9f207cfa2ecf64edd992d7ce368d9b371939d233
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000,
2 @c 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 @c This is part of the GCC manual.
5 @c For copying conditions, see the file gcc.texi.
6
7 @node C Extensions
8 @chapter Extensions to the C Language Family
9 @cindex extensions, C language
10 @cindex C language extensions
11
12 @opindex pedantic
13 GNU C provides several language features not found in ISO standard C@.
14 (The @option{-pedantic} option directs GCC to print a warning message if
15 any of these features is used.) To test for the availability of these
16 features in conditional compilation, check for a predefined macro
17 @code{__GNUC__}, which is always defined under GCC@.
18
19 These extensions are available in C and Objective-C@. Most of them are
20 also available in C++. @xref{C++ Extensions,,Extensions to the
21 C++ Language}, for extensions that apply @emph{only} to C++.
22
23 Some features that are in ISO C99 but not C89 or C++ are also, as
24 extensions, accepted by GCC in C89 mode and in C++.
25
26 @menu
27 * Statement Exprs:: Putting statements and declarations inside expressions.
28 * Local Labels:: Labels local to a block.
29 * Labels as Values:: Getting pointers to labels, and computed gotos.
30 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
31 * Constructing Calls:: Dispatching a call to another function.
32 * Typeof:: @code{typeof}: referring to the type of an expression.
33 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Decimal Float:: Decimal Floating Types.
38 * Hex Floats:: Hexadecimal floating-point constants.
39 * Fixed-Point:: Fixed-Point Types.
40 * Zero Length:: Zero-length arrays.
41 * Variable Length:: Arrays whose length is computed at run time.
42 * Empty Structures:: Structures with no members.
43 * Variadic Macros:: Macros with a variable number of arguments.
44 * Escaped Newlines:: Slightly looser rules for escaped newlines.
45 * Subscripting:: Any array can be subscripted, even if not an lvalue.
46 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
47 * Initializers:: Non-constant initializers.
48 * Compound Literals:: Compound literals give structures, unions
49 or arrays as values.
50 * Designated Inits:: Labeling elements of initializers.
51 * Cast to Union:: Casting to union type from any member of the union.
52 * Case Ranges:: `case 1 ... 9' and such.
53 * Mixed Declarations:: Mixing declarations and code.
54 * Function Attributes:: Declaring that functions have no side effects,
55 or that they can never return.
56 * Attribute Syntax:: Formal syntax for attributes.
57 * Function Prototypes:: Prototype declarations and old-style definitions.
58 * C++ Comments:: C++ comments are recognized.
59 * Dollar Signs:: Dollar sign is allowed in identifiers.
60 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
61 * Variable Attributes:: Specifying attributes of variables.
62 * Type Attributes:: Specifying attributes of types.
63 * Alignment:: Inquiring about the alignment of a type or variable.
64 * Inline:: Defining inline functions (as fast as macros).
65 * Extended Asm:: Assembler instructions with C expressions as operands.
66 (With them you can define ``built-in'' functions.)
67 * Constraints:: Constraints for asm operands
68 * Asm Labels:: Specifying the assembler name to use for a C symbol.
69 * Explicit Reg Vars:: Defining variables residing in specified registers.
70 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
71 * Incomplete Enums:: @code{enum foo;}, with details to follow.
72 * Function Names:: Printable strings which are the name of the current
73 function.
74 * Return Address:: Getting the return or frame address of a function.
75 * Vector Extensions:: Using vector instructions through built-in functions.
76 * Offsetof:: Special syntax for implementing @code{offsetof}.
77 * Atomic Builtins:: Built-in functions for atomic memory access.
78 * Object Size Checking:: Built-in functions for limited buffer overflow
79 checking.
80 * Other Builtins:: Other built-in functions.
81 * Target Builtins:: Built-in functions specific to particular targets.
82 * Target Format Checks:: Format checks specific to particular targets.
83 * Pragmas:: Pragmas accepted by GCC.
84 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
85 * Thread-Local:: Per-thread variables.
86 * Binary constants:: Binary constants using the @samp{0b} prefix.
87 @end menu
88
89 @node Statement Exprs
90 @section Statements and Declarations in Expressions
91 @cindex statements inside expressions
92 @cindex declarations inside expressions
93 @cindex expressions containing statements
94 @cindex macros, statements in expressions
95
96 @c the above section title wrapped and causes an underfull hbox.. i
97 @c changed it from "within" to "in". --mew 4feb93
98 A compound statement enclosed in parentheses may appear as an expression
99 in GNU C@. This allows you to use loops, switches, and local variables
100 within an expression.
101
102 Recall that a compound statement is a sequence of statements surrounded
103 by braces; in this construct, parentheses go around the braces. For
104 example:
105
106 @smallexample
107 (@{ int y = foo (); int z;
108 if (y > 0) z = y;
109 else z = - y;
110 z; @})
111 @end smallexample
112
113 @noindent
114 is a valid (though slightly more complex than necessary) expression
115 for the absolute value of @code{foo ()}.
116
117 The last thing in the compound statement should be an expression
118 followed by a semicolon; the value of this subexpression serves as the
119 value of the entire construct. (If you use some other kind of statement
120 last within the braces, the construct has type @code{void}, and thus
121 effectively no value.)
122
123 This feature is especially useful in making macro definitions ``safe'' (so
124 that they evaluate each operand exactly once). For example, the
125 ``maximum'' function is commonly defined as a macro in standard C as
126 follows:
127
128 @smallexample
129 #define max(a,b) ((a) > (b) ? (a) : (b))
130 @end smallexample
131
132 @noindent
133 @cindex side effects, macro argument
134 But this definition computes either @var{a} or @var{b} twice, with bad
135 results if the operand has side effects. In GNU C, if you know the
136 type of the operands (here taken as @code{int}), you can define
137 the macro safely as follows:
138
139 @smallexample
140 #define maxint(a,b) \
141 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
142 @end smallexample
143
144 Embedded statements are not allowed in constant expressions, such as
145 the value of an enumeration constant, the width of a bit-field, or
146 the initial value of a static variable.
147
148 If you don't know the type of the operand, you can still do this, but you
149 must use @code{typeof} (@pxref{Typeof}).
150
151 In G++, the result value of a statement expression undergoes array and
152 function pointer decay, and is returned by value to the enclosing
153 expression. For instance, if @code{A} is a class, then
154
155 @smallexample
156 A a;
157
158 (@{a;@}).Foo ()
159 @end smallexample
160
161 @noindent
162 will construct a temporary @code{A} object to hold the result of the
163 statement expression, and that will be used to invoke @code{Foo}.
164 Therefore the @code{this} pointer observed by @code{Foo} will not be the
165 address of @code{a}.
166
167 Any temporaries created within a statement within a statement expression
168 will be destroyed at the statement's end. This makes statement
169 expressions inside macros slightly different from function calls. In
170 the latter case temporaries introduced during argument evaluation will
171 be destroyed at the end of the statement that includes the function
172 call. In the statement expression case they will be destroyed during
173 the statement expression. For instance,
174
175 @smallexample
176 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
177 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
178
179 void foo ()
180 @{
181 macro (X ());
182 function (X ());
183 @}
184 @end smallexample
185
186 @noindent
187 will have different places where temporaries are destroyed. For the
188 @code{macro} case, the temporary @code{X} will be destroyed just after
189 the initialization of @code{b}. In the @code{function} case that
190 temporary will be destroyed when the function returns.
191
192 These considerations mean that it is probably a bad idea to use
193 statement-expressions of this form in header files that are designed to
194 work with C++. (Note that some versions of the GNU C Library contained
195 header files using statement-expression that lead to precisely this
196 bug.)
197
198 Jumping into a statement expression with @code{goto} or using a
199 @code{switch} statement outside the statement expression with a
200 @code{case} or @code{default} label inside the statement expression is
201 not permitted. Jumping into a statement expression with a computed
202 @code{goto} (@pxref{Labels as Values}) yields undefined behavior.
203 Jumping out of a statement expression is permitted, but if the
204 statement expression is part of a larger expression then it is
205 unspecified which other subexpressions of that expression have been
206 evaluated except where the language definition requires certain
207 subexpressions to be evaluated before or after the statement
208 expression. In any case, as with a function call the evaluation of a
209 statement expression is not interleaved with the evaluation of other
210 parts of the containing expression. For example,
211
212 @smallexample
213 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
214 @end smallexample
215
216 @noindent
217 will call @code{foo} and @code{bar1} and will not call @code{baz} but
218 may or may not call @code{bar2}. If @code{bar2} is called, it will be
219 called after @code{foo} and before @code{bar1}
220
221 @node Local Labels
222 @section Locally Declared Labels
223 @cindex local labels
224 @cindex macros, local labels
225
226 GCC allows you to declare @dfn{local labels} in any nested block
227 scope. A local label is just like an ordinary label, but you can
228 only reference it (with a @code{goto} statement, or by taking its
229 address) within the block in which it was declared.
230
231 A local label declaration looks like this:
232
233 @smallexample
234 __label__ @var{label};
235 @end smallexample
236
237 @noindent
238 or
239
240 @smallexample
241 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
242 @end smallexample
243
244 Local label declarations must come at the beginning of the block,
245 before any ordinary declarations or statements.
246
247 The label declaration defines the label @emph{name}, but does not define
248 the label itself. You must do this in the usual way, with
249 @code{@var{label}:}, within the statements of the statement expression.
250
251 The local label feature is useful for complex macros. If a macro
252 contains nested loops, a @code{goto} can be useful for breaking out of
253 them. However, an ordinary label whose scope is the whole function
254 cannot be used: if the macro can be expanded several times in one
255 function, the label will be multiply defined in that function. A
256 local label avoids this problem. For example:
257
258 @smallexample
259 #define SEARCH(value, array, target) \
260 do @{ \
261 __label__ found; \
262 typeof (target) _SEARCH_target = (target); \
263 typeof (*(array)) *_SEARCH_array = (array); \
264 int i, j; \
265 int value; \
266 for (i = 0; i < max; i++) \
267 for (j = 0; j < max; j++) \
268 if (_SEARCH_array[i][j] == _SEARCH_target) \
269 @{ (value) = i; goto found; @} \
270 (value) = -1; \
271 found:; \
272 @} while (0)
273 @end smallexample
274
275 This could also be written using a statement-expression:
276
277 @smallexample
278 #define SEARCH(array, target) \
279 (@{ \
280 __label__ found; \
281 typeof (target) _SEARCH_target = (target); \
282 typeof (*(array)) *_SEARCH_array = (array); \
283 int i, j; \
284 int value; \
285 for (i = 0; i < max; i++) \
286 for (j = 0; j < max; j++) \
287 if (_SEARCH_array[i][j] == _SEARCH_target) \
288 @{ value = i; goto found; @} \
289 value = -1; \
290 found: \
291 value; \
292 @})
293 @end smallexample
294
295 Local label declarations also make the labels they declare visible to
296 nested functions, if there are any. @xref{Nested Functions}, for details.
297
298 @node Labels as Values
299 @section Labels as Values
300 @cindex labels as values
301 @cindex computed gotos
302 @cindex goto with computed label
303 @cindex address of a label
304
305 You can get the address of a label defined in the current function
306 (or a containing function) with the unary operator @samp{&&}. The
307 value has type @code{void *}. This value is a constant and can be used
308 wherever a constant of that type is valid. For example:
309
310 @smallexample
311 void *ptr;
312 /* @r{@dots{}} */
313 ptr = &&foo;
314 @end smallexample
315
316 To use these values, you need to be able to jump to one. This is done
317 with the computed goto statement@footnote{The analogous feature in
318 Fortran is called an assigned goto, but that name seems inappropriate in
319 C, where one can do more than simply store label addresses in label
320 variables.}, @code{goto *@var{exp};}. For example,
321
322 @smallexample
323 goto *ptr;
324 @end smallexample
325
326 @noindent
327 Any expression of type @code{void *} is allowed.
328
329 One way of using these constants is in initializing a static array that
330 will serve as a jump table:
331
332 @smallexample
333 static void *array[] = @{ &&foo, &&bar, &&hack @};
334 @end smallexample
335
336 Then you can select a label with indexing, like this:
337
338 @smallexample
339 goto *array[i];
340 @end smallexample
341
342 @noindent
343 Note that this does not check whether the subscript is in bounds---array
344 indexing in C never does that.
345
346 Such an array of label values serves a purpose much like that of the
347 @code{switch} statement. The @code{switch} statement is cleaner, so
348 use that rather than an array unless the problem does not fit a
349 @code{switch} statement very well.
350
351 Another use of label values is in an interpreter for threaded code.
352 The labels within the interpreter function can be stored in the
353 threaded code for super-fast dispatching.
354
355 You may not use this mechanism to jump to code in a different function.
356 If you do that, totally unpredictable things will happen. The best way to
357 avoid this is to store the label address only in automatic variables and
358 never pass it as an argument.
359
360 An alternate way to write the above example is
361
362 @smallexample
363 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
364 &&hack - &&foo @};
365 goto *(&&foo + array[i]);
366 @end smallexample
367
368 @noindent
369 This is more friendly to code living in shared libraries, as it reduces
370 the number of dynamic relocations that are needed, and by consequence,
371 allows the data to be read-only.
372
373 @node Nested Functions
374 @section Nested Functions
375 @cindex nested functions
376 @cindex downward funargs
377 @cindex thunks
378
379 A @dfn{nested function} is a function defined inside another function.
380 (Nested functions are not supported for GNU C++.) The nested function's
381 name is local to the block where it is defined. For example, here we
382 define a nested function named @code{square}, and call it twice:
383
384 @smallexample
385 @group
386 foo (double a, double b)
387 @{
388 double square (double z) @{ return z * z; @}
389
390 return square (a) + square (b);
391 @}
392 @end group
393 @end smallexample
394
395 The nested function can access all the variables of the containing
396 function that are visible at the point of its definition. This is
397 called @dfn{lexical scoping}. For example, here we show a nested
398 function which uses an inherited variable named @code{offset}:
399
400 @smallexample
401 @group
402 bar (int *array, int offset, int size)
403 @{
404 int access (int *array, int index)
405 @{ return array[index + offset]; @}
406 int i;
407 /* @r{@dots{}} */
408 for (i = 0; i < size; i++)
409 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
410 @}
411 @end group
412 @end smallexample
413
414 Nested function definitions are permitted within functions in the places
415 where variable definitions are allowed; that is, in any block, mixed
416 with the other declarations and statements in the block.
417
418 It is possible to call the nested function from outside the scope of its
419 name by storing its address or passing the address to another function:
420
421 @smallexample
422 hack (int *array, int size)
423 @{
424 void store (int index, int value)
425 @{ array[index] = value; @}
426
427 intermediate (store, size);
428 @}
429 @end smallexample
430
431 Here, the function @code{intermediate} receives the address of
432 @code{store} as an argument. If @code{intermediate} calls @code{store},
433 the arguments given to @code{store} are used to store into @code{array}.
434 But this technique works only so long as the containing function
435 (@code{hack}, in this example) does not exit.
436
437 If you try to call the nested function through its address after the
438 containing function has exited, all hell will break loose. If you try
439 to call it after a containing scope level has exited, and if it refers
440 to some of the variables that are no longer in scope, you may be lucky,
441 but it's not wise to take the risk. If, however, the nested function
442 does not refer to anything that has gone out of scope, you should be
443 safe.
444
445 GCC implements taking the address of a nested function using a technique
446 called @dfn{trampolines}. A paper describing them is available as
447
448 @noindent
449 @uref{http://people.debian.org/~aaronl/Usenix88-lexic.pdf}.
450
451 A nested function can jump to a label inherited from a containing
452 function, provided the label was explicitly declared in the containing
453 function (@pxref{Local Labels}). Such a jump returns instantly to the
454 containing function, exiting the nested function which did the
455 @code{goto} and any intermediate functions as well. Here is an example:
456
457 @smallexample
458 @group
459 bar (int *array, int offset, int size)
460 @{
461 __label__ failure;
462 int access (int *array, int index)
463 @{
464 if (index > size)
465 goto failure;
466 return array[index + offset];
467 @}
468 int i;
469 /* @r{@dots{}} */
470 for (i = 0; i < size; i++)
471 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
472 /* @r{@dots{}} */
473 return 0;
474
475 /* @r{Control comes here from @code{access}
476 if it detects an error.} */
477 failure:
478 return -1;
479 @}
480 @end group
481 @end smallexample
482
483 A nested function always has no linkage. Declaring one with
484 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
485 before its definition, use @code{auto} (which is otherwise meaningless
486 for function declarations).
487
488 @smallexample
489 bar (int *array, int offset, int size)
490 @{
491 __label__ failure;
492 auto int access (int *, int);
493 /* @r{@dots{}} */
494 int access (int *array, int index)
495 @{
496 if (index > size)
497 goto failure;
498 return array[index + offset];
499 @}
500 /* @r{@dots{}} */
501 @}
502 @end smallexample
503
504 @node Constructing Calls
505 @section Constructing Function Calls
506 @cindex constructing calls
507 @cindex forwarding calls
508
509 Using the built-in functions described below, you can record
510 the arguments a function received, and call another function
511 with the same arguments, without knowing the number or types
512 of the arguments.
513
514 You can also record the return value of that function call,
515 and later return that value, without knowing what data type
516 the function tried to return (as long as your caller expects
517 that data type).
518
519 However, these built-in functions may interact badly with some
520 sophisticated features or other extensions of the language. It
521 is, therefore, not recommended to use them outside very simple
522 functions acting as mere forwarders for their arguments.
523
524 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
525 This built-in function returns a pointer to data
526 describing how to perform a call with the same arguments as were passed
527 to the current function.
528
529 The function saves the arg pointer register, structure value address,
530 and all registers that might be used to pass arguments to a function
531 into a block of memory allocated on the stack. Then it returns the
532 address of that block.
533 @end deftypefn
534
535 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
536 This built-in function invokes @var{function}
537 with a copy of the parameters described by @var{arguments}
538 and @var{size}.
539
540 The value of @var{arguments} should be the value returned by
541 @code{__builtin_apply_args}. The argument @var{size} specifies the size
542 of the stack argument data, in bytes.
543
544 This function returns a pointer to data describing
545 how to return whatever value was returned by @var{function}. The data
546 is saved in a block of memory allocated on the stack.
547
548 It is not always simple to compute the proper value for @var{size}. The
549 value is used by @code{__builtin_apply} to compute the amount of data
550 that should be pushed on the stack and copied from the incoming argument
551 area.
552 @end deftypefn
553
554 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
555 This built-in function returns the value described by @var{result} from
556 the containing function. You should specify, for @var{result}, a value
557 returned by @code{__builtin_apply}.
558 @end deftypefn
559
560 @deftypefn {Built-in Function} __builtin_va_arg_pack ()
561 This built-in function represents all anonymous arguments of an inline
562 function. It can be used only in inline functions which will be always
563 inlined, never compiled as a separate function, such as those using
564 @code{__attribute__ ((__always_inline__))} or
565 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
566 It must be only passed as last argument to some other function
567 with variable arguments. This is useful for writing small wrapper
568 inlines for variable argument functions, when using preprocessor
569 macros is undesirable. For example:
570 @smallexample
571 extern int myprintf (FILE *f, const char *format, ...);
572 extern inline __attribute__ ((__gnu_inline__)) int
573 myprintf (FILE *f, const char *format, ...)
574 @{
575 int r = fprintf (f, "myprintf: ");
576 if (r < 0)
577 return r;
578 int s = fprintf (f, format, __builtin_va_arg_pack ());
579 if (s < 0)
580 return s;
581 return r + s;
582 @}
583 @end smallexample
584 @end deftypefn
585
586 @deftypefn {Built-in Function} __builtin_va_arg_pack_len ()
587 This built-in function returns the number of anonymous arguments of
588 an inline function. It can be used only in inline functions which
589 will be always inlined, never compiled as a separate function, such
590 as those using @code{__attribute__ ((__always_inline__))} or
591 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
592 For example following will do link or runtime checking of open
593 arguments for optimized code:
594 @smallexample
595 #ifdef __OPTIMIZE__
596 extern inline __attribute__((__gnu_inline__)) int
597 myopen (const char *path, int oflag, ...)
598 @{
599 if (__builtin_va_arg_pack_len () > 1)
600 warn_open_too_many_arguments ();
601
602 if (__builtin_constant_p (oflag))
603 @{
604 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
605 @{
606 warn_open_missing_mode ();
607 return __open_2 (path, oflag);
608 @}
609 return open (path, oflag, __builtin_va_arg_pack ());
610 @}
611
612 if (__builtin_va_arg_pack_len () < 1)
613 return __open_2 (path, oflag);
614
615 return open (path, oflag, __builtin_va_arg_pack ());
616 @}
617 #endif
618 @end smallexample
619 @end deftypefn
620
621 @node Typeof
622 @section Referring to a Type with @code{typeof}
623 @findex typeof
624 @findex sizeof
625 @cindex macros, types of arguments
626
627 Another way to refer to the type of an expression is with @code{typeof}.
628 The syntax of using of this keyword looks like @code{sizeof}, but the
629 construct acts semantically like a type name defined with @code{typedef}.
630
631 There are two ways of writing the argument to @code{typeof}: with an
632 expression or with a type. Here is an example with an expression:
633
634 @smallexample
635 typeof (x[0](1))
636 @end smallexample
637
638 @noindent
639 This assumes that @code{x} is an array of pointers to functions;
640 the type described is that of the values of the functions.
641
642 Here is an example with a typename as the argument:
643
644 @smallexample
645 typeof (int *)
646 @end smallexample
647
648 @noindent
649 Here the type described is that of pointers to @code{int}.
650
651 If you are writing a header file that must work when included in ISO C
652 programs, write @code{__typeof__} instead of @code{typeof}.
653 @xref{Alternate Keywords}.
654
655 A @code{typeof}-construct can be used anywhere a typedef name could be
656 used. For example, you can use it in a declaration, in a cast, or inside
657 of @code{sizeof} or @code{typeof}.
658
659 @code{typeof} is often useful in conjunction with the
660 statements-within-expressions feature. Here is how the two together can
661 be used to define a safe ``maximum'' macro that operates on any
662 arithmetic type and evaluates each of its arguments exactly once:
663
664 @smallexample
665 #define max(a,b) \
666 (@{ typeof (a) _a = (a); \
667 typeof (b) _b = (b); \
668 _a > _b ? _a : _b; @})
669 @end smallexample
670
671 @cindex underscores in variables in macros
672 @cindex @samp{_} in variables in macros
673 @cindex local variables in macros
674 @cindex variables, local, in macros
675 @cindex macros, local variables in
676
677 The reason for using names that start with underscores for the local
678 variables is to avoid conflicts with variable names that occur within the
679 expressions that are substituted for @code{a} and @code{b}. Eventually we
680 hope to design a new form of declaration syntax that allows you to declare
681 variables whose scopes start only after their initializers; this will be a
682 more reliable way to prevent such conflicts.
683
684 @noindent
685 Some more examples of the use of @code{typeof}:
686
687 @itemize @bullet
688 @item
689 This declares @code{y} with the type of what @code{x} points to.
690
691 @smallexample
692 typeof (*x) y;
693 @end smallexample
694
695 @item
696 This declares @code{y} as an array of such values.
697
698 @smallexample
699 typeof (*x) y[4];
700 @end smallexample
701
702 @item
703 This declares @code{y} as an array of pointers to characters:
704
705 @smallexample
706 typeof (typeof (char *)[4]) y;
707 @end smallexample
708
709 @noindent
710 It is equivalent to the following traditional C declaration:
711
712 @smallexample
713 char *y[4];
714 @end smallexample
715
716 To see the meaning of the declaration using @code{typeof}, and why it
717 might be a useful way to write, rewrite it with these macros:
718
719 @smallexample
720 #define pointer(T) typeof(T *)
721 #define array(T, N) typeof(T [N])
722 @end smallexample
723
724 @noindent
725 Now the declaration can be rewritten this way:
726
727 @smallexample
728 array (pointer (char), 4) y;
729 @end smallexample
730
731 @noindent
732 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
733 pointers to @code{char}.
734 @end itemize
735
736 @emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
737 a more limited extension which permitted one to write
738
739 @smallexample
740 typedef @var{T} = @var{expr};
741 @end smallexample
742
743 @noindent
744 with the effect of declaring @var{T} to have the type of the expression
745 @var{expr}. This extension does not work with GCC 3 (versions between
746 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
747 relies on it should be rewritten to use @code{typeof}:
748
749 @smallexample
750 typedef typeof(@var{expr}) @var{T};
751 @end smallexample
752
753 @noindent
754 This will work with all versions of GCC@.
755
756 @node Conditionals
757 @section Conditionals with Omitted Operands
758 @cindex conditional expressions, extensions
759 @cindex omitted middle-operands
760 @cindex middle-operands, omitted
761 @cindex extensions, @code{?:}
762 @cindex @code{?:} extensions
763
764 The middle operand in a conditional expression may be omitted. Then
765 if the first operand is nonzero, its value is the value of the conditional
766 expression.
767
768 Therefore, the expression
769
770 @smallexample
771 x ? : y
772 @end smallexample
773
774 @noindent
775 has the value of @code{x} if that is nonzero; otherwise, the value of
776 @code{y}.
777
778 This example is perfectly equivalent to
779
780 @smallexample
781 x ? x : y
782 @end smallexample
783
784 @cindex side effect in ?:
785 @cindex ?: side effect
786 @noindent
787 In this simple case, the ability to omit the middle operand is not
788 especially useful. When it becomes useful is when the first operand does,
789 or may (if it is a macro argument), contain a side effect. Then repeating
790 the operand in the middle would perform the side effect twice. Omitting
791 the middle operand uses the value already computed without the undesirable
792 effects of recomputing it.
793
794 @node Long Long
795 @section Double-Word Integers
796 @cindex @code{long long} data types
797 @cindex double-word arithmetic
798 @cindex multiprecision arithmetic
799 @cindex @code{LL} integer suffix
800 @cindex @code{ULL} integer suffix
801
802 ISO C99 supports data types for integers that are at least 64 bits wide,
803 and as an extension GCC supports them in C89 mode and in C++.
804 Simply write @code{long long int} for a signed integer, or
805 @code{unsigned long long int} for an unsigned integer. To make an
806 integer constant of type @code{long long int}, add the suffix @samp{LL}
807 to the integer. To make an integer constant of type @code{unsigned long
808 long int}, add the suffix @samp{ULL} to the integer.
809
810 You can use these types in arithmetic like any other integer types.
811 Addition, subtraction, and bitwise boolean operations on these types
812 are open-coded on all types of machines. Multiplication is open-coded
813 if the machine supports fullword-to-doubleword a widening multiply
814 instruction. Division and shifts are open-coded only on machines that
815 provide special support. The operations that are not open-coded use
816 special library routines that come with GCC@.
817
818 There may be pitfalls when you use @code{long long} types for function
819 arguments, unless you declare function prototypes. If a function
820 expects type @code{int} for its argument, and you pass a value of type
821 @code{long long int}, confusion will result because the caller and the
822 subroutine will disagree about the number of bytes for the argument.
823 Likewise, if the function expects @code{long long int} and you pass
824 @code{int}. The best way to avoid such problems is to use prototypes.
825
826 @node Complex
827 @section Complex Numbers
828 @cindex complex numbers
829 @cindex @code{_Complex} keyword
830 @cindex @code{__complex__} keyword
831
832 ISO C99 supports complex floating data types, and as an extension GCC
833 supports them in C89 mode and in C++, and supports complex integer data
834 types which are not part of ISO C99. You can declare complex types
835 using the keyword @code{_Complex}. As an extension, the older GNU
836 keyword @code{__complex__} is also supported.
837
838 For example, @samp{_Complex double x;} declares @code{x} as a
839 variable whose real part and imaginary part are both of type
840 @code{double}. @samp{_Complex short int y;} declares @code{y} to
841 have real and imaginary parts of type @code{short int}; this is not
842 likely to be useful, but it shows that the set of complex types is
843 complete.
844
845 To write a constant with a complex data type, use the suffix @samp{i} or
846 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
847 has type @code{_Complex float} and @code{3i} has type
848 @code{_Complex int}. Such a constant always has a pure imaginary
849 value, but you can form any complex value you like by adding one to a
850 real constant. This is a GNU extension; if you have an ISO C99
851 conforming C library (such as GNU libc), and want to construct complex
852 constants of floating type, you should include @code{<complex.h>} and
853 use the macros @code{I} or @code{_Complex_I} instead.
854
855 @cindex @code{__real__} keyword
856 @cindex @code{__imag__} keyword
857 To extract the real part of a complex-valued expression @var{exp}, write
858 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
859 extract the imaginary part. This is a GNU extension; for values of
860 floating type, you should use the ISO C99 functions @code{crealf},
861 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
862 @code{cimagl}, declared in @code{<complex.h>} and also provided as
863 built-in functions by GCC@.
864
865 @cindex complex conjugation
866 The operator @samp{~} performs complex conjugation when used on a value
867 with a complex type. This is a GNU extension; for values of
868 floating type, you should use the ISO C99 functions @code{conjf},
869 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
870 provided as built-in functions by GCC@.
871
872 GCC can allocate complex automatic variables in a noncontiguous
873 fashion; it's even possible for the real part to be in a register while
874 the imaginary part is on the stack (or vice-versa). Only the DWARF2
875 debug info format can represent this, so use of DWARF2 is recommended.
876 If you are using the stabs debug info format, GCC describes a noncontiguous
877 complex variable as if it were two separate variables of noncomplex type.
878 If the variable's actual name is @code{foo}, the two fictitious
879 variables are named @code{foo$real} and @code{foo$imag}. You can
880 examine and set these two fictitious variables with your debugger.
881
882 @node Floating Types
883 @section Additional Floating Types
884 @cindex additional floating types
885 @cindex @code{__float80} data type
886 @cindex @code{__float128} data type
887 @cindex @code{w} floating point suffix
888 @cindex @code{q} floating point suffix
889 @cindex @code{W} floating point suffix
890 @cindex @code{Q} floating point suffix
891
892 As an extension, the GNU C compiler supports additional floating
893 types, @code{__float80} and @code{__float128} to support 80bit
894 (@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
895 Support for additional types includes the arithmetic operators:
896 add, subtract, multiply, divide; unary arithmetic operators;
897 relational operators; equality operators; and conversions to and from
898 integer and other floating types. Use a suffix @samp{w} or @samp{W}
899 in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
900 for @code{_float128}. You can declare complex types using the
901 corresponding internal complex type, @code{XCmode} for @code{__float80}
902 type and @code{TCmode} for @code{__float128} type:
903
904 @smallexample
905 typedef _Complex float __attribute__((mode(TC))) _Complex128;
906 typedef _Complex float __attribute__((mode(XC))) _Complex80;
907 @end smallexample
908
909 Not all targets support additional floating point types. @code{__float80}
910 is supported on i386, x86_64 and ia64 targets and target @code{__float128}
911 is supported on x86_64 and ia64 targets.
912
913 @node Decimal Float
914 @section Decimal Floating Types
915 @cindex decimal floating types
916 @cindex @code{_Decimal32} data type
917 @cindex @code{_Decimal64} data type
918 @cindex @code{_Decimal128} data type
919 @cindex @code{df} integer suffix
920 @cindex @code{dd} integer suffix
921 @cindex @code{dl} integer suffix
922 @cindex @code{DF} integer suffix
923 @cindex @code{DD} integer suffix
924 @cindex @code{DL} integer suffix
925
926 As an extension, the GNU C compiler supports decimal floating types as
927 defined in the N1176 draft of ISO/IEC WDTR24732. Support for decimal
928 floating types in GCC will evolve as the draft technical report changes.
929 Calling conventions for any target might also change. Not all targets
930 support decimal floating types.
931
932 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
933 @code{_Decimal128}. They use a radix of ten, unlike the floating types
934 @code{float}, @code{double}, and @code{long double} whose radix is not
935 specified by the C standard but is usually two.
936
937 Support for decimal floating types includes the arithmetic operators
938 add, subtract, multiply, divide; unary arithmetic operators;
939 relational operators; equality operators; and conversions to and from
940 integer and other floating types. Use a suffix @samp{df} or
941 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
942 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
943 @code{_Decimal128}.
944
945 GCC support of decimal float as specified by the draft technical report
946 is incomplete:
947
948 @itemize @bullet
949 @item
950 Translation time data type (TTDT) is not supported.
951
952 @item
953 When the value of a decimal floating type cannot be represented in the
954 integer type to which it is being converted, the result is undefined
955 rather than the result value specified by the draft technical report.
956 @end itemize
957
958 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
959 are supported by the DWARF2 debug information format.
960
961 @node Hex Floats
962 @section Hex Floats
963 @cindex hex floats
964
965 ISO C99 supports floating-point numbers written not only in the usual
966 decimal notation, such as @code{1.55e1}, but also numbers such as
967 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
968 supports this in C89 mode (except in some cases when strictly
969 conforming) and in C++. In that format the
970 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
971 mandatory. The exponent is a decimal number that indicates the power of
972 2 by which the significant part will be multiplied. Thus @samp{0x1.f} is
973 @tex
974 $1 {15\over16}$,
975 @end tex
976 @ifnottex
977 1 15/16,
978 @end ifnottex
979 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
980 is the same as @code{1.55e1}.
981
982 Unlike for floating-point numbers in the decimal notation the exponent
983 is always required in the hexadecimal notation. Otherwise the compiler
984 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
985 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
986 extension for floating-point constants of type @code{float}.
987
988 @node Fixed-Point
989 @section Fixed-Point Types
990 @cindex fixed-point types
991 @cindex @code{_Fract} data type
992 @cindex @code{_Accum} data type
993 @cindex @code{_Sat} data type
994 @cindex @code{hr} fixed-suffix
995 @cindex @code{r} fixed-suffix
996 @cindex @code{lr} fixed-suffix
997 @cindex @code{llr} fixed-suffix
998 @cindex @code{uhr} fixed-suffix
999 @cindex @code{ur} fixed-suffix
1000 @cindex @code{ulr} fixed-suffix
1001 @cindex @code{ullr} fixed-suffix
1002 @cindex @code{hk} fixed-suffix
1003 @cindex @code{k} fixed-suffix
1004 @cindex @code{lk} fixed-suffix
1005 @cindex @code{llk} fixed-suffix
1006 @cindex @code{uhk} fixed-suffix
1007 @cindex @code{uk} fixed-suffix
1008 @cindex @code{ulk} fixed-suffix
1009 @cindex @code{ullk} fixed-suffix
1010 @cindex @code{HR} fixed-suffix
1011 @cindex @code{R} fixed-suffix
1012 @cindex @code{LR} fixed-suffix
1013 @cindex @code{LLR} fixed-suffix
1014 @cindex @code{UHR} fixed-suffix
1015 @cindex @code{UR} fixed-suffix
1016 @cindex @code{ULR} fixed-suffix
1017 @cindex @code{ULLR} fixed-suffix
1018 @cindex @code{HK} fixed-suffix
1019 @cindex @code{K} fixed-suffix
1020 @cindex @code{LK} fixed-suffix
1021 @cindex @code{LLK} fixed-suffix
1022 @cindex @code{UHK} fixed-suffix
1023 @cindex @code{UK} fixed-suffix
1024 @cindex @code{ULK} fixed-suffix
1025 @cindex @code{ULLK} fixed-suffix
1026
1027 As an extension, the GNU C compiler supports fixed-point types as
1028 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1029 types in GCC will evolve as the draft technical report changes.
1030 Calling conventions for any target might also change. Not all targets
1031 support fixed-point types.
1032
1033 The fixed-point types are
1034 @code{short _Fract},
1035 @code{_Fract},
1036 @code{long _Fract},
1037 @code{long long _Fract},
1038 @code{unsigned short _Fract},
1039 @code{unsigned _Fract},
1040 @code{unsigned long _Fract},
1041 @code{unsigned long long _Fract},
1042 @code{_Sat short _Fract},
1043 @code{_Sat _Fract},
1044 @code{_Sat long _Fract},
1045 @code{_Sat long long _Fract},
1046 @code{_Sat unsigned short _Fract},
1047 @code{_Sat unsigned _Fract},
1048 @code{_Sat unsigned long _Fract},
1049 @code{_Sat unsigned long long _Fract},
1050 @code{short _Accum},
1051 @code{_Accum},
1052 @code{long _Accum},
1053 @code{long long _Accum},
1054 @code{unsigned short _Accum},
1055 @code{unsigned _Accum},
1056 @code{unsigned long _Accum},
1057 @code{unsigned long long _Accum},
1058 @code{_Sat short _Accum},
1059 @code{_Sat _Accum},
1060 @code{_Sat long _Accum},
1061 @code{_Sat long long _Accum},
1062 @code{_Sat unsigned short _Accum},
1063 @code{_Sat unsigned _Accum},
1064 @code{_Sat unsigned long _Accum},
1065 @code{_Sat unsigned long long _Accum}.
1066 Fixed-point data values contain fractional and optional integral parts.
1067 The format of fixed-point data varies and depends on the target machine.
1068
1069 Support for fixed-point types includes prefix and postfix increment
1070 and decrement operators (@code{++}, @code{--}); unary arithmetic operators
1071 (@code{+}, @code{-}, @code{!}); binary arithmetic operators (@code{+},
1072 @code{-}, @code{*}, @code{/}); binary shift operators (@code{<<}, @code{>>});
1073 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>});
1074 equality operators (@code{==}, @code{!=}); assignment operators
1075 (@code{+=}, @code{-=}, @code{*=}, @code{/=}, @code{<<=}, @code{>>=});
1076 and conversions to and from integer, floating-point, or fixed-point types.
1077
1078 Use a suffix @samp{hr} or @samp{HR} in a literal constant of type
1079 @code{short _Fract} and @code{_Sat short _Fract},
1080 @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract},
1081 @samp{lr} or @samp{LR} for @code{long _Fract} and @code{_Sat long _Fract},
1082 @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1083 @code{_Sat long long _Fract},
1084 @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1085 @code{_Sat unsigned short _Fract},
1086 @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1087 @code{_Sat unsigned _Fract},
1088 @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1089 @code{_Sat unsigned long _Fract},
1090 @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1091 and @code{_Sat unsigned long long _Fract},
1092 @samp{hk} or @samp{HK} for @code{short _Accum} and @code{_Sat short _Accum},
1093 @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum},
1094 @samp{lk} or @samp{LK} for @code{long _Accum} and @code{_Sat long _Accum},
1095 @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1096 @code{_Sat long long _Accum},
1097 @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1098 @code{_Sat unsigned short _Accum},
1099 @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1100 @code{_Sat unsigned _Accum},
1101 @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1102 @code{_Sat unsigned long _Accum},
1103 and @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1104 and @code{_Sat unsigned long long _Accum}.
1105
1106 GCC support of fixed-point types as specified by the draft technical report
1107 is incomplete:
1108
1109 @itemize @bullet
1110 @item
1111 Pragmas to control overflow and rounding behaviors are not implemented.
1112 @end itemize
1113
1114 Fixed-point types are supported by the DWARF2 debug information format.
1115
1116 @node Zero Length
1117 @section Arrays of Length Zero
1118 @cindex arrays of length zero
1119 @cindex zero-length arrays
1120 @cindex length-zero arrays
1121 @cindex flexible array members
1122
1123 Zero-length arrays are allowed in GNU C@. They are very useful as the
1124 last element of a structure which is really a header for a variable-length
1125 object:
1126
1127 @smallexample
1128 struct line @{
1129 int length;
1130 char contents[0];
1131 @};
1132
1133 struct line *thisline = (struct line *)
1134 malloc (sizeof (struct line) + this_length);
1135 thisline->length = this_length;
1136 @end smallexample
1137
1138 In ISO C90, you would have to give @code{contents} a length of 1, which
1139 means either you waste space or complicate the argument to @code{malloc}.
1140
1141 In ISO C99, you would use a @dfn{flexible array member}, which is
1142 slightly different in syntax and semantics:
1143
1144 @itemize @bullet
1145 @item
1146 Flexible array members are written as @code{contents[]} without
1147 the @code{0}.
1148
1149 @item
1150 Flexible array members have incomplete type, and so the @code{sizeof}
1151 operator may not be applied. As a quirk of the original implementation
1152 of zero-length arrays, @code{sizeof} evaluates to zero.
1153
1154 @item
1155 Flexible array members may only appear as the last member of a
1156 @code{struct} that is otherwise non-empty.
1157
1158 @item
1159 A structure containing a flexible array member, or a union containing
1160 such a structure (possibly recursively), may not be a member of a
1161 structure or an element of an array. (However, these uses are
1162 permitted by GCC as extensions.)
1163 @end itemize
1164
1165 GCC versions before 3.0 allowed zero-length arrays to be statically
1166 initialized, as if they were flexible arrays. In addition to those
1167 cases that were useful, it also allowed initializations in situations
1168 that would corrupt later data. Non-empty initialization of zero-length
1169 arrays is now treated like any case where there are more initializer
1170 elements than the array holds, in that a suitable warning about "excess
1171 elements in array" is given, and the excess elements (all of them, in
1172 this case) are ignored.
1173
1174 Instead GCC allows static initialization of flexible array members.
1175 This is equivalent to defining a new structure containing the original
1176 structure followed by an array of sufficient size to contain the data.
1177 I.e.@: in the following, @code{f1} is constructed as if it were declared
1178 like @code{f2}.
1179
1180 @smallexample
1181 struct f1 @{
1182 int x; int y[];
1183 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1184
1185 struct f2 @{
1186 struct f1 f1; int data[3];
1187 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1188 @end smallexample
1189
1190 @noindent
1191 The convenience of this extension is that @code{f1} has the desired
1192 type, eliminating the need to consistently refer to @code{f2.f1}.
1193
1194 This has symmetry with normal static arrays, in that an array of
1195 unknown size is also written with @code{[]}.
1196
1197 Of course, this extension only makes sense if the extra data comes at
1198 the end of a top-level object, as otherwise we would be overwriting
1199 data at subsequent offsets. To avoid undue complication and confusion
1200 with initialization of deeply nested arrays, we simply disallow any
1201 non-empty initialization except when the structure is the top-level
1202 object. For example:
1203
1204 @smallexample
1205 struct foo @{ int x; int y[]; @};
1206 struct bar @{ struct foo z; @};
1207
1208 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1209 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1210 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1211 struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1212 @end smallexample
1213
1214 @node Empty Structures
1215 @section Structures With No Members
1216 @cindex empty structures
1217 @cindex zero-size structures
1218
1219 GCC permits a C structure to have no members:
1220
1221 @smallexample
1222 struct empty @{
1223 @};
1224 @end smallexample
1225
1226 The structure will have size zero. In C++, empty structures are part
1227 of the language. G++ treats empty structures as if they had a single
1228 member of type @code{char}.
1229
1230 @node Variable Length
1231 @section Arrays of Variable Length
1232 @cindex variable-length arrays
1233 @cindex arrays of variable length
1234 @cindex VLAs
1235
1236 Variable-length automatic arrays are allowed in ISO C99, and as an
1237 extension GCC accepts them in C89 mode and in C++. (However, GCC's
1238 implementation of variable-length arrays does not yet conform in detail
1239 to the ISO C99 standard.) These arrays are
1240 declared like any other automatic arrays, but with a length that is not
1241 a constant expression. The storage is allocated at the point of
1242 declaration and deallocated when the brace-level is exited. For
1243 example:
1244
1245 @smallexample
1246 FILE *
1247 concat_fopen (char *s1, char *s2, char *mode)
1248 @{
1249 char str[strlen (s1) + strlen (s2) + 1];
1250 strcpy (str, s1);
1251 strcat (str, s2);
1252 return fopen (str, mode);
1253 @}
1254 @end smallexample
1255
1256 @cindex scope of a variable length array
1257 @cindex variable-length array scope
1258 @cindex deallocating variable length arrays
1259 Jumping or breaking out of the scope of the array name deallocates the
1260 storage. Jumping into the scope is not allowed; you get an error
1261 message for it.
1262
1263 @cindex @code{alloca} vs variable-length arrays
1264 You can use the function @code{alloca} to get an effect much like
1265 variable-length arrays. The function @code{alloca} is available in
1266 many other C implementations (but not in all). On the other hand,
1267 variable-length arrays are more elegant.
1268
1269 There are other differences between these two methods. Space allocated
1270 with @code{alloca} exists until the containing @emph{function} returns.
1271 The space for a variable-length array is deallocated as soon as the array
1272 name's scope ends. (If you use both variable-length arrays and
1273 @code{alloca} in the same function, deallocation of a variable-length array
1274 will also deallocate anything more recently allocated with @code{alloca}.)
1275
1276 You can also use variable-length arrays as arguments to functions:
1277
1278 @smallexample
1279 struct entry
1280 tester (int len, char data[len][len])
1281 @{
1282 /* @r{@dots{}} */
1283 @}
1284 @end smallexample
1285
1286 The length of an array is computed once when the storage is allocated
1287 and is remembered for the scope of the array in case you access it with
1288 @code{sizeof}.
1289
1290 If you want to pass the array first and the length afterward, you can
1291 use a forward declaration in the parameter list---another GNU extension.
1292
1293 @smallexample
1294 struct entry
1295 tester (int len; char data[len][len], int len)
1296 @{
1297 /* @r{@dots{}} */
1298 @}
1299 @end smallexample
1300
1301 @cindex parameter forward declaration
1302 The @samp{int len} before the semicolon is a @dfn{parameter forward
1303 declaration}, and it serves the purpose of making the name @code{len}
1304 known when the declaration of @code{data} is parsed.
1305
1306 You can write any number of such parameter forward declarations in the
1307 parameter list. They can be separated by commas or semicolons, but the
1308 last one must end with a semicolon, which is followed by the ``real''
1309 parameter declarations. Each forward declaration must match a ``real''
1310 declaration in parameter name and data type. ISO C99 does not support
1311 parameter forward declarations.
1312
1313 @node Variadic Macros
1314 @section Macros with a Variable Number of Arguments.
1315 @cindex variable number of arguments
1316 @cindex macro with variable arguments
1317 @cindex rest argument (in macro)
1318 @cindex variadic macros
1319
1320 In the ISO C standard of 1999, a macro can be declared to accept a
1321 variable number of arguments much as a function can. The syntax for
1322 defining the macro is similar to that of a function. Here is an
1323 example:
1324
1325 @smallexample
1326 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1327 @end smallexample
1328
1329 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1330 such a macro, it represents the zero or more tokens until the closing
1331 parenthesis that ends the invocation, including any commas. This set of
1332 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1333 wherever it appears. See the CPP manual for more information.
1334
1335 GCC has long supported variadic macros, and used a different syntax that
1336 allowed you to give a name to the variable arguments just like any other
1337 argument. Here is an example:
1338
1339 @smallexample
1340 #define debug(format, args...) fprintf (stderr, format, args)
1341 @end smallexample
1342
1343 This is in all ways equivalent to the ISO C example above, but arguably
1344 more readable and descriptive.
1345
1346 GNU CPP has two further variadic macro extensions, and permits them to
1347 be used with either of the above forms of macro definition.
1348
1349 In standard C, you are not allowed to leave the variable argument out
1350 entirely; but you are allowed to pass an empty argument. For example,
1351 this invocation is invalid in ISO C, because there is no comma after
1352 the string:
1353
1354 @smallexample
1355 debug ("A message")
1356 @end smallexample
1357
1358 GNU CPP permits you to completely omit the variable arguments in this
1359 way. In the above examples, the compiler would complain, though since
1360 the expansion of the macro still has the extra comma after the format
1361 string.
1362
1363 To help solve this problem, CPP behaves specially for variable arguments
1364 used with the token paste operator, @samp{##}. If instead you write
1365
1366 @smallexample
1367 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1368 @end smallexample
1369
1370 and if the variable arguments are omitted or empty, the @samp{##}
1371 operator causes the preprocessor to remove the comma before it. If you
1372 do provide some variable arguments in your macro invocation, GNU CPP
1373 does not complain about the paste operation and instead places the
1374 variable arguments after the comma. Just like any other pasted macro
1375 argument, these arguments are not macro expanded.
1376
1377 @node Escaped Newlines
1378 @section Slightly Looser Rules for Escaped Newlines
1379 @cindex escaped newlines
1380 @cindex newlines (escaped)
1381
1382 Recently, the preprocessor has relaxed its treatment of escaped
1383 newlines. Previously, the newline had to immediately follow a
1384 backslash. The current implementation allows whitespace in the form
1385 of spaces, horizontal and vertical tabs, and form feeds between the
1386 backslash and the subsequent newline. The preprocessor issues a
1387 warning, but treats it as a valid escaped newline and combines the two
1388 lines to form a single logical line. This works within comments and
1389 tokens, as well as between tokens. Comments are @emph{not} treated as
1390 whitespace for the purposes of this relaxation, since they have not
1391 yet been replaced with spaces.
1392
1393 @node Subscripting
1394 @section Non-Lvalue Arrays May Have Subscripts
1395 @cindex subscripting
1396 @cindex arrays, non-lvalue
1397
1398 @cindex subscripting and function values
1399 In ISO C99, arrays that are not lvalues still decay to pointers, and
1400 may be subscripted, although they may not be modified or used after
1401 the next sequence point and the unary @samp{&} operator may not be
1402 applied to them. As an extension, GCC allows such arrays to be
1403 subscripted in C89 mode, though otherwise they do not decay to
1404 pointers outside C99 mode. For example,
1405 this is valid in GNU C though not valid in C89:
1406
1407 @smallexample
1408 @group
1409 struct foo @{int a[4];@};
1410
1411 struct foo f();
1412
1413 bar (int index)
1414 @{
1415 return f().a[index];
1416 @}
1417 @end group
1418 @end smallexample
1419
1420 @node Pointer Arith
1421 @section Arithmetic on @code{void}- and Function-Pointers
1422 @cindex void pointers, arithmetic
1423 @cindex void, size of pointer to
1424 @cindex function pointers, arithmetic
1425 @cindex function, size of pointer to
1426
1427 In GNU C, addition and subtraction operations are supported on pointers to
1428 @code{void} and on pointers to functions. This is done by treating the
1429 size of a @code{void} or of a function as 1.
1430
1431 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1432 and on function types, and returns 1.
1433
1434 @opindex Wpointer-arith
1435 The option @option{-Wpointer-arith} requests a warning if these extensions
1436 are used.
1437
1438 @node Initializers
1439 @section Non-Constant Initializers
1440 @cindex initializers, non-constant
1441 @cindex non-constant initializers
1442
1443 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1444 automatic variable are not required to be constant expressions in GNU C@.
1445 Here is an example of an initializer with run-time varying elements:
1446
1447 @smallexample
1448 foo (float f, float g)
1449 @{
1450 float beat_freqs[2] = @{ f-g, f+g @};
1451 /* @r{@dots{}} */
1452 @}
1453 @end smallexample
1454
1455 @node Compound Literals
1456 @section Compound Literals
1457 @cindex constructor expressions
1458 @cindex initializations in expressions
1459 @cindex structures, constructor expression
1460 @cindex expressions, constructor
1461 @cindex compound literals
1462 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1463
1464 ISO C99 supports compound literals. A compound literal looks like
1465 a cast containing an initializer. Its value is an object of the
1466 type specified in the cast, containing the elements specified in
1467 the initializer; it is an lvalue. As an extension, GCC supports
1468 compound literals in C89 mode and in C++.
1469
1470 Usually, the specified type is a structure. Assume that
1471 @code{struct foo} and @code{structure} are declared as shown:
1472
1473 @smallexample
1474 struct foo @{int a; char b[2];@} structure;
1475 @end smallexample
1476
1477 @noindent
1478 Here is an example of constructing a @code{struct foo} with a compound literal:
1479
1480 @smallexample
1481 structure = ((struct foo) @{x + y, 'a', 0@});
1482 @end smallexample
1483
1484 @noindent
1485 This is equivalent to writing the following:
1486
1487 @smallexample
1488 @{
1489 struct foo temp = @{x + y, 'a', 0@};
1490 structure = temp;
1491 @}
1492 @end smallexample
1493
1494 You can also construct an array. If all the elements of the compound literal
1495 are (made up of) simple constant expressions, suitable for use in
1496 initializers of objects of static storage duration, then the compound
1497 literal can be coerced to a pointer to its first element and used in
1498 such an initializer, as shown here:
1499
1500 @smallexample
1501 char **foo = (char *[]) @{ "x", "y", "z" @};
1502 @end smallexample
1503
1504 Compound literals for scalar types and union types are is
1505 also allowed, but then the compound literal is equivalent
1506 to a cast.
1507
1508 As a GNU extension, GCC allows initialization of objects with static storage
1509 duration by compound literals (which is not possible in ISO C99, because
1510 the initializer is not a constant).
1511 It is handled as if the object was initialized only with the bracket
1512 enclosed list if the types of the compound literal and the object match.
1513 The initializer list of the compound literal must be constant.
1514 If the object being initialized has array type of unknown size, the size is
1515 determined by compound literal size.
1516
1517 @smallexample
1518 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1519 static int y[] = (int []) @{1, 2, 3@};
1520 static int z[] = (int [3]) @{1@};
1521 @end smallexample
1522
1523 @noindent
1524 The above lines are equivalent to the following:
1525 @smallexample
1526 static struct foo x = @{1, 'a', 'b'@};
1527 static int y[] = @{1, 2, 3@};
1528 static int z[] = @{1, 0, 0@};
1529 @end smallexample
1530
1531 @node Designated Inits
1532 @section Designated Initializers
1533 @cindex initializers with labeled elements
1534 @cindex labeled elements in initializers
1535 @cindex case labels in initializers
1536 @cindex designated initializers
1537
1538 Standard C89 requires the elements of an initializer to appear in a fixed
1539 order, the same as the order of the elements in the array or structure
1540 being initialized.
1541
1542 In ISO C99 you can give the elements in any order, specifying the array
1543 indices or structure field names they apply to, and GNU C allows this as
1544 an extension in C89 mode as well. This extension is not
1545 implemented in GNU C++.
1546
1547 To specify an array index, write
1548 @samp{[@var{index}] =} before the element value. For example,
1549
1550 @smallexample
1551 int a[6] = @{ [4] = 29, [2] = 15 @};
1552 @end smallexample
1553
1554 @noindent
1555 is equivalent to
1556
1557 @smallexample
1558 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1559 @end smallexample
1560
1561 @noindent
1562 The index values must be constant expressions, even if the array being
1563 initialized is automatic.
1564
1565 An alternative syntax for this which has been obsolete since GCC 2.5 but
1566 GCC still accepts is to write @samp{[@var{index}]} before the element
1567 value, with no @samp{=}.
1568
1569 To initialize a range of elements to the same value, write
1570 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1571 extension. For example,
1572
1573 @smallexample
1574 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1575 @end smallexample
1576
1577 @noindent
1578 If the value in it has side-effects, the side-effects will happen only once,
1579 not for each initialized field by the range initializer.
1580
1581 @noindent
1582 Note that the length of the array is the highest value specified
1583 plus one.
1584
1585 In a structure initializer, specify the name of a field to initialize
1586 with @samp{.@var{fieldname} =} before the element value. For example,
1587 given the following structure,
1588
1589 @smallexample
1590 struct point @{ int x, y; @};
1591 @end smallexample
1592
1593 @noindent
1594 the following initialization
1595
1596 @smallexample
1597 struct point p = @{ .y = yvalue, .x = xvalue @};
1598 @end smallexample
1599
1600 @noindent
1601 is equivalent to
1602
1603 @smallexample
1604 struct point p = @{ xvalue, yvalue @};
1605 @end smallexample
1606
1607 Another syntax which has the same meaning, obsolete since GCC 2.5, is
1608 @samp{@var{fieldname}:}, as shown here:
1609
1610 @smallexample
1611 struct point p = @{ y: yvalue, x: xvalue @};
1612 @end smallexample
1613
1614 @cindex designators
1615 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1616 @dfn{designator}. You can also use a designator (or the obsolete colon
1617 syntax) when initializing a union, to specify which element of the union
1618 should be used. For example,
1619
1620 @smallexample
1621 union foo @{ int i; double d; @};
1622
1623 union foo f = @{ .d = 4 @};
1624 @end smallexample
1625
1626 @noindent
1627 will convert 4 to a @code{double} to store it in the union using
1628 the second element. By contrast, casting 4 to type @code{union foo}
1629 would store it into the union as the integer @code{i}, since it is
1630 an integer. (@xref{Cast to Union}.)
1631
1632 You can combine this technique of naming elements with ordinary C
1633 initialization of successive elements. Each initializer element that
1634 does not have a designator applies to the next consecutive element of the
1635 array or structure. For example,
1636
1637 @smallexample
1638 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
1639 @end smallexample
1640
1641 @noindent
1642 is equivalent to
1643
1644 @smallexample
1645 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
1646 @end smallexample
1647
1648 Labeling the elements of an array initializer is especially useful
1649 when the indices are characters or belong to an @code{enum} type.
1650 For example:
1651
1652 @smallexample
1653 int whitespace[256]
1654 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1655 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
1656 @end smallexample
1657
1658 @cindex designator lists
1659 You can also write a series of @samp{.@var{fieldname}} and
1660 @samp{[@var{index}]} designators before an @samp{=} to specify a
1661 nested subobject to initialize; the list is taken relative to the
1662 subobject corresponding to the closest surrounding brace pair. For
1663 example, with the @samp{struct point} declaration above:
1664
1665 @smallexample
1666 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
1667 @end smallexample
1668
1669 @noindent
1670 If the same field is initialized multiple times, it will have value from
1671 the last initialization. If any such overridden initialization has
1672 side-effect, it is unspecified whether the side-effect happens or not.
1673 Currently, GCC will discard them and issue a warning.
1674
1675 @node Case Ranges
1676 @section Case Ranges
1677 @cindex case ranges
1678 @cindex ranges in case statements
1679
1680 You can specify a range of consecutive values in a single @code{case} label,
1681 like this:
1682
1683 @smallexample
1684 case @var{low} ... @var{high}:
1685 @end smallexample
1686
1687 @noindent
1688 This has the same effect as the proper number of individual @code{case}
1689 labels, one for each integer value from @var{low} to @var{high}, inclusive.
1690
1691 This feature is especially useful for ranges of ASCII character codes:
1692
1693 @smallexample
1694 case 'A' ... 'Z':
1695 @end smallexample
1696
1697 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
1698 it may be parsed wrong when you use it with integer values. For example,
1699 write this:
1700
1701 @smallexample
1702 case 1 ... 5:
1703 @end smallexample
1704
1705 @noindent
1706 rather than this:
1707
1708 @smallexample
1709 case 1...5:
1710 @end smallexample
1711
1712 @node Cast to Union
1713 @section Cast to a Union Type
1714 @cindex cast to a union
1715 @cindex union, casting to a
1716
1717 A cast to union type is similar to other casts, except that the type
1718 specified is a union type. You can specify the type either with
1719 @code{union @var{tag}} or with a typedef name. A cast to union is actually
1720 a constructor though, not a cast, and hence does not yield an lvalue like
1721 normal casts. (@xref{Compound Literals}.)
1722
1723 The types that may be cast to the union type are those of the members
1724 of the union. Thus, given the following union and variables:
1725
1726 @smallexample
1727 union foo @{ int i; double d; @};
1728 int x;
1729 double y;
1730 @end smallexample
1731
1732 @noindent
1733 both @code{x} and @code{y} can be cast to type @code{union foo}.
