[ARM] Implement support for ACLE Coprocessor CDP intrinsics
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Inquiring about the alignment of a type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
76 function.
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
86 checking.
87 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
88 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
89 * Other Builtins:: Other built-in functions.
90 * Target Builtins:: Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas:: Pragmas accepted by GCC.
93 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
94 * Thread-Local:: Per-thread variables.
95 * Binary constants:: Binary constants using the @samp{0b} prefix.
96 @end menu
97
98 @node Statement Exprs
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
104
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@. This allows you to use loops, switches, and local variables
109 within an expression.
110
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces. For
113 example:
114
115 @smallexample
116 (@{ int y = foo (); int z;
117 if (y > 0) z = y;
118 else z = - y;
119 z; @})
120 @end smallexample
121
122 @noindent
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
125
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct. (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
131
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once). For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
135 follows:
136
137 @smallexample
138 #define max(a,b) ((a) > (b) ? (a) : (b))
139 @end smallexample
140
141 @noindent
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects. In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
147
148 @smallexample
149 #define maxint(a,b) \
150 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 @end smallexample
152
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
156
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
159
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression. For instance, if @code{A} is a class, then
163
164 @smallexample
165 A a;
166
167 (@{a;@}).Foo ()
168 @end smallexample
169
170 @noindent
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 address of @code{a}.
175
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end. This makes statement
178 expressions inside macros slightly different from function calls. In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call. In the statement expression case they are destroyed during
182 the statement expression. For instance,
183
184 @smallexample
185 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
187
188 void foo ()
189 @{
190 macro (X ());
191 function (X ());
192 @}
193 @end smallexample
194
195 @noindent
196 has different places where temporaries are destroyed. For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}. In the @code{function} case that
199 temporary is destroyed when the function returns.
200
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++. (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
205 bug.)
206
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted. Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression. In any case, as with a function call, the evaluation of a
218 statement expression is not interleaved with the evaluation of other
219 parts of the containing expression. For example,
220
221 @smallexample
222 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
223 @end smallexample
224
225 @noindent
226 calls @code{foo} and @code{bar1} and does not call @code{baz} but
227 may or may not call @code{bar2}. If @code{bar2} is called, it is
228 called after @code{foo} and before @code{bar1}.
229
230 @node Local Labels
231 @section Locally Declared Labels
232 @cindex local labels
233 @cindex macros, local labels
234
235 GCC allows you to declare @dfn{local labels} in any nested block
236 scope. A local label is just like an ordinary label, but you can
237 only reference it (with a @code{goto} statement, or by taking its
238 address) within the block in which it is declared.
239
240 A local label declaration looks like this:
241
242 @smallexample
243 __label__ @var{label};
244 @end smallexample
245
246 @noindent
247 or
248
249 @smallexample
250 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
251 @end smallexample
252
253 Local label declarations must come at the beginning of the block,
254 before any ordinary declarations or statements.
255
256 The label declaration defines the label @emph{name}, but does not define
257 the label itself. You must do this in the usual way, with
258 @code{@var{label}:}, within the statements of the statement expression.
259
260 The local label feature is useful for complex macros. If a macro
261 contains nested loops, a @code{goto} can be useful for breaking out of
262 them. However, an ordinary label whose scope is the whole function
263 cannot be used: if the macro can be expanded several times in one
264 function, the label is multiply defined in that function. A
265 local label avoids this problem. For example:
266
267 @smallexample
268 #define SEARCH(value, array, target) \
269 do @{ \
270 __label__ found; \
271 typeof (target) _SEARCH_target = (target); \
272 typeof (*(array)) *_SEARCH_array = (array); \
273 int i, j; \
274 int value; \
275 for (i = 0; i < max; i++) \
276 for (j = 0; j < max; j++) \
277 if (_SEARCH_array[i][j] == _SEARCH_target) \
278 @{ (value) = i; goto found; @} \
279 (value) = -1; \
280 found:; \
281 @} while (0)
282 @end smallexample
283
284 This could also be written using a statement expression:
285
286 @smallexample
287 #define SEARCH(array, target) \
288 (@{ \
289 __label__ found; \
290 typeof (target) _SEARCH_target = (target); \
291 typeof (*(array)) *_SEARCH_array = (array); \
292 int i, j; \
293 int value; \
294 for (i = 0; i < max; i++) \
295 for (j = 0; j < max; j++) \
296 if (_SEARCH_array[i][j] == _SEARCH_target) \
297 @{ value = i; goto found; @} \
298 value = -1; \
299 found: \
300 value; \
301 @})
302 @end smallexample
303
304 Local label declarations also make the labels they declare visible to
305 nested functions, if there are any. @xref{Nested Functions}, for details.
306
307 @node Labels as Values
308 @section Labels as Values
309 @cindex labels as values
310 @cindex computed gotos
311 @cindex goto with computed label
312 @cindex address of a label
313
314 You can get the address of a label defined in the current function
315 (or a containing function) with the unary operator @samp{&&}. The
316 value has type @code{void *}. This value is a constant and can be used
317 wherever a constant of that type is valid. For example:
318
319 @smallexample
320 void *ptr;
321 /* @r{@dots{}} */
322 ptr = &&foo;
323 @end smallexample
324
325 To use these values, you need to be able to jump to one. This is done
326 with the computed goto statement@footnote{The analogous feature in
327 Fortran is called an assigned goto, but that name seems inappropriate in
328 C, where one can do more than simply store label addresses in label
329 variables.}, @code{goto *@var{exp};}. For example,
330
331 @smallexample
332 goto *ptr;
333 @end smallexample
334
335 @noindent
336 Any expression of type @code{void *} is allowed.
337
338 One way of using these constants is in initializing a static array that
339 serves as a jump table:
340
341 @smallexample
342 static void *array[] = @{ &&foo, &&bar, &&hack @};
343 @end smallexample
344
345 @noindent
346 Then you can select a label with indexing, like this:
347
348 @smallexample
349 goto *array[i];
350 @end smallexample
351
352 @noindent
353 Note that this does not check whether the subscript is in bounds---array
354 indexing in C never does that.
355
356 Such an array of label values serves a purpose much like that of the
357 @code{switch} statement. The @code{switch} statement is cleaner, so
358 use that rather than an array unless the problem does not fit a
359 @code{switch} statement very well.
360
361 Another use of label values is in an interpreter for threaded code.
362 The labels within the interpreter function can be stored in the
363 threaded code for super-fast dispatching.
364
365 You may not use this mechanism to jump to code in a different function.
366 If you do that, totally unpredictable things happen. The best way to
367 avoid this is to store the label address only in automatic variables and
368 never pass it as an argument.
369
370 An alternate way to write the above example is
371
372 @smallexample
373 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
374 &&hack - &&foo @};
375 goto *(&&foo + array[i]);
376 @end smallexample
377
378 @noindent
379 This is more friendly to code living in shared libraries, as it reduces
380 the number of dynamic relocations that are needed, and by consequence,
381 allows the data to be read-only.
382 This alternative with label differences is not supported for the AVR target,
383 please use the first approach for AVR programs.
384
385 The @code{&&foo} expressions for the same label might have different
386 values if the containing function is inlined or cloned. If a program
387 relies on them being always the same,
388 @code{__attribute__((__noinline__,__noclone__))} should be used to
389 prevent inlining and cloning. If @code{&&foo} is used in a static
390 variable initializer, inlining and cloning is forbidden.
391
392 @node Nested Functions
393 @section Nested Functions
394 @cindex nested functions
395 @cindex downward funargs
396 @cindex thunks
397
398 A @dfn{nested function} is a function defined inside another function.
399 Nested functions are supported as an extension in GNU C, but are not
400 supported by GNU C++.
401
402 The nested function's name is local to the block where it is defined.
403 For example, here we define a nested function named @code{square}, and
404 call it twice:
405
406 @smallexample
407 @group
408 foo (double a, double b)
409 @{
410 double square (double z) @{ return z * z; @}
411
412 return square (a) + square (b);
413 @}
414 @end group
415 @end smallexample
416
417 The nested function can access all the variables of the containing
418 function that are visible at the point of its definition. This is
419 called @dfn{lexical scoping}. For example, here we show a nested
420 function which uses an inherited variable named @code{offset}:
421
422 @smallexample
423 @group
424 bar (int *array, int offset, int size)
425 @{
426 int access (int *array, int index)
427 @{ return array[index + offset]; @}
428 int i;
429 /* @r{@dots{}} */
430 for (i = 0; i < size; i++)
431 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
432 @}
433 @end group
434 @end smallexample
435
436 Nested function definitions are permitted within functions in the places
437 where variable definitions are allowed; that is, in any block, mixed
438 with the other declarations and statements in the block.
439
440 It is possible to call the nested function from outside the scope of its
441 name by storing its address or passing the address to another function:
442
443 @smallexample
444 hack (int *array, int size)
445 @{
446 void store (int index, int value)
447 @{ array[index] = value; @}
448
449 intermediate (store, size);
450 @}
451 @end smallexample
452
453 Here, the function @code{intermediate} receives the address of
454 @code{store} as an argument. If @code{intermediate} calls @code{store},
455 the arguments given to @code{store} are used to store into @code{array}.
456 But this technique works only so long as the containing function
457 (@code{hack}, in this example) does not exit.
458
459 If you try to call the nested function through its address after the
460 containing function exits, all hell breaks loose. If you try
461 to call it after a containing scope level exits, and if it refers
462 to some of the variables that are no longer in scope, you may be lucky,
463 but it's not wise to take the risk. If, however, the nested function
464 does not refer to anything that has gone out of scope, you should be
465 safe.
466
467 GCC implements taking the address of a nested function using a technique
468 called @dfn{trampolines}. This technique was described in
469 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
470 C++ Conference Proceedings, October 17-21, 1988).
471
472 A nested function can jump to a label inherited from a containing
473 function, provided the label is explicitly declared in the containing
474 function (@pxref{Local Labels}). Such a jump returns instantly to the
475 containing function, exiting the nested function that did the
476 @code{goto} and any intermediate functions as well. Here is an example:
477
478 @smallexample
479 @group
480 bar (int *array, int offset, int size)
481 @{
482 __label__ failure;
483 int access (int *array, int index)
484 @{
485 if (index > size)
486 goto failure;
487 return array[index + offset];
488 @}
489 int i;
490 /* @r{@dots{}} */
491 for (i = 0; i < size; i++)
492 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
493 /* @r{@dots{}} */
494 return 0;
495
496 /* @r{Control comes here from @code{access}
497 if it detects an error.} */
498 failure:
499 return -1;
500 @}
501 @end group
502 @end smallexample
503
504 A nested function always has no linkage. Declaring one with
505 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
506 before its definition, use @code{auto} (which is otherwise meaningless
507 for function declarations).
508
509 @smallexample
510 bar (int *array, int offset, int size)
511 @{
512 __label__ failure;
513 auto int access (int *, int);
514 /* @r{@dots{}} */
515 int access (int *array, int index)
516 @{
517 if (index > size)
518 goto failure;
519 return array[index + offset];
520 @}
521 /* @r{@dots{}} */
522 @}
523 @end smallexample
524
525 @node Constructing Calls
526 @section Constructing Function Calls
527 @cindex constructing calls
528 @cindex forwarding calls
529
530 Using the built-in functions described below, you can record
531 the arguments a function received, and call another function
532 with the same arguments, without knowing the number or types
533 of the arguments.
534
535 You can also record the return value of that function call,
536 and later return that value, without knowing what data type
537 the function tried to return (as long as your caller expects
538 that data type).
539
540 However, these built-in functions may interact badly with some
541 sophisticated features or other extensions of the language. It
542 is, therefore, not recommended to use them outside very simple
543 functions acting as mere forwarders for their arguments.
544
545 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
546 This built-in function returns a pointer to data
547 describing how to perform a call with the same arguments as are passed
548 to the current function.
549
550 The function saves the arg pointer register, structure value address,
551 and all registers that might be used to pass arguments to a function
552 into a block of memory allocated on the stack. Then it returns the
553 address of that block.
554 @end deftypefn
555
556 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
557 This built-in function invokes @var{function}
558 with a copy of the parameters described by @var{arguments}
559 and @var{size}.
560
561 The value of @var{arguments} should be the value returned by
562 @code{__builtin_apply_args}. The argument @var{size} specifies the size
563 of the stack argument data, in bytes.
564
565 This function returns a pointer to data describing
566 how to return whatever value is returned by @var{function}. The data
567 is saved in a block of memory allocated on the stack.
568
569 It is not always simple to compute the proper value for @var{size}. The
570 value is used by @code{__builtin_apply} to compute the amount of data
571 that should be pushed on the stack and copied from the incoming argument
572 area.
573 @end deftypefn
574
575 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
576 This built-in function returns the value described by @var{result} from
577 the containing function. You should specify, for @var{result}, a value
578 returned by @code{__builtin_apply}.
579 @end deftypefn
580
581 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
582 This built-in function represents all anonymous arguments of an inline
583 function. It can be used only in inline functions that are always
584 inlined, never compiled as a separate function, such as those using
585 @code{__attribute__ ((__always_inline__))} or
586 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
587 It must be only passed as last argument to some other function
588 with variable arguments. This is useful for writing small wrapper
589 inlines for variable argument functions, when using preprocessor
590 macros is undesirable. For example:
591 @smallexample
592 extern int myprintf (FILE *f, const char *format, ...);
593 extern inline __attribute__ ((__gnu_inline__)) int
594 myprintf (FILE *f, const char *format, ...)
595 @{
596 int r = fprintf (f, "myprintf: ");
597 if (r < 0)
598 return r;
599 int s = fprintf (f, format, __builtin_va_arg_pack ());
600 if (s < 0)
601 return s;
602 return r + s;
603 @}
604 @end smallexample
605 @end deftypefn
606
607 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
608 This built-in function returns the number of anonymous arguments of
609 an inline function. It can be used only in inline functions that
610 are always inlined, never compiled as a separate function, such
611 as those using @code{__attribute__ ((__always_inline__))} or
612 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
613 For example following does link- or run-time checking of open
614 arguments for optimized code:
615 @smallexample
616 #ifdef __OPTIMIZE__
617 extern inline __attribute__((__gnu_inline__)) int
618 myopen (const char *path, int oflag, ...)
619 @{
620 if (__builtin_va_arg_pack_len () > 1)
621 warn_open_too_many_arguments ();
622
623 if (__builtin_constant_p (oflag))
624 @{
625 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
626 @{
627 warn_open_missing_mode ();
628 return __open_2 (path, oflag);
629 @}
630 return open (path, oflag, __builtin_va_arg_pack ());
631 @}
632
633 if (__builtin_va_arg_pack_len () < 1)
634 return __open_2 (path, oflag);
635
636 return open (path, oflag, __builtin_va_arg_pack ());
637 @}
638 #endif
639 @end smallexample
640 @end deftypefn
641
642 @node Typeof
643 @section Referring to a Type with @code{typeof}
644 @findex typeof
645 @findex sizeof
646 @cindex macros, types of arguments
647
648 Another way to refer to the type of an expression is with @code{typeof}.
649 The syntax of using of this keyword looks like @code{sizeof}, but the
650 construct acts semantically like a type name defined with @code{typedef}.
651
652 There are two ways of writing the argument to @code{typeof}: with an
653 expression or with a type. Here is an example with an expression:
654
655 @smallexample
656 typeof (x[0](1))
657 @end smallexample
658
659 @noindent
660 This assumes that @code{x} is an array of pointers to functions;
661 the type described is that of the values of the functions.
662
663 Here is an example with a typename as the argument:
664
665 @smallexample
666 typeof (int *)
667 @end smallexample
668
669 @noindent
670 Here the type described is that of pointers to @code{int}.
671
672 If you are writing a header file that must work when included in ISO C
673 programs, write @code{__typeof__} instead of @code{typeof}.
674 @xref{Alternate Keywords}.
675
676 A @code{typeof} construct can be used anywhere a typedef name can be
677 used. For example, you can use it in a declaration, in a cast, or inside
678 of @code{sizeof} or @code{typeof}.
679
680 The operand of @code{typeof} is evaluated for its side effects if and
681 only if it is an expression of variably modified type or the name of
682 such a type.
683
684 @code{typeof} is often useful in conjunction with
685 statement expressions (@pxref{Statement Exprs}).
686 Here is how the two together can
687 be used to define a safe ``maximum'' macro which operates on any
688 arithmetic type and evaluates each of its arguments exactly once:
689
690 @smallexample
691 #define max(a,b) \
692 (@{ typeof (a) _a = (a); \
693 typeof (b) _b = (b); \
694 _a > _b ? _a : _b; @})
695 @end smallexample
696
697 @cindex underscores in variables in macros
698 @cindex @samp{_} in variables in macros
699 @cindex local variables in macros
700 @cindex variables, local, in macros
701 @cindex macros, local variables in
702
703 The reason for using names that start with underscores for the local
704 variables is to avoid conflicts with variable names that occur within the
705 expressions that are substituted for @code{a} and @code{b}. Eventually we
706 hope to design a new form of declaration syntax that allows you to declare
707 variables whose scopes start only after their initializers; this will be a
708 more reliable way to prevent such conflicts.
709
710 @noindent
711 Some more examples of the use of @code{typeof}:
712
713 @itemize @bullet
714 @item
715 This declares @code{y} with the type of what @code{x} points to.
716
717 @smallexample
718 typeof (*x) y;
719 @end smallexample
720
721 @item
722 This declares @code{y} as an array of such values.
723
724 @smallexample
725 typeof (*x) y[4];
726 @end smallexample
727
728 @item
729 This declares @code{y} as an array of pointers to characters:
730
731 @smallexample
732 typeof (typeof (char *)[4]) y;
733 @end smallexample
734
735 @noindent
736 It is equivalent to the following traditional C declaration:
737
738 @smallexample
739 char *y[4];
740 @end smallexample
741
742 To see the meaning of the declaration using @code{typeof}, and why it
743 might be a useful way to write, rewrite it with these macros:
744
745 @smallexample
746 #define pointer(T) typeof(T *)
747 #define array(T, N) typeof(T [N])
748 @end smallexample
749
750 @noindent
751 Now the declaration can be rewritten this way:
752
753 @smallexample
754 array (pointer (char), 4) y;
755 @end smallexample
756
757 @noindent
758 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
759 pointers to @code{char}.
760 @end itemize
761
762 In GNU C, but not GNU C++, you may also declare the type of a variable
763 as @code{__auto_type}. In that case, the declaration must declare
764 only one variable, whose declarator must just be an identifier, the
765 declaration must be initialized, and the type of the variable is
766 determined by the initializer; the name of the variable is not in
767 scope until after the initializer. (In C++, you should use C++11
768 @code{auto} for this purpose.) Using @code{__auto_type}, the
769 ``maximum'' macro above could be written as:
770
771 @smallexample
772 #define max(a,b) \
773 (@{ __auto_type _a = (a); \
774 __auto_type _b = (b); \
775 _a > _b ? _a : _b; @})
776 @end smallexample
777
778 Using @code{__auto_type} instead of @code{typeof} has two advantages:
779
780 @itemize @bullet
781 @item Each argument to the macro appears only once in the expansion of
782 the macro. This prevents the size of the macro expansion growing
783 exponentially when calls to such macros are nested inside arguments of
784 such macros.
785
786 @item If the argument to the macro has variably modified type, it is
787 evaluated only once when using @code{__auto_type}, but twice if
788 @code{typeof} is used.
789 @end itemize
790
791 @node Conditionals
792 @section Conditionals with Omitted Operands
793 @cindex conditional expressions, extensions
794 @cindex omitted middle-operands
795 @cindex middle-operands, omitted
796 @cindex extensions, @code{?:}
797 @cindex @code{?:} extensions
798
799 The middle operand in a conditional expression may be omitted. Then
800 if the first operand is nonzero, its value is the value of the conditional
801 expression.
802
803 Therefore, the expression
804
805 @smallexample
806 x ? : y
807 @end smallexample
808
809 @noindent
810 has the value of @code{x} if that is nonzero; otherwise, the value of
811 @code{y}.
812
813 This example is perfectly equivalent to
814
815 @smallexample
816 x ? x : y
817 @end smallexample
818
819 @cindex side effect in @code{?:}
820 @cindex @code{?:} side effect
821 @noindent
822 In this simple case, the ability to omit the middle operand is not
823 especially useful. When it becomes useful is when the first operand does,
824 or may (if it is a macro argument), contain a side effect. Then repeating
825 the operand in the middle would perform the side effect twice. Omitting
826 the middle operand uses the value already computed without the undesirable
827 effects of recomputing it.
828
829 @node __int128
830 @section 128-bit Integers
831 @cindex @code{__int128} data types
832
833 As an extension the integer scalar type @code{__int128} is supported for
834 targets which have an integer mode wide enough to hold 128 bits.
835 Simply write @code{__int128} for a signed 128-bit integer, or
836 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
837 support in GCC for expressing an integer constant of type @code{__int128}
838 for targets with @code{long long} integer less than 128 bits wide.
839
840 @node Long Long
841 @section Double-Word Integers
842 @cindex @code{long long} data types
843 @cindex double-word arithmetic
844 @cindex multiprecision arithmetic
845 @cindex @code{LL} integer suffix
846 @cindex @code{ULL} integer suffix
847
848 ISO C99 supports data types for integers that are at least 64 bits wide,
849 and as an extension GCC supports them in C90 mode and in C++.
850 Simply write @code{long long int} for a signed integer, or
851 @code{unsigned long long int} for an unsigned integer. To make an
852 integer constant of type @code{long long int}, add the suffix @samp{LL}
853 to the integer. To make an integer constant of type @code{unsigned long
854 long int}, add the suffix @samp{ULL} to the integer.
855
856 You can use these types in arithmetic like any other integer types.
857 Addition, subtraction, and bitwise boolean operations on these types
858 are open-coded on all types of machines. Multiplication is open-coded
859 if the machine supports a fullword-to-doubleword widening multiply
860 instruction. Division and shifts are open-coded only on machines that
861 provide special support. The operations that are not open-coded use
862 special library routines that come with GCC@.
863
864 There may be pitfalls when you use @code{long long} types for function
865 arguments without function prototypes. If a function
866 expects type @code{int} for its argument, and you pass a value of type
867 @code{long long int}, confusion results because the caller and the
868 subroutine disagree about the number of bytes for the argument.
869 Likewise, if the function expects @code{long long int} and you pass
870 @code{int}. The best way to avoid such problems is to use prototypes.
871
872 @node Complex
873 @section Complex Numbers
874 @cindex complex numbers
875 @cindex @code{_Complex} keyword
876 @cindex @code{__complex__} keyword
877
878 ISO C99 supports complex floating data types, and as an extension GCC
879 supports them in C90 mode and in C++. GCC also supports complex integer data
880 types which are not part of ISO C99. You can declare complex types
881 using the keyword @code{_Complex}. As an extension, the older GNU
882 keyword @code{__complex__} is also supported.
883
884 For example, @samp{_Complex double x;} declares @code{x} as a
885 variable whose real part and imaginary part are both of type
886 @code{double}. @samp{_Complex short int y;} declares @code{y} to
887 have real and imaginary parts of type @code{short int}; this is not
888 likely to be useful, but it shows that the set of complex types is
889 complete.
890
891 To write a constant with a complex data type, use the suffix @samp{i} or
892 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
893 has type @code{_Complex float} and @code{3i} has type
894 @code{_Complex int}. Such a constant always has a pure imaginary
895 value, but you can form any complex value you like by adding one to a
896 real constant. This is a GNU extension; if you have an ISO C99
897 conforming C library (such as the GNU C Library), and want to construct complex
898 constants of floating type, you should include @code{<complex.h>} and
899 use the macros @code{I} or @code{_Complex_I} instead.
900
901 @cindex @code{__real__} keyword
902 @cindex @code{__imag__} keyword
903 To extract the real part of a complex-valued expression @var{exp}, write
904 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
905 extract the imaginary part. This is a GNU extension; for values of
906 floating type, you should use the ISO C99 functions @code{crealf},
907 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
908 @code{cimagl}, declared in @code{<complex.h>} and also provided as
909 built-in functions by GCC@.
910
911 @cindex complex conjugation
912 The operator @samp{~} performs complex conjugation when used on a value
913 with a complex type. This is a GNU extension; for values of
914 floating type, you should use the ISO C99 functions @code{conjf},
915 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
916 provided as built-in functions by GCC@.
917
918 GCC can allocate complex automatic variables in a noncontiguous
919 fashion; it's even possible for the real part to be in a register while
920 the imaginary part is on the stack (or vice versa). Only the DWARF
921 debug info format can represent this, so use of DWARF is recommended.
922 If you are using the stabs debug info format, GCC describes a noncontiguous
923 complex variable as if it were two separate variables of noncomplex type.
924 If the variable's actual name is @code{foo}, the two fictitious
925 variables are named @code{foo$real} and @code{foo$imag}. You can
926 examine and set these two fictitious variables with your debugger.
927
928 @node Floating Types
929 @section Additional Floating Types
930 @cindex additional floating types
931 @cindex @code{_Float@var{n}} data types
932 @cindex @code{_Float@var{n}x} data types
933 @cindex @code{__float80} data type
934 @cindex @code{__float128} data type
935 @cindex @code{__ibm128} data type
936 @cindex @code{w} floating point suffix
937 @cindex @code{q} floating point suffix
938 @cindex @code{W} floating point suffix
939 @cindex @code{Q} floating point suffix
940
941 ISO/IEC TS 18661-3:2015 defines C support for additional floating
942 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
943 these type names; the set of types supported depends on the target
944 architecture. These types are not supported when compiling C++.
945 Constants with these types use suffixes @code{f@var{n}} or
946 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
947 names can be used together with @code{_Complex} to declare complex
948 types.
949
950 As an extension, GNU C and GNU C++ support additional floating
951 types, @code{__float80} and @code{__float128} to support 80-bit
952 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types; these are
953 aliases for the type names @code{_Float64x} and @code{_Float128}.
954 Support for additional types includes the arithmetic operators:
955 add, subtract, multiply, divide; unary arithmetic operators;
956 relational operators; equality operators; and conversions to and from
957 integer and other floating types. Use a suffix @samp{w} or @samp{W}
958 in a literal constant of type @code{__float80} or type
959 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
960
961 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
962 types using the corresponding internal complex type, @code{XCmode} for
963 @code{__float80} type and @code{TCmode} for @code{__float128} type:
964
965 @smallexample
966 typedef _Complex float __attribute__((mode(TC))) _Complex128;
967 typedef _Complex float __attribute__((mode(XC))) _Complex80;
968 @end smallexample
969
970 In order to use @code{_Float128}, @code{__float128} and
971 @code{__ibm128} on PowerPC Linux
972 systems, you must use the @option{-mfloat128}. It is expected in
973 future versions of GCC that @code{_Float128} and @code{__float128}
974 will be enabled
975 automatically. In addition, there are currently problems in using the
976 complex @code{__float128} type. When these problems are fixed, you
977 would use the following syntax to declare @code{_Complex128} to be a
978 complex @code{__float128} type:
979
980 On the PowerPC Linux VSX targets, you can declare complex types using
981 the corresponding internal complex type, @code{KCmode} for
982 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
983
984 @smallexample
985 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
986 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
987 @end smallexample
988
989 Not all targets support additional floating-point types.
990 @code{__float80} and @code{__float128} types are supported on x86 and
991 IA-64 targets. The @code{__float128} type is supported on hppa HP-UX.
992 The @code{__float128} type is supported on PowerPC 64-bit Linux
993 systems by default if the vector scalar instruction set (VSX) is
994 enabled. The @code{_Float128} type is supported on all systems where
995 @code{__float128} is supported or where @code{long double} has the
996 IEEE binary128 format. The @code{_Float64x} type is supported on all
997 systems where @code{__float128} is supported. The @code{_Float32}
998 type is supported on all systems supporting IEEE binary32; the
999 @code{_Float64} and @code{Float32x} types are supported on all systems
1000 supporting IEEE binary64. The @code{_Float16} type is supported on AArch64
1001 systems by default, and on ARM systems when the IEEE format for 16-bit
1002 floating-point types is selected with @option{-mfp16-format=ieee}.
1003 GCC does not currently support @code{_Float128x} on any systems.
1004
1005 On the PowerPC, @code{__ibm128} provides access to the IBM extended
1006 double format, and it is intended to be used by the library functions
1007 that handle conversions if/when long double is changed to be IEEE
1008 128-bit floating point.
1009
1010 @node Half-Precision
1011 @section Half-Precision Floating Point
1012 @cindex half-precision floating point
1013 @cindex @code{__fp16} data type
1014
1015 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1016 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1017 On ARM systems, you must enable this type explicitly with the
1018 @option{-mfp16-format} command-line option in order to use it.
1019
1020 ARM targets support two incompatible representations for half-precision
1021 floating-point values. You must choose one of the representations and
1022 use it consistently in your program.
1023
1024 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1025 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1026 There are 11 bits of significand precision, approximately 3
1027 decimal digits.
1028
1029 Specifying @option{-mfp16-format=alternative} selects the ARM
1030 alternative format. This representation is similar to the IEEE
1031 format, but does not support infinities or NaNs. Instead, the range
1032 of exponents is extended, so that this format can represent normalized
1033 values in the range of @math{2^{-14}} to 131008.
1034
1035 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1036 not require use of the @option{-mfp16-format} command-line option.
1037
1038 The @code{__fp16} type may only be used as an argument to intrinsics defined
1039 in @code{<arm_fp16.h>}, or as a storage format. For purposes of
1040 arithmetic and other operations, @code{__fp16} values in C or C++
1041 expressions are automatically promoted to @code{float}.
1042
1043 The ARM target provides hardware support for conversions between
1044 @code{__fp16} and @code{float} values
1045 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8 provides
1046 hardware support for conversions between @code{__fp16} and @code{double}
1047 values. GCC generates code using these hardware instructions if you
1048 compile with options to select an FPU that provides them;
1049 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1050 in addition to the @option{-mfp16-format} option to select
1051 a half-precision format.
1052
1053 Language-level support for the @code{__fp16} data type is
1054 independent of whether GCC generates code using hardware floating-point
1055 instructions. In cases where hardware support is not specified, GCC
1056 implements conversions between @code{__fp16} and other types as library
1057 calls.
1058
1059 It is recommended that portable code use the @code{_Float16} type defined
1060 by ISO/IEC TS 18661-3:2015. @xref{Floating Types}.
1061
1062 @node Decimal Float
1063 @section Decimal Floating Types
1064 @cindex decimal floating types
1065 @cindex @code{_Decimal32} data type
1066 @cindex @code{_Decimal64} data type
1067 @cindex @code{_Decimal128} data type
1068 @cindex @code{df} integer suffix
1069 @cindex @code{dd} integer suffix
1070 @cindex @code{dl} integer suffix
1071 @cindex @code{DF} integer suffix
1072 @cindex @code{DD} integer suffix
1073 @cindex @code{DL} integer suffix
1074
1075 As an extension, GNU C supports decimal floating types as
1076 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1077 floating types in GCC will evolve as the draft technical report changes.
1078 Calling conventions for any target might also change. Not all targets
1079 support decimal floating types.
1080
1081 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1082 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1083 @code{float}, @code{double}, and @code{long double} whose radix is not
1084 specified by the C standard but is usually two.
1085
1086 Support for decimal floating types includes the arithmetic operators
1087 add, subtract, multiply, divide; unary arithmetic operators;
1088 relational operators; equality operators; and conversions to and from
1089 integer and other floating types. Use a suffix @samp{df} or
1090 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1091 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1092 @code{_Decimal128}.
1093
1094 GCC support of decimal float as specified by the draft technical report
1095 is incomplete:
1096
1097 @itemize @bullet
1098 @item
1099 When the value of a decimal floating type cannot be represented in the
1100 integer type to which it is being converted, the result is undefined
1101 rather than the result value specified by the draft technical report.
1102
1103 @item
1104 GCC does not provide the C library functionality associated with
1105 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1106 @file{wchar.h}, which must come from a separate C library implementation.
1107 Because of this the GNU C compiler does not define macro
1108 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1109 the technical report.
1110 @end itemize
1111
1112 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1113 are supported by the DWARF debug information format.
1114
1115 @node Hex Floats
1116 @section Hex Floats
1117 @cindex hex floats
1118
1119 ISO C99 supports floating-point numbers written not only in the usual
1120 decimal notation, such as @code{1.55e1}, but also numbers such as
1121 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1122 supports this in C90 mode (except in some cases when strictly
1123 conforming) and in C++. In that format the
1124 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1125 mandatory. The exponent is a decimal number that indicates the power of
1126 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1127 @tex
1128 $1 {15\over16}$,
1129 @end tex
1130 @ifnottex
1131 1 15/16,
1132 @end ifnottex
1133 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1134 is the same as @code{1.55e1}.
1135
1136 Unlike for floating-point numbers in the decimal notation the exponent
1137 is always required in the hexadecimal notation. Otherwise the compiler
1138 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1139 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1140 extension for floating-point constants of type @code{float}.
1141
1142 @node Fixed-Point
1143 @section Fixed-Point Types
1144 @cindex fixed-point types
1145 @cindex @code{_Fract} data type
1146 @cindex @code{_Accum} data type
1147 @cindex @code{_Sat} data type
1148 @cindex @code{hr} fixed-suffix
1149 @cindex @code{r} fixed-suffix
1150 @cindex @code{lr} fixed-suffix
1151 @cindex @code{llr} fixed-suffix
1152 @cindex @code{uhr} fixed-suffix
1153 @cindex @code{ur} fixed-suffix
1154 @cindex @code{ulr} fixed-suffix
1155 @cindex @code{ullr} fixed-suffix
1156 @cindex @code{hk} fixed-suffix
1157 @cindex @code{k} fixed-suffix
1158 @cindex @code{lk} fixed-suffix
1159 @cindex @code{llk} fixed-suffix
1160 @cindex @code{uhk} fixed-suffix
1161 @cindex @code{uk} fixed-suffix
1162 @cindex @code{ulk} fixed-suffix
1163 @cindex @code{ullk} fixed-suffix
1164 @cindex @code{HR} fixed-suffix
1165 @cindex @code{R} fixed-suffix
1166 @cindex @code{LR} fixed-suffix
1167 @cindex @code{LLR} fixed-suffix
1168 @cindex @code{UHR} fixed-suffix
1169 @cindex @code{UR} fixed-suffix
1170 @cindex @code{ULR} fixed-suffix
1171 @cindex @code{ULLR} fixed-suffix
1172 @cindex @code{HK} fixed-suffix
1173 @cindex @code{K} fixed-suffix
1174 @cindex @code{LK} fixed-suffix
1175 @cindex @code{LLK} fixed-suffix
1176 @cindex @code{UHK} fixed-suffix
1177 @cindex @code{UK} fixed-suffix
1178 @cindex @code{ULK} fixed-suffix
1179 @cindex @code{ULLK} fixed-suffix
1180
1181 As an extension, GNU C supports fixed-point types as
1182 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1183 types in GCC will evolve as the draft technical report changes.
1184 Calling conventions for any target might also change. Not all targets
1185 support fixed-point types.
1186
1187 The fixed-point types are
1188 @code{short _Fract},
1189 @code{_Fract},
1190 @code{long _Fract},
1191 @code{long long _Fract},
1192 @code{unsigned short _Fract},
1193 @code{unsigned _Fract},
1194 @code{unsigned long _Fract},
1195 @code{unsigned long long _Fract},
1196 @code{_Sat short _Fract},
1197 @code{_Sat _Fract},
1198 @code{_Sat long _Fract},
1199 @code{_Sat long long _Fract},
1200 @code{_Sat unsigned short _Fract},
1201 @code{_Sat unsigned _Fract},
1202 @code{_Sat unsigned long _Fract},
1203 @code{_Sat unsigned long long _Fract},
1204 @code{short _Accum},
1205 @code{_Accum},
1206 @code{long _Accum},
1207 @code{long long _Accum},
1208 @code{unsigned short _Accum},
1209 @code{unsigned _Accum},
1210 @code{unsigned long _Accum},
1211 @code{unsigned long long _Accum},
1212 @code{_Sat short _Accum},
1213 @code{_Sat _Accum},
1214 @code{_Sat long _Accum},
1215 @code{_Sat long long _Accum},
1216 @code{_Sat unsigned short _Accum},
1217 @code{_Sat unsigned _Accum},
1218 @code{_Sat unsigned long _Accum},
1219 @code{_Sat unsigned long long _Accum}.
1220
1221 Fixed-point data values contain fractional and optional integral parts.
1222 The format of fixed-point data varies and depends on the target machine.
1223
1224 Support for fixed-point types includes:
1225 @itemize @bullet
1226 @item
1227 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1228 @item
1229 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1230 @item
1231 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1232 @item
1233 binary shift operators (@code{<<}, @code{>>})
1234 @item
1235 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1236 @item
1237 equality operators (@code{==}, @code{!=})
1238 @item
1239 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1240 @code{<<=}, @code{>>=})
1241 @item
1242 conversions to and from integer, floating-point, or fixed-point types
1243 @end itemize
1244
1245 Use a suffix in a fixed-point literal constant:
1246 @itemize
1247 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1248 @code{_Sat short _Fract}
1249 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1250 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1251 @code{_Sat long _Fract}
1252 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1253 @code{_Sat long long _Fract}
1254 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1255 @code{_Sat unsigned short _Fract}
1256 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1257 @code{_Sat unsigned _Fract}
1258 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1259 @code{_Sat unsigned long _Fract}
1260 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1261 and @code{_Sat unsigned long long _Fract}
1262 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1263 @code{_Sat short _Accum}
1264 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1265 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1266 @code{_Sat long _Accum}
1267 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1268 @code{_Sat long long _Accum}
1269 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1270 @code{_Sat unsigned short _Accum}
1271 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1272 @code{_Sat unsigned _Accum}
1273 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1274 @code{_Sat unsigned long _Accum}
1275 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1276 and @code{_Sat unsigned long long _Accum}
1277 @end itemize
1278
1279 GCC support of fixed-point types as specified by the draft technical report
1280 is incomplete:
1281
1282 @itemize @bullet
1283 @item
1284 Pragmas to control overflow and rounding behaviors are not implemented.
1285 @end itemize
1286
1287 Fixed-point types are supported by the DWARF debug information format.
1288
1289 @node Named Address Spaces
1290 @section Named Address Spaces
1291 @cindex Named Address Spaces
1292
1293 As an extension, GNU C supports named address spaces as
1294 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1295 address spaces in GCC will evolve as the draft technical report
1296 changes. Calling conventions for any target might also change. At
1297 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1298 address spaces other than the generic address space.
1299
1300 Address space identifiers may be used exactly like any other C type
1301 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1302 document for more details.
1303
1304 @anchor{AVR Named Address Spaces}
1305 @subsection AVR Named Address Spaces
1306
1307 On the AVR target, there are several address spaces that can be used
1308 in order to put read-only data into the flash memory and access that
1309 data by means of the special instructions @code{LPM} or @code{ELPM}
1310 needed to read from flash.
1311
1312 Per default, any data including read-only data is located in RAM
1313 (the generic address space) so that non-generic address spaces are
1314 needed to locate read-only data in flash memory
1315 @emph{and} to generate the right instructions to access this data
1316 without using (inline) assembler code.
1317
1318 @table @code
1319 @item __flash
1320 @cindex @code{__flash} AVR Named Address Spaces
1321 The @code{__flash} qualifier locates data in the
1322 @code{.progmem.data} section. Data is read using the @code{LPM}
1323 instruction. Pointers to this address space are 16 bits wide.
1324
1325 @item __flash1
1326 @itemx __flash2
1327 @itemx __flash3
1328 @itemx __flash4
1329 @itemx __flash5
1330 @cindex @code{__flash1} AVR Named Address Spaces
1331 @cindex @code{__flash2} AVR Named Address Spaces
1332 @cindex @code{__flash3} AVR Named Address Spaces
1333 @cindex @code{__flash4} AVR Named Address Spaces
1334 @cindex @code{__flash5} AVR Named Address Spaces
1335 These are 16-bit address spaces locating data in section
1336 @code{.progmem@var{N}.data} where @var{N} refers to
1337 address space @code{__flash@var{N}}.
1338 The compiler sets the @code{RAMPZ} segment register appropriately
1339 before reading data by means of the @code{ELPM} instruction.
1340
1341 @item __memx
1342 @cindex @code{__memx} AVR Named Address Spaces
1343 This is a 24-bit address space that linearizes flash and RAM:
1344 If the high bit of the address is set, data is read from
1345 RAM using the lower two bytes as RAM address.
1346 If the high bit of the address is clear, data is read from flash
1347 with @code{RAMPZ} set according to the high byte of the address.
1348 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1349
1350 Objects in this address space are located in @code{.progmemx.data}.
1351 @end table
1352
1353 @b{Example}
1354
1355 @smallexample
1356 char my_read (const __flash char ** p)
1357 @{
1358 /* p is a pointer to RAM that points to a pointer to flash.
1359 The first indirection of p reads that flash pointer
1360 from RAM and the second indirection reads a char from this
1361 flash address. */
1362
1363 return **p;
1364 @}
1365
1366 /* Locate array[] in flash memory */
1367 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1368
1369 int i = 1;
1370
1371 int main (void)
1372 @{
1373 /* Return 17 by reading from flash memory */
1374 return array[array[i]];
1375 @}
1376 @end smallexample
1377
1378 @noindent
1379 For each named address space supported by avr-gcc there is an equally
1380 named but uppercase built-in macro defined.
1381 The purpose is to facilitate testing if respective address space
1382 support is available or not:
1383
1384 @smallexample
1385 #ifdef __FLASH
1386 const __flash int var = 1;
1387
1388 int read_var (void)
1389 @{
1390 return var;
1391 @}
1392 #else
1393 #include <avr/pgmspace.h> /* From AVR-LibC */
1394
1395 const int var PROGMEM = 1;
1396
1397 int read_var (void)
1398 @{
1399 return (int) pgm_read_word (&var);
1400 @}
1401 #endif /* __FLASH */
1402 @end smallexample
1403
1404 @noindent
1405 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1406 locates data in flash but
1407 accesses to these data read from generic address space, i.e.@:
1408 from RAM,
1409 so that you need special accessors like @code{pgm_read_byte}
1410 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1411 together with attribute @code{progmem}.
1412
1413 @noindent
1414 @b{Limitations and caveats}
1415
1416 @itemize
1417 @item
1418 Reading across the 64@tie{}KiB section boundary of
1419 the @code{__flash} or @code{__flash@var{N}} address spaces
1420 shows undefined behavior. The only address space that
1421 supports reading across the 64@tie{}KiB flash segment boundaries is
1422 @code{__memx}.
1423
1424 @item
1425 If you use one of the @code{__flash@var{N}} address spaces
1426 you must arrange your linker script to locate the
1427 @code{.progmem@var{N}.data} sections according to your needs.
1428
1429 @item
1430 Any data or pointers to the non-generic address spaces must
1431 be qualified as @code{const}, i.e.@: as read-only data.
1432 This still applies if the data in one of these address
1433 spaces like software version number or calibration lookup table are intended to
1434 be changed after load time by, say, a boot loader. In this case
1435 the right qualification is @code{const} @code{volatile} so that the compiler
1436 must not optimize away known values or insert them
1437 as immediates into operands of instructions.
1438
1439 @item
1440 The following code initializes a variable @code{pfoo}
1441 located in static storage with a 24-bit address:
1442 @smallexample
1443 extern const __memx char foo;
1444 const __memx void *pfoo = &foo;
1445 @end smallexample
1446
1447 @noindent
1448 Such code requires at least binutils 2.23, see
1449 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1450
1451 @item
1452 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1453 Data can be put into and read from flash memory by means of
1454 attribute @code{progmem}, see @ref{AVR Variable Attributes}.
1455
1456 @end itemize
1457
1458 @subsection M32C Named Address Spaces
1459 @cindex @code{__far} M32C Named Address Spaces
1460
1461 On the M32C target, with the R8C and M16C CPU variants, variables
1462 qualified with @code{__far} are accessed using 32-bit addresses in
1463 order to access memory beyond the first 64@tie{}Ki bytes. If
1464 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1465 effect.
1466
1467 @subsection RL78 Named Address Spaces
1468 @cindex @code{__far} RL78 Named Address Spaces
1469
1470 On the RL78 target, variables qualified with @code{__far} are accessed
1471 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1472 addresses. Non-far variables are assumed to appear in the topmost
1473 64@tie{}KiB of the address space.
1474
1475 @subsection SPU Named Address Spaces
1476 @cindex @code{__ea} SPU Named Address Spaces
1477
1478 On the SPU target variables may be declared as
1479 belonging to another address space by qualifying the type with the
1480 @code{__ea} address space identifier:
1481
1482 @smallexample
1483 extern int __ea i;
1484 @end smallexample
1485
1486 @noindent
1487 The compiler generates special code to access the variable @code{i}.
1488 It may use runtime library
1489 support, or generate special machine instructions to access that address
1490 space.
1491
1492 @subsection x86 Named Address Spaces
1493 @cindex x86 named address spaces
1494
1495 On the x86 target, variables may be declared as being relative
1496 to the @code{%fs} or @code{%gs} segments.
1497
1498 @table @code
1499 @item __seg_fs
1500 @itemx __seg_gs
1501 @cindex @code{__seg_fs} x86 named address space
1502 @cindex @code{__seg_gs} x86 named address space
1503 The object is accessed with the respective segment override prefix.
1504
1505 The respective segment base must be set via some method specific to
1506 the operating system. Rather than require an expensive system call
1507 to retrieve the segment base, these address spaces are not considered
1508 to be subspaces of the generic (flat) address space. This means that
1509 explicit casts are required to convert pointers between these address
1510 spaces and the generic address space. In practice the application
1511 should cast to @code{uintptr_t} and apply the segment base offset
1512 that it installed previously.
1513
1514 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1515 defined when these address spaces are supported.
1516 @end table
1517
1518 @node Zero Length
1519 @section Arrays of Length Zero
1520 @cindex arrays of length zero
1521 @cindex zero-length arrays
1522 @cindex length-zero arrays
1523 @cindex flexible array members
1524
1525 Zero-length arrays are allowed in GNU C@. They are very useful as the
1526 last element of a structure that is really a header for a variable-length
1527 object:
1528
1529 @smallexample
1530 struct line @{
1531 int length;
1532 char contents[0];
1533 @};
1534
1535 struct line *thisline = (struct line *)
1536 malloc (sizeof (struct line) + this_length);
1537 thisline->length = this_length;
1538 @end smallexample
1539
1540 In ISO C90, you would have to give @code{contents} a length of 1, which
1541 means either you waste space or complicate the argument to @code{malloc}.
1542
1543 In ISO C99, you would use a @dfn{flexible array member}, which is
1544 slightly different in syntax and semantics:
1545
1546 @itemize @bullet
1547 @item
1548 Flexible array members are written as @code{contents[]} without
1549 the @code{0}.
1550
1551 @item
1552 Flexible array members have incomplete type, and so the @code{sizeof}
1553 operator may not be applied. As a quirk of the original implementation
1554 of zero-length arrays, @code{sizeof} evaluates to zero.
1555
1556 @item
1557 Flexible array members may only appear as the last member of a
1558 @code{struct} that is otherwise non-empty.
1559
1560 @item
1561 A structure containing a flexible array member, or a union containing
1562 such a structure (possibly recursively), may not be a member of a
1563 structure or an element of an array. (However, these uses are
1564 permitted by GCC as extensions.)
1565 @end itemize
1566
1567 Non-empty initialization of zero-length
1568 arrays is treated like any case where there are more initializer
1569 elements than the array holds, in that a suitable warning about ``excess
1570 elements in array'' is given, and the excess elements (all of them, in
1571 this case) are ignored.
1572
1573 GCC allows static initialization of flexible array members.
1574 This is equivalent to defining a new structure containing the original
1575 structure followed by an array of sufficient size to contain the data.
1576 E.g.@: in the following, @code{f1} is constructed as if it were declared
1577 like @code{f2}.
1578
1579 @smallexample
1580 struct f1 @{
1581 int x; int y[];
1582 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1583
1584 struct f2 @{
1585 struct f1 f1; int data[3];
1586 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1587 @end smallexample
1588
1589 @noindent
1590 The convenience of this extension is that @code{f1} has the desired
1591 type, eliminating the need to consistently refer to @code{f2.f1}.
1592
1593 This has symmetry with normal static arrays, in that an array of
1594 unknown size is also written with @code{[]}.
1595
1596 Of course, this extension only makes sense if the extra data comes at
1597 the end of a top-level object, as otherwise we would be overwriting
1598 data at subsequent offsets. To avoid undue complication and confusion
1599 with initialization of deeply nested arrays, we simply disallow any
1600 non-empty initialization except when the structure is the top-level
1601 object. For example:
1602
1603 @smallexample
1604 struct foo @{ int x; int y[]; @};
1605 struct bar @{ struct foo z; @};
1606
1607 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1608 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1609 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1610 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1611 @end smallexample
1612
1613 @node Empty Structures
1614 @section Structures with No Members
1615 @cindex empty structures
1616 @cindex zero-size structures
1617
1618 GCC permits a C structure to have no members:
1619
1620 @smallexample
1621 struct empty @{
1622 @};
1623 @end smallexample
1624
1625 The structure has size zero. In C++, empty structures are part
1626 of the language. G++ treats empty structures as if they had a single
1627 member of type @code{char}.
1628
1629 @node Variable Length
1630 @section Arrays of Variable Length
1631 @cindex variable-length arrays
1632 @cindex arrays of variable length
1633 @cindex VLAs
1634
1635 Variable-length automatic arrays are allowed in ISO C99, and as an
1636 extension GCC accepts them in C90 mode and in C++. These arrays are
1637 declared like any other automatic arrays, but with a length that is not
1638 a constant expression. The storage is allocated at the point of
1639 declaration and deallocated when the block scope containing the declaration
1640 exits. For
1641 example:
1642
1643 @smallexample
1644 FILE *
1645 concat_fopen (char *s1, char *s2, char *mode)
1646 @{
1647 char str[strlen (s1) + strlen (s2) + 1];
1648 strcpy (str, s1);
1649 strcat (str, s2);
1650 return fopen (str, mode);
1651 @}
1652 @end smallexample
1653
1654 @cindex scope of a variable length array
1655 @cindex variable-length array scope
1656 @cindex deallocating variable length arrays
1657 Jumping or breaking out of the scope of the array name deallocates the
1658 storage. Jumping into the scope is not allowed; you get an error
1659 message for it.
1660
1661 @cindex variable-length array in a structure
1662 As an extension, GCC accepts variable-length arrays as a member of
1663 a structure or a union. For example:
1664
1665 @smallexample
1666 void
1667 foo (int n)
1668 @{
1669 struct S @{ int x[n]; @};
1670 @}
1671 @end smallexample
1672
1673 @cindex @code{alloca} vs variable-length arrays
1674 You can use the function @code{alloca} to get an effect much like
1675 variable-length arrays. The function @code{alloca} is available in
1676 many other C implementations (but not in all). On the other hand,
1677 variable-length arrays are more elegant.
1678
1679 There are other differences between these two methods. Space allocated
1680 with @code{alloca} exists until the containing @emph{function} returns.
1681 The space for a variable-length array is deallocated as soon as the array
1682 name's scope ends, unless you also use @code{alloca} in this scope.
1683
1684 You can also use variable-length arrays as arguments to functions:
1685
1686 @smallexample
1687 struct entry
1688 tester (int len, char data[len][len])
1689 @{
1690 /* @r{@dots{}} */
1691 @}
1692 @end smallexample
1693
1694 The length of an array is computed once when the storage is allocated
1695 and is remembered for the scope of the array in case you access it with
1696 @code{sizeof}.
1697
1698 If you want to pass the array first and the length afterward, you can
1699 use a forward declaration in the parameter list---another GNU extension.
1700
1701 @smallexample
1702 struct entry
1703 tester (int len; char data[len][len], int len)
1704 @{
1705 /* @r{@dots{}} */
1706 @}
1707 @end smallexample
1708
1709 @cindex parameter forward declaration
1710 The @samp{int len} before the semicolon is a @dfn{parameter forward
1711 declaration}, and it serves the purpose of making the name @code{len}
1712 known when the declaration of @code{data} is parsed.
1713
1714 You can write any number of such parameter forward declarations in the
1715 parameter list. They can be separated by commas or semicolons, but the
1716 last one must end with a semicolon, which is followed by the ``real''
1717 parameter declarations. Each forward declaration must match a ``real''
1718 declaration in parameter name and data type. ISO C99 does not support
1719 parameter forward declarations.
1720
1721 @node Variadic Macros
1722 @section Macros with a Variable Number of Arguments.
1723 @cindex variable number of arguments
1724 @cindex macro with variable arguments
1725 @cindex rest argument (in macro)
1726 @cindex variadic macros
1727
1728 In the ISO C standard of 1999, a macro can be declared to accept a
1729 variable number of arguments much as a function can. The syntax for
1730 defining the macro is similar to that of a function. Here is an
1731 example:
1732
1733 @smallexample
1734 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1735 @end smallexample
1736
1737 @noindent
1738 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1739 such a macro, it represents the zero or more tokens until the closing
1740 parenthesis that ends the invocation, including any commas. This set of
1741 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1742 wherever it appears. See the CPP manual for more information.
1743
1744 GCC has long supported variadic macros, and used a different syntax that
1745 allowed you to give a name to the variable arguments just like any other
1746 argument. Here is an example:
1747
1748 @smallexample
1749 #define debug(format, args...) fprintf (stderr, format, args)
1750 @end smallexample
1751
1752 @noindent
1753 This is in all ways equivalent to the ISO C example above, but arguably
1754 more readable and descriptive.
1755
1756 GNU CPP has two further variadic macro extensions, and permits them to
1757 be used with either of the above forms of macro definition.
1758
1759 In standard C, you are not allowed to leave the variable argument out
1760 entirely; but you are allowed to pass an empty argument. For example,
1761 this invocation is invalid in ISO C, because there is no comma after
1762 the string:
1763
1764 @smallexample
1765 debug ("A message")
1766 @end smallexample
1767
1768 GNU CPP permits you to completely omit the variable arguments in this
1769 way. In the above examples, the compiler would complain, though since
1770 the expansion of the macro still has the extra comma after the format
1771 string.
1772
1773 To help solve this problem, CPP behaves specially for variable arguments
1774 used with the token paste operator, @samp{##}. If instead you write
1775
1776 @smallexample
1777 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1778 @end smallexample
1779
1780 @noindent
1781 and if the variable arguments are omitted or empty, the @samp{##}
1782 operator causes the preprocessor to remove the comma before it. If you
1783 do provide some variable arguments in your macro invocation, GNU CPP
1784 does not complain about the paste operation and instead places the
1785 variable arguments after the comma. Just like any other pasted macro
1786 argument, these arguments are not macro expanded.
1787
1788 @node Escaped Newlines
1789 @section Slightly Looser Rules for Escaped Newlines
1790 @cindex escaped newlines
1791 @cindex newlines (escaped)
1792
1793 The preprocessor treatment of escaped newlines is more relaxed
1794 than that specified by the C90 standard, which requires the newline
1795 to immediately follow a backslash.
1796 GCC's implementation allows whitespace in the form
1797 of spaces, horizontal and vertical tabs, and form feeds between the
1798 backslash and the subsequent newline. The preprocessor issues a
1799 warning, but treats it as a valid escaped newline and combines the two
1800 lines to form a single logical line. This works within comments and
1801 tokens, as well as between tokens. Comments are @emph{not} treated as
1802 whitespace for the purposes of this relaxation, since they have not
1803 yet been replaced with spaces.
1804
1805 @node Subscripting
1806 @section Non-Lvalue Arrays May Have Subscripts
1807 @cindex subscripting
1808 @cindex arrays, non-lvalue
1809
1810 @cindex subscripting and function values
1811 In ISO C99, arrays that are not lvalues still decay to pointers, and
1812 may be subscripted, although they may not be modified or used after
1813 the next sequence point and the unary @samp{&} operator may not be
1814 applied to them. As an extension, GNU C allows such arrays to be
1815 subscripted in C90 mode, though otherwise they do not decay to
1816 pointers outside C99 mode. For example,
1817 this is valid in GNU C though not valid in C90:
1818
1819 @smallexample
1820 @group
1821 struct foo @{int a[4];@};
1822
1823 struct foo f();
1824
1825 bar (int index)
1826 @{
1827 return f().a[index];
1828 @}
1829 @end group
1830 @end smallexample
1831
1832 @node Pointer Arith
1833 @section Arithmetic on @code{void}- and Function-Pointers
1834 @cindex void pointers, arithmetic
1835 @cindex void, size of pointer to
1836 @cindex function pointers, arithmetic
1837 @cindex function, size of pointer to
1838
1839 In GNU C, addition and subtraction operations are supported on pointers to
1840 @code{void} and on pointers to functions. This is done by treating the
1841 size of a @code{void} or of a function as 1.
1842
1843 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1844 and on function types, and returns 1.
1845
1846 @opindex Wpointer-arith
1847 The option @option{-Wpointer-arith} requests a warning if these extensions
1848 are used.
1849
1850 @node Pointers to Arrays
1851 @section Pointers to Arrays with Qualifiers Work as Expected
1852 @cindex pointers to arrays
1853 @cindex const qualifier
1854
1855 In GNU C, pointers to arrays with qualifiers work similar to pointers
1856 to other qualified types. For example, a value of type @code{int (*)[5]}
1857 can be used to initialize a variable of type @code{const int (*)[5]}.
1858 These types are incompatible in ISO C because the @code{const} qualifier
1859 is formally attached to the element type of the array and not the
1860 array itself.
1861
1862 @smallexample
1863 extern void
1864 transpose (int N, int M, double out[M][N], const double in[N][M]);
1865 double x[3][2];
1866 double y[2][3];
1867 @r{@dots{}}
1868 transpose(3, 2, y, x);
1869 @end smallexample
1870
1871 @node Initializers
1872 @section Non-Constant Initializers
1873 @cindex initializers, non-constant
1874 @cindex non-constant initializers
1875
1876 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1877 automatic variable are not required to be constant expressions in GNU C@.
1878 Here is an example of an initializer with run-time varying elements:
1879
1880 @smallexample
1881 foo (float f, float g)
1882 @{
1883 float beat_freqs[2] = @{ f-g, f+g @};
1884 /* @r{@dots{}} */
1885 @}
1886 @end smallexample
1887
1888 @node Compound Literals
1889 @section Compound Literals
1890 @cindex constructor expressions
1891 @cindex initializations in expressions
1892 @cindex structures, constructor expression
1893 @cindex expressions, constructor
1894 @cindex compound literals
1895 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1896
1897 A compound literal looks like a cast of a brace-enclosed aggregate
1898 initializer list. Its value is an object of the type specified in
1899 the cast, containing the elements specified in the initializer.
1900 Unlike the result of a cast, a compound literal is an lvalue. ISO
1901 C99 and later support compound literals. As an extension, GCC
1902 supports compound literals also in C90 mode and in C++, although
1903 as explained below, the C++ semantics are somewhat different.
1904
1905 Usually, the specified type of a compound literal is a structure. Assume
1906 that @code{struct foo} and @code{structure} are declared as shown:
1907
1908 @smallexample
1909 struct foo @{int a; char b[2];@} structure;
1910 @end smallexample
1911
1912 @noindent
1913 Here is an example of constructing a @code{struct foo} with a compound literal:
1914
1915 @smallexample
1916 structure = ((struct foo) @{x + y, 'a', 0@});
1917 @end smallexample
1918
1919 @noindent
1920 This is equivalent to writing the following:
1921
1922 @smallexample
1923 @{
1924 struct foo temp = @{x + y, 'a', 0@};
1925 structure = temp;
1926 @}
1927 @end smallexample
1928
1929 You can also construct an array, though this is dangerous in C++, as
1930 explained below. If all the elements of the compound literal are
1931 (made up of) simple constant expressions suitable for use in
1932 initializers of objects of static storage duration, then the compound
1933 literal can be coerced to a pointer to its first element and used in
1934 such an initializer, as shown here:
1935
1936 @smallexample
1937 char **foo = (char *[]) @{ "x", "y", "z" @};
1938 @end smallexample
1939
1940 Compound literals for scalar types and union types are also allowed. In
1941 the following example the variable @code{i} is initialized to the value
1942 @code{2}, the result of incrementing the unnamed object created by
1943 the compound literal.
1944
1945 @smallexample
1946 int i = ++(int) @{ 1 @};
1947 @end smallexample
1948
1949 As a GNU extension, GCC allows initialization of objects with static storage
1950 duration by compound literals (which is not possible in ISO C99 because
1951 the initializer is not a constant).
1952 It is handled as if the object were initialized only with the brace-enclosed
1953 list if the types of the compound literal and the object match.
1954 The elements of the compound literal must be constant.
1955 If the object being initialized has array type of unknown size, the size is
1956 determined by the size of the compound literal.
1957
1958 @smallexample
1959 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1960 static int y[] = (int []) @{1, 2, 3@};
1961 static int z[] = (int [3]) @{1@};
1962 @end smallexample
1963
1964 @noindent
1965 The above lines are equivalent to the following:
1966 @smallexample
1967 static struct foo x = @{1, 'a', 'b'@};
1968 static int y[] = @{1, 2, 3@};
1969 static int z[] = @{1, 0, 0@};
1970 @end smallexample
1971
1972 In C, a compound literal designates an unnamed object with static or
1973 automatic storage duration. In C++, a compound literal designates a
1974 temporary object that only lives until the end of its full-expression.
1975 As a result, well-defined C code that takes the address of a subobject
1976 of a compound literal can be undefined in C++, so G++ rejects
1977 the conversion of a temporary array to a pointer. For instance, if
1978 the array compound literal example above appeared inside a function,
1979 any subsequent use of @code{foo} in C++ would have undefined behavior
1980 because the lifetime of the array ends after the declaration of @code{foo}.
1981
1982 As an optimization, G++ sometimes gives array compound literals longer
1983 lifetimes: when the array either appears outside a function or has
1984 a @code{const}-qualified type. If @code{foo} and its initializer had
1985 elements of type @code{char *const} rather than @code{char *}, or if
1986 @code{foo} were a global variable, the array would have static storage
1987 duration. But it is probably safest just to avoid the use of array
1988 compound literals in C++ code.
1989
1990 @node Designated Inits
1991 @section Designated Initializers
1992 @cindex initializers with labeled elements
1993 @cindex labeled elements in initializers
1994 @cindex case labels in initializers
1995 @cindex designated initializers
1996
1997 Standard C90 requires the elements of an initializer to appear in a fixed
1998 order, the same as the order of the elements in the array or structure
1999 being initialized.
2000
2001 In ISO C99 you can give the elements in any order, specifying the array
2002 indices or structure field names they apply to, and GNU C allows this as
2003 an extension in C90 mode as well. This extension is not
2004 implemented in GNU C++.
2005
2006 To specify an array index, write
2007 @samp{[@var{index}] =} before the element value. For example,
2008
2009 @smallexample
2010 int a[6] = @{ [4] = 29, [2] = 15 @};
2011 @end smallexample
2012
2013 @noindent
2014 is equivalent to
2015
2016 @smallexample
2017 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2018 @end smallexample
2019
2020 @noindent
2021 The index values must be constant expressions, even if the array being
2022 initialized is automatic.
2023
2024 An alternative syntax for this that has been obsolete since GCC 2.5 but
2025 GCC still accepts is to write @samp{[@var{index}]} before the element
2026 value, with no @samp{=}.
2027
2028 To initialize a range of elements to the same value, write
2029 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2030 extension. For example,
2031
2032 @smallexample
2033 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2034 @end smallexample
2035
2036 @noindent
2037 If the value in it has side-effects, the side-effects happen only once,
2038 not for each initialized field by the range initializer.
2039
2040 @noindent
2041 Note that the length of the array is the highest value specified
2042 plus one.
2043
2044 In a structure initializer, specify the name of a field to initialize
2045 with @samp{.@var{fieldname} =} before the element value. For example,
2046 given the following structure,
2047
2048 @smallexample
2049 struct point @{ int x, y; @};
2050 @end smallexample
2051
2052 @noindent
2053 the following initialization
2054
2055 @smallexample
2056 struct point p = @{ .y = yvalue, .x = xvalue @};
2057 @end smallexample
2058
2059 @noindent
2060 is equivalent to
2061
2062 @smallexample
2063 struct point p = @{ xvalue, yvalue @};
2064 @end smallexample
2065
2066 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2067 @samp{@var{fieldname}:}, as shown here:
2068
2069 @smallexample
2070 struct point p = @{ y: yvalue, x: xvalue @};
2071 @end smallexample
2072
2073 Omitted field members are implicitly initialized the same as objects
2074 that have static storage duration.
2075
2076 @cindex designators
2077 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2078 @dfn{designator}. You can also use a designator (or the obsolete colon
2079 syntax) when initializing a union, to specify which element of the union
2080 should be used. For example,
2081
2082 @smallexample
2083 union foo @{ int i; double d; @};
2084
2085 union foo f = @{ .d = 4 @};
2086 @end smallexample
2087
2088 @noindent
2089 converts 4 to a @code{double} to store it in the union using
2090 the second element. By contrast, casting 4 to type @code{union foo}
2091 stores it into the union as the integer @code{i}, since it is
2092 an integer. @xref{Cast to Union}.
2093
2094 You can combine this technique of naming elements with ordinary C
2095 initialization of successive elements. Each initializer element that
2096 does not have a designator applies to the next consecutive element of the
2097 array or structure. For example,
2098
2099 @smallexample
2100 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2101 @end smallexample
2102
2103 @noindent
2104 is equivalent to
2105
2106 @smallexample
2107 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2108 @end smallexample
2109
2110 Labeling the elements of an array initializer is especially useful
2111 when the indices are characters or belong to an @code{enum} type.
2112 For example:
2113
2114 @smallexample
2115 int whitespace[256]
2116 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2117 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2118 @end smallexample
2119
2120 @cindex designator lists
2121 You can also write a series of @samp{.@var{fieldname}} and
2122 @samp{[@var{index}]} designators before an @samp{=} to specify a
2123 nested subobject to initialize; the list is taken relative to the
2124 subobject corresponding to the closest surrounding brace pair. For
2125 example, with the @samp{struct point} declaration above:
2126
2127 @smallexample
2128 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2129 @end smallexample
2130
2131 @noindent
2132 If the same field is initialized multiple times, it has the value from
2133 the last initialization. If any such overridden initialization has
2134 side-effect, it is unspecified whether the side-effect happens or not.
2135 Currently, GCC discards them and issues a warning.
2136
2137 @node Case Ranges
2138 @section Case Ranges
2139 @cindex case ranges
2140 @cindex ranges in case statements
2141
2142 You can specify a range of consecutive values in a single @code{case} label,
2143 like this:
2144
2145 @smallexample
2146 case @var{low} ... @var{high}:
2147 @end smallexample
2148
2149 @noindent
2150 This has the same effect as the proper number of individual @code{case}
2151 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2152
2153 This feature is especially useful for ranges of ASCII character codes:
2154
2155 @smallexample
2156 case 'A' ... 'Z':
2157 @end smallexample
2158
2159 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2160 it may be parsed wrong when you use it with integer values. For example,
2161 write this:
2162
2163 @smallexample
2164 case 1 ... 5:
2165 @end smallexample
2166
2167 @noindent
2168 rather than this:
2169
2170 @smallexample
2171 case 1...5:
2172 @end smallexample
2173
2174 @node Cast to Union
2175 @section Cast to a Union Type
2176 @cindex cast to a union
2177 @cindex union, casting to a
2178
2179 A cast to union type looks similar to other casts, except that the type
2180 specified is a union type. You can specify the type either with the
2181 @code{union} keyword or with a @code{typedef} name that refers to
2182 a union. A cast to a union actually creates a compound literal and
2183 yields an lvalue, not an rvalue like true casts do.
2184 @xref{Compound Literals}.
2185
2186 The types that may be cast to the union type are those of the members
2187 of the union. Thus, given the following union and variables:
2188
2189 @smallexample
2190 union foo @{ int i; double d; @};
2191 int x;
2192 double y;
2193 @end smallexample
2194
2195 @noindent
2196 both @code{x} and @code{y} can be cast to type @code{union foo}.
2197
2198 Using the cast as the right-hand side of an assignment to a variable of
2199 union type is equivalent to storing in a member of the union:
2200
2201 @smallexample
2202 union foo u;
2203 /* @r{@dots{}} */
2204 u = (union foo) x @equiv{} u.i = x
2205 u = (union foo) y @equiv{} u.d = y
2206 @end smallexample
2207
2208 You can also use the union cast as a function argument:
2209
2210 @smallexample
2211 void hack (union foo);
2212 /* @r{@dots{}} */
2213 hack ((union foo) x);
2214 @end smallexample
2215
2216 @node Mixed Declarations
2217 @section Mixed Declarations and Code
2218 @cindex mixed declarations and code
2219 @cindex declarations, mixed with code
2220 @cindex code, mixed with declarations
2221
2222 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2223 within compound statements. As an extension, GNU C also allows this in
2224 C90 mode. For example, you could do:
2225
2226 @smallexample
2227 int i;
2228 /* @r{@dots{}} */
2229 i++;
2230 int j = i + 2;
2231 @end smallexample
2232
2233 Each identifier is visible from where it is declared until the end of
2234 the enclosing block.
2235
2236 @node Function Attributes
2237 @section Declaring Attributes of Functions
2238 @cindex function attributes
2239 @cindex declaring attributes of functions
2240 @cindex @code{volatile} applied to function
2241 @cindex @code{const} applied to function
2242
2243 In GNU C, you can use function attributes to declare certain things
2244 about functions called in your program which help the compiler
2245 optimize calls and check your code more carefully. For example, you
2246 can use attributes to declare that a function never returns
2247 (@code{noreturn}), returns a value depending only on its arguments
2248 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2249
2250 You can also use attributes to control memory placement, code
2251 generation options or call/return conventions within the function
2252 being annotated. Many of these attributes are target-specific. For
2253 example, many targets support attributes for defining interrupt
2254 handler functions, which typically must follow special register usage
2255 and return conventions.
2256
2257 Function attributes are introduced by the @code{__attribute__} keyword
2258 on a declaration, followed by an attribute specification inside double
2259 parentheses. You can specify multiple attributes in a declaration by
2260 separating them by commas within the double parentheses or by
2261 immediately following an attribute declaration with another attribute
2262 declaration. @xref{Attribute Syntax}, for the exact rules on
2263 attribute syntax and placement.
2264
2265 GCC also supports attributes on
2266 variable declarations (@pxref{Variable Attributes}),
2267 labels (@pxref{Label Attributes}),
2268 enumerators (@pxref{Enumerator Attributes}),
2269 statements (@pxref{Statement Attributes}),
2270 and types (@pxref{Type Attributes}).
2271
2272 There is some overlap between the purposes of attributes and pragmas
2273 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2274 found convenient to use @code{__attribute__} to achieve a natural
2275 attachment of attributes to their corresponding declarations, whereas
2276 @code{#pragma} is of use for compatibility with other compilers
2277 or constructs that do not naturally form part of the grammar.
2278
2279 In addition to the attributes documented here,
2280 GCC plugins may provide their own attributes.
2281
2282 @menu
2283 * Common Function Attributes::
2284 * AArch64 Function Attributes::
2285 * ARC Function Attributes::
2286 * ARM Function Attributes::
2287 * AVR Function Attributes::
2288 * Blackfin Function Attributes::
2289 * CR16 Function Attributes::
2290 * Epiphany Function Attributes::
2291 * H8/300 Function Attributes::
2292 * IA-64 Function Attributes::
2293 * M32C Function Attributes::
2294 * M32R/D Function Attributes::
2295 * m68k Function Attributes::
2296 * MCORE Function Attributes::
2297 * MeP Function Attributes::
2298 * MicroBlaze Function Attributes::
2299 * Microsoft Windows Function Attributes::
2300 * MIPS Function Attributes::
2301 * MSP430 Function Attributes::
2302 * NDS32 Function Attributes::
2303 * Nios II Function Attributes::
2304 * Nvidia PTX Function Attributes::
2305 * PowerPC Function Attributes::
2306 * RL78 Function Attributes::
2307 * RX Function Attributes::
2308 * S/390 Function Attributes::
2309 * SH Function Attributes::
2310 * SPU Function Attributes::
2311 * Symbian OS Function Attributes::
2312 * V850 Function Attributes::
2313 * Visium Function Attributes::
2314 * x86 Function Attributes::
2315 * Xstormy16 Function Attributes::
2316 @end menu
2317
2318 @node Common Function Attributes
2319 @subsection Common Function Attributes
2320
2321 The following attributes are supported on most targets.
2322
2323 @table @code
2324 @c Keep this table alphabetized by attribute name. Treat _ as space.
2325
2326 @item alias ("@var{target}")
2327 @cindex @code{alias} function attribute
2328 The @code{alias} attribute causes the declaration to be emitted as an
2329 alias for another symbol, which must be specified. For instance,
2330
2331 @smallexample
2332 void __f () @{ /* @r{Do something.} */; @}
2333 void f () __attribute__ ((weak, alias ("__f")));
2334 @end smallexample
2335
2336 @noindent
2337 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2338 mangled name for the target must be used. It is an error if @samp{__f}
2339 is not defined in the same translation unit.
2340
2341 This attribute requires assembler and object file support,
2342 and may not be available on all targets.
2343
2344 @item aligned (@var{alignment})
2345 @cindex @code{aligned} function attribute
2346 This attribute specifies a minimum alignment for the function,
2347 measured in bytes.
2348
2349 You cannot use this attribute to decrease the alignment of a function,
2350 only to increase it. However, when you explicitly specify a function
2351 alignment this overrides the effect of the
2352 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2353 function.
2354
2355 Note that the effectiveness of @code{aligned} attributes may be
2356 limited by inherent limitations in your linker. On many systems, the
2357 linker is only able to arrange for functions to be aligned up to a
2358 certain maximum alignment. (For some linkers, the maximum supported
2359 alignment may be very very small.) See your linker documentation for
2360 further information.
2361
2362 The @code{aligned} attribute can also be used for variables and fields
2363 (@pxref{Variable Attributes}.)
2364
2365 @item alloc_align
2366 @cindex @code{alloc_align} function attribute
2367 The @code{alloc_align} attribute is used to tell the compiler that the
2368 function return value points to memory, where the returned pointer minimum
2369 alignment is given by one of the functions parameters. GCC uses this
2370 information to improve pointer alignment analysis.
2371
2372 The function parameter denoting the allocated alignment is specified by
2373 one integer argument, whose number is the argument of the attribute.
2374 Argument numbering starts at one.
2375
2376 For instance,
2377
2378 @smallexample
2379 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2380 @end smallexample
2381
2382 @noindent
2383 declares that @code{my_memalign} returns memory with minimum alignment
2384 given by parameter 1.
2385
2386 @item alloc_size
2387 @cindex @code{alloc_size} function attribute
2388 The @code{alloc_size} attribute is used to tell the compiler that the
2389 function return value points to memory, where the size is given by
2390 one or two of the functions parameters. GCC uses this
2391 information to improve the correctness of @code{__builtin_object_size}.
2392
2393 The function parameter(s) denoting the allocated size are specified by
2394 one or two integer arguments supplied to the attribute. The allocated size
2395 is either the value of the single function argument specified or the product
2396 of the two function arguments specified. Argument numbering starts at
2397 one.
2398
2399 For instance,
2400
2401 @smallexample
2402 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2403 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2404 @end smallexample
2405
2406 @noindent
2407 declares that @code{my_calloc} returns memory of the size given by
2408 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2409 of the size given by parameter 2.
2410
2411 @item always_inline
2412 @cindex @code{always_inline} function attribute
2413 Generally, functions are not inlined unless optimization is specified.
2414 For functions declared inline, this attribute inlines the function
2415 independent of any restrictions that otherwise apply to inlining.
2416 Failure to inline such a function is diagnosed as an error.
2417 Note that if such a function is called indirectly the compiler may
2418 or may not inline it depending on optimization level and a failure
2419 to inline an indirect call may or may not be diagnosed.
2420
2421 @item artificial
2422 @cindex @code{artificial} function attribute
2423 This attribute is useful for small inline wrappers that if possible
2424 should appear during debugging as a unit. Depending on the debug
2425 info format it either means marking the function as artificial
2426 or using the caller location for all instructions within the inlined
2427 body.
2428
2429 @item assume_aligned
2430 @cindex @code{assume_aligned} function attribute
2431 The @code{assume_aligned} attribute is used to tell the compiler that the
2432 function return value points to memory, where the returned pointer minimum
2433 alignment is given by the first argument.
2434 If the attribute has two arguments, the second argument is misalignment offset.
2435
2436 For instance
2437
2438 @smallexample
2439 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2440 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2441 @end smallexample
2442
2443 @noindent
2444 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2445 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2446 to 8.
2447
2448 @item bnd_instrument
2449 @cindex @code{bnd_instrument} function attribute
2450 The @code{bnd_instrument} attribute on functions is used to inform the
2451 compiler that the function should be instrumented when compiled
2452 with the @option{-fchkp-instrument-marked-only} option.
2453
2454 @item bnd_legacy
2455 @cindex @code{bnd_legacy} function attribute
2456 @cindex Pointer Bounds Checker attributes
2457 The @code{bnd_legacy} attribute on functions is used to inform the
2458 compiler that the function should not be instrumented when compiled
2459 with the @option{-fcheck-pointer-bounds} option.
2460
2461 @item cold
2462 @cindex @code{cold} function attribute
2463 The @code{cold} attribute on functions is used to inform the compiler that
2464 the function is unlikely to be executed. The function is optimized for
2465 size rather than speed and on many targets it is placed into a special
2466 subsection of the text section so all cold functions appear close together,
2467 improving code locality of non-cold parts of program. The paths leading
2468 to calls of cold functions within code are marked as unlikely by the branch
2469 prediction mechanism. It is thus useful to mark functions used to handle
2470 unlikely conditions, such as @code{perror}, as cold to improve optimization
2471 of hot functions that do call marked functions in rare occasions.
2472
2473 When profile feedback is available, via @option{-fprofile-use}, cold functions
2474 are automatically detected and this attribute is ignored.
2475
2476 @item const
2477 @cindex @code{const} function attribute
2478 @cindex functions that have no side effects
2479 Many functions do not examine any values except their arguments, and
2480 have no effects except the return value. Basically this is just slightly
2481 more strict class than the @code{pure} attribute below, since function is not
2482 allowed to read global memory.
2483
2484 @cindex pointer arguments
2485 Note that a function that has pointer arguments and examines the data
2486 pointed to must @emph{not} be declared @code{const}. Likewise, a
2487 function that calls a non-@code{const} function usually must not be
2488 @code{const}. It does not make sense for a @code{const} function to
2489 return @code{void}.
2490
2491 @item constructor
2492 @itemx destructor
2493 @itemx constructor (@var{priority})
2494 @itemx destructor (@var{priority})
2495 @cindex @code{constructor} function attribute
2496 @cindex @code{destructor} function attribute
2497 The @code{constructor} attribute causes the function to be called
2498 automatically before execution enters @code{main ()}. Similarly, the
2499 @code{destructor} attribute causes the function to be called
2500 automatically after @code{main ()} completes or @code{exit ()} is
2501 called. Functions with these attributes are useful for
2502 initializing data that is used implicitly during the execution of
2503 the program.
2504
2505 You may provide an optional integer priority to control the order in
2506 which constructor and destructor functions are run. A constructor
2507 with a smaller priority number runs before a constructor with a larger
2508 priority number; the opposite relationship holds for destructors. So,
2509 if you have a constructor that allocates a resource and a destructor
2510 that deallocates the same resource, both functions typically have the
2511 same priority. The priorities for constructor and destructor
2512 functions are the same as those specified for namespace-scope C++
2513 objects (@pxref{C++ Attributes}).
2514
2515 @item deprecated
2516 @itemx deprecated (@var{msg})
2517 @cindex @code{deprecated} function attribute
2518 The @code{deprecated} attribute results in a warning if the function
2519 is used anywhere in the source file. This is useful when identifying
2520 functions that are expected to be removed in a future version of a
2521 program. The warning also includes the location of the declaration
2522 of the deprecated function, to enable users to easily find further
2523 information about why the function is deprecated, or what they should
2524 do instead. Note that the warnings only occurs for uses:
2525
2526 @smallexample
2527 int old_fn () __attribute__ ((deprecated));
2528 int old_fn ();
2529 int (*fn_ptr)() = old_fn;
2530 @end smallexample
2531
2532 @noindent
2533 results in a warning on line 3 but not line 2. The optional @var{msg}
2534 argument, which must be a string, is printed in the warning if
2535 present.
2536
2537 The @code{deprecated} attribute can also be used for variables and
2538 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2539
2540 @item error ("@var{message}")
2541 @itemx warning ("@var{message}")
2542 @cindex @code{error} function attribute
2543 @cindex @code{warning} function attribute
2544 If the @code{error} or @code{warning} attribute
2545 is used on a function declaration and a call to such a function
2546 is not eliminated through dead code elimination or other optimizations,
2547 an error or warning (respectively) that includes @var{message} is diagnosed.
2548 This is useful
2549 for compile-time checking, especially together with @code{__builtin_constant_p}
2550 and inline functions where checking the inline function arguments is not
2551 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2552
2553 While it is possible to leave the function undefined and thus invoke
2554 a link failure (to define the function with
2555 a message in @code{.gnu.warning*} section),
2556 when using these attributes the problem is diagnosed
2557 earlier and with exact location of the call even in presence of inline
2558 functions or when not emitting debugging information.
2559
2560 @item externally_visible
2561 @cindex @code{externally_visible} function attribute
2562 This attribute, attached to a global variable or function, nullifies
2563 the effect of the @option{-fwhole-program} command-line option, so the
2564 object remains visible outside the current compilation unit.
2565
2566 If @option{-fwhole-program} is used together with @option{-flto} and
2567 @command{gold} is used as the linker plugin,
2568 @code{externally_visible} attributes are automatically added to functions
2569 (not variable yet due to a current @command{gold} issue)
2570 that are accessed outside of LTO objects according to resolution file
2571 produced by @command{gold}.
2572 For other linkers that cannot generate resolution file,
2573 explicit @code{externally_visible} attributes are still necessary.
2574
2575 @item flatten
2576 @cindex @code{flatten} function attribute
2577 Generally, inlining into a function is limited. For a function marked with
2578 this attribute, every call inside this function is inlined, if possible.
2579 Whether the function itself is considered for inlining depends on its size and
2580 the current inlining parameters.
2581
2582 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2583 @cindex @code{format} function attribute
2584 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2585 @opindex Wformat
2586 The @code{format} attribute specifies that a function takes @code{printf},
2587 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2588 should be type-checked against a format string. For example, the
2589 declaration:
2590
2591 @smallexample
2592 extern int
2593 my_printf (void *my_object, const char *my_format, ...)
2594 __attribute__ ((format (printf, 2, 3)));
2595 @end smallexample
2596
2597 @noindent
2598 causes the compiler to check the arguments in calls to @code{my_printf}
2599 for consistency with the @code{printf} style format string argument
2600 @code{my_format}.
2601
2602 The parameter @var{archetype} determines how the format string is
2603 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2604 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2605 @code{strfmon}. (You can also use @code{__printf__},
2606 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2607 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2608 @code{ms_strftime} are also present.
2609 @var{archetype} values such as @code{printf} refer to the formats accepted
2610 by the system's C runtime library,
2611 while values prefixed with @samp{gnu_} always refer
2612 to the formats accepted by the GNU C Library. On Microsoft Windows
2613 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2614 @file{msvcrt.dll} library.
2615 The parameter @var{string-index}
2616 specifies which argument is the format string argument (starting
2617 from 1), while @var{first-to-check} is the number of the first
2618 argument to check against the format string. For functions
2619 where the arguments are not available to be checked (such as
2620 @code{vprintf}), specify the third parameter as zero. In this case the
2621 compiler only checks the format string for consistency. For
2622 @code{strftime} formats, the third parameter is required to be zero.
2623 Since non-static C++ methods have an implicit @code{this} argument, the
2624 arguments of such methods should be counted from two, not one, when
2625 giving values for @var{string-index} and @var{first-to-check}.
2626
2627 In the example above, the format string (@code{my_format}) is the second
2628 argument of the function @code{my_print}, and the arguments to check
2629 start with the third argument, so the correct parameters for the format
2630 attribute are 2 and 3.
2631
2632 @opindex ffreestanding
2633 @opindex fno-builtin
2634 The @code{format} attribute allows you to identify your own functions
2635 that take format strings as arguments, so that GCC can check the
2636 calls to these functions for errors. The compiler always (unless
2637 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2638 for the standard library functions @code{printf}, @code{fprintf},
2639 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2640 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2641 warnings are requested (using @option{-Wformat}), so there is no need to
2642 modify the header file @file{stdio.h}. In C99 mode, the functions
2643 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2644 @code{vsscanf} are also checked. Except in strictly conforming C
2645 standard modes, the X/Open function @code{strfmon} is also checked as
2646 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2647 @xref{C Dialect Options,,Options Controlling C Dialect}.
2648
2649 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2650 recognized in the same context. Declarations including these format attributes
2651 are parsed for correct syntax, however the result of checking of such format
2652 strings is not yet defined, and is not carried out by this version of the
2653 compiler.
2654
2655 The target may also provide additional types of format checks.
2656 @xref{Target Format Checks,,Format Checks Specific to Particular
2657 Target Machines}.
2658
2659 @item format_arg (@var{string-index})
2660 @cindex @code{format_arg} function attribute
2661 @opindex Wformat-nonliteral
2662 The @code{format_arg} attribute specifies that a function takes a format
2663 string for a @code{printf}, @code{scanf}, @code{strftime} or
2664 @code{strfmon} style function and modifies it (for example, to translate
2665 it into another language), so the result can be passed to a
2666 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2667 function (with the remaining arguments to the format function the same
2668 as they would have been for the unmodified string). For example, the
2669 declaration:
2670
2671 @smallexample
2672 extern char *
2673 my_dgettext (char *my_domain, const char *my_format)
2674 __attribute__ ((format_arg (2)));
2675 @end smallexample
2676
2677 @noindent
2678 causes the compiler to check the arguments in calls to a @code{printf},
2679 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2680 format string argument is a call to the @code{my_dgettext} function, for
2681 consistency with the format string argument @code{my_format}. If the
2682 @code{format_arg} attribute had not been specified, all the compiler
2683 could tell in such calls to format functions would be that the format
2684 string argument is not constant; this would generate a warning when
2685 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2686 without the attribute.
2687
2688 The parameter @var{string-index} specifies which argument is the format
2689 string argument (starting from one). Since non-static C++ methods have
2690 an implicit @code{this} argument, the arguments of such methods should
2691 be counted from two.
2692
2693 The @code{format_arg} attribute allows you to identify your own
2694 functions that modify format strings, so that GCC can check the
2695 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2696 type function whose operands are a call to one of your own function.
2697 The compiler always treats @code{gettext}, @code{dgettext}, and
2698 @code{dcgettext} in this manner except when strict ISO C support is
2699 requested by @option{-ansi} or an appropriate @option{-std} option, or
2700 @option{-ffreestanding} or @option{-fno-builtin}
2701 is used. @xref{C Dialect Options,,Options
2702 Controlling C Dialect}.
2703
2704 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2705 @code{NSString} reference for compatibility with the @code{format} attribute
2706 above.
2707
2708 The target may also allow additional types in @code{format-arg} attributes.
2709 @xref{Target Format Checks,,Format Checks Specific to Particular
2710 Target Machines}.
2711
2712 @item gnu_inline
2713 @cindex @code{gnu_inline} function attribute
2714 This attribute should be used with a function that is also declared
2715 with the @code{inline} keyword. It directs GCC to treat the function
2716 as if it were defined in gnu90 mode even when compiling in C99 or
2717 gnu99 mode.
2718
2719 If the function is declared @code{extern}, then this definition of the
2720 function is used only for inlining. In no case is the function
2721 compiled as a standalone function, not even if you take its address
2722 explicitly. Such an address becomes an external reference, as if you
2723 had only declared the function, and had not defined it. This has
2724 almost the effect of a macro. The way to use this is to put a
2725 function definition in a header file with this attribute, and put
2726 another copy of the function, without @code{extern}, in a library
2727 file. The definition in the header file causes most calls to the
2728 function to be inlined. If any uses of the function remain, they
2729 refer to the single copy in the library. Note that the two
2730 definitions of the functions need not be precisely the same, although
2731 if they do not have the same effect your program may behave oddly.
2732
2733 In C, if the function is neither @code{extern} nor @code{static}, then
2734 the function is compiled as a standalone function, as well as being
2735 inlined where possible.
2736
2737 This is how GCC traditionally handled functions declared
2738 @code{inline}. Since ISO C99 specifies a different semantics for
2739 @code{inline}, this function attribute is provided as a transition
2740 measure and as a useful feature in its own right. This attribute is
2741 available in GCC 4.1.3 and later. It is available if either of the
2742 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2743 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2744 Function is As Fast As a Macro}.
2745
2746 In C++, this attribute does not depend on @code{extern} in any way,
2747 but it still requires the @code{inline} keyword to enable its special
2748 behavior.
2749
2750 @item hot
2751 @cindex @code{hot} function attribute
2752 The @code{hot} attribute on a function is used to inform the compiler that
2753 the function is a hot spot of the compiled program. The function is
2754 optimized more aggressively and on many targets it is placed into a special
2755 subsection of the text section so all hot functions appear close together,
2756 improving locality.
2757
2758 When profile feedback is available, via @option{-fprofile-use}, hot functions
2759 are automatically detected and this attribute is ignored.
2760
2761 @item ifunc ("@var{resolver}")
2762 @cindex @code{ifunc} function attribute
2763 @cindex indirect functions
2764 @cindex functions that are dynamically resolved
2765 The @code{ifunc} attribute is used to mark a function as an indirect
2766 function using the STT_GNU_IFUNC symbol type extension to the ELF
2767 standard. This allows the resolution of the symbol value to be
2768 determined dynamically at load time, and an optimized version of the
2769 routine can be selected for the particular processor or other system
2770 characteristics determined then. To use this attribute, first define
2771 the implementation functions available, and a resolver function that
2772 returns a pointer to the selected implementation function. The
2773 implementation functions' declarations must match the API of the
2774 function being implemented, the resolver's declaration is be a
2775 function returning pointer to void function returning void:
2776
2777 @smallexample
2778 void *my_memcpy (void *dst, const void *src, size_t len)
2779 @{
2780 @dots{}
2781 @}
2782
2783 static void (*resolve_memcpy (void)) (void)
2784 @{
2785 return my_memcpy; // we'll just always select this routine
2786 @}
2787 @end smallexample
2788
2789 @noindent
2790 The exported header file declaring the function the user calls would
2791 contain:
2792
2793 @smallexample
2794 extern void *memcpy (void *, const void *, size_t);
2795 @end smallexample
2796
2797 @noindent
2798 allowing the user to call this as a regular function, unaware of the
2799 implementation. Finally, the indirect function needs to be defined in
2800 the same translation unit as the resolver function:
2801
2802 @smallexample
2803 void *memcpy (void *, const void *, size_t)
2804 __attribute__ ((ifunc ("resolve_memcpy")));
2805 @end smallexample
2806
2807 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2808 and GNU C Library version 2.11.1 are required to use this feature.
2809
2810 @item interrupt
2811 @itemx interrupt_handler
2812 Many GCC back ends support attributes to indicate that a function is
2813 an interrupt handler, which tells the compiler to generate function
2814 entry and exit sequences that differ from those from regular
2815 functions. The exact syntax and behavior are target-specific;
2816 refer to the following subsections for details.
2817
2818 @item leaf
2819 @cindex @code{leaf} function attribute
2820 Calls to external functions with this attribute must return to the
2821 current compilation unit only by return or by exception handling. In
2822 particular, a leaf function is not allowed to invoke callback functions
2823 passed to it from the current compilation unit, directly call functions
2824 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2825 might still call functions from other compilation units and thus they
2826 are not necessarily leaf in the sense that they contain no function
2827 calls at all.
2828
2829 The attribute is intended for library functions to improve dataflow
2830 analysis. The compiler takes the hint that any data not escaping the
2831 current compilation unit cannot be used or modified by the leaf
2832 function. For example, the @code{sin} function is a leaf function, but
2833 @code{qsort} is not.
2834
2835 Note that leaf functions might indirectly run a signal handler defined
2836 in the current compilation unit that uses static variables. Similarly,
2837 when lazy symbol resolution is in effect, leaf functions might invoke
2838 indirect functions whose resolver function or implementation function is
2839 defined in the current compilation unit and uses static variables. There
2840 is no standard-compliant way to write such a signal handler, resolver
2841 function, or implementation function, and the best that you can do is to
2842 remove the @code{leaf} attribute or mark all such static variables
2843 @code{volatile}. Lastly, for ELF-based systems that support symbol
2844 interposition, care should be taken that functions defined in the
2845 current compilation unit do not unexpectedly interpose other symbols
2846 based on the defined standards mode and defined feature test macros;
2847 otherwise an inadvertent callback would be added.
2848
2849 The attribute has no effect on functions defined within the current
2850 compilation unit. This is to allow easy merging of multiple compilation
2851 units into one, for example, by using the link-time optimization. For
2852 this reason the attribute is not allowed on types to annotate indirect
2853 calls.
2854
2855 @item malloc
2856 @cindex @code{malloc} function attribute
2857 @cindex functions that behave like malloc
2858 This tells the compiler that a function is @code{malloc}-like, i.e.,
2859 that the pointer @var{P} returned by the function cannot alias any
2860 other pointer valid when the function returns, and moreover no
2861 pointers to valid objects occur in any storage addressed by @var{P}.
2862
2863 Using this attribute can improve optimization. Functions like
2864 @code{malloc} and @code{calloc} have this property because they return
2865 a pointer to uninitialized or zeroed-out storage. However, functions
2866 like @code{realloc} do not have this property, as they can return a
2867 pointer to storage containing pointers.
2868
2869 @item no_icf
2870 @cindex @code{no_icf} function attribute
2871 This function attribute prevents a functions from being merged with another
2872 semantically equivalent function.
2873
2874 @item no_instrument_function
2875 @cindex @code{no_instrument_function} function attribute
2876 @opindex finstrument-functions
2877 If @option{-finstrument-functions} is given, profiling function calls are
2878 generated at entry and exit of most user-compiled functions.
2879 Functions with this attribute are not so instrumented.
2880
2881 @item no_profile_instrument_function
2882 @cindex @code{no_profile_instrument_function} function attribute
2883 The @code{no_profile_instrument_function} attribute on functions is used
2884 to inform the compiler that it should not process any profile feedback based
2885 optimization code instrumentation.
2886
2887 @item no_reorder
2888 @cindex @code{no_reorder} function attribute
2889 Do not reorder functions or variables marked @code{no_reorder}
2890 against each other or top level assembler statements the executable.
2891 The actual order in the program will depend on the linker command
2892 line. Static variables marked like this are also not removed.
2893 This has a similar effect
2894 as the @option{-fno-toplevel-reorder} option, but only applies to the
2895 marked symbols.
2896
2897 @item no_sanitize_address
2898 @itemx no_address_safety_analysis
2899 @cindex @code{no_sanitize_address} function attribute
2900 The @code{no_sanitize_address} attribute on functions is used
2901 to inform the compiler that it should not instrument memory accesses
2902 in the function when compiling with the @option{-fsanitize=address} option.
2903 The @code{no_address_safety_analysis} is a deprecated alias of the
2904 @code{no_sanitize_address} attribute, new code should use
2905 @code{no_sanitize_address}.
2906
2907 @item no_sanitize_thread
2908 @cindex @code{no_sanitize_thread} function attribute
2909 The @code{no_sanitize_thread} attribute on functions is used
2910 to inform the compiler that it should not instrument memory accesses
2911 in the function when compiling with the @option{-fsanitize=thread} option.
2912
2913 @item no_sanitize_undefined
2914 @cindex @code{no_sanitize_undefined} function attribute
2915 The @code{no_sanitize_undefined} attribute on functions is used
2916 to inform the compiler that it should not check for undefined behavior
2917 in the function when compiling with the @option{-fsanitize=undefined} option.
2918
2919 @item no_split_stack
2920 @cindex @code{no_split_stack} function attribute
2921 @opindex fsplit-stack
2922 If @option{-fsplit-stack} is given, functions have a small
2923 prologue which decides whether to split the stack. Functions with the
2924 @code{no_split_stack} attribute do not have that prologue, and thus
2925 may run with only a small amount of stack space available.
2926
2927 @item no_stack_limit
2928 @cindex @code{no_stack_limit} function attribute
2929 This attribute locally overrides the @option{-fstack-limit-register}
2930 and @option{-fstack-limit-symbol} command-line options; it has the effect
2931 of disabling stack limit checking in the function it applies to.
2932
2933 @item noclone
2934 @cindex @code{noclone} function attribute
2935 This function attribute prevents a function from being considered for
2936 cloning---a mechanism that produces specialized copies of functions
2937 and which is (currently) performed by interprocedural constant
2938 propagation.
2939
2940 @item noinline
2941 @cindex @code{noinline} function attribute
2942 This function attribute prevents a function from being considered for
2943 inlining.
2944 @c Don't enumerate the optimizations by name here; we try to be
2945 @c future-compatible with this mechanism.
2946 If the function does not have side-effects, there are optimizations
2947 other than inlining that cause function calls to be optimized away,
2948 although the function call is live. To keep such calls from being
2949 optimized away, put
2950 @smallexample
2951 asm ("");
2952 @end smallexample
2953
2954 @noindent
2955 (@pxref{Extended Asm}) in the called function, to serve as a special
2956 side-effect.
2957
2958 @item nonnull (@var{arg-index}, @dots{})
2959 @cindex @code{nonnull} function attribute
2960 @cindex functions with non-null pointer arguments
2961 The @code{nonnull} attribute specifies that some function parameters should
2962 be non-null pointers. For instance, the declaration:
2963
2964 @smallexample
2965 extern void *
2966 my_memcpy (void *dest, const void *src, size_t len)
2967 __attribute__((nonnull (1, 2)));
2968 @end smallexample
2969
2970 @noindent
2971 causes the compiler to check that, in calls to @code{my_memcpy},
2972 arguments @var{dest} and @var{src} are non-null. If the compiler
2973 determines that a null pointer is passed in an argument slot marked
2974 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2975 is issued. The compiler may also choose to make optimizations based
2976 on the knowledge that certain function arguments will never be null.
2977
2978 If no argument index list is given to the @code{nonnull} attribute,
2979 all pointer arguments are marked as non-null. To illustrate, the
2980 following declaration is equivalent to the previous example:
2981
2982 @smallexample
2983 extern void *
2984 my_memcpy (void *dest, const void *src, size_t len)
2985 __attribute__((nonnull));
2986 @end smallexample
2987
2988 @item noplt
2989 @cindex @code{noplt} function attribute
2990 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
2991 Calls to functions marked with this attribute in position-independent code
2992 do not use the PLT.
2993
2994 @smallexample
2995 @group
2996 /* Externally defined function foo. */
2997 int foo () __attribute__ ((noplt));
2998
2999 int
3000 main (/* @r{@dots{}} */)
3001 @{
3002 /* @r{@dots{}} */
3003 foo ();
3004 /* @r{@dots{}} */
3005 @}
3006 @end group
3007 @end smallexample
3008
3009 The @code{noplt} attribute on function @code{foo}
3010 tells the compiler to assume that
3011 the function @code{foo} is externally defined and that the call to
3012 @code{foo} must avoid the PLT
3013 in position-independent code.
3014
3015 In position-dependent code, a few targets also convert calls to
3016 functions that are marked to not use the PLT to use the GOT instead.
3017
3018 @item noreturn
3019 @cindex @code{noreturn} function attribute
3020 @cindex functions that never return
3021 A few standard library functions, such as @code{abort} and @code{exit},
3022 cannot return. GCC knows this automatically. Some programs define
3023 their own functions that never return. You can declare them
3024 @code{noreturn} to tell the compiler this fact. For example,
3025
3026 @smallexample
3027 @group
3028 void fatal () __attribute__ ((noreturn));
3029
3030 void
3031 fatal (/* @r{@dots{}} */)
3032 @{
3033 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3034 exit (1);
3035 @}
3036 @end group
3037 @end smallexample
3038
3039 The @code{noreturn} keyword tells the compiler to assume that
3040 @code{fatal} cannot return. It can then optimize without regard to what
3041 would happen if @code{fatal} ever did return. This makes slightly
3042 better code. More importantly, it helps avoid spurious warnings of
3043 uninitialized variables.
