582 type. Similarly, if @var{exp2} is returned, its return type is the same
8583 as @var{exp2}.
8584
8585 Example:
8586
8587 @smallexample
8588 #define foo(x) \
8589 __builtin_choose_expr ( \
8590 __builtin_types_compatible_p (typeof (x), double), \
8591 foo_double (x), \
8592 __builtin_choose_expr ( \
8593 __builtin_types_compatible_p (typeof (x), float), \
8594 foo_float (x), \
8595 /* @r{The void expression results in a compile-time error} \
8596 @r{when assigning the result to something.} */ \
8597 (void)0))
8598 @end smallexample
8599
8600 @emph{Note:} This construct is only available for C@. Furthermore, the
8601 unused expression (@var{exp1} or @var{exp2} depending on the value of
8602 @var{const_exp}) may still generate syntax errors. This may change in
8603 future revisions.
8604
8605 @end deftypefn
8606
8607 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
8608
8609 The built-in function @code{__builtin_complex} is provided for use in
8610 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
8611 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
8612 real binary floating-point type, and the result has the corresponding
8613 complex type with real and imaginary parts @var{real} and @var{imag}.
8614 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
8615 infinities, NaNs and negative zeros are involved.
8616
8617 @end deftypefn
8618
8619 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
8620 You can use the built-in function @code{__builtin_constant_p} to
8621 determine if a value is known to be constant at compile time and hence
8622 that GCC can perform constant-folding on expressions involving that
8623 value. The argument of the function is the value to test. The function
8624 returns the integer 1 if the argument is known to be a compile-time
8625 constant and 0 if it is not known to be a compile-time constant. A
8626 return of 0 does not indicate that the value is @emph{not} a constant,
8627 but merely that GCC cannot prove it is a constant with the specified
8628 value of the @option{-O} option.
8629
8630 You typically use this function in an embedded application where
8631 memory is a critical resource. If you have some complex calculation,
8632 you may want it to be folded if it involves constants, but need to call
8633 a function if it does not. For example:
8634
8635 @smallexample
8636 #define Scale_Value(X) \
8637 (__builtin_constant_p (X) \
8638 ? ((X) * SCALE + OFFSET) : Scale (X))
8639 @end smallexample
8640
8641 You may use this built-in function in either a macro or an inline
8642 function. However, if you use it in an inlined function and pass an
8643 argument of the function as the argument to the built-in, GCC
8644 never returns 1 when you call the inline function with a string constant
8645 or compound literal (@pxref{Compound Literals}) and does not return 1
8646 when you pass a constant numeric value to the inline function unless you
8647 specify the @option{-O} option.
8648
8649 You may also use @code{__builtin_constant_p} in initializers for static
8650 data. For instance, you can write
8651
8652 @smallexample
8653 static const int table[] = @{
8654 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
8655 /* @r{@dots{}} */
8656 @};
8657 @end smallexample
8658
8659 @noindent
8660 This is an acceptable initializer even if @var{EXPRESSION} is not a
8661 constant expression, including the case where
8662 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
8663 folded to a constant but @var{EXPRESSION} contains operands that are
8664 not otherwise permitted in a static initializer (for example,
8665 @code{0 && foo ()}). GCC must be more conservative about evaluating the
8666 built-in in this case, because it has no opportunity to perform
8667 optimization.
8668
8669 Previous versions of GCC did not accept this built-in in data
8670 initializers. The earliest version where it is completely safe is
8671 3.0.1.
8672 @end deftypefn
8673
8674 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
8675 @opindex fprofile-arcs
8676 You may use @code{__builtin_expect} to provide the compiler with
8677 branch prediction information. In general, you should prefer to
8678 use actual profile feedback for this (@option{-fprofile-arcs}), as
8679 programmers are notoriously bad at predicting how their programs
8680 actually perform. However, there are applications in which this
8681 data is hard to collect.
8682
8683 The return value is the value of @var{exp}, which should be an integral
8684 expression. The semantics of the built-in are that it is expected that
8685 @var{exp} == @var{c}. For example:
8686
8687 @smallexample
8688 if (__builtin_expect (x, 0))
8689 foo ();
8690 @end smallexample
8691
8692 @noindent
8693 indicates that we do not expect to call @code{foo}, since
8694 we expect @code{x} to be zero. Since you are limited to integral
8695 expressions for @var{exp}, you should use constructions such as
8696
8697 @smallexample
8698 if (__builtin_expect (ptr != NULL, 1))
8699 foo (*ptr);
8700 @end smallexample
8701
8702 @noindent
8703 when testing pointer or floating-point values.
8704 @end deftypefn
8705
8706 @deftypefn {Built-in Function} void __builtin_trap (void)
8707 This function causes the program to exit abnormally. GCC implements
8708 this function by using a target-dependent mechanism (such as
8709 intentionally executing an illegal instruction) or by calling
8710 @code{abort}. The mechanism used may vary from release to release so
8711 you should not rely on any particular implementation.
8712 @end deftypefn
8713
8714 @deftypefn {Built-in Function} void __builtin_unreachable (void)
8715 If control flow reaches the point of the @code{__builtin_unreachable},
8716 the program is undefined. It is useful in situations where the
8717 compiler cannot deduce the unreachability of the code.
8718
8719 One such case is immediately following an @code{asm} statement that
8720 either never terminates, or one that transfers control elsewhere
8721 and never returns. In this example, without the
8722 @code{__builtin_unreachable}, GCC issues a warning that control
8723 reaches the end of a non-void function. It also generates code
8724 to return after the @code{asm}.
8725
8726 @smallexample
8727 int f (int c, int v)
8728 @{
8729 if (c)
8730 @{
8731 return v;
8732 @}
8733 else
8734 @{
8735 asm("jmp error_handler");
8736 __builtin_unreachable ();
8737 @}
8738 @}
8739 @end smallexample
8740
8741 @noindent
8742 Because the @code{asm} statement unconditionally transfers control out
8743 of the function, control never reaches the end of the function
8744 body. The @code{__builtin_unreachable} is in fact unreachable and
8745 communicates this fact to the compiler.
8746
8747 Another use for @code{__builtin_unreachable} is following a call a
8748 function that never returns but that is not declared
8749 @code{__attribute__((noreturn))}, as in this example:
8750
8751 @smallexample
8752 void function_that_never_returns (void);
8753
8754 int g (int c)
8755 @{
8756 if (c)
8757 @{
8758 return 1;
8759 @}
8760 else
8761 @{
8762 function_that_never_returns ();
8763 __builtin_unreachable ();
8764 @}
8765 @}
8766 @end smallexample
8767
8768 @end deftypefn
8769
8770 @deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
8771 This function returns its first argument, and allows the compiler
8772 to assume that the returned pointer is at least @var{align} bytes
8773 aligned. This built-in can have either two or three arguments,
8774 if it has three, the third argument should have integer type, and
8775 if it is nonzero means misalignment offset. For example:
8776
8777 @smallexample
8778 void *x = __builtin_assume_aligned (arg, 16);
8779 @end smallexample
8780
8781 @noindent
8782 means that the compiler can assume @code{x}, set to @code{arg}, is at least
8783 16-byte aligned, while:
8784
8785 @smallexample
8786 void *x = __builtin_assume_aligned (arg, 32, 8);
8787 @end smallexample
8788
8789 @noindent
8790 means that the compiler can assume for @code{x}, set to @code{arg}, that
8791 @code{(char *) x - 8} is 32-byte aligned.
8792 @end deftypefn
8793
8794 @deftypefn {Built-in Function} int __builtin_LINE ()
8795 This function is the equivalent to the preprocessor @code{__LINE__}
8796 macro and returns the line number of the invocation of the built-in.
8797 In a C++ default argument for a function @var{F}, it gets the line number of
8798 the call to @var{F}.
8799 @end deftypefn
8800
8801 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
8802 This function is the equivalent to the preprocessor @code{__FUNCTION__}
8803 macro and returns the function name the invocation of the built-in is in.
8804 @end deftypefn
8805
8806 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
8807 This function is the equivalent to the preprocessor @code{__FILE__}
8808 macro and returns the file name the invocation of the built-in is in.
8809 In a C++ default argument for a function @var{F}, it gets the file name of
8810 the call to @var{F}.
8811 @end deftypefn
8812
8813 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
8814 This function is used to flush the processor's instruction cache for
8815 the region of memory between @var{begin} inclusive and @var{end}
8816 exclusive. Some targets require that the instruction cache be
8817 flushed, after modifying memory containing code, in order to obtain
8818 deterministic behavior.
8819
8820 If the target does not require instruction cache flushes,
8821 @code{__builtin___clear_cache} has no effect. Otherwise either
8822 instructions are emitted in-line to clear the instruction cache or a
8823 call to the @code{__clear_cache} function in libgcc is made.
8824 @end deftypefn
8825
8826 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
8827 This function is used to minimize cache-miss latency by moving data into
8828 a cache before it is accessed.
8829 You can insert calls to @code{__builtin_prefetch} into code for which
8830 you know addresses of data in memory that is likely to be accessed soon.
8831 If the target supports them, data prefetch instructions are generated.
8832 If the prefetch is done early enough before the access then the data will
8833 be in the cache by the time it is accessed.
8834
8835 The value of @var{addr} is the address of the memory to prefetch.
8836 There are two optional arguments, @var{rw} and @var{locality}.
8837 The value of @var{rw} is a compile-time constant one or zero; one
8838 means that the prefetch is preparing for a write to the memory address
8839 and zero, the default, means that the prefetch is preparing for a read.
8840 The value @var{locality} must be a compile-time constant integer between
8841 zero and three. A value of zero means that the data has no temporal
8842 locality, so it need not be left in the cache after the access. A value
8843 of three means that the data has a high degree of temporal locality and
8844 should be left in all levels of cache possible. Values of one and two
8845 mean, respectively, a low or moderate degree of temporal locality. The
8846 default is three.
8847
8848 @smallexample
8849 for (i = 0; i < n; i++)
8850 @{
8851 a[i] = a[i] + b[i];
8852 __builtin_prefetch (&a[i+j], 1, 1);
8853 __builtin_prefetch (&b[i+j], 0, 1);
8854 /* @r{@dots{}} */
8855 @}
8856 @end smallexample
8857
8858 Data prefetch does not generate faults if @var{addr} is invalid, but
8859 the address expression itself must be valid. For example, a prefetch
8860 of @code{p->next} does not fault if @code{p->next} is not a valid
8861 address, but evaluation faults if @code{p} is not a valid address.
8862
8863 If the target does not support data prefetch, the address expression
8864 is evaluated if it includes side effects but no other code is generated
8865 and GCC does not issue a warning.
8866 @end deftypefn
8867
8868 @deftypefn {Built-in Function} double __builtin_huge_val (void)
8869 Returns a positive infinity, if supported by the floating-point format,
8870 else @code{DBL_MAX}. This function is suitable for implementing the
8871 ISO C macro @code{HUGE_VAL}.
8872 @end deftypefn
8873
8874 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
8875 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
8876 @end deftypefn
8877
8878 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
8879 Similar to @code{__builtin_huge_val}, except the return
8880 type is @code{long double}.
8881 @end deftypefn
8882
8883 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
8884 This built-in implements the C99 fpclassify functionality. The first
8885 five int arguments should be the target library's notion of the
8886 possible FP classes and are used for return values. They must be
8887 constant values and they must appear in this order: @code{FP_NAN},
8888 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
8889 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
8890 to classify. GCC treats the last argument as type-generic, which
8891 means it does not do default promotion from float to double.
8892 @end deftypefn
8893
8894 @deftypefn {Built-in Function} double __builtin_inf (void)
8895 Similar to @code{__builtin_huge_val}, except a warning is generated
8896 if the target floating-point format does not support infinities.
8897 @end deftypefn
8898
8899 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
8900 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
8901 @end deftypefn
8902
8903 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
8904 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
8905 @end deftypefn
8906
8907 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
8908 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
8909 @end deftypefn
8910
8911 @deftypefn {Built-in Function} float __builtin_inff (void)
8912 Similar to @code{__builtin_inf}, except the return type is @code{float}.
8913 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
8914 @end deftypefn
8915
8916 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
8917 Similar to @code{__builtin_inf}, except the return
8918 type is @code{long double}.
8919 @end deftypefn
8920
8921 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
8922 Similar to @code{isinf}, except the return value is -1 for
8923 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
8924 Note while the parameter list is an
8925 ellipsis, this function only accepts exactly one floating-point
8926 argument. GCC treats this parameter as type-generic, which means it
8927 does not do default promotion from float to double.
8928 @end deftypefn
8929
8930 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
8931 This is an implementation of the ISO C99 function @code{nan}.
8932
8933 Since ISO C99 defines this function in terms of @code{strtod}, which we
8934 do not implement, a description of the parsing is in order. The string
8935 is parsed as by @code{strtol}; that is, the base is recognized by
8936 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
8937 in the significand such that the least significant bit of the number
8938 is at the least significant bit of the significand. The number is
8939 truncated to fit the significand field provided. The significand is
8940 forced to be a quiet NaN@.
8941
8942 This function, if given a string literal all of which would have been
8943 consumed by @code{strtol}, is evaluated early enough that it is considered a
8944 compile-time constant.
8945 @end deftypefn
8946
8947 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
8948 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
8949 @end deftypefn
8950
8951 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
8952 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
8953 @end deftypefn
8954
8955 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
8956 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
8957 @end deftypefn
8958
8959 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
8960 Similar to @code{__builtin_nan}, except the return type is @code{float}.
8961 @end deftypefn
8962
8963 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
8964 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
8965 @end deftypefn
8966
8967 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
8968 Similar to @code{__builtin_nan}, except the significand is forced
8969 to be a signaling NaN@. The @code{nans} function is proposed by
8970 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
8971 @end deftypefn
8972
8973 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
8974 Similar to @code{__builtin_nans}, except the return type is @code{float}.
8975 @end deftypefn
8976
8977 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
8978 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
8979 @end deftypefn
8980
8981 @deftypefn {Built-in Function} int __builtin_ffs (int x)
8982 Returns one plus the index of the least significant 1-bit of @var{x}, or
8983 if @var{x} is zero, returns zero.
8984 @end deftypefn
8985
8986 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
8987 Returns the number of leading 0-bits in @var{x}, starting at the most
8988 significant bit position. If @var{x} is 0, the result is undefined.
8989 @end deftypefn
8990
8991 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
8992 Returns the number of trailing 0-bits in @var{x}, starting at the least
8993 significant bit position. If @var{x} is 0, the result is undefined.
8994 @end deftypefn
8995
8996 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
8997 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
8998 number of bits following the most significant bit that are identical
8999 to it. There are no special cases for 0 or other values.
9000 @end deftypefn
9001
9002 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
9003 Returns the number of 1-bits in @var{x}.
9004 @end deftypefn
9005
9006 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
9007 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
9008 modulo 2.
9009 @end deftypefn
9010
9011 @deftypefn {Built-in Function} int __builtin_ffsl (long)
9012 Similar to @code{__builtin_ffs}, except the argument type is
9013 @code{long}.
9014 @end deftypefn
9015
9016 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
9017 Similar to @code{__builtin_clz}, except the argument type is
9018 @code{unsigned long}.
9019 @end deftypefn
9020
9021 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
9022 Similar to @code{__builtin_ctz}, except the argument type is
9023 @code{unsigned long}.
9024 @end deftypefn
9025
9026 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
9027 Similar to @code{__builtin_clrsb}, except the argument type is
9028 @code{long}.
9029 @end deftypefn
9030
9031 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
9032 Similar to @code{__builtin_popcount}, except the argument type is
9033 @code{unsigned long}.
9034 @end deftypefn
9035
9036 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
9037 Similar to @code{__builtin_parity}, except the argument type is
9038 @code{unsigned long}.
9039 @end deftypefn
9040
9041 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
9042 Similar to @code{__builtin_ffs}, except the argument type is
9043 @code{long long}.
9044 @end deftypefn
9045
9046 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
9047 Similar to @code{__builtin_clz}, except the argument type is
9048 @code{unsigned long long}.
9049 @end deftypefn
9050
9051 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
9052 Similar to @code{__builtin_ctz}, except the argument type is
9053 @code{unsigned long long}.
9054 @end deftypefn
9055
9056 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
9057 Similar to @code{__builtin_clrsb}, except the argument type is
9058 @code{long long}.
9059 @end deftypefn
9060
9061 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
9062 Similar to @code{__builtin_popcount}, except the argument type is
9063 @code{unsigned long long}.
9064 @end deftypefn
9065
9066 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
9067 Similar to @code{__builtin_parity}, except the argument type is
9068 @code{unsigned long long}.
9069 @end deftypefn
9070
9071 @deftypefn {Built-in Function} double __builtin_powi (double, int)
9072 Returns the first argument raised to the power of the second. Unlike the
9073 @code{pow} function no guarantees about precision and rounding are made.
9074 @end deftypefn
9075
9076 @deftypefn {Built-in Function} float __builtin_powif (float, int)
9077 Similar to @code{__builtin_powi}, except the argument and return types
9078 are @code{float}.
9079 @end deftypefn
9080
9081 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
9082 Similar to @code{__builtin_powi}, except the argument and return types
9083 are @code{long double}.
9084 @end deftypefn
9085
9086 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
9087 Returns @var{x} with the order of the bytes reversed; for example,
9088 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
9089 exactly 8 bits.
9090 @end deftypefn
9091
9092 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
9093 Similar to @code{__builtin_bswap16}, except the argument and return types
9094 are 32 bit.
9095 @end deftypefn
9096
9097 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
9098 Similar to @code{__builtin_bswap32}, except the argument and return types
9099 are 64 bit.
9100 @end deftypefn
9101
9102 @node Target Builtins
9103 @section Built-in Functions Specific to Particular Target Machines
9104
9105 On some target machines, GCC supports many built-in functions specific
9106 to those machines. Generally these generate calls to specific machine
9107 instructions, but allow the compiler to schedule those calls.
9108
9109 @menu
9110 * Alpha Built-in Functions::
9111 * Altera Nios II Built-in Functions::
9112 * ARC Built-in Functions::
9113 * ARC SIMD Built-in Functions::
9114 * ARM iWMMXt Built-in Functions::
9115 * ARM NEON Intrinsics::
9116 * ARM ACLE Intrinsics::
9117 * AVR Built-in Functions::
9118 * Blackfin Built-in Functions::
9119 * FR-V Built-in Functions::
9120 * X86 Built-in Functions::
9121 * X86 transactional memory intrinsics::
9122 * MIPS DSP Built-in Functions::
9123 * MIPS Paired-Single Support::
9124 * MIPS Loongson Built-in Functions::
9125 * Other MIPS Built-in Functions::
9126 * MSP430 Built-in Functions::
9127 * NDS32 Built-in Functions::
9128 * picoChip Built-in Functions::
9129 * PowerPC Built-in Functions::
9130 * PowerPC AltiVec/VSX Built-in Functions::
9131 * PowerPC Hardware Transactional Memory Built-in Functions::
9132 * RX Built-in Functions::
9133 * S/390 System z Built-in Functions::
9134 * SH Built-in Functions::
9135 * SPARC VIS Built-in Functions::
9136 * SPU Built-in Functions::
9137 * TI C6X Built-in Functions::
9138 * TILE-Gx Built-in Functions::
9139 * TILEPro Built-in Functions::
9140 @end menu
9141
9142 @node Alpha Built-in Functions
9143 @subsection Alpha Built-in Functions
9144
9145 These built-in functions are available for the Alpha family of
9146 processors, depending on the command-line switches used.
9147
9148 The following built-in functions are always available. They
9149 all generate the machine instruction that is part of the name.
9150
9151 @smallexample
9152 long __builtin_alpha_implver (void)
9153 long __builtin_alpha_rpcc (void)
9154 long __builtin_alpha_amask (long)
9155 long __builtin_alpha_cmpbge (long, long)
9156 long __builtin_alpha_extbl (long, long)
9157 long __builtin_alpha_extwl (long, long)
9158 long __builtin_alpha_extll (long, long)
9159 long __builtin_alpha_extql (long, long)
9160 long __builtin_alpha_extwh (long, long)
9161 long __builtin_alpha_extlh (long, long)
9162 long __builtin_alpha_extqh (long, long)
9163 long __builtin_alpha_insbl (long, long)
9164 long __builtin_alpha_inswl (long, long)
9165 long __builtin_alpha_insll (long, long)
9166 long __builtin_alpha_insql (long, long)
9167 long __builtin_alpha_inswh (long, long)
9168 long __builtin_alpha_inslh (long, long)
9169 long __builtin_alpha_insqh (long, long)
9170 long __builtin_alpha_mskbl (long, long)
9171 long __builtin_alpha_mskwl (long, long)
9172 long __builtin_alpha_mskll (long, long)
9173 long __builtin_alpha_mskql (long, long)
9174 long __builtin_alpha_mskwh (long, long)
9175 long __builtin_alpha_msklh (long, long)
9176 long __builtin_alpha_mskqh (long, long)
9177 long __builtin_alpha_umulh (long, long)
9178 long __builtin_alpha_zap (long, long)
9179 long __builtin_alpha_zapnot (long, long)
9180 @end smallexample
9181
9182 The following built-in functions are always with @option{-mmax}
9183 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
9184 later. They all generate the machine instruction that is part
9185 of the name.
9186
9187 @smallexample
9188 long __builtin_alpha_pklb (long)
9189 long __builtin_alpha_pkwb (long)
9190 long __builtin_alpha_unpkbl (long)
9191 long __builtin_alpha_unpkbw (long)
9192 long __builtin_alpha_minub8 (long, long)
9193 long __builtin_alpha_minsb8 (long, long)
9194 long __builtin_alpha_minuw4 (long, long)
9195 long __builtin_alpha_minsw4 (long, long)
9196 long __builtin_alpha_maxub8 (long, long)
9197 long __builtin_alpha_maxsb8 (long, long)
9198 long __builtin_alpha_maxuw4 (long, long)
9199 long __builtin_alpha_maxsw4 (long, long)
9200 long __builtin_alpha_perr (long, long)
9201 @end smallexample
9202
9203 The following built-in functions are always with @option{-mcix}
9204 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
9205 later. They all generate the machine instruction that is part
9206 of the name.
9207
9208 @smallexample
9209 long __builtin_alpha_cttz (long)
9210 long __builtin_alpha_ctlz (long)
9211 long __builtin_alpha_ctpop (long)
9212 @end smallexample
9213
9214 The following built-in functions are available on systems that use the OSF/1
9215 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
9216 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
9217 @code{rdval} and @code{wrval}.
9218
9219 @smallexample
9220 void *__builtin_thread_pointer (void)
9221 void __builtin_set_thread_pointer (void *)
9222 @end smallexample
9223
9224 @node Altera Nios II Built-in Functions
9225 @subsection Altera Nios II Built-in Functions
9226
9227 These built-in functions are available for the Altera Nios II
9228 family of processors.
9229
9230 The following built-in functions are always available. They
9231 all generate the machine instruction that is part of the name.
9232
9233 @example
9234 int __builtin_ldbio (volatile const void *)
9235 int __builtin_ldbuio (volatile const void *)
9236 int __builtin_ldhio (volatile const void *)
9237 int __builtin_ldhuio (volatile const void *)
9238 int __builtin_ldwio (volatile const void *)
9239 void __builtin_stbio (volatile void *, int)
9240 void __builtin_sthio (volatile void *, int)
9241 void __builtin_stwio (volatile void *, int)
9242 void __builtin_sync (void)
9243 int __builtin_rdctl (int)
9244 void __builtin_wrctl (int, int)
9245 @end example
9246
9247 The following built-in functions are always available. They
9248 all generate a Nios II Custom Instruction. The name of the
9249 function represents the types that the function takes and
9250 returns. The letter before the @code{n} is the return type
9251 or void if absent. The @code{n} represents the first parameter
9252 to all the custom instructions, the custom instruction number.
9253 The two letters after the @code{n} represent the up to two
9254 parameters to the function.
9255
9256 The letters represent the following data types:
9257 @table @code
9258 @item <no letter>
9259 @code{void} for return type and no parameter for parameter types.
9260
9261 @item i
9262 @code{int} for return type and parameter type
9263
9264 @item f
9265 @code{float} for return type and parameter type
9266
9267 @item p
9268 @code{void *} for return type and parameter type
9269
9270 @end table
9271
9272 And the function names are:
9273 @example
9274 void __builtin_custom_n (void)
9275 void __builtin_custom_ni (int)
9276 void __builtin_custom_nf (float)
9277 void __builtin_custom_np (void *)
9278 void __builtin_custom_nii (int, int)
9279 void __builtin_custom_nif (int, float)
9280 void __builtin_custom_nip (int, void *)
9281 void __builtin_custom_nfi (float, int)
9282 void __builtin_custom_nff (float, float)
9283 void __builtin_custom_nfp (float, void *)
9284 void __builtin_custom_npi (void *, int)
9285 void __builtin_custom_npf (void *, float)
9286 void __builtin_custom_npp (void *, void *)
9287 int __builtin_custom_in (void)
9288 int __builtin_custom_ini (int)
9289 int __builtin_custom_inf (float)
9290 int __builtin_custom_inp (void *)
9291 int __builtin_custom_inii (int, int)
9292 int __builtin_custom_inif (int, float)
9293 int __builtin_custom_inip (int, void *)
9294 int __builtin_custom_infi (float, int)
9295 int __builtin_custom_inff (float, float)
9296 int __builtin_custom_infp (float, void *)
9297 int __builtin_custom_inpi (void *, int)
9298 int __builtin_custom_inpf (void *, float)
9299 int __builtin_custom_inpp (void *, void *)
9300 float __builtin_custom_fn (void)
9301 float __builtin_custom_fni (int)
9302 float __builtin_custom_fnf (float)
9303 float __builtin_custom_fnp (void *)
9304 float __builtin_custom_fnii (int, int)
9305 float __builtin_custom_fnif (int, float)
9306 float __builtin_custom_fnip (int, void *)
9307 float __builtin_custom_fnfi (float, int)
9308 float __builtin_custom_fnff (float, float)
9309 float __builtin_custom_fnfp (float, void *)
9310 float __builtin_custom_fnpi (void *, int)
9311 float __builtin_custom_fnpf (void *, float)
9312 float __builtin_custom_fnpp (void *, void *)
9313 void * __builtin_custom_pn (void)
9314 void * __builtin_custom_pni (int)
9315 void * __builtin_custom_pnf (float)
9316 void * __builtin_custom_pnp (void *)
9317 void * __builtin_custom_pnii (int, int)
9318 void * __builtin_custom_pnif (int, float)
9319 void * __builtin_custom_pnip (int, void *)
9320 void * __builtin_custom_pnfi (float, int)
9321 void * __builtin_custom_pnff (float, float)
9322 void * __builtin_custom_pnfp (float, void *)
9323 void * __builtin_custom_pnpi (void *, int)
9324 void * __builtin_custom_pnpf (void *, float)
9325 void * __builtin_custom_pnpp (void *, void *)
9326 @end example
9327
9328 @node ARC Built-in Functions
9329 @subsection ARC Built-in Functions
9330
9331 The following built-in functions are provided for ARC targets. The
9332 built-ins generate the corresponding assembly instructions. In the
9333 examples given below, the generated code often requires an operand or
9334 result to be in a register. Where necessary further code will be
9335 generated to ensure this is true, but for brevity this is not
9336 described in each case.
9337
9338 @emph{Note:} Using a built-in to generate an instruction not supported
9339 by a target may cause problems. At present the compiler is not
9340 guaranteed to detect such misuse, and as a result an internal compiler
9341 error may be generated.
9342
9343 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
9344 Return 1 if @var{val} is known to have the byte alignment given
9345 by @var{alignval}, otherwise return 0.
9346 Note that this is different from
9347 @smallexample
9348 __alignof__(*(char *)@var{val}) >= alignval
9349 @end smallexample
9350 because __alignof__ sees only the type of the dereference, whereas
9351 __builtin_arc_align uses alignment information from the pointer
9352 as well as from the pointed-to type.
9353 The information available will depend on optimization level.
9354 @end deftypefn
9355
9356 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
9357 Generates
9358 @example
9359 brk
9360 @end example
9361 @end deftypefn
9362
9363 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
9364 The operand is the number of a register to be read. Generates:
9365 @example
9366 mov @var{dest}, r@var{regno}
9367 @end example
9368 where the value in @var{dest} will be the result returned from the
9369 built-in.
9370 @end deftypefn
9371
9372 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
9373 The first operand is the number of a register to be written, the
9374 second operand is a compile time constant to write into that
9375 register. Generates:
9376 @example
9377 mov r@var{regno}, @var{val}
9378 @end example
9379 @end deftypefn
9380
9381 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
9382 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
9383 Generates:
9384 @example
9385 divaw @var{dest}, @var{a}, @var{b}
9386 @end example
9387 where the value in @var{dest} will be the result returned from the
9388 built-in.
9389 @end deftypefn
9390
9391 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
9392 Generates
9393 @example
9394 flag @var{a}
9395 @end example
9396 @end deftypefn
9397
9398 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
9399 The operand, @var{auxv}, is the address of an auxiliary register and
9400 must be a compile time constant. Generates:
9401 @example
9402 lr @var{dest}, [@var{auxr}]
9403 @end example
9404 Where the value in @var{dest} will be the result returned from the
9405 built-in.
9406 @end deftypefn
9407
9408 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
9409 Only available with @option{-mmul64}. Generates:
9410 @example
9411 mul64 @var{a}, @var{b}
9412 @end example
9413 @end deftypefn
9414
9415 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
9416 Only available with @option{-mmul64}. Generates:
9417 @example
9418 mulu64 @var{a}, @var{b}
9419 @end example
9420 @end deftypefn
9421
9422 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
9423 Generates:
9424 @example
9425 nop
9426 @end example
9427 @end deftypefn
9428
9429 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
9430 Only valid if the @samp{norm} instruction is available through the
9431 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
9432 Generates:
9433 @example
9434 norm @var{dest}, @var{src}
9435 @end example
9436 Where the value in @var{dest} will be the result returned from the
9437 built-in.
9438 @end deftypefn
9439
9440 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
9441 Only valid if the @samp{normw} instruction is available through the
9442 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
9443 Generates:
9444 @example
9445 normw @var{dest}, @var{src}
9446 @end example
9447 Where the value in @var{dest} will be the result returned from the
9448 built-in.
9449 @end deftypefn
9450
9451 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
9452 Generates:
9453 @example
9454 rtie
9455 @end example
9456 @end deftypefn
9457
9458 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
9459 Generates:
9460 @example
9461 sleep @var{a}
9462 @end example
9463 @end deftypefn
9464
9465 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
9466 The first argument, @var{auxv}, is the address of an auxiliary
9467 register, the second argument, @var{val}, is a compile time constant
9468 to be written to the register. Generates:
9469 @example
9470 sr @var{auxr}, [@var{val}]
9471 @end example
9472 @end deftypefn
9473
9474 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
9475 Only valid with @option{-mswap}. Generates:
9476 @example
9477 swap @var{dest}, @var{src}
9478 @end example
9479 Where the value in @var{dest} will be the result returned from the
9480 built-in.
9481 @end deftypefn
9482
9483 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
9484 Generates:
9485 @example
9486 swi
9487 @end example
9488 @end deftypefn
9489
9490 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
9491 Only available with @option{-mcpu=ARC700}. Generates:
9492 @example
9493 sync
9494 @end example
9495 @end deftypefn
9496
9497 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
9498 Only available with @option{-mcpu=ARC700}. Generates:
9499 @example
9500 trap_s @var{c}
9501 @end example
9502 @end deftypefn
9503
9504 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
9505 Only available with @option{-mcpu=ARC700}. Generates:
9506 @example
9507 unimp_s
9508 @end example
9509 @end deftypefn
9510
9511 The instructions generated by the following builtins are not
9512 considered as candidates for scheduling. They are not moved around by
9513 the compiler during scheduling, and thus can be expected to appear
9514 where they are put in the C code:
9515 @example
9516 __builtin_arc_brk()
9517 __builtin_arc_core_read()
9518 __builtin_arc_core_write()
9519 __builtin_arc_flag()
9520 __builtin_arc_lr()
9521 __builtin_arc_sleep()
9522 __builtin_arc_sr()
9523 __builtin_arc_swi()
9524 @end example
9525
9526 @node ARC SIMD Built-in Functions
9527 @subsection ARC SIMD Built-in Functions
9528
9529 SIMD builtins provided by the compiler can be used to generate the
9530 vector instructions. This section describes the available builtins
9531 and their usage in programs. With the @option{-msimd} option, the
9532 compiler provides 128-bit vector types, which can be specified using
9533 the @code{vector_size} attribute. The header file @file{arc-simd.h}
9534 can be included to use the following predefined types:
9535 @example
9536 typedef int __v4si __attribute__((vector_size(16)));
9537 typedef short __v8hi __attribute__((vector_size(16)));
9538 @end example
9539
9540 These types can be used to define 128-bit variables. The built-in
9541 functions listed in the following section can be used on these
9542 variables to generate the vector operations.
9543
9544 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
9545 @file{arc-simd.h} also provides equivalent macros called
9546 @code{_@var{someinsn}} that can be used for programming ease and
9547 improved readability. The following macros for DMA control are also
9548 provided:
9549 @example
9550 #define _setup_dma_in_channel_reg _vdiwr
9551 #define _setup_dma_out_channel_reg _vdowr
9552 @end example
9553
9554 The following is a complete list of all the SIMD built-ins provided
9555 for ARC, grouped by calling signature.
9556
9557 The following take two @code{__v8hi} arguments and return a
9558 @code{__v8hi} result:
9559 @example
9560 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
9561 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
9562 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
9563 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
9564 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
9565 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
9566 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
9567 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
9568 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
9569 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
9570 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
9571 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
9572 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
9573 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
9574 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
9575 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
9576 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
9577 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
9578 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
9579 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
9580 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
9581 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
9582 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
9583 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
9584 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
9585 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
9586 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
9587 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
9588 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
9589 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
9590 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
9591 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
9592 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
9593 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
9594 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
9595 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
9596 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
9597 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
9598 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
9599 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
9600 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
9601 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
9602 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
9603 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
9604 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
9605 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
9606 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
9607 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
9608 @end example
9609
9610 The following take one @code{__v8hi} and one @code{int} argument and return a
9611 @code{__v8hi} result:
9612
9613 @example
9614 __v8hi __builtin_arc_vbaddw (__v8hi, int)
9615 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
9616 __v8hi __builtin_arc_vbminw (__v8hi, int)
9617 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
9618 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
9619 __v8hi __builtin_arc_vbmulw (__v8hi, int)
9620 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
9621 __v8hi __builtin_arc_vbsubw (__v8hi, int)
9622 @end example
9623
9624 The following take one @code{__v8hi} argument and one @code{int} argument which
9625 must be a 3-bit compile time constant indicating a register number
9626 I0-I7. They return a @code{__v8hi} result.
9627 @example
9628 __v8hi __builtin_arc_vasrw (__v8hi, const int)
9629 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
9630 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
9631 @end example
9632
9633 The following take one @code{__v8hi} argument and one @code{int}
9634 argument which must be a 6-bit compile time constant. They return a
9635 @code{__v8hi} result.
9636 @example
9637 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
9638 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
9639 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
9640 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
9641 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
9642 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
9643 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
9644 @end example
9645
9646 The following take one @code{__v8hi} argument and one @code{int} argument which
9647 must be a 8-bit compile time constant. They return a @code{__v8hi}
9648 result.
9649 @example
9650 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
9651 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
9652 __v8hi __builtin_arc_vmvw (__v8hi, const int)
9653 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
9654 @end example
9655
9656 The following take two @code{int} arguments, the second of which which
9657 must be a 8-bit compile time constant. They return a @code{__v8hi}
9658 result:
9659 @example
9660 __v8hi __builtin_arc_vmovaw (int, const int)
9661 __v8hi __builtin_arc_vmovw (int, const int)
9662 __v8hi __builtin_arc_vmovzw (int, const int)
9663 @end example
9664
9665 The following take a single @code{__v8hi} argument and return a
9666 @code{__v8hi} result:
9667 @example
9668 __v8hi __builtin_arc_vabsaw (__v8hi)
9669 __v8hi __builtin_arc_vabsw (__v8hi)
9670 __v8hi __builtin_arc_vaddsuw (__v8hi)
9671 __v8hi __builtin_arc_vexch1 (__v8hi)
9672 __v8hi __builtin_arc_vexch2 (__v8hi)
9673 __v8hi __builtin_arc_vexch4 (__v8hi)
9674 __v8hi __builtin_arc_vsignw (__v8hi)
9675 __v8hi __builtin_arc_vupbaw (__v8hi)
9676 __v8hi __builtin_arc_vupbw (__v8hi)
9677 __v8hi __builtin_arc_vupsbaw (__v8hi)
9678 __v8hi __builtin_arc_vupsbw (__v8hi)
9679 @end example
9680
9681 The followign take two @code{int} arguments and return no result:
9682 @example
9683 void __builtin_arc_vdirun (int, int)
9684 void __builtin_arc_vdorun (int, int)
9685 @end example
9686
9687 The following take two @code{int} arguments and return no result. The
9688 first argument must a 3-bit compile time constant indicating one of
9689 the DR0-DR7 DMA setup channels:
9690 @example
9691 void __builtin_arc_vdiwr (const int, int)
9692 void __builtin_arc_vdowr (const int, int)
9693 @end example
9694
9695 The following take an @code{int} argument and return no result:
9696 @example
9697 void __builtin_arc_vendrec (int)
9698 void __builtin_arc_vrec (int)
9699 void __builtin_arc_vrecrun (int)
9700 void __builtin_arc_vrun (int)
9701 @end example
9702
9703 The following take a @code{__v8hi} argument and two @code{int}
9704 arguments and return a @code{__v8hi} result. The second argument must
9705 be a 3-bit compile time constants, indicating one the registers I0-I7,
9706 and the third argument must be an 8-bit compile time constant.
9707
9708 @emph{Note:} Although the equivalent hardware instructions do not take
9709 an SIMD register as an operand, these builtins overwrite the relevant
9710 bits of the @code{__v8hi} register provided as the first argument with
9711 the value loaded from the @code{[Ib, u8]} location in the SDM.
9712
9713 @example
9714 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
9715 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
9716 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
9717 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
9718 @end example
9719
9720 The following take two @code{int} arguments and return a @code{__v8hi}
9721 result. The first argument must be a 3-bit compile time constants,
9722 indicating one the registers I0-I7, and the second argument must be an
9723 8-bit compile time constant.
9724
9725 @example
9726 __v8hi __builtin_arc_vld128 (const int, const int)
9727 __v8hi __builtin_arc_vld64w (const int, const int)
9728 @end example
9729
9730 The following take a @code{__v8hi} argument and two @code{int}
9731 arguments and return no result. The second argument must be a 3-bit
9732 compile time constants, indicating one the registers I0-I7, and the
9733 third argument must be an 8-bit compile time constant.
9734
9735 @example
9736 void __builtin_arc_vst128 (__v8hi, const int, const int)
9737 void __builtin_arc_vst64 (__v8hi, const int, const int)
9738 @end example
9739
9740 The following take a @code{__v8hi} argument and three @code{int}
9741 arguments and return no result. The second argument must be a 3-bit
9742 compile-time constant, identifying the 16-bit sub-register to be
9743 stored, the third argument must be a 3-bit compile time constants,
9744 indicating one the registers I0-I7, and the fourth argument must be an
9745 8-bit compile time constant.
9746
9747 @example
9748 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
9749 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
9750 @end example
9751
9752 @node ARM iWMMXt Built-in Functions
9753 @subsection ARM iWMMXt Built-in Functions
9754
9755 These built-in functions are available for the ARM family of
9756 processors when the @option{-mcpu=iwmmxt} switch is used:
9757
9758 @smallexample
9759 typedef int v2si __attribute__ ((vector_size (8)));
9760 typedef short v4hi __attribute__ ((vector_size (8)));
9761 typedef char v8qi __attribute__ ((vector_size (8)));
9762
9763 int __builtin_arm_getwcgr0 (void)
9764 void __builtin_arm_setwcgr0 (int)
9765 int __builtin_arm_getwcgr1 (void)
9766 void __builtin_arm_setwcgr1 (int)
9767 int __builtin_arm_getwcgr2 (void)
9768 void __builtin_arm_setwcgr2 (int)
9769 int __builtin_arm_getwcgr3 (void)
9770 void __builtin_arm_setwcgr3 (int)
9771 int __builtin_arm_textrmsb (v8qi, int)
9772 int __builtin_arm_textrmsh (v4hi, int)
9773 int __builtin_arm_textrmsw (v2si, int)
9774 int __builtin_arm_textrmub (v8qi, int)
9775 int __builtin_arm_textrmuh (v4hi, int)
9776 int __builtin_arm_textrmuw (v2si, int)
9777 v8qi __builtin_arm_tinsrb (v8qi, int, int)
9778 v4hi __builtin_arm_tinsrh (v4hi, int, int)
9779 v2si __builtin_arm_tinsrw (v2si, int, int)
9780 long long __builtin_arm_tmia (long long, int, int)
9781 long long __builtin_arm_tmiabb (long long, int, int)
9782 long long __builtin_arm_tmiabt (long long, int, int)
9783 long long __builtin_arm_tmiaph (long long, int, int)
9784 long long __builtin_arm_tmiatb (long long, int, int)
9785 long long __builtin_arm_tmiatt (long long, int, int)
9786 int __builtin_arm_tmovmskb (v8qi)
9787 int __builtin_arm_tmovmskh (v4hi)
9788 int __builtin_arm_tmovmskw (v2si)
9789 long long __builtin_arm_waccb (v8qi)
9790 long long __builtin_arm_wacch (v4hi)
9791 long long __builtin_arm_waccw (v2si)
9792 v8qi __builtin_arm_waddb (v8qi, v8qi)
9793 v8qi __builtin_arm_waddbss (v8qi, v8qi)
9794 v8qi __builtin_arm_waddbus (v8qi, v8qi)
9795 v4hi __builtin_arm_waddh (v4hi, v4hi)
9796 v4hi __builtin_arm_waddhss (v4hi, v4hi)
9797 v4hi __builtin_arm_waddhus (v4hi, v4hi)
9798 v2si __builtin_arm_waddw (v2si, v2si)
9799 v2si __builtin_arm_waddwss (v2si, v2si)
9800 v2si __builtin_arm_waddwus (v2si, v2si)
9801 v8qi __builtin_arm_walign (v8qi, v8qi, int)
9802 long long __builtin_arm_wand(long long, long long)
9803 long long __builtin_arm_wandn (long long, long long)
9804 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
9805 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
9806 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
9807 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
9808 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
9809 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
9810 v2si __builtin_arm_wcmpeqw (v2si, v2si)
9811 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
9812 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
9813 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
9814 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
9815 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
9816 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
9817 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
9818 long long __builtin_arm_wmacsz (v4hi, v4hi)
9819 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
9820 long long __builtin_arm_wmacuz (v4hi, v4hi)
9821 v4hi __builtin_arm_wmadds (v4hi, v4hi)
9822 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
9823 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
9824 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
9825 v2si __builtin_arm_wmaxsw (v2si, v2si)
9826 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
9827 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
9828 v2si __builtin_arm_wmaxuw (v2si, v2si)
9829 v8qi __builtin_arm_wminsb (v8qi, v8qi)
9830 v4hi __builtin_arm_wminsh (v4hi, v4hi)
9831 v2si __builtin_arm_wminsw (v2si, v2si)
9832 v8qi __builtin_arm_wminub (v8qi, v8qi)
9833 v4hi __builtin_arm_wminuh (v4hi, v4hi)
9834 v2si __builtin_arm_wminuw (v2si, v2si)
9835 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
9836 v4hi __builtin_arm_wmulul (v4hi, v4hi)
9837 v4hi __builtin_arm_wmulum (v4hi, v4hi)
9838 long long __builtin_arm_wor (long long, long long)
9839 v2si __builtin_arm_wpackdss (long long, long long)
9840 v2si __builtin_arm_wpackdus (long long, long long)
9841 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
9842 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
9843 v4hi __builtin_arm_wpackwss (v2si, v2si)
9844 v4hi __builtin_arm_wpackwus (v2si, v2si)
9845 long long __builtin_arm_wrord (long long, long long)
9846 long long __builtin_arm_wrordi (long long, int)
9847 v4hi __builtin_arm_wrorh (v4hi, long long)
9848 v4hi __builtin_arm_wrorhi (v4hi, int)
9849 v2si __builtin_arm_wrorw (v2si, long long)
9850 v2si __builtin_arm_wrorwi (v2si, int)
9851 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
9852 v2si __builtin_arm_wsadbz (v8qi, v8qi)
9853 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
9854 v2si __builtin_arm_wsadhz (v4hi, v4hi)
9855 v4hi __builtin_arm_wshufh (v4hi, int)
9856 long long __builtin_arm_wslld (long long, long long)
9857 long long __builtin_arm_wslldi (long long, int)
9858 v4hi __builtin_arm_wsllh (v4hi, long long)
9859 v4hi __builtin_arm_wsllhi (v4hi, int)
9860 v2si __builtin_arm_wsllw (v2si, long long)
9861 v2si __builtin_arm_wsllwi (v2si, int)
9862 long long __builtin_arm_wsrad (long long, long long)
9863 long long __builtin_arm_wsradi (long long, int)
9864 v4hi __builtin_arm_wsrah (v4hi, long long)
9865 v4hi __builtin_arm_wsrahi (v4hi, int)
9866 v2si __builtin_arm_wsraw (v2si, long long)
9867 v2si __builtin_arm_wsrawi (v2si, int)
9868 long long __builtin_arm_wsrld (long long, long long)
9869 long long __builtin_arm_wsrldi (long long, int)
9870 v4hi __builtin_arm_wsrlh (v4hi, long long)
9871 v4hi __builtin_arm_wsrlhi (v4hi, int)
9872 v2si __builtin_arm_wsrlw (v2si, long long)
9873 v2si __builtin_arm_wsrlwi (v2si, int)
9874 v8qi __builtin_arm_wsubb (v8qi, v8qi)
9875 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
9876 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
9877 v4hi __builtin_arm_wsubh (v4hi, v4hi)
9878 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
9879 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
9880 v2si __builtin_arm_wsubw (v2si, v2si)
9881 v2si __builtin_arm_wsubwss (v2si, v2si)
9882 v2si __builtin_arm_wsubwus (v2si, v2si)
9883 v4hi __builtin_arm_wunpckehsb (v8qi)
9884 v2si __builtin_arm_wunpckehsh (v4hi)
9885 long long __builtin_arm_wunpckehsw (v2si)
9886 v4hi __builtin_arm_wunpckehub (v8qi)
9887 v2si __builtin_arm_wunpckehuh (v4hi)
9888 long long __builtin_arm_wunpckehuw (v2si)
9889 v4hi __builtin_arm_wunpckelsb (v8qi)
9890 v2si __builtin_arm_wunpckelsh (v4hi)
9891 long long __builtin_arm_wunpckelsw (v2si)
9892 v4hi __builtin_arm_wunpckelub (v8qi)
9893 v2si __builtin_arm_wunpckeluh (v4hi)
9894 long long __builtin_arm_wunpckeluw (v2si)
9895 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
9896 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
9897 v2si __builtin_arm_wunpckihw (v2si, v2si)
9898 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
9899 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
9900 v2si __builtin_arm_wunpckilw (v2si, v2si)
9901 long long __builtin_arm_wxor (long long, long long)
9902 long long __builtin_arm_wzero ()
9903 @end smallexample
9904
9905 @node ARM NEON Intrinsics
9906 @subsection ARM NEON Intrinsics
9907
9908 These built-in intrinsics for the ARM Advanced SIMD extension are available
9909 when the @option{-mfpu=neon} switch is used:
9910
9911 @include arm-neon-intrinsics.texi
9912
9913 @node ARM ACLE Intrinsics
9914 @subsection ARM ACLE Intrinsics
9915
9916 These built-in intrinsics for the ARMv8-A CRC32 extension are available when
9917 the @option{-march=armv8-a+crc} switch is used:
9918
9919 @include arm-acle-intrinsics.texi
9920
9921 @node AVR Built-in Functions
9922 @subsection AVR Built-in Functions
9923
9924 For each built-in function for AVR, there is an equally named,
9925 uppercase built-in macro defined. That way users can easily query if
9926 or if not a specific built-in is implemented or not. For example, if
9927 @code{__builtin_avr_nop} is available the macro
9928 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
9929
9930 The following built-in functions map to the respective machine
9931 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
9932 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
9933 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
9934 as library call if no hardware multiplier is available.