1734
1735 Using the cast as the right-hand side of an assignment to a variable of
1736 union type is equivalent to storing in a member of the union:
1737
1738 @smallexample
1739 union foo u;
1740 /* @r{@dots{}} */
1741 u = (union foo) x @equiv{} u.i = x
1742 u = (union foo) y @equiv{} u.d = y
1743 @end smallexample
1744
1745 You can also use the union cast as a function argument:
1746
1747 @smallexample
1748 void hack (union foo);
1749 /* @r{@dots{}} */
1750 hack ((union foo) x);
1751 @end smallexample
1752
1753 @node Mixed Declarations
1754 @section Mixed Declarations and Code
1755 @cindex mixed declarations and code
1756 @cindex declarations, mixed with code
1757 @cindex code, mixed with declarations
1758
1759 ISO C99 and ISO C++ allow declarations and code to be freely mixed
1760 within compound statements. As an extension, GCC also allows this in
1761 C89 mode. For example, you could do:
1762
1763 @smallexample
1764 int i;
1765 /* @r{@dots{}} */
1766 i++;
1767 int j = i + 2;
1768 @end smallexample
1769
1770 Each identifier is visible from where it is declared until the end of
1771 the enclosing block.
1772
1773 @node Function Attributes
1774 @section Declaring Attributes of Functions
1775 @cindex function attributes
1776 @cindex declaring attributes of functions
1777 @cindex functions that never return
1778 @cindex functions that return more than once
1779 @cindex functions that have no side effects
1780 @cindex functions in arbitrary sections
1781 @cindex functions that behave like malloc
1782 @cindex @code{volatile} applied to function
1783 @cindex @code{const} applied to function
1784 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
1785 @cindex functions with non-null pointer arguments
1786 @cindex functions that are passed arguments in registers on the 386
1787 @cindex functions that pop the argument stack on the 386
1788 @cindex functions that do not pop the argument stack on the 386
1789
1790 In GNU C, you declare certain things about functions called in your program
1791 which help the compiler optimize function calls and check your code more
1792 carefully.
1793
1794 The keyword @code{__attribute__} allows you to specify special
1795 attributes when making a declaration. This keyword is followed by an
1796 attribute specification inside double parentheses. The following
1797 attributes are currently defined for functions on all targets:
1798 @code{aligned}, @code{alloc_size}, @code{noreturn},
1799 @code{returns_twice}, @code{noinline}, @code{always_inline},
1800 @code{flatten}, @code{pure}, @code{const}, @code{nothrow},
1801 @code{sentinel}, @code{format}, @code{format_arg},
1802 @code{no_instrument_function}, @code{section}, @code{constructor},
1803 @code{destructor}, @code{used}, @code{unused}, @code{deprecated},
1804 @code{weak}, @code{malloc}, @code{alias}, @code{warn_unused_result},
1805 @code{nonnull}, @code{gnu_inline} and @code{externally_visible},
1806 @code{hot}, @code{cold}.
1807 Several other attributes are defined for functions on particular
1808 target systems. Other attributes, including @code{section} are
1809 supported for variables declarations (@pxref{Variable Attributes}) and
1810 for types (@pxref{Type Attributes}).
1811
1812 You may also specify attributes with @samp{__} preceding and following
1813 each keyword. This allows you to use them in header files without
1814 being concerned about a possible macro of the same name. For example,
1815 you may use @code{__noreturn__} instead of @code{noreturn}.
1816
1817 @xref{Attribute Syntax}, for details of the exact syntax for using
1818 attributes.
1819
1820 @table @code
1821 @c Keep this table alphabetized by attribute name. Treat _ as space.
1822
1823 @item alias ("@var{target}")
1824 @cindex @code{alias} attribute
1825 The @code{alias} attribute causes the declaration to be emitted as an
1826 alias for another symbol, which must be specified. For instance,
1827
1828 @smallexample
1829 void __f () @{ /* @r{Do something.} */; @}
1830 void f () __attribute__ ((weak, alias ("__f")));
1831 @end smallexample
1832
1833 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
1834 mangled name for the target must be used. It is an error if @samp{__f}
1835 is not defined in the same translation unit.
1836
1837 Not all target machines support this attribute.
1838
1839 @item aligned (@var{alignment})
1840 @cindex @code{aligned} attribute
1841 This attribute specifies a minimum alignment for the function,
1842 measured in bytes.
1843
1844 You cannot use this attribute to decrease the alignment of a function,
1845 only to increase it. However, when you explicitly specify a function
1846 alignment this will override the effect of the
1847 @option{-falign-functions} (@pxref{Optimize Options}) option for this
1848 function.
1849
1850 Note that the effectiveness of @code{aligned} attributes may be
1851 limited by inherent limitations in your linker. On many systems, the
1852 linker is only able to arrange for functions to be aligned up to a
1853 certain maximum alignment. (For some linkers, the maximum supported
1854 alignment may be very very small.) See your linker documentation for
1855 further information.
1856
1857 The @code{aligned} attribute can also be used for variables and fields
1858 (@pxref{Variable Attributes}.)
1859
1860 @item alloc_size
1861 @cindex @code{alloc_size} attribute
1862 The @code{alloc_size} attribute is used to tell the compiler that the
1863 function return value points to memory, where the size is given by
1864 one or two of the functions parameters. GCC uses this
1865 information to improve the correctness of @code{__builtin_object_size}.
1866
1867 The function parameter(s) denoting the allocated size are specified by
1868 one or two integer arguments supplied to the attribute. The allocated size
1869 is either the value of the single function argument specified or the product
1870 of the two function arguments specified. Argument numbering starts at
1871 one.
1872
1873 For instance,
1874
1875 @smallexample
1876 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
1877 void my_realloc(void* size_t) __attribute__((alloc_size(2)))
1878 @end smallexample
1879
1880 declares that my_calloc will return memory of the size given by
1881 the product of parameter 1 and 2 and that my_realloc will return memory
1882 of the size given by parameter 2.
1883
1884 @item always_inline
1885 @cindex @code{always_inline} function attribute
1886 Generally, functions are not inlined unless optimization is specified.
1887 For functions declared inline, this attribute inlines the function even
1888 if no optimization level was specified.
1889
1890 @item gnu_inline
1891 @cindex @code{gnu_inline} function attribute
1892 This attribute should be used with a function which is also declared
1893 with the @code{inline} keyword. It directs GCC to treat the function
1894 as if it were defined in gnu89 mode even when compiling in C99 or
1895 gnu99 mode.
1896
1897 If the function is declared @code{extern}, then this definition of the
1898 function is used only for inlining. In no case is the function
1899 compiled as a standalone function, not even if you take its address
1900 explicitly. Such an address becomes an external reference, as if you
1901 had only declared the function, and had not defined it. This has
1902 almost the effect of a macro. The way to use this is to put a
1903 function definition in a header file with this attribute, and put
1904 another copy of the function, without @code{extern}, in a library
1905 file. The definition in the header file will cause most calls to the
1906 function to be inlined. If any uses of the function remain, they will
1907 refer to the single copy in the library. Note that the two
1908 definitions of the functions need not be precisely the same, although
1909 if they do not have the same effect your program may behave oddly.
1910
1911 In C, if the function is neither @code{extern} nor @code{static}, then
1912 the function is compiled as a standalone function, as well as being
1913 inlined where possible.
1914
1915 This is how GCC traditionally handled functions declared
1916 @code{inline}. Since ISO C99 specifies a different semantics for
1917 @code{inline}, this function attribute is provided as a transition
1918 measure and as a useful feature in its own right. This attribute is
1919 available in GCC 4.1.3 and later. It is available if either of the
1920 preprocessor macros @code{__GNUC_GNU_INLINE__} or
1921 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
1922 Function is As Fast As a Macro}.
1923
1924 In C++, this attribute does not depend on @code{extern} in any way,
1925 but it still requires the @code{inline} keyword to enable its special
1926 behavior.
1927
1928 @cindex @code{flatten} function attribute
1929 @item flatten
1930 Generally, inlining into a function is limited. For a function marked with
1931 this attribute, every call inside this function will be inlined, if possible.
1932 Whether the function itself is considered for inlining depends on its size and
1933 the current inlining parameters. The @code{flatten} attribute only works
1934 reliably in unit-at-a-time mode.
1935
1936 @item cdecl
1937 @cindex functions that do pop the argument stack on the 386
1938 @opindex mrtd
1939 On the Intel 386, the @code{cdecl} attribute causes the compiler to
1940 assume that the calling function will pop off the stack space used to
1941 pass arguments. This is
1942 useful to override the effects of the @option{-mrtd} switch.
1943
1944 @item const
1945 @cindex @code{const} function attribute
1946 Many functions do not examine any values except their arguments, and
1947 have no effects except the return value. Basically this is just slightly
1948 more strict class than the @code{pure} attribute below, since function is not
1949 allowed to read global memory.
1950
1951 @cindex pointer arguments
1952 Note that a function that has pointer arguments and examines the data
1953 pointed to must @emph{not} be declared @code{const}. Likewise, a
1954 function that calls a non-@code{const} function usually must not be
1955 @code{const}. It does not make sense for a @code{const} function to
1956 return @code{void}.
1957
1958 The attribute @code{const} is not implemented in GCC versions earlier
1959 than 2.5. An alternative way to declare that a function has no side
1960 effects, which works in the current version and in some older versions,
1961 is as follows:
1962
1963 @smallexample
1964 typedef int intfn ();
1965
1966 extern const intfn square;
1967 @end smallexample
1968
1969 This approach does not work in GNU C++ from 2.6.0 on, since the language
1970 specifies that the @samp{const} must be attached to the return value.
1971
1972 @item constructor
1973 @itemx destructor
1974 @itemx constructor (@var{priority})
1975 @itemx destructor (@var{priority})
1976 @cindex @code{constructor} function attribute
1977 @cindex @code{destructor} function attribute
1978 The @code{constructor} attribute causes the function to be called
1979 automatically before execution enters @code{main ()}. Similarly, the
1980 @code{destructor} attribute causes the function to be called
1981 automatically after @code{main ()} has completed or @code{exit ()} has
1982 been called. Functions with these attributes are useful for
1983 initializing data that will be used implicitly during the execution of
1984 the program.
1985
1986 You may provide an optional integer priority to control the order in
1987 which constructor and destructor functions are run. A constructor
1988 with a smaller priority number runs before a constructor with a larger
1989 priority number; the opposite relationship holds for destructors. So,
1990 if you have a constructor that allocates a resource and a destructor
1991 that deallocates the same resource, both functions typically have the
1992 same priority. The priorities for constructor and destructor
1993 functions are the same as those specified for namespace-scope C++
1994 objects (@pxref{C++ Attributes}).
1995
1996 These attributes are not currently implemented for Objective-C@.
1997
1998 @item deprecated
1999 @cindex @code{deprecated} attribute.
2000 The @code{deprecated} attribute results in a warning if the function
2001 is used anywhere in the source file. This is useful when identifying
2002 functions that are expected to be removed in a future version of a
2003 program. The warning also includes the location of the declaration
2004 of the deprecated function, to enable users to easily find further
2005 information about why the function is deprecated, or what they should
2006 do instead. Note that the warnings only occurs for uses:
2007
2008 @smallexample
2009 int old_fn () __attribute__ ((deprecated));
2010 int old_fn ();
2011 int (*fn_ptr)() = old_fn;
2012 @end smallexample
2013
2014 results in a warning on line 3 but not line 2.
2015
2016 The @code{deprecated} attribute can also be used for variables and
2017 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2018
2019 @item dllexport
2020 @cindex @code{__declspec(dllexport)}
2021 On Microsoft Windows targets and Symbian OS targets the
2022 @code{dllexport} attribute causes the compiler to provide a global
2023 pointer to a pointer in a DLL, so that it can be referenced with the
2024 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
2025 name is formed by combining @code{_imp__} and the function or variable
2026 name.
2027
2028 You can use @code{__declspec(dllexport)} as a synonym for
2029 @code{__attribute__ ((dllexport))} for compatibility with other
2030 compilers.
2031
2032 On systems that support the @code{visibility} attribute, this
2033 attribute also implies ``default'' visibility. It is an error to
2034 explicitly specify any other visibility.
2035
2036 Currently, the @code{dllexport} attribute is ignored for inlined
2037 functions, unless the @option{-fkeep-inline-functions} flag has been
2038 used. The attribute is also ignored for undefined symbols.
2039
2040 When applied to C++ classes, the attribute marks defined non-inlined
2041 member functions and static data members as exports. Static consts
2042 initialized in-class are not marked unless they are also defined
2043 out-of-class.
2044
2045 For Microsoft Windows targets there are alternative methods for
2046 including the symbol in the DLL's export table such as using a
2047 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2048 the @option{--export-all} linker flag.
2049
2050 @item dllimport
2051 @cindex @code{__declspec(dllimport)}
2052 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2053 attribute causes the compiler to reference a function or variable via
2054 a global pointer to a pointer that is set up by the DLL exporting the
2055 symbol. The attribute implies @code{extern}. On Microsoft Windows
2056 targets, the pointer name is formed by combining @code{_imp__} and the
2057 function or variable name.
2058
2059 You can use @code{__declspec(dllimport)} as a synonym for
2060 @code{__attribute__ ((dllimport))} for compatibility with other
2061 compilers.
2062
2063 On systems that support the @code{visibility} attribute, this
2064 attribute also implies ``default'' visibility. It is an error to
2065 explicitly specify any other visibility.
2066
2067 Currently, the attribute is ignored for inlined functions. If the
2068 attribute is applied to a symbol @emph{definition}, an error is reported.
2069 If a symbol previously declared @code{dllimport} is later defined, the
2070 attribute is ignored in subsequent references, and a warning is emitted.
2071 The attribute is also overridden by a subsequent declaration as
2072 @code{dllexport}.
2073
2074 When applied to C++ classes, the attribute marks non-inlined
2075 member functions and static data members as imports. However, the
2076 attribute is ignored for virtual methods to allow creation of vtables
2077 using thunks.
2078
2079 On the SH Symbian OS target the @code{dllimport} attribute also has
2080 another affect---it can cause the vtable and run-time type information
2081 for a class to be exported. This happens when the class has a
2082 dllimport'ed constructor or a non-inline, non-pure virtual function
2083 and, for either of those two conditions, the class also has a inline
2084 constructor or destructor and has a key function that is defined in
2085 the current translation unit.
2086
2087 For Microsoft Windows based targets the use of the @code{dllimport}
2088 attribute on functions is not necessary, but provides a small
2089 performance benefit by eliminating a thunk in the DLL@. The use of the
2090 @code{dllimport} attribute on imported variables was required on older
2091 versions of the GNU linker, but can now be avoided by passing the
2092 @option{--enable-auto-import} switch to the GNU linker. As with
2093 functions, using the attribute for a variable eliminates a thunk in
2094 the DLL@.
2095
2096 One drawback to using this attribute is that a pointer to a function
2097 or variable marked as @code{dllimport} cannot be used as a constant
2098 address. On Microsoft Windows targets, the attribute can be disabled
2099 for functions by setting the @option{-mnop-fun-dllimport} flag.
2100
2101 @item eightbit_data
2102 @cindex eight bit data on the H8/300, H8/300H, and H8S
2103 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2104 variable should be placed into the eight bit data section.
2105 The compiler will generate more efficient code for certain operations
2106 on data in the eight bit data area. Note the eight bit data area is limited to
2107 256 bytes of data.
2108
2109 You must use GAS and GLD from GNU binutils version 2.7 or later for
2110 this attribute to work correctly.
2111
2112 @item exception_handler
2113 @cindex exception handler functions on the Blackfin processor
2114 Use this attribute on the Blackfin to indicate that the specified function
2115 is an exception handler. The compiler will generate function entry and
2116 exit sequences suitable for use in an exception handler when this
2117 attribute is present.
2118
2119 @item far
2120 @cindex functions which handle memory bank switching
2121 On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2122 use a calling convention that takes care of switching memory banks when
2123 entering and leaving a function. This calling convention is also the
2124 default when using the @option{-mlong-calls} option.
2125
2126 On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2127 to call and return from a function.
2128
2129 On 68HC11 the compiler will generate a sequence of instructions
2130 to invoke a board-specific routine to switch the memory bank and call the
2131 real function. The board-specific routine simulates a @code{call}.
2132 At the end of a function, it will jump to a board-specific routine
2133 instead of using @code{rts}. The board-specific return routine simulates
2134 the @code{rtc}.
2135
2136 @item fastcall
2137 @cindex functions that pop the argument stack on the 386
2138 On the Intel 386, the @code{fastcall} attribute causes the compiler to
2139 pass the first argument (if of integral type) in the register ECX and
2140 the second argument (if of integral type) in the register EDX@. Subsequent
2141 and other typed arguments are passed on the stack. The called function will
2142 pop the arguments off the stack. If the number of arguments is variable all
2143 arguments are pushed on the stack.
2144
2145 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2146 @cindex @code{format} function attribute
2147 @opindex Wformat
2148 The @code{format} attribute specifies that a function takes @code{printf},
2149 @code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2150 should be type-checked against a format string. For example, the
2151 declaration:
2152
2153 @smallexample
2154 extern int
2155 my_printf (void *my_object, const char *my_format, ...)
2156 __attribute__ ((format (printf, 2, 3)));
2157 @end smallexample
2158
2159 @noindent
2160 causes the compiler to check the arguments in calls to @code{my_printf}
2161 for consistency with the @code{printf} style format string argument
2162 @code{my_format}.
2163
2164 The parameter @var{archetype} determines how the format string is
2165 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime}
2166 or @code{strfmon}. (You can also use @code{__printf__},
2167 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) The
2168 parameter @var{string-index} specifies which argument is the format
2169 string argument (starting from 1), while @var{first-to-check} is the
2170 number of the first argument to check against the format string. For
2171 functions where the arguments are not available to be checked (such as
2172 @code{vprintf}), specify the third parameter as zero. In this case the
2173 compiler only checks the format string for consistency. For
2174 @code{strftime} formats, the third parameter is required to be zero.
2175 Since non-static C++ methods have an implicit @code{this} argument, the
2176 arguments of such methods should be counted from two, not one, when
2177 giving values for @var{string-index} and @var{first-to-check}.
2178
2179 In the example above, the format string (@code{my_format}) is the second
2180 argument of the function @code{my_print}, and the arguments to check
2181 start with the third argument, so the correct parameters for the format
2182 attribute are 2 and 3.
2183
2184 @opindex ffreestanding
2185 @opindex fno-builtin
2186 The @code{format} attribute allows you to identify your own functions
2187 which take format strings as arguments, so that GCC can check the
2188 calls to these functions for errors. The compiler always (unless
2189 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2190 for the standard library functions @code{printf}, @code{fprintf},
2191 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2192 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2193 warnings are requested (using @option{-Wformat}), so there is no need to
2194 modify the header file @file{stdio.h}. In C99 mode, the functions
2195 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2196 @code{vsscanf} are also checked. Except in strictly conforming C
2197 standard modes, the X/Open function @code{strfmon} is also checked as
2198 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2199 @xref{C Dialect Options,,Options Controlling C Dialect}.
2200
2201 The target may provide additional types of format checks.
2202 @xref{Target Format Checks,,Format Checks Specific to Particular
2203 Target Machines}.
2204
2205 @item format_arg (@var{string-index})
2206 @cindex @code{format_arg} function attribute
2207 @opindex Wformat-nonliteral
2208 The @code{format_arg} attribute specifies that a function takes a format
2209 string for a @code{printf}, @code{scanf}, @code{strftime} or
2210 @code{strfmon} style function and modifies it (for example, to translate
2211 it into another language), so the result can be passed to a
2212 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2213 function (with the remaining arguments to the format function the same
2214 as they would have been for the unmodified string). For example, the
2215 declaration:
2216
2217 @smallexample
2218 extern char *
2219 my_dgettext (char *my_domain, const char *my_format)
2220 __attribute__ ((format_arg (2)));
2221 @end smallexample
2222
2223 @noindent
2224 causes the compiler to check the arguments in calls to a @code{printf},
2225 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2226 format string argument is a call to the @code{my_dgettext} function, for
2227 consistency with the format string argument @code{my_format}. If the
2228 @code{format_arg} attribute had not been specified, all the compiler
2229 could tell in such calls to format functions would be that the format
2230 string argument is not constant; this would generate a warning when
2231 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2232 without the attribute.
2233
2234 The parameter @var{string-index} specifies which argument is the format
2235 string argument (starting from one). Since non-static C++ methods have
2236 an implicit @code{this} argument, the arguments of such methods should
2237 be counted from two.
2238
2239 The @code{format-arg} attribute allows you to identify your own
2240 functions which modify format strings, so that GCC can check the
2241 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2242 type function whose operands are a call to one of your own function.
2243 The compiler always treats @code{gettext}, @code{dgettext}, and
2244 @code{dcgettext} in this manner except when strict ISO C support is
2245 requested by @option{-ansi} or an appropriate @option{-std} option, or
2246 @option{-ffreestanding} or @option{-fno-builtin}
2247 is used. @xref{C Dialect Options,,Options
2248 Controlling C Dialect}.
2249
2250 @item function_vector
2251 @cindex calling functions through the function vector on H8/300, M16C, and M32C processors
2252 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2253 function should be called through the function vector. Calling a
2254 function through the function vector will reduce code size, however;
2255 the function vector has a limited size (maximum 128 entries on the H8/300
2256 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2257
2258 You must use GAS and GLD from GNU binutils version 2.7 or later for
2259 this attribute to work correctly.
2260
2261 On M16C/M32C targets, the @code{function_vector} attribute declares a
2262 special page subroutine call function. Use of this attribute reduces
2263 the code size by 2 bytes for each call generated to the
2264 subroutine. The argument to the attribute is the vector number entry
2265 from the special page vector table which contains the 16 low-order
2266 bits of the subroutine's entry address. Each vector table has special
2267 page number (18 to 255) which are used in @code{jsrs} instruction.
2268 Jump addresses of the routines are generated by adding 0x0F0000 (in
2269 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2270 byte addresses set in the vector table. Therefore you need to ensure
2271 that all the special page vector routines should get mapped within the
2272 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2273 (for M32C).
2274
2275 In the following example 2 bytes will be saved for each call to
2276 function @code{foo}.
2277
2278 @smallexample
2279 void foo (void) __attribute__((function_vector(0x18)));
2280 void foo (void)
2281 @{
2282 @}
2283
2284 void bar (void)
2285 @{
2286 foo();
2287 @}
2288 @end smallexample
2289
2290 If functions are defined in one file and are called in another file,
2291 then be sure to write this declaration in both files.
2292
2293 This attribute is ignored for R8C target.
2294
2295 @item interrupt
2296 @cindex interrupt handler functions
2297 Use this attribute on the ARM, AVR, C4x, CRX, M32C, M32R/D, m68k, MS1,
2298 and Xstormy16 ports to indicate that the specified function is an
2299 interrupt handler. The compiler will generate function entry and exit
2300 sequences suitable for use in an interrupt handler when this attribute
2301 is present.
2302
2303 Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, and
2304 SH processors can be specified via the @code{interrupt_handler} attribute.
2305
2306 Note, on the AVR, interrupts will be enabled inside the function.
2307
2308 Note, for the ARM, you can specify the kind of interrupt to be handled by
2309 adding an optional parameter to the interrupt attribute like this:
2310
2311 @smallexample
2312 void f () __attribute__ ((interrupt ("IRQ")));
2313 @end smallexample
2314
2315 Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
2316
2317 On ARMv7-M the interrupt type is ignored, and the attribute means the function
2318 may be called with a word aligned stack pointer.
2319
2320 @item interrupt_handler
2321 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2322 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2323 indicate that the specified function is an interrupt handler. The compiler
2324 will generate function entry and exit sequences suitable for use in an
2325 interrupt handler when this attribute is present.
2326
2327 @item interrupt_thread
2328 @cindex interrupt thread functions on fido
2329 Use this attribute on fido, a subarchitecture of the m68k, to indicate
2330 that the specified function is an interrupt handler that is designed
2331 to run as a thread. The compiler omits generate prologue/epilogue
2332 sequences and replaces the return instruction with a @code{sleep}
2333 instruction. This attribute is available only on fido.
2334
2335 @item kspisusp
2336 @cindex User stack pointer in interrupts on the Blackfin
2337 When used together with @code{interrupt_handler}, @code{exception_handler}
2338 or @code{nmi_handler}, code will be generated to load the stack pointer
2339 from the USP register in the function prologue.
2340
2341 @item l1_text
2342 @cindex @code{l1_text} function attribute
2343 This attribute specifies a function to be placed into L1 Instruction
2344 SRAM. The function will be put into a specific section named @code{.l1.text}.
2345 With @option{-mfdpic}, function calls with a such function as the callee
2346 or caller will use inlined PLT.
2347
2348 @item long_call/short_call
2349 @cindex indirect calls on ARM
2350 This attribute specifies how a particular function is called on
2351 ARM@. Both attributes override the @option{-mlong-calls} (@pxref{ARM Options})
2352 command line switch and @code{#pragma long_calls} settings. The
2353 @code{long_call} attribute indicates that the function might be far
2354 away from the call site and require a different (more expensive)
2355 calling sequence. The @code{short_call} attribute always places
2356 the offset to the function from the call site into the @samp{BL}
2357 instruction directly.
2358
2359 @item longcall/shortcall
2360 @cindex functions called via pointer on the RS/6000 and PowerPC
2361 On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2362 indicates that the function might be far away from the call site and
2363 require a different (more expensive) calling sequence. The
2364 @code{shortcall} attribute indicates that the function is always close
2365 enough for the shorter calling sequence to be used. These attributes
2366 override both the @option{-mlongcall} switch and, on the RS/6000 and
2367 PowerPC, the @code{#pragma longcall} setting.
2368
2369 @xref{RS/6000 and PowerPC Options}, for more information on whether long
2370 calls are necessary.
2371
2372 @item long_call/near/far
2373 @cindex indirect calls on MIPS
2374 These attributes specify how a particular function is called on MIPS@.
2375 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2376 command-line switch. The @code{long_call} and @code{far} attributes are
2377 synonyms, and cause the compiler to always call
2378 the function by first loading its address into a register, and then using
2379 the contents of that register. The @code{near} attribute has the opposite
2380 effect; it specifies that non-PIC calls should be made using the more
2381 efficient @code{jal} instruction.
2382
2383 @item malloc
2384 @cindex @code{malloc} attribute
2385 The @code{malloc} attribute is used to tell the compiler that a function
2386 may be treated as if any non-@code{NULL} pointer it returns cannot
2387 alias any other pointer valid when the function returns.
2388 This will often improve optimization.
2389 Standard functions with this property include @code{malloc} and
2390 @code{calloc}. @code{realloc}-like functions have this property as
2391 long as the old pointer is never referred to (including comparing it
2392 to the new pointer) after the function returns a non-@code{NULL}
2393 value.
2394
2395 @item mips16/nomips16
2396 @cindex @code{mips16} attribute
2397 @cindex @code{nomips16} attribute
2398
2399 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2400 function attributes to locally select or turn off MIPS16 code generation.
2401 A function with the @code{mips16} attribute is emitted as MIPS16 code,
2402 while MIPS16 code generation is disabled for functions with the
2403 @code{nomips16} attribute. These attributes override the
2404 @option{-mips16} and @option{-mno-mips16} options on the command line
2405 (@pxref{MIPS Options}).
2406
2407 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2408 preprocessor symbol @code{__mips16} reflects the setting on the command line,
2409 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2410 may interact badly with some GCC extensions such as @code{__builtin_apply}
2411 (@pxref{Constructing Calls}).
2412
2413 @item model (@var{model-name})
2414 @cindex function addressability on the M32R/D
2415 @cindex variable addressability on the IA-64
2416
2417 On the M32R/D, use this attribute to set the addressability of an
2418 object, and of the code generated for a function. The identifier
2419 @var{model-name} is one of @code{small}, @code{medium}, or
2420 @code{large}, representing each of the code models.
2421
2422 Small model objects live in the lower 16MB of memory (so that their
2423 addresses can be loaded with the @code{ld24} instruction), and are
2424 callable with the @code{bl} instruction.
2425
2426 Medium model objects may live anywhere in the 32-bit address space (the
2427 compiler will generate @code{seth/add3} instructions to load their addresses),
2428 and are callable with the @code{bl} instruction.
2429
2430 Large model objects may live anywhere in the 32-bit address space (the
2431 compiler will generate @code{seth/add3} instructions to load their addresses),
2432 and may not be reachable with the @code{bl} instruction (the compiler will
2433 generate the much slower @code{seth/add3/jl} instruction sequence).
2434
2435 On IA-64, use this attribute to set the addressability of an object.
2436 At present, the only supported identifier for @var{model-name} is
2437 @code{small}, indicating addressability via ``small'' (22-bit)
2438 addresses (so that their addresses can be loaded with the @code{addl}
2439 instruction). Caveat: such addressing is by definition not position
2440 independent and hence this attribute must not be used for objects
2441 defined by shared libraries.
2442
2443 @item naked
2444 @cindex function without a prologue/epilogue code
2445 Use this attribute on the ARM, AVR, C4x, IP2K and SPU ports to indicate that
2446 the specified function does not need prologue/epilogue sequences generated by
2447 the compiler. It is up to the programmer to provide these sequences.
2448
2449 @item near
2450 @cindex functions which do not handle memory bank switching on 68HC11/68HC12
2451 On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
2452 use the normal calling convention based on @code{jsr} and @code{rts}.
2453 This attribute can be used to cancel the effect of the @option{-mlong-calls}
2454 option.
2455
2456 @item nesting
2457 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
2458 Use this attribute together with @code{interrupt_handler},
2459 @code{exception_handler} or @code{nmi_handler} to indicate that the function
2460 entry code should enable nested interrupts or exceptions.
2461
2462 @item nmi_handler
2463 @cindex NMI handler functions on the Blackfin processor
2464 Use this attribute on the Blackfin to indicate that the specified function
2465 is an NMI handler. The compiler will generate function entry and
2466 exit sequences suitable for use in an NMI handler when this
2467 attribute is present.
2468
2469 @item no_instrument_function
2470 @cindex @code{no_instrument_function} function attribute
2471 @opindex finstrument-functions
2472 If @option{-finstrument-functions} is given, profiling function calls will
2473 be generated at entry and exit of most user-compiled functions.
2474 Functions with this attribute will not be so instrumented.
2475
2476 @item noinline
2477 @cindex @code{noinline} function attribute
2478 This function attribute prevents a function from being considered for
2479 inlining.
2480
2481 @item nonnull (@var{arg-index}, @dots{})
2482 @cindex @code{nonnull} function attribute
2483 The @code{nonnull} attribute specifies that some function parameters should
2484 be non-null pointers. For instance, the declaration:
2485
2486 @smallexample
2487 extern void *
2488 my_memcpy (void *dest, const void *src, size_t len)
2489 __attribute__((nonnull (1, 2)));
2490 @end smallexample
2491
2492 @noindent
2493 causes the compiler to check that, in calls to @code{my_memcpy},
2494 arguments @var{dest} and @var{src} are non-null. If the compiler
2495 determines that a null pointer is passed in an argument slot marked
2496 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2497 is issued. The compiler may also choose to make optimizations based
2498 on the knowledge that certain function arguments will not be null.
2499
2500 If no argument index list is given to the @code{nonnull} attribute,
2501 all pointer arguments are marked as non-null. To illustrate, the
2502 following declaration is equivalent to the previous example:
2503
2504 @smallexample
2505 extern void *
2506 my_memcpy (void *dest, const void *src, size_t len)
2507 __attribute__((nonnull));
2508 @end smallexample
2509
2510 @item noreturn
2511 @cindex @code{noreturn} function attribute
2512 A few standard library functions, such as @code{abort} and @code{exit},
2513 cannot return. GCC knows this automatically. Some programs define
2514 their own functions that never return. You can declare them
2515 @code{noreturn} to tell the compiler this fact. For example,
2516
2517 @smallexample
2518 @group
2519 void fatal () __attribute__ ((noreturn));
2520
2521 void
2522 fatal (/* @r{@dots{}} */)
2523 @{
2524 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
2525 exit (1);
2526 @}
2527 @end group
2528 @end smallexample
2529
2530 The @code{noreturn} keyword tells the compiler to assume that
2531 @code{fatal} cannot return. It can then optimize without regard to what
2532 would happen if @code{fatal} ever did return. This makes slightly
2533 better code. More importantly, it helps avoid spurious warnings of
2534 uninitialized variables.
2535
2536 The @code{noreturn} keyword does not affect the exceptional path when that
2537 applies: a @code{noreturn}-marked function may still return to the caller
2538 by throwing an exception or calling @code{longjmp}.
2539
2540 Do not assume that registers saved by the calling function are
2541 restored before calling the @code{noreturn} function.
2542
2543 It does not make sense for a @code{noreturn} function to have a return
2544 type other than @code{void}.
2545
2546 The attribute @code{noreturn} is not implemented in GCC versions
2547 earlier than 2.5. An alternative way to declare that a function does
2548 not return, which works in the current version and in some older
2549 versions, is as follows:
2550
2551 @smallexample
2552 typedef void voidfn ();
2553
2554 volatile voidfn fatal;
2555 @end smallexample
2556
2557 This approach does not work in GNU C++.
2558
2559 @item nothrow
2560 @cindex @code{nothrow} function attribute
2561 The @code{nothrow} attribute is used to inform the compiler that a
2562 function cannot throw an exception. For example, most functions in
2563 the standard C library can be guaranteed not to throw an exception
2564 with the notable exceptions of @code{qsort} and @code{bsearch} that
2565 take function pointer arguments. The @code{nothrow} attribute is not
2566 implemented in GCC versions earlier than 3.3.
2567
2568 @item pure
2569 @cindex @code{pure} function attribute
2570 Many functions have no effects except the return value and their
2571 return value depends only on the parameters and/or global variables.
2572 Such a function can be subject
2573 to common subexpression elimination and loop optimization just as an
2574 arithmetic operator would be. These functions should be declared
2575 with the attribute @code{pure}. For example,
2576
2577 @smallexample
2578 int square (int) __attribute__ ((pure));
2579 @end smallexample
2580
2581 @noindent
2582 says that the hypothetical function @code{square} is safe to call
2583 fewer times than the program says.
2584
2585 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
2586 Interesting non-pure functions are functions with infinite loops or those
2587 depending on volatile memory or other system resource, that may change between
2588 two consecutive calls (such as @code{feof} in a multithreading environment).
2589
2590 The attribute @code{pure} is not implemented in GCC versions earlier
2591 than 2.96.
2592
2593 @item hot
2594 @cindex @code{hot} function attribute
2595 The @code{hot} attribute is used to inform the compiler that a function is a
2596 hot spot of the compiled program. The function is optimized more aggressively
2597 and on many target it is placed into special subsection of the text section so
2598 all hot functions appears close together improving locality.
2599
2600 When profile feedback is available, via @option{-fprofile-use}, hot functions
2601 are automatically detected and this attribute is ignored.
2602
2603 The @code{hot} attribute is not implemented in GCC versions earlier than 4.3.
2604
2605 @item cold
2606 @cindex @code{cold} function attribute
2607 The @code{cold} attribute is used to inform the compiler that a function is
2608 unlikely executed. The function is optimized for size rather than speed and on
2609 many targets it is placed into special subsection of the text section so all
2610 cold functions appears close together improving code locality of non-cold parts
2611 of program. The paths leading to call of cold functions within code are marked
2612 as unlikely by the branch prediction mechanism. It is thus useful to mark
2613 functions used to handle unlikely conditions, such as @code{perror}, as cold to
2614 improve optimization of hot functions that do call marked functions in rare
2615 occasions.
2616
2617 When profile feedback is available, via @option{-fprofile-use}, hot functions
2618 are automatically detected and this attribute is ignored.
2619
2620 The @code{hot} attribute is not implemented in GCC versions earlier than 4.3.
2621
2622 @item regparm (@var{number})
2623 @cindex @code{regparm} attribute
2624 @cindex functions that are passed arguments in registers on the 386
2625 On the Intel 386, the @code{regparm} attribute causes the compiler to
2626 pass arguments number one to @var{number} if they are of integral type
2627 in registers EAX, EDX, and ECX instead of on the stack. Functions that
2628 take a variable number of arguments will continue to be passed all of their
2629 arguments on the stack.
2630
2631 Beware that on some ELF systems this attribute is unsuitable for
2632 global functions in shared libraries with lazy binding (which is the
2633 default). Lazy binding will send the first call via resolving code in
2634 the loader, which might assume EAX, EDX and ECX can be clobbered, as
2635 per the standard calling conventions. Solaris 8 is affected by this.
2636 GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
2637 safe since the loaders there save all registers. (Lazy binding can be
2638 disabled with the linker or the loader if desired, to avoid the
2639 problem.)
2640
2641 @item sseregparm
2642 @cindex @code{sseregparm} attribute
2643 On the Intel 386 with SSE support, the @code{sseregparm} attribute
2644 causes the compiler to pass up to 3 floating point arguments in
2645 SSE registers instead of on the stack. Functions that take a
2646 variable number of arguments will continue to pass all of their
2647 floating point arguments on the stack.
2648
2649 @item force_align_arg_pointer
2650 @cindex @code{force_align_arg_pointer} attribute
2651 On the Intel x86, the @code{force_align_arg_pointer} attribute may be
2652 applied to individual function definitions, generating an alternate
2653 prologue and epilogue that realigns the runtime stack. This supports
2654 mixing legacy codes that run with a 4-byte aligned stack with modern
2655 codes that keep a 16-byte stack for SSE compatibility. The alternate
2656 prologue and epilogue are slower and bigger than the regular ones, and
2657 the alternate prologue requires a scratch register; this lowers the
2658 number of registers available if used in conjunction with the
2659 @code{regparm} attribute. The @code{force_align_arg_pointer}
2660 attribute is incompatible with nested functions; this is considered a
2661 hard error.
2662
2663 @item returns_twice
2664 @cindex @code{returns_twice} attribute
2665 The @code{returns_twice} attribute tells the compiler that a function may
2666 return more than one time. The compiler will ensure that all registers
2667 are dead before calling such a function and will emit a warning about
2668 the variables that may be clobbered after the second return from the
2669 function. Examples of such functions are @code{setjmp} and @code{vfork}.
2670 The @code{longjmp}-like counterpart of such function, if any, might need
2671 to be marked with the @code{noreturn} attribute.
2672
2673 @item saveall
2674 @cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
2675 Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
2676 all registers except the stack pointer should be saved in the prologue
2677 regardless of whether they are used or not.
2678
2679 @item section ("@var{section-name}")
2680 @cindex @code{section} function attribute
2681 Normally, the compiler places the code it generates in the @code{text} section.
2682 Sometimes, however, you need additional sections, or you need certain
2683 particular functions to appear in special sections. The @code{section}
2684 attribute specifies that a function lives in a particular section.
2685 For example, the declaration:
2686
2687 @smallexample
2688 extern void foobar (void) __attribute__ ((section ("bar")));
2689 @end smallexample
2690
2691 @noindent
2692 puts the function @code{foobar} in the @code{bar} section.
2693
2694 Some file formats do not support arbitrary sections so the @code{section}
2695 attribute is not available on all platforms.
2696 If you need to map the entire contents of a module to a particular
2697 section, consider using the facilities of the linker instead.
2698
2699 @item sentinel
2700 @cindex @code{sentinel} function attribute
2701 This function attribute ensures that a parameter in a function call is
2702 an explicit @code{NULL}. The attribute is only valid on variadic
2703 functions. By default, the sentinel is located at position zero, the
2704 last parameter of the function call. If an optional integer position
2705 argument P is supplied to the attribute, the sentinel must be located at
2706 position P counting backwards from the end of the argument list.
2707
2708 @smallexample
2709 __attribute__ ((sentinel))
2710 is equivalent to
2711 __attribute__ ((sentinel(0)))
2712 @end smallexample
2713
2714 The attribute is automatically set with a position of 0 for the built-in
2715 functions @code{execl} and @code{execlp}. The built-in function
2716 @code{execle} has the attribute set with a position of 1.
2717
2718 A valid @code{NULL} in this context is defined as zero with any pointer
2719 type. If your system defines the @code{NULL} macro with an integer type
2720 then you need to add an explicit cast. GCC replaces @code{stddef.h}
2721 with a copy that redefines NULL appropriately.
2722
2723 The warnings for missing or incorrect sentinels are enabled with
2724 @option{-Wformat}.
2725
2726 @item short_call
2727 See long_call/short_call.
2728
2729 @item shortcall
2730 See longcall/shortcall.
2731
2732 @item signal
2733 @cindex signal handler functions on the AVR processors
2734 Use this attribute on the AVR to indicate that the specified
2735 function is a signal handler. The compiler will generate function
2736 entry and exit sequences suitable for use in a signal handler when this
2737 attribute is present. Interrupts will be disabled inside the function.
2738
2739 @item sp_switch
2740 Use this attribute on the SH to indicate an @code{interrupt_handler}
2741 function should switch to an alternate stack. It expects a string
2742 argument that names a global variable holding the address of the
2743 alternate stack.
2744
2745 @smallexample
2746 void *alt_stack;
2747 void f () __attribute__ ((interrupt_handler,
2748 sp_switch ("alt_stack")));
2749 @end smallexample
2750
2751 @item stdcall
2752 @cindex functions that pop the argument stack on the 386
2753 On the Intel 386, the @code{stdcall} attribute causes the compiler to
2754 assume that the called function will pop off the stack space used to
2755 pass arguments, unless it takes a variable number of arguments.
2756
2757 @item tiny_data
2758 @cindex tiny data section on the H8/300H and H8S
2759 Use this attribute on the H8/300H and H8S to indicate that the specified
2760 variable should be placed into the tiny data section.
2761 The compiler will generate more efficient code for loads and stores
2762 on data in the tiny data section. Note the tiny data area is limited to
2763 slightly under 32kbytes of data.
2764
2765 @item trap_exit
2766 Use this attribute on the SH for an @code{interrupt_handler} to return using
2767 @code{trapa} instead of @code{rte}. This attribute expects an integer
2768 argument specifying the trap number to be used.
2769
2770 @item unused
2771 @cindex @code{unused} attribute.
2772 This attribute, attached to a function, means that the function is meant
2773 to be possibly unused. GCC will not produce a warning for this
2774 function.
2775
2776 @item used
2777 @cindex @code{used} attribute.
2778 This attribute, attached to a function, means that code must be emitted
2779 for the function even if it appears that the function is not referenced.
2780 This is useful, for example, when the function is referenced only in
2781 inline assembly.
2782
2783 @item version_id
2784 @cindex @code{version_id} attribute on IA64 HP-UX
2785 This attribute, attached to a global variable or function, renames a
2786 symbol to contain a version string, thus allowing for function level
2787 versioning. HP-UX system header files may use version level functioning
2788 for some system calls.
2789
2790 @smallexample
2791 extern int foo () __attribute__((version_id ("20040821")));
2792 @end smallexample
2793
2794 Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
2795
2796 @item visibility ("@var{visibility_type}")
2797 @cindex @code{visibility} attribute
2798 This attribute affects the linkage of the declaration to which it is attached.
2799 There are four supported @var{visibility_type} values: default,
2800 hidden, protected or internal visibility.
2801
2802 @smallexample
2803 void __attribute__ ((visibility ("protected")))
2804 f () @{ /* @r{Do something.} */; @}
2805 int i __attribute__ ((visibility ("hidden")));
2806 @end smallexample
2807
2808 The possible values of @var{visibility_type} correspond to the
2809 visibility settings in the ELF gABI.
2810
2811 @table @dfn
2812 @c keep this list of visibilities in alphabetical order.
2813
2814 @item default
2815 Default visibility is the normal case for the object file format.
2816 This value is available for the visibility attribute to override other
2817 options that may change the assumed visibility of entities.
2818
2819 On ELF, default visibility means that the declaration is visible to other
2820 modules and, in shared libraries, means that the declared entity may be
2821 overridden.
2822
2823 On Darwin, default visibility means that the declaration is visible to
2824 other modules.
2825
2826 Default visibility corresponds to ``external linkage'' in the language.
2827
2828 @item hidden
2829 Hidden visibility indicates that the entity declared will have a new
2830 form of linkage, which we'll call ``hidden linkage''. Two
2831 declarations of an object with hidden linkage refer to the same object
2832 if they are in the same shared object.
2833
2834 @item internal
2835 Internal visibility is like hidden visibility, but with additional
2836 processor specific semantics. Unless otherwise specified by the
2837 psABI, GCC defines internal visibility to mean that a function is
2838 @emph{never} called from another module. Compare this with hidden
2839 functions which, while they cannot be referenced directly by other
2840 modules, can be referenced indirectly via function pointers. By
2841 indicating that a function cannot be called from outside the module,
2842 GCC may for instance omit the load of a PIC register since it is known
2843 that the calling function loaded the correct value.
2844
2845 @item protected
2846 Protected visibility is like default visibility except that it
2847 indicates that references within the defining module will bind to the
2848 definition in that module. That is, the declared entity cannot be
2849 overridden by another module.
2850
2851 @end table
2852
2853 All visibilities are supported on many, but not all, ELF targets
2854 (supported when the assembler supports the @samp{.visibility}
2855 pseudo-op). Default visibility is supported everywhere. Hidden
2856 visibility is supported on Darwin targets.
2857
2858 The visibility attribute should be applied only to declarations which
2859 would otherwise have external linkage. The attribute should be applied
2860 consistently, so that the same entity should not be declared with
2861 different settings of the attribute.
2862
2863 In C++, the visibility attribute applies to types as well as functions
2864 and objects, because in C++ types have linkage. A class must not have
2865 greater visibility than its non-static data member types and bases,
2866 and class members default to the visibility of their class. Also, a
2867 declaration without explicit visibility is limited to the visibility
2868 of its type.
2869
2870 In C++, you can mark member functions and static member variables of a
2871 class with the visibility attribute. This is useful if if you know a
2872 particular method or static member variable should only be used from
2873 one shared object; then you can mark it hidden while the rest of the
2874 class has default visibility. Care must be taken to avoid breaking
2875 the One Definition Rule; for example, it is usually not useful to mark
2876 an inline method as hidden without marking the whole class as hidden.
2877
2878 A C++ namespace declaration can also have the visibility attribute.
2879 This attribute applies only to the particular namespace body, not to
2880 other definitions of the same namespace; it is equivalent to using
2881 @samp{#pragma GCC visibility} before and after the namespace
2882 definition (@pxref{Visibility Pragmas}).
2883
2884 In C++, if a template argument has limited visibility, this
2885 restriction is implicitly propagated to the template instantiation.
2886 Otherwise, template instantiations and specializations default to the
2887 visibility of their template.
2888
2889 If both the template and enclosing class have explicit visibility, the
2890 visibility from the template is used.
2891
2892 @item warn_unused_result
2893 @cindex @code{warn_unused_result} attribute
2894 The @code{warn_unused_result} attribute causes a warning to be emitted
2895 if a caller of the function with this attribute does not use its
2896 return value. This is useful for functions where not checking
2897 the result is either a security problem or always a bug, such as
2898 @code{realloc}.
2899
2900 @smallexample
2901 int fn () __attribute__ ((warn_unused_result));
2902 int foo ()
2903 @{
2904 if (fn () < 0) return -1;
2905 fn ();
2906 return 0;
2907 @}
2908 @end smallexample
2909
2910 results in warning on line 5.
2911
2912 @item weak
2913 @cindex @code{weak} attribute
2914 The @code{weak} attribute causes the declaration to be emitted as a weak
2915 symbol rather than a global. This is primarily useful in defining
2916 library functions which can be overridden in user code, though it can
2917 also be used with non-function declarations. Weak symbols are supported
2918 for ELF targets, and also for a.out targets when using the GNU assembler
2919 and linker.
2920
2921 @item weakref
2922 @itemx weakref ("@var{target}")
2923 @cindex @code{weakref} attribute
2924 The @code{weakref} attribute marks a declaration as a weak reference.
2925 Without arguments, it should be accompanied by an @code{alias} attribute
2926 naming the target symbol. Optionally, the @var{target} may be given as
2927 an argument to @code{weakref} itself. In either case, @code{weakref}
2928 implicitly marks the declaration as @code{weak}. Without a
2929 @var{target}, given as an argument to @code{weakref} or to @code{alias},
2930 @code{weakref} is equivalent to @code{weak}.
2931
2932 @smallexample
2933 static int x() __attribute__ ((weakref ("y")));
2934 /* is equivalent to... */
2935 static int x() __attribute__ ((weak, weakref, alias ("y")));
2936 /* and to... */
2937 static int x() __attribute__ ((weakref));
2938 static int x() __attribute__ ((alias ("y")));
2939 @end smallexample
2940
2941 A weak reference is an alias that does not by itself require a
2942 definition to be given for the target symbol. If the target symbol is
2943 only referenced through weak references, then the becomes a @code{weak}
2944 undefined symbol. If it is directly referenced, however, then such
2945 strong references prevail, and a definition will be required for the
2946 symbol, not necessarily in the same translation unit.
2947
2948 The effect is equivalent to moving all references to the alias to a
2949 separate translation unit, renaming the alias to the aliased symbol,
2950 declaring it as weak, compiling the two separate translation units and
2951 performing a reloadable link on them.
2952
2953 At present, a declaration to which @code{weakref} is attached can
2954 only be @code{static}.
2955
2956 @item externally_visible
2957 @cindex @code{externally_visible} attribute.
2958 This attribute, attached to a global variable or function nullify
2959 effect of @option{-fwhole-program} command line option, so the object
2960 remain visible outside the current compilation unit
2961
2962 @end table
2963
2964 You can specify multiple attributes in a declaration by separating them
2965 by commas within the double parentheses or by immediately following an
2966 attribute declaration with another attribute declaration.
2967
2968 @cindex @code{#pragma}, reason for not using
2969 @cindex pragma, reason for not using
2970 Some people object to the @code{__attribute__} feature, suggesting that
2971 ISO C's @code{#pragma} should be used instead. At the time
2972 @code{__attribute__} was designed, there were two reasons for not doing
2973 this.
2974
2975 @enumerate
2976 @item
2977 It is impossible to generate @code{#pragma} commands from a macro.
2978
2979 @item
2980 There is no telling what the same @code{#pragma} might mean in another
2981 compiler.
2982 @end enumerate
2983
2984 These two reasons applied to almost any application that might have been
2985 proposed for @code{#pragma}. It was basically a mistake to use
2986 @code{#pragma} for @emph{anything}.
2987
2988 The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
2989 to be generated from macros. In addition, a @code{#pragma GCC}
2990 namespace is now in use for GCC-specific pragmas. However, it has been
2991 found convenient to use @code{__attribute__} to achieve a natural
2992 attachment of attributes to their corresponding declarations, whereas
2993 @code{#pragma GCC} is of use for constructs that do not naturally form
2994 part of the grammar. @xref{Other Directives,,Miscellaneous
2995 Preprocessing Directives, cpp, The GNU C Preprocessor}.
2996
2997 @node Attribute Syntax
2998 @section Attribute Syntax
2999 @cindex attribute syntax
3000
3001 This section describes the syntax with which @code{__attribute__} may be
3002 used, and the constructs to which attribute specifiers bind, for the C
3003 language. Some details may vary for C++ and Objective-C@. Because of
3004 infelicities in the grammar for attributes, some forms described here
3005 may not be successfully parsed in all cases.
3006
3007 There are some problems with the semantics of attributes in C++. For
3008 example, there are no manglings for attributes, although they may affect
3009 code generation, so problems may arise when attributed types are used in
3010 conjunction with templates or overloading. Similarly, @code{typeid}
3011 does not distinguish between types with different attributes. Support
3012 for attributes in C++ may be restricted in future to attributes on
3013 declarations only, but not on nested declarators.
3014
3015 @xref{Function Attributes}, for details of the semantics of attributes
3016 applying to functions. @xref{Variable Attributes}, for details of the
3017 semantics of attributes applying to variables. @xref{Type Attributes},
3018 for details of the semantics of attributes applying to structure, union
3019 and enumerated types.
3020
3021 An @dfn{attribute specifier} is of the form
3022 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
3023 is a possibly empty comma-separated sequence of @dfn{attributes}, where
3024 each attribute is one of the following:
3025
3026 @itemize @bullet
3027 @item
3028 Empty. Empty attributes are ignored.
3029
3030 @item
3031 A word (which may be an identifier such as @code{unused}, or a reserved
3032 word such as @code{const}).
3033
3034 @item
3035 A word, followed by, in parentheses, parameters for the attribute.
3036 These parameters take one of the following forms:
3037
3038 @itemize @bullet
3039 @item
3040 An identifier. For example, @code{mode} attributes use this form.
3041
3042 @item
3043 An identifier followed by a comma and a non-empty comma-separated list
3044 of expressions. For example, @code{format} attributes use this form.
3045
3046 @item
3047 A possibly empty comma-separated list of expressions. For example,
3048 @code{format_arg} attributes use this form with the list being a single
3049 integer constant expression, and @code{alias} attributes use this form
3050 with the list being a single string constant.
3051 @end itemize
3052 @end itemize
3053
3054 An @dfn{attribute specifier list} is a sequence of one or more attribute
3055 specifiers, not separated by any other tokens.
3056
3057 In GNU C, an attribute specifier list may appear after the colon following a
3058 label, other than a @code{case} or @code{default} label. The only
3059 attribute it makes sense to use after a label is @code{unused}. This
3060 feature is intended for code generated by programs which contains labels
3061 that may be unused but which is compiled with @option{-Wall}. It would
3062 not normally be appropriate to use in it human-written code, though it
3063 could be useful in cases where the code that jumps to the label is
3064 contained within an @code{#ifdef} conditional. GNU C++ does not permit
3065 such placement of attribute lists, as it is permissible for a
3066 declaration, which could begin with an attribute list, to be labelled in
3067 C++. Declarations cannot be labelled in C90 or C99, so the ambiguity
3068 does not arise there.
3069
3070 An attribute specifier list may appear as part of a @code{struct},
3071 @code{union} or @code{enum} specifier. It may go either immediately
3072 after the @code{struct}, @code{union} or @code{enum} keyword, or after
3073 the closing brace. The former syntax is preferred.
3074 Where attribute specifiers follow the closing brace, they are considered
3075 to relate to the structure, union or enumerated type defined, not to any
3076 enclosing declaration the type specifier appears in, and the type
3077 defined is not complete until after the attribute specifiers.
3078 @c Otherwise, there would be the following problems: a shift/reduce
3079 @c conflict between attributes binding the struct/union/enum and
3080 @c binding to the list of specifiers/qualifiers; and "aligned"
3081 @c attributes could use sizeof for the structure, but the size could be
3082 @c changed later by "packed" attributes.
3083
3084 Otherwise, an attribute specifier appears as part of a declaration,
3085 counting declarations of unnamed parameters and type names, and relates
3086 to that declaration (which may be nested in another declaration, for
3087 example in the case of a parameter declaration), or to a particular declarator
3088 within a declaration. Where an
3089 attribute specifier is applied to a parameter declared as a function or
3090 an array, it should apply to the function or array rather than the
3091 pointer to which the parameter is implicitly converted, but this is not
3092 yet correctly implemented.
3093
3094 Any list of specifiers and qualifiers at the start of a declaration may
3095 contain attribute specifiers, whether or not such a list may in that
3096 context contain storage class specifiers. (Some attributes, however,
3097 are essentially in the nature of storage class specifiers, and only make
3098 sense where storage class specifiers may be used; for example,
3099 @code{section}.) There is one necessary limitation to this syntax: the
3100 first old-style parameter declaration in a function definition cannot
3101 begin with an attribute specifier, because such an attribute applies to
3102 the function instead by syntax described below (which, however, is not
3103 yet implemented in this case). In some other cases, attribute
3104 specifiers are permitted by this grammar but not yet supported by the
3105 compiler. All attribute specifiers in this place relate to the
3106 declaration as a whole. In the obsolescent usage where a type of
3107 @code{int} is implied by the absence of type specifiers, such a list of
3108 specifiers and qualifiers may be an attribute specifier list with no
3109 other specifiers or qualifiers.
3110
3111 At present, the first parameter in a function prototype must have some
3112 type specifier which is not an attribute specifier; this resolves an
3113 ambiguity in the interpretation of @code{void f(int
3114 (__attribute__((foo)) x))}, but is subject to change. At present, if
3115 the parentheses of a function declarator contain only attributes then
3116 those attributes are ignored, rather than yielding an error or warning
3117 or implying a single parameter of type int, but this is subject to
3118 change.
3119
3120 An attribute specifier list may appear immediately before a declarator
3121 (other than the first) in a comma-separated list of declarators in a
3122 declaration of more than one identifier using a single list of
3123 specifiers and qualifiers. Such attribute specifiers apply
3124 only to the identifier before whose declarator they appear. For
3125 example, in
3126
3127 @smallexample
3128 __attribute__((noreturn)) void d0 (void),
3129 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
3130 d2 (void)
3131 @end smallexample
3132
3133 @noindent
3134 the @code{noreturn} attribute applies to all the functions
3135 declared; the @code{format} attribute only applies to @code{d1}.
3136
3137 An attribute specifier list may appear immediately before the comma,
3138 @code{=} or semicolon terminating the declaration of an identifier other
3139 than a function definition. At present, such attribute specifiers apply
3140 to the declared object or function, but in future they may attach to the
3141 outermost adjacent declarator. In simple cases there is no difference,
3142 but, for example, in
3143
3144 @smallexample
3145 void (****f)(void) __attribute__((noreturn));
3146 @end smallexample
3147
3148 @noindent
3149 at present the @code{noreturn} attribute applies to @code{f}, which
3150 causes a warning since @code{f} is not a function, but in future it may
3151 apply to the function @code{****f}. The precise semantics of what
3152 attributes in such cases will apply to are not yet specified. Where an
3153 assembler name for an object or function is specified (@pxref{Asm
3154 Labels}), at present the attribute must follow the @code{asm}
3155 specification; in future, attributes before the @code{asm} specification
3156 may apply to the adjacent declarator, and those after it to the declared
3157 object or function.
3158
3159 An attribute specifier list may, in future, be permitted to appear after
3160 the declarator in a function definition (before any old-style parameter
3161 declarations or the function body).
3162
3163 Attribute specifiers may be mixed with type qualifiers appearing inside
3164 the @code{[]} of a parameter array declarator, in the C99 construct by
3165 which such qualifiers are applied to the pointer to which the array is
3166 implicitly converted. Such attribute specifiers apply to the pointer,
3167 not to the array, but at present this is not implemented and they are
3168 ignored.
3169
3170 An attribute specifier list may appear at the start of a nested
3171 declarator. At present, there are some limitations in this usage: the
3172 attributes correctly apply to the declarator, but for most individual
3173 attributes the semantics this implies are not implemented.
3174 When attribute specifiers follow the @code{*} of a pointer
3175 declarator, they may be mixed with any type qualifiers present.
3176 The following describes the formal semantics of this syntax. It will make the
3177 most sense if you are familiar with the formal specification of
3178 declarators in the ISO C standard.
3179
3180 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
3181 D1}, where @code{T} contains declaration specifiers that specify a type
3182 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
3183 contains an identifier @var{ident}. The type specified for @var{ident}
3184 for derived declarators whose type does not include an attribute
3185 specifier is as in the ISO C standard.
3186
3187 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
3188 and the declaration @code{T D} specifies the type
3189 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
3190 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
3191 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
3192
3193 If @code{D1} has the form @code{*
3194 @var{type-qualifier-and-attribute-specifier-list} D}, and the
3195 declaration @code{T D} specifies the type
3196 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
3197 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
3198 @var{type-qualifier-and-attribute-specifier-list} @var{Type}'' for
3199 @var{ident}.
3200
3201 For example,
3202
3203 @smallexample
3204 void (__attribute__((noreturn)) ****f) (void);
3205 @end smallexample
3206
3207 @noindent
3208 specifies the type ``pointer to pointer to pointer to pointer to
3209 non-returning function returning @code{void}''. As another example,
3210
3211 @smallexample
3212 char *__attribute__((aligned(8))) *f;
3213 @end smallexample
3214
3215 @noindent
3216 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
3217 Note again that this does not work with most attributes; for example,
3218 the usage of @samp{aligned} and @samp{noreturn} attributes given above
3219 is not yet supported.