3044
3045 The @code{noreturn} keyword does not affect the exceptional path when that
3046 applies: a @code{noreturn}-marked function may still return to the caller
3047 by throwing an exception or calling @code{longjmp}.
3048
3049 Do not assume that registers saved by the calling function are
3050 restored before calling the @code{noreturn} function.
3051
3052 It does not make sense for a @code{noreturn} function to have a return
3053 type other than @code{void}.
3054
3055 @item nothrow
3056 @cindex @code{nothrow} function attribute
3057 The @code{nothrow} attribute is used to inform the compiler that a
3058 function cannot throw an exception. For example, most functions in
3059 the standard C library can be guaranteed not to throw an exception
3060 with the notable exceptions of @code{qsort} and @code{bsearch} that
3061 take function pointer arguments.
3062
3063 @item optimize
3064 @cindex @code{optimize} function attribute
3065 The @code{optimize} attribute is used to specify that a function is to
3066 be compiled with different optimization options than specified on the
3067 command line. Arguments can either be numbers or strings. Numbers
3068 are assumed to be an optimization level. Strings that begin with
3069 @code{O} are assumed to be an optimization option, while other options
3070 are assumed to be used with a @code{-f} prefix. You can also use the
3071 @samp{#pragma GCC optimize} pragma to set the optimization options
3072 that affect more than one function.
3073 @xref{Function Specific Option Pragmas}, for details about the
3074 @samp{#pragma GCC optimize} pragma.
3075
3076 This attribute should be used for debugging purposes only. It is not
3077 suitable in production code.
3078
3079 @item pure
3080 @cindex @code{pure} function attribute
3081 @cindex functions that have no side effects
3082 Many functions have no effects except the return value and their
3083 return value depends only on the parameters and/or global variables.
3084 Such a function can be subject
3085 to common subexpression elimination and loop optimization just as an
3086 arithmetic operator would be. These functions should be declared
3087 with the attribute @code{pure}. For example,
3088
3089 @smallexample
3090 int square (int) __attribute__ ((pure));
3091 @end smallexample
3092
3093 @noindent
3094 says that the hypothetical function @code{square} is safe to call
3095 fewer times than the program says.
3096
3097 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3098 Interesting non-pure functions are functions with infinite loops or those
3099 depending on volatile memory or other system resource, that may change between
3100 two consecutive calls (such as @code{feof} in a multithreading environment).
3101
3102 @item returns_nonnull
3103 @cindex @code{returns_nonnull} function attribute
3104 The @code{returns_nonnull} attribute specifies that the function
3105 return value should be a non-null pointer. For instance, the declaration:
3106
3107 @smallexample
3108 extern void *
3109 mymalloc (size_t len) __attribute__((returns_nonnull));
3110 @end smallexample
3111
3112 @noindent
3113 lets the compiler optimize callers based on the knowledge
3114 that the return value will never be null.
3115
3116 @item returns_twice
3117 @cindex @code{returns_twice} function attribute
3118 @cindex functions that return more than once
3119 The @code{returns_twice} attribute tells the compiler that a function may
3120 return more than one time. The compiler ensures that all registers
3121 are dead before calling such a function and emits a warning about
3122 the variables that may be clobbered after the second return from the
3123 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3124 The @code{longjmp}-like counterpart of such function, if any, might need
3125 to be marked with the @code{noreturn} attribute.
3126
3127 @item section ("@var{section-name}")
3128 @cindex @code{section} function attribute
3129 @cindex functions in arbitrary sections
3130 Normally, the compiler places the code it generates in the @code{text} section.
3131 Sometimes, however, you need additional sections, or you need certain
3132 particular functions to appear in special sections. The @code{section}
3133 attribute specifies that a function lives in a particular section.
3134 For example, the declaration:
3135
3136 @smallexample
3137 extern void foobar (void) __attribute__ ((section ("bar")));
3138 @end smallexample
3139
3140 @noindent
3141 puts the function @code{foobar} in the @code{bar} section.
3142
3143 Some file formats do not support arbitrary sections so the @code{section}
3144 attribute is not available on all platforms.
3145 If you need to map the entire contents of a module to a particular
3146 section, consider using the facilities of the linker instead.
3147
3148 @item sentinel
3149 @cindex @code{sentinel} function attribute
3150 This function attribute ensures that a parameter in a function call is
3151 an explicit @code{NULL}. The attribute is only valid on variadic
3152 functions. By default, the sentinel is located at position zero, the
3153 last parameter of the function call. If an optional integer position
3154 argument P is supplied to the attribute, the sentinel must be located at
3155 position P counting backwards from the end of the argument list.
3156
3157 @smallexample
3158 __attribute__ ((sentinel))
3159 is equivalent to
3160 __attribute__ ((sentinel(0)))
3161 @end smallexample
3162
3163 The attribute is automatically set with a position of 0 for the built-in
3164 functions @code{execl} and @code{execlp}. The built-in function
3165 @code{execle} has the attribute set with a position of 1.
3166
3167 A valid @code{NULL} in this context is defined as zero with any pointer
3168 type. If your system defines the @code{NULL} macro with an integer type
3169 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3170 with a copy that redefines NULL appropriately.
3171
3172 The warnings for missing or incorrect sentinels are enabled with
3173 @option{-Wformat}.
3174
3175 @item simd
3176 @itemx simd("@var{mask}")
3177 @cindex @code{simd} function attribute
3178 This attribute enables creation of one or more function versions that
3179 can process multiple arguments using SIMD instructions from a
3180 single invocation. Specifying this attribute allows compiler to
3181 assume that such versions are available at link time (provided
3182 in the same or another translation unit). Generated versions are
3183 target-dependent and described in the corresponding Vector ABI document. For
3184 x86_64 target this document can be found
3185 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3186
3187 The optional argument @var{mask} may have the value
3188 @code{notinbranch} or @code{inbranch},
3189 and instructs the compiler to generate non-masked or masked
3190 clones correspondingly. By default, all clones are generated.
3191
3192 The attribute should not be used together with Cilk Plus @code{vector}
3193 attribute on the same function.
3194
3195 If the attribute is specified and @code{#pragma omp declare simd} is
3196 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3197 switch is specified, then the attribute is ignored.
3198
3199 @item stack_protect
3200 @cindex @code{stack_protect} function attribute
3201 This attribute adds stack protection code to the function if
3202 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3203 or @option{-fstack-protector-explicit} are set.
3204
3205 @item target (@var{options})
3206 @cindex @code{target} function attribute
3207 Multiple target back ends implement the @code{target} attribute
3208 to specify that a function is to
3209 be compiled with different target options than specified on the
3210 command line. This can be used for instance to have functions
3211 compiled with a different ISA (instruction set architecture) than the
3212 default. You can also use the @samp{#pragma GCC target} pragma to set
3213 more than one function to be compiled with specific target options.
3214 @xref{Function Specific Option Pragmas}, for details about the
3215 @samp{#pragma GCC target} pragma.
3216
3217 For instance, on an x86, you could declare one function with the
3218 @code{target("sse4.1,arch=core2")} attribute and another with
3219 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3220 compiling the first function with @option{-msse4.1} and
3221 @option{-march=core2} options, and the second function with
3222 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3223 to make sure that a function is only invoked on a machine that
3224 supports the particular ISA it is compiled for (for example by using
3225 @code{cpuid} on x86 to determine what feature bits and architecture
3226 family are used).
3227
3228 @smallexample
3229 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3230 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3231 @end smallexample
3232
3233 You can either use multiple
3234 strings separated by commas to specify multiple options,
3235 or separate the options with a comma (@samp{,}) within a single string.
3236
3237 The options supported are specific to each target; refer to @ref{x86
3238 Function Attributes}, @ref{PowerPC Function Attributes},
3239 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3240 for details.
3241
3242 @item target_clones (@var{options})
3243 @cindex @code{target_clones} function attribute
3244 The @code{target_clones} attribute is used to specify that a function
3245 be cloned into multiple versions compiled with different target options
3246 than specified on the command line. The supported options and restrictions
3247 are the same as for @code{target} attribute.
3248
3249 For instance, on an x86, you could compile a function with
3250 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3251 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3252 It also creates a resolver function (see the @code{ifunc} attribute
3253 above) that dynamically selects a clone suitable for current architecture.
3254
3255 @item unused
3256 @cindex @code{unused} function attribute
3257 This attribute, attached to a function, means that the function is meant
3258 to be possibly unused. GCC does not produce a warning for this
3259 function.
3260
3261 @item used
3262 @cindex @code{used} function attribute
3263 This attribute, attached to a function, means that code must be emitted
3264 for the function even if it appears that the function is not referenced.
3265 This is useful, for example, when the function is referenced only in
3266 inline assembly.
3267
3268 When applied to a member function of a C++ class template, the
3269 attribute also means that the function is instantiated if the
3270 class itself is instantiated.
3271
3272 @item visibility ("@var{visibility_type}")
3273 @cindex @code{visibility} function attribute
3274 This attribute affects the linkage of the declaration to which it is attached.
3275 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3276 (@pxref{Common Type Attributes}) as well as functions.
3277
3278 There are four supported @var{visibility_type} values: default,
3279 hidden, protected or internal visibility.
3280
3281 @smallexample
3282 void __attribute__ ((visibility ("protected")))
3283 f () @{ /* @r{Do something.} */; @}
3284 int i __attribute__ ((visibility ("hidden")));
3285 @end smallexample
3286
3287 The possible values of @var{visibility_type} correspond to the
3288 visibility settings in the ELF gABI.
3289
3290 @table @code
3291 @c keep this list of visibilities in alphabetical order.
3292
3293 @item default
3294 Default visibility is the normal case for the object file format.
3295 This value is available for the visibility attribute to override other
3296 options that may change the assumed visibility of entities.
3297
3298 On ELF, default visibility means that the declaration is visible to other
3299 modules and, in shared libraries, means that the declared entity may be
3300 overridden.
3301
3302 On Darwin, default visibility means that the declaration is visible to
3303 other modules.
3304
3305 Default visibility corresponds to ``external linkage'' in the language.
3306
3307 @item hidden
3308 Hidden visibility indicates that the entity declared has a new
3309 form of linkage, which we call ``hidden linkage''. Two
3310 declarations of an object with hidden linkage refer to the same object
3311 if they are in the same shared object.
3312
3313 @item internal
3314 Internal visibility is like hidden visibility, but with additional
3315 processor specific semantics. Unless otherwise specified by the
3316 psABI, GCC defines internal visibility to mean that a function is
3317 @emph{never} called from another module. Compare this with hidden
3318 functions which, while they cannot be referenced directly by other
3319 modules, can be referenced indirectly via function pointers. By
3320 indicating that a function cannot be called from outside the module,
3321 GCC may for instance omit the load of a PIC register since it is known
3322 that the calling function loaded the correct value.
3323
3324 @item protected
3325 Protected visibility is like default visibility except that it
3326 indicates that references within the defining module bind to the
3327 definition in that module. That is, the declared entity cannot be
3328 overridden by another module.
3329
3330 @end table
3331
3332 All visibilities are supported on many, but not all, ELF targets
3333 (supported when the assembler supports the @samp{.visibility}
3334 pseudo-op). Default visibility is supported everywhere. Hidden
3335 visibility is supported on Darwin targets.
3336
3337 The visibility attribute should be applied only to declarations that
3338 would otherwise have external linkage. The attribute should be applied
3339 consistently, so that the same entity should not be declared with
3340 different settings of the attribute.
3341
3342 In C++, the visibility attribute applies to types as well as functions
3343 and objects, because in C++ types have linkage. A class must not have
3344 greater visibility than its non-static data member types and bases,
3345 and class members default to the visibility of their class. Also, a
3346 declaration without explicit visibility is limited to the visibility
3347 of its type.
3348
3349 In C++, you can mark member functions and static member variables of a
3350 class with the visibility attribute. This is useful if you know a
3351 particular method or static member variable should only be used from
3352 one shared object; then you can mark it hidden while the rest of the
3353 class has default visibility. Care must be taken to avoid breaking
3354 the One Definition Rule; for example, it is usually not useful to mark
3355 an inline method as hidden without marking the whole class as hidden.
3356
3357 A C++ namespace declaration can also have the visibility attribute.
3358
3359 @smallexample
3360 namespace nspace1 __attribute__ ((visibility ("protected")))
3361 @{ /* @r{Do something.} */; @}
3362 @end smallexample
3363
3364 This attribute applies only to the particular namespace body, not to
3365 other definitions of the same namespace; it is equivalent to using
3366 @samp{#pragma GCC visibility} before and after the namespace
3367 definition (@pxref{Visibility Pragmas}).
3368
3369 In C++, if a template argument has limited visibility, this
3370 restriction is implicitly propagated to the template instantiation.
3371 Otherwise, template instantiations and specializations default to the
3372 visibility of their template.
3373
3374 If both the template and enclosing class have explicit visibility, the
3375 visibility from the template is used.
3376
3377 @item warn_unused_result
3378 @cindex @code{warn_unused_result} function attribute
3379 The @code{warn_unused_result} attribute causes a warning to be emitted
3380 if a caller of the function with this attribute does not use its
3381 return value. This is useful for functions where not checking
3382 the result is either a security problem or always a bug, such as
3383 @code{realloc}.
3384
3385 @smallexample
3386 int fn () __attribute__ ((warn_unused_result));
3387 int foo ()
3388 @{
3389 if (fn () < 0) return -1;
3390 fn ();
3391 return 0;
3392 @}
3393 @end smallexample
3394
3395 @noindent
3396 results in warning on line 5.
3397
3398 @item weak
3399 @cindex @code{weak} function attribute
3400 The @code{weak} attribute causes the declaration to be emitted as a weak
3401 symbol rather than a global. This is primarily useful in defining
3402 library functions that can be overridden in user code, though it can
3403 also be used with non-function declarations. Weak symbols are supported
3404 for ELF targets, and also for a.out targets when using the GNU assembler
3405 and linker.
3406
3407 @item weakref
3408 @itemx weakref ("@var{target}")
3409 @cindex @code{weakref} function attribute
3410 The @code{weakref} attribute marks a declaration as a weak reference.
3411 Without arguments, it should be accompanied by an @code{alias} attribute
3412 naming the target symbol. Optionally, the @var{target} may be given as
3413 an argument to @code{weakref} itself. In either case, @code{weakref}
3414 implicitly marks the declaration as @code{weak}. Without a
3415 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3416 @code{weakref} is equivalent to @code{weak}.
3417
3418 @smallexample
3419 static int x() __attribute__ ((weakref ("y")));
3420 /* is equivalent to... */
3421 static int x() __attribute__ ((weak, weakref, alias ("y")));
3422 /* and to... */
3423 static int x() __attribute__ ((weakref));
3424 static int x() __attribute__ ((alias ("y")));
3425 @end smallexample
3426
3427 A weak reference is an alias that does not by itself require a
3428 definition to be given for the target symbol. If the target symbol is
3429 only referenced through weak references, then it becomes a @code{weak}
3430 undefined symbol. If it is directly referenced, however, then such
3431 strong references prevail, and a definition is required for the
3432 symbol, not necessarily in the same translation unit.
3433
3434 The effect is equivalent to moving all references to the alias to a
3435 separate translation unit, renaming the alias to the aliased symbol,
3436 declaring it as weak, compiling the two separate translation units and
3437 performing a reloadable link on them.
3438
3439 At present, a declaration to which @code{weakref} is attached can
3440 only be @code{static}.
3441
3442
3443 @end table
3444
3445 @c This is the end of the target-independent attribute table
3446
3447 @node AArch64 Function Attributes
3448 @subsection AArch64 Function Attributes
3449
3450 The following target-specific function attributes are available for the
3451 AArch64 target. For the most part, these options mirror the behavior of
3452 similar command-line options (@pxref{AArch64 Options}), but on a
3453 per-function basis.
3454
3455 @table @code
3456 @item general-regs-only
3457 @cindex @code{general-regs-only} function attribute, AArch64
3458 Indicates that no floating-point or Advanced SIMD registers should be
3459 used when generating code for this function. If the function explicitly
3460 uses floating-point code, then the compiler gives an error. This is
3461 the same behavior as that of the command-line option
3462 @option{-mgeneral-regs-only}.
3463
3464 @item fix-cortex-a53-835769
3465 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3466 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3467 applied to this function. To explicitly disable the workaround for this
3468 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3469 This corresponds to the behavior of the command line options
3470 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3471
3472 @item cmodel=
3473 @cindex @code{cmodel=} function attribute, AArch64
3474 Indicates that code should be generated for a particular code model for
3475 this function. The behavior and permissible arguments are the same as
3476 for the command line option @option{-mcmodel=}.
3477
3478 @item strict-align
3479 @cindex @code{strict-align} function attribute, AArch64
3480 Indicates that the compiler should not assume that unaligned memory references
3481 are handled by the system. The behavior is the same as for the command-line
3482 option @option{-mstrict-align}.
3483
3484 @item omit-leaf-frame-pointer
3485 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3486 Indicates that the frame pointer should be omitted for a leaf function call.
3487 To keep the frame pointer, the inverse attribute
3488 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3489 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3490 and @option{-mno-omit-leaf-frame-pointer}.
3491
3492 @item tls-dialect=
3493 @cindex @code{tls-dialect=} function attribute, AArch64
3494 Specifies the TLS dialect to use for this function. The behavior and
3495 permissible arguments are the same as for the command-line option
3496 @option{-mtls-dialect=}.
3497
3498 @item arch=
3499 @cindex @code{arch=} function attribute, AArch64
3500 Specifies the architecture version and architectural extensions to use
3501 for this function. The behavior and permissible arguments are the same as
3502 for the @option{-march=} command-line option.
3503
3504 @item tune=
3505 @cindex @code{tune=} function attribute, AArch64
3506 Specifies the core for which to tune the performance of this function.
3507 The behavior and permissible arguments are the same as for the @option{-mtune=}
3508 command-line option.
3509
3510 @item cpu=
3511 @cindex @code{cpu=} function attribute, AArch64
3512 Specifies the core for which to tune the performance of this function and also
3513 whose architectural features to use. The behavior and valid arguments are the
3514 same as for the @option{-mcpu=} command-line option.
3515
3516 @end table
3517
3518 The above target attributes can be specified as follows:
3519
3520 @smallexample
3521 __attribute__((target("@var{attr-string}")))
3522 int
3523 f (int a)
3524 @{
3525 return a + 5;
3526 @}
3527 @end smallexample
3528
3529 where @code{@var{attr-string}} is one of the attribute strings specified above.
3530
3531 Additionally, the architectural extension string may be specified on its
3532 own. This can be used to turn on and off particular architectural extensions
3533 without having to specify a particular architecture version or core. Example:
3534
3535 @smallexample
3536 __attribute__((target("+crc+nocrypto")))
3537 int
3538 foo (int a)
3539 @{
3540 return a + 5;
3541 @}
3542 @end smallexample
3543
3544 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3545 extension and disables the @code{crypto} extension for the function @code{foo}
3546 without modifying an existing @option{-march=} or @option{-mcpu} option.
3547
3548 Multiple target function attributes can be specified by separating them with
3549 a comma. For example:
3550 @smallexample
3551 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3552 int
3553 foo (int a)
3554 @{
3555 return a + 5;
3556 @}
3557 @end smallexample
3558
3559 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3560 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3561
3562 @subsubsection Inlining rules
3563 Specifying target attributes on individual functions or performing link-time
3564 optimization across translation units compiled with different target options
3565 can affect function inlining rules:
3566
3567 In particular, a caller function can inline a callee function only if the
3568 architectural features available to the callee are a subset of the features
3569 available to the caller.
3570 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3571 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3572 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3573 because the all the architectural features that function @code{bar} requires
3574 are available to function @code{foo}. Conversely, function @code{bar} cannot
3575 inline function @code{foo}.
3576
3577 Additionally inlining a function compiled with @option{-mstrict-align} into a
3578 function compiled without @code{-mstrict-align} is not allowed.
3579 However, inlining a function compiled without @option{-mstrict-align} into a
3580 function compiled with @option{-mstrict-align} is allowed.
3581
3582 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3583 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3584 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3585 architectural feature rules specified above.
3586
3587 @node ARC Function Attributes
3588 @subsection ARC Function Attributes
3589
3590 These function attributes are supported by the ARC back end:
3591
3592 @table @code
3593 @item interrupt
3594 @cindex @code{interrupt} function attribute, ARC
3595 Use this attribute to indicate
3596 that the specified function is an interrupt handler. The compiler generates
3597 function entry and exit sequences suitable for use in an interrupt handler
3598 when this attribute is present.
3599
3600 On the ARC, you must specify the kind of interrupt to be handled
3601 in a parameter to the interrupt attribute like this:
3602
3603 @smallexample
3604 void f () __attribute__ ((interrupt ("ilink1")));
3605 @end smallexample
3606
3607 Permissible values for this parameter are: @w{@code{ilink1}} and
3608 @w{@code{ilink2}}.
3609
3610 @item long_call
3611 @itemx medium_call
3612 @itemx short_call
3613 @cindex @code{long_call} function attribute, ARC
3614 @cindex @code{medium_call} function attribute, ARC
3615 @cindex @code{short_call} function attribute, ARC
3616 @cindex indirect calls, ARC
3617 These attributes specify how a particular function is called.
3618 These attributes override the
3619 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3620 command-line switches and @code{#pragma long_calls} settings.
3621
3622 For ARC, a function marked with the @code{long_call} attribute is
3623 always called using register-indirect jump-and-link instructions,
3624 thereby enabling the called function to be placed anywhere within the
3625 32-bit address space. A function marked with the @code{medium_call}
3626 attribute will always be close enough to be called with an unconditional
3627 branch-and-link instruction, which has a 25-bit offset from
3628 the call site. A function marked with the @code{short_call}
3629 attribute will always be close enough to be called with a conditional
3630 branch-and-link instruction, which has a 21-bit offset from
3631 the call site.
3632 @end table
3633
3634 @node ARM Function Attributes
3635 @subsection ARM Function Attributes
3636
3637 These function attributes are supported for ARM targets:
3638
3639 @table @code
3640 @item interrupt
3641 @cindex @code{interrupt} function attribute, ARM
3642 Use this attribute to indicate
3643 that the specified function is an interrupt handler. The compiler generates
3644 function entry and exit sequences suitable for use in an interrupt handler
3645 when this attribute is present.
3646
3647 You can specify the kind of interrupt to be handled by
3648 adding an optional parameter to the interrupt attribute like this:
3649
3650 @smallexample
3651 void f () __attribute__ ((interrupt ("IRQ")));
3652 @end smallexample
3653
3654 @noindent
3655 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3656 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3657
3658 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3659 may be called with a word-aligned stack pointer.
3660
3661 @item isr
3662 @cindex @code{isr} function attribute, ARM
3663 Use this attribute on ARM to write Interrupt Service Routines. This is an
3664 alias to the @code{interrupt} attribute above.
3665
3666 @item long_call
3667 @itemx short_call
3668 @cindex @code{long_call} function attribute, ARM
3669 @cindex @code{short_call} function attribute, ARM
3670 @cindex indirect calls, ARM
3671 These attributes specify how a particular function is called.
3672 These attributes override the
3673 @option{-mlong-calls} (@pxref{ARM Options})
3674 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3675 @code{long_call} attribute indicates that the function might be far
3676 away from the call site and require a different (more expensive)
3677 calling sequence. The @code{short_call} attribute always places
3678 the offset to the function from the call site into the @samp{BL}
3679 instruction directly.
3680
3681 @item naked
3682 @cindex @code{naked} function attribute, ARM
3683 This attribute allows the compiler to construct the
3684 requisite function declaration, while allowing the body of the
3685 function to be assembly code. The specified function will not have
3686 prologue/epilogue sequences generated by the compiler. Only basic
3687 @code{asm} statements can safely be included in naked functions
3688 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3689 basic @code{asm} and C code may appear to work, they cannot be
3690 depended upon to work reliably and are not supported.
3691
3692 @item pcs
3693 @cindex @code{pcs} function attribute, ARM
3694
3695 The @code{pcs} attribute can be used to control the calling convention
3696 used for a function on ARM. The attribute takes an argument that specifies
3697 the calling convention to use.
3698
3699 When compiling using the AAPCS ABI (or a variant of it) then valid
3700 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3701 order to use a variant other than @code{"aapcs"} then the compiler must
3702 be permitted to use the appropriate co-processor registers (i.e., the
3703 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3704 For example,
3705
3706 @smallexample
3707 /* Argument passed in r0, and result returned in r0+r1. */
3708 double f2d (float) __attribute__((pcs("aapcs")));
3709 @end smallexample
3710
3711 Variadic functions always use the @code{"aapcs"} calling convention and
3712 the compiler rejects attempts to specify an alternative.
3713
3714 @item target (@var{options})
3715 @cindex @code{target} function attribute
3716 As discussed in @ref{Common Function Attributes}, this attribute
3717 allows specification of target-specific compilation options.
3718
3719 On ARM, the following options are allowed:
3720
3721 @table @samp
3722 @item thumb
3723 @cindex @code{target("thumb")} function attribute, ARM
3724 Force code generation in the Thumb (T16/T32) ISA, depending on the
3725 architecture level.
3726
3727 @item arm
3728 @cindex @code{target("arm")} function attribute, ARM
3729 Force code generation in the ARM (A32) ISA.
3730
3731 Functions from different modes can be inlined in the caller's mode.
3732
3733 @item fpu=
3734 @cindex @code{target("fpu=")} function attribute, ARM
3735 Specifies the fpu for which to tune the performance of this function.
3736 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3737 command-line option.
3738
3739 @end table
3740
3741 @end table
3742
3743 @node AVR Function Attributes
3744 @subsection AVR Function Attributes
3745
3746 These function attributes are supported by the AVR back end:
3747
3748 @table @code
3749 @item interrupt
3750 @cindex @code{interrupt} function attribute, AVR
3751 Use this attribute to indicate
3752 that the specified function is an interrupt handler. The compiler generates
3753 function entry and exit sequences suitable for use in an interrupt handler
3754 when this attribute is present.
3755
3756 On the AVR, the hardware globally disables interrupts when an
3757 interrupt is executed. The first instruction of an interrupt handler
3758 declared with this attribute is a @code{SEI} instruction to
3759 re-enable interrupts. See also the @code{signal} function attribute
3760 that does not insert a @code{SEI} instruction. If both @code{signal} and
3761 @code{interrupt} are specified for the same function, @code{signal}
3762 is silently ignored.
3763
3764 @item naked
3765 @cindex @code{naked} function attribute, AVR
3766 This attribute allows the compiler to construct the
3767 requisite function declaration, while allowing the body of the
3768 function to be assembly code. The specified function will not have
3769 prologue/epilogue sequences generated by the compiler. Only basic
3770 @code{asm} statements can safely be included in naked functions
3771 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3772 basic @code{asm} and C code may appear to work, they cannot be
3773 depended upon to work reliably and are not supported.
3774
3775 @item OS_main
3776 @itemx OS_task
3777 @cindex @code{OS_main} function attribute, AVR
3778 @cindex @code{OS_task} function attribute, AVR
3779 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3780 do not save/restore any call-saved register in their prologue/epilogue.
3781
3782 The @code{OS_main} attribute can be used when there @emph{is
3783 guarantee} that interrupts are disabled at the time when the function
3784 is entered. This saves resources when the stack pointer has to be
3785 changed to set up a frame for local variables.
3786
3787 The @code{OS_task} attribute can be used when there is @emph{no
3788 guarantee} that interrupts are disabled at that time when the function
3789 is entered like for, e@.g@. task functions in a multi-threading operating
3790 system. In that case, changing the stack pointer register is
3791 guarded by save/clear/restore of the global interrupt enable flag.
3792
3793 The differences to the @code{naked} function attribute are:
3794 @itemize @bullet
3795 @item @code{naked} functions do not have a return instruction whereas
3796 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3797 @code{RETI} return instruction.
3798 @item @code{naked} functions do not set up a frame for local variables
3799 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3800 as needed.
3801 @end itemize
3802
3803 @item signal
3804 @cindex @code{signal} function attribute, AVR
3805 Use this attribute on the AVR to indicate that the specified
3806 function is an interrupt handler. The compiler generates function
3807 entry and exit sequences suitable for use in an interrupt handler when this
3808 attribute is present.
3809
3810 See also the @code{interrupt} function attribute.
3811
3812 The AVR hardware globally disables interrupts when an interrupt is executed.
3813 Interrupt handler functions defined with the @code{signal} attribute
3814 do not re-enable interrupts. It is save to enable interrupts in a
3815 @code{signal} handler. This ``save'' only applies to the code
3816 generated by the compiler and not to the IRQ layout of the
3817 application which is responsibility of the application.
3818
3819 If both @code{signal} and @code{interrupt} are specified for the same
3820 function, @code{signal} is silently ignored.
3821 @end table
3822
3823 @node Blackfin Function Attributes
3824 @subsection Blackfin Function Attributes
3825
3826 These function attributes are supported by the Blackfin back end:
3827
3828 @table @code
3829
3830 @item exception_handler
3831 @cindex @code{exception_handler} function attribute
3832 @cindex exception handler functions, Blackfin
3833 Use this attribute on the Blackfin to indicate that the specified function
3834 is an exception handler. The compiler generates function entry and
3835 exit sequences suitable for use in an exception handler when this
3836 attribute is present.
3837
3838 @item interrupt_handler
3839 @cindex @code{interrupt_handler} function attribute, Blackfin
3840 Use this attribute to
3841 indicate that the specified function is an interrupt handler. The compiler
3842 generates function entry and exit sequences suitable for use in an
3843 interrupt handler when this attribute is present.
3844
3845 @item kspisusp
3846 @cindex @code{kspisusp} function attribute, Blackfin
3847 @cindex User stack pointer in interrupts on the Blackfin
3848 When used together with @code{interrupt_handler}, @code{exception_handler}
3849 or @code{nmi_handler}, code is generated to load the stack pointer
3850 from the USP register in the function prologue.
3851
3852 @item l1_text
3853 @cindex @code{l1_text} function attribute, Blackfin
3854 This attribute specifies a function to be placed into L1 Instruction
3855 SRAM@. The function is put into a specific section named @code{.l1.text}.
3856 With @option{-mfdpic}, function calls with a such function as the callee
3857 or caller uses inlined PLT.
3858
3859 @item l2
3860 @cindex @code{l2} function attribute, Blackfin
3861 This attribute specifies a function to be placed into L2
3862 SRAM. The function is put into a specific section named
3863 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3864 an inlined PLT.
3865
3866 @item longcall
3867 @itemx shortcall
3868 @cindex indirect calls, Blackfin
3869 @cindex @code{longcall} function attribute, Blackfin
3870 @cindex @code{shortcall} function attribute, Blackfin
3871 The @code{longcall} attribute
3872 indicates that the function might be far away from the call site and
3873 require a different (more expensive) calling sequence. The
3874 @code{shortcall} attribute indicates that the function is always close
3875 enough for the shorter calling sequence to be used. These attributes
3876 override the @option{-mlongcall} switch.
3877
3878 @item nesting
3879 @cindex @code{nesting} function attribute, Blackfin
3880 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3881 Use this attribute together with @code{interrupt_handler},
3882 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3883 entry code should enable nested interrupts or exceptions.
3884
3885 @item nmi_handler
3886 @cindex @code{nmi_handler} function attribute, Blackfin
3887 @cindex NMI handler functions on the Blackfin processor
3888 Use this attribute on the Blackfin to indicate that the specified function
3889 is an NMI handler. The compiler generates function entry and
3890 exit sequences suitable for use in an NMI handler when this
3891 attribute is present.
3892
3893 @item saveall
3894 @cindex @code{saveall} function attribute, Blackfin
3895 @cindex save all registers on the Blackfin
3896 Use this attribute to indicate that
3897 all registers except the stack pointer should be saved in the prologue
3898 regardless of whether they are used or not.
3899 @end table
3900
3901 @node CR16 Function Attributes
3902 @subsection CR16 Function Attributes
3903
3904 These function attributes are supported by the CR16 back end:
3905
3906 @table @code
3907 @item interrupt
3908 @cindex @code{interrupt} function attribute, CR16
3909 Use this attribute to indicate
3910 that the specified function is an interrupt handler. The compiler generates
3911 function entry and exit sequences suitable for use in an interrupt handler
3912 when this attribute is present.
3913 @end table
3914
3915 @node Epiphany Function Attributes
3916 @subsection Epiphany Function Attributes
3917
3918 These function attributes are supported by the Epiphany back end:
3919
3920 @table @code
3921 @item disinterrupt
3922 @cindex @code{disinterrupt} function attribute, Epiphany
3923 This attribute causes the compiler to emit
3924 instructions to disable interrupts for the duration of the given
3925 function.
3926
3927 @item forwarder_section
3928 @cindex @code{forwarder_section} function attribute, Epiphany
3929 This attribute modifies the behavior of an interrupt handler.
3930 The interrupt handler may be in external memory which cannot be
3931 reached by a branch instruction, so generate a local memory trampoline
3932 to transfer control. The single parameter identifies the section where
3933 the trampoline is placed.
3934
3935 @item interrupt
3936 @cindex @code{interrupt} function attribute, Epiphany
3937 Use this attribute to indicate
3938 that the specified function is an interrupt handler. The compiler generates
3939 function entry and exit sequences suitable for use in an interrupt handler
3940 when this attribute is present. It may also generate
3941 a special section with code to initialize the interrupt vector table.
3942
3943 On Epiphany targets one or more optional parameters can be added like this:
3944
3945 @smallexample
3946 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3947 @end smallexample
3948
3949 Permissible values for these parameters are: @w{@code{reset}},
3950 @w{@code{software_exception}}, @w{@code{page_miss}},
3951 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
3952 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
3953 Multiple parameters indicate that multiple entries in the interrupt
3954 vector table should be initialized for this function, i.e.@: for each
3955 parameter @w{@var{name}}, a jump to the function is emitted in
3956 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3957 entirely, in which case no interrupt vector table entry is provided.
3958
3959 Note that interrupts are enabled inside the function
3960 unless the @code{disinterrupt} attribute is also specified.
3961
3962 The following examples are all valid uses of these attributes on
3963 Epiphany targets:
3964 @smallexample
3965 void __attribute__ ((interrupt)) universal_handler ();
3966 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3967 void __attribute__ ((interrupt ("dma0, dma1")))
3968 universal_dma_handler ();
3969 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3970 fast_timer_handler ();
3971 void __attribute__ ((interrupt ("dma0, dma1"),
3972 forwarder_section ("tramp")))
3973 external_dma_handler ();
3974 @end smallexample
3975
3976 @item long_call
3977 @itemx short_call
3978 @cindex @code{long_call} function attribute, Epiphany
3979 @cindex @code{short_call} function attribute, Epiphany
3980 @cindex indirect calls, Epiphany
3981 These attributes specify how a particular function is called.
3982 These attributes override the
3983 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
3984 command-line switch and @code{#pragma long_calls} settings.
3985 @end table
3986
3987
3988 @node H8/300 Function Attributes
3989 @subsection H8/300 Function Attributes
3990
3991 These function attributes are available for H8/300 targets:
3992
3993 @table @code
3994 @item function_vector
3995 @cindex @code{function_vector} function attribute, H8/300
3996 Use this attribute on the H8/300, H8/300H, and H8S to indicate
3997 that the specified function should be called through the function vector.
3998 Calling a function through the function vector reduces code size; however,
3999 the function vector has a limited size (maximum 128 entries on the H8/300
4000 and 64 entries on the H8/300H and H8S)
4001 and shares space with the interrupt vector.
4002
4003 @item interrupt_handler
4004 @cindex @code{interrupt_handler} function attribute, H8/300
4005 Use this attribute on the H8/300, H8/300H, and H8S to
4006 indicate that the specified function is an interrupt handler. The compiler
4007 generates function entry and exit sequences suitable for use in an
4008 interrupt handler when this attribute is present.
4009
4010 @item saveall
4011 @cindex @code{saveall} function attribute, H8/300
4012 @cindex save all registers on the H8/300, H8/300H, and H8S
4013 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4014 all registers except the stack pointer should be saved in the prologue
4015 regardless of whether they are used or not.
4016 @end table
4017
4018 @node IA-64 Function Attributes
4019 @subsection IA-64 Function Attributes
4020
4021 These function attributes are supported on IA-64 targets:
4022
4023 @table @code
4024 @item syscall_linkage
4025 @cindex @code{syscall_linkage} function attribute, IA-64
4026 This attribute is used to modify the IA-64 calling convention by marking
4027 all input registers as live at all function exits. This makes it possible
4028 to restart a system call after an interrupt without having to save/restore
4029 the input registers. This also prevents kernel data from leaking into
4030 application code.
4031
4032 @item version_id
4033 @cindex @code{version_id} function attribute, IA-64
4034 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4035 symbol to contain a version string, thus allowing for function level
4036 versioning. HP-UX system header files may use function level versioning
4037 for some system calls.
4038
4039 @smallexample
4040 extern int foo () __attribute__((version_id ("20040821")));
4041 @end smallexample
4042
4043 @noindent
4044 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4045 @end table
4046
4047 @node M32C Function Attributes
4048 @subsection M32C Function Attributes
4049
4050 These function attributes are supported by the M32C back end:
4051
4052 @table @code
4053 @item bank_switch
4054 @cindex @code{bank_switch} function attribute, M32C
4055 When added to an interrupt handler with the M32C port, causes the
4056 prologue and epilogue to use bank switching to preserve the registers
4057 rather than saving them on the stack.
4058
4059 @item fast_interrupt
4060 @cindex @code{fast_interrupt} function attribute, M32C
4061 Use this attribute on the M32C port to indicate that the specified
4062 function is a fast interrupt handler. This is just like the
4063 @code{interrupt} attribute, except that @code{freit} is used to return
4064 instead of @code{reit}.
4065
4066 @item function_vector
4067 @cindex @code{function_vector} function attribute, M16C/M32C
4068 On M16C/M32C targets, the @code{function_vector} attribute declares a
4069 special page subroutine call function. Use of this attribute reduces
4070 the code size by 2 bytes for each call generated to the
4071 subroutine. The argument to the attribute is the vector number entry
4072 from the special page vector table which contains the 16 low-order
4073 bits of the subroutine's entry address. Each vector table has special
4074 page number (18 to 255) that is used in @code{jsrs} instructions.
4075 Jump addresses of the routines are generated by adding 0x0F0000 (in
4076 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4077 2-byte addresses set in the vector table. Therefore you need to ensure
4078 that all the special page vector routines should get mapped within the
4079 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4080 (for M32C).
4081
4082 In the following example 2 bytes are saved for each call to
4083 function @code{foo}.
4084
4085 @smallexample
4086 void foo (void) __attribute__((function_vector(0x18)));
4087 void foo (void)
4088 @{
4089 @}
4090
4091 void bar (void)
4092 @{
4093 foo();
4094 @}
4095 @end smallexample
4096
4097 If functions are defined in one file and are called in another file,
4098 then be sure to write this declaration in both files.
4099
4100 This attribute is ignored for R8C target.
4101
4102 @item interrupt
4103 @cindex @code{interrupt} function attribute, M32C
4104 Use this attribute to indicate
4105 that the specified function is an interrupt handler. The compiler generates
4106 function entry and exit sequences suitable for use in an interrupt handler
4107 when this attribute is present.
4108 @end table
4109
4110 @node M32R/D Function Attributes
4111 @subsection M32R/D Function Attributes
4112
4113 These function attributes are supported by the M32R/D back end:
4114
4115 @table @code
4116 @item interrupt
4117 @cindex @code{interrupt} function attribute, M32R/D
4118 Use this attribute to indicate
4119 that the specified function is an interrupt handler. The compiler generates
4120 function entry and exit sequences suitable for use in an interrupt handler
4121 when this attribute is present.
4122
4123 @item model (@var{model-name})
4124 @cindex @code{model} function attribute, M32R/D
4125 @cindex function addressability on the M32R/D
4126
4127 On the M32R/D, use this attribute to set the addressability of an
4128 object, and of the code generated for a function. The identifier
4129 @var{model-name} is one of @code{small}, @code{medium}, or
4130 @code{large}, representing each of the code models.
4131
4132 Small model objects live in the lower 16MB of memory (so that their
4133 addresses can be loaded with the @code{ld24} instruction), and are
4134 callable with the @code{bl} instruction.
4135
4136 Medium model objects may live anywhere in the 32-bit address space (the
4137 compiler generates @code{seth/add3} instructions to load their addresses),
4138 and are callable with the @code{bl} instruction.
4139
4140 Large model objects may live anywhere in the 32-bit address space (the
4141 compiler generates @code{seth/add3} instructions to load their addresses),
4142 and may not be reachable with the @code{bl} instruction (the compiler
4143 generates the much slower @code{seth/add3/jl} instruction sequence).
4144 @end table
4145
4146 @node m68k Function Attributes
4147 @subsection m68k Function Attributes
4148
4149 These function attributes are supported by the m68k back end:
4150
4151 @table @code
4152 @item interrupt
4153 @itemx interrupt_handler
4154 @cindex @code{interrupt} function attribute, m68k
4155 @cindex @code{interrupt_handler} function attribute, m68k
4156 Use this attribute to
4157 indicate that the specified function is an interrupt handler. The compiler
4158 generates function entry and exit sequences suitable for use in an
4159 interrupt handler when this attribute is present. Either name may be used.
4160
4161 @item interrupt_thread
4162 @cindex @code{interrupt_thread} function attribute, fido
4163 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4164 that the specified function is an interrupt handler that is designed
4165 to run as a thread. The compiler omits generate prologue/epilogue
4166 sequences and replaces the return instruction with a @code{sleep}
4167 instruction. This attribute is available only on fido.
4168 @end table
4169
4170 @node MCORE Function Attributes
4171 @subsection MCORE Function Attributes
4172
4173 These function attributes are supported by the MCORE back end:
4174
4175 @table @code
4176 @item naked
4177 @cindex @code{naked} function attribute, MCORE
4178 This attribute allows the compiler to construct the
4179 requisite function declaration, while allowing the body of the
4180 function to be assembly code. The specified function will not have
4181 prologue/epilogue sequences generated by the compiler. Only basic
4182 @code{asm} statements can safely be included in naked functions
4183 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4184 basic @code{asm} and C code may appear to work, they cannot be
4185 depended upon to work reliably and are not supported.
4186 @end table
4187
4188 @node MeP Function Attributes
4189 @subsection MeP Function Attributes
4190
4191 These function attributes are supported by the MeP back end:
4192
4193 @table @code
4194 @item disinterrupt
4195 @cindex @code{disinterrupt} function attribute, MeP
4196 On MeP targets, this attribute causes the compiler to emit
4197 instructions to disable interrupts for the duration of the given
4198 function.
4199
4200 @item interrupt
4201 @cindex @code{interrupt} function attribute, MeP
4202 Use this attribute to indicate
4203 that the specified function is an interrupt handler. The compiler generates
4204 function entry and exit sequences suitable for use in an interrupt handler
4205 when this attribute is present.
4206
4207 @item near
4208 @cindex @code{near} function attribute, MeP
4209 This attribute causes the compiler to assume the called
4210 function is close enough to use the normal calling convention,
4211 overriding the @option{-mtf} command-line option.
4212
4213 @item far
4214 @cindex @code{far} function attribute, MeP
4215 On MeP targets this causes the compiler to use a calling convention
4216 that assumes the called function is too far away for the built-in
4217 addressing modes.
4218
4219 @item vliw
4220 @cindex @code{vliw} function attribute, MeP
4221 The @code{vliw} attribute tells the compiler to emit
4222 instructions in VLIW mode instead of core mode. Note that this
4223 attribute is not allowed unless a VLIW coprocessor has been configured
4224 and enabled through command-line options.
4225 @end table
4226
4227 @node MicroBlaze Function Attributes
4228 @subsection MicroBlaze Function Attributes
4229
4230 These function attributes are supported on MicroBlaze targets:
4231
4232 @table @code
4233 @item save_volatiles
4234 @cindex @code{save_volatiles} function attribute, MicroBlaze
4235 Use this attribute to indicate that the function is
4236 an interrupt handler. All volatile registers (in addition to non-volatile
4237 registers) are saved in the function prologue. If the function is a leaf
4238 function, only volatiles used by the function are saved. A normal function
4239 return is generated instead of a return from interrupt.
4240
4241 @item break_handler
4242 @cindex @code{break_handler} function attribute, MicroBlaze
4243 @cindex break handler functions
4244 Use this attribute to indicate that
4245 the specified function is a break handler. The compiler generates function
4246 entry and exit sequences suitable for use in an break handler when this
4247 attribute is present. The return from @code{break_handler} is done through
4248 the @code{rtbd} instead of @code{rtsd}.
4249
4250 @smallexample
4251 void f () __attribute__ ((break_handler));
4252 @end smallexample
4253
4254 @item interrupt_handler
4255 @itemx fast_interrupt
4256 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4257 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4258 These attributes indicate that the specified function is an interrupt
4259 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4260 used in low-latency interrupt mode, and @code{interrupt_handler} for
4261 interrupts that do not use low-latency handlers. In both cases, GCC
4262 emits appropriate prologue code and generates a return from the handler
4263 using @code{rtid} instead of @code{rtsd}.
4264 @end table
4265
4266 @node Microsoft Windows Function Attributes
4267 @subsection Microsoft Windows Function Attributes
4268
4269 The following attributes are available on Microsoft Windows and Symbian OS
4270 targets.
4271
4272 @table @code
4273 @item dllexport
4274 @cindex @code{dllexport} function attribute
4275 @cindex @code{__declspec(dllexport)}
4276 On Microsoft Windows targets and Symbian OS targets the
4277 @code{dllexport} attribute causes the compiler to provide a global
4278 pointer to a pointer in a DLL, so that it can be referenced with the
4279 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4280 name is formed by combining @code{_imp__} and the function or variable
4281 name.
4282
4283 You can use @code{__declspec(dllexport)} as a synonym for
4284 @code{__attribute__ ((dllexport))} for compatibility with other
4285 compilers.
4286
4287 On systems that support the @code{visibility} attribute, this
4288 attribute also implies ``default'' visibility. It is an error to
4289 explicitly specify any other visibility.
4290
4291 GCC's default behavior is to emit all inline functions with the
4292 @code{dllexport} attribute. Since this can cause object file-size bloat,
4293 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4294 ignore the attribute for inlined functions unless the
4295 @option{-fkeep-inline-functions} flag is used instead.
4296
4297 The attribute is ignored for undefined symbols.
4298
4299 When applied to C++ classes, the attribute marks defined non-inlined
4300 member functions and static data members as exports. Static consts
4301 initialized in-class are not marked unless they are also defined
4302 out-of-class.
4303
4304 For Microsoft Windows targets there are alternative methods for
4305 including the symbol in the DLL's export table such as using a
4306 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4307 the @option{--export-all} linker flag.
4308
4309 @item dllimport
4310 @cindex @code{dllimport} function attribute
4311 @cindex @code{__declspec(dllimport)}
4312 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4313 attribute causes the compiler to reference a function or variable via
4314 a global pointer to a pointer that is set up by the DLL exporting the
4315 symbol. The attribute implies @code{extern}. On Microsoft Windows
4316 targets, the pointer name is formed by combining @code{_imp__} and the
4317 function or variable name.
4318
4319 You can use @code{__declspec(dllimport)} as a synonym for
4320 @code{__attribute__ ((dllimport))} for compatibility with other
4321 compilers.
4322
4323 On systems that support the @code{visibility} attribute, this
4324 attribute also implies ``default'' visibility. It is an error to
4325 explicitly specify any other visibility.
4326
4327 Currently, the attribute is ignored for inlined functions. If the
4328 attribute is applied to a symbol @emph{definition}, an error is reported.
4329 If a symbol previously declared @code{dllimport} is later defined, the
4330 attribute is ignored in subsequent references, and a warning is emitted.
4331 The attribute is also overridden by a subsequent declaration as
4332 @code{dllexport}.
4333
4334 When applied to C++ classes, the attribute marks non-inlined
4335 member functions and static data members as imports. However, the
4336 attribute is ignored for virtual methods to allow creation of vtables
4337 using thunks.
4338
4339 On the SH Symbian OS target the @code{dllimport} attribute also has
4340 another affect---it can cause the vtable and run-time type information
4341 for a class to be exported. This happens when the class has a
4342 dllimported constructor or a non-inline, non-pure virtual function
4343 and, for either of those two conditions, the class also has an inline
4344 constructor or destructor and has a key function that is defined in
4345 the current translation unit.
4346
4347 For Microsoft Windows targets the use of the @code{dllimport}
4348 attribute on functions is not necessary, but provides a small
4349 performance benefit by eliminating a thunk in the DLL@. The use of the
4350 @code{dllimport} attribute on imported variables can be avoided by passing the
4351 @option{--enable-auto-import} switch to the GNU linker. As with
4352 functions, using the attribute for a variable eliminates a thunk in
4353 the DLL@.
4354
4355 One drawback to using this attribute is that a pointer to a
4356 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4357 address. However, a pointer to a @emph{function} with the
4358 @code{dllimport} attribute can be used as a constant initializer; in
4359 this case, the address of a stub function in the import lib is
4360 referenced. On Microsoft Windows targets, the attribute can be disabled
4361 for functions by setting the @option{-mnop-fun-dllimport} flag.
4362 @end table
4363
4364 @node MIPS Function Attributes
4365 @subsection MIPS Function Attributes
4366
4367 These function attributes are supported by the MIPS back end:
4368
4369 @table @code
4370 @item interrupt
4371 @cindex @code{interrupt} function attribute, MIPS
4372 Use this attribute to indicate that the specified function is an interrupt
4373 handler. The compiler generates function entry and exit sequences suitable
4374 for use in an interrupt handler when this attribute is present.
4375 An optional argument is supported for the interrupt attribute which allows
4376 the interrupt mode to be described. By default GCC assumes the external
4377 interrupt controller (EIC) mode is in use, this can be explicitly set using
4378 @code{eic}. When interrupts are non-masked then the requested Interrupt
4379 Priority Level (IPL) is copied to the current IPL which has the effect of only
4380 enabling higher priority interrupts. To use vectored interrupt mode use
4381 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4382 the behavior of the non-masked interrupt support and GCC will arrange to mask
4383 all interrupts from sw0 up to and including the specified interrupt vector.
4384
4385 You can use the following attributes to modify the behavior
4386 of an interrupt handler:
4387 @table @code
4388 @item use_shadow_register_set
4389 @cindex @code{use_shadow_register_set} function attribute, MIPS
4390 Assume that the handler uses a shadow register set, instead of
4391 the main general-purpose registers. An optional argument @code{intstack} is
4392 supported to indicate that the shadow register set contains a valid stack
4393 pointer.
4394
4395 @item keep_interrupts_masked
4396 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4397 Keep interrupts masked for the whole function. Without this attribute,
4398 GCC tries to reenable interrupts for as much of the function as it can.
4399
4400 @item use_debug_exception_return
4401 @cindex @code{use_debug_exception_return} function attribute, MIPS
4402 Return using the @code{deret} instruction. Interrupt handlers that don't
4403 have this attribute return using @code{eret} instead.
4404 @end table
4405
4406 You can use any combination of these attributes, as shown below:
4407 @smallexample
4408 void __attribute__ ((interrupt)) v0 ();
4409 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4410 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4411 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4412 void __attribute__ ((interrupt, use_shadow_register_set,
4413 keep_interrupts_masked)) v4 ();
4414 void __attribute__ ((interrupt, use_shadow_register_set,
4415 use_debug_exception_return)) v5 ();
4416 void __attribute__ ((interrupt, keep_interrupts_masked,
4417 use_debug_exception_return)) v6 ();
4418 void __attribute__ ((interrupt, use_shadow_register_set,
4419 keep_interrupts_masked,
4420 use_debug_exception_return)) v7 ();
4421 void __attribute__ ((interrupt("eic"))) v8 ();
4422 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4423 @end smallexample
4424
4425 @item long_call
4426 @itemx near
4427 @itemx far
4428 @cindex indirect calls, MIPS
4429 @cindex @code{long_call} function attribute, MIPS
4430 @cindex @code{near} function attribute, MIPS
4431 @cindex @code{far} function attribute, MIPS
4432 These attributes specify how a particular function is called on MIPS@.
4433 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4434 command-line switch. The @code{long_call} and @code{far} attributes are
4435 synonyms, and cause the compiler to always call
4436 the function by first loading its address into a register, and then using
4437 the contents of that register. The @code{near} attribute has the opposite
4438 effect; it specifies that non-PIC calls should be made using the more
4439 efficient @code{jal} instruction.
4440
4441 @item mips16
4442 @itemx nomips16
4443 @cindex @code{mips16} function attribute, MIPS
4444 @cindex @code{nomips16} function attribute, MIPS
4445
4446 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4447 function attributes to locally select or turn off MIPS16 code generation.
4448 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4449 while MIPS16 code generation is disabled for functions with the
4450 @code{nomips16} attribute. These attributes override the
4451 @option{-mips16} and @option{-mno-mips16} options on the command line
4452 (@pxref{MIPS Options}).
4453
4454 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4455 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4456 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4457 may interact badly with some GCC extensions such as @code{__builtin_apply}
4458 (@pxref{Constructing Calls}).
4459
4460 @item micromips, MIPS
4461 @itemx nomicromips, MIPS
4462 @cindex @code{micromips} function attribute
4463 @cindex @code{nomicromips} function attribute
4464
4465 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4466 function attributes to locally select or turn off microMIPS code generation.
4467 A function with the @code{micromips} attribute is emitted as microMIPS code,
4468 while microMIPS code generation is disabled for functions with the
4469 @code{nomicromips} attribute. These attributes override the
4470 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4471 (@pxref{MIPS Options}).
4472
4473 When compiling files containing mixed microMIPS and non-microMIPS code, the
4474 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4475 command line,
4476 not that within individual functions. Mixed microMIPS and non-microMIPS code
4477 may interact badly with some GCC extensions such as @code{__builtin_apply}
4478 (@pxref{Constructing Calls}).
4479
4480 @item nocompression
4481 @cindex @code{nocompression} function attribute, MIPS
4482 On MIPS targets, you can use the @code{nocompression} function attribute
4483 to locally turn off MIPS16 and microMIPS code generation. This attribute
4484 overrides the @option{-mips16} and @option{-mmicromips} options on the
4485 command line (@pxref{MIPS Options}).
4486 @end table
4487
4488 @node MSP430 Function Attributes
4489 @subsection MSP430 Function Attributes
4490
4491 These function attributes are supported by the MSP430 back end:
4492
4493 @table @code
4494 @item critical
4495 @cindex @code{critical} function attribute, MSP430
4496 Critical functions disable interrupts upon entry and restore the
4497 previous interrupt state upon exit. Critical functions cannot also
4498 have the @code{naked} or @code{reentrant} attributes. They can have
4499 the @code{interrupt} attribute.
4500
4501 @item interrupt
4502 @cindex @code{interrupt} function attribute, MSP430
4503 Use this attribute to indicate
4504 that the specified function is an interrupt handler. The compiler generates
4505 function entry and exit sequences suitable for use in an interrupt handler
4506 when this attribute is present.
4507
4508 You can provide an argument to the interrupt
4509 attribute which specifies a name or number. If the argument is a
4510 number it indicates the slot in the interrupt vector table (0 - 31) to
4511 which this handler should be assigned. If the argument is a name it
4512 is treated as a symbolic name for the vector slot. These names should
4513 match up with appropriate entries in the linker script. By default
4514 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4515 @code{reset} for vector 31 are recognized.
4516
4517 @item naked
4518 @cindex @code{naked} function attribute, MSP430
4519 This attribute allows the compiler to construct the
4520 requisite function declaration, while allowing the body of the
4521 function to be assembly code. The specified function will not have
4522 prologue/epilogue sequences generated by the compiler. Only basic
4523 @code{asm} statements can safely be included in naked functions
4524 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4525 basic @code{asm} and C code may appear to work, they cannot be
4526 depended upon to work reliably and are not supported.
4527
4528 @item reentrant
4529 @cindex @code{reentrant} function attribute, MSP430
4530 Reentrant functions disable interrupts upon entry and enable them
4531 upon exit. Reentrant functions cannot also have the @code{naked}
4532 or @code{critical} attributes. They can have the @code{interrupt}
4533 attribute.
4534
4535 @item wakeup
4536 @cindex @code{wakeup} function attribute, MSP430
4537 This attribute only applies to interrupt functions. It is silently
4538 ignored if applied to a non-interrupt function. A wakeup interrupt
4539 function will rouse the processor from any low-power state that it
4540 might be in when the function exits.
4541
4542 @item lower
4543 @itemx upper
4544 @itemx either
4545 @cindex @code{lower} function attribute, MSP430
4546 @cindex @code{upper} function attribute, MSP430
4547 @cindex @code{either} function attribute, MSP430
4548 On the MSP430 target these attributes can be used to specify whether
4549 the function or variable should be placed into low memory, high
4550 memory, or the placement should be left to the linker to decide. The
4551 attributes are only significant if compiling for the MSP430X
4552 architecture.
4553
4554 The attributes work in conjunction with a linker script that has been
4555 augmented to specify where to place sections with a @code{.lower} and
4556 a @code{.upper} prefix. So, for example, as well as placing the
4557 @code{.data} section, the script also specifies the placement of a
4558 @code{.lower.data} and a @code{.upper.data} section. The intention
4559 is that @code{lower} sections are placed into a small but easier to
4560 access memory region and the upper sections are placed into a larger, but
4561 slower to access, region.
4562
4563 The @code{either} attribute is special. It tells the linker to place
4564 the object into the corresponding @code{lower} section if there is
4565 room for it. If there is insufficient room then the object is placed
4566 into the corresponding @code{upper} section instead. Note that the
4567 placement algorithm is not very sophisticated. It does not attempt to
4568 find an optimal packing of the @code{lower} sections. It just makes
4569 one pass over the objects and does the best that it can. Using the
4570 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4571 options can help the packing, however, since they produce smaller,
4572 easier to pack regions.
4573 @end table
4574
4575 @node NDS32 Function Attributes
4576 @subsection NDS32 Function Attributes
4577
4578 These function attributes are supported by the NDS32 back end:
4579
4580 @table @code
4581 @item exception
4582 @cindex @code{exception} function attribute
4583 @cindex exception handler functions, NDS32
4584 Use this attribute on the NDS32 target to indicate that the specified function
4585 is an exception handler. The compiler will generate corresponding sections
4586 for use in an exception handler.
4587
4588 @item interrupt
4589 @cindex @code{interrupt} function attribute, NDS32
4590 On NDS32 target, this attribute indicates that the specified function
4591 is an interrupt handler. The compiler generates corresponding sections
4592 for use in an interrupt handler. You can use the following attributes
4593 to modify the behavior:
4594 @table @code
4595 @item nested
4596 @cindex @code{nested} function attribute, NDS32
4597 This interrupt service routine is interruptible.
4598 @item not_nested
4599 @cindex @code{not_nested} function attribute, NDS32
4600 This interrupt service routine is not interruptible.
4601 @item nested_ready
4602 @cindex @code{nested_ready} function attribute, NDS32
4603 This interrupt service routine is interruptible after @code{PSW.GIE}
4604 (global interrupt enable) is set. This allows interrupt service routine to
4605 finish some short critical code before enabling interrupts.
4606 @item save_all
4607 @cindex @code{save_all} function attribute, NDS32
4608 The system will help save all registers into stack before entering
4609 interrupt handler.
4610 @item partial_save
4611 @cindex @code{partial_save} function attribute, NDS32
4612 The system will help save caller registers into stack before entering
4613 interrupt handler.
4614 @end table
4615
4616 @item naked
4617 @cindex @code{naked} function attribute, NDS32
4618 This attribute allows the compiler to construct the
4619 requisite function declaration, while allowing the body of the
4620 function to be assembly code. The specified function will not have
4621 prologue/epilogue sequences generated by the compiler. Only basic
4622 @code{asm} statements can safely be included in naked functions
4623 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4624 basic @code{asm} and C code may appear to work, they cannot be
4625 depended upon to work reliably and are not supported.
4626
4627 @item reset
4628 @cindex @code{reset} function attribute, NDS32
4629 @cindex reset handler functions
4630 Use this attribute on the NDS32 target to indicate that the specified function
4631 is a reset handler. The compiler will generate corresponding sections
4632 for use in a reset handler. You can use the following attributes
4633 to provide extra exception handling:
4634 @table @code
4635 @item nmi
4636 @cindex @code{nmi} function attribute, NDS32
4637 Provide a user-defined function to handle NMI exception.
4638 @item warm
4639 @cindex @code{warm} function attribute, NDS32
4640 Provide a user-defined function to handle warm reset exception.
4641 @end table
4642 @end table
4643
4644 @node Nios II Function Attributes
4645 @subsection Nios II Function Attributes
4646
4647 These function attributes are supported by the Nios II back end:
4648
4649 @table @code
4650 @item target (@var{options})
4651 @cindex @code{target} function attribute
4652 As discussed in @ref{Common Function Attributes}, this attribute
4653 allows specification of target-specific compilation options.
4654
4655 When compiling for Nios II, the following options are allowed:
4656
4657 @table @samp
4658 @item custom-@var{insn}=@var{N}
4659 @itemx no-custom-@var{insn}
4660 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4661 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4662 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4663 custom instruction with encoding @var{N} when generating code that uses
4664 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4665 the custom instruction @var{insn}.
4666 These target attributes correspond to the
4667 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4668 command-line options, and support the same set of @var{insn} keywords.
4669 @xref{Nios II Options}, for more information.
4670
4671 @item custom-fpu-cfg=@var{name}
4672 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4673 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4674 command-line option, to select a predefined set of custom instructions
4675 named @var{name}.
4676 @xref{Nios II Options}, for more information.
4677 @end table
4678 @end table
4679
4680 @node Nvidia PTX Function Attributes
4681 @subsection Nvidia PTX Function Attributes
4682
4683 These function attributes are supported by the Nvidia PTX back end:
4684
4685 @table @code
4686 @item kernel
4687 @cindex @code{kernel} attribute, Nvidia PTX
4688 This attribute indicates that the corresponding function should be compiled
4689 as a kernel function, which can be invoked from the host via the CUDA RT
4690 library.
4691 By default functions are only callable only from other PTX functions.
4692
4693 Kernel functions must have @code{void} return type.
4694 @end table
4695
4696 @node PowerPC Function Attributes
4697 @subsection PowerPC Function Attributes
4698
4699 These function attributes are supported by the PowerPC back end:
4700
4701 @table @code
4702 @item longcall
4703 @itemx shortcall
4704 @cindex indirect calls, PowerPC
4705 @cindex @code{longcall} function attribute, PowerPC
4706 @cindex @code{shortcall} function attribute, PowerPC
4707 The @code{longcall} attribute
4708 indicates that the function might be far away from the call site and
4709 require a different (more expensive) calling sequence. The
4710 @code{shortcall} attribute indicates that the function is always close
4711 enough for the shorter calling sequence to be used. These attributes
4712 override both the @option{-mlongcall} switch and
4713 the @code{#pragma longcall} setting.
4714
4715 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4716 calls are necessary.
4717
4718 @item target (@var{options})
4719 @cindex @code{target} function attribute
4720 As discussed in @ref{Common Function Attributes}, this attribute
4721 allows specification of target-specific compilation options.
4722
4723 On the PowerPC, the following options are allowed:
4724
4725 @table @samp
4726 @item altivec
4727 @itemx no-altivec
4728 @cindex @code{target("altivec")} function attribute, PowerPC
4729 Generate code that uses (does not use) AltiVec instructions. In
4730 32-bit code, you cannot enable AltiVec instructions unless
4731 @option{-mabi=altivec} is used on the command line.
4732
4733 @item cmpb
4734 @itemx no-cmpb
4735 @cindex @code{target("cmpb")} function attribute, PowerPC
4736 Generate code that uses (does not use) the compare bytes instruction
4737 implemented on the POWER6 processor and other processors that support
4738 the PowerPC V2.05 architecture.
4739
4740 @item dlmzb
4741 @itemx no-dlmzb
4742 @cindex @code{target("dlmzb")} function attribute, PowerPC
4743 Generate code that uses (does not use) the string-search @samp{dlmzb}
4744 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4745 generated by default when targeting those processors.
4746
4747 @item fprnd
4748 @itemx no-fprnd
4749 @cindex @code{target("fprnd")} function attribute, PowerPC
4750 Generate code that uses (does not use) the FP round to integer
4751 instructions implemented on the POWER5+ processor and other processors
4752 that support the PowerPC V2.03 architecture.
4753
4754 @item hard-dfp
4755 @itemx no-hard-dfp
4756 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4757 Generate code that uses (does not use) the decimal floating-point
4758 instructions implemented on some POWER processors.
4759
4760 @item isel
4761 @itemx no-isel
4762 @cindex @code{target("isel")} function attribute, PowerPC
4763 Generate code that uses (does not use) ISEL instruction.
4764
4765 @item mfcrf
4766 @itemx no-mfcrf
4767 @cindex @code{target("mfcrf")} function attribute, PowerPC
4768 Generate code that uses (does not use) the move from condition
4769 register field instruction implemented on the POWER4 processor and
4770 other processors that support the PowerPC V2.01 architecture.
4771
4772 @item mfpgpr
4773 @itemx no-mfpgpr
4774 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4775 Generate code that uses (does not use) the FP move to/from general
4776 purpose register instructions implemented on the POWER6X processor and
4777 other processors that support the extended PowerPC V2.05 architecture.
4778
4779 @item mulhw
4780 @itemx no-mulhw
4781 @cindex @code{target("mulhw")} function attribute, PowerPC
4782 Generate code that uses (does not use) the half-word multiply and
4783 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4784 These instructions are generated by default when targeting those
4785 processors.
4786
4787 @item multiple
4788 @itemx no-multiple
4789 @cindex @code{target("multiple")} function attribute, PowerPC
4790 Generate code that uses (does not use) the load multiple word
4791 instructions and the store multiple word instructions.
4792
4793 @item update
4794 @itemx no-update
4795 @cindex @code{target("update")} function attribute, PowerPC
4796 Generate code that uses (does not use) the load or store instructions
4797 that update the base register to the address of the calculated memory
4798 location.
4799
4800 @item popcntb
4801 @itemx no-popcntb
4802 @cindex @code{target("popcntb")} function attribute, PowerPC
4803 Generate code that uses (does not use) the popcount and double-precision
4804 FP reciprocal estimate instruction implemented on the POWER5
4805 processor and other processors that support the PowerPC V2.02
4806 architecture.
4807
4808 @item popcntd
4809 @itemx no-popcntd
4810 @cindex @code{target("popcntd")} function attribute, PowerPC
4811 Generate code that uses (does not use) the popcount instruction
4812 implemented on the POWER7 processor and other processors that support
4813 the PowerPC V2.06 architecture.
4814
4815 @item powerpc-gfxopt
4816 @itemx no-powerpc-gfxopt
4817 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4818 Generate code that uses (does not use) the optional PowerPC
4819 architecture instructions in the Graphics group, including
4820 floating-point select.
4821
4822 @item powerpc-gpopt
4823 @itemx no-powerpc-gpopt
4824 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4825 Generate code that uses (does not use) the optional PowerPC
4826 architecture instructions in the General Purpose group, including
4827 floating-point square root.
4828
4829 @item recip-precision
4830 @itemx no-recip-precision
4831 @cindex @code{target("recip-precision")} function attribute, PowerPC
4832 Assume (do not assume) that the reciprocal estimate instructions
4833 provide higher-precision estimates than is mandated by the PowerPC
4834 ABI.
4835
4836 @item string
4837 @itemx no-string
4838 @cindex @code{target("string")} function attribute, PowerPC
4839 Generate code that uses (does not use) the load string instructions
4840 and the store string word instructions to save multiple registers and
4841 do small block moves.
4842
4843 @item vsx
4844 @itemx no-vsx
4845 @cindex @code{target("vsx")} function attribute, PowerPC
4846 Generate code that uses (does not use) vector/scalar (VSX)
4847 instructions, and also enable the use of built-in functions that allow
4848 more direct access to the VSX instruction set. In 32-bit code, you
4849 cannot enable VSX or AltiVec instructions unless
4850 @option{-mabi=altivec} is used on the command line.
4851
4852 @item friz
4853 @itemx no-friz
4854 @cindex @code{target("friz")} function attribute, PowerPC
4855 Generate (do not generate) the @code{friz} instruction when the
4856 @option{-funsafe-math-optimizations} option is used to optimize
4857 rounding a floating-point value to 64-bit integer and back to floating
4858 point. The @code{friz} instruction does not return the same value if
4859 the floating-point number is too large to fit in an integer.
4860
4861 @item avoid-indexed-addresses
4862 @itemx no-avoid-indexed-addresses
4863 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4864 Generate code that tries to avoid (not avoid) the use of indexed load
4865 or store instructions.
4866
4867 @item paired
4868 @itemx no-paired
4869 @cindex @code{target("paired")} function attribute, PowerPC
4870 Generate code that uses (does not use) the generation of PAIRED simd
4871 instructions.
4872
4873 @item longcall
4874 @itemx no-longcall
4875 @cindex @code{target("longcall")} function attribute, PowerPC
4876 Generate code that assumes (does not assume) that all calls are far
4877 away so that a longer more expensive calling sequence is required.
4878
4879 @item cpu=@var{CPU}
4880 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4881 Specify the architecture to generate code for when compiling the
4882 function. If you select the @code{target("cpu=power7")} attribute when
4883 generating 32-bit code, VSX and AltiVec instructions are not generated
4884 unless you use the @option{-mabi=altivec} option on the command line.
4885
4886 @item tune=@var{TUNE}
4887 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4888 Specify the architecture to tune for when compiling the function. If
4889 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4890 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4891 compilation tunes for the @var{CPU} architecture, and not the
4892 default tuning specified on the command line.
4893 @end table
4894
4895 On the PowerPC, the inliner does not inline a
4896 function that has different target options than the caller, unless the
4897 callee has a subset of the target options of the caller.
4898 @end table
4899
4900 @node RL78 Function Attributes
4901 @subsection RL78 Function Attributes
4902
4903 These function attributes are supported by the RL78 back end:
4904
4905 @table @code
4906 @item interrupt
4907 @itemx brk_interrupt
4908 @cindex @code{interrupt} function attribute, RL78
4909 @cindex @code{brk_interrupt} function attribute, RL78
4910 These attributes indicate
4911 that the specified function is an interrupt handler. The compiler generates
4912 function entry and exit sequences suitable for use in an interrupt handler
4913 when this attribute is present.
4914
4915 Use @code{brk_interrupt} instead of @code{interrupt} for
4916 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
4917 that must end with @code{RETB} instead of @code{RETI}).
4918
4919 @item naked
4920 @cindex @code{naked} function attribute, RL78
4921 This attribute allows the compiler to construct the
4922 requisite function declaration, while allowing the body of the
4923 function to be assembly code. The specified function will not have
4924 prologue/epilogue sequences generated by the compiler. Only basic
4925 @code{asm} statements can safely be included in naked functions
4926 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4927 basic @code{asm} and C code may appear to work, they cannot be
4928 depended upon to work reliably and are not supported.
4929 @end table
4930
4931 @node RX Function Attributes
4932 @subsection RX Function Attributes
4933
4934 These function attributes are supported by the RX back end:
4935
4936 @table @code
4937 @item fast_interrupt
4938 @cindex @code{fast_interrupt} function attribute, RX
4939 Use this attribute on the RX port to indicate that the specified
4940 function is a fast interrupt handler. This is just like the
4941 @code{interrupt} attribute, except that @code{freit} is used to return
4942 instead of @code{reit}.
4943
4944 @item interrupt
4945 @cindex @code{interrupt} function attribute, RX
4946 Use this attribute to indicate
4947 that the specified function is an interrupt handler. The compiler generates
4948 function entry and exit sequences suitable for use in an interrupt handler
4949 when this attribute is present.
4950
4951 On RX targets, you may specify one or more vector numbers as arguments
4952 to the attribute, as well as naming an alternate table name.
4953 Parameters are handled sequentially, so one handler can be assigned to
4954 multiple entries in multiple tables. One may also pass the magic
4955 string @code{"$default"} which causes the function to be used for any
4956 unfilled slots in the current table.
4957
4958 This example shows a simple assignment of a function to one vector in
4959 the default table (note that preprocessor macros may be used for
4960 chip-specific symbolic vector names):
4961 @smallexample
4962 void __attribute__ ((interrupt (5))) txd1_handler ();
4963 @end smallexample
4964
4965 This example assigns a function to two slots in the default table
4966 (using preprocessor macros defined elsewhere) and makes it the default
4967 for the @code{dct} table:
4968 @smallexample
4969 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
4970 txd1_handler ();
4971 @end smallexample
4972
4973 @item naked
4974 @cindex @code{naked} function attribute, RX
4975 This attribute allows the compiler to construct the
4976 requisite function declaration, while allowing the body of the
4977 function to be assembly code. The specified function will not have
4978 prologue/epilogue sequences generated by the compiler. Only basic
4979 @code{asm} statements can safely be included in naked functions
4980 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4981 basic @code{asm} and C code may appear to work, they cannot be
4982 depended upon to work reliably and are not supported.
4983
4984 @item vector
4985 @cindex @code{vector} function attribute, RX
4986 This RX attribute is similar to the @code{interrupt} attribute, including its
4987 parameters, but does not make the function an interrupt-handler type
4988 function (i.e. it retains the normal C function calling ABI). See the
4989 @code{interrupt} attribute for a description of its arguments.
4990 @end table
4991
4992 @node S/390 Function Attributes
4993 @subsection S/390 Function Attributes
4994
4995 These function attributes are supported on the S/390:
4996
4997 @table @code
4998 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
4999 @cindex @code{hotpatch} function attribute, S/390
5000
5001 On S/390 System z targets, you can use this function attribute to
5002 make GCC generate a ``hot-patching'' function prologue. If the
5003 @option{-mhotpatch=} command-line option is used at the same time,
5004 the @code{hotpatch} attribute takes precedence. The first of the
5005 two arguments specifies the number of halfwords to be added before
5006 the function label. A second argument can be used to specify the
5007 number of halfwords to be added after the function label. For
5008 both arguments the maximum allowed value is 1000000.
5009
5010 If both arguments are zero, hotpatching is disabled.
5011
5012 @item target (@var{options})
5013 @cindex @code{target} function attribute
5014 As discussed in @ref{Common Function Attributes}, this attribute
5015 allows specification of target-specific compilation options.
5016
5017 On S/390, the following options are supported:
5018
5019 @table @samp
5020 @item arch=
5021 @item tune=
5022 @item stack-guard=
5023 @item stack-size=
5024 @item branch-cost=
5025 @item warn-framesize=
5026 @item backchain
5027 @itemx no-backchain
5028 @item hard-dfp
5029 @itemx no-hard-dfp
5030 @item hard-float
5031 @itemx soft-float
5032 @item htm
5033 @itemx no-htm
5034 @item vx
5035 @itemx no-vx
5036 @item packed-stack
5037 @itemx no-packed-stack
5038 @item small-exec
5039 @itemx no-small-exec
5040 @item mvcle
5041 @itemx no-mvcle
5042 @item warn-dynamicstack
5043 @itemx no-warn-dynamicstack
5044 @end table
5045
5046 The options work exactly like the S/390 specific command line
5047 options (without the prefix @option{-m}) except that they do not
5048 change any feature macros. For example,
5049
5050 @smallexample
5051 @code{target("no-vx")}
5052 @end smallexample
5053
5054 does not undefine the @code{__VEC__} macro.
5055 @end table
5056
5057 @node SH Function Attributes
5058 @subsection SH Function Attributes
5059
5060 These function attributes are supported on the SH family of processors:
5061
5062 @table @code
5063 @item function_vector
5064 @cindex @code{function_vector} function attribute, SH
5065 @cindex calling functions through the function vector on SH2A
5066 On SH2A targets, this attribute declares a function to be called using the
5067 TBR relative addressing mode. The argument to this attribute is the entry
5068 number of the same function in a vector table containing all the TBR
5069 relative addressable functions. For correct operation the TBR must be setup
5070 accordingly to point to the start of the vector table before any functions with
5071 this attribute are invoked. Usually a good place to do the initialization is
5072 the startup routine. The TBR relative vector table can have at max 256 function
5073 entries. The jumps to these functions are generated using a SH2A specific,
5074 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5075 from GNU binutils version 2.7 or later for this attribute to work correctly.
5076
5077 In an application, for a function being called once, this attribute
5078 saves at least 8 bytes of code; and if other successive calls are being
5079 made to the same function, it saves 2 bytes of code per each of these
5080 calls.
5081
5082 @item interrupt_handler
5083 @cindex @code{interrupt_handler} function attribute, SH
5084 Use this attribute to
5085 indicate that the specified function is an interrupt handler. The compiler
5086 generates function entry and exit sequences suitable for use in an
5087 interrupt handler when this attribute is present.
5088
5089 @item nosave_low_regs
5090 @cindex @code{nosave_low_regs} function attribute, SH
5091 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5092 function should not save and restore registers R0..R7. This can be used on SH3*
5093 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5094 interrupt handlers.
5095
5096 @item renesas
5097 @cindex @code{renesas} function attribute, SH
5098 On SH targets this attribute specifies that the function or struct follows the
5099 Renesas ABI.
5100
5101 @item resbank
5102 @cindex @code{resbank} function attribute, SH
5103 On the SH2A target, this attribute enables the high-speed register
5104 saving and restoration using a register bank for @code{interrupt_handler}
5105 routines. Saving to the bank is performed automatically after the CPU
5106 accepts an interrupt that uses a register bank.
5107
5108 The nineteen 32-bit registers comprising general register R0 to R14,
5109 control register GBR, and system registers MACH, MACL, and PR and the
5110 vector table address offset are saved into a register bank. Register
5111 banks are stacked in first-in last-out (FILO) sequence. Restoration
5112 from the bank is executed by issuing a RESBANK instruction.
5113
5114 @item sp_switch
5115 @cindex @code{sp_switch} function attribute, SH
5116 Use this attribute on the SH to indicate an @code{interrupt_handler}
5117 function should switch to an alternate stack. It expects a string
5118 argument that names a global variable holding the address of the
5119 alternate stack.
5120
5121 @smallexample
5122 void *alt_stack;
5123 void f () __attribute__ ((interrupt_handler,
5124 sp_switch ("alt_stack")));
5125 @end smallexample
5126
5127 @item trap_exit
5128 @cindex @code{trap_exit} function attribute, SH
5129 Use this attribute on the SH for an @code{interrupt_handler} to return using
5130 @code{trapa} instead of @code{rte}. This attribute expects an integer
5131 argument specifying the trap number to be used.
5132
5133 @item trapa_handler
5134 @cindex @code{trapa_handler} function attribute, SH
5135 On SH targets this function attribute is similar to @code{interrupt_handler}
5136 but it does not save and restore all registers.
5137 @end table
5138
5139 @node SPU Function Attributes
5140 @subsection SPU Function Attributes
5141
5142 These function attributes are supported by the SPU back end:
5143
5144 @table @code
5145 @item naked
5146 @cindex @code{naked} function attribute, SPU
5147 This attribute allows the compiler to construct the
5148 requisite function declaration, while allowing the body of the
5149 function to be assembly code. The specified function will not have
5150 prologue/epilogue sequences generated by the compiler. Only basic
5151 @code{asm} statements can safely be included in naked functions
5152 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5153 basic @code{asm} and C code may appear to work, they cannot be
5154 depended upon to work reliably and are not supported.
5155 @end table
5156
5157 @node Symbian OS Function Attributes
5158 @subsection Symbian OS Function Attributes
5159
5160 @xref{Microsoft Windows Function Attributes}, for discussion of the
5161 @code{dllexport} and @code{dllimport} attributes.
5162
5163 @node V850 Function Attributes
5164 @subsection V850 Function Attributes
5165
5166 The V850 back end supports these function attributes:
5167
5168 @table @code
5169 @item interrupt
5170 @itemx interrupt_handler
5171 @cindex @code{interrupt} function attribute, V850
5172 @cindex @code{interrupt_handler} function attribute, V850
5173 Use these attributes to indicate
5174 that the specified function is an interrupt handler. The compiler generates
5175 function entry and exit sequences suitable for use in an interrupt handler
5176 when either attribute is present.
5177 @end table
5178
5179 @node Visium Function Attributes
5180 @subsection Visium Function Attributes
5181
5182 These function attributes are supported by the Visium back end:
5183
5184 @table @code
5185 @item interrupt
5186 @cindex @code{interrupt} function attribute, Visium
5187 Use this attribute to indicate
5188 that the specified function is an interrupt handler. The compiler generates
5189 function entry and exit sequences suitable for use in an interrupt handler
5190 when this attribute is present.
5191 @end table
5192
5193 @node x86 Function Attributes
5194 @subsection x86 Function Attributes
5195
5196 These function attributes are supported by the x86 back end:
5197
5198 @table @code
5199 @item cdecl
5200 @cindex @code{cdecl} function attribute, x86-32
5201 @cindex functions that pop the argument stack on x86-32
5202 @opindex mrtd
5203 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5204 assume that the calling function pops off the stack space used to
5205 pass arguments. This is
5206 useful to override the effects of the @option{-mrtd} switch.
5207
5208 @item fastcall
5209 @cindex @code{fastcall} function attribute, x86-32
5210 @cindex functions that pop the argument stack on x86-32
5211 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5212 pass the first argument (if of integral type) in the register ECX and
5213 the second argument (if of integral type) in the register EDX@. Subsequent
5214 and other typed arguments are passed on the stack. The called function
5215 pops the arguments off the stack. If the number of arguments is variable all
5216 arguments are pushed on the stack.
5217
5218 @item thiscall
5219 @cindex @code{thiscall} function attribute, x86-32
5220 @cindex functions that pop the argument stack on x86-32
5221 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5222 pass the first argument (if of integral type) in the register ECX.
5223 Subsequent and other typed arguments are passed on the stack. The called
5224 function pops the arguments off the stack.
5225 If the number of arguments is variable all arguments are pushed on the
5226 stack.
5227 The @code{thiscall} attribute is intended for C++ non-static member functions.
5228 As a GCC extension, this calling convention can be used for C functions
5229 and for static member methods.
5230
5231 @item ms_abi
5232 @itemx sysv_abi
5233 @cindex @code{ms_abi} function attribute, x86
5234 @cindex @code{sysv_abi} function attribute, x86
5235
5236 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5237 to indicate which calling convention should be used for a function. The
5238 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5239 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5240 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5241 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5242
5243 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5244 requires the @option{-maccumulate-outgoing-args} option.
5245
5246 @item callee_pop_aggregate_return (@var{number})
5247 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5248
5249 On x86-32 targets, you can use this attribute to control how
5250 aggregates are returned in memory. If the caller is responsible for
5251 popping the hidden pointer together with the rest of the arguments, specify
5252 @var{number} equal to zero. If callee is responsible for popping the
5253 hidden pointer, specify @var{number} equal to one.
5254
5255 The default x86-32 ABI assumes that the callee pops the
5256 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5257 the compiler assumes that the
5258 caller pops the stack for hidden pointer.
5259
5260 @item ms_hook_prologue
5261 @cindex @code{ms_hook_prologue} function attribute, x86
5262
5263 On 32-bit and 64-bit x86 targets, you can use
5264 this function attribute to make GCC generate the ``hot-patching'' function
5265 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5266 and newer.
5267
5268 @item regparm (@var{number})
5269 @cindex @code{regparm} function attribute, x86
5270 @cindex functions that are passed arguments in registers on x86-32
5271 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5272 pass arguments number one to @var{number} if they are of integral type
5273 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5274 take a variable number of arguments continue to be passed all of their
5275 arguments on the stack.
5276
5277 Beware that on some ELF systems this attribute is unsuitable for
5278 global functions in shared libraries with lazy binding (which is the
5279 default). Lazy binding sends the first call via resolving code in
5280 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5281 per the standard calling conventions. Solaris 8 is affected by this.
5282 Systems with the GNU C Library version 2.1 or higher
5283 and FreeBSD are believed to be
5284 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5285 disabled with the linker or the loader if desired, to avoid the
5286 problem.)
5287
5288 @item sseregparm
5289 @cindex @code{sseregparm} function attribute, x86
5290 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5291 causes the compiler to pass up to 3 floating-point arguments in
5292 SSE registers instead of on the stack. Functions that take a
5293 variable number of arguments continue to pass all of their
5294 floating-point arguments on the stack.
5295
5296 @item force_align_arg_pointer
5297 @cindex @code{force_align_arg_pointer} function attribute, x86
5298 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5299 applied to individual function definitions, generating an alternate
5300 prologue and epilogue that realigns the run-time stack if necessary.
5301 This supports mixing legacy codes that run with a 4-byte aligned stack
5302 with modern codes that keep a 16-byte stack for SSE compatibility.
5303
5304 @item stdcall
5305 @cindex @code{stdcall} function attribute, x86-32
5306 @cindex functions that pop the argument stack on x86-32
5307 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5308 assume that the called function pops off the stack space used to
5309 pass arguments, unless it takes a variable number of arguments.
5310
5311 @item no_caller_saved_registers
5312 @cindex @code{no_caller_saved_registers} function attribute, x86
5313 Use this attribute to indicate that the specified function has no
5314 caller-saved registers. That is, all registers are callee-saved. For
5315 example, this attribute can be used for a function called from an
5316 interrupt handler. The compiler generates proper function entry and
5317 exit sequences to save and restore any modified registers, except for
5318 the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87
5319 states, the GCC option @option{-mgeneral-regs-only} should be used to
5320 compile functions with @code{no_caller_saved_registers} attribute.
5321
5322 @item interrupt
5323 @cindex @code{interrupt} function attribute, x86
5324 Use this attribute to indicate that the specified function is an
5325 interrupt handler or an exception handler (depending on parameters passed
5326 to the function, explained further). The compiler generates function
5327 entry and exit sequences suitable for use in an interrupt handler when
5328 this attribute is present. The @code{IRET} instruction, instead of the
5329 @code{RET} instruction, is used to return from interrupt handlers. All
5330 registers, except for the EFLAGS register which is restored by the
5331 @code{IRET} instruction, are preserved by the compiler. Since GCC
5332 doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option
5333 @option{-mgeneral-regs-only} should be used to compile interrupt and
5334 exception handlers.
5335
5336 Any interruptible-without-stack-switch code must be compiled with
5337 @option{-mno-red-zone} since interrupt handlers can and will, because
5338 of the hardware design, touch the red zone.
5339
5340 An interrupt handler must be declared with a mandatory pointer
5341 argument:
5342
5343 @smallexample
5344 struct interrupt_frame;
5345
5346 __attribute__ ((interrupt))
5347 void
5348 f (struct interrupt_frame *frame)
5349 @{
5350 @}
5351 @end smallexample
5352
5353 @noindent
5354 and you must define @code{struct interrupt_frame} as described in the
5355 processor's manual.
5356
5357 Exception handlers differ from interrupt handlers because the system
5358 pushes an error code on the stack. An exception handler declaration is
5359 similar to that for an interrupt handler, but with a different mandatory
5360 function signature. The compiler arranges to pop the error code off the
5361 stack before the @code{IRET} instruction.
5362
5363 @smallexample
5364 #ifdef __x86_64__
5365 typedef unsigned long long int uword_t;
5366 #else
5367 typedef unsigned int uword_t;
5368 #endif
5369
5370 struct interrupt_frame;
5371
5372 __attribute__ ((interrupt))
5373 void
5374 f (struct interrupt_frame *frame, uword_t error_code)
5375 @{
5376 ...
5377 @}
5378 @end smallexample
5379
5380 Exception handlers should only be used for exceptions that push an error
5381 code; you should use an interrupt handler in other cases. The system
5382 will crash if the wrong kind of handler is used.
5383
5384 @item target (@var{options})
5385 @cindex @code{target} function attribute
5386 As discussed in @ref{Common Function Attributes}, this attribute
5387 allows specification of target-specific compilation options.
5388
5389 On the x86, the following options are allowed:
5390 @table @samp
5391 @item abm
5392 @itemx no-abm
5393 @cindex @code{target("abm")} function attribute, x86
5394 Enable/disable the generation of the advanced bit instructions.
5395
5396 @item aes
5397 @itemx no-aes
5398 @cindex @code{target("aes")} function attribute, x86
5399 Enable/disable the generation of the AES instructions.
5400
5401 @item default
5402 @cindex @code{target("default")} function attribute, x86
5403 @xref{Function Multiversioning}, where it is used to specify the
5404 default function version.
5405
5406 @item mmx
5407 @itemx no-mmx
5408 @cindex @code{target("mmx")} function attribute, x86
5409 Enable/disable the generation of the MMX instructions.
5410
5411 @item pclmul
5412 @itemx no-pclmul
5413 @cindex @code{target("pclmul")} function attribute, x86
5414 Enable/disable the generation of the PCLMUL instructions.
5415
5416 @item popcnt
5417 @itemx no-popcnt
5418 @cindex @code{target("popcnt")} function attribute, x86
5419 Enable/disable the generation of the POPCNT instruction.
5420
5421 @item sse
5422 @itemx no-sse
5423 @cindex @code{target("sse")} function attribute, x86
5424 Enable/disable the generation of the SSE instructions.
5425
5426 @item sse2
5427 @itemx no-sse2
5428 @cindex @code{target("sse2")} function attribute, x86
5429 Enable/disable the generation of the SSE2 instructions.
5430
5431 @item sse3
5432 @itemx no-sse3
5433 @cindex @code{target("sse3")} function attribute, x86
5434 Enable/disable the generation of the SSE3 instructions.
5435
5436 @item sse4
5437 @itemx no-sse4
5438 @cindex @code{target("sse4")} function attribute, x86
5439 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5440 and SSE4.2).
5441
5442 @item sse4.1
5443 @itemx no-sse4.1
5444 @cindex @code{target("sse4.1")} function attribute, x86
5445 Enable/disable the generation of the sse4.1 instructions.
5446
5447 @item sse4.2
5448 @itemx no-sse4.2
5449 @cindex @code{target("sse4.2")} function attribute, x86
5450 Enable/disable the generation of the sse4.2 instructions.
5451
5452 @item sse4a
5453 @itemx no-sse4a
5454 @cindex @code{target("sse4a")} function attribute, x86
5455 Enable/disable the generation of the SSE4A instructions.
5456
5457 @item fma4
5458 @itemx no-fma4
5459 @cindex @code{target("fma4")} function attribute, x86
5460 Enable/disable the generation of the FMA4 instructions.
5461
5462 @item xop
5463 @itemx no-xop
5464 @cindex @code{target("xop")} function attribute, x86
5465 Enable/disable the generation of the XOP instructions.
5466
5467 @item lwp
5468 @itemx no-lwp
5469 @cindex @code{target("lwp")} function attribute, x86
5470 Enable/disable the generation of the LWP instructions.
5471
5472 @item ssse3
5473 @itemx no-ssse3
5474 @cindex @code{target("ssse3")} function attribute, x86
5475 Enable/disable the generation of the SSSE3 instructions.
5476
5477 @item cld
5478 @itemx no-cld
5479 @cindex @code{target("cld")} function attribute, x86
5480 Enable/disable the generation of the CLD before string moves.
5481
5482 @item fancy-math-387
5483 @itemx no-fancy-math-387
5484 @cindex @code{target("fancy-math-387")} function attribute, x86
5485 Enable/disable the generation of the @code{sin}, @code{cos}, and
5486 @code{sqrt} instructions on the 387 floating-point unit.
5487
5488 @item ieee-fp
5489 @itemx no-ieee-fp
5490 @cindex @code{target("ieee-fp")} function attribute, x86
5491 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5492
5493 @item inline-all-stringops
5494 @itemx no-inline-all-stringops
5495 @cindex @code{target("inline-all-stringops")} function attribute, x86
5496 Enable/disable inlining of string operations.
5497
5498 @item inline-stringops-dynamically
5499 @itemx no-inline-stringops-dynamically
5500 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5501 Enable/disable the generation of the inline code to do small string
5502 operations and calling the library routines for large operations.
5503
5504 @item align-stringops
5505 @itemx no-align-stringops
5506 @cindex @code{target("align-stringops")} function attribute, x86
5507 Do/do not align destination of inlined string operations.
5508
5509 @item recip
5510 @itemx no-recip
5511 @cindex @code{target("recip")} function attribute, x86
5512 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5513 instructions followed an additional Newton-Raphson step instead of
5514 doing a floating-point division.
5515
5516 @item arch=@var{ARCH}
5517 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5518 Specify the architecture to generate code for in compiling the function.
5519
5520 @item tune=@var{TUNE}
5521 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5522 Specify the architecture to tune for in compiling the function.
5523
5524 @item fpmath=@var{FPMATH}
5525 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5526 Specify which floating-point unit to use. You must specify the
5527 @code{target("fpmath=sse,387")} option as
5528 @code{target("fpmath=sse+387")} because the comma would separate
5529 different options.
5530 @end table
5531
5532 On the x86, the inliner does not inline a
5533 function that has different target options than the caller, unless the
5534 callee has a subset of the target options of the caller. For example
5535 a function declared with @code{target("sse3")} can inline a function
5536 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5537 @end table
5538
5539 @node Xstormy16 Function Attributes
5540 @subsection Xstormy16 Function Attributes
5541
5542 These function attributes are supported by the Xstormy16 back end:
5543
5544 @table @code
5545 @item interrupt
5546 @cindex @code{interrupt} function attribute, Xstormy16
5547 Use this attribute to indicate
5548 that the specified function is an interrupt handler. The compiler generates
5549 function entry and exit sequences suitable for use in an interrupt handler
5550 when this attribute is present.
5551 @end table
5552
5553 @node Variable Attributes
5554 @section Specifying Attributes of Variables
5555 @cindex attribute of variables
5556 @cindex variable attributes
5557
5558 The keyword @code{__attribute__} allows you to specify special
5559 attributes of variables or structure fields. This keyword is followed
5560 by an attribute specification inside double parentheses. Some
5561 attributes are currently defined generically for variables.
5562 Other attributes are defined for variables on particular target
5563 systems. Other attributes are available for functions
5564 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5565 enumerators (@pxref{Enumerator Attributes}), statements
5566 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5567 Other front ends might define more attributes
5568 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5569
5570 @xref{Attribute Syntax}, for details of the exact syntax for using
5571 attributes.
5572
5573 @menu
5574 * Common Variable Attributes::
5575 * AVR Variable Attributes::
5576 * Blackfin Variable Attributes::
5577 * H8/300 Variable Attributes::
5578 * IA-64 Variable Attributes::
5579 * M32R/D Variable Attributes::
5580 * MeP Variable Attributes::
5581 * Microsoft Windows Variable Attributes::
5582 * MSP430 Variable Attributes::
5583 * Nvidia PTX Variable Attributes::
5584 * PowerPC Variable Attributes::
5585 * RL78 Variable Attributes::
5586 * SPU Variable Attributes::
5587 * V850 Variable Attributes::
5588 * x86 Variable Attributes::
5589 * Xstormy16 Variable Attributes::
5590 @end menu
5591
5592 @node Common Variable Attributes
5593 @subsection Common Variable Attributes
5594
5595 The following attributes are supported on most targets.
5596
5597 @table @code
5598 @cindex @code{aligned} variable attribute
5599 @item aligned (@var{alignment})
5600 This attribute specifies a minimum alignment for the variable or
5601 structure field, measured in bytes. For example, the declaration:
5602
5603 @smallexample
5604 int x __attribute__ ((aligned (16))) = 0;
5605 @end smallexample
5606
5607 @noindent
5608 causes the compiler to allocate the global variable @code{x} on a
5609 16-byte boundary. On a 68040, this could be used in conjunction with
5610 an @code{asm} expression to access the @code{move16} instruction which
5611 requires 16-byte aligned operands.
5612
5613 You can also specify the alignment of structure fields. For example, to
5614 create a double-word aligned @code{int} pair, you could write:
5615
5616 @smallexample
5617 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5618 @end smallexample
5619
5620 @noindent
5621 This is an alternative to creating a union with a @code{double} member,
5622 which forces the union to be double-word aligned.
5623
5624 As in the preceding examples, you can explicitly specify the alignment
5625 (in bytes) that you wish the compiler to use for a given variable or
5626 structure field. Alternatively, you can leave out the alignment factor
5627 and just ask the compiler to align a variable or field to the
5628 default alignment for the target architecture you are compiling for.
5629 The default alignment is sufficient for all scalar types, but may not be
5630 enough for all vector types on a target that supports vector operations.
5631 The default alignment is fixed for a particular target ABI.
5632
5633 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5634 which is the largest alignment ever used for any data type on the
5635 target machine you are compiling for. For example, you could write:
5636
5637 @smallexample
5638 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5639 @end smallexample
5640
5641 The compiler automatically sets the alignment for the declared
5642 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5643 often make copy operations more efficient, because the compiler can
5644 use whatever instructions copy the biggest chunks of memory when
5645 performing copies to or from the variables or fields that you have
5646 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5647 may change depending on command-line options.
5648
5649 When used on a struct, or struct member, the @code{aligned} attribute can
5650 only increase the alignment; in order to decrease it, the @code{packed}
5651 attribute must be specified as well. When used as part of a typedef, the
5652 @code{aligned} attribute can both increase and decrease alignment, and
5653 specifying the @code{packed} attribute generates a warning.
5654
5655 Note that the effectiveness of @code{aligned} attributes may be limited
5656 by inherent limitations in your linker. On many systems, the linker is
5657 only able to arrange for variables to be aligned up to a certain maximum
5658 alignment. (For some linkers, the maximum supported alignment may
5659 be very very small.) If your linker is only able to align variables
5660 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5661 in an @code{__attribute__} still only provides you with 8-byte
5662 alignment. See your linker documentation for further information.
5663
5664 The @code{aligned} attribute can also be used for functions
5665 (@pxref{Common Function Attributes}.)
5666
5667 @item cleanup (@var{cleanup_function})
5668 @cindex @code{cleanup} variable attribute
5669 The @code{cleanup} attribute runs a function when the variable goes
5670 out of scope. This attribute can only be applied to auto function
5671 scope variables; it may not be applied to parameters or variables
5672 with static storage duration. The function must take one parameter,
5673 a pointer to a type compatible with the variable. The return value
5674 of the function (if any) is ignored.
5675
5676 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5677 is run during the stack unwinding that happens during the
5678 processing of the exception. Note that the @code{cleanup} attribute
5679 does not allow the exception to be caught, only to perform an action.
5680 It is undefined what happens if @var{cleanup_function} does not
5681 return normally.
5682
5683 @item common
5684 @itemx nocommon
5685 @cindex @code{common} variable attribute
5686 @cindex @code{nocommon} variable attribute
5687 @opindex fcommon
5688 @opindex fno-common
5689 The @code{common} attribute requests GCC to place a variable in
5690 ``common'' storage. The @code{nocommon} attribute requests the
5691 opposite---to allocate space for it directly.
5692
5693 These attributes override the default chosen by the
5694 @option{-fno-common} and @option{-fcommon} flags respectively.
5695
5696 @item deprecated
5697 @itemx deprecated (@var{msg})
5698 @cindex @code{deprecated} variable attribute
5699 The @code{deprecated} attribute results in a warning if the variable
5700 is used anywhere in the source file. This is useful when identifying
5701 variables that are expected to be removed in a future version of a
5702 program. The warning also includes the location of the declaration
5703 of the deprecated variable, to enable users to easily find further
5704 information about why the variable is deprecated, or what they should
5705 do instead. Note that the warning only occurs for uses:
5706
5707 @smallexample
5708 extern int old_var __attribute__ ((deprecated));
5709 extern int old_var;
5710 int new_fn () @{ return old_var; @}
5711 @end smallexample
5712
5713 @noindent
5714 results in a warning on line 3 but not line 2. The optional @var{msg}
5715 argument, which must be a string, is printed in the warning if
5716 present.
5717
5718 The @code{deprecated} attribute can also be used for functions and
5719 types (@pxref{Common Function Attributes},
5720 @pxref{Common Type Attributes}).