9935
9936 @smallexample
9937 void __builtin_avr_nop (void)
9938 void __builtin_avr_sei (void)
9939 void __builtin_avr_cli (void)
9940 void __builtin_avr_sleep (void)
9941 void __builtin_avr_wdr (void)
9942 unsigned char __builtin_avr_swap (unsigned char)
9943 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
9944 int __builtin_avr_fmuls (char, char)
9945 int __builtin_avr_fmulsu (char, unsigned char)
9946 @end smallexample
9947
9948 In order to delay execution for a specific number of cycles, GCC
9949 implements
9950 @smallexample
9951 void __builtin_avr_delay_cycles (unsigned long ticks)
9952 @end smallexample
9953
9954 @noindent
9955 @code{ticks} is the number of ticks to delay execution. Note that this
9956 built-in does not take into account the effect of interrupts that
9957 might increase delay time. @code{ticks} must be a compile-time
9958 integer constant; delays with a variable number of cycles are not supported.
9959
9960 @smallexample
9961 char __builtin_avr_flash_segment (const __memx void*)
9962 @end smallexample
9963
9964 @noindent
9965 This built-in takes a byte address to the 24-bit
9966 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
9967 the number of the flash segment (the 64 KiB chunk) where the address
9968 points to. Counting starts at @code{0}.
9969 If the address does not point to flash memory, return @code{-1}.
9970
9971 @smallexample
9972 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
9973 @end smallexample
9974
9975 @noindent
9976 Insert bits from @var{bits} into @var{val} and return the resulting
9977 value. The nibbles of @var{map} determine how the insertion is
9978 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
9979 @enumerate
9980 @item If @var{X} is @code{0xf},
9981 then the @var{n}-th bit of @var{val} is returned unaltered.
9982
9983 @item If X is in the range 0@dots{}7,
9984 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
9985
9986 @item If X is in the range 8@dots{}@code{0xe},
9987 then the @var{n}-th result bit is undefined.
9988 @end enumerate
9989
9990 @noindent
9991 One typical use case for this built-in is adjusting input and
9992 output values to non-contiguous port layouts. Some examples:
9993
9994 @smallexample
9995 // same as val, bits is unused
9996 __builtin_avr_insert_bits (0xffffffff, bits, val)
9997 @end smallexample
9998
9999 @smallexample
10000 // same as bits, val is unused
10001 __builtin_avr_insert_bits (0x76543210, bits, val)
10002 @end smallexample
10003
10004 @smallexample
10005 // same as rotating bits by 4
10006 __builtin_avr_insert_bits (0x32107654, bits, 0)
10007 @end smallexample
10008
10009 @smallexample
10010 // high nibble of result is the high nibble of val
10011 // low nibble of result is the low nibble of bits
10012 __builtin_avr_insert_bits (0xffff3210, bits, val)
10013 @end smallexample
10014
10015 @smallexample
10016 // reverse the bit order of bits
10017 __builtin_avr_insert_bits (0x01234567, bits, 0)
10018 @end smallexample
10019
10020 @node Blackfin Built-in Functions
10021 @subsection Blackfin Built-in Functions
10022
10023 Currently, there are two Blackfin-specific built-in functions. These are
10024 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
10025 using inline assembly; by using these built-in functions the compiler can
10026 automatically add workarounds for hardware errata involving these
10027 instructions. These functions are named as follows:
10028
10029 @smallexample
10030 void __builtin_bfin_csync (void)
10031 void __builtin_bfin_ssync (void)
10032 @end smallexample
10033
10034 @node FR-V Built-in Functions
10035 @subsection FR-V Built-in Functions
10036
10037 GCC provides many FR-V-specific built-in functions. In general,
10038 these functions are intended to be compatible with those described
10039 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
10040 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
10041 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
10042 pointer rather than by value.
10043
10044 Most of the functions are named after specific FR-V instructions.
10045 Such functions are said to be ``directly mapped'' and are summarized
10046 here in tabular form.
10047
10048 @menu
10049 * Argument Types::
10050 * Directly-mapped Integer Functions::
10051 * Directly-mapped Media Functions::
10052 * Raw read/write Functions::
10053 * Other Built-in Functions::
10054 @end menu
10055
10056 @node Argument Types
10057 @subsubsection Argument Types
10058
10059 The arguments to the built-in functions can be divided into three groups:
10060 register numbers, compile-time constants and run-time values. In order
10061 to make this classification clear at a glance, the arguments and return
10062 values are given the following pseudo types:
10063
10064 @multitable @columnfractions .20 .30 .15 .35
10065 @item Pseudo type @tab Real C type @tab Constant? @tab Description
10066 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
10067 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
10068 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
10069 @item @code{uw2} @tab @code{unsigned long long} @tab No
10070 @tab an unsigned doubleword
10071 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
10072 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
10073 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
10074 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
10075 @end multitable
10076
10077 These pseudo types are not defined by GCC, they are simply a notational
10078 convenience used in this manual.
10079
10080 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
10081 and @code{sw2} are evaluated at run time. They correspond to
10082 register operands in the underlying FR-V instructions.
10083
10084 @code{const} arguments represent immediate operands in the underlying
10085 FR-V instructions. They must be compile-time constants.
10086
10087 @code{acc} arguments are evaluated at compile time and specify the number
10088 of an accumulator register. For example, an @code{acc} argument of 2
10089 selects the ACC2 register.
10090
10091 @code{iacc} arguments are similar to @code{acc} arguments but specify the
10092 number of an IACC register. See @pxref{Other Built-in Functions}
10093 for more details.
10094
10095 @node Directly-mapped Integer Functions
10096 @subsubsection Directly-mapped Integer Functions
10097
10098 The functions listed below map directly to FR-V I-type instructions.
10099
10100 @multitable @columnfractions .45 .32 .23
10101 @item Function prototype @tab Example usage @tab Assembly output
10102 @item @code{sw1 __ADDSS (sw1, sw1)}
10103 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
10104 @tab @code{ADDSS @var{a},@var{b},@var{c}}
10105 @item @code{sw1 __SCAN (sw1, sw1)}
10106 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
10107 @tab @code{SCAN @var{a},@var{b},@var{c}}
10108 @item @code{sw1 __SCUTSS (sw1)}
10109 @tab @code{@var{b} = __SCUTSS (@var{a})}
10110 @tab @code{SCUTSS @var{a},@var{b}}
10111 @item @code{sw1 __SLASS (sw1, sw1)}
10112 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
10113 @tab @code{SLASS @var{a},@var{b},@var{c}}
10114 @item @code{void __SMASS (sw1, sw1)}
10115 @tab @code{__SMASS (@var{a}, @var{b})}
10116 @tab @code{SMASS @var{a},@var{b}}
10117 @item @code{void __SMSSS (sw1, sw1)}
10118 @tab @code{__SMSSS (@var{a}, @var{b})}
10119 @tab @code{SMSSS @var{a},@var{b}}
10120 @item @code{void __SMU (sw1, sw1)}
10121 @tab @code{__SMU (@var{a}, @var{b})}
10122 @tab @code{SMU @var{a},@var{b}}
10123 @item @code{sw2 __SMUL (sw1, sw1)}
10124 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
10125 @tab @code{SMUL @var{a},@var{b},@var{c}}
10126 @item @code{sw1 __SUBSS (sw1, sw1)}
10127 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
10128 @tab @code{SUBSS @var{a},@var{b},@var{c}}
10129 @item @code{uw2 __UMUL (uw1, uw1)}
10130 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
10131 @tab @code{UMUL @var{a},@var{b},@var{c}}
10132 @end multitable
10133
10134 @node Directly-mapped Media Functions
10135 @subsubsection Directly-mapped Media Functions
10136
10137 The functions listed below map directly to FR-V M-type instructions.
10138
10139 @multitable @columnfractions .45 .32 .23
10140 @item Function prototype @tab Example usage @tab Assembly output
10141 @item @code{uw1 __MABSHS (sw1)}
10142 @tab @code{@var{b} = __MABSHS (@var{a})}
10143 @tab @code{MABSHS @var{a},@var{b}}
10144 @item @code{void __MADDACCS (acc, acc)}
10145 @tab @code{__MADDACCS (@var{b}, @var{a})}
10146 @tab @code{MADDACCS @var{a},@var{b}}
10147 @item @code{sw1 __MADDHSS (sw1, sw1)}
10148 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
10149 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
10150 @item @code{uw1 __MADDHUS (uw1, uw1)}
10151 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
10152 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
10153 @item @code{uw1 __MAND (uw1, uw1)}
10154 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
10155 @tab @code{MAND @var{a},@var{b},@var{c}}
10156 @item @code{void __MASACCS (acc, acc)}
10157 @tab @code{__MASACCS (@var{b}, @var{a})}
10158 @tab @code{MASACCS @var{a},@var{b}}
10159 @item @code{uw1 __MAVEH (uw1, uw1)}
10160 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
10161 @tab @code{MAVEH @var{a},@var{b},@var{c}}
10162 @item @code{uw2 __MBTOH (uw1)}
10163 @tab @code{@var{b} = __MBTOH (@var{a})}
10164 @tab @code{MBTOH @var{a},@var{b}}
10165 @item @code{void __MBTOHE (uw1 *, uw1)}
10166 @tab @code{__MBTOHE (&@var{b}, @var{a})}
10167 @tab @code{MBTOHE @var{a},@var{b}}
10168 @item @code{void __MCLRACC (acc)}
10169 @tab @code{__MCLRACC (@var{a})}
10170 @tab @code{MCLRACC @var{a}}
10171 @item @code{void __MCLRACCA (void)}
10172 @tab @code{__MCLRACCA ()}
10173 @tab @code{MCLRACCA}
10174 @item @code{uw1 __Mcop1 (uw1, uw1)}
10175 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
10176 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
10177 @item @code{uw1 __Mcop2 (uw1, uw1)}
10178 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
10179 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
10180 @item @code{uw1 __MCPLHI (uw2, const)}
10181 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
10182 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
10183 @item @code{uw1 __MCPLI (uw2, const)}
10184 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
10185 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
10186 @item @code{void __MCPXIS (acc, sw1, sw1)}
10187 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
10188 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
10189 @item @code{void __MCPXIU (acc, uw1, uw1)}
10190 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
10191 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
10192 @item @code{void __MCPXRS (acc, sw1, sw1)}
10193 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
10194 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
10195 @item @code{void __MCPXRU (acc, uw1, uw1)}
10196 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
10197 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
10198 @item @code{uw1 __MCUT (acc, uw1)}
10199 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
10200 @tab @code{MCUT @var{a},@var{b},@var{c}}
10201 @item @code{uw1 __MCUTSS (acc, sw1)}
10202 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
10203 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
10204 @item @code{void __MDADDACCS (acc, acc)}
10205 @tab @code{__MDADDACCS (@var{b}, @var{a})}
10206 @tab @code{MDADDACCS @var{a},@var{b}}
10207 @item @code{void __MDASACCS (acc, acc)}
10208 @tab @code{__MDASACCS (@var{b}, @var{a})}
10209 @tab @code{MDASACCS @var{a},@var{b}}
10210 @item @code{uw2 __MDCUTSSI (acc, const)}
10211 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
10212 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
10213 @item @code{uw2 __MDPACKH (uw2, uw2)}
10214 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
10215 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
10216 @item @code{uw2 __MDROTLI (uw2, const)}
10217 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
10218 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
10219 @item @code{void __MDSUBACCS (acc, acc)}
10220 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
10221 @tab @code{MDSUBACCS @var{a},@var{b}}
10222 @item @code{void __MDUNPACKH (uw1 *, uw2)}
10223 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
10224 @tab @code{MDUNPACKH @var{a},@var{b}}
10225 @item @code{uw2 __MEXPDHD (uw1, const)}
10226 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
10227 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
10228 @item @code{uw1 __MEXPDHW (uw1, const)}
10229 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
10230 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
10231 @item @code{uw1 __MHDSETH (uw1, const)}
10232 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
10233 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
10234 @item @code{sw1 __MHDSETS (const)}
10235 @tab @code{@var{b} = __MHDSETS (@var{a})}
10236 @tab @code{MHDSETS #@var{a},@var{b}}
10237 @item @code{uw1 __MHSETHIH (uw1, const)}
10238 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
10239 @tab @code{MHSETHIH #@var{a},@var{b}}
10240 @item @code{sw1 __MHSETHIS (sw1, const)}
10241 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
10242 @tab @code{MHSETHIS #@var{a},@var{b}}
10243 @item @code{uw1 __MHSETLOH (uw1, const)}
10244 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
10245 @tab @code{MHSETLOH #@var{a},@var{b}}
10246 @item @code{sw1 __MHSETLOS (sw1, const)}
10247 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
10248 @tab @code{MHSETLOS #@var{a},@var{b}}
10249 @item @code{uw1 __MHTOB (uw2)}
10250 @tab @code{@var{b} = __MHTOB (@var{a})}
10251 @tab @code{MHTOB @var{a},@var{b}}
10252 @item @code{void __MMACHS (acc, sw1, sw1)}
10253 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
10254 @tab @code{MMACHS @var{a},@var{b},@var{c}}
10255 @item @code{void __MMACHU (acc, uw1, uw1)}
10256 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
10257 @tab @code{MMACHU @var{a},@var{b},@var{c}}
10258 @item @code{void __MMRDHS (acc, sw1, sw1)}
10259 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
10260 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
10261 @item @code{void __MMRDHU (acc, uw1, uw1)}
10262 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
10263 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
10264 @item @code{void __MMULHS (acc, sw1, sw1)}
10265 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
10266 @tab @code{MMULHS @var{a},@var{b},@var{c}}
10267 @item @code{void __MMULHU (acc, uw1, uw1)}
10268 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
10269 @tab @code{MMULHU @var{a},@var{b},@var{c}}
10270 @item @code{void __MMULXHS (acc, sw1, sw1)}
10271 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
10272 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
10273 @item @code{void __MMULXHU (acc, uw1, uw1)}
10274 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
10275 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
10276 @item @code{uw1 __MNOT (uw1)}
10277 @tab @code{@var{b} = __MNOT (@var{a})}
10278 @tab @code{MNOT @var{a},@var{b}}
10279 @item @code{uw1 __MOR (uw1, uw1)}
10280 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
10281 @tab @code{MOR @var{a},@var{b},@var{c}}
10282 @item @code{uw1 __MPACKH (uh, uh)}
10283 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
10284 @tab @code{MPACKH @var{a},@var{b},@var{c}}
10285 @item @code{sw2 __MQADDHSS (sw2, sw2)}
10286 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
10287 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
10288 @item @code{uw2 __MQADDHUS (uw2, uw2)}
10289 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
10290 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
10291 @item @code{void __MQCPXIS (acc, sw2, sw2)}
10292 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
10293 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
10294 @item @code{void __MQCPXIU (acc, uw2, uw2)}
10295 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
10296 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
10297 @item @code{void __MQCPXRS (acc, sw2, sw2)}
10298 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
10299 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
10300 @item @code{void __MQCPXRU (acc, uw2, uw2)}
10301 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
10302 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
10303 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
10304 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
10305 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
10306 @item @code{sw2 __MQLMTHS (sw2, sw2)}
10307 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
10308 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
10309 @item @code{void __MQMACHS (acc, sw2, sw2)}
10310 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
10311 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
10312 @item @code{void __MQMACHU (acc, uw2, uw2)}
10313 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
10314 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
10315 @item @code{void __MQMACXHS (acc, sw2, sw2)}
10316 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
10317 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
10318 @item @code{void __MQMULHS (acc, sw2, sw2)}
10319 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
10320 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
10321 @item @code{void __MQMULHU (acc, uw2, uw2)}
10322 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
10323 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
10324 @item @code{void __MQMULXHS (acc, sw2, sw2)}
10325 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
10326 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
10327 @item @code{void __MQMULXHU (acc, uw2, uw2)}
10328 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
10329 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
10330 @item @code{sw2 __MQSATHS (sw2, sw2)}
10331 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
10332 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
10333 @item @code{uw2 __MQSLLHI (uw2, int)}
10334 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
10335 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
10336 @item @code{sw2 __MQSRAHI (sw2, int)}
10337 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
10338 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
10339 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
10340 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
10341 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
10342 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
10343 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
10344 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
10345 @item @code{void __MQXMACHS (acc, sw2, sw2)}
10346 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
10347 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
10348 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
10349 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
10350 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
10351 @item @code{uw1 __MRDACC (acc)}
10352 @tab @code{@var{b} = __MRDACC (@var{a})}
10353 @tab @code{MRDACC @var{a},@var{b}}
10354 @item @code{uw1 __MRDACCG (acc)}
10355 @tab @code{@var{b} = __MRDACCG (@var{a})}
10356 @tab @code{MRDACCG @var{a},@var{b}}
10357 @item @code{uw1 __MROTLI (uw1, const)}
10358 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
10359 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
10360 @item @code{uw1 __MROTRI (uw1, const)}
10361 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
10362 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
10363 @item @code{sw1 __MSATHS (sw1, sw1)}
10364 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
10365 @tab @code{MSATHS @var{a},@var{b},@var{c}}
10366 @item @code{uw1 __MSATHU (uw1, uw1)}
10367 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
10368 @tab @code{MSATHU @var{a},@var{b},@var{c}}
10369 @item @code{uw1 __MSLLHI (uw1, const)}
10370 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
10371 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
10372 @item @code{sw1 __MSRAHI (sw1, const)}
10373 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
10374 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
10375 @item @code{uw1 __MSRLHI (uw1, const)}
10376 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
10377 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
10378 @item @code{void __MSUBACCS (acc, acc)}
10379 @tab @code{__MSUBACCS (@var{b}, @var{a})}
10380 @tab @code{MSUBACCS @var{a},@var{b}}
10381 @item @code{sw1 __MSUBHSS (sw1, sw1)}
10382 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
10383 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
10384 @item @code{uw1 __MSUBHUS (uw1, uw1)}
10385 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
10386 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
10387 @item @code{void __MTRAP (void)}
10388 @tab @code{__MTRAP ()}
10389 @tab @code{MTRAP}
10390 @item @code{uw2 __MUNPACKH (uw1)}
10391 @tab @code{@var{b} = __MUNPACKH (@var{a})}
10392 @tab @code{MUNPACKH @var{a},@var{b}}
10393 @item @code{uw1 __MWCUT (uw2, uw1)}
10394 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
10395 @tab @code{MWCUT @var{a},@var{b},@var{c}}
10396 @item @code{void __MWTACC (acc, uw1)}
10397 @tab @code{__MWTACC (@var{b}, @var{a})}
10398 @tab @code{MWTACC @var{a},@var{b}}
10399 @item @code{void __MWTACCG (acc, uw1)}
10400 @tab @code{__MWTACCG (@var{b}, @var{a})}
10401 @tab @code{MWTACCG @var{a},@var{b}}
10402 @item @code{uw1 __MXOR (uw1, uw1)}
10403 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
10404 @tab @code{MXOR @var{a},@var{b},@var{c}}
10405 @end multitable
10406
10407 @node Raw read/write Functions
10408 @subsubsection Raw read/write Functions
10409
10410 This sections describes built-in functions related to read and write
10411 instructions to access memory. These functions generate
10412 @code{membar} instructions to flush the I/O load and stores where
10413 appropriate, as described in Fujitsu's manual described above.
10414
10415 @table @code
10416
10417 @item unsigned char __builtin_read8 (void *@var{data})
10418 @item unsigned short __builtin_read16 (void *@var{data})
10419 @item unsigned long __builtin_read32 (void *@var{data})
10420 @item unsigned long long __builtin_read64 (void *@var{data})
10421
10422 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
10423 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
10424 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
10425 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
10426 @end table
10427
10428 @node Other Built-in Functions
10429 @subsubsection Other Built-in Functions
10430
10431 This section describes built-in functions that are not named after
10432 a specific FR-V instruction.
10433
10434 @table @code
10435 @item sw2 __IACCreadll (iacc @var{reg})
10436 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
10437 for future expansion and must be 0.
10438
10439 @item sw1 __IACCreadl (iacc @var{reg})
10440 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
10441 Other values of @var{reg} are rejected as invalid.
10442
10443 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
10444 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
10445 is reserved for future expansion and must be 0.
10446
10447 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
10448 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
10449 is 1. Other values of @var{reg} are rejected as invalid.
10450
10451 @item void __data_prefetch0 (const void *@var{x})
10452 Use the @code{dcpl} instruction to load the contents of address @var{x}
10453 into the data cache.
10454
10455 @item void __data_prefetch (const void *@var{x})
10456 Use the @code{nldub} instruction to load the contents of address @var{x}
10457 into the data cache. The instruction is issued in slot I1@.
10458 @end table
10459
10460 @node X86 Built-in Functions
10461 @subsection X86 Built-in Functions
10462
10463 These built-in functions are available for the i386 and x86-64 family
10464 of computers, depending on the command-line switches used.
10465
10466 If you specify command-line switches such as @option{-msse},
10467 the compiler could use the extended instruction sets even if the built-ins
10468 are not used explicitly in the program. For this reason, applications
10469 that perform run-time CPU detection must compile separate files for each
10470 supported architecture, using the appropriate flags. In particular,
10471 the file containing the CPU detection code should be compiled without
10472 these options.
10473
10474 The following machine modes are available for use with MMX built-in functions
10475 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
10476 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
10477 vector of eight 8-bit integers. Some of the built-in functions operate on
10478 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
10479
10480 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
10481 of two 32-bit floating-point values.
10482
10483 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
10484 floating-point values. Some instructions use a vector of four 32-bit
10485 integers, these use @code{V4SI}. Finally, some instructions operate on an
10486 entire vector register, interpreting it as a 128-bit integer, these use mode
10487 @code{TI}.
10488
10489 In 64-bit mode, the x86-64 family of processors uses additional built-in
10490 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
10491 floating point and @code{TC} 128-bit complex floating-point values.
10492
10493 The following floating-point built-in functions are available in 64-bit
10494 mode. All of them implement the function that is part of the name.
10495
10496 @smallexample
10497 __float128 __builtin_fabsq (__float128)
10498 __float128 __builtin_copysignq (__float128, __float128)
10499 @end smallexample
10500
10501 The following built-in function is always available.
10502
10503 @table @code
10504 @item void __builtin_ia32_pause (void)
10505 Generates the @code{pause} machine instruction with a compiler memory
10506 barrier.
10507 @end table
10508
10509 The following floating-point built-in functions are made available in the
10510 64-bit mode.
10511
10512 @table @code
10513 @item __float128 __builtin_infq (void)
10514 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
10515 @findex __builtin_infq
10516
10517 @item __float128 __builtin_huge_valq (void)
10518 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
10519 @findex __builtin_huge_valq
10520 @end table
10521
10522 The following built-in functions are always available and can be used to
10523 check the target platform type.
10524
10525 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
10526 This function runs the CPU detection code to check the type of CPU and the
10527 features supported. This built-in function needs to be invoked along with the built-in functions
10528 to check CPU type and features, @code{__builtin_cpu_is} and
10529 @code{__builtin_cpu_supports}, only when used in a function that is
10530 executed before any constructors are called. The CPU detection code is
10531 automatically executed in a very high priority constructor.
10532
10533 For example, this function has to be used in @code{ifunc} resolvers that
10534 check for CPU type using the built-in functions @code{__builtin_cpu_is}
10535 and @code{__builtin_cpu_supports}, or in constructors on targets that
10536 don't support constructor priority.
10537 @smallexample
10538
10539 static void (*resolve_memcpy (void)) (void)
10540 @{
10541 // ifunc resolvers fire before constructors, explicitly call the init
10542 // function.
10543 __builtin_cpu_init ();
10544 if (__builtin_cpu_supports ("ssse3"))
10545 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
10546 else
10547 return default_memcpy;
10548 @}
10549
10550 void *memcpy (void *, const void *, size_t)
10551 __attribute__ ((ifunc ("resolve_memcpy")));
10552 @end smallexample
10553
10554 @end deftypefn
10555
10556 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
10557 This function returns a positive integer if the run-time CPU
10558 is of type @var{cpuname}
10559 and returns @code{0} otherwise. The following CPU names can be detected:
10560
10561 @table @samp
10562 @item intel
10563 Intel CPU.
10564
10565 @item atom
10566 Intel Atom CPU.
10567
10568 @item core2
10569 Intel Core 2 CPU.
10570
10571 @item corei7
10572 Intel Core i7 CPU.
10573
10574 @item nehalem
10575 Intel Core i7 Nehalem CPU.
10576
10577 @item westmere
10578 Intel Core i7 Westmere CPU.
10579
10580 @item sandybridge
10581 Intel Core i7 Sandy Bridge CPU.
10582
10583 @item amd
10584 AMD CPU.
10585
10586 @item amdfam10h
10587 AMD Family 10h CPU.
10588
10589 @item barcelona
10590 AMD Family 10h Barcelona CPU.
10591
10592 @item shanghai
10593 AMD Family 10h Shanghai CPU.
10594
10595 @item istanbul
10596 AMD Family 10h Istanbul CPU.
10597
10598 @item btver1
10599 AMD Family 14h CPU.
10600
10601 @item amdfam15h
10602 AMD Family 15h CPU.
10603
10604 @item bdver1
10605 AMD Family 15h Bulldozer version 1.
10606
10607 @item bdver2
10608 AMD Family 15h Bulldozer version 2.
10609
10610 @item bdver3
10611 AMD Family 15h Bulldozer version 3.
10612
10613 @item bdver4
10614 AMD Family 15h Bulldozer version 4.
10615
10616 @item btver2
10617 AMD Family 16h CPU.
10618 @end table
10619
10620 Here is an example:
10621 @smallexample
10622 if (__builtin_cpu_is ("corei7"))
10623 @{
10624 do_corei7 (); // Core i7 specific implementation.
10625 @}
10626 else
10627 @{
10628 do_generic (); // Generic implementation.
10629 @}
10630 @end smallexample
10631 @end deftypefn
10632
10633 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
10634 This function returns a positive integer if the run-time CPU
10635 supports @var{feature}
10636 and returns @code{0} otherwise. The following features can be detected:
10637
10638 @table @samp
10639 @item cmov
10640 CMOV instruction.
10641 @item mmx
10642 MMX instructions.
10643 @item popcnt
10644 POPCNT instruction.
10645 @item sse
10646 SSE instructions.
10647 @item sse2
10648 SSE2 instructions.
10649 @item sse3
10650 SSE3 instructions.
10651 @item ssse3
10652 SSSE3 instructions.
10653 @item sse4.1
10654 SSE4.1 instructions.
10655 @item sse4.2
10656 SSE4.2 instructions.
10657 @item avx
10658 AVX instructions.
10659 @item avx2
10660 AVX2 instructions.
10661 @end table
10662
10663 Here is an example:
10664 @smallexample
10665 if (__builtin_cpu_supports ("popcnt"))
10666 @{
10667 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
10668 @}
10669 else
10670 @{
10671 count = generic_countbits (n); //generic implementation.
10672 @}
10673 @end smallexample
10674 @end deftypefn
10675
10676
10677 The following built-in functions are made available by @option{-mmmx}.
10678 All of them generate the machine instruction that is part of the name.
10679
10680 @smallexample
10681 v8qi __builtin_ia32_paddb (v8qi, v8qi)
10682 v4hi __builtin_ia32_paddw (v4hi, v4hi)
10683 v2si __builtin_ia32_paddd (v2si, v2si)
10684 v8qi __builtin_ia32_psubb (v8qi, v8qi)
10685 v4hi __builtin_ia32_psubw (v4hi, v4hi)
10686 v2si __builtin_ia32_psubd (v2si, v2si)
10687 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
10688 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
10689 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
10690 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
10691 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
10692 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
10693 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
10694 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
10695 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
10696 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
10697 di __builtin_ia32_pand (di, di)
10698 di __builtin_ia32_pandn (di,di)
10699 di __builtin_ia32_por (di, di)
10700 di __builtin_ia32_pxor (di, di)
10701 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
10702 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
10703 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
10704 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
10705 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
10706 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
10707 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
10708 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
10709 v2si __builtin_ia32_punpckhdq (v2si, v2si)
10710 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
10711 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
10712 v2si __builtin_ia32_punpckldq (v2si, v2si)
10713 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
10714 v4hi __builtin_ia32_packssdw (v2si, v2si)
10715 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
10716
10717 v4hi __builtin_ia32_psllw (v4hi, v4hi)
10718 v2si __builtin_ia32_pslld (v2si, v2si)
10719 v1di __builtin_ia32_psllq (v1di, v1di)
10720 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
10721 v2si __builtin_ia32_psrld (v2si, v2si)
10722 v1di __builtin_ia32_psrlq (v1di, v1di)
10723 v4hi __builtin_ia32_psraw (v4hi, v4hi)
10724 v2si __builtin_ia32_psrad (v2si, v2si)
10725 v4hi __builtin_ia32_psllwi (v4hi, int)
10726 v2si __builtin_ia32_pslldi (v2si, int)
10727 v1di __builtin_ia32_psllqi (v1di, int)
10728 v4hi __builtin_ia32_psrlwi (v4hi, int)
10729 v2si __builtin_ia32_psrldi (v2si, int)
10730 v1di __builtin_ia32_psrlqi (v1di, int)
10731 v4hi __builtin_ia32_psrawi (v4hi, int)
10732 v2si __builtin_ia32_psradi (v2si, int)
10733
10734 @end smallexample
10735
10736 The following built-in functions are made available either with
10737 @option{-msse}, or with a combination of @option{-m3dnow} and
10738 @option{-march=athlon}. All of them generate the machine
10739 instruction that is part of the name.
10740
10741 @smallexample
10742 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
10743 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
10744 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
10745 v1di __builtin_ia32_psadbw (v8qi, v8qi)
10746 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
10747 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
10748 v8qi __builtin_ia32_pminub (v8qi, v8qi)
10749 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
10750 int __builtin_ia32_pmovmskb (v8qi)
10751 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
10752 void __builtin_ia32_movntq (di *, di)
10753 void __builtin_ia32_sfence (void)
10754 @end smallexample
10755
10756 The following built-in functions are available when @option{-msse} is used.
10757 All of them generate the machine instruction that is part of the name.
10758
10759 @smallexample
10760 int __builtin_ia32_comieq (v4sf, v4sf)
10761 int __builtin_ia32_comineq (v4sf, v4sf)
10762 int __builtin_ia32_comilt (v4sf, v4sf)
10763 int __builtin_ia32_comile (v4sf, v4sf)
10764 int __builtin_ia32_comigt (v4sf, v4sf)
10765 int __builtin_ia32_comige (v4sf, v4sf)
10766 int __builtin_ia32_ucomieq (v4sf, v4sf)
10767 int __builtin_ia32_ucomineq (v4sf, v4sf)
10768 int __builtin_ia32_ucomilt (v4sf, v4sf)
10769 int __builtin_ia32_ucomile (v4sf, v4sf)
10770 int __builtin_ia32_ucomigt (v4sf, v4sf)
10771 int __builtin_ia32_ucomige (v4sf, v4sf)
10772 v4sf __builtin_ia32_addps (v4sf, v4sf)
10773 v4sf __builtin_ia32_subps (v4sf, v4sf)
10774 v4sf __builtin_ia32_mulps (v4sf, v4sf)
10775 v4sf __builtin_ia32_divps (v4sf, v4sf)
10776 v4sf __builtin_ia32_addss (v4sf, v4sf)
10777 v4sf __builtin_ia32_subss (v4sf, v4sf)
10778 v4sf __builtin_ia32_mulss (v4sf, v4sf)
10779 v4sf __builtin_ia32_divss (v4sf, v4sf)
10780 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
10781 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
10782 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
10783 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
10784 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
10785 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
10786 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
10787 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
10788 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
10789 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
10790 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
10791 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
10792 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
10793 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
10794 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
10795 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
10796 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
10797 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
10798 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
10799 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
10800 v4sf __builtin_ia32_maxps (v4sf, v4sf)
10801 v4sf __builtin_ia32_maxss (v4sf, v4sf)
10802 v4sf __builtin_ia32_minps (v4sf, v4sf)
10803 v4sf __builtin_ia32_minss (v4sf, v4sf)
10804 v4sf __builtin_ia32_andps (v4sf, v4sf)
10805 v4sf __builtin_ia32_andnps (v4sf, v4sf)
10806 v4sf __builtin_ia32_orps (v4sf, v4sf)
10807 v4sf __builtin_ia32_xorps (v4sf, v4sf)
10808 v4sf __builtin_ia32_movss (v4sf, v4sf)
10809 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
10810 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
10811 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
10812 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
10813 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
10814 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
10815 v2si __builtin_ia32_cvtps2pi (v4sf)
10816 int __builtin_ia32_cvtss2si (v4sf)
10817 v2si __builtin_ia32_cvttps2pi (v4sf)
10818 int __builtin_ia32_cvttss2si (v4sf)
10819 v4sf __builtin_ia32_rcpps (v4sf)
10820 v4sf __builtin_ia32_rsqrtps (v4sf)
10821 v4sf __builtin_ia32_sqrtps (v4sf)
10822 v4sf __builtin_ia32_rcpss (v4sf)
10823 v4sf __builtin_ia32_rsqrtss (v4sf)
10824 v4sf __builtin_ia32_sqrtss (v4sf)
10825 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
10826 void __builtin_ia32_movntps (float *, v4sf)
10827 int __builtin_ia32_movmskps (v4sf)
10828 @end smallexample
10829
10830 The following built-in functions are available when @option{-msse} is used.
10831
10832 @table @code
10833 @item v4sf __builtin_ia32_loadups (float *)
10834 Generates the @code{movups} machine instruction as a load from memory.
10835 @item void __builtin_ia32_storeups (float *, v4sf)
10836 Generates the @code{movups} machine instruction as a store to memory.
10837 @item v4sf __builtin_ia32_loadss (float *)
10838 Generates the @code{movss} machine instruction as a load from memory.
10839 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
10840 Generates the @code{movhps} machine instruction as a load from memory.
10841 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
10842 Generates the @code{movlps} machine instruction as a load from memory
10843 @item void __builtin_ia32_storehps (v2sf *, v4sf)
10844 Generates the @code{movhps} machine instruction as a store to memory.
10845 @item void __builtin_ia32_storelps (v2sf *, v4sf)
10846 Generates the @code{movlps} machine instruction as a store to memory.
10847 @end table
10848
10849 The following built-in functions are available when @option{-msse2} is used.
10850 All of them generate the machine instruction that is part of the name.
10851
10852 @smallexample
10853 int __builtin_ia32_comisdeq (v2df, v2df)
10854 int __builtin_ia32_comisdlt (v2df, v2df)
10855 int __builtin_ia32_comisdle (v2df, v2df)
10856 int __builtin_ia32_comisdgt (v2df, v2df)
10857 int __builtin_ia32_comisdge (v2df, v2df)
10858 int __builtin_ia32_comisdneq (v2df, v2df)
10859 int __builtin_ia32_ucomisdeq (v2df, v2df)
10860 int __builtin_ia32_ucomisdlt (v2df, v2df)
10861 int __builtin_ia32_ucomisdle (v2df, v2df)
10862 int __builtin_ia32_ucomisdgt (v2df, v2df)
10863 int __builtin_ia32_ucomisdge (v2df, v2df)
10864 int __builtin_ia32_ucomisdneq (v2df, v2df)
10865 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
10866 v2df __builtin_ia32_cmpltpd (v2df, v2df)
10867 v2df __builtin_ia32_cmplepd (v2df, v2df)
10868 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
10869 v2df __builtin_ia32_cmpgepd (v2df, v2df)
10870 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
10871 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
10872 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
10873 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
10874 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
10875 v2df __builtin_ia32_cmpngepd (v2df, v2df)
10876 v2df __builtin_ia32_cmpordpd (v2df, v2df)
10877 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
10878 v2df __builtin_ia32_cmpltsd (v2df, v2df)
10879 v2df __builtin_ia32_cmplesd (v2df, v2df)
10880 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
10881 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
10882 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
10883 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
10884 v2df __builtin_ia32_cmpordsd (v2df, v2df)
10885 v2di __builtin_ia32_paddq (v2di, v2di)
10886 v2di __builtin_ia32_psubq (v2di, v2di)
10887 v2df __builtin_ia32_addpd (v2df, v2df)
10888 v2df __builtin_ia32_subpd (v2df, v2df)
10889 v2df __builtin_ia32_mulpd (v2df, v2df)
10890 v2df __builtin_ia32_divpd (v2df, v2df)
10891 v2df __builtin_ia32_addsd (v2df, v2df)
10892 v2df __builtin_ia32_subsd (v2df, v2df)
10893 v2df __builtin_ia32_mulsd (v2df, v2df)
10894 v2df __builtin_ia32_divsd (v2df, v2df)
10895 v2df __builtin_ia32_minpd (v2df, v2df)
10896 v2df __builtin_ia32_maxpd (v2df, v2df)
10897 v2df __builtin_ia32_minsd (v2df, v2df)
10898 v2df __builtin_ia32_maxsd (v2df, v2df)
10899 v2df __builtin_ia32_andpd (v2df, v2df)
10900 v2df __builtin_ia32_andnpd (v2df, v2df)
10901 v2df __builtin_ia32_orpd (v2df, v2df)
10902 v2df __builtin_ia32_xorpd (v2df, v2df)
10903 v2df __builtin_ia32_movsd (v2df, v2df)
10904 v2df __builtin_ia32_unpckhpd (v2df, v2df)
10905 v2df __builtin_ia32_unpcklpd (v2df, v2df)
10906 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
10907 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
10908 v4si __builtin_ia32_paddd128 (v4si, v4si)
10909 v2di __builtin_ia32_paddq128 (v2di, v2di)
10910 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
10911 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
10912 v4si __builtin_ia32_psubd128 (v4si, v4si)
10913 v2di __builtin_ia32_psubq128 (v2di, v2di)
10914 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
10915 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
10916 v2di __builtin_ia32_pand128 (v2di, v2di)
10917 v2di __builtin_ia32_pandn128 (v2di, v2di)
10918 v2di __builtin_ia32_por128 (v2di, v2di)
10919 v2di __builtin_ia32_pxor128 (v2di, v2di)
10920 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
10921 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
10922 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
10923 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
10924 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
10925 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
10926 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
10927 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
10928 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
10929 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
10930 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
10931 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
10932 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
10933 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
10934 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
10935 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
10936 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
10937 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
10938 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
10939 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
10940 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
10941 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
10942 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
10943 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
10944 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
10945 v2df __builtin_ia32_loadupd (double *)
10946 void __builtin_ia32_storeupd (double *, v2df)
10947 v2df __builtin_ia32_loadhpd (v2df, double const *)
10948 v2df __builtin_ia32_loadlpd (v2df, double const *)
10949 int __builtin_ia32_movmskpd (v2df)
10950 int __builtin_ia32_pmovmskb128 (v16qi)
10951 void __builtin_ia32_movnti (int *, int)
10952 void __builtin_ia32_movnti64 (long long int *, long long int)
10953 void __builtin_ia32_movntpd (double *, v2df)
10954 void __builtin_ia32_movntdq (v2df *, v2df)
10955 v4si __builtin_ia32_pshufd (v4si, int)
10956 v8hi __builtin_ia32_pshuflw (v8hi, int)
10957 v8hi __builtin_ia32_pshufhw (v8hi, int)
10958 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
10959 v2df __builtin_ia32_sqrtpd (v2df)
10960 v2df __builtin_ia32_sqrtsd (v2df)
10961 v2df __builtin_ia32_shufpd (v2df, v2df, int)
10962 v2df __builtin_ia32_cvtdq2pd (v4si)
10963 v4sf __builtin_ia32_cvtdq2ps (v4si)
10964 v4si __builtin_ia32_cvtpd2dq (v2df)
10965 v2si __builtin_ia32_cvtpd2pi (v2df)
10966 v4sf __builtin_ia32_cvtpd2ps (v2df)
10967 v4si __builtin_ia32_cvttpd2dq (v2df)
10968 v2si __builtin_ia32_cvttpd2pi (v2df)
10969 v2df __builtin_ia32_cvtpi2pd (v2si)
10970 int __builtin_ia32_cvtsd2si (v2df)
10971 int __builtin_ia32_cvttsd2si (v2df)
10972 long long __builtin_ia32_cvtsd2si64 (v2df)
10973 long long __builtin_ia32_cvttsd2si64 (v2df)
10974 v4si __builtin_ia32_cvtps2dq (v4sf)
10975 v2df __builtin_ia32_cvtps2pd (v4sf)
10976 v4si __builtin_ia32_cvttps2dq (v4sf)
10977 v2df __builtin_ia32_cvtsi2sd (v2df, int)
10978 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
10979 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
10980 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
10981 void __builtin_ia32_clflush (const void *)
10982 void __builtin_ia32_lfence (void)
10983 void __builtin_ia32_mfence (void)
10984 v16qi __builtin_ia32_loaddqu (const char *)
10985 void __builtin_ia32_storedqu (char *, v16qi)
10986 v1di __builtin_ia32_pmuludq (v2si, v2si)
10987 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
10988 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
10989 v4si __builtin_ia32_pslld128 (v4si, v4si)
10990 v2di __builtin_ia32_psllq128 (v2di, v2di)
10991 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
10992 v4si __builtin_ia32_psrld128 (v4si, v4si)
10993 v2di __builtin_ia32_psrlq128 (v2di, v2di)
10994 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
10995 v4si __builtin_ia32_psrad128 (v4si, v4si)
10996 v2di __builtin_ia32_pslldqi128 (v2di, int)
10997 v8hi __builtin_ia32_psllwi128 (v8hi, int)
10998 v4si __builtin_ia32_pslldi128 (v4si, int)
10999 v2di __builtin_ia32_psllqi128 (v2di, int)
11000 v2di __builtin_ia32_psrldqi128 (v2di, int)
11001 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
11002 v4si __builtin_ia32_psrldi128 (v4si, int)
11003 v2di __builtin_ia32_psrlqi128 (v2di, int)
11004 v8hi __builtin_ia32_psrawi128 (v8hi, int)
11005 v4si __builtin_ia32_psradi128 (v4si, int)
11006 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
11007 v2di __builtin_ia32_movq128 (v2di)
11008 @end smallexample
11009
11010 The following built-in functions are available when @option{-msse3} is used.
11011 All of them generate the machine instruction that is part of the name.
11012
11013 @smallexample
11014 v2df __builtin_ia32_addsubpd (v2df, v2df)
11015 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
11016 v2df __builtin_ia32_haddpd (v2df, v2df)
11017 v4sf __builtin_ia32_haddps (v4sf, v4sf)
11018 v2df __builtin_ia32_hsubpd (v2df, v2df)
11019 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
11020 v16qi __builtin_ia32_lddqu (char const *)
11021 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
11022 v4sf __builtin_ia32_movshdup (v4sf)
11023 v4sf __builtin_ia32_movsldup (v4sf)
11024 void __builtin_ia32_mwait (unsigned int, unsigned int)
11025 @end smallexample
11026
11027 The following built-in functions are available when @option{-mssse3} is used.
11028 All of them generate the machine instruction that is part of the name.
11029
11030 @smallexample
11031 v2si __builtin_ia32_phaddd (v2si, v2si)
11032 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
11033 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
11034 v2si __builtin_ia32_phsubd (v2si, v2si)
11035 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
11036 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
11037 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
11038 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
11039 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
11040 v8qi __builtin_ia32_psignb (v8qi, v8qi)
11041 v2si __builtin_ia32_psignd (v2si, v2si)
11042 v4hi __builtin_ia32_psignw (v4hi, v4hi)
11043 v1di __builtin_ia32_palignr (v1di, v1di, int)
11044 v8qi __builtin_ia32_pabsb (v8qi)
11045 v2si __builtin_ia32_pabsd (v2si)
11046 v4hi __builtin_ia32_pabsw (v4hi)
11047 @end smallexample
11048
11049 The following built-in functions are available when @option{-mssse3} is used.
11050 All of them generate the machine instruction that is part of the name.
11051
11052 @smallexample
11053 v4si __builtin_ia32_phaddd128 (v4si, v4si)
11054 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
11055 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
11056 v4si __builtin_ia32_phsubd128 (v4si, v4si)
11057 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
11058 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
11059 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
11060 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
11061 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
11062 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
11063 v4si __builtin_ia32_psignd128 (v4si, v4si)
11064 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
11065 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
11066 v16qi __builtin_ia32_pabsb128 (v16qi)
11067 v4si __builtin_ia32_pabsd128 (v4si)
11068 v8hi __builtin_ia32_pabsw128 (v8hi)
11069 @end smallexample
11070
11071 The following built-in functions are available when @option{-msse4.1} is
11072 used. All of them generate the machine instruction that is part of the
11073 name.