3220
3221 For compatibility with existing code written for compiler versions that
3222 did not implement attributes on nested declarators, some laxity is
3223 allowed in the placing of attributes. If an attribute that only applies
3224 to types is applied to a declaration, it will be treated as applying to
3225 the type of that declaration. If an attribute that only applies to
3226 declarations is applied to the type of a declaration, it will be treated
3227 as applying to that declaration; and, for compatibility with code
3228 placing the attributes immediately before the identifier declared, such
3229 an attribute applied to a function return type will be treated as
3230 applying to the function type, and such an attribute applied to an array
3231 element type will be treated as applying to the array type. If an
3232 attribute that only applies to function types is applied to a
3233 pointer-to-function type, it will be treated as applying to the pointer
3234 target type; if such an attribute is applied to a function return type
3235 that is not a pointer-to-function type, it will be treated as applying
3236 to the function type.
3237
3238 @node Function Prototypes
3239 @section Prototypes and Old-Style Function Definitions
3240 @cindex function prototype declarations
3241 @cindex old-style function definitions
3242 @cindex promotion of formal parameters
3243
3244 GNU C extends ISO C to allow a function prototype to override a later
3245 old-style non-prototype definition. Consider the following example:
3246
3247 @smallexample
3248 /* @r{Use prototypes unless the compiler is old-fashioned.} */
3249 #ifdef __STDC__
3250 #define P(x) x
3251 #else
3252 #define P(x) ()
3253 #endif
3254
3255 /* @r{Prototype function declaration.} */
3256 int isroot P((uid_t));
3257
3258 /* @r{Old-style function definition.} */
3259 int
3260 isroot (x) /* @r{??? lossage here ???} */
3261 uid_t x;
3262 @{
3263 return x == 0;
3264 @}
3265 @end smallexample
3266
3267 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
3268 not allow this example, because subword arguments in old-style
3269 non-prototype definitions are promoted. Therefore in this example the
3270 function definition's argument is really an @code{int}, which does not
3271 match the prototype argument type of @code{short}.
3272
3273 This restriction of ISO C makes it hard to write code that is portable
3274 to traditional C compilers, because the programmer does not know
3275 whether the @code{uid_t} type is @code{short}, @code{int}, or
3276 @code{long}. Therefore, in cases like these GNU C allows a prototype
3277 to override a later old-style definition. More precisely, in GNU C, a
3278 function prototype argument type overrides the argument type specified
3279 by a later old-style definition if the former type is the same as the
3280 latter type before promotion. Thus in GNU C the above example is
3281 equivalent to the following:
3282
3283 @smallexample
3284 int isroot (uid_t);
3285
3286 int
3287 isroot (uid_t x)
3288 @{
3289 return x == 0;
3290 @}
3291 @end smallexample
3292
3293 @noindent
3294 GNU C++ does not support old-style function definitions, so this
3295 extension is irrelevant.
3296
3297 @node C++ Comments
3298 @section C++ Style Comments
3299 @cindex //
3300 @cindex C++ comments
3301 @cindex comments, C++ style
3302
3303 In GNU C, you may use C++ style comments, which start with @samp{//} and
3304 continue until the end of the line. Many other C implementations allow
3305 such comments, and they are included in the 1999 C standard. However,
3306 C++ style comments are not recognized if you specify an @option{-std}
3307 option specifying a version of ISO C before C99, or @option{-ansi}
3308 (equivalent to @option{-std=c89}).
3309
3310 @node Dollar Signs
3311 @section Dollar Signs in Identifier Names
3312 @cindex $
3313 @cindex dollar signs in identifier names
3314 @cindex identifier names, dollar signs in
3315
3316 In GNU C, you may normally use dollar signs in identifier names.
3317 This is because many traditional C implementations allow such identifiers.
3318 However, dollar signs in identifiers are not supported on a few target
3319 machines, typically because the target assembler does not allow them.
3320
3321 @node Character Escapes
3322 @section The Character @key{ESC} in Constants
3323
3324 You can use the sequence @samp{\e} in a string or character constant to
3325 stand for the ASCII character @key{ESC}.
3326
3327 @node Alignment
3328 @section Inquiring on Alignment of Types or Variables
3329 @cindex alignment
3330 @cindex type alignment
3331 @cindex variable alignment
3332
3333 The keyword @code{__alignof__} allows you to inquire about how an object
3334 is aligned, or the minimum alignment usually required by a type. Its
3335 syntax is just like @code{sizeof}.
3336
3337 For example, if the target machine requires a @code{double} value to be
3338 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
3339 This is true on many RISC machines. On more traditional machine
3340 designs, @code{__alignof__ (double)} is 4 or even 2.
3341
3342 Some machines never actually require alignment; they allow reference to any
3343 data type even at an odd address. For these machines, @code{__alignof__}
3344 reports the @emph{recommended} alignment of a type.
3345
3346 If the operand of @code{__alignof__} is an lvalue rather than a type,
3347 its value is the required alignment for its type, taking into account
3348 any minimum alignment specified with GCC's @code{__attribute__}
3349 extension (@pxref{Variable Attributes}). For example, after this
3350 declaration:
3351
3352 @smallexample
3353 struct foo @{ int x; char y; @} foo1;
3354 @end smallexample
3355
3356 @noindent
3357 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
3358 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
3359
3360 It is an error to ask for the alignment of an incomplete type.
3361
3362 @node Variable Attributes
3363 @section Specifying Attributes of Variables
3364 @cindex attribute of variables
3365 @cindex variable attributes
3366
3367 The keyword @code{__attribute__} allows you to specify special
3368 attributes of variables or structure fields. This keyword is followed
3369 by an attribute specification inside double parentheses. Some
3370 attributes are currently defined generically for variables.
3371 Other attributes are defined for variables on particular target
3372 systems. Other attributes are available for functions
3373 (@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
3374 Other front ends might define more attributes
3375 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
3376
3377 You may also specify attributes with @samp{__} preceding and following
3378 each keyword. This allows you to use them in header files without
3379 being concerned about a possible macro of the same name. For example,
3380 you may use @code{__aligned__} instead of @code{aligned}.
3381
3382 @xref{Attribute Syntax}, for details of the exact syntax for using
3383 attributes.
3384
3385 @table @code
3386 @cindex @code{aligned} attribute
3387 @item aligned (@var{alignment})
3388 This attribute specifies a minimum alignment for the variable or
3389 structure field, measured in bytes. For example, the declaration:
3390
3391 @smallexample
3392 int x __attribute__ ((aligned (16))) = 0;
3393 @end smallexample
3394
3395 @noindent
3396 causes the compiler to allocate the global variable @code{x} on a
3397 16-byte boundary. On a 68040, this could be used in conjunction with
3398 an @code{asm} expression to access the @code{move16} instruction which
3399 requires 16-byte aligned operands.
3400
3401 You can also specify the alignment of structure fields. For example, to
3402 create a double-word aligned @code{int} pair, you could write:
3403
3404 @smallexample
3405 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
3406 @end smallexample
3407
3408 @noindent
3409 This is an alternative to creating a union with a @code{double} member
3410 that forces the union to be double-word aligned.
3411
3412 As in the preceding examples, you can explicitly specify the alignment
3413 (in bytes) that you wish the compiler to use for a given variable or
3414 structure field. Alternatively, you can leave out the alignment factor
3415 and just ask the compiler to align a variable or field to the maximum
3416 useful alignment for the target machine you are compiling for. For
3417 example, you could write:
3418
3419 @smallexample
3420 short array[3] __attribute__ ((aligned));
3421 @end smallexample
3422
3423 Whenever you leave out the alignment factor in an @code{aligned} attribute
3424 specification, the compiler automatically sets the alignment for the declared
3425 variable or field to the largest alignment which is ever used for any data
3426 type on the target machine you are compiling for. Doing this can often make
3427 copy operations more efficient, because the compiler can use whatever
3428 instructions copy the biggest chunks of memory when performing copies to
3429 or from the variables or fields that you have aligned this way.
3430
3431 When used on a struct, or struct member, the @code{aligned} attribute can
3432 only increase the alignment; in order to decrease it, the @code{packed}
3433 attribute must be specified as well. When used as part of a typedef, the
3434 @code{aligned} attribute can both increase and decrease alignment, and
3435 specifying the @code{packed} attribute will generate a warning.
3436
3437 Note that the effectiveness of @code{aligned} attributes may be limited
3438 by inherent limitations in your linker. On many systems, the linker is
3439 only able to arrange for variables to be aligned up to a certain maximum
3440 alignment. (For some linkers, the maximum supported alignment may
3441 be very very small.) If your linker is only able to align variables
3442 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
3443 in an @code{__attribute__} will still only provide you with 8 byte
3444 alignment. See your linker documentation for further information.
3445
3446 The @code{aligned} attribute can also be used for functions
3447 (@pxref{Function Attributes}.)
3448
3449 @item cleanup (@var{cleanup_function})
3450 @cindex @code{cleanup} attribute
3451 The @code{cleanup} attribute runs a function when the variable goes
3452 out of scope. This attribute can only be applied to auto function
3453 scope variables; it may not be applied to parameters or variables
3454 with static storage duration. The function must take one parameter,
3455 a pointer to a type compatible with the variable. The return value
3456 of the function (if any) is ignored.
3457
3458 If @option{-fexceptions} is enabled, then @var{cleanup_function}
3459 will be run during the stack unwinding that happens during the
3460 processing of the exception. Note that the @code{cleanup} attribute
3461 does not allow the exception to be caught, only to perform an action.
3462 It is undefined what happens if @var{cleanup_function} does not
3463 return normally.
3464
3465 @item common
3466 @itemx nocommon
3467 @cindex @code{common} attribute
3468 @cindex @code{nocommon} attribute
3469 @opindex fcommon
3470 @opindex fno-common
3471 The @code{common} attribute requests GCC to place a variable in
3472 ``common'' storage. The @code{nocommon} attribute requests the
3473 opposite---to allocate space for it directly.
3474
3475 These attributes override the default chosen by the
3476 @option{-fno-common} and @option{-fcommon} flags respectively.
3477
3478 @item deprecated
3479 @cindex @code{deprecated} attribute
3480 The @code{deprecated} attribute results in a warning if the variable
3481 is used anywhere in the source file. This is useful when identifying
3482 variables that are expected to be removed in a future version of a
3483 program. The warning also includes the location of the declaration
3484 of the deprecated variable, to enable users to easily find further
3485 information about why the variable is deprecated, or what they should
3486 do instead. Note that the warning only occurs for uses:
3487
3488 @smallexample
3489 extern int old_var __attribute__ ((deprecated));
3490 extern int old_var;
3491 int new_fn () @{ return old_var; @}
3492 @end smallexample
3493
3494 results in a warning on line 3 but not line 2.
3495
3496 The @code{deprecated} attribute can also be used for functions and
3497 types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
3498
3499 @item mode (@var{mode})
3500 @cindex @code{mode} attribute
3501 This attribute specifies the data type for the declaration---whichever
3502 type corresponds to the mode @var{mode}. This in effect lets you
3503 request an integer or floating point type according to its width.
3504
3505 You may also specify a mode of @samp{byte} or @samp{__byte__} to
3506 indicate the mode corresponding to a one-byte integer, @samp{word} or
3507 @samp{__word__} for the mode of a one-word integer, and @samp{pointer}
3508 or @samp{__pointer__} for the mode used to represent pointers.
3509
3510 @item packed
3511 @cindex @code{packed} attribute
3512 The @code{packed} attribute specifies that a variable or structure field
3513 should have the smallest possible alignment---one byte for a variable,
3514 and one bit for a field, unless you specify a larger value with the
3515 @code{aligned} attribute.
3516
3517 Here is a structure in which the field @code{x} is packed, so that it
3518 immediately follows @code{a}:
3519
3520 @smallexample
3521 struct foo
3522 @{
3523 char a;
3524 int x[2] __attribute__ ((packed));
3525 @};
3526 @end smallexample
3527
3528 @item section ("@var{section-name}")
3529 @cindex @code{section} variable attribute
3530 Normally, the compiler places the objects it generates in sections like
3531 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
3532 or you need certain particular variables to appear in special sections,
3533 for example to map to special hardware. The @code{section}
3534 attribute specifies that a variable (or function) lives in a particular
3535 section. For example, this small program uses several specific section names:
3536
3537 @smallexample
3538 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
3539 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
3540 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
3541 int init_data __attribute__ ((section ("INITDATA"))) = 0;
3542
3543 main()
3544 @{
3545 /* @r{Initialize stack pointer} */
3546 init_sp (stack + sizeof (stack));
3547
3548 /* @r{Initialize initialized data} */
3549 memcpy (&init_data, &data, &edata - &data);
3550
3551 /* @r{Turn on the serial ports} */
3552 init_duart (&a);
3553 init_duart (&b);
3554 @}
3555 @end smallexample
3556
3557 @noindent
3558 Use the @code{section} attribute with an @emph{initialized} definition
3559 of a @emph{global} variable, as shown in the example. GCC issues
3560 a warning and otherwise ignores the @code{section} attribute in
3561 uninitialized variable declarations.
3562
3563 You may only use the @code{section} attribute with a fully initialized
3564 global definition because of the way linkers work. The linker requires
3565 each object be defined once, with the exception that uninitialized
3566 variables tentatively go in the @code{common} (or @code{bss}) section
3567 and can be multiply ``defined''. You can force a variable to be
3568 initialized with the @option{-fno-common} flag or the @code{nocommon}
3569 attribute.
3570
3571 Some file formats do not support arbitrary sections so the @code{section}
3572 attribute is not available on all platforms.
3573 If you need to map the entire contents of a module to a particular
3574 section, consider using the facilities of the linker instead.
3575
3576 @item shared
3577 @cindex @code{shared} variable attribute
3578 On Microsoft Windows, in addition to putting variable definitions in a named
3579 section, the section can also be shared among all running copies of an
3580 executable or DLL@. For example, this small program defines shared data
3581 by putting it in a named section @code{shared} and marking the section
3582 shareable:
3583
3584 @smallexample
3585 int foo __attribute__((section ("shared"), shared)) = 0;
3586
3587 int
3588 main()
3589 @{
3590 /* @r{Read and write foo. All running
3591 copies see the same value.} */
3592 return 0;
3593 @}
3594 @end smallexample
3595
3596 @noindent
3597 You may only use the @code{shared} attribute along with @code{section}
3598 attribute with a fully initialized global definition because of the way
3599 linkers work. See @code{section} attribute for more information.
3600
3601 The @code{shared} attribute is only available on Microsoft Windows@.
3602
3603 @item tls_model ("@var{tls_model}")
3604 @cindex @code{tls_model} attribute
3605 The @code{tls_model} attribute sets thread-local storage model
3606 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
3607 overriding @option{-ftls-model=} command line switch on a per-variable
3608 basis.
3609 The @var{tls_model} argument should be one of @code{global-dynamic},
3610 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
3611
3612 Not all targets support this attribute.
3613
3614 @item unused
3615 This attribute, attached to a variable, means that the variable is meant
3616 to be possibly unused. GCC will not produce a warning for this
3617 variable.
3618
3619 @item used
3620 This attribute, attached to a variable, means that the variable must be
3621 emitted even if it appears that the variable is not referenced.
3622
3623 @item vector_size (@var{bytes})
3624 This attribute specifies the vector size for the variable, measured in
3625 bytes. For example, the declaration:
3626
3627 @smallexample
3628 int foo __attribute__ ((vector_size (16)));
3629 @end smallexample
3630
3631 @noindent
3632 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
3633 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
3634 4 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
3635
3636 This attribute is only applicable to integral and float scalars,
3637 although arrays, pointers, and function return values are allowed in
3638 conjunction with this construct.
3639
3640 Aggregates with this attribute are invalid, even if they are of the same
3641 size as a corresponding scalar. For example, the declaration:
3642
3643 @smallexample
3644 struct S @{ int a; @};
3645 struct S __attribute__ ((vector_size (16))) foo;
3646 @end smallexample
3647
3648 @noindent
3649 is invalid even if the size of the structure is the same as the size of
3650 the @code{int}.
3651
3652 @item selectany
3653 The @code{selectany} attribute causes an initialized global variable to
3654 have link-once semantics. When multiple definitions of the variable are
3655 encountered by the linker, the first is selected and the remainder are
3656 discarded. Following usage by the Microsoft compiler, the linker is told
3657 @emph{not} to warn about size or content differences of the multiple
3658 definitions.
3659
3660 Although the primary usage of this attribute is for POD types, the
3661 attribute can also be applied to global C++ objects that are initialized
3662 by a constructor. In this case, the static initialization and destruction
3663 code for the object is emitted in each translation defining the object,
3664 but the calls to the constructor and destructor are protected by a
3665 link-once guard variable.
3666
3667 The @code{selectany} attribute is only available on Microsoft Windows
3668 targets. You can use @code{__declspec (selectany)} as a synonym for
3669 @code{__attribute__ ((selectany))} for compatibility with other
3670 compilers.
3671
3672 @item weak
3673 The @code{weak} attribute is described in @xref{Function Attributes}.
3674
3675 @item dllimport
3676 The @code{dllimport} attribute is described in @xref{Function Attributes}.
3677
3678 @item dllexport
3679 The @code{dllexport} attribute is described in @xref{Function Attributes}.
3680
3681 @end table
3682
3683 @subsection Blackfin Variable Attributes
3684
3685 Three attributes are currently defined for the Blackfin.
3686
3687 @table @code
3688 @item l1_data
3689 @item l1_data_A
3690 @item l1_data_B
3691 @cindex @code{l1_data} variable attribute
3692 @cindex @code{l1_data_A} variable attribute
3693 @cindex @code{l1_data_B} variable attribute
3694 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
3695 Variables with @code{l1_data} attribute will be put into the specific section
3696 named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
3697 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
3698 attribute will be put into the specific section named @code{.l1.data.B}.
3699 @end table
3700
3701 @subsection M32R/D Variable Attributes
3702
3703 One attribute is currently defined for the M32R/D@.
3704
3705 @table @code
3706 @item model (@var{model-name})
3707 @cindex variable addressability on the M32R/D
3708 Use this attribute on the M32R/D to set the addressability of an object.
3709 The identifier @var{model-name} is one of @code{small}, @code{medium},
3710 or @code{large}, representing each of the code models.
3711
3712 Small model objects live in the lower 16MB of memory (so that their
3713 addresses can be loaded with the @code{ld24} instruction).
3714
3715 Medium and large model objects may live anywhere in the 32-bit address space
3716 (the compiler will generate @code{seth/add3} instructions to load their
3717 addresses).
3718 @end table
3719
3720 @anchor{i386 Variable Attributes}
3721 @subsection i386 Variable Attributes
3722
3723 Two attributes are currently defined for i386 configurations:
3724 @code{ms_struct} and @code{gcc_struct}
3725
3726 @table @code
3727 @item ms_struct
3728 @itemx gcc_struct
3729 @cindex @code{ms_struct} attribute
3730 @cindex @code{gcc_struct} attribute
3731
3732 If @code{packed} is used on a structure, or if bit-fields are used
3733 it may be that the Microsoft ABI packs them differently
3734 than GCC would normally pack them. Particularly when moving packed
3735 data between functions compiled with GCC and the native Microsoft compiler
3736 (either via function call or as data in a file), it may be necessary to access
3737 either format.
3738
3739 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
3740 compilers to match the native Microsoft compiler.
3741
3742 The Microsoft structure layout algorithm is fairly simple with the exception
3743 of the bitfield packing:
3744
3745 The padding and alignment of members of structures and whether a bit field
3746 can straddle a storage-unit boundary
3747
3748 @enumerate
3749 @item Structure members are stored sequentially in the order in which they are
3750 declared: the first member has the lowest memory address and the last member
3751 the highest.
3752
3753 @item Every data object has an alignment-requirement. The alignment-requirement
3754 for all data except structures, unions, and arrays is either the size of the
3755 object or the current packing size (specified with either the aligned attribute
3756 or the pack pragma), whichever is less. For structures, unions, and arrays,
3757 the alignment-requirement is the largest alignment-requirement of its members.
3758 Every object is allocated an offset so that:
3759
3760 offset % alignment-requirement == 0
3761
3762 @item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
3763 unit if the integral types are the same size and if the next bit field fits
3764 into the current allocation unit without crossing the boundary imposed by the
3765 common alignment requirements of the bit fields.
3766 @end enumerate
3767
3768 Handling of zero-length bitfields:
3769
3770 MSVC interprets zero-length bitfields in the following ways:
3771
3772 @enumerate
3773 @item If a zero-length bitfield is inserted between two bitfields that would
3774 normally be coalesced, the bitfields will not be coalesced.
3775
3776 For example:
3777
3778 @smallexample
3779 struct
3780 @{
3781 unsigned long bf_1 : 12;
3782 unsigned long : 0;
3783 unsigned long bf_2 : 12;
3784 @} t1;
3785 @end smallexample
3786
3787 The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
3788 zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
3789
3790 @item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
3791 alignment of the zero-length bitfield is greater than the member that follows it,
3792 @code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
3793
3794 For example:
3795
3796 @smallexample
3797 struct
3798 @{
3799 char foo : 4;
3800 short : 0;
3801 char bar;
3802 @} t2;
3803
3804 struct
3805 @{
3806 char foo : 4;
3807 short : 0;
3808 double bar;
3809 @} t3;
3810 @end smallexample
3811
3812 For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
3813 Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
3814 bitfield will not affect the alignment of @code{bar} or, as a result, the size
3815 of the structure.
3816
3817 Taking this into account, it is important to note the following:
3818
3819 @enumerate
3820 @item If a zero-length bitfield follows a normal bitfield, the type of the
3821 zero-length bitfield may affect the alignment of the structure as whole. For
3822 example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
3823 normal bitfield, and is of type short.
3824
3825 @item Even if a zero-length bitfield is not followed by a normal bitfield, it may
3826 still affect the alignment of the structure:
3827
3828 @smallexample
3829 struct
3830 @{
3831 char foo : 6;
3832 long : 0;
3833 @} t4;
3834 @end smallexample
3835
3836 Here, @code{t4} will take up 4 bytes.
3837 @end enumerate
3838
3839 @item Zero-length bitfields following non-bitfield members are ignored:
3840
3841 @smallexample
3842 struct
3843 @{
3844 char foo;
3845 long : 0;
3846 char bar;
3847 @} t5;
3848 @end smallexample
3849
3850 Here, @code{t5} will take up 2 bytes.
3851 @end enumerate
3852 @end table
3853
3854 @subsection PowerPC Variable Attributes
3855
3856 Three attributes currently are defined for PowerPC configurations:
3857 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
3858
3859 For full documentation of the struct attributes please see the
3860 documentation in the @xref{i386 Variable Attributes}, section.
3861
3862 For documentation of @code{altivec} attribute please see the
3863 documentation in the @xref{PowerPC Type Attributes}, section.
3864
3865 @subsection SPU Variable Attributes
3866
3867 The SPU supports the @code{spu_vector} attribute for variables. For
3868 documentation of this attribute please see the documentation in the
3869 @xref{SPU Type Attributes}, section.
3870
3871 @subsection Xstormy16 Variable Attributes
3872
3873 One attribute is currently defined for xstormy16 configurations:
3874 @code{below100}
3875
3876 @table @code
3877 @item below100
3878 @cindex @code{below100} attribute
3879
3880 If a variable has the @code{below100} attribute (@code{BELOW100} is
3881 allowed also), GCC will place the variable in the first 0x100 bytes of
3882 memory and use special opcodes to access it. Such variables will be
3883 placed in either the @code{.bss_below100} section or the
3884 @code{.data_below100} section.
3885
3886 @end table
3887
3888 @subsection AVR Variable Attributes
3889
3890 @table @code
3891 @item progmem
3892 @cindex @code{progmem} variable attribute
3893 The @code{progmem} attribute is used on the AVR to place data in the Program
3894 Memory address space. The AVR is a Harvard Architecture processor and data
3895 normally resides in the Data Memory address space.
3896 @end table
3897
3898 @node Type Attributes
3899 @section Specifying Attributes of Types
3900 @cindex attribute of types
3901 @cindex type attributes
3902
3903 The keyword @code{__attribute__} allows you to specify special
3904 attributes of @code{struct} and @code{union} types when you define
3905 such types. This keyword is followed by an attribute specification
3906 inside double parentheses. Seven attributes are currently defined for
3907 types: @code{aligned}, @code{packed}, @code{transparent_union},
3908 @code{unused}, @code{deprecated}, @code{visibility}, and
3909 @code{may_alias}. Other attributes are defined for functions
3910 (@pxref{Function Attributes}) and for variables (@pxref{Variable
3911 Attributes}).
3912
3913 You may also specify any one of these attributes with @samp{__}
3914 preceding and following its keyword. This allows you to use these
3915 attributes in header files without being concerned about a possible
3916 macro of the same name. For example, you may use @code{__aligned__}
3917 instead of @code{aligned}.
3918
3919 You may specify type attributes either in a @code{typedef} declaration
3920 or in an enum, struct or union type declaration or definition.
3921
3922 For an enum, struct or union type, you may specify attributes either
3923 between the enum, struct or union tag and the name of the type, or
3924 just past the closing curly brace of the @emph{definition}. The
3925 former syntax is preferred.
3926
3927 @xref{Attribute Syntax}, for details of the exact syntax for using
3928 attributes.
3929
3930 @table @code
3931 @cindex @code{aligned} attribute
3932 @item aligned (@var{alignment})
3933 This attribute specifies a minimum alignment (in bytes) for variables
3934 of the specified type. For example, the declarations:
3935
3936 @smallexample
3937 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
3938 typedef int more_aligned_int __attribute__ ((aligned (8)));
3939 @end smallexample
3940
3941 @noindent
3942 force the compiler to insure (as far as it can) that each variable whose
3943 type is @code{struct S} or @code{more_aligned_int} will be allocated and
3944 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
3945 variables of type @code{struct S} aligned to 8-byte boundaries allows
3946 the compiler to use the @code{ldd} and @code{std} (doubleword load and
3947 store) instructions when copying one variable of type @code{struct S} to
3948 another, thus improving run-time efficiency.
3949
3950 Note that the alignment of any given @code{struct} or @code{union} type
3951 is required by the ISO C standard to be at least a perfect multiple of
3952 the lowest common multiple of the alignments of all of the members of
3953 the @code{struct} or @code{union} in question. This means that you @emph{can}
3954 effectively adjust the alignment of a @code{struct} or @code{union}
3955 type by attaching an @code{aligned} attribute to any one of the members
3956 of such a type, but the notation illustrated in the example above is a
3957 more obvious, intuitive, and readable way to request the compiler to
3958 adjust the alignment of an entire @code{struct} or @code{union} type.
3959
3960 As in the preceding example, you can explicitly specify the alignment
3961 (in bytes) that you wish the compiler to use for a given @code{struct}
3962 or @code{union} type. Alternatively, you can leave out the alignment factor
3963 and just ask the compiler to align a type to the maximum
3964 useful alignment for the target machine you are compiling for. For
3965 example, you could write:
3966
3967 @smallexample
3968 struct S @{ short f[3]; @} __attribute__ ((aligned));
3969 @end smallexample
3970
3971 Whenever you leave out the alignment factor in an @code{aligned}
3972 attribute specification, the compiler automatically sets the alignment
3973 for the type to the largest alignment which is ever used for any data
3974 type on the target machine you are compiling for. Doing this can often
3975 make copy operations more efficient, because the compiler can use
3976 whatever instructions copy the biggest chunks of memory when performing
3977 copies to or from the variables which have types that you have aligned
3978 this way.
3979
3980 In the example above, if the size of each @code{short} is 2 bytes, then
3981 the size of the entire @code{struct S} type is 6 bytes. The smallest
3982 power of two which is greater than or equal to that is 8, so the
3983 compiler sets the alignment for the entire @code{struct S} type to 8
3984 bytes.
3985
3986 Note that although you can ask the compiler to select a time-efficient
3987 alignment for a given type and then declare only individual stand-alone
3988 objects of that type, the compiler's ability to select a time-efficient
3989 alignment is primarily useful only when you plan to create arrays of
3990 variables having the relevant (efficiently aligned) type. If you
3991 declare or use arrays of variables of an efficiently-aligned type, then
3992 it is likely that your program will also be doing pointer arithmetic (or
3993 subscripting, which amounts to the same thing) on pointers to the
3994 relevant type, and the code that the compiler generates for these
3995 pointer arithmetic operations will often be more efficient for
3996 efficiently-aligned types than for other types.
3997
3998 The @code{aligned} attribute can only increase the alignment; but you
3999 can decrease it by specifying @code{packed} as well. See below.
4000
4001 Note that the effectiveness of @code{aligned} attributes may be limited
4002 by inherent limitations in your linker. On many systems, the linker is
4003 only able to arrange for variables to be aligned up to a certain maximum
4004 alignment. (For some linkers, the maximum supported alignment may
4005 be very very small.) If your linker is only able to align variables
4006 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4007 in an @code{__attribute__} will still only provide you with 8 byte
4008 alignment. See your linker documentation for further information.
4009
4010 @item packed
4011 This attribute, attached to @code{struct} or @code{union} type
4012 definition, specifies that each member (other than zero-width bitfields)
4013 of the structure or union is placed to minimize the memory required. When
4014 attached to an @code{enum} definition, it indicates that the smallest
4015 integral type should be used.
4016
4017 @opindex fshort-enums
4018 Specifying this attribute for @code{struct} and @code{union} types is
4019 equivalent to specifying the @code{packed} attribute on each of the
4020 structure or union members. Specifying the @option{-fshort-enums}
4021 flag on the line is equivalent to specifying the @code{packed}
4022 attribute on all @code{enum} definitions.
4023
4024 In the following example @code{struct my_packed_struct}'s members are
4025 packed closely together, but the internal layout of its @code{s} member
4026 is not packed---to do that, @code{struct my_unpacked_struct} would need to
4027 be packed too.
4028
4029 @smallexample
4030 struct my_unpacked_struct
4031 @{
4032 char c;
4033 int i;
4034 @};
4035
4036 struct __attribute__ ((__packed__)) my_packed_struct
4037 @{
4038 char c;
4039 int i;
4040 struct my_unpacked_struct s;
4041 @};
4042 @end smallexample
4043
4044 You may only specify this attribute on the definition of a @code{enum},
4045 @code{struct} or @code{union}, not on a @code{typedef} which does not
4046 also define the enumerated type, structure or union.
4047
4048 @item transparent_union
4049 This attribute, attached to a @code{union} type definition, indicates
4050 that any function parameter having that union type causes calls to that
4051 function to be treated in a special way.
4052
4053 First, the argument corresponding to a transparent union type can be of
4054 any type in the union; no cast is required. Also, if the union contains
4055 a pointer type, the corresponding argument can be a null pointer
4056 constant or a void pointer expression; and if the union contains a void
4057 pointer type, the corresponding argument can be any pointer expression.
4058 If the union member type is a pointer, qualifiers like @code{const} on
4059 the referenced type must be respected, just as with normal pointer
4060 conversions.
4061
4062 Second, the argument is passed to the function using the calling
4063 conventions of the first member of the transparent union, not the calling
4064 conventions of the union itself. All members of the union must have the
4065 same machine representation; this is necessary for this argument passing
4066 to work properly.
4067
4068 Transparent unions are designed for library functions that have multiple
4069 interfaces for compatibility reasons. For example, suppose the
4070 @code{wait} function must accept either a value of type @code{int *} to
4071 comply with Posix, or a value of type @code{union wait *} to comply with
4072 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
4073 @code{wait} would accept both kinds of arguments, but it would also
4074 accept any other pointer type and this would make argument type checking
4075 less useful. Instead, @code{<sys/wait.h>} might define the interface
4076 as follows:
4077
4078 @smallexample
4079 typedef union
4080 @{
4081 int *__ip;
4082 union wait *__up;
4083 @} wait_status_ptr_t __attribute__ ((__transparent_union__));
4084
4085 pid_t wait (wait_status_ptr_t);
4086 @end smallexample
4087
4088 This interface allows either @code{int *} or @code{union wait *}
4089 arguments to be passed, using the @code{int *} calling convention.
4090 The program can call @code{wait} with arguments of either type:
4091
4092 @smallexample
4093 int w1 () @{ int w; return wait (&w); @}
4094 int w2 () @{ union wait w; return wait (&w); @}
4095 @end smallexample
4096
4097 With this interface, @code{wait}'s implementation might look like this:
4098
4099 @smallexample
4100 pid_t wait (wait_status_ptr_t p)
4101 @{
4102 return waitpid (-1, p.__ip, 0);
4103 @}
4104 @end smallexample
4105
4106 @item unused
4107 When attached to a type (including a @code{union} or a @code{struct}),
4108 this attribute means that variables of that type are meant to appear
4109 possibly unused. GCC will not produce a warning for any variables of
4110 that type, even if the variable appears to do nothing. This is often
4111 the case with lock or thread classes, which are usually defined and then
4112 not referenced, but contain constructors and destructors that have
4113 nontrivial bookkeeping functions.
4114
4115 @item deprecated
4116 The @code{deprecated} attribute results in a warning if the type
4117 is used anywhere in the source file. This is useful when identifying
4118 types that are expected to be removed in a future version of a program.
4119 If possible, the warning also includes the location of the declaration
4120 of the deprecated type, to enable users to easily find further
4121 information about why the type is deprecated, or what they should do
4122 instead. Note that the warnings only occur for uses and then only
4123 if the type is being applied to an identifier that itself is not being
4124 declared as deprecated.
4125
4126 @smallexample
4127 typedef int T1 __attribute__ ((deprecated));
4128 T1 x;
4129 typedef T1 T2;
4130 T2 y;
4131 typedef T1 T3 __attribute__ ((deprecated));
4132 T3 z __attribute__ ((deprecated));
4133 @end smallexample
4134
4135 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
4136 warning is issued for line 4 because T2 is not explicitly
4137 deprecated. Line 5 has no warning because T3 is explicitly
4138 deprecated. Similarly for line 6.
4139
4140 The @code{deprecated} attribute can also be used for functions and
4141 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
4142
4143 @item may_alias
4144 Accesses to objects with types with this attribute are not subjected to
4145 type-based alias analysis, but are instead assumed to be able to alias
4146 any other type of objects, just like the @code{char} type. See
4147 @option{-fstrict-aliasing} for more information on aliasing issues.
4148
4149 Example of use:
4150
4151 @smallexample
4152 typedef short __attribute__((__may_alias__)) short_a;
4153
4154 int
4155 main (void)
4156 @{
4157 int a = 0x12345678;
4158 short_a *b = (short_a *) &a;
4159
4160 b[1] = 0;
4161
4162 if (a == 0x12345678)
4163 abort();
4164
4165 exit(0);
4166 @}
4167 @end smallexample
4168
4169 If you replaced @code{short_a} with @code{short} in the variable
4170 declaration, the above program would abort when compiled with
4171 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
4172 above in recent GCC versions.
4173
4174 @item visibility
4175 In C++, attribute visibility (@pxref{Function Attributes}) can also be
4176 applied to class, struct, union and enum types. Unlike other type
4177 attributes, the attribute must appear between the initial keyword and
4178 the name of the type; it cannot appear after the body of the type.
4179
4180 Note that the type visibility is applied to vague linkage entities
4181 associated with the class (vtable, typeinfo node, etc.). In
4182 particular, if a class is thrown as an exception in one shared object
4183 and caught in another, the class must have default visibility.
4184 Otherwise the two shared objects will be unable to use the same
4185 typeinfo node and exception handling will break.
4186
4187 @subsection ARM Type Attributes
4188
4189 On those ARM targets that support @code{dllimport} (such as Symbian
4190 OS), you can use the @code{notshared} attribute to indicate that the
4191 virtual table and other similar data for a class should not be
4192 exported from a DLL@. For example:
4193
4194 @smallexample
4195 class __declspec(notshared) C @{
4196 public:
4197 __declspec(dllimport) C();
4198 virtual void f();
4199 @}
4200
4201 __declspec(dllexport)
4202 C::C() @{@}
4203 @end smallexample
4204
4205 In this code, @code{C::C} is exported from the current DLL, but the
4206 virtual table for @code{C} is not exported. (You can use
4207 @code{__attribute__} instead of @code{__declspec} if you prefer, but
4208 most Symbian OS code uses @code{__declspec}.)
4209
4210 @anchor{i386 Type Attributes}
4211 @subsection i386 Type Attributes
4212
4213 Two attributes are currently defined for i386 configurations:
4214 @code{ms_struct} and @code{gcc_struct}
4215
4216 @item ms_struct
4217 @itemx gcc_struct
4218 @cindex @code{ms_struct}
4219 @cindex @code{gcc_struct}
4220
4221 If @code{packed} is used on a structure, or if bit-fields are used
4222 it may be that the Microsoft ABI packs them differently
4223 than GCC would normally pack them. Particularly when moving packed
4224 data between functions compiled with GCC and the native Microsoft compiler
4225 (either via function call or as data in a file), it may be necessary to access
4226 either format.
4227
4228 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
4229 compilers to match the native Microsoft compiler.
4230 @end table
4231
4232 To specify multiple attributes, separate them by commas within the
4233 double parentheses: for example, @samp{__attribute__ ((aligned (16),
4234 packed))}.
4235
4236 @anchor{PowerPC Type Attributes}
4237 @subsection PowerPC Type Attributes
4238
4239 Three attributes currently are defined for PowerPC configurations:
4240 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
4241
4242 For full documentation of the struct attributes please see the
4243 documentation in the @xref{i386 Type Attributes}, section.
4244
4245 The @code{altivec} attribute allows one to declare AltiVec vector data
4246 types supported by the AltiVec Programming Interface Manual. The
4247 attribute requires an argument to specify one of three vector types:
4248 @code{vector__}, @code{pixel__} (always followed by unsigned short),
4249 and @code{bool__} (always followed by unsigned).
4250
4251 @smallexample
4252 __attribute__((altivec(vector__)))
4253 __attribute__((altivec(pixel__))) unsigned short
4254 __attribute__((altivec(bool__))) unsigned
4255 @end smallexample
4256
4257 These attributes mainly are intended to support the @code{__vector},
4258 @code{__pixel}, and @code{__bool} AltiVec keywords.
4259
4260 @anchor{SPU Type Attributes}
4261 @subsection SPU Type Attributes
4262
4263 The SPU supports the @code{spu_vector} attribute for types. This attribute
4264 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
4265 Language Extensions Specification. It is intended to support the
4266 @code{__vector} keyword.
4267
4268
4269 @node Inline
4270 @section An Inline Function is As Fast As a Macro
4271 @cindex inline functions
4272 @cindex integrating function code
4273 @cindex open coding
4274 @cindex macros, inline alternative
4275
4276 By declaring a function inline, you can direct GCC to make
4277 calls to that function faster. One way GCC can achieve this is to
4278 integrate that function's code into the code for its callers. This
4279 makes execution faster by eliminating the function-call overhead; in
4280 addition, if any of the actual argument values are constant, their
4281 known values may permit simplifications at compile time so that not
4282 all of the inline function's code needs to be included. The effect on
4283 code size is less predictable; object code may be larger or smaller
4284 with function inlining, depending on the particular case. You can
4285 also direct GCC to try to integrate all ``simple enough'' functions
4286 into their callers with the option @option{-finline-functions}.
4287
4288 GCC implements three different semantics of declaring a function
4289 inline. One is available with @option{-std=gnu89} or
4290 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
4291 on all inline declarations, another when @option{-std=c99} or
4292 @option{-std=gnu99} (without @option{-fgnu89-inline}), and the third
4293 is used when compiling C++.
4294
4295 To declare a function inline, use the @code{inline} keyword in its
4296 declaration, like this:
4297
4298 @smallexample
4299 static inline int
4300 inc (int *a)
4301 @{
4302 (*a)++;
4303 @}
4304 @end smallexample
4305
4306 If you are writing a header file to be included in ISO C89 programs, write
4307 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
4308
4309 The three types of inlining behave similarly in two important cases:
4310 when the @code{inline} keyword is used on a @code{static} function,
4311 like the example above, and when a function is first declared without
4312 using the @code{inline} keyword and then is defined with
4313 @code{inline}, like this:
4314
4315 @smallexample
4316 extern int inc (int *a);
4317 inline int
4318 inc (int *a)
4319 @{
4320 (*a)++;
4321 @}
4322 @end smallexample
4323
4324 In both of these common cases, the program behaves the same as if you
4325 had not used the @code{inline} keyword, except for its speed.
4326
4327 @cindex inline functions, omission of
4328 @opindex fkeep-inline-functions
4329 When a function is both inline and @code{static}, if all calls to the
4330 function are integrated into the caller, and the function's address is
4331 never used, then the function's own assembler code is never referenced.
4332 In this case, GCC does not actually output assembler code for the
4333 function, unless you specify the option @option{-fkeep-inline-functions}.
4334 Some calls cannot be integrated for various reasons (in particular,
4335 calls that precede the function's definition cannot be integrated, and
4336 neither can recursive calls within the definition). If there is a
4337 nonintegrated call, then the function is compiled to assembler code as
4338 usual. The function must also be compiled as usual if the program
4339 refers to its address, because that can't be inlined.
4340
4341 @opindex Winline
4342 Note that certain usages in a function definition can make it unsuitable
4343 for inline substitution. Among these usages are: use of varargs, use of
4344 alloca, use of variable sized data types (@pxref{Variable Length}),
4345 use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
4346 and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
4347 will warn when a function marked @code{inline} could not be substituted,
4348 and will give the reason for the failure.
4349
4350 @cindex automatic @code{inline} for C++ member fns
4351 @cindex @code{inline} automatic for C++ member fns
4352 @cindex member fns, automatically @code{inline}
4353 @cindex C++ member fns, automatically @code{inline}
4354 @opindex fno-default-inline
4355 As required by ISO C++, GCC considers member functions defined within
4356 the body of a class to be marked inline even if they are
4357 not explicitly declared with the @code{inline} keyword. You can
4358 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
4359 Options,,Options Controlling C++ Dialect}.
4360
4361 GCC does not inline any functions when not optimizing unless you specify
4362 the @samp{always_inline} attribute for the function, like this:
4363
4364 @smallexample
4365 /* @r{Prototype.} */
4366 inline void foo (const char) __attribute__((always_inline));
4367 @end smallexample
4368
4369 The remainder of this section is specific to GNU C89 inlining.
4370
4371 @cindex non-static inline function
4372 When an inline function is not @code{static}, then the compiler must assume
4373 that there may be calls from other source files; since a global symbol can
4374 be defined only once in any program, the function must not be defined in
4375 the other source files, so the calls therein cannot be integrated.
4376 Therefore, a non-@code{static} inline function is always compiled on its
4377 own in the usual fashion.
4378
4379 If you specify both @code{inline} and @code{extern} in the function
4380 definition, then the definition is used only for inlining. In no case
4381 is the function compiled on its own, not even if you refer to its
4382 address explicitly. Such an address becomes an external reference, as
4383 if you had only declared the function, and had not defined it.
4384
4385 This combination of @code{inline} and @code{extern} has almost the
4386 effect of a macro. The way to use it is to put a function definition in
4387 a header file with these keywords, and put another copy of the
4388 definition (lacking @code{inline} and @code{extern}) in a library file.
4389 The definition in the header file will cause most calls to the function
4390 to be inlined. If any uses of the function remain, they will refer to
4391 the single copy in the library.
4392
4393 @node Extended Asm
4394 @section Assembler Instructions with C Expression Operands
4395 @cindex extended @code{asm}
4396 @cindex @code{asm} expressions
4397 @cindex assembler instructions
4398 @cindex registers
4399
4400 In an assembler instruction using @code{asm}, you can specify the
4401 operands of the instruction using C expressions. This means you need not
4402 guess which registers or memory locations will contain the data you want
4403 to use.
4404
4405 You must specify an assembler instruction template much like what
4406 appears in a machine description, plus an operand constraint string for
4407 each operand.
4408
4409 For example, here is how to use the 68881's @code{fsinx} instruction:
4410
4411 @smallexample
4412 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
4413 @end smallexample
4414
4415 @noindent
4416 Here @code{angle} is the C expression for the input operand while
4417 @code{result} is that of the output operand. Each has @samp{"f"} as its
4418 operand constraint, saying that a floating point register is required.
4419 The @samp{=} in @samp{=f} indicates that the operand is an output; all
4420 output operands' constraints must use @samp{=}. The constraints use the
4421 same language used in the machine description (@pxref{Constraints}).
4422
4423 Each operand is described by an operand-constraint string followed by
4424 the C expression in parentheses. A colon separates the assembler
4425 template from the first output operand and another separates the last
4426 output operand from the first input, if any. Commas separate the
4427 operands within each group. The total number of operands is currently
4428 limited to 30; this limitation may be lifted in some future version of
4429 GCC@.
4430
4431 If there are no output operands but there are input operands, you must
4432 place two consecutive colons surrounding the place where the output
4433 operands would go.
4434
4435 As of GCC version 3.1, it is also possible to specify input and output
4436 operands using symbolic names which can be referenced within the
4437 assembler code. These names are specified inside square brackets
4438 preceding the constraint string, and can be referenced inside the
4439 assembler code using @code{%[@var{name}]} instead of a percentage sign
4440 followed by the operand number. Using named operands the above example
4441 could look like:
4442
4443 @smallexample
4444 asm ("fsinx %[angle],%[output]"
4445 : [output] "=f" (result)
4446 : [angle] "f" (angle));
4447 @end smallexample
4448
4449 @noindent
4450 Note that the symbolic operand names have no relation whatsoever to
4451 other C identifiers. You may use any name you like, even those of
4452 existing C symbols, but you must ensure that no two operands within the same
4453 assembler construct use the same symbolic name.
4454
4455 Output operand expressions must be lvalues; the compiler can check this.
4456 The input operands need not be lvalues. The compiler cannot check
4457 whether the operands have data types that are reasonable for the
4458 instruction being executed. It does not parse the assembler instruction
4459 template and does not know what it means or even whether it is valid
4460 assembler input. The extended @code{asm} feature is most often used for
4461 machine instructions the compiler itself does not know exist. If
4462 the output expression cannot be directly addressed (for example, it is a
4463 bit-field), your constraint must allow a register. In that case, GCC
4464 will use the register as the output of the @code{asm}, and then store
4465 that register into the output.
4466
4467 The ordinary output operands must be write-only; GCC will assume that
4468 the values in these operands before the instruction are dead and need
4469 not be generated. Extended asm supports input-output or read-write
4470 operands. Use the constraint character @samp{+} to indicate such an
4471 operand and list it with the output operands. You should only use
4472 read-write operands when the constraints for the operand (or the
4473 operand in which only some of the bits are to be changed) allow a
4474 register.
4475
4476 You may, as an alternative, logically split its function into two
4477 separate operands, one input operand and one write-only output
4478 operand. The connection between them is expressed by constraints
4479 which say they need to be in the same location when the instruction
4480 executes. You can use the same C expression for both operands, or
4481 different expressions. For example, here we write the (fictitious)
4482 @samp{combine} instruction with @code{bar} as its read-only source
4483 operand and @code{foo} as its read-write destination:
4484
4485 @smallexample
4486 asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
4487 @end smallexample
4488
4489 @noindent
4490 The constraint @samp{"0"} for operand 1 says that it must occupy the
4491 same location as operand 0. A number in constraint is allowed only in
4492 an input operand and it must refer to an output operand.
4493
4494 Only a number in the constraint can guarantee that one operand will be in
4495 the same place as another. The mere fact that @code{foo} is the value
4496 of both operands is not enough to guarantee that they will be in the
4497 same place in the generated assembler code. The following would not
4498 work reliably:
4499
4500 @smallexample
4501 asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
4502 @end smallexample
4503
4504 Various optimizations or reloading could cause operands 0 and 1 to be in
4505 different registers; GCC knows no reason not to do so. For example, the
4506 compiler might find a copy of the value of @code{foo} in one register and
4507 use it for operand 1, but generate the output operand 0 in a different
4508 register (copying it afterward to @code{foo}'s own address). Of course,
4509 since the register for operand 1 is not even mentioned in the assembler
4510 code, the result will not work, but GCC can't tell that.
4511
4512 As of GCC version 3.1, one may write @code{[@var{name}]} instead of
4513 the operand number for a matching constraint. For example:
4514
4515 @smallexample
4516 asm ("cmoveq %1,%2,%[result]"
4517 : [result] "=r"(result)
4518 : "r" (test), "r"(new), "[result]"(old));
4519 @end smallexample
4520
4521 Sometimes you need to make an @code{asm} operand be a specific register,
4522 but there's no matching constraint letter for that register @emph{by
4523 itself}. To force the operand into that register, use a local variable
4524 for the operand and specify the register in the variable declaration.
4525 @xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
4526 register constraint letter that matches the register:
4527
4528 @smallexample
4529 register int *p1 asm ("r0") = @dots{};
4530 register int *p2 asm ("r1") = @dots{};
4531 register int *result asm ("r0");
4532 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
4533 @end smallexample
4534
4535 @anchor{Example of asm with clobbered asm reg}
4536 In the above example, beware that a register that is call-clobbered by
4537 the target ABI will be overwritten by any function call in the
4538 assignment, including library calls for arithmetic operators.
4539 Assuming it is a call-clobbered register, this may happen to @code{r0}
4540 above by the assignment to @code{p2}. If you have to use such a
4541 register, use temporary variables for expressions between the register
4542 assignment and use:
4543
4544 @smallexample
4545 int t1 = @dots{};
4546 register int *p1 asm ("r0") = @dots{};
4547 register int *p2 asm ("r1") = t1;
4548 register int *result asm ("r0");
4549 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
4550 @end smallexample
4551
4552 Some instructions clobber specific hard registers. To describe this,
4553 write a third colon after the input operands, followed by the names of
4554 the clobbered hard registers (given as strings). Here is a realistic
4555 example for the VAX:
4556
4557 @smallexample
4558 asm volatile ("movc3 %0,%1,%2"
4559 : /* @r{no outputs} */
4560 : "g" (from), "g" (to), "g" (count)
4561 : "r0", "r1", "r2", "r3", "r4", "r5");
4562 @end smallexample
4563
4564 You may not write a clobber description in a way that overlaps with an
4565 input or output operand. For example, you may not have an operand
4566 describing a register class with one member if you mention that register
4567 in the clobber list. Variables declared to live in specific registers
4568 (@pxref{Explicit Reg Vars}), and used as asm input or output operands must
4569 have no part mentioned in the clobber description.
4570 There is no way for you to specify that an input
4571 operand is modified without also specifying it as an output
4572 operand. Note that if all the output operands you specify are for this
4573 purpose (and hence unused), you will then also need to specify
4574 @code{volatile} for the @code{asm} construct, as described below, to
4575 prevent GCC from deleting the @code{asm} statement as unused.
4576
4577 If you refer to a particular hardware register from the assembler code,
4578 you will probably have to list the register after the third colon to
4579 tell the compiler the register's value is modified. In some assemblers,
4580 the register names begin with @samp{%}; to produce one @samp{%} in the
4581 assembler code, you must write @samp{%%} in the input.
4582
4583 If your assembler instruction can alter the condition code register, add
4584 @samp{cc} to the list of clobbered registers. GCC on some machines
4585 represents the condition codes as a specific hardware register;
4586 @samp{cc} serves to name this register. On other machines, the
4587 condition code is handled differently, and specifying @samp{cc} has no
4588 effect. But it is valid no matter what the machine.
4589
4590 If your assembler instructions access memory in an unpredictable
4591 fashion, add @samp{memory} to the list of clobbered registers. This
4592 will cause GCC to not keep memory values cached in registers across the
4593 assembler instruction and not optimize stores or loads to that memory.
4594 You will also want to add the @code{volatile} keyword if the memory
4595 affected is not listed in the inputs or outputs of the @code{asm}, as
4596 the @samp{memory} clobber does not count as a side-effect of the
4597 @code{asm}. If you know how large the accessed memory is, you can add
4598 it as input or output but if this is not known, you should add
4599 @samp{memory}. As an example, if you access ten bytes of a string, you
4600 can use a memory input like:
4601
4602 @smallexample
4603 @{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
4604 @end smallexample
4605
4606 Note that in the following example the memory input is necessary,
4607 otherwise GCC might optimize the store to @code{x} away:
4608 @smallexample
4609 int foo ()
4610 @{
4611 int x = 42;
4612 int *y = &x;
4613 int result;
4614 asm ("magic stuff accessing an 'int' pointed to by '%1'"
4615 "=&d" (r) : "a" (y), "m" (*y));
4616 return result;
4617 @}
4618 @end smallexample
4619
4620 You can put multiple assembler instructions together in a single
4621 @code{asm} template, separated by the characters normally used in assembly
4622 code for the system. A combination that works in most places is a newline
4623 to break the line, plus a tab character to move to the instruction field
4624 (written as @samp{\n\t}). Sometimes semicolons can be used, if the
4625 assembler allows semicolons as a line-breaking character. Note that some
4626 assembler dialects use semicolons to start a comment.
4627 The input operands are guaranteed not to use any of the clobbered
4628 registers, and neither will the output operands' addresses, so you can
4629 read and write the clobbered registers as many times as you like. Here
4630 is an example of multiple instructions in a template; it assumes the
4631 subroutine @code{_foo} accepts arguments in registers 9 and 10:
4632
4633 @smallexample
4634 asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
4635 : /* no outputs */
4636 : "g" (from), "g" (to)
4637 : "r9", "r10");
4638 @end smallexample
4639
4640 Unless an output operand has the @samp{&} constraint modifier, GCC
4641 may allocate it in the same register as an unrelated input operand, on
4642 the assumption the inputs are consumed before the outputs are produced.
4643 This assumption may be false if the assembler code actually consists of
4644 more than one instruction. In such a case, use @samp{&} for each output
4645 operand that may not overlap an input. @xref{Modifiers}.
4646
4647 If you want to test the condition code produced by an assembler
4648 instruction, you must include a branch and a label in the @code{asm}
4649 construct, as follows:
4650
4651 @smallexample
4652 asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
4653 : "g" (result)
4654 : "g" (input));
4655 @end smallexample
4656
4657 @noindent
4658 This assumes your assembler supports local labels, as the GNU assembler
4659 and most Unix assemblers do.
4660
4661 Speaking of labels, jumps from one @code{asm} to another are not
4662 supported. The compiler's optimizers do not know about these jumps, and
4663 therefore they cannot take account of them when deciding how to
4664 optimize.
4665
4666 @cindex macros containing @code{asm}
4667 Usually the most convenient way to use these @code{asm} instructions is to
4668 encapsulate them in macros that look like functions. For example,
4669
4670 @smallexample
4671 #define sin(x) \
4672 (@{ double __value, __arg = (x); \
4673 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
4674 __value; @})
4675 @end smallexample
4676
4677 @noindent
4678 Here the variable @code{__arg} is used to make sure that the instruction
4679 operates on a proper @code{double} value, and to accept only those
4680 arguments @code{x} which can convert automatically to a @code{double}.
4681
4682 Another way to make sure the instruction operates on the correct data
4683 type is to use a cast in the @code{asm}. This is different from using a
4684 variable @code{__arg} in that it converts more different types. For
4685 example, if the desired type were @code{int}, casting the argument to
4686 @code{int} would accept a pointer with no complaint, while assigning the
4687 argument to an @code{int} variable named @code{__arg} would warn about
4688 using a pointer unless the caller explicitly casts it.
4689
4690 If an @code{asm} has output operands, GCC assumes for optimization
4691 purposes the instruction has no side effects except to change the output
4692 operands. This does not mean instructions with a side effect cannot be
4693 used, but you must be careful, because the compiler may eliminate them
4694 if the output operands aren't used, or move them out of loops, or
4695 replace two with one if they constitute a common subexpression. Also,
4696 if your instruction does have a side effect on a variable that otherwise
4697 appears not to change, the old value of the variable may be reused later
4698 if it happens to be found in a register.
4699
4700 You can prevent an @code{asm} instruction from being deleted
4701 by writing the keyword @code{volatile} after
4702 the @code{asm}. For example:
4703
4704 @smallexample
4705 #define get_and_set_priority(new) \
4706 (@{ int __old; \
4707 asm volatile ("get_and_set_priority %0, %1" \
4708 : "=g" (__old) : "g" (new)); \
4709 __old; @})
4710 @end smallexample
4711
4712 @noindent
4713 The @code{volatile} keyword indicates that the instruction has
4714 important side-effects. GCC will not delete a volatile @code{asm} if
4715 it is reachable. (The instruction can still be deleted if GCC can
4716 prove that control-flow will never reach the location of the
4717 instruction.) Note that even a volatile @code{asm} instruction
4718 can be moved relative to other code, including across jump
4719 instructions. For example, on many targets there is a system
4720 register which can be set to control the rounding mode of
4721 floating point operations. You might try
4722 setting it with a volatile @code{asm}, like this PowerPC example:
4723
4724 @smallexample
4725 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
4726 sum = x + y;
4727 @end smallexample
4728
4729 @noindent
4730 This will not work reliably, as the compiler may move the addition back
4731 before the volatile @code{asm}. To make it work you need to add an
4732 artificial dependency to the @code{asm} referencing a variable in the code
4733 you don't want moved, for example:
4734
4735 @smallexample
4736 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
4737 sum = x + y;
4738 @end smallexample
4739
4740 Similarly, you can't expect a
4741 sequence of volatile @code{asm} instructions to remain perfectly
4742 consecutive. If you want consecutive output, use a single @code{asm}.
4743 Also, GCC will perform some optimizations across a volatile @code{asm}
4744 instruction; GCC does not ``forget everything'' when it encounters
4745 a volatile @code{asm} instruction the way some other compilers do.
4746
4747 An @code{asm} instruction without any output operands will be treated
4748 identically to a volatile @code{asm} instruction.
4749
4750 It is a natural idea to look for a way to give access to the condition
4751 code left by the assembler instruction. However, when we attempted to
4752 implement this, we found no way to make it work reliably. The problem
4753 is that output operands might need reloading, which would result in
4754 additional following ``store'' instructions. On most machines, these
4755 instructions would alter the condition code before there was time to
4756 test it. This problem doesn't arise for ordinary ``test'' and
4757 ``compare'' instructions because they don't have any output operands.
4758
4759 For reasons similar to those described above, it is not possible to give
4760 an assembler instruction access to the condition code left by previous
4761 instructions.
4762
4763 If you are writing a header file that should be includable in ISO C
4764 programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
4765 Keywords}.
4766
4767 @subsection Size of an @code{asm}
4768
4769 Some targets require that GCC track the size of each instruction used in
4770 order to generate correct code. Because the final length of an
4771 @code{asm} is only known by the assembler, GCC must make an estimate as
4772 to how big it will be. The estimate is formed by counting the number of
4773 statements in the pattern of the @code{asm} and multiplying that by the
4774 length of the longest instruction on that processor. Statements in the
4775 @code{asm} are identified by newline characters and whatever statement
4776 separator characters are supported by the assembler; on most processors
4777 this is the `@code{;}' character.
4778
4779 Normally, GCC's estimate is perfectly adequate to ensure that correct
4780 code is generated, but it is possible to confuse the compiler if you use
4781 pseudo instructions or assembler macros that expand into multiple real
4782 instructions or if you use assembler directives that expand to more
4783 space in the object file than would be needed for a single instruction.
4784 If this happens then the assembler will produce a diagnostic saying that
4785 a label is unreachable.
4786
4787 @subsection i386 floating point asm operands
4788
4789 There are several rules on the usage of stack-like regs in
4790 asm_operands insns. These rules apply only to the operands that are
4791 stack-like regs:
4792
4793 @enumerate
4794 @item
4795 Given a set of input regs that die in an asm_operands, it is
4796 necessary to know which are implicitly popped by the asm, and
4797 which must be explicitly popped by gcc.
4798
4799 An input reg that is implicitly popped by the asm must be
4800 explicitly clobbered, unless it is constrained to match an
4801 output operand.
4802
4803 @item
4804 For any input reg that is implicitly popped by an asm, it is
4805 necessary to know how to adjust the stack to compensate for the pop.
4806 If any non-popped input is closer to the top of the reg-stack than
4807 the implicitly popped reg, it would not be possible to know what the
4808 stack looked like---it's not clear how the rest of the stack ``slides
4809 up''.