5721
5722 @item mode (@var{mode})
5723 @cindex @code{mode} variable attribute
5724 This attribute specifies the data type for the declaration---whichever
5725 type corresponds to the mode @var{mode}. This in effect lets you
5726 request an integer or floating-point type according to its width.
5727
5728 You may also specify a mode of @code{byte} or @code{__byte__} to
5729 indicate the mode corresponding to a one-byte integer, @code{word} or
5730 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5731 or @code{__pointer__} for the mode used to represent pointers.
5732
5733 @item packed
5734 @cindex @code{packed} variable attribute
5735 The @code{packed} attribute specifies that a variable or structure field
5736 should have the smallest possible alignment---one byte for a variable,
5737 and one bit for a field, unless you specify a larger value with the
5738 @code{aligned} attribute.
5739
5740 Here is a structure in which the field @code{x} is packed, so that it
5741 immediately follows @code{a}:
5742
5743 @smallexample
5744 struct foo
5745 @{
5746 char a;
5747 int x[2] __attribute__ ((packed));
5748 @};
5749 @end smallexample
5750
5751 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5752 @code{packed} attribute on bit-fields of type @code{char}. This has
5753 been fixed in GCC 4.4 but the change can lead to differences in the
5754 structure layout. See the documentation of
5755 @option{-Wpacked-bitfield-compat} for more information.
5756
5757 @item section ("@var{section-name}")
5758 @cindex @code{section} variable attribute
5759 Normally, the compiler places the objects it generates in sections like
5760 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5761 or you need certain particular variables to appear in special sections,
5762 for example to map to special hardware. The @code{section}
5763 attribute specifies that a variable (or function) lives in a particular
5764 section. For example, this small program uses several specific section names:
5765
5766 @smallexample
5767 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5768 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5769 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5770 int init_data __attribute__ ((section ("INITDATA")));
5771
5772 main()
5773 @{
5774 /* @r{Initialize stack pointer} */
5775 init_sp (stack + sizeof (stack));
5776
5777 /* @r{Initialize initialized data} */
5778 memcpy (&init_data, &data, &edata - &data);
5779
5780 /* @r{Turn on the serial ports} */
5781 init_duart (&a);
5782 init_duart (&b);
5783 @}
5784 @end smallexample
5785
5786 @noindent
5787 Use the @code{section} attribute with
5788 @emph{global} variables and not @emph{local} variables,
5789 as shown in the example.
5790
5791 You may use the @code{section} attribute with initialized or
5792 uninitialized global variables but the linker requires
5793 each object be defined once, with the exception that uninitialized
5794 variables tentatively go in the @code{common} (or @code{bss}) section
5795 and can be multiply ``defined''. Using the @code{section} attribute
5796 changes what section the variable goes into and may cause the
5797 linker to issue an error if an uninitialized variable has multiple
5798 definitions. You can force a variable to be initialized with the
5799 @option{-fno-common} flag or the @code{nocommon} attribute.
5800
5801 Some file formats do not support arbitrary sections so the @code{section}
5802 attribute is not available on all platforms.
5803 If you need to map the entire contents of a module to a particular
5804 section, consider using the facilities of the linker instead.
5805
5806 @item tls_model ("@var{tls_model}")
5807 @cindex @code{tls_model} variable attribute
5808 The @code{tls_model} attribute sets thread-local storage model
5809 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5810 overriding @option{-ftls-model=} command-line switch on a per-variable
5811 basis.
5812 The @var{tls_model} argument should be one of @code{global-dynamic},
5813 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5814
5815 Not all targets support this attribute.
5816
5817 @item unused
5818 @cindex @code{unused} variable attribute
5819 This attribute, attached to a variable, means that the variable is meant
5820 to be possibly unused. GCC does not produce a warning for this
5821 variable.
5822
5823 @item used
5824 @cindex @code{used} variable attribute
5825 This attribute, attached to a variable with static storage, means that
5826 the variable must be emitted even if it appears that the variable is not
5827 referenced.
5828
5829 When applied to a static data member of a C++ class template, the
5830 attribute also means that the member is instantiated if the
5831 class itself is instantiated.
5832
5833 @item vector_size (@var{bytes})
5834 @cindex @code{vector_size} variable attribute
5835 This attribute specifies the vector size for the variable, measured in
5836 bytes. For example, the declaration:
5837
5838 @smallexample
5839 int foo __attribute__ ((vector_size (16)));
5840 @end smallexample
5841
5842 @noindent
5843 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5844 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5845 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5846
5847 This attribute is only applicable to integral and float scalars,
5848 although arrays, pointers, and function return values are allowed in
5849 conjunction with this construct.
5850
5851 Aggregates with this attribute are invalid, even if they are of the same
5852 size as a corresponding scalar. For example, the declaration:
5853
5854 @smallexample
5855 struct S @{ int a; @};
5856 struct S __attribute__ ((vector_size (16))) foo;
5857 @end smallexample
5858
5859 @noindent
5860 is invalid even if the size of the structure is the same as the size of
5861 the @code{int}.
5862
5863 @item visibility ("@var{visibility_type}")
5864 @cindex @code{visibility} variable attribute
5865 This attribute affects the linkage of the declaration to which it is attached.
5866 The @code{visibility} attribute is described in
5867 @ref{Common Function Attributes}.
5868
5869 @item weak
5870 @cindex @code{weak} variable attribute
5871 The @code{weak} attribute is described in
5872 @ref{Common Function Attributes}.
5873
5874 @end table
5875
5876 @node AVR Variable Attributes
5877 @subsection AVR Variable Attributes
5878
5879 @table @code
5880 @item progmem
5881 @cindex @code{progmem} variable attribute, AVR
5882 The @code{progmem} attribute is used on the AVR to place read-only
5883 data in the non-volatile program memory (flash). The @code{progmem}
5884 attribute accomplishes this by putting respective variables into a
5885 section whose name starts with @code{.progmem}.
5886
5887 This attribute works similar to the @code{section} attribute
5888 but adds additional checking.
5889
5890 @table @asis
5891 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
5892 @code{progmem} affects the location
5893 of the data but not how this data is accessed.
5894 In order to read data located with the @code{progmem} attribute
5895 (inline) assembler must be used.
5896 @smallexample
5897 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5898 #include <avr/pgmspace.h>
5899
5900 /* Locate var in flash memory */
5901 const int var[2] PROGMEM = @{ 1, 2 @};
5902
5903 int read_var (int i)
5904 @{
5905 /* Access var[] by accessor macro from avr/pgmspace.h */
5906 return (int) pgm_read_word (& var[i]);
5907 @}
5908 @end smallexample
5909
5910 AVR is a Harvard architecture processor and data and read-only data
5911 normally resides in the data memory (RAM).
5912
5913 See also the @ref{AVR Named Address Spaces} section for
5914 an alternate way to locate and access data in flash memory.
5915
5916 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
5917 The compiler adds @code{0x4000}
5918 to the addresses of objects and declarations in @code{progmem} and locates
5919 the objects in flash memory, namely in section @code{.progmem.data}.
5920 The offset is needed because the flash memory is visible in the RAM
5921 address space starting at address @code{0x4000}.
5922
5923 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
5924 no special functions or macros are needed.
5925
5926 @smallexample
5927 /* var is located in flash memory */
5928 extern const int var[2] __attribute__((progmem));
5929
5930 int read_var (int i)
5931 @{
5932 return var[i];
5933 @}
5934 @end smallexample
5935
5936 Please notice that on these devices, there is no need for @code{progmem}
5937 at all. Just use an appropriate linker description file like outlined below.
5938
5939 @smallexample
5940 .text :
5941 @{ ...
5942 @} > text
5943 /* Leave .rodata in flash and add an offset of 0x4000 to all
5944 addresses so that respective objects can be accessed by LD
5945 instructions and open coded C/C++. This means there is no
5946 need for progmem in the source and no overhead by read-only
5947 data in RAM. */
5948 .rodata ADDR(.text) + SIZEOF (.text) + 0x4000 :
5949 @{
5950 *(.rodata)
5951 *(.rodata*)
5952 *(.gnu.linkonce.r*)
5953 @} AT> text
5954 /* No more need to put .rodata into .data:
5955 Removed all .rodata entries from .data. */
5956 .data :
5957 @{ ...
5958 @end smallexample
5959
5960 @end table
5961
5962 @item io
5963 @itemx io (@var{addr})
5964 @cindex @code{io} variable attribute, AVR
5965 Variables with the @code{io} attribute are used to address
5966 memory-mapped peripherals in the io address range.
5967 If an address is specified, the variable
5968 is assigned that address, and the value is interpreted as an
5969 address in the data address space.
5970 Example:
5971
5972 @smallexample
5973 volatile int porta __attribute__((io (0x22)));
5974 @end smallexample
5975
5976 The address specified in the address in the data address range.
5977
5978 Otherwise, the variable it is not assigned an address, but the
5979 compiler will still use in/out instructions where applicable,
5980 assuming some other module assigns an address in the io address range.
5981 Example:
5982
5983 @smallexample
5984 extern volatile int porta __attribute__((io));
5985 @end smallexample
5986
5987 @item io_low
5988 @itemx io_low (@var{addr})
5989 @cindex @code{io_low} variable attribute, AVR
5990 This is like the @code{io} attribute, but additionally it informs the
5991 compiler that the object lies in the lower half of the I/O area,
5992 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
5993 instructions.
5994
5995 @item address
5996 @itemx address (@var{addr})
5997 @cindex @code{address} variable attribute, AVR
5998 Variables with the @code{address} attribute are used to address
5999 memory-mapped peripherals that may lie outside the io address range.
6000
6001 @smallexample
6002 volatile int porta __attribute__((address (0x600)));
6003 @end smallexample
6004
6005 @item absdata
6006 @cindex @code{absdata} variable attribute, AVR
6007 Variables in static storage and with the @code{absdata} attribute can
6008 be accessed by the @code{LDS} and @code{STS} instructions which take
6009 absolute addresses.
6010
6011 @itemize @bullet
6012 @item
6013 This attribute is only supported for the reduced AVR Tiny core
6014 like ATtiny40.
6015
6016 @item
6017 You must make sure that respective data is located in the
6018 address range @code{0x40}@dots{}@code{0xbf} accessible by
6019 @code{LDS} and @code{STS}. One way to achieve this as an
6020 appropriate linker description file.
6021
6022 @item
6023 If the location does not fit the address range of @code{LDS}
6024 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
6025 warning like
6026 @quotation
6027 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6028 @end quotation
6029
6030 @end itemize
6031
6032 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
6033
6034 @end table
6035
6036 @node Blackfin Variable Attributes
6037 @subsection Blackfin Variable Attributes
6038
6039 Three attributes are currently defined for the Blackfin.
6040
6041 @table @code
6042 @item l1_data
6043 @itemx l1_data_A
6044 @itemx l1_data_B
6045 @cindex @code{l1_data} variable attribute, Blackfin
6046 @cindex @code{l1_data_A} variable attribute, Blackfin
6047 @cindex @code{l1_data_B} variable attribute, Blackfin
6048 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6049 Variables with @code{l1_data} attribute are put into the specific section
6050 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6051 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6052 attribute are put into the specific section named @code{.l1.data.B}.
6053
6054 @item l2
6055 @cindex @code{l2} variable attribute, Blackfin
6056 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6057 Variables with @code{l2} attribute are put into the specific section
6058 named @code{.l2.data}.
6059 @end table
6060
6061 @node H8/300 Variable Attributes
6062 @subsection H8/300 Variable Attributes
6063
6064 These variable attributes are available for H8/300 targets:
6065
6066 @table @code
6067 @item eightbit_data
6068 @cindex @code{eightbit_data} variable attribute, H8/300
6069 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6070 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6071 variable should be placed into the eight-bit data section.
6072 The compiler generates more efficient code for certain operations
6073 on data in the eight-bit data area. Note the eight-bit data area is limited to
6074 256 bytes of data.
6075
6076 You must use GAS and GLD from GNU binutils version 2.7 or later for
6077 this attribute to work correctly.
6078
6079 @item tiny_data
6080 @cindex @code{tiny_data} variable attribute, H8/300
6081 @cindex tiny data section on the H8/300H and H8S
6082 Use this attribute on the H8/300H and H8S to indicate that the specified
6083 variable should be placed into the tiny data section.
6084 The compiler generates more efficient code for loads and stores
6085 on data in the tiny data section. Note the tiny data area is limited to
6086 slightly under 32KB of data.
6087
6088 @end table
6089
6090 @node IA-64 Variable Attributes
6091 @subsection IA-64 Variable Attributes
6092
6093 The IA-64 back end supports the following variable attribute:
6094
6095 @table @code
6096 @item model (@var{model-name})
6097 @cindex @code{model} variable attribute, IA-64
6098
6099 On IA-64, use this attribute to set the addressability of an object.
6100 At present, the only supported identifier for @var{model-name} is
6101 @code{small}, indicating addressability via ``small'' (22-bit)
6102 addresses (so that their addresses can be loaded with the @code{addl}
6103 instruction). Caveat: such addressing is by definition not position
6104 independent and hence this attribute must not be used for objects
6105 defined by shared libraries.
6106
6107 @end table
6108
6109 @node M32R/D Variable Attributes
6110 @subsection M32R/D Variable Attributes
6111
6112 One attribute is currently defined for the M32R/D@.
6113
6114 @table @code
6115 @item model (@var{model-name})
6116 @cindex @code{model-name} variable attribute, M32R/D
6117 @cindex variable addressability on the M32R/D
6118 Use this attribute on the M32R/D to set the addressability of an object.
6119 The identifier @var{model-name} is one of @code{small}, @code{medium},
6120 or @code{large}, representing each of the code models.
6121
6122 Small model objects live in the lower 16MB of memory (so that their
6123 addresses can be loaded with the @code{ld24} instruction).
6124
6125 Medium and large model objects may live anywhere in the 32-bit address space
6126 (the compiler generates @code{seth/add3} instructions to load their
6127 addresses).
6128 @end table
6129
6130 @node MeP Variable Attributes
6131 @subsection MeP Variable Attributes
6132
6133 The MeP target has a number of addressing modes and busses. The
6134 @code{near} space spans the standard memory space's first 16 megabytes
6135 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6136 The @code{based} space is a 128-byte region in the memory space that
6137 is addressed relative to the @code{$tp} register. The @code{tiny}
6138 space is a 65536-byte region relative to the @code{$gp} register. In
6139 addition to these memory regions, the MeP target has a separate 16-bit
6140 control bus which is specified with @code{cb} attributes.
6141
6142 @table @code
6143
6144 @item based
6145 @cindex @code{based} variable attribute, MeP
6146 Any variable with the @code{based} attribute is assigned to the
6147 @code{.based} section, and is accessed with relative to the
6148 @code{$tp} register.
6149
6150 @item tiny
6151 @cindex @code{tiny} variable attribute, MeP
6152 Likewise, the @code{tiny} attribute assigned variables to the
6153 @code{.tiny} section, relative to the @code{$gp} register.
6154
6155 @item near
6156 @cindex @code{near} variable attribute, MeP
6157 Variables with the @code{near} attribute are assumed to have addresses
6158 that fit in a 24-bit addressing mode. This is the default for large
6159 variables (@code{-mtiny=4} is the default) but this attribute can
6160 override @code{-mtiny=} for small variables, or override @code{-ml}.
6161
6162 @item far
6163 @cindex @code{far} variable attribute, MeP
6164 Variables with the @code{far} attribute are addressed using a full
6165 32-bit address. Since this covers the entire memory space, this
6166 allows modules to make no assumptions about where variables might be
6167 stored.
6168
6169 @item io
6170 @cindex @code{io} variable attribute, MeP
6171 @itemx io (@var{addr})
6172 Variables with the @code{io} attribute are used to address
6173 memory-mapped peripherals. If an address is specified, the variable
6174 is assigned that address, else it is not assigned an address (it is
6175 assumed some other module assigns an address). Example:
6176
6177 @smallexample
6178 int timer_count __attribute__((io(0x123)));
6179 @end smallexample
6180
6181 @item cb
6182 @itemx cb (@var{addr})
6183 @cindex @code{cb} variable attribute, MeP
6184 Variables with the @code{cb} attribute are used to access the control
6185 bus, using special instructions. @code{addr} indicates the control bus
6186 address. Example:
6187
6188 @smallexample
6189 int cpu_clock __attribute__((cb(0x123)));
6190 @end smallexample
6191
6192 @end table
6193
6194 @node Microsoft Windows Variable Attributes
6195 @subsection Microsoft Windows Variable Attributes
6196
6197 You can use these attributes on Microsoft Windows targets.
6198 @ref{x86 Variable Attributes} for additional Windows compatibility
6199 attributes available on all x86 targets.
6200
6201 @table @code
6202 @item dllimport
6203 @itemx dllexport
6204 @cindex @code{dllimport} variable attribute
6205 @cindex @code{dllexport} variable attribute
6206 The @code{dllimport} and @code{dllexport} attributes are described in
6207 @ref{Microsoft Windows Function Attributes}.
6208
6209 @item selectany
6210 @cindex @code{selectany} variable attribute
6211 The @code{selectany} attribute causes an initialized global variable to
6212 have link-once semantics. When multiple definitions of the variable are
6213 encountered by the linker, the first is selected and the remainder are
6214 discarded. Following usage by the Microsoft compiler, the linker is told
6215 @emph{not} to warn about size or content differences of the multiple
6216 definitions.
6217
6218 Although the primary usage of this attribute is for POD types, the
6219 attribute can also be applied to global C++ objects that are initialized
6220 by a constructor. In this case, the static initialization and destruction
6221 code for the object is emitted in each translation defining the object,
6222 but the calls to the constructor and destructor are protected by a
6223 link-once guard variable.
6224
6225 The @code{selectany} attribute is only available on Microsoft Windows
6226 targets. You can use @code{__declspec (selectany)} as a synonym for
6227 @code{__attribute__ ((selectany))} for compatibility with other
6228 compilers.
6229
6230 @item shared
6231 @cindex @code{shared} variable attribute
6232 On Microsoft Windows, in addition to putting variable definitions in a named
6233 section, the section can also be shared among all running copies of an
6234 executable or DLL@. For example, this small program defines shared data
6235 by putting it in a named section @code{shared} and marking the section
6236 shareable:
6237
6238 @smallexample
6239 int foo __attribute__((section ("shared"), shared)) = 0;
6240
6241 int
6242 main()
6243 @{
6244 /* @r{Read and write foo. All running
6245 copies see the same value.} */
6246 return 0;
6247 @}
6248 @end smallexample
6249
6250 @noindent
6251 You may only use the @code{shared} attribute along with @code{section}
6252 attribute with a fully-initialized global definition because of the way
6253 linkers work. See @code{section} attribute for more information.
6254
6255 The @code{shared} attribute is only available on Microsoft Windows@.
6256
6257 @end table
6258
6259 @node MSP430 Variable Attributes
6260 @subsection MSP430 Variable Attributes
6261
6262 @table @code
6263 @item noinit
6264 @cindex @code{noinit} variable attribute, MSP430
6265 Any data with the @code{noinit} attribute will not be initialised by
6266 the C runtime startup code, or the program loader. Not initialising
6267 data in this way can reduce program startup times.
6268
6269 @item persistent
6270 @cindex @code{persistent} variable attribute, MSP430
6271 Any variable with the @code{persistent} attribute will not be
6272 initialised by the C runtime startup code. Instead its value will be
6273 set once, when the application is loaded, and then never initialised
6274 again, even if the processor is reset or the program restarts.
6275 Persistent data is intended to be placed into FLASH RAM, where its
6276 value will be retained across resets. The linker script being used to
6277 create the application should ensure that persistent data is correctly
6278 placed.
6279
6280 @item lower
6281 @itemx upper
6282 @itemx either
6283 @cindex @code{lower} variable attribute, MSP430
6284 @cindex @code{upper} variable attribute, MSP430
6285 @cindex @code{either} variable attribute, MSP430
6286 These attributes are the same as the MSP430 function attributes of the
6287 same name (@pxref{MSP430 Function Attributes}).
6288 These attributes can be applied to both functions and variables.
6289 @end table
6290
6291 @node Nvidia PTX Variable Attributes
6292 @subsection Nvidia PTX Variable Attributes
6293
6294 These variable attributes are supported by the Nvidia PTX back end:
6295
6296 @table @code
6297 @item shared
6298 @cindex @code{shared} attribute, Nvidia PTX
6299 Use this attribute to place a variable in the @code{.shared} memory space.
6300 This memory space is private to each cooperative thread array; only threads
6301 within one thread block refer to the same instance of the variable.
6302 The runtime does not initialize variables in this memory space.
6303 @end table
6304
6305 @node PowerPC Variable Attributes
6306 @subsection PowerPC Variable Attributes
6307
6308 Three attributes currently are defined for PowerPC configurations:
6309 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6310
6311 @cindex @code{ms_struct} variable attribute, PowerPC
6312 @cindex @code{gcc_struct} variable attribute, PowerPC
6313 For full documentation of the struct attributes please see the
6314 documentation in @ref{x86 Variable Attributes}.
6315
6316 @cindex @code{altivec} variable attribute, PowerPC
6317 For documentation of @code{altivec} attribute please see the
6318 documentation in @ref{PowerPC Type Attributes}.
6319
6320 @node RL78 Variable Attributes
6321 @subsection RL78 Variable Attributes
6322
6323 @cindex @code{saddr} variable attribute, RL78
6324 The RL78 back end supports the @code{saddr} variable attribute. This
6325 specifies placement of the corresponding variable in the SADDR area,
6326 which can be accessed more efficiently than the default memory region.
6327
6328 @node SPU Variable Attributes
6329 @subsection SPU Variable Attributes
6330
6331 @cindex @code{spu_vector} variable attribute, SPU
6332 The SPU supports the @code{spu_vector} attribute for variables. For
6333 documentation of this attribute please see the documentation in
6334 @ref{SPU Type Attributes}.
6335
6336 @node V850 Variable Attributes
6337 @subsection V850 Variable Attributes
6338
6339 These variable attributes are supported by the V850 back end:
6340
6341 @table @code
6342
6343 @item sda
6344 @cindex @code{sda} variable attribute, V850
6345 Use this attribute to explicitly place a variable in the small data area,
6346 which can hold up to 64 kilobytes.
6347
6348 @item tda
6349 @cindex @code{tda} variable attribute, V850
6350 Use this attribute to explicitly place a variable in the tiny data area,
6351 which can hold up to 256 bytes in total.
6352
6353 @item zda
6354 @cindex @code{zda} variable attribute, V850
6355 Use this attribute to explicitly place a variable in the first 32 kilobytes
6356 of memory.
6357 @end table
6358
6359 @node x86 Variable Attributes
6360 @subsection x86 Variable Attributes
6361
6362 Two attributes are currently defined for x86 configurations:
6363 @code{ms_struct} and @code{gcc_struct}.
6364
6365 @table @code
6366 @item ms_struct
6367 @itemx gcc_struct
6368 @cindex @code{ms_struct} variable attribute, x86
6369 @cindex @code{gcc_struct} variable attribute, x86
6370
6371 If @code{packed} is used on a structure, or if bit-fields are used,
6372 it may be that the Microsoft ABI lays out the structure differently
6373 than the way GCC normally does. Particularly when moving packed
6374 data between functions compiled with GCC and the native Microsoft compiler
6375 (either via function call or as data in a file), it may be necessary to access
6376 either format.
6377
6378 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6379 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6380 command-line options, respectively;
6381 see @ref{x86 Options}, for details of how structure layout is affected.
6382 @xref{x86 Type Attributes}, for information about the corresponding
6383 attributes on types.
6384
6385 @end table
6386
6387 @node Xstormy16 Variable Attributes
6388 @subsection Xstormy16 Variable Attributes
6389
6390 One attribute is currently defined for xstormy16 configurations:
6391 @code{below100}.
6392
6393 @table @code
6394 @item below100
6395 @cindex @code{below100} variable attribute, Xstormy16
6396
6397 If a variable has the @code{below100} attribute (@code{BELOW100} is
6398 allowed also), GCC places the variable in the first 0x100 bytes of
6399 memory and use special opcodes to access it. Such variables are
6400 placed in either the @code{.bss_below100} section or the
6401 @code{.data_below100} section.
6402
6403 @end table
6404
6405 @node Type Attributes
6406 @section Specifying Attributes of Types
6407 @cindex attribute of types
6408 @cindex type attributes
6409
6410 The keyword @code{__attribute__} allows you to specify special
6411 attributes of types. Some type attributes apply only to @code{struct}
6412 and @code{union} types, while others can apply to any type defined
6413 via a @code{typedef} declaration. Other attributes are defined for
6414 functions (@pxref{Function Attributes}), labels (@pxref{Label
6415 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6416 statements (@pxref{Statement Attributes}), and for
6417 variables (@pxref{Variable Attributes}).
6418
6419 The @code{__attribute__} keyword is followed by an attribute specification
6420 inside double parentheses.
6421
6422 You may specify type attributes in an enum, struct or union type
6423 declaration or definition by placing them immediately after the
6424 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6425 syntax is to place them just past the closing curly brace of the
6426 definition.
6427
6428 You can also include type attributes in a @code{typedef} declaration.
6429 @xref{Attribute Syntax}, for details of the exact syntax for using
6430 attributes.
6431
6432 @menu
6433 * Common Type Attributes::
6434 * ARM Type Attributes::
6435 * MeP Type Attributes::
6436 * PowerPC Type Attributes::
6437 * SPU Type Attributes::
6438 * x86 Type Attributes::
6439 @end menu
6440
6441 @node Common Type Attributes
6442 @subsection Common Type Attributes
6443
6444 The following type attributes are supported on most targets.
6445
6446 @table @code
6447 @cindex @code{aligned} type attribute
6448 @item aligned (@var{alignment})
6449 This attribute specifies a minimum alignment (in bytes) for variables
6450 of the specified type. For example, the declarations:
6451
6452 @smallexample
6453 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6454 typedef int more_aligned_int __attribute__ ((aligned (8)));
6455 @end smallexample
6456
6457 @noindent
6458 force the compiler to ensure (as far as it can) that each variable whose
6459 type is @code{struct S} or @code{more_aligned_int} is allocated and
6460 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6461 variables of type @code{struct S} aligned to 8-byte boundaries allows
6462 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6463 store) instructions when copying one variable of type @code{struct S} to
6464 another, thus improving run-time efficiency.
6465
6466 Note that the alignment of any given @code{struct} or @code{union} type
6467 is required by the ISO C standard to be at least a perfect multiple of
6468 the lowest common multiple of the alignments of all of the members of
6469 the @code{struct} or @code{union} in question. This means that you @emph{can}
6470 effectively adjust the alignment of a @code{struct} or @code{union}
6471 type by attaching an @code{aligned} attribute to any one of the members
6472 of such a type, but the notation illustrated in the example above is a
6473 more obvious, intuitive, and readable way to request the compiler to
6474 adjust the alignment of an entire @code{struct} or @code{union} type.
6475
6476 As in the preceding example, you can explicitly specify the alignment
6477 (in bytes) that you wish the compiler to use for a given @code{struct}
6478 or @code{union} type. Alternatively, you can leave out the alignment factor
6479 and just ask the compiler to align a type to the maximum
6480 useful alignment for the target machine you are compiling for. For
6481 example, you could write:
6482
6483 @smallexample
6484 struct S @{ short f[3]; @} __attribute__ ((aligned));
6485 @end smallexample
6486
6487 Whenever you leave out the alignment factor in an @code{aligned}
6488 attribute specification, the compiler automatically sets the alignment
6489 for the type to the largest alignment that is ever used for any data
6490 type on the target machine you are compiling for. Doing this can often
6491 make copy operations more efficient, because the compiler can use
6492 whatever instructions copy the biggest chunks of memory when performing
6493 copies to or from the variables that have types that you have aligned
6494 this way.
6495
6496 In the example above, if the size of each @code{short} is 2 bytes, then
6497 the size of the entire @code{struct S} type is 6 bytes. The smallest
6498 power of two that is greater than or equal to that is 8, so the
6499 compiler sets the alignment for the entire @code{struct S} type to 8
6500 bytes.
6501
6502 Note that although you can ask the compiler to select a time-efficient
6503 alignment for a given type and then declare only individual stand-alone
6504 objects of that type, the compiler's ability to select a time-efficient
6505 alignment is primarily useful only when you plan to create arrays of
6506 variables having the relevant (efficiently aligned) type. If you
6507 declare or use arrays of variables of an efficiently-aligned type, then
6508 it is likely that your program also does pointer arithmetic (or
6509 subscripting, which amounts to the same thing) on pointers to the
6510 relevant type, and the code that the compiler generates for these
6511 pointer arithmetic operations is often more efficient for
6512 efficiently-aligned types than for other types.
6513
6514 Note that the effectiveness of @code{aligned} attributes may be limited
6515 by inherent limitations in your linker. On many systems, the linker is
6516 only able to arrange for variables to be aligned up to a certain maximum
6517 alignment. (For some linkers, the maximum supported alignment may
6518 be very very small.) If your linker is only able to align variables
6519 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6520 in an @code{__attribute__} still only provides you with 8-byte
6521 alignment. See your linker documentation for further information.
6522
6523 The @code{aligned} attribute can only increase alignment. Alignment
6524 can be decreased by specifying the @code{packed} attribute. See below.
6525
6526 @item bnd_variable_size
6527 @cindex @code{bnd_variable_size} type attribute
6528 @cindex Pointer Bounds Checker attributes
6529 When applied to a structure field, this attribute tells Pointer
6530 Bounds Checker that the size of this field should not be computed
6531 using static type information. It may be used to mark variably-sized
6532 static array fields placed at the end of a structure.
6533
6534 @smallexample
6535 struct S
6536 @{
6537 int size;
6538 char data[1];
6539 @}
6540 S *p = (S *)malloc (sizeof(S) + 100);
6541 p->data[10] = 0; //Bounds violation
6542 @end smallexample
6543
6544 @noindent
6545 By using an attribute for the field we may avoid unwanted bound
6546 violation checks:
6547
6548 @smallexample
6549 struct S
6550 @{
6551 int size;
6552 char data[1] __attribute__((bnd_variable_size));
6553 @}
6554 S *p = (S *)malloc (sizeof(S) + 100);
6555 p->data[10] = 0; //OK
6556 @end smallexample
6557
6558 @item deprecated
6559 @itemx deprecated (@var{msg})
6560 @cindex @code{deprecated} type attribute
6561 The @code{deprecated} attribute results in a warning if the type
6562 is used anywhere in the source file. This is useful when identifying
6563 types that are expected to be removed in a future version of a program.
6564 If possible, the warning also includes the location of the declaration
6565 of the deprecated type, to enable users to easily find further
6566 information about why the type is deprecated, or what they should do
6567 instead. Note that the warnings only occur for uses and then only
6568 if the type is being applied to an identifier that itself is not being
6569 declared as deprecated.
6570
6571 @smallexample
6572 typedef int T1 __attribute__ ((deprecated));
6573 T1 x;
6574 typedef T1 T2;
6575 T2 y;
6576 typedef T1 T3 __attribute__ ((deprecated));
6577 T3 z __attribute__ ((deprecated));
6578 @end smallexample
6579
6580 @noindent
6581 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6582 warning is issued for line 4 because T2 is not explicitly
6583 deprecated. Line 5 has no warning because T3 is explicitly
6584 deprecated. Similarly for line 6. The optional @var{msg}
6585 argument, which must be a string, is printed in the warning if
6586 present.
6587
6588 The @code{deprecated} attribute can also be used for functions and
6589 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6590
6591 @item designated_init
6592 @cindex @code{designated_init} type attribute
6593 This attribute may only be applied to structure types. It indicates
6594 that any initialization of an object of this type must use designated
6595 initializers rather than positional initializers. The intent of this
6596 attribute is to allow the programmer to indicate that a structure's
6597 layout may change, and that therefore relying on positional
6598 initialization will result in future breakage.
6599
6600 GCC emits warnings based on this attribute by default; use
6601 @option{-Wno-designated-init} to suppress them.
6602
6603 @item may_alias
6604 @cindex @code{may_alias} type attribute
6605 Accesses through pointers to types with this attribute are not subject
6606 to type-based alias analysis, but are instead assumed to be able to alias
6607 any other type of objects.
6608 In the context of section 6.5 paragraph 7 of the C99 standard,
6609 an lvalue expression
6610 dereferencing such a pointer is treated like having a character type.
6611 See @option{-fstrict-aliasing} for more information on aliasing issues.
6612 This extension exists to support some vector APIs, in which pointers to
6613 one vector type are permitted to alias pointers to a different vector type.
6614
6615 Note that an object of a type with this attribute does not have any
6616 special semantics.
6617
6618 Example of use:
6619
6620 @smallexample
6621 typedef short __attribute__((__may_alias__)) short_a;
6622
6623 int
6624 main (void)
6625 @{
6626 int a = 0x12345678;
6627 short_a *b = (short_a *) &a;
6628
6629 b[1] = 0;
6630
6631 if (a == 0x12345678)
6632 abort();
6633
6634 exit(0);
6635 @}
6636 @end smallexample
6637
6638 @noindent
6639 If you replaced @code{short_a} with @code{short} in the variable
6640 declaration, the above program would abort when compiled with
6641 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6642 above.
6643
6644 @item packed
6645 @cindex @code{packed} type attribute
6646 This attribute, attached to @code{struct} or @code{union} type
6647 definition, specifies that each member (other than zero-width bit-fields)
6648 of the structure or union is placed to minimize the memory required. When
6649 attached to an @code{enum} definition, it indicates that the smallest
6650 integral type should be used.
6651
6652 @opindex fshort-enums
6653 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6654 types is equivalent to specifying the @code{packed} attribute on each
6655 of the structure or union members. Specifying the @option{-fshort-enums}
6656 flag on the command line is equivalent to specifying the @code{packed}
6657 attribute on all @code{enum} definitions.
6658
6659 In the following example @code{struct my_packed_struct}'s members are
6660 packed closely together, but the internal layout of its @code{s} member
6661 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6662 be packed too.
6663
6664 @smallexample
6665 struct my_unpacked_struct
6666 @{
6667 char c;
6668 int i;
6669 @};
6670
6671 struct __attribute__ ((__packed__)) my_packed_struct
6672 @{
6673 char c;
6674 int i;
6675 struct my_unpacked_struct s;
6676 @};
6677 @end smallexample
6678
6679 You may only specify the @code{packed} attribute attribute on the definition
6680 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
6681 that does not also define the enumerated type, structure or union.
6682
6683 @item scalar_storage_order ("@var{endianness}")
6684 @cindex @code{scalar_storage_order} type attribute
6685 When attached to a @code{union} or a @code{struct}, this attribute sets
6686 the storage order, aka endianness, of the scalar fields of the type, as
6687 well as the array fields whose component is scalar. The supported
6688 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
6689 has no effects on fields which are themselves a @code{union}, a @code{struct}
6690 or an array whose component is a @code{union} or a @code{struct}, and it is
6691 possible for these fields to have a different scalar storage order than the
6692 enclosing type.
6693
6694 This attribute is supported only for targets that use a uniform default
6695 scalar storage order (fortunately, most of them), i.e. targets that store
6696 the scalars either all in big-endian or all in little-endian.
6697
6698 Additional restrictions are enforced for types with the reverse scalar
6699 storage order with regard to the scalar storage order of the target:
6700
6701 @itemize
6702 @item Taking the address of a scalar field of a @code{union} or a
6703 @code{struct} with reverse scalar storage order is not permitted and yields
6704 an error.
6705 @item Taking the address of an array field, whose component is scalar, of
6706 a @code{union} or a @code{struct} with reverse scalar storage order is
6707 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
6708 is specified.
6709 @item Taking the address of a @code{union} or a @code{struct} with reverse
6710 scalar storage order is permitted.
6711 @end itemize
6712
6713 These restrictions exist because the storage order attribute is lost when
6714 the address of a scalar or the address of an array with scalar component is
6715 taken, so storing indirectly through this address generally does not work.
6716 The second case is nevertheless allowed to be able to perform a block copy
6717 from or to the array.
6718
6719 Moreover, the use of type punning or aliasing to toggle the storage order
6720 is not supported; that is to say, a given scalar object cannot be accessed
6721 through distinct types that assign a different storage order to it.
6722
6723 @item transparent_union
6724 @cindex @code{transparent_union} type attribute
6725
6726 This attribute, attached to a @code{union} type definition, indicates
6727 that any function parameter having that union type causes calls to that
6728 function to be treated in a special way.
6729
6730 First, the argument corresponding to a transparent union type can be of
6731 any type in the union; no cast is required. Also, if the union contains
6732 a pointer type, the corresponding argument can be a null pointer
6733 constant or a void pointer expression; and if the union contains a void
6734 pointer type, the corresponding argument can be any pointer expression.
6735 If the union member type is a pointer, qualifiers like @code{const} on
6736 the referenced type must be respected, just as with normal pointer
6737 conversions.
6738
6739 Second, the argument is passed to the function using the calling
6740 conventions of the first member of the transparent union, not the calling
6741 conventions of the union itself. All members of the union must have the
6742 same machine representation; this is necessary for this argument passing
6743 to work properly.
6744
6745 Transparent unions are designed for library functions that have multiple
6746 interfaces for compatibility reasons. For example, suppose the
6747 @code{wait} function must accept either a value of type @code{int *} to
6748 comply with POSIX, or a value of type @code{union wait *} to comply with
6749 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6750 @code{wait} would accept both kinds of arguments, but it would also
6751 accept any other pointer type and this would make argument type checking
6752 less useful. Instead, @code{<sys/wait.h>} might define the interface
6753 as follows:
6754
6755 @smallexample
6756 typedef union __attribute__ ((__transparent_union__))
6757 @{
6758 int *__ip;
6759 union wait *__up;
6760 @} wait_status_ptr_t;
6761
6762 pid_t wait (wait_status_ptr_t);
6763 @end smallexample
6764
6765 @noindent
6766 This interface allows either @code{int *} or @code{union wait *}
6767 arguments to be passed, using the @code{int *} calling convention.
6768 The program can call @code{wait} with arguments of either type:
6769
6770 @smallexample
6771 int w1 () @{ int w; return wait (&w); @}
6772 int w2 () @{ union wait w; return wait (&w); @}
6773 @end smallexample
6774
6775 @noindent
6776 With this interface, @code{wait}'s implementation might look like this:
6777
6778 @smallexample
6779 pid_t wait (wait_status_ptr_t p)
6780 @{
6781 return waitpid (-1, p.__ip, 0);
6782 @}
6783 @end smallexample
6784
6785 @item unused
6786 @cindex @code{unused} type attribute
6787 When attached to a type (including a @code{union} or a @code{struct}),
6788 this attribute means that variables of that type are meant to appear
6789 possibly unused. GCC does not produce a warning for any variables of
6790 that type, even if the variable appears to do nothing. This is often
6791 the case with lock or thread classes, which are usually defined and then
6792 not referenced, but contain constructors and destructors that have
6793 nontrivial bookkeeping functions.
6794
6795 @item visibility
6796 @cindex @code{visibility} type attribute
6797 In C++, attribute visibility (@pxref{Function Attributes}) can also be
6798 applied to class, struct, union and enum types. Unlike other type
6799 attributes, the attribute must appear between the initial keyword and
6800 the name of the type; it cannot appear after the body of the type.
6801
6802 Note that the type visibility is applied to vague linkage entities
6803 associated with the class (vtable, typeinfo node, etc.). In
6804 particular, if a class is thrown as an exception in one shared object
6805 and caught in another, the class must have default visibility.
6806 Otherwise the two shared objects are unable to use the same
6807 typeinfo node and exception handling will break.
6808
6809 @end table
6810
6811 To specify multiple attributes, separate them by commas within the
6812 double parentheses: for example, @samp{__attribute__ ((aligned (16),
6813 packed))}.
6814
6815 @node ARM Type Attributes
6816 @subsection ARM Type Attributes
6817
6818 @cindex @code{notshared} type attribute, ARM
6819 On those ARM targets that support @code{dllimport} (such as Symbian
6820 OS), you can use the @code{notshared} attribute to indicate that the
6821 virtual table and other similar data for a class should not be
6822 exported from a DLL@. For example:
6823
6824 @smallexample
6825 class __declspec(notshared) C @{
6826 public:
6827 __declspec(dllimport) C();
6828 virtual void f();
6829 @}
6830
6831 __declspec(dllexport)
6832 C::C() @{@}
6833 @end smallexample
6834
6835 @noindent
6836 In this code, @code{C::C} is exported from the current DLL, but the
6837 virtual table for @code{C} is not exported. (You can use
6838 @code{__attribute__} instead of @code{__declspec} if you prefer, but
6839 most Symbian OS code uses @code{__declspec}.)
6840
6841 @node MeP Type Attributes
6842 @subsection MeP Type Attributes
6843
6844 @cindex @code{based} type attribute, MeP
6845 @cindex @code{tiny} type attribute, MeP
6846 @cindex @code{near} type attribute, MeP
6847 @cindex @code{far} type attribute, MeP
6848 Many of the MeP variable attributes may be applied to types as well.
6849 Specifically, the @code{based}, @code{tiny}, @code{near}, and
6850 @code{far} attributes may be applied to either. The @code{io} and
6851 @code{cb} attributes may not be applied to types.
6852
6853 @node PowerPC Type Attributes
6854 @subsection PowerPC Type Attributes
6855
6856 Three attributes currently are defined for PowerPC configurations:
6857 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6858
6859 @cindex @code{ms_struct} type attribute, PowerPC
6860 @cindex @code{gcc_struct} type attribute, PowerPC
6861 For full documentation of the @code{ms_struct} and @code{gcc_struct}
6862 attributes please see the documentation in @ref{x86 Type Attributes}.
6863
6864 @cindex @code{altivec} type attribute, PowerPC
6865 The @code{altivec} attribute allows one to declare AltiVec vector data
6866 types supported by the AltiVec Programming Interface Manual. The
6867 attribute requires an argument to specify one of three vector types:
6868 @code{vector__}, @code{pixel__} (always followed by unsigned short),
6869 and @code{bool__} (always followed by unsigned).
6870
6871 @smallexample
6872 __attribute__((altivec(vector__)))
6873 __attribute__((altivec(pixel__))) unsigned short
6874 __attribute__((altivec(bool__))) unsigned
6875 @end smallexample
6876
6877 These attributes mainly are intended to support the @code{__vector},
6878 @code{__pixel}, and @code{__bool} AltiVec keywords.
6879
6880 @node SPU Type Attributes
6881 @subsection SPU Type Attributes
6882
6883 @cindex @code{spu_vector} type attribute, SPU
6884 The SPU supports the @code{spu_vector} attribute for types. This attribute
6885 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
6886 Language Extensions Specification. It is intended to support the
6887 @code{__vector} keyword.
6888
6889 @node x86 Type Attributes
6890 @subsection x86 Type Attributes
6891
6892 Two attributes are currently defined for x86 configurations:
6893 @code{ms_struct} and @code{gcc_struct}.
6894
6895 @table @code
6896
6897 @item ms_struct
6898 @itemx gcc_struct
6899 @cindex @code{ms_struct} type attribute, x86
6900 @cindex @code{gcc_struct} type attribute, x86
6901
6902 If @code{packed} is used on a structure, or if bit-fields are used
6903 it may be that the Microsoft ABI packs them differently
6904 than GCC normally packs them. Particularly when moving packed
6905 data between functions compiled with GCC and the native Microsoft compiler
6906 (either via function call or as data in a file), it may be necessary to access
6907 either format.
6908
6909 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6910 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6911 command-line options, respectively;
6912 see @ref{x86 Options}, for details of how structure layout is affected.
6913 @xref{x86 Variable Attributes}, for information about the corresponding
6914 attributes on variables.
6915
6916 @end table
6917
6918 @node Label Attributes
6919 @section Label Attributes
6920 @cindex Label Attributes
6921
6922 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
6923 details of the exact syntax for using attributes. Other attributes are
6924 available for functions (@pxref{Function Attributes}), variables
6925 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
6926 statements (@pxref{Statement Attributes}), and for types
6927 (@pxref{Type Attributes}).
6928
6929 This example uses the @code{cold} label attribute to indicate the
6930 @code{ErrorHandling} branch is unlikely to be taken and that the
6931 @code{ErrorHandling} label is unused:
6932
6933 @smallexample
6934
6935 asm goto ("some asm" : : : : NoError);
6936
6937 /* This branch (the fall-through from the asm) is less commonly used */
6938 ErrorHandling:
6939 __attribute__((cold, unused)); /* Semi-colon is required here */
6940 printf("error\n");
6941 return 0;
6942
6943 NoError:
6944 printf("no error\n");
6945 return 1;
6946 @end smallexample
6947
6948 @table @code
6949 @item unused
6950 @cindex @code{unused} label attribute
6951 This feature is intended for program-generated code that may contain
6952 unused labels, but which is compiled with @option{-Wall}. It is
6953 not normally appropriate to use in it human-written code, though it
6954 could be useful in cases where the code that jumps to the label is
6955 contained within an @code{#ifdef} conditional.
6956
6957 @item hot
6958 @cindex @code{hot} label attribute
6959 The @code{hot} attribute on a label is used to inform the compiler that
6960 the path following the label is more likely than paths that are not so
6961 annotated. This attribute is used in cases where @code{__builtin_expect}
6962 cannot be used, for instance with computed goto or @code{asm goto}.
6963
6964 @item cold
6965 @cindex @code{cold} label attribute
6966 The @code{cold} attribute on labels is used to inform the compiler that
6967 the path following the label is unlikely to be executed. This attribute
6968 is used in cases where @code{__builtin_expect} cannot be used, for instance
6969 with computed goto or @code{asm goto}.
6970
6971 @end table
6972
6973 @node Enumerator Attributes
6974 @section Enumerator Attributes
6975 @cindex Enumerator Attributes
6976
6977 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
6978 details of the exact syntax for using attributes. Other attributes are
6979 available for functions (@pxref{Function Attributes}), variables
6980 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
6981 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
6982
6983 This example uses the @code{deprecated} enumerator attribute to indicate the
6984 @code{oldval} enumerator is deprecated:
6985
6986 @smallexample
6987 enum E @{
6988 oldval __attribute__((deprecated)),
6989 newval
6990 @};
6991
6992 int
6993 fn (void)
6994 @{
6995 return oldval;
6996 @}
6997 @end smallexample
6998
6999 @table @code
7000 @item deprecated
7001 @cindex @code{deprecated} enumerator attribute
7002 The @code{deprecated} attribute results in a warning if the enumerator
7003 is used anywhere in the source file. This is useful when identifying
7004 enumerators that are expected to be removed in a future version of a
7005 program. The warning also includes the location of the declaration
7006 of the deprecated enumerator, to enable users to easily find further
7007 information about why the enumerator is deprecated, or what they should
7008 do instead. Note that the warnings only occurs for uses.
7009
7010 @end table
7011
7012 @node Statement Attributes
7013 @section Statement Attributes
7014 @cindex Statement Attributes
7015
7016 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
7017 for details of the exact syntax for using attributes. Other attributes are
7018 available for functions (@pxref{Function Attributes}), variables
7019 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
7020 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
7021
7022 This example uses the @code{fallthrough} statement attribute to indicate that
7023 the @option{-Wimplicit-fallthrough} warning should not be emitted:
7024
7025 @smallexample
7026 switch (cond)
7027 @{
7028 case 1:
7029 bar (1);
7030 __attribute__((fallthrough));
7031 case 2:
7032 @dots{}
7033 @}
7034 @end smallexample
7035
7036 @table @code
7037 @item fallthrough
7038 @cindex @code{fallthrough} statement attribute
7039 The @code{fallthrough} attribute with a null statement serves as a
7040 fallthrough statement. It hints to the compiler that a statement
7041 that falls through to another case label, or user-defined label
7042 in a switch statement is intentional and thus the
7043 @option{-Wimplicit-fallthrough} warning must not trigger. The
7044 fallthrough attribute may appear at most once in each attribute
7045 list, and may not be mixed with other attributes. It can only
7046 be used in a switch statement (the compiler will issue an error
7047 otherwise), after a preceding statement and before a logically
7048 succeeding case label, or user-defined label.
7049
7050 @end table
7051
7052 @node Attribute Syntax
7053 @section Attribute Syntax
7054 @cindex attribute syntax
7055
7056 This section describes the syntax with which @code{__attribute__} may be
7057 used, and the constructs to which attribute specifiers bind, for the C
7058 language. Some details may vary for C++ and Objective-C@. Because of
7059 infelicities in the grammar for attributes, some forms described here
7060 may not be successfully parsed in all cases.
7061
7062 There are some problems with the semantics of attributes in C++. For
7063 example, there are no manglings for attributes, although they may affect
7064 code generation, so problems may arise when attributed types are used in
7065 conjunction with templates or overloading. Similarly, @code{typeid}
7066 does not distinguish between types with different attributes. Support
7067 for attributes in C++ may be restricted in future to attributes on
7068 declarations only, but not on nested declarators.
7069
7070 @xref{Function Attributes}, for details of the semantics of attributes
7071 applying to functions. @xref{Variable Attributes}, for details of the
7072 semantics of attributes applying to variables. @xref{Type Attributes},
7073 for details of the semantics of attributes applying to structure, union
7074 and enumerated types.
7075 @xref{Label Attributes}, for details of the semantics of attributes
7076 applying to labels.
7077 @xref{Enumerator Attributes}, for details of the semantics of attributes
7078 applying to enumerators.
7079 @xref{Statement Attributes}, for details of the semantics of attributes
7080 applying to statements.
7081
7082 An @dfn{attribute specifier} is of the form
7083 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7084 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7085 each attribute is one of the following:
7086
7087 @itemize @bullet
7088 @item
7089 Empty. Empty attributes are ignored.
7090
7091 @item
7092 An attribute name
7093 (which may be an identifier such as @code{unused}, or a reserved
7094 word such as @code{const}).
7095
7096 @item
7097 An attribute name followed by a parenthesized list of
7098 parameters for the attribute.
7099 These parameters take one of the following forms:
7100
7101 @itemize @bullet
7102 @item
7103 An identifier. For example, @code{mode} attributes use this form.
7104
7105 @item
7106 An identifier followed by a comma and a non-empty comma-separated list
7107 of expressions. For example, @code{format} attributes use this form.
7108
7109 @item
7110 A possibly empty comma-separated list of expressions. For example,
7111 @code{format_arg} attributes use this form with the list being a single
7112 integer constant expression, and @code{alias} attributes use this form
7113 with the list being a single string constant.
7114 @end itemize
7115 @end itemize
7116
7117 An @dfn{attribute specifier list} is a sequence of one or more attribute
7118 specifiers, not separated by any other tokens.
7119
7120 You may optionally specify attribute names with @samp{__}
7121 preceding and following the name.
7122 This allows you to use them in header files without
7123 being concerned about a possible macro of the same name. For example,
7124 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7125
7126
7127 @subsubheading Label Attributes
7128
7129 In GNU C, an attribute specifier list may appear after the colon following a
7130 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7131 attributes on labels if the attribute specifier is immediately
7132 followed by a semicolon (i.e., the label applies to an empty
7133 statement). If the semicolon is missing, C++ label attributes are
7134 ambiguous, as it is permissible for a declaration, which could begin
7135 with an attribute list, to be labelled in C++. Declarations cannot be
7136 labelled in C90 or C99, so the ambiguity does not arise there.
7137
7138 @subsubheading Enumerator Attributes
7139
7140 In GNU C, an attribute specifier list may appear as part of an enumerator.
7141 The attribute goes after the enumeration constant, before @code{=}, if
7142 present. The optional attribute in the enumerator appertains to the
7143 enumeration constant. It is not possible to place the attribute after
7144 the constant expression, if present.
7145
7146 @subsubheading Statement Attributes
7147 In GNU C, an attribute specifier list may appear as part of a null
7148 statement. The attribute goes before the semicolon.
7149
7150 @subsubheading Type Attributes
7151
7152 An attribute specifier list may appear as part of a @code{struct},
7153 @code{union} or @code{enum} specifier. It may go either immediately
7154 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7155 the closing brace. The former syntax is preferred.
7156 Where attribute specifiers follow the closing brace, they are considered
7157 to relate to the structure, union or enumerated type defined, not to any
7158 enclosing declaration the type specifier appears in, and the type
7159 defined is not complete until after the attribute specifiers.
7160 @c Otherwise, there would be the following problems: a shift/reduce
7161 @c conflict between attributes binding the struct/union/enum and
7162 @c binding to the list of specifiers/qualifiers; and "aligned"
7163 @c attributes could use sizeof for the structure, but the size could be
7164 @c changed later by "packed" attributes.
7165
7166
7167 @subsubheading All other attributes
7168
7169 Otherwise, an attribute specifier appears as part of a declaration,
7170 counting declarations of unnamed parameters and type names, and relates
7171 to that declaration (which may be nested in another declaration, for
7172 example in the case of a parameter declaration), or to a particular declarator
7173 within a declaration. Where an
7174 attribute specifier is applied to a parameter declared as a function or
7175 an array, it should apply to the function or array rather than the
7176 pointer to which the parameter is implicitly converted, but this is not
7177 yet correctly implemented.
7178
7179 Any list of specifiers and qualifiers at the start of a declaration may
7180 contain attribute specifiers, whether or not such a list may in that
7181 context contain storage class specifiers. (Some attributes, however,
7182 are essentially in the nature of storage class specifiers, and only make
7183 sense where storage class specifiers may be used; for example,
7184 @code{section}.) There is one necessary limitation to this syntax: the
7185 first old-style parameter declaration in a function definition cannot
7186 begin with an attribute specifier, because such an attribute applies to
7187 the function instead by syntax described below (which, however, is not
7188 yet implemented in this case). In some other cases, attribute
7189 specifiers are permitted by this grammar but not yet supported by the
7190 compiler. All attribute specifiers in this place relate to the
7191 declaration as a whole. In the obsolescent usage where a type of
7192 @code{int} is implied by the absence of type specifiers, such a list of
7193 specifiers and qualifiers may be an attribute specifier list with no
7194 other specifiers or qualifiers.
7195
7196 At present, the first parameter in a function prototype must have some
7197 type specifier that is not an attribute specifier; this resolves an
7198 ambiguity in the interpretation of @code{void f(int
7199 (__attribute__((foo)) x))}, but is subject to change. At present, if
7200 the parentheses of a function declarator contain only attributes then
7201 those attributes are ignored, rather than yielding an error or warning
7202 or implying a single parameter of type int, but this is subject to
7203 change.
7204
7205 An attribute specifier list may appear immediately before a declarator
7206 (other than the first) in a comma-separated list of declarators in a
7207 declaration of more than one identifier using a single list of
7208 specifiers and qualifiers. Such attribute specifiers apply
7209 only to the identifier before whose declarator they appear. For
7210 example, in
7211
7212 @smallexample
7213 __attribute__((noreturn)) void d0 (void),
7214 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7215 d2 (void);
7216 @end smallexample
7217
7218 @noindent
7219 the @code{noreturn} attribute applies to all the functions
7220 declared; the @code{format} attribute only applies to @code{d1}.
7221
7222 An attribute specifier list may appear immediately before the comma,
7223 @code{=} or semicolon terminating the declaration of an identifier other
7224 than a function definition. Such attribute specifiers apply
7225 to the declared object or function. Where an
7226 assembler name for an object or function is specified (@pxref{Asm
7227 Labels}), the attribute must follow the @code{asm}
7228 specification.
7229
7230 An attribute specifier list may, in future, be permitted to appear after
7231 the declarator in a function definition (before any old-style parameter
7232 declarations or the function body).
7233
7234 Attribute specifiers may be mixed with type qualifiers appearing inside
7235 the @code{[]} of a parameter array declarator, in the C99 construct by
7236 which such qualifiers are applied to the pointer to which the array is
7237 implicitly converted. Such attribute specifiers apply to the pointer,
7238 not to the array, but at present this is not implemented and they are
7239 ignored.
7240
7241 An attribute specifier list may appear at the start of a nested
7242 declarator. At present, there are some limitations in this usage: the
7243 attributes correctly apply to the declarator, but for most individual
7244 attributes the semantics this implies are not implemented.
7245 When attribute specifiers follow the @code{*} of a pointer
7246 declarator, they may be mixed with any type qualifiers present.
7247 The following describes the formal semantics of this syntax. It makes the
7248 most sense if you are familiar with the formal specification of
7249 declarators in the ISO C standard.
7250
7251 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7252 D1}, where @code{T} contains declaration specifiers that specify a type
7253 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7254 contains an identifier @var{ident}. The type specified for @var{ident}
7255 for derived declarators whose type does not include an attribute
7256 specifier is as in the ISO C standard.
7257
7258 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7259 and the declaration @code{T D} specifies the type
7260 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7261 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7262 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7263
7264 If @code{D1} has the form @code{*
7265 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7266 declaration @code{T D} specifies the type
7267 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7268 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7269 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7270 @var{ident}.
7271
7272 For example,
7273
7274 @smallexample
7275 void (__attribute__((noreturn)) ****f) (void);
7276 @end smallexample
7277
7278 @noindent
7279 specifies the type ``pointer to pointer to pointer to pointer to
7280 non-returning function returning @code{void}''. As another example,
7281
7282 @smallexample
7283 char *__attribute__((aligned(8))) *f;
7284 @end smallexample
7285
7286 @noindent
7287 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7288 Note again that this does not work with most attributes; for example,
7289 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7290 is not yet supported.
7291
7292 For compatibility with existing code written for compiler versions that
7293 did not implement attributes on nested declarators, some laxity is
7294 allowed in the placing of attributes. If an attribute that only applies
7295 to types is applied to a declaration, it is treated as applying to
7296 the type of that declaration. If an attribute that only applies to
7297 declarations is applied to the type of a declaration, it is treated
7298 as applying to that declaration; and, for compatibility with code
7299 placing the attributes immediately before the identifier declared, such
7300 an attribute applied to a function return type is treated as
7301 applying to the function type, and such an attribute applied to an array
7302 element type is treated as applying to the array type. If an
7303 attribute that only applies to function types is applied to a
7304 pointer-to-function type, it is treated as applying to the pointer
7305 target type; if such an attribute is applied to a function return type
7306 that is not a pointer-to-function type, it is treated as applying
7307 to the function type.
7308
7309 @node Function Prototypes
7310 @section Prototypes and Old-Style Function Definitions
7311 @cindex function prototype declarations
7312 @cindex old-style function definitions
7313 @cindex promotion of formal parameters
7314
7315 GNU C extends ISO C to allow a function prototype to override a later
7316 old-style non-prototype definition. Consider the following example:
7317
7318 @smallexample
7319 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7320 #ifdef __STDC__
7321 #define P(x) x
7322 #else
7323 #define P(x) ()
7324 #endif
7325
7326 /* @r{Prototype function declaration.} */
7327 int isroot P((uid_t));
7328
7329 /* @r{Old-style function definition.} */
7330 int
7331 isroot (x) /* @r{??? lossage here ???} */
7332 uid_t x;
7333 @{
7334 return x == 0;
7335 @}
7336 @end smallexample
7337
7338 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7339 not allow this example, because subword arguments in old-style
7340 non-prototype definitions are promoted. Therefore in this example the
7341 function definition's argument is really an @code{int}, which does not
7342 match the prototype argument type of @code{short}.
7343
7344 This restriction of ISO C makes it hard to write code that is portable
7345 to traditional C compilers, because the programmer does not know
7346 whether the @code{uid_t} type is @code{short}, @code{int}, or
7347 @code{long}. Therefore, in cases like these GNU C allows a prototype
7348 to override a later old-style definition. More precisely, in GNU C, a
7349 function prototype argument type overrides the argument type specified
7350 by a later old-style definition if the former type is the same as the
7351 latter type before promotion. Thus in GNU C the above example is
7352 equivalent to the following:
7353
7354 @smallexample
7355 int isroot (uid_t);
7356
7357 int
7358 isroot (uid_t x)
7359 @{
7360 return x == 0;
7361 @}
7362 @end smallexample
7363
7364 @noindent
7365 GNU C++ does not support old-style function definitions, so this
7366 extension is irrelevant.
7367
7368 @node C++ Comments
7369 @section C++ Style Comments
7370 @cindex @code{//}
7371 @cindex C++ comments
7372 @cindex comments, C++ style
7373
7374 In GNU C, you may use C++ style comments, which start with @samp{//} and
7375 continue until the end of the line. Many other C implementations allow
7376 such comments, and they are included in the 1999 C standard. However,
7377 C++ style comments are not recognized if you specify an @option{-std}
7378 option specifying a version of ISO C before C99, or @option{-ansi}
7379 (equivalent to @option{-std=c90}).
7380
7381 @node Dollar Signs
7382 @section Dollar Signs in Identifier Names
7383 @cindex $
7384 @cindex dollar signs in identifier names
7385 @cindex identifier names, dollar signs in
7386
7387 In GNU C, you may normally use dollar signs in identifier names.
7388 This is because many traditional C implementations allow such identifiers.
7389 However, dollar signs in identifiers are not supported on a few target
7390 machines, typically because the target assembler does not allow them.
7391
7392 @node Character Escapes
7393 @section The Character @key{ESC} in Constants
7394
7395 You can use the sequence @samp{\e} in a string or character constant to
7396 stand for the ASCII character @key{ESC}.
7397
7398 @node Alignment
7399 @section Inquiring on Alignment of Types or Variables
7400 @cindex alignment
7401 @cindex type alignment
7402 @cindex variable alignment
7403
7404 The keyword @code{__alignof__} allows you to inquire about how an object
7405 is aligned, or the minimum alignment usually required by a type. Its
7406 syntax is just like @code{sizeof}.
7407
7408 For example, if the target machine requires a @code{double} value to be
7409 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7410 This is true on many RISC machines. On more traditional machine
7411 designs, @code{__alignof__ (double)} is 4 or even 2.
7412
7413 Some machines never actually require alignment; they allow reference to any
7414 data type even at an odd address. For these machines, @code{__alignof__}
7415 reports the smallest alignment that GCC gives the data type, usually as
7416 mandated by the target ABI.
7417
7418 If the operand of @code{__alignof__} is an lvalue rather than a type,
7419 its value is the required alignment for its type, taking into account
7420 any minimum alignment specified with GCC's @code{__attribute__}
7421 extension (@pxref{Variable Attributes}). For example, after this
7422 declaration:
7423
7424 @smallexample
7425 struct foo @{ int x; char y; @} foo1;
7426 @end smallexample
7427
7428 @noindent
7429 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7430 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7431
7432 It is an error to ask for the alignment of an incomplete type.
7433
7434
7435 @node Inline
7436 @section An Inline Function is As Fast As a Macro
7437 @cindex inline functions
7438 @cindex integrating function code
7439 @cindex open coding
7440 @cindex macros, inline alternative
7441
7442 By declaring a function inline, you can direct GCC to make
7443 calls to that function faster. One way GCC can achieve this is to
7444 integrate that function's code into the code for its callers. This
7445 makes execution faster by eliminating the function-call overhead; in
7446 addition, if any of the actual argument values are constant, their
7447 known values may permit simplifications at compile time so that not
7448 all of the inline function's code needs to be included. The effect on
7449 code size is less predictable; object code may be larger or smaller
7450 with function inlining, depending on the particular case. You can
7451 also direct GCC to try to integrate all ``simple enough'' functions
7452 into their callers with the option @option{-finline-functions}.
7453
7454 GCC implements three different semantics of declaring a function
7455 inline. One is available with @option{-std=gnu89} or
7456 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7457 on all inline declarations, another when
7458 @option{-std=c99}, @option{-std=c11},
7459 @option{-std=gnu99} or @option{-std=gnu11}
7460 (without @option{-fgnu89-inline}), and the third
7461 is used when compiling C++.
7462
7463 To declare a function inline, use the @code{inline} keyword in its
7464 declaration, like this:
7465
7466 @smallexample
7467 static inline int
7468 inc (int *a)
7469 @{
7470 return (*a)++;
7471 @}
7472 @end smallexample
7473
7474 If you are writing a header file to be included in ISO C90 programs, write
7475 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7476
7477 The three types of inlining behave similarly in two important cases:
7478 when the @code{inline} keyword is used on a @code{static} function,
7479 like the example above, and when a function is first declared without
7480 using the @code{inline} keyword and then is defined with
7481 @code{inline}, like this:
7482
7483 @smallexample
7484 extern int inc (int *a);
7485 inline int
7486 inc (int *a)
7487 @{
7488 return (*a)++;
7489 @}
7490 @end smallexample
7491
7492 In both of these common cases, the program behaves the same as if you
7493 had not used the @code{inline} keyword, except for its speed.
7494
7495 @cindex inline functions, omission of
7496 @opindex fkeep-inline-functions
7497 When a function is both inline and @code{static}, if all calls to the
7498 function are integrated into the caller, and the function's address is
7499 never used, then the function's own assembler code is never referenced.
7500 In this case, GCC does not actually output assembler code for the
7501 function, unless you specify the option @option{-fkeep-inline-functions}.
7502 If there is a nonintegrated call, then the function is compiled to
7503 assembler code as usual. The function must also be compiled as usual if
7504 the program refers to its address, because that can't be inlined.
7505
7506 @opindex Winline
7507 Note that certain usages in a function definition can make it unsuitable
7508 for inline substitution. Among these usages are: variadic functions,
7509 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7510 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7511 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7512 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7513 function marked @code{inline} could not be substituted, and gives the
7514 reason for the failure.
7515
7516 @cindex automatic @code{inline} for C++ member fns
7517 @cindex @code{inline} automatic for C++ member fns
7518 @cindex member fns, automatically @code{inline}
7519 @cindex C++ member fns, automatically @code{inline}
7520 @opindex fno-default-inline
7521 As required by ISO C++, GCC considers member functions defined within
7522 the body of a class to be marked inline even if they are
7523 not explicitly declared with the @code{inline} keyword. You can
7524 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7525 Options,,Options Controlling C++ Dialect}.
7526
7527 GCC does not inline any functions when not optimizing unless you specify
7528 the @samp{always_inline} attribute for the function, like this:
7529
7530 @smallexample
7531 /* @r{Prototype.} */
7532 inline void foo (const char) __attribute__((always_inline));
7533 @end smallexample
7534
7535 The remainder of this section is specific to GNU C90 inlining.
7536
7537 @cindex non-static inline function
7538 When an inline function is not @code{static}, then the compiler must assume
7539 that there may be calls from other source files; since a global symbol can
7540 be defined only once in any program, the function must not be defined in
7541 the other source files, so the calls therein cannot be integrated.
7542 Therefore, a non-@code{static} inline function is always compiled on its
7543 own in the usual fashion.
7544
7545 If you specify both @code{inline} and @code{extern} in the function
7546 definition, then the definition is used only for inlining. In no case
7547 is the function compiled on its own, not even if you refer to its
7548 address explicitly. Such an address becomes an external reference, as
7549 if you had only declared the function, and had not defined it.
7550
7551 This combination of @code{inline} and @code{extern} has almost the
7552 effect of a macro. The way to use it is to put a function definition in
7553 a header file with these keywords, and put another copy of the
7554 definition (lacking @code{inline} and @code{extern}) in a library file.
7555 The definition in the header file causes most calls to the function
7556 to be inlined. If any uses of the function remain, they refer to
7557 the single copy in the library.
7558
7559 @node Volatiles
7560 @section When is a Volatile Object Accessed?
7561 @cindex accessing volatiles
7562 @cindex volatile read
7563 @cindex volatile write
7564 @cindex volatile access
7565
7566 C has the concept of volatile objects. These are normally accessed by
7567 pointers and used for accessing hardware or inter-thread
7568 communication. The standard encourages compilers to refrain from
7569 optimizations concerning accesses to volatile objects, but leaves it
7570 implementation defined as to what constitutes a volatile access. The
7571 minimum requirement is that at a sequence point all previous accesses
7572 to volatile objects have stabilized and no subsequent accesses have
7573 occurred. Thus an implementation is free to reorder and combine
7574 volatile accesses that occur between sequence points, but cannot do
7575 so for accesses across a sequence point. The use of volatile does
7576 not allow you to violate the restriction on updating objects multiple
7577 times between two sequence points.
7578
7579 Accesses to non-volatile objects are not ordered with respect to
7580 volatile accesses. You cannot use a volatile object as a memory
7581 barrier to order a sequence of writes to non-volatile memory. For
7582 instance:
7583
7584 @smallexample
7585 int *ptr = @var{something};
7586 volatile int vobj;
7587 *ptr = @var{something};
7588 vobj = 1;
7589 @end smallexample
7590
7591 @noindent
7592 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7593 that the write to @var{*ptr} occurs by the time the update
7594 of @var{vobj} happens. If you need this guarantee, you must use
7595 a stronger memory barrier such as:
7596
7597 @smallexample
7598 int *ptr = @var{something};
7599 volatile int vobj;
7600 *ptr = @var{something};
7601 asm volatile ("" : : : "memory");
7602 vobj = 1;
7603 @end smallexample
7604
7605 A scalar volatile object is read when it is accessed in a void context:
7606
7607 @smallexample
7608 volatile int *src = @var{somevalue};
7609 *src;
7610 @end smallexample
7611
7612 Such expressions are rvalues, and GCC implements this as a
7613 read of the volatile object being pointed to.
7614
7615 Assignments are also expressions and have an rvalue. However when
7616 assigning to a scalar volatile, the volatile object is not reread,
7617 regardless of whether the assignment expression's rvalue is used or
7618 not. If the assignment's rvalue is used, the value is that assigned
7619 to the volatile object. For instance, there is no read of @var{vobj}
7620 in all the following cases:
7621
7622 @smallexample
7623 int obj;
7624 volatile int vobj;
7625 vobj = @var{something};
7626 obj = vobj = @var{something};
7627 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7628 obj = (@var{something}, vobj = @var{anotherthing});
7629 @end smallexample
7630
7631 If you need to read the volatile object after an assignment has
7632 occurred, you must use a separate expression with an intervening
7633 sequence point.
7634
7635 As bit-fields are not individually addressable, volatile bit-fields may
7636 be implicitly read when written to, or when adjacent bit-fields are
7637 accessed. Bit-field operations may be optimized such that adjacent
7638 bit-fields are only partially accessed, if they straddle a storage unit
7639 boundary. For these reasons it is unwise to use volatile bit-fields to
7640 access hardware.
7641
7642 @node Using Assembly Language with C
7643 @section How to Use Inline Assembly Language in C Code
7644 @cindex @code{asm} keyword
7645 @cindex assembly language in C
7646 @cindex inline assembly language
7647 @cindex mixing assembly language and C
7648
7649 The @code{asm} keyword allows you to embed assembler instructions
7650 within C code. GCC provides two forms of inline @code{asm}
7651 statements. A @dfn{basic @code{asm}} statement is one with no
7652 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7653 statement (@pxref{Extended Asm}) includes one or more operands.
7654 The extended form is preferred for mixing C and assembly language
7655 within a function, but to include assembly language at
7656 top level you must use basic @code{asm}.
7657
7658 You can also use the @code{asm} keyword to override the assembler name
7659 for a C symbol, or to place a C variable in a specific register.
7660
7661 @menu
7662 * Basic Asm:: Inline assembler without operands.
7663 * Extended Asm:: Inline assembler with operands.
7664 * Constraints:: Constraints for @code{asm} operands
7665 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7666 * Explicit Register Variables:: Defining variables residing in specified
7667 registers.
7668 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7669 @end menu
7670
7671 @node Basic Asm
7672 @subsection Basic Asm --- Assembler Instructions Without Operands
7673 @cindex basic @code{asm}
7674 @cindex assembly language in C, basic
7675
7676 A basic @code{asm} statement has the following syntax:
7677
7678 @example
7679 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7680 @end example
7681
7682 The @code{asm} keyword is a GNU extension.
7683 When writing code that can be compiled with @option{-ansi} and the
7684 various @option{-std} options, use @code{__asm__} instead of
7685 @code{asm} (@pxref{Alternate Keywords}).
7686
7687 @subsubheading Qualifiers
7688 @table @code
7689 @item volatile
7690 The optional @code{volatile} qualifier has no effect.
7691 All basic @code{asm} blocks are implicitly volatile.
7692 @end table
7693
7694 @subsubheading Parameters
7695 @table @var
7696
7697 @item AssemblerInstructions
7698 This is a literal string that specifies the assembler code. The string can
7699 contain any instructions recognized by the assembler, including directives.
7700 GCC does not parse the assembler instructions themselves and
7701 does not know what they mean or even whether they are valid assembler input.
7702
7703 You may place multiple assembler instructions together in a single @code{asm}
7704 string, separated by the characters normally used in assembly code for the
7705 system. A combination that works in most places is a newline to break the
7706 line, plus a tab character (written as @samp{\n\t}).
7707 Some assemblers allow semicolons as a line separator. However,
7708 note that some assembler dialects use semicolons to start a comment.
7709 @end table
7710
7711 @subsubheading Remarks
7712 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
7713 smaller, safer, and more efficient code, and in most cases it is a
7714 better solution than basic @code{asm}. However, there are two
7715 situations where only basic @code{asm} can be used:
7716
7717 @itemize @bullet
7718 @item
7719 Extended @code{asm} statements have to be inside a C
7720 function, so to write inline assembly language at file scope (``top-level''),
7721 outside of C functions, you must use basic @code{asm}.
7722 You can use this technique to emit assembler directives,
7723 define assembly language macros that can be invoked elsewhere in the file,
7724 or write entire functions in assembly language.
7725
7726 @item
7727 Functions declared
7728 with the @code{naked} attribute also require basic @code{asm}
7729 (@pxref{Function Attributes}).
7730 @end itemize
7731
7732 Safely accessing C data and calling functions from basic @code{asm} is more
7733 complex than it may appear. To access C data, it is better to use extended
7734 @code{asm}.
7735
7736 Do not expect a sequence of @code{asm} statements to remain perfectly
7737 consecutive after compilation. If certain instructions need to remain
7738 consecutive in the output, put them in a single multi-instruction @code{asm}
7739 statement. Note that GCC's optimizers can move @code{asm} statements
7740 relative to other code, including across jumps.
7741
7742 @code{asm} statements may not perform jumps into other @code{asm} statements.
7743 GCC does not know about these jumps, and therefore cannot take
7744 account of them when deciding how to optimize. Jumps from @code{asm} to C
7745 labels are only supported in extended @code{asm}.
7746
7747 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7748 assembly code when optimizing. This can lead to unexpected duplicate
7749 symbol errors during compilation if your assembly code defines symbols or
7750 labels.
7751
7752 @strong{Warning:} The C standards do not specify semantics for @code{asm},
7753 making it a potential source of incompatibilities between compilers. These
7754 incompatibilities may not produce compiler warnings/errors.
7755
7756 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
7757 means there is no way to communicate to the compiler what is happening
7758 inside them. GCC has no visibility of symbols in the @code{asm} and may
7759 discard them as unreferenced. It also does not know about side effects of
7760 the assembler code, such as modifications to memory or registers. Unlike
7761 some compilers, GCC assumes that no changes to general purpose registers
7762 occur. This assumption may change in a future release.
7763
7764 To avoid complications from future changes to the semantics and the
7765 compatibility issues between compilers, consider replacing basic @code{asm}
7766 with extended @code{asm}. See
7767 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
7768 from basic asm to extended asm} for information about how to perform this
7769 conversion.
7770
7771 The compiler copies the assembler instructions in a basic @code{asm}
7772 verbatim to the assembly language output file, without
7773 processing dialects or any of the @samp{%} operators that are available with
7774 extended @code{asm}. This results in minor differences between basic
7775 @code{asm} strings and extended @code{asm} templates. For example, to refer to
7776 registers you might use @samp{%eax} in basic @code{asm} and
7777 @samp{%%eax} in extended @code{asm}.
7778
7779 On targets such as x86 that support multiple assembler dialects,
7780 all basic @code{asm} blocks use the assembler dialect specified by the
7781 @option{-masm} command-line option (@pxref{x86 Options}).
7782 Basic @code{asm} provides no
7783 mechanism to provide different assembler strings for different dialects.
7784
7785 For basic @code{asm} with non-empty assembler string GCC assumes
7786 the assembler block does not change any general purpose registers,
7787 but it may read or write any globally accessible variable.
7788
7789 Here is an example of basic @code{asm} for i386:
7790
7791 @example
7792 /* Note that this code will not compile with -masm=intel */
7793 #define DebugBreak() asm("int $3")
7794 @end example
7795
7796 @node Extended Asm
7797 @subsection Extended Asm - Assembler Instructions with C Expression Operands
7798 @cindex extended @code{asm}
7799 @cindex assembly language in C, extended
7800
7801 With extended @code{asm} you can read and write C variables from
7802 assembler and perform jumps from assembler code to C labels.
7803 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
7804 the operand parameters after the assembler template:
7805
7806 @example
7807 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
7808 : @var{OutputOperands}
7809 @r{[} : @var{InputOperands}
7810 @r{[} : @var{Clobbers} @r{]} @r{]})
7811
7812 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
7813 :
7814 : @var{InputOperands}
7815 : @var{Clobbers}
7816 : @var{GotoLabels})
7817 @end example
7818
7819 The @code{asm} keyword is a GNU extension.
7820 When writing code that can be compiled with @option{-ansi} and the
7821 various @option{-std} options, use @code{__asm__} instead of
7822 @code{asm} (@pxref{Alternate Keywords}).
7823
7824 @subsubheading Qualifiers
7825 @table @code
7826
7827 @item volatile
7828 The typical use of extended @code{asm} statements is to manipulate input
7829 values to produce output values. However, your @code{asm} statements may
7830 also produce side effects. If so, you may need to use the @code{volatile}
7831 qualifier to disable certain optimizations. @xref{Volatile}.
7832
7833 @item goto
7834 This qualifier informs the compiler that the @code{asm} statement may
7835 perform a jump to one of the labels listed in the @var{GotoLabels}.
7836 @xref{GotoLabels}.
7837 @end table
7838
7839 @subsubheading Parameters
7840 @table @var
7841 @item AssemblerTemplate
7842 This is a literal string that is the template for the assembler code. It is a
7843 combination of fixed text and tokens that refer to the input, output,
7844 and goto parameters. @xref{AssemblerTemplate}.
7845
7846 @item OutputOperands
7847 A comma-separated list of the C variables modified by the instructions in the
7848 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
7849
7850 @item InputOperands
7851 A comma-separated list of C expressions read by the instructions in the
7852 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
7853
7854 @item Clobbers
7855 A comma-separated list of registers or other values changed by the
7856 @var{AssemblerTemplate}, beyond those listed as outputs.
7857 An empty list is permitted. @xref{Clobbers}.
7858
7859 @item GotoLabels
7860 When you are using the @code{goto} form of @code{asm}, this section contains
7861 the list of all C labels to which the code in the
7862 @var{AssemblerTemplate} may jump.
7863 @xref{GotoLabels}.
7864
7865 @code{asm} statements may not perform jumps into other @code{asm} statements,
7866 only to the listed @var{GotoLabels}.
7867 GCC's optimizers do not know about other jumps; therefore they cannot take
7868 account of them when deciding how to optimize.
7869 @end table
7870
7871 The total number of input + output + goto operands is limited to 30.
7872
7873 @subsubheading Remarks
7874 The @code{asm} statement allows you to include assembly instructions directly
7875 within C code. This may help you to maximize performance in time-sensitive
7876 code or to access assembly instructions that are not readily available to C
7877 programs.
7878
7879 Note that extended @code{asm} statements must be inside a function. Only
7880 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
7881 Functions declared with the @code{naked} attribute also require basic
7882 @code{asm} (@pxref{Function Attributes}).
7883
7884 While the uses of @code{asm} are many and varied, it may help to think of an
7885 @code{asm} statement as a series of low-level instructions that convert input
7886 parameters to output parameters. So a simple (if not particularly useful)
7887 example for i386 using @code{asm} might look like this:
7888
7889 @example
7890 int src = 1;
7891 int dst;
7892
7893 asm ("mov %1, %0\n\t"
7894 "add $1, %0"
7895 : "=r" (dst)
7896 : "r" (src));
7897
7898 printf("%d\n", dst);
7899 @end example
7900
7901 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
7902
7903 @anchor{Volatile}
7904 @subsubsection Volatile
7905 @cindex volatile @code{asm}
7906 @cindex @code{asm} volatile
7907
7908 GCC's optimizers sometimes discard @code{asm} statements if they determine
7909 there is no need for the output variables. Also, the optimizers may move
7910 code out of loops if they believe that the code will always return the same
7911 result (i.e. none of its input values change between calls). Using the
7912 @code{volatile} qualifier disables these optimizations. @code{asm} statements
7913 that have no output operands, including @code{asm goto} statements,
7914 are implicitly volatile.
7915
7916 This i386 code demonstrates a case that does not use (or require) the
7917 @code{volatile} qualifier. If it is performing assertion checking, this code
7918 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
7919 unreferenced by any code. As a result, the optimizers can discard the
7920 @code{asm} statement, which in turn removes the need for the entire
7921 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
7922 isn't needed you allow the optimizers to produce the most efficient code
7923 possible.
7924
7925 @example
7926 void DoCheck(uint32_t dwSomeValue)
7927 @{
7928 uint32_t dwRes;
7929
7930 // Assumes dwSomeValue is not zero.
7931 asm ("bsfl %1,%0"
7932 : "=r" (dwRes)
7933 : "r" (dwSomeValue)
7934 : "cc");
7935
7936 assert(dwRes > 3);
7937 @}
7938 @end example
7939
7940 The next example shows a case where the optimizers can recognize that the input
7941 (@code{dwSomeValue}) never changes during the execution of the function and can
7942 therefore move the @code{asm} outside the loop to produce more efficient code.
7943 Again, using @code{volatile} disables this type of optimization.
7944
7945 @example
7946 void do_print(uint32_t dwSomeValue)
7947 @{
7948 uint32_t dwRes;
7949
7950 for (uint32_t x=0; x < 5; x++)
7951 @{
7952 // Assumes dwSomeValue is not zero.
7953 asm ("bsfl %1,%0"
7954 : "=r" (dwRes)
7955 : "r" (dwSomeValue)
7956 : "cc");
7957
7958 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
7959 @}
7960 @}
7961 @end example
7962
7963 The following example demonstrates a case where you need to use the
7964 @code{volatile} qualifier.
7965 It uses the x86 @code{rdtsc} instruction, which reads
7966 the computer's time-stamp counter. Without the @code{volatile} qualifier,
7967 the optimizers might assume that the @code{asm} block will always return the
7968 same value and therefore optimize away the second call.
7969
7970 @example
7971 uint64_t msr;
7972
7973 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7974 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7975 "or %%rdx, %0" // 'Or' in the lower bits.
7976 : "=a" (msr)
7977 :
7978 : "rdx");
7979
7980 printf("msr: %llx\n", msr);
7981
7982 // Do other work...
7983
7984 // Reprint the timestamp
7985 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7986 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7987 "or %%rdx, %0" // 'Or' in the lower bits.
7988 : "=a" (msr)
7989 :
7990 : "rdx");
7991
7992 printf("msr: %llx\n", msr);
7993 @end example
7994
7995 GCC's optimizers do not treat this code like the non-volatile code in the
7996 earlier examples. They do not move it out of loops or omit it on the
7997 assumption that the result from a previous call is still valid.
7998
7999 Note that the compiler can move even volatile @code{asm} instructions relative
8000 to other code, including across jump instructions. For example, on many
8001 targets there is a system register that controls the rounding mode of
8002 floating-point operations. Setting it with a volatile @code{asm}, as in the
8003 following PowerPC example, does not work reliably.
8004
8005 @example
8006 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
8007 sum = x + y;
8008 @end example
8009
8010 The compiler may move the addition back before the volatile @code{asm}. To
8011 make it work as expected, add an artificial dependency to the @code{asm} by
8012 referencing a variable in the subsequent code, for example:
8013
8014 @example
8015 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
8016 sum = x + y;
8017 @end example
8018
8019 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8020 assembly code when optimizing. This can lead to unexpected duplicate symbol
8021 errors during compilation if your asm code defines symbols or labels.
8022 Using @samp{%=}
8023 (@pxref{AssemblerTemplate}) may help resolve this problem.
8024
8025 @anchor{AssemblerTemplate}
8026 @subsubsection Assembler Template
8027 @cindex @code{asm} assembler template
8028
8029 An assembler template is a literal string containing assembler instructions.
8030 The compiler replaces tokens in the template that refer
8031 to inputs, outputs, and goto labels,
8032 and then outputs the resulting string to the assembler. The
8033 string can contain any instructions recognized by the assembler, including
8034 directives. GCC does not parse the assembler instructions
8035 themselves and does not know what they mean or even whether they are valid
8036 assembler input. However, it does count the statements
8037 (@pxref{Size of an asm}).
8038
8039 You may place multiple assembler instructions together in a single @code{asm}
8040 string, separated by the characters normally used in assembly code for the
8041 system. A combination that works in most places is a newline to break the
8042 line, plus a tab character to move to the instruction field (written as
8043 @samp{\n\t}).
8044 Some assemblers allow semicolons as a line separator. However, note
8045 that some assembler dialects use semicolons to start a comment.
8046
8047 Do not expect a sequence of @code{asm} statements to remain perfectly
8048 consecutive after compilation, even when you are using the @code{volatile}
8049 qualifier. If certain instructions need to remain consecutive in the output,
8050 put them in a single multi-instruction asm statement.
8051
8052 Accessing data from C programs without using input/output operands (such as
8053 by using global symbols directly from the assembler template) may not work as
8054 expected. Similarly, calling functions directly from an assembler template
8055 requires a detailed understanding of the target assembler and ABI.
8056
8057 Since GCC does not parse the assembler template,
8058 it has no visibility of any
8059 symbols it references. This may result in GCC discarding those symbols as
8060 unreferenced unless they are also listed as input, output, or goto operands.
8061
8062 @subsubheading Special format strings
8063
8064 In addition to the tokens described by the input, output, and goto operands,
8065 these tokens have special meanings in the assembler template:
8066
8067 @table @samp
8068 @item %%
8069 Outputs a single @samp{%} into the assembler code.
8070
8071 @item %=
8072 Outputs a number that is unique to each instance of the @code{asm}
8073 statement in the entire compilation. This option is useful when creating local
8074 labels and referring to them multiple times in a single template that
8075 generates multiple assembler instructions.
8076
8077 @item %@{
8078 @itemx %|
8079 @itemx %@}
8080 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8081 into the assembler code. When unescaped, these characters have special
8082 meaning to indicate multiple assembler dialects, as described below.
8083 @end table
8084
8085 @subsubheading Multiple assembler dialects in @code{asm} templates
8086
8087 On targets such as x86, GCC supports multiple assembler dialects.
8088 The @option{-masm} option controls which dialect GCC uses as its
8089 default for inline assembler. The target-specific documentation for the
8090 @option{-masm} option contains the list of supported dialects, as well as the
8091 default dialect if the option is not specified. This information may be
8092 important to understand, since assembler code that works correctly when
8093 compiled using one dialect will likely fail if compiled using another.
8094 @xref{x86 Options}.
8095
8096 If your code needs to support multiple assembler dialects (for example, if
8097 you are writing public headers that need to support a variety of compilation
8098 options), use constructs of this form:
8099
8100 @example
8101 @{ dialect0 | dialect1 | dialect2... @}
8102 @end example
8103
8104 This construct outputs @code{dialect0}
8105 when using dialect #0 to compile the code,
8106 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8107 braces than the number of dialects the compiler supports, the construct
8108 outputs nothing.
8109
8110 For example, if an x86 compiler supports two dialects
8111 (@samp{att}, @samp{intel}), an
8112 assembler template such as this:
8113
8114 @example
8115 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8116 @end example
8117
8118 @noindent
8119 is equivalent to one of
8120
8121 @example
8122 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8123 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8124 @end example
8125
8126 Using that same compiler, this code:
8127
8128 @example
8129 "xchg@{l@}\t@{%%@}ebx, %1"
8130 @end example
8131
8132 @noindent
8133 corresponds to either
8134
8135 @example
8136 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8137 "xchg\tebx, %1" @r{/* intel dialect */}
8138 @end example
8139
8140 There is no support for nesting dialect alternatives.
8141
8142 @anchor{OutputOperands}
8143 @subsubsection Output Operands
8144 @cindex @code{asm} output operands
8145
8146 An @code{asm} statement has zero or more output operands indicating the names
8147 of C variables modified by the assembler code.
8148
8149 In this i386 example, @code{old} (referred to in the template string as
8150 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8151 (@code{%2}) is an input:
8152
8153 @example
8154 bool old;
8155
8156 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8157 "sbb %0,%0" // Use the CF to calculate old.
8158 : "=r" (old), "+rm" (*Base)
8159 : "Ir" (Offset)
8160 : "cc");
8161
8162 return old;
8163 @end example
8164
8165 Operands are separated by commas. Each operand has this format:
8166
8167 @example
8168 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8169 @end example
8170
8171 @table @var
8172 @item asmSymbolicName
8173 Specifies a symbolic name for the operand.
8174 Reference the name in the assembler template
8175 by enclosing it in square brackets
8176 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8177 that contains the definition. Any valid C variable name is acceptable,
8178 including names already defined in the surrounding code. No two operands
8179 within the same @code{asm} statement can use the same symbolic name.
8180
8181 When not using an @var{asmSymbolicName}, use the (zero-based) position
8182 of the operand
8183 in the list of operands in the assembler template. For example if there are
8184 three output operands, use @samp{%0} in the template to refer to the first,
8185 @samp{%1} for the second, and @samp{%2} for the third.
8186
8187 @item constraint
8188 A string constant specifying constraints on the placement of the operand;
8189 @xref{Constraints}, for details.
8190
8191 Output constraints must begin with either @samp{=} (a variable overwriting an
8192 existing value) or @samp{+} (when reading and writing). When using
8193 @samp{=}, do not assume the location contains the existing value
8194 on entry to the @code{asm}, except
8195 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8196
8197 After the prefix, there must be one or more additional constraints
8198 (@pxref{Constraints}) that describe where the value resides. Common
8199 constraints include @samp{r} for register and @samp{m} for memory.
8200 When you list more than one possible location (for example, @code{"=rm"}),
8201 the compiler chooses the most efficient one based on the current context.
8202 If you list as many alternates as the @code{asm} statement allows, you permit
8203 the optimizers to produce the best possible code.
8204 If you must use a specific register, but your Machine Constraints do not
8205 provide sufficient control to select the specific register you want,
8206 local register variables may provide a solution (@pxref{Local Register
8207 Variables}).
8208
8209 @item cvariablename
8210 Specifies a C lvalue expression to hold the output, typically a variable name.
8211 The enclosing parentheses are a required part of the syntax.
8212
8213 @end table
8214
8215 When the compiler selects the registers to use to
8216 represent the output operands, it does not use any of the clobbered registers
8217 (@pxref{Clobbers}).
8218
8219 Output operand expressions must be lvalues. The compiler cannot check whether
8220 the operands have data types that are reasonable for the instruction being
8221 executed. For output expressions that are not directly addressable (for
8222 example a bit-field), the constraint must allow a register. In that case, GCC
8223 uses the register as the output of the @code{asm}, and then stores that
8224 register into the output.
8225
8226 Operands using the @samp{+} constraint modifier count as two operands
8227 (that is, both as input and output) towards the total maximum of 30 operands
8228 per @code{asm} statement.
8229
8230 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8231 operands that must not overlap an input. Otherwise,
8232 GCC may allocate the output operand in the same register as an unrelated
8233 input operand, on the assumption that the assembler code consumes its
8234 inputs before producing outputs. This assumption may be false if the assembler
8235 code actually consists of more than one instruction.
8236
8237 The same problem can occur if one output parameter (@var{a}) allows a register
8238 constraint and another output parameter (@var{b}) allows a memory constraint.
8239 The code generated by GCC to access the memory address in @var{b} can contain
8240 registers which @emph{might} be shared by @var{a}, and GCC considers those
8241 registers to be inputs to the asm. As above, GCC assumes that such input
8242 registers are consumed before any outputs are written. This assumption may
8243 result in incorrect behavior if the asm writes to @var{a} before using
8244 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8245 ensures that modifying @var{a} does not affect the address referenced by
8246 @var{b}. Otherwise, the location of @var{b}
8247 is undefined if @var{a} is modified before using @var{b}.
8248
8249 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8250 instead of simply @samp{%2}). Typically these qualifiers are hardware
8251 dependent. The list of supported modifiers for x86 is found at
8252 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8253
8254 If the C code that follows the @code{asm} makes no use of any of the output
8255 operands, use @code{volatile} for the @code{asm} statement to prevent the
8256 optimizers from discarding the @code{asm} statement as unneeded
8257 (see @ref{Volatile}).
8258
8259 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8260 references the first output operand as @code{%0} (were there a second, it
8261 would be @code{%1}, etc). The number of the first input operand is one greater
8262 than that of the last output operand. In this i386 example, that makes
8263 @code{Mask} referenced as @code{%1}:
8264
8265 @example
8266 uint32_t Mask = 1234;
8267 uint32_t Index;
8268
8269 asm ("bsfl %1, %0"
8270 : "=r" (Index)
8271 : "r" (Mask)
8272 : "cc");
8273 @end example
8274
8275 That code overwrites the variable @code{Index} (@samp{=}),
8276 placing the value in a register (@samp{r}).
8277 Using the generic @samp{r} constraint instead of a constraint for a specific
8278 register allows the compiler to pick the register to use, which can result
8279 in more efficient code. This may not be possible if an assembler instruction
8280 requires a specific register.
8281
8282 The following i386 example uses the @var{asmSymbolicName} syntax.
8283 It produces the
8284 same result as the code above, but some may consider it more readable or more
8285 maintainable since reordering index numbers is not necessary when adding or
8286 removing operands. The names @code{aIndex} and @code{aMask}
8287 are only used in this example to emphasize which
8288 names get used where.
8289 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8290
8291 @example
8292 uint32_t Mask = 1234;
8293 uint32_t Index;
8294
8295 asm ("bsfl %[aMask], %[aIndex]"
8296 : [aIndex] "=r" (Index)
8297 : [aMask] "r" (Mask)
8298 : "cc");
8299 @end example
8300
8301 Here are some more examples of output operands.
8302
8303 @example
8304 uint32_t c = 1;
8305 uint32_t d;
8306 uint32_t *e = &c;
8307
8308 asm ("mov %[e], %[d]"
8309 : [d] "=rm" (d)
8310 : [e] "rm" (*e));
8311 @end example
8312
8313 Here, @code{d} may either be in a register or in memory. Since the compiler
8314 might already have the current value of the @code{uint32_t} location
8315 pointed to by @code{e}
8316 in a register, you can enable it to choose the best location
8317 for @code{d} by specifying both constraints.
8318
8319 @anchor{FlagOutputOperands}
8320 @subsubsection Flag Output Operands
8321 @cindex @code{asm} flag output operands
8322
8323 Some targets have a special register that holds the ``flags'' for the
8324 result of an operation or comparison. Normally, the contents of that
8325 register are either unmodifed by the asm, or the asm is considered to
8326 clobber the contents.
8327
8328 On some targets, a special form of output operand exists by which
8329 conditions in the flags register may be outputs of the asm. The set of
8330 conditions supported are target specific, but the general rule is that
8331 the output variable must be a scalar integer, and the value is boolean.
8332 When supported, the target defines the preprocessor symbol
8333 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8334
8335 Because of the special nature of the flag output operands, the constraint
8336 may not include alternatives.
8337
8338 Most often, the target has only one flags register, and thus is an implied
8339 operand of many instructions. In this case, the operand should not be
8340 referenced within the assembler template via @code{%0} etc, as there's
8341 no corresponding text in the assembly language.
8342
8343 @table @asis
8344 @item x86 family
8345 The flag output constraints for the x86 family are of the form
8346 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8347 conditions defined in the ISA manual for @code{j@var{cc}} or
8348 @code{set@var{cc}}.
8349
8350 @table @code
8351 @item a
8352 ``above'' or unsigned greater than
8353 @item ae
8354 ``above or equal'' or unsigned greater than or equal
8355 @item b
8356 ``below'' or unsigned less than
8357 @item be
8358 ``below or equal'' or unsigned less than or equal
8359 @item c
8360 carry flag set
8361 @item e
8362 @itemx z
8363 ``equal'' or zero flag set
8364 @item g
8365 signed greater than
8366 @item ge
8367 signed greater than or equal
8368 @item l
8369 signed less than
8370 @item le
8371 signed less than or equal
8372 @item o
8373 overflow flag set
8374 @item p
8375 parity flag set
8376 @item s
8377 sign flag set
8378 @item na
8379 @itemx nae
8380 @itemx nb
8381 @itemx nbe
8382 @itemx nc
8383 @itemx ne
8384 @itemx ng
8385 @itemx nge
8386 @itemx nl
8387 @itemx nle
8388 @itemx no
8389 @itemx np
8390 @itemx ns
8391 @itemx nz
8392 ``not'' @var{flag}, or inverted versions of those above
8393 @end table
8394
8395 @end table
8396
8397 @anchor{InputOperands}
8398 @subsubsection Input Operands
8399 @cindex @code{asm} input operands
8400 @cindex @code{asm} expressions
8401
8402 Input operands make values from C variables and expressions available to the
8403 assembly code.
8404
8405 Operands are separated by commas. Each operand has this format:
8406
8407 @example
8408 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8409 @end example
8410
8411 @table @var
8412 @item asmSymbolicName
8413 Specifies a symbolic name for the operand.
8414 Reference the name in the assembler template
8415 by enclosing it in square brackets
8416 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8417 that contains the definition. Any valid C variable name is acceptable,
8418 including names already defined in the surrounding code. No two operands
8419 within the same @code{asm} statement can use the same symbolic name.
8420
8421 When not using an @var{asmSymbolicName}, use the (zero-based) position
8422 of the operand
8423 in the list of operands in the assembler template. For example if there are
8424 two output operands and three inputs,
8425 use @samp{%2} in the template to refer to the first input operand,
8426 @samp{%3} for the second, and @samp{%4} for the third.
8427
8428 @item constraint
8429 A string constant specifying constraints on the placement of the operand;
8430 @xref{Constraints}, for details.
8431
8432 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8433 When you list more than one possible location (for example, @samp{"irm"}),
8434 the compiler chooses the most efficient one based on the current context.
8435 If you must use a specific register, but your Machine Constraints do not
8436 provide sufficient control to select the specific register you want,
8437 local register variables may provide a solution (@pxref{Local Register
8438 Variables}).
8439
8440 Input constraints can also be digits (for example, @code{"0"}). This indicates
8441 that the specified input must be in the same place as the output constraint
8442 at the (zero-based) index in the output constraint list.
8443 When using @var{asmSymbolicName} syntax for the output operands,
8444 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8445
8446 @item cexpression
8447 This is the C variable or expression being passed to the @code{asm} statement
8448 as input. The enclosing parentheses are a required part of the syntax.
8449
8450 @end table
8451
8452 When the compiler selects the registers to use to represent the input
8453 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8454
8455 If there are no output operands but there are input operands, place two
8456 consecutive colons where the output operands would go:
8457
8458 @example
8459 __asm__ ("some instructions"
8460 : /* No outputs. */
8461 : "r" (Offset / 8));
8462 @end example
8463
8464 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8465 (except for inputs tied to outputs). The compiler assumes that on exit from
8466 the @code{asm} statement these operands contain the same values as they
8467 had before executing the statement.
8468 It is @emph{not} possible to use clobbers
8469 to inform the compiler that the values in these inputs are changing. One
8470 common work-around is to tie the changing input variable to an output variable
8471 that never gets used. Note, however, that if the code that follows the
8472 @code{asm} statement makes no use of any of the output operands, the GCC
8473 optimizers may discard the @code{asm} statement as unneeded
8474 (see @ref{Volatile}).
8475
8476 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8477 instead of simply @samp{%2}). Typically these qualifiers are hardware
8478 dependent. The list of supported modifiers for x86 is found at
8479 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8480
8481 In this example using the fictitious @code{combine} instruction, the
8482 constraint @code{"0"} for input operand 1 says that it must occupy the same
8483 location as output operand 0. Only input operands may use numbers in
8484 constraints, and they must each refer to an output operand. Only a number (or
8485 the symbolic assembler name) in the constraint can guarantee that one operand
8486 is in the same place as another. The mere fact that @code{foo} is the value of
8487 both operands is not enough to guarantee that they are in the same place in
8488 the generated assembler code.