11074
11075 @smallexample
11076 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
11077 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
11078 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
11079 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
11080 v2df __builtin_ia32_dppd (v2df, v2df, const int)
11081 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
11082 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
11083 v2di __builtin_ia32_movntdqa (v2di *);
11084 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
11085 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
11086 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
11087 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
11088 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
11089 v8hi __builtin_ia32_phminposuw128 (v8hi)
11090 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
11091 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
11092 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
11093 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
11094 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
11095 v4si __builtin_ia32_pminsd128 (v4si, v4si)
11096 v4si __builtin_ia32_pminud128 (v4si, v4si)
11097 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
11098 v4si __builtin_ia32_pmovsxbd128 (v16qi)
11099 v2di __builtin_ia32_pmovsxbq128 (v16qi)
11100 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
11101 v2di __builtin_ia32_pmovsxdq128 (v4si)
11102 v4si __builtin_ia32_pmovsxwd128 (v8hi)
11103 v2di __builtin_ia32_pmovsxwq128 (v8hi)
11104 v4si __builtin_ia32_pmovzxbd128 (v16qi)
11105 v2di __builtin_ia32_pmovzxbq128 (v16qi)
11106 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
11107 v2di __builtin_ia32_pmovzxdq128 (v4si)
11108 v4si __builtin_ia32_pmovzxwd128 (v8hi)
11109 v2di __builtin_ia32_pmovzxwq128 (v8hi)
11110 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
11111 v4si __builtin_ia32_pmulld128 (v4si, v4si)
11112 int __builtin_ia32_ptestc128 (v2di, v2di)
11113 int __builtin_ia32_ptestnzc128 (v2di, v2di)
11114 int __builtin_ia32_ptestz128 (v2di, v2di)
11115 v2df __builtin_ia32_roundpd (v2df, const int)
11116 v4sf __builtin_ia32_roundps (v4sf, const int)
11117 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
11118 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
11119 @end smallexample
11120
11121 The following built-in functions are available when @option{-msse4.1} is
11122 used.
11123
11124 @table @code
11125 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
11126 Generates the @code{insertps} machine instruction.
11127 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
11128 Generates the @code{pextrb} machine instruction.
11129 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
11130 Generates the @code{pinsrb} machine instruction.
11131 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
11132 Generates the @code{pinsrd} machine instruction.
11133 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
11134 Generates the @code{pinsrq} machine instruction in 64bit mode.
11135 @end table
11136
11137 The following built-in functions are changed to generate new SSE4.1
11138 instructions when @option{-msse4.1} is used.
11139
11140 @table @code
11141 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
11142 Generates the @code{extractps} machine instruction.
11143 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
11144 Generates the @code{pextrd} machine instruction.
11145 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
11146 Generates the @code{pextrq} machine instruction in 64bit mode.
11147 @end table
11148
11149 The following built-in functions are available when @option{-msse4.2} is
11150 used. All of them generate the machine instruction that is part of the
11151 name.
11152
11153 @smallexample
11154 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
11155 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
11156 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
11157 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
11158 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
11159 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
11160 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
11161 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
11162 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
11163 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
11164 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
11165 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
11166 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
11167 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
11168 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
11169 @end smallexample
11170
11171 The following built-in functions are available when @option{-msse4.2} is
11172 used.
11173
11174 @table @code
11175 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
11176 Generates the @code{crc32b} machine instruction.
11177 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
11178 Generates the @code{crc32w} machine instruction.
11179 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
11180 Generates the @code{crc32l} machine instruction.
11181 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
11182 Generates the @code{crc32q} machine instruction.
11183 @end table
11184
11185 The following built-in functions are changed to generate new SSE4.2
11186 instructions when @option{-msse4.2} is used.
11187
11188 @table @code
11189 @item int __builtin_popcount (unsigned int)
11190 Generates the @code{popcntl} machine instruction.
11191 @item int __builtin_popcountl (unsigned long)
11192 Generates the @code{popcntl} or @code{popcntq} machine instruction,
11193 depending on the size of @code{unsigned long}.
11194 @item int __builtin_popcountll (unsigned long long)
11195 Generates the @code{popcntq} machine instruction.
11196 @end table
11197
11198 The following built-in functions are available when @option{-mavx} is
11199 used. All of them generate the machine instruction that is part of the
11200 name.
11201
11202 @smallexample
11203 v4df __builtin_ia32_addpd256 (v4df,v4df)
11204 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
11205 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
11206 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
11207 v4df __builtin_ia32_andnpd256 (v4df,v4df)
11208 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
11209 v4df __builtin_ia32_andpd256 (v4df,v4df)
11210 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
11211 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
11212 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
11213 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
11214 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
11215 v2df __builtin_ia32_cmppd (v2df,v2df,int)
11216 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
11217 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
11218 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
11219 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
11220 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
11221 v4df __builtin_ia32_cvtdq2pd256 (v4si)
11222 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
11223 v4si __builtin_ia32_cvtpd2dq256 (v4df)
11224 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
11225 v8si __builtin_ia32_cvtps2dq256 (v8sf)
11226 v4df __builtin_ia32_cvtps2pd256 (v4sf)
11227 v4si __builtin_ia32_cvttpd2dq256 (v4df)
11228 v8si __builtin_ia32_cvttps2dq256 (v8sf)
11229 v4df __builtin_ia32_divpd256 (v4df,v4df)
11230 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
11231 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
11232 v4df __builtin_ia32_haddpd256 (v4df,v4df)
11233 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
11234 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
11235 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
11236 v32qi __builtin_ia32_lddqu256 (pcchar)
11237 v32qi __builtin_ia32_loaddqu256 (pcchar)
11238 v4df __builtin_ia32_loadupd256 (pcdouble)
11239 v8sf __builtin_ia32_loadups256 (pcfloat)
11240 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
11241 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
11242 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
11243 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
11244 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
11245 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
11246 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
11247 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
11248 v4df __builtin_ia32_maxpd256 (v4df,v4df)
11249 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
11250 v4df __builtin_ia32_minpd256 (v4df,v4df)
11251 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
11252 v4df __builtin_ia32_movddup256 (v4df)
11253 int __builtin_ia32_movmskpd256 (v4df)
11254 int __builtin_ia32_movmskps256 (v8sf)
11255 v8sf __builtin_ia32_movshdup256 (v8sf)
11256 v8sf __builtin_ia32_movsldup256 (v8sf)
11257 v4df __builtin_ia32_mulpd256 (v4df,v4df)
11258 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
11259 v4df __builtin_ia32_orpd256 (v4df,v4df)
11260 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
11261 v2df __builtin_ia32_pd_pd256 (v4df)
11262 v4df __builtin_ia32_pd256_pd (v2df)
11263 v4sf __builtin_ia32_ps_ps256 (v8sf)
11264 v8sf __builtin_ia32_ps256_ps (v4sf)
11265 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
11266 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
11267 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
11268 v8sf __builtin_ia32_rcpps256 (v8sf)
11269 v4df __builtin_ia32_roundpd256 (v4df,int)
11270 v8sf __builtin_ia32_roundps256 (v8sf,int)
11271 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
11272 v8sf __builtin_ia32_rsqrtps256 (v8sf)
11273 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
11274 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
11275 v4si __builtin_ia32_si_si256 (v8si)
11276 v8si __builtin_ia32_si256_si (v4si)
11277 v4df __builtin_ia32_sqrtpd256 (v4df)
11278 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
11279 v8sf __builtin_ia32_sqrtps256 (v8sf)
11280 void __builtin_ia32_storedqu256 (pchar,v32qi)
11281 void __builtin_ia32_storeupd256 (pdouble,v4df)
11282 void __builtin_ia32_storeups256 (pfloat,v8sf)
11283 v4df __builtin_ia32_subpd256 (v4df,v4df)
11284 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
11285 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
11286 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
11287 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
11288 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
11289 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
11290 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
11291 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
11292 v4sf __builtin_ia32_vbroadcastss (pcfloat)
11293 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
11294 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
11295 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
11296 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
11297 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
11298 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
11299 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
11300 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
11301 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
11302 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
11303 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
11304 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
11305 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
11306 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
11307 v2df __builtin_ia32_vpermilpd (v2df,int)
11308 v4df __builtin_ia32_vpermilpd256 (v4df,int)
11309 v4sf __builtin_ia32_vpermilps (v4sf,int)
11310 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
11311 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
11312 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
11313 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
11314 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
11315 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
11316 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
11317 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
11318 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
11319 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
11320 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
11321 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
11322 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
11323 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
11324 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
11325 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
11326 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
11327 void __builtin_ia32_vzeroall (void)
11328 void __builtin_ia32_vzeroupper (void)
11329 v4df __builtin_ia32_xorpd256 (v4df,v4df)
11330 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
11331 @end smallexample
11332
11333 The following built-in functions are available when @option{-mavx2} is
11334 used. All of them generate the machine instruction that is part of the
11335 name.
11336
11337 @smallexample
11338 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
11339 v32qi __builtin_ia32_pabsb256 (v32qi)
11340 v16hi __builtin_ia32_pabsw256 (v16hi)
11341 v8si __builtin_ia32_pabsd256 (v8si)
11342 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
11343 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
11344 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
11345 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
11346 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
11347 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
11348 v8si __builtin_ia32_paddd256 (v8si,v8si)
11349 v4di __builtin_ia32_paddq256 (v4di,v4di)
11350 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
11351 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
11352 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
11353 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
11354 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
11355 v4di __builtin_ia32_andsi256 (v4di,v4di)
11356 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
11357 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
11358 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
11359 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
11360 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
11361 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
11362 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
11363 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
11364 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
11365 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
11366 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
11367 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
11368 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
11369 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
11370 v8si __builtin_ia32_phaddd256 (v8si,v8si)
11371 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
11372 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
11373 v8si __builtin_ia32_phsubd256 (v8si,v8si)
11374 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
11375 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
11376 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
11377 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
11378 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
11379 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
11380 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
11381 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
11382 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
11383 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
11384 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
11385 v8si __builtin_ia32_pminsd256 (v8si,v8si)
11386 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
11387 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
11388 v8si __builtin_ia32_pminud256 (v8si,v8si)
11389 int __builtin_ia32_pmovmskb256 (v32qi)
11390 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
11391 v8si __builtin_ia32_pmovsxbd256 (v16qi)
11392 v4di __builtin_ia32_pmovsxbq256 (v16qi)
11393 v8si __builtin_ia32_pmovsxwd256 (v8hi)
11394 v4di __builtin_ia32_pmovsxwq256 (v8hi)
11395 v4di __builtin_ia32_pmovsxdq256 (v4si)
11396 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
11397 v8si __builtin_ia32_pmovzxbd256 (v16qi)
11398 v4di __builtin_ia32_pmovzxbq256 (v16qi)
11399 v8si __builtin_ia32_pmovzxwd256 (v8hi)
11400 v4di __builtin_ia32_pmovzxwq256 (v8hi)
11401 v4di __builtin_ia32_pmovzxdq256 (v4si)
11402 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
11403 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
11404 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
11405 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
11406 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
11407 v8si __builtin_ia32_pmulld256 (v8si,v8si)
11408 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
11409 v4di __builtin_ia32_por256 (v4di,v4di)
11410 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
11411 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
11412 v8si __builtin_ia32_pshufd256 (v8si,int)
11413 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
11414 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
11415 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
11416 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
11417 v8si __builtin_ia32_psignd256 (v8si,v8si)
11418 v4di __builtin_ia32_pslldqi256 (v4di,int)
11419 v16hi __builtin_ia32_psllwi256 (16hi,int)
11420 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
11421 v8si __builtin_ia32_pslldi256 (v8si,int)
11422 v8si __builtin_ia32_pslld256(v8si,v4si)
11423 v4di __builtin_ia32_psllqi256 (v4di,int)
11424 v4di __builtin_ia32_psllq256(v4di,v2di)
11425 v16hi __builtin_ia32_psrawi256 (v16hi,int)
11426 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
11427 v8si __builtin_ia32_psradi256 (v8si,int)
11428 v8si __builtin_ia32_psrad256 (v8si,v4si)
11429 v4di __builtin_ia32_psrldqi256 (v4di, int)
11430 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
11431 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
11432 v8si __builtin_ia32_psrldi256 (v8si,int)
11433 v8si __builtin_ia32_psrld256 (v8si,v4si)
11434 v4di __builtin_ia32_psrlqi256 (v4di,int)
11435 v4di __builtin_ia32_psrlq256(v4di,v2di)
11436 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
11437 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
11438 v8si __builtin_ia32_psubd256 (v8si,v8si)
11439 v4di __builtin_ia32_psubq256 (v4di,v4di)
11440 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
11441 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
11442 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
11443 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
11444 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
11445 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
11446 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
11447 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
11448 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
11449 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
11450 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
11451 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
11452 v4di __builtin_ia32_pxor256 (v4di,v4di)
11453 v4di __builtin_ia32_movntdqa256 (pv4di)
11454 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
11455 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
11456 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
11457 v4di __builtin_ia32_vbroadcastsi256 (v2di)
11458 v4si __builtin_ia32_pblendd128 (v4si,v4si)
11459 v8si __builtin_ia32_pblendd256 (v8si,v8si)
11460 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
11461 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
11462 v8si __builtin_ia32_pbroadcastd256 (v4si)
11463 v4di __builtin_ia32_pbroadcastq256 (v2di)
11464 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
11465 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
11466 v4si __builtin_ia32_pbroadcastd128 (v4si)
11467 v2di __builtin_ia32_pbroadcastq128 (v2di)
11468 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
11469 v4df __builtin_ia32_permdf256 (v4df,int)
11470 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
11471 v4di __builtin_ia32_permdi256 (v4di,int)
11472 v4di __builtin_ia32_permti256 (v4di,v4di,int)
11473 v4di __builtin_ia32_extract128i256 (v4di,int)
11474 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
11475 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
11476 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
11477 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
11478 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
11479 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
11480 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
11481 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
11482 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
11483 v8si __builtin_ia32_psllv8si (v8si,v8si)
11484 v4si __builtin_ia32_psllv4si (v4si,v4si)
11485 v4di __builtin_ia32_psllv4di (v4di,v4di)
11486 v2di __builtin_ia32_psllv2di (v2di,v2di)
11487 v8si __builtin_ia32_psrav8si (v8si,v8si)
11488 v4si __builtin_ia32_psrav4si (v4si,v4si)
11489 v8si __builtin_ia32_psrlv8si (v8si,v8si)
11490 v4si __builtin_ia32_psrlv4si (v4si,v4si)
11491 v4di __builtin_ia32_psrlv4di (v4di,v4di)
11492 v2di __builtin_ia32_psrlv2di (v2di,v2di)
11493 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
11494 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
11495 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
11496 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
11497 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
11498 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
11499 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
11500 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
11501 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
11502 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
11503 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
11504 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
11505 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
11506 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
11507 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
11508 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
11509 @end smallexample
11510
11511 The following built-in functions are available when @option{-maes} is
11512 used. All of them generate the machine instruction that is part of the
11513 name.
11514
11515 @smallexample
11516 v2di __builtin_ia32_aesenc128 (v2di, v2di)
11517 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
11518 v2di __builtin_ia32_aesdec128 (v2di, v2di)
11519 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
11520 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
11521 v2di __builtin_ia32_aesimc128 (v2di)
11522 @end smallexample
11523
11524 The following built-in function is available when @option{-mpclmul} is
11525 used.
11526
11527 @table @code
11528 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
11529 Generates the @code{pclmulqdq} machine instruction.
11530 @end table
11531
11532 The following built-in function is available when @option{-mfsgsbase} is
11533 used. All of them generate the machine instruction that is part of the
11534 name.
11535
11536 @smallexample
11537 unsigned int __builtin_ia32_rdfsbase32 (void)
11538 unsigned long long __builtin_ia32_rdfsbase64 (void)
11539 unsigned int __builtin_ia32_rdgsbase32 (void)
11540 unsigned long long __builtin_ia32_rdgsbase64 (void)
11541 void _writefsbase_u32 (unsigned int)
11542 void _writefsbase_u64 (unsigned long long)
11543 void _writegsbase_u32 (unsigned int)
11544 void _writegsbase_u64 (unsigned long long)
11545 @end smallexample
11546
11547 The following built-in function is available when @option{-mrdrnd} is
11548 used. All of them generate the machine instruction that is part of the
11549 name.
11550
11551 @smallexample
11552 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
11553 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
11554 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
11555 @end smallexample
11556
11557 The following built-in functions are available when @option{-msse4a} is used.
11558 All of them generate the machine instruction that is part of the name.
11559
11560 @smallexample
11561 void __builtin_ia32_movntsd (double *, v2df)
11562 void __builtin_ia32_movntss (float *, v4sf)
11563 v2di __builtin_ia32_extrq (v2di, v16qi)
11564 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
11565 v2di __builtin_ia32_insertq (v2di, v2di)
11566 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
11567 @end smallexample
11568
11569 The following built-in functions are available when @option{-mxop} is used.
11570 @smallexample
11571 v2df __builtin_ia32_vfrczpd (v2df)
11572 v4sf __builtin_ia32_vfrczps (v4sf)
11573 v2df __builtin_ia32_vfrczsd (v2df, v2df)
11574 v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
11575 v4df __builtin_ia32_vfrczpd256 (v4df)
11576 v8sf __builtin_ia32_vfrczps256 (v8sf)
11577 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
11578 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
11579 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
11580 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
11581 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
11582 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
11583 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
11584 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
11585 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
11586 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
11587 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
11588 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
11589 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
11590 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
11591 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
11592 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
11593 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
11594 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
11595 v4si __builtin_ia32_vpcomequd (v4si, v4si)
11596 v2di __builtin_ia32_vpcomequq (v2di, v2di)
11597 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
11598 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
11599 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
11600 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
11601 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
11602 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
11603 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
11604 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
11605 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
11606 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
11607 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
11608 v4si __builtin_ia32_vpcomged (v4si, v4si)
11609 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
11610 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
11611 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
11612 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
11613 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
11614 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
11615 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
11616 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
11617 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
11618 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
11619 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
11620 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
11621 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
11622 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
11623 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
11624 v4si __builtin_ia32_vpcomled (v4si, v4si)
11625 v2di __builtin_ia32_vpcomleq (v2di, v2di)
11626 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
11627 v4si __builtin_ia32_vpcomleud (v4si, v4si)
11628 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
11629 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
11630 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
11631 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
11632 v4si __builtin_ia32_vpcomltd (v4si, v4si)
11633 v2di __builtin_ia32_vpcomltq (v2di, v2di)
11634 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
11635 v4si __builtin_ia32_vpcomltud (v4si, v4si)
11636 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
11637 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
11638 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
11639 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
11640 v4si __builtin_ia32_vpcomned (v4si, v4si)
11641 v2di __builtin_ia32_vpcomneq (v2di, v2di)
11642 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
11643 v4si __builtin_ia32_vpcomneud (v4si, v4si)
11644 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
11645 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
11646 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
11647 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
11648 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
11649 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
11650 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
11651 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
11652 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
11653 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
11654 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
11655 v4si __builtin_ia32_vphaddbd (v16qi)
11656 v2di __builtin_ia32_vphaddbq (v16qi)
11657 v8hi __builtin_ia32_vphaddbw (v16qi)
11658 v2di __builtin_ia32_vphadddq (v4si)
11659 v4si __builtin_ia32_vphaddubd (v16qi)
11660 v2di __builtin_ia32_vphaddubq (v16qi)
11661 v8hi __builtin_ia32_vphaddubw (v16qi)
11662 v2di __builtin_ia32_vphaddudq (v4si)
11663 v4si __builtin_ia32_vphadduwd (v8hi)
11664 v2di __builtin_ia32_vphadduwq (v8hi)
11665 v4si __builtin_ia32_vphaddwd (v8hi)
11666 v2di __builtin_ia32_vphaddwq (v8hi)
11667 v8hi __builtin_ia32_vphsubbw (v16qi)
11668 v2di __builtin_ia32_vphsubdq (v4si)
11669 v4si __builtin_ia32_vphsubwd (v8hi)
11670 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
11671 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
11672 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
11673 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
11674 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
11675 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
11676 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
11677 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
11678 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
11679 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
11680 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
11681 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
11682 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
11683 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
11684 v4si __builtin_ia32_vprotd (v4si, v4si)
11685 v2di __builtin_ia32_vprotq (v2di, v2di)
11686 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
11687 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
11688 v4si __builtin_ia32_vpshad (v4si, v4si)
11689 v2di __builtin_ia32_vpshaq (v2di, v2di)
11690 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
11691 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
11692 v4si __builtin_ia32_vpshld (v4si, v4si)
11693 v2di __builtin_ia32_vpshlq (v2di, v2di)
11694 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
11695 @end smallexample
11696
11697 The following built-in functions are available when @option{-mfma4} is used.
11698 All of them generate the machine instruction that is part of the name.
11699
11700 @smallexample
11701 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
11702 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
11703 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
11704 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
11705 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
11706 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
11707 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
11708 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
11709 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
11710 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
11711 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
11712 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
11713 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
11714 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
11715 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
11716 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
11717 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
11718 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
11719 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
11720 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
11721 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
11722 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
11723 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
11724 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
11725 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
11726 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
11727 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
11728 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
11729 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
11730 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
11731 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
11732 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
11733
11734 @end smallexample
11735
11736 The following built-in functions are available when @option{-mlwp} is used.
11737
11738 @smallexample
11739 void __builtin_ia32_llwpcb16 (void *);
11740 void __builtin_ia32_llwpcb32 (void *);
11741 void __builtin_ia32_llwpcb64 (void *);
11742 void * __builtin_ia32_llwpcb16 (void);
11743 void * __builtin_ia32_llwpcb32 (void);
11744 void * __builtin_ia32_llwpcb64 (void);
11745 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
11746 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
11747 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
11748 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
11749 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
11750 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
11751 @end smallexample
11752
11753 The following built-in functions are available when @option{-mbmi} is used.
11754 All of them generate the machine instruction that is part of the name.
11755 @smallexample
11756 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
11757 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
11758 @end smallexample
11759
11760 The following built-in functions are available when @option{-mbmi2} is used.
11761 All of them generate the machine instruction that is part of the name.
11762 @smallexample
11763 unsigned int _bzhi_u32 (unsigned int, unsigned int)
11764 unsigned int _pdep_u32 (unsigned int, unsigned int)
11765 unsigned int _pext_u32 (unsigned int, unsigned int)
11766 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
11767 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
11768 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
11769 @end smallexample
11770
11771 The following built-in functions are available when @option{-mlzcnt} is used.
11772 All of them generate the machine instruction that is part of the name.
11773 @smallexample
11774 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
11775 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
11776 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
11777 @end smallexample
11778
11779 The following built-in functions are available when @option{-mfxsr} is used.
11780 All of them generate the machine instruction that is part of the name.
11781 @smallexample
11782 void __builtin_ia32_fxsave (void *)
11783 void __builtin_ia32_fxrstor (void *)
11784 void __builtin_ia32_fxsave64 (void *)
11785 void __builtin_ia32_fxrstor64 (void *)
11786 @end smallexample
11787
11788 The following built-in functions are available when @option{-mxsave} is used.
11789 All of them generate the machine instruction that is part of the name.
11790 @smallexample
11791 void __builtin_ia32_xsave (void *, long long)
11792 void __builtin_ia32_xrstor (void *, long long)
11793 void __builtin_ia32_xsave64 (void *, long long)
11794 void __builtin_ia32_xrstor64 (void *, long long)
11795 @end smallexample
11796
11797 The following built-in functions are available when @option{-mxsaveopt} is used.
11798 All of them generate the machine instruction that is part of the name.
11799 @smallexample
11800 void __builtin_ia32_xsaveopt (void *, long long)
11801 void __builtin_ia32_xsaveopt64 (void *, long long)
11802 @end smallexample
11803
11804 The following built-in functions are available when @option{-mtbm} is used.
11805 Both of them generate the immediate form of the bextr machine instruction.
11806 @smallexample
11807 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
11808 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
11809 @end smallexample
11810
11811
11812 The following built-in functions are available when @option{-m3dnow} is used.
11813 All of them generate the machine instruction that is part of the name.
11814
11815 @smallexample
11816 void __builtin_ia32_femms (void)
11817 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
11818 v2si __builtin_ia32_pf2id (v2sf)
11819 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
11820 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
11821 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
11822 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
11823 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
11824 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
11825 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
11826 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
11827 v2sf __builtin_ia32_pfrcp (v2sf)
11828 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
11829 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
11830 v2sf __builtin_ia32_pfrsqrt (v2sf)
11831 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
11832 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
11833 v2sf __builtin_ia32_pi2fd (v2si)
11834 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
11835 @end smallexample
11836
11837 The following built-in functions are available when both @option{-m3dnow}
11838 and @option{-march=athlon} are used. All of them generate the machine
11839 instruction that is part of the name.
11840
11841 @smallexample
11842 v2si __builtin_ia32_pf2iw (v2sf)
11843 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
11844 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
11845 v2sf __builtin_ia32_pi2fw (v2si)
11846 v2sf __builtin_ia32_pswapdsf (v2sf)
11847 v2si __builtin_ia32_pswapdsi (v2si)
11848 @end smallexample
11849
11850 The following built-in functions are available when @option{-mrtm} is used
11851 They are used for restricted transactional memory. These are the internal
11852 low level functions. Normally the functions in
11853 @ref{X86 transactional memory intrinsics} should be used instead.
11854
11855 @smallexample
11856 int __builtin_ia32_xbegin ()
11857 void __builtin_ia32_xend ()
11858 void __builtin_ia32_xabort (status)
11859 int __builtin_ia32_xtest ()
11860 @end smallexample
11861
11862 @node X86 transactional memory intrinsics
11863 @subsection X86 transaction memory intrinsics
11864
11865 Hardware transactional memory intrinsics for i386. These allow to use
11866 memory transactions with RTM (Restricted Transactional Memory).
11867 For using HLE (Hardware Lock Elision) see @ref{x86 specific memory model extensions for transactional memory} instead.
11868 This support is enabled with the @option{-mrtm} option.
11869
11870 A memory transaction commits all changes to memory in an atomic way,
11871 as visible to other threads. If the transaction fails it is rolled back
11872 and all side effects discarded.
11873
11874 Generally there is no guarantee that a memory transaction ever succeeds
11875 and suitable fallback code always needs to be supplied.
11876
11877 @deftypefn {RTM Function} {unsigned} _xbegin ()
11878 Start a RTM (Restricted Transactional Memory) transaction.
11879 Returns _XBEGIN_STARTED when the transaction
11880 started successfully (note this is not 0, so the constant has to be
11881 explicitely tested). When the transaction aborts all side effects
11882 are undone and an abort code is returned. There is no guarantee
11883 any transaction ever succeeds, so there always needs to be a valid
11884 tested fallback path.
11885 @end deftypefn
11886
11887 @smallexample
11888 #include <immintrin.h>
11889
11890 if ((status = _xbegin ()) == _XBEGIN_STARTED) @{
11891 ... transaction code...
11892 _xend ();
11893 @} else @{
11894 ... non transactional fallback path...
11895 @}
11896 @end smallexample
11897
11898 Valid abort status bits (when the value is not @code{_XBEGIN_STARTED}) are:
11899
11900 @table @code
11901 @item _XABORT_EXPLICIT
11902 Transaction explicitely aborted with @code{_xabort}. The parameter passed
11903 to @code{_xabort} is available with @code{_XABORT_CODE(status)}
11904 @item _XABORT_RETRY
11905 Transaction retry is possible.
11906 @item _XABORT_CONFLICT
11907 Transaction abort due to a memory conflict with another thread
11908 @item _XABORT_CAPACITY
11909 Transaction abort due to the transaction using too much memory
11910 @item _XABORT_DEBUG
11911 Transaction abort due to a debug trap
11912 @item _XABORT_NESTED
11913 Transaction abort in a inner nested transaction
11914 @end table
11915
11916 @deftypefn {RTM Function} {void} _xend ()
11917 Commit the current transaction. When no transaction is active this will
11918 fault. All memory side effects of the transactions will become visible
11919 to other threads in an atomic matter.
11920 @end deftypefn
11921
11922 @deftypefn {RTM Function} {int} _xtest ()
11923 Return a value not zero when a transaction is currently active, otherwise 0.
11924 @end deftypefn
11925
11926 @deftypefn {RTM Function} {void} _xabort (status)
11927 Abort the current transaction. When no transaction is active this is a no-op.
11928 status must be a 8bit constant, that is included in the status code returned
11929 by @code{_xbegin}
11930 @end deftypefn
11931
11932 @node MIPS DSP Built-in Functions
11933 @subsection MIPS DSP Built-in Functions
11934
11935 The MIPS DSP Application-Specific Extension (ASE) includes new
11936 instructions that are designed to improve the performance of DSP and
11937 media applications. It provides instructions that operate on packed
11938 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
11939
11940 GCC supports MIPS DSP operations using both the generic
11941 vector extensions (@pxref{Vector Extensions}) and a collection of
11942 MIPS-specific built-in functions. Both kinds of support are
11943 enabled by the @option{-mdsp} command-line option.
11944
11945 Revision 2 of the ASE was introduced in the second half of 2006.
11946 This revision adds extra instructions to the original ASE, but is
11947 otherwise backwards-compatible with it. You can select revision 2
11948 using the command-line option @option{-mdspr2}; this option implies
11949 @option{-mdsp}.
11950
11951 The SCOUNT and POS bits of the DSP control register are global. The
11952 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
11953 POS bits. During optimization, the compiler does not delete these
11954 instructions and it does not delete calls to functions containing
11955 these instructions.
11956
11957 At present, GCC only provides support for operations on 32-bit
11958 vectors. The vector type associated with 8-bit integer data is
11959 usually called @code{v4i8}, the vector type associated with Q7
11960 is usually called @code{v4q7}, the vector type associated with 16-bit
11961 integer data is usually called @code{v2i16}, and the vector type
11962 associated with Q15 is usually called @code{v2q15}. They can be
11963 defined in C as follows:
11964
11965 @smallexample
11966 typedef signed char v4i8 __attribute__ ((vector_size(4)));
11967 typedef signed char v4q7 __attribute__ ((vector_size(4)));
11968 typedef short v2i16 __attribute__ ((vector_size(4)));
11969 typedef short v2q15 __attribute__ ((vector_size(4)));
11970 @end smallexample
11971
11972 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
11973 initialized in the same way as aggregates. For example:
11974
11975 @smallexample
11976 v4i8 a = @{1, 2, 3, 4@};
11977 v4i8 b;
11978 b = (v4i8) @{5, 6, 7, 8@};
11979
11980 v2q15 c = @{0x0fcb, 0x3a75@};
11981 v2q15 d;
11982 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
11983 @end smallexample
11984
11985 @emph{Note:} The CPU's endianness determines the order in which values
11986 are packed. On little-endian targets, the first value is the least
11987 significant and the last value is the most significant. The opposite
11988 order applies to big-endian targets. For example, the code above
11989 sets the lowest byte of @code{a} to @code{1} on little-endian targets
11990 and @code{4} on big-endian targets.
11991
11992 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
11993 representation. As shown in this example, the integer representation
11994 of a Q7 value can be obtained by multiplying the fractional value by
11995 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
11996 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
11997 @code{0x1.0p31}.
11998
11999 The table below lists the @code{v4i8} and @code{v2q15} operations for which
12000 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
12001 and @code{c} and @code{d} are @code{v2q15} values.
12002
12003 @multitable @columnfractions .50 .50
12004 @item C code @tab MIPS instruction
12005 @item @code{a + b} @tab @code{addu.qb}
12006 @item @code{c + d} @tab @code{addq.ph}
12007 @item @code{a - b} @tab @code{subu.qb}
12008 @item @code{c - d} @tab @code{subq.ph}
12009 @end multitable
12010
12011 The table below lists the @code{v2i16} operation for which
12012 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
12013 @code{v2i16} values.
12014
12015 @multitable @columnfractions .50 .50
12016 @item C code @tab MIPS instruction
12017 @item @code{e * f} @tab @code{mul.ph}
12018 @end multitable
12019
12020 It is easier to describe the DSP built-in functions if we first define
12021 the following types:
12022
12023 @smallexample
12024 typedef int q31;
12025 typedef int i32;
12026 typedef unsigned int ui32;
12027 typedef long long a64;
12028 @end smallexample
12029
12030 @code{q31} and @code{i32} are actually the same as @code{int}, but we
12031 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
12032 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
12033 @code{long long}, but we use @code{a64} to indicate values that are
12034 placed in one of the four DSP accumulators (@code{$ac0},
12035 @code{$ac1}, @code{$ac2} or @code{$ac3}).
12036
12037 Also, some built-in functions prefer or require immediate numbers as
12038 parameters, because the corresponding DSP instructions accept both immediate
12039 numbers and register operands, or accept immediate numbers only. The
12040 immediate parameters are listed as follows.
12041
12042 @smallexample
12043 imm0_3: 0 to 3.
12044 imm0_7: 0 to 7.
12045 imm0_15: 0 to 15.
12046 imm0_31: 0 to 31.
12047 imm0_63: 0 to 63.
12048 imm0_255: 0 to 255.
12049 imm_n32_31: -32 to 31.
12050 imm_n512_511: -512 to 511.
12051 @end smallexample
12052
12053 The following built-in functions map directly to a particular MIPS DSP
12054 instruction. Please refer to the architecture specification
12055 for details on what each instruction does.
12056
12057 @smallexample
12058 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
12059 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
12060 q31 __builtin_mips_addq_s_w (q31, q31)
12061 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
12062 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
12063 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
12064 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
12065 q31 __builtin_mips_subq_s_w (q31, q31)
12066 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
12067 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
12068 i32 __builtin_mips_addsc (i32, i32)
12069 i32 __builtin_mips_addwc (i32, i32)
12070 i32 __builtin_mips_modsub (i32, i32)
12071 i32 __builtin_mips_raddu_w_qb (v4i8)
12072 v2q15 __builtin_mips_absq_s_ph (v2q15)
12073 q31 __builtin_mips_absq_s_w (q31)
12074 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
12075 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
12076 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
12077 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
12078 q31 __builtin_mips_preceq_w_phl (v2q15)
12079 q31 __builtin_mips_preceq_w_phr (v2q15)
12080 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
12081 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
12082 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
12083 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
12084 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
12085 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
12086 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
12087 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
12088 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
12089 v4i8 __builtin_mips_shll_qb (v4i8, i32)
12090 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
12091 v2q15 __builtin_mips_shll_ph (v2q15, i32)
12092 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
12093 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
12094 q31 __builtin_mips_shll_s_w (q31, imm0_31)
12095 q31 __builtin_mips_shll_s_w (q31, i32)
12096 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
12097 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
12098 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
12099 v2q15 __builtin_mips_shra_ph (v2q15, i32)
12100 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
12101 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
12102 q31 __builtin_mips_shra_r_w (q31, imm0_31)
12103 q31 __builtin_mips_shra_r_w (q31, i32)
12104 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
12105 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
12106 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
12107 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
12108 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
12109 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
12110 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
12111 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
12112 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
12113 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
12114 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
12115 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
12116 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
12117 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
12118 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
12119 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
12120 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
12121 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
12122 i32 __builtin_mips_bitrev (i32)
12123 i32 __builtin_mips_insv (i32, i32)
12124 v4i8 __builtin_mips_repl_qb (imm0_255)
12125 v4i8 __builtin_mips_repl_qb (i32)
12126 v2q15 __builtin_mips_repl_ph (imm_n512_511)
12127 v2q15 __builtin_mips_repl_ph (i32)
12128 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
12129 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
12130 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
12131 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
12132 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
12133 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
12134 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
12135 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
12136 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
12137 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
12138 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
12139 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
12140 i32 __builtin_mips_extr_w (a64, imm0_31)
12141 i32 __builtin_mips_extr_w (a64, i32)
12142 i32 __builtin_mips_extr_r_w (a64, imm0_31)
12143 i32 __builtin_mips_extr_s_h (a64, i32)
12144 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
12145 i32 __builtin_mips_extr_rs_w (a64, i32)
12146 i32 __builtin_mips_extr_s_h (a64, imm0_31)
12147 i32 __builtin_mips_extr_r_w (a64, i32)
12148 i32 __builtin_mips_extp (a64, imm0_31)
12149 i32 __builtin_mips_extp (a64, i32)
12150 i32 __builtin_mips_extpdp (a64, imm0_31)
12151 i32 __builtin_mips_extpdp (a64, i32)
12152 a64 __builtin_mips_shilo (a64, imm_n32_31)
12153 a64 __builtin_mips_shilo (a64, i32)
12154 a64 __builtin_mips_mthlip (a64, i32)
12155 void __builtin_mips_wrdsp (i32, imm0_63)
12156 i32 __builtin_mips_rddsp (imm0_63)
12157 i32 __builtin_mips_lbux (void *, i32)
12158 i32 __builtin_mips_lhx (void *, i32)
12159 i32 __builtin_mips_lwx (void *, i32)
12160 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
12161 i32 __builtin_mips_bposge32 (void)
12162 a64 __builtin_mips_madd (a64, i32, i32);
12163 a64 __builtin_mips_maddu (a64, ui32, ui32);
12164 a64 __builtin_mips_msub (a64, i32, i32);
12165 a64 __builtin_mips_msubu (a64, ui32, ui32);
12166 a64 __builtin_mips_mult (i32, i32);
12167 a64 __builtin_mips_multu (ui32, ui32);
12168 @end smallexample
12169
12170 The following built-in functions map directly to a particular MIPS DSP REV 2
12171 instruction. Please refer to the architecture specification
12172 for details on what each instruction does.
12173
12174 @smallexample
12175 v4q7 __builtin_mips_absq_s_qb (v4q7);
12176 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
12177 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
12178 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
12179 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
12180 i32 __builtin_mips_append (i32, i32, imm0_31);
12181 i32 __builtin_mips_balign (i32, i32, imm0_3);
12182 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
12183 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
12184 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
12185 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
12186 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
12187 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
12188 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
12189 q31 __builtin_mips_mulq_rs_w (q31, q31);
12190 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
12191 q31 __builtin_mips_mulq_s_w (q31, q31);
12192 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
12193 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
12194 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
12195 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
12196 i32 __builtin_mips_prepend (i32, i32, imm0_31);
12197 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
12198 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
12199 v4i8 __builtin_mips_shra_qb (v4i8, i32);
12200 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
12201 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
12202 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
12203 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
12204 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
12205 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
12206 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
12207 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
12208 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
12209 q31 __builtin_mips_addqh_w (q31, q31);
12210 q31 __builtin_mips_addqh_r_w (q31, q31);
12211 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
12212 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
12213 q31 __builtin_mips_subqh_w (q31, q31);
12214 q31 __builtin_mips_subqh_r_w (q31, q31);
12215 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
12216 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
12217 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
12218 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
12219 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
12220 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
12221 @end smallexample
12222
12223
12224 @node MIPS Paired-Single Support
12225 @subsection MIPS Paired-Single Support
12226
12227 The MIPS64 architecture includes a number of instructions that
12228 operate on pairs of single-precision floating-point values.
12229 Each pair is packed into a 64-bit floating-point register,
12230 with one element being designated the ``upper half'' and
12231 the other being designated the ``lower half''.
12232
12233 GCC supports paired-single operations using both the generic
12234 vector extensions (@pxref{Vector Extensions}) and a collection of
12235 MIPS-specific built-in functions. Both kinds of support are
12236 enabled by the @option{-mpaired-single} command-line option.
12237
12238 The vector type associated with paired-single values is usually
12239 called @code{v2sf}. It can be defined in C as follows:
12240
12241 @smallexample
12242 typedef float v2sf __attribute__ ((vector_size (8)));
12243 @end smallexample
12244
12245 @code{v2sf} values are initialized in the same way as aggregates.
12246 For example:
12247
12248 @smallexample
12249 v2sf a = @{1.5, 9.1@};
12250 v2sf b;
12251 float e, f;
12252 b = (v2sf) @{e, f@};
12253 @end smallexample
12254
12255 @emph{Note:} The CPU's endianness determines which value is stored in
12256 the upper half of a register and which value is stored in the lower half.
12257 On little-endian targets, the first value is the lower one and the second
12258 value is the upper one. The opposite order applies to big-endian targets.
12259 For example, the code above sets the lower half of @code{a} to
12260 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
12261
12262 @node MIPS Loongson Built-in Functions
12263 @subsection MIPS Loongson Built-in Functions
12264
12265 GCC provides intrinsics to access the SIMD instructions provided by the
12266 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
12267 available after inclusion of the @code{loongson.h} header file,
12268 operate on the following 64-bit vector types:
12269
12270 @itemize
12271 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
12272 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
12273 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
12274 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
12275 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
12276 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
12277 @end itemize
12278
12279 The intrinsics provided are listed below; each is named after the
12280 machine instruction to which it corresponds, with suffixes added as
12281 appropriate to distinguish intrinsics that expand to the same machine
12282 instruction yet have different argument types. Refer to the architecture
12283 documentation for a description of the functionality of each
12284 instruction.