4810
4811 All implicitly popped input regs must be closer to the top of
4812 the reg-stack than any input that is not implicitly popped.
4813
4814 It is possible that if an input dies in an insn, reload might
4815 use the input reg for an output reload. Consider this example:
4816
4817 @smallexample
4818 asm ("foo" : "=t" (a) : "f" (b));
4819 @end smallexample
4820
4821 This asm says that input B is not popped by the asm, and that
4822 the asm pushes a result onto the reg-stack, i.e., the stack is one
4823 deeper after the asm than it was before. But, it is possible that
4824 reload will think that it can use the same reg for both the input and
4825 the output, if input B dies in this insn.
4826
4827 If any input operand uses the @code{f} constraint, all output reg
4828 constraints must use the @code{&} earlyclobber.
4829
4830 The asm above would be written as
4831
4832 @smallexample
4833 asm ("foo" : "=&t" (a) : "f" (b));
4834 @end smallexample
4835
4836 @item
4837 Some operands need to be in particular places on the stack. All
4838 output operands fall in this category---there is no other way to
4839 know which regs the outputs appear in unless the user indicates
4840 this in the constraints.
4841
4842 Output operands must specifically indicate which reg an output
4843 appears in after an asm. @code{=f} is not allowed: the operand
4844 constraints must select a class with a single reg.
4845
4846 @item
4847 Output operands may not be ``inserted'' between existing stack regs.
4848 Since no 387 opcode uses a read/write operand, all output operands
4849 are dead before the asm_operands, and are pushed by the asm_operands.
4850 It makes no sense to push anywhere but the top of the reg-stack.
4851
4852 Output operands must start at the top of the reg-stack: output
4853 operands may not ``skip'' a reg.
4854
4855 @item
4856 Some asm statements may need extra stack space for internal
4857 calculations. This can be guaranteed by clobbering stack registers
4858 unrelated to the inputs and outputs.
4859
4860 @end enumerate
4861
4862 Here are a couple of reasonable asms to want to write. This asm
4863 takes one input, which is internally popped, and produces two outputs.
4864
4865 @smallexample
4866 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
4867 @end smallexample
4868
4869 This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
4870 and replaces them with one output. The user must code the @code{st(1)}
4871 clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
4872
4873 @smallexample
4874 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
4875 @end smallexample
4876
4877 @include md.texi
4878
4879 @node Asm Labels
4880 @section Controlling Names Used in Assembler Code
4881 @cindex assembler names for identifiers
4882 @cindex names used in assembler code
4883 @cindex identifiers, names in assembler code
4884
4885 You can specify the name to be used in the assembler code for a C
4886 function or variable by writing the @code{asm} (or @code{__asm__})
4887 keyword after the declarator as follows:
4888
4889 @smallexample
4890 int foo asm ("myfoo") = 2;
4891 @end smallexample
4892
4893 @noindent
4894 This specifies that the name to be used for the variable @code{foo} in
4895 the assembler code should be @samp{myfoo} rather than the usual
4896 @samp{_foo}.
4897
4898 On systems where an underscore is normally prepended to the name of a C
4899 function or variable, this feature allows you to define names for the
4900 linker that do not start with an underscore.
4901
4902 It does not make sense to use this feature with a non-static local
4903 variable since such variables do not have assembler names. If you are
4904 trying to put the variable in a particular register, see @ref{Explicit
4905 Reg Vars}. GCC presently accepts such code with a warning, but will
4906 probably be changed to issue an error, rather than a warning, in the
4907 future.
4908
4909 You cannot use @code{asm} in this way in a function @emph{definition}; but
4910 you can get the same effect by writing a declaration for the function
4911 before its definition and putting @code{asm} there, like this:
4912
4913 @smallexample
4914 extern func () asm ("FUNC");
4915
4916 func (x, y)
4917 int x, y;
4918 /* @r{@dots{}} */
4919 @end smallexample
4920
4921 It is up to you to make sure that the assembler names you choose do not
4922 conflict with any other assembler symbols. Also, you must not use a
4923 register name; that would produce completely invalid assembler code. GCC
4924 does not as yet have the ability to store static variables in registers.
4925 Perhaps that will be added.
4926
4927 @node Explicit Reg Vars
4928 @section Variables in Specified Registers
4929 @cindex explicit register variables
4930 @cindex variables in specified registers
4931 @cindex specified registers
4932 @cindex registers, global allocation
4933
4934 GNU C allows you to put a few global variables into specified hardware
4935 registers. You can also specify the register in which an ordinary
4936 register variable should be allocated.
4937
4938 @itemize @bullet
4939 @item
4940 Global register variables reserve registers throughout the program.
4941 This may be useful in programs such as programming language
4942 interpreters which have a couple of global variables that are accessed
4943 very often.
4944
4945 @item
4946 Local register variables in specific registers do not reserve the
4947 registers, except at the point where they are used as input or output
4948 operands in an @code{asm} statement and the @code{asm} statement itself is
4949 not deleted. The compiler's data flow analysis is capable of determining
4950 where the specified registers contain live values, and where they are
4951 available for other uses. Stores into local register variables may be deleted
4952 when they appear to be dead according to dataflow analysis. References
4953 to local register variables may be deleted or moved or simplified.
4954
4955 These local variables are sometimes convenient for use with the extended
4956 @code{asm} feature (@pxref{Extended Asm}), if you want to write one
4957 output of the assembler instruction directly into a particular register.
4958 (This will work provided the register you specify fits the constraints
4959 specified for that operand in the @code{asm}.)
4960 @end itemize
4961
4962 @menu
4963 * Global Reg Vars::
4964 * Local Reg Vars::
4965 @end menu
4966
4967 @node Global Reg Vars
4968 @subsection Defining Global Register Variables
4969 @cindex global register variables
4970 @cindex registers, global variables in
4971
4972 You can define a global register variable in GNU C like this:
4973
4974 @smallexample
4975 register int *foo asm ("a5");
4976 @end smallexample
4977
4978 @noindent
4979 Here @code{a5} is the name of the register which should be used. Choose a
4980 register which is normally saved and restored by function calls on your
4981 machine, so that library routines will not clobber it.
4982
4983 Naturally the register name is cpu-dependent, so you would need to
4984 conditionalize your program according to cpu type. The register
4985 @code{a5} would be a good choice on a 68000 for a variable of pointer
4986 type. On machines with register windows, be sure to choose a ``global''
4987 register that is not affected magically by the function call mechanism.
4988
4989 In addition, operating systems on one type of cpu may differ in how they
4990 name the registers; then you would need additional conditionals. For
4991 example, some 68000 operating systems call this register @code{%a5}.
4992
4993 Eventually there may be a way of asking the compiler to choose a register
4994 automatically, but first we need to figure out how it should choose and
4995 how to enable you to guide the choice. No solution is evident.
4996
4997 Defining a global register variable in a certain register reserves that
4998 register entirely for this use, at least within the current compilation.
4999 The register will not be allocated for any other purpose in the functions
5000 in the current compilation. The register will not be saved and restored by
5001 these functions. Stores into this register are never deleted even if they
5002 would appear to be dead, but references may be deleted or moved or
5003 simplified.
5004
5005 It is not safe to access the global register variables from signal
5006 handlers, or from more than one thread of control, because the system
5007 library routines may temporarily use the register for other things (unless
5008 you recompile them specially for the task at hand).
5009
5010 @cindex @code{qsort}, and global register variables
5011 It is not safe for one function that uses a global register variable to
5012 call another such function @code{foo} by way of a third function
5013 @code{lose} that was compiled without knowledge of this variable (i.e.@: in a
5014 different source file in which the variable wasn't declared). This is
5015 because @code{lose} might save the register and put some other value there.
5016 For example, you can't expect a global register variable to be available in
5017 the comparison-function that you pass to @code{qsort}, since @code{qsort}
5018 might have put something else in that register. (If you are prepared to
5019 recompile @code{qsort} with the same global register variable, you can
5020 solve this problem.)
5021
5022 If you want to recompile @code{qsort} or other source files which do not
5023 actually use your global register variable, so that they will not use that
5024 register for any other purpose, then it suffices to specify the compiler
5025 option @option{-ffixed-@var{reg}}. You need not actually add a global
5026 register declaration to their source code.
5027
5028 A function which can alter the value of a global register variable cannot
5029 safely be called from a function compiled without this variable, because it
5030 could clobber the value the caller expects to find there on return.
5031 Therefore, the function which is the entry point into the part of the
5032 program that uses the global register variable must explicitly save and
5033 restore the value which belongs to its caller.
5034
5035 @cindex register variable after @code{longjmp}
5036 @cindex global register after @code{longjmp}
5037 @cindex value after @code{longjmp}
5038 @findex longjmp
5039 @findex setjmp
5040 On most machines, @code{longjmp} will restore to each global register
5041 variable the value it had at the time of the @code{setjmp}. On some
5042 machines, however, @code{longjmp} will not change the value of global
5043 register variables. To be portable, the function that called @code{setjmp}
5044 should make other arrangements to save the values of the global register
5045 variables, and to restore them in a @code{longjmp}. This way, the same
5046 thing will happen regardless of what @code{longjmp} does.
5047
5048 All global register variable declarations must precede all function
5049 definitions. If such a declaration could appear after function
5050 definitions, the declaration would be too late to prevent the register from
5051 being used for other purposes in the preceding functions.
5052
5053 Global register variables may not have initial values, because an
5054 executable file has no means to supply initial contents for a register.
5055
5056 On the SPARC, there are reports that g3 @dots{} g7 are suitable
5057 registers, but certain library functions, such as @code{getwd}, as well
5058 as the subroutines for division and remainder, modify g3 and g4. g1 and
5059 g2 are local temporaries.
5060
5061 On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
5062 Of course, it will not do to use more than a few of those.
5063
5064 @node Local Reg Vars
5065 @subsection Specifying Registers for Local Variables
5066 @cindex local variables, specifying registers
5067 @cindex specifying registers for local variables
5068 @cindex registers for local variables
5069
5070 You can define a local register variable with a specified register
5071 like this:
5072
5073 @smallexample
5074 register int *foo asm ("a5");
5075 @end smallexample
5076
5077 @noindent
5078 Here @code{a5} is the name of the register which should be used. Note
5079 that this is the same syntax used for defining global register
5080 variables, but for a local variable it would appear within a function.
5081
5082 Naturally the register name is cpu-dependent, but this is not a
5083 problem, since specific registers are most often useful with explicit
5084 assembler instructions (@pxref{Extended Asm}). Both of these things
5085 generally require that you conditionalize your program according to
5086 cpu type.
5087
5088 In addition, operating systems on one type of cpu may differ in how they
5089 name the registers; then you would need additional conditionals. For
5090 example, some 68000 operating systems call this register @code{%a5}.
5091
5092 Defining such a register variable does not reserve the register; it
5093 remains available for other uses in places where flow control determines
5094 the variable's value is not live.
5095
5096 This option does not guarantee that GCC will generate code that has
5097 this variable in the register you specify at all times. You may not
5098 code an explicit reference to this register in the @emph{assembler
5099 instruction template} part of an @code{asm} statement and assume it will
5100 always refer to this variable. However, using the variable as an
5101 @code{asm} @emph{operand} guarantees that the specified register is used
5102 for the operand.
5103
5104 Stores into local register variables may be deleted when they appear to be dead
5105 according to dataflow analysis. References to local register variables may
5106 be deleted or moved or simplified.
5107
5108 As for global register variables, it's recommended that you choose a
5109 register which is normally saved and restored by function calls on
5110 your machine, so that library routines will not clobber it. A common
5111 pitfall is to initialize multiple call-clobbered registers with
5112 arbitrary expressions, where a function call or library call for an
5113 arithmetic operator will overwrite a register value from a previous
5114 assignment, for example @code{r0} below:
5115 @smallexample
5116 register int *p1 asm ("r0") = @dots{};
5117 register int *p2 asm ("r1") = @dots{};
5118 @end smallexample
5119 In those cases, a solution is to use a temporary variable for
5120 each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
5121
5122 @node Alternate Keywords
5123 @section Alternate Keywords
5124 @cindex alternate keywords
5125 @cindex keywords, alternate
5126
5127 @option{-ansi} and the various @option{-std} options disable certain
5128 keywords. This causes trouble when you want to use GNU C extensions, or
5129 a general-purpose header file that should be usable by all programs,
5130 including ISO C programs. The keywords @code{asm}, @code{typeof} and
5131 @code{inline} are not available in programs compiled with
5132 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
5133 program compiled with @option{-std=c99}). The ISO C99 keyword
5134 @code{restrict} is only available when @option{-std=gnu99} (which will
5135 eventually be the default) or @option{-std=c99} (or the equivalent
5136 @option{-std=iso9899:1999}) is used.
5137
5138 The way to solve these problems is to put @samp{__} at the beginning and
5139 end of each problematical keyword. For example, use @code{__asm__}
5140 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
5141
5142 Other C compilers won't accept these alternative keywords; if you want to
5143 compile with another compiler, you can define the alternate keywords as
5144 macros to replace them with the customary keywords. It looks like this:
5145
5146 @smallexample
5147 #ifndef __GNUC__
5148 #define __asm__ asm
5149 #endif
5150 @end smallexample
5151
5152 @findex __extension__
5153 @opindex pedantic
5154 @option{-pedantic} and other options cause warnings for many GNU C extensions.
5155 You can
5156 prevent such warnings within one expression by writing
5157 @code{__extension__} before the expression. @code{__extension__} has no
5158 effect aside from this.
5159
5160 @node Incomplete Enums
5161 @section Incomplete @code{enum} Types
5162
5163 You can define an @code{enum} tag without specifying its possible values.
5164 This results in an incomplete type, much like what you get if you write
5165 @code{struct foo} without describing the elements. A later declaration
5166 which does specify the possible values completes the type.
5167
5168 You can't allocate variables or storage using the type while it is
5169 incomplete. However, you can work with pointers to that type.
5170
5171 This extension may not be very useful, but it makes the handling of
5172 @code{enum} more consistent with the way @code{struct} and @code{union}
5173 are handled.
5174
5175 This extension is not supported by GNU C++.
5176
5177 @node Function Names
5178 @section Function Names as Strings
5179 @cindex @code{__func__} identifier
5180 @cindex @code{__FUNCTION__} identifier
5181 @cindex @code{__PRETTY_FUNCTION__} identifier
5182
5183 GCC provides three magic variables which hold the name of the current
5184 function, as a string. The first of these is @code{__func__}, which
5185 is part of the C99 standard:
5186
5187 @display
5188 The identifier @code{__func__} is implicitly declared by the translator
5189 as if, immediately following the opening brace of each function
5190 definition, the declaration
5191
5192 @smallexample
5193 static const char __func__[] = "function-name";
5194 @end smallexample
5195
5196 appeared, where function-name is the name of the lexically-enclosing
5197 function. This name is the unadorned name of the function.
5198 @end display
5199
5200 @code{__FUNCTION__} is another name for @code{__func__}. Older
5201 versions of GCC recognize only this name. However, it is not
5202 standardized. For maximum portability, we recommend you use
5203 @code{__func__}, but provide a fallback definition with the
5204 preprocessor:
5205
5206 @smallexample
5207 #if __STDC_VERSION__ < 199901L
5208 # if __GNUC__ >= 2
5209 # define __func__ __FUNCTION__
5210 # else
5211 # define __func__ "<unknown>"
5212 # endif
5213 #endif
5214 @end smallexample
5215
5216 In C, @code{__PRETTY_FUNCTION__} is yet another name for
5217 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
5218 the type signature of the function as well as its bare name. For
5219 example, this program:
5220
5221 @smallexample
5222 extern "C" @{
5223 extern int printf (char *, ...);
5224 @}
5225
5226 class a @{
5227 public:
5228 void sub (int i)
5229 @{
5230 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
5231 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
5232 @}
5233 @};
5234
5235 int
5236 main (void)
5237 @{
5238 a ax;
5239 ax.sub (0);
5240 return 0;
5241 @}
5242 @end smallexample
5243
5244 @noindent
5245 gives this output:
5246
5247 @smallexample
5248 __FUNCTION__ = sub
5249 __PRETTY_FUNCTION__ = void a::sub(int)
5250 @end smallexample
5251
5252 These identifiers are not preprocessor macros. In GCC 3.3 and
5253 earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
5254 were treated as string literals; they could be used to initialize
5255 @code{char} arrays, and they could be concatenated with other string
5256 literals. GCC 3.4 and later treat them as variables, like
5257 @code{__func__}. In C++, @code{__FUNCTION__} and
5258 @code{__PRETTY_FUNCTION__} have always been variables.
5259
5260 @node Return Address
5261 @section Getting the Return or Frame Address of a Function
5262
5263 These functions may be used to get information about the callers of a
5264 function.
5265
5266 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
5267 This function returns the return address of the current function, or of
5268 one of its callers. The @var{level} argument is number of frames to
5269 scan up the call stack. A value of @code{0} yields the return address
5270 of the current function, a value of @code{1} yields the return address
5271 of the caller of the current function, and so forth. When inlining
5272 the expected behavior is that the function will return the address of
5273 the function that will be returned to. To work around this behavior use
5274 the @code{noinline} function attribute.
5275
5276 The @var{level} argument must be a constant integer.
5277
5278 On some machines it may be impossible to determine the return address of
5279 any function other than the current one; in such cases, or when the top
5280 of the stack has been reached, this function will return @code{0} or a
5281 random value. In addition, @code{__builtin_frame_address} may be used
5282 to determine if the top of the stack has been reached.
5283
5284 This function should only be used with a nonzero argument for debugging
5285 purposes.
5286 @end deftypefn
5287
5288 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
5289 This function is similar to @code{__builtin_return_address}, but it
5290 returns the address of the function frame rather than the return address
5291 of the function. Calling @code{__builtin_frame_address} with a value of
5292 @code{0} yields the frame address of the current function, a value of
5293 @code{1} yields the frame address of the caller of the current function,
5294 and so forth.
5295
5296 The frame is the area on the stack which holds local variables and saved
5297 registers. The frame address is normally the address of the first word
5298 pushed on to the stack by the function. However, the exact definition
5299 depends upon the processor and the calling convention. If the processor
5300 has a dedicated frame pointer register, and the function has a frame,
5301 then @code{__builtin_frame_address} will return the value of the frame
5302 pointer register.
5303
5304 On some machines it may be impossible to determine the frame address of
5305 any function other than the current one; in such cases, or when the top
5306 of the stack has been reached, this function will return @code{0} if
5307 the first frame pointer is properly initialized by the startup code.
5308
5309 This function should only be used with a nonzero argument for debugging
5310 purposes.
5311 @end deftypefn
5312
5313 @node Vector Extensions
5314 @section Using vector instructions through built-in functions
5315
5316 On some targets, the instruction set contains SIMD vector instructions that
5317 operate on multiple values contained in one large register at the same time.
5318 For example, on the i386 the MMX, 3Dnow! and SSE extensions can be used
5319 this way.
5320
5321 The first step in using these extensions is to provide the necessary data
5322 types. This should be done using an appropriate @code{typedef}:
5323
5324 @smallexample
5325 typedef int v4si __attribute__ ((vector_size (16)));
5326 @end smallexample
5327
5328 The @code{int} type specifies the base type, while the attribute specifies
5329 the vector size for the variable, measured in bytes. For example, the
5330 declaration above causes the compiler to set the mode for the @code{v4si}
5331 type to be 16 bytes wide and divided into @code{int} sized units. For
5332 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
5333 corresponding mode of @code{foo} will be @acronym{V4SI}.
5334
5335 The @code{vector_size} attribute is only applicable to integral and
5336 float scalars, although arrays, pointers, and function return values
5337 are allowed in conjunction with this construct.
5338
5339 All the basic integer types can be used as base types, both as signed
5340 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
5341 @code{long long}. In addition, @code{float} and @code{double} can be
5342 used to build floating-point vector types.
5343
5344 Specifying a combination that is not valid for the current architecture
5345 will cause GCC to synthesize the instructions using a narrower mode.
5346 For example, if you specify a variable of type @code{V4SI} and your
5347 architecture does not allow for this specific SIMD type, GCC will
5348 produce code that uses 4 @code{SIs}.
5349
5350 The types defined in this manner can be used with a subset of normal C
5351 operations. Currently, GCC will allow using the following operators
5352 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~}@.
5353
5354 The operations behave like C++ @code{valarrays}. Addition is defined as
5355 the addition of the corresponding elements of the operands. For
5356 example, in the code below, each of the 4 elements in @var{a} will be
5357 added to the corresponding 4 elements in @var{b} and the resulting
5358 vector will be stored in @var{c}.
5359
5360 @smallexample
5361 typedef int v4si __attribute__ ((vector_size (16)));
5362
5363 v4si a, b, c;
5364
5365 c = a + b;
5366 @end smallexample
5367
5368 Subtraction, multiplication, division, and the logical operations
5369 operate in a similar manner. Likewise, the result of using the unary
5370 minus or complement operators on a vector type is a vector whose
5371 elements are the negative or complemented values of the corresponding
5372 elements in the operand.
5373
5374 You can declare variables and use them in function calls and returns, as
5375 well as in assignments and some casts. You can specify a vector type as
5376 a return type for a function. Vector types can also be used as function
5377 arguments. It is possible to cast from one vector type to another,
5378 provided they are of the same size (in fact, you can also cast vectors
5379 to and from other datatypes of the same size).
5380
5381 You cannot operate between vectors of different lengths or different
5382 signedness without a cast.
5383
5384 A port that supports hardware vector operations, usually provides a set
5385 of built-in functions that can be used to operate on vectors. For
5386 example, a function to add two vectors and multiply the result by a
5387 third could look like this:
5388
5389 @smallexample
5390 v4si f (v4si a, v4si b, v4si c)
5391 @{
5392 v4si tmp = __builtin_addv4si (a, b);
5393 return __builtin_mulv4si (tmp, c);
5394 @}
5395
5396 @end smallexample
5397
5398 @node Offsetof
5399 @section Offsetof
5400 @findex __builtin_offsetof
5401
5402 GCC implements for both C and C++ a syntactic extension to implement
5403 the @code{offsetof} macro.
5404
5405 @smallexample
5406 primary:
5407 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
5408
5409 offsetof_member_designator:
5410 @code{identifier}
5411 | offsetof_member_designator "." @code{identifier}
5412 | offsetof_member_designator "[" @code{expr} "]"
5413 @end smallexample
5414
5415 This extension is sufficient such that
5416
5417 @smallexample
5418 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
5419 @end smallexample
5420
5421 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
5422 may be dependent. In either case, @var{member} may consist of a single
5423 identifier, or a sequence of member accesses and array references.
5424
5425 @node Atomic Builtins
5426 @section Built-in functions for atomic memory access
5427
5428 The following builtins are intended to be compatible with those described
5429 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
5430 section 7.4. As such, they depart from the normal GCC practice of using
5431 the ``__builtin_'' prefix, and further that they are overloaded such that
5432 they work on multiple types.
5433
5434 The definition given in the Intel documentation allows only for the use of
5435 the types @code{int}, @code{long}, @code{long long} as well as their unsigned
5436 counterparts. GCC will allow any integral scalar or pointer type that is
5437 1, 2, 4 or 8 bytes in length.
5438
5439 Not all operations are supported by all target processors. If a particular
5440 operation cannot be implemented on the target processor, a warning will be
5441 generated and a call an external function will be generated. The external
5442 function will carry the same name as the builtin, with an additional suffix
5443 @samp{_@var{n}} where @var{n} is the size of the data type.
5444
5445 @c ??? Should we have a mechanism to suppress this warning? This is almost
5446 @c useful for implementing the operation under the control of an external
5447 @c mutex.
5448
5449 In most cases, these builtins are considered a @dfn{full barrier}. That is,
5450 no memory operand will be moved across the operation, either forward or
5451 backward. Further, instructions will be issued as necessary to prevent the
5452 processor from speculating loads across the operation and from queuing stores
5453 after the operation.
5454
5455 All of the routines are are described in the Intel documentation to take
5456 ``an optional list of variables protected by the memory barrier''. It's
5457 not clear what is meant by that; it could mean that @emph{only} the
5458 following variables are protected, or it could mean that these variables
5459 should in addition be protected. At present GCC ignores this list and
5460 protects all variables which are globally accessible. If in the future
5461 we make some use of this list, an empty list will continue to mean all
5462 globally accessible variables.
5463
5464 @table @code
5465 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
5466 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
5467 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
5468 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
5469 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
5470 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
5471 @findex __sync_fetch_and_add
5472 @findex __sync_fetch_and_sub
5473 @findex __sync_fetch_and_or
5474 @findex __sync_fetch_and_and
5475 @findex __sync_fetch_and_xor
5476 @findex __sync_fetch_and_nand
5477 These builtins perform the operation suggested by the name, and
5478 returns the value that had previously been in memory. That is,
5479
5480 @smallexample
5481 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
5482 @{ tmp = *ptr; *ptr = ~tmp & value; return tmp; @} // nand
5483 @end smallexample
5484
5485 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
5486 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
5487 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
5488 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
5489 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
5490 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
5491 @findex __sync_add_and_fetch
5492 @findex __sync_sub_and_fetch
5493 @findex __sync_or_and_fetch
5494 @findex __sync_and_and_fetch
5495 @findex __sync_xor_and_fetch
5496 @findex __sync_nand_and_fetch
5497 These builtins perform the operation suggested by the name, and
5498 return the new value. That is,
5499
5500 @smallexample
5501 @{ *ptr @var{op}= value; return *ptr; @}
5502 @{ *ptr = ~*ptr & value; return *ptr; @} // nand
5503 @end smallexample
5504
5505 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
5506 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
5507 @findex __sync_bool_compare_and_swap
5508 @findex __sync_val_compare_and_swap
5509 These builtins perform an atomic compare and swap. That is, if the current
5510 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
5511 @code{*@var{ptr}}.
5512
5513 The ``bool'' version returns true if the comparison is successful and
5514 @var{newval} was written. The ``val'' version returns the contents
5515 of @code{*@var{ptr}} before the operation.
5516
5517 @item __sync_synchronize (...)
5518 @findex __sync_synchronize
5519 This builtin issues a full memory barrier.
5520
5521 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
5522 @findex __sync_lock_test_and_set
5523 This builtin, as described by Intel, is not a traditional test-and-set
5524 operation, but rather an atomic exchange operation. It writes @var{value}
5525 into @code{*@var{ptr}}, and returns the previous contents of
5526 @code{*@var{ptr}}.
5527
5528 Many targets have only minimal support for such locks, and do not support
5529 a full exchange operation. In this case, a target may support reduced
5530 functionality here by which the @emph{only} valid value to store is the
5531 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
5532 is implementation defined.
5533
5534 This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
5535 This means that references after the builtin cannot move to (or be
5536 speculated to) before the builtin, but previous memory stores may not
5537 be globally visible yet, and previous memory loads may not yet be
5538 satisfied.
5539
5540 @item void __sync_lock_release (@var{type} *ptr, ...)
5541 @findex __sync_lock_release
5542 This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
5543 Normally this means writing the constant 0 to @code{*@var{ptr}}.
5544
5545 This builtin is not a full barrier, but rather a @dfn{release barrier}.
5546 This means that all previous memory stores are globally visible, and all
5547 previous memory loads have been satisfied, but following memory reads
5548 are not prevented from being speculated to before the barrier.
5549 @end table
5550
5551 @node Object Size Checking
5552 @section Object Size Checking Builtins
5553 @findex __builtin_object_size
5554 @findex __builtin___memcpy_chk
5555 @findex __builtin___mempcpy_chk
5556 @findex __builtin___memmove_chk
5557 @findex __builtin___memset_chk
5558 @findex __builtin___strcpy_chk
5559 @findex __builtin___stpcpy_chk
5560 @findex __builtin___strncpy_chk
5561 @findex __builtin___strcat_chk
5562 @findex __builtin___strncat_chk
5563 @findex __builtin___sprintf_chk
5564 @findex __builtin___snprintf_chk
5565 @findex __builtin___vsprintf_chk
5566 @findex __builtin___vsnprintf_chk
5567 @findex __builtin___printf_chk
5568 @findex __builtin___vprintf_chk
5569 @findex __builtin___fprintf_chk
5570 @findex __builtin___vfprintf_chk
5571
5572 GCC implements a limited buffer overflow protection mechanism
5573 that can prevent some buffer overflow attacks.
5574
5575 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
5576 is a built-in construct that returns a constant number of bytes from
5577 @var{ptr} to the end of the object @var{ptr} pointer points to
5578 (if known at compile time). @code{__builtin_object_size} never evaluates
5579 its arguments for side-effects. If there are any side-effects in them, it
5580 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
5581 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
5582 point to and all of them are known at compile time, the returned number
5583 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
5584 0 and minimum if nonzero. If it is not possible to determine which objects
5585 @var{ptr} points to at compile time, @code{__builtin_object_size} should
5586 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
5587 for @var{type} 2 or 3.
5588
5589 @var{type} is an integer constant from 0 to 3. If the least significant
5590 bit is clear, objects are whole variables, if it is set, a closest
5591 surrounding subobject is considered the object a pointer points to.
5592 The second bit determines if maximum or minimum of remaining bytes
5593 is computed.
5594
5595 @smallexample
5596 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
5597 char *p = &var.buf1[1], *q = &var.b;
5598
5599 /* Here the object p points to is var. */
5600 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
5601 /* The subobject p points to is var.buf1. */
5602 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
5603 /* The object q points to is var. */
5604 assert (__builtin_object_size (q, 0)
5605 == (char *) (&var + 1) - (char *) &var.b);
5606 /* The subobject q points to is var.b. */
5607 assert (__builtin_object_size (q, 1) == sizeof (var.b));
5608 @end smallexample
5609 @end deftypefn
5610
5611 There are built-in functions added for many common string operation
5612 functions, e.g. for @code{memcpy} @code{__builtin___memcpy_chk}
5613 built-in is provided. This built-in has an additional last argument,
5614 which is the number of bytes remaining in object the @var{dest}
5615 argument points to or @code{(size_t) -1} if the size is not known.
5616
5617 The built-in functions are optimized into the normal string functions
5618 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
5619 it is known at compile time that the destination object will not
5620 be overflown. If the compiler can determine at compile time the
5621 object will be always overflown, it issues a warning.
5622
5623 The intended use can be e.g.
5624
5625 @smallexample
5626 #undef memcpy
5627 #define bos0(dest) __builtin_object_size (dest, 0)
5628 #define memcpy(dest, src, n) \
5629 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
5630
5631 char *volatile p;
5632 char buf[10];
5633 /* It is unknown what object p points to, so this is optimized
5634 into plain memcpy - no checking is possible. */
5635 memcpy (p, "abcde", n);
5636 /* Destination is known and length too. It is known at compile
5637 time there will be no overflow. */
5638 memcpy (&buf[5], "abcde", 5);
5639 /* Destination is known, but the length is not known at compile time.
5640 This will result in __memcpy_chk call that can check for overflow
5641 at runtime. */
5642 memcpy (&buf[5], "abcde", n);
5643 /* Destination is known and it is known at compile time there will
5644 be overflow. There will be a warning and __memcpy_chk call that
5645 will abort the program at runtime. */
5646 memcpy (&buf[6], "abcde", 5);
5647 @end smallexample
5648
5649 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
5650 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
5651 @code{strcat} and @code{strncat}.
5652
5653 There are also checking built-in functions for formatted output functions.
5654 @smallexample
5655 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
5656 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
5657 const char *fmt, ...);
5658 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
5659 va_list ap);
5660 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
5661 const char *fmt, va_list ap);
5662 @end smallexample
5663
5664 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
5665 etc. functions and can contain implementation specific flags on what
5666 additional security measures the checking function might take, such as
5667 handling @code{%n} differently.
5668
5669 The @var{os} argument is the object size @var{s} points to, like in the
5670 other built-in functions. There is a small difference in the behavior
5671 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
5672 optimized into the non-checking functions only if @var{flag} is 0, otherwise
5673 the checking function is called with @var{os} argument set to
5674 @code{(size_t) -1}.
5675
5676 In addition to this, there are checking built-in functions
5677 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
5678 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
5679 These have just one additional argument, @var{flag}, right before
5680 format string @var{fmt}. If the compiler is able to optimize them to
5681 @code{fputc} etc. functions, it will, otherwise the checking function
5682 should be called and the @var{flag} argument passed to it.
5683
5684 @node Other Builtins
5685 @section Other built-in functions provided by GCC
5686 @cindex built-in functions
5687 @findex __builtin_isfinite
5688 @findex __builtin_isnormal
5689 @findex __builtin_isgreater
5690 @findex __builtin_isgreaterequal
5691 @findex __builtin_isless
5692 @findex __builtin_islessequal
5693 @findex __builtin_islessgreater
5694 @findex __builtin_isunordered
5695 @findex __builtin_powi
5696 @findex __builtin_powif
5697 @findex __builtin_powil
5698 @findex _Exit
5699 @findex _exit
5700 @findex abort
5701 @findex abs
5702 @findex acos
5703 @findex acosf
5704 @findex acosh
5705 @findex acoshf
5706 @findex acoshl
5707 @findex acosl
5708 @findex alloca
5709 @findex asin
5710 @findex asinf
5711 @findex asinh
5712 @findex asinhf
5713 @findex asinhl
5714 @findex asinl
5715 @findex atan
5716 @findex atan2
5717 @findex atan2f
5718 @findex atan2l
5719 @findex atanf
5720 @findex atanh
5721 @findex atanhf
5722 @findex atanhl
5723 @findex atanl
5724 @findex bcmp
5725 @findex bzero
5726 @findex cabs
5727 @findex cabsf
5728 @findex cabsl
5729 @findex cacos
5730 @findex cacosf
5731 @findex cacosh
5732 @findex cacoshf
5733 @findex cacoshl
5734 @findex cacosl
5735 @findex calloc
5736 @findex carg
5737 @findex cargf
5738 @findex cargl
5739 @findex casin
5740 @findex casinf
5741 @findex casinh
5742 @findex casinhf
5743 @findex casinhl
5744 @findex casinl
5745 @findex catan
5746 @findex catanf
5747 @findex catanh
5748 @findex catanhf
5749 @findex catanhl
5750 @findex catanl
5751 @findex cbrt
5752 @findex cbrtf
5753 @findex cbrtl
5754 @findex ccos
5755 @findex ccosf
5756 @findex ccosh
5757 @findex ccoshf
5758 @findex ccoshl
5759 @findex ccosl
5760 @findex ceil
5761 @findex ceilf
5762 @findex ceill
5763 @findex cexp
5764 @findex cexpf
5765 @findex cexpl
5766 @findex cimag
5767 @findex cimagf
5768 @findex cimagl
5769 @findex clog
5770 @findex clogf
5771 @findex clogl
5772 @findex conj
5773 @findex conjf
5774 @findex conjl
5775 @findex copysign
5776 @findex copysignf
5777 @findex copysignl
5778 @findex cos
5779 @findex cosf
5780 @findex cosh
5781 @findex coshf
5782 @findex coshl
5783 @findex cosl
5784 @findex cpow
5785 @findex cpowf
5786 @findex cpowl
5787 @findex cproj
5788 @findex cprojf
5789 @findex cprojl
5790 @findex creal
5791 @findex crealf
5792 @findex creall
5793 @findex csin
5794 @findex csinf
5795 @findex csinh
5796 @findex csinhf
5797 @findex csinhl
5798 @findex csinl
5799 @findex csqrt
5800 @findex csqrtf
5801 @findex csqrtl
5802 @findex ctan
5803 @findex ctanf
5804 @findex ctanh
5805 @findex ctanhf
5806 @findex ctanhl
5807 @findex ctanl
5808 @findex dcgettext
5809 @findex dgettext
5810 @findex drem
5811 @findex dremf
5812 @findex dreml
5813 @findex erf
5814 @findex erfc
5815 @findex erfcf
5816 @findex erfcl
5817 @findex erff
5818 @findex erfl
5819 @findex exit
5820 @findex exp
5821 @findex exp10
5822 @findex exp10f
5823 @findex exp10l
5824 @findex exp2
5825 @findex exp2f
5826 @findex exp2l
5827 @findex expf
5828 @findex expl
5829 @findex expm1
5830 @findex expm1f
5831 @findex expm1l
5832 @findex fabs
5833 @findex fabsf
5834 @findex fabsl
5835 @findex fdim
5836 @findex fdimf
5837 @findex fdiml
5838 @findex ffs
5839 @findex floor
5840 @findex floorf
5841 @findex floorl
5842 @findex fma
5843 @findex fmaf
5844 @findex fmal
5845 @findex fmax
5846 @findex fmaxf
5847 @findex fmaxl
5848 @findex fmin
5849 @findex fminf
5850 @findex fminl
5851 @findex fmod
5852 @findex fmodf
5853 @findex fmodl
5854 @findex fprintf
5855 @findex fprintf_unlocked
5856 @findex fputs
5857 @findex fputs_unlocked
5858 @findex frexp
5859 @findex frexpf
5860 @findex frexpl
5861 @findex fscanf
5862 @findex gamma
5863 @findex gammaf
5864 @findex gammal
5865 @findex gamma_r
5866 @findex gammaf_r
5867 @findex gammal_r
5868 @findex gettext
5869 @findex hypot
5870 @findex hypotf
5871 @findex hypotl
5872 @findex ilogb
5873 @findex ilogbf
5874 @findex ilogbl
5875 @findex imaxabs
5876 @findex index
5877 @findex isalnum
5878 @findex isalpha
5879 @findex isascii
5880 @findex isblank
5881 @findex iscntrl
5882 @findex isdigit
5883 @findex isgraph
5884 @findex islower
5885 @findex isprint
5886 @findex ispunct
5887 @findex isspace
5888 @findex isupper
5889 @findex iswalnum
5890 @findex iswalpha
5891 @findex iswblank
5892 @findex iswcntrl
5893 @findex iswdigit
5894 @findex iswgraph
5895 @findex iswlower
5896 @findex iswprint
5897 @findex iswpunct
5898 @findex iswspace
5899 @findex iswupper
5900 @findex iswxdigit
5901 @findex isxdigit
5902 @findex j0
5903 @findex j0f
5904 @findex j0l
5905 @findex j1
5906 @findex j1f
5907 @findex j1l
5908 @findex jn
5909 @findex jnf
5910 @findex jnl
5911 @findex labs
5912 @findex ldexp
5913 @findex ldexpf
5914 @findex ldexpl
5915 @findex lgamma
5916 @findex lgammaf
5917 @findex lgammal
5918 @findex lgamma_r
5919 @findex lgammaf_r
5920 @findex lgammal_r
5921 @findex llabs
5922 @findex llrint
5923 @findex llrintf
5924 @findex llrintl
5925 @findex llround
5926 @findex llroundf
5927 @findex llroundl
5928 @findex log
5929 @findex log10
5930 @findex log10f
5931 @findex log10l
5932 @findex log1p
5933 @findex log1pf
5934 @findex log1pl
5935 @findex log2
5936 @findex log2f
5937 @findex log2l
5938 @findex logb
5939 @findex logbf
5940 @findex logbl
5941 @findex logf
5942 @findex logl
5943 @findex lrint
5944 @findex lrintf
5945 @findex lrintl
5946 @findex lround
5947 @findex lroundf
5948 @findex lroundl
5949 @findex malloc
5950 @findex memchr
5951 @findex memcmp
5952 @findex memcpy
5953 @findex mempcpy
5954 @findex memset
5955 @findex modf
5956 @findex modff
5957 @findex modfl
5958 @findex nearbyint
5959 @findex nearbyintf
5960 @findex nearbyintl
5961 @findex nextafter
5962 @findex nextafterf
5963 @findex nextafterl
5964 @findex nexttoward
5965 @findex nexttowardf
5966 @findex nexttowardl
5967 @findex pow
5968 @findex pow10
5969 @findex pow10f
5970 @findex pow10l
5971 @findex powf
5972 @findex powl
5973 @findex printf
5974 @findex printf_unlocked
5975 @findex putchar
5976 @findex puts
5977 @findex remainder
5978 @findex remainderf
5979 @findex remainderl
5980 @findex remquo
5981 @findex remquof
5982 @findex remquol
5983 @findex rindex
5984 @findex rint
5985 @findex rintf
5986 @findex rintl
5987 @findex round
5988 @findex roundf
5989 @findex roundl
5990 @findex scalb
5991 @findex scalbf
5992 @findex scalbl
5993 @findex scalbln
5994 @findex scalblnf
5995 @findex scalblnf
5996 @findex scalbn
5997 @findex scalbnf
5998 @findex scanfnl
5999 @findex signbit
6000 @findex signbitf
6001 @findex signbitl
6002 @findex signbitd32
6003 @findex signbitd64
6004 @findex signbitd128
6005 @findex significand
6006 @findex significandf
6007 @findex significandl
6008 @findex sin
6009 @findex sincos
6010 @findex sincosf
6011 @findex sincosl
6012 @findex sinf
6013 @findex sinh
6014 @findex sinhf
6015 @findex sinhl
6016 @findex sinl
6017 @findex snprintf
6018 @findex sprintf
6019 @findex sqrt
6020 @findex sqrtf
6021 @findex sqrtl
6022 @findex sscanf
6023 @findex stpcpy
6024 @findex stpncpy
6025 @findex strcasecmp
6026 @findex strcat
6027 @findex strchr
6028 @findex strcmp
6029 @findex strcpy
6030 @findex strcspn
6031 @findex strdup
6032 @findex strfmon
6033 @findex strftime
6034 @findex strlen
6035 @findex strncasecmp
6036 @findex strncat
6037 @findex strncmp
6038 @findex strncpy
6039 @findex strndup
6040 @findex strpbrk
6041 @findex strrchr
6042 @findex strspn
6043 @findex strstr
6044 @findex tan
6045 @findex tanf
6046 @findex tanh
6047 @findex tanhf
6048 @findex tanhl
6049 @findex tanl
6050 @findex tgamma
6051 @findex tgammaf
6052 @findex tgammal
6053 @findex toascii
6054 @findex tolower
6055 @findex toupper
6056 @findex towlower
6057 @findex towupper
6058 @findex trunc
6059 @findex truncf
6060 @findex truncl
6061 @findex vfprintf
6062 @findex vfscanf
6063 @findex vprintf
6064 @findex vscanf
6065 @findex vsnprintf
6066 @findex vsprintf
6067 @findex vsscanf
6068 @findex y0
6069 @findex y0f
6070 @findex y0l
6071 @findex y1
6072 @findex y1f
6073 @findex y1l
6074 @findex yn
6075 @findex ynf
6076 @findex ynl
6077
6078 GCC provides a large number of built-in functions other than the ones
6079 mentioned above. Some of these are for internal use in the processing
6080 of exceptions or variable-length argument lists and will not be
6081 documented here because they may change from time to time; we do not
6082 recommend general use of these functions.
6083
6084 The remaining functions are provided for optimization purposes.
6085
6086 @opindex fno-builtin
6087 GCC includes built-in versions of many of the functions in the standard
6088 C library. The versions prefixed with @code{__builtin_} will always be
6089 treated as having the same meaning as the C library function even if you
6090 specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
6091 Many of these functions are only optimized in certain cases; if they are
6092 not optimized in a particular case, a call to the library function will
6093 be emitted.
6094
6095 @opindex ansi
6096 @opindex std
6097 Outside strict ISO C mode (@option{-ansi}, @option{-std=c89} or
6098 @option{-std=c99}), the functions
6099 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
6100 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
6101 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
6102 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
6103 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
6104 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
6105 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
6106 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
6107 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
6108 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
6109 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
6110 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
6111 @code{signbitd64}, @code{signbitd128}, @code{significandf},
6112 @code{significandl}, @code{significand}, @code{sincosf},
6113 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
6114 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
6115 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
6116 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
6117 @code{yn}
6118 may be handled as built-in functions.
6119 All these functions have corresponding versions
6120 prefixed with @code{__builtin_}, which may be used even in strict C89
6121 mode.
6122
6123 The ISO C99 functions
6124 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
6125 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
6126 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
6127 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
6128 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
6129 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
6130 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
6131 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
6132 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
6133 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
6134 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
6135 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
6136 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
6137 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
6138 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
6139 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
6140 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
6141 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
6142 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
6143 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
6144 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
6145 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
6146 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
6147 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
6148 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
6149 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
6150 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
6151 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
6152 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
6153 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
6154 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
6155 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
6156 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
6157 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
6158 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
6159 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
6160 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
6161 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
6162 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
6163 are handled as built-in functions
6164 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c89}).
6165
6166 There are also built-in versions of the ISO C99 functions
6167 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
6168 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
6169 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
6170 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
6171 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
6172 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
6173 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
6174 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
6175 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
6176 that are recognized in any mode since ISO C90 reserves these names for
6177 the purpose to which ISO C99 puts them. All these functions have
6178 corresponding versions prefixed with @code{__builtin_}.
6179
6180 The ISO C94 functions
6181 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
6182 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
6183 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
6184 @code{towupper}
6185 are handled as built-in functions
6186 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c89}).
6187
6188 The ISO C90 functions
6189 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
6190 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
6191 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
6192 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
6193 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
6194 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
6195 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
6196 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
6197 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
6198 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
6199 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
6200 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
6201 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
6202 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
6203 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
6204 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
6205 are all recognized as built-in functions unless
6206 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
6207 is specified for an individual function). All of these functions have
6208 corresponding versions prefixed with @code{__builtin_}.
6209
6210 GCC provides built-in versions of the ISO C99 floating point comparison
6211 macros that avoid raising exceptions for unordered operands. They have
6212 the same names as the standard macros ( @code{isgreater},
6213 @code{isgreaterequal}, @code{isless}, @code{islessequal},
6214 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
6215 prefixed. We intend for a library implementor to be able to simply
6216 @code{#define} each standard macro to its built-in equivalent.
6217 In the same fashion, GCC provides @code{isfinite} and @code{isnormal}
6218 built-ins used with @code{__builtin_} prefixed.
6219
6220 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
6221
6222 You can use the built-in function @code{__builtin_types_compatible_p} to
6223 determine whether two types are the same.
6224
6225 This built-in function returns 1 if the unqualified versions of the
6226 types @var{type1} and @var{type2} (which are types, not expressions) are
6227 compatible, 0 otherwise. The result of this built-in function can be
6228 used in integer constant expressions.
6229
6230 This built-in function ignores top level qualifiers (e.g., @code{const},
6231 @code{volatile}). For example, @code{int} is equivalent to @code{const
6232 int}.
6233
6234 The type @code{int[]} and @code{int[5]} are compatible. On the other
6235 hand, @code{int} and @code{char *} are not compatible, even if the size
6236 of their types, on the particular architecture are the same. Also, the
6237 amount of pointer indirection is taken into account when determining
6238 similarity. Consequently, @code{short *} is not similar to
6239 @code{short **}. Furthermore, two types that are typedefed are
6240 considered compatible if their underlying types are compatible.
6241
6242 An @code{enum} type is not considered to be compatible with another
6243 @code{enum} type even if both are compatible with the same integer
6244 type; this is what the C standard specifies.
6245 For example, @code{enum @{foo, bar@}} is not similar to
6246 @code{enum @{hot, dog@}}.
6247
6248 You would typically use this function in code whose execution varies
6249 depending on the arguments' types. For example:
6250
6251 @smallexample
6252 #define foo(x) \
6253 (@{ \
6254 typeof (x) tmp = (x); \
6255 if (__builtin_types_compatible_p (typeof (x), long double)) \
6256 tmp = foo_long_double (tmp); \
6257 else if (__builtin_types_compatible_p (typeof (x), double)) \
6258 tmp = foo_double (tmp); \
6259 else if (__builtin_types_compatible_p (typeof (x), float)) \
6260 tmp = foo_float (tmp); \
6261 else \
6262 abort (); \
6263 tmp; \
6264 @})
6265 @end smallexample
6266
6267 @emph{Note:} This construct is only available for C@.
6268
6269 @end deftypefn
6270
6271 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
6272
6273 You can use the built-in function @code{__builtin_choose_expr} to
6274 evaluate code depending on the value of a constant expression. This
6275 built-in function returns @var{exp1} if @var{const_exp}, which is a
6276 constant expression that must be able to be determined at compile time,
6277 is nonzero. Otherwise it returns 0.
6278
6279 This built-in function is analogous to the @samp{? :} operator in C,
6280 except that the expression returned has its type unaltered by promotion
6281 rules. Also, the built-in function does not evaluate the expression
6282 that was not chosen. For example, if @var{const_exp} evaluates to true,
6283 @var{exp2} is not evaluated even if it has side-effects.
6284
6285 This built-in function can return an lvalue if the chosen argument is an
6286 lvalue.
6287
6288 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
6289 type. Similarly, if @var{exp2} is returned, its return type is the same
6290 as @var{exp2}.
6291
6292 Example:
6293
6294 @smallexample
6295 #define foo(x) \
6296 __builtin_choose_expr ( \
6297 __builtin_types_compatible_p (typeof (x), double), \
6298 foo_double (x), \
6299 __builtin_choose_expr ( \
6300 __builtin_types_compatible_p (typeof (x), float), \
6301 foo_float (x), \
6302 /* @r{The void expression results in a compile-time error} \
6303 @r{when assigning the result to something.} */ \
6304 (void)0))
6305 @end smallexample
6306
6307 @emph{Note:} This construct is only available for C@. Furthermore, the
6308 unused expression (@var{exp1} or @var{exp2} depending on the value of
6309 @var{const_exp}) may still generate syntax errors. This may change in
6310 future revisions.
6311
6312 @end deftypefn
6313
6314 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
6315 You can use the built-in function @code{__builtin_constant_p} to
6316 determine if a value is known to be constant at compile-time and hence
6317 that GCC can perform constant-folding on expressions involving that
6318 value. The argument of the function is the value to test. The function
6319 returns the integer 1 if the argument is known to be a compile-time
6320 constant and 0 if it is not known to be a compile-time constant. A
6321 return of 0 does not indicate that the value is @emph{not} a constant,
6322 but merely that GCC cannot prove it is a constant with the specified
6323 value of the @option{-O} option.
6324
6325 You would typically use this function in an embedded application where
6326 memory was a critical resource. If you have some complex calculation,
6327 you may want it to be folded if it involves constants, but need to call
6328 a function if it does not. For example:
6329
6330 @smallexample
6331 #define Scale_Value(X) \
6332 (__builtin_constant_p (X) \
6333 ? ((X) * SCALE + OFFSET) : Scale (X))
6334 @end smallexample
6335
6336 You may use this built-in function in either a macro or an inline
6337 function. However, if you use it in an inlined function and pass an
6338 argument of the function as the argument to the built-in, GCC will
6339 never return 1 when you call the inline function with a string constant
6340 or compound literal (@pxref{Compound Literals}) and will not return 1
6341 when you pass a constant numeric value to the inline function unless you
6342 specify the @option{-O} option.
6343
6344 You may also use @code{__builtin_constant_p} in initializers for static
6345 data. For instance, you can write
6346
6347 @smallexample
6348 static const int table[] = @{
6349 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
6350 /* @r{@dots{}} */
6351 @};
6352 @end smallexample
6353
6354 @noindent
6355 This is an acceptable initializer even if @var{EXPRESSION} is not a
6356 constant expression. GCC must be more conservative about evaluating the
6357 built-in in this case, because it has no opportunity to perform
6358 optimization.
6359
6360 Previous versions of GCC did not accept this built-in in data
6361 initializers. The earliest version where it is completely safe is
6362 3.0.1.
6363 @end deftypefn
6364
6365 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
6366 @opindex fprofile-arcs
6367 You may use @code{__builtin_expect} to provide the compiler with
6368 branch prediction information. In general, you should prefer to
6369 use actual profile feedback for this (@option{-fprofile-arcs}), as
6370 programmers are notoriously bad at predicting how their programs
6371 actually perform. However, there are applications in which this
6372 data is hard to collect.
6373
6374 The return value is the value of @var{exp}, which should be an integral
6375 expression. The semantics of the built-in are that it is expected that
6376 @var{exp} == @var{c}. For example:
6377
6378 @smallexample
6379 if (__builtin_expect (x, 0))
6380 foo ();
6381 @end smallexample
6382
6383 @noindent
6384 would indicate that we do not expect to call @code{foo}, since
6385 we expect @code{x} to be zero. Since you are limited to integral
6386 expressions for @var{exp}, you should use constructions such as
6387
6388 @smallexample
6389 if (__builtin_expect (ptr != NULL, 1))
6390 error ();
6391 @end smallexample
6392
6393 @noindent
6394 when testing pointer or floating-point values.
6395 @end deftypefn
6396
6397 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
6398 This function is used to flush the processor's instruction cache for
6399 the region of memory between @var{begin} inclusive and @var{end}
6400 exclusive. Some targets require that the instruction cache be
6401 flushed, after modifying memory containing code, in order to obtain
6402 deterministic behavior.
6403
6404 If the target does not require instruction cache flushes,
6405 @code{__builtin___clear_cache} has no effect. Otherwise either
6406 instructions are emitted in-line to clear the instruction cache or a
6407 call to the @code{__clear_cache} function in libgcc is made.
6408 @end deftypefn
6409
6410 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
6411 This function is used to minimize cache-miss latency by moving data into
6412 a cache before it is accessed.
6413 You can insert calls to @code{__builtin_prefetch} into code for which
6414 you know addresses of data in memory that is likely to be accessed soon.
6415 If the target supports them, data prefetch instructions will be generated.
6416 If the prefetch is done early enough before the access then the data will
6417 be in the cache by the time it is accessed.
6418
6419 The value of @var{addr} is the address of the memory to prefetch.
6420 There are two optional arguments, @var{rw} and @var{locality}.
6421 The value of @var{rw} is a compile-time constant one or zero; one
6422 means that the prefetch is preparing for a write to the memory address
6423 and zero, the default, means that the prefetch is preparing for a read.
6424 The value @var{locality} must be a compile-time constant integer between
6425 zero and three. A value of zero means that the data has no temporal
6426 locality, so it need not be left in the cache after the access. A value
6427 of three means that the data has a high degree of temporal locality and
6428 should be left in all levels of cache possible. Values of one and two
6429 mean, respectively, a low or moderate degree of temporal locality. The
6430 default is three.
6431
6432 @smallexample
6433 for (i = 0; i < n; i++)
6434 @{
6435 a[i] = a[i] + b[i];
6436 __builtin_prefetch (&a[i+j], 1, 1);
6437 __builtin_prefetch (&b[i+j], 0, 1);
6438 /* @r{@dots{}} */
6439 @}
6440 @end smallexample
6441
6442 Data prefetch does not generate faults if @var{addr} is invalid, but
6443 the address expression itself must be valid. For example, a prefetch
6444 of @code{p->next} will not fault if @code{p->next} is not a valid
6445 address, but evaluation will fault if @code{p} is not a valid address.
6446
6447 If the target does not support data prefetch, the address expression
6448 is evaluated if it includes side effects but no other code is generated
6449 and GCC does not issue a warning.
6450 @end deftypefn
6451
6452 @deftypefn {Built-in Function} double __builtin_huge_val (void)
6453 Returns a positive infinity, if supported by the floating-point format,
6454 else @code{DBL_MAX}. This function is suitable for implementing the
6455 ISO C macro @code{HUGE_VAL}.
6456 @end deftypefn
6457
6458 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
6459 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
6460 @end deftypefn
6461
6462 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
6463 Similar to @code{__builtin_huge_val}, except the return
6464 type is @code{long double}.
6465 @end deftypefn
6466
6467 @deftypefn {Built-in Function} double __builtin_inf (void)
6468 Similar to @code{__builtin_huge_val}, except a warning is generated
6469 if the target floating-point format does not support infinities.
6470 @end deftypefn
6471
6472 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
6473 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
6474 @end deftypefn
6475
6476 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
6477 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
6478 @end deftypefn
6479
6480 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
6481 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
6482 @end deftypefn
6483
6484 @deftypefn {Built-in Function} float __builtin_inff (void)
6485 Similar to @code{__builtin_inf}, except the return type is @code{float}.
6486 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
6487 @end deftypefn
6488
6489 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
6490 Similar to @code{__builtin_inf}, except the return
6491 type is @code{long double}.
6492 @end deftypefn
6493
6494 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
6495 This is an implementation of the ISO C99 function @code{nan}.
6496
6497 Since ISO C99 defines this function in terms of @code{strtod}, which we
6498 do not implement, a description of the parsing is in order. The string
6499 is parsed as by @code{strtol}; that is, the base is recognized by
6500 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
6501 in the significand such that the least significant bit of the number
6502 is at the least significant bit of the significand. The number is
6503 truncated to fit the significand field provided. The significand is
6504 forced to be a quiet NaN@.
6505
6506 This function, if given a string literal all of which would have been
6507 consumed by strtol, is evaluated early enough that it is considered a
6508 compile-time constant.
6509 @end deftypefn
6510
6511 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
6512 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
6513 @end deftypefn
6514
6515 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
6516 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
6517 @end deftypefn
6518
6519 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
6520 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
6521 @end deftypefn
6522
6523 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
6524 Similar to @code{__builtin_nan}, except the return type is @code{float}.
6525 @end deftypefn
6526
6527 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
6528 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
6529 @end deftypefn
6530
6531 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
6532 Similar to @code{__builtin_nan}, except the significand is forced
6533 to be a signaling NaN@. The @code{nans} function is proposed by
6534 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
6535 @end deftypefn
6536
6537 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
6538 Similar to @code{__builtin_nans}, except the return type is @code{float}.
6539 @end deftypefn
6540
6541 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
6542 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
6543 @end deftypefn
6544
6545 @deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
6546 Returns one plus the index of the least significant 1-bit of @var{x}, or
6547 if @var{x} is zero, returns zero.
6548 @end deftypefn
6549
6550 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
6551 Returns the number of leading 0-bits in @var{x}, starting at the most
6552 significant bit position. If @var{x} is 0, the result is undefined.
6553 @end deftypefn
6554
6555 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
6556 Returns the number of trailing 0-bits in @var{x}, starting at the least
6557 significant bit position. If @var{x} is 0, the result is undefined.
6558 @end deftypefn
6559
6560 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
6561 Returns the number of 1-bits in @var{x}.
6562 @end deftypefn
6563
6564 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
6565 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
6566 modulo 2.
6567 @end deftypefn
6568
6569 @deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
6570 Similar to @code{__builtin_ffs}, except the argument type is
6571 @code{unsigned long}.
6572 @end deftypefn
6573
6574 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
6575 Similar to @code{__builtin_clz}, except the argument type is
6576 @code{unsigned long}.
6577 @end deftypefn
6578
6579 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
6580 Similar to @code{__builtin_ctz}, except the argument type is
6581 @code{unsigned long}.
6582 @end deftypefn
6583
6584 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
6585 Similar to @code{__builtin_popcount}, except the argument type is
6586 @code{unsigned long}.
6587 @end deftypefn
6588
6589 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
6590 Similar to @code{__builtin_parity}, except the argument type is
6591 @code{unsigned long}.
6592 @end deftypefn
6593
6594 @deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
6595 Similar to @code{__builtin_ffs}, except the argument type is
6596 @code{unsigned long long}.
6597 @end deftypefn
6598
6599 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
6600 Similar to @code{__builtin_clz}, except the argument type is
6601 @code{unsigned long long}.
6602 @end deftypefn
6603
6604 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
6605 Similar to @code{__builtin_ctz}, except the argument type is
6606 @code{unsigned long long}.
6607 @end deftypefn
6608
6609 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
6610 Similar to @code{__builtin_popcount}, except the argument type is
6611 @code{unsigned long long}.
6612 @end deftypefn
6613
6614 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
6615 Similar to @code{__builtin_parity}, except the argument type is
6616 @code{unsigned long long}.
6617 @end deftypefn
6618
6619 @deftypefn {Built-in Function} double __builtin_powi (double, int)
6620 Returns the first argument raised to the power of the second. Unlike the
6621 @code{pow} function no guarantees about precision and rounding are made.