8489
8490 @example
8491 asm ("combine %2, %0"
8492 : "=r" (foo)
8493 : "0" (foo), "g" (bar));
8494 @end example
8495
8496 Here is an example using symbolic names.
8497
8498 @example
8499 asm ("cmoveq %1, %2, %[result]"
8500 : [result] "=r"(result)
8501 : "r" (test), "r" (new), "[result]" (old));
8502 @end example
8503
8504 @anchor{Clobbers}
8505 @subsubsection Clobbers
8506 @cindex @code{asm} clobbers
8507
8508 While the compiler is aware of changes to entries listed in the output
8509 operands, the inline @code{asm} code may modify more than just the outputs. For
8510 example, calculations may require additional registers, or the processor may
8511 overwrite a register as a side effect of a particular assembler instruction.
8512 In order to inform the compiler of these changes, list them in the clobber
8513 list. Clobber list items are either register names or the special clobbers
8514 (listed below). Each clobber list item is a string constant
8515 enclosed in double quotes and separated by commas.
8516
8517 Clobber descriptions may not in any way overlap with an input or output
8518 operand. For example, you may not have an operand describing a register class
8519 with one member when listing that register in the clobber list. Variables
8520 declared to live in specific registers (@pxref{Explicit Register
8521 Variables}) and used
8522 as @code{asm} input or output operands must have no part mentioned in the
8523 clobber description. In particular, there is no way to specify that input
8524 operands get modified without also specifying them as output operands.
8525
8526 When the compiler selects which registers to use to represent input and output
8527 operands, it does not use any of the clobbered registers. As a result,
8528 clobbered registers are available for any use in the assembler code.
8529
8530 Here is a realistic example for the VAX showing the use of clobbered
8531 registers:
8532
8533 @example
8534 asm volatile ("movc3 %0, %1, %2"
8535 : /* No outputs. */
8536 : "g" (from), "g" (to), "g" (count)
8537 : "r0", "r1", "r2", "r3", "r4", "r5");
8538 @end example
8539
8540 Also, there are two special clobber arguments:
8541
8542 @table @code
8543 @item "cc"
8544 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8545 register. On some machines, GCC represents the condition codes as a specific
8546 hardware register; @code{"cc"} serves to name this register.
8547 On other machines, condition code handling is different,
8548 and specifying @code{"cc"} has no effect. But
8549 it is valid no matter what the target.
8550
8551 @item "memory"
8552 The @code{"memory"} clobber tells the compiler that the assembly code
8553 performs memory
8554 reads or writes to items other than those listed in the input and output
8555 operands (for example, accessing the memory pointed to by one of the input
8556 parameters). To ensure memory contains correct values, GCC may need to flush
8557 specific register values to memory before executing the @code{asm}. Further,
8558 the compiler does not assume that any values read from memory before an
8559 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8560 needed.
8561 Using the @code{"memory"} clobber effectively forms a read/write
8562 memory barrier for the compiler.
8563
8564 Note that this clobber does not prevent the @emph{processor} from doing
8565 speculative reads past the @code{asm} statement. To prevent that, you need
8566 processor-specific fence instructions.
8567
8568 Flushing registers to memory has performance implications and may be an issue
8569 for time-sensitive code. You can use a trick to avoid this if the size of
8570 the memory being accessed is known at compile time. For example, if accessing
8571 ten bytes of a string, use a memory input like:
8572
8573 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8574
8575 @end table
8576
8577 @anchor{GotoLabels}
8578 @subsubsection Goto Labels
8579 @cindex @code{asm} goto labels
8580
8581 @code{asm goto} allows assembly code to jump to one or more C labels. The
8582 @var{GotoLabels} section in an @code{asm goto} statement contains
8583 a comma-separated
8584 list of all C labels to which the assembler code may jump. GCC assumes that
8585 @code{asm} execution falls through to the next statement (if this is not the
8586 case, consider using the @code{__builtin_unreachable} intrinsic after the
8587 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8588 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8589 Attributes}).
8590
8591 An @code{asm goto} statement cannot have outputs.
8592 This is due to an internal restriction of
8593 the compiler: control transfer instructions cannot have outputs.
8594 If the assembler code does modify anything, use the @code{"memory"} clobber
8595 to force the
8596 optimizers to flush all register values to memory and reload them if
8597 necessary after the @code{asm} statement.
8598
8599 Also note that an @code{asm goto} statement is always implicitly
8600 considered volatile.
8601
8602 To reference a label in the assembler template,
8603 prefix it with @samp{%l} (lowercase @samp{L}) followed
8604 by its (zero-based) position in @var{GotoLabels} plus the number of input
8605 operands. For example, if the @code{asm} has three inputs and references two
8606 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8607
8608 Alternately, you can reference labels using the actual C label name enclosed
8609 in brackets. For example, to reference a label named @code{carry}, you can
8610 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8611 section when using this approach.
8612
8613 Here is an example of @code{asm goto} for i386:
8614
8615 @example
8616 asm goto (
8617 "btl %1, %0\n\t"
8618 "jc %l2"
8619 : /* No outputs. */
8620 : "r" (p1), "r" (p2)
8621 : "cc"
8622 : carry);
8623
8624 return 0;
8625
8626 carry:
8627 return 1;
8628 @end example
8629
8630 The following example shows an @code{asm goto} that uses a memory clobber.
8631
8632 @example
8633 int frob(int x)
8634 @{
8635 int y;
8636 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8637 : /* No outputs. */
8638 : "r"(x), "r"(&y)
8639 : "r5", "memory"
8640 : error);
8641 return y;
8642 error:
8643 return -1;
8644 @}
8645 @end example
8646
8647 @anchor{x86Operandmodifiers}
8648 @subsubsection x86 Operand Modifiers
8649
8650 References to input, output, and goto operands in the assembler template
8651 of extended @code{asm} statements can use
8652 modifiers to affect the way the operands are formatted in
8653 the code output to the assembler. For example, the
8654 following code uses the @samp{h} and @samp{b} modifiers for x86:
8655
8656 @example
8657 uint16_t num;
8658 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8659 @end example
8660
8661 @noindent
8662 These modifiers generate this assembler code:
8663
8664 @example
8665 xchg %ah, %al
8666 @end example
8667
8668 The rest of this discussion uses the following code for illustrative purposes.
8669
8670 @example
8671 int main()
8672 @{
8673 int iInt = 1;
8674
8675 top:
8676
8677 asm volatile goto ("some assembler instructions here"
8678 : /* No outputs. */
8679 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8680 : /* No clobbers. */
8681 : top);
8682 @}
8683 @end example
8684
8685 With no modifiers, this is what the output from the operands would be for the
8686 @samp{att} and @samp{intel} dialects of assembler:
8687
8688 @multitable {Operand} {masm=att} {OFFSET FLAT:.L2}
8689 @headitem Operand @tab masm=att @tab masm=intel
8690 @item @code{%0}
8691 @tab @code{%eax}
8692 @tab @code{eax}
8693 @item @code{%1}
8694 @tab @code{$2}
8695 @tab @code{2}
8696 @item @code{%2}
8697 @tab @code{$.L2}
8698 @tab @code{OFFSET FLAT:.L2}
8699 @end multitable
8700
8701 The table below shows the list of supported modifiers and their effects.
8702
8703 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {masm=att} {masm=intel}
8704 @headitem Modifier @tab Description @tab Operand @tab @option{masm=att} @tab @option{masm=intel}
8705 @item @code{z}
8706 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8707 @tab @code{%z0}
8708 @tab @code{l}
8709 @tab
8710 @item @code{b}
8711 @tab Print the QImode name of the register.
8712 @tab @code{%b0}
8713 @tab @code{%al}
8714 @tab @code{al}
8715 @item @code{h}
8716 @tab Print the QImode name for a ``high'' register.
8717 @tab @code{%h0}
8718 @tab @code{%ah}
8719 @tab @code{ah}
8720 @item @code{w}
8721 @tab Print the HImode name of the register.
8722 @tab @code{%w0}
8723 @tab @code{%ax}
8724 @tab @code{ax}
8725 @item @code{k}
8726 @tab Print the SImode name of the register.
8727 @tab @code{%k0}
8728 @tab @code{%eax}
8729 @tab @code{eax}
8730 @item @code{q}
8731 @tab Print the DImode name of the register.
8732 @tab @code{%q0}
8733 @tab @code{%rax}
8734 @tab @code{rax}
8735 @item @code{l}
8736 @tab Print the label name with no punctuation.
8737 @tab @code{%l2}
8738 @tab @code{.L2}
8739 @tab @code{.L2}
8740 @item @code{c}
8741 @tab Require a constant operand and print the constant expression with no punctuation.
8742 @tab @code{%c1}
8743 @tab @code{2}
8744 @tab @code{2}
8745 @end multitable
8746
8747 @anchor{x86floatingpointasmoperands}
8748 @subsubsection x86 Floating-Point @code{asm} Operands
8749
8750 On x86 targets, there are several rules on the usage of stack-like registers
8751 in the operands of an @code{asm}. These rules apply only to the operands
8752 that are stack-like registers:
8753
8754 @enumerate
8755 @item
8756 Given a set of input registers that die in an @code{asm}, it is
8757 necessary to know which are implicitly popped by the @code{asm}, and
8758 which must be explicitly popped by GCC@.
8759
8760 An input register that is implicitly popped by the @code{asm} must be
8761 explicitly clobbered, unless it is constrained to match an
8762 output operand.
8763
8764 @item
8765 For any input register that is implicitly popped by an @code{asm}, it is
8766 necessary to know how to adjust the stack to compensate for the pop.
8767 If any non-popped input is closer to the top of the reg-stack than
8768 the implicitly popped register, it would not be possible to know what the
8769 stack looked like---it's not clear how the rest of the stack ``slides
8770 up''.
8771
8772 All implicitly popped input registers must be closer to the top of
8773 the reg-stack than any input that is not implicitly popped.
8774
8775 It is possible that if an input dies in an @code{asm}, the compiler might
8776 use the input register for an output reload. Consider this example:
8777
8778 @smallexample
8779 asm ("foo" : "=t" (a) : "f" (b));
8780 @end smallexample
8781
8782 @noindent
8783 This code says that input @code{b} is not popped by the @code{asm}, and that
8784 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
8785 deeper after the @code{asm} than it was before. But, it is possible that
8786 reload may think that it can use the same register for both the input and
8787 the output.
8788
8789 To prevent this from happening,
8790 if any input operand uses the @samp{f} constraint, all output register
8791 constraints must use the @samp{&} early-clobber modifier.
8792
8793 The example above is correctly written as:
8794
8795 @smallexample
8796 asm ("foo" : "=&t" (a) : "f" (b));
8797 @end smallexample
8798
8799 @item
8800 Some operands need to be in particular places on the stack. All
8801 output operands fall in this category---GCC has no other way to
8802 know which registers the outputs appear in unless you indicate
8803 this in the constraints.
8804
8805 Output operands must specifically indicate which register an output
8806 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
8807 constraints must select a class with a single register.
8808
8809 @item
8810 Output operands may not be ``inserted'' between existing stack registers.
8811 Since no 387 opcode uses a read/write operand, all output operands
8812 are dead before the @code{asm}, and are pushed by the @code{asm}.
8813 It makes no sense to push anywhere but the top of the reg-stack.
8814
8815 Output operands must start at the top of the reg-stack: output
8816 operands may not ``skip'' a register.
8817
8818 @item
8819 Some @code{asm} statements may need extra stack space for internal
8820 calculations. This can be guaranteed by clobbering stack registers
8821 unrelated to the inputs and outputs.
8822
8823 @end enumerate
8824
8825 This @code{asm}
8826 takes one input, which is internally popped, and produces two outputs.
8827
8828 @smallexample
8829 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
8830 @end smallexample
8831
8832 @noindent
8833 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
8834 and replaces them with one output. The @code{st(1)} clobber is necessary
8835 for the compiler to know that @code{fyl2xp1} pops both inputs.
8836
8837 @smallexample
8838 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
8839 @end smallexample
8840
8841 @lowersections
8842 @include md.texi
8843 @raisesections
8844
8845 @node Asm Labels
8846 @subsection Controlling Names Used in Assembler Code
8847 @cindex assembler names for identifiers
8848 @cindex names used in assembler code
8849 @cindex identifiers, names in assembler code
8850
8851 You can specify the name to be used in the assembler code for a C
8852 function or variable by writing the @code{asm} (or @code{__asm__})
8853 keyword after the declarator.
8854 It is up to you to make sure that the assembler names you choose do not
8855 conflict with any other assembler symbols, or reference registers.
8856
8857 @subsubheading Assembler names for data:
8858
8859 This sample shows how to specify the assembler name for data:
8860
8861 @smallexample
8862 int foo asm ("myfoo") = 2;
8863 @end smallexample
8864
8865 @noindent
8866 This specifies that the name to be used for the variable @code{foo} in
8867 the assembler code should be @samp{myfoo} rather than the usual
8868 @samp{_foo}.
8869
8870 On systems where an underscore is normally prepended to the name of a C
8871 variable, this feature allows you to define names for the
8872 linker that do not start with an underscore.
8873
8874 GCC does not support using this feature with a non-static local variable
8875 since such variables do not have assembler names. If you are
8876 trying to put the variable in a particular register, see
8877 @ref{Explicit Register Variables}.
8878
8879 @subsubheading Assembler names for functions:
8880
8881 To specify the assembler name for functions, write a declaration for the
8882 function before its definition and put @code{asm} there, like this:
8883
8884 @smallexample
8885 int func (int x, int y) asm ("MYFUNC");
8886
8887 int func (int x, int y)
8888 @{
8889 /* @r{@dots{}} */
8890 @end smallexample
8891
8892 @noindent
8893 This specifies that the name to be used for the function @code{func} in
8894 the assembler code should be @code{MYFUNC}.
8895
8896 @node Explicit Register Variables
8897 @subsection Variables in Specified Registers
8898 @anchor{Explicit Reg Vars}
8899 @cindex explicit register variables
8900 @cindex variables in specified registers
8901 @cindex specified registers
8902
8903 GNU C allows you to associate specific hardware registers with C
8904 variables. In almost all cases, allowing the compiler to assign
8905 registers produces the best code. However under certain unusual
8906 circumstances, more precise control over the variable storage is
8907 required.
8908
8909 Both global and local variables can be associated with a register. The
8910 consequences of performing this association are very different between
8911 the two, as explained in the sections below.
8912
8913 @menu
8914 * Global Register Variables:: Variables declared at global scope.
8915 * Local Register Variables:: Variables declared within a function.
8916 @end menu
8917
8918 @node Global Register Variables
8919 @subsubsection Defining Global Register Variables
8920 @anchor{Global Reg Vars}
8921 @cindex global register variables
8922 @cindex registers, global variables in
8923 @cindex registers, global allocation
8924
8925 You can define a global register variable and associate it with a specified
8926 register like this:
8927
8928 @smallexample
8929 register int *foo asm ("r12");
8930 @end smallexample
8931
8932 @noindent
8933 Here @code{r12} is the name of the register that should be used. Note that
8934 this is the same syntax used for defining local register variables, but for
8935 a global variable the declaration appears outside a function. The
8936 @code{register} keyword is required, and cannot be combined with
8937 @code{static}. The register name must be a valid register name for the
8938 target platform.
8939
8940 Registers are a scarce resource on most systems and allowing the
8941 compiler to manage their usage usually results in the best code. However,
8942 under special circumstances it can make sense to reserve some globally.
8943 For example this may be useful in programs such as programming language
8944 interpreters that have a couple of global variables that are accessed
8945 very often.
8946
8947 After defining a global register variable, for the current compilation
8948 unit:
8949
8950 @itemize @bullet
8951 @item The register is reserved entirely for this use, and will not be
8952 allocated for any other purpose.
8953 @item The register is not saved and restored by any functions.
8954 @item Stores into this register are never deleted even if they appear to be
8955 dead, but references may be deleted, moved or simplified.
8956 @end itemize
8957
8958 Note that these points @emph{only} apply to code that is compiled with the
8959 definition. The behavior of code that is merely linked in (for example
8960 code from libraries) is not affected.
8961
8962 If you want to recompile source files that do not actually use your global
8963 register variable so they do not use the specified register for any other
8964 purpose, you need not actually add the global register declaration to
8965 their source code. It suffices to specify the compiler option
8966 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
8967 register.
8968
8969 @subsubheading Declaring the variable
8970
8971 Global register variables can not have initial values, because an
8972 executable file has no means to supply initial contents for a register.
8973
8974 When selecting a register, choose one that is normally saved and
8975 restored by function calls on your machine. This ensures that code
8976 which is unaware of this reservation (such as library routines) will
8977 restore it before returning.
8978
8979 On machines with register windows, be sure to choose a global
8980 register that is not affected magically by the function call mechanism.
8981
8982 @subsubheading Using the variable
8983
8984 @cindex @code{qsort}, and global register variables
8985 When calling routines that are not aware of the reservation, be
8986 cautious if those routines call back into code which uses them. As an
8987 example, if you call the system library version of @code{qsort}, it may
8988 clobber your registers during execution, but (if you have selected
8989 appropriate registers) it will restore them before returning. However
8990 it will @emph{not} restore them before calling @code{qsort}'s comparison
8991 function. As a result, global values will not reliably be available to
8992 the comparison function unless the @code{qsort} function itself is rebuilt.
8993
8994 Similarly, it is not safe to access the global register variables from signal
8995 handlers or from more than one thread of control. Unless you recompile
8996 them specially for the task at hand, the system library routines may
8997 temporarily use the register for other things.
8998
8999 @cindex register variable after @code{longjmp}
9000 @cindex global register after @code{longjmp}
9001 @cindex value after @code{longjmp}
9002 @findex longjmp
9003 @findex setjmp
9004 On most machines, @code{longjmp} restores to each global register
9005 variable the value it had at the time of the @code{setjmp}. On some
9006 machines, however, @code{longjmp} does not change the value of global
9007 register variables. To be portable, the function that called @code{setjmp}
9008 should make other arrangements to save the values of the global register
9009 variables, and to restore them in a @code{longjmp}. This way, the same
9010 thing happens regardless of what @code{longjmp} does.
9011
9012 Eventually there may be a way of asking the compiler to choose a register
9013 automatically, but first we need to figure out how it should choose and
9014 how to enable you to guide the choice. No solution is evident.
9015
9016 @node Local Register Variables
9017 @subsubsection Specifying Registers for Local Variables
9018 @anchor{Local Reg Vars}
9019 @cindex local variables, specifying registers
9020 @cindex specifying registers for local variables
9021 @cindex registers for local variables
9022
9023 You can define a local register variable and associate it with a specified
9024 register like this:
9025
9026 @smallexample
9027 register int *foo asm ("r12");
9028 @end smallexample
9029
9030 @noindent
9031 Here @code{r12} is the name of the register that should be used. Note
9032 that this is the same syntax used for defining global register variables,
9033 but for a local variable the declaration appears within a function. The
9034 @code{register} keyword is required, and cannot be combined with
9035 @code{static}. The register name must be a valid register name for the
9036 target platform.
9037
9038 As with global register variables, it is recommended that you choose
9039 a register that is normally saved and restored by function calls on your
9040 machine, so that calls to library routines will not clobber it.
9041
9042 The only supported use for this feature is to specify registers
9043 for input and output operands when calling Extended @code{asm}
9044 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9045 particular machine don't provide sufficient control to select the desired
9046 register. To force an operand into a register, create a local variable
9047 and specify the register name after the variable's declaration. Then use
9048 the local variable for the @code{asm} operand and specify any constraint
9049 letter that matches the register:
9050
9051 @smallexample
9052 register int *p1 asm ("r0") = @dots{};
9053 register int *p2 asm ("r1") = @dots{};
9054 register int *result asm ("r0");
9055 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9056 @end smallexample
9057
9058 @emph{Warning:} In the above example, be aware that a register (for example
9059 @code{r0}) can be call-clobbered by subsequent code, including function
9060 calls and library calls for arithmetic operators on other variables (for
9061 example the initialization of @code{p2}). In this case, use temporary
9062 variables for expressions between the register assignments:
9063
9064 @smallexample
9065 int t1 = @dots{};
9066 register int *p1 asm ("r0") = @dots{};
9067 register int *p2 asm ("r1") = t1;
9068 register int *result asm ("r0");
9069 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9070 @end smallexample
9071
9072 Defining a register variable does not reserve the register. Other than
9073 when invoking the Extended @code{asm}, the contents of the specified
9074 register are not guaranteed. For this reason, the following uses
9075 are explicitly @emph{not} supported. If they appear to work, it is only
9076 happenstance, and may stop working as intended due to (seemingly)
9077 unrelated changes in surrounding code, or even minor changes in the
9078 optimization of a future version of gcc:
9079
9080 @itemize @bullet
9081 @item Passing parameters to or from Basic @code{asm}
9082 @item Passing parameters to or from Extended @code{asm} without using input
9083 or output operands.
9084 @item Passing parameters to or from routines written in assembler (or
9085 other languages) using non-standard calling conventions.
9086 @end itemize
9087
9088 Some developers use Local Register Variables in an attempt to improve
9089 gcc's allocation of registers, especially in large functions. In this
9090 case the register name is essentially a hint to the register allocator.
9091 While in some instances this can generate better code, improvements are
9092 subject to the whims of the allocator/optimizers. Since there are no
9093 guarantees that your improvements won't be lost, this usage of Local
9094 Register Variables is discouraged.
9095
9096 On the MIPS platform, there is related use for local register variables
9097 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9098 Defining coprocessor specifics for MIPS targets, gccint,
9099 GNU Compiler Collection (GCC) Internals}).
9100
9101 @node Size of an asm
9102 @subsection Size of an @code{asm}
9103
9104 Some targets require that GCC track the size of each instruction used
9105 in order to generate correct code. Because the final length of the
9106 code produced by an @code{asm} statement is only known by the
9107 assembler, GCC must make an estimate as to how big it will be. It
9108 does this by counting the number of instructions in the pattern of the
9109 @code{asm} and multiplying that by the length of the longest
9110 instruction supported by that processor. (When working out the number
9111 of instructions, it assumes that any occurrence of a newline or of
9112 whatever statement separator character is supported by the assembler --
9113 typically @samp{;} --- indicates the end of an instruction.)
9114
9115 Normally, GCC's estimate is adequate to ensure that correct
9116 code is generated, but it is possible to confuse the compiler if you use
9117 pseudo instructions or assembler macros that expand into multiple real
9118 instructions, or if you use assembler directives that expand to more
9119 space in the object file than is needed for a single instruction.
9120 If this happens then the assembler may produce a diagnostic saying that
9121 a label is unreachable.
9122
9123 @node Alternate Keywords
9124 @section Alternate Keywords
9125 @cindex alternate keywords
9126 @cindex keywords, alternate
9127
9128 @option{-ansi} and the various @option{-std} options disable certain
9129 keywords. This causes trouble when you want to use GNU C extensions, or
9130 a general-purpose header file that should be usable by all programs,
9131 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9132 @code{inline} are not available in programs compiled with
9133 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9134 program compiled with @option{-std=c99} or @option{-std=c11}). The
9135 ISO C99 keyword
9136 @code{restrict} is only available when @option{-std=gnu99} (which will
9137 eventually be the default) or @option{-std=c99} (or the equivalent
9138 @option{-std=iso9899:1999}), or an option for a later standard
9139 version, is used.
9140
9141 The way to solve these problems is to put @samp{__} at the beginning and
9142 end of each problematical keyword. For example, use @code{__asm__}
9143 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9144
9145 Other C compilers won't accept these alternative keywords; if you want to
9146 compile with another compiler, you can define the alternate keywords as
9147 macros to replace them with the customary keywords. It looks like this:
9148
9149 @smallexample
9150 #ifndef __GNUC__
9151 #define __asm__ asm
9152 #endif
9153 @end smallexample
9154
9155 @findex __extension__
9156 @opindex pedantic
9157 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9158 You can
9159 prevent such warnings within one expression by writing
9160 @code{__extension__} before the expression. @code{__extension__} has no
9161 effect aside from this.
9162
9163 @node Incomplete Enums
9164 @section Incomplete @code{enum} Types
9165
9166 You can define an @code{enum} tag without specifying its possible values.
9167 This results in an incomplete type, much like what you get if you write
9168 @code{struct foo} without describing the elements. A later declaration
9169 that does specify the possible values completes the type.
9170
9171 You can't allocate variables or storage using the type while it is
9172 incomplete. However, you can work with pointers to that type.
9173
9174 This extension may not be very useful, but it makes the handling of
9175 @code{enum} more consistent with the way @code{struct} and @code{union}
9176 are handled.
9177
9178 This extension is not supported by GNU C++.
9179
9180 @node Function Names
9181 @section Function Names as Strings
9182 @cindex @code{__func__} identifier
9183 @cindex @code{__FUNCTION__} identifier
9184 @cindex @code{__PRETTY_FUNCTION__} identifier
9185
9186 GCC provides three magic constants that hold the name of the current
9187 function as a string. In C++11 and later modes, all three are treated
9188 as constant expressions and can be used in @code{constexpr} constexts.
9189 The first of these constants is @code{__func__}, which is part of
9190 the C99 standard:
9191
9192 The identifier @code{__func__} is implicitly declared by the translator
9193 as if, immediately following the opening brace of each function
9194 definition, the declaration
9195
9196 @smallexample
9197 static const char __func__[] = "function-name";
9198 @end smallexample
9199
9200 @noindent
9201 appeared, where function-name is the name of the lexically-enclosing
9202 function. This name is the unadorned name of the function. As an
9203 extension, at file (or, in C++, namespace scope), @code{__func__}
9204 evaluates to the empty string.
9205
9206 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9207 backward compatibility with old versions of GCC.
9208
9209 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9210 @code{__func__}, except that at file (or, in C++, namespace scope),
9211 it evaluates to the string @code{"top level"}. In addition, in C++,
9212 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9213 well as its bare name. For example, this program:
9214
9215 @smallexample
9216 extern "C" int printf (const char *, ...);
9217
9218 class a @{
9219 public:
9220 void sub (int i)
9221 @{
9222 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9223 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9224 @}
9225 @};
9226
9227 int
9228 main (void)
9229 @{
9230 a ax;
9231 ax.sub (0);
9232 return 0;
9233 @}
9234 @end smallexample
9235
9236 @noindent
9237 gives this output:
9238
9239 @smallexample
9240 __FUNCTION__ = sub
9241 __PRETTY_FUNCTION__ = void a::sub(int)
9242 @end smallexample
9243
9244 These identifiers are variables, not preprocessor macros, and may not
9245 be used to initialize @code{char} arrays or be concatenated with string
9246 literals.
9247
9248 @node Return Address
9249 @section Getting the Return or Frame Address of a Function
9250
9251 These functions may be used to get information about the callers of a
9252 function.
9253
9254 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9255 This function returns the return address of the current function, or of
9256 one of its callers. The @var{level} argument is number of frames to
9257 scan up the call stack. A value of @code{0} yields the return address
9258 of the current function, a value of @code{1} yields the return address
9259 of the caller of the current function, and so forth. When inlining
9260 the expected behavior is that the function returns the address of
9261 the function that is returned to. To work around this behavior use
9262 the @code{noinline} function attribute.
9263
9264 The @var{level} argument must be a constant integer.
9265
9266 On some machines it may be impossible to determine the return address of
9267 any function other than the current one; in such cases, or when the top
9268 of the stack has been reached, this function returns @code{0} or a
9269 random value. In addition, @code{__builtin_frame_address} may be used
9270 to determine if the top of the stack has been reached.
9271
9272 Additional post-processing of the returned value may be needed, see
9273 @code{__builtin_extract_return_addr}.
9274
9275 Calling this function with a nonzero argument can have unpredictable
9276 effects, including crashing the calling program. As a result, calls
9277 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9278 option is in effect. Such calls should only be made in debugging
9279 situations.
9280 @end deftypefn
9281
9282 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9283 The address as returned by @code{__builtin_return_address} may have to be fed
9284 through this function to get the actual encoded address. For example, on the
9285 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9286 platforms an offset has to be added for the true next instruction to be
9287 executed.
9288
9289 If no fixup is needed, this function simply passes through @var{addr}.
9290 @end deftypefn
9291
9292 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9293 This function does the reverse of @code{__builtin_extract_return_addr}.
9294 @end deftypefn
9295
9296 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9297 This function is similar to @code{__builtin_return_address}, but it
9298 returns the address of the function frame rather than the return address
9299 of the function. Calling @code{__builtin_frame_address} with a value of
9300 @code{0} yields the frame address of the current function, a value of
9301 @code{1} yields the frame address of the caller of the current function,
9302 and so forth.
9303
9304 The frame is the area on the stack that holds local variables and saved
9305 registers. The frame address is normally the address of the first word
9306 pushed on to the stack by the function. However, the exact definition
9307 depends upon the processor and the calling convention. If the processor
9308 has a dedicated frame pointer register, and the function has a frame,
9309 then @code{__builtin_frame_address} returns the value of the frame
9310 pointer register.
9311
9312 On some machines it may be impossible to determine the frame address of
9313 any function other than the current one; in such cases, or when the top
9314 of the stack has been reached, this function returns @code{0} if
9315 the first frame pointer is properly initialized by the startup code.
9316
9317 Calling this function with a nonzero argument can have unpredictable
9318 effects, including crashing the calling program. As a result, calls
9319 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9320 option is in effect. Such calls should only be made in debugging
9321 situations.
9322 @end deftypefn
9323
9324 @node Vector Extensions
9325 @section Using Vector Instructions through Built-in Functions
9326
9327 On some targets, the instruction set contains SIMD vector instructions which
9328 operate on multiple values contained in one large register at the same time.
9329 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9330 this way.
9331
9332 The first step in using these extensions is to provide the necessary data
9333 types. This should be done using an appropriate @code{typedef}:
9334
9335 @smallexample
9336 typedef int v4si __attribute__ ((vector_size (16)));
9337 @end smallexample
9338
9339 @noindent
9340 The @code{int} type specifies the base type, while the attribute specifies
9341 the vector size for the variable, measured in bytes. For example, the
9342 declaration above causes the compiler to set the mode for the @code{v4si}
9343 type to be 16 bytes wide and divided into @code{int} sized units. For
9344 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9345 corresponding mode of @code{foo} is @acronym{V4SI}.
9346
9347 The @code{vector_size} attribute is only applicable to integral and
9348 float scalars, although arrays, pointers, and function return values
9349 are allowed in conjunction with this construct. Only sizes that are
9350 a power of two are currently allowed.
9351
9352 All the basic integer types can be used as base types, both as signed
9353 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9354 @code{long long}. In addition, @code{float} and @code{double} can be
9355 used to build floating-point vector types.
9356
9357 Specifying a combination that is not valid for the current architecture
9358 causes GCC to synthesize the instructions using a narrower mode.
9359 For example, if you specify a variable of type @code{V4SI} and your
9360 architecture does not allow for this specific SIMD type, GCC
9361 produces code that uses 4 @code{SIs}.
9362
9363 The types defined in this manner can be used with a subset of normal C
9364 operations. Currently, GCC allows using the following operators
9365 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9366
9367 The operations behave like C++ @code{valarrays}. Addition is defined as
9368 the addition of the corresponding elements of the operands. For
9369 example, in the code below, each of the 4 elements in @var{a} is
9370 added to the corresponding 4 elements in @var{b} and the resulting
9371 vector is stored in @var{c}.
9372
9373 @smallexample
9374 typedef int v4si __attribute__ ((vector_size (16)));
9375
9376 v4si a, b, c;
9377
9378 c = a + b;
9379 @end smallexample
9380
9381 Subtraction, multiplication, division, and the logical operations
9382 operate in a similar manner. Likewise, the result of using the unary
9383 minus or complement operators on a vector type is a vector whose
9384 elements are the negative or complemented values of the corresponding
9385 elements in the operand.
9386
9387 It is possible to use shifting operators @code{<<}, @code{>>} on
9388 integer-type vectors. The operation is defined as following: @code{@{a0,
9389 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9390 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9391 elements.
9392
9393 For convenience, it is allowed to use a binary vector operation
9394 where one operand is a scalar. In that case the compiler transforms
9395 the scalar operand into a vector where each element is the scalar from
9396 the operation. The transformation happens only if the scalar could be
9397 safely converted to the vector-element type.
9398 Consider the following code.
9399
9400 @smallexample
9401 typedef int v4si __attribute__ ((vector_size (16)));
9402
9403 v4si a, b, c;
9404 long l;
9405
9406 a = b + 1; /* a = b + @{1,1,1,1@}; */
9407 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9408
9409 a = l + a; /* Error, cannot convert long to int. */
9410 @end smallexample
9411
9412 Vectors can be subscripted as if the vector were an array with
9413 the same number of elements and base type. Out of bound accesses
9414 invoke undefined behavior at run time. Warnings for out of bound
9415 accesses for vector subscription can be enabled with
9416 @option{-Warray-bounds}.
9417
9418 Vector comparison is supported with standard comparison
9419 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9420 vector expressions of integer-type or real-type. Comparison between
9421 integer-type vectors and real-type vectors are not supported. The
9422 result of the comparison is a vector of the same width and number of
9423 elements as the comparison operands with a signed integral element
9424 type.
9425
9426 Vectors are compared element-wise producing 0 when comparison is false
9427 and -1 (constant of the appropriate type where all bits are set)
9428 otherwise. Consider the following example.
9429
9430 @smallexample
9431 typedef int v4si __attribute__ ((vector_size (16)));
9432
9433 v4si a = @{1,2,3,4@};
9434 v4si b = @{3,2,1,4@};
9435 v4si c;
9436
9437 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9438 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9439 @end smallexample
9440
9441 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9442 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9443 integer vector with the same number of elements of the same size as @code{b}
9444 and @code{c}, computes all three arguments and creates a vector
9445 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9446 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9447 As in the case of binary operations, this syntax is also accepted when
9448 one of @code{b} or @code{c} is a scalar that is then transformed into a
9449 vector. If both @code{b} and @code{c} are scalars and the type of
9450 @code{true?b:c} has the same size as the element type of @code{a}, then
9451 @code{b} and @code{c} are converted to a vector type whose elements have
9452 this type and with the same number of elements as @code{a}.
9453
9454 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9455 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9456 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9457 For mixed operations between a scalar @code{s} and a vector @code{v},
9458 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9459 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9460
9461 Vector shuffling is available using functions
9462 @code{__builtin_shuffle (vec, mask)} and
9463 @code{__builtin_shuffle (vec0, vec1, mask)}.
9464 Both functions construct a permutation of elements from one or two
9465 vectors and return a vector of the same type as the input vector(s).
9466 The @var{mask} is an integral vector with the same width (@var{W})
9467 and element count (@var{N}) as the output vector.
9468
9469 The elements of the input vectors are numbered in memory ordering of
9470 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9471 elements of @var{mask} are considered modulo @var{N} in the single-operand
9472 case and modulo @math{2*@var{N}} in the two-operand case.
9473
9474 Consider the following example,
9475
9476 @smallexample
9477 typedef int v4si __attribute__ ((vector_size (16)));
9478
9479 v4si a = @{1,2,3,4@};
9480 v4si b = @{5,6,7,8@};
9481 v4si mask1 = @{0,1,1,3@};
9482 v4si mask2 = @{0,4,2,5@};
9483 v4si res;
9484
9485 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9486 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9487 @end smallexample
9488
9489 Note that @code{__builtin_shuffle} is intentionally semantically
9490 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9491
9492 You can declare variables and use them in function calls and returns, as
9493 well as in assignments and some casts. You can specify a vector type as
9494 a return type for a function. Vector types can also be used as function
9495 arguments. It is possible to cast from one vector type to another,
9496 provided they are of the same size (in fact, you can also cast vectors
9497 to and from other datatypes of the same size).
9498
9499 You cannot operate between vectors of different lengths or different
9500 signedness without a cast.
9501
9502 @node Offsetof
9503 @section Support for @code{offsetof}
9504 @findex __builtin_offsetof
9505
9506 GCC implements for both C and C++ a syntactic extension to implement
9507 the @code{offsetof} macro.
9508
9509 @smallexample
9510 primary:
9511 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9512
9513 offsetof_member_designator:
9514 @code{identifier}
9515 | offsetof_member_designator "." @code{identifier}
9516 | offsetof_member_designator "[" @code{expr} "]"
9517 @end smallexample
9518
9519 This extension is sufficient such that
9520
9521 @smallexample
9522 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9523 @end smallexample
9524
9525 @noindent
9526 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9527 may be dependent. In either case, @var{member} may consist of a single
9528 identifier, or a sequence of member accesses and array references.
9529
9530 @node __sync Builtins
9531 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9532
9533 The following built-in functions
9534 are intended to be compatible with those described
9535 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9536 section 7.4. As such, they depart from normal GCC practice by not using
9537 the @samp{__builtin_} prefix and also by being overloaded so that they
9538 work on multiple types.
9539
9540 The definition given in the Intel documentation allows only for the use of
9541 the types @code{int}, @code{long}, @code{long long} or their unsigned
9542 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9543 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9544 Operations on pointer arguments are performed as if the operands were
9545 of the @code{uintptr_t} type. That is, they are not scaled by the size
9546 of the type to which the pointer points.
9547
9548 These functions are implemented in terms of the @samp{__atomic}
9549 builtins (@pxref{__atomic Builtins}). They should not be used for new
9550 code which should use the @samp{__atomic} builtins instead.
9551
9552 Not all operations are supported by all target processors. If a particular
9553 operation cannot be implemented on the target processor, a warning is
9554 generated and a call to an external function is generated. The external
9555 function carries the same name as the built-in version,
9556 with an additional suffix
9557 @samp{_@var{n}} where @var{n} is the size of the data type.
9558
9559 @c ??? Should we have a mechanism to suppress this warning? This is almost
9560 @c useful for implementing the operation under the control of an external
9561 @c mutex.
9562
9563 In most cases, these built-in functions are considered a @dfn{full barrier}.
9564 That is,
9565 no memory operand is moved across the operation, either forward or
9566 backward. Further, instructions are issued as necessary to prevent the
9567 processor from speculating loads across the operation and from queuing stores
9568 after the operation.
9569
9570 All of the routines are described in the Intel documentation to take
9571 ``an optional list of variables protected by the memory barrier''. It's
9572 not clear what is meant by that; it could mean that @emph{only} the
9573 listed variables are protected, or it could mean a list of additional
9574 variables to be protected. The list is ignored by GCC which treats it as
9575 empty. GCC interprets an empty list as meaning that all globally
9576 accessible variables should be protected.
9577
9578 @table @code
9579 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9580 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9581 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9582 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9583 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9584 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9585 @findex __sync_fetch_and_add
9586 @findex __sync_fetch_and_sub
9587 @findex __sync_fetch_and_or
9588 @findex __sync_fetch_and_and
9589 @findex __sync_fetch_and_xor
9590 @findex __sync_fetch_and_nand
9591 These built-in functions perform the operation suggested by the name, and
9592 returns the value that had previously been in memory. That is, operations
9593 on integer operands have the following semantics. Operations on pointer
9594 arguments are performed as if the operands were of the @code{uintptr_t}
9595 type. That is, they are not scaled by the size of the type to which
9596 the pointer points.
9597
9598 @smallexample
9599 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9600 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9601 @end smallexample
9602
9603 The object pointed to by the first argument must be of integer or pointer
9604 type. It must not be a boolean type.
9605
9606 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9607 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9608
9609 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9610 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9611 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9612 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9613 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9614 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9615 @findex __sync_add_and_fetch
9616 @findex __sync_sub_and_fetch
9617 @findex __sync_or_and_fetch
9618 @findex __sync_and_and_fetch
9619 @findex __sync_xor_and_fetch
9620 @findex __sync_nand_and_fetch
9621 These built-in functions perform the operation suggested by the name, and
9622 return the new value. That is, operations on integer operands have
9623 the following semantics. Operations on pointer operands are performed as
9624 if the operand's type were @code{uintptr_t}.
9625
9626 @smallexample
9627 @{ *ptr @var{op}= value; return *ptr; @}
9628 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9629 @end smallexample
9630
9631 The same constraints on arguments apply as for the corresponding
9632 @code{__sync_op_and_fetch} built-in functions.
9633
9634 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9635 as @code{*ptr = ~(*ptr & value)} instead of
9636 @code{*ptr = ~*ptr & value}.
9637
9638 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9639 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9640 @findex __sync_bool_compare_and_swap
9641 @findex __sync_val_compare_and_swap
9642 These built-in functions perform an atomic compare and swap.
9643 That is, if the current
9644 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9645 @code{*@var{ptr}}.
9646
9647 The ``bool'' version returns true if the comparison is successful and
9648 @var{newval} is written. The ``val'' version returns the contents
9649 of @code{*@var{ptr}} before the operation.
9650
9651 @item __sync_synchronize (...)
9652 @findex __sync_synchronize
9653 This built-in function issues a full memory barrier.
9654
9655 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9656 @findex __sync_lock_test_and_set
9657 This built-in function, as described by Intel, is not a traditional test-and-set
9658 operation, but rather an atomic exchange operation. It writes @var{value}
9659 into @code{*@var{ptr}}, and returns the previous contents of
9660 @code{*@var{ptr}}.
9661
9662 Many targets have only minimal support for such locks, and do not support
9663 a full exchange operation. In this case, a target may support reduced
9664 functionality here by which the @emph{only} valid value to store is the
9665 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9666 is implementation defined.
9667
9668 This built-in function is not a full barrier,
9669 but rather an @dfn{acquire barrier}.
9670 This means that references after the operation cannot move to (or be
9671 speculated to) before the operation, but previous memory stores may not
9672 be globally visible yet, and previous memory loads may not yet be
9673 satisfied.
9674
9675 @item void __sync_lock_release (@var{type} *ptr, ...)
9676 @findex __sync_lock_release
9677 This built-in function releases the lock acquired by
9678 @code{__sync_lock_test_and_set}.
9679 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9680
9681 This built-in function is not a full barrier,
9682 but rather a @dfn{release barrier}.
9683 This means that all previous memory stores are globally visible, and all
9684 previous memory loads have been satisfied, but following memory reads
9685 are not prevented from being speculated to before the barrier.
9686 @end table
9687
9688 @node __atomic Builtins
9689 @section Built-in Functions for Memory Model Aware Atomic Operations
9690
9691 The following built-in functions approximately match the requirements
9692 for the C++11 memory model. They are all
9693 identified by being prefixed with @samp{__atomic} and most are
9694 overloaded so that they work with multiple types.
9695
9696 These functions are intended to replace the legacy @samp{__sync}
9697 builtins. The main difference is that the memory order that is requested
9698 is a parameter to the functions. New code should always use the
9699 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9700
9701 Note that the @samp{__atomic} builtins assume that programs will
9702 conform to the C++11 memory model. In particular, they assume
9703 that programs are free of data races. See the C++11 standard for
9704 detailed requirements.
9705
9706 The @samp{__atomic} builtins can be used with any integral scalar or
9707 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9708 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9709 supported by the architecture.
9710
9711 The four non-arithmetic functions (load, store, exchange, and
9712 compare_exchange) all have a generic version as well. This generic
9713 version works on any data type. It uses the lock-free built-in function
9714 if the specific data type size makes that possible; otherwise, an
9715 external call is left to be resolved at run time. This external call is
9716 the same format with the addition of a @samp{size_t} parameter inserted
9717 as the first parameter indicating the size of the object being pointed to.
9718 All objects must be the same size.
9719
9720 There are 6 different memory orders that can be specified. These map
9721 to the C++11 memory orders with the same names, see the C++11 standard
9722 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9723 on atomic synchronization} for detailed definitions. Individual
9724 targets may also support additional memory orders for use on specific
9725 architectures. Refer to the target documentation for details of
9726 these.
9727
9728 An atomic operation can both constrain code motion and
9729 be mapped to hardware instructions for synchronization between threads
9730 (e.g., a fence). To which extent this happens is controlled by the
9731 memory orders, which are listed here in approximately ascending order of
9732 strength. The description of each memory order is only meant to roughly
9733 illustrate the effects and is not a specification; see the C++11
9734 memory model for precise semantics.
9735
9736 @table @code
9737 @item __ATOMIC_RELAXED
9738 Implies no inter-thread ordering constraints.
9739 @item __ATOMIC_CONSUME
9740 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9741 memory order because of a deficiency in C++11's semantics for
9742 @code{memory_order_consume}.
9743 @item __ATOMIC_ACQUIRE
9744 Creates an inter-thread happens-before constraint from the release (or
9745 stronger) semantic store to this acquire load. Can prevent hoisting
9746 of code to before the operation.
9747 @item __ATOMIC_RELEASE
9748 Creates an inter-thread happens-before constraint to acquire (or stronger)
9749 semantic loads that read from this release store. Can prevent sinking
9750 of code to after the operation.
9751 @item __ATOMIC_ACQ_REL
9752 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9753 @code{__ATOMIC_RELEASE}.
9754 @item __ATOMIC_SEQ_CST
9755 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9756 @end table
9757
9758 Note that in the C++11 memory model, @emph{fences} (e.g.,
9759 @samp{__atomic_thread_fence}) take effect in combination with other
9760 atomic operations on specific memory locations (e.g., atomic loads);
9761 operations on specific memory locations do not necessarily affect other
9762 operations in the same way.
9763
9764 Target architectures are encouraged to provide their own patterns for
9765 each of the atomic built-in functions. If no target is provided, the original
9766 non-memory model set of @samp{__sync} atomic built-in functions are
9767 used, along with any required synchronization fences surrounding it in
9768 order to achieve the proper behavior. Execution in this case is subject
9769 to the same restrictions as those built-in functions.
9770
9771 If there is no pattern or mechanism to provide a lock-free instruction
9772 sequence, a call is made to an external routine with the same parameters
9773 to be resolved at run time.
9774
9775 When implementing patterns for these built-in functions, the memory order
9776 parameter can be ignored as long as the pattern implements the most
9777 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
9778 orders execute correctly with this memory order but they may not execute as
9779 efficiently as they could with a more appropriate implementation of the
9780 relaxed requirements.
9781
9782 Note that the C++11 standard allows for the memory order parameter to be
9783 determined at run time rather than at compile time. These built-in
9784 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
9785 than invoke a runtime library call or inline a switch statement. This is
9786 standard compliant, safe, and the simplest approach for now.
9787
9788 The memory order parameter is a signed int, but only the lower 16 bits are
9789 reserved for the memory order. The remainder of the signed int is reserved
9790 for target use and should be 0. Use of the predefined atomic values
9791 ensures proper usage.
9792
9793 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
9794 This built-in function implements an atomic load operation. It returns the
9795 contents of @code{*@var{ptr}}.
9796
9797 The valid memory order variants are
9798 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9799 and @code{__ATOMIC_CONSUME}.
9800
9801 @end deftypefn
9802
9803 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
9804 This is the generic version of an atomic load. It returns the
9805 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
9806
9807 @end deftypefn
9808
9809 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
9810 This built-in function implements an atomic store operation. It writes
9811 @code{@var{val}} into @code{*@var{ptr}}.
9812
9813 The valid memory order variants are
9814 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
9815
9816 @end deftypefn
9817
9818 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
9819 This is the generic version of an atomic store. It stores the value
9820 of @code{*@var{val}} into @code{*@var{ptr}}.
9821
9822 @end deftypefn
9823
9824 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
9825 This built-in function implements an atomic exchange operation. It writes
9826 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
9827 @code{*@var{ptr}}.
9828
9829 The valid memory order variants are
9830 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9831 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
9832
9833 @end deftypefn
9834
9835 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
9836 This is the generic version of an atomic exchange. It stores the
9837 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
9838 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
9839
9840 @end deftypefn
9841
9842 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
9843 This built-in function implements an atomic compare and exchange operation.
9844 This compares the contents of @code{*@var{ptr}} with the contents of
9845 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
9846 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
9847 equal, the operation is a @emph{read} and the current contents of
9848 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
9849 for weak compare_exchange, which may fail spuriously, and false for
9850 the strong variation, which never fails spuriously. Many targets
9851 only offer the strong variation and ignore the parameter. When in doubt, use
9852 the strong variation.
9853
9854 If @var{desired} is written into @code{*@var{ptr}} then true is returned
9855 and memory is affected according to the
9856 memory order specified by @var{success_memorder}. There are no
9857 restrictions on what memory order can be used here.
9858
9859 Otherwise, false is returned and memory is affected according
9860 to @var{failure_memorder}. This memory order cannot be
9861 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
9862 stronger order than that specified by @var{success_memorder}.
9863
9864 @end deftypefn
9865
9866 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
9867 This built-in function implements the generic version of
9868 @code{__atomic_compare_exchange}. The function is virtually identical to
9869 @code{__atomic_compare_exchange_n}, except the desired value is also a
9870 pointer.
9871
9872 @end deftypefn
9873
9874 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
9875 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
9876 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
9877 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
9878 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
9879 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
9880 These built-in functions perform the operation suggested by the name, and
9881 return the result of the operation. Operations on pointer arguments are
9882 performed as if the operands were of the @code{uintptr_t} type. That is,
9883 they are not scaled by the size of the type to which the pointer points.
9884
9885 @smallexample
9886 @{ *ptr @var{op}= val; return *ptr; @}
9887 @end smallexample
9888
9889 The object pointed to by the first argument must be of integer or pointer
9890 type. It must not be a boolean type. All memory orders are valid.
9891
9892 @end deftypefn
9893
9894 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
9895 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
9896 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
9897 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
9898 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
9899 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
9900 These built-in functions perform the operation suggested by the name, and
9901 return the value that had previously been in @code{*@var{ptr}}. Operations
9902 on pointer arguments are performed as if the operands were of
9903 the @code{uintptr_t} type. That is, they are not scaled by the size of
9904 the type to which the pointer points.
9905
9906 @smallexample
9907 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
9908 @end smallexample
9909
9910 The same constraints on arguments apply as for the corresponding
9911 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
9912
9913 @end deftypefn
9914
9915 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
9916
9917 This built-in function performs an atomic test-and-set operation on
9918 the byte at @code{*@var{ptr}}. The byte is set to some implementation
9919 defined nonzero ``set'' value and the return value is @code{true} if and only
9920 if the previous contents were ``set''.
9921 It should be only used for operands of type @code{bool} or @code{char}. For
9922 other types only part of the value may be set.
9923
9924 All memory orders are valid.
9925
9926 @end deftypefn
9927
9928 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
9929
9930 This built-in function performs an atomic clear operation on
9931 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
9932 It should be only used for operands of type @code{bool} or @code{char} and
9933 in conjunction with @code{__atomic_test_and_set}.
9934 For other types it may only clear partially. If the type is not @code{bool}
9935 prefer using @code{__atomic_store}.
9936
9937 The valid memory order variants are
9938 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
9939 @code{__ATOMIC_RELEASE}.
9940
9941 @end deftypefn
9942
9943 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
9944
9945 This built-in function acts as a synchronization fence between threads
9946 based on the specified memory order.
9947
9948 All memory orders are valid.
9949
9950 @end deftypefn
9951
9952 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
9953
9954 This built-in function acts as a synchronization fence between a thread
9955 and signal handlers based in the same thread.
9956
9957 All memory orders are valid.
9958
9959 @end deftypefn
9960
9961 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
9962
9963 This built-in function returns true if objects of @var{size} bytes always
9964 generate lock-free atomic instructions for the target architecture.
9965 @var{size} must resolve to a compile-time constant and the result also
9966 resolves to a compile-time constant.
9967
9968 @var{ptr} is an optional pointer to the object that may be used to determine
9969 alignment. A value of 0 indicates typical alignment should be used. The
9970 compiler may also ignore this parameter.
9971
9972 @smallexample
9973 if (__atomic_always_lock_free (sizeof (long long), 0))
9974 @end smallexample
9975
9976 @end deftypefn
9977
9978 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
9979
9980 This built-in function returns true if objects of @var{size} bytes always
9981 generate lock-free atomic instructions for the target architecture. If
9982 the built-in function is not known to be lock-free, a call is made to a
9983 runtime routine named @code{__atomic_is_lock_free}.
9984
9985 @var{ptr} is an optional pointer to the object that may be used to determine
9986 alignment. A value of 0 indicates typical alignment should be used. The
9987 compiler may also ignore this parameter.
9988 @end deftypefn
9989
9990 @node Integer Overflow Builtins
9991 @section Built-in Functions to Perform Arithmetic with Overflow Checking
9992
9993 The following built-in functions allow performing simple arithmetic operations
9994 together with checking whether the operations overflowed.
9995
9996 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9997 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
9998 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
9999 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
10000 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
10001 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10002 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10003
10004 These built-in functions promote the first two operands into infinite precision signed
10005 type and perform addition on those promoted operands. The result is then
10006 cast to the type the third pointer argument points to and stored there.
10007 If the stored result is equal to the infinite precision result, the built-in
10008 functions return false, otherwise they return true. As the addition is
10009 performed in infinite signed precision, these built-in functions have fully defined
10010 behavior for all argument values.
10011
10012 The first built-in function allows arbitrary integral types for operands and
10013 the result type must be pointer to some integral type other than enumerated or
10014 boolean type, the rest of the built-in functions have explicit integer types.
10015
10016 The compiler will attempt to use hardware instructions to implement
10017 these built-in functions where possible, like conditional jump on overflow
10018 after addition, conditional jump on carry etc.
10019
10020 @end deftypefn
10021
10022 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10023 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
10024 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
10025 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
10026 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
10027 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10028 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10029
10030 These built-in functions are similar to the add overflow checking built-in
10031 functions above, except they perform subtraction, subtract the second argument
10032 from the first one, instead of addition.
10033
10034 @end deftypefn
10035
10036 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10037 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10038 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10039 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10040 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10041 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10042 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10043
10044 These built-in functions are similar to the add overflow checking built-in
10045 functions above, except they perform multiplication, instead of addition.
10046
10047 @end deftypefn
10048
10049 The following built-in functions allow checking if simple arithmetic operation
10050 would overflow.
10051
10052 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10053 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10054 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10055
10056 These built-in functions are similar to @code{__builtin_add_overflow},
10057 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10058 they don't store the result of the arithmetic operation anywhere and the
10059 last argument is not a pointer, but some expression with integral type other
10060 than enumerated or boolean type.
10061
10062 The built-in functions promote the first two operands into infinite precision signed type
10063 and perform addition on those promoted operands. The result is then
10064 cast to the type of the third argument. If the cast result is equal to the infinite
10065 precision result, the built-in functions return false, otherwise they return true.
10066 The value of the third argument is ignored, just the side-effects in the third argument
10067 are evaluated, and no integral argument promotions are performed on the last argument.
10068 If the third argument is a bit-field, the type used for the result cast has the
10069 precision and signedness of the given bit-field, rather than precision and signedness
10070 of the underlying type.
10071
10072 For example, the following macro can be used to portably check, at
10073 compile-time, whether or not adding two constant integers will overflow,
10074 and perform the addition only when it is known to be safe and not to trigger
10075 a @option{-Woverflow} warning.
10076
10077 @smallexample
10078 #define INT_ADD_OVERFLOW_P(a, b) \
10079 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10080
10081 enum @{
10082 A = INT_MAX, B = 3,
10083 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10084 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10085 @};
10086 @end smallexample
10087
10088 The compiler will attempt to use hardware instructions to implement
10089 these built-in functions where possible, like conditional jump on overflow
10090 after addition, conditional jump on carry etc.
10091
10092 @end deftypefn
10093
10094 @node x86 specific memory model extensions for transactional memory
10095 @section x86-Specific Memory Model Extensions for Transactional Memory
10096
10097 The x86 architecture supports additional memory ordering flags
10098 to mark lock critical sections for hardware lock elision.
10099 These must be specified in addition to an existing memory order to
10100 atomic intrinsics.
10101
10102 @table @code
10103 @item __ATOMIC_HLE_ACQUIRE
10104 Start lock elision on a lock variable.
10105 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10106 @item __ATOMIC_HLE_RELEASE
10107 End lock elision on a lock variable.
10108 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10109 @end table
10110
10111 When a lock acquire fails, it is required for good performance to abort
10112 the transaction quickly. This can be done with a @code{_mm_pause}.
10113
10114 @smallexample
10115 #include <immintrin.h> // For _mm_pause
10116
10117 int lockvar;
10118
10119 /* Acquire lock with lock elision */
10120 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10121 _mm_pause(); /* Abort failed transaction */
10122 ...
10123 /* Free lock with lock elision */
10124 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10125 @end smallexample
10126
10127 @node Object Size Checking
10128 @section Object Size Checking Built-in Functions
10129 @findex __builtin_object_size
10130 @findex __builtin___memcpy_chk
10131 @findex __builtin___mempcpy_chk
10132 @findex __builtin___memmove_chk
10133 @findex __builtin___memset_chk
10134 @findex __builtin___strcpy_chk
10135 @findex __builtin___stpcpy_chk
10136 @findex __builtin___strncpy_chk
10137 @findex __builtin___strcat_chk
10138 @findex __builtin___strncat_chk
10139 @findex __builtin___sprintf_chk
10140 @findex __builtin___snprintf_chk
10141 @findex __builtin___vsprintf_chk
10142 @findex __builtin___vsnprintf_chk
10143 @findex __builtin___printf_chk
10144 @findex __builtin___vprintf_chk
10145 @findex __builtin___fprintf_chk
10146 @findex __builtin___vfprintf_chk
10147
10148 GCC implements a limited buffer overflow protection mechanism that can
10149 prevent some buffer overflow attacks by determining the sizes of objects
10150 into which data is about to be written and preventing the writes when
10151 the size isn't sufficient. The built-in functions described below yield
10152 the best results when used together and when optimization is enabled.
10153 For example, to detect object sizes across function boundaries or to
10154 follow pointer assignments through non-trivial control flow they rely
10155 on various optimization passes enabled with @option{-O2}. However, to
10156 a limited extent, they can be used without optimization as well.
10157
10158 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
10159 is a built-in construct that returns a constant number of bytes from
10160 @var{ptr} to the end of the object @var{ptr} pointer points to
10161 (if known at compile time). @code{__builtin_object_size} never evaluates
10162 its arguments for side-effects. If there are any side-effects in them, it
10163 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10164 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10165 point to and all of them are known at compile time, the returned number
10166 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10167 0 and minimum if nonzero. If it is not possible to determine which objects
10168 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10169 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10170 for @var{type} 2 or 3.
10171
10172 @var{type} is an integer constant from 0 to 3. If the least significant
10173 bit is clear, objects are whole variables, if it is set, a closest
10174 surrounding subobject is considered the object a pointer points to.
10175 The second bit determines if maximum or minimum of remaining bytes
10176 is computed.
10177
10178 @smallexample
10179 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10180 char *p = &var.buf1[1], *q = &var.b;
10181
10182 /* Here the object p points to is var. */
10183 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10184 /* The subobject p points to is var.buf1. */
10185 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10186 /* The object q points to is var. */
10187 assert (__builtin_object_size (q, 0)
10188 == (char *) (&var + 1) - (char *) &var.b);
10189 /* The subobject q points to is var.b. */
10190 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10191 @end smallexample
10192 @end deftypefn
10193
10194 There are built-in functions added for many common string operation
10195 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10196 built-in is provided. This built-in has an additional last argument,
10197 which is the number of bytes remaining in object the @var{dest}
10198 argument points to or @code{(size_t) -1} if the size is not known.
10199
10200 The built-in functions are optimized into the normal string functions
10201 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10202 it is known at compile time that the destination object will not
10203 be overflown. If the compiler can determine at compile time the
10204 object will be always overflown, it issues a warning.
10205
10206 The intended use can be e.g.@:
10207
10208 @smallexample
10209 #undef memcpy
10210 #define bos0(dest) __builtin_object_size (dest, 0)
10211 #define memcpy(dest, src, n) \
10212 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10213
10214 char *volatile p;
10215 char buf[10];
10216 /* It is unknown what object p points to, so this is optimized
10217 into plain memcpy - no checking is possible. */
10218 memcpy (p, "abcde", n);
10219 /* Destination is known and length too. It is known at compile
10220 time there will be no overflow. */
10221 memcpy (&buf[5], "abcde", 5);
10222 /* Destination is known, but the length is not known at compile time.
10223 This will result in __memcpy_chk call that can check for overflow
10224 at run time. */
10225 memcpy (&buf[5], "abcde", n);
10226 /* Destination is known and it is known at compile time there will
10227 be overflow. There will be a warning and __memcpy_chk call that
10228 will abort the program at run time. */
10229 memcpy (&buf[6], "abcde", 5);
10230 @end smallexample
10231
10232 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10233 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10234 @code{strcat} and @code{strncat}.
10235
10236 There are also checking built-in functions for formatted output functions.
10237 @smallexample
10238 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10239 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10240 const char *fmt, ...);
10241 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10242 va_list ap);
10243 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10244 const char *fmt, va_list ap);
10245 @end smallexample
10246
10247 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10248 etc.@: functions and can contain implementation specific flags on what
10249 additional security measures the checking function might take, such as
10250 handling @code{%n} differently.
10251
10252 The @var{os} argument is the object size @var{s} points to, like in the
10253 other built-in functions. There is a small difference in the behavior
10254 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10255 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10256 the checking function is called with @var{os} argument set to
10257 @code{(size_t) -1}.
10258
10259 In addition to this, there are checking built-in functions
10260 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10261 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10262 These have just one additional argument, @var{flag}, right before
10263 format string @var{fmt}. If the compiler is able to optimize them to
10264 @code{fputc} etc.@: functions, it does, otherwise the checking function
10265 is called and the @var{flag} argument passed to it.
10266
10267 @node Pointer Bounds Checker builtins
10268 @section Pointer Bounds Checker Built-in Functions
10269 @cindex Pointer Bounds Checker builtins
10270 @findex __builtin___bnd_set_ptr_bounds
10271 @findex __builtin___bnd_narrow_ptr_bounds
10272 @findex __builtin___bnd_copy_ptr_bounds
10273 @findex __builtin___bnd_init_ptr_bounds
10274 @findex __builtin___bnd_null_ptr_bounds
10275 @findex __builtin___bnd_store_ptr_bounds
10276 @findex __builtin___bnd_chk_ptr_lbounds
10277 @findex __builtin___bnd_chk_ptr_ubounds
10278 @findex __builtin___bnd_chk_ptr_bounds
10279 @findex __builtin___bnd_get_ptr_lbound
10280 @findex __builtin___bnd_get_ptr_ubound
10281
10282 GCC provides a set of built-in functions to control Pointer Bounds Checker
10283 instrumentation. Note that all Pointer Bounds Checker builtins can be used
10284 even if you compile with Pointer Bounds Checker off
10285 (@option{-fno-check-pointer-bounds}).
10286 The behavior may differ in such case as documented below.
10287
10288 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
10289
10290 This built-in function returns a new pointer with the value of @var{q}, and
10291 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
10292 Bounds Checker off, the built-in function just returns the first argument.
10293
10294 @smallexample
10295 extern void *__wrap_malloc (size_t n)
10296 @{
10297 void *p = (void *)__real_malloc (n);
10298 if (!p) return __builtin___bnd_null_ptr_bounds (p);
10299 return __builtin___bnd_set_ptr_bounds (p, n);
10300 @}
10301 @end smallexample
10302
10303 @end deftypefn
10304
10305 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10306
10307 This built-in function returns a new pointer with the value of @var{p}
10308 and associates it with the narrowed bounds formed by the intersection
10309 of bounds associated with @var{q} and the bounds
10310 [@var{p}, @var{p} + @var{size} - 1].
10311 With Pointer Bounds Checker off, the built-in function just returns the first
10312 argument.
10313
10314 @smallexample
10315 void init_objects (object *objs, size_t size)
10316 @{
10317 size_t i;
10318 /* Initialize objects one-by-one passing pointers with bounds of
10319 an object, not the full array of objects. */
10320 for (i = 0; i < size; i++)
10321 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10322 sizeof(object)));
10323 @}
10324 @end smallexample
10325
10326 @end deftypefn
10327
10328 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10329
10330 This built-in function returns a new pointer with the value of @var{q},
10331 and associates it with the bounds already associated with pointer @var{r}.
10332 With Pointer Bounds Checker off, the built-in function just returns the first
10333 argument.
10334
10335 @smallexample
10336 /* Here is a way to get pointer to object's field but
10337 still with the full object's bounds. */
10338 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10339 objptr);
10340 @end smallexample
10341
10342 @end deftypefn
10343
10344 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10345
10346 This built-in function returns a new pointer with the value of @var{q}, and
10347 associates it with INIT (allowing full memory access) bounds. With Pointer
10348 Bounds Checker off, the built-in function just returns the first argument.
10349
10350 @end deftypefn
10351
10352 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10353
10354 This built-in function returns a new pointer with the value of @var{q}, and
10355 associates it with NULL (allowing no memory access) bounds. With Pointer
10356 Bounds Checker off, the built-in function just returns the first argument.
10357
10358 @end deftypefn
10359
10360 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10361
10362 This built-in function stores the bounds associated with pointer @var{ptr_val}
10363 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10364 bounds from legacy code without touching the associated pointer's memory when
10365 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10366 function call is ignored.
10367
10368 @end deftypefn
10369
10370 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10371
10372 This built-in function checks if the pointer @var{q} is within the lower
10373 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10374 function call is ignored.
10375
10376 @smallexample
10377 extern void *__wrap_memset (void *dst, int c, size_t len)
10378 @{
10379 if (len > 0)
10380 @{
10381 __builtin___bnd_chk_ptr_lbounds (dst);
10382 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10383 __real_memset (dst, c, len);
10384 @}
10385 return dst;
10386 @}
10387 @end smallexample
10388
10389 @end deftypefn
10390
10391 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10392
10393 This built-in function checks if the pointer @var{q} is within the upper
10394 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10395 function call is ignored.
10396
10397 @end deftypefn
10398
10399 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10400
10401 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10402 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10403 off, the built-in function call is ignored.
10404
10405 @smallexample
10406 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10407 @{
10408 if (n > 0)
10409 @{
10410 __bnd_chk_ptr_bounds (dst, n);
10411 __bnd_chk_ptr_bounds (src, n);
10412 __real_memcpy (dst, src, n);
10413 @}
10414 return dst;
10415 @}
10416 @end smallexample
10417
10418 @end deftypefn
10419
10420 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10421
10422 This built-in function returns the lower bound associated
10423 with the pointer @var{q}, as a pointer value.
10424 This is useful for debugging using @code{printf}.
10425 With Pointer Bounds Checker off, the built-in function returns 0.
10426
10427 @smallexample
10428 void *lb = __builtin___bnd_get_ptr_lbound (q);
10429 void *ub = __builtin___bnd_get_ptr_ubound (q);
10430 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10431 @end smallexample
10432
10433 @end deftypefn
10434
10435 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10436
10437 This built-in function returns the upper bound (which is a pointer) associated
10438 with the pointer @var{q}. With Pointer Bounds Checker off,
10439 the built-in function returns -1.
10440
10441 @end deftypefn
10442
10443 @node Cilk Plus Builtins
10444 @section Cilk Plus C/C++ Language Extension Built-in Functions
10445
10446 GCC provides support for the following built-in reduction functions if Cilk Plus
10447 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10448
10449 @itemize @bullet
10450 @item @code{__sec_implicit_index}
10451 @item @code{__sec_reduce}
10452 @item @code{__sec_reduce_add}
10453 @item @code{__sec_reduce_all_nonzero}
10454 @item @code{__sec_reduce_all_zero}
10455 @item @code{__sec_reduce_any_nonzero}
10456 @item @code{__sec_reduce_any_zero}
10457 @item @code{__sec_reduce_max}
10458 @item @code{__sec_reduce_min}
10459 @item @code{__sec_reduce_max_ind}
10460 @item @code{__sec_reduce_min_ind}
10461 @item @code{__sec_reduce_mul}
10462 @item @code{__sec_reduce_mutating}
10463 @end itemize
10464
10465 Further details and examples about these built-in functions are described
10466 in the Cilk Plus language manual which can be found at
10467 @uref{https://www.cilkplus.org}.
10468
10469 @node Other Builtins
10470 @section Other Built-in Functions Provided by GCC
10471 @cindex built-in functions
10472 @findex __builtin_alloca
10473 @findex __builtin_alloca_with_align
10474 @findex __builtin_call_with_static_chain
10475 @findex __builtin_fpclassify
10476 @findex __builtin_isfinite
10477 @findex __builtin_isnormal
10478 @findex __builtin_isgreater
10479 @findex __builtin_isgreaterequal
10480 @findex __builtin_isinf_sign
10481 @findex __builtin_isless
10482 @findex __builtin_islessequal
10483 @findex __builtin_islessgreater
10484 @findex __builtin_isunordered
10485 @findex __builtin_powi
10486 @findex __builtin_powif
10487 @findex __builtin_powil
10488 @findex _Exit
10489 @findex _exit
10490 @findex abort
10491 @findex abs
10492 @findex acos
10493 @findex acosf
10494 @findex acosh
10495 @findex acoshf
10496 @findex acoshl
10497 @findex acosl
10498 @findex alloca
10499 @findex asin
10500 @findex asinf
10501 @findex asinh
10502 @findex asinhf
10503 @findex asinhl
10504 @findex asinl
10505 @findex atan
10506 @findex atan2
10507 @findex atan2f
10508 @findex atan2l
10509 @findex atanf
10510 @findex atanh
10511 @findex atanhf
10512 @findex atanhl
10513 @findex atanl
10514 @findex bcmp
10515 @findex bzero
10516 @findex cabs
10517 @findex cabsf
10518 @findex cabsl
10519 @findex cacos
10520 @findex cacosf
10521 @findex cacosh
10522 @findex cacoshf
10523 @findex cacoshl
10524 @findex cacosl
10525 @findex calloc
10526 @findex carg
10527 @findex cargf
10528 @findex cargl
10529 @findex casin
10530 @findex casinf
10531 @findex casinh
10532 @findex casinhf
10533 @findex casinhl
10534 @findex casinl
10535 @findex catan
10536 @findex catanf
10537 @findex catanh
10538 @findex catanhf
10539 @findex catanhl
10540 @findex catanl
10541 @findex cbrt
10542 @findex cbrtf
10543 @findex cbrtl
10544 @findex ccos
10545 @findex ccosf
10546 @findex ccosh
10547 @findex ccoshf
10548 @findex ccoshl
10549 @findex ccosl
10550 @findex ceil
10551 @findex ceilf
10552 @findex ceill
10553 @findex cexp
10554 @findex cexpf
10555 @findex cexpl
10556 @findex cimag
10557 @findex cimagf
10558 @findex cimagl
10559 @findex clog
10560 @findex clogf
10561 @findex clogl
10562 @findex clog10
10563 @findex clog10f
10564 @findex clog10l
10565 @findex conj
10566 @findex conjf
10567 @findex conjl
10568 @findex copysign
10569 @findex copysignf
10570 @findex copysignl
10571 @findex cos
10572 @findex cosf
10573 @findex cosh
10574 @findex coshf
10575 @findex coshl
10576 @findex cosl
10577 @findex cpow
10578 @findex cpowf
10579 @findex cpowl
10580 @findex cproj
10581 @findex cprojf
10582 @findex cprojl
10583 @findex creal
10584 @findex crealf
10585 @findex creall
10586 @findex csin
10587 @findex csinf
10588 @findex csinh
10589 @findex csinhf
10590 @findex csinhl
10591 @findex csinl
10592 @findex csqrt
10593 @findex csqrtf
10594 @findex csqrtl
10595 @findex ctan
10596 @findex ctanf
10597 @findex ctanh
10598 @findex ctanhf
10599 @findex ctanhl
10600 @findex ctanl
10601 @findex dcgettext
10602 @findex dgettext
10603 @findex drem
10604 @findex dremf
10605 @findex dreml
10606 @findex erf
10607 @findex erfc
10608 @findex erfcf
10609 @findex erfcl
10610 @findex erff
10611 @findex erfl
10612 @findex exit
10613 @findex exp
10614 @findex exp10
10615 @findex exp10f
10616 @findex exp10l
10617 @findex exp2
10618 @findex exp2f
10619 @findex exp2l
10620 @findex expf
10621 @findex expl
10622 @findex expm1
10623 @findex expm1f
10624 @findex expm1l
10625 @findex fabs
10626 @findex fabsf
10627 @findex fabsl
10628 @findex fdim
10629 @findex fdimf
10630 @findex fdiml
10631 @findex ffs
10632 @findex floor
10633 @findex floorf
10634 @findex floorl
10635 @findex fma
10636 @findex fmaf
10637 @findex fmal
10638 @findex fmax
10639 @findex fmaxf
10640 @findex fmaxl
10641 @findex fmin
10642 @findex fminf
10643 @findex fminl
10644 @findex fmod
10645 @findex fmodf
10646 @findex fmodl
10647 @findex fprintf
10648 @findex fprintf_unlocked
10649 @findex fputs
10650 @findex fputs_unlocked
10651 @findex frexp
10652 @findex frexpf
10653 @findex frexpl
10654 @findex fscanf
10655 @findex gamma
10656 @findex gammaf
10657 @findex gammal
10658 @findex gamma_r
10659 @findex gammaf_r
10660 @findex gammal_r
10661 @findex gettext
10662 @findex hypot
10663 @findex hypotf
10664 @findex hypotl
10665 @findex ilogb
10666 @findex ilogbf
10667 @findex ilogbl
10668 @findex imaxabs
10669 @findex index
10670 @findex isalnum
10671 @findex isalpha
10672 @findex isascii
10673 @findex isblank
10674 @findex iscntrl
10675 @findex isdigit
10676 @findex isgraph
10677 @findex islower
10678 @findex isprint
10679 @findex ispunct
10680 @findex isspace
10681 @findex isupper
10682 @findex iswalnum
10683 @findex iswalpha
10684 @findex iswblank
10685 @findex iswcntrl
10686 @findex iswdigit
10687 @findex iswgraph
10688 @findex iswlower
10689 @findex iswprint
10690 @findex iswpunct
10691 @findex iswspace
10692 @findex iswupper
10693 @findex iswxdigit
10694 @findex isxdigit
10695 @findex j0
10696 @findex j0f
10697 @findex j0l
10698 @findex j1
10699 @findex j1f
10700 @findex j1l
10701 @findex jn
10702 @findex jnf
10703 @findex jnl
10704 @findex labs
10705 @findex ldexp
10706 @findex ldexpf
10707 @findex ldexpl
10708 @findex lgamma
10709 @findex lgammaf
10710 @findex lgammal
10711 @findex lgamma_r
10712 @findex lgammaf_r
10713 @findex lgammal_r
10714 @findex llabs
10715 @findex llrint
10716 @findex llrintf
10717 @findex llrintl
10718 @findex llround
10719 @findex llroundf
10720 @findex llroundl
10721 @findex log
10722 @findex log10
10723 @findex log10f
10724 @findex log10l
10725 @findex log1p
10726 @findex log1pf
10727 @findex log1pl
10728 @findex log2
10729 @findex log2f
10730 @findex log2l
10731 @findex logb
10732 @findex logbf
10733 @findex logbl
10734 @findex logf
10735 @findex logl
10736 @findex lrint
10737 @findex lrintf
10738 @findex lrintl
10739 @findex lround
10740 @findex lroundf
10741 @findex lroundl
10742 @findex malloc
10743 @findex memchr
10744 @findex memcmp
10745 @findex memcpy
10746 @findex mempcpy
10747 @findex memset
10748 @findex modf
10749 @findex modff
10750 @findex modfl
10751 @findex nearbyint
10752 @findex nearbyintf
10753 @findex nearbyintl
10754 @findex nextafter
10755 @findex nextafterf
10756 @findex nextafterl
10757 @findex nexttoward
10758 @findex nexttowardf
10759 @findex nexttowardl
10760 @findex pow
10761 @findex pow10
10762 @findex pow10f
10763 @findex pow10l
10764 @findex powf
10765 @findex powl
10766 @findex printf
10767 @findex printf_unlocked
10768 @findex putchar
10769 @findex puts
10770 @findex remainder
10771 @findex remainderf
10772 @findex remainderl
10773 @findex remquo
10774 @findex remquof
10775 @findex remquol
10776 @findex rindex
10777 @findex rint
10778 @findex rintf
10779 @findex rintl
10780 @findex round
10781 @findex roundf
10782 @findex roundl
10783 @findex scalb
10784 @findex scalbf
10785 @findex scalbl
10786 @findex scalbln
10787 @findex scalblnf
10788 @findex scalblnf
10789 @findex scalbn
10790 @findex scalbnf
10791 @findex scanfnl
10792 @findex signbit
10793 @findex signbitf
10794 @findex signbitl
10795 @findex signbitd32
10796 @findex signbitd64
10797 @findex signbitd128
10798 @findex significand
10799 @findex significandf
10800 @findex significandl
10801 @findex sin
10802 @findex sincos
10803 @findex sincosf
10804 @findex sincosl
10805 @findex sinf
10806 @findex sinh
10807 @findex sinhf
10808 @findex sinhl
10809 @findex sinl
10810 @findex snprintf
10811 @findex sprintf
10812 @findex sqrt
10813 @findex sqrtf
10814 @findex sqrtl
10815 @findex sscanf
10816 @findex stpcpy
10817 @findex stpncpy
10818 @findex strcasecmp
10819 @findex strcat
10820 @findex strchr
10821 @findex strcmp
10822 @findex strcpy
10823 @findex strcspn
10824 @findex strdup
10825 @findex strfmon
10826 @findex strftime
10827 @findex strlen
10828 @findex strncasecmp
10829 @findex strncat
10830 @findex strncmp
10831 @findex strncpy
10832 @findex strndup
10833 @findex strpbrk
10834 @findex strrchr
10835 @findex strspn
10836 @findex strstr
10837 @findex tan
10838 @findex tanf
10839 @findex tanh
10840 @findex tanhf
10841 @findex tanhl
10842 @findex tanl
10843 @findex tgamma
10844 @findex tgammaf
10845 @findex tgammal
10846 @findex toascii
10847 @findex tolower
10848 @findex toupper
10849 @findex towlower
10850 @findex towupper
10851 @findex trunc
10852 @findex truncf
10853 @findex truncl
10854 @findex vfprintf
10855 @findex vfscanf
10856 @findex vprintf
10857 @findex vscanf
10858 @findex vsnprintf
10859 @findex vsprintf
10860 @findex vsscanf
10861 @findex y0
10862 @findex y0f
10863 @findex y0l
10864 @findex y1
10865 @findex y1f
10866 @findex y1l
10867 @findex yn
10868 @findex ynf
10869 @findex ynl
10870
10871 GCC provides a large number of built-in functions other than the ones
10872 mentioned above. Some of these are for internal use in the processing
10873 of exceptions or variable-length argument lists and are not
10874 documented here because they may change from time to time; we do not
10875 recommend general use of these functions.
10876
10877 The remaining functions are provided for optimization purposes.
10878
10879 With the exception of built-ins that have library equivalents such as
10880 the standard C library functions discussed below, or that expand to
10881 library calls, GCC built-in functions are always expanded inline and
10882 thus do not have corresponding entry points and their address cannot
10883 be obtained. Attempting to use them in an expression other than
10884 a function call results in a compile-time error.
10885
10886 @opindex fno-builtin
10887 GCC includes built-in versions of many of the functions in the standard
10888 C library. These functions come in two forms: one whose names start with
10889 the @code{__builtin_} prefix, and the other without. Both forms have the
10890 same type (including prototype), the same address (when their address is
10891 taken), and the same meaning as the C library functions even if you specify
10892 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
10893 functions are only optimized in certain cases; if they are not optimized in
10894 a particular case, a call to the library function is emitted.
10895
10896 @opindex ansi
10897 @opindex std
10898 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
10899 @option{-std=c99} or @option{-std=c11}), the functions
10900 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
10901 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
10902 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
10903 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
10904 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
10905 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
10906 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
10907 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
10908 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
10909 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
10910 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
10911 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
10912 @code{signbitd64}, @code{signbitd128}, @code{significandf},
10913 @code{significandl}, @code{significand}, @code{sincosf},
10914 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
10915 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
10916 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
10917 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
10918 @code{yn}
10919 may be handled as built-in functions.
10920 All these functions have corresponding versions
10921 prefixed with @code{__builtin_}, which may be used even in strict C90
10922 mode.
10923
10924 The ISO C99 functions
10925 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
10926 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
10927 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
10928 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
10929 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
10930 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
10931 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
10932 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
10933 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
10934 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
10935 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
10936 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
10937 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
10938 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
10939 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
10940 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
10941 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
10942 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
10943 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
10944 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
10945 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
10946 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
10947 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
10948 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
10949 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
10950 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
10951 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
10952 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
10953 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
10954 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
10955 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
10956 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
10957 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
10958 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
10959 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
10960 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
10961 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
10962 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
10963 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
10964 are handled as built-in functions
10965 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10966
10967 There are also built-in versions of the ISO C99 functions
10968 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
10969 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
10970 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
10971 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
10972 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
10973 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
10974 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
10975 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
10976 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
10977 that are recognized in any mode since ISO C90 reserves these names for
10978 the purpose to which ISO C99 puts them. All these functions have
10979 corresponding versions prefixed with @code{__builtin_}.
10980
10981 There are also built-in functions @code{__builtin_fabsf@var{n}},
10982 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
10983 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
10984 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
10985 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
10986 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
10987
10988 There are also GNU extension functions @code{clog10}, @code{clog10f} and
10989 @code{clog10l} which names are reserved by ISO C99 for future use.
10990 All these functions have versions prefixed with @code{__builtin_}.
10991
10992 The ISO C94 functions
10993 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
10994 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
10995 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
10996 @code{towupper}
10997 are handled as built-in functions
10998 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10999
11000 The ISO C90 functions
11001 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
11002 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
11003 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
11004 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
11005 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
11006 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
11007 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
11008 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
11009 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
11010 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
11011 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
11012 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
11013 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
11014 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
11015 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
11016 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
11017 are all recognized as built-in functions unless
11018 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
11019 is specified for an individual function). All of these functions have
11020 corresponding versions prefixed with @code{__builtin_}.
11021
11022 GCC provides built-in versions of the ISO C99 floating-point comparison
11023 macros that avoid raising exceptions for unordered operands. They have
11024 the same names as the standard macros ( @code{isgreater},
11025 @code{isgreaterequal}, @code{isless}, @code{islessequal},
11026 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
11027 prefixed. We intend for a library implementor to be able to simply
11028 @code{#define} each standard macro to its built-in equivalent.
11029 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11030 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11031 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
11032 built-in functions appear both with and without the @code{__builtin_} prefix.
11033
11034 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11035 The @code{__builtin_alloca} function must be called at block scope.
11036 The function allocates an object @var{size} bytes large on the stack
11037 of the calling function. The object is aligned on the default stack
11038 alignment boundary for the target determined by the
11039 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
11040 function returns a pointer to the first byte of the allocated object.
11041 The lifetime of the allocated object ends just before the calling
11042 function returns to its caller. This is so even when
11043 @code{__builtin_alloca} is called within a nested block.
11044
11045 For example, the following function allocates eight objects of @code{n}
11046 bytes each on the stack, storing a pointer to each in consecutive elements
11047 of the array @code{a}. It then passes the array to function @code{g}
11048 which can safely use the storage pointed to by each of the array elements.
11049
11050 @smallexample
11051 void f (unsigned n)
11052 @{
11053 void *a [8];
11054 for (int i = 0; i != 8; ++i)
11055 a [i] = __builtin_alloca (n);
11056
11057 g (a, n); // @r{safe}
11058 @}
11059 @end smallexample
11060
11061 Since the @code{__builtin_alloca} function doesn't validate its argument
11062 it is the responsibility of its caller to make sure the argument doesn't
11063 cause it to exceed the stack size limit.
11064 The @code{__builtin_alloca} function is provided to make it possible to
11065 allocate on the stack arrays of bytes with an upper bound that may be
11066 computed at run time. Since C99 Variable Length Arrays offer
11067 similar functionality under a portable, more convenient, and safer
11068 interface they are recommended instead, in both C99 and C++ programs
11069 where GCC provides them as an extension.
11070 @xref{Variable Length}, for details.
11071
11072 @end deftypefn
11073
11074 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11075 The @code{__builtin_alloca_with_align} function must be called at block
11076 scope. The function allocates an object @var{size} bytes large on
11077 the stack of the calling function. The allocated object is aligned on
11078 the boundary specified by the argument @var{alignment} whose unit is given
11079 in bits (not bytes). The @var{size} argument must be positive and not
11080 exceed the stack size limit. The @var{alignment} argument must be a constant
11081 integer expression that evaluates to a power of 2 greater than or equal to
11082 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11083 with other values are rejected with an error indicating the valid bounds.
11084 The function returns a pointer to the first byte of the allocated object.
11085 The lifetime of the allocated object ends at the end of the block in which
11086 the function was called. The allocated storage is released no later than
11087 just before the calling function returns to its caller, but may be released
11088 at the end of the block in which the function was called.
11089
11090 For example, in the following function the call to @code{g} is unsafe
11091 because when @code{overalign} is non-zero, the space allocated by
11092 @code{__builtin_alloca_with_align} may have been released at the end
11093 of the @code{if} statement in which it was called.
11094
11095 @smallexample
11096 void f (unsigned n, bool overalign)
11097 @{
11098 void *p;
11099 if (overalign)
11100 p = __builtin_alloca_with_align (n, 64 /* bits */);
11101 else
11102 p = __builtin_alloc (n);
11103
11104 g (p, n); // @r{unsafe}
11105 @}
11106 @end smallexample
11107
11108 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11109 @var{size} argument it is the responsibility of its caller to make sure
11110 the argument doesn't cause it to exceed the stack size limit.
11111 The @code{__builtin_alloca_with_align} function is provided to make
11112 it possible to allocate on the stack overaligned arrays of bytes with
11113 an upper bound that may be computed at run time. Since C99
11114 Variable Length Arrays offer the same functionality under
11115 a portable, more convenient, and safer interface they are recommended
11116 instead, in both C99 and C++ programs where GCC provides them as
11117 an extension. @xref{Variable Length}, for details.
11118
11119 @end deftypefn
11120
11121 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11122
11123 You can use the built-in function @code{__builtin_types_compatible_p} to
11124 determine whether two types are the same.
11125
11126 This built-in function returns 1 if the unqualified versions of the
11127 types @var{type1} and @var{type2} (which are types, not expressions) are
11128 compatible, 0 otherwise. The result of this built-in function can be
11129 used in integer constant expressions.
11130
11131 This built-in function ignores top level qualifiers (e.g., @code{const},
11132 @code{volatile}). For example, @code{int} is equivalent to @code{const
11133 int}.
11134
11135 The type @code{int[]} and @code{int[5]} are compatible. On the other
11136 hand, @code{int} and @code{char *} are not compatible, even if the size
11137 of their types, on the particular architecture are the same. Also, the
11138 amount of pointer indirection is taken into account when determining
11139 similarity. Consequently, @code{short *} is not similar to
11140 @code{short **}. Furthermore, two types that are typedefed are
11141 considered compatible if their underlying types are compatible.
11142
11143 An @code{enum} type is not considered to be compatible with another
11144 @code{enum} type even if both are compatible with the same integer
11145 type; this is what the C standard specifies.
11146 For example, @code{enum @{foo, bar@}} is not similar to
11147 @code{enum @{hot, dog@}}.
11148
11149 You typically use this function in code whose execution varies
11150 depending on the arguments' types. For example:
11151
11152 @smallexample
11153 #define foo(x) \
11154 (@{ \
11155 typeof (x) tmp = (x); \
11156 if (__builtin_types_compatible_p (typeof (x), long double)) \
11157 tmp = foo_long_double (tmp); \
11158 else if (__builtin_types_compatible_p (typeof (x), double)) \
11159 tmp = foo_double (tmp); \
11160 else if (__builtin_types_compatible_p (typeof (x), float)) \
11161 tmp = foo_float (tmp); \
11162 else \
11163 abort (); \
11164 tmp; \
11165 @})
11166 @end smallexample
11167
11168 @emph{Note:} This construct is only available for C@.
11169
11170 @end deftypefn
11171
11172 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11173
11174 The @var{call_exp} expression must be a function call, and the
11175 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11176 is passed to the function call in the target's static chain location.
11177 The result of builtin is the result of the function call.
11178
11179 @emph{Note:} This builtin is only available for C@.
11180 This builtin can be used to call Go closures from C.
11181
11182 @end deftypefn
11183
11184 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11185
11186 You can use the built-in function @code{__builtin_choose_expr} to
11187 evaluate code depending on the value of a constant expression. This
11188 built-in function returns @var{exp1} if @var{const_exp}, which is an
11189 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11190
11191 This built-in function is analogous to the @samp{? :} operator in C,
11192 except that the expression returned has its type unaltered by promotion
11193 rules. Also, the built-in function does not evaluate the expression
11194 that is not chosen. For example, if @var{const_exp} evaluates to true,
11195 @var{exp2} is not evaluated even if it has side-effects.
11196
11197 This built-in function can return an lvalue if the chosen argument is an
11198 lvalue.
11199
11200 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11201 type. Similarly, if @var{exp2} is returned, its return type is the same
11202 as @var{exp2}.
11203
11204 Example:
11205
11206 @smallexample
11207 #define foo(x) \
11208 __builtin_choose_expr ( \
11209 __builtin_types_compatible_p (typeof (x), double), \
11210 foo_double (x), \
11211 __builtin_choose_expr ( \
11212 __builtin_types_compatible_p (typeof (x), float), \
11213 foo_float (x), \
11214 /* @r{The void expression results in a compile-time error} \
11215 @r{when assigning the result to something.} */ \
11216 (void)0))
11217 @end smallexample
11218
11219 @emph{Note:} This construct is only available for C@. Furthermore, the
11220 unused expression (@var{exp1} or @var{exp2} depending on the value of
11221 @var{const_exp}) may still generate syntax errors. This may change in
11222 future revisions.
11223
11224 @end deftypefn
11225
11226 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11227
11228 The built-in function @code{__builtin_complex} is provided for use in
11229 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11230 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11231 real binary floating-point type, and the result has the corresponding
11232 complex type with real and imaginary parts @var{real} and @var{imag}.
11233 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11234 infinities, NaNs and negative zeros are involved.
11235
11236 @end deftypefn
11237
11238 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11239 You can use the built-in function @code{__builtin_constant_p} to
11240 determine if a value is known to be constant at compile time and hence
11241 that GCC can perform constant-folding on expressions involving that
11242 value. The argument of the function is the value to test. The function
11243 returns the integer 1 if the argument is known to be a compile-time
11244 constant and 0 if it is not known to be a compile-time constant. A
11245 return of 0 does not indicate that the value is @emph{not} a constant,
11246 but merely that GCC cannot prove it is a constant with the specified
11247 value of the @option{-O} option.
11248
11249 You typically use this function in an embedded application where
11250 memory is a critical resource. If you have some complex calculation,
11251 you may want it to be folded if it involves constants, but need to call
11252 a function if it does not. For example:
11253
11254 @smallexample
11255 #define Scale_Value(X) \
11256 (__builtin_constant_p (X) \
11257 ? ((X) * SCALE + OFFSET) : Scale (X))
11258 @end smallexample
11259
11260 You may use this built-in function in either a macro or an inline
11261 function. However, if you use it in an inlined function and pass an
11262 argument of the function as the argument to the built-in, GCC
11263 never returns 1 when you call the inline function with a string constant
11264 or compound literal (@pxref{Compound Literals}) and does not return 1
11265 when you pass a constant numeric value to the inline function unless you
11266 specify the @option{-O} option.
11267
11268 You may also use @code{__builtin_constant_p} in initializers for static
11269 data. For instance, you can write
11270
11271 @smallexample
11272 static const int table[] = @{
11273 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11274 /* @r{@dots{}} */
11275 @};
11276 @end smallexample
11277
11278 @noindent
11279 This is an acceptable initializer even if @var{EXPRESSION} is not a
11280 constant expression, including the case where
11281 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11282 folded to a constant but @var{EXPRESSION} contains operands that are
11283 not otherwise permitted in a static initializer (for example,
11284 @code{0 && foo ()}). GCC must be more conservative about evaluating the
11285 built-in in this case, because it has no opportunity to perform
11286 optimization.
11287 @end deftypefn
11288
11289 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11290 @opindex fprofile-arcs
11291 You may use @code{__builtin_expect} to provide the compiler with
11292 branch prediction information. In general, you should prefer to
11293 use actual profile feedback for this (@option{-fprofile-arcs}), as
11294 programmers are notoriously bad at predicting how their programs
11295 actually perform. However, there are applications in which this
11296 data is hard to collect.
11297
11298 The return value is the value of @var{exp}, which should be an integral
11299 expression. The semantics of the built-in are that it is expected that
11300 @var{exp} == @var{c}. For example:
11301
11302 @smallexample
11303 if (__builtin_expect (x, 0))
11304 foo ();
11305 @end smallexample
11306
11307 @noindent
11308 indicates that we do not expect to call @code{foo}, since
11309 we expect @code{x} to be zero. Since you are limited to integral
11310 expressions for @var{exp}, you should use constructions such as
11311
11312 @smallexample
11313 if (__builtin_expect (ptr != NULL, 1))
11314 foo (*ptr);
11315 @end smallexample
11316
11317 @noindent
11318 when testing pointer or floating-point values.
11319 @end deftypefn
11320
11321 @deftypefn {Built-in Function} void __builtin_trap (void)
11322 This function causes the program to exit abnormally. GCC implements
11323 this function by using a target-dependent mechanism (such as
11324 intentionally executing an illegal instruction) or by calling
11325 @code{abort}. The mechanism used may vary from release to release so
11326 you should not rely on any particular implementation.
11327 @end deftypefn
11328
11329 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11330 If control flow reaches the point of the @code{__builtin_unreachable},
11331 the program is undefined. It is useful in situations where the
11332 compiler cannot deduce the unreachability of the code.
11333
11334 One such case is immediately following an @code{asm} statement that
11335 either never terminates, or one that transfers control elsewhere
11336 and never returns. In this example, without the
11337 @code{__builtin_unreachable}, GCC issues a warning that control
11338 reaches the end of a non-void function. It also generates code
11339 to return after the @code{asm}.
11340
11341 @smallexample
11342 int f (int c, int v)
11343 @{
11344 if (c)
11345 @{
11346 return v;
11347 @}
11348 else
11349 @{
11350 asm("jmp error_handler");
11351 __builtin_unreachable ();
11352 @}
11353 @}
11354 @end smallexample
11355
11356 @noindent
11357 Because the @code{asm} statement unconditionally transfers control out
11358 of the function, control never reaches the end of the function
11359 body. The @code{__builtin_unreachable} is in fact unreachable and
11360 communicates this fact to the compiler.
11361
11362 Another use for @code{__builtin_unreachable} is following a call a
11363 function that never returns but that is not declared
11364 @code{__attribute__((noreturn))}, as in this example:
11365
11366 @smallexample
11367 void function_that_never_returns (void);
11368
11369 int g (int c)
11370 @{
11371 if (c)
11372 @{
11373 return 1;
11374 @}
11375 else
11376 @{
11377 function_that_never_returns ();
11378 __builtin_unreachable ();
11379 @}
11380 @}
11381 @end smallexample
11382
11383 @end deftypefn
11384
11385 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11386 This function returns its first argument, and allows the compiler
11387 to assume that the returned pointer is at least @var{align} bytes
11388 aligned. This built-in can have either two or three arguments,
11389 if it has three, the third argument should have integer type, and
11390 if it is nonzero means misalignment offset. For example:
11391
11392 @smallexample
11393 void *x = __builtin_assume_aligned (arg, 16);
11394 @end smallexample
11395
11396 @noindent
11397 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11398 16-byte aligned, while:
11399
11400 @smallexample
11401 void *x = __builtin_assume_aligned (arg, 32, 8);
11402 @end smallexample
11403
11404 @noindent
11405 means that the compiler can assume for @code{x}, set to @code{arg}, that
11406 @code{(char *) x - 8} is 32-byte aligned.
11407 @end deftypefn
11408
11409 @deftypefn {Built-in Function} int __builtin_LINE ()
11410 This function is the equivalent of the preprocessor @code{__LINE__}
11411 macro and returns a constant integer expression that evaluates to
11412 the line number of the invocation of the built-in. When used as a C++
11413 default argument for a function @var{F}, it returns the line number
11414 of the call to @var{F}.
11415 @end deftypefn
11416
11417 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11418 This function is the equivalent of the @code{__FUNCTION__} symbol
11419 and returns an address constant pointing to the name of the function
11420 from which the built-in was invoked, or the empty string if
11421 the invocation is not at function scope. When used as a C++ default
11422 argument for a function @var{F}, it returns the name of @var{F}'s
11423 caller or the empty string if the call was not made at function
11424 scope.
11425 @end deftypefn
11426
11427 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11428 This function is the equivalent of the preprocessor @code{__FILE__}
11429 macro and returns an address constant pointing to the file name
11430 containing the invocation of the built-in, or the empty string if
11431 the invocation is not at function scope. When used as a C++ default
11432 argument for a function @var{F}, it returns the file name of the call
11433 to @var{F} or the empty string if the call was not made at function
11434 scope.
11435
11436 For example, in the following, each call to function @code{foo} will
11437 print a line similar to @code{"file.c:123: foo: message"} with the name
11438 of the file and the line number of the @code{printf} call, the name of
11439 the function @code{foo}, followed by the word @code{message}.
11440
11441 @smallexample
11442 const char*
11443 function (const char *func = __builtin_FUNCTION ())
11444 @{
11445 return func;
11446 @}
11447
11448 void foo (void)
11449 @{
11450 printf ("%s:%i: %s: message\n", file (), line (), function ());
11451 @}
11452 @end smallexample
11453
11454 @end deftypefn
11455
11456 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11457 This function is used to flush the processor's instruction cache for
11458 the region of memory between @var{begin} inclusive and @var{end}
11459 exclusive. Some targets require that the instruction cache be
11460 flushed, after modifying memory containing code, in order to obtain
11461 deterministic behavior.
11462
11463 If the target does not require instruction cache flushes,
11464 @code{__builtin___clear_cache} has no effect. Otherwise either
11465 instructions are emitted in-line to clear the instruction cache or a
11466 call to the @code{__clear_cache} function in libgcc is made.
11467 @end deftypefn
11468
11469 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11470 This function is used to minimize cache-miss latency by moving data into
11471 a cache before it is accessed.
11472 You can insert calls to @code{__builtin_prefetch} into code for which
11473 you know addresses of data in memory that is likely to be accessed soon.
11474 If the target supports them, data prefetch instructions are generated.
11475 If the prefetch is done early enough before the access then the data will
11476 be in the cache by the time it is accessed.
11477
11478 The value of @var{addr} is the address of the memory to prefetch.
11479 There are two optional arguments, @var{rw} and @var{locality}.
11480 The value of @var{rw} is a compile-time constant one or zero; one
11481 means that the prefetch is preparing for a write to the memory address
11482 and zero, the default, means that the prefetch is preparing for a read.
11483 The value @var{locality} must be a compile-time constant integer between
11484 zero and three. A value of zero means that the data has no temporal
11485 locality, so it need not be left in the cache after the access. A value
11486 of three means that the data has a high degree of temporal locality and
11487 should be left in all levels of cache possible. Values of one and two
11488 mean, respectively, a low or moderate degree of temporal locality. The
11489 default is three.
11490
11491 @smallexample
11492 for (i = 0; i < n; i++)
11493 @{
11494 a[i] = a[i] + b[i];
11495 __builtin_prefetch (&a[i+j], 1, 1);
11496 __builtin_prefetch (&b[i+j], 0, 1);
11497 /* @r{@dots{}} */
11498 @}
11499 @end smallexample
11500
11501 Data prefetch does not generate faults if @var{addr} is invalid, but
11502 the address expression itself must be valid. For example, a prefetch
11503 of @code{p->next} does not fault if @code{p->next} is not a valid
11504 address, but evaluation faults if @code{p} is not a valid address.
11505
11506 If the target does not support data prefetch, the address expression
11507 is evaluated if it includes side effects but no other code is generated
11508 and GCC does not issue a warning.
11509 @end deftypefn
11510
11511 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11512 Returns a positive infinity, if supported by the floating-point format,
11513 else @code{DBL_MAX}. This function is suitable for implementing the
11514 ISO C macro @code{HUGE_VAL}.
11515 @end deftypefn
11516
11517 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11518 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11519 @end deftypefn
11520
11521 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11522 Similar to @code{__builtin_huge_val}, except the return
11523 type is @code{long double}.