12285
12286 @smallexample
12287 int16x4_t packsswh (int32x2_t s, int32x2_t t);
12288 int8x8_t packsshb (int16x4_t s, int16x4_t t);
12289 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
12290 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
12291 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
12292 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
12293 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
12294 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
12295 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
12296 uint64_t paddd_u (uint64_t s, uint64_t t);
12297 int64_t paddd_s (int64_t s, int64_t t);
12298 int16x4_t paddsh (int16x4_t s, int16x4_t t);
12299 int8x8_t paddsb (int8x8_t s, int8x8_t t);
12300 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
12301 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
12302 uint64_t pandn_ud (uint64_t s, uint64_t t);
12303 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
12304 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
12305 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
12306 int64_t pandn_sd (int64_t s, int64_t t);
12307 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
12308 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
12309 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
12310 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
12311 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
12312 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
12313 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
12314 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
12315 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
12316 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
12317 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
12318 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
12319 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
12320 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
12321 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
12322 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
12323 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
12324 uint16x4_t pextrh_u (uint16x4_t s, int field);
12325 int16x4_t pextrh_s (int16x4_t s, int field);
12326 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
12327 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
12328 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
12329 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
12330 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
12331 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
12332 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
12333 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
12334 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
12335 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
12336 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
12337 int16x4_t pminsh (int16x4_t s, int16x4_t t);
12338 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
12339 uint8x8_t pmovmskb_u (uint8x8_t s);
12340 int8x8_t pmovmskb_s (int8x8_t s);
12341 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
12342 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
12343 int16x4_t pmullh (int16x4_t s, int16x4_t t);
12344 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
12345 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
12346 uint16x4_t biadd (uint8x8_t s);
12347 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
12348 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
12349 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
12350 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
12351 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
12352 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
12353 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
12354 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
12355 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
12356 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
12357 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
12358 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
12359 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
12360 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
12361 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
12362 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
12363 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
12364 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
12365 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
12366 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
12367 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
12368 uint64_t psubd_u (uint64_t s, uint64_t t);
12369 int64_t psubd_s (int64_t s, int64_t t);
12370 int16x4_t psubsh (int16x4_t s, int16x4_t t);
12371 int8x8_t psubsb (int8x8_t s, int8x8_t t);
12372 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
12373 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
12374 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
12375 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
12376 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
12377 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
12378 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
12379 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
12380 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
12381 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
12382 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
12383 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
12384 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
12385 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
12386 @end smallexample
12387
12388 @menu
12389 * Paired-Single Arithmetic::
12390 * Paired-Single Built-in Functions::
12391 * MIPS-3D Built-in Functions::
12392 @end menu
12393
12394 @node Paired-Single Arithmetic
12395 @subsubsection Paired-Single Arithmetic
12396
12397 The table below lists the @code{v2sf} operations for which hardware
12398 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
12399 values and @code{x} is an integral value.
12400
12401 @multitable @columnfractions .50 .50
12402 @item C code @tab MIPS instruction
12403 @item @code{a + b} @tab @code{add.ps}
12404 @item @code{a - b} @tab @code{sub.ps}
12405 @item @code{-a} @tab @code{neg.ps}
12406 @item @code{a * b} @tab @code{mul.ps}
12407 @item @code{a * b + c} @tab @code{madd.ps}
12408 @item @code{a * b - c} @tab @code{msub.ps}
12409 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
12410 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
12411 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
12412 @end multitable
12413
12414 Note that the multiply-accumulate instructions can be disabled
12415 using the command-line option @code{-mno-fused-madd}.
12416
12417 @node Paired-Single Built-in Functions
12418 @subsubsection Paired-Single Built-in Functions
12419
12420 The following paired-single functions map directly to a particular
12421 MIPS instruction. Please refer to the architecture specification
12422 for details on what each instruction does.
12423
12424 @table @code
12425 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
12426 Pair lower lower (@code{pll.ps}).
12427
12428 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
12429 Pair upper lower (@code{pul.ps}).
12430
12431 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
12432 Pair lower upper (@code{plu.ps}).
12433
12434 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
12435 Pair upper upper (@code{puu.ps}).
12436
12437 @item v2sf __builtin_mips_cvt_ps_s (float, float)
12438 Convert pair to paired single (@code{cvt.ps.s}).
12439
12440 @item float __builtin_mips_cvt_s_pl (v2sf)
12441 Convert pair lower to single (@code{cvt.s.pl}).
12442
12443 @item float __builtin_mips_cvt_s_pu (v2sf)
12444 Convert pair upper to single (@code{cvt.s.pu}).
12445
12446 @item v2sf __builtin_mips_abs_ps (v2sf)
12447 Absolute value (@code{abs.ps}).
12448
12449 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
12450 Align variable (@code{alnv.ps}).
12451
12452 @emph{Note:} The value of the third parameter must be 0 or 4
12453 modulo 8, otherwise the result is unpredictable. Please read the
12454 instruction description for details.
12455 @end table
12456
12457 The following multi-instruction functions are also available.
12458 In each case, @var{cond} can be any of the 16 floating-point conditions:
12459 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
12460 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
12461 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
12462
12463 @table @code
12464 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12465 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12466 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
12467 @code{movt.ps}/@code{movf.ps}).
12468
12469 The @code{movt} functions return the value @var{x} computed by:
12470
12471 @smallexample
12472 c.@var{cond}.ps @var{cc},@var{a},@var{b}
12473 mov.ps @var{x},@var{c}
12474 movt.ps @var{x},@var{d},@var{cc}
12475 @end smallexample
12476
12477 The @code{movf} functions are similar but use @code{movf.ps} instead
12478 of @code{movt.ps}.
12479
12480 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12481 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12482 Comparison of two paired-single values (@code{c.@var{cond}.ps},
12483 @code{bc1t}/@code{bc1f}).
12484
12485 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
12486 and return either the upper or lower half of the result. For example:
12487
12488 @smallexample
12489 v2sf a, b;
12490 if (__builtin_mips_upper_c_eq_ps (a, b))
12491 upper_halves_are_equal ();
12492 else
12493 upper_halves_are_unequal ();
12494
12495 if (__builtin_mips_lower_c_eq_ps (a, b))
12496 lower_halves_are_equal ();
12497 else
12498 lower_halves_are_unequal ();
12499 @end smallexample
12500 @end table
12501
12502 @node MIPS-3D Built-in Functions
12503 @subsubsection MIPS-3D Built-in Functions
12504
12505 The MIPS-3D Application-Specific Extension (ASE) includes additional
12506 paired-single instructions that are designed to improve the performance
12507 of 3D graphics operations. Support for these instructions is controlled
12508 by the @option{-mips3d} command-line option.
12509
12510 The functions listed below map directly to a particular MIPS-3D
12511 instruction. Please refer to the architecture specification for
12512 more details on what each instruction does.
12513
12514 @table @code
12515 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
12516 Reduction add (@code{addr.ps}).
12517
12518 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
12519 Reduction multiply (@code{mulr.ps}).
12520
12521 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
12522 Convert paired single to paired word (@code{cvt.pw.ps}).
12523
12524 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
12525 Convert paired word to paired single (@code{cvt.ps.pw}).
12526
12527 @item float __builtin_mips_recip1_s (float)
12528 @itemx double __builtin_mips_recip1_d (double)
12529 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
12530 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
12531
12532 @item float __builtin_mips_recip2_s (float, float)
12533 @itemx double __builtin_mips_recip2_d (double, double)
12534 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
12535 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
12536
12537 @item float __builtin_mips_rsqrt1_s (float)
12538 @itemx double __builtin_mips_rsqrt1_d (double)
12539 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
12540 Reduced-precision reciprocal square root (sequence step 1)
12541 (@code{rsqrt1.@var{fmt}}).
12542
12543 @item float __builtin_mips_rsqrt2_s (float, float)
12544 @itemx double __builtin_mips_rsqrt2_d (double, double)
12545 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
12546 Reduced-precision reciprocal square root (sequence step 2)
12547 (@code{rsqrt2.@var{fmt}}).
12548 @end table
12549
12550 The following multi-instruction functions are also available.
12551 In each case, @var{cond} can be any of the 16 floating-point conditions:
12552 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
12553 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
12554 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
12555
12556 @table @code
12557 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
12558 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
12559 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
12560 @code{bc1t}/@code{bc1f}).
12561
12562 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
12563 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
12564 For example:
12565
12566 @smallexample
12567 float a, b;
12568 if (__builtin_mips_cabs_eq_s (a, b))
12569 true ();
12570 else
12571 false ();
12572 @end smallexample
12573
12574 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12575 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12576 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
12577 @code{bc1t}/@code{bc1f}).
12578
12579 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
12580 and return either the upper or lower half of the result. For example:
12581
12582 @smallexample
12583 v2sf a, b;
12584 if (__builtin_mips_upper_cabs_eq_ps (a, b))
12585 upper_halves_are_equal ();
12586 else
12587 upper_halves_are_unequal ();
12588
12589 if (__builtin_mips_lower_cabs_eq_ps (a, b))
12590 lower_halves_are_equal ();
12591 else
12592 lower_halves_are_unequal ();
12593 @end smallexample
12594
12595 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12596 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12597 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
12598 @code{movt.ps}/@code{movf.ps}).
12599
12600 The @code{movt} functions return the value @var{x} computed by:
12601
12602 @smallexample
12603 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
12604 mov.ps @var{x},@var{c}
12605 movt.ps @var{x},@var{d},@var{cc}
12606 @end smallexample
12607
12608 The @code{movf} functions are similar but use @code{movf.ps} instead
12609 of @code{movt.ps}.
12610
12611 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12612 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12613 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12614 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
12615 Comparison of two paired-single values
12616 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
12617 @code{bc1any2t}/@code{bc1any2f}).
12618
12619 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
12620 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
12621 result is true and the @code{all} forms return true if both results are true.
12622 For example:
12623
12624 @smallexample
12625 v2sf a, b;
12626 if (__builtin_mips_any_c_eq_ps (a, b))
12627 one_is_true ();
12628 else
12629 both_are_false ();
12630
12631 if (__builtin_mips_all_c_eq_ps (a, b))
12632 both_are_true ();
12633 else
12634 one_is_false ();
12635 @end smallexample
12636
12637 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12638 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12639 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12640 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
12641 Comparison of four paired-single values
12642 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
12643 @code{bc1any4t}/@code{bc1any4f}).
12644
12645 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
12646 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
12647 The @code{any} forms return true if any of the four results are true
12648 and the @code{all} forms return true if all four results are true.
12649 For example:
12650
12651 @smallexample
12652 v2sf a, b, c, d;
12653 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
12654 some_are_true ();
12655 else
12656 all_are_false ();
12657
12658 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
12659 all_are_true ();
12660 else
12661 some_are_false ();
12662 @end smallexample
12663 @end table
12664
12665 @node Other MIPS Built-in Functions
12666 @subsection Other MIPS Built-in Functions
12667
12668 GCC provides other MIPS-specific built-in functions:
12669
12670 @table @code
12671 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
12672 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
12673 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
12674 when this function is available.
12675
12676 @item unsigned int __builtin_mips_get_fcsr (void)
12677 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
12678 Get and set the contents of the floating-point control and status register
12679 (FPU control register 31). These functions are only available in hard-float
12680 code but can be called in both MIPS16 and non-MIPS16 contexts.
12681
12682 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
12683 register except the condition codes, which GCC assumes are preserved.
12684 @end table
12685
12686 @node MSP430 Built-in Functions
12687 @subsection MSP430 Built-in Functions
12688
12689 GCC provides a couple of special builtin functions to aid in the
12690 writing of interrupt handlers in C.
12691
12692 @table @code
12693 @item __bic_SR_register_on_exit (int @var{mask})
12694 This clears the indicated bits in the saved copy of the status register
12695 currently residing on the stack. This only works inside interrupt
12696 handlers and the changes to the status register will only take affect
12697 once the handler returns.
12698
12699 @item __bis_SR_register_on_exit (int @var{mask})
12700 This sets the indicated bits in the saved copy of the status register
12701 currently residing on the stack. This only works inside interrupt
12702 handlers and the changes to the status register will only take affect
12703 once the handler returns.
12704 @end table
12705
12706 @node NDS32 Built-in Functions
12707 @subsection NDS32 Built-in Functions
12708
12709 These built-in functions are available for the NDS32 target:
12710
12711 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
12712 Insert an ISYNC instruction into the instruction stream where
12713 @var{addr} is an instruction address for serialization.
12714 @end deftypefn
12715
12716 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
12717 Insert an ISB instruction into the instruction stream.
12718 @end deftypefn
12719
12720 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
12721 Return the content of a system register which is mapped by @var{sr}.
12722 @end deftypefn
12723
12724 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
12725 Return the content of a user space register which is mapped by @var{usr}.
12726 @end deftypefn
12727
12728 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
12729 Move the @var{value} to a system register which is mapped by @var{sr}.
12730 @end deftypefn
12731
12732 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
12733 Move the @var{value} to a user space register which is mapped by @var{usr}.
12734 @end deftypefn
12735
12736 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
12737 Enable global interrupt.
12738 @end deftypefn
12739
12740 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
12741 Disable global interrupt.
12742 @end deftypefn
12743
12744 @node picoChip Built-in Functions
12745 @subsection picoChip Built-in Functions
12746
12747 GCC provides an interface to selected machine instructions from the
12748 picoChip instruction set.
12749
12750 @table @code
12751 @item int __builtin_sbc (int @var{value})
12752 Sign bit count. Return the number of consecutive bits in @var{value}
12753 that have the same value as the sign bit. The result is the number of
12754 leading sign bits minus one, giving the number of redundant sign bits in
12755 @var{value}.
12756
12757 @item int __builtin_byteswap (int @var{value})
12758 Byte swap. Return the result of swapping the upper and lower bytes of
12759 @var{value}.
12760
12761 @item int __builtin_brev (int @var{value})
12762 Bit reversal. Return the result of reversing the bits in
12763 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
12764 and so on.
12765
12766 @item int __builtin_adds (int @var{x}, int @var{y})
12767 Saturating addition. Return the result of adding @var{x} and @var{y},
12768 storing the value 32767 if the result overflows.
12769
12770 @item int __builtin_subs (int @var{x}, int @var{y})
12771 Saturating subtraction. Return the result of subtracting @var{y} from
12772 @var{x}, storing the value @minus{}32768 if the result overflows.
12773
12774 @item void __builtin_halt (void)
12775 Halt. The processor stops execution. This built-in is useful for
12776 implementing assertions.
12777
12778 @end table
12779
12780 @node PowerPC Built-in Functions
12781 @subsection PowerPC Built-in Functions
12782
12783 These built-in functions are available for the PowerPC family of
12784 processors:
12785 @smallexample
12786 float __builtin_recipdivf (float, float);
12787 float __builtin_rsqrtf (float);
12788 double __builtin_recipdiv (double, double);
12789 double __builtin_rsqrt (double);
12790 long __builtin_bpermd (long, long);
12791 uint64_t __builtin_ppc_get_timebase ();
12792 unsigned long __builtin_ppc_mftb ();
12793 @end smallexample
12794
12795 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
12796 @code{__builtin_rsqrtf} functions generate multiple instructions to
12797 implement the reciprocal sqrt functionality using reciprocal sqrt
12798 estimate instructions.
12799
12800 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
12801 functions generate multiple instructions to implement division using
12802 the reciprocal estimate instructions.
12803
12804 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
12805 functions generate instructions to read the Time Base Register. The
12806 @code{__builtin_ppc_get_timebase} function may generate multiple
12807 instructions and always returns the 64 bits of the Time Base Register.
12808 The @code{__builtin_ppc_mftb} function always generates one instruction and
12809 returns the Time Base Register value as an unsigned long, throwing away
12810 the most significant word on 32-bit environments.
12811
12812 @node PowerPC AltiVec/VSX Built-in Functions
12813 @subsection PowerPC AltiVec Built-in Functions
12814
12815 GCC provides an interface for the PowerPC family of processors to access
12816 the AltiVec operations described in Motorola's AltiVec Programming
12817 Interface Manual. The interface is made available by including
12818 @code{<altivec.h>} and using @option{-maltivec} and
12819 @option{-mabi=altivec}. The interface supports the following vector
12820 types.
12821
12822 @smallexample
12823 vector unsigned char
12824 vector signed char
12825 vector bool char
12826
12827 vector unsigned short
12828 vector signed short
12829 vector bool short
12830 vector pixel
12831
12832 vector unsigned int
12833 vector signed int
12834 vector bool int
12835 vector float
12836 @end smallexample
12837
12838 If @option{-mvsx} is used the following additional vector types are
12839 implemented.
12840
12841 @smallexample
12842 vector unsigned long
12843 vector signed long
12844 vector double
12845 @end smallexample
12846
12847 The long types are only implemented for 64-bit code generation, and
12848 the long type is only used in the floating point/integer conversion
12849 instructions.
12850
12851 GCC's implementation of the high-level language interface available from
12852 C and C++ code differs from Motorola's documentation in several ways.
12853
12854 @itemize @bullet
12855
12856 @item
12857 A vector constant is a list of constant expressions within curly braces.
12858
12859 @item
12860 A vector initializer requires no cast if the vector constant is of the
12861 same type as the variable it is initializing.
12862
12863 @item
12864 If @code{signed} or @code{unsigned} is omitted, the signedness of the
12865 vector type is the default signedness of the base type. The default
12866 varies depending on the operating system, so a portable program should
12867 always specify the signedness.
12868
12869 @item
12870 Compiling with @option{-maltivec} adds keywords @code{__vector},
12871 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
12872 @code{bool}. When compiling ISO C, the context-sensitive substitution
12873 of the keywords @code{vector}, @code{pixel} and @code{bool} is
12874 disabled. To use them, you must include @code{<altivec.h>} instead.
12875
12876 @item
12877 GCC allows using a @code{typedef} name as the type specifier for a
12878 vector type.
12879
12880 @item
12881 For C, overloaded functions are implemented with macros so the following
12882 does not work:
12883
12884 @smallexample
12885 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
12886 @end smallexample
12887
12888 @noindent
12889 Since @code{vec_add} is a macro, the vector constant in the example
12890 is treated as four separate arguments. Wrap the entire argument in
12891 parentheses for this to work.
12892 @end itemize
12893
12894 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
12895 Internally, GCC uses built-in functions to achieve the functionality in
12896 the aforementioned header file, but they are not supported and are
12897 subject to change without notice.
12898
12899 The following interfaces are supported for the generic and specific
12900 AltiVec operations and the AltiVec predicates. In cases where there
12901 is a direct mapping between generic and specific operations, only the
12902 generic names are shown here, although the specific operations can also
12903 be used.
12904
12905 Arguments that are documented as @code{const int} require literal
12906 integral values within the range required for that operation.
12907
12908 @smallexample
12909 vector signed char vec_abs (vector signed char);
12910 vector signed short vec_abs (vector signed short);
12911 vector signed int vec_abs (vector signed int);
12912 vector float vec_abs (vector float);
12913
12914 vector signed char vec_abss (vector signed char);
12915 vector signed short vec_abss (vector signed short);
12916 vector signed int vec_abss (vector signed int);
12917
12918 vector signed char vec_add (vector bool char, vector signed char);
12919 vector signed char vec_add (vector signed char, vector bool char);
12920 vector signed char vec_add (vector signed char, vector signed char);
12921 vector unsigned char vec_add (vector bool char, vector unsigned char);
12922 vector unsigned char vec_add (vector unsigned char, vector bool char);
12923 vector unsigned char vec_add (vector unsigned char,
12924 vector unsigned char);
12925 vector signed short vec_add (vector bool short, vector signed short);
12926 vector signed short vec_add (vector signed short, vector bool short);
12927 vector signed short vec_add (vector signed short, vector signed short);
12928 vector unsigned short vec_add (vector bool short,
12929 vector unsigned short);
12930 vector unsigned short vec_add (vector unsigned short,
12931 vector bool short);
12932 vector unsigned short vec_add (vector unsigned short,
12933 vector unsigned short);
12934 vector signed int vec_add (vector bool int, vector signed int);
12935 vector signed int vec_add (vector signed int, vector bool int);
12936 vector signed int vec_add (vector signed int, vector signed int);
12937 vector unsigned int vec_add (vector bool int, vector unsigned int);
12938 vector unsigned int vec_add (vector unsigned int, vector bool int);
12939 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
12940 vector float vec_add (vector float, vector float);
12941
12942 vector float vec_vaddfp (vector float, vector float);
12943
12944 vector signed int vec_vadduwm (vector bool int, vector signed int);
12945 vector signed int vec_vadduwm (vector signed int, vector bool int);
12946 vector signed int vec_vadduwm (vector signed int, vector signed int);
12947 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
12948 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
12949 vector unsigned int vec_vadduwm (vector unsigned int,
12950 vector unsigned int);
12951
12952 vector signed short vec_vadduhm (vector bool short,
12953 vector signed short);
12954 vector signed short vec_vadduhm (vector signed short,
12955 vector bool short);
12956 vector signed short vec_vadduhm (vector signed short,
12957 vector signed short);
12958 vector unsigned short vec_vadduhm (vector bool short,
12959 vector unsigned short);
12960 vector unsigned short vec_vadduhm (vector unsigned short,
12961 vector bool short);
12962 vector unsigned short vec_vadduhm (vector unsigned short,
12963 vector unsigned short);
12964
12965 vector signed char vec_vaddubm (vector bool char, vector signed char);
12966 vector signed char vec_vaddubm (vector signed char, vector bool char);
12967 vector signed char vec_vaddubm (vector signed char, vector signed char);
12968 vector unsigned char vec_vaddubm (vector bool char,
12969 vector unsigned char);
12970 vector unsigned char vec_vaddubm (vector unsigned char,
12971 vector bool char);
12972 vector unsigned char vec_vaddubm (vector unsigned char,
12973 vector unsigned char);
12974
12975 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
12976
12977 vector unsigned char vec_adds (vector bool char, vector unsigned char);
12978 vector unsigned char vec_adds (vector unsigned char, vector bool char);
12979 vector unsigned char vec_adds (vector unsigned char,
12980 vector unsigned char);
12981 vector signed char vec_adds (vector bool char, vector signed char);
12982 vector signed char vec_adds (vector signed char, vector bool char);
12983 vector signed char vec_adds (vector signed char, vector signed char);
12984 vector unsigned short vec_adds (vector bool short,
12985 vector unsigned short);
12986 vector unsigned short vec_adds (vector unsigned short,
12987 vector bool short);
12988 vector unsigned short vec_adds (vector unsigned short,
12989 vector unsigned short);
12990 vector signed short vec_adds (vector bool short, vector signed short);
12991 vector signed short vec_adds (vector signed short, vector bool short);
12992 vector signed short vec_adds (vector signed short, vector signed short);
12993 vector unsigned int vec_adds (vector bool int, vector unsigned int);
12994 vector unsigned int vec_adds (vector unsigned int, vector bool int);
12995 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
12996 vector signed int vec_adds (vector bool int, vector signed int);
12997 vector signed int vec_adds (vector signed int, vector bool int);
12998 vector signed int vec_adds (vector signed int, vector signed int);
12999
13000 vector signed int vec_vaddsws (vector bool int, vector signed int);
13001 vector signed int vec_vaddsws (vector signed int, vector bool int);
13002 vector signed int vec_vaddsws (vector signed int, vector signed int);
13003
13004 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
13005 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
13006 vector unsigned int vec_vadduws (vector unsigned int,
13007 vector unsigned int);
13008
13009 vector signed short vec_vaddshs (vector bool short,
13010 vector signed short);
13011 vector signed short vec_vaddshs (vector signed short,
13012 vector bool short);
13013 vector signed short vec_vaddshs (vector signed short,
13014 vector signed short);
13015
13016 vector unsigned short vec_vadduhs (vector bool short,
13017 vector unsigned short);
13018 vector unsigned short vec_vadduhs (vector unsigned short,
13019 vector bool short);
13020 vector unsigned short vec_vadduhs (vector unsigned short,
13021 vector unsigned short);
13022
13023 vector signed char vec_vaddsbs (vector bool char, vector signed char);
13024 vector signed char vec_vaddsbs (vector signed char, vector bool char);
13025 vector signed char vec_vaddsbs (vector signed char, vector signed char);
13026
13027 vector unsigned char vec_vaddubs (vector bool char,
13028 vector unsigned char);
13029 vector unsigned char vec_vaddubs (vector unsigned char,
13030 vector bool char);
13031 vector unsigned char vec_vaddubs (vector unsigned char,
13032 vector unsigned char);
13033
13034 vector float vec_and (vector float, vector float);
13035 vector float vec_and (vector float, vector bool int);
13036 vector float vec_and (vector bool int, vector float);
13037 vector bool int vec_and (vector bool int, vector bool int);
13038 vector signed int vec_and (vector bool int, vector signed int);
13039 vector signed int vec_and (vector signed int, vector bool int);
13040 vector signed int vec_and (vector signed int, vector signed int);
13041 vector unsigned int vec_and (vector bool int, vector unsigned int);
13042 vector unsigned int vec_and (vector unsigned int, vector bool int);
13043 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
13044 vector bool short vec_and (vector bool short, vector bool short);
13045 vector signed short vec_and (vector bool short, vector signed short);
13046 vector signed short vec_and (vector signed short, vector bool short);
13047 vector signed short vec_and (vector signed short, vector signed short);
13048 vector unsigned short vec_and (vector bool short,
13049 vector unsigned short);
13050 vector unsigned short vec_and (vector unsigned short,
13051 vector bool short);
13052 vector unsigned short vec_and (vector unsigned short,
13053 vector unsigned short);
13054 vector signed char vec_and (vector bool char, vector signed char);
13055 vector bool char vec_and (vector bool char, vector bool char);
13056 vector signed char vec_and (vector signed char, vector bool char);
13057 vector signed char vec_and (vector signed char, vector signed char);
13058 vector unsigned char vec_and (vector bool char, vector unsigned char);
13059 vector unsigned char vec_and (vector unsigned char, vector bool char);
13060 vector unsigned char vec_and (vector unsigned char,
13061 vector unsigned char);
13062
13063 vector float vec_andc (vector float, vector float);
13064 vector float vec_andc (vector float, vector bool int);
13065 vector float vec_andc (vector bool int, vector float);
13066 vector bool int vec_andc (vector bool int, vector bool int);
13067 vector signed int vec_andc (vector bool int, vector signed int);
13068 vector signed int vec_andc (vector signed int, vector bool int);
13069 vector signed int vec_andc (vector signed int, vector signed int);
13070 vector unsigned int vec_andc (vector bool int, vector unsigned int);
13071 vector unsigned int vec_andc (vector unsigned int, vector bool int);
13072 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
13073 vector bool short vec_andc (vector bool short, vector bool short);
13074 vector signed short vec_andc (vector bool short, vector signed short);
13075 vector signed short vec_andc (vector signed short, vector bool short);
13076 vector signed short vec_andc (vector signed short, vector signed short);
13077 vector unsigned short vec_andc (vector bool short,
13078 vector unsigned short);
13079 vector unsigned short vec_andc (vector unsigned short,
13080 vector bool short);
13081 vector unsigned short vec_andc (vector unsigned short,
13082 vector unsigned short);
13083 vector signed char vec_andc (vector bool char, vector signed char);
13084 vector bool char vec_andc (vector bool char, vector bool char);
13085 vector signed char vec_andc (vector signed char, vector bool char);
13086 vector signed char vec_andc (vector signed char, vector signed char);
13087 vector unsigned char vec_andc (vector bool char, vector unsigned char);
13088 vector unsigned char vec_andc (vector unsigned char, vector bool char);
13089 vector unsigned char vec_andc (vector unsigned char,
13090 vector unsigned char);
13091
13092 vector unsigned char vec_avg (vector unsigned char,
13093 vector unsigned char);
13094 vector signed char vec_avg (vector signed char, vector signed char);
13095 vector unsigned short vec_avg (vector unsigned short,
13096 vector unsigned short);
13097 vector signed short vec_avg (vector signed short, vector signed short);
13098 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
13099 vector signed int vec_avg (vector signed int, vector signed int);
13100
13101 vector signed int vec_vavgsw (vector signed int, vector signed int);
13102
13103 vector unsigned int vec_vavguw (vector unsigned int,
13104 vector unsigned int);
13105
13106 vector signed short vec_vavgsh (vector signed short,
13107 vector signed short);
13108
13109 vector unsigned short vec_vavguh (vector unsigned short,
13110 vector unsigned short);
13111
13112 vector signed char vec_vavgsb (vector signed char, vector signed char);
13113
13114 vector unsigned char vec_vavgub (vector unsigned char,
13115 vector unsigned char);
13116
13117 vector float vec_copysign (vector float);
13118
13119 vector float vec_ceil (vector float);
13120
13121 vector signed int vec_cmpb (vector float, vector float);
13122
13123 vector bool char vec_cmpeq (vector signed char, vector signed char);
13124 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
13125 vector bool short vec_cmpeq (vector signed short, vector signed short);
13126 vector bool short vec_cmpeq (vector unsigned short,
13127 vector unsigned short);
13128 vector bool int vec_cmpeq (vector signed int, vector signed int);
13129 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
13130 vector bool int vec_cmpeq (vector float, vector float);
13131
13132 vector bool int vec_vcmpeqfp (vector float, vector float);
13133
13134 vector bool int vec_vcmpequw (vector signed int, vector signed int);
13135 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
13136
13137 vector bool short vec_vcmpequh (vector signed short,
13138 vector signed short);
13139 vector bool short vec_vcmpequh (vector unsigned short,
13140 vector unsigned short);
13141
13142 vector bool char vec_vcmpequb (vector signed char, vector signed char);
13143 vector bool char vec_vcmpequb (vector unsigned char,
13144 vector unsigned char);
13145
13146 vector bool int vec_cmpge (vector float, vector float);
13147
13148 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
13149 vector bool char vec_cmpgt (vector signed char, vector signed char);
13150 vector bool short vec_cmpgt (vector unsigned short,
13151 vector unsigned short);
13152 vector bool short vec_cmpgt (vector signed short, vector signed short);
13153 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
13154 vector bool int vec_cmpgt (vector signed int, vector signed int);
13155 vector bool int vec_cmpgt (vector float, vector float);
13156
13157 vector bool int vec_vcmpgtfp (vector float, vector float);
13158
13159 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
13160
13161 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
13162
13163 vector bool short vec_vcmpgtsh (vector signed short,
13164 vector signed short);
13165
13166 vector bool short vec_vcmpgtuh (vector unsigned short,
13167 vector unsigned short);
13168
13169 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
13170
13171 vector bool char vec_vcmpgtub (vector unsigned char,
13172 vector unsigned char);
13173
13174 vector bool int vec_cmple (vector float, vector float);
13175
13176 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
13177 vector bool char vec_cmplt (vector signed char, vector signed char);
13178 vector bool short vec_cmplt (vector unsigned short,
13179 vector unsigned short);
13180 vector bool short vec_cmplt (vector signed short, vector signed short);
13181 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
13182 vector bool int vec_cmplt (vector signed int, vector signed int);
13183 vector bool int vec_cmplt (vector float, vector float);
13184
13185 vector float vec_ctf (vector unsigned int, const int);
13186 vector float vec_ctf (vector signed int, const int);
13187
13188 vector float vec_vcfsx (vector signed int, const int);
13189
13190 vector float vec_vcfux (vector unsigned int, const int);
13191
13192 vector signed int vec_cts (vector float, const int);
13193
13194 vector unsigned int vec_ctu (vector float, const int);
13195
13196 void vec_dss (const int);
13197
13198 void vec_dssall (void);
13199
13200 void vec_dst (const vector unsigned char *, int, const int);
13201 void vec_dst (const vector signed char *, int, const int);
13202 void vec_dst (const vector bool char *, int, const int);
13203 void vec_dst (const vector unsigned short *, int, const int);
13204 void vec_dst (const vector signed short *, int, const int);
13205 void vec_dst (const vector bool short *, int, const int);
13206 void vec_dst (const vector pixel *, int, const int);
13207 void vec_dst (const vector unsigned int *, int, const int);
13208 void vec_dst (const vector signed int *, int, const int);
13209 void vec_dst (const vector bool int *, int, const int);
13210 void vec_dst (const vector float *, int, const int);
13211 void vec_dst (const unsigned char *, int, const int);
13212 void vec_dst (const signed char *, int, const int);
13213 void vec_dst (const unsigned short *, int, const int);
13214 void vec_dst (const short *, int, const int);
13215 void vec_dst (const unsigned int *, int, const int);
13216 void vec_dst (const int *, int, const int);
13217 void vec_dst (const unsigned long *, int, const int);
13218 void vec_dst (const long *, int, const int);
13219 void vec_dst (const float *, int, const int);
13220
13221 void vec_dstst (const vector unsigned char *, int, const int);
13222 void vec_dstst (const vector signed char *, int, const int);
13223 void vec_dstst (const vector bool char *, int, const int);
13224 void vec_dstst (const vector unsigned short *, int, const int);
13225 void vec_dstst (const vector signed short *, int, const int);
13226 void vec_dstst (const vector bool short *, int, const int);
13227 void vec_dstst (const vector pixel *, int, const int);
13228 void vec_dstst (const vector unsigned int *, int, const int);
13229 void vec_dstst (const vector signed int *, int, const int);
13230 void vec_dstst (const vector bool int *, int, const int);
13231 void vec_dstst (const vector float *, int, const int);
13232 void vec_dstst (const unsigned char *, int, const int);
13233 void vec_dstst (const signed char *, int, const int);
13234 void vec_dstst (const unsigned short *, int, const int);
13235 void vec_dstst (const short *, int, const int);
13236 void vec_dstst (const unsigned int *, int, const int);
13237 void vec_dstst (const int *, int, const int);
13238 void vec_dstst (const unsigned long *, int, const int);
13239 void vec_dstst (const long *, int, const int);
13240 void vec_dstst (const float *, int, const int);
13241
13242 void vec_dststt (const vector unsigned char *, int, const int);
13243 void vec_dststt (const vector signed char *, int, const int);
13244 void vec_dststt (const vector bool char *, int, const int);
13245 void vec_dststt (const vector unsigned short *, int, const int);
13246 void vec_dststt (const vector signed short *, int, const int);
13247 void vec_dststt (const vector bool short *, int, const int);
13248 void vec_dststt (const vector pixel *, int, const int);
13249 void vec_dststt (const vector unsigned int *, int, const int);
13250 void vec_dststt (const vector signed int *, int, const int);
13251 void vec_dststt (const vector bool int *, int, const int);
13252 void vec_dststt (const vector float *, int, const int);
13253 void vec_dststt (const unsigned char *, int, const int);
13254 void vec_dststt (const signed char *, int, const int);
13255 void vec_dststt (const unsigned short *, int, const int);
13256 void vec_dststt (const short *, int, const int);
13257 void vec_dststt (const unsigned int *, int, const int);
13258 void vec_dststt (const int *, int, const int);
13259 void vec_dststt (const unsigned long *, int, const int);
13260 void vec_dststt (const long *, int, const int);
13261 void vec_dststt (const float *, int, const int);
13262
13263 void vec_dstt (const vector unsigned char *, int, const int);
13264 void vec_dstt (const vector signed char *, int, const int);
13265 void vec_dstt (const vector bool char *, int, const int);
13266 void vec_dstt (const vector unsigned short *, int, const int);
13267 void vec_dstt (const vector signed short *, int, const int);
13268 void vec_dstt (const vector bool short *, int, const int);
13269 void vec_dstt (const vector pixel *, int, const int);
13270 void vec_dstt (const vector unsigned int *, int, const int);
13271 void vec_dstt (const vector signed int *, int, const int);
13272 void vec_dstt (const vector bool int *, int, const int);
13273 void vec_dstt (const vector float *, int, const int);
13274 void vec_dstt (const unsigned char *, int, const int);
13275 void vec_dstt (const signed char *, int, const int);
13276 void vec_dstt (const unsigned short *, int, const int);
13277 void vec_dstt (const short *, int, const int);
13278 void vec_dstt (const unsigned int *, int, const int);
13279 void vec_dstt (const int *, int, const int);
13280 void vec_dstt (const unsigned long *, int, const int);
13281 void vec_dstt (const long *, int, const int);
13282 void vec_dstt (const float *, int, const int);
13283
13284 vector float vec_expte (vector float);
13285
13286 vector float vec_floor (vector float);
13287
13288 vector float vec_ld (int, const vector float *);
13289 vector float vec_ld (int, const float *);
13290 vector bool int vec_ld (int, const vector bool int *);
13291 vector signed int vec_ld (int, const vector signed int *);
13292 vector signed int vec_ld (int, const int *);
13293 vector signed int vec_ld (int, const long *);
13294 vector unsigned int vec_ld (int, const vector unsigned int *);
13295 vector unsigned int vec_ld (int, const unsigned int *);
13296 vector unsigned int vec_ld (int, const unsigned long *);
13297 vector bool short vec_ld (int, const vector bool short *);
13298 vector pixel vec_ld (int, const vector pixel *);
13299 vector signed short vec_ld (int, const vector signed short *);
13300 vector signed short vec_ld (int, const short *);
13301 vector unsigned short vec_ld (int, const vector unsigned short *);
13302 vector unsigned short vec_ld (int, const unsigned short *);
13303 vector bool char vec_ld (int, const vector bool char *);
13304 vector signed char vec_ld (int, const vector signed char *);
13305 vector signed char vec_ld (int, const signed char *);
13306 vector unsigned char vec_ld (int, const vector unsigned char *);
13307 vector unsigned char vec_ld (int, const unsigned char *);
13308
13309 vector signed char vec_lde (int, const signed char *);
13310 vector unsigned char vec_lde (int, const unsigned char *);
13311 vector signed short vec_lde (int, const short *);
13312 vector unsigned short vec_lde (int, const unsigned short *);
13313 vector float vec_lde (int, const float *);
13314 vector signed int vec_lde (int, const int *);
13315 vector unsigned int vec_lde (int, const unsigned int *);
13316 vector signed int vec_lde (int, const long *);
13317 vector unsigned int vec_lde (int, const unsigned long *);
13318
13319 vector float vec_lvewx (int, float *);
13320 vector signed int vec_lvewx (int, int *);
13321 vector unsigned int vec_lvewx (int, unsigned int *);
13322 vector signed int vec_lvewx (int, long *);
13323 vector unsigned int vec_lvewx (int, unsigned long *);
13324
13325 vector signed short vec_lvehx (int, short *);
13326 vector unsigned short vec_lvehx (int, unsigned short *);
13327
13328 vector signed char vec_lvebx (int, char *);
13329 vector unsigned char vec_lvebx (int, unsigned char *);
13330
13331 vector float vec_ldl (int, const vector float *);
13332 vector float vec_ldl (int, const float *);
13333 vector bool int vec_ldl (int, const vector bool int *);
13334 vector signed int vec_ldl (int, const vector signed int *);
13335 vector signed int vec_ldl (int, const int *);
13336 vector signed int vec_ldl (int, const long *);
13337 vector unsigned int vec_ldl (int, const vector unsigned int *);
13338 vector unsigned int vec_ldl (int, const unsigned int *);
13339 vector unsigned int vec_ldl (int, const unsigned long *);
13340 vector bool short vec_ldl (int, const vector bool short *);
13341 vector pixel vec_ldl (int, const vector pixel *);
13342 vector signed short vec_ldl (int, const vector signed short *);
13343 vector signed short vec_ldl (int, const short *);
13344 vector unsigned short vec_ldl (int, const vector unsigned short *);
13345 vector unsigned short vec_ldl (int, const unsigned short *);
13346 vector bool char vec_ldl (int, const vector bool char *);
13347 vector signed char vec_ldl (int, const vector signed char *);
13348 vector signed char vec_ldl (int, const signed char *);
13349 vector unsigned char vec_ldl (int, const vector unsigned char *);
13350 vector unsigned char vec_ldl (int, const unsigned char *);
13351
13352 vector float vec_loge (vector float);
13353
13354 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
13355 vector unsigned char vec_lvsl (int, const volatile signed char *);
13356 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
13357 vector unsigned char vec_lvsl (int, const volatile short *);
13358 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
13359 vector unsigned char vec_lvsl (int, const volatile int *);
13360 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
13361 vector unsigned char vec_lvsl (int, const volatile long *);
13362 vector unsigned char vec_lvsl (int, const volatile float *);
13363
13364 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
13365 vector unsigned char vec_lvsr (int, const volatile signed char *);
13366 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
13367 vector unsigned char vec_lvsr (int, const volatile short *);