6622 @end deftypefn
6623
6624 @deftypefn {Built-in Function} float __builtin_powif (float, int)
6625 Similar to @code{__builtin_powi}, except the argument and return types
6626 are @code{float}.
6627 @end deftypefn
6628
6629 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
6630 Similar to @code{__builtin_powi}, except the argument and return types
6631 are @code{long double}.
6632 @end deftypefn
6633
6634 @deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
6635 Returns @var{x} with the order of the bytes reversed; for example,
6636 @code{0xaabbccdd} becomes @code{0xddccbbaa}. Byte here always means
6637 exactly 8 bits.
6638 @end deftypefn
6639
6640 @deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
6641 Similar to @code{__builtin_bswap32}, except the argument and return types
6642 are 64-bit.
6643 @end deftypefn
6644
6645 @node Target Builtins
6646 @section Built-in Functions Specific to Particular Target Machines
6647
6648 On some target machines, GCC supports many built-in functions specific
6649 to those machines. Generally these generate calls to specific machine
6650 instructions, but allow the compiler to schedule those calls.
6651
6652 @menu
6653 * Alpha Built-in Functions::
6654 * ARM iWMMXt Built-in Functions::
6655 * ARM NEON Intrinsics::
6656 * Blackfin Built-in Functions::
6657 * FR-V Built-in Functions::
6658 * X86 Built-in Functions::
6659 * MIPS DSP Built-in Functions::
6660 * MIPS Paired-Single Support::
6661 * PowerPC AltiVec Built-in Functions::
6662 * SPARC VIS Built-in Functions::
6663 * SPU Built-in Functions::
6664 @end menu
6665
6666 @node Alpha Built-in Functions
6667 @subsection Alpha Built-in Functions
6668
6669 These built-in functions are available for the Alpha family of
6670 processors, depending on the command-line switches used.
6671
6672 The following built-in functions are always available. They
6673 all generate the machine instruction that is part of the name.
6674
6675 @smallexample
6676 long __builtin_alpha_implver (void)
6677 long __builtin_alpha_rpcc (void)
6678 long __builtin_alpha_amask (long)
6679 long __builtin_alpha_cmpbge (long, long)
6680 long __builtin_alpha_extbl (long, long)
6681 long __builtin_alpha_extwl (long, long)
6682 long __builtin_alpha_extll (long, long)
6683 long __builtin_alpha_extql (long, long)
6684 long __builtin_alpha_extwh (long, long)
6685 long __builtin_alpha_extlh (long, long)
6686 long __builtin_alpha_extqh (long, long)
6687 long __builtin_alpha_insbl (long, long)
6688 long __builtin_alpha_inswl (long, long)
6689 long __builtin_alpha_insll (long, long)
6690 long __builtin_alpha_insql (long, long)
6691 long __builtin_alpha_inswh (long, long)
6692 long __builtin_alpha_inslh (long, long)
6693 long __builtin_alpha_insqh (long, long)
6694 long __builtin_alpha_mskbl (long, long)
6695 long __builtin_alpha_mskwl (long, long)
6696 long __builtin_alpha_mskll (long, long)
6697 long __builtin_alpha_mskql (long, long)
6698 long __builtin_alpha_mskwh (long, long)
6699 long __builtin_alpha_msklh (long, long)
6700 long __builtin_alpha_mskqh (long, long)
6701 long __builtin_alpha_umulh (long, long)
6702 long __builtin_alpha_zap (long, long)
6703 long __builtin_alpha_zapnot (long, long)
6704 @end smallexample
6705
6706 The following built-in functions are always with @option{-mmax}
6707 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
6708 later. They all generate the machine instruction that is part
6709 of the name.
6710
6711 @smallexample
6712 long __builtin_alpha_pklb (long)
6713 long __builtin_alpha_pkwb (long)
6714 long __builtin_alpha_unpkbl (long)
6715 long __builtin_alpha_unpkbw (long)
6716 long __builtin_alpha_minub8 (long, long)
6717 long __builtin_alpha_minsb8 (long, long)
6718 long __builtin_alpha_minuw4 (long, long)
6719 long __builtin_alpha_minsw4 (long, long)
6720 long __builtin_alpha_maxub8 (long, long)
6721 long __builtin_alpha_maxsb8 (long, long)
6722 long __builtin_alpha_maxuw4 (long, long)
6723 long __builtin_alpha_maxsw4 (long, long)
6724 long __builtin_alpha_perr (long, long)
6725 @end smallexample
6726
6727 The following built-in functions are always with @option{-mcix}
6728 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
6729 later. They all generate the machine instruction that is part
6730 of the name.
6731
6732 @smallexample
6733 long __builtin_alpha_cttz (long)
6734 long __builtin_alpha_ctlz (long)
6735 long __builtin_alpha_ctpop (long)
6736 @end smallexample
6737
6738 The following builtins are available on systems that use the OSF/1
6739 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
6740 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
6741 @code{rdval} and @code{wrval}.
6742
6743 @smallexample
6744 void *__builtin_thread_pointer (void)
6745 void __builtin_set_thread_pointer (void *)
6746 @end smallexample
6747
6748 @node ARM iWMMXt Built-in Functions
6749 @subsection ARM iWMMXt Built-in Functions
6750
6751 These built-in functions are available for the ARM family of
6752 processors when the @option{-mcpu=iwmmxt} switch is used:
6753
6754 @smallexample
6755 typedef int v2si __attribute__ ((vector_size (8)));
6756 typedef short v4hi __attribute__ ((vector_size (8)));
6757 typedef char v8qi __attribute__ ((vector_size (8)));
6758
6759 int __builtin_arm_getwcx (int)
6760 void __builtin_arm_setwcx (int, int)
6761 int __builtin_arm_textrmsb (v8qi, int)
6762 int __builtin_arm_textrmsh (v4hi, int)
6763 int __builtin_arm_textrmsw (v2si, int)
6764 int __builtin_arm_textrmub (v8qi, int)
6765 int __builtin_arm_textrmuh (v4hi, int)
6766 int __builtin_arm_textrmuw (v2si, int)
6767 v8qi __builtin_arm_tinsrb (v8qi, int)
6768 v4hi __builtin_arm_tinsrh (v4hi, int)
6769 v2si __builtin_arm_tinsrw (v2si, int)
6770 long long __builtin_arm_tmia (long long, int, int)
6771 long long __builtin_arm_tmiabb (long long, int, int)
6772 long long __builtin_arm_tmiabt (long long, int, int)
6773 long long __builtin_arm_tmiaph (long long, int, int)
6774 long long __builtin_arm_tmiatb (long long, int, int)
6775 long long __builtin_arm_tmiatt (long long, int, int)
6776 int __builtin_arm_tmovmskb (v8qi)
6777 int __builtin_arm_tmovmskh (v4hi)
6778 int __builtin_arm_tmovmskw (v2si)
6779 long long __builtin_arm_waccb (v8qi)
6780 long long __builtin_arm_wacch (v4hi)
6781 long long __builtin_arm_waccw (v2si)
6782 v8qi __builtin_arm_waddb (v8qi, v8qi)
6783 v8qi __builtin_arm_waddbss (v8qi, v8qi)
6784 v8qi __builtin_arm_waddbus (v8qi, v8qi)
6785 v4hi __builtin_arm_waddh (v4hi, v4hi)
6786 v4hi __builtin_arm_waddhss (v4hi, v4hi)
6787 v4hi __builtin_arm_waddhus (v4hi, v4hi)
6788 v2si __builtin_arm_waddw (v2si, v2si)
6789 v2si __builtin_arm_waddwss (v2si, v2si)
6790 v2si __builtin_arm_waddwus (v2si, v2si)
6791 v8qi __builtin_arm_walign (v8qi, v8qi, int)
6792 long long __builtin_arm_wand(long long, long long)
6793 long long __builtin_arm_wandn (long long, long long)
6794 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
6795 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
6796 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
6797 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
6798 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
6799 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
6800 v2si __builtin_arm_wcmpeqw (v2si, v2si)
6801 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
6802 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
6803 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
6804 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
6805 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
6806 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
6807 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
6808 long long __builtin_arm_wmacsz (v4hi, v4hi)
6809 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
6810 long long __builtin_arm_wmacuz (v4hi, v4hi)
6811 v4hi __builtin_arm_wmadds (v4hi, v4hi)
6812 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
6813 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
6814 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
6815 v2si __builtin_arm_wmaxsw (v2si, v2si)
6816 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
6817 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
6818 v2si __builtin_arm_wmaxuw (v2si, v2si)
6819 v8qi __builtin_arm_wminsb (v8qi, v8qi)
6820 v4hi __builtin_arm_wminsh (v4hi, v4hi)
6821 v2si __builtin_arm_wminsw (v2si, v2si)
6822 v8qi __builtin_arm_wminub (v8qi, v8qi)
6823 v4hi __builtin_arm_wminuh (v4hi, v4hi)
6824 v2si __builtin_arm_wminuw (v2si, v2si)
6825 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
6826 v4hi __builtin_arm_wmulul (v4hi, v4hi)
6827 v4hi __builtin_arm_wmulum (v4hi, v4hi)
6828 long long __builtin_arm_wor (long long, long long)
6829 v2si __builtin_arm_wpackdss (long long, long long)
6830 v2si __builtin_arm_wpackdus (long long, long long)
6831 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
6832 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
6833 v4hi __builtin_arm_wpackwss (v2si, v2si)
6834 v4hi __builtin_arm_wpackwus (v2si, v2si)
6835 long long __builtin_arm_wrord (long long, long long)
6836 long long __builtin_arm_wrordi (long long, int)
6837 v4hi __builtin_arm_wrorh (v4hi, long long)
6838 v4hi __builtin_arm_wrorhi (v4hi, int)
6839 v2si __builtin_arm_wrorw (v2si, long long)
6840 v2si __builtin_arm_wrorwi (v2si, int)
6841 v2si __builtin_arm_wsadb (v8qi, v8qi)
6842 v2si __builtin_arm_wsadbz (v8qi, v8qi)
6843 v2si __builtin_arm_wsadh (v4hi, v4hi)
6844 v2si __builtin_arm_wsadhz (v4hi, v4hi)
6845 v4hi __builtin_arm_wshufh (v4hi, int)
6846 long long __builtin_arm_wslld (long long, long long)
6847 long long __builtin_arm_wslldi (long long, int)
6848 v4hi __builtin_arm_wsllh (v4hi, long long)
6849 v4hi __builtin_arm_wsllhi (v4hi, int)
6850 v2si __builtin_arm_wsllw (v2si, long long)
6851 v2si __builtin_arm_wsllwi (v2si, int)
6852 long long __builtin_arm_wsrad (long long, long long)
6853 long long __builtin_arm_wsradi (long long, int)
6854 v4hi __builtin_arm_wsrah (v4hi, long long)
6855 v4hi __builtin_arm_wsrahi (v4hi, int)
6856 v2si __builtin_arm_wsraw (v2si, long long)
6857 v2si __builtin_arm_wsrawi (v2si, int)
6858 long long __builtin_arm_wsrld (long long, long long)
6859 long long __builtin_arm_wsrldi (long long, int)
6860 v4hi __builtin_arm_wsrlh (v4hi, long long)
6861 v4hi __builtin_arm_wsrlhi (v4hi, int)
6862 v2si __builtin_arm_wsrlw (v2si, long long)
6863 v2si __builtin_arm_wsrlwi (v2si, int)
6864 v8qi __builtin_arm_wsubb (v8qi, v8qi)
6865 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
6866 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
6867 v4hi __builtin_arm_wsubh (v4hi, v4hi)
6868 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
6869 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
6870 v2si __builtin_arm_wsubw (v2si, v2si)
6871 v2si __builtin_arm_wsubwss (v2si, v2si)
6872 v2si __builtin_arm_wsubwus (v2si, v2si)
6873 v4hi __builtin_arm_wunpckehsb (v8qi)
6874 v2si __builtin_arm_wunpckehsh (v4hi)
6875 long long __builtin_arm_wunpckehsw (v2si)
6876 v4hi __builtin_arm_wunpckehub (v8qi)
6877 v2si __builtin_arm_wunpckehuh (v4hi)
6878 long long __builtin_arm_wunpckehuw (v2si)
6879 v4hi __builtin_arm_wunpckelsb (v8qi)
6880 v2si __builtin_arm_wunpckelsh (v4hi)
6881 long long __builtin_arm_wunpckelsw (v2si)
6882 v4hi __builtin_arm_wunpckelub (v8qi)
6883 v2si __builtin_arm_wunpckeluh (v4hi)
6884 long long __builtin_arm_wunpckeluw (v2si)
6885 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
6886 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
6887 v2si __builtin_arm_wunpckihw (v2si, v2si)
6888 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
6889 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
6890 v2si __builtin_arm_wunpckilw (v2si, v2si)
6891 long long __builtin_arm_wxor (long long, long long)
6892 long long __builtin_arm_wzero ()
6893 @end smallexample
6894
6895 @node ARM NEON Intrinsics
6896 @subsection ARM NEON Intrinsics
6897
6898 These built-in intrinsics for the ARM Advanced SIMD extension are available
6899 when the @option{-mfpu=neon} switch is used:
6900
6901 @include arm-neon-intrinsics.texi
6902
6903 @node Blackfin Built-in Functions
6904 @subsection Blackfin Built-in Functions
6905
6906 Currently, there are two Blackfin-specific built-in functions. These are
6907 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
6908 using inline assembly; by using these built-in functions the compiler can
6909 automatically add workarounds for hardware errata involving these
6910 instructions. These functions are named as follows:
6911
6912 @smallexample
6913 void __builtin_bfin_csync (void)
6914 void __builtin_bfin_ssync (void)
6915 @end smallexample
6916
6917 @node FR-V Built-in Functions
6918 @subsection FR-V Built-in Functions
6919
6920 GCC provides many FR-V-specific built-in functions. In general,
6921 these functions are intended to be compatible with those described
6922 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
6923 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
6924 @code{__MBTOHE}, the gcc forms of which pass 128-bit values by
6925 pointer rather than by value.
6926
6927 Most of the functions are named after specific FR-V instructions.
6928 Such functions are said to be ``directly mapped'' and are summarized
6929 here in tabular form.
6930
6931 @menu
6932 * Argument Types::
6933 * Directly-mapped Integer Functions::
6934 * Directly-mapped Media Functions::
6935 * Raw read/write Functions::
6936 * Other Built-in Functions::
6937 @end menu
6938
6939 @node Argument Types
6940 @subsubsection Argument Types
6941
6942 The arguments to the built-in functions can be divided into three groups:
6943 register numbers, compile-time constants and run-time values. In order
6944 to make this classification clear at a glance, the arguments and return
6945 values are given the following pseudo types:
6946
6947 @multitable @columnfractions .20 .30 .15 .35
6948 @item Pseudo type @tab Real C type @tab Constant? @tab Description
6949 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
6950 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
6951 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
6952 @item @code{uw2} @tab @code{unsigned long long} @tab No
6953 @tab an unsigned doubleword
6954 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
6955 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
6956 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
6957 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
6958 @end multitable
6959
6960 These pseudo types are not defined by GCC, they are simply a notational
6961 convenience used in this manual.
6962
6963 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
6964 and @code{sw2} are evaluated at run time. They correspond to
6965 register operands in the underlying FR-V instructions.
6966
6967 @code{const} arguments represent immediate operands in the underlying
6968 FR-V instructions. They must be compile-time constants.
6969
6970 @code{acc} arguments are evaluated at compile time and specify the number
6971 of an accumulator register. For example, an @code{acc} argument of 2
6972 will select the ACC2 register.
6973
6974 @code{iacc} arguments are similar to @code{acc} arguments but specify the
6975 number of an IACC register. See @pxref{Other Built-in Functions}
6976 for more details.
6977
6978 @node Directly-mapped Integer Functions
6979 @subsubsection Directly-mapped Integer Functions
6980
6981 The functions listed below map directly to FR-V I-type instructions.
6982
6983 @multitable @columnfractions .45 .32 .23
6984 @item Function prototype @tab Example usage @tab Assembly output
6985 @item @code{sw1 __ADDSS (sw1, sw1)}
6986 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
6987 @tab @code{ADDSS @var{a},@var{b},@var{c}}
6988 @item @code{sw1 __SCAN (sw1, sw1)}
6989 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
6990 @tab @code{SCAN @var{a},@var{b},@var{c}}
6991 @item @code{sw1 __SCUTSS (sw1)}
6992 @tab @code{@var{b} = __SCUTSS (@var{a})}
6993 @tab @code{SCUTSS @var{a},@var{b}}
6994 @item @code{sw1 __SLASS (sw1, sw1)}
6995 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
6996 @tab @code{SLASS @var{a},@var{b},@var{c}}
6997 @item @code{void __SMASS (sw1, sw1)}
6998 @tab @code{__SMASS (@var{a}, @var{b})}
6999 @tab @code{SMASS @var{a},@var{b}}
7000 @item @code{void __SMSSS (sw1, sw1)}
7001 @tab @code{__SMSSS (@var{a}, @var{b})}
7002 @tab @code{SMSSS @var{a},@var{b}}
7003 @item @code{void __SMU (sw1, sw1)}
7004 @tab @code{__SMU (@var{a}, @var{b})}
7005 @tab @code{SMU @var{a},@var{b}}
7006 @item @code{sw2 __SMUL (sw1, sw1)}
7007 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
7008 @tab @code{SMUL @var{a},@var{b},@var{c}}
7009 @item @code{sw1 __SUBSS (sw1, sw1)}
7010 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
7011 @tab @code{SUBSS @var{a},@var{b},@var{c}}
7012 @item @code{uw2 __UMUL (uw1, uw1)}
7013 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
7014 @tab @code{UMUL @var{a},@var{b},@var{c}}
7015 @end multitable
7016
7017 @node Directly-mapped Media Functions
7018 @subsubsection Directly-mapped Media Functions
7019
7020 The functions listed below map directly to FR-V M-type instructions.
7021
7022 @multitable @columnfractions .45 .32 .23
7023 @item Function prototype @tab Example usage @tab Assembly output
7024 @item @code{uw1 __MABSHS (sw1)}
7025 @tab @code{@var{b} = __MABSHS (@var{a})}
7026 @tab @code{MABSHS @var{a},@var{b}}
7027 @item @code{void __MADDACCS (acc, acc)}
7028 @tab @code{__MADDACCS (@var{b}, @var{a})}
7029 @tab @code{MADDACCS @var{a},@var{b}}
7030 @item @code{sw1 __MADDHSS (sw1, sw1)}
7031 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
7032 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
7033 @item @code{uw1 __MADDHUS (uw1, uw1)}
7034 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
7035 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
7036 @item @code{uw1 __MAND (uw1, uw1)}
7037 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
7038 @tab @code{MAND @var{a},@var{b},@var{c}}
7039 @item @code{void __MASACCS (acc, acc)}
7040 @tab @code{__MASACCS (@var{b}, @var{a})}
7041 @tab @code{MASACCS @var{a},@var{b}}
7042 @item @code{uw1 __MAVEH (uw1, uw1)}
7043 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
7044 @tab @code{MAVEH @var{a},@var{b},@var{c}}
7045 @item @code{uw2 __MBTOH (uw1)}
7046 @tab @code{@var{b} = __MBTOH (@var{a})}
7047 @tab @code{MBTOH @var{a},@var{b}}
7048 @item @code{void __MBTOHE (uw1 *, uw1)}
7049 @tab @code{__MBTOHE (&@var{b}, @var{a})}
7050 @tab @code{MBTOHE @var{a},@var{b}}
7051 @item @code{void __MCLRACC (acc)}
7052 @tab @code{__MCLRACC (@var{a})}
7053 @tab @code{MCLRACC @var{a}}
7054 @item @code{void __MCLRACCA (void)}
7055 @tab @code{__MCLRACCA ()}
7056 @tab @code{MCLRACCA}
7057 @item @code{uw1 __Mcop1 (uw1, uw1)}
7058 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
7059 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
7060 @item @code{uw1 __Mcop2 (uw1, uw1)}
7061 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
7062 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
7063 @item @code{uw1 __MCPLHI (uw2, const)}
7064 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
7065 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
7066 @item @code{uw1 __MCPLI (uw2, const)}
7067 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
7068 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
7069 @item @code{void __MCPXIS (acc, sw1, sw1)}
7070 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
7071 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
7072 @item @code{void __MCPXIU (acc, uw1, uw1)}
7073 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
7074 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
7075 @item @code{void __MCPXRS (acc, sw1, sw1)}
7076 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
7077 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
7078 @item @code{void __MCPXRU (acc, uw1, uw1)}
7079 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
7080 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
7081 @item @code{uw1 __MCUT (acc, uw1)}
7082 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
7083 @tab @code{MCUT @var{a},@var{b},@var{c}}
7084 @item @code{uw1 __MCUTSS (acc, sw1)}
7085 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
7086 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
7087 @item @code{void __MDADDACCS (acc, acc)}
7088 @tab @code{__MDADDACCS (@var{b}, @var{a})}
7089 @tab @code{MDADDACCS @var{a},@var{b}}
7090 @item @code{void __MDASACCS (acc, acc)}
7091 @tab @code{__MDASACCS (@var{b}, @var{a})}
7092 @tab @code{MDASACCS @var{a},@var{b}}
7093 @item @code{uw2 __MDCUTSSI (acc, const)}
7094 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
7095 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
7096 @item @code{uw2 __MDPACKH (uw2, uw2)}
7097 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
7098 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
7099 @item @code{uw2 __MDROTLI (uw2, const)}
7100 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
7101 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
7102 @item @code{void __MDSUBACCS (acc, acc)}
7103 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
7104 @tab @code{MDSUBACCS @var{a},@var{b}}
7105 @item @code{void __MDUNPACKH (uw1 *, uw2)}
7106 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
7107 @tab @code{MDUNPACKH @var{a},@var{b}}
7108 @item @code{uw2 __MEXPDHD (uw1, const)}
7109 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
7110 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
7111 @item @code{uw1 __MEXPDHW (uw1, const)}
7112 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
7113 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
7114 @item @code{uw1 __MHDSETH (uw1, const)}
7115 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
7116 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
7117 @item @code{sw1 __MHDSETS (const)}
7118 @tab @code{@var{b} = __MHDSETS (@var{a})}
7119 @tab @code{MHDSETS #@var{a},@var{b}}
7120 @item @code{uw1 __MHSETHIH (uw1, const)}
7121 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
7122 @tab @code{MHSETHIH #@var{a},@var{b}}
7123 @item @code{sw1 __MHSETHIS (sw1, const)}
7124 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
7125 @tab @code{MHSETHIS #@var{a},@var{b}}
7126 @item @code{uw1 __MHSETLOH (uw1, const)}
7127 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
7128 @tab @code{MHSETLOH #@var{a},@var{b}}
7129 @item @code{sw1 __MHSETLOS (sw1, const)}
7130 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
7131 @tab @code{MHSETLOS #@var{a},@var{b}}
7132 @item @code{uw1 __MHTOB (uw2)}
7133 @tab @code{@var{b} = __MHTOB (@var{a})}
7134 @tab @code{MHTOB @var{a},@var{b}}
7135 @item @code{void __MMACHS (acc, sw1, sw1)}
7136 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
7137 @tab @code{MMACHS @var{a},@var{b},@var{c}}
7138 @item @code{void __MMACHU (acc, uw1, uw1)}
7139 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
7140 @tab @code{MMACHU @var{a},@var{b},@var{c}}
7141 @item @code{void __MMRDHS (acc, sw1, sw1)}
7142 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
7143 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
7144 @item @code{void __MMRDHU (acc, uw1, uw1)}
7145 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
7146 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
7147 @item @code{void __MMULHS (acc, sw1, sw1)}
7148 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
7149 @tab @code{MMULHS @var{a},@var{b},@var{c}}
7150 @item @code{void __MMULHU (acc, uw1, uw1)}
7151 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
7152 @tab @code{MMULHU @var{a},@var{b},@var{c}}
7153 @item @code{void __MMULXHS (acc, sw1, sw1)}
7154 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
7155 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
7156 @item @code{void __MMULXHU (acc, uw1, uw1)}
7157 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
7158 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
7159 @item @code{uw1 __MNOT (uw1)}
7160 @tab @code{@var{b} = __MNOT (@var{a})}
7161 @tab @code{MNOT @var{a},@var{b}}
7162 @item @code{uw1 __MOR (uw1, uw1)}
7163 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
7164 @tab @code{MOR @var{a},@var{b},@var{c}}
7165 @item @code{uw1 __MPACKH (uh, uh)}
7166 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
7167 @tab @code{MPACKH @var{a},@var{b},@var{c}}
7168 @item @code{sw2 __MQADDHSS (sw2, sw2)}
7169 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
7170 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
7171 @item @code{uw2 __MQADDHUS (uw2, uw2)}
7172 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
7173 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
7174 @item @code{void __MQCPXIS (acc, sw2, sw2)}
7175 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
7176 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
7177 @item @code{void __MQCPXIU (acc, uw2, uw2)}
7178 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
7179 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
7180 @item @code{void __MQCPXRS (acc, sw2, sw2)}
7181 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
7182 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
7183 @item @code{void __MQCPXRU (acc, uw2, uw2)}
7184 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
7185 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
7186 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
7187 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
7188 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
7189 @item @code{sw2 __MQLMTHS (sw2, sw2)}
7190 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
7191 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
7192 @item @code{void __MQMACHS (acc, sw2, sw2)}
7193 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
7194 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
7195 @item @code{void __MQMACHU (acc, uw2, uw2)}
7196 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
7197 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
7198 @item @code{void __MQMACXHS (acc, sw2, sw2)}
7199 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
7200 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
7201 @item @code{void __MQMULHS (acc, sw2, sw2)}
7202 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
7203 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
7204 @item @code{void __MQMULHU (acc, uw2, uw2)}
7205 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
7206 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
7207 @item @code{void __MQMULXHS (acc, sw2, sw2)}
7208 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
7209 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
7210 @item @code{void __MQMULXHU (acc, uw2, uw2)}
7211 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
7212 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
7213 @item @code{sw2 __MQSATHS (sw2, sw2)}
7214 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
7215 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
7216 @item @code{uw2 __MQSLLHI (uw2, int)}
7217 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
7218 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
7219 @item @code{sw2 __MQSRAHI (sw2, int)}
7220 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
7221 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
7222 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
7223 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
7224 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
7225 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
7226 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
7227 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
7228 @item @code{void __MQXMACHS (acc, sw2, sw2)}
7229 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
7230 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
7231 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
7232 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
7233 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
7234 @item @code{uw1 __MRDACC (acc)}
7235 @tab @code{@var{b} = __MRDACC (@var{a})}
7236 @tab @code{MRDACC @var{a},@var{b}}
7237 @item @code{uw1 __MRDACCG (acc)}
7238 @tab @code{@var{b} = __MRDACCG (@var{a})}
7239 @tab @code{MRDACCG @var{a},@var{b}}
7240 @item @code{uw1 __MROTLI (uw1, const)}
7241 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
7242 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
7243 @item @code{uw1 __MROTRI (uw1, const)}
7244 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
7245 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
7246 @item @code{sw1 __MSATHS (sw1, sw1)}
7247 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
7248 @tab @code{MSATHS @var{a},@var{b},@var{c}}
7249 @item @code{uw1 __MSATHU (uw1, uw1)}
7250 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
7251 @tab @code{MSATHU @var{a},@var{b},@var{c}}
7252 @item @code{uw1 __MSLLHI (uw1, const)}
7253 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
7254 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
7255 @item @code{sw1 __MSRAHI (sw1, const)}
7256 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
7257 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
7258 @item @code{uw1 __MSRLHI (uw1, const)}
7259 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
7260 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
7261 @item @code{void __MSUBACCS (acc, acc)}
7262 @tab @code{__MSUBACCS (@var{b}, @var{a})}
7263 @tab @code{MSUBACCS @var{a},@var{b}}
7264 @item @code{sw1 __MSUBHSS (sw1, sw1)}
7265 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
7266 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
7267 @item @code{uw1 __MSUBHUS (uw1, uw1)}
7268 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
7269 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
7270 @item @code{void __MTRAP (void)}
7271 @tab @code{__MTRAP ()}
7272 @tab @code{MTRAP}
7273 @item @code{uw2 __MUNPACKH (uw1)}
7274 @tab @code{@var{b} = __MUNPACKH (@var{a})}
7275 @tab @code{MUNPACKH @var{a},@var{b}}
7276 @item @code{uw1 __MWCUT (uw2, uw1)}
7277 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
7278 @tab @code{MWCUT @var{a},@var{b},@var{c}}
7279 @item @code{void __MWTACC (acc, uw1)}
7280 @tab @code{__MWTACC (@var{b}, @var{a})}
7281 @tab @code{MWTACC @var{a},@var{b}}
7282 @item @code{void __MWTACCG (acc, uw1)}
7283 @tab @code{__MWTACCG (@var{b}, @var{a})}
7284 @tab @code{MWTACCG @var{a},@var{b}}
7285 @item @code{uw1 __MXOR (uw1, uw1)}
7286 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
7287 @tab @code{MXOR @var{a},@var{b},@var{c}}
7288 @end multitable
7289
7290 @node Raw read/write Functions
7291 @subsubsection Raw read/write Functions
7292
7293 This sections describes built-in functions related to read and write
7294 instructions to access memory. These functions generate
7295 @code{membar} instructions to flush the I/O load and stores where
7296 appropriate, as described in Fujitsu's manual described above.
7297
7298 @table @code
7299
7300 @item unsigned char __builtin_read8 (void *@var{data})
7301 @item unsigned short __builtin_read16 (void *@var{data})
7302 @item unsigned long __builtin_read32 (void *@var{data})
7303 @item unsigned long long __builtin_read64 (void *@var{data})
7304
7305 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
7306 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
7307 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
7308 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
7309 @end table
7310
7311 @node Other Built-in Functions
7312 @subsubsection Other Built-in Functions
7313
7314 This section describes built-in functions that are not named after
7315 a specific FR-V instruction.
7316
7317 @table @code
7318 @item sw2 __IACCreadll (iacc @var{reg})
7319 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
7320 for future expansion and must be 0.
7321
7322 @item sw1 __IACCreadl (iacc @var{reg})
7323 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
7324 Other values of @var{reg} are rejected as invalid.
7325
7326 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
7327 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
7328 is reserved for future expansion and must be 0.
7329
7330 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
7331 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
7332 is 1. Other values of @var{reg} are rejected as invalid.
7333
7334 @item void __data_prefetch0 (const void *@var{x})
7335 Use the @code{dcpl} instruction to load the contents of address @var{x}
7336 into the data cache.
7337
7338 @item void __data_prefetch (const void *@var{x})
7339 Use the @code{nldub} instruction to load the contents of address @var{x}
7340 into the data cache. The instruction will be issued in slot I1@.
7341 @end table
7342
7343 @node X86 Built-in Functions
7344 @subsection X86 Built-in Functions
7345
7346 These built-in functions are available for the i386 and x86-64 family
7347 of computers, depending on the command-line switches used.
7348
7349 Note that, if you specify command-line switches such as @option{-msse},
7350 the compiler could use the extended instruction sets even if the built-ins
7351 are not used explicitly in the program. For this reason, applications
7352 which perform runtime CPU detection must compile separate files for each
7353 supported architecture, using the appropriate flags. In particular,
7354 the file containing the CPU detection code should be compiled without
7355 these options.
7356
7357 The following machine modes are available for use with MMX built-in functions
7358 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
7359 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
7360 vector of eight 8-bit integers. Some of the built-in functions operate on
7361 MMX registers as a whole 64-bit entity, these use @code{DI} as their mode.
7362
7363 If 3Dnow extensions are enabled, @code{V2SF} is used as a mode for a vector
7364 of two 32-bit floating point values.
7365
7366 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
7367 floating point values. Some instructions use a vector of four 32-bit
7368 integers, these use @code{V4SI}. Finally, some instructions operate on an
7369 entire vector register, interpreting it as a 128-bit integer, these use mode
7370 @code{TI}.
7371
7372 In the 64-bit mode, x86-64 family of processors uses additional built-in
7373 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
7374 floating point and @code{TC} 128-bit complex floating point values.
7375
7376 The following floating point built-in functions are made available in the
7377 64-bit mode. All of them implement the function that is part of the name.
7378
7379 @smallexample
7380 __float128 __builtin_fabsq (__float128)
7381 __float128 __builtin_copysignq (__float128, __float128)
7382 @end smallexample
7383
7384 The following floating point built-in functions are made available in the
7385 64-bit mode.
7386
7387 @table @code
7388 @item __float128 __builtin_infq (void)
7389 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
7390 @end table
7391
7392 The following built-in functions are made available by @option{-mmmx}.
7393 All of them generate the machine instruction that is part of the name.
7394
7395 @smallexample
7396 v8qi __builtin_ia32_paddb (v8qi, v8qi)
7397 v4hi __builtin_ia32_paddw (v4hi, v4hi)
7398 v2si __builtin_ia32_paddd (v2si, v2si)
7399 v8qi __builtin_ia32_psubb (v8qi, v8qi)
7400 v4hi __builtin_ia32_psubw (v4hi, v4hi)
7401 v2si __builtin_ia32_psubd (v2si, v2si)
7402 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
7403 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
7404 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
7405 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
7406 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
7407 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
7408 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
7409 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
7410 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
7411 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
7412 di __builtin_ia32_pand (di, di)
7413 di __builtin_ia32_pandn (di,di)
7414 di __builtin_ia32_por (di, di)
7415 di __builtin_ia32_pxor (di, di)
7416 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
7417 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
7418 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
7419 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
7420 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
7421 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
7422 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
7423 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
7424 v2si __builtin_ia32_punpckhdq (v2si, v2si)
7425 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
7426 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
7427 v2si __builtin_ia32_punpckldq (v2si, v2si)
7428 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
7429 v4hi __builtin_ia32_packssdw (v2si, v2si)
7430 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
7431 @end smallexample
7432
7433 The following built-in functions are made available either with
7434 @option{-msse}, or with a combination of @option{-m3dnow} and
7435 @option{-march=athlon}. All of them generate the machine
7436 instruction that is part of the name.
7437
7438 @smallexample
7439 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
7440 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
7441 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
7442 v4hi __builtin_ia32_psadbw (v8qi, v8qi)
7443 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
7444 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
7445 v8qi __builtin_ia32_pminub (v8qi, v8qi)
7446 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
7447 int __builtin_ia32_pextrw (v4hi, int)
7448 v4hi __builtin_ia32_pinsrw (v4hi, int, int)
7449 int __builtin_ia32_pmovmskb (v8qi)
7450 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
7451 void __builtin_ia32_movntq (di *, di)
7452 void __builtin_ia32_sfence (void)
7453 @end smallexample
7454
7455 The following built-in functions are available when @option{-msse} is used.
7456 All of them generate the machine instruction that is part of the name.
7457
7458 @smallexample
7459 int __builtin_ia32_comieq (v4sf, v4sf)
7460 int __builtin_ia32_comineq (v4sf, v4sf)
7461 int __builtin_ia32_comilt (v4sf, v4sf)
7462 int __builtin_ia32_comile (v4sf, v4sf)
7463 int __builtin_ia32_comigt (v4sf, v4sf)
7464 int __builtin_ia32_comige (v4sf, v4sf)
7465 int __builtin_ia32_ucomieq (v4sf, v4sf)
7466 int __builtin_ia32_ucomineq (v4sf, v4sf)
7467 int __builtin_ia32_ucomilt (v4sf, v4sf)
7468 int __builtin_ia32_ucomile (v4sf, v4sf)
7469 int __builtin_ia32_ucomigt (v4sf, v4sf)
7470 int __builtin_ia32_ucomige (v4sf, v4sf)
7471 v4sf __builtin_ia32_addps (v4sf, v4sf)
7472 v4sf __builtin_ia32_subps (v4sf, v4sf)
7473 v4sf __builtin_ia32_mulps (v4sf, v4sf)
7474 v4sf __builtin_ia32_divps (v4sf, v4sf)
7475 v4sf __builtin_ia32_addss (v4sf, v4sf)
7476 v4sf __builtin_ia32_subss (v4sf, v4sf)
7477 v4sf __builtin_ia32_mulss (v4sf, v4sf)
7478 v4sf __builtin_ia32_divss (v4sf, v4sf)
7479 v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
7480 v4si __builtin_ia32_cmpltps (v4sf, v4sf)
7481 v4si __builtin_ia32_cmpleps (v4sf, v4sf)
7482 v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
7483 v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
7484 v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
7485 v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
7486 v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
7487 v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
7488 v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
7489 v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
7490 v4si __builtin_ia32_cmpordps (v4sf, v4sf)
7491 v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
7492 v4si __builtin_ia32_cmpltss (v4sf, v4sf)
7493 v4si __builtin_ia32_cmpless (v4sf, v4sf)
7494 v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
7495 v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
7496 v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
7497 v4si __builtin_ia32_cmpnless (v4sf, v4sf)
7498 v4si __builtin_ia32_cmpordss (v4sf, v4sf)
7499 v4sf __builtin_ia32_maxps (v4sf, v4sf)
7500 v4sf __builtin_ia32_maxss (v4sf, v4sf)
7501 v4sf __builtin_ia32_minps (v4sf, v4sf)
7502 v4sf __builtin_ia32_minss (v4sf, v4sf)
7503 v4sf __builtin_ia32_andps (v4sf, v4sf)
7504 v4sf __builtin_ia32_andnps (v4sf, v4sf)
7505 v4sf __builtin_ia32_orps (v4sf, v4sf)
7506 v4sf __builtin_ia32_xorps (v4sf, v4sf)
7507 v4sf __builtin_ia32_movss (v4sf, v4sf)
7508 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
7509 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
7510 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
7511 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
7512 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
7513 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
7514 v2si __builtin_ia32_cvtps2pi (v4sf)
7515 int __builtin_ia32_cvtss2si (v4sf)
7516 v2si __builtin_ia32_cvttps2pi (v4sf)
7517 int __builtin_ia32_cvttss2si (v4sf)
7518 v4sf __builtin_ia32_rcpps (v4sf)
7519 v4sf __builtin_ia32_rsqrtps (v4sf)
7520 v4sf __builtin_ia32_sqrtps (v4sf)
7521 v4sf __builtin_ia32_rcpss (v4sf)
7522 v4sf __builtin_ia32_rsqrtss (v4sf)
7523 v4sf __builtin_ia32_sqrtss (v4sf)
7524 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
7525 void __builtin_ia32_movntps (float *, v4sf)
7526 int __builtin_ia32_movmskps (v4sf)
7527 @end smallexample
7528
7529 The following built-in functions are available when @option{-msse} is used.
7530
7531 @table @code
7532 @item v4sf __builtin_ia32_loadaps (float *)
7533 Generates the @code{movaps} machine instruction as a load from memory.
7534 @item void __builtin_ia32_storeaps (float *, v4sf)
7535 Generates the @code{movaps} machine instruction as a store to memory.
7536 @item v4sf __builtin_ia32_loadups (float *)
7537 Generates the @code{movups} machine instruction as a load from memory.
7538 @item void __builtin_ia32_storeups (float *, v4sf)
7539 Generates the @code{movups} machine instruction as a store to memory.
7540 @item v4sf __builtin_ia32_loadsss (float *)
7541 Generates the @code{movss} machine instruction as a load from memory.
7542 @item void __builtin_ia32_storess (float *, v4sf)
7543 Generates the @code{movss} machine instruction as a store to memory.
7544 @item v4sf __builtin_ia32_loadhps (v4sf, v2si *)
7545 Generates the @code{movhps} machine instruction as a load from memory.
7546 @item v4sf __builtin_ia32_loadlps (v4sf, v2si *)
7547 Generates the @code{movlps} machine instruction as a load from memory
7548 @item void __builtin_ia32_storehps (v4sf, v2si *)
7549 Generates the @code{movhps} machine instruction as a store to memory.
7550 @item void __builtin_ia32_storelps (v4sf, v2si *)
7551 Generates the @code{movlps} machine instruction as a store to memory.
7552 @end table
7553
7554 The following built-in functions are available when @option{-msse2} is used.
7555 All of them generate the machine instruction that is part of the name.
7556
7557 @smallexample
7558 int __builtin_ia32_comisdeq (v2df, v2df)
7559 int __builtin_ia32_comisdlt (v2df, v2df)
7560 int __builtin_ia32_comisdle (v2df, v2df)
7561 int __builtin_ia32_comisdgt (v2df, v2df)
7562 int __builtin_ia32_comisdge (v2df, v2df)
7563 int __builtin_ia32_comisdneq (v2df, v2df)
7564 int __builtin_ia32_ucomisdeq (v2df, v2df)
7565 int __builtin_ia32_ucomisdlt (v2df, v2df)
7566 int __builtin_ia32_ucomisdle (v2df, v2df)
7567 int __builtin_ia32_ucomisdgt (v2df, v2df)
7568 int __builtin_ia32_ucomisdge (v2df, v2df)
7569 int __builtin_ia32_ucomisdneq (v2df, v2df)
7570 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
7571 v2df __builtin_ia32_cmpltpd (v2df, v2df)
7572 v2df __builtin_ia32_cmplepd (v2df, v2df)
7573 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
7574 v2df __builtin_ia32_cmpgepd (v2df, v2df)
7575 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
7576 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
7577 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
7578 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
7579 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
7580 v2df __builtin_ia32_cmpngepd (v2df, v2df)
7581 v2df __builtin_ia32_cmpordpd (v2df, v2df)
7582 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
7583 v2df __builtin_ia32_cmpltsd (v2df, v2df)
7584 v2df __builtin_ia32_cmplesd (v2df, v2df)
7585 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
7586 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
7587 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
7588 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
7589 v2df __builtin_ia32_cmpordsd (v2df, v2df)
7590 v2di __builtin_ia32_paddq (v2di, v2di)
7591 v2di __builtin_ia32_psubq (v2di, v2di)
7592 v2df __builtin_ia32_addpd (v2df, v2df)
7593 v2df __builtin_ia32_subpd (v2df, v2df)
7594 v2df __builtin_ia32_mulpd (v2df, v2df)
7595 v2df __builtin_ia32_divpd (v2df, v2df)
7596 v2df __builtin_ia32_addsd (v2df, v2df)
7597 v2df __builtin_ia32_subsd (v2df, v2df)
7598 v2df __builtin_ia32_mulsd (v2df, v2df)
7599 v2df __builtin_ia32_divsd (v2df, v2df)
7600 v2df __builtin_ia32_minpd (v2df, v2df)
7601 v2df __builtin_ia32_maxpd (v2df, v2df)
7602 v2df __builtin_ia32_minsd (v2df, v2df)
7603 v2df __builtin_ia32_maxsd (v2df, v2df)
7604 v2df __builtin_ia32_andpd (v2df, v2df)
7605 v2df __builtin_ia32_andnpd (v2df, v2df)
7606 v2df __builtin_ia32_orpd (v2df, v2df)
7607 v2df __builtin_ia32_xorpd (v2df, v2df)
7608 v2df __builtin_ia32_movsd (v2df, v2df)
7609 v2df __builtin_ia32_unpckhpd (v2df, v2df)
7610 v2df __builtin_ia32_unpcklpd (v2df, v2df)
7611 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
7612 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
7613 v4si __builtin_ia32_paddd128 (v4si, v4si)
7614 v2di __builtin_ia32_paddq128 (v2di, v2di)
7615 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
7616 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
7617 v4si __builtin_ia32_psubd128 (v4si, v4si)
7618 v2di __builtin_ia32_psubq128 (v2di, v2di)
7619 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
7620 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
7621 v2di __builtin_ia32_pand128 (v2di, v2di)
7622 v2di __builtin_ia32_pandn128 (v2di, v2di)
7623 v2di __builtin_ia32_por128 (v2di, v2di)
7624 v2di __builtin_ia32_pxor128 (v2di, v2di)
7625 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
7626 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
7627 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
7628 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
7629 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
7630 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
7631 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
7632 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
7633 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
7634 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
7635 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
7636 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
7637 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
7638 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
7639 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
7640 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
7641 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
7642 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
7643 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
7644 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
7645 v16qi __builtin_ia32_packsswb128 (v16qi, v16qi)
7646 v8hi __builtin_ia32_packssdw128 (v8hi, v8hi)
7647 v16qi __builtin_ia32_packuswb128 (v16qi, v16qi)
7648 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
7649 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
7650 v2df __builtin_ia32_loadupd (double *)
7651 void __builtin_ia32_storeupd (double *, v2df)
7652 v2df __builtin_ia32_loadhpd (v2df, double *)
7653 v2df __builtin_ia32_loadlpd (v2df, double *)
7654 int __builtin_ia32_movmskpd (v2df)
7655 int __builtin_ia32_pmovmskb128 (v16qi)
7656 void __builtin_ia32_movnti (int *, int)
7657 void __builtin_ia32_movntpd (double *, v2df)
7658 void __builtin_ia32_movntdq (v2df *, v2df)
7659 v4si __builtin_ia32_pshufd (v4si, int)
7660 v8hi __builtin_ia32_pshuflw (v8hi, int)
7661 v8hi __builtin_ia32_pshufhw (v8hi, int)
7662 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
7663 v2df __builtin_ia32_sqrtpd (v2df)
7664 v2df __builtin_ia32_sqrtsd (v2df)
7665 v2df __builtin_ia32_shufpd (v2df, v2df, int)
7666 v2df __builtin_ia32_cvtdq2pd (v4si)
7667 v4sf __builtin_ia32_cvtdq2ps (v4si)
7668 v4si __builtin_ia32_cvtpd2dq (v2df)
7669 v2si __builtin_ia32_cvtpd2pi (v2df)
7670 v4sf __builtin_ia32_cvtpd2ps (v2df)
7671 v4si __builtin_ia32_cvttpd2dq (v2df)
7672 v2si __builtin_ia32_cvttpd2pi (v2df)
7673 v2df __builtin_ia32_cvtpi2pd (v2si)
7674 int __builtin_ia32_cvtsd2si (v2df)
7675 int __builtin_ia32_cvttsd2si (v2df)
7676 long long __builtin_ia32_cvtsd2si64 (v2df)
7677 long long __builtin_ia32_cvttsd2si64 (v2df)
7678 v4si __builtin_ia32_cvtps2dq (v4sf)
7679 v2df __builtin_ia32_cvtps2pd (v4sf)
7680 v4si __builtin_ia32_cvttps2dq (v4sf)
7681 v2df __builtin_ia32_cvtsi2sd (v2df, int)
7682 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
7683 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
7684 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
7685 void __builtin_ia32_clflush (const void *)
7686 void __builtin_ia32_lfence (void)
7687 void __builtin_ia32_mfence (void)
7688 v16qi __builtin_ia32_loaddqu (const char *)
7689 void __builtin_ia32_storedqu (char *, v16qi)
7690 unsigned long long __builtin_ia32_pmuludq (v2si, v2si)
7691 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
7692 v8hi __builtin_ia32_psllw128 (v8hi, v2di)
7693 v4si __builtin_ia32_pslld128 (v4si, v2di)
7694 v2di __builtin_ia32_psllq128 (v4si, v2di)
7695 v8hi __builtin_ia32_psrlw128 (v8hi, v2di)
7696 v4si __builtin_ia32_psrld128 (v4si, v2di)
7697 v2di __builtin_ia32_psrlq128 (v2di, v2di)
7698 v8hi __builtin_ia32_psraw128 (v8hi, v2di)
7699 v4si __builtin_ia32_psrad128 (v4si, v2di)
7700 v2di __builtin_ia32_pslldqi128 (v2di, int)
7701 v8hi __builtin_ia32_psllwi128 (v8hi, int)
7702 v4si __builtin_ia32_pslldi128 (v4si, int)
7703 v2di __builtin_ia32_psllqi128 (v2di, int)
7704 v2di __builtin_ia32_psrldqi128 (v2di, int)
7705 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
7706 v4si __builtin_ia32_psrldi128 (v4si, int)
7707 v2di __builtin_ia32_psrlqi128 (v2di, int)
7708 v8hi __builtin_ia32_psrawi128 (v8hi, int)
7709 v4si __builtin_ia32_psradi128 (v4si, int)
7710 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
7711 @end smallexample
7712
7713 The following built-in functions are available when @option{-msse3} is used.
7714 All of them generate the machine instruction that is part of the name.
7715
7716 @smallexample
7717 v2df __builtin_ia32_addsubpd (v2df, v2df)
7718 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
7719 v2df __builtin_ia32_haddpd (v2df, v2df)
7720 v4sf __builtin_ia32_haddps (v4sf, v4sf)
7721 v2df __builtin_ia32_hsubpd (v2df, v2df)
7722 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
7723 v16qi __builtin_ia32_lddqu (char const *)
7724 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
7725 v2df __builtin_ia32_movddup (v2df)
7726 v4sf __builtin_ia32_movshdup (v4sf)
7727 v4sf __builtin_ia32_movsldup (v4sf)
7728 void __builtin_ia32_mwait (unsigned int, unsigned int)
7729 @end smallexample
7730
7731 The following built-in functions are available when @option{-msse3} is used.
7732
7733 @table @code
7734 @item v2df __builtin_ia32_loadddup (double const *)
7735 Generates the @code{movddup} machine instruction as a load from memory.
7736 @end table
7737
7738 The following built-in functions are available when @option{-mssse3} is used.
7739 All of them generate the machine instruction that is part of the name
7740 with MMX registers.
7741
7742 @smallexample
7743 v2si __builtin_ia32_phaddd (v2si, v2si)
7744 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
7745 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
7746 v2si __builtin_ia32_phsubd (v2si, v2si)
7747 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
7748 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
7749 v8qi __builtin_ia32_pmaddubsw (v8qi, v8qi)
7750 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
7751 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
7752 v8qi __builtin_ia32_psignb (v8qi, v8qi)
7753 v2si __builtin_ia32_psignd (v2si, v2si)
7754 v4hi __builtin_ia32_psignw (v4hi, v4hi)
7755 long long __builtin_ia32_palignr (long long, long long, int)
7756 v8qi __builtin_ia32_pabsb (v8qi)
7757 v2si __builtin_ia32_pabsd (v2si)
7758 v4hi __builtin_ia32_pabsw (v4hi)
7759 @end smallexample
7760
7761 The following built-in functions are available when @option{-mssse3} is used.
7762 All of them generate the machine instruction that is part of the name
7763 with SSE registers.
7764
7765 @smallexample
7766 v4si __builtin_ia32_phaddd128 (v4si, v4si)
7767 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
7768 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
7769 v4si __builtin_ia32_phsubd128 (v4si, v4si)
7770 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
7771 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
7772 v16qi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
7773 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
7774 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
7775 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
7776 v4si __builtin_ia32_psignd128 (v4si, v4si)
7777 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
7778 v2di __builtin_ia32_palignr (v2di, v2di, int)
7779 v16qi __builtin_ia32_pabsb128 (v16qi)
7780 v4si __builtin_ia32_pabsd128 (v4si)
7781 v8hi __builtin_ia32_pabsw128 (v8hi)
7782 @end smallexample
7783
7784 The following built-in functions are available when @option{-msse4.1} is
7785 used. All of them generate the machine instruction that is part of the
7786 name.
7787
7788 @smallexample
7789 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
7790 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
7791 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
7792 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
7793 v2df __builtin_ia32_dppd (v2df, v2df, const int)
7794 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
7795 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
7796 v2di __builtin_ia32_movntdqa (v2di *);
7797 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
7798 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
7799 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
7800 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
7801 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
7802 v8hi __builtin_ia32_phminposuw128 (v8hi)
7803 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
7804 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
7805 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
7806 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
7807 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
7808 v4si __builtin_ia32_pminsd128 (v4si, v4si)
7809 v4si __builtin_ia32_pminud128 (v4si, v4si)
7810 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
7811 v4si __builtin_ia32_pmovsxbd128 (v16qi)
7812 v2di __builtin_ia32_pmovsxbq128 (v16qi)
7813 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
7814 v2di __builtin_ia32_pmovsxdq128 (v4si)
7815 v4si __builtin_ia32_pmovsxwd128 (v8hi)
7816 v2di __builtin_ia32_pmovsxwq128 (v8hi)
7817 v4si __builtin_ia32_pmovzxbd128 (v16qi)
7818 v2di __builtin_ia32_pmovzxbq128 (v16qi)
7819 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
7820 v2di __builtin_ia32_pmovzxdq128 (v4si)
7821 v4si __builtin_ia32_pmovzxwd128 (v8hi)
7822 v2di __builtin_ia32_pmovzxwq128 (v8hi)
7823 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
7824 v4si __builtin_ia32_pmulld128 (v4si, v4si)
7825 int __builtin_ia32_ptestc128 (v2di, v2di)
7826 int __builtin_ia32_ptestnzc128 (v2di, v2di)
7827 int __builtin_ia32_ptestz128 (v2di, v2di)
7828 v2df __builtin_ia32_roundpd (v2df, const int)
7829 v4sf __builtin_ia32_roundps (v4sf, const int)
7830 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
7831 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
7832 @end smallexample
7833
7834 The following built-in functions are available when @option{-msse4.1} is
7835 used.
7836
7837 @table @code
7838 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
7839 Generates the @code{insertps} machine instruction.
7840 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
7841 Generates the @code{pextrb} machine instruction.
7842 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
7843 Generates the @code{pinsrb} machine instruction.
7844 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
7845 Generates the @code{pinsrd} machine instruction.
7846 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
7847 Generates the @code{pinsrq} machine instruction in 64bit mode.
7848 @end table
7849
7850 The following built-in functions are changed to generate new SSE4.1
7851 instructions when @option{-msse4.1} is used.
7852
7853 @table @code
7854 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
7855 Generates the @code{extractps} machine instruction.
7856 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
7857 Generates the @code{pextrd} machine instruction.
7858 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
7859 Generates the @code{pextrq} machine instruction in 64bit mode.
7860 @end table
7861
7862 The following built-in functions are available when @option{-msse4.2} is
7863 used. All of them generate the machine instruction that is part of the
7864 name.
7865
7866 @smallexample
7867 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
7868 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
7869 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
7870 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
7871 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
7872 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
7873 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
7874 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
7875 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
7876 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
7877 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
7878 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
7879 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
7880 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
7881 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
7882 @end smallexample
7883
7884 The following built-in functions are available when @option{-msse4.2} is
7885 used.
7886
7887 @table @code
7888 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
7889 Generates the @code{crc32b} machine instruction.
7890 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
7891 Generates the @code{crc32w} machine instruction.
7892 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
7893 Generates the @code{crc32l} machine instruction.
7894 @item unsigned long long __builtin_ia32_crc32di (unsigned int, unsigned long long)
7895 @end table
7896
7897 The following built-in functions are changed to generate new SSE4.2
7898 instructions when @option{-msse4.2} is used.
7899
7900 @table @code
7901 @item int __builtin_popcount (unsigned int)
7902 Generates the @code{popcntl} machine instruction.
7903 @item int __builtin_popcountl (unsigned long)
7904 Generates the @code{popcntl} or @code{popcntq} machine instruction,
7905 depending on the size of @code{unsigned long}.
7906 @item int __builtin_popcountll (unsigned long long)
7907 Generates the @code{popcntq} machine instruction.
7908 @end table
7909
7910 The following built-in functions are available when @option{-msse4a} is used.
7911 All of them generate the machine instruction that is part of the name.
7912
7913 @smallexample
7914 void __builtin_ia32_movntsd (double *, v2df)
7915 void __builtin_ia32_movntss (float *, v4sf)
7916 v2di __builtin_ia32_extrq (v2di, v16qi)
7917 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
7918 v2di __builtin_ia32_insertq (v2di, v2di)
7919 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
7920 @end smallexample
7921
7922 The following built-in functions are available when @option{-msse5} is used.
7923 All of them generate the machine instruction that is part of the name
7924 with MMX registers.