11524 @end deftypefn
11525
11526 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
11527 Similar to @code{__builtin_huge_val}, except the return type is
11528 @code{_Float@var{n}}.
11529 @end deftypefn
11530
11531 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
11532 Similar to @code{__builtin_huge_val}, except the return type is
11533 @code{_Float@var{n}x}.
11534 @end deftypefn
11535
11536 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11537 This built-in implements the C99 fpclassify functionality. The first
11538 five int arguments should be the target library's notion of the
11539 possible FP classes and are used for return values. They must be
11540 constant values and they must appear in this order: @code{FP_NAN},
11541 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
11542 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
11543 to classify. GCC treats the last argument as type-generic, which
11544 means it does not do default promotion from float to double.
11545 @end deftypefn
11546
11547 @deftypefn {Built-in Function} double __builtin_inf (void)
11548 Similar to @code{__builtin_huge_val}, except a warning is generated
11549 if the target floating-point format does not support infinities.
11550 @end deftypefn
11551
11552 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
11553 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11554 @end deftypefn
11555
11556 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11557 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11558 @end deftypefn
11559
11560 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11561 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11562 @end deftypefn
11563
11564 @deftypefn {Built-in Function} float __builtin_inff (void)
11565 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11566 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11567 @end deftypefn
11568
11569 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11570 Similar to @code{__builtin_inf}, except the return
11571 type is @code{long double}.
11572 @end deftypefn
11573
11574 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
11575 Similar to @code{__builtin_inf}, except the return
11576 type is @code{_Float@var{n}}.
11577 @end deftypefn
11578
11579 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
11580 Similar to @code{__builtin_inf}, except the return
11581 type is @code{_Float@var{n}x}.
11582 @end deftypefn
11583
11584 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11585 Similar to @code{isinf}, except the return value is -1 for
11586 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11587 Note while the parameter list is an
11588 ellipsis, this function only accepts exactly one floating-point
11589 argument. GCC treats this parameter as type-generic, which means it
11590 does not do default promotion from float to double.
11591 @end deftypefn
11592
11593 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11594 This is an implementation of the ISO C99 function @code{nan}.
11595
11596 Since ISO C99 defines this function in terms of @code{strtod}, which we
11597 do not implement, a description of the parsing is in order. The string
11598 is parsed as by @code{strtol}; that is, the base is recognized by
11599 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11600 in the significand such that the least significant bit of the number
11601 is at the least significant bit of the significand. The number is
11602 truncated to fit the significand field provided. The significand is
11603 forced to be a quiet NaN@.
11604
11605 This function, if given a string literal all of which would have been
11606 consumed by @code{strtol}, is evaluated early enough that it is considered a
11607 compile-time constant.
11608 @end deftypefn
11609
11610 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11611 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11612 @end deftypefn
11613
11614 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11615 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11616 @end deftypefn
11617
11618 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11619 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11620 @end deftypefn
11621
11622 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11623 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11624 @end deftypefn
11625
11626 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11627 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11628 @end deftypefn
11629
11630 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
11631 Similar to @code{__builtin_nan}, except the return type is
11632 @code{_Float@var{n}}.
11633 @end deftypefn
11634
11635 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
11636 Similar to @code{__builtin_nan}, except the return type is
11637 @code{_Float@var{n}x}.
11638 @end deftypefn
11639
11640 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11641 Similar to @code{__builtin_nan}, except the significand is forced
11642 to be a signaling NaN@. The @code{nans} function is proposed by
11643 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11644 @end deftypefn
11645
11646 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11647 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11648 @end deftypefn
11649
11650 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11651 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11652 @end deftypefn
11653
11654 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
11655 Similar to @code{__builtin_nans}, except the return type is
11656 @code{_Float@var{n}}.
11657 @end deftypefn
11658
11659 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
11660 Similar to @code{__builtin_nans}, except the return type is
11661 @code{_Float@var{n}x}.
11662 @end deftypefn
11663
11664 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11665 Returns one plus the index of the least significant 1-bit of @var{x}, or
11666 if @var{x} is zero, returns zero.
11667 @end deftypefn
11668
11669 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11670 Returns the number of leading 0-bits in @var{x}, starting at the most
11671 significant bit position. If @var{x} is 0, the result is undefined.
11672 @end deftypefn
11673
11674 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11675 Returns the number of trailing 0-bits in @var{x}, starting at the least
11676 significant bit position. If @var{x} is 0, the result is undefined.
11677 @end deftypefn
11678
11679 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11680 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11681 number of bits following the most significant bit that are identical
11682 to it. There are no special cases for 0 or other values.
11683 @end deftypefn
11684
11685 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11686 Returns the number of 1-bits in @var{x}.
11687 @end deftypefn
11688
11689 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11690 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11691 modulo 2.
11692 @end deftypefn
11693
11694 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11695 Similar to @code{__builtin_ffs}, except the argument type is
11696 @code{long}.
11697 @end deftypefn
11698
11699 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11700 Similar to @code{__builtin_clz}, except the argument type is
11701 @code{unsigned long}.
11702 @end deftypefn
11703
11704 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11705 Similar to @code{__builtin_ctz}, except the argument type is
11706 @code{unsigned long}.
11707 @end deftypefn
11708
11709 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11710 Similar to @code{__builtin_clrsb}, except the argument type is
11711 @code{long}.
11712 @end deftypefn
11713
11714 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11715 Similar to @code{__builtin_popcount}, except the argument type is
11716 @code{unsigned long}.
11717 @end deftypefn
11718
11719 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11720 Similar to @code{__builtin_parity}, except the argument type is
11721 @code{unsigned long}.
11722 @end deftypefn
11723
11724 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11725 Similar to @code{__builtin_ffs}, except the argument type is
11726 @code{long long}.
11727 @end deftypefn
11728
11729 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11730 Similar to @code{__builtin_clz}, except the argument type is
11731 @code{unsigned long long}.
11732 @end deftypefn
11733
11734 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11735 Similar to @code{__builtin_ctz}, except the argument type is
11736 @code{unsigned long long}.
11737 @end deftypefn
11738
11739 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11740 Similar to @code{__builtin_clrsb}, except the argument type is
11741 @code{long long}.
11742 @end deftypefn
11743
11744 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11745 Similar to @code{__builtin_popcount}, except the argument type is
11746 @code{unsigned long long}.
11747 @end deftypefn
11748
11749 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11750 Similar to @code{__builtin_parity}, except the argument type is
11751 @code{unsigned long long}.
11752 @end deftypefn
11753
11754 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11755 Returns the first argument raised to the power of the second. Unlike the
11756 @code{pow} function no guarantees about precision and rounding are made.
11757 @end deftypefn
11758
11759 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11760 Similar to @code{__builtin_powi}, except the argument and return types
11761 are @code{float}.
11762 @end deftypefn
11763
11764 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11765 Similar to @code{__builtin_powi}, except the argument and return types
11766 are @code{long double}.
11767 @end deftypefn
11768
11769 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11770 Returns @var{x} with the order of the bytes reversed; for example,
11771 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11772 exactly 8 bits.
11773 @end deftypefn
11774
11775 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
11776 Similar to @code{__builtin_bswap16}, except the argument and return types
11777 are 32 bit.
11778 @end deftypefn
11779
11780 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
11781 Similar to @code{__builtin_bswap32}, except the argument and return types
11782 are 64 bit.
11783 @end deftypefn
11784
11785 @node Target Builtins
11786 @section Built-in Functions Specific to Particular Target Machines
11787
11788 On some target machines, GCC supports many built-in functions specific
11789 to those machines. Generally these generate calls to specific machine
11790 instructions, but allow the compiler to schedule those calls.
11791
11792 @menu
11793 * AArch64 Built-in Functions::
11794 * Alpha Built-in Functions::
11795 * Altera Nios II Built-in Functions::
11796 * ARC Built-in Functions::
11797 * ARC SIMD Built-in Functions::
11798 * ARM iWMMXt Built-in Functions::
11799 * ARM C Language Extensions (ACLE)::
11800 * ARM Floating Point Status and Control Intrinsics::
11801 * ARM ARMv8-M Security Extensions::
11802 * AVR Built-in Functions::
11803 * Blackfin Built-in Functions::
11804 * FR-V Built-in Functions::
11805 * MIPS DSP Built-in Functions::
11806 * MIPS Paired-Single Support::
11807 * MIPS Loongson Built-in Functions::
11808 * MIPS SIMD Architecture (MSA) Support::
11809 * Other MIPS Built-in Functions::
11810 * MSP430 Built-in Functions::
11811 * NDS32 Built-in Functions::
11812 * picoChip Built-in Functions::
11813 * PowerPC Built-in Functions::
11814 * PowerPC AltiVec/VSX Built-in Functions::
11815 * PowerPC Hardware Transactional Memory Built-in Functions::
11816 * RX Built-in Functions::
11817 * S/390 System z Built-in Functions::
11818 * SH Built-in Functions::
11819 * SPARC VIS Built-in Functions::
11820 * SPU Built-in Functions::
11821 * TI C6X Built-in Functions::
11822 * TILE-Gx Built-in Functions::
11823 * TILEPro Built-in Functions::
11824 * x86 Built-in Functions::
11825 * x86 transactional memory intrinsics::
11826 @end menu
11827
11828 @node AArch64 Built-in Functions
11829 @subsection AArch64 Built-in Functions
11830
11831 These built-in functions are available for the AArch64 family of
11832 processors.
11833 @smallexample
11834 unsigned int __builtin_aarch64_get_fpcr ()
11835 void __builtin_aarch64_set_fpcr (unsigned int)
11836 unsigned int __builtin_aarch64_get_fpsr ()
11837 void __builtin_aarch64_set_fpsr (unsigned int)
11838 @end smallexample
11839
11840 @node Alpha Built-in Functions
11841 @subsection Alpha Built-in Functions
11842
11843 These built-in functions are available for the Alpha family of
11844 processors, depending on the command-line switches used.
11845
11846 The following built-in functions are always available. They
11847 all generate the machine instruction that is part of the name.
11848
11849 @smallexample
11850 long __builtin_alpha_implver (void)
11851 long __builtin_alpha_rpcc (void)
11852 long __builtin_alpha_amask (long)
11853 long __builtin_alpha_cmpbge (long, long)
11854 long __builtin_alpha_extbl (long, long)
11855 long __builtin_alpha_extwl (long, long)
11856 long __builtin_alpha_extll (long, long)
11857 long __builtin_alpha_extql (long, long)
11858 long __builtin_alpha_extwh (long, long)
11859 long __builtin_alpha_extlh (long, long)
11860 long __builtin_alpha_extqh (long, long)
11861 long __builtin_alpha_insbl (long, long)
11862 long __builtin_alpha_inswl (long, long)
11863 long __builtin_alpha_insll (long, long)
11864 long __builtin_alpha_insql (long, long)
11865 long __builtin_alpha_inswh (long, long)
11866 long __builtin_alpha_inslh (long, long)
11867 long __builtin_alpha_insqh (long, long)
11868 long __builtin_alpha_mskbl (long, long)
11869 long __builtin_alpha_mskwl (long, long)
11870 long __builtin_alpha_mskll (long, long)
11871 long __builtin_alpha_mskql (long, long)
11872 long __builtin_alpha_mskwh (long, long)
11873 long __builtin_alpha_msklh (long, long)
11874 long __builtin_alpha_mskqh (long, long)
11875 long __builtin_alpha_umulh (long, long)
11876 long __builtin_alpha_zap (long, long)
11877 long __builtin_alpha_zapnot (long, long)
11878 @end smallexample
11879
11880 The following built-in functions are always with @option{-mmax}
11881 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
11882 later. They all generate the machine instruction that is part
11883 of the name.
11884
11885 @smallexample
11886 long __builtin_alpha_pklb (long)
11887 long __builtin_alpha_pkwb (long)
11888 long __builtin_alpha_unpkbl (long)
11889 long __builtin_alpha_unpkbw (long)
11890 long __builtin_alpha_minub8 (long, long)
11891 long __builtin_alpha_minsb8 (long, long)
11892 long __builtin_alpha_minuw4 (long, long)
11893 long __builtin_alpha_minsw4 (long, long)
11894 long __builtin_alpha_maxub8 (long, long)
11895 long __builtin_alpha_maxsb8 (long, long)
11896 long __builtin_alpha_maxuw4 (long, long)
11897 long __builtin_alpha_maxsw4 (long, long)
11898 long __builtin_alpha_perr (long, long)
11899 @end smallexample
11900
11901 The following built-in functions are always with @option{-mcix}
11902 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
11903 later. They all generate the machine instruction that is part
11904 of the name.
11905
11906 @smallexample
11907 long __builtin_alpha_cttz (long)
11908 long __builtin_alpha_ctlz (long)
11909 long __builtin_alpha_ctpop (long)
11910 @end smallexample
11911
11912 The following built-in functions are available on systems that use the OSF/1
11913 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
11914 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
11915 @code{rdval} and @code{wrval}.
11916
11917 @smallexample
11918 void *__builtin_thread_pointer (void)
11919 void __builtin_set_thread_pointer (void *)
11920 @end smallexample
11921
11922 @node Altera Nios II Built-in Functions
11923 @subsection Altera Nios II Built-in Functions
11924
11925 These built-in functions are available for the Altera Nios II
11926 family of processors.
11927
11928 The following built-in functions are always available. They
11929 all generate the machine instruction that is part of the name.
11930
11931 @example
11932 int __builtin_ldbio (volatile const void *)
11933 int __builtin_ldbuio (volatile const void *)
11934 int __builtin_ldhio (volatile const void *)
11935 int __builtin_ldhuio (volatile const void *)
11936 int __builtin_ldwio (volatile const void *)
11937 void __builtin_stbio (volatile void *, int)
11938 void __builtin_sthio (volatile void *, int)
11939 void __builtin_stwio (volatile void *, int)
11940 void __builtin_sync (void)
11941 int __builtin_rdctl (int)
11942 int __builtin_rdprs (int, int)
11943 void __builtin_wrctl (int, int)
11944 void __builtin_flushd (volatile void *)
11945 void __builtin_flushda (volatile void *)
11946 int __builtin_wrpie (int);
11947 void __builtin_eni (int);
11948 int __builtin_ldex (volatile const void *)
11949 int __builtin_stex (volatile void *, int)
11950 int __builtin_ldsex (volatile const void *)
11951 int __builtin_stsex (volatile void *, int)
11952 @end example
11953
11954 The following built-in functions are always available. They
11955 all generate a Nios II Custom Instruction. The name of the
11956 function represents the types that the function takes and
11957 returns. The letter before the @code{n} is the return type
11958 or void if absent. The @code{n} represents the first parameter
11959 to all the custom instructions, the custom instruction number.
11960 The two letters after the @code{n} represent the up to two
11961 parameters to the function.
11962
11963 The letters represent the following data types:
11964 @table @code
11965 @item <no letter>
11966 @code{void} for return type and no parameter for parameter types.
11967
11968 @item i
11969 @code{int} for return type and parameter type
11970
11971 @item f
11972 @code{float} for return type and parameter type
11973
11974 @item p
11975 @code{void *} for return type and parameter type
11976
11977 @end table
11978
11979 And the function names are:
11980 @example
11981 void __builtin_custom_n (void)
11982 void __builtin_custom_ni (int)
11983 void __builtin_custom_nf (float)
11984 void __builtin_custom_np (void *)
11985 void __builtin_custom_nii (int, int)
11986 void __builtin_custom_nif (int, float)
11987 void __builtin_custom_nip (int, void *)
11988 void __builtin_custom_nfi (float, int)
11989 void __builtin_custom_nff (float, float)
11990 void __builtin_custom_nfp (float, void *)
11991 void __builtin_custom_npi (void *, int)
11992 void __builtin_custom_npf (void *, float)
11993 void __builtin_custom_npp (void *, void *)
11994 int __builtin_custom_in (void)
11995 int __builtin_custom_ini (int)
11996 int __builtin_custom_inf (float)
11997 int __builtin_custom_inp (void *)
11998 int __builtin_custom_inii (int, int)
11999 int __builtin_custom_inif (int, float)
12000 int __builtin_custom_inip (int, void *)
12001 int __builtin_custom_infi (float, int)
12002 int __builtin_custom_inff (float, float)
12003 int __builtin_custom_infp (float, void *)
12004 int __builtin_custom_inpi (void *, int)
12005 int __builtin_custom_inpf (void *, float)
12006 int __builtin_custom_inpp (void *, void *)
12007 float __builtin_custom_fn (void)
12008 float __builtin_custom_fni (int)
12009 float __builtin_custom_fnf (float)
12010 float __builtin_custom_fnp (void *)
12011 float __builtin_custom_fnii (int, int)
12012 float __builtin_custom_fnif (int, float)
12013 float __builtin_custom_fnip (int, void *)
12014 float __builtin_custom_fnfi (float, int)
12015 float __builtin_custom_fnff (float, float)
12016 float __builtin_custom_fnfp (float, void *)
12017 float __builtin_custom_fnpi (void *, int)
12018 float __builtin_custom_fnpf (void *, float)
12019 float __builtin_custom_fnpp (void *, void *)
12020 void * __builtin_custom_pn (void)
12021 void * __builtin_custom_pni (int)
12022 void * __builtin_custom_pnf (float)
12023 void * __builtin_custom_pnp (void *)
12024 void * __builtin_custom_pnii (int, int)
12025 void * __builtin_custom_pnif (int, float)
12026 void * __builtin_custom_pnip (int, void *)
12027 void * __builtin_custom_pnfi (float, int)
12028 void * __builtin_custom_pnff (float, float)
12029 void * __builtin_custom_pnfp (float, void *)
12030 void * __builtin_custom_pnpi (void *, int)
12031 void * __builtin_custom_pnpf (void *, float)
12032 void * __builtin_custom_pnpp (void *, void *)
12033 @end example
12034
12035 @node ARC Built-in Functions
12036 @subsection ARC Built-in Functions
12037
12038 The following built-in functions are provided for ARC targets. The
12039 built-ins generate the corresponding assembly instructions. In the
12040 examples given below, the generated code often requires an operand or
12041 result to be in a register. Where necessary further code will be
12042 generated to ensure this is true, but for brevity this is not
12043 described in each case.
12044
12045 @emph{Note:} Using a built-in to generate an instruction not supported
12046 by a target may cause problems. At present the compiler is not
12047 guaranteed to detect such misuse, and as a result an internal compiler
12048 error may be generated.
12049
12050 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12051 Return 1 if @var{val} is known to have the byte alignment given
12052 by @var{alignval}, otherwise return 0.
12053 Note that this is different from
12054 @smallexample
12055 __alignof__(*(char *)@var{val}) >= alignval
12056 @end smallexample
12057 because __alignof__ sees only the type of the dereference, whereas
12058 __builtin_arc_align uses alignment information from the pointer
12059 as well as from the pointed-to type.
12060 The information available will depend on optimization level.
12061 @end deftypefn
12062
12063 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12064 Generates
12065 @example
12066 brk
12067 @end example
12068 @end deftypefn
12069
12070 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12071 The operand is the number of a register to be read. Generates:
12072 @example
12073 mov @var{dest}, r@var{regno}
12074 @end example
12075 where the value in @var{dest} will be the result returned from the
12076 built-in.
12077 @end deftypefn
12078
12079 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12080 The first operand is the number of a register to be written, the
12081 second operand is a compile time constant to write into that
12082 register. Generates:
12083 @example
12084 mov r@var{regno}, @var{val}
12085 @end example
12086 @end deftypefn
12087
12088 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12089 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12090 Generates:
12091 @example
12092 divaw @var{dest}, @var{a}, @var{b}
12093 @end example
12094 where the value in @var{dest} will be the result returned from the
12095 built-in.
12096 @end deftypefn
12097
12098 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12099 Generates
12100 @example
12101 flag @var{a}
12102 @end example
12103 @end deftypefn
12104
12105 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12106 The operand, @var{auxv}, is the address of an auxiliary register and
12107 must be a compile time constant. Generates:
12108 @example
12109 lr @var{dest}, [@var{auxr}]
12110 @end example
12111 Where the value in @var{dest} will be the result returned from the
12112 built-in.
12113 @end deftypefn
12114
12115 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12116 Only available with @option{-mmul64}. Generates:
12117 @example
12118 mul64 @var{a}, @var{b}
12119 @end example
12120 @end deftypefn
12121
12122 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12123 Only available with @option{-mmul64}. Generates:
12124 @example
12125 mulu64 @var{a}, @var{b}
12126 @end example
12127 @end deftypefn
12128
12129 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12130 Generates:
12131 @example
12132 nop
12133 @end example
12134 @end deftypefn
12135
12136 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12137 Only valid if the @samp{norm} instruction is available through the
12138 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12139 Generates:
12140 @example
12141 norm @var{dest}, @var{src}
12142 @end example
12143 Where the value in @var{dest} will be the result returned from the
12144 built-in.
12145 @end deftypefn
12146
12147 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12148 Only valid if the @samp{normw} instruction is available through the
12149 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12150 Generates:
12151 @example
12152 normw @var{dest}, @var{src}
12153 @end example
12154 Where the value in @var{dest} will be the result returned from the
12155 built-in.
12156 @end deftypefn
12157
12158 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12159 Generates:
12160 @example
12161 rtie
12162 @end example
12163 @end deftypefn
12164
12165 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12166 Generates:
12167 @example
12168 sleep @var{a}
12169 @end example
12170 @end deftypefn
12171
12172 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12173 The first argument, @var{auxv}, is the address of an auxiliary
12174 register, the second argument, @var{val}, is a compile time constant
12175 to be written to the register. Generates:
12176 @example
12177 sr @var{auxr}, [@var{val}]
12178 @end example
12179 @end deftypefn
12180
12181 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12182 Only valid with @option{-mswap}. Generates:
12183 @example
12184 swap @var{dest}, @var{src}
12185 @end example
12186 Where the value in @var{dest} will be the result returned from the
12187 built-in.
12188 @end deftypefn
12189
12190 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12191 Generates:
12192 @example
12193 swi
12194 @end example
12195 @end deftypefn
12196
12197 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12198 Only available with @option{-mcpu=ARC700}. Generates:
12199 @example
12200 sync
12201 @end example
12202 @end deftypefn
12203
12204 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12205 Only available with @option{-mcpu=ARC700}. Generates:
12206 @example
12207 trap_s @var{c}
12208 @end example
12209 @end deftypefn
12210
12211 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12212 Only available with @option{-mcpu=ARC700}. Generates:
12213 @example
12214 unimp_s
12215 @end example
12216 @end deftypefn
12217
12218 The instructions generated by the following builtins are not
12219 considered as candidates for scheduling. They are not moved around by
12220 the compiler during scheduling, and thus can be expected to appear
12221 where they are put in the C code:
12222 @example
12223 __builtin_arc_brk()
12224 __builtin_arc_core_read()
12225 __builtin_arc_core_write()
12226 __builtin_arc_flag()
12227 __builtin_arc_lr()
12228 __builtin_arc_sleep()
12229 __builtin_arc_sr()
12230 __builtin_arc_swi()
12231 @end example
12232
12233 @node ARC SIMD Built-in Functions
12234 @subsection ARC SIMD Built-in Functions
12235
12236 SIMD builtins provided by the compiler can be used to generate the
12237 vector instructions. This section describes the available builtins
12238 and their usage in programs. With the @option{-msimd} option, the
12239 compiler provides 128-bit vector types, which can be specified using
12240 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12241 can be included to use the following predefined types:
12242 @example
12243 typedef int __v4si __attribute__((vector_size(16)));
12244 typedef short __v8hi __attribute__((vector_size(16)));
12245 @end example
12246
12247 These types can be used to define 128-bit variables. The built-in
12248 functions listed in the following section can be used on these
12249 variables to generate the vector operations.
12250
12251 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12252 @file{arc-simd.h} also provides equivalent macros called
12253 @code{_@var{someinsn}} that can be used for programming ease and
12254 improved readability. The following macros for DMA control are also
12255 provided:
12256 @example
12257 #define _setup_dma_in_channel_reg _vdiwr
12258 #define _setup_dma_out_channel_reg _vdowr
12259 @end example
12260
12261 The following is a complete list of all the SIMD built-ins provided
12262 for ARC, grouped by calling signature.
12263
12264 The following take two @code{__v8hi} arguments and return a
12265 @code{__v8hi} result:
12266 @example
12267 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12268 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12269 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12270 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12271 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12272 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12273 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12274 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12275 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12276 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12277 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12278 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12279 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12280 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12281 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
12282 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
12283 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
12284 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
12285 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
12286 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
12287 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
12288 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
12289 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
12290 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
12291 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
12292 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
12293 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
12294 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
12295 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
12296 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
12297 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
12298 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
12299 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
12300 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
12301 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
12302 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
12303 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
12304 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
12305 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
12306 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
12307 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
12308 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
12309 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
12310 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
12311 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
12312 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
12313 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
12314 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
12315 @end example
12316
12317 The following take one @code{__v8hi} and one @code{int} argument and return a
12318 @code{__v8hi} result:
12319
12320 @example
12321 __v8hi __builtin_arc_vbaddw (__v8hi, int)
12322 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
12323 __v8hi __builtin_arc_vbminw (__v8hi, int)
12324 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
12325 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
12326 __v8hi __builtin_arc_vbmulw (__v8hi, int)
12327 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
12328 __v8hi __builtin_arc_vbsubw (__v8hi, int)
12329 @end example
12330
12331 The following take one @code{__v8hi} argument and one @code{int} argument which
12332 must be a 3-bit compile time constant indicating a register number
12333 I0-I7. They return a @code{__v8hi} result.
12334 @example
12335 __v8hi __builtin_arc_vasrw (__v8hi, const int)
12336 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
12337 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
12338 @end example
12339
12340 The following take one @code{__v8hi} argument and one @code{int}
12341 argument which must be a 6-bit compile time constant. They return a
12342 @code{__v8hi} result.
12343 @example
12344 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
12345 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
12346 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
12347 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
12348 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
12349 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
12350 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
12351 @end example
12352
12353 The following take one @code{__v8hi} argument and one @code{int} argument which
12354 must be a 8-bit compile time constant. They return a @code{__v8hi}
12355 result.
12356 @example
12357 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12358 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12359 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12360 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12361 @end example
12362
12363 The following take two @code{int} arguments, the second of which which
12364 must be a 8-bit compile time constant. They return a @code{__v8hi}
12365 result:
12366 @example
12367 __v8hi __builtin_arc_vmovaw (int, const int)
12368 __v8hi __builtin_arc_vmovw (int, const int)
12369 __v8hi __builtin_arc_vmovzw (int, const int)
12370 @end example
12371
12372 The following take a single @code{__v8hi} argument and return a
12373 @code{__v8hi} result:
12374 @example
12375 __v8hi __builtin_arc_vabsaw (__v8hi)
12376 __v8hi __builtin_arc_vabsw (__v8hi)
12377 __v8hi __builtin_arc_vaddsuw (__v8hi)
12378 __v8hi __builtin_arc_vexch1 (__v8hi)
12379 __v8hi __builtin_arc_vexch2 (__v8hi)
12380 __v8hi __builtin_arc_vexch4 (__v8hi)
12381 __v8hi __builtin_arc_vsignw (__v8hi)
12382 __v8hi __builtin_arc_vupbaw (__v8hi)
12383 __v8hi __builtin_arc_vupbw (__v8hi)
12384 __v8hi __builtin_arc_vupsbaw (__v8hi)
12385 __v8hi __builtin_arc_vupsbw (__v8hi)
12386 @end example
12387
12388 The following take two @code{int} arguments and return no result:
12389 @example
12390 void __builtin_arc_vdirun (int, int)
12391 void __builtin_arc_vdorun (int, int)
12392 @end example
12393
12394 The following take two @code{int} arguments and return no result. The
12395 first argument must a 3-bit compile time constant indicating one of
12396 the DR0-DR7 DMA setup channels:
12397 @example
12398 void __builtin_arc_vdiwr (const int, int)
12399 void __builtin_arc_vdowr (const int, int)
12400 @end example
12401
12402 The following take an @code{int} argument and return no result:
12403 @example
12404 void __builtin_arc_vendrec (int)
12405 void __builtin_arc_vrec (int)
12406 void __builtin_arc_vrecrun (int)
12407 void __builtin_arc_vrun (int)
12408 @end example
12409
12410 The following take a @code{__v8hi} argument and two @code{int}
12411 arguments and return a @code{__v8hi} result. The second argument must
12412 be a 3-bit compile time constants, indicating one the registers I0-I7,
12413 and the third argument must be an 8-bit compile time constant.
12414
12415 @emph{Note:} Although the equivalent hardware instructions do not take
12416 an SIMD register as an operand, these builtins overwrite the relevant
12417 bits of the @code{__v8hi} register provided as the first argument with
12418 the value loaded from the @code{[Ib, u8]} location in the SDM.
12419
12420 @example
12421 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12422 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12423 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12424 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12425 @end example
12426
12427 The following take two @code{int} arguments and return a @code{__v8hi}
12428 result. The first argument must be a 3-bit compile time constants,
12429 indicating one the registers I0-I7, and the second argument must be an
12430 8-bit compile time constant.
12431
12432 @example
12433 __v8hi __builtin_arc_vld128 (const int, const int)
12434 __v8hi __builtin_arc_vld64w (const int, const int)
12435 @end example
12436
12437 The following take a @code{__v8hi} argument and two @code{int}
12438 arguments and return no result. The second argument must be a 3-bit
12439 compile time constants, indicating one the registers I0-I7, and the
12440 third argument must be an 8-bit compile time constant.
12441
12442 @example
12443 void __builtin_arc_vst128 (__v8hi, const int, const int)
12444 void __builtin_arc_vst64 (__v8hi, const int, const int)
12445 @end example
12446
12447 The following take a @code{__v8hi} argument and three @code{int}
12448 arguments and return no result. The second argument must be a 3-bit
12449 compile-time constant, identifying the 16-bit sub-register to be
12450 stored, the third argument must be a 3-bit compile time constants,
12451 indicating one the registers I0-I7, and the fourth argument must be an
12452 8-bit compile time constant.
12453
12454 @example
12455 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12456 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12457 @end example
12458
12459 @node ARM iWMMXt Built-in Functions
12460 @subsection ARM iWMMXt Built-in Functions
12461
12462 These built-in functions are available for the ARM family of
12463 processors when the @option{-mcpu=iwmmxt} switch is used:
12464
12465 @smallexample
12466 typedef int v2si __attribute__ ((vector_size (8)));
12467 typedef short v4hi __attribute__ ((vector_size (8)));
12468 typedef char v8qi __attribute__ ((vector_size (8)));
12469
12470 int __builtin_arm_getwcgr0 (void)
12471 void __builtin_arm_setwcgr0 (int)
12472 int __builtin_arm_getwcgr1 (void)
12473 void __builtin_arm_setwcgr1 (int)
12474 int __builtin_arm_getwcgr2 (void)
12475 void __builtin_arm_setwcgr2 (int)
12476 int __builtin_arm_getwcgr3 (void)
12477 void __builtin_arm_setwcgr3 (int)
12478 int __builtin_arm_textrmsb (v8qi, int)
12479 int __builtin_arm_textrmsh (v4hi, int)
12480 int __builtin_arm_textrmsw (v2si, int)
12481 int __builtin_arm_textrmub (v8qi, int)
12482 int __builtin_arm_textrmuh (v4hi, int)
12483 int __builtin_arm_textrmuw (v2si, int)
12484 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12485 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12486 v2si __builtin_arm_tinsrw (v2si, int, int)
12487 long long __builtin_arm_tmia (long long, int, int)
12488 long long __builtin_arm_tmiabb (long long, int, int)
12489 long long __builtin_arm_tmiabt (long long, int, int)
12490 long long __builtin_arm_tmiaph (long long, int, int)
12491 long long __builtin_arm_tmiatb (long long, int, int)
12492 long long __builtin_arm_tmiatt (long long, int, int)
12493 int __builtin_arm_tmovmskb (v8qi)
12494 int __builtin_arm_tmovmskh (v4hi)
12495 int __builtin_arm_tmovmskw (v2si)
12496 long long __builtin_arm_waccb (v8qi)
12497 long long __builtin_arm_wacch (v4hi)
12498 long long __builtin_arm_waccw (v2si)
12499 v8qi __builtin_arm_waddb (v8qi, v8qi)
12500 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12501 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12502 v4hi __builtin_arm_waddh (v4hi, v4hi)
12503 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12504 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12505 v2si __builtin_arm_waddw (v2si, v2si)
12506 v2si __builtin_arm_waddwss (v2si, v2si)
12507 v2si __builtin_arm_waddwus (v2si, v2si)
12508 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12509 long long __builtin_arm_wand(long long, long long)
12510 long long __builtin_arm_wandn (long long, long long)
12511 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12512 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12513 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12514 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12515 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12516 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12517 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12518 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12519 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12520 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12521 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12522 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12523 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12524 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12525 long long __builtin_arm_wmacsz (v4hi, v4hi)
12526 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12527 long long __builtin_arm_wmacuz (v4hi, v4hi)
12528 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12529 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12530 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12531 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12532 v2si __builtin_arm_wmaxsw (v2si, v2si)
12533 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12534 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12535 v2si __builtin_arm_wmaxuw (v2si, v2si)
12536 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12537 v4hi __builtin_arm_wminsh (v4hi, v4hi)
12538 v2si __builtin_arm_wminsw (v2si, v2si)
12539 v8qi __builtin_arm_wminub (v8qi, v8qi)
12540 v4hi __builtin_arm_wminuh (v4hi, v4hi)
12541 v2si __builtin_arm_wminuw (v2si, v2si)
12542 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
12543 v4hi __builtin_arm_wmulul (v4hi, v4hi)
12544 v4hi __builtin_arm_wmulum (v4hi, v4hi)
12545 long long __builtin_arm_wor (long long, long long)
12546 v2si __builtin_arm_wpackdss (long long, long long)
12547 v2si __builtin_arm_wpackdus (long long, long long)
12548 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
12549 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
12550 v4hi __builtin_arm_wpackwss (v2si, v2si)
12551 v4hi __builtin_arm_wpackwus (v2si, v2si)
12552 long long __builtin_arm_wrord (long long, long long)
12553 long long __builtin_arm_wrordi (long long, int)
12554 v4hi __builtin_arm_wrorh (v4hi, long long)
12555 v4hi __builtin_arm_wrorhi (v4hi, int)
12556 v2si __builtin_arm_wrorw (v2si, long long)
12557 v2si __builtin_arm_wrorwi (v2si, int)
12558 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
12559 v2si __builtin_arm_wsadbz (v8qi, v8qi)
12560 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
12561 v2si __builtin_arm_wsadhz (v4hi, v4hi)
12562 v4hi __builtin_arm_wshufh (v4hi, int)
12563 long long __builtin_arm_wslld (long long, long long)
12564 long long __builtin_arm_wslldi (long long, int)
12565 v4hi __builtin_arm_wsllh (v4hi, long long)
12566 v4hi __builtin_arm_wsllhi (v4hi, int)
12567 v2si __builtin_arm_wsllw (v2si, long long)
12568 v2si __builtin_arm_wsllwi (v2si, int)
12569 long long __builtin_arm_wsrad (long long, long long)
12570 long long __builtin_arm_wsradi (long long, int)
12571 v4hi __builtin_arm_wsrah (v4hi, long long)
12572 v4hi __builtin_arm_wsrahi (v4hi, int)
12573 v2si __builtin_arm_wsraw (v2si, long long)
12574 v2si __builtin_arm_wsrawi (v2si, int)
12575 long long __builtin_arm_wsrld (long long, long long)
12576 long long __builtin_arm_wsrldi (long long, int)
12577 v4hi __builtin_arm_wsrlh (v4hi, long long)
12578 v4hi __builtin_arm_wsrlhi (v4hi, int)
12579 v2si __builtin_arm_wsrlw (v2si, long long)
12580 v2si __builtin_arm_wsrlwi (v2si, int)
12581 v8qi __builtin_arm_wsubb (v8qi, v8qi)
12582 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
12583 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
12584 v4hi __builtin_arm_wsubh (v4hi, v4hi)
12585 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12586 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12587 v2si __builtin_arm_wsubw (v2si, v2si)
12588 v2si __builtin_arm_wsubwss (v2si, v2si)
12589 v2si __builtin_arm_wsubwus (v2si, v2si)
12590 v4hi __builtin_arm_wunpckehsb (v8qi)
12591 v2si __builtin_arm_wunpckehsh (v4hi)
12592 long long __builtin_arm_wunpckehsw (v2si)
12593 v4hi __builtin_arm_wunpckehub (v8qi)
12594 v2si __builtin_arm_wunpckehuh (v4hi)
12595 long long __builtin_arm_wunpckehuw (v2si)
12596 v4hi __builtin_arm_wunpckelsb (v8qi)
12597 v2si __builtin_arm_wunpckelsh (v4hi)
12598 long long __builtin_arm_wunpckelsw (v2si)
12599 v4hi __builtin_arm_wunpckelub (v8qi)
12600 v2si __builtin_arm_wunpckeluh (v4hi)
12601 long long __builtin_arm_wunpckeluw (v2si)
12602 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12603 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12604 v2si __builtin_arm_wunpckihw (v2si, v2si)
12605 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12606 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12607 v2si __builtin_arm_wunpckilw (v2si, v2si)
12608 long long __builtin_arm_wxor (long long, long long)
12609 long long __builtin_arm_wzero ()
12610 @end smallexample
12611
12612
12613 @node ARM C Language Extensions (ACLE)
12614 @subsection ARM C Language Extensions (ACLE)
12615
12616 GCC implements extensions for C as described in the ARM C Language
12617 Extensions (ACLE) specification, which can be found at
12618 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12619
12620 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12621 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12622 intrinsics can be found at
12623 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12624 The built-in intrinsics for the Advanced SIMD extension are available when
12625 NEON is enabled.
12626
12627 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12628 back ends support CRC32 intrinsics and the ARM back end supports the
12629 Coprocessor intrinsics, all from @file{arm_acle.h}. The ARM back end's 16-bit
12630 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12631 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12632 intrinsics yet.
12633
12634 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12635 availability of extensions.
12636
12637 @node ARM Floating Point Status and Control Intrinsics
12638 @subsection ARM Floating Point Status and Control Intrinsics
12639
12640 These built-in functions are available for the ARM family of
12641 processors with floating-point unit.
12642
12643 @smallexample
12644 unsigned int __builtin_arm_get_fpscr ()
12645 void __builtin_arm_set_fpscr (unsigned int)
12646 @end smallexample
12647
12648 @node ARM ARMv8-M Security Extensions
12649 @subsection ARM ARMv8-M Security Extensions
12650
12651 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
12652 Security Extensions: Requiremenets on Development Tools Engineering
12653 Specification, which can be found at
12654 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
12655
12656 As part of the Security Extensions GCC implements two new function attributes:
12657 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
12658
12659 As part of the Security Extensions GCC implements the intrinsics below. FPTR
12660 is used here to mean any function pointer type.
12661
12662 @smallexample
12663 cmse_address_info_t cmse_TT (void *)
12664 cmse_address_info_t cmse_TT_fptr (FPTR)
12665 cmse_address_info_t cmse_TTT (void *)
12666 cmse_address_info_t cmse_TTT_fptr (FPTR)
12667 cmse_address_info_t cmse_TTA (void *)
12668 cmse_address_info_t cmse_TTA_fptr (FPTR)
12669 cmse_address_info_t cmse_TTAT (void *)
12670 cmse_address_info_t cmse_TTAT_fptr (FPTR)
12671 void * cmse_check_address_range (void *, size_t, int)
12672 typeof(p) cmse_nsfptr_create (FPTR p)
12673 intptr_t cmse_is_nsfptr (FPTR)
12674 int cmse_nonsecure_caller (void)
12675 @end smallexample
12676
12677 @node AVR Built-in Functions
12678 @subsection AVR Built-in Functions
12679
12680 For each built-in function for AVR, there is an equally named,
12681 uppercase built-in macro defined. That way users can easily query if
12682 or if not a specific built-in is implemented or not. For example, if
12683 @code{__builtin_avr_nop} is available the macro
12684 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12685
12686 The following built-in functions map to the respective machine
12687 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12688 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12689 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12690 as library call if no hardware multiplier is available.
12691
12692 @smallexample
12693 void __builtin_avr_nop (void)
12694 void __builtin_avr_sei (void)
12695 void __builtin_avr_cli (void)
12696 void __builtin_avr_sleep (void)
12697 void __builtin_avr_wdr (void)
12698 unsigned char __builtin_avr_swap (unsigned char)
12699 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12700 int __builtin_avr_fmuls (char, char)
12701 int __builtin_avr_fmulsu (char, unsigned char)
12702 @end smallexample
12703
12704 In order to delay execution for a specific number of cycles, GCC
12705 implements
12706 @smallexample
12707 void __builtin_avr_delay_cycles (unsigned long ticks)
12708 @end smallexample
12709
12710 @noindent
12711 @code{ticks} is the number of ticks to delay execution. Note that this
12712 built-in does not take into account the effect of interrupts that
12713 might increase delay time. @code{ticks} must be a compile-time
12714 integer constant; delays with a variable number of cycles are not supported.
12715
12716 @smallexample
12717 char __builtin_avr_flash_segment (const __memx void*)
12718 @end smallexample
12719
12720 @noindent
12721 This built-in takes a byte address to the 24-bit
12722 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12723 the number of the flash segment (the 64 KiB chunk) where the address
12724 points to. Counting starts at @code{0}.
12725 If the address does not point to flash memory, return @code{-1}.
12726
12727 @smallexample
12728 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
12729 @end smallexample
12730
12731 @noindent
12732 Insert bits from @var{bits} into @var{val} and return the resulting
12733 value. The nibbles of @var{map} determine how the insertion is
12734 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12735 @enumerate
12736 @item If @var{X} is @code{0xf},
12737 then the @var{n}-th bit of @var{val} is returned unaltered.
12738
12739 @item If X is in the range 0@dots{}7,
12740 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12741
12742 @item If X is in the range 8@dots{}@code{0xe},
12743 then the @var{n}-th result bit is undefined.
12744 @end enumerate
12745
12746 @noindent
12747 One typical use case for this built-in is adjusting input and
12748 output values to non-contiguous port layouts. Some examples:
12749
12750 @smallexample
12751 // same as val, bits is unused
12752 __builtin_avr_insert_bits (0xffffffff, bits, val)
12753 @end smallexample
12754
12755 @smallexample
12756 // same as bits, val is unused
12757 __builtin_avr_insert_bits (0x76543210, bits, val)
12758 @end smallexample
12759
12760 @smallexample
12761 // same as rotating bits by 4
12762 __builtin_avr_insert_bits (0x32107654, bits, 0)
12763 @end smallexample
12764
12765 @smallexample
12766 // high nibble of result is the high nibble of val
12767 // low nibble of result is the low nibble of bits
12768 __builtin_avr_insert_bits (0xffff3210, bits, val)
12769 @end smallexample
12770
12771 @smallexample
12772 // reverse the bit order of bits
12773 __builtin_avr_insert_bits (0x01234567, bits, 0)
12774 @end smallexample
12775
12776 @smallexample
12777 void __builtin_avr_nops (unsigned count)
12778 @end smallexample
12779
12780 @noindent
12781 Insert @code{count} @code{NOP} instructions.
12782 The number of instructions must be a compile-time integer constant.
12783
12784 @node Blackfin Built-in Functions
12785 @subsection Blackfin Built-in Functions
12786
12787 Currently, there are two Blackfin-specific built-in functions. These are
12788 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
12789 using inline assembly; by using these built-in functions the compiler can
12790 automatically add workarounds for hardware errata involving these
12791 instructions. These functions are named as follows:
12792
12793 @smallexample
12794 void __builtin_bfin_csync (void)
12795 void __builtin_bfin_ssync (void)
12796 @end smallexample
12797
12798 @node FR-V Built-in Functions
12799 @subsection FR-V Built-in Functions
12800
12801 GCC provides many FR-V-specific built-in functions. In general,
12802 these functions are intended to be compatible with those described
12803 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
12804 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
12805 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
12806 pointer rather than by value.
12807
12808 Most of the functions are named after specific FR-V instructions.
12809 Such functions are said to be ``directly mapped'' and are summarized
12810 here in tabular form.
12811
12812 @menu
12813 * Argument Types::
12814 * Directly-mapped Integer Functions::
12815 * Directly-mapped Media Functions::
12816 * Raw read/write Functions::
12817 * Other Built-in Functions::
12818 @end menu
12819
12820 @node Argument Types
12821 @subsubsection Argument Types
12822
12823 The arguments to the built-in functions can be divided into three groups:
12824 register numbers, compile-time constants and run-time values. In order
12825 to make this classification clear at a glance, the arguments and return
12826 values are given the following pseudo types:
12827
12828 @multitable @columnfractions .20 .30 .15 .35
12829 @item Pseudo type @tab Real C type @tab Constant? @tab Description
12830 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
12831 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
12832 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
12833 @item @code{uw2} @tab @code{unsigned long long} @tab No
12834 @tab an unsigned doubleword
12835 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
12836 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
12837 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
12838 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
12839 @end multitable
12840
12841 These pseudo types are not defined by GCC, they are simply a notational
12842 convenience used in this manual.
12843
12844 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
12845 and @code{sw2} are evaluated at run time. They correspond to
12846 register operands in the underlying FR-V instructions.
12847
12848 @code{const} arguments represent immediate operands in the underlying
12849 FR-V instructions. They must be compile-time constants.
12850
12851 @code{acc} arguments are evaluated at compile time and specify the number
12852 of an accumulator register. For example, an @code{acc} argument of 2
12853 selects the ACC2 register.
12854
12855 @code{iacc} arguments are similar to @code{acc} arguments but specify the
12856 number of an IACC register. See @pxref{Other Built-in Functions}
12857 for more details.
12858
12859 @node Directly-mapped Integer Functions
12860 @subsubsection Directly-Mapped Integer Functions
12861
12862 The functions listed below map directly to FR-V I-type instructions.
12863
12864 @multitable @columnfractions .45 .32 .23
12865 @item Function prototype @tab Example usage @tab Assembly output
12866 @item @code{sw1 __ADDSS (sw1, sw1)}
12867 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
12868 @tab @code{ADDSS @var{a},@var{b},@var{c}}
12869 @item @code{sw1 __SCAN (sw1, sw1)}
12870 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
12871 @tab @code{SCAN @var{a},@var{b},@var{c}}
12872 @item @code{sw1 __SCUTSS (sw1)}
12873 @tab @code{@var{b} = __SCUTSS (@var{a})}
12874 @tab @code{SCUTSS @var{a},@var{b}}
12875 @item @code{sw1 __SLASS (sw1, sw1)}
12876 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
12877 @tab @code{SLASS @var{a},@var{b},@var{c}}
12878 @item @code{void __SMASS (sw1, sw1)}
12879 @tab @code{__SMASS (@var{a}, @var{b})}
12880 @tab @code{SMASS @var{a},@var{b}}
12881 @item @code{void __SMSSS (sw1, sw1)}
12882 @tab @code{__SMSSS (@var{a}, @var{b})}
12883 @tab @code{SMSSS @var{a},@var{b}}
12884 @item @code{void __SMU (sw1, sw1)}
12885 @tab @code{__SMU (@var{a}, @var{b})}
12886 @tab @code{SMU @var{a},@var{b}}
12887 @item @code{sw2 __SMUL (sw1, sw1)}
12888 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
12889 @tab @code{SMUL @var{a},@var{b},@var{c}}
12890 @item @code{sw1 __SUBSS (sw1, sw1)}
12891 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
12892 @tab @code{SUBSS @var{a},@var{b},@var{c}}
12893 @item @code{uw2 __UMUL (uw1, uw1)}
12894 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
12895 @tab @code{UMUL @var{a},@var{b},@var{c}}
12896 @end multitable
12897
12898 @node Directly-mapped Media Functions
12899 @subsubsection Directly-Mapped Media Functions
12900
12901 The functions listed below map directly to FR-V M-type instructions.
12902
12903 @multitable @columnfractions .45 .32 .23
12904 @item Function prototype @tab Example usage @tab Assembly output
12905 @item @code{uw1 __MABSHS (sw1)}
12906 @tab @code{@var{b} = __MABSHS (@var{a})}
12907 @tab @code{MABSHS @var{a},@var{b}}
12908 @item @code{void __MADDACCS (acc, acc)}
12909 @tab @code{__MADDACCS (@var{b}, @var{a})}
12910 @tab @code{MADDACCS @var{a},@var{b}}
12911 @item @code{sw1 __MADDHSS (sw1, sw1)}
12912 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
12913 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
12914 @item @code{uw1 __MADDHUS (uw1, uw1)}
12915 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
12916 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
12917 @item @code{uw1 __MAND (uw1, uw1)}
12918 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
12919 @tab @code{MAND @var{a},@var{b},@var{c}}
12920 @item @code{void __MASACCS (acc, acc)}
12921 @tab @code{__MASACCS (@var{b}, @var{a})}
12922 @tab @code{MASACCS @var{a},@var{b}}
12923 @item @code{uw1 __MAVEH (uw1, uw1)}
12924 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
12925 @tab @code{MAVEH @var{a},@var{b},@var{c}}
12926 @item @code{uw2 __MBTOH (uw1)}
12927 @tab @code{@var{b} = __MBTOH (@var{a})}
12928 @tab @code{MBTOH @var{a},@var{b}}
12929 @item @code{void __MBTOHE (uw1 *, uw1)}
12930 @tab @code{__MBTOHE (&@var{b}, @var{a})}
12931 @tab @code{MBTOHE @var{a},@var{b}}
12932 @item @code{void __MCLRACC (acc)}
12933 @tab @code{__MCLRACC (@var{a})}
12934 @tab @code{MCLRACC @var{a}}
12935 @item @code{void __MCLRACCA (void)}
12936 @tab @code{__MCLRACCA ()}
12937 @tab @code{MCLRACCA}
12938 @item @code{uw1 __Mcop1 (uw1, uw1)}
12939 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
12940 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
12941 @item @code{uw1 __Mcop2 (uw1, uw1)}
12942 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
12943 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
12944 @item @code{uw1 __MCPLHI (uw2, const)}
12945 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
12946 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
12947 @item @code{uw1 __MCPLI (uw2, const)}
12948 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
12949 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
12950 @item @code{void __MCPXIS (acc, sw1, sw1)}
12951 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
12952 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
12953 @item @code{void __MCPXIU (acc, uw1, uw1)}
12954 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
12955 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
12956 @item @code{void __MCPXRS (acc, sw1, sw1)}
12957 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
12958 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
12959 @item @code{void __MCPXRU (acc, uw1, uw1)}
12960 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
12961 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
12962 @item @code{uw1 __MCUT (acc, uw1)}
12963 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
12964 @tab @code{MCUT @var{a},@var{b},@var{c}}
12965 @item @code{uw1 __MCUTSS (acc, sw1)}
12966 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
12967 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
12968 @item @code{void __MDADDACCS (acc, acc)}
12969 @tab @code{__MDADDACCS (@var{b}, @var{a})}
12970 @tab @code{MDADDACCS @var{a},@var{b}}
12971 @item @code{void __MDASACCS (acc, acc)}
12972 @tab @code{__MDASACCS (@var{b}, @var{a})}
12973 @tab @code{MDASACCS @var{a},@var{b}}
12974 @item @code{uw2 __MDCUTSSI (acc, const)}
12975 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
12976 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
12977 @item @code{uw2 __MDPACKH (uw2, uw2)}
12978 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
12979 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
12980 @item @code{uw2 __MDROTLI (uw2, const)}
12981 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
12982 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
12983 @item @code{void __MDSUBACCS (acc, acc)}
12984 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
12985 @tab @code{MDSUBACCS @var{a},@var{b}}
12986 @item @code{void __MDUNPACKH (uw1 *, uw2)}
12987 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
12988 @tab @code{MDUNPACKH @var{a},@var{b}}
12989 @item @code{uw2 __MEXPDHD (uw1, const)}
12990 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
12991 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
12992 @item @code{uw1 __MEXPDHW (uw1, const)}
12993 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
12994 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
12995 @item @code{uw1 __MHDSETH (uw1, const)}
12996 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
12997 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
12998 @item @code{sw1 __MHDSETS (const)}
12999 @tab @code{@var{b} = __MHDSETS (@var{a})}
13000 @tab @code{MHDSETS #@var{a},@var{b}}
13001 @item @code{uw1 __MHSETHIH (uw1, const)}
13002 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
13003 @tab @code{MHSETHIH #@var{a},@var{b}}
13004 @item @code{sw1 __MHSETHIS (sw1, const)}
13005 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
13006 @tab @code{MHSETHIS #@var{a},@var{b}}
13007 @item @code{uw1 __MHSETLOH (uw1, const)}
13008 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
13009 @tab @code{MHSETLOH #@var{a},@var{b}}
13010 @item @code{sw1 __MHSETLOS (sw1, const)}
13011 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
13012 @tab @code{MHSETLOS #@var{a},@var{b}}
13013 @item @code{uw1 __MHTOB (uw2)}
13014 @tab @code{@var{b} = __MHTOB (@var{a})}
13015 @tab @code{MHTOB @var{a},@var{b}}
13016 @item @code{void __MMACHS (acc, sw1, sw1)}
13017 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
13018 @tab @code{MMACHS @var{a},@var{b},@var{c}}
13019 @item @code{void __MMACHU (acc, uw1, uw1)}
13020 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
13021 @tab @code{MMACHU @var{a},@var{b},@var{c}}
13022 @item @code{void __MMRDHS (acc, sw1, sw1)}
13023 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
13024 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
13025 @item @code{void __MMRDHU (acc, uw1, uw1)}
13026 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
13027 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
13028 @item @code{void __MMULHS (acc, sw1, sw1)}
13029 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
13030 @tab @code{MMULHS @var{a},@var{b},@var{c}}
13031 @item @code{void __MMULHU (acc, uw1, uw1)}
13032 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
13033 @tab @code{MMULHU @var{a},@var{b},@var{c}}
13034 @item @code{void __MMULXHS (acc, sw1, sw1)}
13035 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
13036 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
13037 @item @code{void __MMULXHU (acc, uw1, uw1)}
13038 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
13039 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
13040 @item @code{uw1 __MNOT (uw1)}
13041 @tab @code{@var{b} = __MNOT (@var{a})}
13042 @tab @code{MNOT @var{a},@var{b}}
13043 @item @code{uw1 __MOR (uw1, uw1)}
13044 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
13045 @tab @code{MOR @var{a},@var{b},@var{c}}
13046 @item @code{uw1 __MPACKH (uh, uh)}
13047 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
13048 @tab @code{MPACKH @var{a},@var{b},@var{c}}
13049 @item @code{sw2 __MQADDHSS (sw2, sw2)}
13050 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
13051 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
13052 @item @code{uw2 __MQADDHUS (uw2, uw2)}
13053 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
13054 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
13055 @item @code{void __MQCPXIS (acc, sw2, sw2)}
13056 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
13057 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
13058 @item @code{void __MQCPXIU (acc, uw2, uw2)}
13059 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
13060 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13061 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13062 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13063 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13064 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13065 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13066 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13067 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13068 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13069 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13070 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13071 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13072 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13073 @item @code{void __MQMACHS (acc, sw2, sw2)}
13074 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13075 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13076 @item @code{void __MQMACHU (acc, uw2, uw2)}
13077 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13078 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13079 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13080 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13081 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13082 @item @code{void __MQMULHS (acc, sw2, sw2)}
13083 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13084 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13085 @item @code{void __MQMULHU (acc, uw2, uw2)}
13086 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13087 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13088 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13089 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13090 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13091 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13092 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13093 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13094 @item @code{sw2 __MQSATHS (sw2, sw2)}
13095 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13096 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13097 @item @code{uw2 __MQSLLHI (uw2, int)}
13098 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13099 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13100 @item @code{sw2 __MQSRAHI (sw2, int)}
13101 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13102 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13103 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13104 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13105 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13106 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13107 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13108 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13109 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13110 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13111 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13112 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13113 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13114 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13115 @item @code{uw1 __MRDACC (acc)}
13116 @tab @code{@var{b} = __MRDACC (@var{a})}
13117 @tab @code{MRDACC @var{a},@var{b}}
13118 @item @code{uw1 __MRDACCG (acc)}
13119 @tab @code{@var{b} = __MRDACCG (@var{a})}
13120 @tab @code{MRDACCG @var{a},@var{b}}
13121 @item @code{uw1 __MROTLI (uw1, const)}
13122 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13123 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13124 @item @code{uw1 __MROTRI (uw1, const)}
13125 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13126 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13127 @item @code{sw1 __MSATHS (sw1, sw1)}
13128 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13129 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13130 @item @code{uw1 __MSATHU (uw1, uw1)}
13131 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13132 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13133 @item @code{uw1 __MSLLHI (uw1, const)}
13134 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13135 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13136 @item @code{sw1 __MSRAHI (sw1, const)}
13137 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13138 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13139 @item @code{uw1 __MSRLHI (uw1, const)}
13140 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13141 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13142 @item @code{void __MSUBACCS (acc, acc)}
13143 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13144 @tab @code{MSUBACCS @var{a},@var{b}}
13145 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13146 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13147 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13148 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13149 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13150 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13151 @item @code{void __MTRAP (void)}
13152 @tab @code{__MTRAP ()}
13153 @tab @code{MTRAP}
13154 @item @code{uw2 __MUNPACKH (uw1)}
13155 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13156 @tab @code{MUNPACKH @var{a},@var{b}}
13157 @item @code{uw1 __MWCUT (uw2, uw1)}
13158 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13159 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13160 @item @code{void __MWTACC (acc, uw1)}
13161 @tab @code{__MWTACC (@var{b}, @var{a})}
13162 @tab @code{MWTACC @var{a},@var{b}}
13163 @item @code{void __MWTACCG (acc, uw1)}
13164 @tab @code{__MWTACCG (@var{b}, @var{a})}
13165 @tab @code{MWTACCG @var{a},@var{b}}
13166 @item @code{uw1 __MXOR (uw1, uw1)}
13167 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13168 @tab @code{MXOR @var{a},@var{b},@var{c}}
13169 @end multitable
13170
13171 @node Raw read/write Functions
13172 @subsubsection Raw Read/Write Functions
13173
13174 This sections describes built-in functions related to read and write
13175 instructions to access memory. These functions generate
13176 @code{membar} instructions to flush the I/O load and stores where
13177 appropriate, as described in Fujitsu's manual described above.
13178
13179 @table @code
13180
13181 @item unsigned char __builtin_read8 (void *@var{data})
13182 @item unsigned short __builtin_read16 (void *@var{data})
13183 @item unsigned long __builtin_read32 (void *@var{data})
13184 @item unsigned long long __builtin_read64 (void *@var{data})
13185
13186 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13187 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13188 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13189 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13190 @end table
13191
13192 @node Other Built-in Functions
13193 @subsubsection Other Built-in Functions
13194
13195 This section describes built-in functions that are not named after
13196 a specific FR-V instruction.
13197
13198 @table @code
13199 @item sw2 __IACCreadll (iacc @var{reg})
13200 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13201 for future expansion and must be 0.
13202
13203 @item sw1 __IACCreadl (iacc @var{reg})
13204 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13205 Other values of @var{reg} are rejected as invalid.
13206
13207 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13208 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13209 is reserved for future expansion and must be 0.
13210
13211 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13212 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13213 is 1. Other values of @var{reg} are rejected as invalid.
13214
13215 @item void __data_prefetch0 (const void *@var{x})
13216 Use the @code{dcpl} instruction to load the contents of address @var{x}
13217 into the data cache.
13218
13219 @item void __data_prefetch (const void *@var{x})
13220 Use the @code{nldub} instruction to load the contents of address @var{x}
13221 into the data cache. The instruction is issued in slot I1@.
13222 @end table
13223
13224 @node MIPS DSP Built-in Functions
13225 @subsection MIPS DSP Built-in Functions
13226
13227 The MIPS DSP Application-Specific Extension (ASE) includes new
13228 instructions that are designed to improve the performance of DSP and
13229 media applications. It provides instructions that operate on packed
13230 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13231
13232 GCC supports MIPS DSP operations using both the generic
13233 vector extensions (@pxref{Vector Extensions}) and a collection of
13234 MIPS-specific built-in functions. Both kinds of support are
13235 enabled by the @option{-mdsp} command-line option.
13236
13237 Revision 2 of the ASE was introduced in the second half of 2006.
13238 This revision adds extra instructions to the original ASE, but is
13239 otherwise backwards-compatible with it. You can select revision 2
13240 using the command-line option @option{-mdspr2}; this option implies
13241 @option{-mdsp}.
13242
13243 The SCOUNT and POS bits of the DSP control register are global. The
13244 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13245 POS bits. During optimization, the compiler does not delete these
13246 instructions and it does not delete calls to functions containing
13247 these instructions.
13248
13249 At present, GCC only provides support for operations on 32-bit
13250 vectors. The vector type associated with 8-bit integer data is
13251 usually called @code{v4i8}, the vector type associated with Q7
13252 is usually called @code{v4q7}, the vector type associated with 16-bit
13253 integer data is usually called @code{v2i16}, and the vector type
13254 associated with Q15 is usually called @code{v2q15}. They can be
13255 defined in C as follows:
13256
13257 @smallexample
13258 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13259 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13260 typedef short v2i16 __attribute__ ((vector_size(4)));
13261 typedef short v2q15 __attribute__ ((vector_size(4)));
13262 @end smallexample
13263
13264 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13265 initialized in the same way as aggregates. For example:
13266
13267 @smallexample
13268 v4i8 a = @{1, 2, 3, 4@};
13269 v4i8 b;
13270 b = (v4i8) @{5, 6, 7, 8@};
13271
13272 v2q15 c = @{0x0fcb, 0x3a75@};
13273 v2q15 d;
13274 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13275 @end smallexample
13276
13277 @emph{Note:} The CPU's endianness determines the order in which values
13278 are packed. On little-endian targets, the first value is the least
13279 significant and the last value is the most significant. The opposite
13280 order applies to big-endian targets. For example, the code above
13281 sets the lowest byte of @code{a} to @code{1} on little-endian targets
13282 and @code{4} on big-endian targets.
13283
13284 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
13285 representation. As shown in this example, the integer representation
13286 of a Q7 value can be obtained by multiplying the fractional value by
13287 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
13288 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
13289 @code{0x1.0p31}.
13290
13291 The table below lists the @code{v4i8} and @code{v2q15} operations for which
13292 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
13293 and @code{c} and @code{d} are @code{v2q15} values.
13294
13295 @multitable @columnfractions .50 .50
13296 @item C code @tab MIPS instruction
13297 @item @code{a + b} @tab @code{addu.qb}
13298 @item @code{c + d} @tab @code{addq.ph}
13299 @item @code{a - b} @tab @code{subu.qb}
13300 @item @code{c - d} @tab @code{subq.ph}
13301 @end multitable
13302
13303 The table below lists the @code{v2i16} operation for which
13304 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
13305 @code{v2i16} values.
13306
13307 @multitable @columnfractions .50 .50
13308 @item C code @tab MIPS instruction
13309 @item @code{e * f} @tab @code{mul.ph}
13310 @end multitable
13311
13312 It is easier to describe the DSP built-in functions if we first define
13313 the following types:
13314
13315 @smallexample
13316 typedef int q31;
13317 typedef int i32;
13318 typedef unsigned int ui32;
13319 typedef long long a64;
13320 @end smallexample
13321
13322 @code{q31} and @code{i32} are actually the same as @code{int}, but we
13323 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
13324 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
13325 @code{long long}, but we use @code{a64} to indicate values that are
13326 placed in one of the four DSP accumulators (@code{$ac0},
13327 @code{$ac1}, @code{$ac2} or @code{$ac3}).
13328
13329 Also, some built-in functions prefer or require immediate numbers as
13330 parameters, because the corresponding DSP instructions accept both immediate
13331 numbers and register operands, or accept immediate numbers only. The
13332 immediate parameters are listed as follows.
13333
13334 @smallexample
13335 imm0_3: 0 to 3.
13336 imm0_7: 0 to 7.
13337 imm0_15: 0 to 15.
13338 imm0_31: 0 to 31.
13339 imm0_63: 0 to 63.
13340 imm0_255: 0 to 255.
13341 imm_n32_31: -32 to 31.
13342 imm_n512_511: -512 to 511.
13343 @end smallexample
13344
13345 The following built-in functions map directly to a particular MIPS DSP
13346 instruction. Please refer to the architecture specification
13347 for details on what each instruction does.
13348
13349 @smallexample
13350 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
13351 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
13352 q31 __builtin_mips_addq_s_w (q31, q31)
13353 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
13354 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
13355 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
13356 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
13357 q31 __builtin_mips_subq_s_w (q31, q31)
13358 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
13359 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
13360 i32 __builtin_mips_addsc (i32, i32)
13361 i32 __builtin_mips_addwc (i32, i32)
13362 i32 __builtin_mips_modsub (i32, i32)
13363 i32 __builtin_mips_raddu_w_qb (v4i8)
13364 v2q15 __builtin_mips_absq_s_ph (v2q15)
13365 q31 __builtin_mips_absq_s_w (q31)
13366 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
13367 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
13368 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
13369 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
13370 q31 __builtin_mips_preceq_w_phl (v2q15)
13371 q31 __builtin_mips_preceq_w_phr (v2q15)
13372 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
13373 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
13374 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
13375 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
13376 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
13377 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
13378 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
13379 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
13380 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
13381 v4i8 __builtin_mips_shll_qb (v4i8, i32)
13382 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
13383 v2q15 __builtin_mips_shll_ph (v2q15, i32)
13384 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
13385 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
13386 q31 __builtin_mips_shll_s_w (q31, imm0_31)
13387 q31 __builtin_mips_shll_s_w (q31, i32)
13388 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
13389 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
13390 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
13391 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13392 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13393 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13394 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13395 q31 __builtin_mips_shra_r_w (q31, i32)
13396 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13397 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13398 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13399 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13400 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13401 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13402 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13403 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13404 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13405 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13406 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13407 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13408 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13409 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13410 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13411 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13412 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13413 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13414 i32 __builtin_mips_bitrev (i32)
13415 i32 __builtin_mips_insv (i32, i32)
13416 v4i8 __builtin_mips_repl_qb (imm0_255)
13417 v4i8 __builtin_mips_repl_qb (i32)
13418 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13419 v2q15 __builtin_mips_repl_ph (i32)
13420 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13421 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13422 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13423 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13424 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13425 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13426 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13427 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13428 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13429 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13430 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13431 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13432 i32 __builtin_mips_extr_w (a64, imm0_31)
13433 i32 __builtin_mips_extr_w (a64, i32)
13434 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13435 i32 __builtin_mips_extr_s_h (a64, i32)
13436 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13437 i32 __builtin_mips_extr_rs_w (a64, i32)
13438 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13439 i32 __builtin_mips_extr_r_w (a64, i32)
13440 i32 __builtin_mips_extp (a64, imm0_31)
13441 i32 __builtin_mips_extp (a64, i32)
13442 i32 __builtin_mips_extpdp (a64, imm0_31)
13443 i32 __builtin_mips_extpdp (a64, i32)
13444 a64 __builtin_mips_shilo (a64, imm_n32_31)
13445 a64 __builtin_mips_shilo (a64, i32)
13446 a64 __builtin_mips_mthlip (a64, i32)
13447 void __builtin_mips_wrdsp (i32, imm0_63)
13448 i32 __builtin_mips_rddsp (imm0_63)
13449 i32 __builtin_mips_lbux (void *, i32)
13450 i32 __builtin_mips_lhx (void *, i32)
13451 i32 __builtin_mips_lwx (void *, i32)
13452 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13453 i32 __builtin_mips_bposge32 (void)
13454 a64 __builtin_mips_madd (a64, i32, i32);
13455 a64 __builtin_mips_maddu (a64, ui32, ui32);
13456 a64 __builtin_mips_msub (a64, i32, i32);
13457 a64 __builtin_mips_msubu (a64, ui32, ui32);
13458 a64 __builtin_mips_mult (i32, i32);
13459 a64 __builtin_mips_multu (ui32, ui32);
13460 @end smallexample
13461
13462 The following built-in functions map directly to a particular MIPS DSP REV 2
13463 instruction. Please refer to the architecture specification
13464 for details on what each instruction does.
13465
13466 @smallexample
13467 v4q7 __builtin_mips_absq_s_qb (v4q7);
13468 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13469 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13470 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13471 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13472 i32 __builtin_mips_append (i32, i32, imm0_31);
13473 i32 __builtin_mips_balign (i32, i32, imm0_3);
13474 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13475 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13476 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13477 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13478 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13479 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13480 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13481 q31 __builtin_mips_mulq_rs_w (q31, q31);
13482 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13483 q31 __builtin_mips_mulq_s_w (q31, q31);
13484 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13485 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13486 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13487 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13488 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13489 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13490 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13491 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13492 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13493 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13494 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13495 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13496 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13497 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13498 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13499 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13500 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13501 q31 __builtin_mips_addqh_w (q31, q31);
13502 q31 __builtin_mips_addqh_r_w (q31, q31);
13503 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13504 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13505 q31 __builtin_mips_subqh_w (q31, q31);
13506 q31 __builtin_mips_subqh_r_w (q31, q31);
13507 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13508 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13509 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13510 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13511 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13512 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13513 @end smallexample
13514
13515
13516 @node MIPS Paired-Single Support
13517 @subsection MIPS Paired-Single Support
13518
13519 The MIPS64 architecture includes a number of instructions that
13520 operate on pairs of single-precision floating-point values.
13521 Each pair is packed into a 64-bit floating-point register,
13522 with one element being designated the ``upper half'' and
13523 the other being designated the ``lower half''.
13524
13525 GCC supports paired-single operations using both the generic
13526 vector extensions (@pxref{Vector Extensions}) and a collection of
13527 MIPS-specific built-in functions. Both kinds of support are
13528 enabled by the @option{-mpaired-single} command-line option.
13529
13530 The vector type associated with paired-single values is usually
13531 called @code{v2sf}. It can be defined in C as follows:
13532
13533 @smallexample
13534 typedef float v2sf __attribute__ ((vector_size (8)));
13535 @end smallexample
13536
13537 @code{v2sf} values are initialized in the same way as aggregates.
13538 For example:
13539
13540 @smallexample
13541 v2sf a = @{1.5, 9.1@};
13542 v2sf b;
13543 float e, f;
13544 b = (v2sf) @{e, f@};
13545 @end smallexample
13546
13547 @emph{Note:} The CPU's endianness determines which value is stored in
13548 the upper half of a register and which value is stored in the lower half.
13549 On little-endian targets, the first value is the lower one and the second
13550 value is the upper one. The opposite order applies to big-endian targets.
13551 For example, the code above sets the lower half of @code{a} to
13552 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
13553
13554 @node MIPS Loongson Built-in Functions
13555 @subsection MIPS Loongson Built-in Functions
13556
13557 GCC provides intrinsics to access the SIMD instructions provided by the
13558 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
13559 available after inclusion of the @code{loongson.h} header file,
13560 operate on the following 64-bit vector types:
13561
13562 @itemize
13563 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
13564 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
13565 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
13566 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
13567 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
13568 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
13569 @end itemize
13570
13571 The intrinsics provided are listed below; each is named after the
13572 machine instruction to which it corresponds, with suffixes added as
13573 appropriate to distinguish intrinsics that expand to the same machine
13574 instruction yet have different argument types. Refer to the architecture
13575 documentation for a description of the functionality of each
13576 instruction.
13577
13578 @smallexample
13579 int16x4_t packsswh (int32x2_t s, int32x2_t t);
13580 int8x8_t packsshb (int16x4_t s, int16x4_t t);
13581 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
13582 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
13583 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
13584 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
13585 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
13586 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
13587 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
13588 uint64_t paddd_u (uint64_t s, uint64_t t);
13589 int64_t paddd_s (int64_t s, int64_t t);
13590 int16x4_t paddsh (int16x4_t s, int16x4_t t);
13591 int8x8_t paddsb (int8x8_t s, int8x8_t t);
13592 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
13593 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
13594 uint64_t pandn_ud (uint64_t s, uint64_t t);
13595 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
13596 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
13597 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
13598 int64_t pandn_sd (int64_t s, int64_t t);
13599 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
13600 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
13601 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
13602 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
13603 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
13604 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
13605 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
13606 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
13607 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
13608 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
13609 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
13610 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
13611 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
13612 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
13613 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
13614 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
13615 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
13616 uint16x4_t pextrh_u (uint16x4_t s, int field);
13617 int16x4_t pextrh_s (int16x4_t s, int field);
13618 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
13619 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
13620 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
13621 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
13622 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
13623 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13624 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13625 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13626 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13627 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13628 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13629 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13630 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13631 uint8x8_t pmovmskb_u (uint8x8_t s);
13632 int8x8_t pmovmskb_s (int8x8_t s);
13633 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13634 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13635 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13636 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13637 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13638 uint16x4_t biadd (uint8x8_t s);
13639 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13640 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13641 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13642 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13643 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13644 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13645 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13646 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13647 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13648 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13649 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13650 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13651 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13652 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13653 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13654 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13655 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13656 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13657 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13658 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13659 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13660 uint64_t psubd_u (uint64_t s, uint64_t t);
13661 int64_t psubd_s (int64_t s, int64_t t);
13662 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13663 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13664 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13665 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13666 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13667 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13668 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13669 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13670 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13671 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13672 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13673 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13674 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13675 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13676 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13677 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13678 @end smallexample
13679
13680 @menu
13681 * Paired-Single Arithmetic::
13682 * Paired-Single Built-in Functions::
13683 * MIPS-3D Built-in Functions::
13684 @end menu
13685
13686 @node Paired-Single Arithmetic
13687 @subsubsection Paired-Single Arithmetic
13688
13689 The table below lists the @code{v2sf} operations for which hardware
13690 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13691 values and @code{x} is an integral value.
13692
13693 @multitable @columnfractions .50 .50
13694 @item C code @tab MIPS instruction
13695 @item @code{a + b} @tab @code{add.ps}
13696 @item @code{a - b} @tab @code{sub.ps}
13697 @item @code{-a} @tab @code{neg.ps}
13698 @item @code{a * b} @tab @code{mul.ps}
13699 @item @code{a * b + c} @tab @code{madd.ps}
13700 @item @code{a * b - c} @tab @code{msub.ps}
13701 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13702 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13703 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13704 @end multitable
13705
13706 Note that the multiply-accumulate instructions can be disabled
13707 using the command-line option @code{-mno-fused-madd}.
13708
13709 @node Paired-Single Built-in Functions
13710 @subsubsection Paired-Single Built-in Functions
13711
13712 The following paired-single functions map directly to a particular
13713 MIPS instruction. Please refer to the architecture specification
13714 for details on what each instruction does.
13715
13716 @table @code
13717 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13718 Pair lower lower (@code{pll.ps}).
13719
13720 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13721 Pair upper lower (@code{pul.ps}).
13722
13723 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13724 Pair lower upper (@code{plu.ps}).
13725
13726 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13727 Pair upper upper (@code{puu.ps}).
13728
13729 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13730 Convert pair to paired single (@code{cvt.ps.s}).
13731
13732 @item float __builtin_mips_cvt_s_pl (v2sf)
13733 Convert pair lower to single (@code{cvt.s.pl}).
13734
13735 @item float __builtin_mips_cvt_s_pu (v2sf)
13736 Convert pair upper to single (@code{cvt.s.pu}).
13737
13738 @item v2sf __builtin_mips_abs_ps (v2sf)
13739 Absolute value (@code{abs.ps}).
13740
13741 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13742 Align variable (@code{alnv.ps}).
13743
13744 @emph{Note:} The value of the third parameter must be 0 or 4
13745 modulo 8, otherwise the result is unpredictable. Please read the
13746 instruction description for details.
13747 @end table
13748
13749 The following multi-instruction functions are also available.
13750 In each case, @var{cond} can be any of the 16 floating-point conditions:
13751 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13752 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13753 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13754
13755 @table @code
13756 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13757 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13758 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13759 @code{movt.ps}/@code{movf.ps}).
13760
13761 The @code{movt} functions return the value @var{x} computed by:
13762
13763 @smallexample
13764 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13765 mov.ps @var{x},@var{c}
13766 movt.ps @var{x},@var{d},@var{cc}
13767 @end smallexample
13768
13769 The @code{movf} functions are similar but use @code{movf.ps} instead
13770 of @code{movt.ps}.
13771
13772 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13773 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13774 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13775 @code{bc1t}/@code{bc1f}).
13776
13777 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13778 and return either the upper or lower half of the result. For example:
13779
13780 @smallexample
13781 v2sf a, b;
13782 if (__builtin_mips_upper_c_eq_ps (a, b))
13783 upper_halves_are_equal ();
13784 else
13785 upper_halves_are_unequal ();
13786
13787 if (__builtin_mips_lower_c_eq_ps (a, b))
13788 lower_halves_are_equal ();
13789 else
13790 lower_halves_are_unequal ();
13791 @end smallexample
13792 @end table
13793
13794 @node MIPS-3D Built-in Functions
13795 @subsubsection MIPS-3D Built-in Functions
13796
13797 The MIPS-3D Application-Specific Extension (ASE) includes additional
13798 paired-single instructions that are designed to improve the performance
13799 of 3D graphics operations. Support for these instructions is controlled
13800 by the @option{-mips3d} command-line option.
13801
13802 The functions listed below map directly to a particular MIPS-3D
13803 instruction. Please refer to the architecture specification for
13804 more details on what each instruction does.
13805
13806 @table @code
13807 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13808 Reduction add (@code{addr.ps}).
13809
13810 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13811 Reduction multiply (@code{mulr.ps}).
13812
13813 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13814 Convert paired single to paired word (@code{cvt.pw.ps}).
13815
13816 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13817 Convert paired word to paired single (@code{cvt.ps.pw}).
13818
13819 @item float __builtin_mips_recip1_s (float)
13820 @itemx double __builtin_mips_recip1_d (double)
13821 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13822 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13823
13824 @item float __builtin_mips_recip2_s (float, float)
13825 @itemx double __builtin_mips_recip2_d (double, double)
13826 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13827 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13828
13829 @item float __builtin_mips_rsqrt1_s (float)
13830 @itemx double __builtin_mips_rsqrt1_d (double)
13831 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13832 Reduced-precision reciprocal square root (sequence step 1)
13833 (@code{rsqrt1.@var{fmt}}).
13834
13835 @item float __builtin_mips_rsqrt2_s (float, float)
13836 @itemx double __builtin_mips_rsqrt2_d (double, double)
13837 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13838 Reduced-precision reciprocal square root (sequence step 2)
13839 (@code{rsqrt2.@var{fmt}}).
13840 @end table
13841
13842 The following multi-instruction functions are also available.
13843 In each case, @var{cond} can be any of the 16 floating-point conditions:
13844 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13845 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13846 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13847
13848 @table @code
13849 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13850 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13851 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13852 @code{bc1t}/@code{bc1f}).
13853
13854 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13855 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13856 For example:
13857
13858 @smallexample
13859 float a, b;
13860 if (__builtin_mips_cabs_eq_s (a, b))
13861 true ();
13862 else
13863 false ();
13864 @end smallexample
13865
13866 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13867 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13868 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13869 @code{bc1t}/@code{bc1f}).
13870
13871 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13872 and return either the upper or lower half of the result. For example:
13873
13874 @smallexample
13875 v2sf a, b;
13876 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13877 upper_halves_are_equal ();
13878 else
13879 upper_halves_are_unequal ();
13880
13881 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13882 lower_halves_are_equal ();
13883 else
13884 lower_halves_are_unequal ();
13885 @end smallexample
13886
13887 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13888 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13889 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13890 @code{movt.ps}/@code{movf.ps}).
13891
13892 The @code{movt} functions return the value @var{x} computed by:
13893
13894 @smallexample
13895 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13896 mov.ps @var{x},@var{c}
13897 movt.ps @var{x},@var{d},@var{cc}
13898 @end smallexample
13899
13900 The @code{movf} functions are similar but use @code{movf.ps} instead
13901 of @code{movt.ps}.
13902
13903 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13904 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13905 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13906 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13907 Comparison of two paired-single values
13908 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13909 @code{bc1any2t}/@code{bc1any2f}).
13910
13911 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13912 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13913 result is true and the @code{all} forms return true if both results are true.
13914 For example:
13915
13916 @smallexample
13917 v2sf a, b;
13918 if (__builtin_mips_any_c_eq_ps (a, b))
13919 one_is_true ();
13920 else
13921 both_are_false ();
13922
13923 if (__builtin_mips_all_c_eq_ps (a, b))
13924 both_are_true ();
13925 else
13926 one_is_false ();
13927 @end smallexample
13928
13929 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13930 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13931 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13932 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13933 Comparison of four paired-single values
13934 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13935 @code{bc1any4t}/@code{bc1any4f}).
13936
13937 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13938 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13939 The @code{any} forms return true if any of the four results are true
13940 and the @code{all} forms return true if all four results are true.
13941 For example:
13942
13943 @smallexample
13944 v2sf a, b, c, d;
13945 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13946 some_are_true ();
13947 else
13948 all_are_false ();
13949
13950 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13951 all_are_true ();
13952 else
13953 some_are_false ();
13954 @end smallexample
13955 @end table
13956
13957 @node MIPS SIMD Architecture (MSA) Support
13958 @subsection MIPS SIMD Architecture (MSA) Support
13959
13960 @menu
13961 * MIPS SIMD Architecture Built-in Functions::
13962 @end menu
13963
13964 GCC provides intrinsics to access the SIMD instructions provided by the
13965 MSA MIPS SIMD Architecture. The interface is made available by including
13966 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
13967 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
13968 @code{__msa_*}.
13969
13970 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
13971 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
13972 data elements. The following vectors typedefs are included in @code{msa.h}:
13973 @itemize
13974 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
13975 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
13976 @item @code{v8i16}, a vector of eight signed 16-bit integers;
13977 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
13978 @item @code{v4i32}, a vector of four signed 32-bit integers;
13979 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
13980 @item @code{v2i64}, a vector of two signed 64-bit integers;
13981 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
13982 @item @code{v4f32}, a vector of four 32-bit floats;
13983 @item @code{v2f64}, a vector of two 64-bit doubles.
13984 @end itemize
13985
13986 Intructions and corresponding built-ins may have additional restrictions and/or
13987 input/output values manipulated:
13988 @itemize
13989 @item @code{imm0_1}, an integer literal in range 0 to 1;
13990 @item @code{imm0_3}, an integer literal in range 0 to 3;
13991 @item @code{imm0_7}, an integer literal in range 0 to 7;
13992 @item @code{imm0_15}, an integer literal in range 0 to 15;
13993 @item @code{imm0_31}, an integer literal in range 0 to 31;
13994 @item @code{imm0_63}, an integer literal in range 0 to 63;
13995 @item @code{imm0_255}, an integer literal in range 0 to 255;
13996 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
13997 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
13998 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
13999 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
14000 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
14001 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
14002 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
14003 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
14004 @item @code{imm1_4}, an integer literal in range 1 to 4;
14005 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
14006 @end itemize
14007
14008 @smallexample
14009 @{
14010 typedef int i32;
14011 #if __LONG_MAX__ == __LONG_LONG_MAX__
14012 typedef long i64;
14013 #else
14014 typedef long long i64;
14015 #endif
14016
14017 typedef unsigned int u32;
14018 #if __LONG_MAX__ == __LONG_LONG_MAX__
14019 typedef unsigned long u64;
14020 #else
14021 typedef unsigned long long u64;
14022 #endif
14023
14024 typedef double f64;
14025 typedef float f32;
14026 @}
14027 @end smallexample
14028
14029 @node MIPS SIMD Architecture Built-in Functions
14030 @subsubsection MIPS SIMD Architecture Built-in Functions
14031
14032 The intrinsics provided are listed below; each is named after the
14033 machine instruction.
14034
14035 @smallexample
14036 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
14037 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
14038 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
14039 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
14040
14041 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
14042 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
14043 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
14044 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
14045
14046 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
14047 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
14048 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
14049 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
14050
14051 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
14052 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
14053 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
14054 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
14055
14056 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
14057 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
14058 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
14059 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
14060
14061 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14062 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14063 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14064 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14065
14066 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14067
14068 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14069
14070 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14071 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14072 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14073 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14074
14075 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14076 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14077 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14078 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14079
14080 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14081 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14082 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14083 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14084
14085 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14086 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14087 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14088 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14089
14090 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14091 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14092 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14093 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14094
14095 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14096 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14097 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14098 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14099
14100 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14101 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14102 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14103 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14104
14105 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14106 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14107 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14108 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14109
14110 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14111 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14112 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14113 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14114
14115 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14116 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14117 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14118 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14119
14120 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14121 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14122 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14123 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14124
14125 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14126 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14127 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14128 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14129
14130 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14131
14132 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14133
14134 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14135
14136 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14137
14138 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14139 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14140 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14141 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14142
14143 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14144 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14145 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14146 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14147
14148 i32 __builtin_msa_bnz_b (v16u8);
14149 i32 __builtin_msa_bnz_h (v8u16);
14150 i32 __builtin_msa_bnz_w (v4u32);
14151 i32 __builtin_msa_bnz_d (v2u64);
14152
14153 i32 __builtin_msa_bnz_v (v16u8);
14154
14155 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14156
14157 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14158
14159 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14160 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14161 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14162 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14163
14164 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14165 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14166 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14167 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14168
14169 i32 __builtin_msa_bz_b (v16u8);
14170 i32 __builtin_msa_bz_h (v8u16);
14171 i32 __builtin_msa_bz_w (v4u32);
14172 i32 __builtin_msa_bz_d (v2u64);
14173
14174 i32 __builtin_msa_bz_v (v16u8);
14175
14176 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14177 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14178 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14179 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14180
14181 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14182 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14183 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14184 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14185
14186 i32 __builtin_msa_cfcmsa (imm0_31);
14187
14188 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14189 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14190 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14191 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14192
14193 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14194 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14195 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14196 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14197
14198 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14199 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14200 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14201 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14202
14203 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14204 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14205 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14206 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14207
14208 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14209 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14210 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14211 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14212
14213 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14214 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14215 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14216 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14217
14218 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14219 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14220 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14221 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14222
14223 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14224 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14225 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14226 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14227
14228 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14229 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14230 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14231 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14232
14233 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14234 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14235 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14236 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14237
14238 void __builtin_msa_ctcmsa (imm0_31, i32);
14239
14240 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14241 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14242 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14243 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14244
14245 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14246 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14247 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14248 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14249
14250 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14251 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14252 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14253
14254 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14255 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14256 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14257
14258 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14259 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14260 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14261
14262 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14263 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14264 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14265
14266 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14267 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14268 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14269
14270 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14271 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14272 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14273
14274 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14275 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14276
14277 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14278 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14279
14280 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
14281 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
14282
14283 v4i32 __builtin_msa_fclass_w (v4f32);
14284 v2i64 __builtin_msa_fclass_d (v2f64);
14285
14286 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
14287 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
14288
14289 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
14290 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
14291
14292 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
14293 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
14294
14295 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
14296 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
14297
14298 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
14299 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
14300
14301 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
14302 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
14303
14304 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
14305 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
14306
14307 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
14308 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
14309
14310 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
14311 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
14312
14313 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
14314 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
14315
14316 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
14317 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
14318
14319 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
14320 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
14321
14322 v4f32 __builtin_msa_fexupl_w (v8i16);
14323 v2f64 __builtin_msa_fexupl_d (v4f32);
14324
14325 v4f32 __builtin_msa_fexupr_w (v8i16);
14326 v2f64 __builtin_msa_fexupr_d (v4f32);
14327
14328 v4f32 __builtin_msa_ffint_s_w (v4i32);
14329 v2f64 __builtin_msa_ffint_s_d (v2i64);
14330
14331 v4f32 __builtin_msa_ffint_u_w (v4u32);
14332 v2f64 __builtin_msa_ffint_u_d (v2u64);
14333
14334 v4f32 __builtin_msa_ffql_w (v8i16);
14335 v2f64 __builtin_msa_ffql_d (v4i32);
14336
14337 v4f32 __builtin_msa_ffqr_w (v8i16);
14338 v2f64 __builtin_msa_ffqr_d (v4i32);
14339
14340 v16i8 __builtin_msa_fill_b (i32);
14341 v8i16 __builtin_msa_fill_h (i32);
14342 v4i32 __builtin_msa_fill_w (i32);
14343 v2i64 __builtin_msa_fill_d (i64);
14344
14345 v4f32 __builtin_msa_flog2_w (v4f32);
14346 v2f64 __builtin_msa_flog2_d (v2f64);
14347
14348 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
14349 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
14350
14351 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
14352 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
14353
14354 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
14355 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
14356
14357 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
14358 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
14359
14360 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
14361 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
14362
14363 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
14364 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
14365
14366 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
14367 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
14368
14369 v4f32 __builtin_msa_frint_w (v4f32);
14370 v2f64 __builtin_msa_frint_d (v2f64);
14371
14372 v4f32 __builtin_msa_frcp_w (v4f32);
14373 v2f64 __builtin_msa_frcp_d (v2f64);
14374
14375 v4f32 __builtin_msa_frsqrt_w (v4f32);
14376 v2f64 __builtin_msa_frsqrt_d (v2f64);
14377
14378 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
14379 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
14380
14381 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
14382 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
14383
14384 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
14385 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
14386
14387 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
14388 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
14389
14390 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
14391 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14392
14393 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14394 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14395
14396 v4f32 __builtin_msa_fsqrt_w (v4f32);
14397 v2f64 __builtin_msa_fsqrt_d (v2f64);
14398
14399 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14400 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14401
14402 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14403 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14404
14405 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14406 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14407
14408 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14409 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14410
14411 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14412 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14413
14414 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14415 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14416
14417 v4i32 __builtin_msa_ftint_s_w (v4f32);
14418 v2i64 __builtin_msa_ftint_s_d (v2f64);
14419
14420 v4u32 __builtin_msa_ftint_u_w (v4f32);
14421 v2u64 __builtin_msa_ftint_u_d (v2f64);
14422
14423 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14424 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14425
14426 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14427 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14428
14429 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14430 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14431
14432 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14433 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14434 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14435
14436 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14437 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14438 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14439
14440 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14441 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14442 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14443
14444 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14445 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14446 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14447
14448 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14449 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14450 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14451 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14452
14453 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14454 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14455 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14456 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14457
14458 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14459 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14460 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14461 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14462
14463 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14464 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14465 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14466 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14467
14468 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14469 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14470 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14471 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14472
14473 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14474 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14475 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14476 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14477
14478 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14479 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14480 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14481 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14482
14483 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14484 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14485 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14486 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14487
14488 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14489 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14490
14491 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14492 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14493
14494 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14495 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14496 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14497 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14498
14499 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14500 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14501 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14502 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14503
14504 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14505 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14506 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14507 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14508
14509 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14510 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14511 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14512 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14513
14514 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14515 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14516 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14517 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14518
14519 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14520 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14521 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14522 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14523
14524 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14525 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14526 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14527 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14528
14529 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14530 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14531 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14532 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14533
14534 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14535 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14536 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
14537 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
14538
14539 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
14540 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
14541 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
14542 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
14543
14544 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
14545 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
14546 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
14547 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
14548
14549 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
14550 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
14551 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
14552 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
14553
14554 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
14555 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
14556 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
14557 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
14558
14559 v16i8 __builtin_msa_move_v (v16i8);
14560
14561 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
14562 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
14563
14564 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
14565 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
14566
14567 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
14568 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
14569 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
14570 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
14571
14572 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
14573 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
14574
14575 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
14576 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
14577
14578 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
14579 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
14580 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
14581 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
14582
14583 v16i8 __builtin_msa_nloc_b (v16i8);
14584 v8i16 __builtin_msa_nloc_h (v8i16);
14585 v4i32 __builtin_msa_nloc_w (v4i32);
14586 v2i64 __builtin_msa_nloc_d (v2i64);
14587
14588 v16i8 __builtin_msa_nlzc_b (v16i8);
14589 v8i16 __builtin_msa_nlzc_h (v8i16);
14590 v4i32 __builtin_msa_nlzc_w (v4i32);
14591 v2i64 __builtin_msa_nlzc_d (v2i64);
14592
14593 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
14594
14595 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
14596
14597 v16u8 __builtin_msa_or_v (v16u8, v16u8);
14598
14599 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
14600
14601 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
14602 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
14603 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
14604 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
14605
14606 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
14607 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
14608 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
14609 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
14610
14611 v16i8 __builtin_msa_pcnt_b (v16i8);
14612 v8i16 __builtin_msa_pcnt_h (v8i16);
14613 v4i32 __builtin_msa_pcnt_w (v4i32);
14614 v2i64 __builtin_msa_pcnt_d (v2i64);
14615
14616 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
14617 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
14618 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
14619 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
14620
14621 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
14622 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
14623 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
14624 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
14625
14626 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
14627 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
14628 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
14629
14630 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
14631 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
14632 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
14633 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
14634
14635 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
14636 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
14637 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
14638 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
14639
14640 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
14641 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
14642 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
14643 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
14644
14645 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
14646 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
14647 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
14648 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
14649
14650 v16i8 __builtin_msa_splat_b (v16i8, i32);
14651 v8i16 __builtin_msa_splat_h (v8i16, i32);
14652 v4i32 __builtin_msa_splat_w (v4i32, i32);
14653 v2i64 __builtin_msa_splat_d (v2i64, i32);
14654
14655 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
14656 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
14657 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
14658 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
14659
14660 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
14661 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
14662 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
14663 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
14664
14665 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
14666 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
14667 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
14668 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
14669
14670 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
14671 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
14672 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
14673 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
14674
14675 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
14676 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
14677 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
14678 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
14679
14680 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
14681 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
14682 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
14683 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
14684
14685 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
14686 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
14687 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
14688 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
14689
14690 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
14691 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
14692 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
14693 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
14694
14695 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
14696 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
14697 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
14698 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
14699
14700 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
14701 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
14702 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
14703 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
14704
14705 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
14706 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
14707 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
14708 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
14709
14710 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
14711 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
14712 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
14713 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
14714
14715 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
14716 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
14717 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
14718 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
14719
14720 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
14721 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
14722 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
14723 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
14724
14725 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
14726 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
14727 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
14728 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
14729
14730 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
14731 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
14732 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
14733 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
14734
14735 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
14736 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
14737 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
14738 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
14739
14740 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
14741
14742 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
14743 @end smallexample
14744
14745 @node Other MIPS Built-in Functions
14746 @subsection Other MIPS Built-in Functions
14747
14748 GCC provides other MIPS-specific built-in functions:
14749
14750 @table @code
14751 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
14752 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
14753 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
14754 when this function is available.
14755
14756 @item unsigned int __builtin_mips_get_fcsr (void)
14757 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
14758 Get and set the contents of the floating-point control and status register
14759 (FPU control register 31). These functions are only available in hard-float
14760 code but can be called in both MIPS16 and non-MIPS16 contexts.
14761
14762 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
14763 register except the condition codes, which GCC assumes are preserved.
14764 @end table
14765
14766 @node MSP430 Built-in Functions
14767 @subsection MSP430 Built-in Functions
14768
14769 GCC provides a couple of special builtin functions to aid in the
14770 writing of interrupt handlers in C.
14771
14772 @table @code
14773 @item __bic_SR_register_on_exit (int @var{mask})
14774 This clears the indicated bits in the saved copy of the status register
14775 currently residing on the stack. This only works inside interrupt
14776 handlers and the changes to the status register will only take affect
14777 once the handler returns.
14778
14779 @item __bis_SR_register_on_exit (int @var{mask})
14780 This sets the indicated bits in the saved copy of the status register
14781 currently residing on the stack. This only works inside interrupt
14782 handlers and the changes to the status register will only take affect
14783 once the handler returns.
14784
14785 @item __delay_cycles (long long @var{cycles})
14786 This inserts an instruction sequence that takes exactly @var{cycles}
14787 cycles (between 0 and about 17E9) to complete. The inserted sequence
14788 may use jumps, loops, or no-ops, and does not interfere with any other
14789 instructions. Note that @var{cycles} must be a compile-time constant
14790 integer - that is, you must pass a number, not a variable that may be
14791 optimized to a constant later. The number of cycles delayed by this
14792 builtin is exact.
14793 @end table
14794
14795 @node NDS32 Built-in Functions
14796 @subsection NDS32 Built-in Functions
14797
14798 These built-in functions are available for the NDS32 target:
14799
14800 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
14801 Insert an ISYNC instruction into the instruction stream where
14802 @var{addr} is an instruction address for serialization.
14803 @end deftypefn
14804
14805 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
14806 Insert an ISB instruction into the instruction stream.
14807 @end deftypefn
14808
14809 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
14810 Return the content of a system register which is mapped by @var{sr}.
14811 @end deftypefn
14812
14813 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
14814 Return the content of a user space register which is mapped by @var{usr}.
14815 @end deftypefn
14816
14817 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
14818 Move the @var{value} to a system register which is mapped by @var{sr}.
14819 @end deftypefn
14820
14821 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
14822 Move the @var{value} to a user space register which is mapped by @var{usr}.
14823 @end deftypefn
14824
14825 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
14826 Enable global interrupt.
14827 @end deftypefn
14828
14829 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
14830 Disable global interrupt.
14831 @end deftypefn
14832
14833 @node picoChip Built-in Functions
14834 @subsection picoChip Built-in Functions
14835
14836 GCC provides an interface to selected machine instructions from the
14837 picoChip instruction set.
14838
14839 @table @code
14840 @item int __builtin_sbc (int @var{value})
14841 Sign bit count. Return the number of consecutive bits in @var{value}
14842 that have the same value as the sign bit. The result is the number of
14843 leading sign bits minus one, giving the number of redundant sign bits in
14844 @var{value}.
14845
14846 @item int __builtin_byteswap (int @var{value})
14847 Byte swap. Return the result of swapping the upper and lower bytes of
14848 @var{value}.
14849
14850 @item int __builtin_brev (int @var{value})
14851 Bit reversal. Return the result of reversing the bits in
14852 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
14853 and so on.
14854
14855 @item int __builtin_adds (int @var{x}, int @var{y})
14856 Saturating addition. Return the result of adding @var{x} and @var{y},
14857 storing the value 32767 if the result overflows.
14858
14859 @item int __builtin_subs (int @var{x}, int @var{y})
14860 Saturating subtraction. Return the result of subtracting @var{y} from
14861 @var{x}, storing the value @minus{}32768 if the result overflows.
14862
14863 @item void __builtin_halt (void)
14864 Halt. The processor stops execution. This built-in is useful for
14865 implementing assertions.
14866
14867 @end table
14868
14869 @node PowerPC Built-in Functions
14870 @subsection PowerPC Built-in Functions
14871
14872 The following built-in functions are always available and can be used to
14873 check the PowerPC target platform type:
14874
14875 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
14876 This function is a @code{nop} on the PowerPC platform and is included solely
14877 to maintain API compatibility with the x86 builtins.
14878 @end deftypefn
14879
14880 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
14881 This function returns a value of @code{1} if the run-time CPU is of type
14882 @var{cpuname} and returns @code{0} otherwise. The following CPU names can be
14883 detected:
14884
14885 @table @samp
14886 @item power9
14887 IBM POWER9 Server CPU.
14888 @item power8
14889 IBM POWER8 Server CPU.
14890 @item power7
14891 IBM POWER7 Server CPU.
14892 @item power6x
14893 IBM POWER6 Server CPU (RAW mode).
14894 @item power6
14895 IBM POWER6 Server CPU (Architected mode).
14896 @item power5+
14897 IBM POWER5+ Server CPU.
14898 @item power5
14899 IBM POWER5 Server CPU.
14900 @item ppc970
14901 IBM 970 Server CPU (ie, Apple G5).
14902 @item power4
14903 IBM POWER4 Server CPU.
14904 @item ppca2
14905 IBM A2 64-bit Embedded CPU
14906 @item ppc476
14907 IBM PowerPC 476FP 32-bit Embedded CPU.
14908 @item ppc464
14909 IBM PowerPC 464 32-bit Embedded CPU.
14910 @item ppc440
14911 PowerPC 440 32-bit Embedded CPU.
14912 @item ppc405
14913 PowerPC 405 32-bit Embedded CPU.
14914 @item ppc-cell-be
14915 IBM PowerPC Cell Broadband Engine Architecture CPU.
14916 @end table
14917
14918 Here is an example:
14919 @smallexample
14920 if (__builtin_cpu_is ("power8"))
14921 @{
14922 do_power8 (); // POWER8 specific implementation.