13368 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
13369 vector unsigned char vec_lvsr (int, const volatile int *);
13370 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
13371 vector unsigned char vec_lvsr (int, const volatile long *);
13372 vector unsigned char vec_lvsr (int, const volatile float *);
13373
13374 vector float vec_madd (vector float, vector float, vector float);
13375
13376 vector signed short vec_madds (vector signed short,
13377 vector signed short,
13378 vector signed short);
13379
13380 vector unsigned char vec_max (vector bool char, vector unsigned char);
13381 vector unsigned char vec_max (vector unsigned char, vector bool char);
13382 vector unsigned char vec_max (vector unsigned char,
13383 vector unsigned char);
13384 vector signed char vec_max (vector bool char, vector signed char);
13385 vector signed char vec_max (vector signed char, vector bool char);
13386 vector signed char vec_max (vector signed char, vector signed char);
13387 vector unsigned short vec_max (vector bool short,
13388 vector unsigned short);
13389 vector unsigned short vec_max (vector unsigned short,
13390 vector bool short);
13391 vector unsigned short vec_max (vector unsigned short,
13392 vector unsigned short);
13393 vector signed short vec_max (vector bool short, vector signed short);
13394 vector signed short vec_max (vector signed short, vector bool short);
13395 vector signed short vec_max (vector signed short, vector signed short);
13396 vector unsigned int vec_max (vector bool int, vector unsigned int);
13397 vector unsigned int vec_max (vector unsigned int, vector bool int);
13398 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
13399 vector signed int vec_max (vector bool int, vector signed int);
13400 vector signed int vec_max (vector signed int, vector bool int);
13401 vector signed int vec_max (vector signed int, vector signed int);
13402 vector float vec_max (vector float, vector float);
13403
13404 vector float vec_vmaxfp (vector float, vector float);
13405
13406 vector signed int vec_vmaxsw (vector bool int, vector signed int);
13407 vector signed int vec_vmaxsw (vector signed int, vector bool int);
13408 vector signed int vec_vmaxsw (vector signed int, vector signed int);
13409
13410 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
13411 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
13412 vector unsigned int vec_vmaxuw (vector unsigned int,
13413 vector unsigned int);
13414
13415 vector signed short vec_vmaxsh (vector bool short, vector signed short);
13416 vector signed short vec_vmaxsh (vector signed short, vector bool short);
13417 vector signed short vec_vmaxsh (vector signed short,
13418 vector signed short);
13419
13420 vector unsigned short vec_vmaxuh (vector bool short,
13421 vector unsigned short);
13422 vector unsigned short vec_vmaxuh (vector unsigned short,
13423 vector bool short);
13424 vector unsigned short vec_vmaxuh (vector unsigned short,
13425 vector unsigned short);
13426
13427 vector signed char vec_vmaxsb (vector bool char, vector signed char);
13428 vector signed char vec_vmaxsb (vector signed char, vector bool char);
13429 vector signed char vec_vmaxsb (vector signed char, vector signed char);
13430
13431 vector unsigned char vec_vmaxub (vector bool char,
13432 vector unsigned char);
13433 vector unsigned char vec_vmaxub (vector unsigned char,
13434 vector bool char);
13435 vector unsigned char vec_vmaxub (vector unsigned char,
13436 vector unsigned char);
13437
13438 vector bool char vec_mergeh (vector bool char, vector bool char);
13439 vector signed char vec_mergeh (vector signed char, vector signed char);
13440 vector unsigned char vec_mergeh (vector unsigned char,
13441 vector unsigned char);
13442 vector bool short vec_mergeh (vector bool short, vector bool short);
13443 vector pixel vec_mergeh (vector pixel, vector pixel);
13444 vector signed short vec_mergeh (vector signed short,
13445 vector signed short);
13446 vector unsigned short vec_mergeh (vector unsigned short,
13447 vector unsigned short);
13448 vector float vec_mergeh (vector float, vector float);
13449 vector bool int vec_mergeh (vector bool int, vector bool int);
13450 vector signed int vec_mergeh (vector signed int, vector signed int);
13451 vector unsigned int vec_mergeh (vector unsigned int,
13452 vector unsigned int);
13453
13454 vector float vec_vmrghw (vector float, vector float);
13455 vector bool int vec_vmrghw (vector bool int, vector bool int);
13456 vector signed int vec_vmrghw (vector signed int, vector signed int);
13457 vector unsigned int vec_vmrghw (vector unsigned int,
13458 vector unsigned int);
13459
13460 vector bool short vec_vmrghh (vector bool short, vector bool short);
13461 vector signed short vec_vmrghh (vector signed short,
13462 vector signed short);
13463 vector unsigned short vec_vmrghh (vector unsigned short,
13464 vector unsigned short);
13465 vector pixel vec_vmrghh (vector pixel, vector pixel);
13466
13467 vector bool char vec_vmrghb (vector bool char, vector bool char);
13468 vector signed char vec_vmrghb (vector signed char, vector signed char);
13469 vector unsigned char vec_vmrghb (vector unsigned char,
13470 vector unsigned char);
13471
13472 vector bool char vec_mergel (vector bool char, vector bool char);
13473 vector signed char vec_mergel (vector signed char, vector signed char);
13474 vector unsigned char vec_mergel (vector unsigned char,
13475 vector unsigned char);
13476 vector bool short vec_mergel (vector bool short, vector bool short);
13477 vector pixel vec_mergel (vector pixel, vector pixel);
13478 vector signed short vec_mergel (vector signed short,
13479 vector signed short);
13480 vector unsigned short vec_mergel (vector unsigned short,
13481 vector unsigned short);
13482 vector float vec_mergel (vector float, vector float);
13483 vector bool int vec_mergel (vector bool int, vector bool int);
13484 vector signed int vec_mergel (vector signed int, vector signed int);
13485 vector unsigned int vec_mergel (vector unsigned int,
13486 vector unsigned int);
13487
13488 vector float vec_vmrglw (vector float, vector float);
13489 vector signed int vec_vmrglw (vector signed int, vector signed int);
13490 vector unsigned int vec_vmrglw (vector unsigned int,
13491 vector unsigned int);
13492 vector bool int vec_vmrglw (vector bool int, vector bool int);
13493
13494 vector bool short vec_vmrglh (vector bool short, vector bool short);
13495 vector signed short vec_vmrglh (vector signed short,
13496 vector signed short);
13497 vector unsigned short vec_vmrglh (vector unsigned short,
13498 vector unsigned short);
13499 vector pixel vec_vmrglh (vector pixel, vector pixel);
13500
13501 vector bool char vec_vmrglb (vector bool char, vector bool char);
13502 vector signed char vec_vmrglb (vector signed char, vector signed char);
13503 vector unsigned char vec_vmrglb (vector unsigned char,
13504 vector unsigned char);
13505
13506 vector unsigned short vec_mfvscr (void);
13507
13508 vector unsigned char vec_min (vector bool char, vector unsigned char);
13509 vector unsigned char vec_min (vector unsigned char, vector bool char);
13510 vector unsigned char vec_min (vector unsigned char,
13511 vector unsigned char);
13512 vector signed char vec_min (vector bool char, vector signed char);
13513 vector signed char vec_min (vector signed char, vector bool char);
13514 vector signed char vec_min (vector signed char, vector signed char);
13515 vector unsigned short vec_min (vector bool short,
13516 vector unsigned short);
13517 vector unsigned short vec_min (vector unsigned short,
13518 vector bool short);
13519 vector unsigned short vec_min (vector unsigned short,
13520 vector unsigned short);
13521 vector signed short vec_min (vector bool short, vector signed short);
13522 vector signed short vec_min (vector signed short, vector bool short);
13523 vector signed short vec_min (vector signed short, vector signed short);
13524 vector unsigned int vec_min (vector bool int, vector unsigned int);
13525 vector unsigned int vec_min (vector unsigned int, vector bool int);
13526 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
13527 vector signed int vec_min (vector bool int, vector signed int);
13528 vector signed int vec_min (vector signed int, vector bool int);
13529 vector signed int vec_min (vector signed int, vector signed int);
13530 vector float vec_min (vector float, vector float);
13531
13532 vector float vec_vminfp (vector float, vector float);
13533
13534 vector signed int vec_vminsw (vector bool int, vector signed int);
13535 vector signed int vec_vminsw (vector signed int, vector bool int);
13536 vector signed int vec_vminsw (vector signed int, vector signed int);
13537
13538 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
13539 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
13540 vector unsigned int vec_vminuw (vector unsigned int,
13541 vector unsigned int);
13542
13543 vector signed short vec_vminsh (vector bool short, vector signed short);
13544 vector signed short vec_vminsh (vector signed short, vector bool short);
13545 vector signed short vec_vminsh (vector signed short,
13546 vector signed short);
13547
13548 vector unsigned short vec_vminuh (vector bool short,
13549 vector unsigned short);
13550 vector unsigned short vec_vminuh (vector unsigned short,
13551 vector bool short);
13552 vector unsigned short vec_vminuh (vector unsigned short,
13553 vector unsigned short);
13554
13555 vector signed char vec_vminsb (vector bool char, vector signed char);
13556 vector signed char vec_vminsb (vector signed char, vector bool char);
13557 vector signed char vec_vminsb (vector signed char, vector signed char);
13558
13559 vector unsigned char vec_vminub (vector bool char,
13560 vector unsigned char);
13561 vector unsigned char vec_vminub (vector unsigned char,
13562 vector bool char);
13563 vector unsigned char vec_vminub (vector unsigned char,
13564 vector unsigned char);
13565
13566 vector signed short vec_mladd (vector signed short,
13567 vector signed short,
13568 vector signed short);
13569 vector signed short vec_mladd (vector signed short,
13570 vector unsigned short,
13571 vector unsigned short);
13572 vector signed short vec_mladd (vector unsigned short,
13573 vector signed short,
13574 vector signed short);
13575 vector unsigned short vec_mladd (vector unsigned short,
13576 vector unsigned short,
13577 vector unsigned short);
13578
13579 vector signed short vec_mradds (vector signed short,
13580 vector signed short,
13581 vector signed short);
13582
13583 vector unsigned int vec_msum (vector unsigned char,
13584 vector unsigned char,
13585 vector unsigned int);
13586 vector signed int vec_msum (vector signed char,
13587 vector unsigned char,
13588 vector signed int);
13589 vector unsigned int vec_msum (vector unsigned short,
13590 vector unsigned short,
13591 vector unsigned int);
13592 vector signed int vec_msum (vector signed short,
13593 vector signed short,
13594 vector signed int);
13595
13596 vector signed int vec_vmsumshm (vector signed short,
13597 vector signed short,
13598 vector signed int);
13599
13600 vector unsigned int vec_vmsumuhm (vector unsigned short,
13601 vector unsigned short,
13602 vector unsigned int);
13603
13604 vector signed int vec_vmsummbm (vector signed char,
13605 vector unsigned char,
13606 vector signed int);
13607
13608 vector unsigned int vec_vmsumubm (vector unsigned char,
13609 vector unsigned char,
13610 vector unsigned int);
13611
13612 vector unsigned int vec_msums (vector unsigned short,
13613 vector unsigned short,
13614 vector unsigned int);
13615 vector signed int vec_msums (vector signed short,
13616 vector signed short,
13617 vector signed int);
13618
13619 vector signed int vec_vmsumshs (vector signed short,
13620 vector signed short,
13621 vector signed int);
13622
13623 vector unsigned int vec_vmsumuhs (vector unsigned short,
13624 vector unsigned short,
13625 vector unsigned int);
13626
13627 void vec_mtvscr (vector signed int);
13628 void vec_mtvscr (vector unsigned int);
13629 void vec_mtvscr (vector bool int);
13630 void vec_mtvscr (vector signed short);
13631 void vec_mtvscr (vector unsigned short);
13632 void vec_mtvscr (vector bool short);
13633 void vec_mtvscr (vector pixel);
13634 void vec_mtvscr (vector signed char);
13635 void vec_mtvscr (vector unsigned char);
13636 void vec_mtvscr (vector bool char);
13637
13638 vector unsigned short vec_mule (vector unsigned char,
13639 vector unsigned char);
13640 vector signed short vec_mule (vector signed char,
13641 vector signed char);
13642 vector unsigned int vec_mule (vector unsigned short,
13643 vector unsigned short);
13644 vector signed int vec_mule (vector signed short, vector signed short);
13645
13646 vector signed int vec_vmulesh (vector signed short,
13647 vector signed short);
13648
13649 vector unsigned int vec_vmuleuh (vector unsigned short,
13650 vector unsigned short);
13651
13652 vector signed short vec_vmulesb (vector signed char,
13653 vector signed char);
13654
13655 vector unsigned short vec_vmuleub (vector unsigned char,
13656 vector unsigned char);
13657
13658 vector unsigned short vec_mulo (vector unsigned char,
13659 vector unsigned char);
13660 vector signed short vec_mulo (vector signed char, vector signed char);
13661 vector unsigned int vec_mulo (vector unsigned short,
13662 vector unsigned short);
13663 vector signed int vec_mulo (vector signed short, vector signed short);
13664
13665 vector signed int vec_vmulosh (vector signed short,
13666 vector signed short);
13667
13668 vector unsigned int vec_vmulouh (vector unsigned short,
13669 vector unsigned short);
13670
13671 vector signed short vec_vmulosb (vector signed char,
13672 vector signed char);
13673
13674 vector unsigned short vec_vmuloub (vector unsigned char,
13675 vector unsigned char);
13676
13677 vector float vec_nmsub (vector float, vector float, vector float);
13678
13679 vector float vec_nor (vector float, vector float);
13680 vector signed int vec_nor (vector signed int, vector signed int);
13681 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
13682 vector bool int vec_nor (vector bool int, vector bool int);
13683 vector signed short vec_nor (vector signed short, vector signed short);
13684 vector unsigned short vec_nor (vector unsigned short,
13685 vector unsigned short);
13686 vector bool short vec_nor (vector bool short, vector bool short);
13687 vector signed char vec_nor (vector signed char, vector signed char);
13688 vector unsigned char vec_nor (vector unsigned char,
13689 vector unsigned char);
13690 vector bool char vec_nor (vector bool char, vector bool char);
13691
13692 vector float vec_or (vector float, vector float);
13693 vector float vec_or (vector float, vector bool int);
13694 vector float vec_or (vector bool int, vector float);
13695 vector bool int vec_or (vector bool int, vector bool int);
13696 vector signed int vec_or (vector bool int, vector signed int);
13697 vector signed int vec_or (vector signed int, vector bool int);
13698 vector signed int vec_or (vector signed int, vector signed int);
13699 vector unsigned int vec_or (vector bool int, vector unsigned int);
13700 vector unsigned int vec_or (vector unsigned int, vector bool int);
13701 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
13702 vector bool short vec_or (vector bool short, vector bool short);
13703 vector signed short vec_or (vector bool short, vector signed short);
13704 vector signed short vec_or (vector signed short, vector bool short);
13705 vector signed short vec_or (vector signed short, vector signed short);
13706 vector unsigned short vec_or (vector bool short, vector unsigned short);
13707 vector unsigned short vec_or (vector unsigned short, vector bool short);
13708 vector unsigned short vec_or (vector unsigned short,
13709 vector unsigned short);
13710 vector signed char vec_or (vector bool char, vector signed char);
13711 vector bool char vec_or (vector bool char, vector bool char);
13712 vector signed char vec_or (vector signed char, vector bool char);
13713 vector signed char vec_or (vector signed char, vector signed char);
13714 vector unsigned char vec_or (vector bool char, vector unsigned char);
13715 vector unsigned char vec_or (vector unsigned char, vector bool char);
13716 vector unsigned char vec_or (vector unsigned char,
13717 vector unsigned char);
13718
13719 vector signed char vec_pack (vector signed short, vector signed short);
13720 vector unsigned char vec_pack (vector unsigned short,
13721 vector unsigned short);
13722 vector bool char vec_pack (vector bool short, vector bool short);
13723 vector signed short vec_pack (vector signed int, vector signed int);
13724 vector unsigned short vec_pack (vector unsigned int,
13725 vector unsigned int);
13726 vector bool short vec_pack (vector bool int, vector bool int);
13727
13728 vector bool short vec_vpkuwum (vector bool int, vector bool int);
13729 vector signed short vec_vpkuwum (vector signed int, vector signed int);
13730 vector unsigned short vec_vpkuwum (vector unsigned int,
13731 vector unsigned int);
13732
13733 vector bool char vec_vpkuhum (vector bool short, vector bool short);
13734 vector signed char vec_vpkuhum (vector signed short,
13735 vector signed short);
13736 vector unsigned char vec_vpkuhum (vector unsigned short,
13737 vector unsigned short);
13738
13739 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
13740
13741 vector unsigned char vec_packs (vector unsigned short,
13742 vector unsigned short);
13743 vector signed char vec_packs (vector signed short, vector signed short);
13744 vector unsigned short vec_packs (vector unsigned int,
13745 vector unsigned int);
13746 vector signed short vec_packs (vector signed int, vector signed int);
13747
13748 vector signed short vec_vpkswss (vector signed int, vector signed int);
13749
13750 vector unsigned short vec_vpkuwus (vector unsigned int,
13751 vector unsigned int);
13752
13753 vector signed char vec_vpkshss (vector signed short,
13754 vector signed short);
13755
13756 vector unsigned char vec_vpkuhus (vector unsigned short,
13757 vector unsigned short);
13758
13759 vector unsigned char vec_packsu (vector unsigned short,
13760 vector unsigned short);
13761 vector unsigned char vec_packsu (vector signed short,
13762 vector signed short);
13763 vector unsigned short vec_packsu (vector unsigned int,
13764 vector unsigned int);
13765 vector unsigned short vec_packsu (vector signed int, vector signed int);
13766
13767 vector unsigned short vec_vpkswus (vector signed int,
13768 vector signed int);
13769
13770 vector unsigned char vec_vpkshus (vector signed short,
13771 vector signed short);
13772
13773 vector float vec_perm (vector float,
13774 vector float,
13775 vector unsigned char);
13776 vector signed int vec_perm (vector signed int,
13777 vector signed int,
13778 vector unsigned char);
13779 vector unsigned int vec_perm (vector unsigned int,
13780 vector unsigned int,
13781 vector unsigned char);
13782 vector bool int vec_perm (vector bool int,
13783 vector bool int,
13784 vector unsigned char);
13785 vector signed short vec_perm (vector signed short,
13786 vector signed short,
13787 vector unsigned char);
13788 vector unsigned short vec_perm (vector unsigned short,
13789 vector unsigned short,
13790 vector unsigned char);
13791 vector bool short vec_perm (vector bool short,
13792 vector bool short,
13793 vector unsigned char);
13794 vector pixel vec_perm (vector pixel,
13795 vector pixel,
13796 vector unsigned char);
13797 vector signed char vec_perm (vector signed char,
13798 vector signed char,
13799 vector unsigned char);
13800 vector unsigned char vec_perm (vector unsigned char,
13801 vector unsigned char,
13802 vector unsigned char);
13803 vector bool char vec_perm (vector bool char,
13804 vector bool char,
13805 vector unsigned char);
13806
13807 vector float vec_re (vector float);
13808
13809 vector signed char vec_rl (vector signed char,
13810 vector unsigned char);
13811 vector unsigned char vec_rl (vector unsigned char,
13812 vector unsigned char);
13813 vector signed short vec_rl (vector signed short, vector unsigned short);
13814 vector unsigned short vec_rl (vector unsigned short,
13815 vector unsigned short);
13816 vector signed int vec_rl (vector signed int, vector unsigned int);
13817 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
13818
13819 vector signed int vec_vrlw (vector signed int, vector unsigned int);
13820 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
13821
13822 vector signed short vec_vrlh (vector signed short,
13823 vector unsigned short);
13824 vector unsigned short vec_vrlh (vector unsigned short,
13825 vector unsigned short);
13826
13827 vector signed char vec_vrlb (vector signed char, vector unsigned char);
13828 vector unsigned char vec_vrlb (vector unsigned char,
13829 vector unsigned char);
13830
13831 vector float vec_round (vector float);
13832
13833 vector float vec_recip (vector float, vector float);
13834
13835 vector float vec_rsqrt (vector float);
13836
13837 vector float vec_rsqrte (vector float);
13838
13839 vector float vec_sel (vector float, vector float, vector bool int);
13840 vector float vec_sel (vector float, vector float, vector unsigned int);
13841 vector signed int vec_sel (vector signed int,
13842 vector signed int,
13843 vector bool int);
13844 vector signed int vec_sel (vector signed int,
13845 vector signed int,
13846 vector unsigned int);
13847 vector unsigned int vec_sel (vector unsigned int,
13848 vector unsigned int,
13849 vector bool int);
13850 vector unsigned int vec_sel (vector unsigned int,
13851 vector unsigned int,
13852 vector unsigned int);
13853 vector bool int vec_sel (vector bool int,
13854 vector bool int,
13855 vector bool int);
13856 vector bool int vec_sel (vector bool int,
13857 vector bool int,
13858 vector unsigned int);
13859 vector signed short vec_sel (vector signed short,
13860 vector signed short,
13861 vector bool short);
13862 vector signed short vec_sel (vector signed short,
13863 vector signed short,
13864 vector unsigned short);
13865 vector unsigned short vec_sel (vector unsigned short,
13866 vector unsigned short,
13867 vector bool short);
13868 vector unsigned short vec_sel (vector unsigned short,
13869 vector unsigned short,
13870 vector unsigned short);
13871 vector bool short vec_sel (vector bool short,
13872 vector bool short,
13873 vector bool short);
13874 vector bool short vec_sel (vector bool short,
13875 vector bool short,
13876 vector unsigned short);
13877 vector signed char vec_sel (vector signed char,
13878 vector signed char,
13879 vector bool char);
13880 vector signed char vec_sel (vector signed char,
13881 vector signed char,
13882 vector unsigned char);
13883 vector unsigned char vec_sel (vector unsigned char,
13884 vector unsigned char,
13885 vector bool char);
13886 vector unsigned char vec_sel (vector unsigned char,
13887 vector unsigned char,
13888 vector unsigned char);
13889 vector bool char vec_sel (vector bool char,
13890 vector bool char,
13891 vector bool char);
13892 vector bool char vec_sel (vector bool char,
13893 vector bool char,
13894 vector unsigned char);
13895
13896 vector signed char vec_sl (vector signed char,
13897 vector unsigned char);
13898 vector unsigned char vec_sl (vector unsigned char,
13899 vector unsigned char);
13900 vector signed short vec_sl (vector signed short, vector unsigned short);
13901 vector unsigned short vec_sl (vector unsigned short,
13902 vector unsigned short);
13903 vector signed int vec_sl (vector signed int, vector unsigned int);
13904 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
13905
13906 vector signed int vec_vslw (vector signed int, vector unsigned int);
13907 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
13908
13909 vector signed short vec_vslh (vector signed short,
13910 vector unsigned short);
13911 vector unsigned short vec_vslh (vector unsigned short,
13912 vector unsigned short);
13913
13914 vector signed char vec_vslb (vector signed char, vector unsigned char);
13915 vector unsigned char vec_vslb (vector unsigned char,
13916 vector unsigned char);
13917
13918 vector float vec_sld (vector float, vector float, const int);
13919 vector signed int vec_sld (vector signed int,
13920 vector signed int,
13921 const int);
13922 vector unsigned int vec_sld (vector unsigned int,
13923 vector unsigned int,
13924 const int);
13925 vector bool int vec_sld (vector bool int,
13926 vector bool int,
13927 const int);
13928 vector signed short vec_sld (vector signed short,
13929 vector signed short,
13930 const int);
13931 vector unsigned short vec_sld (vector unsigned short,
13932 vector unsigned short,
13933 const int);
13934 vector bool short vec_sld (vector bool short,
13935 vector bool short,
13936 const int);
13937 vector pixel vec_sld (vector pixel,
13938 vector pixel,
13939 const int);
13940 vector signed char vec_sld (vector signed char,
13941 vector signed char,
13942 const int);
13943 vector unsigned char vec_sld (vector unsigned char,
13944 vector unsigned char,
13945 const int);
13946 vector bool char vec_sld (vector bool char,
13947 vector bool char,
13948 const int);
13949
13950 vector signed int vec_sll (vector signed int,
13951 vector unsigned int);
13952 vector signed int vec_sll (vector signed int,
13953 vector unsigned short);
13954 vector signed int vec_sll (vector signed int,
13955 vector unsigned char);
13956 vector unsigned int vec_sll (vector unsigned int,
13957 vector unsigned int);
13958 vector unsigned int vec_sll (vector unsigned int,
13959 vector unsigned short);
13960 vector unsigned int vec_sll (vector unsigned int,
13961 vector unsigned char);
13962 vector bool int vec_sll (vector bool int,
13963 vector unsigned int);
13964 vector bool int vec_sll (vector bool int,
13965 vector unsigned short);
13966 vector bool int vec_sll (vector bool int,
13967 vector unsigned char);
13968 vector signed short vec_sll (vector signed short,
13969 vector unsigned int);
13970 vector signed short vec_sll (vector signed short,
13971 vector unsigned short);
13972 vector signed short vec_sll (vector signed short,
13973 vector unsigned char);
13974 vector unsigned short vec_sll (vector unsigned short,
13975 vector unsigned int);
13976 vector unsigned short vec_sll (vector unsigned short,
13977 vector unsigned short);
13978 vector unsigned short vec_sll (vector unsigned short,
13979 vector unsigned char);
13980 vector bool short vec_sll (vector bool short, vector unsigned int);
13981 vector bool short vec_sll (vector bool short, vector unsigned short);
13982 vector bool short vec_sll (vector bool short, vector unsigned char);
13983 vector pixel vec_sll (vector pixel, vector unsigned int);
13984 vector pixel vec_sll (vector pixel, vector unsigned short);
13985 vector pixel vec_sll (vector pixel, vector unsigned char);
13986 vector signed char vec_sll (vector signed char, vector unsigned int);
13987 vector signed char vec_sll (vector signed char, vector unsigned short);
13988 vector signed char vec_sll (vector signed char, vector unsigned char);
13989 vector unsigned char vec_sll (vector unsigned char,
13990 vector unsigned int);
13991 vector unsigned char vec_sll (vector unsigned char,
13992 vector unsigned short);
13993 vector unsigned char vec_sll (vector unsigned char,
13994 vector unsigned char);
13995 vector bool char vec_sll (vector bool char, vector unsigned int);
13996 vector bool char vec_sll (vector bool char, vector unsigned short);
13997 vector bool char vec_sll (vector bool char, vector unsigned char);
13998
13999 vector float vec_slo (vector float, vector signed char);
14000 vector float vec_slo (vector float, vector unsigned char);
14001 vector signed int vec_slo (vector signed int, vector signed char);
14002 vector signed int vec_slo (vector signed int, vector unsigned char);
14003 vector unsigned int vec_slo (vector unsigned int, vector signed char);
14004 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
14005 vector signed short vec_slo (vector signed short, vector signed char);
14006 vector signed short vec_slo (vector signed short, vector unsigned char);
14007 vector unsigned short vec_slo (vector unsigned short,
14008 vector signed char);
14009 vector unsigned short vec_slo (vector unsigned short,
14010 vector unsigned char);
14011 vector pixel vec_slo (vector pixel, vector signed char);
14012 vector pixel vec_slo (vector pixel, vector unsigned char);
14013 vector signed char vec_slo (vector signed char, vector signed char);
14014 vector signed char vec_slo (vector signed char, vector unsigned char);
14015 vector unsigned char vec_slo (vector unsigned char, vector signed char);
14016 vector unsigned char vec_slo (vector unsigned char,
14017 vector unsigned char);
14018
14019 vector signed char vec_splat (vector signed char, const int);
14020 vector unsigned char vec_splat (vector unsigned char, const int);
14021 vector bool char vec_splat (vector bool char, const int);
14022 vector signed short vec_splat (vector signed short, const int);
14023 vector unsigned short vec_splat (vector unsigned short, const int);
14024 vector bool short vec_splat (vector bool short, const int);
14025 vector pixel vec_splat (vector pixel, const int);
14026 vector float vec_splat (vector float, const int);
14027 vector signed int vec_splat (vector signed int, const int);
14028 vector unsigned int vec_splat (vector unsigned int, const int);
14029 vector bool int vec_splat (vector bool int, const int);
14030
14031 vector float vec_vspltw (vector float, const int);
14032 vector signed int vec_vspltw (vector signed int, const int);
14033 vector unsigned int vec_vspltw (vector unsigned int, const int);
14034 vector bool int vec_vspltw (vector bool int, const int);
14035
14036 vector bool short vec_vsplth (vector bool short, const int);
14037 vector signed short vec_vsplth (vector signed short, const int);
14038 vector unsigned short vec_vsplth (vector unsigned short, const int);
14039 vector pixel vec_vsplth (vector pixel, const int);
14040
14041 vector signed char vec_vspltb (vector signed char, const int);
14042 vector unsigned char vec_vspltb (vector unsigned char, const int);
14043 vector bool char vec_vspltb (vector bool char, const int);
14044
14045 vector signed char vec_splat_s8 (const int);
14046
14047 vector signed short vec_splat_s16 (const int);
14048
14049 vector signed int vec_splat_s32 (const int);
14050
14051 vector unsigned char vec_splat_u8 (const int);
14052
14053 vector unsigned short vec_splat_u16 (const int);
14054
14055 vector unsigned int vec_splat_u32 (const int);
14056
14057 vector signed char vec_sr (vector signed char, vector unsigned char);
14058 vector unsigned char vec_sr (vector unsigned char,
14059 vector unsigned char);
14060 vector signed short vec_sr (vector signed short,
14061 vector unsigned short);
14062 vector unsigned short vec_sr (vector unsigned short,
14063 vector unsigned short);
14064 vector signed int vec_sr (vector signed int, vector unsigned int);
14065 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
14066
14067 vector signed int vec_vsrw (vector signed int, vector unsigned int);
14068 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
14069
14070 vector signed short vec_vsrh (vector signed short,
14071 vector unsigned short);
14072 vector unsigned short vec_vsrh (vector unsigned short,
14073 vector unsigned short);
14074
14075 vector signed char vec_vsrb (vector signed char, vector unsigned char);
14076 vector unsigned char vec_vsrb (vector unsigned char,
14077 vector unsigned char);
14078
14079 vector signed char vec_sra (vector signed char, vector unsigned char);
14080 vector unsigned char vec_sra (vector unsigned char,
14081 vector unsigned char);
14082 vector signed short vec_sra (vector signed short,
14083 vector unsigned short);
14084 vector unsigned short vec_sra (vector unsigned short,
14085 vector unsigned short);
14086 vector signed int vec_sra (vector signed int, vector unsigned int);
14087 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
14088
14089 vector signed int vec_vsraw (vector signed int, vector unsigned int);
14090 vector unsigned int vec_vsraw (vector unsigned int,
14091 vector unsigned int);
14092
14093 vector signed short vec_vsrah (vector signed short,
14094 vector unsigned short);
14095 vector unsigned short vec_vsrah (vector unsigned short,
14096 vector unsigned short);
14097
14098 vector signed char vec_vsrab (vector signed char, vector unsigned char);
14099 vector unsigned char vec_vsrab (vector unsigned char,
14100 vector unsigned char);
14101
14102 vector signed int vec_srl (vector signed int, vector unsigned int);
14103 vector signed int vec_srl (vector signed int, vector unsigned short);
14104 vector signed int vec_srl (vector signed int, vector unsigned char);
14105 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
14106 vector unsigned int vec_srl (vector unsigned int,
14107 vector unsigned short);
14108 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
14109 vector bool int vec_srl (vector bool int, vector unsigned int);
14110 vector bool int vec_srl (vector bool int, vector unsigned short);
14111 vector bool int vec_srl (vector bool int, vector unsigned char);
14112 vector signed short vec_srl (vector signed short, vector unsigned int);
14113 vector signed short vec_srl (vector signed short,
14114 vector unsigned short);
14115 vector signed short vec_srl (vector signed short, vector unsigned char);
14116 vector unsigned short vec_srl (vector unsigned short,
14117 vector unsigned int);
14118 vector unsigned short vec_srl (vector unsigned short,
14119 vector unsigned short);
14120 vector unsigned short vec_srl (vector unsigned short,
14121 vector unsigned char);
14122 vector bool short vec_srl (vector bool short, vector unsigned int);
14123 vector bool short vec_srl (vector bool short, vector unsigned short);
14124 vector bool short vec_srl (vector bool short, vector unsigned char);
14125 vector pixel vec_srl (vector pixel, vector unsigned int);
14126 vector pixel vec_srl (vector pixel, vector unsigned short);
14127 vector pixel vec_srl (vector pixel, vector unsigned char);
14128 vector signed char vec_srl (vector signed char, vector unsigned int);
14129 vector signed char vec_srl (vector signed char, vector unsigned short);
14130 vector signed char vec_srl (vector signed char, vector unsigned char);
14131 vector unsigned char vec_srl (vector unsigned char,
14132 vector unsigned int);
14133 vector unsigned char vec_srl (vector unsigned char,
14134 vector unsigned short);
14135 vector unsigned char vec_srl (vector unsigned char,
14136 vector unsigned char);
14137 vector bool char vec_srl (vector bool char, vector unsigned int);
14138 vector bool char vec_srl (vector bool char, vector unsigned short);
14139 vector bool char vec_srl (vector bool char, vector unsigned char);
14140
14141 vector float vec_sro (vector float, vector signed char);
14142 vector float vec_sro (vector float, vector unsigned char);
14143 vector signed int vec_sro (vector signed int, vector signed char);
14144 vector signed int vec_sro (vector signed int, vector unsigned char);
14145 vector unsigned int vec_sro (vector unsigned int, vector signed char);
14146 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
14147 vector signed short vec_sro (vector signed short, vector signed char);
14148 vector signed short vec_sro (vector signed short, vector unsigned char);
14149 vector unsigned short vec_sro (vector unsigned short,
14150 vector signed char);
14151 vector unsigned short vec_sro (vector unsigned short,
14152 vector unsigned char);
14153 vector pixel vec_sro (vector pixel, vector signed char);
14154 vector pixel vec_sro (vector pixel, vector unsigned char);
14155 vector signed char vec_sro (vector signed char, vector signed char);
14156 vector signed char vec_sro (vector signed char, vector unsigned char);
14157 vector unsigned char vec_sro (vector unsigned char, vector signed char);
14158 vector unsigned char vec_sro (vector unsigned char,
14159 vector unsigned char);
14160
14161 void vec_st (vector float, int, vector float *);
14162 void vec_st (vector float, int, float *);
14163 void vec_st (vector signed int, int, vector signed int *);
14164 void vec_st (vector signed int, int, int *);
14165 void vec_st (vector unsigned int, int, vector unsigned int *);
14166 void vec_st (vector unsigned int, int, unsigned int *);
14167 void vec_st (vector bool int, int, vector bool int *);
14168 void vec_st (vector bool int, int, unsigned int *);
14169 void vec_st (vector bool int, int, int *);
14170 void vec_st (vector signed short, int, vector signed short *);
14171 void vec_st (vector signed short, int, short *);
14172 void vec_st (vector unsigned short, int, vector unsigned short *);
14173 void vec_st (vector unsigned short, int, unsigned short *);
14174 void vec_st (vector bool short, int, vector bool short *);
14175 void vec_st (vector bool short, int, unsigned short *);
14176 void vec_st (vector pixel, int, vector pixel *);
14177 void vec_st (vector pixel, int, unsigned short *);
14178 void vec_st (vector pixel, int, short *);
14179 void vec_st (vector bool short, int, short *);
14180 void vec_st (vector signed char, int, vector signed char *);
14181 void vec_st (vector signed char, int, signed char *);
14182 void vec_st (vector unsigned char, int, vector unsigned char *);
14183 void vec_st (vector unsigned char, int, unsigned char *);
14184 void vec_st (vector bool char, int, vector bool char *);
14185 void vec_st (vector bool char, int, unsigned char *);
14186 void vec_st (vector bool char, int, signed char *);
14187
14188 void vec_ste (vector signed char, int, signed char *);
14189 void vec_ste (vector unsigned char, int, unsigned char *);
14190 void vec_ste (vector bool char, int, signed char *);
14191 void vec_ste (vector bool char, int, unsigned char *);
14192 void vec_ste (vector signed short, int, short *);
14193 void vec_ste (vector unsigned short, int, unsigned short *);
14194 void vec_ste (vector bool short, int, short *);
14195 void vec_ste (vector bool short, int, unsigned short *);
14196 void vec_ste (vector pixel, int, short *);
14197 void vec_ste (vector pixel, int, unsigned short *);
14198 void vec_ste (vector float, int, float *);
14199 void vec_ste (vector signed int, int, int *);
14200 void vec_ste (vector unsigned int, int, unsigned int *);
14201 void vec_ste (vector bool int, int, int *);
14202 void vec_ste (vector bool int, int, unsigned int *);
14203
14204 void vec_stvewx (vector float, int, float *);
14205 void vec_stvewx (vector signed int, int, int *);
14206 void vec_stvewx (vector unsigned int, int, unsigned int *);
14207 void vec_stvewx (vector bool int, int, int *);
14208 void vec_stvewx (vector bool int, int, unsigned int *);
14209
14210 void vec_stvehx (vector signed short, int, short *);
14211 void vec_stvehx (vector unsigned short, int, unsigned short *);
14212 void vec_stvehx (vector bool short, int, short *);
14213 void vec_stvehx (vector bool short, int, unsigned short *);
14214 void vec_stvehx (vector pixel, int, short *);
14215 void vec_stvehx (vector pixel, int, unsigned short *);
14216
14217 void vec_stvebx (vector signed char, int, signed char *);
14218 void vec_stvebx (vector unsigned char, int, unsigned char *);
14219 void vec_stvebx (vector bool char, int, signed char *);
14220 void vec_stvebx (vector bool char, int, unsigned char *);
14221
14222 void vec_stl (vector float, int, vector float *);
14223 void vec_stl (vector float, int, float *);
14224 void vec_stl (vector signed int, int, vector signed int *);
14225 void vec_stl (vector signed int, int, int *);
14226 void vec_stl (vector unsigned int, int, vector unsigned int *);
14227 void vec_stl (vector unsigned int, int, unsigned int *);
14228 void vec_stl (vector bool int, int, vector bool int *);
14229 void vec_stl (vector bool int, int, unsigned int *);
14230 void vec_stl (vector bool int, int, int *);
14231 void vec_stl (vector signed short, int, vector signed short *);
14232 void vec_stl (vector signed short, int, short *);
14233 void vec_stl (vector unsigned short, int, vector unsigned short *);
14234 void vec_stl (vector unsigned short, int, unsigned short *);
14235 void vec_stl (vector bool short, int, vector bool short *);
14236 void vec_stl (vector bool short, int, unsigned short *);
14237 void vec_stl (vector bool short, int, short *);
14238 void vec_stl (vector pixel, int, vector pixel *);
14239 void vec_stl (vector pixel, int, unsigned short *);
14240 void vec_stl (vector pixel, int, short *);
14241 void vec_stl (vector signed char, int, vector signed char *);
14242 void vec_stl (vector signed char, int, signed char *);
14243 void vec_stl (vector unsigned char, int, vector unsigned char *);
14244 void vec_stl (vector unsigned char, int, unsigned char *);
14245 void vec_stl (vector bool char, int, vector bool char *);
14246 void vec_stl (vector bool char, int, unsigned char *);
14247 void vec_stl (vector bool char, int, signed char *);
14248
14249 vector signed char vec_sub (vector bool char, vector signed char);
14250 vector signed char vec_sub (vector signed char, vector bool char);
14251 vector signed char vec_sub (vector signed char, vector signed char);
14252 vector unsigned char vec_sub (vector bool char, vector unsigned char);
14253 vector unsigned char vec_sub (vector unsigned char, vector bool char);
14254 vector unsigned char vec_sub (vector unsigned char,
14255 vector unsigned char);
14256 vector signed short vec_sub (vector bool short, vector signed short);
14257 vector signed short vec_sub (vector signed short, vector bool short);
14258 vector signed short vec_sub (vector signed short, vector signed short);
14259 vector unsigned short vec_sub (vector bool short,
14260 vector unsigned short);
14261 vector unsigned short vec_sub (vector unsigned short,
14262 vector bool short);
14263 vector unsigned short vec_sub (vector unsigned short,
14264 vector unsigned short);
14265 vector signed int vec_sub (vector bool int, vector signed int);
14266 vector signed int vec_sub (vector signed int, vector bool int);
14267 vector signed int vec_sub (vector signed int, vector signed int);
14268 vector unsigned int vec_sub (vector bool int, vector unsigned int);
14269 vector unsigned int vec_sub (vector unsigned int, vector bool int);
14270 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
14271 vector float vec_sub (vector float, vector float);
14272
14273 vector float vec_vsubfp (vector float, vector float);
14274
14275 vector signed int vec_vsubuwm (vector bool int, vector signed int);
14276 vector signed int vec_vsubuwm (vector signed int, vector bool int);
14277 vector signed int vec_vsubuwm (vector signed int, vector signed int);
14278 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
14279 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
14280 vector unsigned int vec_vsubuwm (vector unsigned int,
14281 vector unsigned int);
14282
14283 vector signed short vec_vsubuhm (vector bool short,
14284 vector signed short);
14285 vector signed short vec_vsubuhm (vector signed short,
14286 vector bool short);
14287 vector signed short vec_vsubuhm (vector signed short,
14288 vector signed short);
14289 vector unsigned short vec_vsubuhm (vector bool short,
14290 vector unsigned short);
14291 vector unsigned short vec_vsubuhm (vector unsigned short,
14292 vector bool short);
14293 vector unsigned short vec_vsubuhm (vector unsigned short,
14294 vector unsigned short);
14295
14296 vector signed char vec_vsububm (vector bool char, vector signed char);
14297 vector signed char vec_vsububm (vector signed char, vector bool char);
14298 vector signed char vec_vsububm (vector signed char, vector signed char);
14299 vector unsigned char vec_vsububm (vector bool char,
14300 vector unsigned char);
14301 vector unsigned char vec_vsububm (vector unsigned char,
14302 vector bool char);
14303 vector unsigned char vec_vsububm (vector unsigned char,
14304 vector unsigned char);
14305
14306 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
14307
14308 vector unsigned char vec_subs (vector bool char, vector unsigned char);
14309 vector unsigned char vec_subs (vector unsigned char, vector bool char);
14310 vector unsigned char vec_subs (vector unsigned char,
14311 vector unsigned char);
14312 vector signed char vec_subs (vector bool char, vector signed char);
14313 vector signed char vec_subs (vector signed char, vector bool char);
14314 vector signed char vec_subs (vector signed char, vector signed char);
14315 vector unsigned short vec_subs (vector bool short,
14316 vector unsigned short);
14317 vector unsigned short vec_subs (vector unsigned short,
14318 vector bool short);
14319 vector unsigned short vec_subs (vector unsigned short,
14320 vector unsigned short);
14321 vector signed short vec_subs (vector bool short, vector signed short);
14322 vector signed short vec_subs (vector signed short, vector bool short);
14323 vector signed short vec_subs (vector signed short, vector signed short);
14324 vector unsigned int vec_subs (vector bool int, vector unsigned int);
14325 vector unsigned int vec_subs (vector unsigned int, vector bool int);
14326 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
14327 vector signed int vec_subs (vector bool int, vector signed int);
14328 vector signed int vec_subs (vector signed int, vector bool int);
14329 vector signed int vec_subs (vector signed int, vector signed int);
14330
14331 vector signed int vec_vsubsws (vector bool int, vector signed int);
14332 vector signed int vec_vsubsws (vector signed int, vector bool int);
14333 vector signed int vec_vsubsws (vector signed int, vector signed int);
14334
14335 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
14336 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
14337 vector unsigned int vec_vsubuws (vector unsigned int,
14338 vector unsigned int);
14339
14340 vector signed short vec_vsubshs (vector bool short,
14341 vector signed short);
14342 vector signed short vec_vsubshs (vector signed short,
14343 vector bool short);
14344 vector signed short vec_vsubshs (vector signed short,
14345 vector signed short);
14346
14347 vector unsigned short vec_vsubuhs (vector bool short,
14348 vector unsigned short);
14349 vector unsigned short vec_vsubuhs (vector unsigned short,
14350 vector bool short);
14351 vector unsigned short vec_vsubuhs (vector unsigned short,
14352 vector unsigned short);
14353
14354 vector signed char vec_vsubsbs (vector bool char, vector signed char);
14355 vector signed char vec_vsubsbs (vector signed char, vector bool char);
14356 vector signed char vec_vsubsbs (vector signed char, vector signed char);
14357
14358 vector unsigned char vec_vsububs (vector bool char,
14359 vector unsigned char);
14360 vector unsigned char vec_vsububs (vector unsigned char,
14361 vector bool char);
14362 vector unsigned char vec_vsububs (vector unsigned char,
14363 vector unsigned char);
14364
14365 vector unsigned int vec_sum4s (vector unsigned char,
14366 vector unsigned int);
14367 vector signed int vec_sum4s (vector signed char, vector signed int);
14368 vector signed int vec_sum4s (vector signed short, vector signed int);
14369
14370 vector signed int vec_vsum4shs (vector signed short, vector signed int);
14371
14372 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
14373
14374 vector unsigned int vec_vsum4ubs (vector unsigned char,
14375 vector unsigned int);
14376
14377 vector signed int vec_sum2s (vector signed int, vector signed int);
14378
14379 vector signed int vec_sums (vector signed int, vector signed int);
14380
14381 vector float vec_trunc (vector float);
14382
14383 vector signed short vec_unpackh (vector signed char);
14384 vector bool short vec_unpackh (vector bool char);
14385 vector signed int vec_unpackh (vector signed short);
14386 vector bool int vec_unpackh (vector bool short);
14387 vector unsigned int vec_unpackh (vector pixel);
14388
14389 vector bool int vec_vupkhsh (vector bool short);
14390 vector signed int vec_vupkhsh (vector signed short);
14391
14392 vector unsigned int vec_vupkhpx (vector pixel);
14393
14394 vector bool short vec_vupkhsb (vector bool char);
14395 vector signed short vec_vupkhsb (vector signed char);
14396
14397 vector signed short vec_unpackl (vector signed char);
14398 vector bool short vec_unpackl (vector bool char);
14399 vector unsigned int vec_unpackl (vector pixel);
14400 vector signed int vec_unpackl (vector signed short);
14401 vector bool int vec_unpackl (vector bool short);
14402
14403 vector unsigned int vec_vupklpx (vector pixel);
14404
14405 vector bool int vec_vupklsh (vector bool short);
14406 vector signed int vec_vupklsh (vector signed short);
14407
14408 vector bool short vec_vupklsb (vector bool char);
14409 vector signed short vec_vupklsb (vector signed char);
14410
14411 vector float vec_xor (vector float, vector float);
14412 vector float vec_xor (vector float, vector bool int);
14413 vector float vec_xor (vector bool int, vector float);
14414 vector bool int vec_xor (vector bool int, vector bool int);
14415 vector signed int vec_xor (vector bool int, vector signed int);
14416 vector signed int vec_xor (vector signed int, vector bool int);
14417 vector signed int vec_xor (vector signed int, vector signed int);
14418 vector unsigned int vec_xor (vector bool int, vector unsigned int);
14419 vector unsigned int vec_xor (vector unsigned int, vector bool int);
14420 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
14421 vector bool short vec_xor (vector bool short, vector bool short);
14422 vector signed short vec_xor (vector bool short, vector signed short);