7925
7926 @smallexample
7927 v2df __builtin_ia32_comeqpd (v2df, v2df)
7928 v2df __builtin_ia32_comeqps (v2df, v2df)
7929 v4sf __builtin_ia32_comeqsd (v4sf, v4sf)
7930 v4sf __builtin_ia32_comeqss (v4sf, v4sf)
7931 v2df __builtin_ia32_comfalsepd (v2df, v2df)
7932 v2df __builtin_ia32_comfalseps (v2df, v2df)
7933 v4sf __builtin_ia32_comfalsesd (v4sf, v4sf)
7934 v4sf __builtin_ia32_comfalsess (v4sf, v4sf)
7935 v2df __builtin_ia32_comgepd (v2df, v2df)
7936 v2df __builtin_ia32_comgeps (v2df, v2df)
7937 v4sf __builtin_ia32_comgesd (v4sf, v4sf)
7938 v4sf __builtin_ia32_comgess (v4sf, v4sf)
7939 v2df __builtin_ia32_comgtpd (v2df, v2df)
7940 v2df __builtin_ia32_comgtps (v2df, v2df)
7941 v4sf __builtin_ia32_comgtsd (v4sf, v4sf)
7942 v4sf __builtin_ia32_comgtss (v4sf, v4sf)
7943 v2df __builtin_ia32_comlepd (v2df, v2df)
7944 v2df __builtin_ia32_comleps (v2df, v2df)
7945 v4sf __builtin_ia32_comlesd (v4sf, v4sf)
7946 v4sf __builtin_ia32_comless (v4sf, v4sf)
7947 v2df __builtin_ia32_comltpd (v2df, v2df)
7948 v2df __builtin_ia32_comltps (v2df, v2df)
7949 v4sf __builtin_ia32_comltsd (v4sf, v4sf)
7950 v4sf __builtin_ia32_comltss (v4sf, v4sf)
7951 v2df __builtin_ia32_comnepd (v2df, v2df)
7952 v2df __builtin_ia32_comneps (v2df, v2df)
7953 v4sf __builtin_ia32_comnesd (v4sf, v4sf)
7954 v4sf __builtin_ia32_comness (v4sf, v4sf)
7955 v2df __builtin_ia32_comordpd (v2df, v2df)
7956 v2df __builtin_ia32_comordps (v2df, v2df)
7957 v4sf __builtin_ia32_comordsd (v4sf, v4sf)
7958 v4sf __builtin_ia32_comordss (v4sf, v4sf)
7959 v2df __builtin_ia32_comtruepd (v2df, v2df)
7960 v2df __builtin_ia32_comtrueps (v2df, v2df)
7961 v4sf __builtin_ia32_comtruesd (v4sf, v4sf)
7962 v4sf __builtin_ia32_comtruess (v4sf, v4sf)
7963 v2df __builtin_ia32_comueqpd (v2df, v2df)
7964 v2df __builtin_ia32_comueqps (v2df, v2df)
7965 v4sf __builtin_ia32_comueqsd (v4sf, v4sf)
7966 v4sf __builtin_ia32_comueqss (v4sf, v4sf)
7967 v2df __builtin_ia32_comugepd (v2df, v2df)
7968 v2df __builtin_ia32_comugeps (v2df, v2df)
7969 v4sf __builtin_ia32_comugesd (v4sf, v4sf)
7970 v4sf __builtin_ia32_comugess (v4sf, v4sf)
7971 v2df __builtin_ia32_comugtpd (v2df, v2df)
7972 v2df __builtin_ia32_comugtps (v2df, v2df)
7973 v4sf __builtin_ia32_comugtsd (v4sf, v4sf)
7974 v4sf __builtin_ia32_comugtss (v4sf, v4sf)
7975 v2df __builtin_ia32_comulepd (v2df, v2df)
7976 v2df __builtin_ia32_comuleps (v2df, v2df)
7977 v4sf __builtin_ia32_comulesd (v4sf, v4sf)
7978 v4sf __builtin_ia32_comuless (v4sf, v4sf)
7979 v2df __builtin_ia32_comultpd (v2df, v2df)
7980 v2df __builtin_ia32_comultps (v2df, v2df)
7981 v4sf __builtin_ia32_comultsd (v4sf, v4sf)
7982 v4sf __builtin_ia32_comultss (v4sf, v4sf)
7983 v2df __builtin_ia32_comunepd (v2df, v2df)
7984 v2df __builtin_ia32_comuneps (v2df, v2df)
7985 v4sf __builtin_ia32_comunesd (v4sf, v4sf)
7986 v4sf __builtin_ia32_comuness (v4sf, v4sf)
7987 v2df __builtin_ia32_comunordpd (v2df, v2df)
7988 v2df __builtin_ia32_comunordps (v2df, v2df)
7989 v4sf __builtin_ia32_comunordsd (v4sf, v4sf)
7990 v4sf __builtin_ia32_comunordss (v4sf, v4sf)
7991 v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
7992 v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
7993 v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
7994 v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
7995 v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
7996 v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
7997 v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
7998 v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
7999 v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
8000 v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
8001 v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
8002 v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
8003 v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
8004 v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
8005 v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
8006 v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
8007 v2df __builtin_ia32_frczpd (v2df)
8008 v4sf __builtin_ia32_frczps (v4sf)
8009 v2df __builtin_ia32_frczsd (v2df, v2df)
8010 v4sf __builtin_ia32_frczss (v4sf, v4sf)
8011 v2di __builtin_ia32_pcmov (v2di, v2di, v2di)
8012 v2di __builtin_ia32_pcmov_v2di (v2di, v2di, v2di)
8013 v4si __builtin_ia32_pcmov_v4si (v4si, v4si, v4si)
8014 v8hi __builtin_ia32_pcmov_v8hi (v8hi, v8hi, v8hi)
8015 v16qi __builtin_ia32_pcmov_v16qi (v16qi, v16qi, v16qi)
8016 v2df __builtin_ia32_pcmov_v2df (v2df, v2df, v2df)
8017 v4sf __builtin_ia32_pcmov_v4sf (v4sf, v4sf, v4sf)
8018 v16qi __builtin_ia32_pcomeqb (v16qi, v16qi)
8019 v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
8020 v4si __builtin_ia32_pcomeqd (v4si, v4si)
8021 v2di __builtin_ia32_pcomeqq (v2di, v2di)
8022 v16qi __builtin_ia32_pcomequb (v16qi, v16qi)
8023 v4si __builtin_ia32_pcomequd (v4si, v4si)
8024 v2di __builtin_ia32_pcomequq (v2di, v2di)
8025 v8hi __builtin_ia32_pcomequw (v8hi, v8hi)
8026 v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
8027 v16qi __builtin_ia32_pcomfalseb (v16qi, v16qi)
8028 v4si __builtin_ia32_pcomfalsed (v4si, v4si)
8029 v2di __builtin_ia32_pcomfalseq (v2di, v2di)
8030 v16qi __builtin_ia32_pcomfalseub (v16qi, v16qi)
8031 v4si __builtin_ia32_pcomfalseud (v4si, v4si)
8032 v2di __builtin_ia32_pcomfalseuq (v2di, v2di)
8033 v8hi __builtin_ia32_pcomfalseuw (v8hi, v8hi)
8034 v8hi __builtin_ia32_pcomfalsew (v8hi, v8hi)
8035 v16qi __builtin_ia32_pcomgeb (v16qi, v16qi)
8036 v4si __builtin_ia32_pcomged (v4si, v4si)
8037 v2di __builtin_ia32_pcomgeq (v2di, v2di)
8038 v16qi __builtin_ia32_pcomgeub (v16qi, v16qi)
8039 v4si __builtin_ia32_pcomgeud (v4si, v4si)
8040 v2di __builtin_ia32_pcomgeuq (v2di, v2di)
8041 v8hi __builtin_ia32_pcomgeuw (v8hi, v8hi)
8042 v8hi __builtin_ia32_pcomgew (v8hi, v8hi)
8043 v16qi __builtin_ia32_pcomgtb (v16qi, v16qi)
8044 v4si __builtin_ia32_pcomgtd (v4si, v4si)
8045 v2di __builtin_ia32_pcomgtq (v2di, v2di)
8046 v16qi __builtin_ia32_pcomgtub (v16qi, v16qi)
8047 v4si __builtin_ia32_pcomgtud (v4si, v4si)
8048 v2di __builtin_ia32_pcomgtuq (v2di, v2di)
8049 v8hi __builtin_ia32_pcomgtuw (v8hi, v8hi)
8050 v8hi __builtin_ia32_pcomgtw (v8hi, v8hi)
8051 v16qi __builtin_ia32_pcomleb (v16qi, v16qi)
8052 v4si __builtin_ia32_pcomled (v4si, v4si)
8053 v2di __builtin_ia32_pcomleq (v2di, v2di)
8054 v16qi __builtin_ia32_pcomleub (v16qi, v16qi)
8055 v4si __builtin_ia32_pcomleud (v4si, v4si)
8056 v2di __builtin_ia32_pcomleuq (v2di, v2di)
8057 v8hi __builtin_ia32_pcomleuw (v8hi, v8hi)
8058 v8hi __builtin_ia32_pcomlew (v8hi, v8hi)
8059 v16qi __builtin_ia32_pcomltb (v16qi, v16qi)
8060 v4si __builtin_ia32_pcomltd (v4si, v4si)
8061 v2di __builtin_ia32_pcomltq (v2di, v2di)
8062 v16qi __builtin_ia32_pcomltub (v16qi, v16qi)
8063 v4si __builtin_ia32_pcomltud (v4si, v4si)
8064 v2di __builtin_ia32_pcomltuq (v2di, v2di)
8065 v8hi __builtin_ia32_pcomltuw (v8hi, v8hi)
8066 v8hi __builtin_ia32_pcomltw (v8hi, v8hi)
8067 v16qi __builtin_ia32_pcomneb (v16qi, v16qi)
8068 v4si __builtin_ia32_pcomned (v4si, v4si)
8069 v2di __builtin_ia32_pcomneq (v2di, v2di)
8070 v16qi __builtin_ia32_pcomneub (v16qi, v16qi)
8071 v4si __builtin_ia32_pcomneud (v4si, v4si)
8072 v2di __builtin_ia32_pcomneuq (v2di, v2di)
8073 v8hi __builtin_ia32_pcomneuw (v8hi, v8hi)
8074 v8hi __builtin_ia32_pcomnew (v8hi, v8hi)
8075 v16qi __builtin_ia32_pcomtrueb (v16qi, v16qi)
8076 v4si __builtin_ia32_pcomtrued (v4si, v4si)
8077 v2di __builtin_ia32_pcomtrueq (v2di, v2di)
8078 v16qi __builtin_ia32_pcomtrueub (v16qi, v16qi)
8079 v4si __builtin_ia32_pcomtrueud (v4si, v4si)
8080 v2di __builtin_ia32_pcomtrueuq (v2di, v2di)
8081 v8hi __builtin_ia32_pcomtrueuw (v8hi, v8hi)
8082 v8hi __builtin_ia32_pcomtruew (v8hi, v8hi)
8083 v4df __builtin_ia32_permpd (v2df, v2df, v16qi)
8084 v4sf __builtin_ia32_permps (v4sf, v4sf, v16qi)
8085 v4si __builtin_ia32_phaddbd (v16qi)
8086 v2di __builtin_ia32_phaddbq (v16qi)
8087 v8hi __builtin_ia32_phaddbw (v16qi)
8088 v2di __builtin_ia32_phadddq (v4si)
8089 v4si __builtin_ia32_phaddubd (v16qi)
8090 v2di __builtin_ia32_phaddubq (v16qi)
8091 v8hi __builtin_ia32_phaddubw (v16qi)
8092 v2di __builtin_ia32_phaddudq (v4si)
8093 v4si __builtin_ia32_phadduwd (v8hi)
8094 v2di __builtin_ia32_phadduwq (v8hi)
8095 v4si __builtin_ia32_phaddwd (v8hi)
8096 v2di __builtin_ia32_phaddwq (v8hi)
8097 v8hi __builtin_ia32_phsubbw (v16qi)
8098 v2di __builtin_ia32_phsubdq (v4si)
8099 v4si __builtin_ia32_phsubwd (v8hi)
8100 v4si __builtin_ia32_pmacsdd (v4si, v4si, v4si)
8101 v2di __builtin_ia32_pmacsdqh (v4si, v4si, v2di)
8102 v2di __builtin_ia32_pmacsdql (v4si, v4si, v2di)
8103 v4si __builtin_ia32_pmacssdd (v4si, v4si, v4si)
8104 v2di __builtin_ia32_pmacssdqh (v4si, v4si, v2di)
8105 v2di __builtin_ia32_pmacssdql (v4si, v4si, v2di)
8106 v4si __builtin_ia32_pmacsswd (v8hi, v8hi, v4si)
8107 v8hi __builtin_ia32_pmacssww (v8hi, v8hi, v8hi)
8108 v4si __builtin_ia32_pmacswd (v8hi, v8hi, v4si)
8109 v8hi __builtin_ia32_pmacsww (v8hi, v8hi, v8hi)
8110 v4si __builtin_ia32_pmadcsswd (v8hi, v8hi, v4si)
8111 v4si __builtin_ia32_pmadcswd (v8hi, v8hi, v4si)
8112 v16qi __builtin_ia32_pperm (v16qi, v16qi, v16qi)
8113 v16qi __builtin_ia32_protb (v16qi, v16qi)
8114 v4si __builtin_ia32_protd (v4si, v4si)
8115 v2di __builtin_ia32_protq (v2di, v2di)
8116 v8hi __builtin_ia32_protw (v8hi, v8hi)
8117 v16qi __builtin_ia32_pshab (v16qi, v16qi)
8118 v4si __builtin_ia32_pshad (v4si, v4si)
8119 v2di __builtin_ia32_pshaq (v2di, v2di)
8120 v8hi __builtin_ia32_pshaw (v8hi, v8hi)
8121 v16qi __builtin_ia32_pshlb (v16qi, v16qi)
8122 v4si __builtin_ia32_pshld (v4si, v4si)
8123 v2di __builtin_ia32_pshlq (v2di, v2di)
8124 v8hi __builtin_ia32_pshlw (v8hi, v8hi)
8125 @end smallexample
8126
8127 The following builtin-in functions are avaialble when @option{-msse5}
8128 is used. The second argument must be an integer constant and generate
8129 the machine instruction that is part of the name with the @samp{_imm}
8130 suffix removed.
8131
8132 @smallexample
8133 v16qi __builtin_ia32_protb_imm (v16qi, int)
8134 v4si __builtin_ia32_protd_imm (v4si, int)
8135 v2di __builtin_ia32_protq_imm (v2di, int)
8136 v8hi __builtin_ia32_protw_imm (v8hi, int)
8137 @end smallexample
8138
8139 The following built-in functions are available when @option{-m3dnow} is used.
8140 All of them generate the machine instruction that is part of the name.
8141
8142 @smallexample
8143 void __builtin_ia32_femms (void)
8144 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
8145 v2si __builtin_ia32_pf2id (v2sf)
8146 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
8147 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
8148 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
8149 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
8150 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
8151 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
8152 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
8153 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
8154 v2sf __builtin_ia32_pfrcp (v2sf)
8155 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
8156 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
8157 v2sf __builtin_ia32_pfrsqrt (v2sf)
8158 v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
8159 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
8160 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
8161 v2sf __builtin_ia32_pi2fd (v2si)
8162 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
8163 @end smallexample
8164
8165 The following built-in functions are available when both @option{-m3dnow}
8166 and @option{-march=athlon} are used. All of them generate the machine
8167 instruction that is part of the name.
8168
8169 @smallexample
8170 v2si __builtin_ia32_pf2iw (v2sf)
8171 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
8172 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
8173 v2sf __builtin_ia32_pi2fw (v2si)
8174 v2sf __builtin_ia32_pswapdsf (v2sf)
8175 v2si __builtin_ia32_pswapdsi (v2si)
8176 @end smallexample
8177
8178 @node MIPS DSP Built-in Functions
8179 @subsection MIPS DSP Built-in Functions
8180
8181 The MIPS DSP Application-Specific Extension (ASE) includes new
8182 instructions that are designed to improve the performance of DSP and
8183 media applications. It provides instructions that operate on packed
8184 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
8185
8186 GCC supports MIPS DSP operations using both the generic
8187 vector extensions (@pxref{Vector Extensions}) and a collection of
8188 MIPS-specific built-in functions. Both kinds of support are
8189 enabled by the @option{-mdsp} command-line option.
8190
8191 Revision 2 of the ASE was introduced in the second half of 2006.
8192 This revision adds extra instructions to the original ASE, but is
8193 otherwise backwards-compatible with it. You can select revision 2
8194 using the command-line option @option{-mdspr2}; this option implies
8195 @option{-mdsp}.
8196
8197 At present, GCC only provides support for operations on 32-bit
8198 vectors. The vector type associated with 8-bit integer data is
8199 usually called @code{v4i8}, the vector type associated with Q7
8200 is usually called @code{v4q7}, the vector type associated with 16-bit
8201 integer data is usually called @code{v2i16}, and the vector type
8202 associated with Q15 is usually called @code{v2q15}. They can be
8203 defined in C as follows:
8204
8205 @smallexample
8206 typedef signed char v4i8 __attribute__ ((vector_size(4)));
8207 typedef signed char v4q7 __attribute__ ((vector_size(4)));
8208 typedef short v2i16 __attribute__ ((vector_size(4)));
8209 typedef short v2q15 __attribute__ ((vector_size(4)));
8210 @end smallexample
8211
8212 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
8213 initialized in the same way as aggregates. For example:
8214
8215 @smallexample
8216 v4i8 a = @{1, 2, 3, 4@};
8217 v4i8 b;
8218 b = (v4i8) @{5, 6, 7, 8@};
8219
8220 v2q15 c = @{0x0fcb, 0x3a75@};
8221 v2q15 d;
8222 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
8223 @end smallexample
8224
8225 @emph{Note:} The CPU's endianness determines the order in which values
8226 are packed. On little-endian targets, the first value is the least
8227 significant and the last value is the most significant. The opposite
8228 order applies to big-endian targets. For example, the code above will
8229 set the lowest byte of @code{a} to @code{1} on little-endian targets
8230 and @code{4} on big-endian targets.
8231
8232 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
8233 representation. As shown in this example, the integer representation
8234 of a Q7 value can be obtained by multiplying the fractional value by
8235 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
8236 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
8237 @code{0x1.0p31}.
8238
8239 The table below lists the @code{v4i8} and @code{v2q15} operations for which
8240 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
8241 and @code{c} and @code{d} are @code{v2q15} values.
8242
8243 @multitable @columnfractions .50 .50
8244 @item C code @tab MIPS instruction
8245 @item @code{a + b} @tab @code{addu.qb}
8246 @item @code{c + d} @tab @code{addq.ph}
8247 @item @code{a - b} @tab @code{subu.qb}
8248 @item @code{c - d} @tab @code{subq.ph}
8249 @end multitable
8250
8251 The table below lists the @code{v2i16} operation for which
8252 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
8253 @code{v2i16} values.
8254
8255 @multitable @columnfractions .50 .50
8256 @item C code @tab MIPS instruction
8257 @item @code{e * f} @tab @code{mul.ph}
8258 @end multitable
8259
8260 It is easier to describe the DSP built-in functions if we first define
8261 the following types:
8262
8263 @smallexample
8264 typedef int q31;
8265 typedef int i32;
8266 typedef unsigned int ui32;
8267 typedef long long a64;
8268 @end smallexample
8269
8270 @code{q31} and @code{i32} are actually the same as @code{int}, but we
8271 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
8272 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
8273 @code{long long}, but we use @code{a64} to indicate values that will
8274 be placed in one of the four DSP accumulators (@code{$ac0},
8275 @code{$ac1}, @code{$ac2} or @code{$ac3}).
8276
8277 Also, some built-in functions prefer or require immediate numbers as
8278 parameters, because the corresponding DSP instructions accept both immediate
8279 numbers and register operands, or accept immediate numbers only. The
8280 immediate parameters are listed as follows.
8281
8282 @smallexample
8283 imm0_3: 0 to 3.
8284 imm0_7: 0 to 7.
8285 imm0_15: 0 to 15.
8286 imm0_31: 0 to 31.
8287 imm0_63: 0 to 63.
8288 imm0_255: 0 to 255.
8289 imm_n32_31: -32 to 31.
8290 imm_n512_511: -512 to 511.
8291 @end smallexample
8292
8293 The following built-in functions map directly to a particular MIPS DSP
8294 instruction. Please refer to the architecture specification
8295 for details on what each instruction does.
8296
8297 @smallexample
8298 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
8299 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
8300 q31 __builtin_mips_addq_s_w (q31, q31)
8301 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
8302 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
8303 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
8304 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
8305 q31 __builtin_mips_subq_s_w (q31, q31)
8306 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
8307 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
8308 i32 __builtin_mips_addsc (i32, i32)
8309 i32 __builtin_mips_addwc (i32, i32)
8310 i32 __builtin_mips_modsub (i32, i32)
8311 i32 __builtin_mips_raddu_w_qb (v4i8)
8312 v2q15 __builtin_mips_absq_s_ph (v2q15)
8313 q31 __builtin_mips_absq_s_w (q31)
8314 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
8315 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
8316 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
8317 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
8318 q31 __builtin_mips_preceq_w_phl (v2q15)
8319 q31 __builtin_mips_preceq_w_phr (v2q15)
8320 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
8321 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
8322 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
8323 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
8324 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
8325 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
8326 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
8327 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
8328 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
8329 v4i8 __builtin_mips_shll_qb (v4i8, i32)
8330 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
8331 v2q15 __builtin_mips_shll_ph (v2q15, i32)
8332 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
8333 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
8334 q31 __builtin_mips_shll_s_w (q31, imm0_31)
8335 q31 __builtin_mips_shll_s_w (q31, i32)
8336 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
8337 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
8338 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
8339 v2q15 __builtin_mips_shra_ph (v2q15, i32)
8340 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
8341 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
8342 q31 __builtin_mips_shra_r_w (q31, imm0_31)
8343 q31 __builtin_mips_shra_r_w (q31, i32)
8344 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
8345 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
8346 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
8347 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
8348 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
8349 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
8350 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
8351 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
8352 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
8353 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
8354 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
8355 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
8356 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
8357 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
8358 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
8359 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
8360 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
8361 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
8362 i32 __builtin_mips_bitrev (i32)
8363 i32 __builtin_mips_insv (i32, i32)
8364 v4i8 __builtin_mips_repl_qb (imm0_255)
8365 v4i8 __builtin_mips_repl_qb (i32)
8366 v2q15 __builtin_mips_repl_ph (imm_n512_511)
8367 v2q15 __builtin_mips_repl_ph (i32)
8368 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
8369 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
8370 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
8371 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
8372 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
8373 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
8374 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
8375 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
8376 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
8377 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
8378 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
8379 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
8380 i32 __builtin_mips_extr_w (a64, imm0_31)
8381 i32 __builtin_mips_extr_w (a64, i32)
8382 i32 __builtin_mips_extr_r_w (a64, imm0_31)
8383 i32 __builtin_mips_extr_s_h (a64, i32)
8384 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
8385 i32 __builtin_mips_extr_rs_w (a64, i32)
8386 i32 __builtin_mips_extr_s_h (a64, imm0_31)
8387 i32 __builtin_mips_extr_r_w (a64, i32)
8388 i32 __builtin_mips_extp (a64, imm0_31)
8389 i32 __builtin_mips_extp (a64, i32)
8390 i32 __builtin_mips_extpdp (a64, imm0_31)
8391 i32 __builtin_mips_extpdp (a64, i32)
8392 a64 __builtin_mips_shilo (a64, imm_n32_31)
8393 a64 __builtin_mips_shilo (a64, i32)
8394 a64 __builtin_mips_mthlip (a64, i32)
8395 void __builtin_mips_wrdsp (i32, imm0_63)
8396 i32 __builtin_mips_rddsp (imm0_63)
8397 i32 __builtin_mips_lbux (void *, i32)
8398 i32 __builtin_mips_lhx (void *, i32)
8399 i32 __builtin_mips_lwx (void *, i32)
8400 i32 __builtin_mips_bposge32 (void)
8401 @end smallexample
8402
8403 The following built-in functions map directly to a particular MIPS DSP REV 2
8404 instruction. Please refer to the architecture specification
8405 for details on what each instruction does.
8406
8407 @smallexample
8408 v4q7 __builtin_mips_absq_s_qb (v4q7);
8409 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
8410 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
8411 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
8412 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
8413 i32 __builtin_mips_append (i32, i32, imm0_31);
8414 i32 __builtin_mips_balign (i32, i32, imm0_3);
8415 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
8416 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
8417 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
8418 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
8419 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
8420 a64 __builtin_mips_madd (a64, i32, i32);
8421 a64 __builtin_mips_maddu (a64, ui32, ui32);
8422 a64 __builtin_mips_msub (a64, i32, i32);
8423 a64 __builtin_mips_msubu (a64, ui32, ui32);
8424 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
8425 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
8426 q31 __builtin_mips_mulq_rs_w (q31, q31);
8427 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
8428 q31 __builtin_mips_mulq_s_w (q31, q31);
8429 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
8430 a64 __builtin_mips_mult (i32, i32);
8431 a64 __builtin_mips_multu (ui32, ui32);
8432 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
8433 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
8434 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
8435 i32 __builtin_mips_prepend (i32, i32, imm0_31);
8436 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
8437 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
8438 v4i8 __builtin_mips_shra_qb (v4i8, i32);
8439 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
8440 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
8441 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
8442 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
8443 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
8444 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
8445 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
8446 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
8447 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
8448 q31 __builtin_mips_addqh_w (q31, q31);
8449 q31 __builtin_mips_addqh_r_w (q31, q31);
8450 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
8451 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
8452 q31 __builtin_mips_subqh_w (q31, q31);
8453 q31 __builtin_mips_subqh_r_w (q31, q31);
8454 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
8455 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
8456 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
8457 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
8458 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
8459 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
8460 @end smallexample
8461
8462
8463 @node MIPS Paired-Single Support
8464 @subsection MIPS Paired-Single Support
8465
8466 The MIPS64 architecture includes a number of instructions that
8467 operate on pairs of single-precision floating-point values.
8468 Each pair is packed into a 64-bit floating-point register,
8469 with one element being designated the ``upper half'' and
8470 the other being designated the ``lower half''.
8471
8472 GCC supports paired-single operations using both the generic
8473 vector extensions (@pxref{Vector Extensions}) and a collection of
8474 MIPS-specific built-in functions. Both kinds of support are
8475 enabled by the @option{-mpaired-single} command-line option.
8476
8477 The vector type associated with paired-single values is usually
8478 called @code{v2sf}. It can be defined in C as follows:
8479
8480 @smallexample
8481 typedef float v2sf __attribute__ ((vector_size (8)));
8482 @end smallexample
8483
8484 @code{v2sf} values are initialized in the same way as aggregates.
8485 For example:
8486
8487 @smallexample
8488 v2sf a = @{1.5, 9.1@};
8489 v2sf b;
8490 float e, f;
8491 b = (v2sf) @{e, f@};
8492 @end smallexample
8493
8494 @emph{Note:} The CPU's endianness determines which value is stored in
8495 the upper half of a register and which value is stored in the lower half.
8496 On little-endian targets, the first value is the lower one and the second
8497 value is the upper one. The opposite order applies to big-endian targets.
8498 For example, the code above will set the lower half of @code{a} to
8499 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
8500
8501 @menu
8502 * Paired-Single Arithmetic::
8503 * Paired-Single Built-in Functions::
8504 * MIPS-3D Built-in Functions::
8505 @end menu
8506
8507 @node Paired-Single Arithmetic
8508 @subsubsection Paired-Single Arithmetic
8509
8510 The table below lists the @code{v2sf} operations for which hardware
8511 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
8512 values and @code{x} is an integral value.
8513
8514 @multitable @columnfractions .50 .50
8515 @item C code @tab MIPS instruction
8516 @item @code{a + b} @tab @code{add.ps}
8517 @item @code{a - b} @tab @code{sub.ps}
8518 @item @code{-a} @tab @code{neg.ps}
8519 @item @code{a * b} @tab @code{mul.ps}
8520 @item @code{a * b + c} @tab @code{madd.ps}
8521 @item @code{a * b - c} @tab @code{msub.ps}
8522 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
8523 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
8524 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
8525 @end multitable
8526
8527 Note that the multiply-accumulate instructions can be disabled
8528 using the command-line option @code{-mno-fused-madd}.
8529
8530 @node Paired-Single Built-in Functions
8531 @subsubsection Paired-Single Built-in Functions
8532
8533 The following paired-single functions map directly to a particular
8534 MIPS instruction. Please refer to the architecture specification
8535 for details on what each instruction does.
8536
8537 @table @code
8538 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
8539 Pair lower lower (@code{pll.ps}).
8540
8541 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
8542 Pair upper lower (@code{pul.ps}).
8543
8544 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
8545 Pair lower upper (@code{plu.ps}).
8546
8547 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
8548 Pair upper upper (@code{puu.ps}).
8549
8550 @item v2sf __builtin_mips_cvt_ps_s (float, float)
8551 Convert pair to paired single (@code{cvt.ps.s}).
8552
8553 @item float __builtin_mips_cvt_s_pl (v2sf)
8554 Convert pair lower to single (@code{cvt.s.pl}).
8555
8556 @item float __builtin_mips_cvt_s_pu (v2sf)
8557 Convert pair upper to single (@code{cvt.s.pu}).
8558
8559 @item v2sf __builtin_mips_abs_ps (v2sf)
8560 Absolute value (@code{abs.ps}).
8561
8562 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
8563 Align variable (@code{alnv.ps}).
8564
8565 @emph{Note:} The value of the third parameter must be 0 or 4
8566 modulo 8, otherwise the result will be unpredictable. Please read the
8567 instruction description for details.
8568 @end table
8569
8570 The following multi-instruction functions are also available.
8571 In each case, @var{cond} can be any of the 16 floating-point conditions:
8572 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
8573 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
8574 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
8575
8576 @table @code
8577 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8578 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8579 Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
8580 @code{movt.ps}/@code{movf.ps}).
8581
8582 The @code{movt} functions return the value @var{x} computed by:
8583
8584 @smallexample
8585 c.@var{cond}.ps @var{cc},@var{a},@var{b}
8586 mov.ps @var{x},@var{c}
8587 movt.ps @var{x},@var{d},@var{cc}
8588 @end smallexample
8589
8590 The @code{movf} functions are similar but use @code{movf.ps} instead
8591 of @code{movt.ps}.
8592
8593 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8594 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8595 Comparison of two paired-single values (@code{c.@var{cond}.ps},
8596 @code{bc1t}/@code{bc1f}).
8597
8598 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
8599 and return either the upper or lower half of the result. For example:
8600
8601 @smallexample
8602 v2sf a, b;
8603 if (__builtin_mips_upper_c_eq_ps (a, b))
8604 upper_halves_are_equal ();
8605 else
8606 upper_halves_are_unequal ();
8607
8608 if (__builtin_mips_lower_c_eq_ps (a, b))
8609 lower_halves_are_equal ();
8610 else
8611 lower_halves_are_unequal ();
8612 @end smallexample
8613 @end table
8614
8615 @node MIPS-3D Built-in Functions
8616 @subsubsection MIPS-3D Built-in Functions
8617
8618 The MIPS-3D Application-Specific Extension (ASE) includes additional
8619 paired-single instructions that are designed to improve the performance
8620 of 3D graphics operations. Support for these instructions is controlled
8621 by the @option{-mips3d} command-line option.
8622
8623 The functions listed below map directly to a particular MIPS-3D
8624 instruction. Please refer to the architecture specification for
8625 more details on what each instruction does.
8626
8627 @table @code
8628 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
8629 Reduction add (@code{addr.ps}).
8630
8631 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
8632 Reduction multiply (@code{mulr.ps}).
8633
8634 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
8635 Convert paired single to paired word (@code{cvt.pw.ps}).
8636
8637 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
8638 Convert paired word to paired single (@code{cvt.ps.pw}).
8639
8640 @item float __builtin_mips_recip1_s (float)
8641 @itemx double __builtin_mips_recip1_d (double)
8642 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
8643 Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
8644
8645 @item float __builtin_mips_recip2_s (float, float)
8646 @itemx double __builtin_mips_recip2_d (double, double)
8647 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
8648 Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
8649
8650 @item float __builtin_mips_rsqrt1_s (float)
8651 @itemx double __builtin_mips_rsqrt1_d (double)
8652 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
8653 Reduced precision reciprocal square root (sequence step 1)
8654 (@code{rsqrt1.@var{fmt}}).
8655
8656 @item float __builtin_mips_rsqrt2_s (float, float)
8657 @itemx double __builtin_mips_rsqrt2_d (double, double)
8658 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
8659 Reduced precision reciprocal square root (sequence step 2)
8660 (@code{rsqrt2.@var{fmt}}).
8661 @end table
8662
8663 The following multi-instruction functions are also available.
8664 In each case, @var{cond} can be any of the 16 floating-point conditions:
8665 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
8666 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
8667 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
8668
8669 @table @code
8670 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
8671 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
8672 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
8673 @code{bc1t}/@code{bc1f}).
8674
8675 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
8676 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
8677 For example:
8678
8679 @smallexample
8680 float a, b;
8681 if (__builtin_mips_cabs_eq_s (a, b))
8682 true ();
8683 else
8684 false ();
8685 @end smallexample
8686
8687 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8688 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8689 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
8690 @code{bc1t}/@code{bc1f}).
8691
8692 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
8693 and return either the upper or lower half of the result. For example:
8694
8695 @smallexample
8696 v2sf a, b;
8697 if (__builtin_mips_upper_cabs_eq_ps (a, b))
8698 upper_halves_are_equal ();
8699 else
8700 upper_halves_are_unequal ();
8701
8702 if (__builtin_mips_lower_cabs_eq_ps (a, b))
8703 lower_halves_are_equal ();
8704 else
8705 lower_halves_are_unequal ();
8706 @end smallexample
8707
8708 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8709 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8710 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
8711 @code{movt.ps}/@code{movf.ps}).
8712
8713 The @code{movt} functions return the value @var{x} computed by:
8714
8715 @smallexample
8716 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
8717 mov.ps @var{x},@var{c}
8718 movt.ps @var{x},@var{d},@var{cc}
8719 @end smallexample
8720
8721 The @code{movf} functions are similar but use @code{movf.ps} instead
8722 of @code{movt.ps}.
8723
8724 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8725 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8726 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8727 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8728 Comparison of two paired-single values
8729 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
8730 @code{bc1any2t}/@code{bc1any2f}).
8731
8732 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
8733 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
8734 result is true and the @code{all} forms return true if both results are true.
8735 For example:
8736
8737 @smallexample
8738 v2sf a, b;
8739 if (__builtin_mips_any_c_eq_ps (a, b))
8740 one_is_true ();
8741 else
8742 both_are_false ();
8743
8744 if (__builtin_mips_all_c_eq_ps (a, b))
8745 both_are_true ();
8746 else
8747 one_is_false ();
8748 @end smallexample
8749
8750 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8751 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8752 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8753 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8754 Comparison of four paired-single values
8755 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
8756 @code{bc1any4t}/@code{bc1any4f}).
8757
8758 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
8759 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
8760 The @code{any} forms return true if any of the four results are true
8761 and the @code{all} forms return true if all four results are true.
8762 For example:
8763
8764 @smallexample
8765 v2sf a, b, c, d;
8766 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
8767 some_are_true ();
8768 else
8769 all_are_false ();
8770
8771 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
8772 all_are_true ();
8773 else
8774 some_are_false ();
8775 @end smallexample
8776 @end table
8777
8778 @node PowerPC AltiVec Built-in Functions
8779 @subsection PowerPC AltiVec Built-in Functions
8780
8781 GCC provides an interface for the PowerPC family of processors to access
8782 the AltiVec operations described in Motorola's AltiVec Programming
8783 Interface Manual. The interface is made available by including
8784 @code{<altivec.h>} and using @option{-maltivec} and
8785 @option{-mabi=altivec}. The interface supports the following vector
8786 types.
8787
8788 @smallexample
8789 vector unsigned char
8790 vector signed char
8791 vector bool char
8792
8793 vector unsigned short
8794 vector signed short
8795 vector bool short
8796 vector pixel
8797
8798 vector unsigned int
8799 vector signed int
8800 vector bool int
8801 vector float
8802 @end smallexample
8803
8804 GCC's implementation of the high-level language interface available from
8805 C and C++ code differs from Motorola's documentation in several ways.
8806
8807 @itemize @bullet
8808
8809 @item
8810 A vector constant is a list of constant expressions within curly braces.
8811
8812 @item
8813 A vector initializer requires no cast if the vector constant is of the
8814 same type as the variable it is initializing.
8815
8816 @item
8817 If @code{signed} or @code{unsigned} is omitted, the signedness of the
8818 vector type is the default signedness of the base type. The default
8819 varies depending on the operating system, so a portable program should
8820 always specify the signedness.
8821
8822 @item
8823 Compiling with @option{-maltivec} adds keywords @code{__vector},
8824 @code{__pixel}, and @code{__bool}. Macros @option{vector},
8825 @code{pixel}, and @code{bool} are defined in @code{<altivec.h>} and can
8826 be undefined.
8827
8828 @item
8829 GCC allows using a @code{typedef} name as the type specifier for a
8830 vector type.
8831
8832 @item
8833 For C, overloaded functions are implemented with macros so the following
8834 does not work:
8835
8836 @smallexample
8837 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
8838 @end smallexample
8839
8840 Since @code{vec_add} is a macro, the vector constant in the example
8841 is treated as four separate arguments. Wrap the entire argument in
8842 parentheses for this to work.
8843 @end itemize
8844
8845 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
8846 Internally, GCC uses built-in functions to achieve the functionality in
8847 the aforementioned header file, but they are not supported and are
8848 subject to change without notice.
8849
8850 The following interfaces are supported for the generic and specific
8851 AltiVec operations and the AltiVec predicates. In cases where there
8852 is a direct mapping between generic and specific operations, only the
8853 generic names are shown here, although the specific operations can also
8854 be used.
8855
8856 Arguments that are documented as @code{const int} require literal
8857 integral values within the range required for that operation.
8858
8859 @smallexample
8860 vector signed char vec_abs (vector signed char);
8861 vector signed short vec_abs (vector signed short);
8862 vector signed int vec_abs (vector signed int);
8863 vector float vec_abs (vector float);
8864
8865 vector signed char vec_abss (vector signed char);
8866 vector signed short vec_abss (vector signed short);
8867 vector signed int vec_abss (vector signed int);
8868
8869 vector signed char vec_add (vector bool char, vector signed char);
8870 vector signed char vec_add (vector signed char, vector bool char);
8871 vector signed char vec_add (vector signed char, vector signed char);
8872 vector unsigned char vec_add (vector bool char, vector unsigned char);
8873 vector unsigned char vec_add (vector unsigned char, vector bool char);
8874 vector unsigned char vec_add (vector unsigned char,
8875 vector unsigned char);
8876 vector signed short vec_add (vector bool short, vector signed short);
8877 vector signed short vec_add (vector signed short, vector bool short);
8878 vector signed short vec_add (vector signed short, vector signed short);
8879 vector unsigned short vec_add (vector bool short,
8880 vector unsigned short);
8881 vector unsigned short vec_add (vector unsigned short,
8882 vector bool short);
8883 vector unsigned short vec_add (vector unsigned short,
8884 vector unsigned short);
8885 vector signed int vec_add (vector bool int, vector signed int);
8886 vector signed int vec_add (vector signed int, vector bool int);
8887 vector signed int vec_add (vector signed int, vector signed int);
8888 vector unsigned int vec_add (vector bool int, vector unsigned int);
8889 vector unsigned int vec_add (vector unsigned int, vector bool int);
8890 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
8891 vector float vec_add (vector float, vector float);
8892
8893 vector float vec_vaddfp (vector float, vector float);
8894
8895 vector signed int vec_vadduwm (vector bool int, vector signed int);
8896 vector signed int vec_vadduwm (vector signed int, vector bool int);
8897 vector signed int vec_vadduwm (vector signed int, vector signed int);
8898 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
8899 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
8900 vector unsigned int vec_vadduwm (vector unsigned int,
8901 vector unsigned int);
8902
8903 vector signed short vec_vadduhm (vector bool short,
8904 vector signed short);
8905 vector signed short vec_vadduhm (vector signed short,
8906 vector bool short);
8907 vector signed short vec_vadduhm (vector signed short,
8908 vector signed short);
8909 vector unsigned short vec_vadduhm (vector bool short,
8910 vector unsigned short);
8911 vector unsigned short vec_vadduhm (vector unsigned short,
8912 vector bool short);
8913 vector unsigned short vec_vadduhm (vector unsigned short,
8914 vector unsigned short);
8915
8916 vector signed char vec_vaddubm (vector bool char, vector signed char);
8917 vector signed char vec_vaddubm (vector signed char, vector bool char);
8918 vector signed char vec_vaddubm (vector signed char, vector signed char);
8919 vector unsigned char vec_vaddubm (vector bool char,
8920 vector unsigned char);
8921 vector unsigned char vec_vaddubm (vector unsigned char,
8922 vector bool char);
8923 vector unsigned char vec_vaddubm (vector unsigned char,
8924 vector unsigned char);
8925
8926 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
8927
8928 vector unsigned char vec_adds (vector bool char, vector unsigned char);
8929 vector unsigned char vec_adds (vector unsigned char, vector bool char);
8930 vector unsigned char vec_adds (vector unsigned char,
8931 vector unsigned char);
8932 vector signed char vec_adds (vector bool char, vector signed char);
8933 vector signed char vec_adds (vector signed char, vector bool char);
8934 vector signed char vec_adds (vector signed char, vector signed char);
8935 vector unsigned short vec_adds (vector bool short,
8936 vector unsigned short);
8937 vector unsigned short vec_adds (vector unsigned short,
8938 vector bool short);
8939 vector unsigned short vec_adds (vector unsigned short,
8940 vector unsigned short);
8941 vector signed short vec_adds (vector bool short, vector signed short);
8942 vector signed short vec_adds (vector signed short, vector bool short);
8943 vector signed short vec_adds (vector signed short, vector signed short);
8944 vector unsigned int vec_adds (vector bool int, vector unsigned int);
8945 vector unsigned int vec_adds (vector unsigned int, vector bool int);
8946 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
8947 vector signed int vec_adds (vector bool int, vector signed int);
8948 vector signed int vec_adds (vector signed int, vector bool int);
8949 vector signed int vec_adds (vector signed int, vector signed int);
8950
8951 vector signed int vec_vaddsws (vector bool int, vector signed int);
8952 vector signed int vec_vaddsws (vector signed int, vector bool int);
8953 vector signed int vec_vaddsws (vector signed int, vector signed int);
8954
8955 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
8956 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
8957 vector unsigned int vec_vadduws (vector unsigned int,
8958 vector unsigned int);
8959
8960 vector signed short vec_vaddshs (vector bool short,
8961 vector signed short);
8962 vector signed short vec_vaddshs (vector signed short,
8963 vector bool short);
8964 vector signed short vec_vaddshs (vector signed short,
8965 vector signed short);
8966
8967 vector unsigned short vec_vadduhs (vector bool short,
8968 vector unsigned short);
8969 vector unsigned short vec_vadduhs (vector unsigned short,
8970 vector bool short);
8971 vector unsigned short vec_vadduhs (vector unsigned short,
8972 vector unsigned short);
8973
8974 vector signed char vec_vaddsbs (vector bool char, vector signed char);
8975 vector signed char vec_vaddsbs (vector signed char, vector bool char);
8976 vector signed char vec_vaddsbs (vector signed char, vector signed char);
8977
8978 vector unsigned char vec_vaddubs (vector bool char,
8979 vector unsigned char);
8980 vector unsigned char vec_vaddubs (vector unsigned char,
8981 vector bool char);
8982 vector unsigned char vec_vaddubs (vector unsigned char,
8983 vector unsigned char);
8984
8985 vector float vec_and (vector float, vector float);
8986 vector float vec_and (vector float, vector bool int);
8987 vector float vec_and (vector bool int, vector float);
8988 vector bool int vec_and (vector bool int, vector bool int);
8989 vector signed int vec_and (vector bool int, vector signed int);
8990 vector signed int vec_and (vector signed int, vector bool int);
8991 vector signed int vec_and (vector signed int, vector signed int);
8992 vector unsigned int vec_and (vector bool int, vector unsigned int);
8993 vector unsigned int vec_and (vector unsigned int, vector bool int);
8994 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
8995 vector bool short vec_and (vector bool short, vector bool short);
8996 vector signed short vec_and (vector bool short, vector signed short);
8997 vector signed short vec_and (vector signed short, vector bool short);
8998 vector signed short vec_and (vector signed short, vector signed short);
8999 vector unsigned short vec_and (vector bool short,
9000 vector unsigned short);
9001 vector unsigned short vec_and (vector unsigned short,
9002 vector bool short);
9003 vector unsigned short vec_and (vector unsigned short,
9004 vector unsigned short);
9005 vector signed char vec_and (vector bool char, vector signed char);
9006 vector bool char vec_and (vector bool char, vector bool char);
9007 vector signed char vec_and (vector signed char, vector bool char);
9008 vector signed char vec_and (vector signed char, vector signed char);
9009 vector unsigned char vec_and (vector bool char, vector unsigned char);
9010 vector unsigned char vec_and (vector unsigned char, vector bool char);
9011 vector unsigned char vec_and (vector unsigned char,
9012 vector unsigned char);
9013
9014 vector float vec_andc (vector float, vector float);
9015 vector float vec_andc (vector float, vector bool int);
9016 vector float vec_andc (vector bool int, vector float);
9017 vector bool int vec_andc (vector bool int, vector bool int);
9018 vector signed int vec_andc (vector bool int, vector signed int);
9019 vector signed int vec_andc (vector signed int, vector bool int);
9020 vector signed int vec_andc (vector signed int, vector signed int);
9021 vector unsigned int vec_andc (vector bool int, vector unsigned int);
9022 vector unsigned int vec_andc (vector unsigned int, vector bool int);
9023 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
9024 vector bool short vec_andc (vector bool short, vector bool short);
9025 vector signed short vec_andc (vector bool short, vector signed short);
9026 vector signed short vec_andc (vector signed short, vector bool short);
9027 vector signed short vec_andc (vector signed short, vector signed short);
9028 vector unsigned short vec_andc (vector bool short,
9029 vector unsigned short);
9030 vector unsigned short vec_andc (vector unsigned short,
9031 vector bool short);
9032 vector unsigned short vec_andc (vector unsigned short,
9033 vector unsigned short);
9034 vector signed char vec_andc (vector bool char, vector signed char);
9035 vector bool char vec_andc (vector bool char, vector bool char);
9036 vector signed char vec_andc (vector signed char, vector bool char);
9037 vector signed char vec_andc (vector signed char, vector signed char);
9038 vector unsigned char vec_andc (vector bool char, vector unsigned char);
9039 vector unsigned char vec_andc (vector unsigned char, vector bool char);
9040 vector unsigned char vec_andc (vector unsigned char,
9041 vector unsigned char);
9042
9043 vector unsigned char vec_avg (vector unsigned char,
9044 vector unsigned char);
9045 vector signed char vec_avg (vector signed char, vector signed char);
9046 vector unsigned short vec_avg (vector unsigned short,
9047 vector unsigned short);
9048 vector signed short vec_avg (vector signed short, vector signed short);
9049 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
9050 vector signed int vec_avg (vector signed int, vector signed int);
9051
9052 vector signed int vec_vavgsw (vector signed int, vector signed int);
9053
9054 vector unsigned int vec_vavguw (vector unsigned int,
9055 vector unsigned int);
9056
9057 vector signed short vec_vavgsh (vector signed short,
9058 vector signed short);
9059
9060 vector unsigned short vec_vavguh (vector unsigned short,
9061 vector unsigned short);
9062
9063 vector signed char vec_vavgsb (vector signed char, vector signed char);
9064
9065 vector unsigned char vec_vavgub (vector unsigned char,
9066 vector unsigned char);
9067
9068 vector float vec_ceil (vector float);
9069
9070 vector signed int vec_cmpb (vector float, vector float);
9071
9072 vector bool char vec_cmpeq (vector signed char, vector signed char);
9073 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
9074 vector bool short vec_cmpeq (vector signed short, vector signed short);
9075 vector bool short vec_cmpeq (vector unsigned short,
9076 vector unsigned short);
9077 vector bool int vec_cmpeq (vector signed int, vector signed int);
9078 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
9079 vector bool int vec_cmpeq (vector float, vector float);
9080
9081 vector bool int vec_vcmpeqfp (vector float, vector float);
9082
9083 vector bool int vec_vcmpequw (vector signed int, vector signed int);
9084 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
9085
9086 vector bool short vec_vcmpequh (vector signed short,
9087 vector signed short);
9088 vector bool short vec_vcmpequh (vector unsigned short,
9089 vector unsigned short);
9090
9091 vector bool char vec_vcmpequb (vector signed char, vector signed char);
9092 vector bool char vec_vcmpequb (vector unsigned char,
9093 vector unsigned char);
9094
9095 vector bool int vec_cmpge (vector float, vector float);
9096
9097 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
9098 vector bool char vec_cmpgt (vector signed char, vector signed char);
9099 vector bool short vec_cmpgt (vector unsigned short,
9100 vector unsigned short);
9101 vector bool short vec_cmpgt (vector signed short, vector signed short);
9102 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
9103 vector bool int vec_cmpgt (vector signed int, vector signed int);
9104 vector bool int vec_cmpgt (vector float, vector float);
9105
9106 vector bool int vec_vcmpgtfp (vector float, vector float);
9107
9108 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
9109
9110 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
9111
9112 vector bool short vec_vcmpgtsh (vector signed short,
9113 vector signed short);
9114
9115 vector bool short vec_vcmpgtuh (vector unsigned short,
9116 vector unsigned short);
9117
9118 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
9119
9120 vector bool char vec_vcmpgtub (vector unsigned char,
9121 vector unsigned char);
9122
9123 vector bool int vec_cmple (vector float, vector float);
9124
9125 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
9126 vector bool char vec_cmplt (vector signed char, vector signed char);
9127 vector bool short vec_cmplt (vector unsigned short,
9128 vector unsigned short);
9129 vector bool short vec_cmplt (vector signed short, vector signed short);
9130 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
9131 vector bool int vec_cmplt (vector signed int, vector signed int);
9132 vector bool int vec_cmplt (vector float, vector float);
9133
9134 vector float vec_ctf (vector unsigned int, const int);
9135 vector float vec_ctf (vector signed int, const int);
9136
9137 vector float vec_vcfsx (vector signed int, const int);
9138
9139 vector float vec_vcfux (vector unsigned int, const int);
9140
9141 vector signed int vec_cts (vector float, const int);
9142
9143 vector unsigned int vec_ctu (vector float, const int);
9144
9145 void vec_dss (const int);
9146
9147 void vec_dssall (void);
9148
9149 void vec_dst (const vector unsigned char *, int, const int);
9150 void vec_dst (const vector signed char *, int, const int);
9151 void vec_dst (const vector bool char *, int, const int);
9152 void vec_dst (const vector unsigned short *, int, const int);
9153 void vec_dst (const vector signed short *, int, const int);
9154 void vec_dst (const vector bool short *, int, const int);
9155 void vec_dst (const vector pixel *, int, const int);
9156 void vec_dst (const vector unsigned int *, int, const int);
9157 void vec_dst (const vector signed int *, int, const int);
9158 void vec_dst (const vector bool int *, int, const int);
9159 void vec_dst (const vector float *, int, const int);
9160 void vec_dst (const unsigned char *, int, const int);
9161 void vec_dst (const signed char *, int, const int);
9162 void vec_dst (const unsigned short *, int, const int);
9163 void vec_dst (const short *, int, const int);
9164 void vec_dst (const unsigned int *, int, const int);
9165 void vec_dst (const int *, int, const int);
9166 void vec_dst (const unsigned long *, int, const int);
9167 void vec_dst (const long *, int, const int);
9168 void vec_dst (const float *, int, const int);
9169
9170 void vec_dstst (const vector unsigned char *, int, const int);
9171 void vec_dstst (const vector signed char *, int, const int);
9172 void vec_dstst (const vector bool char *, int, const int);
9173 void vec_dstst (const vector unsigned short *, int, const int);
9174 void vec_dstst (const vector signed short *, int, const int);
9175 void vec_dstst (const vector bool short *, int, const int);
9176 void vec_dstst (const vector pixel *, int, const int);
9177 void vec_dstst (const vector unsigned int *, int, const int);
9178 void vec_dstst (const vector signed int *, int, const int);
9179 void vec_dstst (const vector bool int *, int, const int);
9180 void vec_dstst (const vector float *, int, const int);
9181 void vec_dstst (const unsigned char *, int, const int);
9182 void vec_dstst (const signed char *, int, const int);
9183 void vec_dstst (const unsigned short *, int, const int);
9184 void vec_dstst (const short *, int, const int);
9185 void vec_dstst (const unsigned int *, int, const int);
9186 void vec_dstst (const int *, int, const int);
9187 void vec_dstst (const unsigned long *, int, const int);
9188 void vec_dstst (const long *, int, const int);
9189 void vec_dstst (const float *, int, const int);
9190
9191 void vec_dststt (const vector unsigned char *, int, const int);
9192 void vec_dststt (const vector signed char *, int, const int);
9193 void vec_dststt (const vector bool char *, int, const int);
9194 void vec_dststt (const vector unsigned short *, int, const int);
9195 void vec_dststt (const vector signed short *, int, const int);
9196 void vec_dststt (const vector bool short *, int, const int);
9197 void vec_dststt (const vector pixel *, int, const int);
9198 void vec_dststt (const vector unsigned int *, int, const int);
9199 void vec_dststt (const vector signed int *, int, const int);
9200 void vec_dststt (const vector bool int *, int, const int);
9201 void vec_dststt (const vector float *, int, const int);
9202 void vec_dststt (const unsigned char *, int, const int);
9203 void vec_dststt (const signed char *, int, const int);
9204 void vec_dststt (const unsigned short *, int, const int);
9205 void vec_dststt (const short *, int, const int);
9206 void vec_dststt (const unsigned int *, int, const int);
9207 void vec_dststt (const int *, int, const int);
9208 void vec_dststt (const unsigned long *, int, const int);
9209 void vec_dststt (const long *, int, const int);
9210 void vec_dststt (const float *, int, const int);
9211
9212 void vec_dstt (const vector unsigned char *, int, const int);
9213 void vec_dstt (const vector signed char *, int, const int);
9214 void vec_dstt (const vector bool char *, int, const int);
9215 void vec_dstt (const vector unsigned short *, int, const int);
9216 void vec_dstt (const vector signed short *, int, const int);
9217 void vec_dstt (const vector bool short *, int, const int);
9218 void vec_dstt (const vector pixel *, int, const int);
9219 void vec_dstt (const vector unsigned int *, int, const int);
9220 void vec_dstt (const vector signed int *, int, const int);
9221 void vec_dstt (const vector bool int *, int, const int);
9222 void vec_dstt (const vector float *, int, const int);
9223 void vec_dstt (const unsigned char *, int, const int);
9224 void vec_dstt (const signed char *, int, const int);
9225 void vec_dstt (const unsigned short *, int, const int);
9226 void vec_dstt (const short *, int, const int);
9227 void vec_dstt (const unsigned int *, int, const int);
9228 void vec_dstt (const int *, int, const int);
9229 void vec_dstt (const unsigned long *, int, const int);
9230 void vec_dstt (const long *, int, const int);
9231 void vec_dstt (const float *, int, const int);
9232
9233 vector float vec_expte (vector float);
9234
9235 vector float vec_floor (vector float);
9236
9237 vector float vec_ld (int, const vector float *);
9238 vector float vec_ld (int, const float *);
9239 vector bool int vec_ld (int, const vector bool int *);
9240 vector signed int vec_ld (int, const vector signed int *);
9241 vector signed int vec_ld (int, const int *);
9242 vector signed int vec_ld (int, const long *);
9243 vector unsigned int vec_ld (int, const vector unsigned int *);
9244 vector unsigned int vec_ld (int, const unsigned int *);
9245 vector unsigned int vec_ld (int, const unsigned long *);
9246 vector bool short vec_ld (int, const vector bool short *);
9247 vector pixel vec_ld (int, const vector pixel *);
9248 vector signed short vec_ld (int, const vector signed short *);
9249 vector signed short vec_ld (int, const short *);
9250 vector unsigned short vec_ld (int, const vector unsigned short *);
9251 vector unsigned short vec_ld (int, const unsigned short *);
9252 vector bool char vec_ld (int, const vector bool char *);
9253 vector signed char vec_ld (int, const vector signed char *);
9254 vector signed char vec_ld (int, const signed char *);
9255 vector unsigned char vec_ld (int, const vector unsigned char *);
9256 vector unsigned char vec_ld (int, const unsigned char *);
9257
9258 vector signed char vec_lde (int, const signed char *);
9259 vector unsigned char vec_lde (int, const unsigned char *);
9260 vector signed short vec_lde (int, const short *);
9261 vector unsigned short vec_lde (int, const unsigned short *);
9262 vector float vec_lde (int, const float *);
9263 vector signed int vec_lde (int, const int *);
9264 vector unsigned int vec_lde (int, const unsigned int *);
9265 vector signed int vec_lde (int, const long *);
9266 vector unsigned int vec_lde (int, const unsigned long *);
9267
9268 vector float vec_lvewx (int, float *);
9269 vector signed int vec_lvewx (int, int *);
9270 vector unsigned int vec_lvewx (int, unsigned int *);
9271 vector signed int vec_lvewx (int, long *);
9272 vector unsigned int vec_lvewx (int, unsigned long *);
9273
9274 vector signed short vec_lvehx (int, short *);
9275 vector unsigned short vec_lvehx (int, unsigned short *);
9276
9277 vector signed char vec_lvebx (int, char *);
9278 vector unsigned char vec_lvebx (int, unsigned char *);
9279
9280 vector float vec_ldl (int, const vector float *);
9281 vector float vec_ldl (int, const float *);
9282 vector bool int vec_ldl (int, const vector bool int *);
9283 vector signed int vec_ldl (int, const vector signed int *);
9284 vector signed int vec_ldl (int, const int *);
9285 vector signed int vec_ldl (int, const long *);
9286 vector unsigned int vec_ldl (int, const vector unsigned int *);
9287 vector unsigned int vec_ldl (int, const unsigned int *);
9288 vector unsigned int vec_ldl (int, const unsigned long *);
9289 vector bool short vec_ldl (int, const vector bool short *);
9290 vector pixel vec_ldl (int, const vector pixel *);
9291 vector signed short vec_ldl (int, const vector signed short *);
9292 vector signed short vec_ldl (int, const short *);
9293 vector unsigned short vec_ldl (int, const vector unsigned short *);
9294 vector unsigned short vec_ldl (int, const unsigned short *);
9295 vector bool char vec_ldl (int, const vector bool char *);
9296 vector signed char vec_ldl (int, const vector signed char *);
9297 vector signed char vec_ldl (int, const signed char *);
9298 vector unsigned char vec_ldl (int, const vector unsigned char *);
9299 vector unsigned char vec_ldl (int, const unsigned char *);
9300
9301 vector float vec_loge (vector float);
9302
9303 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
9304 vector unsigned char vec_lvsl (int, const volatile signed char *);
9305 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
9306 vector unsigned char vec_lvsl (int, const volatile short *);
9307 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
9308 vector unsigned char vec_lvsl (int, const volatile int *);
9309 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
9310 vector unsigned char vec_lvsl (int, const volatile long *);
9311 vector unsigned char vec_lvsl (int, const volatile float *);
9312
9313 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
9314 vector unsigned char vec_lvsr (int, const volatile signed char *);
9315 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
9316 vector unsigned char vec_lvsr (int, const volatile short *);
9317 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
9318 vector unsigned char vec_lvsr (int, const volatile int *);
9319 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
9320 vector unsigned char vec_lvsr (int, const volatile long *);
9321 vector unsigned char vec_lvsr (int, const volatile float *);
9322
9323 vector float vec_madd (vector float, vector float, vector float);
9324
9325 vector signed short vec_madds (vector signed short,
9326 vector signed short,
9327 vector signed short);
9328
9329 vector unsigned char vec_max (vector bool char, vector unsigned char);
9330 vector unsigned char vec_max (vector unsigned char, vector bool char);
9331 vector unsigned char vec_max (vector unsigned char,
9332 vector unsigned char);
9333 vector signed char vec_max (vector bool char, vector signed char);
9334 vector signed char vec_max (vector signed char, vector bool char);
9335 vector signed char vec_max (vector signed char, vector signed char);
9336 vector unsigned short vec_max (vector bool short,
9337 vector unsigned short);
9338 vector unsigned short vec_max (vector unsigned short,
9339 vector bool short);
9340 vector unsigned short vec_max (vector unsigned short,
9341 vector unsigned short);
9342 vector signed short vec_max (vector bool short, vector signed short);
9343 vector signed short vec_max (vector signed short, vector bool short);
9344 vector signed short vec_max (vector signed short, vector signed short);
9345 vector unsigned int vec_max (vector bool int, vector unsigned int);
9346 vector unsigned int vec_max (vector unsigned int, vector bool int);
9347 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
9348 vector signed int vec_max (vector bool int, vector signed int);
9349 vector signed int vec_max (vector signed int, vector bool int);
9350 vector signed int vec_max (vector signed int, vector signed int);
9351 vector float vec_max (vector float, vector float);
9352
9353 vector float vec_vmaxfp (vector float, vector float);
9354
9355 vector signed int vec_vmaxsw (vector bool int, vector signed int);
9356 vector signed int vec_vmaxsw (vector signed int, vector bool int);
9357 vector signed int vec_vmaxsw (vector signed int, vector signed int);
9358
9359 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