14923 @}
14924 else
14925 @{
14926 do_generic (); // Generic implementation.
14927 @}
14928 @end smallexample
14929 @end deftypefn
14930
14931 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
14932 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
14933 feature @var{feature} and returns @code{0} otherwise. The following features can be
14934 detected:
14935
14936 @table @samp
14937 @item 4xxmac
14938 4xx CPU has a Multiply Accumulator.
14939 @item altivec
14940 CPU has a SIMD/Vector Unit.
14941 @item arch_2_05
14942 CPU supports ISA 2.05 (eg, POWER6)
14943 @item arch_2_06
14944 CPU supports ISA 2.06 (eg, POWER7)
14945 @item arch_2_07
14946 CPU supports ISA 2.07 (eg, POWER8)
14947 @item arch_3_00
14948 CPU supports ISA 3.0 (eg, POWER9)
14949 @item archpmu
14950 CPU supports the set of compatible performance monitoring events.
14951 @item booke
14952 CPU supports the Embedded ISA category.
14953 @item cellbe
14954 CPU has a CELL broadband engine.
14955 @item dfp
14956 CPU has a decimal floating point unit.
14957 @item dscr
14958 CPU supports the data stream control register.
14959 @item ebb
14960 CPU supports event base branching.
14961 @item efpdouble
14962 CPU has a SPE double precision floating point unit.
14963 @item efpsingle
14964 CPU has a SPE single precision floating point unit.
14965 @item fpu
14966 CPU has a floating point unit.
14967 @item htm
14968 CPU has hardware transaction memory instructions.
14969 @item htm-nosc
14970 Kernel aborts hardware transactions when a syscall is made.
14971 @item ic_snoop
14972 CPU supports icache snooping capabilities.
14973 @item ieee128
14974 CPU supports 128-bit IEEE binary floating point instructions.
14975 @item isel
14976 CPU supports the integer select instruction.
14977 @item mmu
14978 CPU has a memory management unit.
14979 @item notb
14980 CPU does not have a timebase (eg, 601 and 403gx).
14981 @item pa6t
14982 CPU supports the PA Semi 6T CORE ISA.
14983 @item power4
14984 CPU supports ISA 2.00 (eg, POWER4)
14985 @item power5
14986 CPU supports ISA 2.02 (eg, POWER5)
14987 @item power5+
14988 CPU supports ISA 2.03 (eg, POWER5+)
14989 @item power6x
14990 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
14991 @item ppc32
14992 CPU supports 32-bit mode execution.
14993 @item ppc601
14994 CPU supports the old POWER ISA (eg, 601)
14995 @item ppc64
14996 CPU supports 64-bit mode execution.
14997 @item ppcle
14998 CPU supports a little-endian mode that uses address swizzling.
14999 @item smt
15000 CPU support simultaneous multi-threading.
15001 @item spe
15002 CPU has a signal processing extension unit.
15003 @item tar
15004 CPU supports the target address register.
15005 @item true_le
15006 CPU supports true little-endian mode.
15007 @item ucache
15008 CPU has unified I/D cache.
15009 @item vcrypto
15010 CPU supports the vector cryptography instructions.
15011 @item vsx
15012 CPU supports the vector-scalar extension.
15013 @end table
15014
15015 Here is an example:
15016 @smallexample
15017 if (__builtin_cpu_supports ("fpu"))
15018 @{
15019 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
15020 @}
15021 else
15022 @{
15023 dst = __fadd (src1, src2); // Software FP addition function.
15024 @}
15025 @end smallexample
15026 @end deftypefn
15027
15028 These built-in functions are available for the PowerPC family of
15029 processors:
15030 @smallexample
15031 float __builtin_recipdivf (float, float);
15032 float __builtin_rsqrtf (float);
15033 double __builtin_recipdiv (double, double);
15034 double __builtin_rsqrt (double);
15035 uint64_t __builtin_ppc_get_timebase ();
15036 unsigned long __builtin_ppc_mftb ();
15037 double __builtin_unpack_longdouble (long double, int);
15038 long double __builtin_pack_longdouble (double, double);
15039 @end smallexample
15040
15041 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
15042 @code{__builtin_rsqrtf} functions generate multiple instructions to
15043 implement the reciprocal sqrt functionality using reciprocal sqrt
15044 estimate instructions.
15045
15046 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
15047 functions generate multiple instructions to implement division using
15048 the reciprocal estimate instructions.
15049
15050 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
15051 functions generate instructions to read the Time Base Register. The
15052 @code{__builtin_ppc_get_timebase} function may generate multiple
15053 instructions and always returns the 64 bits of the Time Base Register.
15054 The @code{__builtin_ppc_mftb} function always generates one instruction and
15055 returns the Time Base Register value as an unsigned long, throwing away
15056 the most significant word on 32-bit environments.
15057
15058 Additional built-in functions are available for the 64-bit PowerPC
15059 family of processors, for efficient use of 128-bit floating point
15060 (@code{__float128}) values.
15061
15062 The following floating-point built-in functions are available with
15063 @code{-mfloat128} and Altivec support. All of them implement the
15064 function that is part of the name.
15065
15066 @smallexample
15067 __float128 __builtin_fabsq (__float128)
15068 __float128 __builtin_copysignq (__float128, __float128)
15069 @end smallexample
15070
15071 The following built-in functions are available with @code{-mfloat128}
15072 and Altivec support.
15073
15074 @table @code
15075 @item __float128 __builtin_infq (void)
15076 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
15077 @findex __builtin_infq
15078
15079 @item __float128 __builtin_huge_valq (void)
15080 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
15081 @findex __builtin_huge_valq
15082
15083 @item __float128 __builtin_nanq (void)
15084 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
15085 @findex __builtin_nanq
15086
15087 @item __float128 __builtin_nansq (void)
15088 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
15089 @findex __builtin_nansq
15090 @end table
15091
15092 The following built-in functions are available for the PowerPC family
15093 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
15094 or @option{-mpopcntd}):
15095 @smallexample
15096 long __builtin_bpermd (long, long);
15097 int __builtin_divwe (int, int);
15098 int __builtin_divweo (int, int);
15099 unsigned int __builtin_divweu (unsigned int, unsigned int);
15100 unsigned int __builtin_divweuo (unsigned int, unsigned int);
15101 long __builtin_divde (long, long);
15102 long __builtin_divdeo (long, long);
15103 unsigned long __builtin_divdeu (unsigned long, unsigned long);
15104 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
15105 unsigned int cdtbcd (unsigned int);
15106 unsigned int cbcdtd (unsigned int);
15107 unsigned int addg6s (unsigned int, unsigned int);
15108 @end smallexample
15109
15110 The @code{__builtin_divde}, @code{__builtin_divdeo},
15111 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
15112 64-bit environment support ISA 2.06 or later.
15113
15114 The following built-in functions are available for the PowerPC family
15115 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
15116 @smallexample
15117 long long __builtin_darn (void);
15118 long long __builtin_darn_raw (void);
15119 int __builtin_darn_32 (void);
15120
15121 unsigned int scalar_extract_exp (double source);
15122 unsigned long long int scalar_extract_sig (double source);
15123
15124 double
15125 scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
15126
15127 int scalar_cmp_exp_gt (double arg1, double arg2);
15128 int scalar_cmp_exp_lt (double arg1, double arg2);
15129 int scalar_cmp_exp_eq (double arg1, double arg2);
15130 int scalar_cmp_exp_unordered (double arg1, double arg2);
15131
15132 int scalar_test_data_class (float source, unsigned int condition);
15133 int scalar_test_data_class (double source, unsigned int condition);
15134
15135 int scalar_test_neg (float source);
15136 int scalar_test_neg (double source);
15137
15138 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
15139 int __builtin_byte_in_range (unsigned char u, unsigned int range);
15140 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
15141
15142 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
15143 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
15144 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
15145 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
15146
15147 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
15148 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
15149 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
15150 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
15151
15152 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
15153 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
15154 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
15155 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
15156
15157 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
15158 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
15159 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
15160 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
15161 @end smallexample
15162
15163 The @code{__builtin_darn} and @code{__builtin_darn_raw}
15164 functions require a
15165 64-bit environment supporting ISA 3.0 or later.
15166 The @code{__builtin_darn} function provides a 64-bit conditioned
15167 random number. The @code{__builtin_darn_raw} function provides a
15168 64-bit raw random number. The @code{__builtin_darn_32} function
15169 provides a 32-bit random number.
15170
15171 The @code{scalar_extract_sig} and @code{scalar_insert_exp}
15172 functions require a 64-bit environment supporting ISA 3.0 or later.
15173 The @code{scalar_extract_exp} and @code{vec_extract_sig} built-in
15174 functions return the significand and exponent respectively of their
15175 @code{source} arguments. The
15176 @code{scalar_insert_exp} built-in function returns a double-precision
15177 floating point value that is constructed by assembling the values of its
15178 @code{significand} and @code{exponent} arguments. The sign of the
15179 result is copied from the most significant bit of the
15180 @code{significand} argument. The significand and exponent components
15181 of the result are composed of the least significant 11 bits of the
15182 @code{significand} argument and the least significant 52 bits of the
15183 @code{exponent} argument.
15184
15185 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
15186 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
15187 functions return a non-zero value if @code{arg1} is greater than, less
15188 than, equal to, or not comparable to @code{arg2} respectively. The
15189 arguments are not comparable if one or the other equals NaN (not a
15190 number).
15191
15192 The @code{scalar_test_data_class} built-in functions return a non-zero
15193 value if any of the condition tests enabled by the value of the
15194 @code{condition} variable are true. The
15195 @code{condition} argument must be an unsigned integer with value not
15196 exceeding 127. The
15197 @code{condition} argument is encoded as a bitmask with each bit
15198 enabling the testing of a different condition, as characterized by the
15199 following:
15200 @smallexample
15201 0x40 Test for NaN
15202 0x20 Test for +Infinity
15203 0x10 Test for -Infinity
15204 0x08 Test for +Zero
15205 0x04 Test for -Zero
15206 0x02 Test for +Denormal
15207 0x01 Test for -Denormal
15208 @end smallexample
15209
15210 If all of the enabled test conditions are false, the return value is 0.
15211
15212 The @code{scalar_test_neg} built-in functions return a non-zero value
15213 if their @code{source} argument holds a negative value.
15214
15215 The @code{__builtin_byte_in_set} function requires a
15216 64-bit environment supporting ISA 3.0 or later. This function returns
15217 a non-zero value if and only if its @code{u} argument exactly equals one of
15218 the eight bytes contained within its 64-bit @code{set} argument.
15219
15220 The @code{__builtin_byte_in_range} and
15221 @code{__builtin_byte_in_either_range} require an environment
15222 supporting ISA 3.0 or later. For these two functions, the
15223 @code{range} argument is encoded as 4 bytes, organized as
15224 @code{hi_1:lo_1:hi_2:lo_2}.
15225 The @code{__builtin_byte_in_range} function returns a
15226 non-zero value if and only if its @code{u} argument is within the
15227 range bounded between @code{lo_2} and @code{hi_2} inclusive.
15228 The @code{__builtin_byte_in_either_range} function returns non-zero if
15229 and only if its @code{u} argument is within either the range bounded
15230 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
15231 between @code{lo_2} and @code{hi_2} inclusive.
15232
15233 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
15234 if and only if the number of signficant digits of its @code{value} argument
15235 is less than its @code{comparison} argument. The
15236 @code{__builtin_dfp_dtstsfi_lt_dd} and
15237 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
15238 require that the type of the @code{value} argument be
15239 @code{__Decimal64} and @code{__Decimal128} respectively.
15240
15241 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
15242 if and only if the number of signficant digits of its @code{value} argument
15243 is greater than its @code{comparison} argument. The
15244 @code{__builtin_dfp_dtstsfi_gt_dd} and
15245 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
15246 require that the type of the @code{value} argument be
15247 @code{__Decimal64} and @code{__Decimal128} respectively.
15248
15249 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
15250 if and only if the number of signficant digits of its @code{value} argument
15251 equals its @code{comparison} argument. The
15252 @code{__builtin_dfp_dtstsfi_eq_dd} and
15253 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
15254 require that the type of the @code{value} argument be
15255 @code{__Decimal64} and @code{__Decimal128} respectively.
15256
15257 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
15258 if and only if its @code{value} argument has an undefined number of
15259 significant digits, such as when @code{value} is an encoding of @code{NaN}.
15260 The @code{__builtin_dfp_dtstsfi_ov_dd} and
15261 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
15262 require that the type of the @code{value} argument be
15263 @code{__Decimal64} and @code{__Decimal128} respectively.
15264
15265 The following built-in functions are also available for the PowerPC family
15266 of processors, starting with ISA 3.0 or later
15267 (@option{-mcpu=power9}). These string functions are described
15268 separately in order to group the descriptions closer to the function
15269 prototypes:
15270 @smallexample
15271 int vec_all_nez (vector signed char, vector signed char);
15272 int vec_all_nez (vector unsigned char, vector unsigned char);
15273 int vec_all_nez (vector signed short, vector signed short);
15274 int vec_all_nez (vector unsigned short, vector unsigned short);
15275 int vec_all_nez (vector signed int, vector signed int);
15276 int vec_all_nez (vector unsigned int, vector unsigned int);
15277
15278 int vec_any_eqz (vector signed char, vector signed char);
15279 int vec_any_eqz (vector unsigned char, vector unsigned char);
15280 int vec_any_eqz (vector signed short, vector signed short);
15281 int vec_any_eqz (vector unsigned short, vector unsigned short);
15282 int vec_any_eqz (vector signed int, vector signed int);
15283 int vec_any_eqz (vector unsigned int, vector unsigned int);
15284
15285 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
15286 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
15287 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
15288 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
15289 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
15290 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
15291
15292 signed int vec_cntlz_lsbb (vector signed char);
15293 signed int vec_cntlz_lsbb (vector unsigned char);
15294
15295 signed int vec_cnttz_lsbb (vector signed char);
15296 signed int vec_cnttz_lsbb (vector unsigned char);
15297
15298 vector signed char vec_xl_len (signed char *addr, size_t len);
15299 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
15300 vector signed int vec_xl_len (signed int *addr, size_t len);
15301 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
15302 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
15303 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
15304 vector signed long long vec_xl_len (signed long long *addr, size_t len);
15305 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
15306 vector signed short vec_xl_len (signed short *addr, size_t len);
15307 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
15308 vector double vec_xl_len (double *addr, size_t len);
15309 vector float vec_xl_len (float *addr, size_t len);
15310
15311 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
15312 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
15313 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
15314 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
15315 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
15316 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
15317 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
15318 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
15319 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
15320 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
15321 void vec_xst_len (vector double data, double *addr, size_t len);
15322 void vec_xst_len (vector float data, float *addr, size_t len);
15323
15324 signed char vec_xlx (unsigned int index, vector signed char data);
15325 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
15326 signed short vec_xlx (unsigned int index, vector signed short data);
15327 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
15328 signed int vec_xlx (unsigned int index, vector signed int data);
15329 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
15330 float vec_xlx (unsigned int index, vector float data);
15331
15332 signed char vec_xrx (unsigned int index, vector signed char data);
15333 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
15334 signed short vec_xrx (unsigned int index, vector signed short data);
15335 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
15336 signed int vec_xrx (unsigned int index, vector signed int data);
15337 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
15338 float vec_xrx (unsigned int index, vector float data);
15339 @end smallexample
15340
15341 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
15342 perform pairwise comparisons between the elements at the same
15343 positions within their two vector arguments.
15344 The @code{vec_all_nez} function returns a
15345 non-zero value if and only if all pairwise comparisons are not
15346 equal and no element of either vector argument contains a zero.
15347 The @code{vec_any_eqz} function returns a
15348 non-zero value if and only if at least one pairwise comparison is equal
15349 or if at least one element of either vector argument contains a zero.
15350 The @code{vec_cmpnez} function returns a vector of the same type as
15351 its two arguments, within which each element consists of all ones to
15352 denote that either the corresponding elements of the incoming arguments are
15353 not equal or that at least one of the corresponding elements contains
15354 zero. Otherwise, the element of the returned vector contains all zeros.
15355
15356 The @code{vec_cntlz_lsbb} function returns the count of the number of
15357 consecutive leading byte elements (starting from position 0 within the
15358 supplied vector argument) for which the least-significant bit
15359 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
15360 the number of consecutive trailing byte elements (starting from
15361 position 15 and counting backwards within the supplied vector
15362 argument) for which the least-significant bit equals zero.
15363
15364 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
15365 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
15366 function loads a variable length vector from memory. The
15367 @code{vec_xst_len} function stores a variable length vector to memory.
15368 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
15369 @code{addr} argument represents the memory address to or from which
15370 data will be transferred, and the
15371 @code{len} argument represents the number of bytes to be
15372 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
15373 If this expression's value is not a multiple of the vector element's
15374 size, the behavior of this function is undefined.
15375 In the case that the underlying computer is configured to run in
15376 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
15377 the corresponding vector. In little-endian mode, the data transfer
15378 moves bytes @code{(16 - len)} to @code{15} of the corresponding
15379 vector. For the load function, any bytes of the result vector that
15380 are not loaded from memory are set to zero.
15381 The value of the @code{addr} argument need not be aligned on a
15382 multiple of the vector's element size.
15383
15384 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
15385 element selected by the @code{index} argument from the vector
15386 represented by the @code{data} argument. The @code{index} argument
15387 always specifies a byte offset, regardless of the size of the vector
15388 element. With @code{vec_xlx}, @code{index} is the offset of the first
15389 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
15390 represents the last byte of the element to be extracted, measured
15391 from the right end of the vector. In other words, the last byte of
15392 the element to be extracted is found at position @code{(15 - index)}.
15393 There is no requirement that @code{index} be a multiple of the vector
15394 element size. However, if the size of the vector element added to
15395 @code{index} is greater than 15, the content of the returned value is
15396 undefined.
15397
15398 The following built-in functions are available for the PowerPC family
15399 of processors when hardware decimal floating point
15400 (@option{-mhard-dfp}) is available:
15401 @smallexample
15402 _Decimal64 __builtin_dxex (_Decimal64);
15403 _Decimal128 __builtin_dxexq (_Decimal128);
15404 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15405 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15406 _Decimal64 __builtin_denbcd (int, _Decimal64);
15407 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15408 _Decimal64 __builtin_diex (_Decimal64, _Decimal64);
15409 _Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
15410 _Decimal64 __builtin_dscli (_Decimal64, int);
15411 _Decimal128 __builtin_dscliq (_Decimal128, int);
15412 _Decimal64 __builtin_dscri (_Decimal64, int);
15413 _Decimal128 __builtin_dscriq (_Decimal128, int);
15414 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15415 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15416 @end smallexample
15417
15418 The following built-in functions are available for the PowerPC family
15419 of processors when the Vector Scalar (vsx) instruction set is
15420 available:
15421 @smallexample
15422 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
15423 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
15424 unsigned long long);
15425 @end smallexample
15426
15427 @node PowerPC AltiVec/VSX Built-in Functions
15428 @subsection PowerPC AltiVec Built-in Functions
15429
15430 GCC provides an interface for the PowerPC family of processors to access
15431 the AltiVec operations described in Motorola's AltiVec Programming
15432 Interface Manual. The interface is made available by including
15433 @code{<altivec.h>} and using @option{-maltivec} and
15434 @option{-mabi=altivec}. The interface supports the following vector
15435 types.
15436
15437 @smallexample
15438 vector unsigned char
15439 vector signed char
15440 vector bool char
15441
15442 vector unsigned short
15443 vector signed short
15444 vector bool short
15445 vector pixel
15446
15447 vector unsigned int
15448 vector signed int
15449 vector bool int
15450 vector float
15451 @end smallexample
15452
15453 If @option{-mvsx} is used the following additional vector types are
15454 implemented.
15455
15456 @smallexample
15457 vector unsigned long
15458 vector signed long
15459 vector double
15460 @end smallexample
15461
15462 The long types are only implemented for 64-bit code generation, and
15463 the long type is only used in the floating point/integer conversion
15464 instructions.
15465
15466 GCC's implementation of the high-level language interface available from
15467 C and C++ code differs from Motorola's documentation in several ways.
15468
15469 @itemize @bullet
15470
15471 @item
15472 A vector constant is a list of constant expressions within curly braces.
15473
15474 @item
15475 A vector initializer requires no cast if the vector constant is of the
15476 same type as the variable it is initializing.
15477
15478 @item
15479 If @code{signed} or @code{unsigned} is omitted, the signedness of the
15480 vector type is the default signedness of the base type. The default
15481 varies depending on the operating system, so a portable program should
15482 always specify the signedness.
15483
15484 @item
15485 Compiling with @option{-maltivec} adds keywords @code{__vector},
15486 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
15487 @code{bool}. When compiling ISO C, the context-sensitive substitution
15488 of the keywords @code{vector}, @code{pixel} and @code{bool} is
15489 disabled. To use them, you must include @code{<altivec.h>} instead.
15490
15491 @item
15492 GCC allows using a @code{typedef} name as the type specifier for a
15493 vector type.
15494
15495 @item
15496 For C, overloaded functions are implemented with macros so the following
15497 does not work:
15498
15499 @smallexample
15500 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
15501 @end smallexample
15502
15503 @noindent
15504 Since @code{vec_add} is a macro, the vector constant in the example
15505 is treated as four separate arguments. Wrap the entire argument in
15506 parentheses for this to work.
15507 @end itemize
15508
15509 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
15510 Internally, GCC uses built-in functions to achieve the functionality in
15511 the aforementioned header file, but they are not supported and are
15512 subject to change without notice.
15513
15514 The following interfaces are supported for the generic and specific
15515 AltiVec operations and the AltiVec predicates. In cases where there
15516 is a direct mapping between generic and specific operations, only the
15517 generic names are shown here, although the specific operations can also
15518 be used.
15519
15520 Arguments that are documented as @code{const int} require literal
15521 integral values within the range required for that operation.
15522
15523 @smallexample
15524 vector signed char vec_abs (vector signed char);
15525 vector signed short vec_abs (vector signed short);
15526 vector signed int vec_abs (vector signed int);
15527 vector float vec_abs (vector float);
15528
15529 vector signed char vec_abss (vector signed char);
15530 vector signed short vec_abss (vector signed short);
15531 vector signed int vec_abss (vector signed int);
15532
15533 vector signed char vec_add (vector bool char, vector signed char);
15534 vector signed char vec_add (vector signed char, vector bool char);
15535 vector signed char vec_add (vector signed char, vector signed char);
15536 vector unsigned char vec_add (vector bool char, vector unsigned char);
15537 vector unsigned char vec_add (vector unsigned char, vector bool char);
15538 vector unsigned char vec_add (vector unsigned char,
15539 vector unsigned char);
15540 vector signed short vec_add (vector bool short, vector signed short);
15541 vector signed short vec_add (vector signed short, vector bool short);
15542 vector signed short vec_add (vector signed short, vector signed short);
15543 vector unsigned short vec_add (vector bool short,
15544 vector unsigned short);
15545 vector unsigned short vec_add (vector unsigned short,
15546 vector bool short);
15547 vector unsigned short vec_add (vector unsigned short,
15548 vector unsigned short);
15549 vector signed int vec_add (vector bool int, vector signed int);
15550 vector signed int vec_add (vector signed int, vector bool int);
15551 vector signed int vec_add (vector signed int, vector signed int);
15552 vector unsigned int vec_add (vector bool int, vector unsigned int);
15553 vector unsigned int vec_add (vector unsigned int, vector bool int);
15554 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
15555 vector float vec_add (vector float, vector float);
15556
15557 vector float vec_vaddfp (vector float, vector float);
15558
15559 vector signed int vec_vadduwm (vector bool int, vector signed int);
15560 vector signed int vec_vadduwm (vector signed int, vector bool int);
15561 vector signed int vec_vadduwm (vector signed int, vector signed int);
15562 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
15563 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
15564 vector unsigned int vec_vadduwm (vector unsigned int,
15565 vector unsigned int);
15566
15567 vector signed short vec_vadduhm (vector bool short,
15568 vector signed short);
15569 vector signed short vec_vadduhm (vector signed short,
15570 vector bool short);
15571 vector signed short vec_vadduhm (vector signed short,
15572 vector signed short);
15573 vector unsigned short vec_vadduhm (vector bool short,
15574 vector unsigned short);
15575 vector unsigned short vec_vadduhm (vector unsigned short,
15576 vector bool short);
15577 vector unsigned short vec_vadduhm (vector unsigned short,
15578 vector unsigned short);
15579
15580 vector signed char vec_vaddubm (vector bool char, vector signed char);
15581 vector signed char vec_vaddubm (vector signed char, vector bool char);
15582 vector signed char vec_vaddubm (vector signed char, vector signed char);
15583 vector unsigned char vec_vaddubm (vector bool char,
15584 vector unsigned char);
15585 vector unsigned char vec_vaddubm (vector unsigned char,
15586 vector bool char);
15587 vector unsigned char vec_vaddubm (vector unsigned char,
15588 vector unsigned char);
15589
15590 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
15591
15592 vector unsigned char vec_adds (vector bool char, vector unsigned char);
15593 vector unsigned char vec_adds (vector unsigned char, vector bool char);
15594 vector unsigned char vec_adds (vector unsigned char,
15595 vector unsigned char);
15596 vector signed char vec_adds (vector bool char, vector signed char);
15597 vector signed char vec_adds (vector signed char, vector bool char);
15598 vector signed char vec_adds (vector signed char, vector signed char);
15599 vector unsigned short vec_adds (vector bool short,
15600 vector unsigned short);
15601 vector unsigned short vec_adds (vector unsigned short,
15602 vector bool short);
15603 vector unsigned short vec_adds (vector unsigned short,
15604 vector unsigned short);
15605 vector signed short vec_adds (vector bool short, vector signed short);
15606 vector signed short vec_adds (vector signed short, vector bool short);
15607 vector signed short vec_adds (vector signed short, vector signed short);
15608 vector unsigned int vec_adds (vector bool int, vector unsigned int);
15609 vector unsigned int vec_adds (vector unsigned int, vector bool int);
15610 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
15611 vector signed int vec_adds (vector bool int, vector signed int);
15612 vector signed int vec_adds (vector signed int, vector bool int);
15613 vector signed int vec_adds (vector signed int, vector signed int);
15614
15615 vector signed int vec_vaddsws (vector bool int, vector signed int);
15616 vector signed int vec_vaddsws (vector signed int, vector bool int);
15617 vector signed int vec_vaddsws (vector signed int, vector signed int);
15618
15619 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
15620 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
15621 vector unsigned int vec_vadduws (vector unsigned int,
15622 vector unsigned int);
15623
15624 vector signed short vec_vaddshs (vector bool short,
15625 vector signed short);
15626 vector signed short vec_vaddshs (vector signed short,
15627 vector bool short);
15628 vector signed short vec_vaddshs (vector signed short,
15629 vector signed short);
15630
15631 vector unsigned short vec_vadduhs (vector bool short,
15632 vector unsigned short);
15633 vector unsigned short vec_vadduhs (vector unsigned short,
15634 vector bool short);
15635 vector unsigned short vec_vadduhs (vector unsigned short,
15636 vector unsigned short);
15637
15638 vector signed char vec_vaddsbs (vector bool char, vector signed char);
15639 vector signed char vec_vaddsbs (vector signed char, vector bool char);
15640 vector signed char vec_vaddsbs (vector signed char, vector signed char);
15641
15642 vector unsigned char vec_vaddubs (vector bool char,
15643 vector unsigned char);
15644 vector unsigned char vec_vaddubs (vector unsigned char,
15645 vector bool char);
15646 vector unsigned char vec_vaddubs (vector unsigned char,
15647 vector unsigned char);
15648
15649 vector float vec_and (vector float, vector float);
15650 vector float vec_and (vector float, vector bool int);
15651 vector float vec_and (vector bool int, vector float);
15652 vector bool int vec_and (vector bool int, vector bool int);
15653 vector signed int vec_and (vector bool int, vector signed int);
15654 vector signed int vec_and (vector signed int, vector bool int);
15655 vector signed int vec_and (vector signed int, vector signed int);
15656 vector unsigned int vec_and (vector bool int, vector unsigned int);
15657 vector unsigned int vec_and (vector unsigned int, vector bool int);
15658 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
15659 vector bool short vec_and (vector bool short, vector bool short);
15660 vector signed short vec_and (vector bool short, vector signed short);
15661 vector signed short vec_and (vector signed short, vector bool short);
15662 vector signed short vec_and (vector signed short, vector signed short);
15663 vector unsigned short vec_and (vector bool short,
15664 vector unsigned short);
15665 vector unsigned short vec_and (vector unsigned short,
15666 vector bool short);
15667 vector unsigned short vec_and (vector unsigned short,
15668 vector unsigned short);
15669 vector signed char vec_and (vector bool char, vector signed char);
15670 vector bool char vec_and (vector bool char, vector bool char);
15671 vector signed char vec_and (vector signed char, vector bool char);
15672 vector signed char vec_and (vector signed char, vector signed char);
15673 vector unsigned char vec_and (vector bool char, vector unsigned char);
15674 vector unsigned char vec_and (vector unsigned char, vector bool char);
15675 vector unsigned char vec_and (vector unsigned char,
15676 vector unsigned char);
15677
15678 vector float vec_andc (vector float, vector float);
15679 vector float vec_andc (vector float, vector bool int);
15680 vector float vec_andc (vector bool int, vector float);
15681 vector bool int vec_andc (vector bool int, vector bool int);
15682 vector signed int vec_andc (vector bool int, vector signed int);
15683 vector signed int vec_andc (vector signed int, vector bool int);
15684 vector signed int vec_andc (vector signed int, vector signed int);
15685 vector unsigned int vec_andc (vector bool int, vector unsigned int);
15686 vector unsigned int vec_andc (vector unsigned int, vector bool int);
15687 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
15688 vector bool short vec_andc (vector bool short, vector bool short);
15689 vector signed short vec_andc (vector bool short, vector signed short);
15690 vector signed short vec_andc (vector signed short, vector bool short);
15691 vector signed short vec_andc (vector signed short, vector signed short);
15692 vector unsigned short vec_andc (vector bool short,
15693 vector unsigned short);
15694 vector unsigned short vec_andc (vector unsigned short,
15695 vector bool short);
15696 vector unsigned short vec_andc (vector unsigned short,
15697 vector unsigned short);
15698 vector signed char vec_andc (vector bool char, vector signed char);
15699 vector bool char vec_andc (vector bool char, vector bool char);
15700 vector signed char vec_andc (vector signed char, vector bool char);
15701 vector signed char vec_andc (vector signed char, vector signed char);
15702 vector unsigned char vec_andc (vector bool char, vector unsigned char);
15703 vector unsigned char vec_andc (vector unsigned char, vector bool char);
15704 vector unsigned char vec_andc (vector unsigned char,
15705 vector unsigned char);
15706
15707 vector unsigned char vec_avg (vector unsigned char,
15708 vector unsigned char);
15709 vector signed char vec_avg (vector signed char, vector signed char);
15710 vector unsigned short vec_avg (vector unsigned short,
15711 vector unsigned short);
15712 vector signed short vec_avg (vector signed short, vector signed short);
15713 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
15714 vector signed int vec_avg (vector signed int, vector signed int);
15715
15716 vector signed int vec_vavgsw (vector signed int, vector signed int);
15717
15718 vector unsigned int vec_vavguw (vector unsigned int,
15719 vector unsigned int);
15720
15721 vector signed short vec_vavgsh (vector signed short,
15722 vector signed short);
15723
15724 vector unsigned short vec_vavguh (vector unsigned short,
15725 vector unsigned short);
15726
15727 vector signed char vec_vavgsb (vector signed char, vector signed char);
15728
15729 vector unsigned char vec_vavgub (vector unsigned char,
15730 vector unsigned char);
15731
15732 vector float vec_copysign (vector float);
15733
15734 vector float vec_ceil (vector float);
15735
15736 vector signed int vec_cmpb (vector float, vector float);
15737
15738 vector bool char vec_cmpeq (vector bool char, vector bool char);
15739 vector bool short vec_cmpeq (vector bool short, vector bool short);
15740 vector bool int vec_cmpeq (vector bool int, vector bool int);
15741 vector bool char vec_cmpeq (vector signed char, vector signed char);
15742 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
15743 vector bool short vec_cmpeq (vector signed short, vector signed short);
15744 vector bool short vec_cmpeq (vector unsigned short,
15745 vector unsigned short);
15746 vector bool int vec_cmpeq (vector signed int, vector signed int);
15747 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
15748 vector bool int vec_cmpeq (vector float, vector float);
15749
15750 vector bool int vec_vcmpeqfp (vector float, vector float);
15751
15752 vector bool int vec_vcmpequw (vector signed int, vector signed int);
15753 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
15754
15755 vector bool short vec_vcmpequh (vector signed short,
15756 vector signed short);
15757 vector bool short vec_vcmpequh (vector unsigned short,
15758 vector unsigned short);
15759
15760 vector bool char vec_vcmpequb (vector signed char, vector signed char);
15761 vector bool char vec_vcmpequb (vector unsigned char,
15762 vector unsigned char);
15763
15764 vector bool int vec_cmpge (vector float, vector float);
15765
15766 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
15767 vector bool char vec_cmpgt (vector signed char, vector signed char);
15768 vector bool short vec_cmpgt (vector unsigned short,
15769 vector unsigned short);
15770 vector bool short vec_cmpgt (vector signed short, vector signed short);
15771 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
15772 vector bool int vec_cmpgt (vector signed int, vector signed int);
15773 vector bool int vec_cmpgt (vector float, vector float);
15774
15775 vector bool int vec_vcmpgtfp (vector float, vector float);
15776
15777 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
15778
15779 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
15780
15781 vector bool short vec_vcmpgtsh (vector signed short,
15782 vector signed short);
15783
15784 vector bool short vec_vcmpgtuh (vector unsigned short,
15785 vector unsigned short);
15786
15787 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
15788
15789 vector bool char vec_vcmpgtub (vector unsigned char,
15790 vector unsigned char);
15791
15792 vector bool int vec_cmple (vector float, vector float);
15793
15794 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
15795 vector bool char vec_cmplt (vector signed char, vector signed char);
15796 vector bool short vec_cmplt (vector unsigned short,
15797 vector unsigned short);
15798 vector bool short vec_cmplt (vector signed short, vector signed short);
15799 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
15800 vector bool int vec_cmplt (vector signed int, vector signed int);
15801 vector bool int vec_cmplt (vector float, vector float);
15802
15803 vector float vec_cpsgn (vector float, vector float);
15804
15805 vector float vec_ctf (vector unsigned int, const int);
15806 vector float vec_ctf (vector signed int, const int);
15807 vector double vec_ctf (vector unsigned long, const int);
15808 vector double vec_ctf (vector signed long, const int);
15809
15810 vector float vec_vcfsx (vector signed int, const int);
15811
15812 vector float vec_vcfux (vector unsigned int, const int);
15813
15814 vector signed int vec_cts (vector float, const int);
15815 vector signed long vec_cts (vector double, const int);
15816
15817 vector unsigned int vec_ctu (vector float, const int);
15818 vector unsigned long vec_ctu (vector double, const int);
15819
15820 void vec_dss (const int);
15821
15822 void vec_dssall (void);
15823
15824 void vec_dst (const vector unsigned char *, int, const int);
15825 void vec_dst (const vector signed char *, int, const int);
15826 void vec_dst (const vector bool char *, int, const int);
15827 void vec_dst (const vector unsigned short *, int, const int);
15828 void vec_dst (const vector signed short *, int, const int);
15829 void vec_dst (const vector bool short *, int, const int);
15830 void vec_dst (const vector pixel *, int, const int);
15831 void vec_dst (const vector unsigned int *, int, const int);
15832 void vec_dst (const vector signed int *, int, const int);
15833 void vec_dst (const vector bool int *, int, const int);
15834 void vec_dst (const vector float *, int, const int);
15835 void vec_dst (const unsigned char *, int, const int);
15836 void vec_dst (const signed char *, int, const int);
15837 void vec_dst (const unsigned short *, int, const int);
15838 void vec_dst (const short *, int, const int);
15839 void vec_dst (const unsigned int *, int, const int);
15840 void vec_dst (const int *, int, const int);
15841 void vec_dst (const unsigned long *, int, const int);
15842 void vec_dst (const long *, int, const int);
15843 void vec_dst (const float *, int, const int);
15844
15845 void vec_dstst (const vector unsigned char *, int, const int);
15846 void vec_dstst (const vector signed char *, int, const int);
15847 void vec_dstst (const vector bool char *, int, const int);
15848 void vec_dstst (const vector unsigned short *, int, const int);
15849 void vec_dstst (const vector signed short *, int, const int);
15850 void vec_dstst (const vector bool short *, int, const int);
15851 void vec_dstst (const vector pixel *, int, const int);
15852 void vec_dstst (const vector unsigned int *, int, const int);
15853 void vec_dstst (const vector signed int *, int, const int);
15854 void vec_dstst (const vector bool int *, int, const int);
15855 void vec_dstst (const vector float *, int, const int);
15856 void vec_dstst (const unsigned char *, int, const int);
15857 void vec_dstst (const signed char *, int, const int);
15858 void vec_dstst (const unsigned short *, int, const int);
15859 void vec_dstst (const short *, int, const int);
15860 void vec_dstst (const unsigned int *, int, const int);
15861 void vec_dstst (const int *, int, const int);
15862 void vec_dstst (const unsigned long *, int, const int);
15863 void vec_dstst (const long *, int, const int);
15864 void vec_dstst (const float *, int, const int);
15865
15866 void vec_dststt (const vector unsigned char *, int, const int);
15867 void vec_dststt (const vector signed char *, int, const int);
15868 void vec_dststt (const vector bool char *, int, const int);
15869 void vec_dststt (const vector unsigned short *, int, const int);
15870 void vec_dststt (const vector signed short *, int, const int);
15871 void vec_dststt (const vector bool short *, int, const int);
15872 void vec_dststt (const vector pixel *, int, const int);
15873 void vec_dststt (const vector unsigned int *, int, const int);
15874 void vec_dststt (const vector signed int *, int, const int);
15875 void vec_dststt (const vector bool int *, int, const int);
15876 void vec_dststt (const vector float *, int, const int);
15877 void vec_dststt (const unsigned char *, int, const int);
15878 void vec_dststt (const signed char *, int, const int);
15879 void vec_dststt (const unsigned short *, int, const int);
15880 void vec_dststt (const short *, int, const int);
15881 void vec_dststt (const unsigned int *, int, const int);
15882 void vec_dststt (const int *, int, const int);
15883 void vec_dststt (const unsigned long *, int, const int);
15884 void vec_dststt (const long *, int, const int);
15885 void vec_dststt (const float *, int, const int);
15886
15887 void vec_dstt (const vector unsigned char *, int, const int);
15888 void vec_dstt (const vector signed char *, int, const int);
15889 void vec_dstt (const vector bool char *, int, const int);
15890 void vec_dstt (const vector unsigned short *, int, const int);
15891 void vec_dstt (const vector signed short *, int, const int);
15892 void vec_dstt (const vector bool short *, int, const int);
15893 void vec_dstt (const vector pixel *, int, const int);
15894 void vec_dstt (const vector unsigned int *, int, const int);
15895 void vec_dstt (const vector signed int *, int, const int);
15896 void vec_dstt (const vector bool int *, int, const int);
15897 void vec_dstt (const vector float *, int, const int);
15898 void vec_dstt (const unsigned char *, int, const int);
15899 void vec_dstt (const signed char *, int, const int);
15900 void vec_dstt (const unsigned short *, int, const int);
15901 void vec_dstt (const short *, int, const int);
15902 void vec_dstt (const unsigned int *, int, const int);
15903 void vec_dstt (const int *, int, const int);
15904 void vec_dstt (const unsigned long *, int, const int);
15905 void vec_dstt (const long *, int, const int);
15906 void vec_dstt (const float *, int, const int);
15907
15908 vector float vec_expte (vector float);
15909
15910 vector float vec_floor (vector float);
15911
15912 vector float vec_ld (int, const vector float *);
15913 vector float vec_ld (int, const float *);
15914 vector bool int vec_ld (int, const vector bool int *);
15915 vector signed int vec_ld (int, const vector signed int *);
15916 vector signed int vec_ld (int, const int *);
15917 vector signed int vec_ld (int, const long *);
15918 vector unsigned int vec_ld (int, const vector unsigned int *);
15919 vector unsigned int vec_ld (int, const unsigned int *);
15920 vector unsigned int vec_ld (int, const unsigned long *);
15921 vector bool short vec_ld (int, const vector bool short *);
15922 vector pixel vec_ld (int, const vector pixel *);
15923 vector signed short vec_ld (int, const vector signed short *);
15924 vector signed short vec_ld (int, const short *);
15925 vector unsigned short vec_ld (int, const vector unsigned short *);
15926 vector unsigned short vec_ld (int, const unsigned short *);
15927 vector bool char vec_ld (int, const vector bool char *);
15928 vector signed char vec_ld (int, const vector signed char *);
15929 vector signed char vec_ld (int, const signed char *);
15930 vector unsigned char vec_ld (int, const vector unsigned char *);
15931 vector unsigned char vec_ld (int, const unsigned char *);
15932
15933 vector signed char vec_lde (int, const signed char *);
15934 vector unsigned char vec_lde (int, const unsigned char *);
15935 vector signed short vec_lde (int, const short *);
15936 vector unsigned short vec_lde (int, const unsigned short *);
15937 vector float vec_lde (int, const float *);
15938 vector signed int vec_lde (int, const int *);
15939 vector unsigned int vec_lde (int, const unsigned int *);
15940 vector signed int vec_lde (int, const long *);
15941 vector unsigned int vec_lde (int, const unsigned long *);
15942
15943 vector float vec_lvewx (int, float *);
15944 vector signed int vec_lvewx (int, int *);
15945 vector unsigned int vec_lvewx (int, unsigned int *);
15946 vector signed int vec_lvewx (int, long *);
15947 vector unsigned int vec_lvewx (int, unsigned long *);
15948
15949 vector signed short vec_lvehx (int, short *);
15950 vector unsigned short vec_lvehx (int, unsigned short *);
15951
15952 vector signed char vec_lvebx (int, char *);
15953 vector unsigned char vec_lvebx (int, unsigned char *);
15954
15955 vector float vec_ldl (int, const vector float *);
15956 vector float vec_ldl (int, const float *);
15957 vector bool int vec_ldl (int, const vector bool int *);
15958 vector signed int vec_ldl (int, const vector signed int *);
15959 vector signed int vec_ldl (int, const int *);
15960 vector signed int vec_ldl (int, const long *);
15961 vector unsigned int vec_ldl (int, const vector unsigned int *);
15962 vector unsigned int vec_ldl (int, const unsigned int *);
15963 vector unsigned int vec_ldl (int, const unsigned long *);
15964 vector bool short vec_ldl (int, const vector bool short *);
15965 vector pixel vec_ldl (int, const vector pixel *);
15966 vector signed short vec_ldl (int, const vector signed short *);
15967 vector signed short vec_ldl (int, const short *);
15968 vector unsigned short vec_ldl (int, const vector unsigned short *);
15969 vector unsigned short vec_ldl (int, const unsigned short *);
15970 vector bool char vec_ldl (int, const vector bool char *);
15971 vector signed char vec_ldl (int, const vector signed char *);
15972 vector signed char vec_ldl (int, const signed char *);
15973 vector unsigned char vec_ldl (int, const vector unsigned char *);
15974 vector unsigned char vec_ldl (int, const unsigned char *);
15975
15976 vector float vec_loge (vector float);
15977
15978 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
15979 vector unsigned char vec_lvsl (int, const volatile signed char *);
15980 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
15981 vector unsigned char vec_lvsl (int, const volatile short *);
15982 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
15983 vector unsigned char vec_lvsl (int, const volatile int *);
15984 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
15985 vector unsigned char vec_lvsl (int, const volatile long *);
15986 vector unsigned char vec_lvsl (int, const volatile float *);
15987
15988 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
15989 vector unsigned char vec_lvsr (int, const volatile signed char *);
15990 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
15991 vector unsigned char vec_lvsr (int, const volatile short *);
15992 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
15993 vector unsigned char vec_lvsr (int, const volatile int *);
15994 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
15995 vector unsigned char vec_lvsr (int, const volatile long *);
15996 vector unsigned char vec_lvsr (int, const volatile float *);
15997
15998 vector float vec_madd (vector float, vector float, vector float);
15999
16000 vector signed short vec_madds (vector signed short,
16001 vector signed short,
16002 vector signed short);
16003
16004 vector unsigned char vec_max (vector bool char, vector unsigned char);
16005 vector unsigned char vec_max (vector unsigned char, vector bool char);
16006 vector unsigned char vec_max (vector unsigned char,
16007 vector unsigned char);
16008 vector signed char vec_max (vector bool char, vector signed char);
16009 vector signed char vec_max (vector signed char, vector bool char);
16010 vector signed char vec_max (vector signed char, vector signed char);
16011 vector unsigned short vec_max (vector bool short,
16012 vector unsigned short);
16013 vector unsigned short vec_max (vector unsigned short,
16014 vector bool short);
16015 vector unsigned short vec_max (vector unsigned short,
16016 vector unsigned short);
16017 vector signed short vec_max (vector bool short, vector signed short);
16018 vector signed short vec_max (vector signed short, vector bool short);
16019 vector signed short vec_max (vector signed short, vector signed short);
16020 vector unsigned int vec_max (vector bool int, vector unsigned int);
16021 vector unsigned int vec_max (vector unsigned int, vector bool int);
16022 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
16023 vector signed int vec_max (vector bool int, vector signed int);
16024 vector signed int vec_max (vector signed int, vector bool int);
16025 vector signed int vec_max (vector signed int, vector signed int);
16026 vector float vec_max (vector float, vector float);
16027
16028 vector float vec_vmaxfp (vector float, vector float);
16029
16030 vector signed int vec_vmaxsw (vector bool int, vector signed int);
16031 vector signed int vec_vmaxsw (vector signed int, vector bool int);
16032 vector signed int vec_vmaxsw (vector signed int, vector signed int);
16033
16034 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
16035 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
16036 vector unsigned int vec_vmaxuw (vector unsigned int,
16037 vector unsigned int);
16038
16039 vector signed short vec_vmaxsh (vector bool short, vector signed short);
16040 vector signed short vec_vmaxsh (vector signed short, vector bool short);
16041 vector signed short vec_vmaxsh (vector signed short,
16042 vector signed short);
16043
16044 vector unsigned short vec_vmaxuh (vector bool short,
16045 vector unsigned short);
16046 vector unsigned short vec_vmaxuh (vector unsigned short,
16047 vector bool short);
16048 vector unsigned short vec_vmaxuh (vector unsigned short,
16049 vector unsigned short);
16050
16051 vector signed char vec_vmaxsb (vector bool char, vector signed char);
16052 vector signed char vec_vmaxsb (vector signed char, vector bool char);
16053 vector signed char vec_vmaxsb (vector signed char, vector signed char);
16054
16055 vector unsigned char vec_vmaxub (vector bool char,
16056 vector unsigned char);
16057 vector unsigned char vec_vmaxub (vector unsigned char,
16058 vector bool char);
16059 vector unsigned char vec_vmaxub (vector unsigned char,
16060 vector unsigned char);
16061
16062 vector bool char vec_mergeh (vector bool char, vector bool char);
16063 vector signed char vec_mergeh (vector signed char, vector signed char);
16064 vector unsigned char vec_mergeh (vector unsigned char,
16065 vector unsigned char);
16066 vector bool short vec_mergeh (vector bool short, vector bool short);
16067 vector pixel vec_mergeh (vector pixel, vector pixel);
16068 vector signed short vec_mergeh (vector signed short,
16069 vector signed short);
16070 vector unsigned short vec_mergeh (vector unsigned short,
16071 vector unsigned short);
16072 vector float vec_mergeh (vector float, vector float);
16073 vector bool int vec_mergeh (vector bool int, vector bool int);
16074 vector signed int vec_mergeh (vector signed int, vector signed int);
16075 vector unsigned int vec_mergeh (vector unsigned int,
16076 vector unsigned int);
16077
16078 vector float vec_vmrghw (vector float, vector float);
16079 vector bool int vec_vmrghw (vector bool int, vector bool int);
16080 vector signed int vec_vmrghw (vector signed int, vector signed int);
16081 vector unsigned int vec_vmrghw (vector unsigned int,
16082 vector unsigned int);
16083
16084 vector bool short vec_vmrghh (vector bool short, vector bool short);
16085 vector signed short vec_vmrghh (vector signed short,
16086 vector signed short);
16087 vector unsigned short vec_vmrghh (vector unsigned short,
16088 vector unsigned short);
16089 vector pixel vec_vmrghh (vector pixel, vector pixel);
16090
16091 vector bool char vec_vmrghb (vector bool char, vector bool char);
16092 vector signed char vec_vmrghb (vector signed char, vector signed char);
16093 vector unsigned char vec_vmrghb (vector unsigned char,
16094 vector unsigned char);
16095
16096 vector bool char vec_mergel (vector bool char, vector bool char);
16097 vector signed char vec_mergel (vector signed char, vector signed char);
16098 vector unsigned char vec_mergel (vector unsigned char,
16099 vector unsigned char);
16100 vector bool short vec_mergel (vector bool short, vector bool short);
16101 vector pixel vec_mergel (vector pixel, vector pixel);
16102 vector signed short vec_mergel (vector signed short,
16103 vector signed short);
16104 vector unsigned short vec_mergel (vector unsigned short,
16105 vector unsigned short);
16106 vector float vec_mergel (vector float, vector float);
16107 vector bool int vec_mergel (vector bool int, vector bool int);
16108 vector signed int vec_mergel (vector signed int, vector signed int);
16109 vector unsigned int vec_mergel (vector unsigned int,
16110 vector unsigned int);
16111
16112 vector float vec_vmrglw (vector float, vector float);
16113 vector signed int vec_vmrglw (vector signed int, vector signed int);
16114 vector unsigned int vec_vmrglw (vector unsigned int,
16115 vector unsigned int);
16116 vector bool int vec_vmrglw (vector bool int, vector bool int);
16117
16118 vector bool short vec_vmrglh (vector bool short, vector bool short);
16119 vector signed short vec_vmrglh (vector signed short,
16120 vector signed short);
16121 vector unsigned short vec_vmrglh (vector unsigned short,
16122 vector unsigned short);
16123 vector pixel vec_vmrglh (vector pixel, vector pixel);
16124
16125 vector bool char vec_vmrglb (vector bool char, vector bool char);
16126 vector signed char vec_vmrglb (vector signed char, vector signed char);
16127 vector unsigned char vec_vmrglb (vector unsigned char,
16128 vector unsigned char);
16129
16130 vector unsigned short vec_mfvscr (void);
16131
16132 vector unsigned char vec_min (vector bool char, vector unsigned char);
16133 vector unsigned char vec_min (vector unsigned char, vector bool char);
16134 vector unsigned char vec_min (vector unsigned char,
16135 vector unsigned char);
16136 vector signed char vec_min (vector bool char, vector signed char);
16137 vector signed char vec_min (vector signed char, vector bool char);
16138 vector signed char vec_min (vector signed char, vector signed char);
16139 vector unsigned short vec_min (vector bool short,
16140 vector unsigned short);
16141 vector unsigned short vec_min (vector unsigned short,
16142 vector bool short);
16143 vector unsigned short vec_min (vector unsigned short,
16144 vector unsigned short);
16145 vector signed short vec_min (vector bool short, vector signed short);
16146 vector signed short vec_min (vector signed short, vector bool short);
16147 vector signed short vec_min (vector signed short, vector signed short);
16148 vector unsigned int vec_min (vector bool int, vector unsigned int);
16149 vector unsigned int vec_min (vector unsigned int, vector bool int);
16150 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16151 vector signed int vec_min (vector bool int, vector signed int);
16152 vector signed int vec_min (vector signed int, vector bool int);
16153 vector signed int vec_min (vector signed int, vector signed int);
16154 vector float vec_min (vector float, vector float);
16155
16156 vector float vec_vminfp (vector float, vector float);
16157
16158 vector signed int vec_vminsw (vector bool int, vector signed int);
16159 vector signed int vec_vminsw (vector signed int, vector bool int);
16160 vector signed int vec_vminsw (vector signed int, vector signed int);
16161
16162 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
16163 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
16164 vector unsigned int vec_vminuw (vector unsigned int,
16165 vector unsigned int);
16166
16167 vector signed short vec_vminsh (vector bool short, vector signed short);
16168 vector signed short vec_vminsh (vector signed short, vector bool short);
16169 vector signed short vec_vminsh (vector signed short,
16170 vector signed short);
16171
16172 vector unsigned short vec_vminuh (vector bool short,
16173 vector unsigned short);
16174 vector unsigned short vec_vminuh (vector unsigned short,
16175 vector bool short);
16176 vector unsigned short vec_vminuh (vector unsigned short,
16177 vector unsigned short);
16178
16179 vector signed char vec_vminsb (vector bool char, vector signed char);
16180 vector signed char vec_vminsb (vector signed char, vector bool char);
16181 vector signed char vec_vminsb (vector signed char, vector signed char);
16182
16183 vector unsigned char vec_vminub (vector bool char,
16184 vector unsigned char);
16185 vector unsigned char vec_vminub (vector unsigned char,
16186 vector bool char);
16187 vector unsigned char vec_vminub (vector unsigned char,
16188 vector unsigned char);
16189
16190 vector signed short vec_mladd (vector signed short,
16191 vector signed short,
16192 vector signed short);
16193 vector signed short vec_mladd (vector signed short,
16194 vector unsigned short,
16195 vector unsigned short);
16196 vector signed short vec_mladd (vector unsigned short,
16197 vector signed short,
16198 vector signed short);
16199 vector unsigned short vec_mladd (vector unsigned short,
16200 vector unsigned short,
16201 vector unsigned short);
16202
16203 vector signed short vec_mradds (vector signed short,
16204 vector signed short,
16205 vector signed short);
16206
16207 vector unsigned int vec_msum (vector unsigned char,
16208 vector unsigned char,
16209 vector unsigned int);
16210 vector signed int vec_msum (vector signed char,
16211 vector unsigned char,
16212 vector signed int);
16213 vector unsigned int vec_msum (vector unsigned short,
16214 vector unsigned short,
16215 vector unsigned int);
16216 vector signed int vec_msum (vector signed short,
16217 vector signed short,
16218 vector signed int);
16219
16220 vector signed int vec_vmsumshm (vector signed short,
16221 vector signed short,
16222 vector signed int);
16223
16224 vector unsigned int vec_vmsumuhm (vector unsigned short,
16225 vector unsigned short,
16226 vector unsigned int);
16227
16228 vector signed int vec_vmsummbm (vector signed char,
16229 vector unsigned char,
16230 vector signed int);
16231
16232 vector unsigned int vec_vmsumubm (vector unsigned char,
16233 vector unsigned char,
16234 vector unsigned int);
16235
16236 vector unsigned int vec_msums (vector unsigned short,
16237 vector unsigned short,
16238 vector unsigned int);
16239 vector signed int vec_msums (vector signed short,
16240 vector signed short,
16241 vector signed int);
16242
16243 vector signed int vec_vmsumshs (vector signed short,
16244 vector signed short,
16245 vector signed int);
16246
16247 vector unsigned int vec_vmsumuhs (vector unsigned short,
16248 vector unsigned short,
16249 vector unsigned int);
16250
16251 void vec_mtvscr (vector signed int);
16252 void vec_mtvscr (vector unsigned int);
16253 void vec_mtvscr (vector bool int);
16254 void vec_mtvscr (vector signed short);
16255 void vec_mtvscr (vector unsigned short);
16256 void vec_mtvscr (vector bool short);
16257 void vec_mtvscr (vector pixel);
16258 void vec_mtvscr (vector signed char);
16259 void vec_mtvscr (vector unsigned char);
16260 void vec_mtvscr (vector bool char);
16261
16262 vector unsigned short vec_mule (vector unsigned char,
16263 vector unsigned char);
16264 vector signed short vec_mule (vector signed char,
16265 vector signed char);
16266 vector unsigned int vec_mule (vector unsigned short,
16267 vector unsigned short);
16268 vector signed int vec_mule (vector signed short, vector signed short);
16269
16270 vector signed int vec_vmulesh (vector signed short,
16271 vector signed short);
16272
16273 vector unsigned int vec_vmuleuh (vector unsigned short,
16274 vector unsigned short);
16275
16276 vector signed short vec_vmulesb (vector signed char,
16277 vector signed char);
16278
16279 vector unsigned short vec_vmuleub (vector unsigned char,
16280 vector unsigned char);
16281
16282 vector unsigned short vec_mulo (vector unsigned char,
16283 vector unsigned char);
16284 vector signed short vec_mulo (vector signed char, vector signed char);
16285 vector unsigned int vec_mulo (vector unsigned short,
16286 vector unsigned short);
16287 vector signed int vec_mulo (vector signed short, vector signed short);
16288
16289 vector signed int vec_vmulosh (vector signed short,
16290 vector signed short);
16291
16292 vector unsigned int vec_vmulouh (vector unsigned short,
16293 vector unsigned short);
16294
16295 vector signed short vec_vmulosb (vector signed char,
16296 vector signed char);
16297
16298 vector unsigned short vec_vmuloub (vector unsigned char,
16299 vector unsigned char);
16300
16301 vector float vec_nmsub (vector float, vector float, vector float);
16302
16303 vector float vec_nor (vector float, vector float);
16304 vector signed int vec_nor (vector signed int, vector signed int);
16305 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16306 vector bool int vec_nor (vector bool int, vector bool int);
16307 vector signed short vec_nor (vector signed short, vector signed short);
16308 vector unsigned short vec_nor (vector unsigned short,
16309 vector unsigned short);
16310 vector bool short vec_nor (vector bool short, vector bool short);
16311 vector signed char vec_nor (vector signed char, vector signed char);
16312 vector unsigned char vec_nor (vector unsigned char,
16313 vector unsigned char);
16314 vector bool char vec_nor (vector bool char, vector bool char);
16315
16316 vector float vec_or (vector float, vector float);
16317 vector float vec_or (vector float, vector bool int);
16318 vector float vec_or (vector bool int, vector float);
16319 vector bool int vec_or (vector bool int, vector bool int);
16320 vector signed int vec_or (vector bool int, vector signed int);
16321 vector signed int vec_or (vector signed int, vector bool int);
16322 vector signed int vec_or (vector signed int, vector signed int);
16323 vector unsigned int vec_or (vector bool int, vector unsigned int);
16324 vector unsigned int vec_or (vector unsigned int, vector bool int);
16325 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
16326 vector bool short vec_or (vector bool short, vector bool short);
16327 vector signed short vec_or (vector bool short, vector signed short);
16328 vector signed short vec_or (vector signed short, vector bool short);
16329 vector signed short vec_or (vector signed short, vector signed short);
16330 vector unsigned short vec_or (vector bool short, vector unsigned short);
16331 vector unsigned short vec_or (vector unsigned short, vector bool short);
16332 vector unsigned short vec_or (vector unsigned short,
16333 vector unsigned short);
16334 vector signed char vec_or (vector bool char, vector signed char);
16335 vector bool char vec_or (vector bool char, vector bool char);
16336 vector signed char vec_or (vector signed char, vector bool char);
16337 vector signed char vec_or (vector signed char, vector signed char);
16338 vector unsigned char vec_or (vector bool char, vector unsigned char);
16339 vector unsigned char vec_or (vector unsigned char, vector bool char);
16340 vector unsigned char vec_or (vector unsigned char,
16341 vector unsigned char);
16342
16343 vector signed char vec_pack (vector signed short, vector signed short);
16344 vector unsigned char vec_pack (vector unsigned short,
16345 vector unsigned short);
16346 vector bool char vec_pack (vector bool short, vector bool short);
16347 vector signed short vec_pack (vector signed int, vector signed int);
16348 vector unsigned short vec_pack (vector unsigned int,
16349 vector unsigned int);
16350 vector bool short vec_pack (vector bool int, vector bool int);
16351
16352 vector bool short vec_vpkuwum (vector bool int, vector bool int);
16353 vector signed short vec_vpkuwum (vector signed int, vector signed int);
16354 vector unsigned short vec_vpkuwum (vector unsigned int,
16355 vector unsigned int);
16356
16357 vector bool char vec_vpkuhum (vector bool short, vector bool short);
16358 vector signed char vec_vpkuhum (vector signed short,
16359 vector signed short);
16360 vector unsigned char vec_vpkuhum (vector unsigned short,
16361 vector unsigned short);
16362
16363 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
16364
16365 vector unsigned char vec_packs (vector unsigned short,
16366 vector unsigned short);
16367 vector signed char vec_packs (vector signed short, vector signed short);
16368 vector unsigned short vec_packs (vector unsigned int,
16369 vector unsigned int);
16370 vector signed short vec_packs (vector signed int, vector signed int);
16371
16372 vector signed short vec_vpkswss (vector signed int, vector signed int);
16373
16374 vector unsigned short vec_vpkuwus (vector unsigned int,
16375 vector unsigned int);
16376
16377 vector signed char vec_vpkshss (vector signed short,
16378 vector signed short);
16379
16380 vector unsigned char vec_vpkuhus (vector unsigned short,
16381 vector unsigned short);
16382
16383 vector unsigned char vec_packsu (vector unsigned short,
16384 vector unsigned short);
16385 vector unsigned char vec_packsu (vector signed short,
16386 vector signed short);
16387 vector unsigned short vec_packsu (vector unsigned int,
16388 vector unsigned int);
16389 vector unsigned short vec_packsu (vector signed int, vector signed int);
16390
16391 vector unsigned short vec_vpkswus (vector signed int,
16392 vector signed int);
16393
16394 vector unsigned char vec_vpkshus (vector signed short,
16395 vector signed short);
16396
16397 vector float vec_perm (vector float,
16398 vector float,
16399 vector unsigned char);
16400 vector signed int vec_perm (vector signed int,
16401 vector signed int,
16402 vector unsigned char);
16403 vector unsigned int vec_perm (vector unsigned int,
16404 vector unsigned int,
16405 vector unsigned char);
16406 vector bool int vec_perm (vector bool int,
16407 vector bool int,
16408 vector unsigned char);
16409 vector signed short vec_perm (vector signed short,
16410 vector signed short,
16411 vector unsigned char);
16412 vector unsigned short vec_perm (vector unsigned short,
16413 vector unsigned short,
16414 vector unsigned char);
16415 vector bool short vec_perm (vector bool short,
16416 vector bool short,
16417 vector unsigned char);
16418 vector pixel vec_perm (vector pixel,
16419 vector pixel,
16420 vector unsigned char);
16421 vector signed char vec_perm (vector signed char,
16422 vector signed char,
16423 vector unsigned char);
16424 vector unsigned char vec_perm (vector unsigned char,
16425 vector unsigned char,
16426 vector unsigned char);
16427 vector bool char vec_perm (vector bool char,
16428 vector bool char,
16429 vector unsigned char);
16430
16431 vector float vec_re (vector float);
16432
16433 vector signed char vec_rl (vector signed char,
16434 vector unsigned char);
16435 vector unsigned char vec_rl (vector unsigned char,
16436 vector unsigned char);
16437 vector signed short vec_rl (vector signed short, vector unsigned short);
16438 vector unsigned short vec_rl (vector unsigned short,
16439 vector unsigned short);
16440 vector signed int vec_rl (vector signed int, vector unsigned int);
16441 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
16442
16443 vector signed int vec_vrlw (vector signed int, vector unsigned int);
16444 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
16445
16446 vector signed short vec_vrlh (vector signed short,
16447 vector unsigned short);
16448 vector unsigned short vec_vrlh (vector unsigned short,
16449 vector unsigned short);
16450
16451 vector signed char vec_vrlb (vector signed char, vector unsigned char);
16452 vector unsigned char vec_vrlb (vector unsigned char,
16453 vector unsigned char);
16454
16455 vector float vec_round (vector float);
16456
16457 vector float vec_recip (vector float, vector float);
16458
16459 vector float vec_rsqrt (vector float);
16460
16461 vector float vec_rsqrte (vector float);
16462
16463 vector float vec_sel (vector float, vector float, vector bool int);
16464 vector float vec_sel (vector float, vector float, vector unsigned int);
16465 vector signed int vec_sel (vector signed int,
16466 vector signed int,
16467 vector bool int);
16468 vector signed int vec_sel (vector signed int,
16469 vector signed int,
16470 vector unsigned int);
16471 vector unsigned int vec_sel (vector unsigned int,
16472 vector unsigned int,
16473 vector bool int);
16474 vector unsigned int vec_sel (vector unsigned int,
16475 vector unsigned int,
16476 vector unsigned int);
16477 vector bool int vec_sel (vector bool int,
16478 vector bool int,
16479 vector bool int);
16480 vector bool int vec_sel (vector bool int,
16481 vector bool int,
16482 vector unsigned int);
16483 vector signed short vec_sel (vector signed short,
16484 vector signed short,
16485 vector bool short);
16486 vector signed short vec_sel (vector signed short,
16487 vector signed short,
16488 vector unsigned short);
16489 vector unsigned short vec_sel (vector unsigned short,
16490 vector unsigned short,
16491 vector bool short);
16492 vector unsigned short vec_sel (vector unsigned short,
16493 vector unsigned short,
16494 vector unsigned short);
16495 vector bool short vec_sel (vector bool short,
16496 vector bool short,
16497 vector bool short);
16498 vector bool short vec_sel (vector bool short,
16499 vector bool short,
16500 vector unsigned short);
16501 vector signed char vec_sel (vector signed char,
16502 vector signed char,
16503 vector bool char);
16504 vector signed char vec_sel (vector signed char,
16505 vector signed char,
16506 vector unsigned char);
16507 vector unsigned char vec_sel (vector unsigned char,
16508 vector unsigned char,
16509 vector bool char);
16510 vector unsigned char vec_sel (vector unsigned char,
16511 vector unsigned char,
16512 vector unsigned char);
16513 vector bool char vec_sel (vector bool char,
16514 vector bool char,
16515 vector bool char);
16516 vector bool char vec_sel (vector bool char,
16517 vector bool char,
16518 vector unsigned char);
16519
16520 vector signed char vec_sl (vector signed char,
16521 vector unsigned char);
16522 vector unsigned char vec_sl (vector unsigned char,
16523 vector unsigned char);
16524 vector signed short vec_sl (vector signed short, vector unsigned short);
16525 vector unsigned short vec_sl (vector unsigned short,
16526 vector unsigned short);
16527 vector signed int vec_sl (vector signed int, vector unsigned int);
16528 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
16529
16530 vector signed int vec_vslw (vector signed int, vector unsigned int);
16531 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
16532
16533 vector signed short vec_vslh (vector signed short,
16534 vector unsigned short);
16535 vector unsigned short vec_vslh (vector unsigned short,
16536 vector unsigned short);
16537
16538 vector signed char vec_vslb (vector signed char, vector unsigned char);
16539 vector unsigned char vec_vslb (vector unsigned char,
16540 vector unsigned char);
16541
16542 vector float vec_sld (vector float, vector float, const int);
16543 vector double vec_sld (vector double, vector double, const int);
16544
16545 vector signed int vec_sld (vector signed int,
16546 vector signed int,
16547 const int);
16548 vector unsigned int vec_sld (vector unsigned int,
16549 vector unsigned int,
16550 const int);
16551 vector bool int vec_sld (vector bool int,
16552 vector bool int,
16553 const int);
16554 vector signed short vec_sld (vector signed short,
16555 vector signed short,
16556 const int);
16557 vector unsigned short vec_sld (vector unsigned short,
16558 vector unsigned short,
16559 const int);
16560 vector bool short vec_sld (vector bool short,
16561 vector bool short,
16562 const int);
16563 vector pixel vec_sld (vector pixel,
16564 vector pixel,
16565 const int);
16566 vector signed char vec_sld (vector signed char,
16567 vector signed char,
16568 const int);
16569 vector unsigned char vec_sld (vector unsigned char,
16570 vector unsigned char,
16571 const int);
16572 vector bool char vec_sld (vector bool char,
16573 vector bool char,
16574 const int);
16575
16576 vector signed int vec_sll (vector signed int,
16577 vector unsigned int);
16578 vector signed int vec_sll (vector signed int,
16579 vector unsigned short);
16580 vector signed int vec_sll (vector signed int,
16581 vector unsigned char);
16582 vector unsigned int vec_sll (vector unsigned int,
16583 vector unsigned int);
16584 vector unsigned int vec_sll (vector unsigned int,
16585 vector unsigned short);
16586 vector unsigned int vec_sll (vector unsigned int,
16587 vector unsigned char);
16588 vector bool int vec_sll (vector bool int,
16589 vector unsigned int);
16590 vector bool int vec_sll (vector bool int,
16591 vector unsigned short);
16592 vector bool int vec_sll (vector bool int,
16593 vector unsigned char);
16594 vector signed short vec_sll (vector signed short,
16595 vector unsigned int);
16596 vector signed short vec_sll (vector signed short,
16597 vector unsigned short);
16598 vector signed short vec_sll (vector signed short,
16599 vector unsigned char);
16600 vector unsigned short vec_sll (vector unsigned short,
16601 vector unsigned int);
16602 vector unsigned short vec_sll (vector unsigned short,
16603 vector unsigned short);
16604 vector unsigned short vec_sll (vector unsigned short,
16605 vector unsigned char);
16606 vector bool short vec_sll (vector bool short, vector unsigned int);
16607 vector bool short vec_sll (vector bool short, vector unsigned short);
16608 vector bool short vec_sll (vector bool short, vector unsigned char);
16609 vector pixel vec_sll (vector pixel, vector unsigned int);
16610 vector pixel vec_sll (vector pixel, vector unsigned short);
16611 vector pixel vec_sll (vector pixel, vector unsigned char);
16612 vector signed char vec_sll (vector signed char, vector unsigned int);
16613 vector signed char vec_sll (vector signed char, vector unsigned short);
16614 vector signed char vec_sll (vector signed char, vector unsigned char);
16615 vector unsigned char vec_sll (vector unsigned char,
16616 vector unsigned int);
16617 vector unsigned char vec_sll (vector unsigned char,
16618 vector unsigned short);
16619 vector unsigned char vec_sll (vector unsigned char,
16620 vector unsigned char);
16621 vector bool char vec_sll (vector bool char, vector unsigned int);
16622 vector bool char vec_sll (vector bool char, vector unsigned short);
16623 vector bool char vec_sll (vector bool char, vector unsigned char);
16624
16625 vector float vec_slo (vector float, vector signed char);
16626 vector float vec_slo (vector float, vector unsigned char);
16627 vector signed int vec_slo (vector signed int, vector signed char);
16628 vector signed int vec_slo (vector signed int, vector unsigned char);
16629 vector unsigned int vec_slo (vector unsigned int, vector signed char);
16630 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
16631 vector signed short vec_slo (vector signed short, vector signed char);
16632 vector signed short vec_slo (vector signed short, vector unsigned char);
16633 vector unsigned short vec_slo (vector unsigned short,
16634 vector signed char);
16635 vector unsigned short vec_slo (vector unsigned short,
16636 vector unsigned char);
16637 vector pixel vec_slo (vector pixel, vector signed char);
16638 vector pixel vec_slo (vector pixel, vector unsigned char);
16639 vector signed char vec_slo (vector signed char, vector signed char);
16640 vector signed char vec_slo (vector signed char, vector unsigned char);
16641 vector unsigned char vec_slo (vector unsigned char, vector signed char);
16642 vector unsigned char vec_slo (vector unsigned char,
16643 vector unsigned char);
16644
16645 vector signed char vec_splat (vector signed char, const int);
16646 vector unsigned char vec_splat (vector unsigned char, const int);
16647 vector bool char vec_splat (vector bool char, const int);
16648 vector signed short vec_splat (vector signed short, const int);
16649 vector unsigned short vec_splat (vector unsigned short, const int);
16650 vector bool short vec_splat (vector bool short, const int);
16651 vector pixel vec_splat (vector pixel, const int);
16652 vector float vec_splat (vector float, const int);
16653 vector signed int vec_splat (vector signed int, const int);
16654 vector unsigned int vec_splat (vector unsigned int, const int);
16655 vector bool int vec_splat (vector bool int, const int);
16656 vector signed long vec_splat (vector signed long, const int);
16657 vector unsigned long vec_splat (vector unsigned long, const int);
16658
16659 vector signed char vec_splats (signed char);
16660 vector unsigned char vec_splats (unsigned char);
16661 vector signed short vec_splats (signed short);
16662 vector unsigned short vec_splats (unsigned short);
16663 vector signed int vec_splats (signed int);
16664 vector unsigned int vec_splats (unsigned int);
16665 vector float vec_splats (float);
16666
16667 vector float vec_vspltw (vector float, const int);
16668 vector signed int vec_vspltw (vector signed int, const int);
16669 vector unsigned int vec_vspltw (vector unsigned int, const int);
16670 vector bool int vec_vspltw (vector bool int, const int);
16671
16672 vector bool short vec_vsplth (vector bool short, const int);
16673 vector signed short vec_vsplth (vector signed short, const int);
16674 vector unsigned short vec_vsplth (vector unsigned short, const int);
16675 vector pixel vec_vsplth (vector pixel, const int);
16676
16677 vector signed char vec_vspltb (vector signed char, const int);
16678 vector unsigned char vec_vspltb (vector unsigned char, const int);
16679 vector bool char vec_vspltb (vector bool char, const int);
16680
16681 vector signed char vec_splat_s8 (const int);
16682
16683 vector signed short vec_splat_s16 (const int);
16684
16685 vector signed int vec_splat_s32 (const int);
16686
16687 vector unsigned char vec_splat_u8 (const int);
16688
16689 vector unsigned short vec_splat_u16 (const int);
16690
16691 vector unsigned int vec_splat_u32 (const int);
16692
16693 vector signed char vec_sr (vector signed char, vector unsigned char);
16694 vector unsigned char vec_sr (vector unsigned char,
16695 vector unsigned char);
16696 vector signed short vec_sr (vector signed short,
16697 vector unsigned short);
16698 vector unsigned short vec_sr (vector unsigned short,
16699 vector unsigned short);
16700 vector signed int vec_sr (vector signed int, vector unsigned int);
16701 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
16702
16703 vector signed int vec_vsrw (vector signed int, vector unsigned int);
16704 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
16705
16706 vector signed short vec_vsrh (vector signed short,
16707 vector unsigned short);
16708 vector unsigned short vec_vsrh (vector unsigned short,
16709 vector unsigned short);
16710
16711 vector signed char vec_vsrb (vector signed char, vector unsigned char);
16712 vector unsigned char vec_vsrb (vector unsigned char,
16713 vector unsigned char);
16714
16715 vector signed char vec_sra (vector signed char, vector unsigned char);
16716 vector unsigned char vec_sra (vector unsigned char,
16717 vector unsigned char);
16718 vector signed short vec_sra (vector signed short,
16719 vector unsigned short);
16720 vector unsigned short vec_sra (vector unsigned short,
16721 vector unsigned short);
16722 vector signed int vec_sra (vector signed int, vector unsigned int);
16723 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
16724
16725 vector signed int vec_vsraw (vector signed int, vector unsigned int);
16726 vector unsigned int vec_vsraw (vector unsigned int,
16727 vector unsigned int);
16728
16729 vector signed short vec_vsrah (vector signed short,
16730 vector unsigned short);
16731 vector unsigned short vec_vsrah (vector unsigned short,
16732 vector unsigned short);
16733
16734 vector signed char vec_vsrab (vector signed char, vector unsigned char);
16735 vector unsigned char vec_vsrab (vector unsigned char,
16736 vector unsigned char);
16737
16738 vector signed int vec_srl (vector signed int, vector unsigned int);
16739 vector signed int vec_srl (vector signed int, vector unsigned short);
16740 vector signed int vec_srl (vector signed int, vector unsigned char);
16741 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
16742 vector unsigned int vec_srl (vector unsigned int,
16743 vector unsigned short);
16744 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
16745 vector bool int vec_srl (vector bool int, vector unsigned int);
16746 vector bool int vec_srl (vector bool int, vector unsigned short);
16747 vector bool int vec_srl (vector bool int, vector unsigned char);
16748 vector signed short vec_srl (vector signed short, vector unsigned int);
16749 vector signed short vec_srl (vector signed short,
16750 vector unsigned short);
16751 vector signed short vec_srl (vector signed short, vector unsigned char);
16752 vector unsigned short vec_srl (vector unsigned short,
16753 vector unsigned int);
16754 vector unsigned short vec_srl (vector unsigned short,
16755 vector unsigned short);
16756 vector unsigned short vec_srl (vector unsigned short,
16757 vector unsigned char);
16758 vector bool short vec_srl (vector bool short, vector unsigned int);
16759 vector bool short vec_srl (vector bool short, vector unsigned short);
16760 vector bool short vec_srl (vector bool short, vector unsigned char);
16761 vector pixel vec_srl (vector pixel, vector unsigned int);
16762 vector pixel vec_srl (vector pixel, vector unsigned short);
16763 vector pixel vec_srl (vector pixel, vector unsigned char);
16764 vector signed char vec_srl (vector signed char, vector unsigned int);
16765 vector signed char vec_srl (vector signed char, vector unsigned short);
16766 vector signed char vec_srl (vector signed char, vector unsigned char);
16767 vector unsigned char vec_srl (vector unsigned char,
16768 vector unsigned int);
16769 vector unsigned char vec_srl (vector unsigned char,
16770 vector unsigned short);
16771 vector unsigned char vec_srl (vector unsigned char,
16772 vector unsigned char);
16773 vector bool char vec_srl (vector bool char, vector unsigned int);
16774 vector bool char vec_srl (vector bool char, vector unsigned short);
16775 vector bool char vec_srl (vector bool char, vector unsigned char);
16776
16777 vector float vec_sro (vector float, vector signed char);
16778 vector float vec_sro (vector float, vector unsigned char);
16779 vector signed int vec_sro (vector signed int, vector signed char);
16780 vector signed int vec_sro (vector signed int, vector unsigned char);
16781 vector unsigned int vec_sro (vector unsigned int, vector signed char);
16782 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
16783 vector signed short vec_sro (vector signed short, vector signed char);
16784 vector signed short vec_sro (vector signed short, vector unsigned char);
16785 vector unsigned short vec_sro (vector unsigned short,
16786 vector signed char);
16787 vector unsigned short vec_sro (vector unsigned short,
16788 vector unsigned char);
16789 vector pixel vec_sro (vector pixel, vector signed char);
16790 vector pixel vec_sro (vector pixel, vector unsigned char);
16791 vector signed char vec_sro (vector signed char, vector signed char);
16792 vector signed char vec_sro (vector signed char, vector unsigned char);
16793 vector unsigned char vec_sro (vector unsigned char, vector signed char);
16794 vector unsigned char vec_sro (vector unsigned char,
16795 vector unsigned char);
16796
16797 void vec_st (vector float, int, vector float *);
16798 void vec_st (vector float, int, float *);
16799 void vec_st (vector signed int, int, vector signed int *);
16800 void vec_st (vector signed int, int, int *);
16801 void vec_st (vector unsigned int, int, vector unsigned int *);
16802 void vec_st (vector unsigned int, int, unsigned int *);
16803 void vec_st (vector bool int, int, vector bool int *);
16804 void vec_st (vector bool int, int, unsigned int *);
16805 void vec_st (vector bool int, int, int *);
16806 void vec_st (vector signed short, int, vector signed short *);
16807 void vec_st (vector signed short, int, short *);
16808 void vec_st (vector unsigned short, int, vector unsigned short *);
16809 void vec_st (vector unsigned short, int, unsigned short *);
16810 void vec_st (vector bool short, int, vector bool short *);
16811 void vec_st (vector bool short, int, unsigned short *);
16812 void vec_st (vector pixel, int, vector pixel *);
16813 void vec_st (vector pixel, int, unsigned short *);
16814 void vec_st (vector pixel, int, short *);
16815 void vec_st (vector bool short, int, short *);
16816 void vec_st (vector signed char, int, vector signed char *);
16817 void vec_st (vector signed char, int, signed char *);
16818 void vec_st (vector unsigned char, int, vector unsigned char *);
16819 void vec_st (vector unsigned char, int, unsigned char *);
16820 void vec_st (vector bool char, int, vector bool char *);
16821 void vec_st (vector bool char, int, unsigned char *);
16822 void vec_st (vector bool char, int, signed char *);
16823
16824 void vec_ste (vector signed char, int, signed char *);
16825 void vec_ste (vector unsigned char, int, unsigned char *);
16826 void vec_ste (vector bool char, int, signed char *);
16827 void vec_ste (vector bool char, int, unsigned char *);
16828 void vec_ste (vector signed short, int, short *);
16829 void vec_ste (vector unsigned short, int, unsigned short *);
16830 void vec_ste (vector bool short, int, short *);
16831 void vec_ste (vector bool short, int, unsigned short *);
16832 void vec_ste (vector pixel, int, short *);
16833 void vec_ste (vector pixel, int, unsigned short *);
16834 void vec_ste (vector float, int, float *);
16835 void vec_ste (vector signed int, int, int *);
16836 void vec_ste (vector unsigned int, int, unsigned int *);
16837 void vec_ste (vector bool int, int, int *);
16838 void vec_ste (vector bool int, int, unsigned int *);
16839
16840 void vec_stvewx (vector float, int, float *);
16841 void vec_stvewx (vector signed int, int, int *);
16842 void vec_stvewx (vector unsigned int, int, unsigned int *);
16843 void vec_stvewx (vector bool int, int, int *);
16844 void vec_stvewx (vector bool int, int, unsigned int *);
16845
16846 void vec_stvehx (vector signed short, int, short *);
16847 void vec_stvehx (vector unsigned short, int, unsigned short *);
16848 void vec_stvehx (vector bool short, int, short *);
16849 void vec_stvehx (vector bool short, int, unsigned short *);
16850 void vec_stvehx (vector pixel, int, short *);
16851 void vec_stvehx (vector pixel, int, unsigned short *);
16852
16853 void vec_stvebx (vector signed char, int, signed char *);
16854 void vec_stvebx (vector unsigned char, int, unsigned char *);
16855 void vec_stvebx (vector bool char, int, signed char *);
16856 void vec_stvebx (vector bool char, int, unsigned char *);
16857
16858 void vec_stl (vector float, int, vector float *);
16859 void vec_stl (vector float, int, float *);
16860 void vec_stl (vector signed int, int, vector signed int *);
16861 void vec_stl (vector signed int, int, int *);
16862 void vec_stl (vector unsigned int, int, vector unsigned int *);
16863 void vec_stl (vector unsigned int, int, unsigned int *);
16864 void vec_stl (vector bool int, int, vector bool int *);
16865 void vec_stl (vector bool int, int, unsigned int *);
16866 void vec_stl (vector bool int, int, int *);
16867 void vec_stl (vector signed short, int, vector signed short *);
16868 void vec_stl (vector signed short, int, short *);
16869 void vec_stl (vector unsigned short, int, vector unsigned short *);
16870 void vec_stl (vector unsigned short, int, unsigned short *);
16871 void vec_stl (vector bool short, int, vector bool short *);
16872 void vec_stl (vector bool short, int, unsigned short *);
16873 void vec_stl (vector bool short, int, short *);
16874 void vec_stl (vector pixel, int, vector pixel *);
16875 void vec_stl (vector pixel, int, unsigned short *);
16876 void vec_stl (vector pixel, int, short *);
16877 void vec_stl (vector signed char, int, vector signed char *);
16878 void vec_stl (vector signed char, int, signed char *);
16879 void vec_stl (vector unsigned char, int, vector unsigned char *);
16880 void vec_stl (vector unsigned char, int, unsigned char *);
16881 void vec_stl (vector bool char, int, vector bool char *);
16882 void vec_stl (vector bool char, int, unsigned char *);
16883 void vec_stl (vector bool char, int, signed char *);
16884
16885 vector signed char vec_sub (vector bool char, vector signed char);
16886 vector signed char vec_sub (vector signed char, vector bool char);
16887 vector signed char vec_sub (vector signed char, vector signed char);
16888 vector unsigned char vec_sub (vector bool char, vector unsigned char);
16889 vector unsigned char vec_sub (vector unsigned char, vector bool char);
16890 vector unsigned char vec_sub (vector unsigned char,
16891 vector unsigned char);
16892 vector signed short vec_sub (vector bool short, vector signed short);
16893 vector signed short vec_sub (vector signed short, vector bool short);
16894 vector signed short vec_sub (vector signed short, vector signed short);
16895 vector unsigned short vec_sub (vector bool short,
16896 vector unsigned short);
16897 vector unsigned short vec_sub (vector unsigned short,
16898 vector bool short);
16899 vector unsigned short vec_sub (vector unsigned short,
16900 vector unsigned short);
16901 vector signed int vec_sub (vector bool int, vector signed int);
16902 vector signed int vec_sub (vector signed int, vector bool int);
16903 vector signed int vec_sub (vector signed int, vector signed int);
16904 vector unsigned int vec_sub (vector bool int, vector unsigned int);
16905 vector unsigned int vec_sub (vector unsigned int, vector bool int);
16906 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
16907 vector float vec_sub (vector float, vector float);
16908
16909 vector float vec_vsubfp (vector float, vector float);
16910
16911 vector signed int vec_vsubuwm (vector bool int, vector signed int);
16912 vector signed int vec_vsubuwm (vector signed int, vector bool int);
16913 vector signed int vec_vsubuwm (vector signed int, vector signed int);
16914 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
16915 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
16916 vector unsigned int vec_vsubuwm (vector unsigned int,
16917 vector unsigned int);
16918
16919 vector signed short vec_vsubuhm (vector bool short,
16920 vector signed short);
16921 vector signed short vec_vsubuhm (vector signed short,
16922 vector bool short);
16923 vector signed short vec_vsubuhm (vector signed short,
16924 vector signed short);
16925 vector unsigned short vec_vsubuhm (vector bool short,
16926 vector unsigned short);
16927 vector unsigned short vec_vsubuhm (vector unsigned short,
16928 vector bool short);
16929 vector unsigned short vec_vsubuhm (vector unsigned short,
16930 vector unsigned short);
16931
16932 vector signed char vec_vsububm (vector bool char, vector signed char);
16933 vector signed char vec_vsububm (vector signed char, vector bool char);
16934 vector signed char vec_vsububm (vector signed char, vector signed char);
16935 vector unsigned char vec_vsububm (vector bool char,
16936 vector unsigned char);
16937 vector unsigned char vec_vsububm (vector unsigned char,
16938 vector bool char);
16939 vector unsigned char vec_vsububm (vector unsigned char,
16940 vector unsigned char);
16941
16942 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
16943
16944 vector unsigned char vec_subs (vector bool char, vector unsigned char);
16945 vector unsigned char vec_subs (vector unsigned char, vector bool char);
16946 vector unsigned char vec_subs (vector unsigned char,
16947 vector unsigned char);
16948 vector signed char vec_subs (vector bool char, vector signed char);
16949 vector signed char vec_subs (vector signed char, vector bool char);
16950 vector signed char vec_subs (vector signed char, vector signed char);
16951 vector unsigned short vec_subs (vector bool short,
16952 vector unsigned short);
16953 vector unsigned short vec_subs (vector unsigned short,
16954 vector bool short);
16955 vector unsigned short vec_subs (vector unsigned short,
16956 vector unsigned short);
16957 vector signed short vec_subs (vector bool short, vector signed short);
16958 vector signed short vec_subs (vector signed short, vector bool short);
16959 vector signed short vec_subs (vector signed short, vector signed short);
16960 vector unsigned int vec_subs (vector bool int, vector unsigned int);
16961 vector unsigned int vec_subs (vector unsigned int, vector bool int);
16962 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
16963 vector signed int vec_subs (vector bool int, vector signed int);
16964 vector signed int vec_subs (vector signed int, vector bool int);
16965 vector signed int vec_subs (vector signed int, vector signed int);
16966
16967 vector signed int vec_vsubsws (vector bool int, vector signed int);
16968 vector signed int vec_vsubsws (vector signed int, vector bool int);
16969 vector signed int vec_vsubsws (vector signed int, vector signed int);
16970
16971 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
16972 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
16973 vector unsigned int vec_vsubuws (vector unsigned int,
16974 vector unsigned int);
16975
16976 vector signed short vec_vsubshs (vector bool short,
16977 vector signed short);
16978 vector signed short vec_vsubshs (vector signed short,
16979 vector bool short);
16980 vector signed short vec_vsubshs (vector signed short,
16981 vector signed short);
16982
16983 vector unsigned short vec_vsubuhs (vector bool short,
16984 vector unsigned short);
16985 vector unsigned short vec_vsubuhs (vector unsigned short,
16986 vector bool short);
16987 vector unsigned short vec_vsubuhs (vector unsigned short,
16988 vector unsigned short);
16989
16990 vector signed char vec_vsubsbs (vector bool char, vector signed char);
16991 vector signed char vec_vsubsbs (vector signed char, vector bool char);
16992 vector signed char vec_vsubsbs (vector signed char, vector signed char);
16993
16994 vector unsigned char vec_vsububs (vector bool char,
16995 vector unsigned char);
16996 vector unsigned char vec_vsububs (vector unsigned char,
16997 vector bool char);
16998 vector unsigned char vec_vsububs (vector unsigned char,
16999 vector unsigned char);
17000
17001 vector unsigned int vec_sum4s (vector unsigned char,
17002 vector unsigned int);
17003 vector signed int vec_sum4s (vector signed char, vector signed int);
17004 vector signed int vec_sum4s (vector signed short, vector signed int);
17005
17006 vector signed int vec_vsum4shs (vector signed short, vector signed int);
17007
17008 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
17009
17010 vector unsigned int vec_vsum4ubs (vector unsigned char,
17011 vector unsigned int);
17012
17013 vector signed int vec_sum2s (vector signed int, vector signed int);
17014
17015 vector signed int vec_sums (vector signed int, vector signed int);
17016
17017 vector float vec_trunc (vector float);
17018
17019 vector signed short vec_unpackh (vector signed char);
17020 vector bool short vec_unpackh (vector bool char);
17021 vector signed int vec_unpackh (vector signed short);
17022 vector bool int vec_unpackh (vector bool short);
17023 vector unsigned int vec_unpackh (vector pixel);
17024
17025 vector bool int vec_vupkhsh (vector bool short);
17026 vector signed int vec_vupkhsh (vector signed short);
17027
17028 vector unsigned int vec_vupkhpx (vector pixel);
17029
17030 vector bool short vec_vupkhsb (vector bool char);
17031 vector signed short vec_vupkhsb (vector signed char);
17032
17033 vector signed short vec_unpackl (vector signed char);
17034 vector bool short vec_unpackl (vector bool char);
17035 vector unsigned int vec_unpackl (vector pixel);
17036 vector signed int vec_unpackl (vector signed short);
17037 vector bool int vec_unpackl (vector bool short);
17038
17039 vector unsigned int vec_vupklpx (vector pixel);
17040
17041 vector bool int vec_vupklsh (vector bool short);
17042 vector signed int vec_vupklsh (vector signed short);
17043
17044 vector bool short vec_vupklsb (vector bool char);
17045 vector signed short vec_vupklsb (vector signed char);
17046
17047 vector float vec_xor (vector float, vector float);
17048 vector float vec_xor (vector float, vector bool int);
17049 vector float vec_xor (vector bool int, vector float);
17050 vector bool int vec_xor (vector bool int, vector bool int);
17051 vector signed int vec_xor (vector bool int, vector signed int);
17052 vector signed int vec_xor (vector signed int, vector bool int);
17053 vector signed int vec_xor (vector signed int, vector signed int);
17054 vector unsigned int vec_xor (vector bool int, vector unsigned int);
17055 vector unsigned int vec_xor (vector unsigned int, vector bool int);
17056 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
17057 vector bool short vec_xor (vector bool short, vector bool short);
17058 vector signed short vec_xor (vector bool short, vector signed short);
17059 vector signed short vec_xor (vector signed short, vector bool short);
17060 vector signed short vec_xor (vector signed short, vector signed short);
17061 vector unsigned short vec_xor (vector bool short,
17062 vector unsigned short);
17063 vector unsigned short vec_xor (vector unsigned short,
17064 vector bool short);
17065 vector unsigned short vec_xor (vector unsigned short,
17066 vector unsigned short);
17067 vector signed char vec_xor (vector bool char, vector signed char);
17068 vector bool char vec_xor (vector bool char, vector bool char);
17069 vector signed char vec_xor (vector signed char, vector bool char);
17070 vector signed char vec_xor (vector signed char, vector signed char);
17071 vector unsigned char vec_xor (vector bool char, vector unsigned char);
17072 vector unsigned char vec_xor (vector unsigned char, vector bool char);
17073 vector unsigned char vec_xor (vector unsigned char,
17074 vector unsigned char);
17075
17076 int vec_all_eq (vector signed char, vector bool char);
17077 int vec_all_eq (vector signed char, vector signed char);
17078 int vec_all_eq (vector unsigned char, vector bool char);
17079 int vec_all_eq (vector unsigned char, vector unsigned char);
17080 int vec_all_eq (vector bool char, vector bool char);
17081 int vec_all_eq (vector bool char, vector unsigned char);
17082 int vec_all_eq (vector bool char, vector signed char);
17083 int vec_all_eq (vector signed short, vector bool short);
17084 int vec_all_eq (vector signed short, vector signed short);
17085 int vec_all_eq (vector unsigned short, vector bool short);
17086 int vec_all_eq (vector unsigned short, vector unsigned short);
17087 int vec_all_eq (vector bool short, vector bool short);
17088 int vec_all_eq (vector bool short, vector unsigned short);
17089 int vec_all_eq (vector bool short, vector signed short);
17090 int vec_all_eq (vector pixel, vector pixel);
17091 int vec_all_eq (vector signed int, vector bool int);
17092 int vec_all_eq (vector signed int, vector signed int);
17093 int vec_all_eq (vector unsigned int, vector bool int);
17094 int vec_all_eq (vector unsigned int, vector unsigned int);
17095 int vec_all_eq (vector bool int, vector bool int);
17096 int vec_all_eq (vector bool int, vector unsigned int);
17097 int vec_all_eq (vector bool int, vector signed int);
17098 int vec_all_eq (vector float, vector float);
17099
17100 int vec_all_ge (vector bool char, vector unsigned char);
17101 int vec_all_ge (vector unsigned char, vector bool char);
17102 int vec_all_ge (vector unsigned char, vector unsigned char);
17103 int vec_all_ge (vector bool char, vector signed char);
17104 int vec_all_ge (vector signed char, vector bool char);
17105 int vec_all_ge (vector signed char, vector signed char);
17106 int vec_all_ge (vector bool short, vector unsigned short);
17107 int vec_all_ge (vector unsigned short, vector bool short);
17108 int vec_all_ge (vector unsigned short, vector unsigned short);
17109 int vec_all_ge (vector signed short, vector signed short);
17110 int vec_all_ge (vector bool short, vector signed short);
17111 int vec_all_ge (vector signed short, vector bool short);
17112 int vec_all_ge (vector bool int, vector unsigned int);
17113 int vec_all_ge (vector unsigned int, vector bool int);
17114 int vec_all_ge (vector unsigned int, vector unsigned int);
17115 int vec_all_ge (vector bool int, vector signed int);
17116 int vec_all_ge (vector signed int, vector bool int);
17117 int vec_all_ge (vector signed int, vector signed int);
17118 int vec_all_ge (vector float, vector float);
17119
17120 int vec_all_gt (vector bool char, vector unsigned char);
17121 int vec_all_gt (vector unsigned char, vector bool char);
17122 int vec_all_gt (vector unsigned char, vector unsigned char);
17123 int vec_all_gt (vector bool char, vector signed char);
17124 int vec_all_gt (vector signed char, vector bool char);
17125 int vec_all_gt (vector signed char, vector signed char);
17126 int vec_all_gt (vector bool short, vector unsigned short);
17127 int vec_all_gt (vector unsigned short, vector bool short);
17128 int vec_all_gt (vector unsigned short, vector unsigned short);
17129 int vec_all_gt (vector bool short, vector signed short);
17130 int vec_all_gt (vector signed short, vector bool short);
17131 int vec_all_gt (vector signed short, vector signed short);
17132 int vec_all_gt (vector bool int, vector unsigned int);
17133 int vec_all_gt (vector unsigned int, vector bool int);
17134 int vec_all_gt (vector unsigned int, vector unsigned int);
17135 int vec_all_gt (vector bool int, vector signed int);
17136 int vec_all_gt (vector signed int, vector bool int);
17137 int vec_all_gt (vector signed int, vector signed int);
17138 int vec_all_gt (vector float, vector float);
17139
17140 int vec_all_in (vector float, vector float);
17141
17142 int vec_all_le (vector bool char, vector unsigned char);
17143 int vec_all_le (vector unsigned char, vector bool char);
17144 int vec_all_le (vector unsigned char, vector unsigned char);
17145 int vec_all_le (vector bool char, vector signed char);
17146 int vec_all_le (vector signed char, vector bool char);
17147 int vec_all_le (vector signed char, vector signed char);
17148 int vec_all_le (vector bool short, vector unsigned short);
17149 int vec_all_le (vector unsigned short, vector bool short);
17150 int vec_all_le (vector unsigned short, vector unsigned short);
17151 int vec_all_le (vector bool short, vector signed short);
17152 int vec_all_le (vector signed short, vector bool short);
17153 int vec_all_le (vector signed short, vector signed short);
17154 int vec_all_le (vector bool int, vector unsigned int);
17155 int vec_all_le (vector unsigned int, vector bool int);
17156 int vec_all_le (vector unsigned int, vector unsigned int);
17157 int vec_all_le (vector bool int, vector signed int);
17158 int vec_all_le (vector signed int, vector bool int);
17159 int vec_all_le (vector signed int, vector signed int);
17160 int vec_all_le (vector float, vector float);
17161
17162 int vec_all_lt (vector bool char, vector unsigned char);
17163 int vec_all_lt (vector unsigned char, vector bool char);
17164 int vec_all_lt (vector unsigned char, vector unsigned char);
17165 int vec_all_lt (vector bool char, vector signed char);
17166 int vec_all_lt (vector signed char, vector bool char);
17167 int vec_all_lt (vector signed char, vector signed char);
17168 int vec_all_lt (vector bool short, vector unsigned short);
17169 int vec_all_lt (vector unsigned short, vector bool short);
17170 int vec_all_lt (vector unsigned short, vector unsigned short);
17171 int vec_all_lt (vector bool short, vector signed short);
17172 int vec_all_lt (vector signed short, vector bool short);
17173 int vec_all_lt (vector signed short, vector signed short);
17174 int vec_all_lt (vector bool int, vector unsigned int);
17175 int vec_all_lt (vector unsigned int, vector bool int);
17176 int vec_all_lt (vector unsigned int, vector unsigned int);
17177 int vec_all_lt (vector bool int, vector signed int);
17178 int vec_all_lt (vector signed int, vector bool int);
17179 int vec_all_lt (vector signed int, vector signed int);
17180 int vec_all_lt (vector float, vector float);
17181
17182 int vec_all_nan (vector float);
17183
17184 int vec_all_ne (vector signed char, vector bool char);
17185 int vec_all_ne (vector signed char, vector signed char);
17186 int vec_all_ne (vector unsigned char, vector bool char);
17187 int vec_all_ne (vector unsigned char, vector unsigned char);
17188 int vec_all_ne (vector bool char, vector bool char);
17189 int vec_all_ne (vector bool char, vector unsigned char);
17190 int vec_all_ne (vector bool char, vector signed char);
17191 int vec_all_ne (vector signed short, vector bool short);
17192 int vec_all_ne (vector signed short, vector signed short);
17193 int vec_all_ne (vector unsigned short, vector bool short);
17194 int vec_all_ne (vector unsigned short, vector unsigned short);
17195 int vec_all_ne (vector bool short, vector bool short);
17196 int vec_all_ne (vector bool short, vector unsigned short);
17197 int vec_all_ne (vector bool short, vector signed short);
17198 int vec_all_ne (vector pixel, vector pixel);
17199 int vec_all_ne (vector signed int, vector bool int);
17200 int vec_all_ne (vector signed int, vector signed int);
17201 int vec_all_ne (vector unsigned int, vector bool int);
17202 int vec_all_ne (vector unsigned int, vector unsigned int);
17203 int vec_all_ne (vector bool int, vector bool int);
17204 int vec_all_ne (vector bool int, vector unsigned int);
17205 int vec_all_ne (vector bool int, vector signed int);
17206 int vec_all_ne (vector float, vector float);
17207
17208 int vec_all_nge (vector float, vector float);
17209
17210 int vec_all_ngt (vector float, vector float);
17211
17212 int vec_all_nle (vector float, vector float);
17213
17214 int vec_all_nlt (vector float, vector float);
17215
17216 int vec_all_numeric (vector float);
17217
17218 int vec_any_eq (vector signed char, vector bool char);
17219 int vec_any_eq (vector signed char, vector signed char);
17220 int vec_any_eq (vector unsigned char, vector bool char);
17221 int vec_any_eq (vector unsigned char, vector unsigned char);
17222 int vec_any_eq (vector bool char, vector bool char);
17223 int vec_any_eq (vector bool char, vector unsigned char);
17224 int vec_any_eq (vector bool char, vector signed char);
17225 int vec_any_eq (vector signed short, vector bool short);
17226 int vec_any_eq (vector signed short, vector signed short);
17227 int vec_any_eq (vector unsigned short, vector bool short);
17228 int vec_any_eq (vector unsigned short, vector unsigned short);
17229 int vec_any_eq (vector bool short, vector bool short);
17230 int vec_any_eq (vector bool short, vector unsigned short);
17231 int vec_any_eq (vector bool short, vector signed short);
17232 int vec_any_eq (vector pixel, vector pixel);
17233 int vec_any_eq (vector signed int, vector bool int);
17234 int vec_any_eq (vector signed int, vector signed int);
17235 int vec_any_eq (vector unsigned int, vector bool int);
17236 int vec_any_eq (vector unsigned int, vector unsigned int);
17237 int vec_any_eq (vector bool int, vector bool int);
17238 int vec_any_eq (vector bool int, vector unsigned int);
17239 int vec_any_eq (vector bool int, vector signed int);
17240 int vec_any_eq (vector float, vector float);
17241
17242 int vec_any_ge (vector signed char, vector bool char);
17243 int vec_any_ge (vector unsigned char, vector bool char);
17244 int vec_any_ge (vector unsigned char, vector unsigned char);
17245 int vec_any_ge (vector signed char, vector signed char);
17246 int vec_any_ge (vector bool char, vector unsigned char);
17247 int vec_any_ge (vector bool char, vector signed char);
17248 int vec_any_ge (vector unsigned short, vector bool short);
17249 int vec_any_ge (vector unsigned short, vector unsigned short);
17250 int vec_any_ge (vector signed short, vector signed short);
17251 int vec_any_ge (vector signed short, vector bool short);
17252 int vec_any_ge (vector bool short, vector unsigned short);
17253 int vec_any_ge (vector bool short, vector signed short);
17254 int vec_any_ge (vector signed int, vector bool int);
17255 int vec_any_ge (vector unsigned int, vector bool int);
17256 int vec_any_ge (vector unsigned int, vector unsigned int);
17257 int vec_any_ge (vector signed int, vector signed int);
17258 int vec_any_ge (vector bool int, vector unsigned int);
17259 int vec_any_ge (vector bool int, vector signed int);
17260 int vec_any_ge (vector float, vector float);
17261
17262 int vec_any_gt (vector bool char, vector unsigned char);
17263 int vec_any_gt (vector unsigned char, vector bool char);
17264 int vec_any_gt (vector unsigned char, vector unsigned char);
17265 int vec_any_gt (vector bool char, vector signed char);
17266 int vec_any_gt (vector signed char, vector bool char);
17267 int vec_any_gt (vector signed char, vector signed char);
17268 int vec_any_gt (vector bool short, vector unsigned short);
17269 int vec_any_gt (vector unsigned short, vector bool short);
17270 int vec_any_gt (vector unsigned short, vector unsigned short);
17271 int vec_any_gt (vector bool short, vector signed short);
17272 int vec_any_gt (vector signed short, vector bool short);
17273 int vec_any_gt (vector signed short, vector signed short);
17274 int vec_any_gt (vector bool int, vector unsigned int);
17275 int vec_any_gt (vector unsigned int, vector bool int);
17276 int vec_any_gt (vector unsigned int, vector unsigned int);
17277 int vec_any_gt (vector bool int, vector signed int);
17278 int vec_any_gt (vector signed int, vector bool int);
17279 int vec_any_gt (vector signed int, vector signed int);
17280 int vec_any_gt (vector float, vector float);
17281
17282 int vec_any_le (vector bool char, vector unsigned char);
17283 int vec_any_le (vector unsigned char, vector bool char);
17284 int vec_any_le (vector unsigned char, vector unsigned char);
17285 int vec_any_le (vector bool char, vector signed char);
17286 int vec_any_le (vector signed char, vector bool char);
17287 int vec_any_le (vector signed char, vector signed char);
17288 int vec_any_le (vector bool short, vector unsigned short);
17289 int vec_any_le (vector unsigned short, vector bool short);
17290 int vec_any_le (vector unsigned short, vector unsigned short);
17291 int vec_any_le (vector bool short, vector signed short);
17292 int vec_any_le (vector signed short, vector bool short);
17293 int vec_any_le (vector signed short, vector signed short);
17294 int vec_any_le (vector bool int, vector unsigned int);
17295 int vec_any_le (vector unsigned int, vector bool int);
17296 int vec_any_le (vector unsigned int, vector unsigned int);
17297 int vec_any_le (vector bool int, vector signed int);
17298 int vec_any_le (vector signed int, vector bool int);
17299 int vec_any_le (vector signed int, vector signed int);
17300 int vec_any_le (vector float, vector float);
17301
17302 int vec_any_lt (vector bool char, vector unsigned char);
17303 int vec_any_lt (vector unsigned char, vector bool char);
17304 int vec_any_lt (vector unsigned char, vector unsigned char);
17305 int vec_any_lt (vector bool char, vector signed char);
17306 int vec_any_lt (vector signed char, vector bool char);
17307 int vec_any_lt (vector signed char, vector signed char);
17308 int vec_any_lt (vector bool short, vector unsigned short);
17309 int vec_any_lt (vector unsigned short, vector bool short);
17310 int vec_any_lt (vector unsigned short, vector unsigned short);
17311 int vec_any_lt (vector bool short, vector signed short);
17312 int vec_any_lt (vector signed short, vector bool short);
17313 int vec_any_lt (vector signed short, vector signed short);
17314 int vec_any_lt (vector bool int, vector unsigned int);
17315 int vec_any_lt (vector unsigned int, vector bool int);
17316 int vec_any_lt (vector unsigned int, vector unsigned int);
17317 int vec_any_lt (vector bool int, vector signed int);
17318 int vec_any_lt (vector signed int, vector bool int);
17319 int vec_any_lt (vector signed int, vector signed int);
17320 int vec_any_lt (vector float, vector float);
17321
17322 int vec_any_nan (vector float);
17323
17324 int vec_any_ne (vector signed char, vector bool char);
17325 int vec_any_ne (vector signed char, vector signed char);
17326 int vec_any_ne (vector unsigned char, vector bool char);
17327 int vec_any_ne (vector unsigned char, vector unsigned char);
17328 int vec_any_ne (vector bool char, vector bool char);
17329 int vec_any_ne (vector bool char, vector unsigned char);
17330 int vec_any_ne (vector bool char, vector signed char);
17331 int vec_any_ne (vector signed short, vector bool short);
17332 int vec_any_ne (vector signed short, vector signed short);
17333 int vec_any_ne (vector unsigned short, vector bool short);
17334 int vec_any_ne (vector unsigned short, vector unsigned short);
17335 int vec_any_ne (vector bool short, vector bool short);
17336 int vec_any_ne (vector bool short, vector unsigned short);
17337 int vec_any_ne (vector bool short, vector signed short);
17338 int vec_any_ne (vector pixel, vector pixel);
17339 int vec_any_ne (vector signed int, vector bool int);
17340 int vec_any_ne (vector signed int, vector signed int);
17341 int vec_any_ne (vector unsigned int, vector bool int);
17342 int vec_any_ne (vector unsigned int, vector unsigned int);
17343 int vec_any_ne (vector bool int, vector bool int);
17344 int vec_any_ne (vector bool int, vector unsigned int);
17345 int vec_any_ne (vector bool int, vector signed int);
17346 int vec_any_ne (vector float, vector float);
17347
17348 int vec_any_nge (vector float, vector float);
17349
17350 int vec_any_ngt (vector float, vector float);
17351
17352 int vec_any_nle (vector float, vector float);
17353
17354 int vec_any_nlt (vector float, vector float);
17355
17356 int vec_any_numeric (vector float);
17357
17358 int vec_any_out (vector float, vector float);
17359 @end smallexample
17360
17361 If the vector/scalar (VSX) instruction set is available, the following
17362 additional functions are available:
17363
17364 @smallexample
17365 vector double vec_abs (vector double);
17366 vector double vec_add (vector double, vector double);
17367 vector double vec_and (vector double, vector double);
17368 vector double vec_and (vector double, vector bool long);
17369 vector double vec_and (vector bool long, vector double);
17370 vector long vec_and (vector long, vector long);
17371 vector long vec_and (vector long, vector bool long);
17372 vector long vec_and (vector bool long, vector long);
17373 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17374 vector unsigned long vec_and (vector unsigned long, vector bool long);
17375 vector unsigned long vec_and (vector bool long, vector unsigned long);
17376 vector double vec_andc (vector double, vector double);
17377 vector double vec_andc (vector double, vector bool long);
17378 vector double vec_andc (vector bool long, vector double);
17379 vector long vec_andc (vector long, vector long);
17380 vector long vec_andc (vector long, vector bool long);
17381 vector long vec_andc (vector bool long, vector long);
17382 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17383 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17384 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17385 vector double vec_ceil (vector double);
17386 vector bool long vec_cmpeq (vector double, vector double);
17387 vector bool long vec_cmpge (vector double, vector double);
17388 vector bool long vec_cmpgt (vector double, vector double);
17389 vector bool long vec_cmple (vector double, vector double);
17390 vector bool long vec_cmplt (vector double, vector double);
17391 vector double vec_cpsgn (vector double, vector double);
17392 vector float vec_div (vector float, vector float);
17393 vector double vec_div (vector double, vector double);
17394 vector long vec_div (vector long, vector long);
17395 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
17396 vector double vec_floor (vector double);
17397 vector double vec_ld (int, const vector double *);
17398 vector double vec_ld (int, const double *);
17399 vector double vec_ldl (int, const vector double *);
17400 vector double vec_ldl (int, const double *);
17401 vector unsigned char vec_lvsl (int, const volatile double *);
17402 vector unsigned char vec_lvsr (int, const volatile double *);
17403 vector double vec_madd (vector double, vector double, vector double);
17404 vector double vec_max (vector double, vector double);
17405 vector signed long vec_mergeh (vector signed long, vector signed long);
17406 vector signed long vec_mergeh (vector signed long, vector bool long);
17407 vector signed long vec_mergeh (vector bool long, vector signed long);
17408 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
17409 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
17410 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
17411 vector signed long vec_mergel (vector signed long, vector signed long);
17412 vector signed long vec_mergel (vector signed long, vector bool long);
17413 vector signed long vec_mergel (vector bool long, vector signed long);
17414 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
17415 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
17416 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
17417 vector double vec_min (vector double, vector double);
17418 vector float vec_msub (vector float, vector float, vector float);
17419 vector double vec_msub (vector double, vector double, vector double);
17420 vector float vec_mul (vector float, vector float);
17421 vector double vec_mul (vector double, vector double);
17422 vector long vec_mul (vector long, vector long);
17423 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17424 vector float vec_nearbyint (vector float);
17425 vector double vec_nearbyint (vector double);
17426 vector float vec_nmadd (vector float, vector float, vector float);
17427 vector double vec_nmadd (vector double, vector double, vector double);
17428 vector double vec_nmsub (vector double, vector double, vector double);
17429 vector double vec_nor (vector double, vector double);
17430 vector long vec_nor (vector long, vector long);
17431 vector long vec_nor (vector long, vector bool long);
17432 vector long vec_nor (vector bool long, vector long);
17433 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
17434 vector unsigned long vec_nor (vector unsigned long, vector bool long);
17435 vector unsigned long vec_nor (vector bool long, vector unsigned long);
17436 vector double vec_or (vector double, vector double);
17437 vector double vec_or (vector double, vector bool long);
17438 vector double vec_or (vector bool long, vector double);
17439 vector long vec_or (vector long, vector long);
17440 vector long vec_or (vector long, vector bool long);
17441 vector long vec_or (vector bool long, vector long);
17442 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
17443 vector unsigned long vec_or (vector unsigned long, vector bool long);
17444 vector unsigned long vec_or (vector bool long, vector unsigned long);
17445 vector double vec_perm (vector double, vector double, vector unsigned char);
17446 vector long vec_perm (vector long, vector long, vector unsigned char);
17447 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
17448 vector unsigned char);
17449 vector double vec_rint (vector double);
17450 vector double vec_recip (vector double, vector double);
17451 vector double vec_rsqrt (vector double);
17452 vector double vec_rsqrte (vector double);
17453 vector double vec_sel (vector double, vector double, vector bool long);
17454 vector double vec_sel (vector double, vector double, vector unsigned long);
17455 vector long vec_sel (vector long, vector long, vector long);
17456 vector long vec_sel (vector long, vector long, vector unsigned long);
17457 vector long vec_sel (vector long, vector long, vector bool long);
17458 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17459 vector long);
17460 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17461 vector unsigned long);
17462 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17463 vector bool long);
17464 vector double vec_splats (double);
17465 vector signed long vec_splats (signed long);
17466 vector unsigned long vec_splats (unsigned long);
17467 vector float vec_sqrt (vector float);
17468 vector double vec_sqrt (vector double);
17469 void vec_st (vector double, int, vector double *);
17470 void vec_st (vector double, int, double *);
17471 vector double vec_sub (vector double, vector double);
17472 vector double vec_trunc (vector double);
17473 vector double vec_xl (int, vector double *);
17474 vector double vec_xl (int, double *);
17475 vector long long vec_xl (int, vector long long *);
17476 vector long long vec_xl (int, long long *);
17477 vector unsigned long long vec_xl (int, vector unsigned long long *);
17478 vector unsigned long long vec_xl (int, unsigned long long *);
17479 vector float vec_xl (int, vector float *);
17480 vector float vec_xl (int, float *);
17481 vector int vec_xl (int, vector int *);
17482 vector int vec_xl (int, int *);
17483 vector unsigned int vec_xl (int, vector unsigned int *);
17484 vector unsigned int vec_xl (int, unsigned int *);
17485 vector double vec_xor (vector double, vector double);
17486 vector double vec_xor (vector double, vector bool long);
17487 vector double vec_xor (vector bool long, vector double);
17488 vector long vec_xor (vector long, vector long);
17489 vector long vec_xor (vector long, vector bool long);
17490 vector long vec_xor (vector bool long, vector long);
17491 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
17492 vector unsigned long vec_xor (vector unsigned long, vector bool long);
17493 vector unsigned long vec_xor (vector bool long, vector unsigned long);
17494 void vec_xst (vector double, int, vector double *);
17495 void vec_xst (vector double, int, double *);
17496 void vec_xst (vector long long, int, vector long long *);
17497 void vec_xst (vector long long, int, long long *);
17498 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
17499 void vec_xst (vector unsigned long long, int, unsigned long long *);
17500 void vec_xst (vector float, int, vector float *);
17501 void vec_xst (vector float, int, float *);
17502 void vec_xst (vector int, int, vector int *);
17503 void vec_xst (vector int, int, int *);
17504 void vec_xst (vector unsigned int, int, vector unsigned int *);
17505 void vec_xst (vector unsigned int, int, unsigned int *);
17506 int vec_all_eq (vector double, vector double);
17507 int vec_all_ge (vector double, vector double);
17508 int vec_all_gt (vector double, vector double);
17509 int vec_all_le (vector double, vector double);
17510 int vec_all_lt (vector double, vector double);
17511 int vec_all_nan (vector double);
17512 int vec_all_ne (vector double, vector double);
17513 int vec_all_nge (vector double, vector double);
17514 int vec_all_ngt (vector double, vector double);
17515 int vec_all_nle (vector double, vector double);
17516 int vec_all_nlt (vector double, vector double);
17517 int vec_all_numeric (vector double);
17518 int vec_any_eq (vector double, vector double);
17519 int vec_any_ge (vector double, vector double);
17520 int vec_any_gt (vector double, vector double);
17521 int vec_any_le (vector double, vector double);
17522 int vec_any_lt (vector double, vector double);
17523 int vec_any_nan (vector double);
17524 int vec_any_ne (vector double, vector double);
17525 int vec_any_nge (vector double, vector double);
17526 int vec_any_ngt (vector double, vector double);
17527 int vec_any_nle (vector double, vector double);
17528 int vec_any_nlt (vector double, vector double);
17529 int vec_any_numeric (vector double);
17530
17531 vector double vec_vsx_ld (int, const vector double *);
17532 vector double vec_vsx_ld (int, const double *);
17533 vector float vec_vsx_ld (int, const vector float *);
17534 vector float vec_vsx_ld (int, const float *);
17535 vector bool int vec_vsx_ld (int, const vector bool int *);
17536 vector signed int vec_vsx_ld (int, const vector signed int *);
17537 vector signed int vec_vsx_ld (int, const int *);
17538 vector signed int vec_vsx_ld (int, const long *);
17539 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
17540 vector unsigned int vec_vsx_ld (int, const unsigned int *);
17541 vector unsigned int vec_vsx_ld (int, const unsigned long *);
17542 vector bool short vec_vsx_ld (int, const vector bool short *);
17543 vector pixel vec_vsx_ld (int, const vector pixel *);
17544 vector signed short vec_vsx_ld (int, const vector signed short *);
17545 vector signed short vec_vsx_ld (int, const short *);
17546 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
17547 vector unsigned short vec_vsx_ld (int, const unsigned short *);
17548 vector bool char vec_vsx_ld (int, const vector bool char *);
17549 vector signed char vec_vsx_ld (int, const vector signed char *);
17550 vector signed char vec_vsx_ld (int, const signed char *);
17551 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
17552 vector unsigned char vec_vsx_ld (int, const unsigned char *);
17553
17554 void vec_vsx_st (vector double, int, vector double *);
17555 void vec_vsx_st (vector double, int, double *);
17556 void vec_vsx_st (vector float, int, vector float *);
17557 void vec_vsx_st (vector float, int, float *);
17558 void vec_vsx_st (vector signed int, int, vector signed int *);
17559 void vec_vsx_st (vector signed int, int, int *);
17560 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
17561 void vec_vsx_st (vector unsigned int, int, unsigned int *);
17562 void vec_vsx_st (vector bool int, int, vector bool int *);
17563 void vec_vsx_st (vector bool int, int, unsigned int *);
17564 void vec_vsx_st (vector bool int, int, int *);
17565 void vec_vsx_st (vector signed short, int, vector signed short *);
17566 void vec_vsx_st (vector signed short, int, short *);
17567 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
17568 void vec_vsx_st (vector unsigned short, int, unsigned short *);
17569 void vec_vsx_st (vector bool short, int, vector bool short *);
17570 void vec_vsx_st (vector bool short, int, unsigned short *);
17571 void vec_vsx_st (vector pixel, int, vector pixel *);
17572 void vec_vsx_st (vector pixel, int, unsigned short *);
17573 void vec_vsx_st (vector pixel, int, short *);
17574 void vec_vsx_st (vector bool short, int, short *);
17575 void vec_vsx_st (vector signed char, int, vector signed char *);
17576 void vec_vsx_st (vector signed char, int, signed char *);
17577 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
17578 void vec_vsx_st (vector unsigned char, int, unsigned char *);
17579 void vec_vsx_st (vector bool char, int, vector bool char *);
17580 void vec_vsx_st (vector bool char, int, unsigned char *);
17581 void vec_vsx_st (vector bool char, int, signed char *);
17582
17583 vector double vec_xxpermdi (vector double, vector double, int);
17584 vector float vec_xxpermdi (vector float, vector float, int);
17585 vector long long vec_xxpermdi (vector long long, vector long long, int);
17586 vector unsigned long long vec_xxpermdi (vector unsigned long long,
17587 vector unsigned long long, int);
17588 vector int vec_xxpermdi (vector int, vector int, int);
17589 vector unsigned int vec_xxpermdi (vector unsigned int,
17590 vector unsigned int, int);
17591 vector short vec_xxpermdi (vector short, vector short, int);
17592 vector unsigned short vec_xxpermdi (vector unsigned short,
17593 vector unsigned short, int);
17594 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
17595 vector unsigned char vec_xxpermdi (vector unsigned char,
17596 vector unsigned char, int);
17597
17598 vector double vec_xxsldi (vector double, vector double, int);
17599 vector float vec_xxsldi (vector float, vector float, int);
17600 vector long long vec_xxsldi (vector long long, vector long long, int);
17601 vector unsigned long long vec_xxsldi (vector unsigned long long,
17602 vector unsigned long long, int);
17603 vector int vec_xxsldi (vector int, vector int, int);
17604 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
17605 vector short vec_xxsldi (vector short, vector short, int);
17606 vector unsigned short vec_xxsldi (vector unsigned short,
17607 vector unsigned short, int);
17608 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
17609 vector unsigned char vec_xxsldi (vector unsigned char,
17610 vector unsigned char, int);
17611 @end smallexample
17612
17613 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
17614 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
17615 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
17616 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
17617 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
17618
17619 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17620 instruction set are available, the following additional functions are
17621 available for both 32-bit and 64-bit targets. For 64-bit targets, you
17622 can use @var{vector long} instead of @var{vector long long},
17623 @var{vector bool long} instead of @var{vector bool long long}, and
17624 @var{vector unsigned long} instead of @var{vector unsigned long long}.