14423 vector signed short vec_xor (vector signed short, vector bool short);
14424 vector signed short vec_xor (vector signed short, vector signed short);
14425 vector unsigned short vec_xor (vector bool short,
14426 vector unsigned short);
14427 vector unsigned short vec_xor (vector unsigned short,
14428 vector bool short);
14429 vector unsigned short vec_xor (vector unsigned short,
14430 vector unsigned short);
14431 vector signed char vec_xor (vector bool char, vector signed char);
14432 vector bool char vec_xor (vector bool char, vector bool char);
14433 vector signed char vec_xor (vector signed char, vector bool char);
14434 vector signed char vec_xor (vector signed char, vector signed char);
14435 vector unsigned char vec_xor (vector bool char, vector unsigned char);
14436 vector unsigned char vec_xor (vector unsigned char, vector bool char);
14437 vector unsigned char vec_xor (vector unsigned char,
14438 vector unsigned char);
14439
14440 int vec_all_eq (vector signed char, vector bool char);
14441 int vec_all_eq (vector signed char, vector signed char);
14442 int vec_all_eq (vector unsigned char, vector bool char);
14443 int vec_all_eq (vector unsigned char, vector unsigned char);
14444 int vec_all_eq (vector bool char, vector bool char);
14445 int vec_all_eq (vector bool char, vector unsigned char);
14446 int vec_all_eq (vector bool char, vector signed char);
14447 int vec_all_eq (vector signed short, vector bool short);
14448 int vec_all_eq (vector signed short, vector signed short);
14449 int vec_all_eq (vector unsigned short, vector bool short);
14450 int vec_all_eq (vector unsigned short, vector unsigned short);
14451 int vec_all_eq (vector bool short, vector bool short);
14452 int vec_all_eq (vector bool short, vector unsigned short);
14453 int vec_all_eq (vector bool short, vector signed short);
14454 int vec_all_eq (vector pixel, vector pixel);
14455 int vec_all_eq (vector signed int, vector bool int);
14456 int vec_all_eq (vector signed int, vector signed int);
14457 int vec_all_eq (vector unsigned int, vector bool int);
14458 int vec_all_eq (vector unsigned int, vector unsigned int);
14459 int vec_all_eq (vector bool int, vector bool int);
14460 int vec_all_eq (vector bool int, vector unsigned int);
14461 int vec_all_eq (vector bool int, vector signed int);
14462 int vec_all_eq (vector float, vector float);
14463
14464 int vec_all_ge (vector bool char, vector unsigned char);
14465 int vec_all_ge (vector unsigned char, vector bool char);
14466 int vec_all_ge (vector unsigned char, vector unsigned char);
14467 int vec_all_ge (vector bool char, vector signed char);
14468 int vec_all_ge (vector signed char, vector bool char);
14469 int vec_all_ge (vector signed char, vector signed char);
14470 int vec_all_ge (vector bool short, vector unsigned short);
14471 int vec_all_ge (vector unsigned short, vector bool short);
14472 int vec_all_ge (vector unsigned short, vector unsigned short);
14473 int vec_all_ge (vector signed short, vector signed short);
14474 int vec_all_ge (vector bool short, vector signed short);
14475 int vec_all_ge (vector signed short, vector bool short);
14476 int vec_all_ge (vector bool int, vector unsigned int);
14477 int vec_all_ge (vector unsigned int, vector bool int);
14478 int vec_all_ge (vector unsigned int, vector unsigned int);
14479 int vec_all_ge (vector bool int, vector signed int);
14480 int vec_all_ge (vector signed int, vector bool int);
14481 int vec_all_ge (vector signed int, vector signed int);
14482 int vec_all_ge (vector float, vector float);
14483
14484 int vec_all_gt (vector bool char, vector unsigned char);
14485 int vec_all_gt (vector unsigned char, vector bool char);
14486 int vec_all_gt (vector unsigned char, vector unsigned char);
14487 int vec_all_gt (vector bool char, vector signed char);
14488 int vec_all_gt (vector signed char, vector bool char);
14489 int vec_all_gt (vector signed char, vector signed char);
14490 int vec_all_gt (vector bool short, vector unsigned short);
14491 int vec_all_gt (vector unsigned short, vector bool short);
14492 int vec_all_gt (vector unsigned short, vector unsigned short);
14493 int vec_all_gt (vector bool short, vector signed short);
14494 int vec_all_gt (vector signed short, vector bool short);
14495 int vec_all_gt (vector signed short, vector signed short);
14496 int vec_all_gt (vector bool int, vector unsigned int);
14497 int vec_all_gt (vector unsigned int, vector bool int);
14498 int vec_all_gt (vector unsigned int, vector unsigned int);
14499 int vec_all_gt (vector bool int, vector signed int);
14500 int vec_all_gt (vector signed int, vector bool int);
14501 int vec_all_gt (vector signed int, vector signed int);
14502 int vec_all_gt (vector float, vector float);
14503
14504 int vec_all_in (vector float, vector float);
14505
14506 int vec_all_le (vector bool char, vector unsigned char);
14507 int vec_all_le (vector unsigned char, vector bool char);
14508 int vec_all_le (vector unsigned char, vector unsigned char);
14509 int vec_all_le (vector bool char, vector signed char);
14510 int vec_all_le (vector signed char, vector bool char);
14511 int vec_all_le (vector signed char, vector signed char);
14512 int vec_all_le (vector bool short, vector unsigned short);
14513 int vec_all_le (vector unsigned short, vector bool short);
14514 int vec_all_le (vector unsigned short, vector unsigned short);
14515 int vec_all_le (vector bool short, vector signed short);
14516 int vec_all_le (vector signed short, vector bool short);
14517 int vec_all_le (vector signed short, vector signed short);
14518 int vec_all_le (vector bool int, vector unsigned int);
14519 int vec_all_le (vector unsigned int, vector bool int);
14520 int vec_all_le (vector unsigned int, vector unsigned int);
14521 int vec_all_le (vector bool int, vector signed int);
14522 int vec_all_le (vector signed int, vector bool int);
14523 int vec_all_le (vector signed int, vector signed int);
14524 int vec_all_le (vector float, vector float);
14525
14526 int vec_all_lt (vector bool char, vector unsigned char);
14527 int vec_all_lt (vector unsigned char, vector bool char);
14528 int vec_all_lt (vector unsigned char, vector unsigned char);
14529 int vec_all_lt (vector bool char, vector signed char);
14530 int vec_all_lt (vector signed char, vector bool char);
14531 int vec_all_lt (vector signed char, vector signed char);
14532 int vec_all_lt (vector bool short, vector unsigned short);
14533 int vec_all_lt (vector unsigned short, vector bool short);
14534 int vec_all_lt (vector unsigned short, vector unsigned short);
14535 int vec_all_lt (vector bool short, vector signed short);
14536 int vec_all_lt (vector signed short, vector bool short);
14537 int vec_all_lt (vector signed short, vector signed short);
14538 int vec_all_lt (vector bool int, vector unsigned int);
14539 int vec_all_lt (vector unsigned int, vector bool int);
14540 int vec_all_lt (vector unsigned int, vector unsigned int);
14541 int vec_all_lt (vector bool int, vector signed int);
14542 int vec_all_lt (vector signed int, vector bool int);
14543 int vec_all_lt (vector signed int, vector signed int);
14544 int vec_all_lt (vector float, vector float);
14545
14546 int vec_all_nan (vector float);
14547
14548 int vec_all_ne (vector signed char, vector bool char);
14549 int vec_all_ne (vector signed char, vector signed char);
14550 int vec_all_ne (vector unsigned char, vector bool char);
14551 int vec_all_ne (vector unsigned char, vector unsigned char);
14552 int vec_all_ne (vector bool char, vector bool char);
14553 int vec_all_ne (vector bool char, vector unsigned char);
14554 int vec_all_ne (vector bool char, vector signed char);
14555 int vec_all_ne (vector signed short, vector bool short);
14556 int vec_all_ne (vector signed short, vector signed short);
14557 int vec_all_ne (vector unsigned short, vector bool short);
14558 int vec_all_ne (vector unsigned short, vector unsigned short);
14559 int vec_all_ne (vector bool short, vector bool short);
14560 int vec_all_ne (vector bool short, vector unsigned short);
14561 int vec_all_ne (vector bool short, vector signed short);
14562 int vec_all_ne (vector pixel, vector pixel);
14563 int vec_all_ne (vector signed int, vector bool int);
14564 int vec_all_ne (vector signed int, vector signed int);
14565 int vec_all_ne (vector unsigned int, vector bool int);
14566 int vec_all_ne (vector unsigned int, vector unsigned int);
14567 int vec_all_ne (vector bool int, vector bool int);
14568 int vec_all_ne (vector bool int, vector unsigned int);
14569 int vec_all_ne (vector bool int, vector signed int);
14570 int vec_all_ne (vector float, vector float);
14571
14572 int vec_all_nge (vector float, vector float);
14573
14574 int vec_all_ngt (vector float, vector float);
14575
14576 int vec_all_nle (vector float, vector float);
14577
14578 int vec_all_nlt (vector float, vector float);
14579
14580 int vec_all_numeric (vector float);
14581
14582 int vec_any_eq (vector signed char, vector bool char);
14583 int vec_any_eq (vector signed char, vector signed char);
14584 int vec_any_eq (vector unsigned char, vector bool char);
14585 int vec_any_eq (vector unsigned char, vector unsigned char);
14586 int vec_any_eq (vector bool char, vector bool char);
14587 int vec_any_eq (vector bool char, vector unsigned char);
14588 int vec_any_eq (vector bool char, vector signed char);
14589 int vec_any_eq (vector signed short, vector bool short);
14590 int vec_any_eq (vector signed short, vector signed short);
14591 int vec_any_eq (vector unsigned short, vector bool short);
14592 int vec_any_eq (vector unsigned short, vector unsigned short);
14593 int vec_any_eq (vector bool short, vector bool short);
14594 int vec_any_eq (vector bool short, vector unsigned short);
14595 int vec_any_eq (vector bool short, vector signed short);
14596 int vec_any_eq (vector pixel, vector pixel);
14597 int vec_any_eq (vector signed int, vector bool int);
14598 int vec_any_eq (vector signed int, vector signed int);
14599 int vec_any_eq (vector unsigned int, vector bool int);
14600 int vec_any_eq (vector unsigned int, vector unsigned int);
14601 int vec_any_eq (vector bool int, vector bool int);
14602 int vec_any_eq (vector bool int, vector unsigned int);
14603 int vec_any_eq (vector bool int, vector signed int);
14604 int vec_any_eq (vector float, vector float);
14605
14606 int vec_any_ge (vector signed char, vector bool char);
14607 int vec_any_ge (vector unsigned char, vector bool char);
14608 int vec_any_ge (vector unsigned char, vector unsigned char);
14609 int vec_any_ge (vector signed char, vector signed char);
14610 int vec_any_ge (vector bool char, vector unsigned char);
14611 int vec_any_ge (vector bool char, vector signed char);
14612 int vec_any_ge (vector unsigned short, vector bool short);
14613 int vec_any_ge (vector unsigned short, vector unsigned short);
14614 int vec_any_ge (vector signed short, vector signed short);
14615 int vec_any_ge (vector signed short, vector bool short);
14616 int vec_any_ge (vector bool short, vector unsigned short);
14617 int vec_any_ge (vector bool short, vector signed short);
14618 int vec_any_ge (vector signed int, vector bool int);
14619 int vec_any_ge (vector unsigned int, vector bool int);
14620 int vec_any_ge (vector unsigned int, vector unsigned int);
14621 int vec_any_ge (vector signed int, vector signed int);
14622 int vec_any_ge (vector bool int, vector unsigned int);
14623 int vec_any_ge (vector bool int, vector signed int);
14624 int vec_any_ge (vector float, vector float);
14625
14626 int vec_any_gt (vector bool char, vector unsigned char);
14627 int vec_any_gt (vector unsigned char, vector bool char);
14628 int vec_any_gt (vector unsigned char, vector unsigned char);
14629 int vec_any_gt (vector bool char, vector signed char);
14630 int vec_any_gt (vector signed char, vector bool char);
14631 int vec_any_gt (vector signed char, vector signed char);
14632 int vec_any_gt (vector bool short, vector unsigned short);
14633 int vec_any_gt (vector unsigned short, vector bool short);
14634 int vec_any_gt (vector unsigned short, vector unsigned short);
14635 int vec_any_gt (vector bool short, vector signed short);
14636 int vec_any_gt (vector signed short, vector bool short);
14637 int vec_any_gt (vector signed short, vector signed short);
14638 int vec_any_gt (vector bool int, vector unsigned int);
14639 int vec_any_gt (vector unsigned int, vector bool int);
14640 int vec_any_gt (vector unsigned int, vector unsigned int);
14641 int vec_any_gt (vector bool int, vector signed int);
14642 int vec_any_gt (vector signed int, vector bool int);
14643 int vec_any_gt (vector signed int, vector signed int);
14644 int vec_any_gt (vector float, vector float);
14645
14646 int vec_any_le (vector bool char, vector unsigned char);
14647 int vec_any_le (vector unsigned char, vector bool char);
14648 int vec_any_le (vector unsigned char, vector unsigned char);
14649 int vec_any_le (vector bool char, vector signed char);
14650 int vec_any_le (vector signed char, vector bool char);
14651 int vec_any_le (vector signed char, vector signed char);
14652 int vec_any_le (vector bool short, vector unsigned short);
14653 int vec_any_le (vector unsigned short, vector bool short);
14654 int vec_any_le (vector unsigned short, vector unsigned short);
14655 int vec_any_le (vector bool short, vector signed short);
14656 int vec_any_le (vector signed short, vector bool short);
14657 int vec_any_le (vector signed short, vector signed short);
14658 int vec_any_le (vector bool int, vector unsigned int);
14659 int vec_any_le (vector unsigned int, vector bool int);
14660 int vec_any_le (vector unsigned int, vector unsigned int);
14661 int vec_any_le (vector bool int, vector signed int);
14662 int vec_any_le (vector signed int, vector bool int);
14663 int vec_any_le (vector signed int, vector signed int);
14664 int vec_any_le (vector float, vector float);
14665
14666 int vec_any_lt (vector bool char, vector unsigned char);
14667 int vec_any_lt (vector unsigned char, vector bool char);
14668 int vec_any_lt (vector unsigned char, vector unsigned char);
14669 int vec_any_lt (vector bool char, vector signed char);
14670 int vec_any_lt (vector signed char, vector bool char);
14671 int vec_any_lt (vector signed char, vector signed char);
14672 int vec_any_lt (vector bool short, vector unsigned short);
14673 int vec_any_lt (vector unsigned short, vector bool short);
14674 int vec_any_lt (vector unsigned short, vector unsigned short);
14675 int vec_any_lt (vector bool short, vector signed short);
14676 int vec_any_lt (vector signed short, vector bool short);
14677 int vec_any_lt (vector signed short, vector signed short);
14678 int vec_any_lt (vector bool int, vector unsigned int);
14679 int vec_any_lt (vector unsigned int, vector bool int);
14680 int vec_any_lt (vector unsigned int, vector unsigned int);
14681 int vec_any_lt (vector bool int, vector signed int);
14682 int vec_any_lt (vector signed int, vector bool int);
14683 int vec_any_lt (vector signed int, vector signed int);
14684 int vec_any_lt (vector float, vector float);
14685
14686 int vec_any_nan (vector float);
14687
14688 int vec_any_ne (vector signed char, vector bool char);
14689 int vec_any_ne (vector signed char, vector signed char);
14690 int vec_any_ne (vector unsigned char, vector bool char);
14691 int vec_any_ne (vector unsigned char, vector unsigned char);
14692 int vec_any_ne (vector bool char, vector bool char);
14693 int vec_any_ne (vector bool char, vector unsigned char);
14694 int vec_any_ne (vector bool char, vector signed char);
14695 int vec_any_ne (vector signed short, vector bool short);
14696 int vec_any_ne (vector signed short, vector signed short);
14697 int vec_any_ne (vector unsigned short, vector bool short);
14698 int vec_any_ne (vector unsigned short, vector unsigned short);
14699 int vec_any_ne (vector bool short, vector bool short);
14700 int vec_any_ne (vector bool short, vector unsigned short);
14701 int vec_any_ne (vector bool short, vector signed short);
14702 int vec_any_ne (vector pixel, vector pixel);
14703 int vec_any_ne (vector signed int, vector bool int);
14704 int vec_any_ne (vector signed int, vector signed int);
14705 int vec_any_ne (vector unsigned int, vector bool int);
14706 int vec_any_ne (vector unsigned int, vector unsigned int);
14707 int vec_any_ne (vector bool int, vector bool int);
14708 int vec_any_ne (vector bool int, vector unsigned int);
14709 int vec_any_ne (vector bool int, vector signed int);
14710 int vec_any_ne (vector float, vector float);
14711
14712 int vec_any_nge (vector float, vector float);
14713
14714 int vec_any_ngt (vector float, vector float);
14715
14716 int vec_any_nle (vector float, vector float);
14717
14718 int vec_any_nlt (vector float, vector float);
14719
14720 int vec_any_numeric (vector float);
14721
14722 int vec_any_out (vector float, vector float);
14723 @end smallexample
14724
14725 If the vector/scalar (VSX) instruction set is available, the following
14726 additional functions are available:
14727
14728 @smallexample
14729 vector double vec_abs (vector double);
14730 vector double vec_add (vector double, vector double);
14731 vector double vec_and (vector double, vector double);
14732 vector double vec_and (vector double, vector bool long);
14733 vector double vec_and (vector bool long, vector double);
14734 vector double vec_andc (vector double, vector double);
14735 vector double vec_andc (vector double, vector bool long);
14736 vector double vec_andc (vector bool long, vector double);
14737 vector double vec_ceil (vector double);
14738 vector bool long vec_cmpeq (vector double, vector double);
14739 vector bool long vec_cmpge (vector double, vector double);
14740 vector bool long vec_cmpgt (vector double, vector double);
14741 vector bool long vec_cmple (vector double, vector double);
14742 vector bool long vec_cmplt (vector double, vector double);
14743 vector float vec_div (vector float, vector float);
14744 vector double vec_div (vector double, vector double);
14745 vector double vec_floor (vector double);
14746 vector double vec_ld (int, const vector double *);
14747 vector double vec_ld (int, const double *);
14748 vector double vec_ldl (int, const vector double *);
14749 vector double vec_ldl (int, const double *);
14750 vector unsigned char vec_lvsl (int, const volatile double *);
14751 vector unsigned char vec_lvsr (int, const volatile double *);
14752 vector double vec_madd (vector double, vector double, vector double);
14753 vector double vec_max (vector double, vector double);
14754 vector double vec_min (vector double, vector double);
14755 vector float vec_msub (vector float, vector float, vector float);
14756 vector double vec_msub (vector double, vector double, vector double);
14757 vector float vec_mul (vector float, vector float);
14758 vector double vec_mul (vector double, vector double);
14759 vector float vec_nearbyint (vector float);
14760 vector double vec_nearbyint (vector double);
14761 vector float vec_nmadd (vector float, vector float, vector float);
14762 vector double vec_nmadd (vector double, vector double, vector double);
14763 vector double vec_nmsub (vector double, vector double, vector double);
14764 vector double vec_nor (vector double, vector double);
14765 vector double vec_or (vector double, vector double);
14766 vector double vec_or (vector double, vector bool long);
14767 vector double vec_or (vector bool long, vector double);
14768 vector double vec_perm (vector double,
14769 vector double,
14770 vector unsigned char);
14771 vector double vec_rint (vector double);
14772 vector double vec_recip (vector double, vector double);
14773 vector double vec_rsqrt (vector double);
14774 vector double vec_rsqrte (vector double);
14775 vector double vec_sel (vector double, vector double, vector bool long);
14776 vector double vec_sel (vector double, vector double, vector unsigned long);
14777 vector double vec_sub (vector double, vector double);
14778 vector float vec_sqrt (vector float);
14779 vector double vec_sqrt (vector double);
14780 void vec_st (vector double, int, vector double *);
14781 void vec_st (vector double, int, double *);
14782 vector double vec_trunc (vector double);
14783 vector double vec_xor (vector double, vector double);
14784 vector double vec_xor (vector double, vector bool long);
14785 vector double vec_xor (vector bool long, vector double);
14786 int vec_all_eq (vector double, vector double);
14787 int vec_all_ge (vector double, vector double);
14788 int vec_all_gt (vector double, vector double);
14789 int vec_all_le (vector double, vector double);
14790 int vec_all_lt (vector double, vector double);
14791 int vec_all_nan (vector double);
14792 int vec_all_ne (vector double, vector double);
14793 int vec_all_nge (vector double, vector double);
14794 int vec_all_ngt (vector double, vector double);
14795 int vec_all_nle (vector double, vector double);
14796 int vec_all_nlt (vector double, vector double);
14797 int vec_all_numeric (vector double);
14798 int vec_any_eq (vector double, vector double);
14799 int vec_any_ge (vector double, vector double);
14800 int vec_any_gt (vector double, vector double);
14801 int vec_any_le (vector double, vector double);
14802 int vec_any_lt (vector double, vector double);
14803 int vec_any_nan (vector double);
14804 int vec_any_ne (vector double, vector double);
14805 int vec_any_nge (vector double, vector double);
14806 int vec_any_ngt (vector double, vector double);
14807 int vec_any_nle (vector double, vector double);
14808 int vec_any_nlt (vector double, vector double);
14809 int vec_any_numeric (vector double);
14810
14811 vector double vec_vsx_ld (int, const vector double *);
14812 vector double vec_vsx_ld (int, const double *);
14813 vector float vec_vsx_ld (int, const vector float *);
14814 vector float vec_vsx_ld (int, const float *);
14815 vector bool int vec_vsx_ld (int, const vector bool int *);
14816 vector signed int vec_vsx_ld (int, const vector signed int *);
14817 vector signed int vec_vsx_ld (int, const int *);
14818 vector signed int vec_vsx_ld (int, const long *);
14819 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
14820 vector unsigned int vec_vsx_ld (int, const unsigned int *);
14821 vector unsigned int vec_vsx_ld (int, const unsigned long *);
14822 vector bool short vec_vsx_ld (int, const vector bool short *);
14823 vector pixel vec_vsx_ld (int, const vector pixel *);
14824 vector signed short vec_vsx_ld (int, const vector signed short *);
14825 vector signed short vec_vsx_ld (int, const short *);
14826 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
14827 vector unsigned short vec_vsx_ld (int, const unsigned short *);
14828 vector bool char vec_vsx_ld (int, const vector bool char *);
14829 vector signed char vec_vsx_ld (int, const vector signed char *);
14830 vector signed char vec_vsx_ld (int, const signed char *);
14831 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
14832 vector unsigned char vec_vsx_ld (int, const unsigned char *);
14833
14834 void vec_vsx_st (vector double, int, vector double *);
14835 void vec_vsx_st (vector double, int, double *);
14836 void vec_vsx_st (vector float, int, vector float *);
14837 void vec_vsx_st (vector float, int, float *);
14838 void vec_vsx_st (vector signed int, int, vector signed int *);
14839 void vec_vsx_st (vector signed int, int, int *);
14840 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
14841 void vec_vsx_st (vector unsigned int, int, unsigned int *);
14842 void vec_vsx_st (vector bool int, int, vector bool int *);
14843 void vec_vsx_st (vector bool int, int, unsigned int *);
14844 void vec_vsx_st (vector bool int, int, int *);
14845 void vec_vsx_st (vector signed short, int, vector signed short *);
14846 void vec_vsx_st (vector signed short, int, short *);
14847 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
14848 void vec_vsx_st (vector unsigned short, int, unsigned short *);
14849 void vec_vsx_st (vector bool short, int, vector bool short *);
14850 void vec_vsx_st (vector bool short, int, unsigned short *);
14851 void vec_vsx_st (vector pixel, int, vector pixel *);
14852 void vec_vsx_st (vector pixel, int, unsigned short *);
14853 void vec_vsx_st (vector pixel, int, short *);
14854 void vec_vsx_st (vector bool short, int, short *);
14855 void vec_vsx_st (vector signed char, int, vector signed char *);
14856 void vec_vsx_st (vector signed char, int, signed char *);
14857 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
14858 void vec_vsx_st (vector unsigned char, int, unsigned char *);
14859 void vec_vsx_st (vector bool char, int, vector bool char *);
14860 void vec_vsx_st (vector bool char, int, unsigned char *);
14861 void vec_vsx_st (vector bool char, int, signed char *);
14862 @end smallexample
14863
14864 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
14865 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
14866 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
14867 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
14868 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
14869
14870 If the ISA 2.07 additions to the vector/scalar (power8-vector)
14871 instruction set is available, the following additional functions are
14872 available for both 32-bit and 64-bit targets. For 64-bit targets, you
14873 can use @var{vector long} instead of @var{vector long long},
14874 @var{vector bool long} instead of @var{vector bool long long}, and
14875 @var{vector unsigned long} instead of @var{vector unsigned long long}.
14876
14877 @smallexample
14878 vector long long vec_abs (vector long long);
14879
14880 vector long long vec_add (vector long long, vector long long);
14881 vector unsigned long long vec_add (vector unsigned long long,
14882 vector unsigned long long);
14883
14884 int vec_all_eq (vector long long, vector long long);
14885 int vec_all_ge (vector long long, vector long long);
14886 int vec_all_gt (vector long long, vector long long);
14887 int vec_all_le (vector long long, vector long long);
14888 int vec_all_lt (vector long long, vector long long);
14889 int vec_all_ne (vector long long, vector long long);
14890 int vec_any_eq (vector long long, vector long long);
14891 int vec_any_ge (vector long long, vector long long);
14892 int vec_any_gt (vector long long, vector long long);
14893 int vec_any_le (vector long long, vector long long);
14894 int vec_any_lt (vector long long, vector long long);
14895 int vec_any_ne (vector long long, vector long long);
14896
14897 vector long long vec_eqv (vector long long, vector long long);
14898 vector long long vec_eqv (vector bool long long, vector long long);
14899 vector long long vec_eqv (vector long long, vector bool long long);
14900 vector unsigned long long vec_eqv (vector unsigned long long,
14901 vector unsigned long long);
14902 vector unsigned long long vec_eqv (vector bool long long,
14903 vector unsigned long long);
14904 vector unsigned long long vec_eqv (vector unsigned long long,
14905 vector bool long long);
14906 vector int vec_eqv (vector int, vector int);
14907 vector int vec_eqv (vector bool int, vector int);
14908 vector int vec_eqv (vector int, vector bool int);
14909 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
14910 vector unsigned int vec_eqv (vector bool unsigned int,
14911 vector unsigned int);
14912 vector unsigned int vec_eqv (vector unsigned int,
14913 vector bool unsigned int);
14914 vector short vec_eqv (vector short, vector short);
14915 vector short vec_eqv (vector bool short, vector short);
14916 vector short vec_eqv (vector short, vector bool short);
14917 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
14918 vector unsigned short vec_eqv (vector bool unsigned short,
14919 vector unsigned short);
14920 vector unsigned short vec_eqv (vector unsigned short,
14921 vector bool unsigned short);
14922 vector signed char vec_eqv (vector signed char, vector signed char);
14923 vector signed char vec_eqv (vector bool signed char, vector signed char);
14924 vector signed char vec_eqv (vector signed char, vector bool signed char);
14925 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
14926 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
14927 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
14928
14929 vector long long vec_max (vector long long, vector long long);
14930 vector unsigned long long vec_max (vector unsigned long long,
14931 vector unsigned long long);
14932
14933 vector long long vec_min (vector long long, vector long long);
14934 vector unsigned long long vec_min (vector unsigned long long,
14935 vector unsigned long long);
14936
14937 vector long long vec_nand (vector long long, vector long long);
14938 vector long long vec_nand (vector bool long long, vector long long);
14939 vector long long vec_nand (vector long long, vector bool long long);
14940 vector unsigned long long vec_nand (vector unsigned long long,
14941 vector unsigned long long);
14942 vector unsigned long long vec_nand (vector bool long long,
14943 vector unsigned long long);
14944 vector unsigned long long vec_nand (vector unsigned long long,
14945 vector bool long long);
14946 vector int vec_nand (vector int, vector int);
14947 vector int vec_nand (vector bool int, vector int);
14948 vector int vec_nand (vector int, vector bool int);
14949 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
14950 vector unsigned int vec_nand (vector bool unsigned int,
14951 vector unsigned int);
14952 vector unsigned int vec_nand (vector unsigned int,
14953 vector bool unsigned int);
14954 vector short vec_nand (vector short, vector short);
14955 vector short vec_nand (vector bool short, vector short);
14956 vector short vec_nand (vector short, vector bool short);
14957 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
14958 vector unsigned short vec_nand (vector bool unsigned short,
14959 vector unsigned short);
14960 vector unsigned short vec_nand (vector unsigned short,
14961 vector bool unsigned short);
14962 vector signed char vec_nand (vector signed char, vector signed char);
14963 vector signed char vec_nand (vector bool signed char, vector signed char);
14964 vector signed char vec_nand (vector signed char, vector bool signed char);
14965 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
14966 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
14967 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
14968
14969 vector long long vec_orc (vector long long, vector long long);
14970 vector long long vec_orc (vector bool long long, vector long long);
14971 vector long long vec_orc (vector long long, vector bool long long);
14972 vector unsigned long long vec_orc (vector unsigned long long,
14973 vector unsigned long long);
14974 vector unsigned long long vec_orc (vector bool long long,
14975 vector unsigned long long);
14976 vector unsigned long long vec_orc (vector unsigned long long,
14977 vector bool long long);
14978 vector int vec_orc (vector int, vector int);
14979 vector int vec_orc (vector bool int, vector int);
14980 vector int vec_orc (vector int, vector bool int);
14981 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
14982 vector unsigned int vec_orc (vector bool unsigned int,
14983 vector unsigned int);
14984 vector unsigned int vec_orc (vector unsigned int,
14985 vector bool unsigned int);
14986 vector short vec_orc (vector short, vector short);
14987 vector short vec_orc (vector bool short, vector short);
14988 vector short vec_orc (vector short, vector bool short);
14989 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
14990 vector unsigned short vec_orc (vector bool unsigned short,
14991 vector unsigned short);
14992 vector unsigned short vec_orc (vector unsigned short,
14993 vector bool unsigned short);
14994 vector signed char vec_orc (vector signed char, vector signed char);
14995 vector signed char vec_orc (vector bool signed char, vector signed char);
14996 vector signed char vec_orc (vector signed char, vector bool signed char);
14997 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
14998 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
14999 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
15000
15001 vector int vec_pack (vector long long, vector long long);
15002 vector unsigned int vec_pack (vector unsigned long long,
15003 vector unsigned long long);
15004 vector bool int vec_pack (vector bool long long, vector bool long long);
15005
15006 vector int vec_packs (vector long long, vector long long);
15007 vector unsigned int vec_packs (vector unsigned long long,
15008 vector unsigned long long);
15009
15010 vector unsigned int vec_packsu (vector long long, vector long long);
15011
15012 vector long long vec_rl (vector long long,
15013 vector unsigned long long);
15014 vector long long vec_rl (vector unsigned long long,
15015 vector unsigned long long);
15016
15017 vector long long vec_sl (vector long long, vector unsigned long long);
15018 vector long long vec_sl (vector unsigned long long,
15019 vector unsigned long long);
15020
15021 vector long long vec_sr (vector long long, vector unsigned long long);
15022 vector unsigned long long char vec_sr (vector unsigned long long,
15023 vector unsigned long long);
15024
15025 vector long long vec_sra (vector long long, vector unsigned long long);
15026 vector unsigned long long vec_sra (vector unsigned long long,
15027 vector unsigned long long);
15028
15029 vector long long vec_sub (vector long long, vector long long);
15030 vector unsigned long long vec_sub (vector unsigned long long,
15031 vector unsigned long long);
15032
15033 vector long long vec_unpackh (vector int);
15034 vector unsigned long long vec_unpackh (vector unsigned int);
15035
15036 vector long long vec_unpackl (vector int);
15037 vector unsigned long long vec_unpackl (vector unsigned int);
15038
15039 vector long long vec_vaddudm (vector long long, vector long long);
15040 vector long long vec_vaddudm (vector bool long long, vector long long);
15041 vector long long vec_vaddudm (vector long long, vector bool long long);
15042 vector unsigned long long vec_vaddudm (vector unsigned long long,
15043 vector unsigned long long);
15044 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
15045 vector unsigned long long);
15046 vector unsigned long long vec_vaddudm (vector unsigned long long,
15047 vector bool unsigned long long);
15048
15049 vector long long vec_vclz (vector long long);
15050 vector unsigned long long vec_vclz (vector unsigned long long);
15051 vector int vec_vclz (vector int);
15052 vector unsigned int vec_vclz (vector int);
15053 vector short vec_vclz (vector short);
15054 vector unsigned short vec_vclz (vector unsigned short);
15055 vector signed char vec_vclz (vector signed char);
15056 vector unsigned char vec_vclz (vector unsigned char);
15057
15058 vector signed char vec_vclzb (vector signed char);
15059 vector unsigned char vec_vclzb (vector unsigned char);
15060
15061 vector long long vec_vclzd (vector long long);
15062 vector unsigned long long vec_vclzd (vector unsigned long long);
15063
15064 vector short vec_vclzh (vector short);
15065 vector unsigned short vec_vclzh (vector unsigned short);
15066
15067 vector int vec_vclzw (vector int);
15068 vector unsigned int vec_vclzw (vector int);
15069
15070 vector long long vec_vmaxsd (vector long long, vector long long);
15071
15072 vector unsigned long long vec_vmaxud (vector unsigned long long,
15073 unsigned vector long long);
15074
15075 vector long long vec_vminsd (vector long long, vector long long);
15076
15077 vector unsigned long long vec_vminud (vector long long,
15078 vector long long);
15079
15080 vector int vec_vpksdss (vector long long, vector long long);
15081 vector unsigned int vec_vpksdss (vector long long, vector long long);
15082
15083 vector unsigned int vec_vpkudus (vector unsigned long long,
15084 vector unsigned long long);
15085
15086 vector int vec_vpkudum (vector long long, vector long long);
15087 vector unsigned int vec_vpkudum (vector unsigned long long,
15088 vector unsigned long long);
15089 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
15090
15091 vector long long vec_vpopcnt (vector long long);
15092 vector unsigned long long vec_vpopcnt (vector unsigned long long);
15093 vector int vec_vpopcnt (vector int);
15094 vector unsigned int vec_vpopcnt (vector int);
15095 vector short vec_vpopcnt (vector short);
15096 vector unsigned short vec_vpopcnt (vector unsigned short);
15097 vector signed char vec_vpopcnt (vector signed char);
15098 vector unsigned char vec_vpopcnt (vector unsigned char);
15099
15100 vector signed char vec_vpopcntb (vector signed char);
15101 vector unsigned char vec_vpopcntb (vector unsigned char);
15102
15103 vector long long vec_vpopcntd (vector long long);
15104 vector unsigned long long vec_vpopcntd (vector unsigned long long);
15105
15106 vector short vec_vpopcnth (vector short);
15107 vector unsigned short vec_vpopcnth (vector unsigned short);
15108
15109 vector int vec_vpopcntw (vector int);
15110 vector unsigned int vec_vpopcntw (vector int);
15111
15112 vector long long vec_vrld (vector long long, vector unsigned long long);
15113 vector unsigned long long vec_vrld (vector unsigned long long,
15114 vector unsigned long long);
15115
15116 vector long long vec_vsld (vector long long, vector unsigned long long);
15117 vector long long vec_vsld (vector unsigned long long,
15118 vector unsigned long long);
15119
15120 vector long long vec_vsrad (vector long long, vector unsigned long long);
15121 vector unsigned long long vec_vsrad (vector unsigned long long,
15122 vector unsigned long long);
15123
15124 vector long long vec_vsrd (vector long long, vector unsigned long long);
15125 vector unsigned long long char vec_vsrd (vector unsigned long long,
15126 vector unsigned long long);
15127
15128 vector long long vec_vsubudm (vector long long, vector long long);
15129 vector long long vec_vsubudm (vector bool long long, vector long long);
15130 vector long long vec_vsubudm (vector long long, vector bool long long);
15131 vector unsigned long long vec_vsubudm (vector unsigned long long,
15132 vector unsigned long long);
15133 vector unsigned long long vec_vsubudm (vector bool long long,
15134 vector unsigned long long);
15135 vector unsigned long long vec_vsubudm (vector unsigned long long,
15136 vector bool long long);
15137
15138 vector long long vec_vupkhsw (vector int);
15139 vector unsigned long long vec_vupkhsw (vector unsigned int);
15140
15141 vector long long vec_vupklsw (vector int);
15142 vector unsigned long long vec_vupklsw (vector int);
15143 @end smallexample
15144
15145 If the ISA 2.07 additions to the vector/scalar (power8-vector)
15146 instruction set is available, the following additional functions are
15147 available for 64-bit targets. New vector types
15148 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
15149 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
15150 builtins.
15151
15152 The normal vector extract, and set operations work on
15153 @var{vector __int128_t} and @var{vector __uint128_t} types,
15154 but the index value must be 0.
15155
15156 @smallexample
15157 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
15158 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
15159
15160 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
15161 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
15162
15163 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
15164 vector __int128_t);
15165 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
15166 vector __uint128_t);
15167
15168 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
15169 vector __int128_t);
15170 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
15171 vector __uint128_t);
15172
15173 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
15174 vector __int128_t);
15175 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
15176 vector __uint128_t);
15177
15178 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
15179 vector __int128_t);
15180 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
15181 vector __uint128_t);
15182
15183 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
15184 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
15185
15186 __int128_t vec_vsubuqm (__int128_t, __int128_t);
15187 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
15188 @end smallexample
15189
15190 If the cryptographic instructions are enabled (@option{-mcrypto} or
15191 @option{-mcpu=power8}), the following builtins are enabled.
15192
15193 @smallexample
15194 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
15195
15196 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
15197 vector unsigned long long);
15198
15199 vector unsigned long long __builtin_crypto_vcipherlast
15200 (vector unsigned long long,
15201 vector unsigned long long);
15202
15203 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
15204 vector unsigned long long);
15205
15206 vector unsigned long long __builtin_crypto_vncipherlast
15207 (vector unsigned long long,
15208 vector unsigned long long);
15209
15210 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
15211 vector unsigned char,
15212 vector unsigned char);
15213
15214 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
15215 vector unsigned short,
15216 vector unsigned short);
15217
15218 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
15219 vector unsigned int,
15220 vector unsigned int);
15221
15222 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
15223 vector unsigned long long,
15224 vector unsigned long long);
15225
15226 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
15227 vector unsigned char);
15228
15229 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
15230 vector unsigned short);
15231
15232 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
15233 vector unsigned int);
15234
15235 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
15236 vector unsigned long long);
15237
15238 vector unsigned long long __builtin_crypto_vshasigmad
15239 (vector unsigned long long, int, int);
15240
15241 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
15242 int, int);
15243 @end smallexample
15244
15245 The second argument to the @var{__builtin_crypto_vshasigmad} and
15246 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
15247 integer that is 0 or 1. The third argument to these builtin functions
15248 must be a constant integer in the range of 0 to 15.
15249
15250 @node PowerPC Hardware Transactional Memory Built-in Functions
15251 @subsection PowerPC Hardware Transactional Memory Built-in Functions
15252 GCC provides two interfaces for accessing the Hardware Transactional
15253 Memory (HTM) instructions available on some of the PowerPC family
15254 of prcoessors (eg, POWER8). The two interfaces come in a low level
15255 interface, consisting of built-in functions specific to PowerPC and a
15256 higher level interface consisting of inline functions that are common
15257 between PowerPC and S/390.
15258
15259 @subsubsection PowerPC HTM Low Level Built-in Functions
15260
15261 The following low level built-in functions are available with
15262 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
15263 They all generate the machine instruction that is part of the name.
15264
15265 The HTM built-ins return true or false depending on their success and
15266 their arguments match exactly the type and order of the associated
15267 hardware instruction's operands. Refer to the ISA manual for a
15268 description of each instruction's operands.
15269
15270 @smallexample
15271 unsigned int __builtin_tbegin (unsigned int)
15272 unsigned int __builtin_tend (unsigned int)
15273
15274 unsigned int __builtin_tabort (unsigned int)
15275 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
15276 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
15277 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
15278 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
15279
15280 unsigned int __builtin_tcheck (unsigned int)
15281 unsigned int __builtin_treclaim (unsigned int)
15282 unsigned int __builtin_trechkpt (void)
15283 unsigned int __builtin_tsr (unsigned int)
15284 @end smallexample
15285
15286 In addition to the above HTM built-ins, we have added built-ins for
15287 some common extended mnemonics of the HTM instructions:
15288
15289 @smallexample
15290 unsigned int __builtin_tendall (void)
15291 unsigned int __builtin_tresume (void)
15292 unsigned int __builtin_tsuspend (void)
15293 @end smallexample
15294
15295 The following set of built-in functions are available to gain access
15296 to the HTM specific special purpose registers.
15297
15298 @smallexample
15299 unsigned long __builtin_get_texasr (void)
15300 unsigned long __builtin_get_texasru (void)
15301 unsigned long __builtin_get_tfhar (void)
15302 unsigned long __builtin_get_tfiar (void)
15303
15304 void __builtin_set_texasr (unsigned long);
15305 void __builtin_set_texasru (unsigned long);
15306 void __builtin_set_tfhar (unsigned long);
15307 void __builtin_set_tfiar (unsigned long);
15308 @end smallexample
15309
15310 Example usage of these low level built-in functions may look like:
15311
15312 @smallexample
15313 #include <htmintrin.h>
15314
15315 int num_retries = 10;
15316
15317 while (1)
15318 @{
15319 if (__builtin_tbegin (0))
15320 @{
15321 /* Transaction State Initiated. */
15322 if (is_locked (lock))
15323 __builtin_tabort (0);
15324 ... transaction code...
15325 __builtin_tend (0);
15326 break;
15327 @}
15328 else
15329 @{
15330 /* Transaction State Failed. Use locks if the transaction
15331 failure is "persistent" or we've tried too many times. */
15332 if (num_retries-- <= 0
15333 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
15334 @{
15335 acquire_lock (lock);
15336 ... non transactional fallback path...
15337 release_lock (lock);
15338 break;
15339 @}
15340 @}
15341 @}
15342 @end smallexample
15343
15344 One final built-in function has been added that returns the value of
15345 the 2-bit Transaction State field of the Machine Status Register (MSR)
15346 as stored in @code{CR0}.
15347
15348 @smallexample
15349 unsigned long __builtin_ttest (void)
15350 @end smallexample
15351
15352 This built-in can be used to determine the current transaction state
15353 using the following code example:
15354
15355 @smallexample
15356 #include <htmintrin.h>
15357
15358 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
15359
15360 if (tx_state == _HTM_TRANSACTIONAL)
15361 @{
15362 /* Code to use in transactional state. */
15363 @}
15364 else if (tx_state == _HTM_NONTRANSACTIONAL)
15365 @{
15366 /* Code to use in non-transactional state. */
15367 @}
15368 else if (tx_state == _HTM_SUSPENDED)
15369 @{
15370 /* Code to use in transaction suspended state. */
15371 @}
15372 @end smallexample
15373
15374 @subsubsection PowerPC HTM High Level Inline Functions
15375
15376 The following high level HTM interface is made available by including
15377 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
15378 where CPU is `power8' or later. This interface is common between PowerPC
15379 and S/390, allowing users to write one HTM source implementation that
15380 can be compiled and executed on either system.
15381
15382 @smallexample
15383 long __TM_simple_begin (void)
15384 long __TM_begin (void* const TM_buff)
15385 long __TM_end (void)
15386 void __TM_abort (void)
15387 void __TM_named_abort (unsigned char const code)
15388 void __TM_resume (void)
15389 void __TM_suspend (void)
15390
15391 long __TM_is_user_abort (void* const TM_buff)
15392 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
15393 long __TM_is_illegal (void* const TM_buff)
15394 long __TM_is_footprint_exceeded (void* const TM_buff)
15395 long __TM_nesting_depth (void* const TM_buff)
15396 long __TM_is_nested_too_deep(void* const TM_buff)
15397 long __TM_is_conflict(void* const TM_buff)
15398 long __TM_is_failure_persistent(void* const TM_buff)
15399 long __TM_failure_address(void* const TM_buff)
15400 long long __TM_failure_code(void* const TM_buff)
15401 @end smallexample
15402
15403 Using these common set of HTM inline functions, we can create
15404 a more portable version of the HTM example in the previous
15405 section that will work on either PowerPC or S/390:
15406
15407 @smallexample
15408 #include <htmxlintrin.h>
15409
15410 int num_retries = 10;
15411 TM_buff_type TM_buff;
15412
15413 while (1)
15414 @{
15415 if (__TM_begin (TM_buff))
15416 @{
15417 /* Transaction State Initiated. */
15418 if (is_locked (lock))
15419 __TM_abort ();
15420 ... transaction code...
15421 __TM_end ();
15422 break;
15423 @}
15424 else
15425 @{
15426 /* Transaction State Failed. Use locks if the transaction
15427 failure is "persistent" or we've tried too many times. */
15428 if (num_retries-- <= 0
15429 || __TM_is_failure_persistent (TM_buff))
15430 @{
15431 acquire_lock (lock);
15432 ... non transactional fallback path...
15433 release_lock (lock);
15434 break;
15435 @}
15436 @}
15437 @}
15438 @end smallexample
15439
15440 @node RX Built-in Functions
15441 @subsection RX Built-in Functions
15442 GCC supports some of the RX instructions which cannot be expressed in
15443 the C programming language via the use of built-in functions. The
15444 following functions are supported:
15445
15446 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
15447 Generates the @code{brk} machine instruction.
15448 @end deftypefn
15449
15450 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
15451 Generates the @code{clrpsw} machine instruction to clear the specified
15452 bit in the processor status word.