9360 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
9361 vector unsigned int vec_vmaxuw (vector unsigned int,
9362 vector unsigned int);
9363
9364 vector signed short vec_vmaxsh (vector bool short, vector signed short);
9365 vector signed short vec_vmaxsh (vector signed short, vector bool short);
9366 vector signed short vec_vmaxsh (vector signed short,
9367 vector signed short);
9368
9369 vector unsigned short vec_vmaxuh (vector bool short,
9370 vector unsigned short);
9371 vector unsigned short vec_vmaxuh (vector unsigned short,
9372 vector bool short);
9373 vector unsigned short vec_vmaxuh (vector unsigned short,
9374 vector unsigned short);
9375
9376 vector signed char vec_vmaxsb (vector bool char, vector signed char);
9377 vector signed char vec_vmaxsb (vector signed char, vector bool char);
9378 vector signed char vec_vmaxsb (vector signed char, vector signed char);
9379
9380 vector unsigned char vec_vmaxub (vector bool char,
9381 vector unsigned char);
9382 vector unsigned char vec_vmaxub (vector unsigned char,
9383 vector bool char);
9384 vector unsigned char vec_vmaxub (vector unsigned char,
9385 vector unsigned char);
9386
9387 vector bool char vec_mergeh (vector bool char, vector bool char);
9388 vector signed char vec_mergeh (vector signed char, vector signed char);
9389 vector unsigned char vec_mergeh (vector unsigned char,
9390 vector unsigned char);
9391 vector bool short vec_mergeh (vector bool short, vector bool short);
9392 vector pixel vec_mergeh (vector pixel, vector pixel);
9393 vector signed short vec_mergeh (vector signed short,
9394 vector signed short);
9395 vector unsigned short vec_mergeh (vector unsigned short,
9396 vector unsigned short);
9397 vector float vec_mergeh (vector float, vector float);
9398 vector bool int vec_mergeh (vector bool int, vector bool int);
9399 vector signed int vec_mergeh (vector signed int, vector signed int);
9400 vector unsigned int vec_mergeh (vector unsigned int,
9401 vector unsigned int);
9402
9403 vector float vec_vmrghw (vector float, vector float);
9404 vector bool int vec_vmrghw (vector bool int, vector bool int);
9405 vector signed int vec_vmrghw (vector signed int, vector signed int);
9406 vector unsigned int vec_vmrghw (vector unsigned int,
9407 vector unsigned int);
9408
9409 vector bool short vec_vmrghh (vector bool short, vector bool short);
9410 vector signed short vec_vmrghh (vector signed short,
9411 vector signed short);
9412 vector unsigned short vec_vmrghh (vector unsigned short,
9413 vector unsigned short);
9414 vector pixel vec_vmrghh (vector pixel, vector pixel);
9415
9416 vector bool char vec_vmrghb (vector bool char, vector bool char);
9417 vector signed char vec_vmrghb (vector signed char, vector signed char);
9418 vector unsigned char vec_vmrghb (vector unsigned char,
9419 vector unsigned char);
9420
9421 vector bool char vec_mergel (vector bool char, vector bool char);
9422 vector signed char vec_mergel (vector signed char, vector signed char);
9423 vector unsigned char vec_mergel (vector unsigned char,
9424 vector unsigned char);
9425 vector bool short vec_mergel (vector bool short, vector bool short);
9426 vector pixel vec_mergel (vector pixel, vector pixel);
9427 vector signed short vec_mergel (vector signed short,
9428 vector signed short);
9429 vector unsigned short vec_mergel (vector unsigned short,
9430 vector unsigned short);
9431 vector float vec_mergel (vector float, vector float);
9432 vector bool int vec_mergel (vector bool int, vector bool int);
9433 vector signed int vec_mergel (vector signed int, vector signed int);
9434 vector unsigned int vec_mergel (vector unsigned int,
9435 vector unsigned int);
9436
9437 vector float vec_vmrglw (vector float, vector float);
9438 vector signed int vec_vmrglw (vector signed int, vector signed int);
9439 vector unsigned int vec_vmrglw (vector unsigned int,
9440 vector unsigned int);
9441 vector bool int vec_vmrglw (vector bool int, vector bool int);
9442
9443 vector bool short vec_vmrglh (vector bool short, vector bool short);
9444 vector signed short vec_vmrglh (vector signed short,
9445 vector signed short);
9446 vector unsigned short vec_vmrglh (vector unsigned short,
9447 vector unsigned short);
9448 vector pixel vec_vmrglh (vector pixel, vector pixel);
9449
9450 vector bool char vec_vmrglb (vector bool char, vector bool char);
9451 vector signed char vec_vmrglb (vector signed char, vector signed char);
9452 vector unsigned char vec_vmrglb (vector unsigned char,
9453 vector unsigned char);
9454
9455 vector unsigned short vec_mfvscr (void);
9456
9457 vector unsigned char vec_min (vector bool char, vector unsigned char);
9458 vector unsigned char vec_min (vector unsigned char, vector bool char);
9459 vector unsigned char vec_min (vector unsigned char,
9460 vector unsigned char);
9461 vector signed char vec_min (vector bool char, vector signed char);
9462 vector signed char vec_min (vector signed char, vector bool char);
9463 vector signed char vec_min (vector signed char, vector signed char);
9464 vector unsigned short vec_min (vector bool short,
9465 vector unsigned short);
9466 vector unsigned short vec_min (vector unsigned short,
9467 vector bool short);
9468 vector unsigned short vec_min (vector unsigned short,
9469 vector unsigned short);
9470 vector signed short vec_min (vector bool short, vector signed short);
9471 vector signed short vec_min (vector signed short, vector bool short);
9472 vector signed short vec_min (vector signed short, vector signed short);
9473 vector unsigned int vec_min (vector bool int, vector unsigned int);
9474 vector unsigned int vec_min (vector unsigned int, vector bool int);
9475 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
9476 vector signed int vec_min (vector bool int, vector signed int);
9477 vector signed int vec_min (vector signed int, vector bool int);
9478 vector signed int vec_min (vector signed int, vector signed int);
9479 vector float vec_min (vector float, vector float);
9480
9481 vector float vec_vminfp (vector float, vector float);
9482
9483 vector signed int vec_vminsw (vector bool int, vector signed int);
9484 vector signed int vec_vminsw (vector signed int, vector bool int);
9485 vector signed int vec_vminsw (vector signed int, vector signed int);
9486
9487 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
9488 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
9489 vector unsigned int vec_vminuw (vector unsigned int,
9490 vector unsigned int);
9491
9492 vector signed short vec_vminsh (vector bool short, vector signed short);
9493 vector signed short vec_vminsh (vector signed short, vector bool short);
9494 vector signed short vec_vminsh (vector signed short,
9495 vector signed short);
9496
9497 vector unsigned short vec_vminuh (vector bool short,
9498 vector unsigned short);
9499 vector unsigned short vec_vminuh (vector unsigned short,
9500 vector bool short);
9501 vector unsigned short vec_vminuh (vector unsigned short,
9502 vector unsigned short);
9503
9504 vector signed char vec_vminsb (vector bool char, vector signed char);
9505 vector signed char vec_vminsb (vector signed char, vector bool char);
9506 vector signed char vec_vminsb (vector signed char, vector signed char);
9507
9508 vector unsigned char vec_vminub (vector bool char,
9509 vector unsigned char);
9510 vector unsigned char vec_vminub (vector unsigned char,
9511 vector bool char);
9512 vector unsigned char vec_vminub (vector unsigned char,
9513 vector unsigned char);
9514
9515 vector signed short vec_mladd (vector signed short,
9516 vector signed short,
9517 vector signed short);
9518 vector signed short vec_mladd (vector signed short,
9519 vector unsigned short,
9520 vector unsigned short);
9521 vector signed short vec_mladd (vector unsigned short,
9522 vector signed short,
9523 vector signed short);
9524 vector unsigned short vec_mladd (vector unsigned short,
9525 vector unsigned short,
9526 vector unsigned short);
9527
9528 vector signed short vec_mradds (vector signed short,
9529 vector signed short,
9530 vector signed short);
9531
9532 vector unsigned int vec_msum (vector unsigned char,
9533 vector unsigned char,
9534 vector unsigned int);
9535 vector signed int vec_msum (vector signed char,
9536 vector unsigned char,
9537 vector signed int);
9538 vector unsigned int vec_msum (vector unsigned short,
9539 vector unsigned short,
9540 vector unsigned int);
9541 vector signed int vec_msum (vector signed short,
9542 vector signed short,
9543 vector signed int);
9544
9545 vector signed int vec_vmsumshm (vector signed short,
9546 vector signed short,
9547 vector signed int);
9548
9549 vector unsigned int vec_vmsumuhm (vector unsigned short,
9550 vector unsigned short,
9551 vector unsigned int);
9552
9553 vector signed int vec_vmsummbm (vector signed char,
9554 vector unsigned char,
9555 vector signed int);
9556
9557 vector unsigned int vec_vmsumubm (vector unsigned char,
9558 vector unsigned char,
9559 vector unsigned int);
9560
9561 vector unsigned int vec_msums (vector unsigned short,
9562 vector unsigned short,
9563 vector unsigned int);
9564 vector signed int vec_msums (vector signed short,
9565 vector signed short,
9566 vector signed int);
9567
9568 vector signed int vec_vmsumshs (vector signed short,
9569 vector signed short,
9570 vector signed int);
9571
9572 vector unsigned int vec_vmsumuhs (vector unsigned short,
9573 vector unsigned short,
9574 vector unsigned int);
9575
9576 void vec_mtvscr (vector signed int);
9577 void vec_mtvscr (vector unsigned int);
9578 void vec_mtvscr (vector bool int);
9579 void vec_mtvscr (vector signed short);
9580 void vec_mtvscr (vector unsigned short);
9581 void vec_mtvscr (vector bool short);
9582 void vec_mtvscr (vector pixel);
9583 void vec_mtvscr (vector signed char);
9584 void vec_mtvscr (vector unsigned char);
9585 void vec_mtvscr (vector bool char);
9586
9587 vector unsigned short vec_mule (vector unsigned char,
9588 vector unsigned char);
9589 vector signed short vec_mule (vector signed char,
9590 vector signed char);
9591 vector unsigned int vec_mule (vector unsigned short,
9592 vector unsigned short);
9593 vector signed int vec_mule (vector signed short, vector signed short);
9594
9595 vector signed int vec_vmulesh (vector signed short,
9596 vector signed short);
9597
9598 vector unsigned int vec_vmuleuh (vector unsigned short,
9599 vector unsigned short);
9600
9601 vector signed short vec_vmulesb (vector signed char,
9602 vector signed char);
9603
9604 vector unsigned short vec_vmuleub (vector unsigned char,
9605 vector unsigned char);
9606
9607 vector unsigned short vec_mulo (vector unsigned char,
9608 vector unsigned char);
9609 vector signed short vec_mulo (vector signed char, vector signed char);
9610 vector unsigned int vec_mulo (vector unsigned short,
9611 vector unsigned short);
9612 vector signed int vec_mulo (vector signed short, vector signed short);
9613
9614 vector signed int vec_vmulosh (vector signed short,
9615 vector signed short);
9616
9617 vector unsigned int vec_vmulouh (vector unsigned short,
9618 vector unsigned short);
9619
9620 vector signed short vec_vmulosb (vector signed char,
9621 vector signed char);
9622
9623 vector unsigned short vec_vmuloub (vector unsigned char,
9624 vector unsigned char);
9625
9626 vector float vec_nmsub (vector float, vector float, vector float);
9627
9628 vector float vec_nor (vector float, vector float);
9629 vector signed int vec_nor (vector signed int, vector signed int);
9630 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
9631 vector bool int vec_nor (vector bool int, vector bool int);
9632 vector signed short vec_nor (vector signed short, vector signed short);
9633 vector unsigned short vec_nor (vector unsigned short,
9634 vector unsigned short);
9635 vector bool short vec_nor (vector bool short, vector bool short);
9636 vector signed char vec_nor (vector signed char, vector signed char);
9637 vector unsigned char vec_nor (vector unsigned char,
9638 vector unsigned char);
9639 vector bool char vec_nor (vector bool char, vector bool char);
9640
9641 vector float vec_or (vector float, vector float);
9642 vector float vec_or (vector float, vector bool int);
9643 vector float vec_or (vector bool int, vector float);
9644 vector bool int vec_or (vector bool int, vector bool int);
9645 vector signed int vec_or (vector bool int, vector signed int);
9646 vector signed int vec_or (vector signed int, vector bool int);
9647 vector signed int vec_or (vector signed int, vector signed int);
9648 vector unsigned int vec_or (vector bool int, vector unsigned int);
9649 vector unsigned int vec_or (vector unsigned int, vector bool int);
9650 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
9651 vector bool short vec_or (vector bool short, vector bool short);
9652 vector signed short vec_or (vector bool short, vector signed short);
9653 vector signed short vec_or (vector signed short, vector bool short);
9654 vector signed short vec_or (vector signed short, vector signed short);
9655 vector unsigned short vec_or (vector bool short, vector unsigned short);
9656 vector unsigned short vec_or (vector unsigned short, vector bool short);
9657 vector unsigned short vec_or (vector unsigned short,
9658 vector unsigned short);
9659 vector signed char vec_or (vector bool char, vector signed char);
9660 vector bool char vec_or (vector bool char, vector bool char);
9661 vector signed char vec_or (vector signed char, vector bool char);
9662 vector signed char vec_or (vector signed char, vector signed char);
9663 vector unsigned char vec_or (vector bool char, vector unsigned char);
9664 vector unsigned char vec_or (vector unsigned char, vector bool char);
9665 vector unsigned char vec_or (vector unsigned char,
9666 vector unsigned char);
9667
9668 vector signed char vec_pack (vector signed short, vector signed short);
9669 vector unsigned char vec_pack (vector unsigned short,
9670 vector unsigned short);
9671 vector bool char vec_pack (vector bool short, vector bool short);
9672 vector signed short vec_pack (vector signed int, vector signed int);
9673 vector unsigned short vec_pack (vector unsigned int,
9674 vector unsigned int);
9675 vector bool short vec_pack (vector bool int, vector bool int);
9676
9677 vector bool short vec_vpkuwum (vector bool int, vector bool int);
9678 vector signed short vec_vpkuwum (vector signed int, vector signed int);
9679 vector unsigned short vec_vpkuwum (vector unsigned int,
9680 vector unsigned int);
9681
9682 vector bool char vec_vpkuhum (vector bool short, vector bool short);
9683 vector signed char vec_vpkuhum (vector signed short,
9684 vector signed short);
9685 vector unsigned char vec_vpkuhum (vector unsigned short,
9686 vector unsigned short);
9687
9688 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
9689
9690 vector unsigned char vec_packs (vector unsigned short,
9691 vector unsigned short);
9692 vector signed char vec_packs (vector signed short, vector signed short);
9693 vector unsigned short vec_packs (vector unsigned int,
9694 vector unsigned int);
9695 vector signed short vec_packs (vector signed int, vector signed int);
9696
9697 vector signed short vec_vpkswss (vector signed int, vector signed int);
9698
9699 vector unsigned short vec_vpkuwus (vector unsigned int,
9700 vector unsigned int);
9701
9702 vector signed char vec_vpkshss (vector signed short,
9703 vector signed short);
9704
9705 vector unsigned char vec_vpkuhus (vector unsigned short,
9706 vector unsigned short);
9707
9708 vector unsigned char vec_packsu (vector unsigned short,
9709 vector unsigned short);
9710 vector unsigned char vec_packsu (vector signed short,
9711 vector signed short);
9712 vector unsigned short vec_packsu (vector unsigned int,
9713 vector unsigned int);
9714 vector unsigned short vec_packsu (vector signed int, vector signed int);
9715
9716 vector unsigned short vec_vpkswus (vector signed int,
9717 vector signed int);
9718
9719 vector unsigned char vec_vpkshus (vector signed short,
9720 vector signed short);
9721
9722 vector float vec_perm (vector float,
9723 vector float,
9724 vector unsigned char);
9725 vector signed int vec_perm (vector signed int,
9726 vector signed int,
9727 vector unsigned char);
9728 vector unsigned int vec_perm (vector unsigned int,
9729 vector unsigned int,
9730 vector unsigned char);
9731 vector bool int vec_perm (vector bool int,
9732 vector bool int,
9733 vector unsigned char);
9734 vector signed short vec_perm (vector signed short,
9735 vector signed short,
9736 vector unsigned char);
9737 vector unsigned short vec_perm (vector unsigned short,
9738 vector unsigned short,
9739 vector unsigned char);
9740 vector bool short vec_perm (vector bool short,
9741 vector bool short,
9742 vector unsigned char);
9743 vector pixel vec_perm (vector pixel,
9744 vector pixel,
9745 vector unsigned char);
9746 vector signed char vec_perm (vector signed char,
9747 vector signed char,
9748 vector unsigned char);
9749 vector unsigned char vec_perm (vector unsigned char,
9750 vector unsigned char,
9751 vector unsigned char);
9752 vector bool char vec_perm (vector bool char,
9753 vector bool char,
9754 vector unsigned char);
9755
9756 vector float vec_re (vector float);
9757
9758 vector signed char vec_rl (vector signed char,
9759 vector unsigned char);
9760 vector unsigned char vec_rl (vector unsigned char,
9761 vector unsigned char);
9762 vector signed short vec_rl (vector signed short, vector unsigned short);
9763 vector unsigned short vec_rl (vector unsigned short,
9764 vector unsigned short);
9765 vector signed int vec_rl (vector signed int, vector unsigned int);
9766 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
9767
9768 vector signed int vec_vrlw (vector signed int, vector unsigned int);
9769 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
9770
9771 vector signed short vec_vrlh (vector signed short,
9772 vector unsigned short);
9773 vector unsigned short vec_vrlh (vector unsigned short,
9774 vector unsigned short);
9775
9776 vector signed char vec_vrlb (vector signed char, vector unsigned char);
9777 vector unsigned char vec_vrlb (vector unsigned char,
9778 vector unsigned char);
9779
9780 vector float vec_round (vector float);
9781
9782 vector float vec_rsqrte (vector float);
9783
9784 vector float vec_sel (vector float, vector float, vector bool int);
9785 vector float vec_sel (vector float, vector float, vector unsigned int);
9786 vector signed int vec_sel (vector signed int,
9787 vector signed int,
9788 vector bool int);
9789 vector signed int vec_sel (vector signed int,
9790 vector signed int,
9791 vector unsigned int);
9792 vector unsigned int vec_sel (vector unsigned int,
9793 vector unsigned int,
9794 vector bool int);
9795 vector unsigned int vec_sel (vector unsigned int,
9796 vector unsigned int,
9797 vector unsigned int);
9798 vector bool int vec_sel (vector bool int,
9799 vector bool int,
9800 vector bool int);
9801 vector bool int vec_sel (vector bool int,
9802 vector bool int,
9803 vector unsigned int);
9804 vector signed short vec_sel (vector signed short,
9805 vector signed short,
9806 vector bool short);
9807 vector signed short vec_sel (vector signed short,
9808 vector signed short,
9809 vector unsigned short);
9810 vector unsigned short vec_sel (vector unsigned short,
9811 vector unsigned short,
9812 vector bool short);
9813 vector unsigned short vec_sel (vector unsigned short,
9814 vector unsigned short,
9815 vector unsigned short);
9816 vector bool short vec_sel (vector bool short,
9817 vector bool short,
9818 vector bool short);
9819 vector bool short vec_sel (vector bool short,
9820 vector bool short,
9821 vector unsigned short);
9822 vector signed char vec_sel (vector signed char,
9823 vector signed char,
9824 vector bool char);
9825 vector signed char vec_sel (vector signed char,
9826 vector signed char,
9827 vector unsigned char);
9828 vector unsigned char vec_sel (vector unsigned char,
9829 vector unsigned char,
9830 vector bool char);
9831 vector unsigned char vec_sel (vector unsigned char,
9832 vector unsigned char,
9833 vector unsigned char);
9834 vector bool char vec_sel (vector bool char,
9835 vector bool char,
9836 vector bool char);
9837 vector bool char vec_sel (vector bool char,
9838 vector bool char,
9839 vector unsigned char);
9840
9841 vector signed char vec_sl (vector signed char,
9842 vector unsigned char);
9843 vector unsigned char vec_sl (vector unsigned char,
9844 vector unsigned char);
9845 vector signed short vec_sl (vector signed short, vector unsigned short);
9846 vector unsigned short vec_sl (vector unsigned short,
9847 vector unsigned short);
9848 vector signed int vec_sl (vector signed int, vector unsigned int);
9849 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
9850
9851 vector signed int vec_vslw (vector signed int, vector unsigned int);
9852 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
9853
9854 vector signed short vec_vslh (vector signed short,
9855 vector unsigned short);
9856 vector unsigned short vec_vslh (vector unsigned short,
9857 vector unsigned short);
9858
9859 vector signed char vec_vslb (vector signed char, vector unsigned char);
9860 vector unsigned char vec_vslb (vector unsigned char,
9861 vector unsigned char);
9862
9863 vector float vec_sld (vector float, vector float, const int);
9864 vector signed int vec_sld (vector signed int,
9865 vector signed int,
9866 const int);
9867 vector unsigned int vec_sld (vector unsigned int,
9868 vector unsigned int,
9869 const int);
9870 vector bool int vec_sld (vector bool int,
9871 vector bool int,
9872 const int);
9873 vector signed short vec_sld (vector signed short,
9874 vector signed short,
9875 const int);
9876 vector unsigned short vec_sld (vector unsigned short,
9877 vector unsigned short,
9878 const int);
9879 vector bool short vec_sld (vector bool short,
9880 vector bool short,
9881 const int);
9882 vector pixel vec_sld (vector pixel,
9883 vector pixel,
9884 const int);
9885 vector signed char vec_sld (vector signed char,
9886 vector signed char,
9887 const int);
9888 vector unsigned char vec_sld (vector unsigned char,
9889 vector unsigned char,
9890 const int);
9891 vector bool char vec_sld (vector bool char,
9892 vector bool char,
9893 const int);
9894
9895 vector signed int vec_sll (vector signed int,
9896 vector unsigned int);
9897 vector signed int vec_sll (vector signed int,
9898 vector unsigned short);
9899 vector signed int vec_sll (vector signed int,
9900 vector unsigned char);
9901 vector unsigned int vec_sll (vector unsigned int,
9902 vector unsigned int);
9903 vector unsigned int vec_sll (vector unsigned int,
9904 vector unsigned short);
9905 vector unsigned int vec_sll (vector unsigned int,
9906 vector unsigned char);
9907 vector bool int vec_sll (vector bool int,
9908 vector unsigned int);
9909 vector bool int vec_sll (vector bool int,
9910 vector unsigned short);
9911 vector bool int vec_sll (vector bool int,
9912 vector unsigned char);
9913 vector signed short vec_sll (vector signed short,
9914 vector unsigned int);
9915 vector signed short vec_sll (vector signed short,
9916 vector unsigned short);
9917 vector signed short vec_sll (vector signed short,
9918 vector unsigned char);
9919 vector unsigned short vec_sll (vector unsigned short,
9920 vector unsigned int);
9921 vector unsigned short vec_sll (vector unsigned short,
9922 vector unsigned short);
9923 vector unsigned short vec_sll (vector unsigned short,
9924 vector unsigned char);
9925 vector bool short vec_sll (vector bool short, vector unsigned int);
9926 vector bool short vec_sll (vector bool short, vector unsigned short);
9927 vector bool short vec_sll (vector bool short, vector unsigned char);
9928 vector pixel vec_sll (vector pixel, vector unsigned int);
9929 vector pixel vec_sll (vector pixel, vector unsigned short);
9930 vector pixel vec_sll (vector pixel, vector unsigned char);
9931 vector signed char vec_sll (vector signed char, vector unsigned int);
9932 vector signed char vec_sll (vector signed char, vector unsigned short);
9933 vector signed char vec_sll (vector signed char, vector unsigned char);
9934 vector unsigned char vec_sll (vector unsigned char,
9935 vector unsigned int);
9936 vector unsigned char vec_sll (vector unsigned char,
9937 vector unsigned short);
9938 vector unsigned char vec_sll (vector unsigned char,
9939 vector unsigned char);
9940 vector bool char vec_sll (vector bool char, vector unsigned int);
9941 vector bool char vec_sll (vector bool char, vector unsigned short);
9942 vector bool char vec_sll (vector bool char, vector unsigned char);
9943
9944 vector float vec_slo (vector float, vector signed char);
9945 vector float vec_slo (vector float, vector unsigned char);
9946 vector signed int vec_slo (vector signed int, vector signed char);
9947 vector signed int vec_slo (vector signed int, vector unsigned char);
9948 vector unsigned int vec_slo (vector unsigned int, vector signed char);
9949 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
9950 vector signed short vec_slo (vector signed short, vector signed char);
9951 vector signed short vec_slo (vector signed short, vector unsigned char);
9952 vector unsigned short vec_slo (vector unsigned short,
9953 vector signed char);
9954 vector unsigned short vec_slo (vector unsigned short,
9955 vector unsigned char);
9956 vector pixel vec_slo (vector pixel, vector signed char);
9957 vector pixel vec_slo (vector pixel, vector unsigned char);
9958 vector signed char vec_slo (vector signed char, vector signed char);
9959 vector signed char vec_slo (vector signed char, vector unsigned char);
9960 vector unsigned char vec_slo (vector unsigned char, vector signed char);
9961 vector unsigned char vec_slo (vector unsigned char,
9962 vector unsigned char);
9963
9964 vector signed char vec_splat (vector signed char, const int);
9965 vector unsigned char vec_splat (vector unsigned char, const int);
9966 vector bool char vec_splat (vector bool char, const int);
9967 vector signed short vec_splat (vector signed short, const int);
9968 vector unsigned short vec_splat (vector unsigned short, const int);
9969 vector bool short vec_splat (vector bool short, const int);
9970 vector pixel vec_splat (vector pixel, const int);
9971 vector float vec_splat (vector float, const int);
9972 vector signed int vec_splat (vector signed int, const int);
9973 vector unsigned int vec_splat (vector unsigned int, const int);
9974 vector bool int vec_splat (vector bool int, const int);
9975
9976 vector float vec_vspltw (vector float, const int);
9977 vector signed int vec_vspltw (vector signed int, const int);
9978 vector unsigned int vec_vspltw (vector unsigned int, const int);
9979 vector bool int vec_vspltw (vector bool int, const int);
9980
9981 vector bool short vec_vsplth (vector bool short, const int);
9982 vector signed short vec_vsplth (vector signed short, const int);
9983 vector unsigned short vec_vsplth (vector unsigned short, const int);
9984 vector pixel vec_vsplth (vector pixel, const int);
9985
9986 vector signed char vec_vspltb (vector signed char, const int);
9987 vector unsigned char vec_vspltb (vector unsigned char, const int);
9988 vector bool char vec_vspltb (vector bool char, const int);
9989
9990 vector signed char vec_splat_s8 (const int);
9991
9992 vector signed short vec_splat_s16 (const int);
9993
9994 vector signed int vec_splat_s32 (const int);
9995
9996 vector unsigned char vec_splat_u8 (const int);
9997
9998 vector unsigned short vec_splat_u16 (const int);
9999
10000 vector unsigned int vec_splat_u32 (const int);
10001
10002 vector signed char vec_sr (vector signed char, vector unsigned char);
10003 vector unsigned char vec_sr (vector unsigned char,
10004 vector unsigned char);
10005 vector signed short vec_sr (vector signed short,
10006 vector unsigned short);
10007 vector unsigned short vec_sr (vector unsigned short,
10008 vector unsigned short);
10009 vector signed int vec_sr (vector signed int, vector unsigned int);
10010 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
10011
10012 vector signed int vec_vsrw (vector signed int, vector unsigned int);
10013 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
10014
10015 vector signed short vec_vsrh (vector signed short,
10016 vector unsigned short);
10017 vector unsigned short vec_vsrh (vector unsigned short,
10018 vector unsigned short);
10019
10020 vector signed char vec_vsrb (vector signed char, vector unsigned char);
10021 vector unsigned char vec_vsrb (vector unsigned char,
10022 vector unsigned char);
10023
10024 vector signed char vec_sra (vector signed char, vector unsigned char);
10025 vector unsigned char vec_sra (vector unsigned char,
10026 vector unsigned char);
10027 vector signed short vec_sra (vector signed short,
10028 vector unsigned short);
10029 vector unsigned short vec_sra (vector unsigned short,
10030 vector unsigned short);
10031 vector signed int vec_sra (vector signed int, vector unsigned int);
10032 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
10033
10034 vector signed int vec_vsraw (vector signed int, vector unsigned int);
10035 vector unsigned int vec_vsraw (vector unsigned int,
10036 vector unsigned int);
10037
10038 vector signed short vec_vsrah (vector signed short,
10039 vector unsigned short);
10040 vector unsigned short vec_vsrah (vector unsigned short,
10041 vector unsigned short);
10042
10043 vector signed char vec_vsrab (vector signed char, vector unsigned char);
10044 vector unsigned char vec_vsrab (vector unsigned char,
10045 vector unsigned char);
10046
10047 vector signed int vec_srl (vector signed int, vector unsigned int);
10048 vector signed int vec_srl (vector signed int, vector unsigned short);
10049 vector signed int vec_srl (vector signed int, vector unsigned char);
10050 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
10051 vector unsigned int vec_srl (vector unsigned int,
10052 vector unsigned short);
10053 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
10054 vector bool int vec_srl (vector bool int, vector unsigned int);
10055 vector bool int vec_srl (vector bool int, vector unsigned short);
10056 vector bool int vec_srl (vector bool int, vector unsigned char);
10057 vector signed short vec_srl (vector signed short, vector unsigned int);
10058 vector signed short vec_srl (vector signed short,
10059 vector unsigned short);
10060 vector signed short vec_srl (vector signed short, vector unsigned char);
10061 vector unsigned short vec_srl (vector unsigned short,
10062 vector unsigned int);
10063 vector unsigned short vec_srl (vector unsigned short,
10064 vector unsigned short);
10065 vector unsigned short vec_srl (vector unsigned short,
10066 vector unsigned char);
10067 vector bool short vec_srl (vector bool short, vector unsigned int);
10068 vector bool short vec_srl (vector bool short, vector unsigned short);
10069 vector bool short vec_srl (vector bool short, vector unsigned char);
10070 vector pixel vec_srl (vector pixel, vector unsigned int);
10071 vector pixel vec_srl (vector pixel, vector unsigned short);
10072 vector pixel vec_srl (vector pixel, vector unsigned char);
10073 vector signed char vec_srl (vector signed char, vector unsigned int);
10074 vector signed char vec_srl (vector signed char, vector unsigned short);
10075 vector signed char vec_srl (vector signed char, vector unsigned char);
10076 vector unsigned char vec_srl (vector unsigned char,
10077 vector unsigned int);
10078 vector unsigned char vec_srl (vector unsigned char,
10079 vector unsigned short);
10080 vector unsigned char vec_srl (vector unsigned char,
10081 vector unsigned char);
10082 vector bool char vec_srl (vector bool char, vector unsigned int);
10083 vector bool char vec_srl (vector bool char, vector unsigned short);
10084 vector bool char vec_srl (vector bool char, vector unsigned char);
10085
10086 vector float vec_sro (vector float, vector signed char);
10087 vector float vec_sro (vector float, vector unsigned char);
10088 vector signed int vec_sro (vector signed int, vector signed char);
10089 vector signed int vec_sro (vector signed int, vector unsigned char);
10090 vector unsigned int vec_sro (vector unsigned int, vector signed char);
10091 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
10092 vector signed short vec_sro (vector signed short, vector signed char);
10093 vector signed short vec_sro (vector signed short, vector unsigned char);
10094 vector unsigned short vec_sro (vector unsigned short,
10095 vector signed char);
10096 vector unsigned short vec_sro (vector unsigned short,
10097 vector unsigned char);
10098 vector pixel vec_sro (vector pixel, vector signed char);
10099 vector pixel vec_sro (vector pixel, vector unsigned char);
10100 vector signed char vec_sro (vector signed char, vector signed char);
10101 vector signed char vec_sro (vector signed char, vector unsigned char);
10102 vector unsigned char vec_sro (vector unsigned char, vector signed char);
10103 vector unsigned char vec_sro (vector unsigned char,
10104 vector unsigned char);
10105
10106 void vec_st (vector float, int, vector float *);
10107 void vec_st (vector float, int, float *);
10108 void vec_st (vector signed int, int, vector signed int *);
10109 void vec_st (vector signed int, int, int *);
10110 void vec_st (vector unsigned int, int, vector unsigned int *);
10111 void vec_st (vector unsigned int, int, unsigned int *);
10112 void vec_st (vector bool int, int, vector bool int *);
10113 void vec_st (vector bool int, int, unsigned int *);
10114 void vec_st (vector bool int, int, int *);
10115 void vec_st (vector signed short, int, vector signed short *);
10116 void vec_st (vector signed short, int, short *);
10117 void vec_st (vector unsigned short, int, vector unsigned short *);
10118 void vec_st (vector unsigned short, int, unsigned short *);
10119 void vec_st (vector bool short, int, vector bool short *);
10120 void vec_st (vector bool short, int, unsigned short *);
10121 void vec_st (vector pixel, int, vector pixel *);
10122 void vec_st (vector pixel, int, unsigned short *);
10123 void vec_st (vector pixel, int, short *);
10124 void vec_st (vector bool short, int, short *);
10125 void vec_st (vector signed char, int, vector signed char *);
10126 void vec_st (vector signed char, int, signed char *);
10127 void vec_st (vector unsigned char, int, vector unsigned char *);
10128 void vec_st (vector unsigned char, int, unsigned char *);
10129 void vec_st (vector bool char, int, vector bool char *);
10130 void vec_st (vector bool char, int, unsigned char *);
10131 void vec_st (vector bool char, int, signed char *);
10132
10133 void vec_ste (vector signed char, int, signed char *);
10134 void vec_ste (vector unsigned char, int, unsigned char *);
10135 void vec_ste (vector bool char, int, signed char *);
10136 void vec_ste (vector bool char, int, unsigned char *);
10137 void vec_ste (vector signed short, int, short *);
10138 void vec_ste (vector unsigned short, int, unsigned short *);
10139 void vec_ste (vector bool short, int, short *);
10140 void vec_ste (vector bool short, int, unsigned short *);
10141 void vec_ste (vector pixel, int, short *);
10142 void vec_ste (vector pixel, int, unsigned short *);
10143 void vec_ste (vector float, int, float *);
10144 void vec_ste (vector signed int, int, int *);
10145 void vec_ste (vector unsigned int, int, unsigned int *);
10146 void vec_ste (vector bool int, int, int *);
10147 void vec_ste (vector bool int, int, unsigned int *);
10148
10149 void vec_stvewx (vector float, int, float *);
10150 void vec_stvewx (vector signed int, int, int *);
10151 void vec_stvewx (vector unsigned int, int, unsigned int *);
10152 void vec_stvewx (vector bool int, int, int *);
10153 void vec_stvewx (vector bool int, int, unsigned int *);
10154
10155 void vec_stvehx (vector signed short, int, short *);
10156 void vec_stvehx (vector unsigned short, int, unsigned short *);
10157 void vec_stvehx (vector bool short, int, short *);
10158 void vec_stvehx (vector bool short, int, unsigned short *);
10159 void vec_stvehx (vector pixel, int, short *);
10160 void vec_stvehx (vector pixel, int, unsigned short *);
10161
10162 void vec_stvebx (vector signed char, int, signed char *);
10163 void vec_stvebx (vector unsigned char, int, unsigned char *);
10164 void vec_stvebx (vector bool char, int, signed char *);
10165 void vec_stvebx (vector bool char, int, unsigned char *);
10166
10167 void vec_stl (vector float, int, vector float *);
10168 void vec_stl (vector float, int, float *);
10169 void vec_stl (vector signed int, int, vector signed int *);
10170 void vec_stl (vector signed int, int, int *);
10171 void vec_stl (vector unsigned int, int, vector unsigned int *);
10172 void vec_stl (vector unsigned int, int, unsigned int *);
10173 void vec_stl (vector bool int, int, vector bool int *);
10174 void vec_stl (vector bool int, int, unsigned int *);
10175 void vec_stl (vector bool int, int, int *);
10176 void vec_stl (vector signed short, int, vector signed short *);
10177 void vec_stl (vector signed short, int, short *);
10178 void vec_stl (vector unsigned short, int, vector unsigned short *);
10179 void vec_stl (vector unsigned short, int, unsigned short *);
10180 void vec_stl (vector bool short, int, vector bool short *);
10181 void vec_stl (vector bool short, int, unsigned short *);
10182 void vec_stl (vector bool short, int, short *);
10183 void vec_stl (vector pixel, int, vector pixel *);
10184 void vec_stl (vector pixel, int, unsigned short *);
10185 void vec_stl (vector pixel, int, short *);
10186 void vec_stl (vector signed char, int, vector signed char *);
10187 void vec_stl (vector signed char, int, signed char *);
10188 void vec_stl (vector unsigned char, int, vector unsigned char *);
10189 void vec_stl (vector unsigned char, int, unsigned char *);
10190 void vec_stl (vector bool char, int, vector bool char *);
10191 void vec_stl (vector bool char, int, unsigned char *);
10192 void vec_stl (vector bool char, int, signed char *);
10193
10194 vector signed char vec_sub (vector bool char, vector signed char);
10195 vector signed char vec_sub (vector signed char, vector bool char);
10196 vector signed char vec_sub (vector signed char, vector signed char);
10197 vector unsigned char vec_sub (vector bool char, vector unsigned char);
10198 vector unsigned char vec_sub (vector unsigned char, vector bool char);
10199 vector unsigned char vec_sub (vector unsigned char,
10200 vector unsigned char);
10201 vector signed short vec_sub (vector bool short, vector signed short);
10202 vector signed short vec_sub (vector signed short, vector bool short);
10203 vector signed short vec_sub (vector signed short, vector signed short);
10204 vector unsigned short vec_sub (vector bool short,
10205 vector unsigned short);
10206 vector unsigned short vec_sub (vector unsigned short,
10207 vector bool short);
10208 vector unsigned short vec_sub (vector unsigned short,
10209 vector unsigned short);
10210 vector signed int vec_sub (vector bool int, vector signed int);
10211 vector signed int vec_sub (vector signed int, vector bool int);
10212 vector signed int vec_sub (vector signed int, vector signed int);
10213 vector unsigned int vec_sub (vector bool int, vector unsigned int);
10214 vector unsigned int vec_sub (vector unsigned int, vector bool int);
10215 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
10216 vector float vec_sub (vector float, vector float);
10217
10218 vector float vec_vsubfp (vector float, vector float);
10219
10220 vector signed int vec_vsubuwm (vector bool int, vector signed int);
10221 vector signed int vec_vsubuwm (vector signed int, vector bool int);
10222 vector signed int vec_vsubuwm (vector signed int, vector signed int);
10223 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
10224 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
10225 vector unsigned int vec_vsubuwm (vector unsigned int,
10226 vector unsigned int);
10227
10228 vector signed short vec_vsubuhm (vector bool short,
10229 vector signed short);
10230 vector signed short vec_vsubuhm (vector signed short,
10231 vector bool short);
10232 vector signed short vec_vsubuhm (vector signed short,
10233 vector signed short);
10234 vector unsigned short vec_vsubuhm (vector bool short,
10235 vector unsigned short);
10236 vector unsigned short vec_vsubuhm (vector unsigned short,
10237 vector bool short);
10238 vector unsigned short vec_vsubuhm (vector unsigned short,
10239 vector unsigned short);
10240
10241 vector signed char vec_vsububm (vector bool char, vector signed char);
10242 vector signed char vec_vsububm (vector signed char, vector bool char);
10243 vector signed char vec_vsububm (vector signed char, vector signed char);
10244 vector unsigned char vec_vsububm (vector bool char,
10245 vector unsigned char);
10246 vector unsigned char vec_vsububm (vector unsigned char,
10247 vector bool char);
10248 vector unsigned char vec_vsububm (vector unsigned char,
10249 vector unsigned char);
10250
10251 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
10252
10253 vector unsigned char vec_subs (vector bool char, vector unsigned char);
10254 vector unsigned char vec_subs (vector unsigned char, vector bool char);
10255 vector unsigned char vec_subs (vector unsigned char,
10256 vector unsigned char);
10257 vector signed char vec_subs (vector bool char, vector signed char);
10258 vector signed char vec_subs (vector signed char, vector bool char);
10259 vector signed char vec_subs (vector signed char, vector signed char);
10260 vector unsigned short vec_subs (vector bool short,
10261 vector unsigned short);
10262 vector unsigned short vec_subs (vector unsigned short,
10263 vector bool short);
10264 vector unsigned short vec_subs (vector unsigned short,
10265 vector unsigned short);
10266 vector signed short vec_subs (vector bool short, vector signed short);
10267 vector signed short vec_subs (vector signed short, vector bool short);
10268 vector signed short vec_subs (vector signed short, vector signed short);
10269 vector unsigned int vec_subs (vector bool int, vector unsigned int);
10270 vector unsigned int vec_subs (vector unsigned int, vector bool int);
10271 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
10272 vector signed int vec_subs (vector bool int, vector signed int);
10273 vector signed int vec_subs (vector signed int, vector bool int);
10274 vector signed int vec_subs (vector signed int, vector signed int);
10275
10276 vector signed int vec_vsubsws (vector bool int, vector signed int);
10277 vector signed int vec_vsubsws (vector signed int, vector bool int);
10278 vector signed int vec_vsubsws (vector signed int, vector signed int);
10279
10280 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
10281 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
10282 vector unsigned int vec_vsubuws (vector unsigned int,
10283 vector unsigned int);
10284
10285 vector signed short vec_vsubshs (vector bool short,
10286 vector signed short);
10287 vector signed short vec_vsubshs (vector signed short,
10288 vector bool short);
10289 vector signed short vec_vsubshs (vector signed short,
10290 vector signed short);
10291
10292 vector unsigned short vec_vsubuhs (vector bool short,
10293 vector unsigned short);
10294 vector unsigned short vec_vsubuhs (vector unsigned short,
10295 vector bool short);
10296 vector unsigned short vec_vsubuhs (vector unsigned short,
10297 vector unsigned short);
10298
10299 vector signed char vec_vsubsbs (vector bool char, vector signed char);
10300 vector signed char vec_vsubsbs (vector signed char, vector bool char);
10301 vector signed char vec_vsubsbs (vector signed char, vector signed char);
10302
10303 vector unsigned char vec_vsububs (vector bool char,
10304 vector unsigned char);
10305 vector unsigned char vec_vsububs (vector unsigned char,
10306 vector bool char);
10307 vector unsigned char vec_vsububs (vector unsigned char,
10308 vector unsigned char);
10309
10310 vector unsigned int vec_sum4s (vector unsigned char,
10311 vector unsigned int);
10312 vector signed int vec_sum4s (vector signed char, vector signed int);
10313 vector signed int vec_sum4s (vector signed short, vector signed int);
10314
10315 vector signed int vec_vsum4shs (vector signed short, vector signed int);
10316
10317 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
10318
10319 vector unsigned int vec_vsum4ubs (vector unsigned char,
10320 vector unsigned int);
10321
10322 vector signed int vec_sum2s (vector signed int, vector signed int);
10323
10324 vector signed int vec_sums (vector signed int, vector signed int);
10325
10326 vector float vec_trunc (vector float);
10327
10328 vector signed short vec_unpackh (vector signed char);
10329 vector bool short vec_unpackh (vector bool char);
10330 vector signed int vec_unpackh (vector signed short);
10331 vector bool int vec_unpackh (vector bool short);
10332 vector unsigned int vec_unpackh (vector pixel);
10333
10334 vector bool int vec_vupkhsh (vector bool short);
10335 vector signed int vec_vupkhsh (vector signed short);
10336
10337 vector unsigned int vec_vupkhpx (vector pixel);
10338
10339 vector bool short vec_vupkhsb (vector bool char);
10340 vector signed short vec_vupkhsb (vector signed char);
10341
10342 vector signed short vec_unpackl (vector signed char);
10343 vector bool short vec_unpackl (vector bool char);
10344 vector unsigned int vec_unpackl (vector pixel);
10345 vector signed int vec_unpackl (vector signed short);
10346 vector bool int vec_unpackl (vector bool short);
10347
10348 vector unsigned int vec_vupklpx (vector pixel);
10349
10350 vector bool int vec_vupklsh (vector bool short);
10351 vector signed int vec_vupklsh (vector signed short);
10352
10353 vector bool short vec_vupklsb (vector bool char);
10354 vector signed short vec_vupklsb (vector signed char);
10355
10356 vector float vec_xor (vector float, vector float);
10357 vector float vec_xor (vector float, vector bool int);
10358 vector float vec_xor (vector bool int, vector float);
10359 vector bool int vec_xor (vector bool int, vector bool int);
10360 vector signed int vec_xor (vector bool int, vector signed int);
10361 vector signed int vec_xor (vector signed int, vector bool int);
10362 vector signed int vec_xor (vector signed int, vector signed int);
10363 vector unsigned int vec_xor (vector bool int, vector unsigned int);
10364 vector unsigned int vec_xor (vector unsigned int, vector bool int);
10365 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
10366 vector bool short vec_xor (vector bool short, vector bool short);
10367 vector signed short vec_xor (vector bool short, vector signed short);
10368 vector signed short vec_xor (vector signed short, vector bool short);
10369 vector signed short vec_xor (vector signed short, vector signed short);
10370 vector unsigned short vec_xor (vector bool short,
10371 vector unsigned short);
10372 vector unsigned short vec_xor (vector unsigned short,
10373 vector bool short);
10374 vector unsigned short vec_xor (vector unsigned short,
10375 vector unsigned short);
10376 vector signed char vec_xor (vector bool char, vector signed char);
10377 vector bool char vec_xor (vector bool char, vector bool char);
10378 vector signed char vec_xor (vector signed char, vector bool char);
10379 vector signed char vec_xor (vector signed char, vector signed char);
10380 vector unsigned char vec_xor (vector bool char, vector unsigned char);
10381 vector unsigned char vec_xor (vector unsigned char, vector bool char);
10382 vector unsigned char vec_xor (vector unsigned char,
10383 vector unsigned char);
10384
10385 int vec_all_eq (vector signed char, vector bool char);
10386 int vec_all_eq (vector signed char, vector signed char);
10387 int vec_all_eq (vector unsigned char, vector bool char);
10388 int vec_all_eq (vector unsigned char, vector unsigned char);
10389 int vec_all_eq (vector bool char, vector bool char);
10390 int vec_all_eq (vector bool char, vector unsigned char);
10391 int vec_all_eq (vector bool char, vector signed char);
10392 int vec_all_eq (vector signed short, vector bool short);
10393 int vec_all_eq (vector signed short, vector signed short);
10394 int vec_all_eq (vector unsigned short, vector bool short);
10395 int vec_all_eq (vector unsigned short, vector unsigned short);
10396 int vec_all_eq (vector bool short, vector bool short);
10397 int vec_all_eq (vector bool short, vector unsigned short);
10398 int vec_all_eq (vector bool short, vector signed short);
10399 int vec_all_eq (vector pixel, vector pixel);
10400 int vec_all_eq (vector signed int, vector bool int);
10401 int vec_all_eq (vector signed int, vector signed int);
10402 int vec_all_eq (vector unsigned int, vector bool int);
10403 int vec_all_eq (vector unsigned int, vector unsigned int);
10404 int vec_all_eq (vector bool int, vector bool int);
10405 int vec_all_eq (vector bool int, vector unsigned int);
10406 int vec_all_eq (vector bool int, vector signed int);
10407 int vec_all_eq (vector float, vector float);
10408
10409 int vec_all_ge (vector bool char, vector unsigned char);
10410 int vec_all_ge (vector unsigned char, vector bool char);
10411 int vec_all_ge (vector unsigned char, vector unsigned char);
10412 int vec_all_ge (vector bool char, vector signed char);
10413 int vec_all_ge (vector signed char, vector bool char);
10414 int vec_all_ge (vector signed char, vector signed char);
10415 int vec_all_ge (vector bool short, vector unsigned short);
10416 int vec_all_ge (vector unsigned short, vector bool short);
10417 int vec_all_ge (vector unsigned short, vector unsigned short);
10418 int vec_all_ge (vector signed short, vector signed short);
10419 int vec_all_ge (vector bool short, vector signed short);
10420 int vec_all_ge (vector signed short, vector bool short);
10421 int vec_all_ge (vector bool int, vector unsigned int);
10422 int vec_all_ge (vector unsigned int, vector bool int);
10423 int vec_all_ge (vector unsigned int, vector unsigned int);
10424 int vec_all_ge (vector bool int, vector signed int);
10425 int vec_all_ge (vector signed int, vector bool int);
10426 int vec_all_ge (vector signed int, vector signed int);
10427 int vec_all_ge (vector float, vector float);
10428
10429 int vec_all_gt (vector bool char, vector unsigned char);
10430 int vec_all_gt (vector unsigned char, vector bool char);
10431 int vec_all_gt (vector unsigned char, vector unsigned char);
10432 int vec_all_gt (vector bool char, vector signed char);
10433 int vec_all_gt (vector signed char, vector bool char);
10434 int vec_all_gt (vector signed char, vector signed char);
10435 int vec_all_gt (vector bool short, vector unsigned short);
10436 int vec_all_gt (vector unsigned short, vector bool short);
10437 int vec_all_gt (vector unsigned short, vector unsigned short);
10438 int vec_all_gt (vector bool short, vector signed short);
10439 int vec_all_gt (vector signed short, vector bool short);
10440 int vec_all_gt (vector signed short, vector signed short);
10441 int vec_all_gt (vector bool int, vector unsigned int);
10442 int vec_all_gt (vector unsigned int, vector bool int);
10443 int vec_all_gt (vector unsigned int, vector unsigned int);
10444 int vec_all_gt (vector bool int, vector signed int);
10445 int vec_all_gt (vector signed int, vector bool int);
10446 int vec_all_gt (vector signed int, vector signed int);
10447 int vec_all_gt (vector float, vector float);
10448
10449 int vec_all_in (vector float, vector float);
10450
10451 int vec_all_le (vector bool char, vector unsigned char);
10452 int vec_all_le (vector unsigned char, vector bool char);
10453 int vec_all_le (vector unsigned char, vector unsigned char);
10454 int vec_all_le (vector bool char, vector signed char);
10455 int vec_all_le (vector signed char, vector bool char);
10456 int vec_all_le (vector signed char, vector signed char);
10457 int vec_all_le (vector bool short, vector unsigned short);
10458 int vec_all_le (vector unsigned short, vector bool short);
10459 int vec_all_le (vector unsigned short, vector unsigned short);
10460 int vec_all_le (vector bool short, vector signed short);
10461 int vec_all_le (vector signed short, vector bool short);
10462 int vec_all_le (vector signed short, vector signed short);
10463 int vec_all_le (vector bool int, vector unsigned int);
10464 int vec_all_le (vector unsigned int, vector bool int);
10465 int vec_all_le (vector unsigned int, vector unsigned int);
10466 int vec_all_le (vector bool int, vector signed int);
10467 int vec_all_le (vector signed int, vector bool int);
10468 int vec_all_le (vector signed int, vector signed int);
10469 int vec_all_le (vector float, vector float);
10470
10471 int vec_all_lt (vector bool char, vector unsigned char);
10472 int vec_all_lt (vector unsigned char, vector bool char);
10473 int vec_all_lt (vector unsigned char, vector unsigned char);
10474 int vec_all_lt (vector bool char, vector signed char);
10475 int vec_all_lt (vector signed char, vector bool char);
10476 int vec_all_lt (vector signed char, vector signed char);
10477 int vec_all_lt (vector bool short, vector unsigned short);
10478 int vec_all_lt (vector unsigned short, vector bool short);
10479 int vec_all_lt (vector unsigned short, vector unsigned short);
10480 int vec_all_lt (vector bool short, vector signed short);
10481 int vec_all_lt (vector signed short, vector bool short);
10482 int vec_all_lt (vector signed short, vector signed short);
10483 int vec_all_lt (vector bool int, vector unsigned int);
10484 int vec_all_lt (vector unsigned int, vector bool int);
10485 int vec_all_lt (vector unsigned int, vector unsigned int);
10486 int vec_all_lt (vector bool int, vector signed int);
10487 int vec_all_lt (vector signed int, vector bool int);
10488 int vec_all_lt (vector signed int, vector signed int);
10489 int vec_all_lt (vector float, vector float);
10490
10491 int vec_all_nan (vector float);
10492
10493 int vec_all_ne (vector signed char, vector bool char);
10494 int vec_all_ne (vector signed char, vector signed char);
10495 int vec_all_ne (vector unsigned char, vector bool char);
10496 int vec_all_ne (vector unsigned char, vector unsigned char);
10497 int vec_all_ne (vector bool char, vector bool char);
10498 int vec_all_ne (vector bool char, vector unsigned char);
10499 int vec_all_ne (vector bool char, vector signed char);
10500 int vec_all_ne (vector signed short, vector bool short);
10501 int vec_all_ne (vector signed short, vector signed short);
10502 int vec_all_ne (vector unsigned short, vector bool short);
10503 int vec_all_ne (vector unsigned short, vector unsigned short);
10504 int vec_all_ne (vector bool short, vector bool short);
10505 int vec_all_ne (vector bool short, vector unsigned short);
10506 int vec_all_ne (vector bool short, vector signed short);
10507 int vec_all_ne (vector pixel, vector pixel);
10508 int vec_all_ne (vector signed int, vector bool int);
10509 int vec_all_ne (vector signed int, vector signed int);
10510 int vec_all_ne (vector unsigned int, vector bool int);
10511 int vec_all_ne (vector unsigned int, vector unsigned int);
10512 int vec_all_ne (vector bool int, vector bool int);
10513 int vec_all_ne (vector bool int, vector unsigned int);
10514 int vec_all_ne (vector bool int, vector signed int);
10515 int vec_all_ne (vector float, vector float);
10516
10517 int vec_all_nge (vector float, vector float);
10518
10519 int vec_all_ngt (vector float, vector float);
10520
10521 int vec_all_nle (vector float, vector float);
10522
10523 int vec_all_nlt (vector float, vector float);
10524
10525 int vec_all_numeric (vector float);
10526
10527 int vec_any_eq (vector signed char, vector bool char);
10528 int vec_any_eq (vector signed char, vector signed char);
10529 int vec_any_eq (vector unsigned char, vector bool char);
10530 int vec_any_eq (vector unsigned char, vector unsigned char);
10531 int vec_any_eq (vector bool char, vector bool char);
10532 int vec_any_eq (vector bool char, vector unsigned char);
10533 int vec_any_eq (vector bool char, vector signed char);
10534 int vec_any_eq (vector signed short, vector bool short);
10535 int vec_any_eq (vector signed short, vector signed short);
10536 int vec_any_eq (vector unsigned short, vector bool short);
10537 int vec_any_eq (vector unsigned short, vector unsigned short);
10538 int vec_any_eq (vector bool short, vector bool short);
10539 int vec_any_eq (vector bool short, vector unsigned short);
10540 int vec_any_eq (vector bool short, vector signed short);
10541 int vec_any_eq (vector pixel, vector pixel);
10542 int vec_any_eq (vector signed int, vector bool int);
10543 int vec_any_eq (vector signed int, vector signed int);
10544 int vec_any_eq (vector unsigned int, vector bool int);
10545 int vec_any_eq (vector unsigned int, vector unsigned int);
10546 int vec_any_eq (vector bool int, vector bool int);
10547 int vec_any_eq (vector bool int, vector unsigned int);
10548 int vec_any_eq (vector bool int, vector signed int);
10549 int vec_any_eq (vector float, vector float);
10550
10551 int vec_any_ge (vector signed char, vector bool char);
10552 int vec_any_ge (vector unsigned char, vector bool char);
10553 int vec_any_ge (vector unsigned char, vector unsigned char);
10554 int vec_any_ge (vector signed char, vector signed char);
10555 int vec_any_ge (vector bool char, vector unsigned char);
10556 int vec_any_ge (vector bool char, vector signed char);
10557 int vec_any_ge (vector unsigned short, vector bool short);
10558 int vec_any_ge (vector unsigned short, vector unsigned short);
10559 int vec_any_ge (vector signed short, vector signed short);
10560 int vec_any_ge (vector signed short, vector bool short);
10561 int vec_any_ge (vector bool short, vector unsigned short);
10562 int vec_any_ge (vector bool short, vector signed short);
10563 int vec_any_ge (vector signed int, vector bool int);
10564 int vec_any_ge (vector unsigned int, vector bool int);
10565 int vec_any_ge (vector unsigned int, vector unsigned int);
10566 int vec_any_ge (vector signed int, vector signed int);
10567 int vec_any_ge (vector bool int, vector unsigned int);
10568 int vec_any_ge (vector bool int, vector signed int);
10569 int vec_any_ge (vector float, vector float);
10570
10571 int vec_any_gt (vector bool char, vector unsigned char);
10572 int vec_any_gt (vector unsigned char, vector bool char);
10573 int vec_any_gt (vector unsigned char, vector unsigned char);
10574 int vec_any_gt (vector bool char, vector signed char);
10575 int vec_any_gt (vector signed char, vector bool char);
10576 int vec_any_gt (vector signed char, vector signed char);
10577 int vec_any_gt (vector bool short, vector unsigned short);
10578 int vec_any_gt (vector unsigned short, vector bool short);
10579 int vec_any_gt (vector unsigned short, vector unsigned short);
10580 int vec_any_gt (vector bool short, vector signed short);
10581 int vec_any_gt (vector signed short, vector bool short);
10582 int vec_any_gt (vector signed short, vector signed short);
10583 int vec_any_gt (vector bool int, vector unsigned int);
10584 int vec_any_gt (vector unsigned int, vector bool int);
10585 int vec_any_gt (vector unsigned int, vector unsigned int);
10586 int vec_any_gt (vector bool int, vector signed int);
10587 int vec_any_gt (vector signed int, vector bool int);
10588 int vec_any_gt (vector signed int, vector signed int);
10589 int vec_any_gt (vector float, vector float);
10590
10591 int vec_any_le (vector bool char, vector unsigned char);
10592 int vec_any_le (vector unsigned char, vector bool char);
10593 int vec_any_le (vector unsigned char, vector unsigned char);
10594 int vec_any_le (vector bool char, vector signed char);
10595 int vec_any_le (vector signed char, vector bool char);
10596 int vec_any_le (vector signed char, vector signed char);
10597 int vec_any_le (vector bool short, vector unsigned short);
10598 int vec_any_le (vector unsigned short, vector bool short);
10599 int vec_any_le (vector unsigned short, vector unsigned short);
10600 int vec_any_le (vector bool short, vector signed short);
10601 int vec_any_le (vector signed short, vector bool short);
10602 int vec_any_le (vector signed short, vector signed short);
10603 int vec_any_le (vector bool int, vector unsigned int);
10604 int vec_any_le (vector unsigned int, vector bool int);
10605 int vec_any_le (vector unsigned int, vector unsigned int);
10606 int vec_any_le (vector bool int, vector signed int);
10607 int vec_any_le (vector signed int, vector bool int);
10608 int vec_any_le (vector signed int, vector signed int);
10609 int vec_any_le (vector float, vector float);
10610
10611 int vec_any_lt (vector bool char, vector unsigned char);
10612 int vec_any_lt (vector unsigned char, vector bool char);
10613 int vec_any_lt (vector unsigned char, vector unsigned char);
10614 int vec_any_lt (vector bool char, vector signed char);
10615 int vec_any_lt (vector signed char, vector bool char);
10616 int vec_any_lt (vector signed char, vector signed char);
10617 int vec_any_lt (vector bool short, vector unsigned short);
10618 int vec_any_lt (vector unsigned short, vector bool short);
10619 int vec_any_lt (vector unsigned short, vector unsigned short);
10620 int vec_any_lt (vector bool short, vector signed short);
10621 int vec_any_lt (vector signed short, vector bool short);
10622 int vec_any_lt (vector signed short, vector signed short);
10623 int vec_any_lt (vector bool int, vector unsigned int);
10624 int vec_any_lt (vector unsigned int, vector bool int);
10625 int vec_any_lt (vector unsigned int, vector unsigned int);
10626 int vec_any_lt (vector bool int, vector signed int);
10627 int vec_any_lt (vector signed int, vector bool int);
10628 int vec_any_lt (vector signed int, vector signed int);
10629 int vec_any_lt (vector float, vector float);
10630
10631 int vec_any_nan (vector float);
10632
10633 int vec_any_ne (vector signed char, vector bool char);
10634 int vec_any_ne (vector signed char, vector signed char);
10635 int vec_any_ne (vector unsigned char, vector bool char);
10636 int vec_any_ne (vector unsigned char, vector unsigned char);
10637 int vec_any_ne (vector bool char, vector bool char);
10638 int vec_any_ne (vector bool char, vector unsigned char);
10639 int vec_any_ne (vector bool char, vector signed char);
10640 int vec_any_ne (vector signed short, vector bool short);
10641 int vec_any_ne (vector signed short, vector signed short);
10642 int vec_any_ne (vector unsigned short, vector bool short);
10643 int vec_any_ne (vector unsigned short, vector unsigned short);
10644 int vec_any_ne (vector bool short, vector bool short);
10645 int vec_any_ne (vector bool short, vector unsigned short);
10646 int vec_any_ne (vector bool short, vector signed short);
10647 int vec_any_ne (vector pixel, vector pixel);
10648 int vec_any_ne (vector signed int, vector bool int);
10649 int vec_any_ne (vector signed int, vector signed int);
10650 int vec_any_ne (vector unsigned int, vector bool int);
10651 int vec_any_ne (vector unsigned int, vector unsigned int);
10652 int vec_any_ne (vector bool int, vector bool int);
10653 int vec_any_ne (vector bool int, vector unsigned int);
10654 int vec_any_ne (vector bool int, vector signed int);
10655 int vec_any_ne (vector float, vector float);
10656
10657 int vec_any_nge (vector float, vector float);
10658
10659 int vec_any_ngt (vector float, vector float);
10660
10661 int vec_any_nle (vector float, vector float);
10662
10663 int vec_any_nlt (vector float, vector float);
10664
10665 int vec_any_numeric (vector float);
10666
10667 int vec_any_out (vector float, vector float);
10668 @end smallexample
10669
10670 @node SPARC VIS Built-in Functions
10671 @subsection SPARC VIS Built-in Functions
10672
10673 GCC supports SIMD operations on the SPARC using both the generic vector
10674 extensions (@pxref{Vector Extensions}) as well as built-in functions for
10675 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
10676 switch, the VIS extension is exposed as the following built-in functions:
10677
10678 @smallexample
10679 typedef int v2si __attribute__ ((vector_size (8)));
10680 typedef short v4hi __attribute__ ((vector_size (8)));
10681 typedef short v2hi __attribute__ ((vector_size (4)));
10682 typedef char v8qi __attribute__ ((vector_size (8)));
10683 typedef char v4qi __attribute__ ((vector_size (4)));
10684
10685 void * __builtin_vis_alignaddr (void *, long);
10686 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
10687 v2si __builtin_vis_faligndatav2si (v2si, v2si);
10688 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
10689 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
10690
10691 v4hi __builtin_vis_fexpand (v4qi);
10692
10693 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
10694 v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);
10695 v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);
10696 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
10697 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
10698 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
10699 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
10700
10701 v4qi __builtin_vis_fpack16 (v4hi);
10702 v8qi __builtin_vis_fpack32 (v2si, v2si);
10703 v2hi __builtin_vis_fpackfix (v2si);
10704 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
10705
10706 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
10707 @end smallexample
10708
10709 @node SPU Built-in Functions
10710 @subsection SPU Built-in Functions
10711
10712 GCC provides extensions for the SPU processor as described in the
10713 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
10714 found at @uref{http://cell.scei.co.jp/} or
10715 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
10716 implementation differs in several ways.
10717
10718 @itemize @bullet
10719
10720 @item
10721 The optional extension of specifying vector constants in parentheses is
10722 not supported.
10723
10724 @item
10725 A vector initializer requires no cast if the vector constant is of the
10726 same type as the variable it is initializing.
10727
10728 @item
10729 If @code{signed} or @code{unsigned} is omitted, the signedness of the
10730 vector type is the default signedness of the base type. The default
10731 varies depending on the operating system, so a portable program should
10732 always specify the signedness.
10733
10734 @item
10735 By default, the keyword @code{__vector} is added. The macro
10736 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
10737 undefined.
10738
10739 @item
10740 GCC allows using a @code{typedef} name as the type specifier for a
10741 vector type.
10742
10743 @item
10744 For C, overloaded functions are implemented with macros so the following
10745 does not work:
10746
10747 @smallexample
10748 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
10749 @end smallexample
10750
10751 Since @code{spu_add} is a macro, the vector constant in the example
10752 is treated as four separate arguments. Wrap the entire argument in
10753 parentheses for this to work.
10754
10755 @item
10756 The extended version of @code{__builtin_expect} is not supported.
10757
10758 @end itemize
10759
10760 @emph{Note:} Only the interface described in the aforementioned
10761 specification is supported. Internally, GCC uses built-in functions to
10762 implement the required functionality, but these are not supported and
10763 are subject to change without notice.
10764
10765 @node Target Format Checks
10766 @section Format Checks Specific to Particular Target Machines
10767
10768 For some target machines, GCC supports additional options to the
10769 format attribute
10770 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
10771
10772 @menu
10773 * Solaris Format Checks::
10774 @end menu
10775
10776 @node Solaris Format Checks
10777 @subsection Solaris Format Checks
10778
10779 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
10780 check. @code{cmn_err} accepts a subset of the standard @code{printf}
10781 conversions, and the two-argument @code{%b} conversion for displaying
10782 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
10783
10784 @node Pragmas
10785 @section Pragmas Accepted by GCC
10786 @cindex pragmas
10787 @cindex #pragma
10788
10789 GCC supports several types of pragmas, primarily in order to compile
10790 code originally written for other compilers. Note that in general
10791 we do not recommend the use of pragmas; @xref{Function Attributes},
10792 for further explanation.
10793
10794 @menu
10795 * ARM Pragmas::
10796 * M32C Pragmas::
10797 * RS/6000 and PowerPC Pragmas::
10798 * Darwin Pragmas::
10799 * Solaris Pragmas::
10800 * Symbol-Renaming Pragmas::
10801 * Structure-Packing Pragmas::
10802 * Weak Pragmas::
10803 * Diagnostic Pragmas::
10804 * Visibility Pragmas::
10805 @end menu
10806
10807 @node ARM Pragmas
10808 @subsection ARM Pragmas
10809
10810 The ARM target defines pragmas for controlling the default addition of
10811 @code{long_call} and @code{short_call} attributes to functions.
10812 @xref{Function Attributes}, for information about the effects of these
10813 attributes.
10814
10815 @table @code
10816 @item long_calls
10817 @cindex pragma, long_calls
10818 Set all subsequent functions to have the @code{long_call} attribute.
10819
10820 @item no_long_calls
10821 @cindex pragma, no_long_calls
10822 Set all subsequent functions to have the @code{short_call} attribute.
10823
10824 @item long_calls_off
10825 @cindex pragma, long_calls_off
10826 Do not affect the @code{long_call} or @code{short_call} attributes of
10827 subsequent functions.
10828 @end table
10829
10830 @node M32C Pragmas
10831 @subsection M32C Pragmas
10832
10833 @table @code
10834 @item memregs @var{number}
10835 @cindex pragma, memregs
10836 Overrides the command line option @code{-memregs=} for the current
10837 file. Use with care! This pragma must be before any function in the
10838 file, and mixing different memregs values in different objects may
10839 make them incompatible. This pragma is useful when a
10840 performance-critical function uses a memreg for temporary values,
10841 as it may allow you to reduce the number of memregs used.
10842
10843 @end table
10844
10845 @node RS/6000 and PowerPC Pragmas
10846 @subsection RS/6000 and PowerPC Pragmas
10847
10848 The RS/6000 and PowerPC targets define one pragma for controlling
10849 whether or not the @code{longcall} attribute is added to function
10850 declarations by default. This pragma overrides the @option{-mlongcall}
10851 option, but not the @code{longcall} and @code{shortcall} attributes.
10852 @xref{RS/6000 and PowerPC Options}, for more information about when long
10853 calls are and are not necessary.
10854
10855 @table @code
10856 @item longcall (1)
10857 @cindex pragma, longcall
10858 Apply the @code{longcall} attribute to all subsequent function
10859 declarations.
10860
10861 @item longcall (0)
10862 Do not apply the @code{longcall} attribute to subsequent function
10863 declarations.
10864 @end table
10865
10866 @c Describe c4x pragmas here.
10867 @c Describe h8300 pragmas here.
10868 @c Describe sh pragmas here.
10869 @c Describe v850 pragmas here.
10870
10871 @node Darwin Pragmas
10872 @subsection Darwin Pragmas
10873
10874 The following pragmas are available for all architectures running the
10875 Darwin operating system. These are useful for compatibility with other
10876 Mac OS compilers.
10877
10878 @table @code
10879 @item mark @var{tokens}@dots{}
10880 @cindex pragma, mark
10881 This pragma is accepted, but has no effect.
10882
10883 @item options align=@var{alignment}
10884 @cindex pragma, options align
10885 This pragma sets the alignment of fields in structures. The values of
10886 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
10887 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
10888 properly; to restore the previous setting, use @code{reset} for the
10889 @var{alignment}.
10890
10891 @item segment @var{tokens}@dots{}
10892 @cindex pragma, segment
10893 This pragma is accepted, but has no effect.
10894
10895 @item unused (@var{var} [, @var{var}]@dots{})
10896 @cindex pragma, unused
10897 This pragma declares variables to be possibly unused. GCC will not
10898 produce warnings for the listed variables. The effect is similar to
10899 that of the @code{unused} attribute, except that this pragma may appear
10900 anywhere within the variables' scopes.
10901 @end table
10902
10903 @node Solaris Pragmas
10904 @subsection Solaris Pragmas
10905
10906 The Solaris target supports @code{#pragma redefine_extname}
10907 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
10908 @code{#pragma} directives for compatibility with the system compiler.
10909
10910 @table @code
10911 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
10912 @cindex pragma, align
10913
10914 Increase the minimum alignment of each @var{variable} to @var{alignment}.
10915 This is the same as GCC's @code{aligned} attribute @pxref{Variable
10916 Attributes}). Macro expansion occurs on the arguments to this pragma
10917 when compiling C and Objective-C. It does not currently occur when
10918 compiling C++, but this is a bug which may be fixed in a future
10919 release.
10920
10921 @item fini (@var{function} [, @var{function}]...)
10922 @cindex pragma, fini
10923
10924 This pragma causes each listed @var{function} to be called after
10925 main, or during shared module unloading, by adding a call to the
10926 @code{.fini} section.
10927
10928 @item init (@var{function} [, @var{function}]...)
10929 @cindex pragma, init
10930
10931 This pragma causes each listed @var{function} to be called during
10932 initialization (before @code{main}) or during shared module loading, by
10933 adding a call to the @code{.init} section.
10934
10935 @end table
10936
10937 @node Symbol-Renaming Pragmas
10938 @subsection Symbol-Renaming Pragmas
10939
10940 For compatibility with the Solaris and Tru64 UNIX system headers, GCC
10941 supports two @code{#pragma} directives which change the name used in
10942 assembly for a given declaration. These pragmas are only available on
10943 platforms whose system headers need them. To get this effect on all
10944 platforms supported by GCC, use the asm labels extension (@pxref{Asm
10945 Labels}).
10946
10947 @table @code
10948 @item redefine_extname @var{oldname} @var{newname}
10949 @cindex pragma, redefine_extname
10950
10951 This pragma gives the C function @var{oldname} the assembly symbol
10952 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
10953 will be defined if this pragma is available (currently only on
10954 Solaris).
10955
10956 @item extern_prefix @var{string}
10957 @cindex pragma, extern_prefix
10958
10959 This pragma causes all subsequent external function and variable
10960 declarations to have @var{string} prepended to their assembly symbols.
10961 This effect may be terminated with another @code{extern_prefix} pragma
10962 whose argument is an empty string. The preprocessor macro
10963 @code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
10964 available (currently only on Tru64 UNIX)@.
10965 @end table
10966
10967 These pragmas and the asm labels extension interact in a complicated
10968 manner. Here are some corner cases you may want to be aware of.
10969
10970 @enumerate
10971 @item Both pragmas silently apply only to declarations with external
10972 linkage. Asm labels do not have this restriction.
10973
10974 @item In C++, both pragmas silently apply only to declarations with
10975 ``C'' linkage. Again, asm labels do not have this restriction.
10976
10977 @item If any of the three ways of changing the assembly name of a
10978 declaration is applied to a declaration whose assembly name has
10979 already been determined (either by a previous use of one of these
10980 features, or because the compiler needed the assembly name in order to
10981 generate code), and the new name is different, a warning issues and
10982 the name does not change.
10983
10984 @item The @var{oldname} used by @code{#pragma redefine_extname} is
10985 always the C-language name.
10986
10987 @item If @code{#pragma extern_prefix} is in effect, and a declaration
10988 occurs with an asm label attached, the prefix is silently ignored for
10989 that declaration.
10990
10991 @item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
10992 apply to the same declaration, whichever triggered first wins, and a
10993 warning issues if they contradict each other. (We would like to have
10994 @code{#pragma redefine_extname} always win, for consistency with asm
10995 labels, but if @code{#pragma extern_prefix} triggers first we have no
10996 way of knowing that that happened.)
10997 @end enumerate
10998
10999 @node Structure-Packing Pragmas
11000 @subsection Structure-Packing Pragmas
11001
11002 For compatibility with Win32, GCC supports a set of @code{#pragma}
11003 directives which change the maximum alignment of members of structures
11004 (other than zero-width bitfields), unions, and classes subsequently
11005 defined. The @var{n} value below always is required to be a small power
11006 of two and specifies the new alignment in bytes.
11007
11008 @enumerate
11009 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
11010 @item @code{#pragma pack()} sets the alignment to the one that was in
11011 effect when compilation started (see also command line option
11012 @option{-fpack-struct[=<n>]} @pxref{Code Gen Options}).
11013 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
11014 setting on an internal stack and then optionally sets the new alignment.
11015 @item @code{#pragma pack(pop)} restores the alignment setting to the one
11016 saved at the top of the internal stack (and removes that stack entry).
11017 Note that @code{#pragma pack([@var{n}])} does not influence this internal
11018 stack; thus it is possible to have @code{#pragma pack(push)} followed by
11019 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
11020 @code{#pragma pack(pop)}.
11021 @end enumerate
11022
11023 Some targets, e.g. i386 and powerpc, support the @code{ms_struct}
11024 @code{#pragma} which lays out a structure as the documented
11025 @code{__attribute__ ((ms_struct))}.
11026 @enumerate
11027 @item @code{#pragma ms_struct on} turns on the layout for structures
11028 declared.
11029 @item @code{#pragma ms_struct off} turns off the layout for structures
11030 declared.
11031 @item @code{#pragma ms_struct reset} goes back to the default layout.
11032 @end enumerate
11033
11034 @node Weak Pragmas
11035 @subsection Weak Pragmas
11036
11037 For compatibility with SVR4, GCC supports a set of @code{#pragma}
11038 directives for declaring symbols to be weak, and defining weak
11039 aliases.
11040
11041 @table @code
11042 @item #pragma weak @var{symbol}
11043 @cindex pragma, weak
11044 This pragma declares @var{symbol} to be weak, as if the declaration
11045 had the attribute of the same name. The pragma may appear before
11046 or after the declaration of @var{symbol}, but must appear before
11047 either its first use or its definition. It is not an error for
11048 @var{symbol} to never be defined at all.
11049
11050 @item #pragma weak @var{symbol1} = @var{symbol2}
11051 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
11052 It is an error if @var{symbol2} is not defined in the current
11053 translation unit.
11054 @end table
11055
11056 @node Diagnostic Pragmas
11057 @subsection Diagnostic Pragmas
11058
11059 GCC allows the user to selectively enable or disable certain types of
11060 diagnostics, and change the kind of the diagnostic. For example, a
11061 project's policy might require that all sources compile with
11062 @option{-Werror} but certain files might have exceptions allowing
11063 specific types of warnings. Or, a project might selectively enable
11064 diagnostics and treat them as errors depending on which preprocessor
11065 macros are defined.
11066
11067 @table @code
11068 @item #pragma GCC diagnostic @var{kind} @var{option}
11069 @cindex pragma, diagnostic
11070
11071 Modifies the disposition of a diagnostic. Note that not all
11072 diagnostics are modifiable; at the moment only warnings (normally
11073 controlled by @samp{-W...}) can be controlled, and not all of them.
11074 Use @option{-fdiagnostics-show-option} to determine which diagnostics
11075 are controllable and which option controls them.
11076
11077 @var{kind} is @samp{error} to treat this diagnostic as an error,
11078 @samp{warning} to treat it like a warning (even if @option{-Werror} is
11079 in effect), or @samp{ignored} if the diagnostic is to be ignored.
11080 @var{option} is a double quoted string which matches the command line
11081 option.
11082
11083 @example
11084 #pragma GCC diagnostic warning "-Wformat"
11085 #pragma GCC diagnostic error "-Wformat"
11086 #pragma GCC diagnostic ignored "-Wformat"
11087 @end example
11088
11089 Note that these pragmas override any command line options. Also,
11090 while it is syntactically valid to put these pragmas anywhere in your
11091 sources, the only supported location for them is before any data or
11092 functions are defined. Doing otherwise may result in unpredictable
11093 results depending on how the optimizer manages your sources. If the
11094 same option is listed multiple times, the last one specified is the
11095 one that is in effect. This pragma is not intended to be a general
11096 purpose replacement for command line options, but for implementing
11097 strict control over project policies.
11098
11099 @end table
11100
11101 @node Visibility Pragmas
11102 @subsection Visibility Pragmas
11103
11104 @table @code
11105 @item #pragma GCC visibility push(@var{visibility})
11106 @itemx #pragma GCC visibility pop
11107 @cindex pragma, visibility
11108
11109 This pragma allows the user to set the visibility for multiple
11110 declarations without having to give each a visibility attribute
11111 @xref{Function Attributes}, for more information about visibility and
11112 the attribute syntax.
11113
11114 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
11115 declarations. Class members and template specializations are not
11116 affected; if you want to override the visibility for a particular
11117 member or instantiation, you must use an attribute.
11118
11119 @end table
11120
11121 @node Unnamed Fields
11122 @section Unnamed struct/union fields within structs/unions
11123 @cindex struct
11124 @cindex union
11125
11126 For compatibility with other compilers, GCC allows you to define
11127 a structure or union that contains, as fields, structures and unions
11128 without names. For example:
11129
11130 @smallexample
11131 struct @{
11132 int a;
11133 union @{
11134 int b;
11135 float c;
11136 @};
11137 int d;
11138 @} foo;
11139 @end smallexample
11140
11141 In this example, the user would be able to access members of the unnamed
11142 union with code like @samp{foo.b}. Note that only unnamed structs and
11143 unions are allowed, you may not have, for example, an unnamed
11144 @code{int}.
11145
11146 You must never create such structures that cause ambiguous field definitions.
11147 For example, this structure:
11148
11149 @smallexample
11150 struct @{
11151 int a;
11152 struct @{
11153 int a;
11154 @};
11155 @} foo;
11156 @end smallexample
11157
11158 It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
11159 Such constructs are not supported and must be avoided. In the future,
11160 such constructs may be detected and treated as compilation errors.
11161
11162 @opindex fms-extensions
11163 Unless @option{-fms-extensions} is used, the unnamed field must be a
11164 structure or union definition without a tag (for example, @samp{struct
11165 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
11166 also be a definition with a tag such as @samp{struct foo @{ int a;
11167 @};}, a reference to a previously defined structure or union such as
11168 @samp{struct foo;}, or a reference to a @code{typedef} name for a
11169 previously defined structure or union type.
11170
11171 @node Thread-Local
11172 @section Thread-Local Storage
11173 @cindex Thread-Local Storage
11174 @cindex @acronym{TLS}
11175 @cindex __thread
11176
11177 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
11178 are allocated such that there is one instance of the variable per extant
11179 thread. The run-time model GCC uses to implement this originates
11180 in the IA-64 processor-specific ABI, but has since been migrated
11181 to other processors as well. It requires significant support from
11182 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
11183 system libraries (@file{libc.so} and @file{libpthread.so}), so it
11184 is not available everywhere.
11185
11186 At the user level, the extension is visible with a new storage
11187 class keyword: @code{__thread}. For example:
11188
11189 @smallexample
11190 __thread int i;
11191 extern __thread struct state s;
11192 static __thread char *p;
11193 @end smallexample
11194
11195 The @code{__thread} specifier may be used alone, with the @code{extern}
11196 or @code{static} specifiers, but with no other storage class specifier.
11197 When used with @code{extern} or @code{static}, @code{__thread} must appear
11198 immediately after the other storage class specifier.
11199
11200 The @code{__thread} specifier may be applied to any global, file-scoped
11201 static, function-scoped static, or static data member of a class. It may
11202 not be applied to block-scoped automatic or non-static data member.
11203
11204 When the address-of operator is applied to a thread-local variable, it is
11205 evaluated at run-time and returns the address of the current thread's
11206 instance of that variable. An address so obtained may be used by any
11207 thread. When a thread terminates, any pointers to thread-local variables
11208 in that thread become invalid.
11209
11210 No static initialization may refer to the address of a thread-local variable.
11211
11212 In C++, if an initializer is present for a thread-local variable, it must
11213 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
11214 standard.
11215
11216 See @uref{http://people.redhat.com/drepper/tls.pdf,
11217 ELF Handling For Thread-Local Storage} for a detailed explanation of
11218 the four thread-local storage addressing models, and how the run-time
11219 is expected to function.
11220
11221 @menu
11222 * C99 Thread-Local Edits::
11223 * C++98 Thread-Local Edits::
11224 @end menu
11225
11226 @node C99 Thread-Local Edits
11227 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
11228
11229 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
11230 that document the exact semantics of the language extension.
11231
11232 @itemize @bullet
11233 @item
11234 @cite{5.1.2 Execution environments}
11235
11236 Add new text after paragraph 1
11237
11238 @quotation
11239 Within either execution environment, a @dfn{thread} is a flow of
11240 control within a program. It is implementation defined whether
11241 or not there may be more than one thread associated with a program.
11242 It is implementation defined how threads beyond the first are
11243 created, the name and type of the function called at thread
11244 startup, and how threads may be terminated. However, objects
11245 with thread storage duration shall be initialized before thread
11246 startup.
11247 @end quotation
11248
11249 @item
11250 @cite{6.2.4 Storage durations of objects}
11251
11252 Add new text before paragraph 3
11253
11254 @quotation
11255 An object whose identifier is declared with the storage-class
11256 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
11257 Its lifetime is the entire execution of the thread, and its
11258 stored value is initialized only once, prior to thread startup.
11259 @end quotation
11260
11261 @item
11262 @cite{6.4.1 Keywords}
11263
11264 Add @code{__thread}.
11265
11266 @item
11267 @cite{6.7.1 Storage-class specifiers}
11268
11269 Add @code{__thread} to the list of storage class specifiers in
11270 paragraph 1.
11271
11272 Change paragraph 2 to
11273
11274 @quotation
11275 With the exception of @code{__thread}, at most one storage-class
11276 specifier may be given [@dots{}]. The @code{__thread} specifier may
11277 be used alone, or immediately following @code{extern} or
11278 @code{static}.
11279 @end quotation
11280
11281 Add new text after paragraph 6
11282
11283 @quotation
11284 The declaration of an identifier for a variable that has
11285 block scope that specifies @code{__thread} shall also
11286 specify either @code{extern} or @code{static}.
11287
11288 The @code{__thread} specifier shall be used only with
11289 variables.
11290 @end quotation
11291 @end itemize
11292
11293 @node C++98 Thread-Local Edits
11294 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
11295
11296 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
11297 that document the exact semantics of the language extension.
11298
11299 @itemize @bullet
11300 @item
11301 @b{[intro.execution]}
11302
11303 New text after paragraph 4
11304
11305 @quotation
11306 A @dfn{thread} is a flow of control within the abstract machine.
11307 It is implementation defined whether or not there may be more than
11308 one thread.
11309 @end quotation
11310
11311 New text after paragraph 7
11312
11313 @quotation
11314 It is unspecified whether additional action must be taken to
11315 ensure when and whether side effects are visible to other threads.
11316 @end quotation
11317
11318 @item
11319 @b{[lex.key]}
11320
11321 Add @code{__thread}.
11322
11323 @item
11324 @b{[basic.start.main]}
11325
11326 Add after paragraph 5
11327
11328 @quotation
11329 The thread that begins execution at the @code{main} function is called
11330 the @dfn{main thread}. It is implementation defined how functions
11331 beginning threads other than the main thread are designated or typed.
11332 A function so designated, as well as the @code{main} function, is called
11333 a @dfn{thread startup function}. It is implementation defined what
11334 happens if a thread startup function returns. It is implementation
11335 defined what happens to other threads when any thread calls @code{exit}.
11336 @end quotation
11337
11338 @item
11339 @b{[basic.start.init]}
11340
11341 Add after paragraph 4
11342
11343 @quotation
11344 The storage for an object of thread storage duration shall be
11345 statically initialized before the first statement of the thread startup
11346 function. An object of thread storage duration shall not require
11347 dynamic initialization.
11348 @end quotation
11349
11350 @item
11351 @b{[basic.start.term]}
11352
11353 Add after paragraph 3
11354
11355 @quotation
11356 The type of an object with thread storage duration shall not have a
11357 non-trivial destructor, nor shall it be an array type whose elements
11358 (directly or indirectly) have non-trivial destructors.
11359 @end quotation
11360
11361 @item
11362 @b{[basic.stc]}
11363
11364 Add ``thread storage duration'' to the list in paragraph 1.
11365
11366 Change paragraph 2
11367
11368 @quotation
11369 Thread, static, and automatic storage durations are associated with
11370 objects introduced by declarations [@dots{}].
11371 @end quotation
11372
11373 Add @code{__thread} to the list of specifiers in paragraph 3.
11374
11375 @item
11376 @b{[basic.stc.thread]}
11377
11378 New section before @b{[basic.stc.static]}
11379
11380 @quotation
11381 The keyword @code{__thread} applied to a non-local object gives the
11382 object thread storage duration.
11383
11384 A local variable or class data member declared both @code{static}
11385 and @code{__thread} gives the variable or member thread storage
11386 duration.
11387 @end quotation
11388
11389 @item
11390 @b{[basic.stc.static]}
11391
11392 Change paragraph 1
11393
11394 @quotation
11395 All objects which have neither thread storage duration, dynamic
11396 storage duration nor are local [@dots{}].
11397 @end quotation
11398
11399 @item
11400 @b{[dcl.stc]}
11401
11402 Add @code{__thread} to the list in paragraph 1.
11403
11404 Change paragraph 1
11405
11406 @quotation
11407 With the exception of @code{__thread}, at most one
11408 @var{storage-class-specifier} shall appear in a given
11409 @var{decl-specifier-seq}. The @code{__thread} specifier may
11410 be used alone, or immediately following the @code{extern} or
11411 @code{static} specifiers. [@dots{}]
11412 @end quotation
11413
11414 Add after paragraph 5
11415
11416 @quotation
11417 The @code{__thread} specifier can be applied only to the names of objects
11418 and to anonymous unions.
11419 @end quotation
11420
11421 @item
11422 @b{[class.mem]}
11423
11424 Add after paragraph 6
11425
11426 @quotation
11427 Non-@code{static} members shall not be @code{__thread}.
11428 @end quotation
11429 @end itemize
11430
11431 @node Binary constants
11432 @section Binary constants using the @samp{0b} prefix
11433 @cindex Binary constants using the @samp{0b} prefix
11434
11435 Integer constants can be written as binary constants, consisting of a
11436 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
11437 @samp{0B}. This is particularly useful in environments that operate a
11438 lot on the bit-level (like microcontrollers).
11439
11440 The following statements are identical:
11441
11442 @smallexample
11443 i = 42;
11444 i = 0x2a;
11445 i = 052;
11446 i = 0b101010;
11447 @end smallexample
11448
11449 The type of these constants follows the same rules as for octal or
11450 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
11451 can be applied.
11452
11453 @node C++ Extensions
11454 @chapter Extensions to the C++ Language
11455 @cindex extensions, C++ language
11456 @cindex C++ language extensions
11457
11458 The GNU compiler provides these extensions to the C++ language (and you
11459 can also use most of the C language extensions in your C++ programs). If you
11460 want to write code that checks whether these features are available, you can
11461 test for the GNU compiler the same way as for C programs: check for a
11462 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
11463 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
11464 Predefined Macros,cpp,The GNU C Preprocessor}).
11465
11466 @menu
11467 * Volatiles:: What constitutes an access to a volatile object.
11468 * Restricted Pointers:: C99 restricted pointers and references.
11469 * Vague Linkage:: Where G++ puts inlines, vtables and such.
11470 * C++ Interface:: You can use a single C++ header file for both
11471 declarations and definitions.
11472 * Template Instantiation:: Methods for ensuring that exactly one copy of
11473 each needed template instantiation is emitted.
11474 * Bound member functions:: You can extract a function pointer to the
11475 method denoted by a @samp{->*} or @samp{.*} expression.
11476 * C++ Attributes:: Variable, function, and type attributes for C++ only.
11477 * Namespace Association:: Strong using-directives for namespace association.
11478 * Type Traits:: Compiler support for type traits
11479 * Java Exceptions:: Tweaking exception handling to work with Java.
11480 * Deprecated Features:: Things will disappear from g++.
11481 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
11482 @end menu
11483
11484 @node Volatiles
11485 @section When is a Volatile Object Accessed?
11486 @cindex accessing volatiles
11487 @cindex volatile read
11488 @cindex volatile write
11489 @cindex volatile access
11490
11491 Both the C and C++ standard have the concept of volatile objects. These
11492 are normally accessed by pointers and used for accessing hardware. The
11493 standards encourage compilers to refrain from optimizations concerning
11494 accesses to volatile objects. The C standard leaves it implementation
11495 defined as to what constitutes a volatile access. The C++ standard omits
11496 to specify this, except to say that C++ should behave in a similar manner
11497 to C with respect to volatiles, where possible. The minimum either
11498 standard specifies is that at a sequence point all previous accesses to
11499 volatile objects have stabilized and no subsequent accesses have
11500 occurred. Thus an implementation is free to reorder and combine
11501 volatile accesses which occur between sequence points, but cannot do so
11502 for accesses across a sequence point. The use of volatiles does not
11503 allow you to violate the restriction on updating objects multiple times
11504 within a sequence point.
11505
11506 @xref{Qualifiers implementation, , Volatile qualifier and the C compiler}.
11507
11508 The behavior differs slightly between C and C++ in the non-obvious cases:
11509
11510 @smallexample
11511 volatile int *src = @var{somevalue};
11512 *src;
11513 @end smallexample
11514
11515 With C, such expressions are rvalues, and GCC interprets this either as a
11516 read of the volatile object being pointed to or only as request to evaluate
11517 the side-effects. The C++ standard specifies that such expressions do not
11518 undergo lvalue to rvalue conversion, and that the type of the dereferenced
11519 object may be incomplete. The C++ standard does not specify explicitly
11520 that it is this lvalue to rvalue conversion which may be responsible for
11521 causing an access. However, there is reason to believe that it is,
11522 because otherwise certain simple expressions become undefined. However,
11523 because it would surprise most programmers, G++ treats dereferencing a
11524 pointer to volatile object of complete type when the value is unused as
11525 GCC would do for an equivalent type in C. When the object has incomplete
11526 type, G++ issues a warning; if you wish to force an error, you must
11527 force a conversion to rvalue with, for instance, a static cast.
11528
11529 When using a reference to volatile, G++ does not treat equivalent
11530 expressions as accesses to volatiles, but instead issues a warning that
11531 no volatile is accessed. The rationale for this is that otherwise it
11532 becomes difficult to determine where volatile access occur, and not
11533 possible to ignore the return value from functions returning volatile
11534 references. Again, if you wish to force a read, cast the reference to
11535 an rvalue.
11536
11537 @node Restricted Pointers
11538 @section Restricting Pointer Aliasing
11539 @cindex restricted pointers
11540 @cindex restricted references
11541 @cindex restricted this pointer
11542
11543 As with the C front end, G++ understands the C99 feature of restricted pointers,
11544 specified with the @code{__restrict__}, or @code{__restrict} type
11545 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
11546 language flag, @code{restrict} is not a keyword in C++.
11547
11548 In addition to allowing restricted pointers, you can specify restricted
11549 references, which indicate that the reference is not aliased in the local
11550 context.
11551
11552 @smallexample
11553 void fn (int *__restrict__ rptr, int &__restrict__ rref)
11554 @{
11555 /* @r{@dots{}} */
11556 @}
11557 @end smallexample
11558
11559 @noindent
11560 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
11561 @var{rref} refers to a (different) unaliased integer.
11562
11563 You may also specify whether a member function's @var{this} pointer is
11564 unaliased by using @code{__restrict__} as a member function qualifier.
11565
11566 @smallexample
11567 void T::fn () __restrict__
11568 @{
11569 /* @r{@dots{}} */
11570 @}
11571 @end smallexample
11572
11573 @noindent
11574 Within the body of @code{T::fn}, @var{this} will have the effective
11575 definition @code{T *__restrict__ const this}. Notice that the
11576 interpretation of a @code{__restrict__} member function qualifier is
11577 different to that of @code{const} or @code{volatile} qualifier, in that it
11578 is applied to the pointer rather than the object. This is consistent with
11579 other compilers which implement restricted pointers.
11580
11581 As with all outermost parameter qualifiers, @code{__restrict__} is
11582 ignored in function definition matching. This means you only need to
11583 specify @code{__restrict__} in a function definition, rather than
11584 in a function prototype as well.
11585
11586 @node Vague Linkage
11587 @section Vague Linkage
11588 @cindex vague linkage
11589
11590 There are several constructs in C++ which require space in the object
11591 file but are not clearly tied to a single translation unit. We say that
11592 these constructs have ``vague linkage''. Typically such constructs are
11593 emitted wherever they are needed, though sometimes we can be more
11594 clever.
11595
11596 @table @asis
11597 @item Inline Functions
11598 Inline functions are typically defined in a header file which can be
11599 included in many different compilations. Hopefully they can usually be
11600 inlined, but sometimes an out-of-line copy is necessary, if the address
11601 of the function is taken or if inlining fails. In general, we emit an
11602 out-of-line copy in all translation units where one is needed. As an
11603 exception, we only emit inline virtual functions with the vtable, since
11604 it will always require a copy.
11605
11606 Local static variables and string constants used in an inline function
11607 are also considered to have vague linkage, since they must be shared
11608 between all inlined and out-of-line instances of the function.
11609
11610 @item VTables
11611 @cindex vtable
11612 C++ virtual functions are implemented in most compilers using a lookup
11613 table, known as a vtable. The vtable contains pointers to the virtual
11614 functions provided by a class, and each object of the class contains a
11615 pointer to its vtable (or vtables, in some multiple-inheritance
11616 situations). If the class declares any non-inline, non-pure virtual
11617 functions, the first one is chosen as the ``key method'' for the class,
11618 and the vtable is only emitted in the translation unit where the key
11619 method is defined.
11620
11621 @emph{Note:} If the chosen key method is later defined as inline, the
11622 vtable will still be emitted in every translation unit which defines it.
11623 Make sure that any inline virtuals are declared inline in the class
11624 body, even if they are not defined there.
11625
11626 @item type_info objects
11627 @cindex type_info
11628 @cindex RTTI
11629 C++ requires information about types to be written out in order to
11630 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
11631 For polymorphic classes (classes with virtual functions), the type_info
11632 object is written out along with the vtable so that @samp{dynamic_cast}
11633 can determine the dynamic type of a class object at runtime. For all
11634 other types, we write out the type_info object when it is used: when
11635 applying @samp{typeid} to an expression, throwing an object, or
11636 referring to a type in a catch clause or exception specification.
11637
11638 @item Template Instantiations
11639 Most everything in this section also applies to template instantiations,
11640 but there are other options as well.
11641 @xref{Template Instantiation,,Where's the Template?}.
11642
11643 @end table
11644
11645 When used with GNU ld version 2.8 or later on an ELF system such as
11646 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
11647 these constructs will be discarded at link time. This is known as
11648 COMDAT support.
11649
11650 On targets that don't support COMDAT, but do support weak symbols, GCC
11651 will use them. This way one copy will override all the others, but
11652 the unused copies will still take up space in the executable.
11653
11654 For targets which do not support either COMDAT or weak symbols,
11655 most entities with vague linkage will be emitted as local symbols to
11656 avoid duplicate definition errors from the linker. This will not happen
11657 for local statics in inlines, however, as having multiple copies will
11658 almost certainly break things.
11659
11660 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
11661 another way to control placement of these constructs.
11662
11663 @node C++ Interface
11664 @section #pragma interface and implementation
11665
11666 @cindex interface and implementation headers, C++
11667 @cindex C++ interface and implementation headers
11668 @cindex pragmas, interface and implementation
11669
11670 @code{#pragma interface} and @code{#pragma implementation} provide the
11671 user with a way of explicitly directing the compiler to emit entities
11672 with vague linkage (and debugging information) in a particular
11673 translation unit.
11674
11675 @emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
11676 most cases, because of COMDAT support and the ``key method'' heuristic
11677 mentioned in @ref{Vague Linkage}. Using them can actually cause your
11678 program to grow due to unnecessary out-of-line copies of inline
11679 functions. Currently (3.4) the only benefit of these
11680 @code{#pragma}s is reduced duplication of debugging information, and
11681 that should be addressed soon on DWARF 2 targets with the use of
11682 COMDAT groups.
11683
11684 @table @code
11685 @item #pragma interface
11686 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
11687 @kindex #pragma interface
11688 Use this directive in @emph{header files} that define object classes, to save
11689 space in most of the object files that use those classes. Normally,
11690 local copies of certain information (backup copies of inline member
11691 functions, debugging information, and the internal tables that implement
11692 virtual functions) must be kept in each object file that includes class
11693 definitions. You can use this pragma to avoid such duplication. When a
11694 header file containing @samp{#pragma interface} is included in a
11695 compilation, this auxiliary information will not be generated (unless
11696 the main input source file itself uses @samp{#pragma implementation}).
11697 Instead, the object files will contain references to be resolved at link
11698 time.
11699
11700 The second form of this directive is useful for the case where you have
11701 multiple headers with the same name in different directories. If you
11702 use this form, you must specify the same string to @samp{#pragma
11703 implementation}.
11704
11705 @item #pragma implementation
11706 @itemx #pragma implementation "@var{objects}.h"
11707 @kindex #pragma implementation
11708 Use this pragma in a @emph{main input file}, when you want full output from
11709 included header files to be generated (and made globally visible). The
11710 included header file, in turn, should use @samp{#pragma interface}.
11711 Backup copies of inline member functions, debugging information, and the
11712 internal tables used to implement virtual functions are all generated in
11713 implementation files.
11714
11715 @cindex implied @code{#pragma implementation}
11716 @cindex @code{#pragma implementation}, implied
11717 @cindex naming convention, implementation headers
11718 If you use @samp{#pragma implementation} with no argument, it applies to
11719 an include file with the same basename@footnote{A file's @dfn{basename}
11720 was the name stripped of all leading path information and of trailing
11721 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
11722 file. For example, in @file{allclass.cc}, giving just
11723 @samp{#pragma implementation}
11724 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
11725
11726 In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
11727 an implementation file whenever you would include it from
11728 @file{allclass.cc} even if you never specified @samp{#pragma
11729 implementation}. This was deemed to be more trouble than it was worth,
11730 however, and disabled.
11731
11732 Use the string argument if you want a single implementation file to
11733 include code from multiple header files. (You must also use
11734 @samp{#include} to include the header file; @samp{#pragma
11735 implementation} only specifies how to use the file---it doesn't actually
11736 include it.)
11737
11738 There is no way to split up the contents of a single header file into
11739 multiple implementation files.
11740 @end table
11741
11742 @cindex inlining and C++ pragmas
11743 @cindex C++ pragmas, effect on inlining
11744 @cindex pragmas in C++, effect on inlining
11745 @samp{#pragma implementation} and @samp{#pragma interface} also have an
11746 effect on function inlining.
11747
11748 If you define a class in a header file marked with @samp{#pragma
11749 interface}, the effect on an inline function defined in that class is
11750 similar to an explicit @code{extern} declaration---the compiler emits
11751 no code at all to define an independent version of the function. Its
11752 definition is used only for inlining with its callers.
11753
11754 @opindex fno-implement-inlines
11755 Conversely, when you include the same header file in a main source file
11756 that declares it as @samp{#pragma implementation}, the compiler emits
11757 code for the function itself; this defines a version of the function
11758 that can be found via pointers (or by callers compiled without
11759 inlining). If all calls to the function can be inlined, you can avoid
11760 emitting the function by compiling with @option{-fno-implement-inlines}.
11761 If any calls were not inlined, you will get linker errors.
11762
11763 @node Template Instantiation
11764 @section Where's the Template?
11765 @cindex template instantiation
11766
11767 C++ templates are the first language feature to require more
11768 intelligence from the environment than one usually finds on a UNIX
11769 system. Somehow the compiler and linker have to make sure that each
11770 template instance occurs exactly once in the executable if it is needed,
11771 and not at all otherwise. There are two basic approaches to this
11772 problem, which are referred to as the Borland model and the Cfront model.
11773
11774 @table @asis
11775 @item Borland model
11776 Borland C++ solved the template instantiation problem by adding the code
11777 equivalent of common blocks to their linker; the compiler emits template
11778 instances in each translation unit that uses them, and the linker
11779 collapses them together. The advantage of this model is that the linker
11780 only has to consider the object files themselves; there is no external
11781 complexity to worry about. This disadvantage is that compilation time
11782 is increased because the template code is being compiled repeatedly.
11783 Code written for this model tends to include definitions of all
11784 templates in the header file, since they must be seen to be
11785 instantiated.
11786
11787 @item Cfront model
11788 The AT&T C++ translator, Cfront, solved the template instantiation
11789 problem by creating the notion of a template repository, an
11790 automatically maintained place where template instances are stored. A
11791 more modern version of the repository works as follows: As individual
11792 object files are built, the compiler places any template definitions and
11793 instantiations encountered in the repository. At link time, the link
11794 wrapper adds in the objects in the repository and compiles any needed
11795 instances that were not previously emitted. The advantages of this
11796 model are more optimal compilation speed and the ability to use the
11797 system linker; to implement the Borland model a compiler vendor also
11798 needs to replace the linker. The disadvantages are vastly increased
11799 complexity, and thus potential for error; for some code this can be
11800 just as transparent, but in practice it can been very difficult to build
11801 multiple programs in one directory and one program in multiple
11802 directories. Code written for this model tends to separate definitions
11803 of non-inline member templates into a separate file, which should be
11804 compiled separately.
11805 @end table
11806
11807 When used with GNU ld version 2.8 or later on an ELF system such as
11808 GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
11809 Borland model. On other systems, G++ implements neither automatic
11810 model.
11811
11812 A future version of G++ will support a hybrid model whereby the compiler
11813 will emit any instantiations for which the template definition is
11814 included in the compile, and store template definitions and
11815 instantiation context information into the object file for the rest.
11816 The link wrapper will extract that information as necessary and invoke
11817 the compiler to produce the remaining instantiations. The linker will
11818 then combine duplicate instantiations.
11819
11820 In the mean time, you have the following options for dealing with
11821 template instantiations:
11822
11823 @enumerate
11824 @item
11825 @opindex frepo
11826 Compile your template-using code with @option{-frepo}. The compiler will
11827 generate files with the extension @samp{.rpo} listing all of the
11828 template instantiations used in the corresponding object files which
11829 could be instantiated there; the link wrapper, @samp{collect2}, will
11830 then update the @samp{.rpo} files to tell the compiler where to place
11831 those instantiations and rebuild any affected object files. The
11832 link-time overhead is negligible after the first pass, as the compiler
11833 will continue to place the instantiations in the same files.
11834
11835 This is your best option for application code written for the Borland
11836 model, as it will just work. Code written for the Cfront model will
11837 need to be modified so that the template definitions are available at
11838 one or more points of instantiation; usually this is as simple as adding
11839 @code{#include <tmethods.cc>} to the end of each template header.
11840
11841 For library code, if you want the library to provide all of the template
11842 instantiations it needs, just try to link all of its object files
11843 together; the link will fail, but cause the instantiations to be
11844 generated as a side effect. Be warned, however, that this may cause
11845 conflicts if multiple libraries try to provide the same instantiations.
11846 For greater control, use explicit instantiation as described in the next
11847 option.
11848
11849 @item
11850 @opindex fno-implicit-templates
11851 Compile your code with @option{-fno-implicit-templates} to disable the
11852 implicit generation of template instances, and explicitly instantiate
11853 all the ones you use. This approach requires more knowledge of exactly
11854 which instances you need than do the others, but it's less
11855 mysterious and allows greater control. You can scatter the explicit
11856 instantiations throughout your program, perhaps putting them in the
11857 translation units where the instances are used or the translation units
11858 that define the templates themselves; you can put all of the explicit
11859 instantiations you need into one big file; or you can create small files
11860 like
11861
11862 @smallexample
11863 #include "Foo.h"
11864 #include "Foo.cc"
11865
11866 template class Foo<int>;
11867 template ostream& operator <<
11868 (ostream&, const Foo<int>&);
11869 @end smallexample
11870
11871 for each of the instances you need, and create a template instantiation
11872 library from those.
11873
11874 If you are using Cfront-model code, you can probably get away with not
11875 using @option{-fno-implicit-templates} when compiling files that don't
11876 @samp{#include} the member template definitions.
11877
11878 If you use one big file to do the instantiations, you may want to
11879 compile it without @option{-fno-implicit-templates} so you get all of the
11880 instances required by your explicit instantiations (but not by any
11881 other files) without having to specify them as well.
11882
11883 G++ has extended the template instantiation syntax given in the ISO
11884 standard to allow forward declaration of explicit instantiations
11885 (with @code{extern}), instantiation of the compiler support data for a
11886 template class (i.e.@: the vtable) without instantiating any of its
11887 members (with @code{inline}), and instantiation of only the static data
11888 members of a template class, without the support data or member
11889 functions (with (@code{static}):
11890
11891 @smallexample
11892 extern template int max (int, int);
11893 inline template class Foo<int>;
11894 static template class Foo<int>;
11895 @end smallexample
11896
11897 @item
11898 Do nothing. Pretend G++ does implement automatic instantiation
11899 management. Code written for the Borland model will work fine, but
11900 each translation unit will contain instances of each of the templates it
11901 uses. In a large program, this can lead to an unacceptable amount of code
11902 duplication.
11903 @end enumerate
11904
11905 @node Bound member functions
11906 @section Extracting the function pointer from a bound pointer to member function
11907 @cindex pmf
11908 @cindex pointer to member function
11909 @cindex bound pointer to member function
11910
11911 In C++, pointer to member functions (PMFs) are implemented using a wide
11912 pointer of sorts to handle all the possible call mechanisms; the PMF
11913 needs to store information about how to adjust the @samp{this} pointer,
11914 and if the function pointed to is virtual, where to find the vtable, and
11915 where in the vtable to look for the member function. If you are using
11916 PMFs in an inner loop, you should really reconsider that decision. If
11917 that is not an option, you can extract the pointer to the function that
11918 would be called for a given object/PMF pair and call it directly inside
11919 the inner loop, to save a bit of time.
11920
11921 Note that you will still be paying the penalty for the call through a
11922 function pointer; on most modern architectures, such a call defeats the
11923 branch prediction features of the CPU@. This is also true of normal
11924 virtual function calls.
11925
11926 The syntax for this extension is
11927
11928 @smallexample
11929 extern A a;
11930 extern int (A::*fp)();
11931 typedef int (*fptr)(A *);
11932
11933 fptr p = (fptr)(a.*fp);
11934 @end smallexample
11935
11936 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
11937 no object is needed to obtain the address of the function. They can be
11938 converted to function pointers directly:
11939
11940 @smallexample
11941 fptr p1 = (fptr)(&A::foo);
11942 @end smallexample
11943
11944 @opindex Wno-pmf-conversions
11945 You must specify @option{-Wno-pmf-conversions} to use this extension.
11946
11947 @node C++ Attributes
11948 @section C++-Specific Variable, Function, and Type Attributes
11949
11950 Some attributes only make sense for C++ programs.
11951
11952 @table @code
11953 @item init_priority (@var{priority})
11954 @cindex init_priority attribute
11955
11956
11957 In Standard C++, objects defined at namespace scope are guaranteed to be
11958 initialized in an order in strict accordance with that of their definitions
11959 @emph{in a given translation unit}. No guarantee is made for initializations
11960 across translation units. However, GNU C++ allows users to control the
11961 order of initialization of objects defined at namespace scope with the
11962 @code{init_priority} attribute by specifying a relative @var{priority},
11963 a constant integral expression currently bounded between 101 and 65535
11964 inclusive. Lower numbers indicate a higher priority.
11965
11966 In the following example, @code{A} would normally be created before
11967 @code{B}, but the @code{init_priority} attribute has reversed that order:
11968
11969 @smallexample
11970 Some_Class A __attribute__ ((init_priority (2000)));
11971 Some_Class B __attribute__ ((init_priority (543)));
11972 @end smallexample
11973
11974 @noindent
11975 Note that the particular values of @var{priority} do not matter; only their
11976 relative ordering.
11977
11978 @item java_interface
11979 @cindex java_interface attribute
11980
11981 This type attribute informs C++ that the class is a Java interface. It may
11982 only be applied to classes declared within an @code{extern "Java"} block.
11983 Calls to methods declared in this interface will be dispatched using GCJ's
11984 interface table mechanism, instead of regular virtual table dispatch.
11985
11986 @end table
11987
11988 See also @xref{Namespace Association}.
11989
11990 @node Namespace Association
11991 @section Namespace Association
11992
11993 @strong{Caution:} The semantics of this extension are not fully
11994 defined. Users should refrain from using this extension as its
11995 semantics may change subtly over time. It is possible that this
11996 extension will be removed in future versions of G++.
11997
11998 A using-directive with @code{__attribute ((strong))} is stronger
11999 than a normal using-directive in two ways:
12000
12001 @itemize @bullet
12002 @item
12003 Templates from the used namespace can be specialized and explicitly
12004 instantiated as though they were members of the using namespace.
12005
12006 @item
12007 The using namespace is considered an associated namespace of all
12008 templates in the used namespace for purposes of argument-dependent
12009 name lookup.
12010 @end itemize
12011
12012 The used namespace must be nested within the using namespace so that
12013 normal unqualified lookup works properly.
12014
12015 This is useful for composing a namespace transparently from
12016 implementation namespaces. For example:
12017
12018 @smallexample
12019 namespace std @{
12020 namespace debug @{
12021 template <class T> struct A @{ @};
12022 @}
12023 using namespace debug __attribute ((__strong__));
12024 template <> struct A<int> @{ @}; // @r{ok to specialize}
12025
12026 template <class T> void f (A<T>);
12027 @}
12028
12029 int main()
12030 @{
12031 f (std::A<float>()); // @r{lookup finds} std::f
12032 f (std::A<int>());
12033 @}
12034 @end smallexample
12035
12036 @node Type Traits
12037 @section Type Traits
12038
12039 The C++ front-end implements syntactic extensions that allow to
12040 determine at compile time various characteristics of a type (or of a
12041 pair of types).
12042
12043 @table @code
12044 @item __has_nothrow_assign (type)
12045 If @code{type} is const qualified or is a reference type then the trait is
12046 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
12047 is true, else if @code{type} is a cv class or union type with copy assignment
12048 operators that are known not to throw an exception then the trait is true,
12049 else it is false. Requires: @code{type} shall be a complete type, an array
12050 type of unknown bound, or is a @code{void} type.
12051
12052 @item __has_nothrow_copy (type)
12053 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
12054 @code{type} is a cv class or union type with copy constructors that
12055 are known not to throw an exception then the trait is true, else it is false.
12056 Requires: @code{type} shall be a complete type, an array type of
12057 unknown bound, or is a @code{void} type.
12058
12059 @item __has_nothrow_constructor (type)
12060 If @code{__has_trivial_constructor (type)} is true then the trait is
12061 true, else if @code{type} is a cv class or union type (or array
12062 thereof) with a default constructor that is known not to throw an
12063 exception then the trait is true, else it is false. Requires:
12064 @code{type} shall be a complete type, an array type of unknown bound,
12065 or is a @code{void} type.
12066
12067 @item __has_trivial_assign (type)
12068 If @code{type} is const qualified or is a reference type then the trait is
12069 false. Otherwise if @code{__is_pod (type)} is true then the trait is
12070 true, else if @code{type} is a cv class or union type with a trivial
12071 copy assignment ([class.copy]) then the trait is true, else it is
12072 false. Requires: @code{type} shall be a complete type, an array type
12073 of unknown bound, or is a @code{void} type.
12074
12075 @item __has_trivial_copy (type)
12076 If @code{__is_pod (type)} is true or @code{type} is a reference type
12077 then the trait is true, else if @code{type} is a cv class or union type
12078 with a trivial copy constructor ([class.copy]) then the trait
12079 is true, else it is false. Requires: @code{type} shall be a complete
12080 type, an array type of unknown bound, or is a @code{void} type.
12081
12082 @item __has_trivial_constructor (type)
12083 If @code{__is_pod (type)} is true then the trait is true, else if
12084 @code{type} is a cv class or union type (or array thereof) with a
12085 trivial default constructor ([class.ctor]) then the trait is true,
12086 else it is false. Requires: @code{type} shall be a complete type, an
12087 array type of unknown bound, or is a @code{void} type.
12088
12089 @item __has_trivial_destructor (type)
12090 If @code{__is_pod (type)} is true or @code{type} is a reference type then
12091 the trait is true, else if @code{type} is a cv class or union type (or
12092 array thereof) with a trivial destructor ([class.dtor]) then the trait
12093 is true, else it is false. Requires: @code{type} shall be a complete
12094 type, an array type of unknown bound, or is a @code{void} type.
12095
12096 @item __has_virtual_destructor (type)
12097 If @code{type} is a class type with a virtual destructor
12098 ([class.dtor]) then the trait is true, else it is false. Requires:
12099 @code{type} shall be a complete type, an array type of unknown bound,
12100 or is a @code{void} type.
12101
12102 @item __is_abstract (type)
12103 If @code{type} is an abstract class ([class.abstract]) then the trait
12104 is true, else it is false. Requires: @code{type} shall be a complete
12105 type, an array type of unknown bound, or is a @code{void} type.
12106
12107 @item __is_base_of (base_type, derived_type)
12108 If @code{base_type} is a base class of @code{derived_type}
12109 ([class.derived]) then the trait is true, otherwise it is false.
12110 Top-level cv qualifications of @code{base_type} and
12111 @code{derived_type} are ignored. For the purposes of this trait, a
12112 class type is considered is own base. Requires: if @code{__is_class
12113 (base_type)} and @code{__is_class (derived_type)} are true and
12114 @code{base_type} and @code{derived_type} are not the same type
12115 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
12116 type. Diagnostic is produced if this requirement is not met.
12117
12118 @item __is_class (type)
12119 If @code{type} is a cv class type, and not a union type
12120 ([basic.compound]) the the trait is true, else it is false.
12121
12122 @item __is_empty (type)
12123 If @code{__is_class (type)} is false then the trait is false.
12124 Otherwise @code{type} is considered empty if and only if: @code{type}
12125 has no non-static data members, or all non-static data members, if
12126 any, are bit-fields of lenght 0, and @code{type} has no virtual
12127 members, and @code{type} has no virtual base classes, and @code{type}
12128 has no base classes @code{base_type} for which
12129 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
12130 be a complete type, an array type of unknown bound, or is a
12131 @code{void} type.
12132
12133 @item __is_enum (type)
12134 If @code{type} is a cv enumeration type ([basic.compound]) the the trait is
12135 true, else it is false.
12136
12137 @item __is_pod (type)
12138 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
12139 else it is false. Requires: @code{type} shall be a complete type,
12140 an array type of unknown bound, or is a @code{void} type.
12141
12142 @item __is_polymorphic (type)
12143 If @code{type} is a polymorphic class ([class.virtual]) then the trait
12144 is true, else it is false. Requires: @code{type} shall be a complete
12145 type, an array type of unknown bound, or is a @code{void} type.
12146
12147 @item __is_union (type)
12148 If @code{type} is a cv union type ([basic.compound]) the the trait is
12149 true, else it is false.
12150
12151 @end table
12152
12153 @node Java Exceptions
12154 @section Java Exceptions
12155
12156 The Java language uses a slightly different exception handling model
12157 from C++. Normally, GNU C++ will automatically detect when you are
12158 writing C++ code that uses Java exceptions, and handle them
12159 appropriately. However, if C++ code only needs to execute destructors
12160 when Java exceptions are thrown through it, GCC will guess incorrectly.
12161 Sample problematic code is:
12162
12163 @smallexample
12164 struct S @{ ~S(); @};
12165 extern void bar(); // @r{is written in Java, and may throw exceptions}
12166 void foo()
12167 @{
12168 S s;
12169 bar();
12170 @}
12171 @end smallexample
12172
12173 @noindent
12174 The usual effect of an incorrect guess is a link failure, complaining of
12175 a missing routine called @samp{__gxx_personality_v0}.
12176
12177 You can inform the compiler that Java exceptions are to be used in a
12178 translation unit, irrespective of what it might think, by writing
12179 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
12180 @samp{#pragma} must appear before any functions that throw or catch
12181 exceptions, or run destructors when exceptions are thrown through them.
12182
12183 You cannot mix Java and C++ exceptions in the same translation unit. It
12184 is believed to be safe to throw a C++ exception from one file through
12185 another file compiled for the Java exception model, or vice versa, but
12186 there may be bugs in this area.
12187
12188 @node Deprecated Features
12189 @section Deprecated Features
12190
12191 In the past, the GNU C++ compiler was extended to experiment with new
12192 features, at a time when the C++ language was still evolving. Now that
12193 the C++ standard is complete, some of those features are superseded by
12194 superior alternatives. Using the old features might cause a warning in
12195 some cases that the feature will be dropped in the future. In other
12196 cases, the feature might be gone already.
12197
12198 While the list below is not exhaustive, it documents some of the options
12199 that are now deprecated:
12200
12201 @table @code
12202 @item -fexternal-templates
12203 @itemx -falt-external-templates
12204 These are two of the many ways for G++ to implement template
12205 instantiation. @xref{Template Instantiation}. The C++ standard clearly
12206 defines how template definitions have to be organized across
12207 implementation units. G++ has an implicit instantiation mechanism that
12208 should work just fine for standard-conforming code.
12209
12210 @item -fstrict-prototype
12211 @itemx -fno-strict-prototype
12212 Previously it was possible to use an empty prototype parameter list to
12213 indicate an unspecified number of parameters (like C), rather than no
12214 parameters, as C++ demands. This feature has been removed, except where
12215 it is required for backwards compatibility @xref{Backwards Compatibility}.
12216 @end table
12217
12218 G++ allows a virtual function returning @samp{void *} to be overridden
12219 by one returning a different pointer type. This extension to the
12220 covariant return type rules is now deprecated and will be removed from a
12221 future version.
12222
12223 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
12224 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
12225 and will be removed in a future version. Code using these operators
12226 should be modified to use @code{std::min} and @code{std::max} instead.
12227
12228 The named return value extension has been deprecated, and is now
12229 removed from G++.
12230
12231 The use of initializer lists with new expressions has been deprecated,
12232 and is now removed from G++.
12233
12234 Floating and complex non-type template parameters have been deprecated,
12235 and are now removed from G++.
12236
12237 The implicit typename extension has been deprecated and is now
12238 removed from G++.
12239
12240 The use of default arguments in function pointers, function typedefs
12241 and other places where they are not permitted by the standard is
12242 deprecated and will be removed from a future version of G++.
12243
12244 G++ allows floating-point literals to appear in integral constant expressions,
12245 e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
12246 This extension is deprecated and will be removed from a future version.
12247
12248 G++ allows static data members of const floating-point type to be declared
12249 with an initializer in a class definition. The standard only allows
12250 initializers for static members of const integral types and const
12251 enumeration types so this extension has been deprecated and will be removed
12252 from a future version.
12253
12254 @node Backwards Compatibility
12255 @section Backwards Compatibility
12256 @cindex Backwards Compatibility
12257 @cindex ARM [Annotated C++ Reference Manual]
12258
12259 Now that there is a definitive ISO standard C++, G++ has a specification
12260 to adhere to. The C++ language evolved over time, and features that
12261 used to be acceptable in previous drafts of the standard, such as the ARM
12262 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
12263 compilation of C++ written to such drafts, G++ contains some backwards
12264 compatibilities. @emph{All such backwards compatibility features are
12265 liable to disappear in future versions of G++.} They should be considered
12266 deprecated @xref{Deprecated Features}.
12267
12268 @table @code
12269 @item For scope
12270 If a variable is declared at for scope, it used to remain in scope until
12271 the end of the scope which contained the for statement (rather than just
12272 within the for scope). G++ retains this, but issues a warning, if such a
12273 variable is accessed outside the for scope.
12274
12275 @item Implicit C language
12276 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
12277 scope to set the language. On such systems, all header files are
12278 implicitly scoped inside a C language scope. Also, an empty prototype
12279 @code{()} will be treated as an unspecified number of arguments, rather
12280 than no arguments, as C++ demands.
12281 @end table