17625
17626 @smallexample
17627 vector long long vec_abs (vector long long);
17628
17629 vector long long vec_add (vector long long, vector long long);
17630 vector unsigned long long vec_add (vector unsigned long long,
17631 vector unsigned long long);
17632
17633 int vec_all_eq (vector long long, vector long long);
17634 int vec_all_eq (vector unsigned long long, vector unsigned long long);
17635 int vec_all_ge (vector long long, vector long long);
17636 int vec_all_ge (vector unsigned long long, vector unsigned long long);
17637 int vec_all_gt (vector long long, vector long long);
17638 int vec_all_gt (vector unsigned long long, vector unsigned long long);
17639 int vec_all_le (vector long long, vector long long);
17640 int vec_all_le (vector unsigned long long, vector unsigned long long);
17641 int vec_all_lt (vector long long, vector long long);
17642 int vec_all_lt (vector unsigned long long, vector unsigned long long);
17643 int vec_all_ne (vector long long, vector long long);
17644 int vec_all_ne (vector unsigned long long, vector unsigned long long);
17645
17646 int vec_any_eq (vector long long, vector long long);
17647 int vec_any_eq (vector unsigned long long, vector unsigned long long);
17648 int vec_any_ge (vector long long, vector long long);
17649 int vec_any_ge (vector unsigned long long, vector unsigned long long);
17650 int vec_any_gt (vector long long, vector long long);
17651 int vec_any_gt (vector unsigned long long, vector unsigned long long);
17652 int vec_any_le (vector long long, vector long long);
17653 int vec_any_le (vector unsigned long long, vector unsigned long long);
17654 int vec_any_lt (vector long long, vector long long);
17655 int vec_any_lt (vector unsigned long long, vector unsigned long long);
17656 int vec_any_ne (vector long long, vector long long);
17657 int vec_any_ne (vector unsigned long long, vector unsigned long long);
17658
17659 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
17660
17661 vector long long vec_eqv (vector long long, vector long long);
17662 vector long long vec_eqv (vector bool long long, vector long long);
17663 vector long long vec_eqv (vector long long, vector bool long long);
17664 vector unsigned long long vec_eqv (vector unsigned long long,
17665 vector unsigned long long);
17666 vector unsigned long long vec_eqv (vector bool long long,
17667 vector unsigned long long);
17668 vector unsigned long long vec_eqv (vector unsigned long long,
17669 vector bool long long);
17670 vector int vec_eqv (vector int, vector int);
17671 vector int vec_eqv (vector bool int, vector int);
17672 vector int vec_eqv (vector int, vector bool int);
17673 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
17674 vector unsigned int vec_eqv (vector bool unsigned int,
17675 vector unsigned int);
17676 vector unsigned int vec_eqv (vector unsigned int,
17677 vector bool unsigned int);
17678 vector short vec_eqv (vector short, vector short);
17679 vector short vec_eqv (vector bool short, vector short);
17680 vector short vec_eqv (vector short, vector bool short);
17681 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
17682 vector unsigned short vec_eqv (vector bool unsigned short,
17683 vector unsigned short);
17684 vector unsigned short vec_eqv (vector unsigned short,
17685 vector bool unsigned short);
17686 vector signed char vec_eqv (vector signed char, vector signed char);
17687 vector signed char vec_eqv (vector bool signed char, vector signed char);
17688 vector signed char vec_eqv (vector signed char, vector bool signed char);
17689 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
17690 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
17691 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
17692
17693 vector long long vec_max (vector long long, vector long long);
17694 vector unsigned long long vec_max (vector unsigned long long,
17695 vector unsigned long long);
17696
17697 vector signed int vec_mergee (vector signed int, vector signed int);
17698 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
17699 vector bool int vec_mergee (vector bool int, vector bool int);
17700
17701 vector signed int vec_mergeo (vector signed int, vector signed int);
17702 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
17703 vector bool int vec_mergeo (vector bool int, vector bool int);
17704
17705 vector long long vec_min (vector long long, vector long long);
17706 vector unsigned long long vec_min (vector unsigned long long,
17707 vector unsigned long long);
17708
17709 vector long long vec_nand (vector long long, vector long long);
17710 vector long long vec_nand (vector bool long long, vector long long);
17711 vector long long vec_nand (vector long long, vector bool long long);
17712 vector unsigned long long vec_nand (vector unsigned long long,
17713 vector unsigned long long);
17714 vector unsigned long long vec_nand (vector bool long long,
17715 vector unsigned long long);
17716 vector unsigned long long vec_nand (vector unsigned long long,
17717 vector bool long long);
17718 vector int vec_nand (vector int, vector int);
17719 vector int vec_nand (vector bool int, vector int);
17720 vector int vec_nand (vector int, vector bool int);
17721 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
17722 vector unsigned int vec_nand (vector bool unsigned int,
17723 vector unsigned int);
17724 vector unsigned int vec_nand (vector unsigned int,
17725 vector bool unsigned int);
17726 vector short vec_nand (vector short, vector short);
17727 vector short vec_nand (vector bool short, vector short);
17728 vector short vec_nand (vector short, vector bool short);
17729 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
17730 vector unsigned short vec_nand (vector bool unsigned short,
17731 vector unsigned short);
17732 vector unsigned short vec_nand (vector unsigned short,
17733 vector bool unsigned short);
17734 vector signed char vec_nand (vector signed char, vector signed char);
17735 vector signed char vec_nand (vector bool signed char, vector signed char);
17736 vector signed char vec_nand (vector signed char, vector bool signed char);
17737 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
17738 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
17739 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
17740
17741 vector long long vec_orc (vector long long, vector long long);
17742 vector long long vec_orc (vector bool long long, vector long long);
17743 vector long long vec_orc (vector long long, vector bool long long);
17744 vector unsigned long long vec_orc (vector unsigned long long,
17745 vector unsigned long long);
17746 vector unsigned long long vec_orc (vector bool long long,
17747 vector unsigned long long);
17748 vector unsigned long long vec_orc (vector unsigned long long,
17749 vector bool long long);
17750 vector int vec_orc (vector int, vector int);
17751 vector int vec_orc (vector bool int, vector int);
17752 vector int vec_orc (vector int, vector bool int);
17753 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
17754 vector unsigned int vec_orc (vector bool unsigned int,
17755 vector unsigned int);
17756 vector unsigned int vec_orc (vector unsigned int,
17757 vector bool unsigned int);
17758 vector short vec_orc (vector short, vector short);
17759 vector short vec_orc (vector bool short, vector short);
17760 vector short vec_orc (vector short, vector bool short);
17761 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
17762 vector unsigned short vec_orc (vector bool unsigned short,
17763 vector unsigned short);
17764 vector unsigned short vec_orc (vector unsigned short,
17765 vector bool unsigned short);
17766 vector signed char vec_orc (vector signed char, vector signed char);
17767 vector signed char vec_orc (vector bool signed char, vector signed char);
17768 vector signed char vec_orc (vector signed char, vector bool signed char);
17769 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
17770 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
17771 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
17772
17773 vector int vec_pack (vector long long, vector long long);
17774 vector unsigned int vec_pack (vector unsigned long long,
17775 vector unsigned long long);
17776 vector bool int vec_pack (vector bool long long, vector bool long long);
17777 vector float vec_pack (vector double, vector double);
17778
17779 vector int vec_packs (vector long long, vector long long);
17780 vector unsigned int vec_packs (vector unsigned long long,
17781 vector unsigned long long);
17782
17783 vector unsigned int vec_packsu (vector long long, vector long long);
17784 vector unsigned int vec_packsu (vector unsigned long long,
17785 vector unsigned long long);
17786
17787 vector long long vec_rl (vector long long,
17788 vector unsigned long long);
17789 vector long long vec_rl (vector unsigned long long,
17790 vector unsigned long long);
17791
17792 vector long long vec_sl (vector long long, vector unsigned long long);
17793 vector long long vec_sl (vector unsigned long long,
17794 vector unsigned long long);
17795
17796 vector long long vec_sr (vector long long, vector unsigned long long);
17797 vector unsigned long long char vec_sr (vector unsigned long long,
17798 vector unsigned long long);
17799
17800 vector long long vec_sra (vector long long, vector unsigned long long);
17801 vector unsigned long long vec_sra (vector unsigned long long,
17802 vector unsigned long long);
17803
17804 vector long long vec_sub (vector long long, vector long long);
17805 vector unsigned long long vec_sub (vector unsigned long long,
17806 vector unsigned long long);
17807
17808 vector long long vec_unpackh (vector int);
17809 vector unsigned long long vec_unpackh (vector unsigned int);
17810
17811 vector long long vec_unpackl (vector int);
17812 vector unsigned long long vec_unpackl (vector unsigned int);
17813
17814 vector long long vec_vaddudm (vector long long, vector long long);
17815 vector long long vec_vaddudm (vector bool long long, vector long long);
17816 vector long long vec_vaddudm (vector long long, vector bool long long);
17817 vector unsigned long long vec_vaddudm (vector unsigned long long,
17818 vector unsigned long long);
17819 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
17820 vector unsigned long long);
17821 vector unsigned long long vec_vaddudm (vector unsigned long long,
17822 vector bool unsigned long long);
17823
17824 vector long long vec_vbpermq (vector signed char, vector signed char);
17825 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
17826
17827 vector long long vec_cntlz (vector long long);
17828 vector unsigned long long vec_cntlz (vector unsigned long long);
17829 vector int vec_cntlz (vector int);
17830 vector unsigned int vec_cntlz (vector int);
17831 vector short vec_cntlz (vector short);
17832 vector unsigned short vec_cntlz (vector unsigned short);
17833 vector signed char vec_cntlz (vector signed char);
17834 vector unsigned char vec_cntlz (vector unsigned char);
17835
17836 vector long long vec_vclz (vector long long);
17837 vector unsigned long long vec_vclz (vector unsigned long long);
17838 vector int vec_vclz (vector int);
17839 vector unsigned int vec_vclz (vector int);
17840 vector short vec_vclz (vector short);
17841 vector unsigned short vec_vclz (vector unsigned short);
17842 vector signed char vec_vclz (vector signed char);
17843 vector unsigned char vec_vclz (vector unsigned char);
17844
17845 vector signed char vec_vclzb (vector signed char);
17846 vector unsigned char vec_vclzb (vector unsigned char);
17847
17848 vector long long vec_vclzd (vector long long);
17849 vector unsigned long long vec_vclzd (vector unsigned long long);
17850
17851 vector short vec_vclzh (vector short);
17852 vector unsigned short vec_vclzh (vector unsigned short);
17853
17854 vector int vec_vclzw (vector int);
17855 vector unsigned int vec_vclzw (vector int);
17856
17857 vector signed char vec_vgbbd (vector signed char);
17858 vector unsigned char vec_vgbbd (vector unsigned char);
17859
17860 vector long long vec_vmaxsd (vector long long, vector long long);
17861
17862 vector unsigned long long vec_vmaxud (vector unsigned long long,
17863 unsigned vector long long);
17864
17865 vector long long vec_vminsd (vector long long, vector long long);
17866
17867 vector unsigned long long vec_vminud (vector long long,
17868 vector long long);
17869
17870 vector int vec_vpksdss (vector long long, vector long long);
17871 vector unsigned int vec_vpksdss (vector long long, vector long long);
17872
17873 vector unsigned int vec_vpkudus (vector unsigned long long,
17874 vector unsigned long long);
17875
17876 vector int vec_vpkudum (vector long long, vector long long);
17877 vector unsigned int vec_vpkudum (vector unsigned long long,
17878 vector unsigned long long);
17879 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
17880
17881 vector long long vec_vpopcnt (vector long long);
17882 vector unsigned long long vec_vpopcnt (vector unsigned long long);
17883 vector int vec_vpopcnt (vector int);
17884 vector unsigned int vec_vpopcnt (vector int);
17885 vector short vec_vpopcnt (vector short);
17886 vector unsigned short vec_vpopcnt (vector unsigned short);
17887 vector signed char vec_vpopcnt (vector signed char);
17888 vector unsigned char vec_vpopcnt (vector unsigned char);
17889
17890 vector signed char vec_vpopcntb (vector signed char);
17891 vector unsigned char vec_vpopcntb (vector unsigned char);
17892
17893 vector long long vec_vpopcntd (vector long long);
17894 vector unsigned long long vec_vpopcntd (vector unsigned long long);
17895
17896 vector short vec_vpopcnth (vector short);
17897 vector unsigned short vec_vpopcnth (vector unsigned short);
17898
17899 vector int vec_vpopcntw (vector int);
17900 vector unsigned int vec_vpopcntw (vector int);
17901
17902 vector long long vec_vrld (vector long long, vector unsigned long long);
17903 vector unsigned long long vec_vrld (vector unsigned long long,
17904 vector unsigned long long);
17905
17906 vector long long vec_vsld (vector long long, vector unsigned long long);
17907 vector long long vec_vsld (vector unsigned long long,
17908 vector unsigned long long);
17909
17910 vector long long vec_vsrad (vector long long, vector unsigned long long);
17911 vector unsigned long long vec_vsrad (vector unsigned long long,
17912 vector unsigned long long);
17913
17914 vector long long vec_vsrd (vector long long, vector unsigned long long);
17915 vector unsigned long long char vec_vsrd (vector unsigned long long,
17916 vector unsigned long long);
17917
17918 vector long long vec_vsubudm (vector long long, vector long long);
17919 vector long long vec_vsubudm (vector bool long long, vector long long);
17920 vector long long vec_vsubudm (vector long long, vector bool long long);
17921 vector unsigned long long vec_vsubudm (vector unsigned long long,
17922 vector unsigned long long);
17923 vector unsigned long long vec_vsubudm (vector bool long long,
17924 vector unsigned long long);
17925 vector unsigned long long vec_vsubudm (vector unsigned long long,
17926 vector bool long long);
17927
17928 vector long long vec_vupkhsw (vector int);
17929 vector unsigned long long vec_vupkhsw (vector unsigned int);
17930
17931 vector long long vec_vupklsw (vector int);
17932 vector unsigned long long vec_vupklsw (vector int);
17933 @end smallexample
17934
17935 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17936 instruction set are available, the following additional functions are
17937 available for 64-bit targets. New vector types
17938 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
17939 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
17940 builtins.
17941
17942 The normal vector extract, and set operations work on
17943 @var{vector __int128_t} and @var{vector __uint128_t} types,
17944 but the index value must be 0.
17945
17946 @smallexample
17947 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
17948 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
17949
17950 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
17951 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
17952
17953 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
17954 vector __int128_t);
17955 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
17956 vector __uint128_t);
17957
17958 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
17959 vector __int128_t);
17960 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
17961 vector __uint128_t);
17962
17963 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
17964 vector __int128_t);
17965 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
17966 vector __uint128_t);
17967
17968 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
17969 vector __int128_t);
17970 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
17971 vector __uint128_t);
17972
17973 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
17974 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
17975
17976 __int128_t vec_vsubuqm (__int128_t, __int128_t);
17977 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
17978
17979 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
17980 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
17981 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
17982 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
17983 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
17984 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
17985 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
17986 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
17987 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
17988 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
17989 @end smallexample
17990
17991 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
17992 are available:
17993
17994 @smallexample
17995 vector bool char vec_cmpne (vector bool char, vector bool char);
17996 vector bool short vec_cmpne (vector bool short, vector bool short);
17997 vector bool int vec_cmpne (vector bool int, vector bool int);
17998 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
17999
18000 vector long long vec_vctz (vector long long);
18001 vector unsigned long long vec_vctz (vector unsigned long long);
18002 vector int vec_vctz (vector int);
18003 vector unsigned int vec_vctz (vector int);
18004 vector short vec_vctz (vector short);
18005 vector unsigned short vec_vctz (vector unsigned short);
18006 vector signed char vec_vctz (vector signed char);
18007 vector unsigned char vec_vctz (vector unsigned char);
18008
18009 vector signed char vec_vctzb (vector signed char);
18010 vector unsigned char vec_vctzb (vector unsigned char);
18011
18012 vector long long vec_vctzd (vector long long);
18013 vector unsigned long long vec_vctzd (vector unsigned long long);
18014
18015 vector short vec_vctzh (vector short);
18016 vector unsigned short vec_vctzh (vector unsigned short);
18017
18018 vector int vec_vctzw (vector int);
18019 vector unsigned int vec_vctzw (vector int);
18020
18021 long long vec_vextract4b (const vector signed char, const int);
18022 long long vec_vextract4b (const vector unsigned char, const int);
18023
18024 vector signed char vec_insert4b (vector int, vector signed char, const int);
18025 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
18026 const int);
18027 vector signed char vec_insert4b (long long, vector signed char, const int);
18028 vector unsigned char vec_insert4b (long long, vector unsigned char, const int);
18029
18030 vector int vec_vprtyb (vector int);
18031 vector unsigned int vec_vprtyb (vector unsigned int);
18032 vector long long vec_vprtyb (vector long long);
18033 vector unsigned long long vec_vprtyb (vector unsigned long long);
18034
18035 vector int vec_vprtybw (vector int);
18036 vector unsigned int vec_vprtybw (vector unsigned int);
18037
18038 vector long long vec_vprtybd (vector long long);
18039 vector unsigned long long vec_vprtybd (vector unsigned long long);
18040 @end smallexample
18041
18042 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18043 are available:
18044
18045 @smallexample
18046 vector long vec_vprtyb (vector long);
18047 vector unsigned long vec_vprtyb (vector unsigned long);
18048 vector __int128_t vec_vprtyb (vector __int128_t);
18049 vector __uint128_t vec_vprtyb (vector __uint128_t);
18050
18051 vector long vec_vprtybd (vector long);
18052 vector unsigned long vec_vprtybd (vector unsigned long);
18053
18054 vector __int128_t vec_vprtybq (vector __int128_t);
18055 vector __uint128_t vec_vprtybd (vector __uint128_t);
18056 @end smallexample
18057
18058 The following built-in vector functions are available for the PowerPC family
18059 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18060 @smallexample
18061 __vector unsigned char
18062 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
18063 __vector unsigned char
18064 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
18065 @end smallexample
18066
18067 The @code{vec_slv} and @code{vec_srv} functions operate on
18068 all of the bytes of their @code{src} and @code{shift_distance}
18069 arguments in parallel. The behavior of the @code{vec_slv} is as if
18070 there existed a temporary array of 17 unsigned characters
18071 @code{slv_array} within which elements 0 through 15 are the same as
18072 the entries in the @code{src} array and element 16 equals 0. The
18073 result returned from the @code{vec_slv} function is a
18074 @code{__vector} of 16 unsigned characters within which element
18075 @code{i} is computed using the C expression
18076 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
18077 shift_distance[i]))},
18078 with this resulting value coerced to the @code{unsigned char} type.
18079 The behavior of the @code{vec_srv} is as if
18080 there existed a temporary array of 17 unsigned characters
18081 @code{srv_array} within which element 0 equals zero and
18082 elements 1 through 16 equal the elements 0 through 15 of
18083 the @code{src} array. The
18084 result returned from the @code{vec_srv} function is a
18085 @code{__vector} of 16 unsigned characters within which element
18086 @code{i} is computed using the C expression
18087 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
18088 (0x07 & shift_distance[i]))},
18089 with this resulting value coerced to the @code{unsigned char} type.
18090
18091 The following built-in functions are available for the PowerPC family
18092 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18093 @smallexample
18094 __vector unsigned char
18095 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
18096 __vector unsigned short
18097 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
18098 __vector unsigned int
18099 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
18100
18101 __vector unsigned char
18102 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
18103 __vector unsigned short
18104 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
18105 __vector unsigned int
18106 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
18107 @end smallexample
18108
18109 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
18110 @code{vec_absdw} built-in functions each computes the absolute
18111 differences of the pairs of vector elements supplied in its two vector
18112 arguments, placing the absolute differences into the corresponding
18113 elements of the vector result.
18114
18115 The following built-in functions are available for the PowerPC family
18116 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18117 @smallexample
18118 __vector int
18119 vec_extract_exp (__vector float source);
18120 __vector long long int
18121 vec_extract_exp (__vector double source);
18122
18123 __vector int
18124 vec_extract_sig (__vector float source);
18125 __vector long long int
18126 vec_extract_sig (__vector double source);
18127
18128 __vector float
18129 vec_insert_exp (__vector unsigned int significands, __vector unsigned int exponents);
18130 __vector double
18131 vec_insert_exp (__vector unsigned long long int significands,
18132 __vector unsigned long long int exponents);
18133
18134 __vector int vec_test_data_class (__vector float source, unsigned int condition);
18135 __vector long long int vec_test_data_class (__vector double source, unsigned int condition);
18136 @end smallexample
18137
18138 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
18139 functions return vectors representing the significands and exponents
18140 of their @code{source} arguments respectively. The
18141 @code{vec_insert_exp} built-in functions return a vector of single- or
18142 double-precision floating
18143 point values constructed by assembling the values of their
18144 @code{significands} and @code{exponents} arguments into the
18145 corresponding elements of the returned vector. The sign of each
18146 element of the result is copied from the most significant bit of the
18147 corresponding entry within the @code{significands} argument. The
18148 significand and exponent components of each element of the result are
18149 composed of the least significant bits of the corresponding
18150 @code{significands} element and the least significant bits of the
18151 corresponding @code{exponents} element.
18152
18153 The @code{vec_test_data_class} built-in function returns a vector
18154 representing the results of testing the @code{source} vector for the
18155 condition selected by the @code{condition} argument. The
18156 @code{condition} argument must be an unsigned integer with value not
18157 exceeding 127. The
18158 @code{condition} argument is encoded as a bitmask with each bit
18159 enabling the testing of a different condition, as characterized by the
18160 following:
18161 @smallexample
18162 0x40 Test for NaN
18163 0x20 Test for +Infinity
18164 0x10 Test for -Infinity
18165 0x08 Test for +Zero
18166 0x04 Test for -Zero
18167 0x02 Test for +Denormal
18168 0x01 Test for -Denormal
18169 @end smallexample
18170
18171 If any of the enabled test conditions is true, the corresponding entry
18172 in the result vector is -1. Otherwise (all of the enabled test
18173 conditions are false), the corresponding entry of the result vector is 0.
18174
18175 If the cryptographic instructions are enabled (@option{-mcrypto} or
18176 @option{-mcpu=power8}), the following builtins are enabled.
18177
18178 @smallexample
18179 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
18180
18181 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
18182 vector unsigned long long);
18183
18184 vector unsigned long long __builtin_crypto_vcipherlast
18185 (vector unsigned long long,
18186 vector unsigned long long);
18187
18188 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
18189 vector unsigned long long);
18190
18191 vector unsigned long long __builtin_crypto_vncipherlast
18192 (vector unsigned long long,
18193 vector unsigned long long);
18194
18195 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
18196 vector unsigned char,
18197 vector unsigned char);
18198
18199 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
18200 vector unsigned short,
18201 vector unsigned short);
18202
18203 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
18204 vector unsigned int,
18205 vector unsigned int);
18206
18207 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
18208 vector unsigned long long,
18209 vector unsigned long long);
18210
18211 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
18212 vector unsigned char);
18213
18214 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
18215 vector unsigned short);
18216
18217 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
18218 vector unsigned int);
18219
18220 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
18221 vector unsigned long long);
18222
18223 vector unsigned long long __builtin_crypto_vshasigmad
18224 (vector unsigned long long, int, int);
18225
18226 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
18227 int, int);
18228 @end smallexample
18229
18230 The second argument to the @var{__builtin_crypto_vshasigmad} and
18231 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
18232 integer that is 0 or 1. The third argument to these builtin functions
18233 must be a constant integer in the range of 0 to 15.
18234
18235 If the ISA 3.0 instruction set additions
18236 are enabled (@option{-mcpu=power9}), the following additional
18237 functions are available for both 32-bit and 64-bit targets.
18238
18239 vector short vec_xl (int, vector short *);
18240 vector short vec_xl (int, short *);
18241 vector unsigned short vec_xl (int, vector unsigned short *);
18242 vector unsigned short vec_xl (int, unsigned short *);
18243 vector char vec_xl (int, vector char *);
18244 vector char vec_xl (int, char *);
18245 vector unsigned char vec_xl (int, vector unsigned char *);
18246 vector unsigned char vec_xl (int, unsigned char *);
18247
18248 void vec_xst (vector short, int, vector short *);
18249 void vec_xst (vector short, int, short *);
18250 void vec_xst (vector unsigned short, int, vector unsigned short *);
18251 void vec_xst (vector unsigned short, int, unsigned short *);
18252 void vec_xst (vector char, int, vector char *);
18253 void vec_xst (vector char, int, char *);
18254 void vec_xst (vector unsigned char, int, vector unsigned char *);
18255 void vec_xst (vector unsigned char, int, unsigned char *);
18256
18257 @node PowerPC Hardware Transactional Memory Built-in Functions
18258 @subsection PowerPC Hardware Transactional Memory Built-in Functions
18259 GCC provides two interfaces for accessing the Hardware Transactional
18260 Memory (HTM) instructions available on some of the PowerPC family
18261 of processors (eg, POWER8). The two interfaces come in a low level
18262 interface, consisting of built-in functions specific to PowerPC and a
18263 higher level interface consisting of inline functions that are common
18264 between PowerPC and S/390.
18265
18266 @subsubsection PowerPC HTM Low Level Built-in Functions
18267
18268 The following low level built-in functions are available with
18269 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
18270 They all generate the machine instruction that is part of the name.
18271
18272 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
18273 the full 4-bit condition register value set by their associated hardware
18274 instruction. The header file @code{htmintrin.h} defines some macros that can
18275 be used to decipher the return value. The @code{__builtin_tbegin} builtin
18276 returns a simple true or false value depending on whether a transaction was
18277 successfully started or not. The arguments of the builtins match exactly the
18278 type and order of the associated hardware instruction's operands, except for
18279 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
18280 Refer to the ISA manual for a description of each instruction's operands.
18281
18282 @smallexample
18283 unsigned int __builtin_tbegin (unsigned int)
18284 unsigned int __builtin_tend (unsigned int)
18285
18286 unsigned int __builtin_tabort (unsigned int)
18287 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
18288 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
18289 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
18290 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
18291
18292 unsigned int __builtin_tcheck (void)
18293 unsigned int __builtin_treclaim (unsigned int)
18294 unsigned int __builtin_trechkpt (void)
18295 unsigned int __builtin_tsr (unsigned int)
18296 @end smallexample
18297
18298 In addition to the above HTM built-ins, we have added built-ins for
18299 some common extended mnemonics of the HTM instructions:
18300
18301 @smallexample
18302 unsigned int __builtin_tendall (void)
18303 unsigned int __builtin_tresume (void)
18304 unsigned int __builtin_tsuspend (void)
18305 @end smallexample
18306
18307 Note that the semantics of the above HTM builtins are required to mimic
18308 the locking semantics used for critical sections. Builtins that are used
18309 to create a new transaction or restart a suspended transaction must have
18310 lock acquisition like semantics while those builtins that end or suspend a
18311 transaction must have lock release like semantics. Specifically, this must
18312 mimic lock semantics as specified by C++11, for example: Lock acquisition is
18313 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
18314 that returns 0, and lock release is as-if an execution of
18315 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
18316 implicit implementation-defined lock used for all transactions. The HTM
18317 instructions associated with with the builtins inherently provide the
18318 correct acquisition and release hardware barriers required. However,
18319 the compiler must also be prohibited from moving loads and stores across
18320 the builtins in a way that would violate their semantics. This has been
18321 accomplished by adding memory barriers to the associated HTM instructions
18322 (which is a conservative approach to provide acquire and release semantics).
18323 Earlier versions of the compiler did not treat the HTM instructions as
18324 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
18325 be used to determine whether the current compiler treats HTM instructions
18326 as memory barriers or not. This allows the user to explicitly add memory
18327 barriers to their code when using an older version of the compiler.
18328
18329 The following set of built-in functions are available to gain access
18330 to the HTM specific special purpose registers.
18331
18332 @smallexample
18333 unsigned long __builtin_get_texasr (void)
18334 unsigned long __builtin_get_texasru (void)
18335 unsigned long __builtin_get_tfhar (void)
18336 unsigned long __builtin_get_tfiar (void)
18337
18338 void __builtin_set_texasr (unsigned long);
18339 void __builtin_set_texasru (unsigned long);
18340 void __builtin_set_tfhar (unsigned long);
18341 void __builtin_set_tfiar (unsigned long);
18342 @end smallexample
18343
18344 Example usage of these low level built-in functions may look like:
18345
18346 @smallexample
18347 #include <htmintrin.h>
18348
18349 int num_retries = 10;
18350
18351 while (1)
18352 @{
18353 if (__builtin_tbegin (0))
18354 @{
18355 /* Transaction State Initiated. */
18356 if (is_locked (lock))
18357 __builtin_tabort (0);
18358 ... transaction code...
18359 __builtin_tend (0);
18360 break;
18361 @}
18362 else
18363 @{
18364 /* Transaction State Failed. Use locks if the transaction
18365 failure is "persistent" or we've tried too many times. */
18366 if (num_retries-- <= 0
18367 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
18368 @{
18369 acquire_lock (lock);
18370 ... non transactional fallback path...
18371 release_lock (lock);
18372 break;
18373 @}
18374 @}
18375 @}
18376 @end smallexample
18377
18378 One final built-in function has been added that returns the value of
18379 the 2-bit Transaction State field of the Machine Status Register (MSR)
18380 as stored in @code{CR0}.
18381
18382 @smallexample
18383 unsigned long __builtin_ttest (void)
18384 @end smallexample
18385
18386 This built-in can be used to determine the current transaction state
18387 using the following code example:
18388
18389 @smallexample
18390 #include <htmintrin.h>
18391
18392 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
18393
18394 if (tx_state == _HTM_TRANSACTIONAL)
18395 @{
18396 /* Code to use in transactional state. */
18397 @}
18398 else if (tx_state == _HTM_NONTRANSACTIONAL)
18399 @{
18400 /* Code to use in non-transactional state. */
18401 @}
18402 else if (tx_state == _HTM_SUSPENDED)
18403 @{
18404 /* Code to use in transaction suspended state. */
18405 @}
18406 @end smallexample
18407
18408 @subsubsection PowerPC HTM High Level Inline Functions
18409
18410 The following high level HTM interface is made available by including
18411 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
18412 where CPU is `power8' or later. This interface is common between PowerPC
18413 and S/390, allowing users to write one HTM source implementation that
18414 can be compiled and executed on either system.
18415
18416 @smallexample
18417 long __TM_simple_begin (void)
18418 long __TM_begin (void* const TM_buff)
18419 long __TM_end (void)
18420 void __TM_abort (void)
18421 void __TM_named_abort (unsigned char const code)
18422 void __TM_resume (void)
18423 void __TM_suspend (void)
18424
18425 long __TM_is_user_abort (void* const TM_buff)
18426 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
18427 long __TM_is_illegal (void* const TM_buff)
18428 long __TM_is_footprint_exceeded (void* const TM_buff)
18429 long __TM_nesting_depth (void* const TM_buff)
18430 long __TM_is_nested_too_deep(void* const TM_buff)
18431 long __TM_is_conflict(void* const TM_buff)
18432 long __TM_is_failure_persistent(void* const TM_buff)
18433 long __TM_failure_address(void* const TM_buff)
18434 long long __TM_failure_code(void* const TM_buff)
18435 @end smallexample
18436
18437 Using these common set of HTM inline functions, we can create
18438 a more portable version of the HTM example in the previous
18439 section that will work on either PowerPC or S/390:
18440
18441 @smallexample
18442 #include <htmxlintrin.h>
18443
18444 int num_retries = 10;
18445 TM_buff_type TM_buff;
18446
18447 while (1)
18448 @{
18449 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
18450 @{
18451 /* Transaction State Initiated. */
18452 if (is_locked (lock))
18453 __TM_abort ();
18454 ... transaction code...
18455 __TM_end ();
18456 break;
18457 @}
18458 else
18459 @{
18460 /* Transaction State Failed. Use locks if the transaction
18461 failure is "persistent" or we've tried too many times. */
18462 if (num_retries-- <= 0
18463 || __TM_is_failure_persistent (TM_buff))
18464 @{
18465 acquire_lock (lock);
18466 ... non transactional fallback path...
18467 release_lock (lock);
18468 break;
18469 @}
18470 @}
18471 @}
18472 @end smallexample
18473
18474 @node RX Built-in Functions
18475 @subsection RX Built-in Functions
18476 GCC supports some of the RX instructions which cannot be expressed in
18477 the C programming language via the use of built-in functions. The
18478 following functions are supported:
18479
18480 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
18481 Generates the @code{brk} machine instruction.
18482 @end deftypefn
18483
18484 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
18485 Generates the @code{clrpsw} machine instruction to clear the specified
18486 bit in the processor status word.
18487 @end deftypefn
18488
18489 @deftypefn {Built-in Function} void __builtin_rx_int (int)
18490 Generates the @code{int} machine instruction to generate an interrupt
18491 with the specified value.
18492 @end deftypefn
18493
18494 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
18495 Generates the @code{machi} machine instruction to add the result of
18496 multiplying the top 16 bits of the two arguments into the
18497 accumulator.
18498 @end deftypefn
18499
18500 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
18501 Generates the @code{maclo} machine instruction to add the result of
18502 multiplying the bottom 16 bits of the two arguments into the
18503 accumulator.
18504 @end deftypefn
18505
18506 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
18507 Generates the @code{mulhi} machine instruction to place the result of
18508 multiplying the top 16 bits of the two arguments into the
18509 accumulator.
18510 @end deftypefn
18511
18512 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
18513 Generates the @code{mullo} machine instruction to place the result of
18514 multiplying the bottom 16 bits of the two arguments into the
18515 accumulator.
18516 @end deftypefn
18517
18518 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
18519 Generates the @code{mvfachi} machine instruction to read the top
18520 32 bits of the accumulator.
18521 @end deftypefn
18522
18523 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
18524 Generates the @code{mvfacmi} machine instruction to read the middle
18525 32 bits of the accumulator.
18526 @end deftypefn
18527
18528 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
18529 Generates the @code{mvfc} machine instruction which reads the control
18530 register specified in its argument and returns its value.
18531 @end deftypefn
18532
18533 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
18534 Generates the @code{mvtachi} machine instruction to set the top
18535 32 bits of the accumulator.
18536 @end deftypefn
18537
18538 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
18539 Generates the @code{mvtaclo} machine instruction to set the bottom
18540 32 bits of the accumulator.
18541 @end deftypefn
18542
18543 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
18544 Generates the @code{mvtc} machine instruction which sets control
18545 register number @code{reg} to @code{val}.
18546 @end deftypefn
18547
18548 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
18549 Generates the @code{mvtipl} machine instruction set the interrupt
18550 priority level.
18551 @end deftypefn
18552
18553 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
18554 Generates the @code{racw} machine instruction to round the accumulator
18555 according to the specified mode.
18556 @end deftypefn
18557
18558 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
18559 Generates the @code{revw} machine instruction which swaps the bytes in
18560 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
18561 and also bits 16--23 occupy bits 24--31 and vice versa.
18562 @end deftypefn
18563
18564 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
18565 Generates the @code{rmpa} machine instruction which initiates a
18566 repeated multiply and accumulate sequence.
18567 @end deftypefn
18568
18569 @deftypefn {Built-in Function} void __builtin_rx_round (float)
18570 Generates the @code{round} machine instruction which returns the
18571 floating-point argument rounded according to the current rounding mode
18572 set in the floating-point status word register.
18573 @end deftypefn
18574
18575 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
18576 Generates the @code{sat} machine instruction which returns the
18577 saturated value of the argument.
18578 @end deftypefn
18579
18580 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
18581 Generates the @code{setpsw} machine instruction to set the specified
18582 bit in the processor status word.
18583 @end deftypefn
18584
18585 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
18586 Generates the @code{wait} machine instruction.
18587 @end deftypefn
18588
18589 @node S/390 System z Built-in Functions
18590 @subsection S/390 System z Built-in Functions
18591 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
18592 Generates the @code{tbegin} machine instruction starting a
18593 non-constrained hardware transaction. If the parameter is non-NULL the
18594 memory area is used to store the transaction diagnostic buffer and
18595 will be passed as first operand to @code{tbegin}. This buffer can be
18596 defined using the @code{struct __htm_tdb} C struct defined in
18597 @code{htmintrin.h} and must reside on a double-word boundary. The
18598 second tbegin operand is set to @code{0xff0c}. This enables
18599 save/restore of all GPRs and disables aborts for FPR and AR
18600 manipulations inside the transaction body. The condition code set by
18601 the tbegin instruction is returned as integer value. The tbegin
18602 instruction by definition overwrites the content of all FPRs. The
18603 compiler will generate code which saves and restores the FPRs. For
18604 soft-float code it is recommended to used the @code{*_nofloat}
18605 variant. In order to prevent a TDB from being written it is required
18606 to pass a constant zero value as parameter. Passing a zero value
18607 through a variable is not sufficient. Although modifications of
18608 access registers inside the transaction will not trigger an
18609 transaction abort it is not supported to actually modify them. Access
18610 registers do not get saved when entering a transaction. They will have
18611 undefined state when reaching the abort code.
18612 @end deftypefn
18613
18614 Macros for the possible return codes of tbegin are defined in the
18615 @code{htmintrin.h} header file:
18616
18617 @table @code
18618 @item _HTM_TBEGIN_STARTED
18619 @code{tbegin} has been executed as part of normal processing. The
18620 transaction body is supposed to be executed.
18621 @item _HTM_TBEGIN_INDETERMINATE
18622 The transaction was aborted due to an indeterminate condition which
18623 might be persistent.
18624 @item _HTM_TBEGIN_TRANSIENT
18625 The transaction aborted due to a transient failure. The transaction
18626 should be re-executed in that case.
18627 @item _HTM_TBEGIN_PERSISTENT
18628 The transaction aborted due to a persistent failure. Re-execution
18629 under same circumstances will not be productive.
18630 @end table
18631
18632 @defmac _HTM_FIRST_USER_ABORT_CODE
18633 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
18634 specifies the first abort code which can be used for
18635 @code{__builtin_tabort}. Values below this threshold are reserved for
18636 machine use.
18637 @end defmac
18638
18639 @deftp {Data type} {struct __htm_tdb}
18640 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
18641 the structure of the transaction diagnostic block as specified in the
18642 Principles of Operation manual chapter 5-91.
18643 @end deftp
18644
18645 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
18646 Same as @code{__builtin_tbegin} but without FPR saves and restores.
18647 Using this variant in code making use of FPRs will leave the FPRs in
18648 undefined state when entering the transaction abort handler code.
18649 @end deftypefn
18650
18651 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
18652 In addition to @code{__builtin_tbegin} a loop for transient failures
18653 is generated. If tbegin returns a condition code of 2 the transaction
18654 will be retried as often as specified in the second argument. The
18655 perform processor assist instruction is used to tell the CPU about the
18656 number of fails so far.
18657 @end deftypefn
18658
18659 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
18660 Same as @code{__builtin_tbegin_retry} but without FPR saves and
18661 restores. Using this variant in code making use of FPRs will leave
18662 the FPRs in undefined state when entering the transaction abort
18663 handler code.
18664 @end deftypefn
18665
18666 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
18667 Generates the @code{tbeginc} machine instruction starting a constrained
18668 hardware transaction. The second operand is set to @code{0xff08}.
18669 @end deftypefn
18670
18671 @deftypefn {Built-in Function} int __builtin_tend (void)
18672 Generates the @code{tend} machine instruction finishing a transaction
18673 and making the changes visible to other threads. The condition code
18674 generated by tend is returned as integer value.
18675 @end deftypefn
18676
18677 @deftypefn {Built-in Function} void __builtin_tabort (int)
18678 Generates the @code{tabort} machine instruction with the specified
18679 abort code. Abort codes from 0 through 255 are reserved and will
18680 result in an error message.
18681 @end deftypefn
18682
18683 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
18684 Generates the @code{ppa rX,rY,1} machine instruction. Where the
18685 integer parameter is loaded into rX and a value of zero is loaded into
18686 rY. The integer parameter specifies the number of times the
18687 transaction repeatedly aborted.
18688 @end deftypefn
18689
18690 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
18691 Generates the @code{etnd} machine instruction. The current nesting
18692 depth is returned as integer value. For a nesting depth of 0 the code
18693 is not executed as part of an transaction.
18694 @end deftypefn
18695
18696 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
18697
18698 Generates the @code{ntstg} machine instruction. The second argument
18699 is written to the first arguments location. The store operation will
18700 not be rolled-back in case of an transaction abort.
18701 @end deftypefn
18702
18703 @node SH Built-in Functions
18704 @subsection SH Built-in Functions
18705 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
18706 families of processors:
18707
18708 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
18709 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
18710 used by system code that manages threads and execution contexts. The compiler
18711 normally does not generate code that modifies the contents of @samp{GBR} and
18712 thus the value is preserved across function calls. Changing the @samp{GBR}
18713 value in user code must be done with caution, since the compiler might use
18714 @samp{GBR} in order to access thread local variables.
18715
18716 @end deftypefn
18717
18718 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
18719 Returns the value that is currently set in the @samp{GBR} register.
18720 Memory loads and stores that use the thread pointer as a base address are
18721 turned into @samp{GBR} based displacement loads and stores, if possible.
18722 For example:
18723 @smallexample
18724 struct my_tcb
18725 @{
18726 int a, b, c, d, e;
18727 @};
18728
18729 int get_tcb_value (void)
18730 @{
18731 // Generate @samp{mov.l @@(8,gbr),r0} instruction
18732 return ((my_tcb*)__builtin_thread_pointer ())->c;
18733 @}
18734
18735 @end smallexample
18736 @end deftypefn
18737
18738 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
18739 Returns the value that is currently set in the @samp{FPSCR} register.
18740 @end deftypefn
18741
18742 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
18743 Sets the @samp{FPSCR} register to the specified value @var{val}, while
18744 preserving the current values of the FR, SZ and PR bits.
18745 @end deftypefn
18746
18747 @node SPARC VIS Built-in Functions
18748 @subsection SPARC VIS Built-in Functions
18749
18750 GCC supports SIMD operations on the SPARC using both the generic vector
18751 extensions (@pxref{Vector Extensions}) as well as built-in functions for
18752 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
18753 switch, the VIS extension is exposed as the following built-in functions:
18754
18755 @smallexample
18756 typedef int v1si __attribute__ ((vector_size (4)));
18757 typedef int v2si __attribute__ ((vector_size (8)));
18758 typedef short v4hi __attribute__ ((vector_size (8)));
18759 typedef short v2hi __attribute__ ((vector_size (4)));
18760 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
18761 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
18762
18763 void __builtin_vis_write_gsr (int64_t);
18764 int64_t __builtin_vis_read_gsr (void);
18765
18766 void * __builtin_vis_alignaddr (void *, long);
18767 void * __builtin_vis_alignaddrl (void *, long);
18768 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
18769 v2si __builtin_vis_faligndatav2si (v2si, v2si);
18770 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
18771 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
18772
18773 v4hi __builtin_vis_fexpand (v4qi);
18774
18775 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
18776 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
18777 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
18778 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
18779 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
18780 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
18781 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
18782
18783 v4qi __builtin_vis_fpack16 (v4hi);
18784 v8qi __builtin_vis_fpack32 (v2si, v8qi);
18785 v2hi __builtin_vis_fpackfix (v2si);
18786 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
18787
18788 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
18789
18790 long __builtin_vis_edge8 (void *, void *);
18791 long __builtin_vis_edge8l (void *, void *);
18792 long __builtin_vis_edge16 (void *, void *);
18793 long __builtin_vis_edge16l (void *, void *);
18794 long __builtin_vis_edge32 (void *, void *);
18795 long __builtin_vis_edge32l (void *, void *);
18796
18797 long __builtin_vis_fcmple16 (v4hi, v4hi);
18798 long __builtin_vis_fcmple32 (v2si, v2si);
18799 long __builtin_vis_fcmpne16 (v4hi, v4hi);
18800 long __builtin_vis_fcmpne32 (v2si, v2si);
18801 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
18802 long __builtin_vis_fcmpgt32 (v2si, v2si);
18803 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
18804 long __builtin_vis_fcmpeq32 (v2si, v2si);
18805
18806 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
18807 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
18808 v2si __builtin_vis_fpadd32 (v2si, v2si);
18809 v1si __builtin_vis_fpadd32s (v1si, v1si);
18810 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
18811 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
18812 v2si __builtin_vis_fpsub32 (v2si, v2si);
18813 v1si __builtin_vis_fpsub32s (v1si, v1si);
18814
18815 long __builtin_vis_array8 (long, long);
18816 long __builtin_vis_array16 (long, long);
18817 long __builtin_vis_array32 (long, long);
18818 @end smallexample
18819
18820 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
18821 functions also become available:
18822
18823 @smallexample
18824 long __builtin_vis_bmask (long, long);
18825 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
18826 v2si __builtin_vis_bshufflev2si (v2si, v2si);
18827 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
18828 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
18829
18830 long __builtin_vis_edge8n (void *, void *);
18831 long __builtin_vis_edge8ln (void *, void *);
18832 long __builtin_vis_edge16n (void *, void *);
18833 long __builtin_vis_edge16ln (void *, void *);
18834 long __builtin_vis_edge32n (void *, void *);
18835 long __builtin_vis_edge32ln (void *, void *);
18836 @end smallexample
18837
18838 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
18839 functions also become available:
18840
18841 @smallexample
18842 void __builtin_vis_cmask8 (long);
18843 void __builtin_vis_cmask16 (long);
18844 void __builtin_vis_cmask32 (long);
18845
18846 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
18847
18848 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
18849 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
18850 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
18851 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
18852 v2si __builtin_vis_fsll16 (v2si, v2si);
18853 v2si __builtin_vis_fslas16 (v2si, v2si);
18854 v2si __builtin_vis_fsrl16 (v2si, v2si);
18855 v2si __builtin_vis_fsra16 (v2si, v2si);
18856
18857 long __builtin_vis_pdistn (v8qi, v8qi);
18858
18859 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
18860
18861 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
18862 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
18863
18864 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
18865 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
18866 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
18867 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
18868 v2si __builtin_vis_fpadds32 (v2si, v2si);
18869 v1si __builtin_vis_fpadds32s (v1si, v1si);
18870 v2si __builtin_vis_fpsubs32 (v2si, v2si);
18871 v1si __builtin_vis_fpsubs32s (v1si, v1si);
18872
18873 long __builtin_vis_fucmple8 (v8qi, v8qi);
18874 long __builtin_vis_fucmpne8 (v8qi, v8qi);
18875 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
18876 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
18877
18878 float __builtin_vis_fhadds (float, float);
18879 double __builtin_vis_fhaddd (double, double);
18880 float __builtin_vis_fhsubs (float, float);
18881 double __builtin_vis_fhsubd (double, double);
18882 float __builtin_vis_fnhadds (float, float);
18883 double __builtin_vis_fnhaddd (double, double);
18884
18885 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
18886 int64_t __builtin_vis_xmulx (int64_t, int64_t);
18887 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
18888 @end smallexample
18889
18890 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
18891 functions also become available:
18892
18893 @smallexample
18894 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
18895 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
18896 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
18897 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
18898
18899 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
18900 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
18901 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
18902 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
18903
18904 long __builtin_vis_fpcmple8 (v8qi, v8qi);
18905 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
18906 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
18907 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
18908 long __builtin_vis_fpcmpule32 (v2si, v2si);
18909 long __builtin_vis_fpcmpugt32 (v2si, v2si);
18910
18911 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
18912 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
18913 v2si __builtin_vis_fpmax32 (v2si, v2si);
18914
18915 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
18916 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
18917 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
18918
18919
18920 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
18921 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
18922 v2si __builtin_vis_fpmin32 (v2si, v2si);
18923
18924 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
18925 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
18926 v2si __builtin_vis_fpminu32 (v2si, v2si);
18927 @end smallexample
18928
18929 @node SPU Built-in Functions
18930 @subsection SPU Built-in Functions
18931
18932 GCC provides extensions for the SPU processor as described in the
18933 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
18934 implementation differs in several ways.
18935
18936 @itemize @bullet
18937
18938 @item
18939 The optional extension of specifying vector constants in parentheses is
18940 not supported.
18941
18942 @item
18943 A vector initializer requires no cast if the vector constant is of the
18944 same type as the variable it is initializing.
18945
18946 @item
18947 If @code{signed} or @code{unsigned} is omitted, the signedness of the
18948 vector type is the default signedness of the base type. The default
18949 varies depending on the operating system, so a portable program should
18950 always specify the signedness.
18951
18952 @item
18953 By default, the keyword @code{__vector} is added. The macro
18954 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
18955 undefined.
18956
18957 @item
18958 GCC allows using a @code{typedef} name as the type specifier for a
18959 vector type.
18960
18961 @item
18962 For C, overloaded functions are implemented with macros so the following
18963 does not work:
18964
18965 @smallexample
18966 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
18967 @end smallexample
18968
18969 @noindent
18970 Since @code{spu_add} is a macro, the vector constant in the example
18971 is treated as four separate arguments. Wrap the entire argument in
18972 parentheses for this to work.
18973
18974 @item
18975 The extended version of @code{__builtin_expect} is not supported.
18976
18977 @end itemize
18978
18979 @emph{Note:} Only the interface described in the aforementioned
18980 specification is supported. Internally, GCC uses built-in functions to
18981 implement the required functionality, but these are not supported and
18982 are subject to change without notice.
18983
18984 @node TI C6X Built-in Functions
18985 @subsection TI C6X Built-in Functions
18986
18987 GCC provides intrinsics to access certain instructions of the TI C6X
18988 processors. These intrinsics, listed below, are available after
18989 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
18990 to C6X instructions.
18991
18992 @smallexample
18993
18994 int _sadd (int, int)
18995 int _ssub (int, int)
18996 int _sadd2 (int, int)
18997 int _ssub2 (int, int)
18998 long long _mpy2 (int, int)
18999 long long _smpy2 (int, int)
19000 int _add4 (int, int)
19001 int _sub4 (int, int)
19002 int _saddu4 (int, int)
19003
19004 int _smpy (int, int)
19005 int _smpyh (int, int)
19006 int _smpyhl (int, int)
19007 int _smpylh (int, int)
19008
19009 int _sshl (int, int)
19010 int _subc (int, int)
19011
19012 int _avg2 (int, int)
19013 int _avgu4 (int, int)
19014
19015 int _clrr (int, int)
19016 int _extr (int, int)
19017 int _extru (int, int)
19018 int _abs (int)
19019 int _abs2 (int)
19020
19021 @end smallexample
19022
19023 @node TILE-Gx Built-in Functions
19024 @subsection TILE-Gx Built-in Functions
19025
19026 GCC provides intrinsics to access every instruction of the TILE-Gx
19027 processor. The intrinsics are of the form:
19028
19029 @smallexample
19030
19031 unsigned long long __insn_@var{op} (...)
19032
19033 @end smallexample
19034
19035 Where @var{op} is the name of the instruction. Refer to the ISA manual
19036 for the complete list of instructions.
19037
19038 GCC also provides intrinsics to directly access the network registers.
19039 The intrinsics are:
19040
19041 @smallexample
19042
19043 unsigned long long __tile_idn0_receive (void)
19044 unsigned long long __tile_idn1_receive (void)
19045 unsigned long long __tile_udn0_receive (void)
19046 unsigned long long __tile_udn1_receive (void)
19047 unsigned long long __tile_udn2_receive (void)
19048 unsigned long long __tile_udn3_receive (void)
19049 void __tile_idn_send (unsigned long long)
19050 void __tile_udn_send (unsigned long long)
19051
19052 @end smallexample
19053
19054 The intrinsic @code{void __tile_network_barrier (void)} is used to
19055 guarantee that no network operations before it are reordered with
19056 those after it.
19057
19058 @node TILEPro Built-in Functions
19059 @subsection TILEPro Built-in Functions
19060
19061 GCC provides intrinsics to access every instruction of the TILEPro
19062 processor. The intrinsics are of the form:
19063
19064 @smallexample
19065
19066 unsigned __insn_@var{op} (...)
19067
19068 @end smallexample
19069
19070 @noindent
19071 where @var{op} is the name of the instruction. Refer to the ISA manual
19072 for the complete list of instructions.
19073
19074 GCC also provides intrinsics to directly access the network registers.
19075 The intrinsics are:
19076
19077 @smallexample
19078
19079 unsigned __tile_idn0_receive (void)
19080 unsigned __tile_idn1_receive (void)
19081 unsigned __tile_sn_receive (void)
19082 unsigned __tile_udn0_receive (void)
19083 unsigned __tile_udn1_receive (void)
19084 unsigned __tile_udn2_receive (void)
19085 unsigned __tile_udn3_receive (void)
19086 void __tile_idn_send (unsigned)
19087 void __tile_sn_send (unsigned)
19088 void __tile_udn_send (unsigned)
19089
19090 @end smallexample
19091
19092 The intrinsic @code{void __tile_network_barrier (void)} is used to
19093 guarantee that no network operations before it are reordered with
19094 those after it.
19095
19096 @node x86 Built-in Functions
19097 @subsection x86 Built-in Functions
19098
19099 These built-in functions are available for the x86-32 and x86-64 family
19100 of computers, depending on the command-line switches used.
19101
19102 If you specify command-line switches such as @option{-msse},
19103 the compiler could use the extended instruction sets even if the built-ins
19104 are not used explicitly in the program. For this reason, applications
19105 that perform run-time CPU detection must compile separate files for each
19106 supported architecture, using the appropriate flags. In particular,
19107 the file containing the CPU detection code should be compiled without
19108 these options.
19109
19110 The following machine modes are available for use with MMX built-in functions
19111 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
19112 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
19113 vector of eight 8-bit integers. Some of the built-in functions operate on
19114 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
19115
19116 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
19117 of two 32-bit floating-point values.
19118
19119 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
19120 floating-point values. Some instructions use a vector of four 32-bit
19121 integers, these use @code{V4SI}. Finally, some instructions operate on an
19122 entire vector register, interpreting it as a 128-bit integer, these use mode
19123 @code{TI}.
19124
19125 The x86-32 and x86-64 family of processors use additional built-in
19126 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
19127 floating point and @code{TC} 128-bit complex floating-point values.
19128
19129 The following floating-point built-in functions are always available. All
19130 of them implement the function that is part of the name.
19131
19132 @smallexample
19133 __float128 __builtin_fabsq (__float128)
19134 __float128 __builtin_copysignq (__float128, __float128)
19135 @end smallexample
19136
19137 The following built-in functions are always available.
19138
19139 @table @code
19140 @item __float128 __builtin_infq (void)
19141 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
19142 @findex __builtin_infq
19143
19144 @item __float128 __builtin_huge_valq (void)
19145 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
19146 @findex __builtin_huge_valq
19147
19148 @item __float128 __builtin_nanq (void)
19149 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
19150 @findex __builtin_nanq
19151
19152 @item __float128 __builtin_nansq (void)
19153 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
19154 @findex __builtin_nansq
19155 @end table
19156
19157 The following built-in function is always available.
19158
19159 @table @code
19160 @item void __builtin_ia32_pause (void)
19161 Generates the @code{pause} machine instruction with a compiler memory
19162 barrier.
19163 @end table
19164
19165 The following built-in functions are always available and can be used to
19166 check the target platform type.
19167
19168 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
19169 This function runs the CPU detection code to check the type of CPU and the
19170 features supported. This built-in function needs to be invoked along with the built-in functions
19171 to check CPU type and features, @code{__builtin_cpu_is} and
19172 @code{__builtin_cpu_supports}, only when used in a function that is
19173 executed before any constructors are called. The CPU detection code is
19174 automatically executed in a very high priority constructor.
19175
19176 For example, this function has to be used in @code{ifunc} resolvers that
19177 check for CPU type using the built-in functions @code{__builtin_cpu_is}
19178 and @code{__builtin_cpu_supports}, or in constructors on targets that
19179 don't support constructor priority.
19180 @smallexample
19181
19182 static void (*resolve_memcpy (void)) (void)
19183 @{
19184 // ifunc resolvers fire before constructors, explicitly call the init
19185 // function.
19186 __builtin_cpu_init ();
19187 if (__builtin_cpu_supports ("ssse3"))
19188 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
19189 else
19190 return default_memcpy;
19191 @}
19192
19193 void *memcpy (void *, const void *, size_t)
19194 __attribute__ ((ifunc ("resolve_memcpy")));
19195 @end smallexample
19196
19197 @end deftypefn
19198
19199 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
19200 This function returns a positive integer if the run-time CPU
19201 is of type @var{cpuname}
19202 and returns @code{0} otherwise. The following CPU names can be detected:
19203
19204 @table @samp
19205 @item intel
19206 Intel CPU.
19207
19208 @item atom
19209 Intel Atom CPU.
19210
19211 @item core2
19212 Intel Core 2 CPU.
19213
19214 @item corei7
19215 Intel Core i7 CPU.
19216
19217 @item nehalem
19218 Intel Core i7 Nehalem CPU.
19219
19220 @item westmere
19221 Intel Core i7 Westmere CPU.
19222
19223 @item sandybridge
19224 Intel Core i7 Sandy Bridge CPU.
19225
19226 @item amd
19227 AMD CPU.
19228
19229 @item amdfam10h
19230 AMD Family 10h CPU.
19231
19232 @item barcelona
19233 AMD Family 10h Barcelona CPU.
19234
19235 @item shanghai
19236 AMD Family 10h Shanghai CPU.
19237
19238 @item istanbul
19239 AMD Family 10h Istanbul CPU.
19240
19241 @item btver1
19242 AMD Family 14h CPU.
19243
19244 @item amdfam15h
19245 AMD Family 15h CPU.
19246
19247 @item bdver1
19248 AMD Family 15h Bulldozer version 1.
19249
19250 @item bdver2
19251 AMD Family 15h Bulldozer version 2.
19252
19253 @item bdver3
19254 AMD Family 15h Bulldozer version 3.
19255
19256 @item bdver4
19257 AMD Family 15h Bulldozer version 4.
19258
19259 @item btver2
19260 AMD Family 16h CPU.
19261
19262 @item znver1
19263 AMD Family 17h CPU.
19264 @end table
19265
19266 Here is an example:
19267 @smallexample
19268 if (__builtin_cpu_is ("corei7"))
19269 @{
19270 do_corei7 (); // Core i7 specific implementation.
19271 @}
19272 else
19273 @{
19274 do_generic (); // Generic implementation.
19275 @}
19276 @end smallexample
19277 @end deftypefn
19278
19279 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
19280 This function returns a positive integer if the run-time CPU
19281 supports @var{feature}
19282 and returns @code{0} otherwise. The following features can be detected:
19283
19284 @table @samp
19285 @item cmov
19286 CMOV instruction.
19287 @item mmx
19288 MMX instructions.
19289 @item popcnt
19290 POPCNT instruction.
19291 @item sse
19292 SSE instructions.
19293 @item sse2
19294 SSE2 instructions.
19295 @item sse3
19296 SSE3 instructions.
19297 @item ssse3
19298 SSSE3 instructions.
19299 @item sse4.1
19300 SSE4.1 instructions.
19301 @item sse4.2
19302 SSE4.2 instructions.
19303 @item avx
19304 AVX instructions.
19305 @item avx2
19306 AVX2 instructions.
19307 @item avx512f
19308 AVX512F instructions.
19309 @end table
19310
19311 Here is an example:
19312 @smallexample
19313 if (__builtin_cpu_supports ("popcnt"))
19314 @{
19315 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
19316 @}
19317 else
19318 @{
19319 count = generic_countbits (n); //generic implementation.
19320 @}
19321 @end smallexample
19322 @end deftypefn
19323
19324
19325 The following built-in functions are made available by @option{-mmmx}.
19326 All of them generate the machine instruction that is part of the name.
19327
19328 @smallexample
19329 v8qi __builtin_ia32_paddb (v8qi, v8qi)
19330 v4hi __builtin_ia32_paddw (v4hi, v4hi)
19331 v2si __builtin_ia32_paddd (v2si, v2si)
19332 v8qi __builtin_ia32_psubb (v8qi, v8qi)
19333 v4hi __builtin_ia32_psubw (v4hi, v4hi)
19334 v2si __builtin_ia32_psubd (v2si, v2si)
19335 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
19336 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
19337 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
19338 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
19339 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
19340 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
19341 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
19342 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
19343 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
19344 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
19345 di __builtin_ia32_pand (di, di)
19346 di __builtin_ia32_pandn (di,di)
19347 di __builtin_ia32_por (di, di)
19348 di __builtin_ia32_pxor (di, di)
19349 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
19350 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
19351 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
19352 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
19353 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
19354 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
19355 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
19356 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
19357 v2si __builtin_ia32_punpckhdq (v2si, v2si)
19358 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
19359 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
19360 v2si __builtin_ia32_punpckldq (v2si, v2si)
19361 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
19362 v4hi __builtin_ia32_packssdw (v2si, v2si)
19363 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
19364
19365 v4hi __builtin_ia32_psllw (v4hi, v4hi)
19366 v2si __builtin_ia32_pslld (v2si, v2si)
19367 v1di __builtin_ia32_psllq (v1di, v1di)
19368 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
19369 v2si __builtin_ia32_psrld (v2si, v2si)
19370 v1di __builtin_ia32_psrlq (v1di, v1di)
19371 v4hi __builtin_ia32_psraw (v4hi, v4hi)
19372 v2si __builtin_ia32_psrad (v2si, v2si)
19373 v4hi __builtin_ia32_psllwi (v4hi, int)
19374 v2si __builtin_ia32_pslldi (v2si, int)
19375 v1di __builtin_ia32_psllqi (v1di, int)
19376 v4hi __builtin_ia32_psrlwi (v4hi, int)
19377 v2si __builtin_ia32_psrldi (v2si, int)
19378 v1di __builtin_ia32_psrlqi (v1di, int)
19379 v4hi __builtin_ia32_psrawi (v4hi, int)
19380 v2si __builtin_ia32_psradi (v2si, int)
19381
19382 @end smallexample
19383
19384 The following built-in functions are made available either with
19385 @option{-msse}, or with a combination of @option{-m3dnow} and
19386 @option{-march=athlon}. All of them generate the machine
19387 instruction that is part of the name.
19388
19389 @smallexample
19390 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
19391 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
19392 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
19393 v1di __builtin_ia32_psadbw (v8qi, v8qi)
19394 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
19395 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
19396 v8qi __builtin_ia32_pminub (v8qi, v8qi)
19397 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
19398 int __builtin_ia32_pmovmskb (v8qi)
19399 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
19400 void __builtin_ia32_movntq (di *, di)
19401 void __builtin_ia32_sfence (void)
19402 @end smallexample
19403
19404 The following built-in functions are available when @option{-msse} is used.
19405 All of them generate the machine instruction that is part of the name.
19406
19407 @smallexample
19408 int __builtin_ia32_comieq (v4sf, v4sf)
19409 int __builtin_ia32_comineq (v4sf, v4sf)
19410 int __builtin_ia32_comilt (v4sf, v4sf)
19411 int __builtin_ia32_comile (v4sf, v4sf)
19412 int __builtin_ia32_comigt (v4sf, v4sf)
19413 int __builtin_ia32_comige (v4sf, v4sf)
19414 int __builtin_ia32_ucomieq (v4sf, v4sf)
19415 int __builtin_ia32_ucomineq (v4sf, v4sf)
19416 int __builtin_ia32_ucomilt (v4sf, v4sf)
19417 int __builtin_ia32_ucomile (v4sf, v4sf)
19418 int __builtin_ia32_ucomigt (v4sf, v4sf)
19419 int __builtin_ia32_ucomige (v4sf, v4sf)
19420 v4sf __builtin_ia32_addps (v4sf, v4sf)
19421 v4sf __builtin_ia32_subps (v4sf, v4sf)
19422 v4sf __builtin_ia32_mulps (v4sf, v4sf)
19423 v4sf __builtin_ia32_divps (v4sf, v4sf)
19424 v4sf __builtin_ia32_addss (v4sf, v4sf)
19425 v4sf __builtin_ia32_subss (v4sf, v4sf)
19426 v4sf __builtin_ia32_mulss (v4sf, v4sf)
19427 v4sf __builtin_ia32_divss (v4sf, v4sf)
19428 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
19429 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
19430 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
19431 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
19432 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
19433 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
19434 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
19435 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
19436 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
19437 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
19438 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
19439 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
19440 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
19441 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
19442 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
19443 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
19444 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
19445 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
19446 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
19447 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
19448 v4sf __builtin_ia32_maxps (v4sf, v4sf)
19449 v4sf __builtin_ia32_maxss (v4sf, v4sf)
19450 v4sf __builtin_ia32_minps (v4sf, v4sf)
19451 v4sf __builtin_ia32_minss (v4sf, v4sf)
19452 v4sf __builtin_ia32_andps (v4sf, v4sf)
19453 v4sf __builtin_ia32_andnps (v4sf, v4sf)
19454 v4sf __builtin_ia32_orps (v4sf, v4sf)
19455 v4sf __builtin_ia32_xorps (v4sf, v4sf)
19456 v4sf __builtin_ia32_movss (v4sf, v4sf)
19457 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
19458 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
19459 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
19460 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
19461 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
19462 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
19463 v2si __builtin_ia32_cvtps2pi (v4sf)
19464 int __builtin_ia32_cvtss2si (v4sf)
19465 v2si __builtin_ia32_cvttps2pi (v4sf)
19466 int __builtin_ia32_cvttss2si (v4sf)
19467 v4sf __builtin_ia32_rcpps (v4sf)
19468 v4sf __builtin_ia32_rsqrtps (v4sf)
19469 v4sf __builtin_ia32_sqrtps (v4sf)
19470 v4sf __builtin_ia32_rcpss (v4sf)
19471 v4sf __builtin_ia32_rsqrtss (v4sf)
19472 v4sf __builtin_ia32_sqrtss (v4sf)
19473 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
19474 void __builtin_ia32_movntps (float *, v4sf)
19475 int __builtin_ia32_movmskps (v4sf)
19476 @end smallexample
19477
19478 The following built-in functions are available when @option{-msse} is used.
19479
19480 @table @code
19481 @item v4sf __builtin_ia32_loadups (float *)
19482 Generates the @code{movups} machine instruction as a load from memory.
19483 @item void __builtin_ia32_storeups (float *, v4sf)
19484 Generates the @code{movups} machine instruction as a store to memory.
19485 @item v4sf __builtin_ia32_loadss (float *)
19486 Generates the @code{movss} machine instruction as a load from memory.
19487 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
19488 Generates the @code{movhps} machine instruction as a load from memory.
19489 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
19490 Generates the @code{movlps} machine instruction as a load from memory
19491 @item void __builtin_ia32_storehps (v2sf *, v4sf)
19492 Generates the @code{movhps} machine instruction as a store to memory.
19493 @item void __builtin_ia32_storelps (v2sf *, v4sf)
19494 Generates the @code{movlps} machine instruction as a store to memory.
19495 @end table
19496
19497 The following built-in functions are available when @option{-msse2} is used.
19498 All of them generate the machine instruction that is part of the name.
19499
19500 @smallexample
19501 int __builtin_ia32_comisdeq (v2df, v2df)
19502 int __builtin_ia32_comisdlt (v2df, v2df)
19503 int __builtin_ia32_comisdle (v2df, v2df)
19504 int __builtin_ia32_comisdgt (v2df, v2df)
19505 int __builtin_ia32_comisdge (v2df, v2df)
19506 int __builtin_ia32_comisdneq (v2df, v2df)
19507 int __builtin_ia32_ucomisdeq (v2df, v2df)
19508 int __builtin_ia32_ucomisdlt (v2df, v2df)
19509 int __builtin_ia32_ucomisdle (v2df, v2df)
19510 int __builtin_ia32_ucomisdgt (v2df, v2df)
19511 int __builtin_ia32_ucomisdge (v2df, v2df)
19512 int __builtin_ia32_ucomisdneq (v2df, v2df)
19513 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
19514 v2df __builtin_ia32_cmpltpd (v2df, v2df)
19515 v2df __builtin_ia32_cmplepd (v2df, v2df)
19516 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
19517 v2df __builtin_ia32_cmpgepd (v2df, v2df)
19518 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
19519 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
19520 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
19521 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
19522 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
19523 v2df __builtin_ia32_cmpngepd (v2df, v2df)
19524 v2df __builtin_ia32_cmpordpd (v2df, v2df)
19525 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
19526 v2df __builtin_ia32_cmpltsd (v2df, v2df)
19527 v2df __builtin_ia32_cmplesd (v2df, v2df)
19528 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
19529 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
19530 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
19531 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
19532 v2df __builtin_ia32_cmpordsd (v2df, v2df)
19533 v2di __builtin_ia32_paddq (v2di, v2di)
19534 v2di __builtin_ia32_psubq (v2di, v2di)
19535 v2df __builtin_ia32_addpd (v2df, v2df)
19536 v2df __builtin_ia32_subpd (v2df, v2df)
19537 v2df __builtin_ia32_mulpd (v2df, v2df)
19538 v2df __builtin_ia32_divpd (v2df, v2df)
19539 v2df __builtin_ia32_addsd (v2df, v2df)
19540 v2df __builtin_ia32_subsd (v2df, v2df)
19541 v2df __builtin_ia32_mulsd (v2df, v2df)
19542 v2df __builtin_ia32_divsd (v2df, v2df)
19543 v2df __builtin_ia32_minpd (v2df, v2df)
19544 v2df __builtin_ia32_maxpd (v2df, v2df)
19545 v2df __builtin_ia32_minsd (v2df, v2df)
19546 v2df __builtin_ia32_maxsd (v2df, v2df)
19547 v2df __builtin_ia32_andpd (v2df, v2df)
19548 v2df __builtin_ia32_andnpd (v2df, v2df)
19549 v2df __builtin_ia32_orpd (v2df, v2df)
19550 v2df __builtin_ia32_xorpd (v2df, v2df)
19551 v2df __builtin_ia32_movsd (v2df, v2df)
19552 v2df __builtin_ia32_unpckhpd (v2df, v2df)
19553 v2df __builtin_ia32_unpcklpd (v2df, v2df)
19554 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
19555 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
19556 v4si __builtin_ia32_paddd128 (v4si, v4si)
19557 v2di __builtin_ia32_paddq128 (v2di, v2di)
19558 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
19559 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
19560 v4si __builtin_ia32_psubd128 (v4si, v4si)
19561 v2di __builtin_ia32_psubq128 (v2di, v2di)
19562 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
19563 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
19564 v2di __builtin_ia32_pand128 (v2di, v2di)
19565 v2di __builtin_ia32_pandn128 (v2di, v2di)
19566 v2di __builtin_ia32_por128 (v2di, v2di)
19567 v2di __builtin_ia32_pxor128 (v2di, v2di)
19568 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
19569 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
19570 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
19571 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
19572 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
19573 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
19574 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
19575 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
19576 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
19577 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
19578 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
19579 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
19580 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
19581 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
19582 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
19583 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
19584 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
19585 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
19586 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
19587 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
19588 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
19589 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
19590 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
19591 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
19592 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
19593 v2df __builtin_ia32_loadupd (double *)
19594 void __builtin_ia32_storeupd (double *, v2df)
19595 v2df __builtin_ia32_loadhpd (v2df, double const *)
19596 v2df __builtin_ia32_loadlpd (v2df, double const *)
19597 int __builtin_ia32_movmskpd (v2df)
19598 int __builtin_ia32_pmovmskb128 (v16qi)
19599 void __builtin_ia32_movnti (int *, int)
19600 void __builtin_ia32_movnti64 (long long int *, long long int)
19601 void __builtin_ia32_movntpd (double *, v2df)
19602 void __builtin_ia32_movntdq (v2df *, v2df)
19603 v4si __builtin_ia32_pshufd (v4si, int)
19604 v8hi __builtin_ia32_pshuflw (v8hi, int)
19605 v8hi __builtin_ia32_pshufhw (v8hi, int)
19606 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
19607 v2df __builtin_ia32_sqrtpd (v2df)
19608 v2df __builtin_ia32_sqrtsd (v2df)
19609 v2df __builtin_ia32_shufpd (v2df, v2df, int)
19610 v2df __builtin_ia32_cvtdq2pd (v4si)
19611 v4sf __builtin_ia32_cvtdq2ps (v4si)
19612 v4si __builtin_ia32_cvtpd2dq (v2df)
19613 v2si __builtin_ia32_cvtpd2pi (v2df)
19614 v4sf __builtin_ia32_cvtpd2ps (v2df)
19615 v4si __builtin_ia32_cvttpd2dq (v2df)
19616 v2si __builtin_ia32_cvttpd2pi (v2df)
19617 v2df __builtin_ia32_cvtpi2pd (v2si)
19618 int __builtin_ia32_cvtsd2si (v2df)
19619 int __builtin_ia32_cvttsd2si (v2df)
19620 long long __builtin_ia32_cvtsd2si64 (v2df)
19621 long long __builtin_ia32_cvttsd2si64 (v2df)
19622 v4si __builtin_ia32_cvtps2dq (v4sf)
19623 v2df __builtin_ia32_cvtps2pd (v4sf)
19624 v4si __builtin_ia32_cvttps2dq (v4sf)
19625 v2df __builtin_ia32_cvtsi2sd (v2df, int)
19626 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
19627 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
19628 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
19629 void __builtin_ia32_clflush (const void *)
19630 void __builtin_ia32_lfence (void)
19631 void __builtin_ia32_mfence (void)
19632 v16qi __builtin_ia32_loaddqu (const char *)
19633 void __builtin_ia32_storedqu (char *, v16qi)
19634 v1di __builtin_ia32_pmuludq (v2si, v2si)
19635 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
19636 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
19637 v4si __builtin_ia32_pslld128 (v4si, v4si)
19638 v2di __builtin_ia32_psllq128 (v2di, v2di)
19639 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
19640 v4si __builtin_ia32_psrld128 (v4si, v4si)
19641 v2di __builtin_ia32_psrlq128 (v2di, v2di)
19642 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
19643 v4si __builtin_ia32_psrad128 (v4si, v4si)
19644 v2di __builtin_ia32_pslldqi128 (v2di, int)
19645 v8hi __builtin_ia32_psllwi128 (v8hi, int)
19646 v4si __builtin_ia32_pslldi128 (v4si, int)
19647 v2di __builtin_ia32_psllqi128 (v2di, int)
19648 v2di __builtin_ia32_psrldqi128 (v2di, int)
19649 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
19650 v4si __builtin_ia32_psrldi128 (v4si, int)
19651 v2di __builtin_ia32_psrlqi128 (v2di, int)
19652 v8hi __builtin_ia32_psrawi128 (v8hi, int)
19653 v4si __builtin_ia32_psradi128 (v4si, int)
19654 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
19655 v2di __builtin_ia32_movq128 (v2di)
19656 @end smallexample
19657
19658 The following built-in functions are available when @option{-msse3} is used.
19659 All of them generate the machine instruction that is part of the name.
19660
19661 @smallexample
19662 v2df __builtin_ia32_addsubpd (v2df, v2df)
19663 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
19664 v2df __builtin_ia32_haddpd (v2df, v2df)
19665 v4sf __builtin_ia32_haddps (v4sf, v4sf)
19666 v2df __builtin_ia32_hsubpd (v2df, v2df)
19667 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
19668 v16qi __builtin_ia32_lddqu (char const *)
19669 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
19670 v4sf __builtin_ia32_movshdup (v4sf)
19671 v4sf __builtin_ia32_movsldup (v4sf)
19672 void __builtin_ia32_mwait (unsigned int, unsigned int)
19673 @end smallexample
19674
19675 The following built-in functions are available when @option{-mssse3} is used.
19676 All of them generate the machine instruction that is part of the name.
19677
19678 @smallexample
19679 v2si __builtin_ia32_phaddd (v2si, v2si)
19680 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
19681 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
19682 v2si __builtin_ia32_phsubd (v2si, v2si)
19683 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
19684 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
19685 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
19686 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
19687 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
19688 v8qi __builtin_ia32_psignb (v8qi, v8qi)
19689 v2si __builtin_ia32_psignd (v2si, v2si)
19690 v4hi __builtin_ia32_psignw (v4hi, v4hi)
19691 v1di __builtin_ia32_palignr (v1di, v1di, int)
19692 v8qi __builtin_ia32_pabsb (v8qi)
19693 v2si __builtin_ia32_pabsd (v2si)
19694 v4hi __builtin_ia32_pabsw (v4hi)
19695 @end smallexample
19696
19697 The following built-in functions are available when @option{-mssse3} is used.
19698 All of them generate the machine instruction that is part of the name.
19699
19700 @smallexample
19701 v4si __builtin_ia32_phaddd128 (v4si, v4si)
19702 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
19703 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
19704 v4si __builtin_ia32_phsubd128 (v4si, v4si)
19705 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
19706 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
19707 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
19708 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
19709 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
19710 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
19711 v4si __builtin_ia32_psignd128 (v4si, v4si)
19712 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
19713 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
19714 v16qi __builtin_ia32_pabsb128 (v16qi)
19715 v4si __builtin_ia32_pabsd128 (v4si)
19716 v8hi __builtin_ia32_pabsw128 (v8hi)
19717 @end smallexample
19718
19719 The following built-in functions are available when @option{-msse4.1} is
19720 used. All of them generate the machine instruction that is part of the
19721 name.
19722
19723 @smallexample
19724 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
19725 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
19726 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
19727 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
19728 v2df __builtin_ia32_dppd (v2df, v2df, const int)
19729 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
19730 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
19731 v2di __builtin_ia32_movntdqa (v2di *);
19732 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
19733 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
19734 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
19735 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
19736 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
19737 v8hi __builtin_ia32_phminposuw128 (v8hi)
19738 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
19739 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
19740 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
19741 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
19742 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
19743 v4si __builtin_ia32_pminsd128 (v4si, v4si)
19744 v4si __builtin_ia32_pminud128 (v4si, v4si)
19745 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
19746 v4si __builtin_ia32_pmovsxbd128 (v16qi)
19747 v2di __builtin_ia32_pmovsxbq128 (v16qi)
19748 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
19749 v2di __builtin_ia32_pmovsxdq128 (v4si)
19750 v4si __builtin_ia32_pmovsxwd128 (v8hi)
19751 v2di __builtin_ia32_pmovsxwq128 (v8hi)
19752 v4si __builtin_ia32_pmovzxbd128 (v16qi)
19753 v2di __builtin_ia32_pmovzxbq128 (v16qi)
19754 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
19755 v2di __builtin_ia32_pmovzxdq128 (v4si)
19756 v4si __builtin_ia32_pmovzxwd128 (v8hi)
19757 v2di __builtin_ia32_pmovzxwq128 (v8hi)
19758 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
19759 v4si __builtin_ia32_pmulld128 (v4si, v4si)
19760 int __builtin_ia32_ptestc128 (v2di, v2di)
19761 int __builtin_ia32_ptestnzc128 (v2di, v2di)
19762 int __builtin_ia32_ptestz128 (v2di, v2di)
19763 v2df __builtin_ia32_roundpd (v2df, const int)
19764 v4sf __builtin_ia32_roundps (v4sf, const int)
19765 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
19766 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
19767 @end smallexample
19768
19769 The following built-in functions are available when @option{-msse4.1} is
19770 used.