15453 @end deftypefn
15454
15455 @deftypefn {Built-in Function} void __builtin_rx_int (int)
15456 Generates the @code{int} machine instruction to generate an interrupt
15457 with the specified value.
15458 @end deftypefn
15459
15460 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
15461 Generates the @code{machi} machine instruction to add the result of
15462 multiplying the top 16 bits of the two arguments into the
15463 accumulator.
15464 @end deftypefn
15465
15466 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
15467 Generates the @code{maclo} machine instruction to add the result of
15468 multiplying the bottom 16 bits of the two arguments into the
15469 accumulator.
15470 @end deftypefn
15471
15472 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
15473 Generates the @code{mulhi} machine instruction to place the result of
15474 multiplying the top 16 bits of the two arguments into the
15475 accumulator.
15476 @end deftypefn
15477
15478 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
15479 Generates the @code{mullo} machine instruction to place the result of
15480 multiplying the bottom 16 bits of the two arguments into the
15481 accumulator.
15482 @end deftypefn
15483
15484 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
15485 Generates the @code{mvfachi} machine instruction to read the top
15486 32 bits of the accumulator.
15487 @end deftypefn
15488
15489 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
15490 Generates the @code{mvfacmi} machine instruction to read the middle
15491 32 bits of the accumulator.
15492 @end deftypefn
15493
15494 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
15495 Generates the @code{mvfc} machine instruction which reads the control
15496 register specified in its argument and returns its value.
15497 @end deftypefn
15498
15499 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
15500 Generates the @code{mvtachi} machine instruction to set the top
15501 32 bits of the accumulator.
15502 @end deftypefn
15503
15504 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
15505 Generates the @code{mvtaclo} machine instruction to set the bottom
15506 32 bits of the accumulator.
15507 @end deftypefn
15508
15509 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
15510 Generates the @code{mvtc} machine instruction which sets control
15511 register number @code{reg} to @code{val}.
15512 @end deftypefn
15513
15514 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
15515 Generates the @code{mvtipl} machine instruction set the interrupt
15516 priority level.
15517 @end deftypefn
15518
15519 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
15520 Generates the @code{racw} machine instruction to round the accumulator
15521 according to the specified mode.
15522 @end deftypefn
15523
15524 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
15525 Generates the @code{revw} machine instruction which swaps the bytes in
15526 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
15527 and also bits 16--23 occupy bits 24--31 and vice versa.
15528 @end deftypefn
15529
15530 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
15531 Generates the @code{rmpa} machine instruction which initiates a
15532 repeated multiply and accumulate sequence.
15533 @end deftypefn
15534
15535 @deftypefn {Built-in Function} void __builtin_rx_round (float)
15536 Generates the @code{round} machine instruction which returns the
15537 floating-point argument rounded according to the current rounding mode
15538 set in the floating-point status word register.
15539 @end deftypefn
15540
15541 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
15542 Generates the @code{sat} machine instruction which returns the
15543 saturated value of the argument.
15544 @end deftypefn
15545
15546 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
15547 Generates the @code{setpsw} machine instruction to set the specified
15548 bit in the processor status word.
15549 @end deftypefn
15550
15551 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
15552 Generates the @code{wait} machine instruction.
15553 @end deftypefn
15554
15555 @node S/390 System z Built-in Functions
15556 @subsection S/390 System z Built-in Functions
15557 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
15558 Generates the @code{tbegin} machine instruction starting a
15559 non-constraint hardware transaction. If the parameter is non-NULL the
15560 memory area is used to store the transaction diagnostic buffer and
15561 will be passed as first operand to @code{tbegin}. This buffer can be
15562 defined using the @code{struct __htm_tdb} C struct defined in
15563 @code{htmintrin.h} and must reside on a double-word boundary. The
15564 second tbegin operand is set to @code{0xff0c}. This enables
15565 save/restore of all GPRs and disables aborts for FPR and AR
15566 manipulations inside the transaction body. The condition code set by
15567 the tbegin instruction is returned as integer value. The tbegin
15568 instruction by definition overwrites the content of all FPRs. The
15569 compiler will generate code which saves and restores the FPRs. For
15570 soft-float code it is recommended to used the @code{*_nofloat}
15571 variant. In order to prevent a TDB from being written it is required
15572 to pass an constant zero value as parameter. Passing the zero value
15573 through a variable is not sufficient. Although modifications of
15574 access registers inside the transaction will not trigger an
15575 transaction abort it is not supported to actually modify them. Access
15576 registers do not get saved when entering a transaction. They will have
15577 undefined state when reaching the abort code.
15578 @end deftypefn
15579
15580 Macros for the possible return codes of tbegin are defined in the
15581 @code{htmintrin.h} header file:
15582
15583 @table @code
15584 @item _HTM_TBEGIN_STARTED
15585 @code{tbegin} has been executed as part of normal processing. The
15586 transaction body is supposed to be executed.
15587 @item _HTM_TBEGIN_INDETERMINATE
15588 The transaction was aborted due to an indeterminate condition which
15589 might be persistent.
15590 @item _HTM_TBEGIN_TRANSIENT
15591 The transaction aborted due to a transient failure. The transaction
15592 should be re-executed in that case.
15593 @item _HTM_TBEGIN_PERSISTENT
15594 The transaction aborted due to a persistent failure. Re-execution
15595 under same circumstances will not be productive.
15596 @end table
15597
15598 @defmac _HTM_FIRST_USER_ABORT_CODE
15599 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
15600 specifies the first abort code which can be used for
15601 @code{__builtin_tabort}. Values below this threshold are reserved for
15602 machine use.
15603 @end defmac
15604
15605 @deftp {Data type} {struct __htm_tdb}
15606 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
15607 the structure of the transaction diagnostic block as specified in the
15608 Principles of Operation manual chapter 5-91.
15609 @end deftp
15610
15611 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
15612 Same as @code{__builtin_tbegin} but without FPR saves and restores.
15613 Using this variant in code making use of FPRs will leave the FPRs in
15614 undefined state when entering the transaction abort handler code.
15615 @end deftypefn
15616
15617 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
15618 In addition to @code{__builtin_tbegin} a loop for transient failures
15619 is generated. If tbegin returns a condition code of 2 the transaction
15620 will be retried as often as specified in the second argument. The
15621 perform processor assist instruction is used to tell the CPU about the
15622 number of fails so far.
15623 @end deftypefn
15624
15625 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
15626 Same as @code{__builtin_tbegin_retry} but without FPR saves and
15627 restores. Using this variant in code making use of FPRs will leave
15628 the FPRs in undefined state when entering the transaction abort
15629 handler code.
15630 @end deftypefn
15631
15632 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
15633 Generates the @code{tbeginc} machine instruction starting a constraint
15634 hardware transaction. The second operand is set to @code{0xff08}.
15635 @end deftypefn
15636
15637 @deftypefn {Built-in Function} int __builtin_tend (void)
15638 Generates the @code{tend} machine instruction finishing a transaction
15639 and making the changes visible to other threads. The condition code
15640 generated by tend is returned as integer value.
15641 @end deftypefn
15642
15643 @deftypefn {Built-in Function} void __builtin_tabort (int)
15644 Generates the @code{tabort} machine instruction with the specified
15645 abort code. Abort codes from 0 through 255 are reserved and will
15646 result in an error message.
15647 @end deftypefn
15648
15649 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
15650 Generates the @code{ppa rX,rY,1} machine instruction. Where the
15651 integer parameter is loaded into rX and a value of zero is loaded into
15652 rY. The integer parameter specifies the number of times the
15653 transaction repeatedly aborted.
15654 @end deftypefn
15655
15656 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
15657 Generates the @code{etnd} machine instruction. The current nesting
15658 depth is returned as integer value. For a nesting depth of 0 the code
15659 is not executed as part of an transaction.
15660 @end deftypefn
15661
15662 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
15663
15664 Generates the @code{ntstg} machine instruction. The second argument
15665 is written to the first arguments location. The store operation will
15666 not be rolled-back in case of an transaction abort.
15667 @end deftypefn
15668
15669 @node SH Built-in Functions
15670 @subsection SH Built-in Functions
15671 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
15672 families of processors:
15673
15674 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
15675 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
15676 used by system code that manages threads and execution contexts. The compiler
15677 normally does not generate code that modifies the contents of @samp{GBR} and
15678 thus the value is preserved across function calls. Changing the @samp{GBR}
15679 value in user code must be done with caution, since the compiler might use
15680 @samp{GBR} in order to access thread local variables.
15681
15682 @end deftypefn
15683
15684 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
15685 Returns the value that is currently set in the @samp{GBR} register.
15686 Memory loads and stores that use the thread pointer as a base address are
15687 turned into @samp{GBR} based displacement loads and stores, if possible.
15688 For example:
15689 @smallexample
15690 struct my_tcb
15691 @{
15692 int a, b, c, d, e;
15693 @};
15694
15695 int get_tcb_value (void)
15696 @{
15697 // Generate @samp{mov.l @@(8,gbr),r0} instruction
15698 return ((my_tcb*)__builtin_thread_pointer ())->c;
15699 @}
15700
15701 @end smallexample
15702 @end deftypefn
15703
15704 @node SPARC VIS Built-in Functions
15705 @subsection SPARC VIS Built-in Functions
15706
15707 GCC supports SIMD operations on the SPARC using both the generic vector
15708 extensions (@pxref{Vector Extensions}) as well as built-in functions for
15709 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
15710 switch, the VIS extension is exposed as the following built-in functions:
15711
15712 @smallexample
15713 typedef int v1si __attribute__ ((vector_size (4)));
15714 typedef int v2si __attribute__ ((vector_size (8)));
15715 typedef short v4hi __attribute__ ((vector_size (8)));
15716 typedef short v2hi __attribute__ ((vector_size (4)));
15717 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
15718 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
15719
15720 void __builtin_vis_write_gsr (int64_t);
15721 int64_t __builtin_vis_read_gsr (void);
15722
15723 void * __builtin_vis_alignaddr (void *, long);
15724 void * __builtin_vis_alignaddrl (void *, long);
15725 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
15726 v2si __builtin_vis_faligndatav2si (v2si, v2si);
15727 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
15728 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
15729
15730 v4hi __builtin_vis_fexpand (v4qi);
15731
15732 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
15733 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
15734 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
15735 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
15736 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
15737 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
15738 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
15739
15740 v4qi __builtin_vis_fpack16 (v4hi);
15741 v8qi __builtin_vis_fpack32 (v2si, v8qi);
15742 v2hi __builtin_vis_fpackfix (v2si);
15743 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
15744
15745 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
15746
15747 long __builtin_vis_edge8 (void *, void *);
15748 long __builtin_vis_edge8l (void *, void *);
15749 long __builtin_vis_edge16 (void *, void *);
15750 long __builtin_vis_edge16l (void *, void *);
15751 long __builtin_vis_edge32 (void *, void *);
15752 long __builtin_vis_edge32l (void *, void *);
15753
15754 long __builtin_vis_fcmple16 (v4hi, v4hi);
15755 long __builtin_vis_fcmple32 (v2si, v2si);
15756 long __builtin_vis_fcmpne16 (v4hi, v4hi);
15757 long __builtin_vis_fcmpne32 (v2si, v2si);
15758 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
15759 long __builtin_vis_fcmpgt32 (v2si, v2si);
15760 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
15761 long __builtin_vis_fcmpeq32 (v2si, v2si);
15762
15763 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
15764 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
15765 v2si __builtin_vis_fpadd32 (v2si, v2si);
15766 v1si __builtin_vis_fpadd32s (v1si, v1si);
15767 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
15768 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
15769 v2si __builtin_vis_fpsub32 (v2si, v2si);
15770 v1si __builtin_vis_fpsub32s (v1si, v1si);
15771
15772 long __builtin_vis_array8 (long, long);
15773 long __builtin_vis_array16 (long, long);
15774 long __builtin_vis_array32 (long, long);
15775 @end smallexample
15776
15777 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
15778 functions also become available:
15779
15780 @smallexample
15781 long __builtin_vis_bmask (long, long);
15782 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
15783 v2si __builtin_vis_bshufflev2si (v2si, v2si);
15784 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
15785 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
15786
15787 long __builtin_vis_edge8n (void *, void *);
15788 long __builtin_vis_edge8ln (void *, void *);
15789 long __builtin_vis_edge16n (void *, void *);
15790 long __builtin_vis_edge16ln (void *, void *);
15791 long __builtin_vis_edge32n (void *, void *);
15792 long __builtin_vis_edge32ln (void *, void *);
15793 @end smallexample
15794
15795 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
15796 functions also become available:
15797
15798 @smallexample
15799 void __builtin_vis_cmask8 (long);
15800 void __builtin_vis_cmask16 (long);
15801 void __builtin_vis_cmask32 (long);
15802
15803 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
15804
15805 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
15806 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
15807 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
15808 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
15809 v2si __builtin_vis_fsll16 (v2si, v2si);
15810 v2si __builtin_vis_fslas16 (v2si, v2si);
15811 v2si __builtin_vis_fsrl16 (v2si, v2si);
15812 v2si __builtin_vis_fsra16 (v2si, v2si);
15813
15814 long __builtin_vis_pdistn (v8qi, v8qi);
15815
15816 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
15817
15818 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
15819 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
15820
15821 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
15822 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
15823 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
15824 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
15825 v2si __builtin_vis_fpadds32 (v2si, v2si);
15826 v1si __builtin_vis_fpadds32s (v1si, v1si);
15827 v2si __builtin_vis_fpsubs32 (v2si, v2si);
15828 v1si __builtin_vis_fpsubs32s (v1si, v1si);
15829
15830 long __builtin_vis_fucmple8 (v8qi, v8qi);
15831 long __builtin_vis_fucmpne8 (v8qi, v8qi);
15832 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
15833 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
15834
15835 float __builtin_vis_fhadds (float, float);
15836 double __builtin_vis_fhaddd (double, double);
15837 float __builtin_vis_fhsubs (float, float);
15838 double __builtin_vis_fhsubd (double, double);
15839 float __builtin_vis_fnhadds (float, float);
15840 double __builtin_vis_fnhaddd (double, double);
15841
15842 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
15843 int64_t __builtin_vis_xmulx (int64_t, int64_t);
15844 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
15845 @end smallexample
15846
15847 @node SPU Built-in Functions
15848 @subsection SPU Built-in Functions
15849
15850 GCC provides extensions for the SPU processor as described in the
15851 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
15852 found at @uref{http://cell.scei.co.jp/} or
15853 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
15854 implementation differs in several ways.
15855
15856 @itemize @bullet
15857
15858 @item
15859 The optional extension of specifying vector constants in parentheses is
15860 not supported.
15861
15862 @item
15863 A vector initializer requires no cast if the vector constant is of the
15864 same type as the variable it is initializing.
15865
15866 @item
15867 If @code{signed} or @code{unsigned} is omitted, the signedness of the
15868 vector type is the default signedness of the base type. The default
15869 varies depending on the operating system, so a portable program should
15870 always specify the signedness.
15871
15872 @item
15873 By default, the keyword @code{__vector} is added. The macro
15874 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
15875 undefined.
15876
15877 @item
15878 GCC allows using a @code{typedef} name as the type specifier for a
15879 vector type.
15880
15881 @item
15882 For C, overloaded functions are implemented with macros so the following
15883 does not work:
15884
15885 @smallexample
15886 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
15887 @end smallexample
15888
15889 @noindent
15890 Since @code{spu_add} is a macro, the vector constant in the example
15891 is treated as four separate arguments. Wrap the entire argument in
15892 parentheses for this to work.
15893
15894 @item
15895 The extended version of @code{__builtin_expect} is not supported.
15896
15897 @end itemize
15898
15899 @emph{Note:} Only the interface described in the aforementioned
15900 specification is supported. Internally, GCC uses built-in functions to
15901 implement the required functionality, but these are not supported and
15902 are subject to change without notice.
15903
15904 @node TI C6X Built-in Functions
15905 @subsection TI C6X Built-in Functions
15906
15907 GCC provides intrinsics to access certain instructions of the TI C6X
15908 processors. These intrinsics, listed below, are available after
15909 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
15910 to C6X instructions.
15911
15912 @smallexample
15913
15914 int _sadd (int, int)
15915 int _ssub (int, int)
15916 int _sadd2 (int, int)
15917 int _ssub2 (int, int)
15918 long long _mpy2 (int, int)
15919 long long _smpy2 (int, int)
15920 int _add4 (int, int)
15921 int _sub4 (int, int)
15922 int _saddu4 (int, int)
15923
15924 int _smpy (int, int)
15925 int _smpyh (int, int)
15926 int _smpyhl (int, int)
15927 int _smpylh (int, int)
15928
15929 int _sshl (int, int)
15930 int _subc (int, int)
15931
15932 int _avg2 (int, int)
15933 int _avgu4 (int, int)
15934
15935 int _clrr (int, int)
15936 int _extr (int, int)
15937 int _extru (int, int)
15938 int _abs (int)
15939 int _abs2 (int)
15940
15941 @end smallexample
15942
15943 @node TILE-Gx Built-in Functions
15944 @subsection TILE-Gx Built-in Functions
15945
15946 GCC provides intrinsics to access every instruction of the TILE-Gx
15947 processor. The intrinsics are of the form:
15948
15949 @smallexample
15950
15951 unsigned long long __insn_@var{op} (...)
15952
15953 @end smallexample
15954
15955 Where @var{op} is the name of the instruction. Refer to the ISA manual
15956 for the complete list of instructions.
15957
15958 GCC also provides intrinsics to directly access the network registers.
15959 The intrinsics are:
15960
15961 @smallexample
15962
15963 unsigned long long __tile_idn0_receive (void)
15964 unsigned long long __tile_idn1_receive (void)
15965 unsigned long long __tile_udn0_receive (void)
15966 unsigned long long __tile_udn1_receive (void)
15967 unsigned long long __tile_udn2_receive (void)
15968 unsigned long long __tile_udn3_receive (void)
15969 void __tile_idn_send (unsigned long long)
15970 void __tile_udn_send (unsigned long long)
15971
15972 @end smallexample
15973
15974 The intrinsic @code{void __tile_network_barrier (void)} is used to
15975 guarantee that no network operations before it are reordered with
15976 those after it.
15977
15978 @node TILEPro Built-in Functions
15979 @subsection TILEPro Built-in Functions
15980
15981 GCC provides intrinsics to access every instruction of the TILEPro
15982 processor. The intrinsics are of the form:
15983
15984 @smallexample
15985
15986 unsigned __insn_@var{op} (...)
15987
15988 @end smallexample
15989
15990 @noindent
15991 where @var{op} is the name of the instruction. Refer to the ISA manual
15992 for the complete list of instructions.
15993
15994 GCC also provides intrinsics to directly access the network registers.
15995 The intrinsics are:
15996
15997 @smallexample
15998
15999 unsigned __tile_idn0_receive (void)
16000 unsigned __tile_idn1_receive (void)
16001 unsigned __tile_sn_receive (void)
16002 unsigned __tile_udn0_receive (void)
16003 unsigned __tile_udn1_receive (void)
16004 unsigned __tile_udn2_receive (void)
16005 unsigned __tile_udn3_receive (void)
16006 void __tile_idn_send (unsigned)
16007 void __tile_sn_send (unsigned)
16008 void __tile_udn_send (unsigned)
16009
16010 @end smallexample
16011
16012 The intrinsic @code{void __tile_network_barrier (void)} is used to
16013 guarantee that no network operations before it are reordered with
16014 those after it.
16015
16016 @node Target Format Checks
16017 @section Format Checks Specific to Particular Target Machines
16018
16019 For some target machines, GCC supports additional options to the
16020 format attribute
16021 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
16022
16023 @menu
16024 * Solaris Format Checks::
16025 * Darwin Format Checks::
16026 @end menu
16027
16028 @node Solaris Format Checks
16029 @subsection Solaris Format Checks
16030
16031 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
16032 check. @code{cmn_err} accepts a subset of the standard @code{printf}
16033 conversions, and the two-argument @code{%b} conversion for displaying
16034 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
16035
16036 @node Darwin Format Checks
16037 @subsection Darwin Format Checks
16038
16039 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
16040 attribute context. Declarations made with such attribution are parsed for correct syntax
16041 and format argument types. However, parsing of the format string itself is currently undefined
16042 and is not carried out by this version of the compiler.
16043
16044 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
16045 also be used as format arguments. Note that the relevant headers are only likely to be
16046 available on Darwin (OSX) installations. On such installations, the XCode and system
16047 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
16048 associated functions.
16049
16050 @node Pragmas
16051 @section Pragmas Accepted by GCC
16052 @cindex pragmas
16053 @cindex @code{#pragma}
16054
16055 GCC supports several types of pragmas, primarily in order to compile
16056 code originally written for other compilers. Note that in general
16057 we do not recommend the use of pragmas; @xref{Function Attributes},
16058 for further explanation.
16059
16060 @menu
16061 * ARM Pragmas::
16062 * M32C Pragmas::
16063 * MeP Pragmas::
16064 * RS/6000 and PowerPC Pragmas::
16065 * Darwin Pragmas::
16066 * Solaris Pragmas::
16067 * Symbol-Renaming Pragmas::
16068 * Structure-Packing Pragmas::
16069 * Weak Pragmas::
16070 * Diagnostic Pragmas::
16071 * Visibility Pragmas::
16072 * Push/Pop Macro Pragmas::
16073 * Function Specific Option Pragmas::
16074 * Loop-Specific Pragmas::
16075 @end menu
16076
16077 @node ARM Pragmas
16078 @subsection ARM Pragmas
16079
16080 The ARM target defines pragmas for controlling the default addition of
16081 @code{long_call} and @code{short_call} attributes to functions.
16082 @xref{Function Attributes}, for information about the effects of these
16083 attributes.
16084
16085 @table @code
16086 @item long_calls
16087 @cindex pragma, long_calls
16088 Set all subsequent functions to have the @code{long_call} attribute.
16089
16090 @item no_long_calls
16091 @cindex pragma, no_long_calls
16092 Set all subsequent functions to have the @code{short_call} attribute.
16093
16094 @item long_calls_off
16095 @cindex pragma, long_calls_off
16096 Do not affect the @code{long_call} or @code{short_call} attributes of
16097 subsequent functions.
16098 @end table
16099
16100 @node M32C Pragmas
16101 @subsection M32C Pragmas
16102
16103 @table @code
16104 @item GCC memregs @var{number}
16105 @cindex pragma, memregs
16106 Overrides the command-line option @code{-memregs=} for the current
16107 file. Use with care! This pragma must be before any function in the
16108 file, and mixing different memregs values in different objects may
16109 make them incompatible. This pragma is useful when a
16110 performance-critical function uses a memreg for temporary values,
16111 as it may allow you to reduce the number of memregs used.
16112
16113 @item ADDRESS @var{name} @var{address}
16114 @cindex pragma, address
16115 For any declared symbols matching @var{name}, this does three things
16116 to that symbol: it forces the symbol to be located at the given
16117 address (a number), it forces the symbol to be volatile, and it
16118 changes the symbol's scope to be static. This pragma exists for
16119 compatibility with other compilers, but note that the common
16120 @code{1234H} numeric syntax is not supported (use @code{0x1234}
16121 instead). Example:
16122
16123 @smallexample
16124 #pragma ADDRESS port3 0x103
16125 char port3;
16126 @end smallexample
16127
16128 @end table
16129
16130 @node MeP Pragmas
16131 @subsection MeP Pragmas
16132
16133 @table @code
16134
16135 @item custom io_volatile (on|off)
16136 @cindex pragma, custom io_volatile
16137 Overrides the command-line option @code{-mio-volatile} for the current
16138 file. Note that for compatibility with future GCC releases, this
16139 option should only be used once before any @code{io} variables in each
16140 file.
16141
16142 @item GCC coprocessor available @var{registers}
16143 @cindex pragma, coprocessor available
16144 Specifies which coprocessor registers are available to the register
16145 allocator. @var{registers} may be a single register, register range
16146 separated by ellipses, or comma-separated list of those. Example:
16147
16148 @smallexample
16149 #pragma GCC coprocessor available $c0...$c10, $c28
16150 @end smallexample
16151
16152 @item GCC coprocessor call_saved @var{registers}
16153 @cindex pragma, coprocessor call_saved
16154 Specifies which coprocessor registers are to be saved and restored by
16155 any function using them. @var{registers} may be a single register,
16156 register range separated by ellipses, or comma-separated list of
16157 those. Example:
16158
16159 @smallexample
16160 #pragma GCC coprocessor call_saved $c4...$c6, $c31
16161 @end smallexample
16162
16163 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
16164 @cindex pragma, coprocessor subclass
16165 Creates and defines a register class. These register classes can be
16166 used by inline @code{asm} constructs. @var{registers} may be a single
16167 register, register range separated by ellipses, or comma-separated
16168 list of those. Example:
16169
16170 @smallexample
16171 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
16172
16173 asm ("cpfoo %0" : "=B" (x));
16174 @end smallexample
16175
16176 @item GCC disinterrupt @var{name} , @var{name} @dots{}
16177 @cindex pragma, disinterrupt
16178 For the named functions, the compiler adds code to disable interrupts
16179 for the duration of those functions. If any functions so named
16180 are not encountered in the source, a warning is emitted that the pragma is
16181 not used. Examples:
16182
16183 @smallexample
16184 #pragma disinterrupt foo
16185 #pragma disinterrupt bar, grill
16186 int foo () @{ @dots{} @}
16187 @end smallexample
16188
16189 @item GCC call @var{name} , @var{name} @dots{}
16190 @cindex pragma, call
16191 For the named functions, the compiler always uses a register-indirect
16192 call model when calling the named functions. Examples:
16193
16194 @smallexample
16195 extern int foo ();
16196 #pragma call foo
16197 @end smallexample
16198
16199 @end table
16200
16201 @node RS/6000 and PowerPC Pragmas
16202 @subsection RS/6000 and PowerPC Pragmas
16203
16204 The RS/6000 and PowerPC targets define one pragma for controlling
16205 whether or not the @code{longcall} attribute is added to function
16206 declarations by default. This pragma overrides the @option{-mlongcall}
16207 option, but not the @code{longcall} and @code{shortcall} attributes.
16208 @xref{RS/6000 and PowerPC Options}, for more information about when long
16209 calls are and are not necessary.
16210
16211 @table @code
16212 @item longcall (1)
16213 @cindex pragma, longcall
16214 Apply the @code{longcall} attribute to all subsequent function
16215 declarations.
16216
16217 @item longcall (0)
16218 Do not apply the @code{longcall} attribute to subsequent function
16219 declarations.
16220 @end table
16221
16222 @c Describe h8300 pragmas here.
16223 @c Describe sh pragmas here.
16224 @c Describe v850 pragmas here.
16225
16226 @node Darwin Pragmas
16227 @subsection Darwin Pragmas
16228
16229 The following pragmas are available for all architectures running the
16230 Darwin operating system. These are useful for compatibility with other
16231 Mac OS compilers.
16232
16233 @table @code
16234 @item mark @var{tokens}@dots{}
16235 @cindex pragma, mark
16236 This pragma is accepted, but has no effect.
16237
16238 @item options align=@var{alignment}
16239 @cindex pragma, options align
16240 This pragma sets the alignment of fields in structures. The values of
16241 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
16242 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
16243 properly; to restore the previous setting, use @code{reset} for the
16244 @var{alignment}.
16245
16246 @item segment @var{tokens}@dots{}
16247 @cindex pragma, segment
16248 This pragma is accepted, but has no effect.
16249
16250 @item unused (@var{var} [, @var{var}]@dots{})
16251 @cindex pragma, unused
16252 This pragma declares variables to be possibly unused. GCC does not
16253 produce warnings for the listed variables. The effect is similar to
16254 that of the @code{unused} attribute, except that this pragma may appear
16255 anywhere within the variables' scopes.
16256 @end table
16257
16258 @node Solaris Pragmas
16259 @subsection Solaris Pragmas
16260
16261 The Solaris target supports @code{#pragma redefine_extname}
16262 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
16263 @code{#pragma} directives for compatibility with the system compiler.
16264
16265 @table @code
16266 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
16267 @cindex pragma, align
16268
16269 Increase the minimum alignment of each @var{variable} to @var{alignment}.
16270 This is the same as GCC's @code{aligned} attribute @pxref{Variable
16271 Attributes}). Macro expansion occurs on the arguments to this pragma
16272 when compiling C and Objective-C@. It does not currently occur when
16273 compiling C++, but this is a bug which may be fixed in a future
16274 release.
16275
16276 @item fini (@var{function} [, @var{function}]...)
16277 @cindex pragma, fini
16278
16279 This pragma causes each listed @var{function} to be called after
16280 main, or during shared module unloading, by adding a call to the
16281 @code{.fini} section.
16282
16283 @item init (@var{function} [, @var{function}]...)
16284 @cindex pragma, init
16285
16286 This pragma causes each listed @var{function} to be called during
16287 initialization (before @code{main}) or during shared module loading, by
16288 adding a call to the @code{.init} section.
16289
16290 @end table
16291
16292 @node Symbol-Renaming Pragmas
16293 @subsection Symbol-Renaming Pragmas
16294
16295 For compatibility with the Solaris system headers, GCC
16296 supports two @code{#pragma} directives that change the name used in
16297 assembly for a given declaration. To get this effect
16298 on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
16299 Labels}).
16300
16301 @table @code
16302 @item redefine_extname @var{oldname} @var{newname}
16303 @cindex pragma, redefine_extname
16304
16305 This pragma gives the C function @var{oldname} the assembly symbol
16306 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
16307 is defined if this pragma is available (currently on all platforms).
16308 @end table
16309
16310 This pragma and the asm labels extension interact in a complicated
16311 manner. Here are some corner cases you may want to be aware of.
16312
16313 @enumerate
16314 @item Both pragmas silently apply only to declarations with external
16315 linkage. Asm labels do not have this restriction.
16316
16317 @item In C++, both pragmas silently apply only to declarations with
16318 ``C'' linkage. Again, asm labels do not have this restriction.
16319
16320 @item If any of the three ways of changing the assembly name of a
16321 declaration is applied to a declaration whose assembly name has
16322 already been determined (either by a previous use of one of these
16323 features, or because the compiler needed the assembly name in order to
16324 generate code), and the new name is different, a warning issues and
16325 the name does not change.
16326
16327 @item The @var{oldname} used by @code{#pragma redefine_extname} is
16328 always the C-language name.
16329 @end enumerate
16330
16331 @node Structure-Packing Pragmas
16332 @subsection Structure-Packing Pragmas
16333
16334 For compatibility with Microsoft Windows compilers, GCC supports a
16335 set of @code{#pragma} directives that change the maximum alignment of
16336 members of structures (other than zero-width bit-fields), unions, and
16337 classes subsequently defined. The @var{n} value below always is required
16338 to be a small power of two and specifies the new alignment in bytes.
16339
16340 @enumerate
16341 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
16342 @item @code{#pragma pack()} sets the alignment to the one that was in
16343 effect when compilation started (see also command-line option
16344 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
16345 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
16346 setting on an internal stack and then optionally sets the new alignment.
16347 @item @code{#pragma pack(pop)} restores the alignment setting to the one
16348 saved at the top of the internal stack (and removes that stack entry).
16349 Note that @code{#pragma pack([@var{n}])} does not influence this internal
16350 stack; thus it is possible to have @code{#pragma pack(push)} followed by
16351 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
16352 @code{#pragma pack(pop)}.
16353 @end enumerate
16354
16355 Some targets, e.g.@: i386 and PowerPC, support the @code{ms_struct}
16356 @code{#pragma} which lays out a structure as the documented
16357 @code{__attribute__ ((ms_struct))}.
16358 @enumerate
16359 @item @code{#pragma ms_struct on} turns on the layout for structures
16360 declared.
16361 @item @code{#pragma ms_struct off} turns off the layout for structures
16362 declared.
16363 @item @code{#pragma ms_struct reset} goes back to the default layout.
16364 @end enumerate
16365
16366 @node Weak Pragmas
16367 @subsection Weak Pragmas
16368
16369 For compatibility with SVR4, GCC supports a set of @code{#pragma}
16370 directives for declaring symbols to be weak, and defining weak
16371 aliases.
16372
16373 @table @code
16374 @item #pragma weak @var{symbol}
16375 @cindex pragma, weak
16376 This pragma declares @var{symbol} to be weak, as if the declaration
16377 had the attribute of the same name. The pragma may appear before
16378 or after the declaration of @var{symbol}. It is not an error for
16379 @var{symbol} to never be defined at all.
16380
16381 @item #pragma weak @var{symbol1} = @var{symbol2}
16382 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
16383 It is an error if @var{symbol2} is not defined in the current
16384 translation unit.
16385 @end table
16386
16387 @node Diagnostic Pragmas
16388 @subsection Diagnostic Pragmas
16389
16390 GCC allows the user to selectively enable or disable certain types of
16391 diagnostics, and change the kind of the diagnostic. For example, a
16392 project's policy might require that all sources compile with
16393 @option{-Werror} but certain files might have exceptions allowing
16394 specific types of warnings. Or, a project might selectively enable
16395 diagnostics and treat them as errors depending on which preprocessor
16396 macros are defined.
16397
16398 @table @code
16399 @item #pragma GCC diagnostic @var{kind} @var{option}
16400 @cindex pragma, diagnostic
16401
16402 Modifies the disposition of a diagnostic. Note that not all
16403 diagnostics are modifiable; at the moment only warnings (normally
16404 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
16405 Use @option{-fdiagnostics-show-option} to determine which diagnostics
16406 are controllable and which option controls them.
16407
16408 @var{kind} is @samp{error} to treat this diagnostic as an error,
16409 @samp{warning} to treat it like a warning (even if @option{-Werror} is
16410 in effect), or @samp{ignored} if the diagnostic is to be ignored.
16411 @var{option} is a double quoted string that matches the command-line
16412 option.
16413
16414 @smallexample
16415 #pragma GCC diagnostic warning "-Wformat"
16416 #pragma GCC diagnostic error "-Wformat"
16417 #pragma GCC diagnostic ignored "-Wformat"
16418 @end smallexample
16419
16420 Note that these pragmas override any command-line options. GCC keeps
16421 track of the location of each pragma, and issues diagnostics according
16422 to the state as of that point in the source file. Thus, pragmas occurring
16423 after a line do not affect diagnostics caused by that line.
16424
16425 @item #pragma GCC diagnostic push
16426 @itemx #pragma GCC diagnostic pop
16427
16428 Causes GCC to remember the state of the diagnostics as of each
16429 @code{push}, and restore to that point at each @code{pop}. If a
16430 @code{pop} has no matching @code{push}, the command-line options are
16431 restored.
16432
16433 @smallexample
16434 #pragma GCC diagnostic error "-Wuninitialized"
16435 foo(a); /* error is given for this one */
16436 #pragma GCC diagnostic push
16437 #pragma GCC diagnostic ignored "-Wuninitialized"
16438 foo(b); /* no diagnostic for this one */
16439 #pragma GCC diagnostic pop
16440 foo(c); /* error is given for this one */
16441 #pragma GCC diagnostic pop
16442 foo(d); /* depends on command-line options */
16443 @end smallexample
16444
16445 @end table
16446
16447 GCC also offers a simple mechanism for printing messages during
16448 compilation.
16449
16450 @table @code
16451 @item #pragma message @var{string}
16452 @cindex pragma, diagnostic
16453
16454 Prints @var{string} as a compiler message on compilation. The message
16455 is informational only, and is neither a compilation warning nor an error.
16456
16457 @smallexample
16458 #pragma message "Compiling " __FILE__ "..."
16459 @end smallexample
16460
16461 @var{string} may be parenthesized, and is printed with location
16462 information. For example,
16463
16464 @smallexample
16465 #define DO_PRAGMA(x) _Pragma (#x)
16466 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
16467
16468 TODO(Remember to fix this)
16469 @end smallexample
16470
16471 @noindent
16472 prints @samp{/tmp/file.c:4: note: #pragma message:
16473 TODO - Remember to fix this}.
16474
16475 @end table
16476
16477 @node Visibility Pragmas
16478 @subsection Visibility Pragmas
16479
16480 @table @code
16481 @item #pragma GCC visibility push(@var{visibility})
16482 @itemx #pragma GCC visibility pop
16483 @cindex pragma, visibility
16484
16485 This pragma allows the user to set the visibility for multiple
16486 declarations without having to give each a visibility attribute
16487 @xref{Function Attributes}, for more information about visibility and
16488 the attribute syntax.
16489
16490 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
16491 declarations. Class members and template specializations are not
16492 affected; if you want to override the visibility for a particular
16493 member or instantiation, you must use an attribute.
16494
16495 @end table
16496
16497
16498 @node Push/Pop Macro Pragmas
16499 @subsection Push/Pop Macro Pragmas
16500
16501 For compatibility with Microsoft Windows compilers, GCC supports
16502 @samp{#pragma push_macro(@var{"macro_name"})}
16503 and @samp{#pragma pop_macro(@var{"macro_name"})}.
16504
16505 @table @code
16506 @item #pragma push_macro(@var{"macro_name"})
16507 @cindex pragma, push_macro
16508 This pragma saves the value of the macro named as @var{macro_name} to
16509 the top of the stack for this macro.
16510
16511 @item #pragma pop_macro(@var{"macro_name"})
16512 @cindex pragma, pop_macro
16513 This pragma sets the value of the macro named as @var{macro_name} to
16514 the value on top of the stack for this macro. If the stack for
16515 @var{macro_name} is empty, the value of the macro remains unchanged.
16516 @end table
16517
16518 For example:
16519
16520 @smallexample
16521 #define X 1
16522 #pragma push_macro("X")
16523 #undef X
16524 #define X -1
16525 #pragma pop_macro("X")
16526 int x [X];
16527 @end smallexample
16528
16529 @noindent
16530 In this example, the definition of X as 1 is saved by @code{#pragma
16531 push_macro} and restored by @code{#pragma pop_macro}.
16532
16533 @node Function Specific Option Pragmas
16534 @subsection Function Specific Option Pragmas
16535
16536 @table @code
16537 @item #pragma GCC target (@var{"string"}...)
16538 @cindex pragma GCC target
16539
16540 This pragma allows you to set target specific options for functions
16541 defined later in the source file. One or more strings can be
16542 specified. Each function that is defined after this point is as
16543 if @code{attribute((target("STRING")))} was specified for that
16544 function. The parenthesis around the options is optional.
16545 @xref{Function Attributes}, for more information about the
16546 @code{target} attribute and the attribute syntax.
16547
16548 The @code{#pragma GCC target} pragma is presently implemented for
16549 i386/x86_64, PowerPC, and Nios II targets only.
16550 @end table
16551
16552 @table @code
16553 @item #pragma GCC optimize (@var{"string"}...)
16554 @cindex pragma GCC optimize
16555
16556 This pragma allows you to set global optimization options for functions
16557 defined later in the source file. One or more strings can be
16558 specified. Each function that is defined after this point is as
16559 if @code{attribute((optimize("STRING")))} was specified for that
16560 function. The parenthesis around the options is optional.
16561 @xref{Function Attributes}, for more information about the
16562 @code{optimize} attribute and the attribute syntax.
16563
16564 The @samp{#pragma GCC optimize} pragma is not implemented in GCC
16565 versions earlier than 4.4.
16566 @end table
16567
16568 @table @code
16569 @item #pragma GCC push_options
16570 @itemx #pragma GCC pop_options
16571 @cindex pragma GCC push_options
16572 @cindex pragma GCC pop_options
16573
16574 These pragmas maintain a stack of the current target and optimization
16575 options. It is intended for include files where you temporarily want
16576 to switch to using a different @samp{#pragma GCC target} or
16577 @samp{#pragma GCC optimize} and then to pop back to the previous
16578 options.
16579
16580 The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
16581 pragmas are not implemented in GCC versions earlier than 4.4.
16582 @end table
16583
16584 @table @code
16585 @item #pragma GCC reset_options
16586 @cindex pragma GCC reset_options
16587
16588 This pragma clears the current @code{#pragma GCC target} and
16589 @code{#pragma GCC optimize} to use the default switches as specified
16590 on the command line.
16591
16592 The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
16593 versions earlier than 4.4.
16594 @end table
16595
16596 @node Loop-Specific Pragmas
16597 @subsection Loop-Specific Pragmas
16598
16599 @table @code
16600 @item #pragma GCC ivdep
16601 @cindex pragma GCC ivdep
16602 @end table
16603
16604 With this pragma, the programmer asserts that there are no loop-carried
16605 dependencies which would prevent that consecutive iterations of
16606 the following loop can be executed concurrently with SIMD
16607 (single instruction multiple data) instructions.
16608
16609 For example, the compiler can only unconditionally vectorize the following
16610 loop with the pragma:
16611
16612 @smallexample
16613 void foo (int n, int *a, int *b, int *c)
16614 @{
16615 int i, j;
16616 #pragma GCC ivdep
16617 for (i = 0; i < n; ++i)
16618 a[i] = b[i] + c[i];
16619 @}
16620 @end smallexample
16621
16622 @noindent
16623 In this example, using the @code{restrict} qualifier had the same
16624 effect. In the following example, that would not be possible. Assume
16625 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
16626 that it can unconditionally vectorize the following loop:
16627
16628 @smallexample
16629 void ignore_vec_dep (int *a, int k, int c, int m)
16630 @{
16631 #pragma GCC ivdep
16632 for (int i = 0; i < m; i++)
16633 a[i] = a[i + k] * c;
16634 @}
16635 @end smallexample
16636
16637
16638 @node Unnamed Fields
16639 @section Unnamed struct/union fields within structs/unions
16640 @cindex @code{struct}
16641 @cindex @code{union}
16642
16643 As permitted by ISO C11 and for compatibility with other compilers,
16644 GCC allows you to define
16645 a structure or union that contains, as fields, structures and unions
16646 without names. For example:
16647
16648 @smallexample
16649 struct @{
16650 int a;
16651 union @{
16652 int b;
16653 float c;
16654 @};
16655 int d;
16656 @} foo;
16657 @end smallexample
16658
16659 @noindent
16660 In this example, you are able to access members of the unnamed
16661 union with code like @samp{foo.b}. Note that only unnamed structs and
16662 unions are allowed, you may not have, for example, an unnamed
16663 @code{int}.
16664
16665 You must never create such structures that cause ambiguous field definitions.
16666 For example, in this structure:
16667
16668 @smallexample
16669 struct @{
16670 int a;
16671 struct @{
16672 int a;
16673 @};
16674 @} foo;
16675 @end smallexample
16676
16677 @noindent
16678 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
16679 The compiler gives errors for such constructs.
16680
16681 @opindex fms-extensions
16682 Unless @option{-fms-extensions} is used, the unnamed field must be a
16683 structure or union definition without a tag (for example, @samp{struct
16684 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
16685 also be a definition with a tag such as @samp{struct foo @{ int a;
16686 @};}, a reference to a previously defined structure or union such as
16687 @samp{struct foo;}, or a reference to a @code{typedef} name for a
16688 previously defined structure or union type.
16689
16690 @opindex fplan9-extensions
16691 The option @option{-fplan9-extensions} enables
16692 @option{-fms-extensions} as well as two other extensions. First, a
16693 pointer to a structure is automatically converted to a pointer to an
16694 anonymous field for assignments and function calls. For example:
16695
16696 @smallexample
16697 struct s1 @{ int a; @};
16698 struct s2 @{ struct s1; @};
16699 extern void f1 (struct s1 *);
16700 void f2 (struct s2 *p) @{ f1 (p); @}
16701 @end smallexample
16702
16703 @noindent
16704 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
16705 converted into a pointer to the anonymous field.
16706
16707 Second, when the type of an anonymous field is a @code{typedef} for a
16708 @code{struct} or @code{union}, code may refer to the field using the
16709 name of the @code{typedef}.
16710
16711 @smallexample
16712 typedef struct @{ int a; @} s1;
16713 struct s2 @{ s1; @};
16714 s1 f1 (struct s2 *p) @{ return p->s1; @}
16715 @end smallexample
16716
16717 These usages are only permitted when they are not ambiguous.
16718
16719 @node Thread-Local
16720 @section Thread-Local Storage
16721 @cindex Thread-Local Storage
16722 @cindex @acronym{TLS}
16723 @cindex @code{__thread}
16724
16725 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
16726 are allocated such that there is one instance of the variable per extant
16727 thread. The runtime model GCC uses to implement this originates
16728 in the IA-64 processor-specific ABI, but has since been migrated
16729 to other processors as well. It requires significant support from
16730 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
16731 system libraries (@file{libc.so} and @file{libpthread.so}), so it
16732 is not available everywhere.
16733
16734 At the user level, the extension is visible with a new storage
16735 class keyword: @code{__thread}. For example:
16736
16737 @smallexample
16738 __thread int i;
16739 extern __thread struct state s;
16740 static __thread char *p;
16741 @end smallexample
16742
16743 The @code{__thread} specifier may be used alone, with the @code{extern}
16744 or @code{static} specifiers, but with no other storage class specifier.
16745 When used with @code{extern} or @code{static}, @code{__thread} must appear
16746 immediately after the other storage class specifier.
16747
16748 The @code{__thread} specifier may be applied to any global, file-scoped
16749 static, function-scoped static, or static data member of a class. It may
16750 not be applied to block-scoped automatic or non-static data member.
16751
16752 When the address-of operator is applied to a thread-local variable, it is
16753 evaluated at run time and returns the address of the current thread's
16754 instance of that variable. An address so obtained may be used by any
16755 thread. When a thread terminates, any pointers to thread-local variables
16756 in that thread become invalid.
16757
16758 No static initialization may refer to the address of a thread-local variable.
16759
16760 In C++, if an initializer is present for a thread-local variable, it must
16761 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
16762 standard.
16763
16764 See @uref{http://www.akkadia.org/drepper/tls.pdf,
16765 ELF Handling For Thread-Local Storage} for a detailed explanation of
16766 the four thread-local storage addressing models, and how the runtime
16767 is expected to function.
16768
16769 @menu
16770 * C99 Thread-Local Edits::
16771 * C++98 Thread-Local Edits::
16772 @end menu
16773
16774 @node C99 Thread-Local Edits
16775 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
16776
16777 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
16778 that document the exact semantics of the language extension.
16779
16780 @itemize @bullet
16781 @item
16782 @cite{5.1.2 Execution environments}
16783
16784 Add new text after paragraph 1
16785
16786 @quotation
16787 Within either execution environment, a @dfn{thread} is a flow of
16788 control within a program. It is implementation defined whether
16789 or not there may be more than one thread associated with a program.
16790 It is implementation defined how threads beyond the first are
16791 created, the name and type of the function called at thread
16792 startup, and how threads may be terminated. However, objects
16793 with thread storage duration shall be initialized before thread
16794 startup.
16795 @end quotation
16796
16797 @item
16798 @cite{6.2.4 Storage durations of objects}
16799
16800 Add new text before paragraph 3
16801
16802 @quotation
16803 An object whose identifier is declared with the storage-class
16804 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
16805 Its lifetime is the entire execution of the thread, and its
16806 stored value is initialized only once, prior to thread startup.
16807 @end quotation
16808
16809 @item
16810 @cite{6.4.1 Keywords}
16811
16812 Add @code{__thread}.
16813
16814 @item
16815 @cite{6.7.1 Storage-class specifiers}
16816
16817 Add @code{__thread} to the list of storage class specifiers in
16818 paragraph 1.
16819
16820 Change paragraph 2 to
16821
16822 @quotation
16823 With the exception of @code{__thread}, at most one storage-class
16824 specifier may be given [@dots{}]. The @code{__thread} specifier may
16825 be used alone, or immediately following @code{extern} or
16826 @code{static}.
16827 @end quotation
16828
16829 Add new text after paragraph 6
16830
16831 @quotation
16832 The declaration of an identifier for a variable that has
16833 block scope that specifies @code{__thread} shall also
16834 specify either @code{extern} or @code{static}.
16835
16836 The @code{__thread} specifier shall be used only with
16837 variables.
16838 @end quotation
16839 @end itemize
16840
16841 @node C++98 Thread-Local Edits
16842 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
16843
16844 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
16845 that document the exact semantics of the language extension.
16846
16847 @itemize @bullet
16848 @item
16849 @b{[intro.execution]}
16850
16851 New text after paragraph 4
16852
16853 @quotation
16854 A @dfn{thread} is a flow of control within the abstract machine.
16855 It is implementation defined whether or not there may be more than
16856 one thread.
16857 @end quotation
16858
16859 New text after paragraph 7
16860
16861 @quotation
16862 It is unspecified whether additional action must be taken to
16863 ensure when and whether side effects are visible to other threads.
16864 @end quotation
16865
16866 @item
16867 @b{[lex.key]}
16868
16869 Add @code{__thread}.
16870
16871 @item
16872 @b{[basic.start.main]}
16873
16874 Add after paragraph 5
16875
16876 @quotation
16877 The thread that begins execution at the @code{main} function is called
16878 the @dfn{main thread}. It is implementation defined how functions
16879 beginning threads other than the main thread are designated or typed.
16880 A function so designated, as well as the @code{main} function, is called
16881 a @dfn{thread startup function}. It is implementation defined what
16882 happens if a thread startup function returns. It is implementation
16883 defined what happens to other threads when any thread calls @code{exit}.
16884 @end quotation
16885
16886 @item
16887 @b{[basic.start.init]}
16888
16889 Add after paragraph 4
16890
16891 @quotation
16892 The storage for an object of thread storage duration shall be
16893 statically initialized before the first statement of the thread startup
16894 function. An object of thread storage duration shall not require
16895 dynamic initialization.
16896 @end quotation
16897
16898 @item
16899 @b{[basic.start.term]}
16900
16901 Add after paragraph 3
16902
16903 @quotation
16904 The type of an object with thread storage duration shall not have a
16905 non-trivial destructor, nor shall it be an array type whose elements
16906 (directly or indirectly) have non-trivial destructors.
16907 @end quotation
16908
16909 @item
16910 @b{[basic.stc]}
16911
16912 Add ``thread storage duration'' to the list in paragraph 1.
16913
16914 Change paragraph 2
16915
16916 @quotation
16917 Thread, static, and automatic storage durations are associated with
16918 objects introduced by declarations [@dots{}].
16919 @end quotation
16920
16921 Add @code{__thread} to the list of specifiers in paragraph 3.
16922
16923 @item
16924 @b{[basic.stc.thread]}
16925
16926 New section before @b{[basic.stc.static]}
16927
16928 @quotation
16929 The keyword @code{__thread} applied to a non-local object gives the
16930 object thread storage duration.
16931
16932 A local variable or class data member declared both @code{static}
16933 and @code{__thread} gives the variable or member thread storage
16934 duration.
16935 @end quotation
16936
16937 @item
16938 @b{[basic.stc.static]}
16939
16940 Change paragraph 1
16941
16942 @quotation
16943 All objects that have neither thread storage duration, dynamic
16944 storage duration nor are local [@dots{}].
16945 @end quotation
16946
16947 @item
16948 @b{[dcl.stc]}
16949
16950 Add @code{__thread} to the list in paragraph 1.
16951
16952 Change paragraph 1
16953
16954 @quotation
16955 With the exception of @code{__thread}, at most one
16956 @var{storage-class-specifier} shall appear in a given
16957 @var{decl-specifier-seq}. The @code{__thread} specifier may
16958 be used alone, or immediately following the @code{extern} or
16959 @code{static} specifiers. [@dots{}]
16960 @end quotation
16961
16962 Add after paragraph 5
16963
16964 @quotation
16965 The @code{__thread} specifier can be applied only to the names of objects
16966 and to anonymous unions.
16967 @end quotation
16968
16969 @item
16970 @b{[class.mem]}
16971
16972 Add after paragraph 6
16973
16974 @quotation
16975 Non-@code{static} members shall not be @code{__thread}.
16976 @end quotation
16977 @end itemize
16978
16979 @node Binary constants
16980 @section Binary constants using the @samp{0b} prefix
16981 @cindex Binary constants using the @samp{0b} prefix
16982
16983 Integer constants can be written as binary constants, consisting of a
16984 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
16985 @samp{0B}. This is particularly useful in environments that operate a
16986 lot on the bit level (like microcontrollers).
16987
16988 The following statements are identical:
16989
16990 @smallexample
16991 i = 42;
16992 i = 0x2a;
16993 i = 052;
16994 i = 0b101010;
16995 @end smallexample
16996
16997 The type of these constants follows the same rules as for octal or
16998 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
16999 can be applied.
17000
17001 @node C++ Extensions
17002 @chapter Extensions to the C++ Language
17003 @cindex extensions, C++ language
17004 @cindex C++ language extensions
17005
17006 The GNU compiler provides these extensions to the C++ language (and you
17007 can also use most of the C language extensions in your C++ programs). If you
17008 want to write code that checks whether these features are available, you can
17009 test for the GNU compiler the same way as for C programs: check for a
17010 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
17011 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
17012 Predefined Macros,cpp,The GNU C Preprocessor}).
17013
17014 @menu
17015 * C++ Volatiles:: What constitutes an access to a volatile object.
17016 * Restricted Pointers:: C99 restricted pointers and references.
17017 * Vague Linkage:: Where G++ puts inlines, vtables and such.
17018 * C++ Interface:: You can use a single C++ header file for both
17019 declarations and definitions.
17020 * Template Instantiation:: Methods for ensuring that exactly one copy of
17021 each needed template instantiation is emitted.
17022 * Bound member functions:: You can extract a function pointer to the
17023 method denoted by a @samp{->*} or @samp{.*} expression.
17024 * C++ Attributes:: Variable, function, and type attributes for C++ only.
17025 * Function Multiversioning:: Declaring multiple function versions.
17026 * Namespace Association:: Strong using-directives for namespace association.
17027 * Type Traits:: Compiler support for type traits
17028 * Java Exceptions:: Tweaking exception handling to work with Java.
17029 * Deprecated Features:: Things will disappear from G++.
17030 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
17031 @end menu
17032
17033 @node C++ Volatiles
17034 @section When is a Volatile C++ Object Accessed?
17035 @cindex accessing volatiles
17036 @cindex volatile read
17037 @cindex volatile write
17038 @cindex volatile access
17039
17040 The C++ standard differs from the C standard in its treatment of
17041 volatile objects. It fails to specify what constitutes a volatile
17042 access, except to say that C++ should behave in a similar manner to C
17043 with respect to volatiles, where possible. However, the different
17044 lvalueness of expressions between C and C++ complicate the behavior.
17045 G++ behaves the same as GCC for volatile access, @xref{C
17046 Extensions,,Volatiles}, for a description of GCC's behavior.
17047
17048 The C and C++ language specifications differ when an object is
17049 accessed in a void context:
17050
17051 @smallexample
17052 volatile int *src = @var{somevalue};
17053 *src;
17054 @end smallexample
17055
17056 The C++ standard specifies that such expressions do not undergo lvalue
17057 to rvalue conversion, and that the type of the dereferenced object may
17058 be incomplete. The C++ standard does not specify explicitly that it
17059 is lvalue to rvalue conversion that is responsible for causing an
17060 access. There is reason to believe that it is, because otherwise
17061 certain simple expressions become undefined. However, because it
17062 would surprise most programmers, G++ treats dereferencing a pointer to
17063 volatile object of complete type as GCC would do for an equivalent
17064 type in C@. When the object has incomplete type, G++ issues a
17065 warning; if you wish to force an error, you must force a conversion to
17066 rvalue with, for instance, a static cast.
17067
17068 When using a reference to volatile, G++ does not treat equivalent
17069 expressions as accesses to volatiles, but instead issues a warning that
17070 no volatile is accessed. The rationale for this is that otherwise it
17071 becomes difficult to determine where volatile access occur, and not
17072 possible to ignore the return value from functions returning volatile
17073 references. Again, if you wish to force a read, cast the reference to
17074 an rvalue.
17075
17076 G++ implements the same behavior as GCC does when assigning to a
17077 volatile object---there is no reread of the assigned-to object, the
17078 assigned rvalue is reused. Note that in C++ assignment expressions
17079 are lvalues, and if used as an lvalue, the volatile object is
17080 referred to. For instance, @var{vref} refers to @var{vobj}, as
17081 expected, in the following example:
17082
17083 @smallexample
17084 volatile int vobj;
17085 volatile int &vref = vobj = @var{something};
17086 @end smallexample
17087
17088 @node Restricted Pointers
17089 @section Restricting Pointer Aliasing
17090 @cindex restricted pointers
17091 @cindex restricted references
17092 @cindex restricted this pointer
17093
17094 As with the C front end, G++ understands the C99 feature of restricted pointers,
17095 specified with the @code{__restrict__}, or @code{__restrict} type
17096 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
17097 language flag, @code{restrict} is not a keyword in C++.
17098
17099 In addition to allowing restricted pointers, you can specify restricted
17100 references, which indicate that the reference is not aliased in the local
17101 context.
17102
17103 @smallexample
17104 void fn (int *__restrict__ rptr, int &__restrict__ rref)
17105 @{
17106 /* @r{@dots{}} */
17107 @}
17108 @end smallexample
17109
17110 @noindent
17111 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
17112 @var{rref} refers to a (different) unaliased integer.
17113
17114 You may also specify whether a member function's @var{this} pointer is
17115 unaliased by using @code{__restrict__} as a member function qualifier.
17116
17117 @smallexample
17118 void T::fn () __restrict__
17119 @{
17120 /* @r{@dots{}} */
17121 @}
17122 @end smallexample
17123
17124 @noindent
17125 Within the body of @code{T::fn}, @var{this} has the effective
17126 definition @code{T *__restrict__ const this}. Notice that the
17127 interpretation of a @code{__restrict__} member function qualifier is
17128 different to that of @code{const} or @code{volatile} qualifier, in that it
17129 is applied to the pointer rather than the object. This is consistent with
17130 other compilers that implement restricted pointers.
17131
17132 As with all outermost parameter qualifiers, @code{__restrict__} is
17133 ignored in function definition matching. This means you only need to
17134 specify @code{__restrict__} in a function definition, rather than
17135 in a function prototype as well.
17136
17137 @node Vague Linkage
17138 @section Vague Linkage
17139 @cindex vague linkage
17140
17141 There are several constructs in C++ that require space in the object
17142 file but are not clearly tied to a single translation unit. We say that
17143 these constructs have ``vague linkage''. Typically such constructs are
17144 emitted wherever they are needed, though sometimes we can be more
17145 clever.
17146
17147 @table @asis
17148 @item Inline Functions
17149 Inline functions are typically defined in a header file which can be
17150 included in many different compilations. Hopefully they can usually be
17151 inlined, but sometimes an out-of-line copy is necessary, if the address
17152 of the function is taken or if inlining fails. In general, we emit an
17153 out-of-line copy in all translation units where one is needed. As an
17154 exception, we only emit inline virtual functions with the vtable, since
17155 it always requires a copy.
17156
17157 Local static variables and string constants used in an inline function
17158 are also considered to have vague linkage, since they must be shared
17159 between all inlined and out-of-line instances of the function.
17160
17161 @item VTables
17162 @cindex vtable
17163 C++ virtual functions are implemented in most compilers using a lookup
17164 table, known as a vtable. The vtable contains pointers to the virtual
17165 functions provided by a class, and each object of the class contains a
17166 pointer to its vtable (or vtables, in some multiple-inheritance
17167 situations). If the class declares any non-inline, non-pure virtual
17168 functions, the first one is chosen as the ``key method'' for the class,
17169 and the vtable is only emitted in the translation unit where the key
17170 method is defined.
17171
17172 @emph{Note:} If the chosen key method is later defined as inline, the
17173 vtable is still emitted in every translation unit that defines it.
17174 Make sure that any inline virtuals are declared inline in the class
17175 body, even if they are not defined there.
17176
17177 @item @code{type_info} objects
17178 @cindex @code{type_info}
17179 @cindex RTTI
17180 C++ requires information about types to be written out in order to
17181 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
17182 For polymorphic classes (classes with virtual functions), the @samp{type_info}
17183 object is written out along with the vtable so that @samp{dynamic_cast}
17184 can determine the dynamic type of a class object at run time. For all
17185 other types, we write out the @samp{type_info} object when it is used: when
17186 applying @samp{typeid} to an expression, throwing an object, or
17187 referring to a type in a catch clause or exception specification.
17188
17189 @item Template Instantiations
17190 Most everything in this section also applies to template instantiations,
17191 but there are other options as well.
17192 @xref{Template Instantiation,,Where's the Template?}.
17193
17194 @end table
17195
17196 When used with GNU ld version 2.8 or later on an ELF system such as
17197 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
17198 these constructs will be discarded at link time. This is known as
17199 COMDAT support.
17200
17201 On targets that don't support COMDAT, but do support weak symbols, GCC
17202 uses them. This way one copy overrides all the others, but
17203 the unused copies still take up space in the executable.
17204
17205 For targets that do not support either COMDAT or weak symbols,
17206 most entities with vague linkage are emitted as local symbols to
17207 avoid duplicate definition errors from the linker. This does not happen
17208 for local statics in inlines, however, as having multiple copies
17209 almost certainly breaks things.
17210
17211 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
17212 another way to control placement of these constructs.
17213
17214 @node C++ Interface
17215 @section #pragma interface and implementation
17216
17217 @cindex interface and implementation headers, C++
17218 @cindex C++ interface and implementation headers
17219 @cindex pragmas, interface and implementation
17220
17221 @code{#pragma interface} and @code{#pragma implementation} provide the
17222 user with a way of explicitly directing the compiler to emit entities
17223 with vague linkage (and debugging information) in a particular
17224 translation unit.
17225
17226 @emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
17227 most cases, because of COMDAT support and the ``key method'' heuristic
17228 mentioned in @ref{Vague Linkage}. Using them can actually cause your
17229 program to grow due to unnecessary out-of-line copies of inline
17230 functions. Currently (3.4) the only benefit of these
17231 @code{#pragma}s is reduced duplication of debugging information, and
17232 that should be addressed soon on DWARF 2 targets with the use of
17233 COMDAT groups.
17234
17235 @table @code
17236 @item #pragma interface
17237 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
17238 @kindex #pragma interface
17239 Use this directive in @emph{header files} that define object classes, to save
17240 space in most of the object files that use those classes. Normally,
17241 local copies of certain information (backup copies of inline member
17242 functions, debugging information, and the internal tables that implement
17243 virtual functions) must be kept in each object file that includes class
17244 definitions. You can use this pragma to avoid such duplication. When a
17245 header file containing @samp{#pragma interface} is included in a
17246 compilation, this auxiliary information is not generated (unless
17247 the main input source file itself uses @samp{#pragma implementation}).
17248 Instead, the object files contain references to be resolved at link
17249 time.
17250
17251 The second form of this directive is useful for the case where you have
17252 multiple headers with the same name in different directories. If you
17253 use this form, you must specify the same string to @samp{#pragma
17254 implementation}.
17255
17256 @item #pragma implementation
17257 @itemx #pragma implementation "@var{objects}.h"
17258 @kindex #pragma implementation
17259 Use this pragma in a @emph{main input file}, when you want full output from
17260 included header files to be generated (and made globally visible). The
17261 included header file, in turn, should use @samp{#pragma interface}.
17262 Backup copies of inline member functions, debugging information, and the
17263 internal tables used to implement virtual functions are all generated in
17264 implementation files.
17265
17266 @cindex implied @code{#pragma implementation}
17267 @cindex @code{#pragma implementation}, implied
17268 @cindex naming convention, implementation headers
17269 If you use @samp{#pragma implementation} with no argument, it applies to
17270 an include file with the same basename@footnote{A file's @dfn{basename}
17271 is the name stripped of all leading path information and of trailing
17272 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
17273 file. For example, in @file{allclass.cc}, giving just
17274 @samp{#pragma implementation}
17275 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
17276
17277 In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
17278 an implementation file whenever you would include it from
17279 @file{allclass.cc} even if you never specified @samp{#pragma
17280 implementation}. This was deemed to be more trouble than it was worth,
17281 however, and disabled.
17282
17283 Use the string argument if you want a single implementation file to
17284 include code from multiple header files. (You must also use
17285 @samp{#include} to include the header file; @samp{#pragma
17286 implementation} only specifies how to use the file---it doesn't actually
17287 include it.)
17288
17289 There is no way to split up the contents of a single header file into
17290 multiple implementation files.
17291 @end table
17292
17293 @cindex inlining and C++ pragmas
17294 @cindex C++ pragmas, effect on inlining
17295 @cindex pragmas in C++, effect on inlining
17296 @samp{#pragma implementation} and @samp{#pragma interface} also have an
17297 effect on function inlining.
17298
17299 If you define a class in a header file marked with @samp{#pragma
17300 interface}, the effect on an inline function defined in that class is
17301 similar to an explicit @code{extern} declaration---the compiler emits
17302 no code at all to define an independent version of the function. Its
17303 definition is used only for inlining with its callers.
17304
17305 @opindex fno-implement-inlines
17306 Conversely, when you include the same header file in a main source file
17307 that declares it as @samp{#pragma implementation}, the compiler emits
17308 code for the function itself; this defines a version of the function
17309 that can be found via pointers (or by callers compiled without
17310 inlining). If all calls to the function can be inlined, you can avoid
17311 emitting the function by compiling with @option{-fno-implement-inlines}.
17312 If any calls are not inlined, you will get linker errors.
17313
17314 @node Template Instantiation
17315 @section Where's the Template?
17316 @cindex template instantiation
17317
17318 C++ templates are the first language feature to require more
17319 intelligence from the environment than one usually finds on a UNIX
17320 system. Somehow the compiler and linker have to make sure that each
17321 template instance occurs exactly once in the executable if it is needed,
17322 and not at all otherwise. There are two basic approaches to this
17323 problem, which are referred to as the Borland model and the Cfront model.
17324
17325 @table @asis
17326 @item Borland model
17327 Borland C++ solved the template instantiation problem by adding the code
17328 equivalent of common blocks to their linker; the compiler emits template
17329 instances in each translation unit that uses them, and the linker
17330 collapses them together. The advantage of this model is that the linker
17331 only has to consider the object files themselves; there is no external
17332 complexity to worry about. This disadvantage is that compilation time
17333 is increased because the template code is being compiled repeatedly.
17334 Code written for this model tends to include definitions of all
17335 templates in the header file, since they must be seen to be
17336 instantiated.
17337
17338 @item Cfront model
17339 The AT&T C++ translator, Cfront, solved the template instantiation
17340 problem by creating the notion of a template repository, an
17341 automatically maintained place where template instances are stored. A
17342 more modern version of the repository works as follows: As individual
17343 object files are built, the compiler places any template definitions and
17344 instantiations encountered in the repository. At link time, the link
17345 wrapper adds in the objects in the repository and compiles any needed
17346 instances that were not previously emitted. The advantages of this
17347 model are more optimal compilation speed and the ability to use the
17348 system linker; to implement the Borland model a compiler vendor also
17349 needs to replace the linker. The disadvantages are vastly increased
17350 complexity, and thus potential for error; for some code this can be
17351 just as transparent, but in practice it can been very difficult to build
17352 multiple programs in one directory and one program in multiple
17353 directories. Code written for this model tends to separate definitions
17354 of non-inline member templates into a separate file, which should be
17355 compiled separately.
17356 @end table
17357
17358 When used with GNU ld version 2.8 or later on an ELF system such as
17359 GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
17360 Borland model. On other systems, G++ implements neither automatic
17361 model.
17362
17363 You have the following options for dealing with template instantiations:
17364
17365 @enumerate
17366 @item
17367 @opindex frepo
17368 Compile your template-using code with @option{-frepo}. The compiler
17369 generates files with the extension @samp{.rpo} listing all of the
17370 template instantiations used in the corresponding object files that
17371 could be instantiated there; the link wrapper, @samp{collect2},
17372 then updates the @samp{.rpo} files to tell the compiler where to place
17373 those instantiations and rebuild any affected object files. The
17374 link-time overhead is negligible after the first pass, as the compiler
17375 continues to place the instantiations in the same files.
17376
17377 This is your best option for application code written for the Borland
17378 model, as it just works. Code written for the Cfront model
17379 needs to be modified so that the template definitions are available at
17380 one or more points of instantiation; usually this is as simple as adding
17381 @code{#include <tmethods.cc>} to the end of each template header.
17382
17383 For library code, if you want the library to provide all of the template
17384 instantiations it needs, just try to link all of its object files
17385 together; the link will fail, but cause the instantiations to be
17386 generated as a side effect. Be warned, however, that this may cause
17387 conflicts if multiple libraries try to provide the same instantiations.
17388 For greater control, use explicit instantiation as described in the next
17389 option.
17390
17391 @item
17392 @opindex fno-implicit-templates
17393 Compile your code with @option{-fno-implicit-templates} to disable the
17394 implicit generation of template instances, and explicitly instantiate
17395 all the ones you use. This approach requires more knowledge of exactly
17396 which instances you need than do the others, but it's less
17397 mysterious and allows greater control. You can scatter the explicit
17398 instantiations throughout your program, perhaps putting them in the
17399 translation units where the instances are used or the translation units
17400 that define the templates themselves; you can put all of the explicit
17401 instantiations you need into one big file; or you can create small files
17402 like
17403
17404 @smallexample
17405 #include "Foo.h"
17406 #include "Foo.cc"
17407
17408 template class Foo<int>;
17409 template ostream& operator <<
17410 (ostream&, const Foo<int>&);
17411 @end smallexample
17412
17413 @noindent
17414 for each of the instances you need, and create a template instantiation
17415 library from those.
17416
17417 If you are using Cfront-model code, you can probably get away with not
17418 using @option{-fno-implicit-templates} when compiling files that don't
17419 @samp{#include} the member template definitions.
17420
17421 If you use one big file to do the instantiations, you may want to
17422 compile it without @option{-fno-implicit-templates} so you get all of the
17423 instances required by your explicit instantiations (but not by any
17424 other files) without having to specify them as well.
17425
17426 The ISO C++ 2011 standard allows forward declaration of explicit
17427 instantiations (with @code{extern}). G++ supports explicit instantiation
17428 declarations in C++98 mode and has extended the template instantiation
17429 syntax to support instantiation of the compiler support data for a
17430 template class (i.e.@: the vtable) without instantiating any of its
17431 members (with @code{inline}), and instantiation of only the static data
17432 members of a template class, without the support data or member
17433 functions (with (@code{static}):
17434
17435 @smallexample
17436 extern template int max (int, int);
17437 inline template class Foo<int>;
17438 static template class Foo<int>;
17439 @end smallexample
17440
17441 @item
17442 Do nothing. Pretend G++ does implement automatic instantiation
17443 management. Code written for the Borland model works fine, but
17444 each translation unit contains instances of each of the templates it
17445 uses. In a large program, this can lead to an unacceptable amount of code
17446 duplication.
17447 @end enumerate
17448
17449 @node Bound member functions
17450 @section Extracting the function pointer from a bound pointer to member function
17451 @cindex pmf
17452 @cindex pointer to member function
17453 @cindex bound pointer to member function
17454
17455 In C++, pointer to member functions (PMFs) are implemented using a wide
17456 pointer of sorts to handle all the possible call mechanisms; the PMF
17457 needs to store information about how to adjust the @samp{this} pointer,
17458 and if the function pointed to is virtual, where to find the vtable, and
17459 where in the vtable to look for the member function. If you are using
17460 PMFs in an inner loop, you should really reconsider that decision. If
17461 that is not an option, you can extract the pointer to the function that
17462 would be called for a given object/PMF pair and call it directly inside
17463 the inner loop, to save a bit of time.
17464
17465 Note that you still pay the penalty for the call through a
17466 function pointer; on most modern architectures, such a call defeats the
17467 branch prediction features of the CPU@. This is also true of normal
17468 virtual function calls.
17469
17470 The syntax for this extension is
17471
17472 @smallexample
17473 extern A a;
17474 extern int (A::*fp)();
17475 typedef int (*fptr)(A *);
17476
17477 fptr p = (fptr)(a.*fp);
17478 @end smallexample
17479
17480 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
17481 no object is needed to obtain the address of the function. They can be
17482 converted to function pointers directly:
17483
17484 @smallexample
17485 fptr p1 = (fptr)(&A::foo);
17486 @end smallexample
17487
17488 @opindex Wno-pmf-conversions
17489 You must specify @option{-Wno-pmf-conversions} to use this extension.
17490
17491 @node C++ Attributes
17492 @section C++-Specific Variable, Function, and Type Attributes
17493
17494 Some attributes only make sense for C++ programs.
17495
17496 @table @code
17497 @item abi_tag ("@var{tag}", ...)
17498 @cindex @code{abi_tag} attribute
17499 The @code{abi_tag} attribute can be applied to a function or class
17500 declaration. It modifies the mangled name of the function or class to
17501 incorporate the tag name, in order to distinguish the function or
17502 class from an earlier version with a different ABI; perhaps the class
17503 has changed size, or the function has a different return type that is
17504 not encoded in the mangled name.
17505
17506 The argument can be a list of strings of arbitrary length. The
17507 strings are sorted on output, so the order of the list is
17508 unimportant.
17509
17510 A redeclaration of a function or class must not add new ABI tags,
17511 since doing so would change the mangled name.
17512
17513 The @option{-Wabi-tag} flag enables a warning about a class which does
17514 not have all the ABI tags used by its subobjects and virtual functions; for users with code
17515 that needs to coexist with an earlier ABI, using this option can help
17516 to find all affected types that need to be tagged.
17517
17518 @item init_priority (@var{priority})
17519 @cindex @code{init_priority} attribute
17520
17521
17522 In Standard C++, objects defined at namespace scope are guaranteed to be
17523 initialized in an order in strict accordance with that of their definitions
17524 @emph{in a given translation unit}. No guarantee is made for initializations
17525 across translation units. However, GNU C++ allows users to control the
17526 order of initialization of objects defined at namespace scope with the
17527 @code{init_priority} attribute by specifying a relative @var{priority},
17528 a constant integral expression currently bounded between 101 and 65535
17529 inclusive. Lower numbers indicate a higher priority.
17530
17531 In the following example, @code{A} would normally be created before
17532 @code{B}, but the @code{init_priority} attribute reverses that order:
17533
17534 @smallexample
17535 Some_Class A __attribute__ ((init_priority (2000)));
17536 Some_Class B __attribute__ ((init_priority (543)));
17537 @end smallexample
17538
17539 @noindent
17540 Note that the particular values of @var{priority} do not matter; only their
17541 relative ordering.
17542
17543 @item java_interface
17544 @cindex @code{java_interface} attribute
17545
17546 This type attribute informs C++ that the class is a Java interface. It may
17547 only be applied to classes declared within an @code{extern "Java"} block.
17548 Calls to methods declared in this interface are dispatched using GCJ's
17549 interface table mechanism, instead of regular virtual table dispatch.
17550
17551 @item warn_unused
17552 @cindex @code{warn_unused} attribute
17553
17554 For C++ types with non-trivial constructors and/or destructors it is
17555 impossible for the compiler to determine whether a variable of this
17556 type is truly unused if it is not referenced. This type attribute
17557 informs the compiler that variables of this type should be warned
17558 about if they appear to be unused, just like variables of fundamental
17559 types.
17560
17561 This attribute is appropriate for types which just represent a value,
17562 such as @code{std::string}; it is not appropriate for types which
17563 control a resource, such as @code{std::mutex}.
17564
17565 This attribute is also accepted in C, but it is unnecessary because C
17566 does not have constructors or destructors.
17567
17568 @end table
17569
17570 See also @ref{Namespace Association}.
17571
17572 @node Function Multiversioning
17573 @section Function Multiversioning
17574 @cindex function versions
17575
17576 With the GNU C++ front end, for target i386, you may specify multiple
17577 versions of a function, where each function is specialized for a
17578 specific target feature. At runtime, the appropriate version of the
17579 function is automatically executed depending on the characteristics of
17580 the execution platform. Here is an example.
17581
17582 @smallexample
17583 __attribute__ ((target ("default")))
17584 int foo ()
17585 @{
17586 // The default version of foo.
17587 return 0;
17588 @}
17589
17590 __attribute__ ((target ("sse4.2")))
17591 int foo ()
17592 @{
17593 // foo version for SSE4.2
17594 return 1;
17595 @}
17596
17597 __attribute__ ((target ("arch=atom")))
17598 int foo ()
17599 @{
17600 // foo version for the Intel ATOM processor
17601 return 2;
17602 @}
17603
17604 __attribute__ ((target ("arch=amdfam10")))
17605 int foo ()
17606 @{
17607 // foo version for the AMD Family 0x10 processors.
17608 return 3;
17609 @}
17610
17611 int main ()
17612 @{
17613 int (*p)() = &foo;
17614 assert ((*p) () == foo ());
17615 return 0;
17616 @}
17617 @end smallexample
17618
17619 In the above example, four versions of function foo are created. The
17620 first version of foo with the target attribute "default" is the default
17621 version. This version gets executed when no other target specific
17622 version qualifies for execution on a particular platform. A new version
17623 of foo is created by using the same function signature but with a
17624 different target string. Function foo is called or a pointer to it is
17625 taken just like a regular function. GCC takes care of doing the
17626 dispatching to call the right version at runtime. Refer to the
17627 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
17628 Function Multiversioning} for more details.
17629
17630 @node Namespace Association
17631 @section Namespace Association
17632
17633 @strong{Caution:} The semantics of this extension are equivalent
17634 to C++ 2011 inline namespaces. Users should use inline namespaces
17635 instead as this extension will be removed in future versions of G++.
17636
17637 A using-directive with @code{__attribute ((strong))} is stronger
17638 than a normal using-directive in two ways:
17639
17640 @itemize @bullet
17641 @item
17642 Templates from the used namespace can be specialized and explicitly
17643 instantiated as though they were members of the using namespace.
17644
17645 @item
17646 The using namespace is considered an associated namespace of all
17647 templates in the used namespace for purposes of argument-dependent
17648 name lookup.
17649 @end itemize
17650
17651 The used namespace must be nested within the using namespace so that
17652 normal unqualified lookup works properly.
17653
17654 This is useful for composing a namespace transparently from
17655 implementation namespaces. For example:
17656
17657 @smallexample
17658 namespace std @{
17659 namespace debug @{
17660 template <class T> struct A @{ @};
17661 @}
17662 using namespace debug __attribute ((__strong__));
17663 template <> struct A<int> @{ @}; // @r{OK to specialize}
17664
17665 template <class T> void f (A<T>);
17666 @}
17667
17668 int main()
17669 @{
17670 f (std::A<float>()); // @r{lookup finds} std::f
17671 f (std::A<int>());
17672 @}
17673 @end smallexample
17674
17675 @node Type Traits
17676 @section Type Traits
17677
17678 The C++ front end implements syntactic extensions that allow
17679 compile-time determination of
17680 various characteristics of a type (or of a
17681 pair of types).
17682
17683 @table @code
17684 @item __has_nothrow_assign (type)
17685 If @code{type} is const qualified or is a reference type then the trait is
17686 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
17687 is true, else if @code{type} is a cv class or union type with copy assignment
17688 operators that are known not to throw an exception then the trait is true,
17689 else it is false. Requires: @code{type} shall be a complete type,
17690 (possibly cv-qualified) @code{void}, or an array of unknown bound.
17691
17692 @item __has_nothrow_copy (type)
17693 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
17694 @code{type} is a cv class or union type with copy constructors that
17695 are known not to throw an exception then the trait is true, else it is false.
17696 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
17697 @code{void}, or an array of unknown bound.
17698
17699 @item __has_nothrow_constructor (type)
17700 If @code{__has_trivial_constructor (type)} is true then the trait is
17701 true, else if @code{type} is a cv class or union type (or array
17702 thereof) with a default constructor that is known not to throw an
17703 exception then the trait is true, else it is false. Requires:
17704 @code{type} shall be a complete type, (possibly cv-qualified)
17705 @code{void}, or an array of unknown bound.
17706
17707 @item __has_trivial_assign (type)
17708 If @code{type} is const qualified or is a reference type then the trait is
17709 false. Otherwise if @code{__is_pod (type)} is true then the trait is
17710 true, else if @code{type} is a cv class or union type with a trivial
17711 copy assignment ([class.copy]) then the trait is true, else it is
17712 false. Requires: @code{type} shall be a complete type, (possibly
17713 cv-qualified) @code{void}, or an array of unknown bound.
17714
17715 @item __has_trivial_copy (type)
17716 If @code{__is_pod (type)} is true or @code{type} is a reference type
17717 then the trait is true, else if @code{type} is a cv class or union type
17718 with a trivial copy constructor ([class.copy]) then the trait
17719 is true, else it is false. Requires: @code{type} shall be a complete
17720 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17721
17722 @item __has_trivial_constructor (type)
17723 If @code{__is_pod (type)} is true then the trait is true, else if
17724 @code{type} is a cv class or union type (or array thereof) with a
17725 trivial default constructor ([class.ctor]) then the trait is true,
17726 else it is false. Requires: @code{type} shall be a complete
17727 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17728
17729 @item __has_trivial_destructor (type)
17730 If @code{__is_pod (type)} is true or @code{type} is a reference type then
17731 the trait is true, else if @code{type} is a cv class or union type (or
17732 array thereof) with a trivial destructor ([class.dtor]) then the trait
17733 is true, else it is false. Requires: @code{type} shall be a complete
17734 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17735
17736 @item __has_virtual_destructor (type)
17737 If @code{type} is a class type with a virtual destructor
17738 ([class.dtor]) then the trait is true, else it is false. Requires:
17739 @code{type} shall be a complete type, (possibly cv-qualified)
17740 @code{void}, or an array of unknown bound.
17741
17742 @item __is_abstract (type)
17743 If @code{type} is an abstract class ([class.abstract]) then the trait
17744 is true, else it is false. Requires: @code{type} shall be a complete
17745 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17746
17747 @item __is_base_of (base_type, derived_type)
17748 If @code{base_type} is a base class of @code{derived_type}
17749 ([class.derived]) then the trait is true, otherwise it is false.
17750 Top-level cv qualifications of @code{base_type} and
17751 @code{derived_type} are ignored. For the purposes of this trait, a
17752 class type is considered is own base. Requires: if @code{__is_class
17753 (base_type)} and @code{__is_class (derived_type)} are true and
17754 @code{base_type} and @code{derived_type} are not the same type
17755 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
17756 type. Diagnostic is produced if this requirement is not met.
17757
17758 @item __is_class (type)
17759 If @code{type} is a cv class type, and not a union type
17760 ([basic.compound]) the trait is true, else it is false.
17761
17762 @item __is_empty (type)
17763 If @code{__is_class (type)} is false then the trait is false.
17764 Otherwise @code{type} is considered empty if and only if: @code{type}
17765 has no non-static data members, or all non-static data members, if
17766 any, are bit-fields of length 0, and @code{type} has no virtual
17767 members, and @code{type} has no virtual base classes, and @code{type}
17768 has no base classes @code{base_type} for which
17769 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
17770 be a complete type, (possibly cv-qualified) @code{void}, or an array
17771 of unknown bound.
17772
17773 @item __is_enum (type)
17774 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
17775 true, else it is false.
17776
17777 @item __is_literal_type (type)
17778 If @code{type} is a literal type ([basic.types]) the trait is
17779 true, else it is false. Requires: @code{type} shall be a complete type,
17780 (possibly cv-qualified) @code{void}, or an array of unknown bound.
17781
17782 @item __is_pod (type)
17783 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
17784 else it is false. Requires: @code{type} shall be a complete type,
17785 (possibly cv-qualified) @code{void}, or an array of unknown bound.
17786
17787 @item __is_polymorphic (type)
17788 If @code{type} is a polymorphic class ([class.virtual]) then the trait
17789 is true, else it is false. Requires: @code{type} shall be a complete
17790 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17791
17792 @item __is_standard_layout (type)
17793 If @code{type} is a standard-layout type ([basic.types]) the trait is
17794 true, else it is false. Requires: @code{type} shall be a complete
17795 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17796
17797 @item __is_trivial (type)
17798 If @code{type} is a trivial type ([basic.types]) the trait is
17799 true, else it is false. Requires: @code{type} shall be a complete
17800 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
17801
17802 @item __is_union (type)
17803 If @code{type} is a cv union type ([basic.compound]) the trait is
17804 true, else it is false.
17805
17806 @item __underlying_type (type)
17807 The underlying type of @code{type}. Requires: @code{type} shall be
17808 an enumeration type ([dcl.enum]).
17809
17810 @end table
17811
17812 @node Java Exceptions
17813 @section Java Exceptions
17814
17815 The Java language uses a slightly different exception handling model
17816 from C++. Normally, GNU C++ automatically detects when you are
17817 writing C++ code that uses Java exceptions, and handle them
17818 appropriately. However, if C++ code only needs to execute destructors
17819 when Java exceptions are thrown through it, GCC guesses incorrectly.
17820 Sample problematic code is:
17821
17822 @smallexample
17823 struct S @{ ~S(); @};
17824 extern void bar(); // @r{is written in Java, and may throw exceptions}
17825 void foo()
17826 @{
17827 S s;
17828 bar();
17829 @}
17830 @end smallexample
17831
17832 @noindent
17833 The usual effect of an incorrect guess is a link failure, complaining of
17834 a missing routine called @samp{__gxx_personality_v0}.
17835
17836 You can inform the compiler that Java exceptions are to be used in a
17837 translation unit, irrespective of what it might think, by writing
17838 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
17839 @samp{#pragma} must appear before any functions that throw or catch
17840 exceptions, or run destructors when exceptions are thrown through them.
17841
17842 You cannot mix Java and C++ exceptions in the same translation unit. It
17843 is believed to be safe to throw a C++ exception from one file through
17844 another file compiled for the Java exception model, or vice versa, but
17845 there may be bugs in this area.
17846
17847 @node Deprecated Features
17848 @section Deprecated Features
17849
17850 In the past, the GNU C++ compiler was extended to experiment with new
17851 features, at a time when the C++ language was still evolving. Now that
17852 the C++ standard is complete, some of those features are superseded by
17853 superior alternatives. Using the old features might cause a warning in
17854 some cases that the feature will be dropped in the future. In other
17855 cases, the feature might be gone already.
17856
17857 While the list below is not exhaustive, it documents some of the options
17858 that are now deprecated:
17859
17860 @table @code
17861 @item -fexternal-templates
17862 @itemx -falt-external-templates
17863 These are two of the many ways for G++ to implement template
17864 instantiation. @xref{Template Instantiation}. The C++ standard clearly
17865 defines how template definitions have to be organized across
17866 implementation units. G++ has an implicit instantiation mechanism that
17867 should work just fine for standard-conforming code.
17868
17869 @item -fstrict-prototype
17870 @itemx -fno-strict-prototype
17871 Previously it was possible to use an empty prototype parameter list to
17872 indicate an unspecified number of parameters (like C), rather than no
17873 parameters, as C++ demands. This feature has been removed, except where
17874 it is required for backwards compatibility. @xref{Backwards Compatibility}.
17875 @end table
17876
17877 G++ allows a virtual function returning @samp{void *} to be overridden
17878 by one returning a different pointer type. This extension to the
17879 covariant return type rules is now deprecated and will be removed from a
17880 future version.
17881
17882 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
17883 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
17884 and are now removed from G++. Code using these operators should be
17885 modified to use @code{std::min} and @code{std::max} instead.
17886
17887 The named return value extension has been deprecated, and is now
17888 removed from G++.
17889
17890 The use of initializer lists with new expressions has been deprecated,
17891 and is now removed from G++.
17892
17893 Floating and complex non-type template parameters have been deprecated,
17894 and are now removed from G++.
17895
17896 The implicit typename extension has been deprecated and is now
17897 removed from G++.
17898
17899 The use of default arguments in function pointers, function typedefs
17900 and other places where they are not permitted by the standard is
17901 deprecated and will be removed from a future version of G++.
17902
17903 G++ allows floating-point literals to appear in integral constant expressions,
17904 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
17905 This extension is deprecated and will be removed from a future version.
17906
17907 G++ allows static data members of const floating-point type to be declared
17908 with an initializer in a class definition. The standard only allows
17909 initializers for static members of const integral types and const
17910 enumeration types so this extension has been deprecated and will be removed
17911 from a future version.
17912
17913 @node Backwards Compatibility
17914 @section Backwards Compatibility
17915 @cindex Backwards Compatibility
17916 @cindex ARM [Annotated C++ Reference Manual]
17917
17918 Now that there is a definitive ISO standard C++, G++ has a specification
17919 to adhere to. The C++ language evolved over time, and features that
17920 used to be acceptable in previous drafts of the standard, such as the ARM
17921 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
17922 compilation of C++ written to such drafts, G++ contains some backwards
17923 compatibilities. @emph{All such backwards compatibility features are
17924 liable to disappear in future versions of G++.} They should be considered
17925 deprecated. @xref{Deprecated Features}.
17926
17927 @table @code
17928 @item For scope
17929 If a variable is declared at for scope, it used to remain in scope until
17930 the end of the scope that contained the for statement (rather than just
17931 within the for scope). G++ retains this, but issues a warning, if such a
17932 variable is accessed outside the for scope.
17933
17934 @item Implicit C language
17935 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
17936 scope to set the language. On such systems, all header files are
17937 implicitly scoped inside a C language scope. Also, an empty prototype
17938 @code{()} is treated as an unspecified number of arguments, rather
17939 than no arguments, as C++ demands.
17940 @end table
17941
17942 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
17943 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr followign