19771
19772 @table @code
19773 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
19774 Generates the @code{insertps} machine instruction.
19775 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
19776 Generates the @code{pextrb} machine instruction.
19777 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
19778 Generates the @code{pinsrb} machine instruction.
19779 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
19780 Generates the @code{pinsrd} machine instruction.
19781 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
19782 Generates the @code{pinsrq} machine instruction in 64bit mode.
19783 @end table
19784
19785 The following built-in functions are changed to generate new SSE4.1
19786 instructions when @option{-msse4.1} is used.
19787
19788 @table @code
19789 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
19790 Generates the @code{extractps} machine instruction.
19791 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
19792 Generates the @code{pextrd} machine instruction.
19793 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
19794 Generates the @code{pextrq} machine instruction in 64bit mode.
19795 @end table
19796
19797 The following built-in functions are available when @option{-msse4.2} is
19798 used. All of them generate the machine instruction that is part of the
19799 name.
19800
19801 @smallexample
19802 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
19803 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
19804 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
19805 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
19806 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
19807 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
19808 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
19809 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
19810 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
19811 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
19812 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
19813 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
19814 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
19815 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
19816 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
19817 @end smallexample
19818
19819 The following built-in functions are available when @option{-msse4.2} is
19820 used.
19821
19822 @table @code
19823 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
19824 Generates the @code{crc32b} machine instruction.
19825 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
19826 Generates the @code{crc32w} machine instruction.
19827 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
19828 Generates the @code{crc32l} machine instruction.
19829 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
19830 Generates the @code{crc32q} machine instruction.
19831 @end table
19832
19833 The following built-in functions are changed to generate new SSE4.2
19834 instructions when @option{-msse4.2} is used.
19835
19836 @table @code
19837 @item int __builtin_popcount (unsigned int)
19838 Generates the @code{popcntl} machine instruction.
19839 @item int __builtin_popcountl (unsigned long)
19840 Generates the @code{popcntl} or @code{popcntq} machine instruction,
19841 depending on the size of @code{unsigned long}.
19842 @item int __builtin_popcountll (unsigned long long)
19843 Generates the @code{popcntq} machine instruction.
19844 @end table
19845
19846 The following built-in functions are available when @option{-mavx} is
19847 used. All of them generate the machine instruction that is part of the
19848 name.
19849
19850 @smallexample
19851 v4df __builtin_ia32_addpd256 (v4df,v4df)
19852 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
19853 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
19854 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
19855 v4df __builtin_ia32_andnpd256 (v4df,v4df)
19856 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
19857 v4df __builtin_ia32_andpd256 (v4df,v4df)
19858 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
19859 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
19860 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
19861 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
19862 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
19863 v2df __builtin_ia32_cmppd (v2df,v2df,int)
19864 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
19865 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
19866 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
19867 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
19868 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
19869 v4df __builtin_ia32_cvtdq2pd256 (v4si)
19870 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
19871 v4si __builtin_ia32_cvtpd2dq256 (v4df)
19872 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
19873 v8si __builtin_ia32_cvtps2dq256 (v8sf)
19874 v4df __builtin_ia32_cvtps2pd256 (v4sf)
19875 v4si __builtin_ia32_cvttpd2dq256 (v4df)
19876 v8si __builtin_ia32_cvttps2dq256 (v8sf)
19877 v4df __builtin_ia32_divpd256 (v4df,v4df)
19878 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
19879 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
19880 v4df __builtin_ia32_haddpd256 (v4df,v4df)
19881 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
19882 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
19883 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
19884 v32qi __builtin_ia32_lddqu256 (pcchar)
19885 v32qi __builtin_ia32_loaddqu256 (pcchar)
19886 v4df __builtin_ia32_loadupd256 (pcdouble)
19887 v8sf __builtin_ia32_loadups256 (pcfloat)
19888 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
19889 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
19890 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
19891 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
19892 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
19893 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
19894 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
19895 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
19896 v4df __builtin_ia32_maxpd256 (v4df,v4df)
19897 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
19898 v4df __builtin_ia32_minpd256 (v4df,v4df)
19899 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
19900 v4df __builtin_ia32_movddup256 (v4df)
19901 int __builtin_ia32_movmskpd256 (v4df)
19902 int __builtin_ia32_movmskps256 (v8sf)
19903 v8sf __builtin_ia32_movshdup256 (v8sf)
19904 v8sf __builtin_ia32_movsldup256 (v8sf)
19905 v4df __builtin_ia32_mulpd256 (v4df,v4df)
19906 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
19907 v4df __builtin_ia32_orpd256 (v4df,v4df)
19908 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
19909 v2df __builtin_ia32_pd_pd256 (v4df)
19910 v4df __builtin_ia32_pd256_pd (v2df)
19911 v4sf __builtin_ia32_ps_ps256 (v8sf)
19912 v8sf __builtin_ia32_ps256_ps (v4sf)
19913 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
19914 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
19915 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
19916 v8sf __builtin_ia32_rcpps256 (v8sf)
19917 v4df __builtin_ia32_roundpd256 (v4df,int)
19918 v8sf __builtin_ia32_roundps256 (v8sf,int)
19919 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
19920 v8sf __builtin_ia32_rsqrtps256 (v8sf)
19921 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
19922 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
19923 v4si __builtin_ia32_si_si256 (v8si)
19924 v8si __builtin_ia32_si256_si (v4si)
19925 v4df __builtin_ia32_sqrtpd256 (v4df)
19926 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
19927 v8sf __builtin_ia32_sqrtps256 (v8sf)
19928 void __builtin_ia32_storedqu256 (pchar,v32qi)
19929 void __builtin_ia32_storeupd256 (pdouble,v4df)
19930 void __builtin_ia32_storeups256 (pfloat,v8sf)
19931 v4df __builtin_ia32_subpd256 (v4df,v4df)
19932 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
19933 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
19934 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
19935 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
19936 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
19937 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
19938 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
19939 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
19940 v4sf __builtin_ia32_vbroadcastss (pcfloat)
19941 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
19942 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
19943 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
19944 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
19945 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
19946 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
19947 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
19948 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
19949 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
19950 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
19951 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
19952 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
19953 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
19954 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
19955 v2df __builtin_ia32_vpermilpd (v2df,int)
19956 v4df __builtin_ia32_vpermilpd256 (v4df,int)
19957 v4sf __builtin_ia32_vpermilps (v4sf,int)
19958 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
19959 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
19960 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
19961 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
19962 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
19963 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
19964 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
19965 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
19966 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
19967 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
19968 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
19969 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
19970 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
19971 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
19972 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
19973 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
19974 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
19975 void __builtin_ia32_vzeroall (void)
19976 void __builtin_ia32_vzeroupper (void)
19977 v4df __builtin_ia32_xorpd256 (v4df,v4df)
19978 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
19979 @end smallexample
19980
19981 The following built-in functions are available when @option{-mavx2} is
19982 used. All of them generate the machine instruction that is part of the
19983 name.
19984
19985 @smallexample
19986 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
19987 v32qi __builtin_ia32_pabsb256 (v32qi)
19988 v16hi __builtin_ia32_pabsw256 (v16hi)
19989 v8si __builtin_ia32_pabsd256 (v8si)
19990 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
19991 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
19992 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
19993 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
19994 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
19995 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
19996 v8si __builtin_ia32_paddd256 (v8si,v8si)
19997 v4di __builtin_ia32_paddq256 (v4di,v4di)
19998 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
19999 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
20000 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
20001 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
20002 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
20003 v4di __builtin_ia32_andsi256 (v4di,v4di)
20004 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
20005 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
20006 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
20007 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
20008 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
20009 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
20010 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
20011 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
20012 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
20013 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
20014 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
20015 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
20016 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
20017 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
20018 v8si __builtin_ia32_phaddd256 (v8si,v8si)
20019 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
20020 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
20021 v8si __builtin_ia32_phsubd256 (v8si,v8si)
20022 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
20023 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
20024 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
20025 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
20026 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
20027 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
20028 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
20029 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
20030 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
20031 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
20032 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
20033 v8si __builtin_ia32_pminsd256 (v8si,v8si)
20034 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
20035 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
20036 v8si __builtin_ia32_pminud256 (v8si,v8si)
20037 int __builtin_ia32_pmovmskb256 (v32qi)
20038 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
20039 v8si __builtin_ia32_pmovsxbd256 (v16qi)
20040 v4di __builtin_ia32_pmovsxbq256 (v16qi)
20041 v8si __builtin_ia32_pmovsxwd256 (v8hi)
20042 v4di __builtin_ia32_pmovsxwq256 (v8hi)
20043 v4di __builtin_ia32_pmovsxdq256 (v4si)
20044 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
20045 v8si __builtin_ia32_pmovzxbd256 (v16qi)
20046 v4di __builtin_ia32_pmovzxbq256 (v16qi)
20047 v8si __builtin_ia32_pmovzxwd256 (v8hi)
20048 v4di __builtin_ia32_pmovzxwq256 (v8hi)
20049 v4di __builtin_ia32_pmovzxdq256 (v4si)
20050 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
20051 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
20052 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
20053 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
20054 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
20055 v8si __builtin_ia32_pmulld256 (v8si,v8si)
20056 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
20057 v4di __builtin_ia32_por256 (v4di,v4di)
20058 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
20059 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
20060 v8si __builtin_ia32_pshufd256 (v8si,int)
20061 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
20062 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
20063 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
20064 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
20065 v8si __builtin_ia32_psignd256 (v8si,v8si)
20066 v4di __builtin_ia32_pslldqi256 (v4di,int)
20067 v16hi __builtin_ia32_psllwi256 (16hi,int)
20068 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
20069 v8si __builtin_ia32_pslldi256 (v8si,int)
20070 v8si __builtin_ia32_pslld256(v8si,v4si)
20071 v4di __builtin_ia32_psllqi256 (v4di,int)
20072 v4di __builtin_ia32_psllq256(v4di,v2di)
20073 v16hi __builtin_ia32_psrawi256 (v16hi,int)
20074 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
20075 v8si __builtin_ia32_psradi256 (v8si,int)
20076 v8si __builtin_ia32_psrad256 (v8si,v4si)
20077 v4di __builtin_ia32_psrldqi256 (v4di, int)
20078 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
20079 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
20080 v8si __builtin_ia32_psrldi256 (v8si,int)
20081 v8si __builtin_ia32_psrld256 (v8si,v4si)
20082 v4di __builtin_ia32_psrlqi256 (v4di,int)
20083 v4di __builtin_ia32_psrlq256(v4di,v2di)
20084 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
20085 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
20086 v8si __builtin_ia32_psubd256 (v8si,v8si)
20087 v4di __builtin_ia32_psubq256 (v4di,v4di)
20088 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
20089 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
20090 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
20091 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
20092 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
20093 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
20094 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
20095 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
20096 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
20097 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
20098 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
20099 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
20100 v4di __builtin_ia32_pxor256 (v4di,v4di)
20101 v4di __builtin_ia32_movntdqa256 (pv4di)
20102 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
20103 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
20104 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
20105 v4di __builtin_ia32_vbroadcastsi256 (v2di)
20106 v4si __builtin_ia32_pblendd128 (v4si,v4si)
20107 v8si __builtin_ia32_pblendd256 (v8si,v8si)
20108 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
20109 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
20110 v8si __builtin_ia32_pbroadcastd256 (v4si)
20111 v4di __builtin_ia32_pbroadcastq256 (v2di)
20112 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
20113 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
20114 v4si __builtin_ia32_pbroadcastd128 (v4si)
20115 v2di __builtin_ia32_pbroadcastq128 (v2di)
20116 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
20117 v4df __builtin_ia32_permdf256 (v4df,int)
20118 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
20119 v4di __builtin_ia32_permdi256 (v4di,int)
20120 v4di __builtin_ia32_permti256 (v4di,v4di,int)
20121 v4di __builtin_ia32_extract128i256 (v4di,int)
20122 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
20123 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
20124 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
20125 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
20126 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
20127 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
20128 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
20129 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
20130 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
20131 v8si __builtin_ia32_psllv8si (v8si,v8si)
20132 v4si __builtin_ia32_psllv4si (v4si,v4si)
20133 v4di __builtin_ia32_psllv4di (v4di,v4di)
20134 v2di __builtin_ia32_psllv2di (v2di,v2di)
20135 v8si __builtin_ia32_psrav8si (v8si,v8si)
20136 v4si __builtin_ia32_psrav4si (v4si,v4si)
20137 v8si __builtin_ia32_psrlv8si (v8si,v8si)
20138 v4si __builtin_ia32_psrlv4si (v4si,v4si)
20139 v4di __builtin_ia32_psrlv4di (v4di,v4di)
20140 v2di __builtin_ia32_psrlv2di (v2di,v2di)
20141 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
20142 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
20143 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
20144 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
20145 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
20146 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
20147 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
20148 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
20149 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
20150 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
20151 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
20152 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
20153 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
20154 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
20155 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
20156 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
20157 @end smallexample
20158
20159 The following built-in functions are available when @option{-maes} is
20160 used. All of them generate the machine instruction that is part of the
20161 name.
20162
20163 @smallexample
20164 v2di __builtin_ia32_aesenc128 (v2di, v2di)
20165 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
20166 v2di __builtin_ia32_aesdec128 (v2di, v2di)
20167 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
20168 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
20169 v2di __builtin_ia32_aesimc128 (v2di)
20170 @end smallexample
20171
20172 The following built-in function is available when @option{-mpclmul} is
20173 used.
20174
20175 @table @code
20176 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
20177 Generates the @code{pclmulqdq} machine instruction.
20178 @end table
20179
20180 The following built-in function is available when @option{-mfsgsbase} is
20181 used. All of them generate the machine instruction that is part of the
20182 name.
20183
20184 @smallexample
20185 unsigned int __builtin_ia32_rdfsbase32 (void)
20186 unsigned long long __builtin_ia32_rdfsbase64 (void)
20187 unsigned int __builtin_ia32_rdgsbase32 (void)
20188 unsigned long long __builtin_ia32_rdgsbase64 (void)
20189 void _writefsbase_u32 (unsigned int)
20190 void _writefsbase_u64 (unsigned long long)
20191 void _writegsbase_u32 (unsigned int)
20192 void _writegsbase_u64 (unsigned long long)
20193 @end smallexample
20194
20195 The following built-in function is available when @option{-mrdrnd} is
20196 used. All of them generate the machine instruction that is part of the
20197 name.
20198
20199 @smallexample
20200 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
20201 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
20202 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
20203 @end smallexample
20204
20205 The following built-in functions are available when @option{-msse4a} is used.
20206 All of them generate the machine instruction that is part of the name.
20207
20208 @smallexample
20209 void __builtin_ia32_movntsd (double *, v2df)
20210 void __builtin_ia32_movntss (float *, v4sf)
20211 v2di __builtin_ia32_extrq (v2di, v16qi)
20212 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
20213 v2di __builtin_ia32_insertq (v2di, v2di)
20214 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
20215 @end smallexample
20216
20217 The following built-in functions are available when @option{-mxop} is used.
20218 @smallexample
20219 v2df __builtin_ia32_vfrczpd (v2df)
20220 v4sf __builtin_ia32_vfrczps (v4sf)
20221 v2df __builtin_ia32_vfrczsd (v2df)
20222 v4sf __builtin_ia32_vfrczss (v4sf)
20223 v4df __builtin_ia32_vfrczpd256 (v4df)
20224 v8sf __builtin_ia32_vfrczps256 (v8sf)
20225 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
20226 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
20227 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
20228 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
20229 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
20230 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
20231 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
20232 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
20233 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
20234 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
20235 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
20236 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
20237 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
20238 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
20239 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20240 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
20241 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
20242 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
20243 v4si __builtin_ia32_vpcomequd (v4si, v4si)
20244 v2di __builtin_ia32_vpcomequq (v2di, v2di)
20245 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
20246 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20247 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
20248 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
20249 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
20250 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
20251 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
20252 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
20253 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
20254 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
20255 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
20256 v4si __builtin_ia32_vpcomged (v4si, v4si)
20257 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
20258 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
20259 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
20260 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
20261 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
20262 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
20263 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
20264 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
20265 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
20266 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
20267 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
20268 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
20269 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
20270 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
20271 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
20272 v4si __builtin_ia32_vpcomled (v4si, v4si)
20273 v2di __builtin_ia32_vpcomleq (v2di, v2di)
20274 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
20275 v4si __builtin_ia32_vpcomleud (v4si, v4si)
20276 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
20277 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
20278 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
20279 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
20280 v4si __builtin_ia32_vpcomltd (v4si, v4si)
20281 v2di __builtin_ia32_vpcomltq (v2di, v2di)
20282 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
20283 v4si __builtin_ia32_vpcomltud (v4si, v4si)
20284 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
20285 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
20286 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
20287 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
20288 v4si __builtin_ia32_vpcomned (v4si, v4si)
20289 v2di __builtin_ia32_vpcomneq (v2di, v2di)
20290 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
20291 v4si __builtin_ia32_vpcomneud (v4si, v4si)
20292 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
20293 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
20294 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
20295 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
20296 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
20297 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
20298 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
20299 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
20300 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
20301 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
20302 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
20303 v4si __builtin_ia32_vphaddbd (v16qi)
20304 v2di __builtin_ia32_vphaddbq (v16qi)
20305 v8hi __builtin_ia32_vphaddbw (v16qi)
20306 v2di __builtin_ia32_vphadddq (v4si)
20307 v4si __builtin_ia32_vphaddubd (v16qi)
20308 v2di __builtin_ia32_vphaddubq (v16qi)
20309 v8hi __builtin_ia32_vphaddubw (v16qi)
20310 v2di __builtin_ia32_vphaddudq (v4si)
20311 v4si __builtin_ia32_vphadduwd (v8hi)
20312 v2di __builtin_ia32_vphadduwq (v8hi)
20313 v4si __builtin_ia32_vphaddwd (v8hi)
20314 v2di __builtin_ia32_vphaddwq (v8hi)
20315 v8hi __builtin_ia32_vphsubbw (v16qi)
20316 v2di __builtin_ia32_vphsubdq (v4si)
20317 v4si __builtin_ia32_vphsubwd (v8hi)
20318 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
20319 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
20320 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
20321 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
20322 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
20323 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
20324 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
20325 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
20326 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
20327 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
20328 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
20329 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
20330 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
20331 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
20332 v4si __builtin_ia32_vprotd (v4si, v4si)
20333 v2di __builtin_ia32_vprotq (v2di, v2di)
20334 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
20335 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
20336 v4si __builtin_ia32_vpshad (v4si, v4si)
20337 v2di __builtin_ia32_vpshaq (v2di, v2di)
20338 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
20339 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
20340 v4si __builtin_ia32_vpshld (v4si, v4si)
20341 v2di __builtin_ia32_vpshlq (v2di, v2di)
20342 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
20343 @end smallexample
20344
20345 The following built-in functions are available when @option{-mfma4} is used.
20346 All of them generate the machine instruction that is part of the name.
20347
20348 @smallexample
20349 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
20350 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
20351 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
20352 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
20353 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
20354 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
20355 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
20356 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
20357 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
20358 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
20359 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
20360 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
20361 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
20362 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
20363 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
20364 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
20365 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
20366 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
20367 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
20368 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
20369 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
20370 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
20371 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
20372 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
20373 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
20374 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
20375 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
20376 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
20377 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
20378 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
20379 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
20380 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
20381
20382 @end smallexample
20383
20384 The following built-in functions are available when @option{-mlwp} is used.
20385
20386 @smallexample
20387 void __builtin_ia32_llwpcb16 (void *);
20388 void __builtin_ia32_llwpcb32 (void *);
20389 void __builtin_ia32_llwpcb64 (void *);
20390 void * __builtin_ia32_llwpcb16 (void);
20391 void * __builtin_ia32_llwpcb32 (void);
20392 void * __builtin_ia32_llwpcb64 (void);
20393 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
20394 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
20395 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
20396 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
20397 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
20398 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
20399 @end smallexample
20400
20401 The following built-in functions are available when @option{-mbmi} is used.
20402 All of them generate the machine instruction that is part of the name.
20403 @smallexample
20404 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
20405 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
20406 @end smallexample
20407
20408 The following built-in functions are available when @option{-mbmi2} is used.
20409 All of them generate the machine instruction that is part of the name.
20410 @smallexample
20411 unsigned int _bzhi_u32 (unsigned int, unsigned int)
20412 unsigned int _pdep_u32 (unsigned int, unsigned int)
20413 unsigned int _pext_u32 (unsigned int, unsigned int)
20414 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
20415 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
20416 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
20417 @end smallexample
20418
20419 The following built-in functions are available when @option{-mlzcnt} is used.
20420 All of them generate the machine instruction that is part of the name.
20421 @smallexample
20422 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
20423 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
20424 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
20425 @end smallexample
20426
20427 The following built-in functions are available when @option{-mfxsr} is used.
20428 All of them generate the machine instruction that is part of the name.
20429 @smallexample
20430 void __builtin_ia32_fxsave (void *)
20431 void __builtin_ia32_fxrstor (void *)
20432 void __builtin_ia32_fxsave64 (void *)
20433 void __builtin_ia32_fxrstor64 (void *)
20434 @end smallexample
20435
20436 The following built-in functions are available when @option{-mxsave} is used.
20437 All of them generate the machine instruction that is part of the name.
20438 @smallexample
20439 void __builtin_ia32_xsave (void *, long long)
20440 void __builtin_ia32_xrstor (void *, long long)
20441 void __builtin_ia32_xsave64 (void *, long long)
20442 void __builtin_ia32_xrstor64 (void *, long long)
20443 @end smallexample
20444
20445 The following built-in functions are available when @option{-mxsaveopt} is used.
20446 All of them generate the machine instruction that is part of the name.
20447 @smallexample
20448 void __builtin_ia32_xsaveopt (void *, long long)
20449 void __builtin_ia32_xsaveopt64 (void *, long long)
20450 @end smallexample
20451
20452 The following built-in functions are available when @option{-mtbm} is used.
20453 Both of them generate the immediate form of the bextr machine instruction.
20454 @smallexample
20455 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
20456 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
20457 @end smallexample
20458
20459
20460 The following built-in functions are available when @option{-m3dnow} is used.
20461 All of them generate the machine instruction that is part of the name.
20462
20463 @smallexample
20464 void __builtin_ia32_femms (void)
20465 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
20466 v2si __builtin_ia32_pf2id (v2sf)
20467 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
20468 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
20469 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
20470 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
20471 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
20472 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
20473 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
20474 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
20475 v2sf __builtin_ia32_pfrcp (v2sf)
20476 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
20477 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
20478 v2sf __builtin_ia32_pfrsqrt (v2sf)
20479 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
20480 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
20481 v2sf __builtin_ia32_pi2fd (v2si)
20482 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
20483 @end smallexample
20484
20485 The following built-in functions are available when both @option{-m3dnow}
20486 and @option{-march=athlon} are used. All of them generate the machine
20487 instruction that is part of the name.
20488
20489 @smallexample
20490 v2si __builtin_ia32_pf2iw (v2sf)
20491 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
20492 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
20493 v2sf __builtin_ia32_pi2fw (v2si)
20494 v2sf __builtin_ia32_pswapdsf (v2sf)
20495 v2si __builtin_ia32_pswapdsi (v2si)
20496 @end smallexample
20497
20498 The following built-in functions are available when @option{-mrtm} is used
20499 They are used for restricted transactional memory. These are the internal
20500 low level functions. Normally the functions in
20501 @ref{x86 transactional memory intrinsics} should be used instead.
20502
20503 @smallexample
20504 int __builtin_ia32_xbegin ()
20505 void __builtin_ia32_xend ()
20506 void __builtin_ia32_xabort (status)
20507 int __builtin_ia32_xtest ()
20508 @end smallexample
20509
20510 The following built-in functions are available when @option{-mmwaitx} is used.
20511 All of them generate the machine instruction that is part of the name.
20512 @smallexample
20513 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
20514 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
20515 @end smallexample
20516
20517 The following built-in functions are available when @option{-mclzero} is used.
20518 All of them generate the machine instruction that is part of the name.
20519 @smallexample
20520 void __builtin_i32_clzero (void *)
20521 @end smallexample
20522
20523 The following built-in functions are available when @option{-mpku} is used.
20524 They generate reads and writes to PKRU.
20525 @smallexample
20526 void __builtin_ia32_wrpkru (unsigned int)
20527 unsigned int __builtin_ia32_rdpkru ()
20528 @end smallexample
20529
20530 @node x86 transactional memory intrinsics
20531 @subsection x86 Transactional Memory Intrinsics
20532
20533 These hardware transactional memory intrinsics for x86 allow you to use
20534 memory transactions with RTM (Restricted Transactional Memory).
20535 This support is enabled with the @option{-mrtm} option.
20536 For using HLE (Hardware Lock Elision) see
20537 @ref{x86 specific memory model extensions for transactional memory} instead.
20538
20539 A memory transaction commits all changes to memory in an atomic way,
20540 as visible to other threads. If the transaction fails it is rolled back
20541 and all side effects discarded.
20542
20543 Generally there is no guarantee that a memory transaction ever succeeds
20544 and suitable fallback code always needs to be supplied.
20545
20546 @deftypefn {RTM Function} {unsigned} _xbegin ()
20547 Start a RTM (Restricted Transactional Memory) transaction.
20548 Returns @code{_XBEGIN_STARTED} when the transaction
20549 started successfully (note this is not 0, so the constant has to be
20550 explicitly tested).
20551
20552 If the transaction aborts, all side-effects
20553 are undone and an abort code encoded as a bit mask is returned.
20554 The following macros are defined:
20555
20556 @table @code
20557 @item _XABORT_EXPLICIT
20558 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
20559 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
20560 @item _XABORT_RETRY
20561 Transaction retry is possible.
20562 @item _XABORT_CONFLICT
20563 Transaction abort due to a memory conflict with another thread.
20564 @item _XABORT_CAPACITY
20565 Transaction abort due to the transaction using too much memory.
20566 @item _XABORT_DEBUG
20567 Transaction abort due to a debug trap.
20568 @item _XABORT_NESTED
20569 Transaction abort in an inner nested transaction.
20570 @end table
20571
20572 There is no guarantee
20573 any transaction ever succeeds, so there always needs to be a valid
20574 fallback path.
20575 @end deftypefn
20576
20577 @deftypefn {RTM Function} {void} _xend ()
20578 Commit the current transaction. When no transaction is active this faults.
20579 All memory side-effects of the transaction become visible
20580 to other threads in an atomic manner.
20581 @end deftypefn
20582
20583 @deftypefn {RTM Function} {int} _xtest ()
20584 Return a nonzero value if a transaction is currently active, otherwise 0.
20585 @end deftypefn
20586
20587 @deftypefn {RTM Function} {void} _xabort (status)
20588 Abort the current transaction. When no transaction is active this is a no-op.
20589 The @var{status} is an 8-bit constant; its value is encoded in the return
20590 value from @code{_xbegin}.
20591 @end deftypefn
20592
20593 Here is an example showing handling for @code{_XABORT_RETRY}
20594 and a fallback path for other failures:
20595
20596 @smallexample
20597 #include <immintrin.h>
20598
20599 int n_tries, max_tries;
20600 unsigned status = _XABORT_EXPLICIT;
20601 ...
20602
20603 for (n_tries = 0; n_tries < max_tries; n_tries++)
20604 @{
20605 status = _xbegin ();
20606 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
20607 break;
20608 @}
20609 if (status == _XBEGIN_STARTED)
20610 @{
20611 ... transaction code...
20612 _xend ();
20613 @}
20614 else
20615 @{
20616 ... non-transactional fallback path...
20617 @}
20618 @end smallexample
20619
20620 @noindent
20621 Note that, in most cases, the transactional and non-transactional code
20622 must synchronize together to ensure consistency.
20623
20624 @node Target Format Checks
20625 @section Format Checks Specific to Particular Target Machines
20626
20627 For some target machines, GCC supports additional options to the
20628 format attribute
20629 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
20630
20631 @menu
20632 * Solaris Format Checks::
20633 * Darwin Format Checks::
20634 @end menu
20635
20636 @node Solaris Format Checks
20637 @subsection Solaris Format Checks
20638
20639 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
20640 check. @code{cmn_err} accepts a subset of the standard @code{printf}
20641 conversions, and the two-argument @code{%b} conversion for displaying
20642 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
20643
20644 @node Darwin Format Checks
20645 @subsection Darwin Format Checks
20646
20647 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
20648 attribute context. Declarations made with such attribution are parsed for correct syntax
20649 and format argument types. However, parsing of the format string itself is currently undefined
20650 and is not carried out by this version of the compiler.
20651
20652 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
20653 also be used as format arguments. Note that the relevant headers are only likely to be
20654 available on Darwin (OSX) installations. On such installations, the XCode and system
20655 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
20656 associated functions.
20657
20658 @node Pragmas
20659 @section Pragmas Accepted by GCC
20660 @cindex pragmas
20661 @cindex @code{#pragma}
20662
20663 GCC supports several types of pragmas, primarily in order to compile
20664 code originally written for other compilers. Note that in general
20665 we do not recommend the use of pragmas; @xref{Function Attributes},
20666 for further explanation.
20667
20668 @menu
20669 * AArch64 Pragmas::
20670 * ARM Pragmas::
20671 * M32C Pragmas::
20672 * MeP Pragmas::
20673 * RS/6000 and PowerPC Pragmas::
20674 * S/390 Pragmas::
20675 * Darwin Pragmas::
20676 * Solaris Pragmas::
20677 * Symbol-Renaming Pragmas::
20678 * Structure-Layout Pragmas::
20679 * Weak Pragmas::
20680 * Diagnostic Pragmas::
20681 * Visibility Pragmas::
20682 * Push/Pop Macro Pragmas::
20683 * Function Specific Option Pragmas::
20684 * Loop-Specific Pragmas::
20685 @end menu
20686
20687 @node AArch64 Pragmas
20688 @subsection AArch64 Pragmas
20689
20690 The pragmas defined by the AArch64 target correspond to the AArch64
20691 target function attributes. They can be specified as below:
20692 @smallexample
20693 #pragma GCC target("string")
20694 @end smallexample
20695
20696 where @code{@var{string}} can be any string accepted as an AArch64 target
20697 attribute. @xref{AArch64 Function Attributes}, for more details
20698 on the permissible values of @code{string}.
20699
20700 @node ARM Pragmas
20701 @subsection ARM Pragmas
20702
20703 The ARM target defines pragmas for controlling the default addition of
20704 @code{long_call} and @code{short_call} attributes to functions.
20705 @xref{Function Attributes}, for information about the effects of these
20706 attributes.
20707
20708 @table @code
20709 @item long_calls
20710 @cindex pragma, long_calls
20711 Set all subsequent functions to have the @code{long_call} attribute.
20712
20713 @item no_long_calls
20714 @cindex pragma, no_long_calls
20715 Set all subsequent functions to have the @code{short_call} attribute.
20716
20717 @item long_calls_off
20718 @cindex pragma, long_calls_off
20719 Do not affect the @code{long_call} or @code{short_call} attributes of
20720 subsequent functions.
20721 @end table
20722
20723 @node M32C Pragmas
20724 @subsection M32C Pragmas
20725
20726 @table @code
20727 @item GCC memregs @var{number}
20728 @cindex pragma, memregs
20729 Overrides the command-line option @code{-memregs=} for the current
20730 file. Use with care! This pragma must be before any function in the
20731 file, and mixing different memregs values in different objects may
20732 make them incompatible. This pragma is useful when a
20733 performance-critical function uses a memreg for temporary values,
20734 as it may allow you to reduce the number of memregs used.
20735
20736 @item ADDRESS @var{name} @var{address}
20737 @cindex pragma, address
20738 For any declared symbols matching @var{name}, this does three things
20739 to that symbol: it forces the symbol to be located at the given
20740 address (a number), it forces the symbol to be volatile, and it
20741 changes the symbol's scope to be static. This pragma exists for
20742 compatibility with other compilers, but note that the common
20743 @code{1234H} numeric syntax is not supported (use @code{0x1234}
20744 instead). Example:
20745
20746 @smallexample
20747 #pragma ADDRESS port3 0x103
20748 char port3;
20749 @end smallexample
20750
20751 @end table
20752
20753 @node MeP Pragmas
20754 @subsection MeP Pragmas
20755
20756 @table @code
20757
20758 @item custom io_volatile (on|off)
20759 @cindex pragma, custom io_volatile
20760 Overrides the command-line option @code{-mio-volatile} for the current
20761 file. Note that for compatibility with future GCC releases, this
20762 option should only be used once before any @code{io} variables in each
20763 file.
20764
20765 @item GCC coprocessor available @var{registers}
20766 @cindex pragma, coprocessor available
20767 Specifies which coprocessor registers are available to the register
20768 allocator. @var{registers} may be a single register, register range
20769 separated by ellipses, or comma-separated list of those. Example:
20770
20771 @smallexample
20772 #pragma GCC coprocessor available $c0...$c10, $c28
20773 @end smallexample
20774
20775 @item GCC coprocessor call_saved @var{registers}
20776 @cindex pragma, coprocessor call_saved
20777 Specifies which coprocessor registers are to be saved and restored by
20778 any function using them. @var{registers} may be a single register,
20779 register range separated by ellipses, or comma-separated list of
20780 those. Example:
20781
20782 @smallexample
20783 #pragma GCC coprocessor call_saved $c4...$c6, $c31
20784 @end smallexample
20785
20786 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
20787 @cindex pragma, coprocessor subclass
20788 Creates and defines a register class. These register classes can be
20789 used by inline @code{asm} constructs. @var{registers} may be a single
20790 register, register range separated by ellipses, or comma-separated
20791 list of those. Example:
20792
20793 @smallexample
20794 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
20795
20796 asm ("cpfoo %0" : "=B" (x));
20797 @end smallexample
20798
20799 @item GCC disinterrupt @var{name} , @var{name} @dots{}
20800 @cindex pragma, disinterrupt
20801 For the named functions, the compiler adds code to disable interrupts
20802 for the duration of those functions. If any functions so named
20803 are not encountered in the source, a warning is emitted that the pragma is
20804 not used. Examples:
20805
20806 @smallexample
20807 #pragma disinterrupt foo
20808 #pragma disinterrupt bar, grill
20809 int foo () @{ @dots{} @}
20810 @end smallexample
20811
20812 @item GCC call @var{name} , @var{name} @dots{}
20813 @cindex pragma, call
20814 For the named functions, the compiler always uses a register-indirect
20815 call model when calling the named functions. Examples:
20816
20817 @smallexample
20818 extern int foo ();
20819 #pragma call foo
20820 @end smallexample
20821
20822 @end table
20823
20824 @node RS/6000 and PowerPC Pragmas
20825 @subsection RS/6000 and PowerPC Pragmas
20826
20827 The RS/6000 and PowerPC targets define one pragma for controlling
20828 whether or not the @code{longcall} attribute is added to function
20829 declarations by default. This pragma overrides the @option{-mlongcall}
20830 option, but not the @code{longcall} and @code{shortcall} attributes.
20831 @xref{RS/6000 and PowerPC Options}, for more information about when long
20832 calls are and are not necessary.
20833
20834 @table @code
20835 @item longcall (1)
20836 @cindex pragma, longcall
20837 Apply the @code{longcall} attribute to all subsequent function
20838 declarations.
20839
20840 @item longcall (0)
20841 Do not apply the @code{longcall} attribute to subsequent function
20842 declarations.
20843 @end table
20844
20845 @c Describe h8300 pragmas here.
20846 @c Describe sh pragmas here.
20847 @c Describe v850 pragmas here.
20848
20849 @node S/390 Pragmas
20850 @subsection S/390 Pragmas
20851
20852 The pragmas defined by the S/390 target correspond to the S/390
20853 target function attributes and some the additional options:
20854
20855 @table @samp
20856 @item zvector
20857 @itemx no-zvector
20858 @end table
20859
20860 Note that options of the pragma, unlike options of the target
20861 attribute, do change the value of preprocessor macros like
20862 @code{__VEC__}. They can be specified as below:
20863
20864 @smallexample
20865 #pragma GCC target("string[,string]...")
20866 #pragma GCC target("string"[,"string"]...)
20867 @end smallexample
20868
20869 @node Darwin Pragmas
20870 @subsection Darwin Pragmas
20871
20872 The following pragmas are available for all architectures running the
20873 Darwin operating system. These are useful for compatibility with other
20874 Mac OS compilers.
20875
20876 @table @code
20877 @item mark @var{tokens}@dots{}
20878 @cindex pragma, mark
20879 This pragma is accepted, but has no effect.
20880
20881 @item options align=@var{alignment}
20882 @cindex pragma, options align
20883 This pragma sets the alignment of fields in structures. The values of
20884 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
20885 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
20886 properly; to restore the previous setting, use @code{reset} for the
20887 @var{alignment}.
20888
20889 @item segment @var{tokens}@dots{}
20890 @cindex pragma, segment
20891 This pragma is accepted, but has no effect.
20892
20893 @item unused (@var{var} [, @var{var}]@dots{})
20894 @cindex pragma, unused
20895 This pragma declares variables to be possibly unused. GCC does not
20896 produce warnings for the listed variables. The effect is similar to
20897 that of the @code{unused} attribute, except that this pragma may appear
20898 anywhere within the variables' scopes.
20899 @end table
20900
20901 @node Solaris Pragmas
20902 @subsection Solaris Pragmas
20903
20904 The Solaris target supports @code{#pragma redefine_extname}
20905 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
20906 @code{#pragma} directives for compatibility with the system compiler.
20907
20908 @table @code
20909 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
20910 @cindex pragma, align
20911
20912 Increase the minimum alignment of each @var{variable} to @var{alignment}.
20913 This is the same as GCC's @code{aligned} attribute @pxref{Variable
20914 Attributes}). Macro expansion occurs on the arguments to this pragma
20915 when compiling C and Objective-C@. It does not currently occur when
20916 compiling C++, but this is a bug which may be fixed in a future
20917 release.
20918
20919 @item fini (@var{function} [, @var{function}]...)
20920 @cindex pragma, fini
20921
20922 This pragma causes each listed @var{function} to be called after
20923 main, or during shared module unloading, by adding a call to the
20924 @code{.fini} section.
20925
20926 @item init (@var{function} [, @var{function}]...)
20927 @cindex pragma, init
20928
20929 This pragma causes each listed @var{function} to be called during
20930 initialization (before @code{main}) or during shared module loading, by
20931 adding a call to the @code{.init} section.
20932
20933 @end table
20934
20935 @node Symbol-Renaming Pragmas
20936 @subsection Symbol-Renaming Pragmas
20937
20938 GCC supports a @code{#pragma} directive that changes the name used in
20939 assembly for a given declaration. While this pragma is supported on all
20940 platforms, it is intended primarily to provide compatibility with the
20941 Solaris system headers. This effect can also be achieved using the asm
20942 labels extension (@pxref{Asm Labels}).
20943
20944 @table @code
20945 @item redefine_extname @var{oldname} @var{newname}
20946 @cindex pragma, redefine_extname
20947
20948 This pragma gives the C function @var{oldname} the assembly symbol
20949 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
20950 is defined if this pragma is available (currently on all platforms).
20951 @end table
20952
20953 This pragma and the asm labels extension interact in a complicated
20954 manner. Here are some corner cases you may want to be aware of:
20955
20956 @enumerate
20957 @item This pragma silently applies only to declarations with external
20958 linkage. Asm labels do not have this restriction.
20959
20960 @item In C++, this pragma silently applies only to declarations with
20961 ``C'' linkage. Again, asm labels do not have this restriction.
20962
20963 @item If either of the ways of changing the assembly name of a
20964 declaration are applied to a declaration whose assembly name has
20965 already been determined (either by a previous use of one of these
20966 features, or because the compiler needed the assembly name in order to
20967 generate code), and the new name is different, a warning issues and
20968 the name does not change.
20969
20970 @item The @var{oldname} used by @code{#pragma redefine_extname} is
20971 always the C-language name.
20972 @end enumerate
20973
20974 @node Structure-Layout Pragmas
20975 @subsection Structure-Layout Pragmas
20976
20977 For compatibility with Microsoft Windows compilers, GCC supports a
20978 set of @code{#pragma} directives that change the maximum alignment of
20979 members of structures (other than zero-width bit-fields), unions, and
20980 classes subsequently defined. The @var{n} value below always is required
20981 to be a small power of two and specifies the new alignment in bytes.
20982
20983 @enumerate
20984 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
20985 @item @code{#pragma pack()} sets the alignment to the one that was in
20986 effect when compilation started (see also command-line option
20987 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
20988 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
20989 setting on an internal stack and then optionally sets the new alignment.
20990 @item @code{#pragma pack(pop)} restores the alignment setting to the one
20991 saved at the top of the internal stack (and removes that stack entry).
20992 Note that @code{#pragma pack([@var{n}])} does not influence this internal
20993 stack; thus it is possible to have @code{#pragma pack(push)} followed by
20994 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
20995 @code{#pragma pack(pop)}.
20996 @end enumerate
20997
20998 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
20999 directive which lays out structures and unions subsequently defined as the
21000 documented @code{__attribute__ ((ms_struct))}.
21001
21002 @enumerate
21003 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
21004 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
21005 @item @code{#pragma ms_struct reset} goes back to the default layout.
21006 @end enumerate
21007
21008 Most targets also support the @code{#pragma scalar_storage_order} directive
21009 which lays out structures and unions subsequently defined as the documented
21010 @code{__attribute__ ((scalar_storage_order))}.
21011
21012 @enumerate
21013 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
21014 of the scalar fields to big-endian.
21015 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
21016 of the scalar fields to little-endian.
21017 @item @code{#pragma scalar_storage_order default} goes back to the endianness
21018 that was in effect when compilation started (see also command-line option
21019 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
21020 @end enumerate
21021
21022 @node Weak Pragmas
21023 @subsection Weak Pragmas
21024
21025 For compatibility with SVR4, GCC supports a set of @code{#pragma}
21026 directives for declaring symbols to be weak, and defining weak
21027 aliases.
21028
21029 @table @code
21030 @item #pragma weak @var{symbol}
21031 @cindex pragma, weak
21032 This pragma declares @var{symbol} to be weak, as if the declaration
21033 had the attribute of the same name. The pragma may appear before
21034 or after the declaration of @var{symbol}. It is not an error for
21035 @var{symbol} to never be defined at all.
21036
21037 @item #pragma weak @var{symbol1} = @var{symbol2}
21038 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
21039 It is an error if @var{symbol2} is not defined in the current
21040 translation unit.
21041 @end table
21042
21043 @node Diagnostic Pragmas
21044 @subsection Diagnostic Pragmas
21045
21046 GCC allows the user to selectively enable or disable certain types of
21047 diagnostics, and change the kind of the diagnostic. For example, a
21048 project's policy might require that all sources compile with
21049 @option{-Werror} but certain files might have exceptions allowing
21050 specific types of warnings. Or, a project might selectively enable
21051 diagnostics and treat them as errors depending on which preprocessor
21052 macros are defined.
21053
21054 @table @code
21055 @item #pragma GCC diagnostic @var{kind} @var{option}
21056 @cindex pragma, diagnostic
21057
21058 Modifies the disposition of a diagnostic. Note that not all
21059 diagnostics are modifiable; at the moment only warnings (normally
21060 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
21061 Use @option{-fdiagnostics-show-option} to determine which diagnostics
21062 are controllable and which option controls them.
21063
21064 @var{kind} is @samp{error} to treat this diagnostic as an error,
21065 @samp{warning} to treat it like a warning (even if @option{-Werror} is
21066 in effect), or @samp{ignored} if the diagnostic is to be ignored.
21067 @var{option} is a double quoted string that matches the command-line
21068 option.
21069
21070 @smallexample
21071 #pragma GCC diagnostic warning "-Wformat"
21072 #pragma GCC diagnostic error "-Wformat"
21073 #pragma GCC diagnostic ignored "-Wformat"
21074 @end smallexample
21075
21076 Note that these pragmas override any command-line options. GCC keeps
21077 track of the location of each pragma, and issues diagnostics according
21078 to the state as of that point in the source file. Thus, pragmas occurring
21079 after a line do not affect diagnostics caused by that line.
21080
21081 @item #pragma GCC diagnostic push
21082 @itemx #pragma GCC diagnostic pop
21083
21084 Causes GCC to remember the state of the diagnostics as of each
21085 @code{push}, and restore to that point at each @code{pop}. If a
21086 @code{pop} has no matching @code{push}, the command-line options are
21087 restored.
21088
21089 @smallexample
21090 #pragma GCC diagnostic error "-Wuninitialized"
21091 foo(a); /* error is given for this one */
21092 #pragma GCC diagnostic push
21093 #pragma GCC diagnostic ignored "-Wuninitialized"
21094 foo(b); /* no diagnostic for this one */
21095 #pragma GCC diagnostic pop
21096 foo(c); /* error is given for this one */
21097 #pragma GCC diagnostic pop
21098 foo(d); /* depends on command-line options */
21099 @end smallexample
21100
21101 @end table
21102
21103 GCC also offers a simple mechanism for printing messages during
21104 compilation.
21105
21106 @table @code
21107 @item #pragma message @var{string}
21108 @cindex pragma, diagnostic
21109
21110 Prints @var{string} as a compiler message on compilation. The message
21111 is informational only, and is neither a compilation warning nor an error.
21112
21113 @smallexample
21114 #pragma message "Compiling " __FILE__ "..."
21115 @end smallexample
21116
21117 @var{string} may be parenthesized, and is printed with location
21118 information. For example,
21119
21120 @smallexample
21121 #define DO_PRAGMA(x) _Pragma (#x)
21122 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
21123
21124 TODO(Remember to fix this)
21125 @end smallexample
21126
21127 @noindent
21128 prints @samp{/tmp/file.c:4: note: #pragma message:
21129 TODO - Remember to fix this}.
21130
21131 @end table
21132
21133 @node Visibility Pragmas
21134 @subsection Visibility Pragmas
21135
21136 @table @code
21137 @item #pragma GCC visibility push(@var{visibility})
21138 @itemx #pragma GCC visibility pop
21139 @cindex pragma, visibility
21140
21141 This pragma allows the user to set the visibility for multiple
21142 declarations without having to give each a visibility attribute
21143 (@pxref{Function Attributes}).
21144
21145 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
21146 declarations. Class members and template specializations are not
21147 affected; if you want to override the visibility for a particular
21148 member or instantiation, you must use an attribute.
21149
21150 @end table
21151
21152
21153 @node Push/Pop Macro Pragmas
21154 @subsection Push/Pop Macro Pragmas
21155
21156 For compatibility with Microsoft Windows compilers, GCC supports
21157 @samp{#pragma push_macro(@var{"macro_name"})}
21158 and @samp{#pragma pop_macro(@var{"macro_name"})}.
21159
21160 @table @code
21161 @item #pragma push_macro(@var{"macro_name"})
21162 @cindex pragma, push_macro
21163 This pragma saves the value of the macro named as @var{macro_name} to
21164 the top of the stack for this macro.
21165
21166 @item #pragma pop_macro(@var{"macro_name"})
21167 @cindex pragma, pop_macro
21168 This pragma sets the value of the macro named as @var{macro_name} to
21169 the value on top of the stack for this macro. If the stack for
21170 @var{macro_name} is empty, the value of the macro remains unchanged.
21171 @end table
21172
21173 For example:
21174
21175 @smallexample
21176 #define X 1
21177 #pragma push_macro("X")
21178 #undef X
21179 #define X -1
21180 #pragma pop_macro("X")
21181 int x [X];
21182 @end smallexample
21183
21184 @noindent
21185 In this example, the definition of X as 1 is saved by @code{#pragma
21186 push_macro} and restored by @code{#pragma pop_macro}.
21187
21188 @node Function Specific Option Pragmas
21189 @subsection Function Specific Option Pragmas
21190
21191 @table @code
21192 @item #pragma GCC target (@var{"string"}...)
21193 @cindex pragma GCC target
21194
21195 This pragma allows you to set target specific options for functions
21196 defined later in the source file. One or more strings can be
21197 specified. Each function that is defined after this point is as
21198 if @code{attribute((target("STRING")))} was specified for that
21199 function. The parenthesis around the options is optional.
21200 @xref{Function Attributes}, for more information about the
21201 @code{target} attribute and the attribute syntax.
21202
21203 The @code{#pragma GCC target} pragma is presently implemented for
21204 x86, PowerPC, and Nios II targets only.
21205 @end table
21206
21207 @table @code
21208 @item #pragma GCC optimize (@var{"string"}...)
21209 @cindex pragma GCC optimize
21210
21211 This pragma allows you to set global optimization options for functions
21212 defined later in the source file. One or more strings can be
21213 specified. Each function that is defined after this point is as
21214 if @code{attribute((optimize("STRING")))} was specified for that
21215 function. The parenthesis around the options is optional.
21216 @xref{Function Attributes}, for more information about the
21217 @code{optimize} attribute and the attribute syntax.
21218 @end table
21219
21220 @table @code
21221 @item #pragma GCC push_options
21222 @itemx #pragma GCC pop_options
21223 @cindex pragma GCC push_options
21224 @cindex pragma GCC pop_options
21225
21226 These pragmas maintain a stack of the current target and optimization
21227 options. It is intended for include files where you temporarily want
21228 to switch to using a different @samp{#pragma GCC target} or
21229 @samp{#pragma GCC optimize} and then to pop back to the previous
21230 options.
21231 @end table
21232
21233 @table @code
21234 @item #pragma GCC reset_options
21235 @cindex pragma GCC reset_options
21236
21237 This pragma clears the current @code{#pragma GCC target} and
21238 @code{#pragma GCC optimize} to use the default switches as specified
21239 on the command line.
21240 @end table
21241
21242 @node Loop-Specific Pragmas
21243 @subsection Loop-Specific Pragmas
21244
21245 @table @code
21246 @item #pragma GCC ivdep
21247 @cindex pragma GCC ivdep
21248 @end table
21249
21250 With this pragma, the programmer asserts that there are no loop-carried
21251 dependencies which would prevent consecutive iterations of
21252 the following loop from executing concurrently with SIMD
21253 (single instruction multiple data) instructions.
21254
21255 For example, the compiler can only unconditionally vectorize the following
21256 loop with the pragma:
21257
21258 @smallexample
21259 void foo (int n, int *a, int *b, int *c)
21260 @{
21261 int i, j;
21262 #pragma GCC ivdep
21263 for (i = 0; i < n; ++i)
21264 a[i] = b[i] + c[i];
21265 @}
21266 @end smallexample
21267
21268 @noindent
21269 In this example, using the @code{restrict} qualifier had the same
21270 effect. In the following example, that would not be possible. Assume
21271 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
21272 that it can unconditionally vectorize the following loop:
21273
21274 @smallexample
21275 void ignore_vec_dep (int *a, int k, int c, int m)
21276 @{
21277 #pragma GCC ivdep
21278 for (int i = 0; i < m; i++)
21279 a[i] = a[i + k] * c;
21280 @}
21281 @end smallexample
21282
21283
21284 @node Unnamed Fields
21285 @section Unnamed Structure and Union Fields
21286 @cindex @code{struct}
21287 @cindex @code{union}
21288
21289 As permitted by ISO C11 and for compatibility with other compilers,
21290 GCC allows you to define
21291 a structure or union that contains, as fields, structures and unions
21292 without names. For example:
21293
21294 @smallexample
21295 struct @{
21296 int a;
21297 union @{
21298 int b;
21299 float c;
21300 @};
21301 int d;
21302 @} foo;
21303 @end smallexample
21304
21305 @noindent
21306 In this example, you are able to access members of the unnamed
21307 union with code like @samp{foo.b}. Note that only unnamed structs and
21308 unions are allowed, you may not have, for example, an unnamed
21309 @code{int}.
21310
21311 You must never create such structures that cause ambiguous field definitions.
21312 For example, in this structure:
21313
21314 @smallexample
21315 struct @{
21316 int a;
21317 struct @{
21318 int a;
21319 @};
21320 @} foo;
21321 @end smallexample
21322
21323 @noindent
21324 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
21325 The compiler gives errors for such constructs.
21326
21327 @opindex fms-extensions
21328 Unless @option{-fms-extensions} is used, the unnamed field must be a
21329 structure or union definition without a tag (for example, @samp{struct
21330 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
21331 also be a definition with a tag such as @samp{struct foo @{ int a;
21332 @};}, a reference to a previously defined structure or union such as
21333 @samp{struct foo;}, or a reference to a @code{typedef} name for a
21334 previously defined structure or union type.
21335
21336 @opindex fplan9-extensions
21337 The option @option{-fplan9-extensions} enables
21338 @option{-fms-extensions} as well as two other extensions. First, a
21339 pointer to a structure is automatically converted to a pointer to an
21340 anonymous field for assignments and function calls. For example:
21341
21342 @smallexample
21343 struct s1 @{ int a; @};
21344 struct s2 @{ struct s1; @};
21345 extern void f1 (struct s1 *);
21346 void f2 (struct s2 *p) @{ f1 (p); @}
21347 @end smallexample
21348
21349 @noindent
21350 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
21351 converted into a pointer to the anonymous field.
21352
21353 Second, when the type of an anonymous field is a @code{typedef} for a
21354 @code{struct} or @code{union}, code may refer to the field using the
21355 name of the @code{typedef}.
21356
21357 @smallexample
21358 typedef struct @{ int a; @} s1;
21359 struct s2 @{ s1; @};
21360 s1 f1 (struct s2 *p) @{ return p->s1; @}
21361 @end smallexample
21362
21363 These usages are only permitted when they are not ambiguous.
21364
21365 @node Thread-Local
21366 @section Thread-Local Storage
21367 @cindex Thread-Local Storage
21368 @cindex @acronym{TLS}
21369 @cindex @code{__thread}
21370
21371 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
21372 are allocated such that there is one instance of the variable per extant
21373 thread. The runtime model GCC uses to implement this originates
21374 in the IA-64 processor-specific ABI, but has since been migrated
21375 to other processors as well. It requires significant support from
21376 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
21377 system libraries (@file{libc.so} and @file{libpthread.so}), so it
21378 is not available everywhere.
21379
21380 At the user level, the extension is visible with a new storage
21381 class keyword: @code{__thread}. For example:
21382
21383 @smallexample
21384 __thread int i;
21385 extern __thread struct state s;
21386 static __thread char *p;
21387 @end smallexample
21388
21389 The @code{__thread} specifier may be used alone, with the @code{extern}
21390 or @code{static} specifiers, but with no other storage class specifier.
21391 When used with @code{extern} or @code{static}, @code{__thread} must appear
21392 immediately after the other storage class specifier.
21393
21394 The @code{__thread} specifier may be applied to any global, file-scoped
21395 static, function-scoped static, or static data member of a class. It may
21396 not be applied to block-scoped automatic or non-static data member.
21397
21398 When the address-of operator is applied to a thread-local variable, it is
21399 evaluated at run time and returns the address of the current thread's
21400 instance of that variable. An address so obtained may be used by any
21401 thread. When a thread terminates, any pointers to thread-local variables
21402 in that thread become invalid.
21403
21404 No static initialization may refer to the address of a thread-local variable.
21405
21406 In C++, if an initializer is present for a thread-local variable, it must
21407 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
21408 standard.
21409
21410 See @uref{http://www.akkadia.org/drepper/tls.pdf,
21411 ELF Handling For Thread-Local Storage} for a detailed explanation of
21412 the four thread-local storage addressing models, and how the runtime
21413 is expected to function.
21414
21415 @menu
21416 * C99 Thread-Local Edits::
21417 * C++98 Thread-Local Edits::
21418 @end menu
21419
21420 @node C99 Thread-Local Edits
21421 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
21422
21423 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
21424 that document the exact semantics of the language extension.
21425
21426 @itemize @bullet
21427 @item
21428 @cite{5.1.2 Execution environments}
21429
21430 Add new text after paragraph 1
21431
21432 @quotation
21433 Within either execution environment, a @dfn{thread} is a flow of
21434 control within a program. It is implementation defined whether
21435 or not there may be more than one thread associated with a program.
21436 It is implementation defined how threads beyond the first are
21437 created, the name and type of the function called at thread
21438 startup, and how threads may be terminated. However, objects
21439 with thread storage duration shall be initialized before thread
21440 startup.
21441 @end quotation
21442
21443 @item
21444 @cite{6.2.4 Storage durations of objects}
21445
21446 Add new text before paragraph 3
21447
21448 @quotation
21449 An object whose identifier is declared with the storage-class
21450 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
21451 Its lifetime is the entire execution of the thread, and its
21452 stored value is initialized only once, prior to thread startup.
21453 @end quotation
21454
21455 @item
21456 @cite{6.4.1 Keywords}
21457
21458 Add @code{__thread}.
21459
21460 @item
21461 @cite{6.7.1 Storage-class specifiers}
21462
21463 Add @code{__thread} to the list of storage class specifiers in
21464 paragraph 1.
21465
21466 Change paragraph 2 to
21467
21468 @quotation
21469 With the exception of @code{__thread}, at most one storage-class
21470 specifier may be given [@dots{}]. The @code{__thread} specifier may
21471 be used alone, or immediately following @code{extern} or
21472 @code{static}.
21473 @end quotation
21474
21475 Add new text after paragraph 6
21476
21477 @quotation
21478 The declaration of an identifier for a variable that has
21479 block scope that specifies @code{__thread} shall also
21480 specify either @code{extern} or @code{static}.
21481
21482 The @code{__thread} specifier shall be used only with
21483 variables.
21484 @end quotation
21485 @end itemize
21486
21487 @node C++98 Thread-Local Edits
21488 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
21489
21490 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
21491 that document the exact semantics of the language extension.
21492
21493 @itemize @bullet
21494 @item
21495 @b{[intro.execution]}
21496
21497 New text after paragraph 4
21498
21499 @quotation
21500 A @dfn{thread} is a flow of control within the abstract machine.
21501 It is implementation defined whether or not there may be more than
21502 one thread.
21503 @end quotation
21504
21505 New text after paragraph 7
21506
21507 @quotation
21508 It is unspecified whether additional action must be taken to
21509 ensure when and whether side effects are visible to other threads.
21510 @end quotation
21511
21512 @item
21513 @b{[lex.key]}
21514
21515 Add @code{__thread}.
21516
21517 @item
21518 @b{[basic.start.main]}
21519
21520 Add after paragraph 5
21521
21522 @quotation
21523 The thread that begins execution at the @code{main} function is called
21524 the @dfn{main thread}. It is implementation defined how functions
21525 beginning threads other than the main thread are designated or typed.
21526 A function so designated, as well as the @code{main} function, is called
21527 a @dfn{thread startup function}. It is implementation defined what
21528 happens if a thread startup function returns. It is implementation
21529 defined what happens to other threads when any thread calls @code{exit}.
21530 @end quotation
21531
21532 @item
21533 @b{[basic.start.init]}
21534
21535 Add after paragraph 4
21536
21537 @quotation
21538 The storage for an object of thread storage duration shall be
21539 statically initialized before the first statement of the thread startup
21540 function. An object of thread storage duration shall not require
21541 dynamic initialization.
21542 @end quotation
21543
21544 @item
21545 @b{[basic.start.term]}
21546
21547 Add after paragraph 3
21548
21549 @quotation
21550 The type of an object with thread storage duration shall not have a
21551 non-trivial destructor, nor shall it be an array type whose elements
21552 (directly or indirectly) have non-trivial destructors.
21553 @end quotation
21554
21555 @item
21556 @b{[basic.stc]}
21557
21558 Add ``thread storage duration'' to the list in paragraph 1.
21559
21560 Change paragraph 2
21561
21562 @quotation
21563 Thread, static, and automatic storage durations are associated with
21564 objects introduced by declarations [@dots{}].
21565 @end quotation
21566
21567 Add @code{__thread} to the list of specifiers in paragraph 3.
21568
21569 @item
21570 @b{[basic.stc.thread]}
21571
21572 New section before @b{[basic.stc.static]}
21573
21574 @quotation
21575 The keyword @code{__thread} applied to a non-local object gives the
21576 object thread storage duration.
21577
21578 A local variable or class data member declared both @code{static}
21579 and @code{__thread} gives the variable or member thread storage
21580 duration.
21581 @end quotation
21582
21583 @item
21584 @b{[basic.stc.static]}
21585
21586 Change paragraph 1
21587
21588 @quotation
21589 All objects that have neither thread storage duration, dynamic
21590 storage duration nor are local [@dots{}].
21591 @end quotation
21592
21593 @item
21594 @b{[dcl.stc]}
21595
21596 Add @code{__thread} to the list in paragraph 1.
21597
21598 Change paragraph 1
21599
21600 @quotation
21601 With the exception of @code{__thread}, at most one
21602 @var{storage-class-specifier} shall appear in a given
21603 @var{decl-specifier-seq}. The @code{__thread} specifier may
21604 be used alone, or immediately following the @code{extern} or
21605 @code{static} specifiers. [@dots{}]
21606 @end quotation
21607
21608 Add after paragraph 5
21609
21610 @quotation
21611 The @code{__thread} specifier can be applied only to the names of objects
21612 and to anonymous unions.
21613 @end quotation
21614
21615 @item
21616 @b{[class.mem]}
21617
21618 Add after paragraph 6
21619
21620 @quotation
21621 Non-@code{static} members shall not be @code{__thread}.
21622 @end quotation
21623 @end itemize
21624
21625 @node Binary constants
21626 @section Binary Constants using the @samp{0b} Prefix
21627 @cindex Binary constants using the @samp{0b} prefix
21628
21629 Integer constants can be written as binary constants, consisting of a
21630 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
21631 @samp{0B}. This is particularly useful in environments that operate a
21632 lot on the bit level (like microcontrollers).
21633
21634 The following statements are identical:
21635
21636 @smallexample
21637 i = 42;
21638 i = 0x2a;
21639 i = 052;
21640 i = 0b101010;
21641 @end smallexample
21642
21643 The type of these constants follows the same rules as for octal or
21644 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
21645 can be applied.
21646
21647 @node C++ Extensions
21648 @chapter Extensions to the C++ Language
21649 @cindex extensions, C++ language
21650 @cindex C++ language extensions
21651
21652 The GNU compiler provides these extensions to the C++ language (and you
21653 can also use most of the C language extensions in your C++ programs). If you
21654 want to write code that checks whether these features are available, you can
21655 test for the GNU compiler the same way as for C programs: check for a
21656 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
21657 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
21658 Predefined Macros,cpp,The GNU C Preprocessor}).
21659
21660 @menu
21661 * C++ Volatiles:: What constitutes an access to a volatile object.
21662 * Restricted Pointers:: C99 restricted pointers and references.
21663 * Vague Linkage:: Where G++ puts inlines, vtables and such.
21664 * C++ Interface:: You can use a single C++ header file for both
21665 declarations and definitions.
21666 * Template Instantiation:: Methods for ensuring that exactly one copy of
21667 each needed template instantiation is emitted.
21668 * Bound member functions:: You can extract a function pointer to the
21669 method denoted by a @samp{->*} or @samp{.*} expression.
21670 * C++ Attributes:: Variable, function, and type attributes for C++ only.
21671 * Function Multiversioning:: Declaring multiple function versions.
21672 * Namespace Association:: Strong using-directives for namespace association.
21673 * Type Traits:: Compiler support for type traits.
21674 * C++ Concepts:: Improved support for generic programming.
21675 * Deprecated Features:: Things will disappear from G++.
21676 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
21677 @end menu
21678
21679 @node C++ Volatiles
21680 @section When is a Volatile C++ Object Accessed?
21681 @cindex accessing volatiles
21682 @cindex volatile read
21683 @cindex volatile write
21684 @cindex volatile access
21685
21686 The C++ standard differs from the C standard in its treatment of
21687 volatile objects. It fails to specify what constitutes a volatile
21688 access, except to say that C++ should behave in a similar manner to C
21689 with respect to volatiles, where possible. However, the different
21690 lvalueness of expressions between C and C++ complicate the behavior.
21691 G++ behaves the same as GCC for volatile access, @xref{C
21692 Extensions,,Volatiles}, for a description of GCC's behavior.
21693
21694 The C and C++ language specifications differ when an object is
21695 accessed in a void context:
21696
21697 @smallexample
21698 volatile int *src = @var{somevalue};
21699 *src;
21700 @end smallexample
21701
21702 The C++ standard specifies that such expressions do not undergo lvalue
21703 to rvalue conversion, and that the type of the dereferenced object may
21704 be incomplete. The C++ standard does not specify explicitly that it
21705 is lvalue to rvalue conversion that is responsible for causing an
21706 access. There is reason to believe that it is, because otherwise
21707 certain simple expressions become undefined. However, because it
21708 would surprise most programmers, G++ treats dereferencing a pointer to
21709 volatile object of complete type as GCC would do for an equivalent
21710 type in C@. When the object has incomplete type, G++ issues a
21711 warning; if you wish to force an error, you must force a conversion to
21712 rvalue with, for instance, a static cast.
21713
21714 When using a reference to volatile, G++ does not treat equivalent
21715 expressions as accesses to volatiles, but instead issues a warning that
21716 no volatile is accessed. The rationale for this is that otherwise it
21717 becomes difficult to determine where volatile access occur, and not
21718 possible to ignore the return value from functions returning volatile
21719 references. Again, if you wish to force a read, cast the reference to
21720 an rvalue.
21721
21722 G++ implements the same behavior as GCC does when assigning to a
21723 volatile object---there is no reread of the assigned-to object, the
21724 assigned rvalue is reused. Note that in C++ assignment expressions
21725 are lvalues, and if used as an lvalue, the volatile object is
21726 referred to. For instance, @var{vref} refers to @var{vobj}, as
21727 expected, in the following example:
21728
21729 @smallexample
21730 volatile int vobj;
21731 volatile int &vref = vobj = @var{something};
21732 @end smallexample
21733
21734 @node Restricted Pointers
21735 @section Restricting Pointer Aliasing
21736 @cindex restricted pointers
21737 @cindex restricted references
21738 @cindex restricted this pointer
21739
21740 As with the C front end, G++ understands the C99 feature of restricted pointers,
21741 specified with the @code{__restrict__}, or @code{__restrict} type
21742 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
21743 language flag, @code{restrict} is not a keyword in C++.
21744
21745 In addition to allowing restricted pointers, you can specify restricted
21746 references, which indicate that the reference is not aliased in the local
21747 context.
21748
21749 @smallexample
21750 void fn (int *__restrict__ rptr, int &__restrict__ rref)
21751 @{
21752 /* @r{@dots{}} */
21753 @}
21754 @end smallexample
21755
21756 @noindent
21757 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
21758 @var{rref} refers to a (different) unaliased integer.
21759
21760 You may also specify whether a member function's @var{this} pointer is
21761 unaliased by using @code{__restrict__} as a member function qualifier.
21762
21763 @smallexample
21764 void T::fn () __restrict__
21765 @{
21766 /* @r{@dots{}} */
21767 @}
21768 @end smallexample
21769
21770 @noindent
21771 Within the body of @code{T::fn}, @var{this} has the effective
21772 definition @code{T *__restrict__ const this}. Notice that the
21773 interpretation of a @code{__restrict__} member function qualifier is
21774 different to that of @code{const} or @code{volatile} qualifier, in that it
21775 is applied to the pointer rather than the object. This is consistent with
21776 other compilers that implement restricted pointers.
21777
21778 As with all outermost parameter qualifiers, @code{__restrict__} is
21779 ignored in function definition matching. This means you only need to
21780 specify @code{__restrict__} in a function definition, rather than
21781 in a function prototype as well.
21782
21783 @node Vague Linkage
21784 @section Vague Linkage
21785 @cindex vague linkage
21786
21787 There are several constructs in C++ that require space in the object
21788 file but are not clearly tied to a single translation unit. We say that
21789 these constructs have ``vague linkage''. Typically such constructs are
21790 emitted wherever they are needed, though sometimes we can be more
21791 clever.
21792
21793 @table @asis
21794 @item Inline Functions
21795 Inline functions are typically defined in a header file which can be
21796 included in many different compilations. Hopefully they can usually be
21797 inlined, but sometimes an out-of-line copy is necessary, if the address
21798 of the function is taken or if inlining fails. In general, we emit an
21799 out-of-line copy in all translation units where one is needed. As an
21800 exception, we only emit inline virtual functions with the vtable, since
21801 it always requires a copy.
21802
21803 Local static variables and string constants used in an inline function
21804 are also considered to have vague linkage, since they must be shared
21805 between all inlined and out-of-line instances of the function.
21806
21807 @item VTables
21808 @cindex vtable
21809 C++ virtual functions are implemented in most compilers using a lookup
21810 table, known as a vtable. The vtable contains pointers to the virtual
21811 functions provided by a class, and each object of the class contains a
21812 pointer to its vtable (or vtables, in some multiple-inheritance
21813 situations). If the class declares any non-inline, non-pure virtual
21814 functions, the first one is chosen as the ``key method'' for the class,
21815 and the vtable is only emitted in the translation unit where the key
21816 method is defined.
21817
21818 @emph{Note:} If the chosen key method is later defined as inline, the
21819 vtable is still emitted in every translation unit that defines it.
21820 Make sure that any inline virtuals are declared inline in the class
21821 body, even if they are not defined there.
21822
21823 @item @code{type_info} objects
21824 @cindex @code{type_info}
21825 @cindex RTTI
21826 C++ requires information about types to be written out in order to
21827 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
21828 For polymorphic classes (classes with virtual functions), the @samp{type_info}
21829 object is written out along with the vtable so that @samp{dynamic_cast}
21830 can determine the dynamic type of a class object at run time. For all
21831 other types, we write out the @samp{type_info} object when it is used: when
21832 applying @samp{typeid} to an expression, throwing an object, or
21833 referring to a type in a catch clause or exception specification.
21834
21835 @item Template Instantiations
21836 Most everything in this section also applies to template instantiations,
21837 but there are other options as well.
21838 @xref{Template Instantiation,,Where's the Template?}.
21839
21840 @end table
21841
21842 When used with GNU ld version 2.8 or later on an ELF system such as
21843 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
21844 these constructs will be discarded at link time. This is known as
21845 COMDAT support.
21846
21847 On targets that don't support COMDAT, but do support weak symbols, GCC
21848 uses them. This way one copy overrides all the others, but
21849 the unused copies still take up space in the executable.
21850
21851 For targets that do not support either COMDAT or weak symbols,
21852 most entities with vague linkage are emitted as local symbols to
21853 avoid duplicate definition errors from the linker. This does not happen
21854 for local statics in inlines, however, as having multiple copies
21855 almost certainly breaks things.
21856
21857 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
21858 another way to control placement of these constructs.
21859
21860 @node C++ Interface
21861 @section C++ Interface and Implementation Pragmas
21862
21863 @cindex interface and implementation headers, C++
21864 @cindex C++ interface and implementation headers
21865 @cindex pragmas, interface and implementation
21866
21867 @code{#pragma interface} and @code{#pragma implementation} provide the
21868 user with a way of explicitly directing the compiler to emit entities
21869 with vague linkage (and debugging information) in a particular
21870 translation unit.
21871
21872 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
21873 by COMDAT support and the ``key method'' heuristic
21874 mentioned in @ref{Vague Linkage}. Using them can actually cause your
21875 program to grow due to unnecessary out-of-line copies of inline
21876 functions.
21877
21878 @table @code
21879 @item #pragma interface
21880 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
21881 @kindex #pragma interface
21882 Use this directive in @emph{header files} that define object classes, to save
21883 space in most of the object files that use those classes. Normally,
21884 local copies of certain information (backup copies of inline member
21885 functions, debugging information, and the internal tables that implement
21886 virtual functions) must be kept in each object file that includes class
21887 definitions. You can use this pragma to avoid such duplication. When a
21888 header file containing @samp{#pragma interface} is included in a
21889 compilation, this auxiliary information is not generated (unless
21890 the main input source file itself uses @samp{#pragma implementation}).
21891 Instead, the object files contain references to be resolved at link
21892 time.
21893
21894 The second form of this directive is useful for the case where you have
21895 multiple headers with the same name in different directories. If you
21896 use this form, you must specify the same string to @samp{#pragma
21897 implementation}.
21898
21899 @item #pragma implementation
21900 @itemx #pragma implementation "@var{objects}.h"
21901 @kindex #pragma implementation
21902 Use this pragma in a @emph{main input file}, when you want full output from
21903 included header files to be generated (and made globally visible). The
21904 included header file, in turn, should use @samp{#pragma interface}.
21905 Backup copies of inline member functions, debugging information, and the
21906 internal tables used to implement virtual functions are all generated in
21907 implementation files.
21908
21909 @cindex implied @code{#pragma implementation}
21910 @cindex @code{#pragma implementation}, implied
21911 @cindex naming convention, implementation headers
21912 If you use @samp{#pragma implementation} with no argument, it applies to
21913 an include file with the same basename@footnote{A file's @dfn{basename}
21914 is the name stripped of all leading path information and of trailing
21915 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
21916 file. For example, in @file{allclass.cc}, giving just
21917 @samp{#pragma implementation}
21918 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
21919
21920 Use the string argument if you want a single implementation file to
21921 include code from multiple header files. (You must also use
21922 @samp{#include} to include the header file; @samp{#pragma
21923 implementation} only specifies how to use the file---it doesn't actually
21924 include it.)
21925
21926 There is no way to split up the contents of a single header file into
21927 multiple implementation files.
21928 @end table
21929
21930 @cindex inlining and C++ pragmas
21931 @cindex C++ pragmas, effect on inlining
21932 @cindex pragmas in C++, effect on inlining
21933 @samp{#pragma implementation} and @samp{#pragma interface} also have an
21934 effect on function inlining.
21935
21936 If you define a class in a header file marked with @samp{#pragma
21937 interface}, the effect on an inline function defined in that class is
21938 similar to an explicit @code{extern} declaration---the compiler emits
21939 no code at all to define an independent version of the function. Its
21940 definition is used only for inlining with its callers.
21941
21942 @opindex fno-implement-inlines
21943 Conversely, when you include the same header file in a main source file
21944 that declares it as @samp{#pragma implementation}, the compiler emits
21945 code for the function itself; this defines a version of the function
21946 that can be found via pointers (or by callers compiled without
21947 inlining). If all calls to the function can be inlined, you can avoid
21948 emitting the function by compiling with @option{-fno-implement-inlines}.
21949 If any calls are not inlined, you will get linker errors.
21950
21951 @node Template Instantiation
21952 @section Where's the Template?
21953 @cindex template instantiation
21954
21955 C++ templates were the first language feature to require more
21956 intelligence from the environment than was traditionally found on a UNIX
21957 system. Somehow the compiler and linker have to make sure that each
21958 template instance occurs exactly once in the executable if it is needed,
21959 and not at all otherwise. There are two basic approaches to this
21960 problem, which are referred to as the Borland model and the Cfront model.
21961
21962 @table @asis
21963 @item Borland model
21964 Borland C++ solved the template instantiation problem by adding the code
21965 equivalent of common blocks to their linker; the compiler emits template
21966 instances in each translation unit that uses them, and the linker
21967 collapses them together. The advantage of this model is that the linker
21968 only has to consider the object files themselves; there is no external
21969 complexity to worry about. The disadvantage is that compilation time
21970 is increased because the template code is being compiled repeatedly.
21971 Code written for this model tends to include definitions of all
21972 templates in the header file, since they must be seen to be
21973 instantiated.
21974
21975 @item Cfront model
21976 The AT&T C++ translator, Cfront, solved the template instantiation
21977 problem by creating the notion of a template repository, an
21978 automatically maintained place where template instances are stored. A
21979 more modern version of the repository works as follows: As individual
21980 object files are built, the compiler places any template definitions and
21981 instantiations encountered in the repository. At link time, the link
21982 wrapper adds in the objects in the repository and compiles any needed
21983 instances that were not previously emitted. The advantages of this
21984 model are more optimal compilation speed and the ability to use the
21985 system linker; to implement the Borland model a compiler vendor also
21986 needs to replace the linker. The disadvantages are vastly increased
21987 complexity, and thus potential for error; for some code this can be
21988 just as transparent, but in practice it can been very difficult to build
21989 multiple programs in one directory and one program in multiple
21990 directories. Code written for this model tends to separate definitions
21991 of non-inline member templates into a separate file, which should be
21992 compiled separately.
21993 @end table
21994
21995 G++ implements the Borland model on targets where the linker supports it,
21996 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
21997 Otherwise G++ implements neither automatic model.
21998
21999 You have the following options for dealing with template instantiations:
22000
22001 @enumerate
22002 @item
22003 Do nothing. Code written for the Borland model works fine, but
22004 each translation unit contains instances of each of the templates it
22005 uses. The duplicate instances will be discarded by the linker, but in
22006 a large program, this can lead to an unacceptable amount of code
22007 duplication in object files or shared libraries.
22008
22009 Duplicate instances of a template can be avoided by defining an explicit
22010 instantiation in one object file, and preventing the compiler from doing
22011 implicit instantiations in any other object files by using an explicit
22012 instantiation declaration, using the @code{extern template} syntax:
22013
22014 @smallexample
22015 extern template int max (int, int);
22016 @end smallexample
22017
22018 This syntax is defined in the C++ 2011 standard, but has been supported by
22019 G++ and other compilers since well before 2011.
22020
22021 Explicit instantiations can be used for the largest or most frequently
22022 duplicated instances, without having to know exactly which other instances
22023 are used in the rest of the program. You can scatter the explicit
22024 instantiations throughout your program, perhaps putting them in the
22025 translation units where the instances are used or the translation units
22026 that define the templates themselves; you can put all of the explicit
22027 instantiations you need into one big file; or you can create small files
22028 like
22029
22030 @smallexample
22031 #include "Foo.h"
22032 #include "Foo.cc"
22033
22034 template class Foo<int>;
22035 template ostream& operator <<
22036 (ostream&, const Foo<int>&);
22037 @end smallexample
22038
22039 @noindent
22040 for each of the instances you need, and create a template instantiation
22041 library from those.
22042
22043 This is the simplest option, but also offers flexibility and
22044 fine-grained control when necessary. It is also the most portable
22045 alternative and programs using this approach will work with most modern
22046 compilers.
22047
22048 @item
22049 @opindex frepo
22050 Compile your template-using code with @option{-frepo}. The compiler
22051 generates files with the extension @samp{.rpo} listing all of the
22052 template instantiations used in the corresponding object files that
22053 could be instantiated there; the link wrapper, @samp{collect2},
22054 then updates the @samp{.rpo} files to tell the compiler where to place
22055 those instantiations and rebuild any affected object files. The
22056 link-time overhead is negligible after the first pass, as the compiler
22057 continues to place the instantiations in the same files.
22058
22059 This can be a suitable option for application code written for the Borland
22060 model, as it usually just works. Code written for the Cfront model
22061 needs to be modified so that the template definitions are available at
22062 one or more points of instantiation; usually this is as simple as adding
22063 @code{#include <tmethods.cc>} to the end of each template header.
22064
22065 For library code, if you want the library to provide all of the template
22066 instantiations it needs, just try to link all of its object files
22067 together; the link will fail, but cause the instantiations to be
22068 generated as a side effect. Be warned, however, that this may cause
22069 conflicts if multiple libraries try to provide the same instantiations.
22070 For greater control, use explicit instantiation as described in the next
22071 option.
22072
22073 @item
22074 @opindex fno-implicit-templates
22075 Compile your code with @option{-fno-implicit-templates} to disable the
22076 implicit generation of template instances, and explicitly instantiate
22077 all the ones you use. This approach requires more knowledge of exactly
22078 which instances you need than do the others, but it's less
22079 mysterious and allows greater control if you want to ensure that only
22080 the intended instances are used.
22081
22082 If you are using Cfront-model code, you can probably get away with not
22083 using @option{-fno-implicit-templates} when compiling files that don't
22084 @samp{#include} the member template definitions.
22085
22086 If you use one big file to do the instantiations, you may want to
22087 compile it without @option{-fno-implicit-templates} so you get all of the
22088 instances required by your explicit instantiations (but not by any
22089 other files) without having to specify them as well.
22090
22091 In addition to forward declaration of explicit instantiations
22092 (with @code{extern}), G++ has extended the template instantiation
22093 syntax to support instantiation of the compiler support data for a
22094 template class (i.e.@: the vtable) without instantiating any of its
22095 members (with @code{inline}), and instantiation of only the static data
22096 members of a template class, without the support data or member
22097 functions (with @code{static}):
22098
22099 @smallexample
22100 inline template class Foo<int>;
22101 static template class Foo<int>;
22102 @end smallexample
22103 @end enumerate
22104
22105 @node Bound member functions
22106 @section Extracting the Function Pointer from a Bound Pointer to Member Function
22107 @cindex pmf
22108 @cindex pointer to member function
22109 @cindex bound pointer to member function
22110
22111 In C++, pointer to member functions (PMFs) are implemented using a wide
22112 pointer of sorts to handle all the possible call mechanisms; the PMF
22113 needs to store information about how to adjust the @samp{this} pointer,
22114 and if the function pointed to is virtual, where to find the vtable, and
22115 where in the vtable to look for the member function. If you are using
22116 PMFs in an inner loop, you should really reconsider that decision. If
22117 that is not an option, you can extract the pointer to the function that
22118 would be called for a given object/PMF pair and call it directly inside
22119 the inner loop, to save a bit of time.
22120
22121 Note that you still pay the penalty for the call through a
22122 function pointer; on most modern architectures, such a call defeats the
22123 branch prediction features of the CPU@. This is also true of normal
22124 virtual function calls.
22125
22126 The syntax for this extension is
22127
22128 @smallexample
22129 extern A a;
22130 extern int (A::*fp)();
22131 typedef int (*fptr)(A *);
22132
22133 fptr p = (fptr)(a.*fp);
22134 @end smallexample
22135
22136 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
22137 no object is needed to obtain the address of the function. They can be
22138 converted to function pointers directly:
22139
22140 @smallexample
22141 fptr p1 = (fptr)(&A::foo);
22142 @end smallexample
22143
22144 @opindex Wno-pmf-conversions
22145 You must specify @option{-Wno-pmf-conversions} to use this extension.
22146
22147 @node C++ Attributes
22148 @section C++-Specific Variable, Function, and Type Attributes
22149
22150 Some attributes only make sense for C++ programs.
22151
22152 @table @code
22153 @item abi_tag ("@var{tag}", ...)
22154 @cindex @code{abi_tag} function attribute
22155 @cindex @code{abi_tag} variable attribute
22156 @cindex @code{abi_tag} type attribute
22157 The @code{abi_tag} attribute can be applied to a function, variable, or class
22158 declaration. It modifies the mangled name of the entity to
22159 incorporate the tag name, in order to distinguish the function or
22160 class from an earlier version with a different ABI; perhaps the class
22161 has changed size, or the function has a different return type that is
22162 not encoded in the mangled name.
22163
22164 The attribute can also be applied to an inline namespace, but does not
22165 affect the mangled name of the namespace; in this case it is only used
22166 for @option{-Wabi-tag} warnings and automatic tagging of functions and
22167 variables. Tagging inline namespaces is generally preferable to
22168 tagging individual declarations, but the latter is sometimes
22169 necessary, such as when only certain members of a class need to be
22170 tagged.
22171
22172 The argument can be a list of strings of arbitrary length. The
22173 strings are sorted on output, so the order of the list is
22174 unimportant.
22175
22176 A redeclaration of an entity must not add new ABI tags,
22177 since doing so would change the mangled name.
22178
22179 The ABI tags apply to a name, so all instantiations and
22180 specializations of a template have the same tags. The attribute will
22181 be ignored if applied to an explicit specialization or instantiation.
22182
22183 The @option{-Wabi-tag} flag enables a warning about a class which does
22184 not have all the ABI tags used by its subobjects and virtual functions; for users with code
22185 that needs to coexist with an earlier ABI, using this option can help
22186 to find all affected types that need to be tagged.
22187
22188 When a type involving an ABI tag is used as the type of a variable or
22189 return type of a function where that tag is not already present in the
22190 signature of the function, the tag is automatically applied to the
22191 variable or function. @option{-Wabi-tag} also warns about this
22192 situation; this warning can be avoided by explicitly tagging the
22193 variable or function or moving it into a tagged inline namespace.
22194
22195 @item init_priority (@var{priority})
22196 @cindex @code{init_priority} variable attribute
22197
22198 In Standard C++, objects defined at namespace scope are guaranteed to be
22199 initialized in an order in strict accordance with that of their definitions
22200 @emph{in a given translation unit}. No guarantee is made for initializations
22201 across translation units. However, GNU C++ allows users to control the
22202 order of initialization of objects defined at namespace scope with the
22203 @code{init_priority} attribute by specifying a relative @var{priority},
22204 a constant integral expression currently bounded between 101 and 65535
22205 inclusive. Lower numbers indicate a higher priority.
22206
22207 In the following example, @code{A} would normally be created before
22208 @code{B}, but the @code{init_priority} attribute reverses that order:
22209
22210 @smallexample
22211 Some_Class A __attribute__ ((init_priority (2000)));
22212 Some_Class B __attribute__ ((init_priority (543)));
22213 @end smallexample
22214
22215 @noindent
22216 Note that the particular values of @var{priority} do not matter; only their
22217 relative ordering.
22218
22219 @item warn_unused
22220 @cindex @code{warn_unused} type attribute
22221
22222 For C++ types with non-trivial constructors and/or destructors it is
22223 impossible for the compiler to determine whether a variable of this
22224 type is truly unused if it is not referenced. This type attribute
22225 informs the compiler that variables of this type should be warned
22226 about if they appear to be unused, just like variables of fundamental
22227 types.
22228
22229 This attribute is appropriate for types which just represent a value,
22230 such as @code{std::string}; it is not appropriate for types which
22231 control a resource, such as @code{std::lock_guard}.
22232
22233 This attribute is also accepted in C, but it is unnecessary because C
22234 does not have constructors or destructors.
22235
22236 @end table
22237
22238 See also @ref{Namespace Association}.
22239
22240 @node Function Multiversioning
22241 @section Function Multiversioning
22242 @cindex function versions
22243
22244 With the GNU C++ front end, for x86 targets, you may specify multiple
22245 versions of a function, where each function is specialized for a
22246 specific target feature. At runtime, the appropriate version of the
22247 function is automatically executed depending on the characteristics of
22248 the execution platform. Here is an example.
22249
22250 @smallexample
22251 __attribute__ ((target ("default")))
22252 int foo ()
22253 @{
22254 // The default version of foo.
22255 return 0;
22256 @}
22257
22258 __attribute__ ((target ("sse4.2")))
22259 int foo ()
22260 @{
22261 // foo version for SSE4.2
22262 return 1;
22263 @}
22264
22265 __attribute__ ((target ("arch=atom")))
22266 int foo ()
22267 @{
22268 // foo version for the Intel ATOM processor
22269 return 2;
22270 @}
22271
22272 __attribute__ ((target ("arch=amdfam10")))
22273 int foo ()
22274 @{
22275 // foo version for the AMD Family 0x10 processors.
22276 return 3;
22277 @}
22278
22279 int main ()
22280 @{
22281 int (*p)() = &foo;
22282 assert ((*p) () == foo ());
22283 return 0;
22284 @}
22285 @end smallexample
22286
22287 In the above example, four versions of function foo are created. The
22288 first version of foo with the target attribute "default" is the default
22289 version. This version gets executed when no other target specific
22290 version qualifies for execution on a particular platform. A new version
22291 of foo is created by using the same function signature but with a
22292 different target string. Function foo is called or a pointer to it is
22293 taken just like a regular function. GCC takes care of doing the
22294 dispatching to call the right version at runtime. Refer to the
22295 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
22296 Function Multiversioning} for more details.
22297
22298 @node Namespace Association
22299 @section Namespace Association
22300
22301 @strong{Caution:} The semantics of this extension are equivalent
22302 to C++ 2011 inline namespaces. Users should use inline namespaces
22303 instead as this extension will be removed in future versions of G++.
22304
22305 A using-directive with @code{__attribute ((strong))} is stronger
22306 than a normal using-directive in two ways:
22307
22308 @itemize @bullet
22309 @item
22310 Templates from the used namespace can be specialized and explicitly
22311 instantiated as though they were members of the using namespace.
22312
22313 @item
22314 The using namespace is considered an associated namespace of all
22315 templates in the used namespace for purposes of argument-dependent
22316 name lookup.
22317 @end itemize
22318
22319 The used namespace must be nested within the using namespace so that
22320 normal unqualified lookup works properly.
22321
22322 This is useful for composing a namespace transparently from
22323 implementation namespaces. For example:
22324
22325 @smallexample
22326 namespace std @{
22327 namespace debug @{
22328 template <class T> struct A @{ @};
22329 @}
22330 using namespace debug __attribute ((__strong__));
22331 template <> struct A<int> @{ @}; // @r{OK to specialize}
22332
22333 template <class T> void f (A<T>);
22334 @}
22335
22336 int main()
22337 @{
22338 f (std::A<float>()); // @r{lookup finds} std::f
22339 f (std::A<int>());
22340 @}
22341 @end smallexample
22342
22343 @node Type Traits
22344 @section Type Traits
22345
22346 The C++ front end implements syntactic extensions that allow
22347 compile-time determination of
22348 various characteristics of a type (or of a
22349 pair of types).
22350
22351 @table @code
22352 @item __has_nothrow_assign (type)
22353 If @code{type} is const qualified or is a reference type then the trait is
22354 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
22355 is true, else if @code{type} is a cv class or union type with copy assignment
22356 operators that are known not to throw an exception then the trait is true,
22357 else it is false. Requires: @code{type} shall be a complete type,
22358 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22359
22360 @item __has_nothrow_copy (type)
22361 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
22362 @code{type} is a cv class or union type with copy constructors that
22363 are known not to throw an exception then the trait is true, else it is false.
22364 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
22365 @code{void}, or an array of unknown bound.
22366
22367 @item __has_nothrow_constructor (type)
22368 If @code{__has_trivial_constructor (type)} is true then the trait is
22369 true, else if @code{type} is a cv class or union type (or array
22370 thereof) with a default constructor that is known not to throw an
22371 exception then the trait is true, else it is false. Requires:
22372 @code{type} shall be a complete type, (possibly cv-qualified)
22373 @code{void}, or an array of unknown bound.
22374
22375 @item __has_trivial_assign (type)
22376 If @code{type} is const qualified or is a reference type then the trait is
22377 false. Otherwise if @code{__is_pod (type)} is true then the trait is
22378 true, else if @code{type} is a cv class or union type with a trivial
22379 copy assignment ([class.copy]) then the trait is true, else it is
22380 false. Requires: @code{type} shall be a complete type, (possibly
22381 cv-qualified) @code{void}, or an array of unknown bound.
22382
22383 @item __has_trivial_copy (type)
22384 If @code{__is_pod (type)} is true or @code{type} is a reference type
22385 then the trait is true, else if @code{type} is a cv class or union type
22386 with a trivial copy constructor ([class.copy]) then the trait
22387 is true, else it is false. Requires: @code{type} shall be a complete
22388 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22389
22390 @item __has_trivial_constructor (type)
22391 If @code{__is_pod (type)} is true then the trait is true, else if
22392 @code{type} is a cv class or union type (or array thereof) with a
22393 trivial default constructor ([class.ctor]) then the trait is true,
22394 else it is false. Requires: @code{type} shall be a complete
22395 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22396
22397 @item __has_trivial_destructor (type)
22398 If @code{__is_pod (type)} is true or @code{type} is a reference type then
22399 the trait is true, else if @code{type} is a cv class or union type (or
22400 array thereof) with a trivial destructor ([class.dtor]) then the trait
22401 is true, else it is false. Requires: @code{type} shall be a complete
22402 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22403
22404 @item __has_virtual_destructor (type)
22405 If @code{type} is a class type with a virtual destructor
22406 ([class.dtor]) then the trait is true, else it is false. Requires:
22407 @code{type} shall be a complete type, (possibly cv-qualified)
22408 @code{void}, or an array of unknown bound.
22409
22410 @item __is_abstract (type)
22411 If @code{type} is an abstract class ([class.abstract]) then the trait
22412 is true, else it is false. Requires: @code{type} shall be a complete
22413 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22414
22415 @item __is_base_of (base_type, derived_type)
22416 If @code{base_type} is a base class of @code{derived_type}
22417 ([class.derived]) then the trait is true, otherwise it is false.
22418 Top-level cv qualifications of @code{base_type} and
22419 @code{derived_type} are ignored. For the purposes of this trait, a
22420 class type is considered is own base. Requires: if @code{__is_class
22421 (base_type)} and @code{__is_class (derived_type)} are true and
22422 @code{base_type} and @code{derived_type} are not the same type
22423 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
22424 type. A diagnostic is produced if this requirement is not met.
22425
22426 @item __is_class (type)
22427 If @code{type} is a cv class type, and not a union type
22428 ([basic.compound]) the trait is true, else it is false.
22429
22430 @item __is_empty (type)
22431 If @code{__is_class (type)} is false then the trait is false.
22432 Otherwise @code{type} is considered empty if and only if: @code{type}
22433 has no non-static data members, or all non-static data members, if
22434 any, are bit-fields of length 0, and @code{type} has no virtual
22435 members, and @code{type} has no virtual base classes, and @code{type}
22436 has no base classes @code{base_type} for which
22437 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
22438 be a complete type, (possibly cv-qualified) @code{void}, or an array
22439 of unknown bound.
22440
22441 @item __is_enum (type)
22442 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
22443 true, else it is false.
22444
22445 @item __is_literal_type (type)
22446 If @code{type} is a literal type ([basic.types]) the trait is
22447 true, else it is false. Requires: @code{type} shall be a complete type,
22448 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22449
22450 @item __is_pod (type)
22451 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
22452 else it is false. Requires: @code{type} shall be a complete type,
22453 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22454
22455 @item __is_polymorphic (type)
22456 If @code{type} is a polymorphic class ([class.virtual]) then the trait
22457 is true, else it is false. Requires: @code{type} shall be a complete
22458 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22459
22460 @item __is_standard_layout (type)
22461 If @code{type} is a standard-layout type ([basic.types]) the trait is
22462 true, else it is false. Requires: @code{type} shall be a complete
22463 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22464
22465 @item __is_trivial (type)
22466 If @code{type} is a trivial type ([basic.types]) the trait is
22467 true, else it is false. Requires: @code{type} shall be a complete
22468 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22469
22470 @item __is_union (type)
22471 If @code{type} is a cv union type ([basic.compound]) the trait is
22472 true, else it is false.
22473
22474 @item __underlying_type (type)
22475 The underlying type of @code{type}. Requires: @code{type} shall be
22476 an enumeration type ([dcl.enum]).
22477
22478 @end table
22479
22480
22481 @node C++ Concepts
22482 @section C++ Concepts
22483
22484 C++ concepts provide much-improved support for generic programming. In
22485 particular, they allow the specification of constraints on template arguments.
22486 The constraints are used to extend the usual overloading and partial
22487 specialization capabilities of the language, allowing generic data structures
22488 and algorithms to be ``refined'' based on their properties rather than their
22489 type names.
22490
22491 The following keywords are reserved for concepts.
22492
22493 @table @code
22494 @item assumes
22495 States an expression as an assumption, and if possible, verifies that the
22496 assumption is valid. For example, @code{assume(n > 0)}.
22497
22498 @item axiom
22499 Introduces an axiom definition. Axioms introduce requirements on values.
22500
22501 @item forall
22502 Introduces a universally quantified object in an axiom. For example,
22503 @code{forall (int n) n + 0 == n}).
22504
22505 @item concept
22506 Introduces a concept definition. Concepts are sets of syntactic and semantic
22507 requirements on types and their values.
22508
22509 @item requires
22510 Introduces constraints on template arguments or requirements for a member
22511 function of a class template.
22512
22513 @end table
22514
22515 The front end also exposes a number of internal mechanism that can be used
22516 to simplify the writing of type traits. Note that some of these traits are
22517 likely to be removed in the future.
22518
22519 @table @code
22520 @item __is_same (type1, type2)
22521 A binary type trait: true whenever the type arguments are the same.
22522
22523 @end table
22524
22525
22526 @node Deprecated Features
22527 @section Deprecated Features
22528
22529 In the past, the GNU C++ compiler was extended to experiment with new
22530 features, at a time when the C++ language was still evolving. Now that
22531 the C++ standard is complete, some of those features are superseded by
22532 superior alternatives. Using the old features might cause a warning in
22533 some cases that the feature will be dropped in the future. In other
22534 cases, the feature might be gone already.
22535
22536 While the list below is not exhaustive, it documents some of the options
22537 that are now deprecated:
22538
22539 @table @code
22540 @item -fexternal-templates
22541 @itemx -falt-external-templates
22542 These are two of the many ways for G++ to implement template
22543 instantiation. @xref{Template Instantiation}. The C++ standard clearly
22544 defines how template definitions have to be organized across
22545 implementation units. G++ has an implicit instantiation mechanism that
22546 should work just fine for standard-conforming code.
22547
22548 @item -fstrict-prototype
22549 @itemx -fno-strict-prototype
22550 Previously it was possible to use an empty prototype parameter list to
22551 indicate an unspecified number of parameters (like C), rather than no
22552 parameters, as C++ demands. This feature has been removed, except where
22553 it is required for backwards compatibility. @xref{Backwards Compatibility}.
22554 @end table
22555
22556 G++ allows a virtual function returning @samp{void *} to be overridden
22557 by one returning a different pointer type. This extension to the
22558 covariant return type rules is now deprecated and will be removed from a
22559 future version.
22560
22561 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
22562 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
22563 and are now removed from G++. Code using these operators should be
22564 modified to use @code{std::min} and @code{std::max} instead.
22565
22566 The named return value extension has been deprecated, and is now
22567 removed from G++.
22568
22569 The use of initializer lists with new expressions has been deprecated,
22570 and is now removed from G++.
22571
22572 Floating and complex non-type template parameters have been deprecated,
22573 and are now removed from G++.
22574
22575 The implicit typename extension has been deprecated and is now
22576 removed from G++.
22577
22578 The use of default arguments in function pointers, function typedefs
22579 and other places where they are not permitted by the standard is
22580 deprecated and will be removed from a future version of G++.
22581
22582 G++ allows floating-point literals to appear in integral constant expressions,
22583 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
22584 This extension is deprecated and will be removed from a future version.
22585
22586 G++ allows static data members of const floating-point type to be declared
22587 with an initializer in a class definition. The standard only allows
22588 initializers for static members of const integral types and const
22589 enumeration types so this extension has been deprecated and will be removed
22590 from a future version.
22591
22592 @node Backwards Compatibility
22593 @section Backwards Compatibility
22594 @cindex Backwards Compatibility
22595 @cindex ARM [Annotated C++ Reference Manual]
22596
22597 Now that there is a definitive ISO standard C++, G++ has a specification
22598 to adhere to. The C++ language evolved over time, and features that
22599 used to be acceptable in previous drafts of the standard, such as the ARM
22600 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
22601 compilation of C++ written to such drafts, G++ contains some backwards
22602 compatibilities. @emph{All such backwards compatibility features are
22603 liable to disappear in future versions of G++.} They should be considered
22604 deprecated. @xref{Deprecated Features}.
22605
22606 @table @code
22607 @item For scope
22608 If a variable is declared at for scope, it used to remain in scope until
22609 the end of the scope that contained the for statement (rather than just
22610 within the for scope). G++ retains this, but issues a warning, if such a
22611 variable is accessed outside the for scope.
22612
22613 @item Implicit C language
22614 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
22615 scope to set the language. On such systems, all header files are
22616 implicitly scoped inside a C language scope. Also, an empty prototype
22617 @code{()} is treated as an unspecified number of arguments, rather
22618 than no arguments, as C++ demands.
22619 @end table
22620
22621 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
22622 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr