nvptx backend prerequisites for OpenMP offloading
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Inquiring about the alignment of a type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
76 function.
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
86 checking.
87 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
88 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
89 * Other Builtins:: Other built-in functions.
90 * Target Builtins:: Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas:: Pragmas accepted by GCC.
93 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
94 * Thread-Local:: Per-thread variables.
95 * Binary constants:: Binary constants using the @samp{0b} prefix.
96 @end menu
97
98 @node Statement Exprs
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
104
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@. This allows you to use loops, switches, and local variables
109 within an expression.
110
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces. For
113 example:
114
115 @smallexample
116 (@{ int y = foo (); int z;
117 if (y > 0) z = y;
118 else z = - y;
119 z; @})
120 @end smallexample
121
122 @noindent
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
125
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct. (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
131
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once). For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
135 follows:
136
137 @smallexample
138 #define max(a,b) ((a) > (b) ? (a) : (b))
139 @end smallexample
140
141 @noindent
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects. In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
147
148 @smallexample
149 #define maxint(a,b) \
150 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 @end smallexample
152
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
156
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
159
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression. For instance, if @code{A} is a class, then
163
164 @smallexample
165 A a;
166
167 (@{a;@}).Foo ()
168 @end smallexample
169
170 @noindent
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 address of @code{a}.
175
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end. This makes statement
178 expressions inside macros slightly different from function calls. In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call. In the statement expression case they are destroyed during
182 the statement expression. For instance,
183
184 @smallexample
185 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
187
188 void foo ()
189 @{
190 macro (X ());
191 function (X ());
192 @}
193 @end smallexample
194
195 @noindent
196 has different places where temporaries are destroyed. For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}. In the @code{function} case that
199 temporary is destroyed when the function returns.
200
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++. (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
205 bug.)
206
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted. Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression. In any case, as with a function call, the evaluation of a
218 statement expression is not interleaved with the evaluation of other
219 parts of the containing expression. For example,
220
221 @smallexample
222 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
223 @end smallexample
224
225 @noindent
226 calls @code{foo} and @code{bar1} and does not call @code{baz} but
227 may or may not call @code{bar2}. If @code{bar2} is called, it is
228 called after @code{foo} and before @code{bar1}.
229
230 @node Local Labels
231 @section Locally Declared Labels
232 @cindex local labels
233 @cindex macros, local labels
234
235 GCC allows you to declare @dfn{local labels} in any nested block
236 scope. A local label is just like an ordinary label, but you can
237 only reference it (with a @code{goto} statement, or by taking its
238 address) within the block in which it is declared.
239
240 A local label declaration looks like this:
241
242 @smallexample
243 __label__ @var{label};
244 @end smallexample
245
246 @noindent
247 or
248
249 @smallexample
250 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
251 @end smallexample
252
253 Local label declarations must come at the beginning of the block,
254 before any ordinary declarations or statements.
255
256 The label declaration defines the label @emph{name}, but does not define
257 the label itself. You must do this in the usual way, with
258 @code{@var{label}:}, within the statements of the statement expression.
259
260 The local label feature is useful for complex macros. If a macro
261 contains nested loops, a @code{goto} can be useful for breaking out of
262 them. However, an ordinary label whose scope is the whole function
263 cannot be used: if the macro can be expanded several times in one
264 function, the label is multiply defined in that function. A
265 local label avoids this problem. For example:
266
267 @smallexample
268 #define SEARCH(value, array, target) \
269 do @{ \
270 __label__ found; \
271 typeof (target) _SEARCH_target = (target); \
272 typeof (*(array)) *_SEARCH_array = (array); \
273 int i, j; \
274 int value; \
275 for (i = 0; i < max; i++) \
276 for (j = 0; j < max; j++) \
277 if (_SEARCH_array[i][j] == _SEARCH_target) \
278 @{ (value) = i; goto found; @} \
279 (value) = -1; \
280 found:; \
281 @} while (0)
282 @end smallexample
283
284 This could also be written using a statement expression:
285
286 @smallexample
287 #define SEARCH(array, target) \
288 (@{ \
289 __label__ found; \
290 typeof (target) _SEARCH_target = (target); \
291 typeof (*(array)) *_SEARCH_array = (array); \
292 int i, j; \
293 int value; \
294 for (i = 0; i < max; i++) \
295 for (j = 0; j < max; j++) \
296 if (_SEARCH_array[i][j] == _SEARCH_target) \
297 @{ value = i; goto found; @} \
298 value = -1; \
299 found: \
300 value; \
301 @})
302 @end smallexample
303
304 Local label declarations also make the labels they declare visible to
305 nested functions, if there are any. @xref{Nested Functions}, for details.
306
307 @node Labels as Values
308 @section Labels as Values
309 @cindex labels as values
310 @cindex computed gotos
311 @cindex goto with computed label
312 @cindex address of a label
313
314 You can get the address of a label defined in the current function
315 (or a containing function) with the unary operator @samp{&&}. The
316 value has type @code{void *}. This value is a constant and can be used
317 wherever a constant of that type is valid. For example:
318
319 @smallexample
320 void *ptr;
321 /* @r{@dots{}} */
322 ptr = &&foo;
323 @end smallexample
324
325 To use these values, you need to be able to jump to one. This is done
326 with the computed goto statement@footnote{The analogous feature in
327 Fortran is called an assigned goto, but that name seems inappropriate in
328 C, where one can do more than simply store label addresses in label
329 variables.}, @code{goto *@var{exp};}. For example,
330
331 @smallexample
332 goto *ptr;
333 @end smallexample
334
335 @noindent
336 Any expression of type @code{void *} is allowed.
337
338 One way of using these constants is in initializing a static array that
339 serves as a jump table:
340
341 @smallexample
342 static void *array[] = @{ &&foo, &&bar, &&hack @};
343 @end smallexample
344
345 @noindent
346 Then you can select a label with indexing, like this:
347
348 @smallexample
349 goto *array[i];
350 @end smallexample
351
352 @noindent
353 Note that this does not check whether the subscript is in bounds---array
354 indexing in C never does that.
355
356 Such an array of label values serves a purpose much like that of the
357 @code{switch} statement. The @code{switch} statement is cleaner, so
358 use that rather than an array unless the problem does not fit a
359 @code{switch} statement very well.
360
361 Another use of label values is in an interpreter for threaded code.
362 The labels within the interpreter function can be stored in the
363 threaded code for super-fast dispatching.
364
365 You may not use this mechanism to jump to code in a different function.
366 If you do that, totally unpredictable things happen. The best way to
367 avoid this is to store the label address only in automatic variables and
368 never pass it as an argument.
369
370 An alternate way to write the above example is
371
372 @smallexample
373 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
374 &&hack - &&foo @};
375 goto *(&&foo + array[i]);
376 @end smallexample
377
378 @noindent
379 This is more friendly to code living in shared libraries, as it reduces
380 the number of dynamic relocations that are needed, and by consequence,
381 allows the data to be read-only.
382 This alternative with label differences is not supported for the AVR target,
383 please use the first approach for AVR programs.
384
385 The @code{&&foo} expressions for the same label might have different
386 values if the containing function is inlined or cloned. If a program
387 relies on them being always the same,
388 @code{__attribute__((__noinline__,__noclone__))} should be used to
389 prevent inlining and cloning. If @code{&&foo} is used in a static
390 variable initializer, inlining and cloning is forbidden.
391
392 @node Nested Functions
393 @section Nested Functions
394 @cindex nested functions
395 @cindex downward funargs
396 @cindex thunks
397
398 A @dfn{nested function} is a function defined inside another function.
399 Nested functions are supported as an extension in GNU C, but are not
400 supported by GNU C++.
401
402 The nested function's name is local to the block where it is defined.
403 For example, here we define a nested function named @code{square}, and
404 call it twice:
405
406 @smallexample
407 @group
408 foo (double a, double b)
409 @{
410 double square (double z) @{ return z * z; @}
411
412 return square (a) + square (b);
413 @}
414 @end group
415 @end smallexample
416
417 The nested function can access all the variables of the containing
418 function that are visible at the point of its definition. This is
419 called @dfn{lexical scoping}. For example, here we show a nested
420 function which uses an inherited variable named @code{offset}:
421
422 @smallexample
423 @group
424 bar (int *array, int offset, int size)
425 @{
426 int access (int *array, int index)
427 @{ return array[index + offset]; @}
428 int i;
429 /* @r{@dots{}} */
430 for (i = 0; i < size; i++)
431 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
432 @}
433 @end group
434 @end smallexample
435
436 Nested function definitions are permitted within functions in the places
437 where variable definitions are allowed; that is, in any block, mixed
438 with the other declarations and statements in the block.
439
440 It is possible to call the nested function from outside the scope of its
441 name by storing its address or passing the address to another function:
442
443 @smallexample
444 hack (int *array, int size)
445 @{
446 void store (int index, int value)
447 @{ array[index] = value; @}
448
449 intermediate (store, size);
450 @}
451 @end smallexample
452
453 Here, the function @code{intermediate} receives the address of
454 @code{store} as an argument. If @code{intermediate} calls @code{store},
455 the arguments given to @code{store} are used to store into @code{array}.
456 But this technique works only so long as the containing function
457 (@code{hack}, in this example) does not exit.
458
459 If you try to call the nested function through its address after the
460 containing function exits, all hell breaks loose. If you try
461 to call it after a containing scope level exits, and if it refers
462 to some of the variables that are no longer in scope, you may be lucky,
463 but it's not wise to take the risk. If, however, the nested function
464 does not refer to anything that has gone out of scope, you should be
465 safe.
466
467 GCC implements taking the address of a nested function using a technique
468 called @dfn{trampolines}. This technique was described in
469 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
470 C++ Conference Proceedings, October 17-21, 1988).
471
472 A nested function can jump to a label inherited from a containing
473 function, provided the label is explicitly declared in the containing
474 function (@pxref{Local Labels}). Such a jump returns instantly to the
475 containing function, exiting the nested function that did the
476 @code{goto} and any intermediate functions as well. Here is an example:
477
478 @smallexample
479 @group
480 bar (int *array, int offset, int size)
481 @{
482 __label__ failure;
483 int access (int *array, int index)
484 @{
485 if (index > size)
486 goto failure;
487 return array[index + offset];
488 @}
489 int i;
490 /* @r{@dots{}} */
491 for (i = 0; i < size; i++)
492 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
493 /* @r{@dots{}} */
494 return 0;
495
496 /* @r{Control comes here from @code{access}
497 if it detects an error.} */
498 failure:
499 return -1;
500 @}
501 @end group
502 @end smallexample
503
504 A nested function always has no linkage. Declaring one with
505 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
506 before its definition, use @code{auto} (which is otherwise meaningless
507 for function declarations).
508
509 @smallexample
510 bar (int *array, int offset, int size)
511 @{
512 __label__ failure;
513 auto int access (int *, int);
514 /* @r{@dots{}} */
515 int access (int *array, int index)
516 @{
517 if (index > size)
518 goto failure;
519 return array[index + offset];
520 @}
521 /* @r{@dots{}} */
522 @}
523 @end smallexample
524
525 @node Constructing Calls
526 @section Constructing Function Calls
527 @cindex constructing calls
528 @cindex forwarding calls
529
530 Using the built-in functions described below, you can record
531 the arguments a function received, and call another function
532 with the same arguments, without knowing the number or types
533 of the arguments.
534
535 You can also record the return value of that function call,
536 and later return that value, without knowing what data type
537 the function tried to return (as long as your caller expects
538 that data type).
539
540 However, these built-in functions may interact badly with some
541 sophisticated features or other extensions of the language. It
542 is, therefore, not recommended to use them outside very simple
543 functions acting as mere forwarders for their arguments.
544
545 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
546 This built-in function returns a pointer to data
547 describing how to perform a call with the same arguments as are passed
548 to the current function.
549
550 The function saves the arg pointer register, structure value address,
551 and all registers that might be used to pass arguments to a function
552 into a block of memory allocated on the stack. Then it returns the
553 address of that block.
554 @end deftypefn
555
556 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
557 This built-in function invokes @var{function}
558 with a copy of the parameters described by @var{arguments}
559 and @var{size}.
560
561 The value of @var{arguments} should be the value returned by
562 @code{__builtin_apply_args}. The argument @var{size} specifies the size
563 of the stack argument data, in bytes.
564
565 This function returns a pointer to data describing
566 how to return whatever value is returned by @var{function}. The data
567 is saved in a block of memory allocated on the stack.
568
569 It is not always simple to compute the proper value for @var{size}. The
570 value is used by @code{__builtin_apply} to compute the amount of data
571 that should be pushed on the stack and copied from the incoming argument
572 area.
573 @end deftypefn
574
575 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
576 This built-in function returns the value described by @var{result} from
577 the containing function. You should specify, for @var{result}, a value
578 returned by @code{__builtin_apply}.
579 @end deftypefn
580
581 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
582 This built-in function represents all anonymous arguments of an inline
583 function. It can be used only in inline functions that are always
584 inlined, never compiled as a separate function, such as those using
585 @code{__attribute__ ((__always_inline__))} or
586 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
587 It must be only passed as last argument to some other function
588 with variable arguments. This is useful for writing small wrapper
589 inlines for variable argument functions, when using preprocessor
590 macros is undesirable. For example:
591 @smallexample
592 extern int myprintf (FILE *f, const char *format, ...);
593 extern inline __attribute__ ((__gnu_inline__)) int
594 myprintf (FILE *f, const char *format, ...)
595 @{
596 int r = fprintf (f, "myprintf: ");
597 if (r < 0)
598 return r;
599 int s = fprintf (f, format, __builtin_va_arg_pack ());
600 if (s < 0)
601 return s;
602 return r + s;
603 @}
604 @end smallexample
605 @end deftypefn
606
607 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
608 This built-in function returns the number of anonymous arguments of
609 an inline function. It can be used only in inline functions that
610 are always inlined, never compiled as a separate function, such
611 as those using @code{__attribute__ ((__always_inline__))} or
612 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
613 For example following does link- or run-time checking of open
614 arguments for optimized code:
615 @smallexample
616 #ifdef __OPTIMIZE__
617 extern inline __attribute__((__gnu_inline__)) int
618 myopen (const char *path, int oflag, ...)
619 @{
620 if (__builtin_va_arg_pack_len () > 1)
621 warn_open_too_many_arguments ();
622
623 if (__builtin_constant_p (oflag))
624 @{
625 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
626 @{
627 warn_open_missing_mode ();
628 return __open_2 (path, oflag);
629 @}
630 return open (path, oflag, __builtin_va_arg_pack ());
631 @}
632
633 if (__builtin_va_arg_pack_len () < 1)
634 return __open_2 (path, oflag);
635
636 return open (path, oflag, __builtin_va_arg_pack ());
637 @}
638 #endif
639 @end smallexample
640 @end deftypefn
641
642 @node Typeof
643 @section Referring to a Type with @code{typeof}
644 @findex typeof
645 @findex sizeof
646 @cindex macros, types of arguments
647
648 Another way to refer to the type of an expression is with @code{typeof}.
649 The syntax of using of this keyword looks like @code{sizeof}, but the
650 construct acts semantically like a type name defined with @code{typedef}.
651
652 There are two ways of writing the argument to @code{typeof}: with an
653 expression or with a type. Here is an example with an expression:
654
655 @smallexample
656 typeof (x[0](1))
657 @end smallexample
658
659 @noindent
660 This assumes that @code{x} is an array of pointers to functions;
661 the type described is that of the values of the functions.
662
663 Here is an example with a typename as the argument:
664
665 @smallexample
666 typeof (int *)
667 @end smallexample
668
669 @noindent
670 Here the type described is that of pointers to @code{int}.
671
672 If you are writing a header file that must work when included in ISO C
673 programs, write @code{__typeof__} instead of @code{typeof}.
674 @xref{Alternate Keywords}.
675
676 A @code{typeof} construct can be used anywhere a typedef name can be
677 used. For example, you can use it in a declaration, in a cast, or inside
678 of @code{sizeof} or @code{typeof}.
679
680 The operand of @code{typeof} is evaluated for its side effects if and
681 only if it is an expression of variably modified type or the name of
682 such a type.
683
684 @code{typeof} is often useful in conjunction with
685 statement expressions (@pxref{Statement Exprs}).
686 Here is how the two together can
687 be used to define a safe ``maximum'' macro which operates on any
688 arithmetic type and evaluates each of its arguments exactly once:
689
690 @smallexample
691 #define max(a,b) \
692 (@{ typeof (a) _a = (a); \
693 typeof (b) _b = (b); \
694 _a > _b ? _a : _b; @})
695 @end smallexample
696
697 @cindex underscores in variables in macros
698 @cindex @samp{_} in variables in macros
699 @cindex local variables in macros
700 @cindex variables, local, in macros
701 @cindex macros, local variables in
702
703 The reason for using names that start with underscores for the local
704 variables is to avoid conflicts with variable names that occur within the
705 expressions that are substituted for @code{a} and @code{b}. Eventually we
706 hope to design a new form of declaration syntax that allows you to declare
707 variables whose scopes start only after their initializers; this will be a
708 more reliable way to prevent such conflicts.
709
710 @noindent
711 Some more examples of the use of @code{typeof}:
712
713 @itemize @bullet
714 @item
715 This declares @code{y} with the type of what @code{x} points to.
716
717 @smallexample
718 typeof (*x) y;
719 @end smallexample
720
721 @item
722 This declares @code{y} as an array of such values.
723
724 @smallexample
725 typeof (*x) y[4];
726 @end smallexample
727
728 @item
729 This declares @code{y} as an array of pointers to characters:
730
731 @smallexample
732 typeof (typeof (char *)[4]) y;
733 @end smallexample
734
735 @noindent
736 It is equivalent to the following traditional C declaration:
737
738 @smallexample
739 char *y[4];
740 @end smallexample
741
742 To see the meaning of the declaration using @code{typeof}, and why it
743 might be a useful way to write, rewrite it with these macros:
744
745 @smallexample
746 #define pointer(T) typeof(T *)
747 #define array(T, N) typeof(T [N])
748 @end smallexample
749
750 @noindent
751 Now the declaration can be rewritten this way:
752
753 @smallexample
754 array (pointer (char), 4) y;
755 @end smallexample
756
757 @noindent
758 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
759 pointers to @code{char}.
760 @end itemize
761
762 In GNU C, but not GNU C++, you may also declare the type of a variable
763 as @code{__auto_type}. In that case, the declaration must declare
764 only one variable, whose declarator must just be an identifier, the
765 declaration must be initialized, and the type of the variable is
766 determined by the initializer; the name of the variable is not in
767 scope until after the initializer. (In C++, you should use C++11
768 @code{auto} for this purpose.) Using @code{__auto_type}, the
769 ``maximum'' macro above could be written as:
770
771 @smallexample
772 #define max(a,b) \
773 (@{ __auto_type _a = (a); \
774 __auto_type _b = (b); \
775 _a > _b ? _a : _b; @})
776 @end smallexample
777
778 Using @code{__auto_type} instead of @code{typeof} has two advantages:
779
780 @itemize @bullet
781 @item Each argument to the macro appears only once in the expansion of
782 the macro. This prevents the size of the macro expansion growing
783 exponentially when calls to such macros are nested inside arguments of
784 such macros.
785
786 @item If the argument to the macro has variably modified type, it is
787 evaluated only once when using @code{__auto_type}, but twice if
788 @code{typeof} is used.
789 @end itemize
790
791 @node Conditionals
792 @section Conditionals with Omitted Operands
793 @cindex conditional expressions, extensions
794 @cindex omitted middle-operands
795 @cindex middle-operands, omitted
796 @cindex extensions, @code{?:}
797 @cindex @code{?:} extensions
798
799 The middle operand in a conditional expression may be omitted. Then
800 if the first operand is nonzero, its value is the value of the conditional
801 expression.
802
803 Therefore, the expression
804
805 @smallexample
806 x ? : y
807 @end smallexample
808
809 @noindent
810 has the value of @code{x} if that is nonzero; otherwise, the value of
811 @code{y}.
812
813 This example is perfectly equivalent to
814
815 @smallexample
816 x ? x : y
817 @end smallexample
818
819 @cindex side effect in @code{?:}
820 @cindex @code{?:} side effect
821 @noindent
822 In this simple case, the ability to omit the middle operand is not
823 especially useful. When it becomes useful is when the first operand does,
824 or may (if it is a macro argument), contain a side effect. Then repeating
825 the operand in the middle would perform the side effect twice. Omitting
826 the middle operand uses the value already computed without the undesirable
827 effects of recomputing it.
828
829 @node __int128
830 @section 128-bit Integers
831 @cindex @code{__int128} data types
832
833 As an extension the integer scalar type @code{__int128} is supported for
834 targets which have an integer mode wide enough to hold 128 bits.
835 Simply write @code{__int128} for a signed 128-bit integer, or
836 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
837 support in GCC for expressing an integer constant of type @code{__int128}
838 for targets with @code{long long} integer less than 128 bits wide.
839
840 @node Long Long
841 @section Double-Word Integers
842 @cindex @code{long long} data types
843 @cindex double-word arithmetic
844 @cindex multiprecision arithmetic
845 @cindex @code{LL} integer suffix
846 @cindex @code{ULL} integer suffix
847
848 ISO C99 supports data types for integers that are at least 64 bits wide,
849 and as an extension GCC supports them in C90 mode and in C++.
850 Simply write @code{long long int} for a signed integer, or
851 @code{unsigned long long int} for an unsigned integer. To make an
852 integer constant of type @code{long long int}, add the suffix @samp{LL}
853 to the integer. To make an integer constant of type @code{unsigned long
854 long int}, add the suffix @samp{ULL} to the integer.
855
856 You can use these types in arithmetic like any other integer types.
857 Addition, subtraction, and bitwise boolean operations on these types
858 are open-coded on all types of machines. Multiplication is open-coded
859 if the machine supports a fullword-to-doubleword widening multiply
860 instruction. Division and shifts are open-coded only on machines that
861 provide special support. The operations that are not open-coded use
862 special library routines that come with GCC@.
863
864 There may be pitfalls when you use @code{long long} types for function
865 arguments without function prototypes. If a function
866 expects type @code{int} for its argument, and you pass a value of type
867 @code{long long int}, confusion results because the caller and the
868 subroutine disagree about the number of bytes for the argument.
869 Likewise, if the function expects @code{long long int} and you pass
870 @code{int}. The best way to avoid such problems is to use prototypes.
871
872 @node Complex
873 @section Complex Numbers
874 @cindex complex numbers
875 @cindex @code{_Complex} keyword
876 @cindex @code{__complex__} keyword
877
878 ISO C99 supports complex floating data types, and as an extension GCC
879 supports them in C90 mode and in C++. GCC also supports complex integer data
880 types which are not part of ISO C99. You can declare complex types
881 using the keyword @code{_Complex}. As an extension, the older GNU
882 keyword @code{__complex__} is also supported.
883
884 For example, @samp{_Complex double x;} declares @code{x} as a
885 variable whose real part and imaginary part are both of type
886 @code{double}. @samp{_Complex short int y;} declares @code{y} to
887 have real and imaginary parts of type @code{short int}; this is not
888 likely to be useful, but it shows that the set of complex types is
889 complete.
890
891 To write a constant with a complex data type, use the suffix @samp{i} or
892 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
893 has type @code{_Complex float} and @code{3i} has type
894 @code{_Complex int}. Such a constant always has a pure imaginary
895 value, but you can form any complex value you like by adding one to a
896 real constant. This is a GNU extension; if you have an ISO C99
897 conforming C library (such as the GNU C Library), and want to construct complex
898 constants of floating type, you should include @code{<complex.h>} and
899 use the macros @code{I} or @code{_Complex_I} instead.
900
901 @cindex @code{__real__} keyword
902 @cindex @code{__imag__} keyword
903 To extract the real part of a complex-valued expression @var{exp}, write
904 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
905 extract the imaginary part. This is a GNU extension; for values of
906 floating type, you should use the ISO C99 functions @code{crealf},
907 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
908 @code{cimagl}, declared in @code{<complex.h>} and also provided as
909 built-in functions by GCC@.
910
911 @cindex complex conjugation
912 The operator @samp{~} performs complex conjugation when used on a value
913 with a complex type. This is a GNU extension; for values of
914 floating type, you should use the ISO C99 functions @code{conjf},
915 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
916 provided as built-in functions by GCC@.
917
918 GCC can allocate complex automatic variables in a noncontiguous
919 fashion; it's even possible for the real part to be in a register while
920 the imaginary part is on the stack (or vice versa). Only the DWARF
921 debug info format can represent this, so use of DWARF is recommended.
922 If you are using the stabs debug info format, GCC describes a noncontiguous
923 complex variable as if it were two separate variables of noncomplex type.
924 If the variable's actual name is @code{foo}, the two fictitious
925 variables are named @code{foo$real} and @code{foo$imag}. You can
926 examine and set these two fictitious variables with your debugger.
927
928 @node Floating Types
929 @section Additional Floating Types
930 @cindex additional floating types
931 @cindex @code{_Float@var{n}} data types
932 @cindex @code{_Float@var{n}x} data types
933 @cindex @code{__float80} data type
934 @cindex @code{__float128} data type
935 @cindex @code{__ibm128} data type
936 @cindex @code{w} floating point suffix
937 @cindex @code{q} floating point suffix
938 @cindex @code{W} floating point suffix
939 @cindex @code{Q} floating point suffix
940
941 ISO/IEC TS 18661-3:2015 defines C support for additional floating
942 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
943 these type names; the set of types supported depends on the target
944 architecture. These types are not supported when compiling C++.
945 Constants with these types use suffixes @code{f@var{n}} or
946 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
947 names can be used together with @code{_Complex} to declare complex
948 types.
949
950 As an extension, GNU C and GNU C++ support additional floating
951 types, @code{__float80} and @code{__float128} to support 80-bit
952 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types; these are
953 aliases for the type names @code{_Float64x} and @code{_Float128}.
954 Support for additional types includes the arithmetic operators:
955 add, subtract, multiply, divide; unary arithmetic operators;
956 relational operators; equality operators; and conversions to and from
957 integer and other floating types. Use a suffix @samp{w} or @samp{W}
958 in a literal constant of type @code{__float80} or type
959 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
960
961 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
962 types using the corresponding internal complex type, @code{XCmode} for
963 @code{__float80} type and @code{TCmode} for @code{__float128} type:
964
965 @smallexample
966 typedef _Complex float __attribute__((mode(TC))) _Complex128;
967 typedef _Complex float __attribute__((mode(XC))) _Complex80;
968 @end smallexample
969
970 In order to use @code{_Float128}, @code{__float128} and
971 @code{__ibm128} on PowerPC Linux
972 systems, you must use the @option{-mfloat128}. It is expected in
973 future versions of GCC that @code{_Float128} and @code{__float128}
974 will be enabled
975 automatically. In addition, there are currently problems in using the
976 complex @code{__float128} type. When these problems are fixed, you
977 would use the following syntax to declare @code{_Complex128} to be a
978 complex @code{__float128} type:
979
980 On the PowerPC Linux VSX targets, you can declare complex types using
981 the corresponding internal complex type, @code{KCmode} for
982 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
983
984 @smallexample
985 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
986 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
987 @end smallexample
988
989 Not all targets support additional floating-point types.
990 @code{__float80} and @code{__float128} types are supported on x86 and
991 IA-64 targets. The @code{__float128} type is supported on hppa HP-UX.
992 The @code{__float128} type is supported on PowerPC 64-bit Linux
993 systems by default if the vector scalar instruction set (VSX) is
994 enabled. The @code{_Float128} type is supported on all systems where
995 @code{__float128} is supported or where @code{long double} has the
996 IEEE binary128 format. The @code{_Float64x} type is supported on all
997 systems where @code{__float128} is supported. The @code{_Float32}
998 type is supported on all systems supporting IEEE binary32; the
999 @code{_Float64} and @code{Float32x} types are supported on all systems
1000 supporting IEEE binary64. GCC does not currently support
1001 @code{_Float16} or @code{_Float128x} on any systems.
1002
1003 On the PowerPC, @code{__ibm128} provides access to the IBM extended
1004 double format, and it is intended to be used by the library functions
1005 that handle conversions if/when long double is changed to be IEEE
1006 128-bit floating point.
1007
1008 @node Half-Precision
1009 @section Half-Precision Floating Point
1010 @cindex half-precision floating point
1011 @cindex @code{__fp16} data type
1012
1013 On ARM targets, GCC supports half-precision (16-bit) floating point via
1014 the @code{__fp16} type. You must enable this type explicitly
1015 with the @option{-mfp16-format} command-line option in order to use it.
1016
1017 ARM supports two incompatible representations for half-precision
1018 floating-point values. You must choose one of the representations and
1019 use it consistently in your program.
1020
1021 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1022 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1023 There are 11 bits of significand precision, approximately 3
1024 decimal digits.
1025
1026 Specifying @option{-mfp16-format=alternative} selects the ARM
1027 alternative format. This representation is similar to the IEEE
1028 format, but does not support infinities or NaNs. Instead, the range
1029 of exponents is extended, so that this format can represent normalized
1030 values in the range of @math{2^{-14}} to 131008.
1031
1032 The @code{__fp16} type is a storage format only. For purposes
1033 of arithmetic and other operations, @code{__fp16} values in C or C++
1034 expressions are automatically promoted to @code{float}. In addition,
1035 you cannot declare a function with a return value or parameters
1036 of type @code{__fp16}.
1037
1038 Note that conversions from @code{double} to @code{__fp16}
1039 involve an intermediate conversion to @code{float}. Because
1040 of rounding, this can sometimes produce a different result than a
1041 direct conversion.
1042
1043 ARM provides hardware support for conversions between
1044 @code{__fp16} and @code{float} values
1045 as an extension to VFP and NEON (Advanced SIMD). GCC generates
1046 code using these hardware instructions if you compile with
1047 options to select an FPU that provides them;
1048 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1049 in addition to the @option{-mfp16-format} option to select
1050 a half-precision format.
1051
1052 Language-level support for the @code{__fp16} data type is
1053 independent of whether GCC generates code using hardware floating-point
1054 instructions. In cases where hardware support is not specified, GCC
1055 implements conversions between @code{__fp16} and @code{float} values
1056 as library calls.
1057
1058 @node Decimal Float
1059 @section Decimal Floating Types
1060 @cindex decimal floating types
1061 @cindex @code{_Decimal32} data type
1062 @cindex @code{_Decimal64} data type
1063 @cindex @code{_Decimal128} data type
1064 @cindex @code{df} integer suffix
1065 @cindex @code{dd} integer suffix
1066 @cindex @code{dl} integer suffix
1067 @cindex @code{DF} integer suffix
1068 @cindex @code{DD} integer suffix
1069 @cindex @code{DL} integer suffix
1070
1071 As an extension, GNU C supports decimal floating types as
1072 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1073 floating types in GCC will evolve as the draft technical report changes.
1074 Calling conventions for any target might also change. Not all targets
1075 support decimal floating types.
1076
1077 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1078 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1079 @code{float}, @code{double}, and @code{long double} whose radix is not
1080 specified by the C standard but is usually two.
1081
1082 Support for decimal floating types includes the arithmetic operators
1083 add, subtract, multiply, divide; unary arithmetic operators;
1084 relational operators; equality operators; and conversions to and from
1085 integer and other floating types. Use a suffix @samp{df} or
1086 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1087 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1088 @code{_Decimal128}.
1089
1090 GCC support of decimal float as specified by the draft technical report
1091 is incomplete:
1092
1093 @itemize @bullet
1094 @item
1095 When the value of a decimal floating type cannot be represented in the
1096 integer type to which it is being converted, the result is undefined
1097 rather than the result value specified by the draft technical report.
1098
1099 @item
1100 GCC does not provide the C library functionality associated with
1101 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1102 @file{wchar.h}, which must come from a separate C library implementation.
1103 Because of this the GNU C compiler does not define macro
1104 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1105 the technical report.
1106 @end itemize
1107
1108 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1109 are supported by the DWARF debug information format.
1110
1111 @node Hex Floats
1112 @section Hex Floats
1113 @cindex hex floats
1114
1115 ISO C99 supports floating-point numbers written not only in the usual
1116 decimal notation, such as @code{1.55e1}, but also numbers such as
1117 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1118 supports this in C90 mode (except in some cases when strictly
1119 conforming) and in C++. In that format the
1120 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1121 mandatory. The exponent is a decimal number that indicates the power of
1122 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1123 @tex
1124 $1 {15\over16}$,
1125 @end tex
1126 @ifnottex
1127 1 15/16,
1128 @end ifnottex
1129 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1130 is the same as @code{1.55e1}.
1131
1132 Unlike for floating-point numbers in the decimal notation the exponent
1133 is always required in the hexadecimal notation. Otherwise the compiler
1134 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1135 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1136 extension for floating-point constants of type @code{float}.
1137
1138 @node Fixed-Point
1139 @section Fixed-Point Types
1140 @cindex fixed-point types
1141 @cindex @code{_Fract} data type
1142 @cindex @code{_Accum} data type
1143 @cindex @code{_Sat} data type
1144 @cindex @code{hr} fixed-suffix
1145 @cindex @code{r} fixed-suffix
1146 @cindex @code{lr} fixed-suffix
1147 @cindex @code{llr} fixed-suffix
1148 @cindex @code{uhr} fixed-suffix
1149 @cindex @code{ur} fixed-suffix
1150 @cindex @code{ulr} fixed-suffix
1151 @cindex @code{ullr} fixed-suffix
1152 @cindex @code{hk} fixed-suffix
1153 @cindex @code{k} fixed-suffix
1154 @cindex @code{lk} fixed-suffix
1155 @cindex @code{llk} fixed-suffix
1156 @cindex @code{uhk} fixed-suffix
1157 @cindex @code{uk} fixed-suffix
1158 @cindex @code{ulk} fixed-suffix
1159 @cindex @code{ullk} fixed-suffix
1160 @cindex @code{HR} fixed-suffix
1161 @cindex @code{R} fixed-suffix
1162 @cindex @code{LR} fixed-suffix
1163 @cindex @code{LLR} fixed-suffix
1164 @cindex @code{UHR} fixed-suffix
1165 @cindex @code{UR} fixed-suffix
1166 @cindex @code{ULR} fixed-suffix
1167 @cindex @code{ULLR} fixed-suffix
1168 @cindex @code{HK} fixed-suffix
1169 @cindex @code{K} fixed-suffix
1170 @cindex @code{LK} fixed-suffix
1171 @cindex @code{LLK} fixed-suffix
1172 @cindex @code{UHK} fixed-suffix
1173 @cindex @code{UK} fixed-suffix
1174 @cindex @code{ULK} fixed-suffix
1175 @cindex @code{ULLK} fixed-suffix
1176
1177 As an extension, GNU C supports fixed-point types as
1178 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1179 types in GCC will evolve as the draft technical report changes.
1180 Calling conventions for any target might also change. Not all targets
1181 support fixed-point types.
1182
1183 The fixed-point types are
1184 @code{short _Fract},
1185 @code{_Fract},
1186 @code{long _Fract},
1187 @code{long long _Fract},
1188 @code{unsigned short _Fract},
1189 @code{unsigned _Fract},
1190 @code{unsigned long _Fract},
1191 @code{unsigned long long _Fract},
1192 @code{_Sat short _Fract},
1193 @code{_Sat _Fract},
1194 @code{_Sat long _Fract},
1195 @code{_Sat long long _Fract},
1196 @code{_Sat unsigned short _Fract},
1197 @code{_Sat unsigned _Fract},
1198 @code{_Sat unsigned long _Fract},
1199 @code{_Sat unsigned long long _Fract},
1200 @code{short _Accum},
1201 @code{_Accum},
1202 @code{long _Accum},
1203 @code{long long _Accum},
1204 @code{unsigned short _Accum},
1205 @code{unsigned _Accum},
1206 @code{unsigned long _Accum},
1207 @code{unsigned long long _Accum},
1208 @code{_Sat short _Accum},
1209 @code{_Sat _Accum},
1210 @code{_Sat long _Accum},
1211 @code{_Sat long long _Accum},
1212 @code{_Sat unsigned short _Accum},
1213 @code{_Sat unsigned _Accum},
1214 @code{_Sat unsigned long _Accum},
1215 @code{_Sat unsigned long long _Accum}.
1216
1217 Fixed-point data values contain fractional and optional integral parts.
1218 The format of fixed-point data varies and depends on the target machine.
1219
1220 Support for fixed-point types includes:
1221 @itemize @bullet
1222 @item
1223 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1224 @item
1225 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1226 @item
1227 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1228 @item
1229 binary shift operators (@code{<<}, @code{>>})
1230 @item
1231 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1232 @item
1233 equality operators (@code{==}, @code{!=})
1234 @item
1235 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1236 @code{<<=}, @code{>>=})
1237 @item
1238 conversions to and from integer, floating-point, or fixed-point types
1239 @end itemize
1240
1241 Use a suffix in a fixed-point literal constant:
1242 @itemize
1243 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1244 @code{_Sat short _Fract}
1245 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1246 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1247 @code{_Sat long _Fract}
1248 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1249 @code{_Sat long long _Fract}
1250 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1251 @code{_Sat unsigned short _Fract}
1252 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1253 @code{_Sat unsigned _Fract}
1254 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1255 @code{_Sat unsigned long _Fract}
1256 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1257 and @code{_Sat unsigned long long _Fract}
1258 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1259 @code{_Sat short _Accum}
1260 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1261 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1262 @code{_Sat long _Accum}
1263 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1264 @code{_Sat long long _Accum}
1265 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1266 @code{_Sat unsigned short _Accum}
1267 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1268 @code{_Sat unsigned _Accum}
1269 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1270 @code{_Sat unsigned long _Accum}
1271 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1272 and @code{_Sat unsigned long long _Accum}
1273 @end itemize
1274
1275 GCC support of fixed-point types as specified by the draft technical report
1276 is incomplete:
1277
1278 @itemize @bullet
1279 @item
1280 Pragmas to control overflow and rounding behaviors are not implemented.
1281 @end itemize
1282
1283 Fixed-point types are supported by the DWARF debug information format.
1284
1285 @node Named Address Spaces
1286 @section Named Address Spaces
1287 @cindex Named Address Spaces
1288
1289 As an extension, GNU C supports named address spaces as
1290 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1291 address spaces in GCC will evolve as the draft technical report
1292 changes. Calling conventions for any target might also change. At
1293 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1294 address spaces other than the generic address space.
1295
1296 Address space identifiers may be used exactly like any other C type
1297 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1298 document for more details.
1299
1300 @anchor{AVR Named Address Spaces}
1301 @subsection AVR Named Address Spaces
1302
1303 On the AVR target, there are several address spaces that can be used
1304 in order to put read-only data into the flash memory and access that
1305 data by means of the special instructions @code{LPM} or @code{ELPM}
1306 needed to read from flash.
1307
1308 Per default, any data including read-only data is located in RAM
1309 (the generic address space) so that non-generic address spaces are
1310 needed to locate read-only data in flash memory
1311 @emph{and} to generate the right instructions to access this data
1312 without using (inline) assembler code.
1313
1314 @table @code
1315 @item __flash
1316 @cindex @code{__flash} AVR Named Address Spaces
1317 The @code{__flash} qualifier locates data in the
1318 @code{.progmem.data} section. Data is read using the @code{LPM}
1319 instruction. Pointers to this address space are 16 bits wide.
1320
1321 @item __flash1
1322 @itemx __flash2
1323 @itemx __flash3
1324 @itemx __flash4
1325 @itemx __flash5
1326 @cindex @code{__flash1} AVR Named Address Spaces
1327 @cindex @code{__flash2} AVR Named Address Spaces
1328 @cindex @code{__flash3} AVR Named Address Spaces
1329 @cindex @code{__flash4} AVR Named Address Spaces
1330 @cindex @code{__flash5} AVR Named Address Spaces
1331 These are 16-bit address spaces locating data in section
1332 @code{.progmem@var{N}.data} where @var{N} refers to
1333 address space @code{__flash@var{N}}.
1334 The compiler sets the @code{RAMPZ} segment register appropriately
1335 before reading data by means of the @code{ELPM} instruction.
1336
1337 @item __memx
1338 @cindex @code{__memx} AVR Named Address Spaces
1339 This is a 24-bit address space that linearizes flash and RAM:
1340 If the high bit of the address is set, data is read from
1341 RAM using the lower two bytes as RAM address.
1342 If the high bit of the address is clear, data is read from flash
1343 with @code{RAMPZ} set according to the high byte of the address.
1344 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1345
1346 Objects in this address space are located in @code{.progmemx.data}.
1347 @end table
1348
1349 @b{Example}
1350
1351 @smallexample
1352 char my_read (const __flash char ** p)
1353 @{
1354 /* p is a pointer to RAM that points to a pointer to flash.
1355 The first indirection of p reads that flash pointer
1356 from RAM and the second indirection reads a char from this
1357 flash address. */
1358
1359 return **p;
1360 @}
1361
1362 /* Locate array[] in flash memory */
1363 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1364
1365 int i = 1;
1366
1367 int main (void)
1368 @{
1369 /* Return 17 by reading from flash memory */
1370 return array[array[i]];
1371 @}
1372 @end smallexample
1373
1374 @noindent
1375 For each named address space supported by avr-gcc there is an equally
1376 named but uppercase built-in macro defined.
1377 The purpose is to facilitate testing if respective address space
1378 support is available or not:
1379
1380 @smallexample
1381 #ifdef __FLASH
1382 const __flash int var = 1;
1383
1384 int read_var (void)
1385 @{
1386 return var;
1387 @}
1388 #else
1389 #include <avr/pgmspace.h> /* From AVR-LibC */
1390
1391 const int var PROGMEM = 1;
1392
1393 int read_var (void)
1394 @{
1395 return (int) pgm_read_word (&var);
1396 @}
1397 #endif /* __FLASH */
1398 @end smallexample
1399
1400 @noindent
1401 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1402 locates data in flash but
1403 accesses to these data read from generic address space, i.e.@:
1404 from RAM,
1405 so that you need special accessors like @code{pgm_read_byte}
1406 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1407 together with attribute @code{progmem}.
1408
1409 @noindent
1410 @b{Limitations and caveats}
1411
1412 @itemize
1413 @item
1414 Reading across the 64@tie{}KiB section boundary of
1415 the @code{__flash} or @code{__flash@var{N}} address spaces
1416 shows undefined behavior. The only address space that
1417 supports reading across the 64@tie{}KiB flash segment boundaries is
1418 @code{__memx}.
1419
1420 @item
1421 If you use one of the @code{__flash@var{N}} address spaces
1422 you must arrange your linker script to locate the
1423 @code{.progmem@var{N}.data} sections according to your needs.
1424
1425 @item
1426 Any data or pointers to the non-generic address spaces must
1427 be qualified as @code{const}, i.e.@: as read-only data.
1428 This still applies if the data in one of these address
1429 spaces like software version number or calibration lookup table are intended to
1430 be changed after load time by, say, a boot loader. In this case
1431 the right qualification is @code{const} @code{volatile} so that the compiler
1432 must not optimize away known values or insert them
1433 as immediates into operands of instructions.
1434
1435 @item
1436 The following code initializes a variable @code{pfoo}
1437 located in static storage with a 24-bit address:
1438 @smallexample
1439 extern const __memx char foo;
1440 const __memx void *pfoo = &foo;
1441 @end smallexample
1442
1443 @noindent
1444 Such code requires at least binutils 2.23, see
1445 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1446
1447 @item
1448 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1449 Data can be put into and read from flash memory by means of
1450 attribute @code{progmem}, see @ref{AVR Variable Attributes}.
1451
1452 @end itemize
1453
1454 @subsection M32C Named Address Spaces
1455 @cindex @code{__far} M32C Named Address Spaces
1456
1457 On the M32C target, with the R8C and M16C CPU variants, variables
1458 qualified with @code{__far} are accessed using 32-bit addresses in
1459 order to access memory beyond the first 64@tie{}Ki bytes. If
1460 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1461 effect.
1462
1463 @subsection RL78 Named Address Spaces
1464 @cindex @code{__far} RL78 Named Address Spaces
1465
1466 On the RL78 target, variables qualified with @code{__far} are accessed
1467 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1468 addresses. Non-far variables are assumed to appear in the topmost
1469 64@tie{}KiB of the address space.
1470
1471 @subsection SPU Named Address Spaces
1472 @cindex @code{__ea} SPU Named Address Spaces
1473
1474 On the SPU target variables may be declared as
1475 belonging to another address space by qualifying the type with the
1476 @code{__ea} address space identifier:
1477
1478 @smallexample
1479 extern int __ea i;
1480 @end smallexample
1481
1482 @noindent
1483 The compiler generates special code to access the variable @code{i}.
1484 It may use runtime library
1485 support, or generate special machine instructions to access that address
1486 space.
1487
1488 @subsection x86 Named Address Spaces
1489 @cindex x86 named address spaces
1490
1491 On the x86 target, variables may be declared as being relative
1492 to the @code{%fs} or @code{%gs} segments.
1493
1494 @table @code
1495 @item __seg_fs
1496 @itemx __seg_gs
1497 @cindex @code{__seg_fs} x86 named address space
1498 @cindex @code{__seg_gs} x86 named address space
1499 The object is accessed with the respective segment override prefix.
1500
1501 The respective segment base must be set via some method specific to
1502 the operating system. Rather than require an expensive system call
1503 to retrieve the segment base, these address spaces are not considered
1504 to be subspaces of the generic (flat) address space. This means that
1505 explicit casts are required to convert pointers between these address
1506 spaces and the generic address space. In practice the application
1507 should cast to @code{uintptr_t} and apply the segment base offset
1508 that it installed previously.
1509
1510 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1511 defined when these address spaces are supported.
1512 @end table
1513
1514 @node Zero Length
1515 @section Arrays of Length Zero
1516 @cindex arrays of length zero
1517 @cindex zero-length arrays
1518 @cindex length-zero arrays
1519 @cindex flexible array members
1520
1521 Zero-length arrays are allowed in GNU C@. They are very useful as the
1522 last element of a structure that is really a header for a variable-length
1523 object:
1524
1525 @smallexample
1526 struct line @{
1527 int length;
1528 char contents[0];
1529 @};
1530
1531 struct line *thisline = (struct line *)
1532 malloc (sizeof (struct line) + this_length);
1533 thisline->length = this_length;
1534 @end smallexample
1535
1536 In ISO C90, you would have to give @code{contents} a length of 1, which
1537 means either you waste space or complicate the argument to @code{malloc}.
1538
1539 In ISO C99, you would use a @dfn{flexible array member}, which is
1540 slightly different in syntax and semantics:
1541
1542 @itemize @bullet
1543 @item
1544 Flexible array members are written as @code{contents[]} without
1545 the @code{0}.
1546
1547 @item
1548 Flexible array members have incomplete type, and so the @code{sizeof}
1549 operator may not be applied. As a quirk of the original implementation
1550 of zero-length arrays, @code{sizeof} evaluates to zero.
1551
1552 @item
1553 Flexible array members may only appear as the last member of a
1554 @code{struct} that is otherwise non-empty.
1555
1556 @item
1557 A structure containing a flexible array member, or a union containing
1558 such a structure (possibly recursively), may not be a member of a
1559 structure or an element of an array. (However, these uses are
1560 permitted by GCC as extensions.)
1561 @end itemize
1562
1563 Non-empty initialization of zero-length
1564 arrays is treated like any case where there are more initializer
1565 elements than the array holds, in that a suitable warning about ``excess
1566 elements in array'' is given, and the excess elements (all of them, in
1567 this case) are ignored.
1568
1569 GCC allows static initialization of flexible array members.
1570 This is equivalent to defining a new structure containing the original
1571 structure followed by an array of sufficient size to contain the data.
1572 E.g.@: in the following, @code{f1} is constructed as if it were declared
1573 like @code{f2}.
1574
1575 @smallexample
1576 struct f1 @{
1577 int x; int y[];
1578 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1579
1580 struct f2 @{
1581 struct f1 f1; int data[3];
1582 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1583 @end smallexample
1584
1585 @noindent
1586 The convenience of this extension is that @code{f1} has the desired
1587 type, eliminating the need to consistently refer to @code{f2.f1}.
1588
1589 This has symmetry with normal static arrays, in that an array of
1590 unknown size is also written with @code{[]}.
1591
1592 Of course, this extension only makes sense if the extra data comes at
1593 the end of a top-level object, as otherwise we would be overwriting
1594 data at subsequent offsets. To avoid undue complication and confusion
1595 with initialization of deeply nested arrays, we simply disallow any
1596 non-empty initialization except when the structure is the top-level
1597 object. For example:
1598
1599 @smallexample
1600 struct foo @{ int x; int y[]; @};
1601 struct bar @{ struct foo z; @};
1602
1603 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1604 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1605 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1606 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1607 @end smallexample
1608
1609 @node Empty Structures
1610 @section Structures with No Members
1611 @cindex empty structures
1612 @cindex zero-size structures
1613
1614 GCC permits a C structure to have no members:
1615
1616 @smallexample
1617 struct empty @{
1618 @};
1619 @end smallexample
1620
1621 The structure has size zero. In C++, empty structures are part
1622 of the language. G++ treats empty structures as if they had a single
1623 member of type @code{char}.
1624
1625 @node Variable Length
1626 @section Arrays of Variable Length
1627 @cindex variable-length arrays
1628 @cindex arrays of variable length
1629 @cindex VLAs
1630
1631 Variable-length automatic arrays are allowed in ISO C99, and as an
1632 extension GCC accepts them in C90 mode and in C++. These arrays are
1633 declared like any other automatic arrays, but with a length that is not
1634 a constant expression. The storage is allocated at the point of
1635 declaration and deallocated when the block scope containing the declaration
1636 exits. For
1637 example:
1638
1639 @smallexample
1640 FILE *
1641 concat_fopen (char *s1, char *s2, char *mode)
1642 @{
1643 char str[strlen (s1) + strlen (s2) + 1];
1644 strcpy (str, s1);
1645 strcat (str, s2);
1646 return fopen (str, mode);
1647 @}
1648 @end smallexample
1649
1650 @cindex scope of a variable length array
1651 @cindex variable-length array scope
1652 @cindex deallocating variable length arrays
1653 Jumping or breaking out of the scope of the array name deallocates the
1654 storage. Jumping into the scope is not allowed; you get an error
1655 message for it.
1656
1657 @cindex variable-length array in a structure
1658 As an extension, GCC accepts variable-length arrays as a member of
1659 a structure or a union. For example:
1660
1661 @smallexample
1662 void
1663 foo (int n)
1664 @{
1665 struct S @{ int x[n]; @};
1666 @}
1667 @end smallexample
1668
1669 @cindex @code{alloca} vs variable-length arrays
1670 You can use the function @code{alloca} to get an effect much like
1671 variable-length arrays. The function @code{alloca} is available in
1672 many other C implementations (but not in all). On the other hand,
1673 variable-length arrays are more elegant.
1674
1675 There are other differences between these two methods. Space allocated
1676 with @code{alloca} exists until the containing @emph{function} returns.
1677 The space for a variable-length array is deallocated as soon as the array
1678 name's scope ends, unless you also use @code{alloca} in this scope.
1679
1680 You can also use variable-length arrays as arguments to functions:
1681
1682 @smallexample
1683 struct entry
1684 tester (int len, char data[len][len])
1685 @{
1686 /* @r{@dots{}} */
1687 @}
1688 @end smallexample
1689
1690 The length of an array is computed once when the storage is allocated
1691 and is remembered for the scope of the array in case you access it with
1692 @code{sizeof}.
1693
1694 If you want to pass the array first and the length afterward, you can
1695 use a forward declaration in the parameter list---another GNU extension.
1696
1697 @smallexample
1698 struct entry
1699 tester (int len; char data[len][len], int len)
1700 @{
1701 /* @r{@dots{}} */
1702 @}
1703 @end smallexample
1704
1705 @cindex parameter forward declaration
1706 The @samp{int len} before the semicolon is a @dfn{parameter forward
1707 declaration}, and it serves the purpose of making the name @code{len}
1708 known when the declaration of @code{data} is parsed.
1709
1710 You can write any number of such parameter forward declarations in the
1711 parameter list. They can be separated by commas or semicolons, but the
1712 last one must end with a semicolon, which is followed by the ``real''
1713 parameter declarations. Each forward declaration must match a ``real''
1714 declaration in parameter name and data type. ISO C99 does not support
1715 parameter forward declarations.
1716
1717 @node Variadic Macros
1718 @section Macros with a Variable Number of Arguments.
1719 @cindex variable number of arguments
1720 @cindex macro with variable arguments
1721 @cindex rest argument (in macro)
1722 @cindex variadic macros
1723
1724 In the ISO C standard of 1999, a macro can be declared to accept a
1725 variable number of arguments much as a function can. The syntax for
1726 defining the macro is similar to that of a function. Here is an
1727 example:
1728
1729 @smallexample
1730 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1731 @end smallexample
1732
1733 @noindent
1734 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1735 such a macro, it represents the zero or more tokens until the closing
1736 parenthesis that ends the invocation, including any commas. This set of
1737 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1738 wherever it appears. See the CPP manual for more information.
1739
1740 GCC has long supported variadic macros, and used a different syntax that
1741 allowed you to give a name to the variable arguments just like any other
1742 argument. Here is an example:
1743
1744 @smallexample
1745 #define debug(format, args...) fprintf (stderr, format, args)
1746 @end smallexample
1747
1748 @noindent
1749 This is in all ways equivalent to the ISO C example above, but arguably
1750 more readable and descriptive.
1751
1752 GNU CPP has two further variadic macro extensions, and permits them to
1753 be used with either of the above forms of macro definition.
1754
1755 In standard C, you are not allowed to leave the variable argument out
1756 entirely; but you are allowed to pass an empty argument. For example,
1757 this invocation is invalid in ISO C, because there is no comma after
1758 the string:
1759
1760 @smallexample
1761 debug ("A message")
1762 @end smallexample
1763
1764 GNU CPP permits you to completely omit the variable arguments in this
1765 way. In the above examples, the compiler would complain, though since
1766 the expansion of the macro still has the extra comma after the format
1767 string.
1768
1769 To help solve this problem, CPP behaves specially for variable arguments
1770 used with the token paste operator, @samp{##}. If instead you write
1771
1772 @smallexample
1773 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1774 @end smallexample
1775
1776 @noindent
1777 and if the variable arguments are omitted or empty, the @samp{##}
1778 operator causes the preprocessor to remove the comma before it. If you
1779 do provide some variable arguments in your macro invocation, GNU CPP
1780 does not complain about the paste operation and instead places the
1781 variable arguments after the comma. Just like any other pasted macro
1782 argument, these arguments are not macro expanded.
1783
1784 @node Escaped Newlines
1785 @section Slightly Looser Rules for Escaped Newlines
1786 @cindex escaped newlines
1787 @cindex newlines (escaped)
1788
1789 The preprocessor treatment of escaped newlines is more relaxed
1790 than that specified by the C90 standard, which requires the newline
1791 to immediately follow a backslash.
1792 GCC's implementation allows whitespace in the form
1793 of spaces, horizontal and vertical tabs, and form feeds between the
1794 backslash and the subsequent newline. The preprocessor issues a
1795 warning, but treats it as a valid escaped newline and combines the two
1796 lines to form a single logical line. This works within comments and
1797 tokens, as well as between tokens. Comments are @emph{not} treated as
1798 whitespace for the purposes of this relaxation, since they have not
1799 yet been replaced with spaces.
1800
1801 @node Subscripting
1802 @section Non-Lvalue Arrays May Have Subscripts
1803 @cindex subscripting
1804 @cindex arrays, non-lvalue
1805
1806 @cindex subscripting and function values
1807 In ISO C99, arrays that are not lvalues still decay to pointers, and
1808 may be subscripted, although they may not be modified or used after
1809 the next sequence point and the unary @samp{&} operator may not be
1810 applied to them. As an extension, GNU C allows such arrays to be
1811 subscripted in C90 mode, though otherwise they do not decay to
1812 pointers outside C99 mode. For example,
1813 this is valid in GNU C though not valid in C90:
1814
1815 @smallexample
1816 @group
1817 struct foo @{int a[4];@};
1818
1819 struct foo f();
1820
1821 bar (int index)
1822 @{
1823 return f().a[index];
1824 @}
1825 @end group
1826 @end smallexample
1827
1828 @node Pointer Arith
1829 @section Arithmetic on @code{void}- and Function-Pointers
1830 @cindex void pointers, arithmetic
1831 @cindex void, size of pointer to
1832 @cindex function pointers, arithmetic
1833 @cindex function, size of pointer to
1834
1835 In GNU C, addition and subtraction operations are supported on pointers to
1836 @code{void} and on pointers to functions. This is done by treating the
1837 size of a @code{void} or of a function as 1.
1838
1839 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1840 and on function types, and returns 1.
1841
1842 @opindex Wpointer-arith
1843 The option @option{-Wpointer-arith} requests a warning if these extensions
1844 are used.
1845
1846 @node Pointers to Arrays
1847 @section Pointers to Arrays with Qualifiers Work as Expected
1848 @cindex pointers to arrays
1849 @cindex const qualifier
1850
1851 In GNU C, pointers to arrays with qualifiers work similar to pointers
1852 to other qualified types. For example, a value of type @code{int (*)[5]}
1853 can be used to initialize a variable of type @code{const int (*)[5]}.
1854 These types are incompatible in ISO C because the @code{const} qualifier
1855 is formally attached to the element type of the array and not the
1856 array itself.
1857
1858 @smallexample
1859 extern void
1860 transpose (int N, int M, double out[M][N], const double in[N][M]);
1861 double x[3][2];
1862 double y[2][3];
1863 @r{@dots{}}
1864 transpose(3, 2, y, x);
1865 @end smallexample
1866
1867 @node Initializers
1868 @section Non-Constant Initializers
1869 @cindex initializers, non-constant
1870 @cindex non-constant initializers
1871
1872 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1873 automatic variable are not required to be constant expressions in GNU C@.
1874 Here is an example of an initializer with run-time varying elements:
1875
1876 @smallexample
1877 foo (float f, float g)
1878 @{
1879 float beat_freqs[2] = @{ f-g, f+g @};
1880 /* @r{@dots{}} */
1881 @}
1882 @end smallexample
1883
1884 @node Compound Literals
1885 @section Compound Literals
1886 @cindex constructor expressions
1887 @cindex initializations in expressions
1888 @cindex structures, constructor expression
1889 @cindex expressions, constructor
1890 @cindex compound literals
1891 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1892
1893 A compound literal looks like a cast of a brace-enclosed aggregate
1894 initializer list. Its value is an object of the type specified in
1895 the cast, containing the elements specified in the initializer.
1896 Unlike the result of a cast, a compound literal is an lvalue. ISO
1897 C99 and later support compound literals. As an extension, GCC
1898 supports compound literals also in C90 mode and in C++, although
1899 as explained below, the C++ semantics are somewhat different.
1900
1901 Usually, the specified type of a compound literal is a structure. Assume
1902 that @code{struct foo} and @code{structure} are declared as shown:
1903
1904 @smallexample
1905 struct foo @{int a; char b[2];@} structure;
1906 @end smallexample
1907
1908 @noindent
1909 Here is an example of constructing a @code{struct foo} with a compound literal:
1910
1911 @smallexample
1912 structure = ((struct foo) @{x + y, 'a', 0@});
1913 @end smallexample
1914
1915 @noindent
1916 This is equivalent to writing the following:
1917
1918 @smallexample
1919 @{
1920 struct foo temp = @{x + y, 'a', 0@};
1921 structure = temp;
1922 @}
1923 @end smallexample
1924
1925 You can also construct an array, though this is dangerous in C++, as
1926 explained below. If all the elements of the compound literal are
1927 (made up of) simple constant expressions suitable for use in
1928 initializers of objects of static storage duration, then the compound
1929 literal can be coerced to a pointer to its first element and used in
1930 such an initializer, as shown here:
1931
1932 @smallexample
1933 char **foo = (char *[]) @{ "x", "y", "z" @};
1934 @end smallexample
1935
1936 Compound literals for scalar types and union types are also allowed. In
1937 the following example the variable @code{i} is initialized to the value
1938 @code{2}, the result of incrementing the unnamed object created by
1939 the compound literal.
1940
1941 @smallexample
1942 int i = ++(int) @{ 1 @};
1943 @end smallexample
1944
1945 As a GNU extension, GCC allows initialization of objects with static storage
1946 duration by compound literals (which is not possible in ISO C99 because
1947 the initializer is not a constant).
1948 It is handled as if the object were initialized only with the brace-enclosed
1949 list if the types of the compound literal and the object match.
1950 The elements of the compound literal must be constant.
1951 If the object being initialized has array type of unknown size, the size is
1952 determined by the size of the compound literal.
1953
1954 @smallexample
1955 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1956 static int y[] = (int []) @{1, 2, 3@};
1957 static int z[] = (int [3]) @{1@};
1958 @end smallexample
1959
1960 @noindent
1961 The above lines are equivalent to the following:
1962 @smallexample
1963 static struct foo x = @{1, 'a', 'b'@};
1964 static int y[] = @{1, 2, 3@};
1965 static int z[] = @{1, 0, 0@};
1966 @end smallexample
1967
1968 In C, a compound literal designates an unnamed object with static or
1969 automatic storage duration. In C++, a compound literal designates a
1970 temporary object that only lives until the end of its full-expression.
1971 As a result, well-defined C code that takes the address of a subobject
1972 of a compound literal can be undefined in C++, so G++ rejects
1973 the conversion of a temporary array to a pointer. For instance, if
1974 the array compound literal example above appeared inside a function,
1975 any subsequent use of @code{foo} in C++ would have undefined behavior
1976 because the lifetime of the array ends after the declaration of @code{foo}.
1977
1978 As an optimization, G++ sometimes gives array compound literals longer
1979 lifetimes: when the array either appears outside a function or has
1980 a @code{const}-qualified type. If @code{foo} and its initializer had
1981 elements of type @code{char *const} rather than @code{char *}, or if
1982 @code{foo} were a global variable, the array would have static storage
1983 duration. But it is probably safest just to avoid the use of array
1984 compound literals in C++ code.
1985
1986 @node Designated Inits
1987 @section Designated Initializers
1988 @cindex initializers with labeled elements
1989 @cindex labeled elements in initializers
1990 @cindex case labels in initializers
1991 @cindex designated initializers
1992
1993 Standard C90 requires the elements of an initializer to appear in a fixed
1994 order, the same as the order of the elements in the array or structure
1995 being initialized.
1996
1997 In ISO C99 you can give the elements in any order, specifying the array
1998 indices or structure field names they apply to, and GNU C allows this as
1999 an extension in C90 mode as well. This extension is not
2000 implemented in GNU C++.
2001
2002 To specify an array index, write
2003 @samp{[@var{index}] =} before the element value. For example,
2004
2005 @smallexample
2006 int a[6] = @{ [4] = 29, [2] = 15 @};
2007 @end smallexample
2008
2009 @noindent
2010 is equivalent to
2011
2012 @smallexample
2013 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2014 @end smallexample
2015
2016 @noindent
2017 The index values must be constant expressions, even if the array being
2018 initialized is automatic.
2019
2020 An alternative syntax for this that has been obsolete since GCC 2.5 but
2021 GCC still accepts is to write @samp{[@var{index}]} before the element
2022 value, with no @samp{=}.
2023
2024 To initialize a range of elements to the same value, write
2025 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2026 extension. For example,
2027
2028 @smallexample
2029 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2030 @end smallexample
2031
2032 @noindent
2033 If the value in it has side-effects, the side-effects happen only once,
2034 not for each initialized field by the range initializer.
2035
2036 @noindent
2037 Note that the length of the array is the highest value specified
2038 plus one.
2039
2040 In a structure initializer, specify the name of a field to initialize
2041 with @samp{.@var{fieldname} =} before the element value. For example,
2042 given the following structure,
2043
2044 @smallexample
2045 struct point @{ int x, y; @};
2046 @end smallexample
2047
2048 @noindent
2049 the following initialization
2050
2051 @smallexample
2052 struct point p = @{ .y = yvalue, .x = xvalue @};
2053 @end smallexample
2054
2055 @noindent
2056 is equivalent to
2057
2058 @smallexample
2059 struct point p = @{ xvalue, yvalue @};
2060 @end smallexample
2061
2062 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2063 @samp{@var{fieldname}:}, as shown here:
2064
2065 @smallexample
2066 struct point p = @{ y: yvalue, x: xvalue @};
2067 @end smallexample
2068
2069 Omitted field members are implicitly initialized the same as objects
2070 that have static storage duration.
2071
2072 @cindex designators
2073 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2074 @dfn{designator}. You can also use a designator (or the obsolete colon
2075 syntax) when initializing a union, to specify which element of the union
2076 should be used. For example,
2077
2078 @smallexample
2079 union foo @{ int i; double d; @};
2080
2081 union foo f = @{ .d = 4 @};
2082 @end smallexample
2083
2084 @noindent
2085 converts 4 to a @code{double} to store it in the union using
2086 the second element. By contrast, casting 4 to type @code{union foo}
2087 stores it into the union as the integer @code{i}, since it is
2088 an integer. (@xref{Cast to Union}.)
2089
2090 You can combine this technique of naming elements with ordinary C
2091 initialization of successive elements. Each initializer element that
2092 does not have a designator applies to the next consecutive element of the
2093 array or structure. For example,
2094
2095 @smallexample
2096 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2097 @end smallexample
2098
2099 @noindent
2100 is equivalent to
2101
2102 @smallexample
2103 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2104 @end smallexample
2105
2106 Labeling the elements of an array initializer is especially useful
2107 when the indices are characters or belong to an @code{enum} type.
2108 For example:
2109
2110 @smallexample
2111 int whitespace[256]
2112 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2113 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2114 @end smallexample
2115
2116 @cindex designator lists
2117 You can also write a series of @samp{.@var{fieldname}} and
2118 @samp{[@var{index}]} designators before an @samp{=} to specify a
2119 nested subobject to initialize; the list is taken relative to the
2120 subobject corresponding to the closest surrounding brace pair. For
2121 example, with the @samp{struct point} declaration above:
2122
2123 @smallexample
2124 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2125 @end smallexample
2126
2127 @noindent
2128 If the same field is initialized multiple times, it has the value from
2129 the last initialization. If any such overridden initialization has
2130 side-effect, it is unspecified whether the side-effect happens or not.
2131 Currently, GCC discards them and issues a warning.
2132
2133 @node Case Ranges
2134 @section Case Ranges
2135 @cindex case ranges
2136 @cindex ranges in case statements
2137
2138 You can specify a range of consecutive values in a single @code{case} label,
2139 like this:
2140
2141 @smallexample
2142 case @var{low} ... @var{high}:
2143 @end smallexample
2144
2145 @noindent
2146 This has the same effect as the proper number of individual @code{case}
2147 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2148
2149 This feature is especially useful for ranges of ASCII character codes:
2150
2151 @smallexample
2152 case 'A' ... 'Z':
2153 @end smallexample
2154
2155 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2156 it may be parsed wrong when you use it with integer values. For example,
2157 write this:
2158
2159 @smallexample
2160 case 1 ... 5:
2161 @end smallexample
2162
2163 @noindent
2164 rather than this:
2165
2166 @smallexample
2167 case 1...5:
2168 @end smallexample
2169
2170 @node Cast to Union
2171 @section Cast to a Union Type
2172 @cindex cast to a union
2173 @cindex union, casting to a
2174
2175 A cast to union type looks similar to other casts, except that the type
2176 specified is a union type. You can specify the type either with the
2177 @code{union} keyword or with a @code{typedef} name that refers to
2178 a union. A cast to a union actually creates a compound literal and
2179 yields an lvalue, not an rvalue like true casts do.
2180 (@xref{Compound Literals}.)
2181
2182 The types that may be cast to the union type are those of the members
2183 of the union. Thus, given the following union and variables:
2184
2185 @smallexample
2186 union foo @{ int i; double d; @};
2187 int x;
2188 double y;
2189 @end smallexample
2190
2191 @noindent
2192 both @code{x} and @code{y} can be cast to type @code{union foo}.
2193
2194 Using the cast as the right-hand side of an assignment to a variable of
2195 union type is equivalent to storing in a member of the union:
2196
2197 @smallexample
2198 union foo u;
2199 /* @r{@dots{}} */
2200 u = (union foo) x @equiv{} u.i = x
2201 u = (union foo) y @equiv{} u.d = y
2202 @end smallexample
2203
2204 You can also use the union cast as a function argument:
2205
2206 @smallexample
2207 void hack (union foo);
2208 /* @r{@dots{}} */
2209 hack ((union foo) x);
2210 @end smallexample
2211
2212 @node Mixed Declarations
2213 @section Mixed Declarations and Code
2214 @cindex mixed declarations and code
2215 @cindex declarations, mixed with code
2216 @cindex code, mixed with declarations
2217
2218 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2219 within compound statements. As an extension, GNU C also allows this in
2220 C90 mode. For example, you could do:
2221
2222 @smallexample
2223 int i;
2224 /* @r{@dots{}} */
2225 i++;
2226 int j = i + 2;
2227 @end smallexample
2228
2229 Each identifier is visible from where it is declared until the end of
2230 the enclosing block.
2231
2232 @node Function Attributes
2233 @section Declaring Attributes of Functions
2234 @cindex function attributes
2235 @cindex declaring attributes of functions
2236 @cindex @code{volatile} applied to function
2237 @cindex @code{const} applied to function
2238
2239 In GNU C, you can use function attributes to declare certain things
2240 about functions called in your program which help the compiler
2241 optimize calls and check your code more carefully. For example, you
2242 can use attributes to declare that a function never returns
2243 (@code{noreturn}), returns a value depending only on its arguments
2244 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2245
2246 You can also use attributes to control memory placement, code
2247 generation options or call/return conventions within the function
2248 being annotated. Many of these attributes are target-specific. For
2249 example, many targets support attributes for defining interrupt
2250 handler functions, which typically must follow special register usage
2251 and return conventions.
2252
2253 Function attributes are introduced by the @code{__attribute__} keyword
2254 on a declaration, followed by an attribute specification inside double
2255 parentheses. You can specify multiple attributes in a declaration by
2256 separating them by commas within the double parentheses or by
2257 immediately following an attribute declaration with another attribute
2258 declaration. @xref{Attribute Syntax}, for the exact rules on
2259 attribute syntax and placement.
2260
2261 GCC also supports attributes on
2262 variable declarations (@pxref{Variable Attributes}),
2263 labels (@pxref{Label Attributes}),
2264 enumerators (@pxref{Enumerator Attributes}),
2265 statements (@pxref{Statement Attributes}),
2266 and types (@pxref{Type Attributes}).
2267
2268 There is some overlap between the purposes of attributes and pragmas
2269 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2270 found convenient to use @code{__attribute__} to achieve a natural
2271 attachment of attributes to their corresponding declarations, whereas
2272 @code{#pragma} is of use for compatibility with other compilers
2273 or constructs that do not naturally form part of the grammar.
2274
2275 In addition to the attributes documented here,
2276 GCC plugins may provide their own attributes.
2277
2278 @menu
2279 * Common Function Attributes::
2280 * AArch64 Function Attributes::
2281 * ARC Function Attributes::
2282 * ARM Function Attributes::
2283 * AVR Function Attributes::
2284 * Blackfin Function Attributes::
2285 * CR16 Function Attributes::
2286 * Epiphany Function Attributes::
2287 * H8/300 Function Attributes::
2288 * IA-64 Function Attributes::
2289 * M32C Function Attributes::
2290 * M32R/D Function Attributes::
2291 * m68k Function Attributes::
2292 * MCORE Function Attributes::
2293 * MeP Function Attributes::
2294 * MicroBlaze Function Attributes::
2295 * Microsoft Windows Function Attributes::
2296 * MIPS Function Attributes::
2297 * MSP430 Function Attributes::
2298 * NDS32 Function Attributes::
2299 * Nios II Function Attributes::
2300 * Nvidia PTX Function Attributes::
2301 * PowerPC Function Attributes::
2302 * RL78 Function Attributes::
2303 * RX Function Attributes::
2304 * S/390 Function Attributes::
2305 * SH Function Attributes::
2306 * SPU Function Attributes::
2307 * Symbian OS Function Attributes::
2308 * V850 Function Attributes::
2309 * Visium Function Attributes::
2310 * x86 Function Attributes::
2311 * Xstormy16 Function Attributes::
2312 @end menu
2313
2314 @node Common Function Attributes
2315 @subsection Common Function Attributes
2316
2317 The following attributes are supported on most targets.
2318
2319 @table @code
2320 @c Keep this table alphabetized by attribute name. Treat _ as space.
2321
2322 @item alias ("@var{target}")
2323 @cindex @code{alias} function attribute
2324 The @code{alias} attribute causes the declaration to be emitted as an
2325 alias for another symbol, which must be specified. For instance,
2326
2327 @smallexample
2328 void __f () @{ /* @r{Do something.} */; @}
2329 void f () __attribute__ ((weak, alias ("__f")));
2330 @end smallexample
2331
2332 @noindent
2333 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2334 mangled name for the target must be used. It is an error if @samp{__f}
2335 is not defined in the same translation unit.
2336
2337 This attribute requires assembler and object file support,
2338 and may not be available on all targets.
2339
2340 @item aligned (@var{alignment})
2341 @cindex @code{aligned} function attribute
2342 This attribute specifies a minimum alignment for the function,
2343 measured in bytes.
2344
2345 You cannot use this attribute to decrease the alignment of a function,
2346 only to increase it. However, when you explicitly specify a function
2347 alignment this overrides the effect of the
2348 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2349 function.
2350
2351 Note that the effectiveness of @code{aligned} attributes may be
2352 limited by inherent limitations in your linker. On many systems, the
2353 linker is only able to arrange for functions to be aligned up to a
2354 certain maximum alignment. (For some linkers, the maximum supported
2355 alignment may be very very small.) See your linker documentation for
2356 further information.
2357
2358 The @code{aligned} attribute can also be used for variables and fields
2359 (@pxref{Variable Attributes}.)
2360
2361 @item alloc_align
2362 @cindex @code{alloc_align} function attribute
2363 The @code{alloc_align} attribute is used to tell the compiler that the
2364 function return value points to memory, where the returned pointer minimum
2365 alignment is given by one of the functions parameters. GCC uses this
2366 information to improve pointer alignment analysis.
2367
2368 The function parameter denoting the allocated alignment is specified by
2369 one integer argument, whose number is the argument of the attribute.
2370 Argument numbering starts at one.
2371
2372 For instance,
2373
2374 @smallexample
2375 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2376 @end smallexample
2377
2378 @noindent
2379 declares that @code{my_memalign} returns memory with minimum alignment
2380 given by parameter 1.
2381
2382 @item alloc_size
2383 @cindex @code{alloc_size} function attribute
2384 The @code{alloc_size} attribute is used to tell the compiler that the
2385 function return value points to memory, where the size is given by
2386 one or two of the functions parameters. GCC uses this
2387 information to improve the correctness of @code{__builtin_object_size}.
2388
2389 The function parameter(s) denoting the allocated size are specified by
2390 one or two integer arguments supplied to the attribute. The allocated size
2391 is either the value of the single function argument specified or the product
2392 of the two function arguments specified. Argument numbering starts at
2393 one.
2394
2395 For instance,
2396
2397 @smallexample
2398 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2399 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2400 @end smallexample
2401
2402 @noindent
2403 declares that @code{my_calloc} returns memory of the size given by
2404 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2405 of the size given by parameter 2.
2406
2407 @item always_inline
2408 @cindex @code{always_inline} function attribute
2409 Generally, functions are not inlined unless optimization is specified.
2410 For functions declared inline, this attribute inlines the function
2411 independent of any restrictions that otherwise apply to inlining.
2412 Failure to inline such a function is diagnosed as an error.
2413 Note that if such a function is called indirectly the compiler may
2414 or may not inline it depending on optimization level and a failure
2415 to inline an indirect call may or may not be diagnosed.
2416
2417 @item artificial
2418 @cindex @code{artificial} function attribute
2419 This attribute is useful for small inline wrappers that if possible
2420 should appear during debugging as a unit. Depending on the debug
2421 info format it either means marking the function as artificial
2422 or using the caller location for all instructions within the inlined
2423 body.
2424
2425 @item assume_aligned
2426 @cindex @code{assume_aligned} function attribute
2427 The @code{assume_aligned} attribute is used to tell the compiler that the
2428 function return value points to memory, where the returned pointer minimum
2429 alignment is given by the first argument.
2430 If the attribute has two arguments, the second argument is misalignment offset.
2431
2432 For instance
2433
2434 @smallexample
2435 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2436 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2437 @end smallexample
2438
2439 @noindent
2440 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2441 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2442 to 8.
2443
2444 @item bnd_instrument
2445 @cindex @code{bnd_instrument} function attribute
2446 The @code{bnd_instrument} attribute on functions is used to inform the
2447 compiler that the function should be instrumented when compiled
2448 with the @option{-fchkp-instrument-marked-only} option.
2449
2450 @item bnd_legacy
2451 @cindex @code{bnd_legacy} function attribute
2452 @cindex Pointer Bounds Checker attributes
2453 The @code{bnd_legacy} attribute on functions is used to inform the
2454 compiler that the function should not be instrumented when compiled
2455 with the @option{-fcheck-pointer-bounds} option.
2456
2457 @item cold
2458 @cindex @code{cold} function attribute
2459 The @code{cold} attribute on functions is used to inform the compiler that
2460 the function is unlikely to be executed. The function is optimized for
2461 size rather than speed and on many targets it is placed into a special
2462 subsection of the text section so all cold functions appear close together,
2463 improving code locality of non-cold parts of program. The paths leading
2464 to calls of cold functions within code are marked as unlikely by the branch
2465 prediction mechanism. It is thus useful to mark functions used to handle
2466 unlikely conditions, such as @code{perror}, as cold to improve optimization
2467 of hot functions that do call marked functions in rare occasions.
2468
2469 When profile feedback is available, via @option{-fprofile-use}, cold functions
2470 are automatically detected and this attribute is ignored.
2471
2472 @item const
2473 @cindex @code{const} function attribute
2474 @cindex functions that have no side effects
2475 Many functions do not examine any values except their arguments, and
2476 have no effects except the return value. Basically this is just slightly
2477 more strict class than the @code{pure} attribute below, since function is not
2478 allowed to read global memory.
2479
2480 @cindex pointer arguments
2481 Note that a function that has pointer arguments and examines the data
2482 pointed to must @emph{not} be declared @code{const}. Likewise, a
2483 function that calls a non-@code{const} function usually must not be
2484 @code{const}. It does not make sense for a @code{const} function to
2485 return @code{void}.
2486
2487 @item constructor
2488 @itemx destructor
2489 @itemx constructor (@var{priority})
2490 @itemx destructor (@var{priority})
2491 @cindex @code{constructor} function attribute
2492 @cindex @code{destructor} function attribute
2493 The @code{constructor} attribute causes the function to be called
2494 automatically before execution enters @code{main ()}. Similarly, the
2495 @code{destructor} attribute causes the function to be called
2496 automatically after @code{main ()} completes or @code{exit ()} is
2497 called. Functions with these attributes are useful for
2498 initializing data that is used implicitly during the execution of
2499 the program.
2500
2501 You may provide an optional integer priority to control the order in
2502 which constructor and destructor functions are run. A constructor
2503 with a smaller priority number runs before a constructor with a larger
2504 priority number; the opposite relationship holds for destructors. So,
2505 if you have a constructor that allocates a resource and a destructor
2506 that deallocates the same resource, both functions typically have the
2507 same priority. The priorities for constructor and destructor
2508 functions are the same as those specified for namespace-scope C++
2509 objects (@pxref{C++ Attributes}).
2510
2511 @item deprecated
2512 @itemx deprecated (@var{msg})
2513 @cindex @code{deprecated} function attribute
2514 The @code{deprecated} attribute results in a warning if the function
2515 is used anywhere in the source file. This is useful when identifying
2516 functions that are expected to be removed in a future version of a
2517 program. The warning also includes the location of the declaration
2518 of the deprecated function, to enable users to easily find further
2519 information about why the function is deprecated, or what they should
2520 do instead. Note that the warnings only occurs for uses:
2521
2522 @smallexample
2523 int old_fn () __attribute__ ((deprecated));
2524 int old_fn ();
2525 int (*fn_ptr)() = old_fn;
2526 @end smallexample
2527
2528 @noindent
2529 results in a warning on line 3 but not line 2. The optional @var{msg}
2530 argument, which must be a string, is printed in the warning if
2531 present.
2532
2533 The @code{deprecated} attribute can also be used for variables and
2534 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2535
2536 @item error ("@var{message}")
2537 @itemx warning ("@var{message}")
2538 @cindex @code{error} function attribute
2539 @cindex @code{warning} function attribute
2540 If the @code{error} or @code{warning} attribute
2541 is used on a function declaration and a call to such a function
2542 is not eliminated through dead code elimination or other optimizations,
2543 an error or warning (respectively) that includes @var{message} is diagnosed.
2544 This is useful
2545 for compile-time checking, especially together with @code{__builtin_constant_p}
2546 and inline functions where checking the inline function arguments is not
2547 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2548
2549 While it is possible to leave the function undefined and thus invoke
2550 a link failure (to define the function with
2551 a message in @code{.gnu.warning*} section),
2552 when using these attributes the problem is diagnosed
2553 earlier and with exact location of the call even in presence of inline
2554 functions or when not emitting debugging information.
2555
2556 @item externally_visible
2557 @cindex @code{externally_visible} function attribute
2558 This attribute, attached to a global variable or function, nullifies
2559 the effect of the @option{-fwhole-program} command-line option, so the
2560 object remains visible outside the current compilation unit.
2561
2562 If @option{-fwhole-program} is used together with @option{-flto} and
2563 @command{gold} is used as the linker plugin,
2564 @code{externally_visible} attributes are automatically added to functions
2565 (not variable yet due to a current @command{gold} issue)
2566 that are accessed outside of LTO objects according to resolution file
2567 produced by @command{gold}.
2568 For other linkers that cannot generate resolution file,
2569 explicit @code{externally_visible} attributes are still necessary.
2570
2571 @item flatten
2572 @cindex @code{flatten} function attribute
2573 Generally, inlining into a function is limited. For a function marked with
2574 this attribute, every call inside this function is inlined, if possible.
2575 Whether the function itself is considered for inlining depends on its size and
2576 the current inlining parameters.
2577
2578 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2579 @cindex @code{format} function attribute
2580 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2581 @opindex Wformat
2582 The @code{format} attribute specifies that a function takes @code{printf},
2583 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2584 should be type-checked against a format string. For example, the
2585 declaration:
2586
2587 @smallexample
2588 extern int
2589 my_printf (void *my_object, const char *my_format, ...)
2590 __attribute__ ((format (printf, 2, 3)));
2591 @end smallexample
2592
2593 @noindent
2594 causes the compiler to check the arguments in calls to @code{my_printf}
2595 for consistency with the @code{printf} style format string argument
2596 @code{my_format}.
2597
2598 The parameter @var{archetype} determines how the format string is
2599 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2600 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2601 @code{strfmon}. (You can also use @code{__printf__},
2602 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2603 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2604 @code{ms_strftime} are also present.
2605 @var{archetype} values such as @code{printf} refer to the formats accepted
2606 by the system's C runtime library,
2607 while values prefixed with @samp{gnu_} always refer
2608 to the formats accepted by the GNU C Library. On Microsoft Windows
2609 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2610 @file{msvcrt.dll} library.
2611 The parameter @var{string-index}
2612 specifies which argument is the format string argument (starting
2613 from 1), while @var{first-to-check} is the number of the first
2614 argument to check against the format string. For functions
2615 where the arguments are not available to be checked (such as
2616 @code{vprintf}), specify the third parameter as zero. In this case the
2617 compiler only checks the format string for consistency. For
2618 @code{strftime} formats, the third parameter is required to be zero.
2619 Since non-static C++ methods have an implicit @code{this} argument, the
2620 arguments of such methods should be counted from two, not one, when
2621 giving values for @var{string-index} and @var{first-to-check}.
2622
2623 In the example above, the format string (@code{my_format}) is the second
2624 argument of the function @code{my_print}, and the arguments to check
2625 start with the third argument, so the correct parameters for the format
2626 attribute are 2 and 3.
2627
2628 @opindex ffreestanding
2629 @opindex fno-builtin
2630 The @code{format} attribute allows you to identify your own functions
2631 that take format strings as arguments, so that GCC can check the
2632 calls to these functions for errors. The compiler always (unless
2633 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2634 for the standard library functions @code{printf}, @code{fprintf},
2635 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2636 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2637 warnings are requested (using @option{-Wformat}), so there is no need to
2638 modify the header file @file{stdio.h}. In C99 mode, the functions
2639 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2640 @code{vsscanf} are also checked. Except in strictly conforming C
2641 standard modes, the X/Open function @code{strfmon} is also checked as
2642 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2643 @xref{C Dialect Options,,Options Controlling C Dialect}.
2644
2645 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2646 recognized in the same context. Declarations including these format attributes
2647 are parsed for correct syntax, however the result of checking of such format
2648 strings is not yet defined, and is not carried out by this version of the
2649 compiler.
2650
2651 The target may also provide additional types of format checks.
2652 @xref{Target Format Checks,,Format Checks Specific to Particular
2653 Target Machines}.
2654
2655 @item format_arg (@var{string-index})
2656 @cindex @code{format_arg} function attribute
2657 @opindex Wformat-nonliteral
2658 The @code{format_arg} attribute specifies that a function takes a format
2659 string for a @code{printf}, @code{scanf}, @code{strftime} or
2660 @code{strfmon} style function and modifies it (for example, to translate
2661 it into another language), so the result can be passed to a
2662 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2663 function (with the remaining arguments to the format function the same
2664 as they would have been for the unmodified string). For example, the
2665 declaration:
2666
2667 @smallexample
2668 extern char *
2669 my_dgettext (char *my_domain, const char *my_format)
2670 __attribute__ ((format_arg (2)));
2671 @end smallexample
2672
2673 @noindent
2674 causes the compiler to check the arguments in calls to a @code{printf},
2675 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2676 format string argument is a call to the @code{my_dgettext} function, for
2677 consistency with the format string argument @code{my_format}. If the
2678 @code{format_arg} attribute had not been specified, all the compiler
2679 could tell in such calls to format functions would be that the format
2680 string argument is not constant; this would generate a warning when
2681 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2682 without the attribute.
2683
2684 The parameter @var{string-index} specifies which argument is the format
2685 string argument (starting from one). Since non-static C++ methods have
2686 an implicit @code{this} argument, the arguments of such methods should
2687 be counted from two.
2688
2689 The @code{format_arg} attribute allows you to identify your own
2690 functions that modify format strings, so that GCC can check the
2691 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2692 type function whose operands are a call to one of your own function.
2693 The compiler always treats @code{gettext}, @code{dgettext}, and
2694 @code{dcgettext} in this manner except when strict ISO C support is
2695 requested by @option{-ansi} or an appropriate @option{-std} option, or
2696 @option{-ffreestanding} or @option{-fno-builtin}
2697 is used. @xref{C Dialect Options,,Options
2698 Controlling C Dialect}.
2699
2700 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2701 @code{NSString} reference for compatibility with the @code{format} attribute
2702 above.
2703
2704 The target may also allow additional types in @code{format-arg} attributes.
2705 @xref{Target Format Checks,,Format Checks Specific to Particular
2706 Target Machines}.
2707
2708 @item gnu_inline
2709 @cindex @code{gnu_inline} function attribute
2710 This attribute should be used with a function that is also declared
2711 with the @code{inline} keyword. It directs GCC to treat the function
2712 as if it were defined in gnu90 mode even when compiling in C99 or
2713 gnu99 mode.
2714
2715 If the function is declared @code{extern}, then this definition of the
2716 function is used only for inlining. In no case is the function
2717 compiled as a standalone function, not even if you take its address
2718 explicitly. Such an address becomes an external reference, as if you
2719 had only declared the function, and had not defined it. This has
2720 almost the effect of a macro. The way to use this is to put a
2721 function definition in a header file with this attribute, and put
2722 another copy of the function, without @code{extern}, in a library
2723 file. The definition in the header file causes most calls to the
2724 function to be inlined. If any uses of the function remain, they
2725 refer to the single copy in the library. Note that the two
2726 definitions of the functions need not be precisely the same, although
2727 if they do not have the same effect your program may behave oddly.
2728
2729 In C, if the function is neither @code{extern} nor @code{static}, then
2730 the function is compiled as a standalone function, as well as being
2731 inlined where possible.
2732
2733 This is how GCC traditionally handled functions declared
2734 @code{inline}. Since ISO C99 specifies a different semantics for
2735 @code{inline}, this function attribute is provided as a transition
2736 measure and as a useful feature in its own right. This attribute is
2737 available in GCC 4.1.3 and later. It is available if either of the
2738 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2739 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2740 Function is As Fast As a Macro}.
2741
2742 In C++, this attribute does not depend on @code{extern} in any way,
2743 but it still requires the @code{inline} keyword to enable its special
2744 behavior.
2745
2746 @item hot
2747 @cindex @code{hot} function attribute
2748 The @code{hot} attribute on a function is used to inform the compiler that
2749 the function is a hot spot of the compiled program. The function is
2750 optimized more aggressively and on many targets it is placed into a special
2751 subsection of the text section so all hot functions appear close together,
2752 improving locality.
2753
2754 When profile feedback is available, via @option{-fprofile-use}, hot functions
2755 are automatically detected and this attribute is ignored.
2756
2757 @item ifunc ("@var{resolver}")
2758 @cindex @code{ifunc} function attribute
2759 @cindex indirect functions
2760 @cindex functions that are dynamically resolved
2761 The @code{ifunc} attribute is used to mark a function as an indirect
2762 function using the STT_GNU_IFUNC symbol type extension to the ELF
2763 standard. This allows the resolution of the symbol value to be
2764 determined dynamically at load time, and an optimized version of the
2765 routine can be selected for the particular processor or other system
2766 characteristics determined then. To use this attribute, first define
2767 the implementation functions available, and a resolver function that
2768 returns a pointer to the selected implementation function. The
2769 implementation functions' declarations must match the API of the
2770 function being implemented, the resolver's declaration is be a
2771 function returning pointer to void function returning void:
2772
2773 @smallexample
2774 void *my_memcpy (void *dst, const void *src, size_t len)
2775 @{
2776 @dots{}
2777 @}
2778
2779 static void (*resolve_memcpy (void)) (void)
2780 @{
2781 return my_memcpy; // we'll just always select this routine
2782 @}
2783 @end smallexample
2784
2785 @noindent
2786 The exported header file declaring the function the user calls would
2787 contain:
2788
2789 @smallexample
2790 extern void *memcpy (void *, const void *, size_t);
2791 @end smallexample
2792
2793 @noindent
2794 allowing the user to call this as a regular function, unaware of the
2795 implementation. Finally, the indirect function needs to be defined in
2796 the same translation unit as the resolver function:
2797
2798 @smallexample
2799 void *memcpy (void *, const void *, size_t)
2800 __attribute__ ((ifunc ("resolve_memcpy")));
2801 @end smallexample
2802
2803 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2804 and GNU C Library version 2.11.1 are required to use this feature.
2805
2806 @item interrupt
2807 @itemx interrupt_handler
2808 Many GCC back ends support attributes to indicate that a function is
2809 an interrupt handler, which tells the compiler to generate function
2810 entry and exit sequences that differ from those from regular
2811 functions. The exact syntax and behavior are target-specific;
2812 refer to the following subsections for details.
2813
2814 @item leaf
2815 @cindex @code{leaf} function attribute
2816 Calls to external functions with this attribute must return to the
2817 current compilation unit only by return or by exception handling. In
2818 particular, a leaf function is not allowed to invoke callback functions
2819 passed to it from the current compilation unit, directly call functions
2820 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2821 might still call functions from other compilation units and thus they
2822 are not necessarily leaf in the sense that they contain no function
2823 calls at all.
2824
2825 The attribute is intended for library functions to improve dataflow
2826 analysis. The compiler takes the hint that any data not escaping the
2827 current compilation unit cannot be used or modified by the leaf
2828 function. For example, the @code{sin} function is a leaf function, but
2829 @code{qsort} is not.
2830
2831 Note that leaf functions might indirectly run a signal handler defined
2832 in the current compilation unit that uses static variables. Similarly,
2833 when lazy symbol resolution is in effect, leaf functions might invoke
2834 indirect functions whose resolver function or implementation function is
2835 defined in the current compilation unit and uses static variables. There
2836 is no standard-compliant way to write such a signal handler, resolver
2837 function, or implementation function, and the best that you can do is to
2838 remove the @code{leaf} attribute or mark all such static variables
2839 @code{volatile}. Lastly, for ELF-based systems that support symbol
2840 interposition, care should be taken that functions defined in the
2841 current compilation unit do not unexpectedly interpose other symbols
2842 based on the defined standards mode and defined feature test macros;
2843 otherwise an inadvertent callback would be added.
2844
2845 The attribute has no effect on functions defined within the current
2846 compilation unit. This is to allow easy merging of multiple compilation
2847 units into one, for example, by using the link-time optimization. For
2848 this reason the attribute is not allowed on types to annotate indirect
2849 calls.
2850
2851 @item malloc
2852 @cindex @code{malloc} function attribute
2853 @cindex functions that behave like malloc
2854 This tells the compiler that a function is @code{malloc}-like, i.e.,
2855 that the pointer @var{P} returned by the function cannot alias any
2856 other pointer valid when the function returns, and moreover no
2857 pointers to valid objects occur in any storage addressed by @var{P}.
2858
2859 Using this attribute can improve optimization. Functions like
2860 @code{malloc} and @code{calloc} have this property because they return
2861 a pointer to uninitialized or zeroed-out storage. However, functions
2862 like @code{realloc} do not have this property, as they can return a
2863 pointer to storage containing pointers.
2864
2865 @item no_icf
2866 @cindex @code{no_icf} function attribute
2867 This function attribute prevents a functions from being merged with another
2868 semantically equivalent function.
2869
2870 @item no_instrument_function
2871 @cindex @code{no_instrument_function} function attribute
2872 @opindex finstrument-functions
2873 If @option{-finstrument-functions} is given, profiling function calls are
2874 generated at entry and exit of most user-compiled functions.
2875 Functions with this attribute are not so instrumented.
2876
2877 @item no_profile_instrument_function
2878 @cindex @code{no_profile_instrument_function} function attribute
2879 The @code{no_profile_instrument_function} attribute on functions is used
2880 to inform the compiler that it should not process any profile feedback based
2881 optimization code instrumentation.
2882
2883 @item no_reorder
2884 @cindex @code{no_reorder} function attribute
2885 Do not reorder functions or variables marked @code{no_reorder}
2886 against each other or top level assembler statements the executable.
2887 The actual order in the program will depend on the linker command
2888 line. Static variables marked like this are also not removed.
2889 This has a similar effect
2890 as the @option{-fno-toplevel-reorder} option, but only applies to the
2891 marked symbols.
2892
2893 @item no_sanitize_address
2894 @itemx no_address_safety_analysis
2895 @cindex @code{no_sanitize_address} function attribute
2896 The @code{no_sanitize_address} attribute on functions is used
2897 to inform the compiler that it should not instrument memory accesses
2898 in the function when compiling with the @option{-fsanitize=address} option.
2899 The @code{no_address_safety_analysis} is a deprecated alias of the
2900 @code{no_sanitize_address} attribute, new code should use
2901 @code{no_sanitize_address}.
2902
2903 @item no_sanitize_thread
2904 @cindex @code{no_sanitize_thread} function attribute
2905 The @code{no_sanitize_thread} attribute on functions is used
2906 to inform the compiler that it should not instrument memory accesses
2907 in the function when compiling with the @option{-fsanitize=thread} option.
2908
2909 @item no_sanitize_undefined
2910 @cindex @code{no_sanitize_undefined} function attribute
2911 The @code{no_sanitize_undefined} attribute on functions is used
2912 to inform the compiler that it should not check for undefined behavior
2913 in the function when compiling with the @option{-fsanitize=undefined} option.
2914
2915 @item no_split_stack
2916 @cindex @code{no_split_stack} function attribute
2917 @opindex fsplit-stack
2918 If @option{-fsplit-stack} is given, functions have a small
2919 prologue which decides whether to split the stack. Functions with the
2920 @code{no_split_stack} attribute do not have that prologue, and thus
2921 may run with only a small amount of stack space available.
2922
2923 @item no_stack_limit
2924 @cindex @code{no_stack_limit} function attribute
2925 This attribute locally overrides the @option{-fstack-limit-register}
2926 and @option{-fstack-limit-symbol} command-line options; it has the effect
2927 of disabling stack limit checking in the function it applies to.
2928
2929 @item noclone
2930 @cindex @code{noclone} function attribute
2931 This function attribute prevents a function from being considered for
2932 cloning---a mechanism that produces specialized copies of functions
2933 and which is (currently) performed by interprocedural constant
2934 propagation.
2935
2936 @item noinline
2937 @cindex @code{noinline} function attribute
2938 This function attribute prevents a function from being considered for
2939 inlining.
2940 @c Don't enumerate the optimizations by name here; we try to be
2941 @c future-compatible with this mechanism.
2942 If the function does not have side-effects, there are optimizations
2943 other than inlining that cause function calls to be optimized away,
2944 although the function call is live. To keep such calls from being
2945 optimized away, put
2946 @smallexample
2947 asm ("");
2948 @end smallexample
2949
2950 @noindent
2951 (@pxref{Extended Asm}) in the called function, to serve as a special
2952 side-effect.
2953
2954 @item nonnull (@var{arg-index}, @dots{})
2955 @cindex @code{nonnull} function attribute
2956 @cindex functions with non-null pointer arguments
2957 The @code{nonnull} attribute specifies that some function parameters should
2958 be non-null pointers. For instance, the declaration:
2959
2960 @smallexample
2961 extern void *
2962 my_memcpy (void *dest, const void *src, size_t len)
2963 __attribute__((nonnull (1, 2)));
2964 @end smallexample
2965
2966 @noindent
2967 causes the compiler to check that, in calls to @code{my_memcpy},
2968 arguments @var{dest} and @var{src} are non-null. If the compiler
2969 determines that a null pointer is passed in an argument slot marked
2970 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2971 is issued. The compiler may also choose to make optimizations based
2972 on the knowledge that certain function arguments will never be null.
2973
2974 If no argument index list is given to the @code{nonnull} attribute,
2975 all pointer arguments are marked as non-null. To illustrate, the
2976 following declaration is equivalent to the previous example:
2977
2978 @smallexample
2979 extern void *
2980 my_memcpy (void *dest, const void *src, size_t len)
2981 __attribute__((nonnull));
2982 @end smallexample
2983
2984 @item noplt
2985 @cindex @code{noplt} function attribute
2986 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
2987 Calls to functions marked with this attribute in position-independent code
2988 do not use the PLT.
2989
2990 @smallexample
2991 @group
2992 /* Externally defined function foo. */
2993 int foo () __attribute__ ((noplt));
2994
2995 int
2996 main (/* @r{@dots{}} */)
2997 @{
2998 /* @r{@dots{}} */
2999 foo ();
3000 /* @r{@dots{}} */
3001 @}
3002 @end group
3003 @end smallexample
3004
3005 The @code{noplt} attribute on function @code{foo}
3006 tells the compiler to assume that
3007 the function @code{foo} is externally defined and that the call to
3008 @code{foo} must avoid the PLT
3009 in position-independent code.
3010
3011 In position-dependent code, a few targets also convert calls to
3012 functions that are marked to not use the PLT to use the GOT instead.
3013
3014 @item noreturn
3015 @cindex @code{noreturn} function attribute
3016 @cindex functions that never return
3017 A few standard library functions, such as @code{abort} and @code{exit},
3018 cannot return. GCC knows this automatically. Some programs define
3019 their own functions that never return. You can declare them
3020 @code{noreturn} to tell the compiler this fact. For example,
3021
3022 @smallexample
3023 @group
3024 void fatal () __attribute__ ((noreturn));
3025
3026 void
3027 fatal (/* @r{@dots{}} */)
3028 @{
3029 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3030 exit (1);
3031 @}
3032 @end group
3033 @end smallexample
3034
3035 The @code{noreturn} keyword tells the compiler to assume that
3036 @code{fatal} cannot return. It can then optimize without regard to what
3037 would happen if @code{fatal} ever did return. This makes slightly
3038 better code. More importantly, it helps avoid spurious warnings of
3039 uninitialized variables.
3040
3041 The @code{noreturn} keyword does not affect the exceptional path when that
3042 applies: a @code{noreturn}-marked function may still return to the caller
3043 by throwing an exception or calling @code{longjmp}.
3044
3045 Do not assume that registers saved by the calling function are
3046 restored before calling the @code{noreturn} function.
3047
3048 It does not make sense for a @code{noreturn} function to have a return
3049 type other than @code{void}.
3050
3051 @item nothrow
3052 @cindex @code{nothrow} function attribute
3053 The @code{nothrow} attribute is used to inform the compiler that a
3054 function cannot throw an exception. For example, most functions in
3055 the standard C library can be guaranteed not to throw an exception
3056 with the notable exceptions of @code{qsort} and @code{bsearch} that
3057 take function pointer arguments.
3058
3059 @item optimize
3060 @cindex @code{optimize} function attribute
3061 The @code{optimize} attribute is used to specify that a function is to
3062 be compiled with different optimization options than specified on the
3063 command line. Arguments can either be numbers or strings. Numbers
3064 are assumed to be an optimization level. Strings that begin with
3065 @code{O} are assumed to be an optimization option, while other options
3066 are assumed to be used with a @code{-f} prefix. You can also use the
3067 @samp{#pragma GCC optimize} pragma to set the optimization options
3068 that affect more than one function.
3069 @xref{Function Specific Option Pragmas}, for details about the
3070 @samp{#pragma GCC optimize} pragma.
3071
3072 This attribute should be used for debugging purposes only. It is not
3073 suitable in production code.
3074
3075 @item pure
3076 @cindex @code{pure} function attribute
3077 @cindex functions that have no side effects
3078 Many functions have no effects except the return value and their
3079 return value depends only on the parameters and/or global variables.
3080 Such a function can be subject
3081 to common subexpression elimination and loop optimization just as an
3082 arithmetic operator would be. These functions should be declared
3083 with the attribute @code{pure}. For example,
3084
3085 @smallexample
3086 int square (int) __attribute__ ((pure));
3087 @end smallexample
3088
3089 @noindent
3090 says that the hypothetical function @code{square} is safe to call
3091 fewer times than the program says.
3092
3093 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3094 Interesting non-pure functions are functions with infinite loops or those
3095 depending on volatile memory or other system resource, that may change between
3096 two consecutive calls (such as @code{feof} in a multithreading environment).
3097
3098 @item returns_nonnull
3099 @cindex @code{returns_nonnull} function attribute
3100 The @code{returns_nonnull} attribute specifies that the function
3101 return value should be a non-null pointer. For instance, the declaration:
3102
3103 @smallexample
3104 extern void *
3105 mymalloc (size_t len) __attribute__((returns_nonnull));
3106 @end smallexample
3107
3108 @noindent
3109 lets the compiler optimize callers based on the knowledge
3110 that the return value will never be null.
3111
3112 @item returns_twice
3113 @cindex @code{returns_twice} function attribute
3114 @cindex functions that return more than once
3115 The @code{returns_twice} attribute tells the compiler that a function may
3116 return more than one time. The compiler ensures that all registers
3117 are dead before calling such a function and emits a warning about
3118 the variables that may be clobbered after the second return from the
3119 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3120 The @code{longjmp}-like counterpart of such function, if any, might need
3121 to be marked with the @code{noreturn} attribute.
3122
3123 @item section ("@var{section-name}")
3124 @cindex @code{section} function attribute
3125 @cindex functions in arbitrary sections
3126 Normally, the compiler places the code it generates in the @code{text} section.
3127 Sometimes, however, you need additional sections, or you need certain
3128 particular functions to appear in special sections. The @code{section}
3129 attribute specifies that a function lives in a particular section.
3130 For example, the declaration:
3131
3132 @smallexample
3133 extern void foobar (void) __attribute__ ((section ("bar")));
3134 @end smallexample
3135
3136 @noindent
3137 puts the function @code{foobar} in the @code{bar} section.
3138
3139 Some file formats do not support arbitrary sections so the @code{section}
3140 attribute is not available on all platforms.
3141 If you need to map the entire contents of a module to a particular
3142 section, consider using the facilities of the linker instead.
3143
3144 @item sentinel
3145 @cindex @code{sentinel} function attribute
3146 This function attribute ensures that a parameter in a function call is
3147 an explicit @code{NULL}. The attribute is only valid on variadic
3148 functions. By default, the sentinel is located at position zero, the
3149 last parameter of the function call. If an optional integer position
3150 argument P is supplied to the attribute, the sentinel must be located at
3151 position P counting backwards from the end of the argument list.
3152
3153 @smallexample
3154 __attribute__ ((sentinel))
3155 is equivalent to
3156 __attribute__ ((sentinel(0)))
3157 @end smallexample
3158
3159 The attribute is automatically set with a position of 0 for the built-in
3160 functions @code{execl} and @code{execlp}. The built-in function
3161 @code{execle} has the attribute set with a position of 1.
3162
3163 A valid @code{NULL} in this context is defined as zero with any pointer
3164 type. If your system defines the @code{NULL} macro with an integer type
3165 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3166 with a copy that redefines NULL appropriately.
3167
3168 The warnings for missing or incorrect sentinels are enabled with
3169 @option{-Wformat}.
3170
3171 @item simd
3172 @itemx simd("@var{mask}")
3173 @cindex @code{simd} function attribute
3174 This attribute enables creation of one or more function versions that
3175 can process multiple arguments using SIMD instructions from a
3176 single invocation. Specifying this attribute allows compiler to
3177 assume that such versions are available at link time (provided
3178 in the same or another translation unit). Generated versions are
3179 target-dependent and described in the corresponding Vector ABI document. For
3180 x86_64 target this document can be found
3181 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3182
3183 The optional argument @var{mask} may have the value
3184 @code{notinbranch} or @code{inbranch},
3185 and instructs the compiler to generate non-masked or masked
3186 clones correspondingly. By default, all clones are generated.
3187
3188 The attribute should not be used together with Cilk Plus @code{vector}
3189 attribute on the same function.
3190
3191 If the attribute is specified and @code{#pragma omp declare simd} is
3192 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3193 switch is specified, then the attribute is ignored.
3194
3195 @item stack_protect
3196 @cindex @code{stack_protect} function attribute
3197 This attribute adds stack protection code to the function if
3198 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3199 or @option{-fstack-protector-explicit} are set.
3200
3201 @item target (@var{options})
3202 @cindex @code{target} function attribute
3203 Multiple target back ends implement the @code{target} attribute
3204 to specify that a function is to
3205 be compiled with different target options than specified on the
3206 command line. This can be used for instance to have functions
3207 compiled with a different ISA (instruction set architecture) than the
3208 default. You can also use the @samp{#pragma GCC target} pragma to set
3209 more than one function to be compiled with specific target options.
3210 @xref{Function Specific Option Pragmas}, for details about the
3211 @samp{#pragma GCC target} pragma.
3212
3213 For instance, on an x86, you could declare one function with the
3214 @code{target("sse4.1,arch=core2")} attribute and another with
3215 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3216 compiling the first function with @option{-msse4.1} and
3217 @option{-march=core2} options, and the second function with
3218 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3219 to make sure that a function is only invoked on a machine that
3220 supports the particular ISA it is compiled for (for example by using
3221 @code{cpuid} on x86 to determine what feature bits and architecture
3222 family are used).
3223
3224 @smallexample
3225 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3226 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3227 @end smallexample
3228
3229 You can either use multiple
3230 strings separated by commas to specify multiple options,
3231 or separate the options with a comma (@samp{,}) within a single string.
3232
3233 The options supported are specific to each target; refer to @ref{x86
3234 Function Attributes}, @ref{PowerPC Function Attributes},
3235 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3236 for details.
3237
3238 @item target_clones (@var{options})
3239 @cindex @code{target_clones} function attribute
3240 The @code{target_clones} attribute is used to specify that a function
3241 be cloned into multiple versions compiled with different target options
3242 than specified on the command line. The supported options and restrictions
3243 are the same as for @code{target} attribute.
3244
3245 For instance, on an x86, you could compile a function with
3246 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3247 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3248 It also creates a resolver function (see the @code{ifunc} attribute
3249 above) that dynamically selects a clone suitable for current architecture.
3250
3251 @item unused
3252 @cindex @code{unused} function attribute
3253 This attribute, attached to a function, means that the function is meant
3254 to be possibly unused. GCC does not produce a warning for this
3255 function.
3256
3257 @item used
3258 @cindex @code{used} function attribute
3259 This attribute, attached to a function, means that code must be emitted
3260 for the function even if it appears that the function is not referenced.
3261 This is useful, for example, when the function is referenced only in
3262 inline assembly.
3263
3264 When applied to a member function of a C++ class template, the
3265 attribute also means that the function is instantiated if the
3266 class itself is instantiated.
3267
3268 @item visibility ("@var{visibility_type}")
3269 @cindex @code{visibility} function attribute
3270 This attribute affects the linkage of the declaration to which it is attached.
3271 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3272 (@pxref{Common Type Attributes}) as well as functions.
3273
3274 There are four supported @var{visibility_type} values: default,
3275 hidden, protected or internal visibility.
3276
3277 @smallexample
3278 void __attribute__ ((visibility ("protected")))
3279 f () @{ /* @r{Do something.} */; @}
3280 int i __attribute__ ((visibility ("hidden")));
3281 @end smallexample
3282
3283 The possible values of @var{visibility_type} correspond to the
3284 visibility settings in the ELF gABI.
3285
3286 @table @code
3287 @c keep this list of visibilities in alphabetical order.
3288
3289 @item default
3290 Default visibility is the normal case for the object file format.
3291 This value is available for the visibility attribute to override other
3292 options that may change the assumed visibility of entities.
3293
3294 On ELF, default visibility means that the declaration is visible to other
3295 modules and, in shared libraries, means that the declared entity may be
3296 overridden.
3297
3298 On Darwin, default visibility means that the declaration is visible to
3299 other modules.
3300
3301 Default visibility corresponds to ``external linkage'' in the language.
3302
3303 @item hidden
3304 Hidden visibility indicates that the entity declared has a new
3305 form of linkage, which we call ``hidden linkage''. Two
3306 declarations of an object with hidden linkage refer to the same object
3307 if they are in the same shared object.
3308
3309 @item internal
3310 Internal visibility is like hidden visibility, but with additional
3311 processor specific semantics. Unless otherwise specified by the
3312 psABI, GCC defines internal visibility to mean that a function is
3313 @emph{never} called from another module. Compare this with hidden
3314 functions which, while they cannot be referenced directly by other
3315 modules, can be referenced indirectly via function pointers. By
3316 indicating that a function cannot be called from outside the module,
3317 GCC may for instance omit the load of a PIC register since it is known
3318 that the calling function loaded the correct value.
3319
3320 @item protected
3321 Protected visibility is like default visibility except that it
3322 indicates that references within the defining module bind to the
3323 definition in that module. That is, the declared entity cannot be
3324 overridden by another module.
3325
3326 @end table
3327
3328 All visibilities are supported on many, but not all, ELF targets
3329 (supported when the assembler supports the @samp{.visibility}
3330 pseudo-op). Default visibility is supported everywhere. Hidden
3331 visibility is supported on Darwin targets.
3332
3333 The visibility attribute should be applied only to declarations that
3334 would otherwise have external linkage. The attribute should be applied
3335 consistently, so that the same entity should not be declared with
3336 different settings of the attribute.
3337
3338 In C++, the visibility attribute applies to types as well as functions
3339 and objects, because in C++ types have linkage. A class must not have
3340 greater visibility than its non-static data member types and bases,
3341 and class members default to the visibility of their class. Also, a
3342 declaration without explicit visibility is limited to the visibility
3343 of its type.
3344
3345 In C++, you can mark member functions and static member variables of a
3346 class with the visibility attribute. This is useful if you know a
3347 particular method or static member variable should only be used from
3348 one shared object; then you can mark it hidden while the rest of the
3349 class has default visibility. Care must be taken to avoid breaking
3350 the One Definition Rule; for example, it is usually not useful to mark
3351 an inline method as hidden without marking the whole class as hidden.
3352
3353 A C++ namespace declaration can also have the visibility attribute.
3354
3355 @smallexample
3356 namespace nspace1 __attribute__ ((visibility ("protected")))
3357 @{ /* @r{Do something.} */; @}
3358 @end smallexample
3359
3360 This attribute applies only to the particular namespace body, not to
3361 other definitions of the same namespace; it is equivalent to using
3362 @samp{#pragma GCC visibility} before and after the namespace
3363 definition (@pxref{Visibility Pragmas}).
3364
3365 In C++, if a template argument has limited visibility, this
3366 restriction is implicitly propagated to the template instantiation.
3367 Otherwise, template instantiations and specializations default to the
3368 visibility of their template.
3369
3370 If both the template and enclosing class have explicit visibility, the
3371 visibility from the template is used.
3372
3373 @item warn_unused_result
3374 @cindex @code{warn_unused_result} function attribute
3375 The @code{warn_unused_result} attribute causes a warning to be emitted
3376 if a caller of the function with this attribute does not use its
3377 return value. This is useful for functions where not checking
3378 the result is either a security problem or always a bug, such as
3379 @code{realloc}.
3380
3381 @smallexample
3382 int fn () __attribute__ ((warn_unused_result));
3383 int foo ()
3384 @{
3385 if (fn () < 0) return -1;
3386 fn ();
3387 return 0;
3388 @}
3389 @end smallexample
3390
3391 @noindent
3392 results in warning on line 5.
3393
3394 @item weak
3395 @cindex @code{weak} function attribute
3396 The @code{weak} attribute causes the declaration to be emitted as a weak
3397 symbol rather than a global. This is primarily useful in defining
3398 library functions that can be overridden in user code, though it can
3399 also be used with non-function declarations. Weak symbols are supported
3400 for ELF targets, and also for a.out targets when using the GNU assembler
3401 and linker.
3402
3403 @item weakref
3404 @itemx weakref ("@var{target}")
3405 @cindex @code{weakref} function attribute
3406 The @code{weakref} attribute marks a declaration as a weak reference.
3407 Without arguments, it should be accompanied by an @code{alias} attribute
3408 naming the target symbol. Optionally, the @var{target} may be given as
3409 an argument to @code{weakref} itself. In either case, @code{weakref}
3410 implicitly marks the declaration as @code{weak}. Without a
3411 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3412 @code{weakref} is equivalent to @code{weak}.
3413
3414 @smallexample
3415 static int x() __attribute__ ((weakref ("y")));
3416 /* is equivalent to... */
3417 static int x() __attribute__ ((weak, weakref, alias ("y")));
3418 /* and to... */
3419 static int x() __attribute__ ((weakref));
3420 static int x() __attribute__ ((alias ("y")));
3421 @end smallexample
3422
3423 A weak reference is an alias that does not by itself require a
3424 definition to be given for the target symbol. If the target symbol is
3425 only referenced through weak references, then it becomes a @code{weak}
3426 undefined symbol. If it is directly referenced, however, then such
3427 strong references prevail, and a definition is required for the
3428 symbol, not necessarily in the same translation unit.
3429
3430 The effect is equivalent to moving all references to the alias to a
3431 separate translation unit, renaming the alias to the aliased symbol,
3432 declaring it as weak, compiling the two separate translation units and
3433 performing a reloadable link on them.
3434
3435 At present, a declaration to which @code{weakref} is attached can
3436 only be @code{static}.
3437
3438
3439 @end table
3440
3441 @c This is the end of the target-independent attribute table
3442
3443 @node AArch64 Function Attributes
3444 @subsection AArch64 Function Attributes
3445
3446 The following target-specific function attributes are available for the
3447 AArch64 target. For the most part, these options mirror the behavior of
3448 similar command-line options (@pxref{AArch64 Options}), but on a
3449 per-function basis.
3450
3451 @table @code
3452 @item general-regs-only
3453 @cindex @code{general-regs-only} function attribute, AArch64
3454 Indicates that no floating-point or Advanced SIMD registers should be
3455 used when generating code for this function. If the function explicitly
3456 uses floating-point code, then the compiler gives an error. This is
3457 the same behavior as that of the command-line option
3458 @option{-mgeneral-regs-only}.
3459
3460 @item fix-cortex-a53-835769
3461 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3462 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3463 applied to this function. To explicitly disable the workaround for this
3464 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3465 This corresponds to the behavior of the command line options
3466 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3467
3468 @item cmodel=
3469 @cindex @code{cmodel=} function attribute, AArch64
3470 Indicates that code should be generated for a particular code model for
3471 this function. The behavior and permissible arguments are the same as
3472 for the command line option @option{-mcmodel=}.
3473
3474 @item strict-align
3475 @cindex @code{strict-align} function attribute, AArch64
3476 Indicates that the compiler should not assume that unaligned memory references
3477 are handled by the system. The behavior is the same as for the command-line
3478 option @option{-mstrict-align}.
3479
3480 @item omit-leaf-frame-pointer
3481 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3482 Indicates that the frame pointer should be omitted for a leaf function call.
3483 To keep the frame pointer, the inverse attribute
3484 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3485 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3486 and @option{-mno-omit-leaf-frame-pointer}.
3487
3488 @item tls-dialect=
3489 @cindex @code{tls-dialect=} function attribute, AArch64
3490 Specifies the TLS dialect to use for this function. The behavior and
3491 permissible arguments are the same as for the command-line option
3492 @option{-mtls-dialect=}.
3493
3494 @item arch=
3495 @cindex @code{arch=} function attribute, AArch64
3496 Specifies the architecture version and architectural extensions to use
3497 for this function. The behavior and permissible arguments are the same as
3498 for the @option{-march=} command-line option.
3499
3500 @item tune=
3501 @cindex @code{tune=} function attribute, AArch64
3502 Specifies the core for which to tune the performance of this function.
3503 The behavior and permissible arguments are the same as for the @option{-mtune=}
3504 command-line option.
3505
3506 @item cpu=
3507 @cindex @code{cpu=} function attribute, AArch64
3508 Specifies the core for which to tune the performance of this function and also
3509 whose architectural features to use. The behavior and valid arguments are the
3510 same as for the @option{-mcpu=} command-line option.
3511
3512 @end table
3513
3514 The above target attributes can be specified as follows:
3515
3516 @smallexample
3517 __attribute__((target("@var{attr-string}")))
3518 int
3519 f (int a)
3520 @{
3521 return a + 5;
3522 @}
3523 @end smallexample
3524
3525 where @code{@var{attr-string}} is one of the attribute strings specified above.
3526
3527 Additionally, the architectural extension string may be specified on its
3528 own. This can be used to turn on and off particular architectural extensions
3529 without having to specify a particular architecture version or core. Example:
3530
3531 @smallexample
3532 __attribute__((target("+crc+nocrypto")))
3533 int
3534 foo (int a)
3535 @{
3536 return a + 5;
3537 @}
3538 @end smallexample
3539
3540 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3541 extension and disables the @code{crypto} extension for the function @code{foo}
3542 without modifying an existing @option{-march=} or @option{-mcpu} option.
3543
3544 Multiple target function attributes can be specified by separating them with
3545 a comma. For example:
3546 @smallexample
3547 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3548 int
3549 foo (int a)
3550 @{
3551 return a + 5;
3552 @}
3553 @end smallexample
3554
3555 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3556 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3557
3558 @subsubsection Inlining rules
3559 Specifying target attributes on individual functions or performing link-time
3560 optimization across translation units compiled with different target options
3561 can affect function inlining rules:
3562
3563 In particular, a caller function can inline a callee function only if the
3564 architectural features available to the callee are a subset of the features
3565 available to the caller.
3566 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3567 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3568 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3569 because the all the architectural features that function @code{bar} requires
3570 are available to function @code{foo}. Conversely, function @code{bar} cannot
3571 inline function @code{foo}.
3572
3573 Additionally inlining a function compiled with @option{-mstrict-align} into a
3574 function compiled without @code{-mstrict-align} is not allowed.
3575 However, inlining a function compiled without @option{-mstrict-align} into a
3576 function compiled with @option{-mstrict-align} is allowed.
3577
3578 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3579 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3580 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3581 architectural feature rules specified above.
3582
3583 @node ARC Function Attributes
3584 @subsection ARC Function Attributes
3585
3586 These function attributes are supported by the ARC back end:
3587
3588 @table @code
3589 @item interrupt
3590 @cindex @code{interrupt} function attribute, ARC
3591 Use this attribute to indicate
3592 that the specified function is an interrupt handler. The compiler generates
3593 function entry and exit sequences suitable for use in an interrupt handler
3594 when this attribute is present.
3595
3596 On the ARC, you must specify the kind of interrupt to be handled
3597 in a parameter to the interrupt attribute like this:
3598
3599 @smallexample
3600 void f () __attribute__ ((interrupt ("ilink1")));
3601 @end smallexample
3602
3603 Permissible values for this parameter are: @w{@code{ilink1}} and
3604 @w{@code{ilink2}}.
3605
3606 @item long_call
3607 @itemx medium_call
3608 @itemx short_call
3609 @cindex @code{long_call} function attribute, ARC
3610 @cindex @code{medium_call} function attribute, ARC
3611 @cindex @code{short_call} function attribute, ARC
3612 @cindex indirect calls, ARC
3613 These attributes specify how a particular function is called.
3614 These attributes override the
3615 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3616 command-line switches and @code{#pragma long_calls} settings.
3617
3618 For ARC, a function marked with the @code{long_call} attribute is
3619 always called using register-indirect jump-and-link instructions,
3620 thereby enabling the called function to be placed anywhere within the
3621 32-bit address space. A function marked with the @code{medium_call}
3622 attribute will always be close enough to be called with an unconditional
3623 branch-and-link instruction, which has a 25-bit offset from
3624 the call site. A function marked with the @code{short_call}
3625 attribute will always be close enough to be called with a conditional
3626 branch-and-link instruction, which has a 21-bit offset from
3627 the call site.
3628 @end table
3629
3630 @node ARM Function Attributes
3631 @subsection ARM Function Attributes
3632
3633 These function attributes are supported for ARM targets:
3634
3635 @table @code
3636 @item interrupt
3637 @cindex @code{interrupt} function attribute, ARM
3638 Use this attribute to indicate
3639 that the specified function is an interrupt handler. The compiler generates
3640 function entry and exit sequences suitable for use in an interrupt handler
3641 when this attribute is present.
3642
3643 You can specify the kind of interrupt to be handled by
3644 adding an optional parameter to the interrupt attribute like this:
3645
3646 @smallexample
3647 void f () __attribute__ ((interrupt ("IRQ")));
3648 @end smallexample
3649
3650 @noindent
3651 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3652 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3653
3654 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3655 may be called with a word-aligned stack pointer.
3656
3657 @item isr
3658 @cindex @code{isr} function attribute, ARM
3659 Use this attribute on ARM to write Interrupt Service Routines. This is an
3660 alias to the @code{interrupt} attribute above.
3661
3662 @item long_call
3663 @itemx short_call
3664 @cindex @code{long_call} function attribute, ARM
3665 @cindex @code{short_call} function attribute, ARM
3666 @cindex indirect calls, ARM
3667 These attributes specify how a particular function is called.
3668 These attributes override the
3669 @option{-mlong-calls} (@pxref{ARM Options})
3670 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3671 @code{long_call} attribute indicates that the function might be far
3672 away from the call site and require a different (more expensive)
3673 calling sequence. The @code{short_call} attribute always places
3674 the offset to the function from the call site into the @samp{BL}
3675 instruction directly.
3676
3677 @item naked
3678 @cindex @code{naked} function attribute, ARM
3679 This attribute allows the compiler to construct the
3680 requisite function declaration, while allowing the body of the
3681 function to be assembly code. The specified function will not have
3682 prologue/epilogue sequences generated by the compiler. Only basic
3683 @code{asm} statements can safely be included in naked functions
3684 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3685 basic @code{asm} and C code may appear to work, they cannot be
3686 depended upon to work reliably and are not supported.
3687
3688 @item pcs
3689 @cindex @code{pcs} function attribute, ARM
3690
3691 The @code{pcs} attribute can be used to control the calling convention
3692 used for a function on ARM. The attribute takes an argument that specifies
3693 the calling convention to use.
3694
3695 When compiling using the AAPCS ABI (or a variant of it) then valid
3696 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3697 order to use a variant other than @code{"aapcs"} then the compiler must
3698 be permitted to use the appropriate co-processor registers (i.e., the
3699 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3700 For example,
3701
3702 @smallexample
3703 /* Argument passed in r0, and result returned in r0+r1. */
3704 double f2d (float) __attribute__((pcs("aapcs")));
3705 @end smallexample
3706
3707 Variadic functions always use the @code{"aapcs"} calling convention and
3708 the compiler rejects attempts to specify an alternative.
3709
3710 @item target (@var{options})
3711 @cindex @code{target} function attribute
3712 As discussed in @ref{Common Function Attributes}, this attribute
3713 allows specification of target-specific compilation options.
3714
3715 On ARM, the following options are allowed:
3716
3717 @table @samp
3718 @item thumb
3719 @cindex @code{target("thumb")} function attribute, ARM
3720 Force code generation in the Thumb (T16/T32) ISA, depending on the
3721 architecture level.
3722
3723 @item arm
3724 @cindex @code{target("arm")} function attribute, ARM
3725 Force code generation in the ARM (A32) ISA.
3726
3727 Functions from different modes can be inlined in the caller's mode.
3728
3729 @item fpu=
3730 @cindex @code{target("fpu=")} function attribute, ARM
3731 Specifies the fpu for which to tune the performance of this function.
3732 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3733 command-line option.
3734
3735 @end table
3736
3737 @end table
3738
3739 @node AVR Function Attributes
3740 @subsection AVR Function Attributes
3741
3742 These function attributes are supported by the AVR back end:
3743
3744 @table @code
3745 @item interrupt
3746 @cindex @code{interrupt} function attribute, AVR
3747 Use this attribute to indicate
3748 that the specified function is an interrupt handler. The compiler generates
3749 function entry and exit sequences suitable for use in an interrupt handler
3750 when this attribute is present.
3751
3752 On the AVR, the hardware globally disables interrupts when an
3753 interrupt is executed. The first instruction of an interrupt handler
3754 declared with this attribute is a @code{SEI} instruction to
3755 re-enable interrupts. See also the @code{signal} function attribute
3756 that does not insert a @code{SEI} instruction. If both @code{signal} and
3757 @code{interrupt} are specified for the same function, @code{signal}
3758 is silently ignored.
3759
3760 @item naked
3761 @cindex @code{naked} function attribute, AVR
3762 This attribute allows the compiler to construct the
3763 requisite function declaration, while allowing the body of the
3764 function to be assembly code. The specified function will not have
3765 prologue/epilogue sequences generated by the compiler. Only basic
3766 @code{asm} statements can safely be included in naked functions
3767 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3768 basic @code{asm} and C code may appear to work, they cannot be
3769 depended upon to work reliably and are not supported.
3770
3771 @item OS_main
3772 @itemx OS_task
3773 @cindex @code{OS_main} function attribute, AVR
3774 @cindex @code{OS_task} function attribute, AVR
3775 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3776 do not save/restore any call-saved register in their prologue/epilogue.
3777
3778 The @code{OS_main} attribute can be used when there @emph{is
3779 guarantee} that interrupts are disabled at the time when the function
3780 is entered. This saves resources when the stack pointer has to be
3781 changed to set up a frame for local variables.
3782
3783 The @code{OS_task} attribute can be used when there is @emph{no
3784 guarantee} that interrupts are disabled at that time when the function
3785 is entered like for, e@.g@. task functions in a multi-threading operating
3786 system. In that case, changing the stack pointer register is
3787 guarded by save/clear/restore of the global interrupt enable flag.
3788
3789 The differences to the @code{naked} function attribute are:
3790 @itemize @bullet
3791 @item @code{naked} functions do not have a return instruction whereas
3792 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3793 @code{RETI} return instruction.
3794 @item @code{naked} functions do not set up a frame for local variables
3795 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3796 as needed.
3797 @end itemize
3798
3799 @item signal
3800 @cindex @code{signal} function attribute, AVR
3801 Use this attribute on the AVR to indicate that the specified
3802 function is an interrupt handler. The compiler generates function
3803 entry and exit sequences suitable for use in an interrupt handler when this
3804 attribute is present.
3805
3806 See also the @code{interrupt} function attribute.
3807
3808 The AVR hardware globally disables interrupts when an interrupt is executed.
3809 Interrupt handler functions defined with the @code{signal} attribute
3810 do not re-enable interrupts. It is save to enable interrupts in a
3811 @code{signal} handler. This ``save'' only applies to the code
3812 generated by the compiler and not to the IRQ layout of the
3813 application which is responsibility of the application.
3814
3815 If both @code{signal} and @code{interrupt} are specified for the same
3816 function, @code{signal} is silently ignored.
3817 @end table
3818
3819 @node Blackfin Function Attributes
3820 @subsection Blackfin Function Attributes
3821
3822 These function attributes are supported by the Blackfin back end:
3823
3824 @table @code
3825
3826 @item exception_handler
3827 @cindex @code{exception_handler} function attribute
3828 @cindex exception handler functions, Blackfin
3829 Use this attribute on the Blackfin to indicate that the specified function
3830 is an exception handler. The compiler generates function entry and
3831 exit sequences suitable for use in an exception handler when this
3832 attribute is present.
3833
3834 @item interrupt_handler
3835 @cindex @code{interrupt_handler} function attribute, Blackfin
3836 Use this attribute to
3837 indicate that the specified function is an interrupt handler. The compiler
3838 generates function entry and exit sequences suitable for use in an
3839 interrupt handler when this attribute is present.
3840
3841 @item kspisusp
3842 @cindex @code{kspisusp} function attribute, Blackfin
3843 @cindex User stack pointer in interrupts on the Blackfin
3844 When used together with @code{interrupt_handler}, @code{exception_handler}
3845 or @code{nmi_handler}, code is generated to load the stack pointer
3846 from the USP register in the function prologue.
3847
3848 @item l1_text
3849 @cindex @code{l1_text} function attribute, Blackfin
3850 This attribute specifies a function to be placed into L1 Instruction
3851 SRAM@. The function is put into a specific section named @code{.l1.text}.
3852 With @option{-mfdpic}, function calls with a such function as the callee
3853 or caller uses inlined PLT.
3854
3855 @item l2
3856 @cindex @code{l2} function attribute, Blackfin
3857 This attribute specifies a function to be placed into L2
3858 SRAM. The function is put into a specific section named
3859 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3860 an inlined PLT.
3861
3862 @item longcall
3863 @itemx shortcall
3864 @cindex indirect calls, Blackfin
3865 @cindex @code{longcall} function attribute, Blackfin
3866 @cindex @code{shortcall} function attribute, Blackfin
3867 The @code{longcall} attribute
3868 indicates that the function might be far away from the call site and
3869 require a different (more expensive) calling sequence. The
3870 @code{shortcall} attribute indicates that the function is always close
3871 enough for the shorter calling sequence to be used. These attributes
3872 override the @option{-mlongcall} switch.
3873
3874 @item nesting
3875 @cindex @code{nesting} function attribute, Blackfin
3876 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3877 Use this attribute together with @code{interrupt_handler},
3878 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3879 entry code should enable nested interrupts or exceptions.
3880
3881 @item nmi_handler
3882 @cindex @code{nmi_handler} function attribute, Blackfin
3883 @cindex NMI handler functions on the Blackfin processor
3884 Use this attribute on the Blackfin to indicate that the specified function
3885 is an NMI handler. The compiler generates function entry and
3886 exit sequences suitable for use in an NMI handler when this
3887 attribute is present.
3888
3889 @item saveall
3890 @cindex @code{saveall} function attribute, Blackfin
3891 @cindex save all registers on the Blackfin
3892 Use this attribute to indicate that
3893 all registers except the stack pointer should be saved in the prologue
3894 regardless of whether they are used or not.
3895 @end table
3896
3897 @node CR16 Function Attributes
3898 @subsection CR16 Function Attributes
3899
3900 These function attributes are supported by the CR16 back end:
3901
3902 @table @code
3903 @item interrupt
3904 @cindex @code{interrupt} function attribute, CR16
3905 Use this attribute to indicate
3906 that the specified function is an interrupt handler. The compiler generates
3907 function entry and exit sequences suitable for use in an interrupt handler
3908 when this attribute is present.
3909 @end table
3910
3911 @node Epiphany Function Attributes
3912 @subsection Epiphany Function Attributes
3913
3914 These function attributes are supported by the Epiphany back end:
3915
3916 @table @code
3917 @item disinterrupt
3918 @cindex @code{disinterrupt} function attribute, Epiphany
3919 This attribute causes the compiler to emit
3920 instructions to disable interrupts for the duration of the given
3921 function.
3922
3923 @item forwarder_section
3924 @cindex @code{forwarder_section} function attribute, Epiphany
3925 This attribute modifies the behavior of an interrupt handler.
3926 The interrupt handler may be in external memory which cannot be
3927 reached by a branch instruction, so generate a local memory trampoline
3928 to transfer control. The single parameter identifies the section where
3929 the trampoline is placed.
3930
3931 @item interrupt
3932 @cindex @code{interrupt} function attribute, Epiphany
3933 Use this attribute to indicate
3934 that the specified function is an interrupt handler. The compiler generates
3935 function entry and exit sequences suitable for use in an interrupt handler
3936 when this attribute is present. It may also generate
3937 a special section with code to initialize the interrupt vector table.
3938
3939 On Epiphany targets one or more optional parameters can be added like this:
3940
3941 @smallexample
3942 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3943 @end smallexample
3944
3945 Permissible values for these parameters are: @w{@code{reset}},
3946 @w{@code{software_exception}}, @w{@code{page_miss}},
3947 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
3948 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
3949 Multiple parameters indicate that multiple entries in the interrupt
3950 vector table should be initialized for this function, i.e.@: for each
3951 parameter @w{@var{name}}, a jump to the function is emitted in
3952 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3953 entirely, in which case no interrupt vector table entry is provided.
3954
3955 Note that interrupts are enabled inside the function
3956 unless the @code{disinterrupt} attribute is also specified.
3957
3958 The following examples are all valid uses of these attributes on
3959 Epiphany targets:
3960 @smallexample
3961 void __attribute__ ((interrupt)) universal_handler ();
3962 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3963 void __attribute__ ((interrupt ("dma0, dma1")))
3964 universal_dma_handler ();
3965 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3966 fast_timer_handler ();
3967 void __attribute__ ((interrupt ("dma0, dma1"),
3968 forwarder_section ("tramp")))
3969 external_dma_handler ();
3970 @end smallexample
3971
3972 @item long_call
3973 @itemx short_call
3974 @cindex @code{long_call} function attribute, Epiphany
3975 @cindex @code{short_call} function attribute, Epiphany
3976 @cindex indirect calls, Epiphany
3977 These attributes specify how a particular function is called.
3978 These attributes override the
3979 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
3980 command-line switch and @code{#pragma long_calls} settings.
3981 @end table
3982
3983
3984 @node H8/300 Function Attributes
3985 @subsection H8/300 Function Attributes
3986
3987 These function attributes are available for H8/300 targets:
3988
3989 @table @code
3990 @item function_vector
3991 @cindex @code{function_vector} function attribute, H8/300
3992 Use this attribute on the H8/300, H8/300H, and H8S to indicate
3993 that the specified function should be called through the function vector.
3994 Calling a function through the function vector reduces code size; however,
3995 the function vector has a limited size (maximum 128 entries on the H8/300
3996 and 64 entries on the H8/300H and H8S)
3997 and shares space with the interrupt vector.
3998
3999 @item interrupt_handler
4000 @cindex @code{interrupt_handler} function attribute, H8/300
4001 Use this attribute on the H8/300, H8/300H, and H8S to
4002 indicate that the specified function is an interrupt handler. The compiler
4003 generates function entry and exit sequences suitable for use in an
4004 interrupt handler when this attribute is present.
4005
4006 @item saveall
4007 @cindex @code{saveall} function attribute, H8/300
4008 @cindex save all registers on the H8/300, H8/300H, and H8S
4009 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4010 all registers except the stack pointer should be saved in the prologue
4011 regardless of whether they are used or not.
4012 @end table
4013
4014 @node IA-64 Function Attributes
4015 @subsection IA-64 Function Attributes
4016
4017 These function attributes are supported on IA-64 targets:
4018
4019 @table @code
4020 @item syscall_linkage
4021 @cindex @code{syscall_linkage} function attribute, IA-64
4022 This attribute is used to modify the IA-64 calling convention by marking
4023 all input registers as live at all function exits. This makes it possible
4024 to restart a system call after an interrupt without having to save/restore
4025 the input registers. This also prevents kernel data from leaking into
4026 application code.
4027
4028 @item version_id
4029 @cindex @code{version_id} function attribute, IA-64
4030 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4031 symbol to contain a version string, thus allowing for function level
4032 versioning. HP-UX system header files may use function level versioning
4033 for some system calls.
4034
4035 @smallexample
4036 extern int foo () __attribute__((version_id ("20040821")));
4037 @end smallexample
4038
4039 @noindent
4040 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4041 @end table
4042
4043 @node M32C Function Attributes
4044 @subsection M32C Function Attributes
4045
4046 These function attributes are supported by the M32C back end:
4047
4048 @table @code
4049 @item bank_switch
4050 @cindex @code{bank_switch} function attribute, M32C
4051 When added to an interrupt handler with the M32C port, causes the
4052 prologue and epilogue to use bank switching to preserve the registers
4053 rather than saving them on the stack.
4054
4055 @item fast_interrupt
4056 @cindex @code{fast_interrupt} function attribute, M32C
4057 Use this attribute on the M32C port to indicate that the specified
4058 function is a fast interrupt handler. This is just like the
4059 @code{interrupt} attribute, except that @code{freit} is used to return
4060 instead of @code{reit}.
4061
4062 @item function_vector
4063 @cindex @code{function_vector} function attribute, M16C/M32C
4064 On M16C/M32C targets, the @code{function_vector} attribute declares a
4065 special page subroutine call function. Use of this attribute reduces
4066 the code size by 2 bytes for each call generated to the
4067 subroutine. The argument to the attribute is the vector number entry
4068 from the special page vector table which contains the 16 low-order
4069 bits of the subroutine's entry address. Each vector table has special
4070 page number (18 to 255) that is used in @code{jsrs} instructions.
4071 Jump addresses of the routines are generated by adding 0x0F0000 (in
4072 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4073 2-byte addresses set in the vector table. Therefore you need to ensure
4074 that all the special page vector routines should get mapped within the
4075 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4076 (for M32C).
4077
4078 In the following example 2 bytes are saved for each call to
4079 function @code{foo}.
4080
4081 @smallexample
4082 void foo (void) __attribute__((function_vector(0x18)));
4083 void foo (void)
4084 @{
4085 @}
4086
4087 void bar (void)
4088 @{
4089 foo();
4090 @}
4091 @end smallexample
4092
4093 If functions are defined in one file and are called in another file,
4094 then be sure to write this declaration in both files.
4095
4096 This attribute is ignored for R8C target.
4097
4098 @item interrupt
4099 @cindex @code{interrupt} function attribute, M32C
4100 Use this attribute to indicate
4101 that the specified function is an interrupt handler. The compiler generates
4102 function entry and exit sequences suitable for use in an interrupt handler
4103 when this attribute is present.
4104 @end table
4105
4106 @node M32R/D Function Attributes
4107 @subsection M32R/D Function Attributes
4108
4109 These function attributes are supported by the M32R/D back end:
4110
4111 @table @code
4112 @item interrupt
4113 @cindex @code{interrupt} function attribute, M32R/D
4114 Use this attribute to indicate
4115 that the specified function is an interrupt handler. The compiler generates
4116 function entry and exit sequences suitable for use in an interrupt handler
4117 when this attribute is present.
4118
4119 @item model (@var{model-name})
4120 @cindex @code{model} function attribute, M32R/D
4121 @cindex function addressability on the M32R/D
4122
4123 On the M32R/D, use this attribute to set the addressability of an
4124 object, and of the code generated for a function. The identifier
4125 @var{model-name} is one of @code{small}, @code{medium}, or
4126 @code{large}, representing each of the code models.
4127
4128 Small model objects live in the lower 16MB of memory (so that their
4129 addresses can be loaded with the @code{ld24} instruction), and are
4130 callable with the @code{bl} instruction.
4131
4132 Medium model objects may live anywhere in the 32-bit address space (the
4133 compiler generates @code{seth/add3} instructions to load their addresses),
4134 and are callable with the @code{bl} instruction.
4135
4136 Large model objects may live anywhere in the 32-bit address space (the
4137 compiler generates @code{seth/add3} instructions to load their addresses),
4138 and may not be reachable with the @code{bl} instruction (the compiler
4139 generates the much slower @code{seth/add3/jl} instruction sequence).
4140 @end table
4141
4142 @node m68k Function Attributes
4143 @subsection m68k Function Attributes
4144
4145 These function attributes are supported by the m68k back end:
4146
4147 @table @code
4148 @item interrupt
4149 @itemx interrupt_handler
4150 @cindex @code{interrupt} function attribute, m68k
4151 @cindex @code{interrupt_handler} function attribute, m68k
4152 Use this attribute to
4153 indicate that the specified function is an interrupt handler. The compiler
4154 generates function entry and exit sequences suitable for use in an
4155 interrupt handler when this attribute is present. Either name may be used.
4156
4157 @item interrupt_thread
4158 @cindex @code{interrupt_thread} function attribute, fido
4159 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4160 that the specified function is an interrupt handler that is designed
4161 to run as a thread. The compiler omits generate prologue/epilogue
4162 sequences and replaces the return instruction with a @code{sleep}
4163 instruction. This attribute is available only on fido.
4164 @end table
4165
4166 @node MCORE Function Attributes
4167 @subsection MCORE Function Attributes
4168
4169 These function attributes are supported by the MCORE back end:
4170
4171 @table @code
4172 @item naked
4173 @cindex @code{naked} function attribute, MCORE
4174 This attribute allows the compiler to construct the
4175 requisite function declaration, while allowing the body of the
4176 function to be assembly code. The specified function will not have
4177 prologue/epilogue sequences generated by the compiler. Only basic
4178 @code{asm} statements can safely be included in naked functions
4179 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4180 basic @code{asm} and C code may appear to work, they cannot be
4181 depended upon to work reliably and are not supported.
4182 @end table
4183
4184 @node MeP Function Attributes
4185 @subsection MeP Function Attributes
4186
4187 These function attributes are supported by the MeP back end:
4188
4189 @table @code
4190 @item disinterrupt
4191 @cindex @code{disinterrupt} function attribute, MeP
4192 On MeP targets, this attribute causes the compiler to emit
4193 instructions to disable interrupts for the duration of the given
4194 function.
4195
4196 @item interrupt
4197 @cindex @code{interrupt} function attribute, MeP
4198 Use this attribute to indicate
4199 that the specified function is an interrupt handler. The compiler generates
4200 function entry and exit sequences suitable for use in an interrupt handler
4201 when this attribute is present.
4202
4203 @item near
4204 @cindex @code{near} function attribute, MeP
4205 This attribute causes the compiler to assume the called
4206 function is close enough to use the normal calling convention,
4207 overriding the @option{-mtf} command-line option.
4208
4209 @item far
4210 @cindex @code{far} function attribute, MeP
4211 On MeP targets this causes the compiler to use a calling convention
4212 that assumes the called function is too far away for the built-in
4213 addressing modes.
4214
4215 @item vliw
4216 @cindex @code{vliw} function attribute, MeP
4217 The @code{vliw} attribute tells the compiler to emit
4218 instructions in VLIW mode instead of core mode. Note that this
4219 attribute is not allowed unless a VLIW coprocessor has been configured
4220 and enabled through command-line options.
4221 @end table
4222
4223 @node MicroBlaze Function Attributes
4224 @subsection MicroBlaze Function Attributes
4225
4226 These function attributes are supported on MicroBlaze targets:
4227
4228 @table @code
4229 @item save_volatiles
4230 @cindex @code{save_volatiles} function attribute, MicroBlaze
4231 Use this attribute to indicate that the function is
4232 an interrupt handler. All volatile registers (in addition to non-volatile
4233 registers) are saved in the function prologue. If the function is a leaf
4234 function, only volatiles used by the function are saved. A normal function
4235 return is generated instead of a return from interrupt.
4236
4237 @item break_handler
4238 @cindex @code{break_handler} function attribute, MicroBlaze
4239 @cindex break handler functions
4240 Use this attribute to indicate that
4241 the specified function is a break handler. The compiler generates function
4242 entry and exit sequences suitable for use in an break handler when this
4243 attribute is present. The return from @code{break_handler} is done through
4244 the @code{rtbd} instead of @code{rtsd}.
4245
4246 @smallexample
4247 void f () __attribute__ ((break_handler));
4248 @end smallexample
4249
4250 @item interrupt_handler
4251 @itemx fast_interrupt
4252 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4253 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4254 These attributes indicate that the specified function is an interrupt
4255 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4256 used in low-latency interrupt mode, and @code{interrupt_handler} for
4257 interrupts that do not use low-latency handlers. In both cases, GCC
4258 emits appropriate prologue code and generates a return from the handler
4259 using @code{rtid} instead of @code{rtsd}.
4260 @end table
4261
4262 @node Microsoft Windows Function Attributes
4263 @subsection Microsoft Windows Function Attributes
4264
4265 The following attributes are available on Microsoft Windows and Symbian OS
4266 targets.
4267
4268 @table @code
4269 @item dllexport
4270 @cindex @code{dllexport} function attribute
4271 @cindex @code{__declspec(dllexport)}
4272 On Microsoft Windows targets and Symbian OS targets the
4273 @code{dllexport} attribute causes the compiler to provide a global
4274 pointer to a pointer in a DLL, so that it can be referenced with the
4275 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4276 name is formed by combining @code{_imp__} and the function or variable
4277 name.
4278
4279 You can use @code{__declspec(dllexport)} as a synonym for
4280 @code{__attribute__ ((dllexport))} for compatibility with other
4281 compilers.
4282
4283 On systems that support the @code{visibility} attribute, this
4284 attribute also implies ``default'' visibility. It is an error to
4285 explicitly specify any other visibility.
4286
4287 GCC's default behavior is to emit all inline functions with the
4288 @code{dllexport} attribute. Since this can cause object file-size bloat,
4289 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4290 ignore the attribute for inlined functions unless the
4291 @option{-fkeep-inline-functions} flag is used instead.
4292
4293 The attribute is ignored for undefined symbols.
4294
4295 When applied to C++ classes, the attribute marks defined non-inlined
4296 member functions and static data members as exports. Static consts
4297 initialized in-class are not marked unless they are also defined
4298 out-of-class.
4299
4300 For Microsoft Windows targets there are alternative methods for
4301 including the symbol in the DLL's export table such as using a
4302 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4303 the @option{--export-all} linker flag.
4304
4305 @item dllimport
4306 @cindex @code{dllimport} function attribute
4307 @cindex @code{__declspec(dllimport)}
4308 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4309 attribute causes the compiler to reference a function or variable via
4310 a global pointer to a pointer that is set up by the DLL exporting the
4311 symbol. The attribute implies @code{extern}. On Microsoft Windows
4312 targets, the pointer name is formed by combining @code{_imp__} and the
4313 function or variable name.
4314
4315 You can use @code{__declspec(dllimport)} as a synonym for
4316 @code{__attribute__ ((dllimport))} for compatibility with other
4317 compilers.
4318
4319 On systems that support the @code{visibility} attribute, this
4320 attribute also implies ``default'' visibility. It is an error to
4321 explicitly specify any other visibility.
4322
4323 Currently, the attribute is ignored for inlined functions. If the
4324 attribute is applied to a symbol @emph{definition}, an error is reported.
4325 If a symbol previously declared @code{dllimport} is later defined, the
4326 attribute is ignored in subsequent references, and a warning is emitted.
4327 The attribute is also overridden by a subsequent declaration as
4328 @code{dllexport}.
4329
4330 When applied to C++ classes, the attribute marks non-inlined
4331 member functions and static data members as imports. However, the
4332 attribute is ignored for virtual methods to allow creation of vtables
4333 using thunks.
4334
4335 On the SH Symbian OS target the @code{dllimport} attribute also has
4336 another affect---it can cause the vtable and run-time type information
4337 for a class to be exported. This happens when the class has a
4338 dllimported constructor or a non-inline, non-pure virtual function
4339 and, for either of those two conditions, the class also has an inline
4340 constructor or destructor and has a key function that is defined in
4341 the current translation unit.
4342
4343 For Microsoft Windows targets the use of the @code{dllimport}
4344 attribute on functions is not necessary, but provides a small
4345 performance benefit by eliminating a thunk in the DLL@. The use of the
4346 @code{dllimport} attribute on imported variables can be avoided by passing the
4347 @option{--enable-auto-import} switch to the GNU linker. As with
4348 functions, using the attribute for a variable eliminates a thunk in
4349 the DLL@.
4350
4351 One drawback to using this attribute is that a pointer to a
4352 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4353 address. However, a pointer to a @emph{function} with the
4354 @code{dllimport} attribute can be used as a constant initializer; in
4355 this case, the address of a stub function in the import lib is
4356 referenced. On Microsoft Windows targets, the attribute can be disabled
4357 for functions by setting the @option{-mnop-fun-dllimport} flag.
4358 @end table
4359
4360 @node MIPS Function Attributes
4361 @subsection MIPS Function Attributes
4362
4363 These function attributes are supported by the MIPS back end:
4364
4365 @table @code
4366 @item interrupt
4367 @cindex @code{interrupt} function attribute, MIPS
4368 Use this attribute to indicate that the specified function is an interrupt
4369 handler. The compiler generates function entry and exit sequences suitable
4370 for use in an interrupt handler when this attribute is present.
4371 An optional argument is supported for the interrupt attribute which allows
4372 the interrupt mode to be described. By default GCC assumes the external
4373 interrupt controller (EIC) mode is in use, this can be explicitly set using
4374 @code{eic}. When interrupts are non-masked then the requested Interrupt
4375 Priority Level (IPL) is copied to the current IPL which has the effect of only
4376 enabling higher priority interrupts. To use vectored interrupt mode use
4377 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4378 the behavior of the non-masked interrupt support and GCC will arrange to mask
4379 all interrupts from sw0 up to and including the specified interrupt vector.
4380
4381 You can use the following attributes to modify the behavior
4382 of an interrupt handler:
4383 @table @code
4384 @item use_shadow_register_set
4385 @cindex @code{use_shadow_register_set} function attribute, MIPS
4386 Assume that the handler uses a shadow register set, instead of
4387 the main general-purpose registers. An optional argument @code{intstack} is
4388 supported to indicate that the shadow register set contains a valid stack
4389 pointer.
4390
4391 @item keep_interrupts_masked
4392 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4393 Keep interrupts masked for the whole function. Without this attribute,
4394 GCC tries to reenable interrupts for as much of the function as it can.
4395
4396 @item use_debug_exception_return
4397 @cindex @code{use_debug_exception_return} function attribute, MIPS
4398 Return using the @code{deret} instruction. Interrupt handlers that don't
4399 have this attribute return using @code{eret} instead.
4400 @end table
4401
4402 You can use any combination of these attributes, as shown below:
4403 @smallexample
4404 void __attribute__ ((interrupt)) v0 ();
4405 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4406 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4407 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4408 void __attribute__ ((interrupt, use_shadow_register_set,
4409 keep_interrupts_masked)) v4 ();
4410 void __attribute__ ((interrupt, use_shadow_register_set,
4411 use_debug_exception_return)) v5 ();
4412 void __attribute__ ((interrupt, keep_interrupts_masked,
4413 use_debug_exception_return)) v6 ();
4414 void __attribute__ ((interrupt, use_shadow_register_set,
4415 keep_interrupts_masked,
4416 use_debug_exception_return)) v7 ();
4417 void __attribute__ ((interrupt("eic"))) v8 ();
4418 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4419 @end smallexample
4420
4421 @item long_call
4422 @itemx near
4423 @itemx far
4424 @cindex indirect calls, MIPS
4425 @cindex @code{long_call} function attribute, MIPS
4426 @cindex @code{near} function attribute, MIPS
4427 @cindex @code{far} function attribute, MIPS
4428 These attributes specify how a particular function is called on MIPS@.
4429 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4430 command-line switch. The @code{long_call} and @code{far} attributes are
4431 synonyms, and cause the compiler to always call
4432 the function by first loading its address into a register, and then using
4433 the contents of that register. The @code{near} attribute has the opposite
4434 effect; it specifies that non-PIC calls should be made using the more
4435 efficient @code{jal} instruction.
4436
4437 @item mips16
4438 @itemx nomips16
4439 @cindex @code{mips16} function attribute, MIPS
4440 @cindex @code{nomips16} function attribute, MIPS
4441
4442 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4443 function attributes to locally select or turn off MIPS16 code generation.
4444 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4445 while MIPS16 code generation is disabled for functions with the
4446 @code{nomips16} attribute. These attributes override the
4447 @option{-mips16} and @option{-mno-mips16} options on the command line
4448 (@pxref{MIPS Options}).
4449
4450 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4451 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4452 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4453 may interact badly with some GCC extensions such as @code{__builtin_apply}
4454 (@pxref{Constructing Calls}).
4455
4456 @item micromips, MIPS
4457 @itemx nomicromips, MIPS
4458 @cindex @code{micromips} function attribute
4459 @cindex @code{nomicromips} function attribute
4460
4461 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4462 function attributes to locally select or turn off microMIPS code generation.
4463 A function with the @code{micromips} attribute is emitted as microMIPS code,
4464 while microMIPS code generation is disabled for functions with the
4465 @code{nomicromips} attribute. These attributes override the
4466 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4467 (@pxref{MIPS Options}).
4468
4469 When compiling files containing mixed microMIPS and non-microMIPS code, the
4470 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4471 command line,
4472 not that within individual functions. Mixed microMIPS and non-microMIPS code
4473 may interact badly with some GCC extensions such as @code{__builtin_apply}
4474 (@pxref{Constructing Calls}).
4475
4476 @item nocompression
4477 @cindex @code{nocompression} function attribute, MIPS
4478 On MIPS targets, you can use the @code{nocompression} function attribute
4479 to locally turn off MIPS16 and microMIPS code generation. This attribute
4480 overrides the @option{-mips16} and @option{-mmicromips} options on the
4481 command line (@pxref{MIPS Options}).
4482 @end table
4483
4484 @node MSP430 Function Attributes
4485 @subsection MSP430 Function Attributes
4486
4487 These function attributes are supported by the MSP430 back end:
4488
4489 @table @code
4490 @item critical
4491 @cindex @code{critical} function attribute, MSP430
4492 Critical functions disable interrupts upon entry and restore the
4493 previous interrupt state upon exit. Critical functions cannot also
4494 have the @code{naked} or @code{reentrant} attributes. They can have
4495 the @code{interrupt} attribute.
4496
4497 @item interrupt
4498 @cindex @code{interrupt} function attribute, MSP430
4499 Use this attribute to indicate
4500 that the specified function is an interrupt handler. The compiler generates
4501 function entry and exit sequences suitable for use in an interrupt handler
4502 when this attribute is present.
4503
4504 You can provide an argument to the interrupt
4505 attribute which specifies a name or number. If the argument is a
4506 number it indicates the slot in the interrupt vector table (0 - 31) to
4507 which this handler should be assigned. If the argument is a name it
4508 is treated as a symbolic name for the vector slot. These names should
4509 match up with appropriate entries in the linker script. By default
4510 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4511 @code{reset} for vector 31 are recognized.
4512
4513 @item naked
4514 @cindex @code{naked} function attribute, MSP430
4515 This attribute allows the compiler to construct the
4516 requisite function declaration, while allowing the body of the
4517 function to be assembly code. The specified function will not have
4518 prologue/epilogue sequences generated by the compiler. Only basic
4519 @code{asm} statements can safely be included in naked functions
4520 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4521 basic @code{asm} and C code may appear to work, they cannot be
4522 depended upon to work reliably and are not supported.
4523
4524 @item reentrant
4525 @cindex @code{reentrant} function attribute, MSP430
4526 Reentrant functions disable interrupts upon entry and enable them
4527 upon exit. Reentrant functions cannot also have the @code{naked}
4528 or @code{critical} attributes. They can have the @code{interrupt}
4529 attribute.
4530
4531 @item wakeup
4532 @cindex @code{wakeup} function attribute, MSP430
4533 This attribute only applies to interrupt functions. It is silently
4534 ignored if applied to a non-interrupt function. A wakeup interrupt
4535 function will rouse the processor from any low-power state that it
4536 might be in when the function exits.
4537
4538 @item lower
4539 @itemx upper
4540 @itemx either
4541 @cindex @code{lower} function attribute, MSP430
4542 @cindex @code{upper} function attribute, MSP430
4543 @cindex @code{either} function attribute, MSP430
4544 On the MSP430 target these attributes can be used to specify whether
4545 the function or variable should be placed into low memory, high
4546 memory, or the placement should be left to the linker to decide. The
4547 attributes are only significant if compiling for the MSP430X
4548 architecture.
4549
4550 The attributes work in conjunction with a linker script that has been
4551 augmented to specify where to place sections with a @code{.lower} and
4552 a @code{.upper} prefix. So, for example, as well as placing the
4553 @code{.data} section, the script also specifies the placement of a
4554 @code{.lower.data} and a @code{.upper.data} section. The intention
4555 is that @code{lower} sections are placed into a small but easier to
4556 access memory region and the upper sections are placed into a larger, but
4557 slower to access, region.
4558
4559 The @code{either} attribute is special. It tells the linker to place
4560 the object into the corresponding @code{lower} section if there is
4561 room for it. If there is insufficient room then the object is placed
4562 into the corresponding @code{upper} section instead. Note that the
4563 placement algorithm is not very sophisticated. It does not attempt to
4564 find an optimal packing of the @code{lower} sections. It just makes
4565 one pass over the objects and does the best that it can. Using the
4566 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4567 options can help the packing, however, since they produce smaller,
4568 easier to pack regions.
4569 @end table
4570
4571 @node NDS32 Function Attributes
4572 @subsection NDS32 Function Attributes
4573
4574 These function attributes are supported by the NDS32 back end:
4575
4576 @table @code
4577 @item exception
4578 @cindex @code{exception} function attribute
4579 @cindex exception handler functions, NDS32
4580 Use this attribute on the NDS32 target to indicate that the specified function
4581 is an exception handler. The compiler will generate corresponding sections
4582 for use in an exception handler.
4583
4584 @item interrupt
4585 @cindex @code{interrupt} function attribute, NDS32
4586 On NDS32 target, this attribute indicates that the specified function
4587 is an interrupt handler. The compiler generates corresponding sections
4588 for use in an interrupt handler. You can use the following attributes
4589 to modify the behavior:
4590 @table @code
4591 @item nested
4592 @cindex @code{nested} function attribute, NDS32
4593 This interrupt service routine is interruptible.
4594 @item not_nested
4595 @cindex @code{not_nested} function attribute, NDS32
4596 This interrupt service routine is not interruptible.
4597 @item nested_ready
4598 @cindex @code{nested_ready} function attribute, NDS32
4599 This interrupt service routine is interruptible after @code{PSW.GIE}
4600 (global interrupt enable) is set. This allows interrupt service routine to
4601 finish some short critical code before enabling interrupts.
4602 @item save_all
4603 @cindex @code{save_all} function attribute, NDS32
4604 The system will help save all registers into stack before entering
4605 interrupt handler.
4606 @item partial_save
4607 @cindex @code{partial_save} function attribute, NDS32
4608 The system will help save caller registers into stack before entering
4609 interrupt handler.
4610 @end table
4611
4612 @item naked
4613 @cindex @code{naked} function attribute, NDS32
4614 This attribute allows the compiler to construct the
4615 requisite function declaration, while allowing the body of the
4616 function to be assembly code. The specified function will not have
4617 prologue/epilogue sequences generated by the compiler. Only basic
4618 @code{asm} statements can safely be included in naked functions
4619 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4620 basic @code{asm} and C code may appear to work, they cannot be
4621 depended upon to work reliably and are not supported.
4622
4623 @item reset
4624 @cindex @code{reset} function attribute, NDS32
4625 @cindex reset handler functions
4626 Use this attribute on the NDS32 target to indicate that the specified function
4627 is a reset handler. The compiler will generate corresponding sections
4628 for use in a reset handler. You can use the following attributes
4629 to provide extra exception handling:
4630 @table @code
4631 @item nmi
4632 @cindex @code{nmi} function attribute, NDS32
4633 Provide a user-defined function to handle NMI exception.
4634 @item warm
4635 @cindex @code{warm} function attribute, NDS32
4636 Provide a user-defined function to handle warm reset exception.
4637 @end table
4638 @end table
4639
4640 @node Nios II Function Attributes
4641 @subsection Nios II Function Attributes
4642
4643 These function attributes are supported by the Nios II back end:
4644
4645 @table @code
4646 @item target (@var{options})
4647 @cindex @code{target} function attribute
4648 As discussed in @ref{Common Function Attributes}, this attribute
4649 allows specification of target-specific compilation options.
4650
4651 When compiling for Nios II, the following options are allowed:
4652
4653 @table @samp
4654 @item custom-@var{insn}=@var{N}
4655 @itemx no-custom-@var{insn}
4656 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4657 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4658 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4659 custom instruction with encoding @var{N} when generating code that uses
4660 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4661 the custom instruction @var{insn}.
4662 These target attributes correspond to the
4663 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4664 command-line options, and support the same set of @var{insn} keywords.
4665 @xref{Nios II Options}, for more information.
4666
4667 @item custom-fpu-cfg=@var{name}
4668 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4669 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4670 command-line option, to select a predefined set of custom instructions
4671 named @var{name}.
4672 @xref{Nios II Options}, for more information.
4673 @end table
4674 @end table
4675
4676 @node Nvidia PTX Function Attributes
4677 @subsection Nvidia PTX Function Attributes
4678
4679 These function attributes are supported by the Nvidia PTX back end:
4680
4681 @table @code
4682 @item kernel
4683 @cindex @code{kernel} attribute, Nvidia PTX
4684 This attribute indicates that the corresponding function should be compiled
4685 as a kernel function, which can be invoked from the host via the CUDA RT
4686 library.
4687 By default functions are only callable only from other PTX functions.
4688
4689 Kernel functions must have @code{void} return type.
4690 @end table
4691
4692 @node PowerPC Function Attributes
4693 @subsection PowerPC Function Attributes
4694
4695 These function attributes are supported by the PowerPC back end:
4696
4697 @table @code
4698 @item longcall
4699 @itemx shortcall
4700 @cindex indirect calls, PowerPC
4701 @cindex @code{longcall} function attribute, PowerPC
4702 @cindex @code{shortcall} function attribute, PowerPC
4703 The @code{longcall} attribute
4704 indicates that the function might be far away from the call site and
4705 require a different (more expensive) calling sequence. The
4706 @code{shortcall} attribute indicates that the function is always close
4707 enough for the shorter calling sequence to be used. These attributes
4708 override both the @option{-mlongcall} switch and
4709 the @code{#pragma longcall} setting.
4710
4711 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4712 calls are necessary.
4713
4714 @item target (@var{options})
4715 @cindex @code{target} function attribute
4716 As discussed in @ref{Common Function Attributes}, this attribute
4717 allows specification of target-specific compilation options.
4718
4719 On the PowerPC, the following options are allowed:
4720
4721 @table @samp
4722 @item altivec
4723 @itemx no-altivec
4724 @cindex @code{target("altivec")} function attribute, PowerPC
4725 Generate code that uses (does not use) AltiVec instructions. In
4726 32-bit code, you cannot enable AltiVec instructions unless
4727 @option{-mabi=altivec} is used on the command line.
4728
4729 @item cmpb
4730 @itemx no-cmpb
4731 @cindex @code{target("cmpb")} function attribute, PowerPC
4732 Generate code that uses (does not use) the compare bytes instruction
4733 implemented on the POWER6 processor and other processors that support
4734 the PowerPC V2.05 architecture.
4735
4736 @item dlmzb
4737 @itemx no-dlmzb
4738 @cindex @code{target("dlmzb")} function attribute, PowerPC
4739 Generate code that uses (does not use) the string-search @samp{dlmzb}
4740 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4741 generated by default when targeting those processors.
4742
4743 @item fprnd
4744 @itemx no-fprnd
4745 @cindex @code{target("fprnd")} function attribute, PowerPC
4746 Generate code that uses (does not use) the FP round to integer
4747 instructions implemented on the POWER5+ processor and other processors
4748 that support the PowerPC V2.03 architecture.
4749
4750 @item hard-dfp
4751 @itemx no-hard-dfp
4752 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4753 Generate code that uses (does not use) the decimal floating-point
4754 instructions implemented on some POWER processors.
4755
4756 @item isel
4757 @itemx no-isel
4758 @cindex @code{target("isel")} function attribute, PowerPC
4759 Generate code that uses (does not use) ISEL instruction.
4760
4761 @item mfcrf
4762 @itemx no-mfcrf
4763 @cindex @code{target("mfcrf")} function attribute, PowerPC
4764 Generate code that uses (does not use) the move from condition
4765 register field instruction implemented on the POWER4 processor and
4766 other processors that support the PowerPC V2.01 architecture.
4767
4768 @item mfpgpr
4769 @itemx no-mfpgpr
4770 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4771 Generate code that uses (does not use) the FP move to/from general
4772 purpose register instructions implemented on the POWER6X processor and
4773 other processors that support the extended PowerPC V2.05 architecture.
4774
4775 @item mulhw
4776 @itemx no-mulhw
4777 @cindex @code{target("mulhw")} function attribute, PowerPC
4778 Generate code that uses (does not use) the half-word multiply and
4779 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4780 These instructions are generated by default when targeting those
4781 processors.
4782
4783 @item multiple
4784 @itemx no-multiple
4785 @cindex @code{target("multiple")} function attribute, PowerPC
4786 Generate code that uses (does not use) the load multiple word
4787 instructions and the store multiple word instructions.
4788
4789 @item update
4790 @itemx no-update
4791 @cindex @code{target("update")} function attribute, PowerPC
4792 Generate code that uses (does not use) the load or store instructions
4793 that update the base register to the address of the calculated memory
4794 location.
4795
4796 @item popcntb
4797 @itemx no-popcntb
4798 @cindex @code{target("popcntb")} function attribute, PowerPC
4799 Generate code that uses (does not use) the popcount and double-precision
4800 FP reciprocal estimate instruction implemented on the POWER5
4801 processor and other processors that support the PowerPC V2.02
4802 architecture.
4803
4804 @item popcntd
4805 @itemx no-popcntd
4806 @cindex @code{target("popcntd")} function attribute, PowerPC
4807 Generate code that uses (does not use) the popcount instruction
4808 implemented on the POWER7 processor and other processors that support
4809 the PowerPC V2.06 architecture.
4810
4811 @item powerpc-gfxopt
4812 @itemx no-powerpc-gfxopt
4813 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4814 Generate code that uses (does not use) the optional PowerPC
4815 architecture instructions in the Graphics group, including
4816 floating-point select.
4817
4818 @item powerpc-gpopt
4819 @itemx no-powerpc-gpopt
4820 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4821 Generate code that uses (does not use) the optional PowerPC
4822 architecture instructions in the General Purpose group, including
4823 floating-point square root.
4824
4825 @item recip-precision
4826 @itemx no-recip-precision
4827 @cindex @code{target("recip-precision")} function attribute, PowerPC
4828 Assume (do not assume) that the reciprocal estimate instructions
4829 provide higher-precision estimates than is mandated by the PowerPC
4830 ABI.
4831
4832 @item string
4833 @itemx no-string
4834 @cindex @code{target("string")} function attribute, PowerPC
4835 Generate code that uses (does not use) the load string instructions
4836 and the store string word instructions to save multiple registers and
4837 do small block moves.
4838
4839 @item vsx
4840 @itemx no-vsx
4841 @cindex @code{target("vsx")} function attribute, PowerPC
4842 Generate code that uses (does not use) vector/scalar (VSX)
4843 instructions, and also enable the use of built-in functions that allow
4844 more direct access to the VSX instruction set. In 32-bit code, you
4845 cannot enable VSX or AltiVec instructions unless
4846 @option{-mabi=altivec} is used on the command line.
4847
4848 @item friz
4849 @itemx no-friz
4850 @cindex @code{target("friz")} function attribute, PowerPC
4851 Generate (do not generate) the @code{friz} instruction when the
4852 @option{-funsafe-math-optimizations} option is used to optimize
4853 rounding a floating-point value to 64-bit integer and back to floating
4854 point. The @code{friz} instruction does not return the same value if
4855 the floating-point number is too large to fit in an integer.
4856
4857 @item avoid-indexed-addresses
4858 @itemx no-avoid-indexed-addresses
4859 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4860 Generate code that tries to avoid (not avoid) the use of indexed load
4861 or store instructions.
4862
4863 @item paired
4864 @itemx no-paired
4865 @cindex @code{target("paired")} function attribute, PowerPC
4866 Generate code that uses (does not use) the generation of PAIRED simd
4867 instructions.
4868
4869 @item longcall
4870 @itemx no-longcall
4871 @cindex @code{target("longcall")} function attribute, PowerPC
4872 Generate code that assumes (does not assume) that all calls are far
4873 away so that a longer more expensive calling sequence is required.
4874
4875 @item cpu=@var{CPU}
4876 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4877 Specify the architecture to generate code for when compiling the
4878 function. If you select the @code{target("cpu=power7")} attribute when
4879 generating 32-bit code, VSX and AltiVec instructions are not generated
4880 unless you use the @option{-mabi=altivec} option on the command line.
4881
4882 @item tune=@var{TUNE}
4883 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4884 Specify the architecture to tune for when compiling the function. If
4885 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4886 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4887 compilation tunes for the @var{CPU} architecture, and not the
4888 default tuning specified on the command line.
4889 @end table
4890
4891 On the PowerPC, the inliner does not inline a
4892 function that has different target options than the caller, unless the
4893 callee has a subset of the target options of the caller.
4894 @end table
4895
4896 @node RL78 Function Attributes
4897 @subsection RL78 Function Attributes
4898
4899 These function attributes are supported by the RL78 back end:
4900
4901 @table @code
4902 @item interrupt
4903 @itemx brk_interrupt
4904 @cindex @code{interrupt} function attribute, RL78
4905 @cindex @code{brk_interrupt} function attribute, RL78
4906 These attributes indicate
4907 that the specified function is an interrupt handler. The compiler generates
4908 function entry and exit sequences suitable for use in an interrupt handler
4909 when this attribute is present.
4910
4911 Use @code{brk_interrupt} instead of @code{interrupt} for
4912 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
4913 that must end with @code{RETB} instead of @code{RETI}).
4914
4915 @item naked
4916 @cindex @code{naked} function attribute, RL78
4917 This attribute allows the compiler to construct the
4918 requisite function declaration, while allowing the body of the
4919 function to be assembly code. The specified function will not have
4920 prologue/epilogue sequences generated by the compiler. Only basic
4921 @code{asm} statements can safely be included in naked functions
4922 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4923 basic @code{asm} and C code may appear to work, they cannot be
4924 depended upon to work reliably and are not supported.
4925 @end table
4926
4927 @node RX Function Attributes
4928 @subsection RX Function Attributes
4929
4930 These function attributes are supported by the RX back end:
4931
4932 @table @code
4933 @item fast_interrupt
4934 @cindex @code{fast_interrupt} function attribute, RX
4935 Use this attribute on the RX port to indicate that the specified
4936 function is a fast interrupt handler. This is just like the
4937 @code{interrupt} attribute, except that @code{freit} is used to return
4938 instead of @code{reit}.
4939
4940 @item interrupt
4941 @cindex @code{interrupt} function attribute, RX
4942 Use this attribute to indicate
4943 that the specified function is an interrupt handler. The compiler generates
4944 function entry and exit sequences suitable for use in an interrupt handler
4945 when this attribute is present.
4946
4947 On RX targets, you may specify one or more vector numbers as arguments
4948 to the attribute, as well as naming an alternate table name.
4949 Parameters are handled sequentially, so one handler can be assigned to
4950 multiple entries in multiple tables. One may also pass the magic
4951 string @code{"$default"} which causes the function to be used for any
4952 unfilled slots in the current table.
4953
4954 This example shows a simple assignment of a function to one vector in
4955 the default table (note that preprocessor macros may be used for
4956 chip-specific symbolic vector names):
4957 @smallexample
4958 void __attribute__ ((interrupt (5))) txd1_handler ();
4959 @end smallexample
4960
4961 This example assigns a function to two slots in the default table
4962 (using preprocessor macros defined elsewhere) and makes it the default
4963 for the @code{dct} table:
4964 @smallexample
4965 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
4966 txd1_handler ();
4967 @end smallexample
4968
4969 @item naked
4970 @cindex @code{naked} function attribute, RX
4971 This attribute allows the compiler to construct the
4972 requisite function declaration, while allowing the body of the
4973 function to be assembly code. The specified function will not have
4974 prologue/epilogue sequences generated by the compiler. Only basic
4975 @code{asm} statements can safely be included in naked functions
4976 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4977 basic @code{asm} and C code may appear to work, they cannot be
4978 depended upon to work reliably and are not supported.
4979
4980 @item vector
4981 @cindex @code{vector} function attribute, RX
4982 This RX attribute is similar to the @code{interrupt} attribute, including its
4983 parameters, but does not make the function an interrupt-handler type
4984 function (i.e. it retains the normal C function calling ABI). See the
4985 @code{interrupt} attribute for a description of its arguments.
4986 @end table
4987
4988 @node S/390 Function Attributes
4989 @subsection S/390 Function Attributes
4990
4991 These function attributes are supported on the S/390:
4992
4993 @table @code
4994 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
4995 @cindex @code{hotpatch} function attribute, S/390
4996
4997 On S/390 System z targets, you can use this function attribute to
4998 make GCC generate a ``hot-patching'' function prologue. If the
4999 @option{-mhotpatch=} command-line option is used at the same time,
5000 the @code{hotpatch} attribute takes precedence. The first of the
5001 two arguments specifies the number of halfwords to be added before
5002 the function label. A second argument can be used to specify the
5003 number of halfwords to be added after the function label. For
5004 both arguments the maximum allowed value is 1000000.
5005
5006 If both arguments are zero, hotpatching is disabled.
5007
5008 @item target (@var{options})
5009 @cindex @code{target} function attribute
5010 As discussed in @ref{Common Function Attributes}, this attribute
5011 allows specification of target-specific compilation options.
5012
5013 On S/390, the following options are supported:
5014
5015 @table @samp
5016 @item arch=
5017 @item tune=
5018 @item stack-guard=
5019 @item stack-size=
5020 @item branch-cost=
5021 @item warn-framesize=
5022 @item backchain
5023 @itemx no-backchain
5024 @item hard-dfp
5025 @itemx no-hard-dfp
5026 @item hard-float
5027 @itemx soft-float
5028 @item htm
5029 @itemx no-htm
5030 @item vx
5031 @itemx no-vx
5032 @item packed-stack
5033 @itemx no-packed-stack
5034 @item small-exec
5035 @itemx no-small-exec
5036 @item mvcle
5037 @itemx no-mvcle
5038 @item warn-dynamicstack
5039 @itemx no-warn-dynamicstack
5040 @end table
5041
5042 The options work exactly like the S/390 specific command line
5043 options (without the prefix @option{-m}) except that they do not
5044 change any feature macros. For example,
5045
5046 @smallexample
5047 @code{target("no-vx")}
5048 @end smallexample
5049
5050 does not undefine the @code{__VEC__} macro.
5051 @end table
5052
5053 @node SH Function Attributes
5054 @subsection SH Function Attributes
5055
5056 These function attributes are supported on the SH family of processors:
5057
5058 @table @code
5059 @item function_vector
5060 @cindex @code{function_vector} function attribute, SH
5061 @cindex calling functions through the function vector on SH2A
5062 On SH2A targets, this attribute declares a function to be called using the
5063 TBR relative addressing mode. The argument to this attribute is the entry
5064 number of the same function in a vector table containing all the TBR
5065 relative addressable functions. For correct operation the TBR must be setup
5066 accordingly to point to the start of the vector table before any functions with
5067 this attribute are invoked. Usually a good place to do the initialization is
5068 the startup routine. The TBR relative vector table can have at max 256 function
5069 entries. The jumps to these functions are generated using a SH2A specific,
5070 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5071 from GNU binutils version 2.7 or later for this attribute to work correctly.
5072
5073 In an application, for a function being called once, this attribute
5074 saves at least 8 bytes of code; and if other successive calls are being
5075 made to the same function, it saves 2 bytes of code per each of these
5076 calls.
5077
5078 @item interrupt_handler
5079 @cindex @code{interrupt_handler} function attribute, SH
5080 Use this attribute to
5081 indicate that the specified function is an interrupt handler. The compiler
5082 generates function entry and exit sequences suitable for use in an
5083 interrupt handler when this attribute is present.
5084
5085 @item nosave_low_regs
5086 @cindex @code{nosave_low_regs} function attribute, SH
5087 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5088 function should not save and restore registers R0..R7. This can be used on SH3*
5089 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5090 interrupt handlers.
5091
5092 @item renesas
5093 @cindex @code{renesas} function attribute, SH
5094 On SH targets this attribute specifies that the function or struct follows the
5095 Renesas ABI.
5096
5097 @item resbank
5098 @cindex @code{resbank} function attribute, SH
5099 On the SH2A target, this attribute enables the high-speed register
5100 saving and restoration using a register bank for @code{interrupt_handler}
5101 routines. Saving to the bank is performed automatically after the CPU
5102 accepts an interrupt that uses a register bank.
5103
5104 The nineteen 32-bit registers comprising general register R0 to R14,
5105 control register GBR, and system registers MACH, MACL, and PR and the
5106 vector table address offset are saved into a register bank. Register
5107 banks are stacked in first-in last-out (FILO) sequence. Restoration
5108 from the bank is executed by issuing a RESBANK instruction.
5109
5110 @item sp_switch
5111 @cindex @code{sp_switch} function attribute, SH
5112 Use this attribute on the SH to indicate an @code{interrupt_handler}
5113 function should switch to an alternate stack. It expects a string
5114 argument that names a global variable holding the address of the
5115 alternate stack.
5116
5117 @smallexample
5118 void *alt_stack;
5119 void f () __attribute__ ((interrupt_handler,
5120 sp_switch ("alt_stack")));
5121 @end smallexample
5122
5123 @item trap_exit
5124 @cindex @code{trap_exit} function attribute, SH
5125 Use this attribute on the SH for an @code{interrupt_handler} to return using
5126 @code{trapa} instead of @code{rte}. This attribute expects an integer
5127 argument specifying the trap number to be used.
5128
5129 @item trapa_handler
5130 @cindex @code{trapa_handler} function attribute, SH
5131 On SH targets this function attribute is similar to @code{interrupt_handler}
5132 but it does not save and restore all registers.
5133 @end table
5134
5135 @node SPU Function Attributes
5136 @subsection SPU Function Attributes
5137
5138 These function attributes are supported by the SPU back end:
5139
5140 @table @code
5141 @item naked
5142 @cindex @code{naked} function attribute, SPU
5143 This attribute allows the compiler to construct the
5144 requisite function declaration, while allowing the body of the
5145 function to be assembly code. The specified function will not have
5146 prologue/epilogue sequences generated by the compiler. Only basic
5147 @code{asm} statements can safely be included in naked functions
5148 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5149 basic @code{asm} and C code may appear to work, they cannot be
5150 depended upon to work reliably and are not supported.
5151 @end table
5152
5153 @node Symbian OS Function Attributes
5154 @subsection Symbian OS Function Attributes
5155
5156 @xref{Microsoft Windows Function Attributes}, for discussion of the
5157 @code{dllexport} and @code{dllimport} attributes.
5158
5159 @node V850 Function Attributes
5160 @subsection V850 Function Attributes
5161
5162 The V850 back end supports these function attributes:
5163
5164 @table @code
5165 @item interrupt
5166 @itemx interrupt_handler
5167 @cindex @code{interrupt} function attribute, V850
5168 @cindex @code{interrupt_handler} function attribute, V850
5169 Use these attributes to indicate
5170 that the specified function is an interrupt handler. The compiler generates
5171 function entry and exit sequences suitable for use in an interrupt handler
5172 when either attribute is present.
5173 @end table
5174
5175 @node Visium Function Attributes
5176 @subsection Visium Function Attributes
5177
5178 These function attributes are supported by the Visium back end:
5179
5180 @table @code
5181 @item interrupt
5182 @cindex @code{interrupt} function attribute, Visium
5183 Use this attribute to indicate
5184 that the specified function is an interrupt handler. The compiler generates
5185 function entry and exit sequences suitable for use in an interrupt handler
5186 when this attribute is present.
5187 @end table
5188
5189 @node x86 Function Attributes
5190 @subsection x86 Function Attributes
5191
5192 These function attributes are supported by the x86 back end:
5193
5194 @table @code
5195 @item cdecl
5196 @cindex @code{cdecl} function attribute, x86-32
5197 @cindex functions that pop the argument stack on x86-32
5198 @opindex mrtd
5199 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5200 assume that the calling function pops off the stack space used to
5201 pass arguments. This is
5202 useful to override the effects of the @option{-mrtd} switch.
5203
5204 @item fastcall
5205 @cindex @code{fastcall} function attribute, x86-32
5206 @cindex functions that pop the argument stack on x86-32
5207 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5208 pass the first argument (if of integral type) in the register ECX and
5209 the second argument (if of integral type) in the register EDX@. Subsequent
5210 and other typed arguments are passed on the stack. The called function
5211 pops the arguments off the stack. If the number of arguments is variable all
5212 arguments are pushed on the stack.
5213
5214 @item thiscall
5215 @cindex @code{thiscall} function attribute, x86-32
5216 @cindex functions that pop the argument stack on x86-32
5217 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5218 pass the first argument (if of integral type) in the register ECX.
5219 Subsequent and other typed arguments are passed on the stack. The called
5220 function pops the arguments off the stack.
5221 If the number of arguments is variable all arguments are pushed on the
5222 stack.
5223 The @code{thiscall} attribute is intended for C++ non-static member functions.
5224 As a GCC extension, this calling convention can be used for C functions
5225 and for static member methods.
5226
5227 @item ms_abi
5228 @itemx sysv_abi
5229 @cindex @code{ms_abi} function attribute, x86
5230 @cindex @code{sysv_abi} function attribute, x86
5231
5232 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5233 to indicate which calling convention should be used for a function. The
5234 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5235 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5236 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5237 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5238
5239 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5240 requires the @option{-maccumulate-outgoing-args} option.
5241
5242 @item callee_pop_aggregate_return (@var{number})
5243 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5244
5245 On x86-32 targets, you can use this attribute to control how
5246 aggregates are returned in memory. If the caller is responsible for
5247 popping the hidden pointer together with the rest of the arguments, specify
5248 @var{number} equal to zero. If callee is responsible for popping the
5249 hidden pointer, specify @var{number} equal to one.
5250
5251 The default x86-32 ABI assumes that the callee pops the
5252 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5253 the compiler assumes that the
5254 caller pops the stack for hidden pointer.
5255
5256 @item ms_hook_prologue
5257 @cindex @code{ms_hook_prologue} function attribute, x86
5258
5259 On 32-bit and 64-bit x86 targets, you can use
5260 this function attribute to make GCC generate the ``hot-patching'' function
5261 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5262 and newer.
5263
5264 @item regparm (@var{number})
5265 @cindex @code{regparm} function attribute, x86
5266 @cindex functions that are passed arguments in registers on x86-32
5267 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5268 pass arguments number one to @var{number} if they are of integral type
5269 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5270 take a variable number of arguments continue to be passed all of their
5271 arguments on the stack.
5272
5273 Beware that on some ELF systems this attribute is unsuitable for
5274 global functions in shared libraries with lazy binding (which is the
5275 default). Lazy binding sends the first call via resolving code in
5276 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5277 per the standard calling conventions. Solaris 8 is affected by this.
5278 Systems with the GNU C Library version 2.1 or higher
5279 and FreeBSD are believed to be
5280 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5281 disabled with the linker or the loader if desired, to avoid the
5282 problem.)
5283
5284 @item sseregparm
5285 @cindex @code{sseregparm} function attribute, x86
5286 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5287 causes the compiler to pass up to 3 floating-point arguments in
5288 SSE registers instead of on the stack. Functions that take a
5289 variable number of arguments continue to pass all of their
5290 floating-point arguments on the stack.
5291
5292 @item force_align_arg_pointer
5293 @cindex @code{force_align_arg_pointer} function attribute, x86
5294 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5295 applied to individual function definitions, generating an alternate
5296 prologue and epilogue that realigns the run-time stack if necessary.
5297 This supports mixing legacy codes that run with a 4-byte aligned stack
5298 with modern codes that keep a 16-byte stack for SSE compatibility.
5299
5300 @item stdcall
5301 @cindex @code{stdcall} function attribute, x86-32
5302 @cindex functions that pop the argument stack on x86-32
5303 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5304 assume that the called function pops off the stack space used to
5305 pass arguments, unless it takes a variable number of arguments.
5306
5307 @item no_caller_saved_registers
5308 @cindex @code{no_caller_saved_registers} function attribute, x86
5309 Use this attribute to indicate that the specified function has no
5310 caller-saved registers. That is, all registers are callee-saved. For
5311 example, this attribute can be used for a function called from an
5312 interrupt handler. The compiler generates proper function entry and
5313 exit sequences to save and restore any modified registers, except for
5314 the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87
5315 states, the GCC option @option{-mgeneral-regs-only} should be used to
5316 compile functions with @code{no_caller_saved_registers} attribute.
5317
5318 @item interrupt
5319 @cindex @code{interrupt} function attribute, x86
5320 Use this attribute to indicate that the specified function is an
5321 interrupt handler or an exception handler (depending on parameters passed
5322 to the function, explained further). The compiler generates function
5323 entry and exit sequences suitable for use in an interrupt handler when
5324 this attribute is present. The @code{IRET} instruction, instead of the
5325 @code{RET} instruction, is used to return from interrupt handlers. All
5326 registers, except for the EFLAGS register which is restored by the
5327 @code{IRET} instruction, are preserved by the compiler. Since GCC
5328 doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option
5329 @option{-mgeneral-regs-only} should be used to compile interrupt and
5330 exception handlers.
5331
5332 Any interruptible-without-stack-switch code must be compiled with
5333 @option{-mno-red-zone} since interrupt handlers can and will, because
5334 of the hardware design, touch the red zone.
5335
5336 An interrupt handler must be declared with a mandatory pointer
5337 argument:
5338
5339 @smallexample
5340 struct interrupt_frame;
5341
5342 __attribute__ ((interrupt))
5343 void
5344 f (struct interrupt_frame *frame)
5345 @{
5346 @}
5347 @end smallexample
5348
5349 @noindent
5350 and you must define @code{struct interrupt_frame} as described in the
5351 processor's manual.
5352
5353 Exception handlers differ from interrupt handlers because the system
5354 pushes an error code on the stack. An exception handler declaration is
5355 similar to that for an interrupt handler, but with a different mandatory
5356 function signature. The compiler arranges to pop the error code off the
5357 stack before the @code{IRET} instruction.
5358
5359 @smallexample
5360 #ifdef __x86_64__
5361 typedef unsigned long long int uword_t;
5362 #else
5363 typedef unsigned int uword_t;
5364 #endif
5365
5366 struct interrupt_frame;
5367
5368 __attribute__ ((interrupt))
5369 void
5370 f (struct interrupt_frame *frame, uword_t error_code)
5371 @{
5372 ...
5373 @}
5374 @end smallexample
5375
5376 Exception handlers should only be used for exceptions that push an error
5377 code; you should use an interrupt handler in other cases. The system
5378 will crash if the wrong kind of handler is used.
5379
5380 @item target (@var{options})
5381 @cindex @code{target} function attribute
5382 As discussed in @ref{Common Function Attributes}, this attribute
5383 allows specification of target-specific compilation options.
5384
5385 On the x86, the following options are allowed:
5386 @table @samp
5387 @item abm
5388 @itemx no-abm
5389 @cindex @code{target("abm")} function attribute, x86
5390 Enable/disable the generation of the advanced bit instructions.
5391
5392 @item aes
5393 @itemx no-aes
5394 @cindex @code{target("aes")} function attribute, x86
5395 Enable/disable the generation of the AES instructions.
5396
5397 @item default
5398 @cindex @code{target("default")} function attribute, x86
5399 @xref{Function Multiversioning}, where it is used to specify the
5400 default function version.
5401
5402 @item mmx
5403 @itemx no-mmx
5404 @cindex @code{target("mmx")} function attribute, x86
5405 Enable/disable the generation of the MMX instructions.
5406
5407 @item pclmul
5408 @itemx no-pclmul
5409 @cindex @code{target("pclmul")} function attribute, x86
5410 Enable/disable the generation of the PCLMUL instructions.
5411
5412 @item popcnt
5413 @itemx no-popcnt
5414 @cindex @code{target("popcnt")} function attribute, x86
5415 Enable/disable the generation of the POPCNT instruction.
5416
5417 @item sse
5418 @itemx no-sse
5419 @cindex @code{target("sse")} function attribute, x86
5420 Enable/disable the generation of the SSE instructions.
5421
5422 @item sse2
5423 @itemx no-sse2
5424 @cindex @code{target("sse2")} function attribute, x86
5425 Enable/disable the generation of the SSE2 instructions.
5426
5427 @item sse3
5428 @itemx no-sse3
5429 @cindex @code{target("sse3")} function attribute, x86
5430 Enable/disable the generation of the SSE3 instructions.
5431
5432 @item sse4
5433 @itemx no-sse4
5434 @cindex @code{target("sse4")} function attribute, x86
5435 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5436 and SSE4.2).
5437
5438 @item sse4.1
5439 @itemx no-sse4.1
5440 @cindex @code{target("sse4.1")} function attribute, x86
5441 Enable/disable the generation of the sse4.1 instructions.
5442
5443 @item sse4.2
5444 @itemx no-sse4.2
5445 @cindex @code{target("sse4.2")} function attribute, x86
5446 Enable/disable the generation of the sse4.2 instructions.
5447
5448 @item sse4a
5449 @itemx no-sse4a
5450 @cindex @code{target("sse4a")} function attribute, x86
5451 Enable/disable the generation of the SSE4A instructions.
5452
5453 @item fma4
5454 @itemx no-fma4
5455 @cindex @code{target("fma4")} function attribute, x86
5456 Enable/disable the generation of the FMA4 instructions.
5457
5458 @item xop
5459 @itemx no-xop
5460 @cindex @code{target("xop")} function attribute, x86
5461 Enable/disable the generation of the XOP instructions.
5462
5463 @item lwp
5464 @itemx no-lwp
5465 @cindex @code{target("lwp")} function attribute, x86
5466 Enable/disable the generation of the LWP instructions.
5467
5468 @item ssse3
5469 @itemx no-ssse3
5470 @cindex @code{target("ssse3")} function attribute, x86
5471 Enable/disable the generation of the SSSE3 instructions.
5472
5473 @item cld
5474 @itemx no-cld
5475 @cindex @code{target("cld")} function attribute, x86
5476 Enable/disable the generation of the CLD before string moves.
5477
5478 @item fancy-math-387
5479 @itemx no-fancy-math-387
5480 @cindex @code{target("fancy-math-387")} function attribute, x86
5481 Enable/disable the generation of the @code{sin}, @code{cos}, and
5482 @code{sqrt} instructions on the 387 floating-point unit.
5483
5484 @item ieee-fp
5485 @itemx no-ieee-fp
5486 @cindex @code{target("ieee-fp")} function attribute, x86
5487 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5488
5489 @item inline-all-stringops
5490 @itemx no-inline-all-stringops
5491 @cindex @code{target("inline-all-stringops")} function attribute, x86
5492 Enable/disable inlining of string operations.
5493
5494 @item inline-stringops-dynamically
5495 @itemx no-inline-stringops-dynamically
5496 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5497 Enable/disable the generation of the inline code to do small string
5498 operations and calling the library routines for large operations.
5499
5500 @item align-stringops
5501 @itemx no-align-stringops
5502 @cindex @code{target("align-stringops")} function attribute, x86
5503 Do/do not align destination of inlined string operations.
5504
5505 @item recip
5506 @itemx no-recip
5507 @cindex @code{target("recip")} function attribute, x86
5508 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5509 instructions followed an additional Newton-Raphson step instead of
5510 doing a floating-point division.
5511
5512 @item arch=@var{ARCH}
5513 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5514 Specify the architecture to generate code for in compiling the function.
5515
5516 @item tune=@var{TUNE}
5517 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5518 Specify the architecture to tune for in compiling the function.
5519
5520 @item fpmath=@var{FPMATH}
5521 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5522 Specify which floating-point unit to use. You must specify the
5523 @code{target("fpmath=sse,387")} option as
5524 @code{target("fpmath=sse+387")} because the comma would separate
5525 different options.
5526 @end table
5527
5528 On the x86, the inliner does not inline a
5529 function that has different target options than the caller, unless the
5530 callee has a subset of the target options of the caller. For example
5531 a function declared with @code{target("sse3")} can inline a function
5532 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5533 @end table
5534
5535 @node Xstormy16 Function Attributes
5536 @subsection Xstormy16 Function Attributes
5537
5538 These function attributes are supported by the Xstormy16 back end:
5539
5540 @table @code
5541 @item interrupt
5542 @cindex @code{interrupt} function attribute, Xstormy16
5543 Use this attribute to indicate
5544 that the specified function is an interrupt handler. The compiler generates
5545 function entry and exit sequences suitable for use in an interrupt handler
5546 when this attribute is present.
5547 @end table
5548
5549 @node Variable Attributes
5550 @section Specifying Attributes of Variables
5551 @cindex attribute of variables
5552 @cindex variable attributes
5553
5554 The keyword @code{__attribute__} allows you to specify special
5555 attributes of variables or structure fields. This keyword is followed
5556 by an attribute specification inside double parentheses. Some
5557 attributes are currently defined generically for variables.
5558 Other attributes are defined for variables on particular target
5559 systems. Other attributes are available for functions
5560 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5561 enumerators (@pxref{Enumerator Attributes}), statements
5562 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5563 Other front ends might define more attributes
5564 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5565
5566 @xref{Attribute Syntax}, for details of the exact syntax for using
5567 attributes.
5568
5569 @menu
5570 * Common Variable Attributes::
5571 * AVR Variable Attributes::
5572 * Blackfin Variable Attributes::
5573 * H8/300 Variable Attributes::
5574 * IA-64 Variable Attributes::
5575 * M32R/D Variable Attributes::
5576 * MeP Variable Attributes::
5577 * Microsoft Windows Variable Attributes::
5578 * MSP430 Variable Attributes::
5579 * Nvidia PTX Variable Attributes::
5580 * PowerPC Variable Attributes::
5581 * RL78 Variable Attributes::
5582 * SPU Variable Attributes::
5583 * V850 Variable Attributes::
5584 * x86 Variable Attributes::
5585 * Xstormy16 Variable Attributes::
5586 @end menu
5587
5588 @node Common Variable Attributes
5589 @subsection Common Variable Attributes
5590
5591 The following attributes are supported on most targets.
5592
5593 @table @code
5594 @cindex @code{aligned} variable attribute
5595 @item aligned (@var{alignment})
5596 This attribute specifies a minimum alignment for the variable or
5597 structure field, measured in bytes. For example, the declaration:
5598
5599 @smallexample
5600 int x __attribute__ ((aligned (16))) = 0;
5601 @end smallexample
5602
5603 @noindent
5604 causes the compiler to allocate the global variable @code{x} on a
5605 16-byte boundary. On a 68040, this could be used in conjunction with
5606 an @code{asm} expression to access the @code{move16} instruction which
5607 requires 16-byte aligned operands.
5608
5609 You can also specify the alignment of structure fields. For example, to
5610 create a double-word aligned @code{int} pair, you could write:
5611
5612 @smallexample
5613 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5614 @end smallexample
5615
5616 @noindent
5617 This is an alternative to creating a union with a @code{double} member,
5618 which forces the union to be double-word aligned.
5619
5620 As in the preceding examples, you can explicitly specify the alignment
5621 (in bytes) that you wish the compiler to use for a given variable or
5622 structure field. Alternatively, you can leave out the alignment factor
5623 and just ask the compiler to align a variable or field to the
5624 default alignment for the target architecture you are compiling for.
5625 The default alignment is sufficient for all scalar types, but may not be
5626 enough for all vector types on a target that supports vector operations.
5627 The default alignment is fixed for a particular target ABI.
5628
5629 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5630 which is the largest alignment ever used for any data type on the
5631 target machine you are compiling for. For example, you could write:
5632
5633 @smallexample
5634 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5635 @end smallexample
5636
5637 The compiler automatically sets the alignment for the declared
5638 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5639 often make copy operations more efficient, because the compiler can
5640 use whatever instructions copy the biggest chunks of memory when
5641 performing copies to or from the variables or fields that you have
5642 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5643 may change depending on command-line options.
5644
5645 When used on a struct, or struct member, the @code{aligned} attribute can
5646 only increase the alignment; in order to decrease it, the @code{packed}
5647 attribute must be specified as well. When used as part of a typedef, the
5648 @code{aligned} attribute can both increase and decrease alignment, and
5649 specifying the @code{packed} attribute generates a warning.
5650
5651 Note that the effectiveness of @code{aligned} attributes may be limited
5652 by inherent limitations in your linker. On many systems, the linker is
5653 only able to arrange for variables to be aligned up to a certain maximum
5654 alignment. (For some linkers, the maximum supported alignment may
5655 be very very small.) If your linker is only able to align variables
5656 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5657 in an @code{__attribute__} still only provides you with 8-byte
5658 alignment. See your linker documentation for further information.
5659
5660 The @code{aligned} attribute can also be used for functions
5661 (@pxref{Common Function Attributes}.)
5662
5663 @item cleanup (@var{cleanup_function})
5664 @cindex @code{cleanup} variable attribute
5665 The @code{cleanup} attribute runs a function when the variable goes
5666 out of scope. This attribute can only be applied to auto function
5667 scope variables; it may not be applied to parameters or variables
5668 with static storage duration. The function must take one parameter,
5669 a pointer to a type compatible with the variable. The return value
5670 of the function (if any) is ignored.
5671
5672 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5673 is run during the stack unwinding that happens during the
5674 processing of the exception. Note that the @code{cleanup} attribute
5675 does not allow the exception to be caught, only to perform an action.
5676 It is undefined what happens if @var{cleanup_function} does not
5677 return normally.
5678
5679 @item common
5680 @itemx nocommon
5681 @cindex @code{common} variable attribute
5682 @cindex @code{nocommon} variable attribute
5683 @opindex fcommon
5684 @opindex fno-common
5685 The @code{common} attribute requests GCC to place a variable in
5686 ``common'' storage. The @code{nocommon} attribute requests the
5687 opposite---to allocate space for it directly.
5688
5689 These attributes override the default chosen by the
5690 @option{-fno-common} and @option{-fcommon} flags respectively.
5691
5692 @item deprecated
5693 @itemx deprecated (@var{msg})
5694 @cindex @code{deprecated} variable attribute
5695 The @code{deprecated} attribute results in a warning if the variable
5696 is used anywhere in the source file. This is useful when identifying
5697 variables that are expected to be removed in a future version of a
5698 program. The warning also includes the location of the declaration
5699 of the deprecated variable, to enable users to easily find further
5700 information about why the variable is deprecated, or what they should
5701 do instead. Note that the warning only occurs for uses:
5702
5703 @smallexample
5704 extern int old_var __attribute__ ((deprecated));
5705 extern int old_var;
5706 int new_fn () @{ return old_var; @}
5707 @end smallexample
5708
5709 @noindent
5710 results in a warning on line 3 but not line 2. The optional @var{msg}
5711 argument, which must be a string, is printed in the warning if
5712 present.
5713
5714 The @code{deprecated} attribute can also be used for functions and
5715 types (@pxref{Common Function Attributes},
5716 @pxref{Common Type Attributes}).
5717
5718 @item mode (@var{mode})
5719 @cindex @code{mode} variable attribute
5720 This attribute specifies the data type for the declaration---whichever
5721 type corresponds to the mode @var{mode}. This in effect lets you
5722 request an integer or floating-point type according to its width.
5723
5724 You may also specify a mode of @code{byte} or @code{__byte__} to
5725 indicate the mode corresponding to a one-byte integer, @code{word} or
5726 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5727 or @code{__pointer__} for the mode used to represent pointers.
5728
5729 @item packed
5730 @cindex @code{packed} variable attribute
5731 The @code{packed} attribute specifies that a variable or structure field
5732 should have the smallest possible alignment---one byte for a variable,
5733 and one bit for a field, unless you specify a larger value with the
5734 @code{aligned} attribute.
5735
5736 Here is a structure in which the field @code{x} is packed, so that it
5737 immediately follows @code{a}:
5738
5739 @smallexample
5740 struct foo
5741 @{
5742 char a;
5743 int x[2] __attribute__ ((packed));
5744 @};
5745 @end smallexample
5746
5747 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5748 @code{packed} attribute on bit-fields of type @code{char}. This has
5749 been fixed in GCC 4.4 but the change can lead to differences in the
5750 structure layout. See the documentation of
5751 @option{-Wpacked-bitfield-compat} for more information.
5752
5753 @item section ("@var{section-name}")
5754 @cindex @code{section} variable attribute
5755 Normally, the compiler places the objects it generates in sections like
5756 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5757 or you need certain particular variables to appear in special sections,
5758 for example to map to special hardware. The @code{section}
5759 attribute specifies that a variable (or function) lives in a particular
5760 section. For example, this small program uses several specific section names:
5761
5762 @smallexample
5763 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5764 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5765 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5766 int init_data __attribute__ ((section ("INITDATA")));
5767
5768 main()
5769 @{
5770 /* @r{Initialize stack pointer} */
5771 init_sp (stack + sizeof (stack));
5772
5773 /* @r{Initialize initialized data} */
5774 memcpy (&init_data, &data, &edata - &data);
5775
5776 /* @r{Turn on the serial ports} */
5777 init_duart (&a);
5778 init_duart (&b);
5779 @}
5780 @end smallexample
5781
5782 @noindent
5783 Use the @code{section} attribute with
5784 @emph{global} variables and not @emph{local} variables,
5785 as shown in the example.
5786
5787 You may use the @code{section} attribute with initialized or
5788 uninitialized global variables but the linker requires
5789 each object be defined once, with the exception that uninitialized
5790 variables tentatively go in the @code{common} (or @code{bss}) section
5791 and can be multiply ``defined''. Using the @code{section} attribute
5792 changes what section the variable goes into and may cause the
5793 linker to issue an error if an uninitialized variable has multiple
5794 definitions. You can force a variable to be initialized with the
5795 @option{-fno-common} flag or the @code{nocommon} attribute.
5796
5797 Some file formats do not support arbitrary sections so the @code{section}
5798 attribute is not available on all platforms.
5799 If you need to map the entire contents of a module to a particular
5800 section, consider using the facilities of the linker instead.
5801
5802 @item tls_model ("@var{tls_model}")
5803 @cindex @code{tls_model} variable attribute
5804 The @code{tls_model} attribute sets thread-local storage model
5805 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5806 overriding @option{-ftls-model=} command-line switch on a per-variable
5807 basis.
5808 The @var{tls_model} argument should be one of @code{global-dynamic},
5809 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5810
5811 Not all targets support this attribute.
5812
5813 @item unused
5814 @cindex @code{unused} variable attribute
5815 This attribute, attached to a variable, means that the variable is meant
5816 to be possibly unused. GCC does not produce a warning for this
5817 variable.
5818
5819 @item used
5820 @cindex @code{used} variable attribute
5821 This attribute, attached to a variable with static storage, means that
5822 the variable must be emitted even if it appears that the variable is not
5823 referenced.
5824
5825 When applied to a static data member of a C++ class template, the
5826 attribute also means that the member is instantiated if the
5827 class itself is instantiated.
5828
5829 @item vector_size (@var{bytes})
5830 @cindex @code{vector_size} variable attribute
5831 This attribute specifies the vector size for the variable, measured in
5832 bytes. For example, the declaration:
5833
5834 @smallexample
5835 int foo __attribute__ ((vector_size (16)));
5836 @end smallexample
5837
5838 @noindent
5839 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5840 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5841 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5842
5843 This attribute is only applicable to integral and float scalars,
5844 although arrays, pointers, and function return values are allowed in
5845 conjunction with this construct.
5846
5847 Aggregates with this attribute are invalid, even if they are of the same
5848 size as a corresponding scalar. For example, the declaration:
5849
5850 @smallexample
5851 struct S @{ int a; @};
5852 struct S __attribute__ ((vector_size (16))) foo;
5853 @end smallexample
5854
5855 @noindent
5856 is invalid even if the size of the structure is the same as the size of
5857 the @code{int}.
5858
5859 @item visibility ("@var{visibility_type}")
5860 @cindex @code{visibility} variable attribute
5861 This attribute affects the linkage of the declaration to which it is attached.
5862 The @code{visibility} attribute is described in
5863 @ref{Common Function Attributes}.
5864
5865 @item weak
5866 @cindex @code{weak} variable attribute
5867 The @code{weak} attribute is described in
5868 @ref{Common Function Attributes}.
5869
5870 @end table
5871
5872 @node AVR Variable Attributes
5873 @subsection AVR Variable Attributes
5874
5875 @table @code
5876 @item progmem
5877 @cindex @code{progmem} variable attribute, AVR
5878 The @code{progmem} attribute is used on the AVR to place read-only
5879 data in the non-volatile program memory (flash). The @code{progmem}
5880 attribute accomplishes this by putting respective variables into a
5881 section whose name starts with @code{.progmem}.
5882
5883 This attribute works similar to the @code{section} attribute
5884 but adds additional checking.
5885
5886 @table @asis
5887 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
5888 @code{progmem} affects the location
5889 of the data but not how this data is accessed.
5890 In order to read data located with the @code{progmem} attribute
5891 (inline) assembler must be used.
5892 @smallexample
5893 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5894 #include <avr/pgmspace.h>
5895
5896 /* Locate var in flash memory */
5897 const int var[2] PROGMEM = @{ 1, 2 @};
5898
5899 int read_var (int i)
5900 @{
5901 /* Access var[] by accessor macro from avr/pgmspace.h */
5902 return (int) pgm_read_word (& var[i]);
5903 @}
5904 @end smallexample
5905
5906 AVR is a Harvard architecture processor and data and read-only data
5907 normally resides in the data memory (RAM).
5908
5909 See also the @ref{AVR Named Address Spaces} section for
5910 an alternate way to locate and access data in flash memory.
5911
5912 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
5913 The compiler adds @code{0x4000}
5914 to the addresses of objects and declarations in @code{progmem} and locates
5915 the objects in flash memory, namely in section @code{.progmem.data}.
5916 The offset is needed because the flash memory is visible in the RAM
5917 address space starting at address @code{0x4000}.
5918
5919 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
5920 no special functions or macros are needed.
5921
5922 @smallexample
5923 /* var is located in flash memory */
5924 extern const int var[2] __attribute__((progmem));
5925
5926 int read_var (int i)
5927 @{
5928 return var[i];
5929 @}
5930 @end smallexample
5931
5932 @end table
5933
5934 @item io
5935 @itemx io (@var{addr})
5936 @cindex @code{io} variable attribute, AVR
5937 Variables with the @code{io} attribute are used to address
5938 memory-mapped peripherals in the io address range.
5939 If an address is specified, the variable
5940 is assigned that address, and the value is interpreted as an
5941 address in the data address space.
5942 Example:
5943
5944 @smallexample
5945 volatile int porta __attribute__((io (0x22)));
5946 @end smallexample
5947
5948 The address specified in the address in the data address range.
5949
5950 Otherwise, the variable it is not assigned an address, but the
5951 compiler will still use in/out instructions where applicable,
5952 assuming some other module assigns an address in the io address range.
5953 Example:
5954
5955 @smallexample
5956 extern volatile int porta __attribute__((io));
5957 @end smallexample
5958
5959 @item io_low
5960 @itemx io_low (@var{addr})
5961 @cindex @code{io_low} variable attribute, AVR
5962 This is like the @code{io} attribute, but additionally it informs the
5963 compiler that the object lies in the lower half of the I/O area,
5964 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
5965 instructions.
5966
5967 @item address
5968 @itemx address (@var{addr})
5969 @cindex @code{address} variable attribute, AVR
5970 Variables with the @code{address} attribute are used to address
5971 memory-mapped peripherals that may lie outside the io address range.
5972
5973 @smallexample
5974 volatile int porta __attribute__((address (0x600)));
5975 @end smallexample
5976
5977 @item absdata
5978 @cindex @code{absdata} variable attribute, AVR
5979 Variables in static storage and with the @code{absdata} attribute can
5980 be accessed by the @code{LDS} and @code{STS} instructions which take
5981 absolute addresses.
5982
5983 @itemize @bullet
5984 @item
5985 This attribute is only supported for the reduced AVR Tiny core
5986 like ATtiny40.
5987
5988 @item
5989 You must make sure that respective data is located in the
5990 address range @code{0x40}@dots{}@code{0xbf} accessible by
5991 @code{LDS} and @code{STS}. One way to achieve this as an
5992 appropriate linker description file.
5993
5994 @item
5995 If the location does not fit the address range of @code{LDS}
5996 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
5997 warning like
5998 @quotation
5999 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6000 @end quotation
6001
6002 @end itemize
6003
6004 @end table
6005
6006 @node Blackfin Variable Attributes
6007 @subsection Blackfin Variable Attributes
6008
6009 Three attributes are currently defined for the Blackfin.
6010
6011 @table @code
6012 @item l1_data
6013 @itemx l1_data_A
6014 @itemx l1_data_B
6015 @cindex @code{l1_data} variable attribute, Blackfin
6016 @cindex @code{l1_data_A} variable attribute, Blackfin
6017 @cindex @code{l1_data_B} variable attribute, Blackfin
6018 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6019 Variables with @code{l1_data} attribute are put into the specific section
6020 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6021 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6022 attribute are put into the specific section named @code{.l1.data.B}.
6023
6024 @item l2
6025 @cindex @code{l2} variable attribute, Blackfin
6026 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6027 Variables with @code{l2} attribute are put into the specific section
6028 named @code{.l2.data}.
6029 @end table
6030
6031 @node H8/300 Variable Attributes
6032 @subsection H8/300 Variable Attributes
6033
6034 These variable attributes are available for H8/300 targets:
6035
6036 @table @code
6037 @item eightbit_data
6038 @cindex @code{eightbit_data} variable attribute, H8/300
6039 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6040 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6041 variable should be placed into the eight-bit data section.
6042 The compiler generates more efficient code for certain operations
6043 on data in the eight-bit data area. Note the eight-bit data area is limited to
6044 256 bytes of data.
6045
6046 You must use GAS and GLD from GNU binutils version 2.7 or later for
6047 this attribute to work correctly.
6048
6049 @item tiny_data
6050 @cindex @code{tiny_data} variable attribute, H8/300
6051 @cindex tiny data section on the H8/300H and H8S
6052 Use this attribute on the H8/300H and H8S to indicate that the specified
6053 variable should be placed into the tiny data section.
6054 The compiler generates more efficient code for loads and stores
6055 on data in the tiny data section. Note the tiny data area is limited to
6056 slightly under 32KB of data.
6057
6058 @end table
6059
6060 @node IA-64 Variable Attributes
6061 @subsection IA-64 Variable Attributes
6062
6063 The IA-64 back end supports the following variable attribute:
6064
6065 @table @code
6066 @item model (@var{model-name})
6067 @cindex @code{model} variable attribute, IA-64
6068
6069 On IA-64, use this attribute to set the addressability of an object.
6070 At present, the only supported identifier for @var{model-name} is
6071 @code{small}, indicating addressability via ``small'' (22-bit)
6072 addresses (so that their addresses can be loaded with the @code{addl}
6073 instruction). Caveat: such addressing is by definition not position
6074 independent and hence this attribute must not be used for objects
6075 defined by shared libraries.
6076
6077 @end table
6078
6079 @node M32R/D Variable Attributes
6080 @subsection M32R/D Variable Attributes
6081
6082 One attribute is currently defined for the M32R/D@.
6083
6084 @table @code
6085 @item model (@var{model-name})
6086 @cindex @code{model-name} variable attribute, M32R/D
6087 @cindex variable addressability on the M32R/D
6088 Use this attribute on the M32R/D to set the addressability of an object.
6089 The identifier @var{model-name} is one of @code{small}, @code{medium},
6090 or @code{large}, representing each of the code models.
6091
6092 Small model objects live in the lower 16MB of memory (so that their
6093 addresses can be loaded with the @code{ld24} instruction).
6094
6095 Medium and large model objects may live anywhere in the 32-bit address space
6096 (the compiler generates @code{seth/add3} instructions to load their
6097 addresses).
6098 @end table
6099
6100 @node MeP Variable Attributes
6101 @subsection MeP Variable Attributes
6102
6103 The MeP target has a number of addressing modes and busses. The
6104 @code{near} space spans the standard memory space's first 16 megabytes
6105 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6106 The @code{based} space is a 128-byte region in the memory space that
6107 is addressed relative to the @code{$tp} register. The @code{tiny}
6108 space is a 65536-byte region relative to the @code{$gp} register. In
6109 addition to these memory regions, the MeP target has a separate 16-bit
6110 control bus which is specified with @code{cb} attributes.
6111
6112 @table @code
6113
6114 @item based
6115 @cindex @code{based} variable attribute, MeP
6116 Any variable with the @code{based} attribute is assigned to the
6117 @code{.based} section, and is accessed with relative to the
6118 @code{$tp} register.
6119
6120 @item tiny
6121 @cindex @code{tiny} variable attribute, MeP
6122 Likewise, the @code{tiny} attribute assigned variables to the
6123 @code{.tiny} section, relative to the @code{$gp} register.
6124
6125 @item near
6126 @cindex @code{near} variable attribute, MeP
6127 Variables with the @code{near} attribute are assumed to have addresses
6128 that fit in a 24-bit addressing mode. This is the default for large
6129 variables (@code{-mtiny=4} is the default) but this attribute can
6130 override @code{-mtiny=} for small variables, or override @code{-ml}.
6131
6132 @item far
6133 @cindex @code{far} variable attribute, MeP
6134 Variables with the @code{far} attribute are addressed using a full
6135 32-bit address. Since this covers the entire memory space, this
6136 allows modules to make no assumptions about where variables might be
6137 stored.
6138
6139 @item io
6140 @cindex @code{io} variable attribute, MeP
6141 @itemx io (@var{addr})
6142 Variables with the @code{io} attribute are used to address
6143 memory-mapped peripherals. If an address is specified, the variable
6144 is assigned that address, else it is not assigned an address (it is
6145 assumed some other module assigns an address). Example:
6146
6147 @smallexample
6148 int timer_count __attribute__((io(0x123)));
6149 @end smallexample
6150
6151 @item cb
6152 @itemx cb (@var{addr})
6153 @cindex @code{cb} variable attribute, MeP
6154 Variables with the @code{cb} attribute are used to access the control
6155 bus, using special instructions. @code{addr} indicates the control bus
6156 address. Example:
6157
6158 @smallexample
6159 int cpu_clock __attribute__((cb(0x123)));
6160 @end smallexample
6161
6162 @end table
6163
6164 @node Microsoft Windows Variable Attributes
6165 @subsection Microsoft Windows Variable Attributes
6166
6167 You can use these attributes on Microsoft Windows targets.
6168 @ref{x86 Variable Attributes} for additional Windows compatibility
6169 attributes available on all x86 targets.
6170
6171 @table @code
6172 @item dllimport
6173 @itemx dllexport
6174 @cindex @code{dllimport} variable attribute
6175 @cindex @code{dllexport} variable attribute
6176 The @code{dllimport} and @code{dllexport} attributes are described in
6177 @ref{Microsoft Windows Function Attributes}.
6178
6179 @item selectany
6180 @cindex @code{selectany} variable attribute
6181 The @code{selectany} attribute causes an initialized global variable to
6182 have link-once semantics. When multiple definitions of the variable are
6183 encountered by the linker, the first is selected and the remainder are
6184 discarded. Following usage by the Microsoft compiler, the linker is told
6185 @emph{not} to warn about size or content differences of the multiple
6186 definitions.
6187
6188 Although the primary usage of this attribute is for POD types, the
6189 attribute can also be applied to global C++ objects that are initialized
6190 by a constructor. In this case, the static initialization and destruction
6191 code for the object is emitted in each translation defining the object,
6192 but the calls to the constructor and destructor are protected by a
6193 link-once guard variable.
6194
6195 The @code{selectany} attribute is only available on Microsoft Windows
6196 targets. You can use @code{__declspec (selectany)} as a synonym for
6197 @code{__attribute__ ((selectany))} for compatibility with other
6198 compilers.
6199
6200 @item shared
6201 @cindex @code{shared} variable attribute
6202 On Microsoft Windows, in addition to putting variable definitions in a named
6203 section, the section can also be shared among all running copies of an
6204 executable or DLL@. For example, this small program defines shared data
6205 by putting it in a named section @code{shared} and marking the section
6206 shareable:
6207
6208 @smallexample
6209 int foo __attribute__((section ("shared"), shared)) = 0;
6210
6211 int
6212 main()
6213 @{
6214 /* @r{Read and write foo. All running
6215 copies see the same value.} */
6216 return 0;
6217 @}
6218 @end smallexample
6219
6220 @noindent
6221 You may only use the @code{shared} attribute along with @code{section}
6222 attribute with a fully-initialized global definition because of the way
6223 linkers work. See @code{section} attribute for more information.
6224
6225 The @code{shared} attribute is only available on Microsoft Windows@.
6226
6227 @end table
6228
6229 @node MSP430 Variable Attributes
6230 @subsection MSP430 Variable Attributes
6231
6232 @table @code
6233 @item noinit
6234 @cindex @code{noinit} variable attribute, MSP430
6235 Any data with the @code{noinit} attribute will not be initialised by
6236 the C runtime startup code, or the program loader. Not initialising
6237 data in this way can reduce program startup times.
6238
6239 @item persistent
6240 @cindex @code{persistent} variable attribute, MSP430
6241 Any variable with the @code{persistent} attribute will not be
6242 initialised by the C runtime startup code. Instead its value will be
6243 set once, when the application is loaded, and then never initialised
6244 again, even if the processor is reset or the program restarts.
6245 Persistent data is intended to be placed into FLASH RAM, where its
6246 value will be retained across resets. The linker script being used to
6247 create the application should ensure that persistent data is correctly
6248 placed.
6249
6250 @item lower
6251 @itemx upper
6252 @itemx either
6253 @cindex @code{lower} variable attribute, MSP430
6254 @cindex @code{upper} variable attribute, MSP430
6255 @cindex @code{either} variable attribute, MSP430
6256 These attributes are the same as the MSP430 function attributes of the
6257 same name (@pxref{MSP430 Function Attributes}).
6258 These attributes can be applied to both functions and variables.
6259 @end table
6260
6261 @node Nvidia PTX Variable Attributes
6262 @subsection Nvidia PTX Variable Attributes
6263
6264 These variable attributes are supported by the Nvidia PTX back end:
6265
6266 @table @code
6267 @item shared
6268 @cindex @code{shared} attribute, Nvidia PTX
6269 Use this attribute to place a variable in the @code{.shared} memory space.
6270 This memory space is private to each cooperative thread array; only threads
6271 within one thread block refer to the same instance of the variable.
6272 The runtime does not initialize variables in this memory space.
6273 @end table
6274
6275 @node PowerPC Variable Attributes
6276 @subsection PowerPC Variable Attributes
6277
6278 Three attributes currently are defined for PowerPC configurations:
6279 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6280
6281 @cindex @code{ms_struct} variable attribute, PowerPC
6282 @cindex @code{gcc_struct} variable attribute, PowerPC
6283 For full documentation of the struct attributes please see the
6284 documentation in @ref{x86 Variable Attributes}.
6285
6286 @cindex @code{altivec} variable attribute, PowerPC
6287 For documentation of @code{altivec} attribute please see the
6288 documentation in @ref{PowerPC Type Attributes}.
6289
6290 @node RL78 Variable Attributes
6291 @subsection RL78 Variable Attributes
6292
6293 @cindex @code{saddr} variable attribute, RL78
6294 The RL78 back end supports the @code{saddr} variable attribute. This
6295 specifies placement of the corresponding variable in the SADDR area,
6296 which can be accessed more efficiently than the default memory region.
6297
6298 @node SPU Variable Attributes
6299 @subsection SPU Variable Attributes
6300
6301 @cindex @code{spu_vector} variable attribute, SPU
6302 The SPU supports the @code{spu_vector} attribute for variables. For
6303 documentation of this attribute please see the documentation in
6304 @ref{SPU Type Attributes}.
6305
6306 @node V850 Variable Attributes
6307 @subsection V850 Variable Attributes
6308
6309 These variable attributes are supported by the V850 back end:
6310
6311 @table @code
6312
6313 @item sda
6314 @cindex @code{sda} variable attribute, V850
6315 Use this attribute to explicitly place a variable in the small data area,
6316 which can hold up to 64 kilobytes.
6317
6318 @item tda
6319 @cindex @code{tda} variable attribute, V850
6320 Use this attribute to explicitly place a variable in the tiny data area,
6321 which can hold up to 256 bytes in total.
6322
6323 @item zda
6324 @cindex @code{zda} variable attribute, V850
6325 Use this attribute to explicitly place a variable in the first 32 kilobytes
6326 of memory.
6327 @end table
6328
6329 @node x86 Variable Attributes
6330 @subsection x86 Variable Attributes
6331
6332 Two attributes are currently defined for x86 configurations:
6333 @code{ms_struct} and @code{gcc_struct}.
6334
6335 @table @code
6336 @item ms_struct
6337 @itemx gcc_struct
6338 @cindex @code{ms_struct} variable attribute, x86
6339 @cindex @code{gcc_struct} variable attribute, x86
6340
6341 If @code{packed} is used on a structure, or if bit-fields are used,
6342 it may be that the Microsoft ABI lays out the structure differently
6343 than the way GCC normally does. Particularly when moving packed
6344 data between functions compiled with GCC and the native Microsoft compiler
6345 (either via function call or as data in a file), it may be necessary to access
6346 either format.
6347
6348 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6349 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6350 command-line options, respectively;
6351 see @ref{x86 Options}, for details of how structure layout is affected.
6352 @xref{x86 Type Attributes}, for information about the corresponding
6353 attributes on types.
6354
6355 @end table
6356
6357 @node Xstormy16 Variable Attributes
6358 @subsection Xstormy16 Variable Attributes
6359
6360 One attribute is currently defined for xstormy16 configurations:
6361 @code{below100}.
6362
6363 @table @code
6364 @item below100
6365 @cindex @code{below100} variable attribute, Xstormy16
6366
6367 If a variable has the @code{below100} attribute (@code{BELOW100} is
6368 allowed also), GCC places the variable in the first 0x100 bytes of
6369 memory and use special opcodes to access it. Such variables are
6370 placed in either the @code{.bss_below100} section or the
6371 @code{.data_below100} section.
6372
6373 @end table
6374
6375 @node Type Attributes
6376 @section Specifying Attributes of Types
6377 @cindex attribute of types
6378 @cindex type attributes
6379
6380 The keyword @code{__attribute__} allows you to specify special
6381 attributes of types. Some type attributes apply only to @code{struct}
6382 and @code{union} types, while others can apply to any type defined
6383 via a @code{typedef} declaration. Other attributes are defined for
6384 functions (@pxref{Function Attributes}), labels (@pxref{Label
6385 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6386 statements (@pxref{Statement Attributes}), and for
6387 variables (@pxref{Variable Attributes}).
6388
6389 The @code{__attribute__} keyword is followed by an attribute specification
6390 inside double parentheses.
6391
6392 You may specify type attributes in an enum, struct or union type
6393 declaration or definition by placing them immediately after the
6394 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6395 syntax is to place them just past the closing curly brace of the
6396 definition.
6397
6398 You can also include type attributes in a @code{typedef} declaration.
6399 @xref{Attribute Syntax}, for details of the exact syntax for using
6400 attributes.
6401
6402 @menu
6403 * Common Type Attributes::
6404 * ARM Type Attributes::
6405 * MeP Type Attributes::
6406 * PowerPC Type Attributes::
6407 * SPU Type Attributes::
6408 * x86 Type Attributes::
6409 @end menu
6410
6411 @node Common Type Attributes
6412 @subsection Common Type Attributes
6413
6414 The following type attributes are supported on most targets.
6415
6416 @table @code
6417 @cindex @code{aligned} type attribute
6418 @item aligned (@var{alignment})
6419 This attribute specifies a minimum alignment (in bytes) for variables
6420 of the specified type. For example, the declarations:
6421
6422 @smallexample
6423 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6424 typedef int more_aligned_int __attribute__ ((aligned (8)));
6425 @end smallexample
6426
6427 @noindent
6428 force the compiler to ensure (as far as it can) that each variable whose
6429 type is @code{struct S} or @code{more_aligned_int} is allocated and
6430 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6431 variables of type @code{struct S} aligned to 8-byte boundaries allows
6432 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6433 store) instructions when copying one variable of type @code{struct S} to
6434 another, thus improving run-time efficiency.
6435
6436 Note that the alignment of any given @code{struct} or @code{union} type
6437 is required by the ISO C standard to be at least a perfect multiple of
6438 the lowest common multiple of the alignments of all of the members of
6439 the @code{struct} or @code{union} in question. This means that you @emph{can}
6440 effectively adjust the alignment of a @code{struct} or @code{union}
6441 type by attaching an @code{aligned} attribute to any one of the members
6442 of such a type, but the notation illustrated in the example above is a
6443 more obvious, intuitive, and readable way to request the compiler to
6444 adjust the alignment of an entire @code{struct} or @code{union} type.
6445
6446 As in the preceding example, you can explicitly specify the alignment
6447 (in bytes) that you wish the compiler to use for a given @code{struct}
6448 or @code{union} type. Alternatively, you can leave out the alignment factor
6449 and just ask the compiler to align a type to the maximum
6450 useful alignment for the target machine you are compiling for. For
6451 example, you could write:
6452
6453 @smallexample
6454 struct S @{ short f[3]; @} __attribute__ ((aligned));
6455 @end smallexample
6456
6457 Whenever you leave out the alignment factor in an @code{aligned}
6458 attribute specification, the compiler automatically sets the alignment
6459 for the type to the largest alignment that is ever used for any data
6460 type on the target machine you are compiling for. Doing this can often
6461 make copy operations more efficient, because the compiler can use
6462 whatever instructions copy the biggest chunks of memory when performing
6463 copies to or from the variables that have types that you have aligned
6464 this way.
6465
6466 In the example above, if the size of each @code{short} is 2 bytes, then
6467 the size of the entire @code{struct S} type is 6 bytes. The smallest
6468 power of two that is greater than or equal to that is 8, so the
6469 compiler sets the alignment for the entire @code{struct S} type to 8
6470 bytes.
6471
6472 Note that although you can ask the compiler to select a time-efficient
6473 alignment for a given type and then declare only individual stand-alone
6474 objects of that type, the compiler's ability to select a time-efficient
6475 alignment is primarily useful only when you plan to create arrays of
6476 variables having the relevant (efficiently aligned) type. If you
6477 declare or use arrays of variables of an efficiently-aligned type, then
6478 it is likely that your program also does pointer arithmetic (or
6479 subscripting, which amounts to the same thing) on pointers to the
6480 relevant type, and the code that the compiler generates for these
6481 pointer arithmetic operations is often more efficient for
6482 efficiently-aligned types than for other types.
6483
6484 Note that the effectiveness of @code{aligned} attributes may be limited
6485 by inherent limitations in your linker. On many systems, the linker is
6486 only able to arrange for variables to be aligned up to a certain maximum
6487 alignment. (For some linkers, the maximum supported alignment may
6488 be very very small.) If your linker is only able to align variables
6489 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6490 in an @code{__attribute__} still only provides you with 8-byte
6491 alignment. See your linker documentation for further information.
6492
6493 The @code{aligned} attribute can only increase alignment. Alignment
6494 can be decreased by specifying the @code{packed} attribute. See below.
6495
6496 @item bnd_variable_size
6497 @cindex @code{bnd_variable_size} type attribute
6498 @cindex Pointer Bounds Checker attributes
6499 When applied to a structure field, this attribute tells Pointer
6500 Bounds Checker that the size of this field should not be computed
6501 using static type information. It may be used to mark variably-sized
6502 static array fields placed at the end of a structure.
6503
6504 @smallexample
6505 struct S
6506 @{
6507 int size;
6508 char data[1];
6509 @}
6510 S *p = (S *)malloc (sizeof(S) + 100);
6511 p->data[10] = 0; //Bounds violation
6512 @end smallexample
6513
6514 @noindent
6515 By using an attribute for the field we may avoid unwanted bound
6516 violation checks:
6517
6518 @smallexample
6519 struct S
6520 @{
6521 int size;
6522 char data[1] __attribute__((bnd_variable_size));
6523 @}
6524 S *p = (S *)malloc (sizeof(S) + 100);
6525 p->data[10] = 0; //OK
6526 @end smallexample
6527
6528 @item deprecated
6529 @itemx deprecated (@var{msg})
6530 @cindex @code{deprecated} type attribute
6531 The @code{deprecated} attribute results in a warning if the type
6532 is used anywhere in the source file. This is useful when identifying
6533 types that are expected to be removed in a future version of a program.
6534 If possible, the warning also includes the location of the declaration
6535 of the deprecated type, to enable users to easily find further
6536 information about why the type is deprecated, or what they should do
6537 instead. Note that the warnings only occur for uses and then only
6538 if the type is being applied to an identifier that itself is not being
6539 declared as deprecated.
6540
6541 @smallexample
6542 typedef int T1 __attribute__ ((deprecated));
6543 T1 x;
6544 typedef T1 T2;
6545 T2 y;
6546 typedef T1 T3 __attribute__ ((deprecated));
6547 T3 z __attribute__ ((deprecated));
6548 @end smallexample
6549
6550 @noindent
6551 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6552 warning is issued for line 4 because T2 is not explicitly
6553 deprecated. Line 5 has no warning because T3 is explicitly
6554 deprecated. Similarly for line 6. The optional @var{msg}
6555 argument, which must be a string, is printed in the warning if
6556 present.
6557
6558 The @code{deprecated} attribute can also be used for functions and
6559 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6560
6561 @item designated_init
6562 @cindex @code{designated_init} type attribute
6563 This attribute may only be applied to structure types. It indicates
6564 that any initialization of an object of this type must use designated
6565 initializers rather than positional initializers. The intent of this
6566 attribute is to allow the programmer to indicate that a structure's
6567 layout may change, and that therefore relying on positional
6568 initialization will result in future breakage.
6569
6570 GCC emits warnings based on this attribute by default; use
6571 @option{-Wno-designated-init} to suppress them.
6572
6573 @item may_alias
6574 @cindex @code{may_alias} type attribute
6575 Accesses through pointers to types with this attribute are not subject
6576 to type-based alias analysis, but are instead assumed to be able to alias
6577 any other type of objects.
6578 In the context of section 6.5 paragraph 7 of the C99 standard,
6579 an lvalue expression
6580 dereferencing such a pointer is treated like having a character type.
6581 See @option{-fstrict-aliasing} for more information on aliasing issues.
6582 This extension exists to support some vector APIs, in which pointers to
6583 one vector type are permitted to alias pointers to a different vector type.
6584
6585 Note that an object of a type with this attribute does not have any
6586 special semantics.
6587
6588 Example of use:
6589
6590 @smallexample
6591 typedef short __attribute__((__may_alias__)) short_a;
6592
6593 int
6594 main (void)
6595 @{
6596 int a = 0x12345678;
6597 short_a *b = (short_a *) &a;
6598
6599 b[1] = 0;
6600
6601 if (a == 0x12345678)
6602 abort();
6603
6604 exit(0);
6605 @}
6606 @end smallexample
6607
6608 @noindent
6609 If you replaced @code{short_a} with @code{short} in the variable
6610 declaration, the above program would abort when compiled with
6611 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6612 above.
6613
6614 @item packed
6615 @cindex @code{packed} type attribute
6616 This attribute, attached to @code{struct} or @code{union} type
6617 definition, specifies that each member (other than zero-width bit-fields)
6618 of the structure or union is placed to minimize the memory required. When
6619 attached to an @code{enum} definition, it indicates that the smallest
6620 integral type should be used.
6621
6622 @opindex fshort-enums
6623 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6624 types is equivalent to specifying the @code{packed} attribute on each
6625 of the structure or union members. Specifying the @option{-fshort-enums}
6626 flag on the command line is equivalent to specifying the @code{packed}
6627 attribute on all @code{enum} definitions.
6628
6629 In the following example @code{struct my_packed_struct}'s members are
6630 packed closely together, but the internal layout of its @code{s} member
6631 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6632 be packed too.
6633
6634 @smallexample
6635 struct my_unpacked_struct
6636 @{
6637 char c;
6638 int i;
6639 @};
6640
6641 struct __attribute__ ((__packed__)) my_packed_struct
6642 @{
6643 char c;
6644 int i;
6645 struct my_unpacked_struct s;
6646 @};
6647 @end smallexample
6648
6649 You may only specify the @code{packed} attribute attribute on the definition
6650 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
6651 that does not also define the enumerated type, structure or union.
6652
6653 @item scalar_storage_order ("@var{endianness}")
6654 @cindex @code{scalar_storage_order} type attribute
6655 When attached to a @code{union} or a @code{struct}, this attribute sets
6656 the storage order, aka endianness, of the scalar fields of the type, as
6657 well as the array fields whose component is scalar. The supported
6658 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
6659 has no effects on fields which are themselves a @code{union}, a @code{struct}
6660 or an array whose component is a @code{union} or a @code{struct}, and it is
6661 possible for these fields to have a different scalar storage order than the
6662 enclosing type.
6663
6664 This attribute is supported only for targets that use a uniform default
6665 scalar storage order (fortunately, most of them), i.e. targets that store
6666 the scalars either all in big-endian or all in little-endian.
6667
6668 Additional restrictions are enforced for types with the reverse scalar
6669 storage order with regard to the scalar storage order of the target:
6670
6671 @itemize
6672 @item Taking the address of a scalar field of a @code{union} or a
6673 @code{struct} with reverse scalar storage order is not permitted and yields
6674 an error.
6675 @item Taking the address of an array field, whose component is scalar, of
6676 a @code{union} or a @code{struct} with reverse scalar storage order is
6677 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
6678 is specified.
6679 @item Taking the address of a @code{union} or a @code{struct} with reverse
6680 scalar storage order is permitted.
6681 @end itemize
6682
6683 These restrictions exist because the storage order attribute is lost when
6684 the address of a scalar or the address of an array with scalar component is
6685 taken, so storing indirectly through this address generally does not work.
6686 The second case is nevertheless allowed to be able to perform a block copy
6687 from or to the array.
6688
6689 Moreover, the use of type punning or aliasing to toggle the storage order
6690 is not supported; that is to say, a given scalar object cannot be accessed
6691 through distinct types that assign a different storage order to it.
6692
6693 @item transparent_union
6694 @cindex @code{transparent_union} type attribute
6695
6696 This attribute, attached to a @code{union} type definition, indicates
6697 that any function parameter having that union type causes calls to that
6698 function to be treated in a special way.
6699
6700 First, the argument corresponding to a transparent union type can be of
6701 any type in the union; no cast is required. Also, if the union contains
6702 a pointer type, the corresponding argument can be a null pointer
6703 constant or a void pointer expression; and if the union contains a void
6704 pointer type, the corresponding argument can be any pointer expression.
6705 If the union member type is a pointer, qualifiers like @code{const} on
6706 the referenced type must be respected, just as with normal pointer
6707 conversions.
6708
6709 Second, the argument is passed to the function using the calling
6710 conventions of the first member of the transparent union, not the calling
6711 conventions of the union itself. All members of the union must have the
6712 same machine representation; this is necessary for this argument passing
6713 to work properly.
6714
6715 Transparent unions are designed for library functions that have multiple
6716 interfaces for compatibility reasons. For example, suppose the
6717 @code{wait} function must accept either a value of type @code{int *} to
6718 comply with POSIX, or a value of type @code{union wait *} to comply with
6719 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6720 @code{wait} would accept both kinds of arguments, but it would also
6721 accept any other pointer type and this would make argument type checking
6722 less useful. Instead, @code{<sys/wait.h>} might define the interface
6723 as follows:
6724
6725 @smallexample
6726 typedef union __attribute__ ((__transparent_union__))
6727 @{
6728 int *__ip;
6729 union wait *__up;
6730 @} wait_status_ptr_t;
6731
6732 pid_t wait (wait_status_ptr_t);
6733 @end smallexample
6734
6735 @noindent
6736 This interface allows either @code{int *} or @code{union wait *}
6737 arguments to be passed, using the @code{int *} calling convention.
6738 The program can call @code{wait} with arguments of either type:
6739
6740 @smallexample
6741 int w1 () @{ int w; return wait (&w); @}
6742 int w2 () @{ union wait w; return wait (&w); @}
6743 @end smallexample
6744
6745 @noindent
6746 With this interface, @code{wait}'s implementation might look like this:
6747
6748 @smallexample
6749 pid_t wait (wait_status_ptr_t p)
6750 @{
6751 return waitpid (-1, p.__ip, 0);
6752 @}
6753 @end smallexample
6754
6755 @item unused
6756 @cindex @code{unused} type attribute
6757 When attached to a type (including a @code{union} or a @code{struct}),
6758 this attribute means that variables of that type are meant to appear
6759 possibly unused. GCC does not produce a warning for any variables of
6760 that type, even if the variable appears to do nothing. This is often
6761 the case with lock or thread classes, which are usually defined and then
6762 not referenced, but contain constructors and destructors that have
6763 nontrivial bookkeeping functions.
6764
6765 @item visibility
6766 @cindex @code{visibility} type attribute
6767 In C++, attribute visibility (@pxref{Function Attributes}) can also be
6768 applied to class, struct, union and enum types. Unlike other type
6769 attributes, the attribute must appear between the initial keyword and
6770 the name of the type; it cannot appear after the body of the type.
6771
6772 Note that the type visibility is applied to vague linkage entities
6773 associated with the class (vtable, typeinfo node, etc.). In
6774 particular, if a class is thrown as an exception in one shared object
6775 and caught in another, the class must have default visibility.
6776 Otherwise the two shared objects are unable to use the same
6777 typeinfo node and exception handling will break.
6778
6779 @end table
6780
6781 To specify multiple attributes, separate them by commas within the
6782 double parentheses: for example, @samp{__attribute__ ((aligned (16),
6783 packed))}.
6784
6785 @node ARM Type Attributes
6786 @subsection ARM Type Attributes
6787
6788 @cindex @code{notshared} type attribute, ARM
6789 On those ARM targets that support @code{dllimport} (such as Symbian
6790 OS), you can use the @code{notshared} attribute to indicate that the
6791 virtual table and other similar data for a class should not be
6792 exported from a DLL@. For example:
6793
6794 @smallexample
6795 class __declspec(notshared) C @{
6796 public:
6797 __declspec(dllimport) C();
6798 virtual void f();
6799 @}
6800
6801 __declspec(dllexport)
6802 C::C() @{@}
6803 @end smallexample
6804
6805 @noindent
6806 In this code, @code{C::C} is exported from the current DLL, but the
6807 virtual table for @code{C} is not exported. (You can use
6808 @code{__attribute__} instead of @code{__declspec} if you prefer, but
6809 most Symbian OS code uses @code{__declspec}.)
6810
6811 @node MeP Type Attributes
6812 @subsection MeP Type Attributes
6813
6814 @cindex @code{based} type attribute, MeP
6815 @cindex @code{tiny} type attribute, MeP
6816 @cindex @code{near} type attribute, MeP
6817 @cindex @code{far} type attribute, MeP
6818 Many of the MeP variable attributes may be applied to types as well.
6819 Specifically, the @code{based}, @code{tiny}, @code{near}, and
6820 @code{far} attributes may be applied to either. The @code{io} and
6821 @code{cb} attributes may not be applied to types.
6822
6823 @node PowerPC Type Attributes
6824 @subsection PowerPC Type Attributes
6825
6826 Three attributes currently are defined for PowerPC configurations:
6827 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6828
6829 @cindex @code{ms_struct} type attribute, PowerPC
6830 @cindex @code{gcc_struct} type attribute, PowerPC
6831 For full documentation of the @code{ms_struct} and @code{gcc_struct}
6832 attributes please see the documentation in @ref{x86 Type Attributes}.
6833
6834 @cindex @code{altivec} type attribute, PowerPC
6835 The @code{altivec} attribute allows one to declare AltiVec vector data
6836 types supported by the AltiVec Programming Interface Manual. The
6837 attribute requires an argument to specify one of three vector types:
6838 @code{vector__}, @code{pixel__} (always followed by unsigned short),
6839 and @code{bool__} (always followed by unsigned).
6840
6841 @smallexample
6842 __attribute__((altivec(vector__)))
6843 __attribute__((altivec(pixel__))) unsigned short
6844 __attribute__((altivec(bool__))) unsigned
6845 @end smallexample
6846
6847 These attributes mainly are intended to support the @code{__vector},
6848 @code{__pixel}, and @code{__bool} AltiVec keywords.
6849
6850 @node SPU Type Attributes
6851 @subsection SPU Type Attributes
6852
6853 @cindex @code{spu_vector} type attribute, SPU
6854 The SPU supports the @code{spu_vector} attribute for types. This attribute
6855 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
6856 Language Extensions Specification. It is intended to support the
6857 @code{__vector} keyword.
6858
6859 @node x86 Type Attributes
6860 @subsection x86 Type Attributes
6861
6862 Two attributes are currently defined for x86 configurations:
6863 @code{ms_struct} and @code{gcc_struct}.
6864
6865 @table @code
6866
6867 @item ms_struct
6868 @itemx gcc_struct
6869 @cindex @code{ms_struct} type attribute, x86
6870 @cindex @code{gcc_struct} type attribute, x86
6871
6872 If @code{packed} is used on a structure, or if bit-fields are used
6873 it may be that the Microsoft ABI packs them differently
6874 than GCC normally packs them. Particularly when moving packed
6875 data between functions compiled with GCC and the native Microsoft compiler
6876 (either via function call or as data in a file), it may be necessary to access
6877 either format.
6878
6879 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6880 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6881 command-line options, respectively;
6882 see @ref{x86 Options}, for details of how structure layout is affected.
6883 @xref{x86 Variable Attributes}, for information about the corresponding
6884 attributes on variables.
6885
6886 @end table
6887
6888 @node Label Attributes
6889 @section Label Attributes
6890 @cindex Label Attributes
6891
6892 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
6893 details of the exact syntax for using attributes. Other attributes are
6894 available for functions (@pxref{Function Attributes}), variables
6895 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
6896 statements (@pxref{Statement Attributes}), and for types
6897 (@pxref{Type Attributes}).
6898
6899 This example uses the @code{cold} label attribute to indicate the
6900 @code{ErrorHandling} branch is unlikely to be taken and that the
6901 @code{ErrorHandling} label is unused:
6902
6903 @smallexample
6904
6905 asm goto ("some asm" : : : : NoError);
6906
6907 /* This branch (the fall-through from the asm) is less commonly used */
6908 ErrorHandling:
6909 __attribute__((cold, unused)); /* Semi-colon is required here */
6910 printf("error\n");
6911 return 0;
6912
6913 NoError:
6914 printf("no error\n");
6915 return 1;
6916 @end smallexample
6917
6918 @table @code
6919 @item unused
6920 @cindex @code{unused} label attribute
6921 This feature is intended for program-generated code that may contain
6922 unused labels, but which is compiled with @option{-Wall}. It is
6923 not normally appropriate to use in it human-written code, though it
6924 could be useful in cases where the code that jumps to the label is
6925 contained within an @code{#ifdef} conditional.
6926
6927 @item hot
6928 @cindex @code{hot} label attribute
6929 The @code{hot} attribute on a label is used to inform the compiler that
6930 the path following the label is more likely than paths that are not so
6931 annotated. This attribute is used in cases where @code{__builtin_expect}
6932 cannot be used, for instance with computed goto or @code{asm goto}.
6933
6934 @item cold
6935 @cindex @code{cold} label attribute
6936 The @code{cold} attribute on labels is used to inform the compiler that
6937 the path following the label is unlikely to be executed. This attribute
6938 is used in cases where @code{__builtin_expect} cannot be used, for instance
6939 with computed goto or @code{asm goto}.
6940
6941 @end table
6942
6943 @node Enumerator Attributes
6944 @section Enumerator Attributes
6945 @cindex Enumerator Attributes
6946
6947 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
6948 details of the exact syntax for using attributes. Other attributes are
6949 available for functions (@pxref{Function Attributes}), variables
6950 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
6951 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
6952
6953 This example uses the @code{deprecated} enumerator attribute to indicate the
6954 @code{oldval} enumerator is deprecated:
6955
6956 @smallexample
6957 enum E @{
6958 oldval __attribute__((deprecated)),
6959 newval
6960 @};
6961
6962 int
6963 fn (void)
6964 @{
6965 return oldval;
6966 @}
6967 @end smallexample
6968
6969 @table @code
6970 @item deprecated
6971 @cindex @code{deprecated} enumerator attribute
6972 The @code{deprecated} attribute results in a warning if the enumerator
6973 is used anywhere in the source file. This is useful when identifying
6974 enumerators that are expected to be removed in a future version of a
6975 program. The warning also includes the location of the declaration
6976 of the deprecated enumerator, to enable users to easily find further
6977 information about why the enumerator is deprecated, or what they should
6978 do instead. Note that the warnings only occurs for uses.
6979
6980 @end table
6981
6982 @node Statement Attributes
6983 @section Statement Attributes
6984 @cindex Statement Attributes
6985
6986 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
6987 for details of the exact syntax for using attributes. Other attributes are
6988 available for functions (@pxref{Function Attributes}), variables
6989 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
6990 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
6991
6992 This example uses the @code{fallthrough} statement attribute to indicate that
6993 the @option{-Wimplicit-fallthrough} warning should not be emitted:
6994
6995 @smallexample
6996 switch (cond)
6997 @{
6998 case 1:
6999 bar (1);
7000 __attribute__((fallthrough));
7001 case 2:
7002 @dots{}
7003 @}
7004 @end smallexample
7005
7006 @table @code
7007 @item fallthrough
7008 @cindex @code{fallthrough} statement attribute
7009 The @code{fallthrough} attribute with a null statement serves as a
7010 fallthrough statement. It hints to the compiler that a statement
7011 that falls through to another case label, or user-defined label
7012 in a switch statement is intentional and thus the
7013 @option{-Wimplicit-fallthrough} warning must not trigger. The
7014 fallthrough attribute may appear at most once in each attribute
7015 list, and may not be mixed with other attributes. It can only
7016 be used in a switch statement (the compiler will issue an error
7017 otherwise), after a preceding statement and before a logically
7018 succeeding case label, or user-defined label.
7019
7020 @end table
7021
7022 @node Attribute Syntax
7023 @section Attribute Syntax
7024 @cindex attribute syntax
7025
7026 This section describes the syntax with which @code{__attribute__} may be
7027 used, and the constructs to which attribute specifiers bind, for the C
7028 language. Some details may vary for C++ and Objective-C@. Because of
7029 infelicities in the grammar for attributes, some forms described here
7030 may not be successfully parsed in all cases.
7031
7032 There are some problems with the semantics of attributes in C++. For
7033 example, there are no manglings for attributes, although they may affect
7034 code generation, so problems may arise when attributed types are used in
7035 conjunction with templates or overloading. Similarly, @code{typeid}
7036 does not distinguish between types with different attributes. Support
7037 for attributes in C++ may be restricted in future to attributes on
7038 declarations only, but not on nested declarators.
7039
7040 @xref{Function Attributes}, for details of the semantics of attributes
7041 applying to functions. @xref{Variable Attributes}, for details of the
7042 semantics of attributes applying to variables. @xref{Type Attributes},
7043 for details of the semantics of attributes applying to structure, union
7044 and enumerated types.
7045 @xref{Label Attributes}, for details of the semantics of attributes
7046 applying to labels.
7047 @xref{Enumerator Attributes}, for details of the semantics of attributes
7048 applying to enumerators.
7049 @xref{Statement Attributes}, for details of the semantics of attributes
7050 applying to statements.
7051
7052 An @dfn{attribute specifier} is of the form
7053 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7054 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7055 each attribute is one of the following:
7056
7057 @itemize @bullet
7058 @item
7059 Empty. Empty attributes are ignored.
7060
7061 @item
7062 An attribute name
7063 (which may be an identifier such as @code{unused}, or a reserved
7064 word such as @code{const}).
7065
7066 @item
7067 An attribute name followed by a parenthesized list of
7068 parameters for the attribute.
7069 These parameters take one of the following forms:
7070
7071 @itemize @bullet
7072 @item
7073 An identifier. For example, @code{mode} attributes use this form.
7074
7075 @item
7076 An identifier followed by a comma and a non-empty comma-separated list
7077 of expressions. For example, @code{format} attributes use this form.
7078
7079 @item
7080 A possibly empty comma-separated list of expressions. For example,
7081 @code{format_arg} attributes use this form with the list being a single
7082 integer constant expression, and @code{alias} attributes use this form
7083 with the list being a single string constant.
7084 @end itemize
7085 @end itemize
7086
7087 An @dfn{attribute specifier list} is a sequence of one or more attribute
7088 specifiers, not separated by any other tokens.
7089
7090 You may optionally specify attribute names with @samp{__}
7091 preceding and following the name.
7092 This allows you to use them in header files without
7093 being concerned about a possible macro of the same name. For example,
7094 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7095
7096
7097 @subsubheading Label Attributes
7098
7099 In GNU C, an attribute specifier list may appear after the colon following a
7100 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7101 attributes on labels if the attribute specifier is immediately
7102 followed by a semicolon (i.e., the label applies to an empty
7103 statement). If the semicolon is missing, C++ label attributes are
7104 ambiguous, as it is permissible for a declaration, which could begin
7105 with an attribute list, to be labelled in C++. Declarations cannot be
7106 labelled in C90 or C99, so the ambiguity does not arise there.
7107
7108 @subsubheading Enumerator Attributes
7109
7110 In GNU C, an attribute specifier list may appear as part of an enumerator.
7111 The attribute goes after the enumeration constant, before @code{=}, if
7112 present. The optional attribute in the enumerator appertains to the
7113 enumeration constant. It is not possible to place the attribute after
7114 the constant expression, if present.
7115
7116 @subsubheading Statement Attributes
7117 In GNU C, an attribute specifier list may appear as part of a null
7118 statement. The attribute goes before the semicolon.
7119
7120 @subsubheading Type Attributes
7121
7122 An attribute specifier list may appear as part of a @code{struct},
7123 @code{union} or @code{enum} specifier. It may go either immediately
7124 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7125 the closing brace. The former syntax is preferred.
7126 Where attribute specifiers follow the closing brace, they are considered
7127 to relate to the structure, union or enumerated type defined, not to any
7128 enclosing declaration the type specifier appears in, and the type
7129 defined is not complete until after the attribute specifiers.
7130 @c Otherwise, there would be the following problems: a shift/reduce
7131 @c conflict between attributes binding the struct/union/enum and
7132 @c binding to the list of specifiers/qualifiers; and "aligned"
7133 @c attributes could use sizeof for the structure, but the size could be
7134 @c changed later by "packed" attributes.
7135
7136
7137 @subsubheading All other attributes
7138
7139 Otherwise, an attribute specifier appears as part of a declaration,
7140 counting declarations of unnamed parameters and type names, and relates
7141 to that declaration (which may be nested in another declaration, for
7142 example in the case of a parameter declaration), or to a particular declarator
7143 within a declaration. Where an
7144 attribute specifier is applied to a parameter declared as a function or
7145 an array, it should apply to the function or array rather than the
7146 pointer to which the parameter is implicitly converted, but this is not
7147 yet correctly implemented.
7148
7149 Any list of specifiers and qualifiers at the start of a declaration may
7150 contain attribute specifiers, whether or not such a list may in that
7151 context contain storage class specifiers. (Some attributes, however,
7152 are essentially in the nature of storage class specifiers, and only make
7153 sense where storage class specifiers may be used; for example,
7154 @code{section}.) There is one necessary limitation to this syntax: the
7155 first old-style parameter declaration in a function definition cannot
7156 begin with an attribute specifier, because such an attribute applies to
7157 the function instead by syntax described below (which, however, is not
7158 yet implemented in this case). In some other cases, attribute
7159 specifiers are permitted by this grammar but not yet supported by the
7160 compiler. All attribute specifiers in this place relate to the
7161 declaration as a whole. In the obsolescent usage where a type of
7162 @code{int} is implied by the absence of type specifiers, such a list of
7163 specifiers and qualifiers may be an attribute specifier list with no
7164 other specifiers or qualifiers.
7165
7166 At present, the first parameter in a function prototype must have some
7167 type specifier that is not an attribute specifier; this resolves an
7168 ambiguity in the interpretation of @code{void f(int
7169 (__attribute__((foo)) x))}, but is subject to change. At present, if
7170 the parentheses of a function declarator contain only attributes then
7171 those attributes are ignored, rather than yielding an error or warning
7172 or implying a single parameter of type int, but this is subject to
7173 change.
7174
7175 An attribute specifier list may appear immediately before a declarator
7176 (other than the first) in a comma-separated list of declarators in a
7177 declaration of more than one identifier using a single list of
7178 specifiers and qualifiers. Such attribute specifiers apply
7179 only to the identifier before whose declarator they appear. For
7180 example, in
7181
7182 @smallexample
7183 __attribute__((noreturn)) void d0 (void),
7184 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7185 d2 (void);
7186 @end smallexample
7187
7188 @noindent
7189 the @code{noreturn} attribute applies to all the functions
7190 declared; the @code{format} attribute only applies to @code{d1}.
7191
7192 An attribute specifier list may appear immediately before the comma,
7193 @code{=} or semicolon terminating the declaration of an identifier other
7194 than a function definition. Such attribute specifiers apply
7195 to the declared object or function. Where an
7196 assembler name for an object or function is specified (@pxref{Asm
7197 Labels}), the attribute must follow the @code{asm}
7198 specification.
7199
7200 An attribute specifier list may, in future, be permitted to appear after
7201 the declarator in a function definition (before any old-style parameter
7202 declarations or the function body).
7203
7204 Attribute specifiers may be mixed with type qualifiers appearing inside
7205 the @code{[]} of a parameter array declarator, in the C99 construct by
7206 which such qualifiers are applied to the pointer to which the array is
7207 implicitly converted. Such attribute specifiers apply to the pointer,
7208 not to the array, but at present this is not implemented and they are
7209 ignored.
7210
7211 An attribute specifier list may appear at the start of a nested
7212 declarator. At present, there are some limitations in this usage: the
7213 attributes correctly apply to the declarator, but for most individual
7214 attributes the semantics this implies are not implemented.
7215 When attribute specifiers follow the @code{*} of a pointer
7216 declarator, they may be mixed with any type qualifiers present.
7217 The following describes the formal semantics of this syntax. It makes the
7218 most sense if you are familiar with the formal specification of
7219 declarators in the ISO C standard.
7220
7221 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7222 D1}, where @code{T} contains declaration specifiers that specify a type
7223 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7224 contains an identifier @var{ident}. The type specified for @var{ident}
7225 for derived declarators whose type does not include an attribute
7226 specifier is as in the ISO C standard.
7227
7228 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7229 and the declaration @code{T D} specifies the type
7230 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7231 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7232 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7233
7234 If @code{D1} has the form @code{*
7235 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7236 declaration @code{T D} specifies the type
7237 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7238 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7239 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7240 @var{ident}.
7241
7242 For example,
7243
7244 @smallexample
7245 void (__attribute__((noreturn)) ****f) (void);
7246 @end smallexample
7247
7248 @noindent
7249 specifies the type ``pointer to pointer to pointer to pointer to
7250 non-returning function returning @code{void}''. As another example,
7251
7252 @smallexample
7253 char *__attribute__((aligned(8))) *f;
7254 @end smallexample
7255
7256 @noindent
7257 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7258 Note again that this does not work with most attributes; for example,
7259 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7260 is not yet supported.
7261
7262 For compatibility with existing code written for compiler versions that
7263 did not implement attributes on nested declarators, some laxity is
7264 allowed in the placing of attributes. If an attribute that only applies
7265 to types is applied to a declaration, it is treated as applying to
7266 the type of that declaration. If an attribute that only applies to
7267 declarations is applied to the type of a declaration, it is treated
7268 as applying to that declaration; and, for compatibility with code
7269 placing the attributes immediately before the identifier declared, such
7270 an attribute applied to a function return type is treated as
7271 applying to the function type, and such an attribute applied to an array
7272 element type is treated as applying to the array type. If an
7273 attribute that only applies to function types is applied to a
7274 pointer-to-function type, it is treated as applying to the pointer
7275 target type; if such an attribute is applied to a function return type
7276 that is not a pointer-to-function type, it is treated as applying
7277 to the function type.
7278
7279 @node Function Prototypes
7280 @section Prototypes and Old-Style Function Definitions
7281 @cindex function prototype declarations
7282 @cindex old-style function definitions
7283 @cindex promotion of formal parameters
7284
7285 GNU C extends ISO C to allow a function prototype to override a later
7286 old-style non-prototype definition. Consider the following example:
7287
7288 @smallexample
7289 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7290 #ifdef __STDC__
7291 #define P(x) x
7292 #else
7293 #define P(x) ()
7294 #endif
7295
7296 /* @r{Prototype function declaration.} */
7297 int isroot P((uid_t));
7298
7299 /* @r{Old-style function definition.} */
7300 int
7301 isroot (x) /* @r{??? lossage here ???} */
7302 uid_t x;
7303 @{
7304 return x == 0;
7305 @}
7306 @end smallexample
7307
7308 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7309 not allow this example, because subword arguments in old-style
7310 non-prototype definitions are promoted. Therefore in this example the
7311 function definition's argument is really an @code{int}, which does not
7312 match the prototype argument type of @code{short}.
7313
7314 This restriction of ISO C makes it hard to write code that is portable
7315 to traditional C compilers, because the programmer does not know
7316 whether the @code{uid_t} type is @code{short}, @code{int}, or
7317 @code{long}. Therefore, in cases like these GNU C allows a prototype
7318 to override a later old-style definition. More precisely, in GNU C, a
7319 function prototype argument type overrides the argument type specified
7320 by a later old-style definition if the former type is the same as the
7321 latter type before promotion. Thus in GNU C the above example is
7322 equivalent to the following:
7323
7324 @smallexample
7325 int isroot (uid_t);
7326
7327 int
7328 isroot (uid_t x)
7329 @{
7330 return x == 0;
7331 @}
7332 @end smallexample
7333
7334 @noindent
7335 GNU C++ does not support old-style function definitions, so this
7336 extension is irrelevant.
7337
7338 @node C++ Comments
7339 @section C++ Style Comments
7340 @cindex @code{//}
7341 @cindex C++ comments
7342 @cindex comments, C++ style
7343
7344 In GNU C, you may use C++ style comments, which start with @samp{//} and
7345 continue until the end of the line. Many other C implementations allow
7346 such comments, and they are included in the 1999 C standard. However,
7347 C++ style comments are not recognized if you specify an @option{-std}
7348 option specifying a version of ISO C before C99, or @option{-ansi}
7349 (equivalent to @option{-std=c90}).
7350
7351 @node Dollar Signs
7352 @section Dollar Signs in Identifier Names
7353 @cindex $
7354 @cindex dollar signs in identifier names
7355 @cindex identifier names, dollar signs in
7356
7357 In GNU C, you may normally use dollar signs in identifier names.
7358 This is because many traditional C implementations allow such identifiers.
7359 However, dollar signs in identifiers are not supported on a few target
7360 machines, typically because the target assembler does not allow them.
7361
7362 @node Character Escapes
7363 @section The Character @key{ESC} in Constants
7364
7365 You can use the sequence @samp{\e} in a string or character constant to
7366 stand for the ASCII character @key{ESC}.
7367
7368 @node Alignment
7369 @section Inquiring on Alignment of Types or Variables
7370 @cindex alignment
7371 @cindex type alignment
7372 @cindex variable alignment
7373
7374 The keyword @code{__alignof__} allows you to inquire about how an object
7375 is aligned, or the minimum alignment usually required by a type. Its
7376 syntax is just like @code{sizeof}.
7377
7378 For example, if the target machine requires a @code{double} value to be
7379 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7380 This is true on many RISC machines. On more traditional machine
7381 designs, @code{__alignof__ (double)} is 4 or even 2.
7382
7383 Some machines never actually require alignment; they allow reference to any
7384 data type even at an odd address. For these machines, @code{__alignof__}
7385 reports the smallest alignment that GCC gives the data type, usually as
7386 mandated by the target ABI.
7387
7388 If the operand of @code{__alignof__} is an lvalue rather than a type,
7389 its value is the required alignment for its type, taking into account
7390 any minimum alignment specified with GCC's @code{__attribute__}
7391 extension (@pxref{Variable Attributes}). For example, after this
7392 declaration:
7393
7394 @smallexample
7395 struct foo @{ int x; char y; @} foo1;
7396 @end smallexample
7397
7398 @noindent
7399 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7400 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7401
7402 It is an error to ask for the alignment of an incomplete type.
7403
7404
7405 @node Inline
7406 @section An Inline Function is As Fast As a Macro
7407 @cindex inline functions
7408 @cindex integrating function code
7409 @cindex open coding
7410 @cindex macros, inline alternative
7411
7412 By declaring a function inline, you can direct GCC to make
7413 calls to that function faster. One way GCC can achieve this is to
7414 integrate that function's code into the code for its callers. This
7415 makes execution faster by eliminating the function-call overhead; in
7416 addition, if any of the actual argument values are constant, their
7417 known values may permit simplifications at compile time so that not
7418 all of the inline function's code needs to be included. The effect on
7419 code size is less predictable; object code may be larger or smaller
7420 with function inlining, depending on the particular case. You can
7421 also direct GCC to try to integrate all ``simple enough'' functions
7422 into their callers with the option @option{-finline-functions}.
7423
7424 GCC implements three different semantics of declaring a function
7425 inline. One is available with @option{-std=gnu89} or
7426 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7427 on all inline declarations, another when
7428 @option{-std=c99}, @option{-std=c11},
7429 @option{-std=gnu99} or @option{-std=gnu11}
7430 (without @option{-fgnu89-inline}), and the third
7431 is used when compiling C++.
7432
7433 To declare a function inline, use the @code{inline} keyword in its
7434 declaration, like this:
7435
7436 @smallexample
7437 static inline int
7438 inc (int *a)
7439 @{
7440 return (*a)++;
7441 @}
7442 @end smallexample
7443
7444 If you are writing a header file to be included in ISO C90 programs, write
7445 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7446
7447 The three types of inlining behave similarly in two important cases:
7448 when the @code{inline} keyword is used on a @code{static} function,
7449 like the example above, and when a function is first declared without
7450 using the @code{inline} keyword and then is defined with
7451 @code{inline}, like this:
7452
7453 @smallexample
7454 extern int inc (int *a);
7455 inline int
7456 inc (int *a)
7457 @{
7458 return (*a)++;
7459 @}
7460 @end smallexample
7461
7462 In both of these common cases, the program behaves the same as if you
7463 had not used the @code{inline} keyword, except for its speed.
7464
7465 @cindex inline functions, omission of
7466 @opindex fkeep-inline-functions
7467 When a function is both inline and @code{static}, if all calls to the
7468 function are integrated into the caller, and the function's address is
7469 never used, then the function's own assembler code is never referenced.
7470 In this case, GCC does not actually output assembler code for the
7471 function, unless you specify the option @option{-fkeep-inline-functions}.
7472 If there is a nonintegrated call, then the function is compiled to
7473 assembler code as usual. The function must also be compiled as usual if
7474 the program refers to its address, because that can't be inlined.
7475
7476 @opindex Winline
7477 Note that certain usages in a function definition can make it unsuitable
7478 for inline substitution. Among these usages are: variadic functions,
7479 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7480 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7481 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7482 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7483 function marked @code{inline} could not be substituted, and gives the
7484 reason for the failure.
7485
7486 @cindex automatic @code{inline} for C++ member fns
7487 @cindex @code{inline} automatic for C++ member fns
7488 @cindex member fns, automatically @code{inline}
7489 @cindex C++ member fns, automatically @code{inline}
7490 @opindex fno-default-inline
7491 As required by ISO C++, GCC considers member functions defined within
7492 the body of a class to be marked inline even if they are
7493 not explicitly declared with the @code{inline} keyword. You can
7494 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7495 Options,,Options Controlling C++ Dialect}.
7496
7497 GCC does not inline any functions when not optimizing unless you specify
7498 the @samp{always_inline} attribute for the function, like this:
7499
7500 @smallexample
7501 /* @r{Prototype.} */
7502 inline void foo (const char) __attribute__((always_inline));
7503 @end smallexample
7504
7505 The remainder of this section is specific to GNU C90 inlining.
7506
7507 @cindex non-static inline function
7508 When an inline function is not @code{static}, then the compiler must assume
7509 that there may be calls from other source files; since a global symbol can
7510 be defined only once in any program, the function must not be defined in
7511 the other source files, so the calls therein cannot be integrated.
7512 Therefore, a non-@code{static} inline function is always compiled on its
7513 own in the usual fashion.
7514
7515 If you specify both @code{inline} and @code{extern} in the function
7516 definition, then the definition is used only for inlining. In no case
7517 is the function compiled on its own, not even if you refer to its
7518 address explicitly. Such an address becomes an external reference, as
7519 if you had only declared the function, and had not defined it.
7520
7521 This combination of @code{inline} and @code{extern} has almost the
7522 effect of a macro. The way to use it is to put a function definition in
7523 a header file with these keywords, and put another copy of the
7524 definition (lacking @code{inline} and @code{extern}) in a library file.
7525 The definition in the header file causes most calls to the function
7526 to be inlined. If any uses of the function remain, they refer to
7527 the single copy in the library.
7528
7529 @node Volatiles
7530 @section When is a Volatile Object Accessed?
7531 @cindex accessing volatiles
7532 @cindex volatile read
7533 @cindex volatile write
7534 @cindex volatile access
7535
7536 C has the concept of volatile objects. These are normally accessed by
7537 pointers and used for accessing hardware or inter-thread
7538 communication. The standard encourages compilers to refrain from
7539 optimizations concerning accesses to volatile objects, but leaves it
7540 implementation defined as to what constitutes a volatile access. The
7541 minimum requirement is that at a sequence point all previous accesses
7542 to volatile objects have stabilized and no subsequent accesses have
7543 occurred. Thus an implementation is free to reorder and combine
7544 volatile accesses that occur between sequence points, but cannot do
7545 so for accesses across a sequence point. The use of volatile does
7546 not allow you to violate the restriction on updating objects multiple
7547 times between two sequence points.
7548
7549 Accesses to non-volatile objects are not ordered with respect to
7550 volatile accesses. You cannot use a volatile object as a memory
7551 barrier to order a sequence of writes to non-volatile memory. For
7552 instance:
7553
7554 @smallexample
7555 int *ptr = @var{something};
7556 volatile int vobj;
7557 *ptr = @var{something};
7558 vobj = 1;
7559 @end smallexample
7560
7561 @noindent
7562 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7563 that the write to @var{*ptr} occurs by the time the update
7564 of @var{vobj} happens. If you need this guarantee, you must use
7565 a stronger memory barrier such as:
7566
7567 @smallexample
7568 int *ptr = @var{something};
7569 volatile int vobj;
7570 *ptr = @var{something};
7571 asm volatile ("" : : : "memory");
7572 vobj = 1;
7573 @end smallexample
7574
7575 A scalar volatile object is read when it is accessed in a void context:
7576
7577 @smallexample
7578 volatile int *src = @var{somevalue};
7579 *src;
7580 @end smallexample
7581
7582 Such expressions are rvalues, and GCC implements this as a
7583 read of the volatile object being pointed to.
7584
7585 Assignments are also expressions and have an rvalue. However when
7586 assigning to a scalar volatile, the volatile object is not reread,
7587 regardless of whether the assignment expression's rvalue is used or
7588 not. If the assignment's rvalue is used, the value is that assigned
7589 to the volatile object. For instance, there is no read of @var{vobj}
7590 in all the following cases:
7591
7592 @smallexample
7593 int obj;
7594 volatile int vobj;
7595 vobj = @var{something};
7596 obj = vobj = @var{something};
7597 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7598 obj = (@var{something}, vobj = @var{anotherthing});
7599 @end smallexample
7600
7601 If you need to read the volatile object after an assignment has
7602 occurred, you must use a separate expression with an intervening
7603 sequence point.
7604
7605 As bit-fields are not individually addressable, volatile bit-fields may
7606 be implicitly read when written to, or when adjacent bit-fields are
7607 accessed. Bit-field operations may be optimized such that adjacent
7608 bit-fields are only partially accessed, if they straddle a storage unit
7609 boundary. For these reasons it is unwise to use volatile bit-fields to
7610 access hardware.
7611
7612 @node Using Assembly Language with C
7613 @section How to Use Inline Assembly Language in C Code
7614 @cindex @code{asm} keyword
7615 @cindex assembly language in C
7616 @cindex inline assembly language
7617 @cindex mixing assembly language and C
7618
7619 The @code{asm} keyword allows you to embed assembler instructions
7620 within C code. GCC provides two forms of inline @code{asm}
7621 statements. A @dfn{basic @code{asm}} statement is one with no
7622 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7623 statement (@pxref{Extended Asm}) includes one or more operands.
7624 The extended form is preferred for mixing C and assembly language
7625 within a function, but to include assembly language at
7626 top level you must use basic @code{asm}.
7627
7628 You can also use the @code{asm} keyword to override the assembler name
7629 for a C symbol, or to place a C variable in a specific register.
7630
7631 @menu
7632 * Basic Asm:: Inline assembler without operands.
7633 * Extended Asm:: Inline assembler with operands.
7634 * Constraints:: Constraints for @code{asm} operands
7635 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7636 * Explicit Register Variables:: Defining variables residing in specified
7637 registers.
7638 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7639 @end menu
7640
7641 @node Basic Asm
7642 @subsection Basic Asm --- Assembler Instructions Without Operands
7643 @cindex basic @code{asm}
7644 @cindex assembly language in C, basic
7645
7646 A basic @code{asm} statement has the following syntax:
7647
7648 @example
7649 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7650 @end example
7651
7652 The @code{asm} keyword is a GNU extension.
7653 When writing code that can be compiled with @option{-ansi} and the
7654 various @option{-std} options, use @code{__asm__} instead of
7655 @code{asm} (@pxref{Alternate Keywords}).
7656
7657 @subsubheading Qualifiers
7658 @table @code
7659 @item volatile
7660 The optional @code{volatile} qualifier has no effect.
7661 All basic @code{asm} blocks are implicitly volatile.
7662 @end table
7663
7664 @subsubheading Parameters
7665 @table @var
7666
7667 @item AssemblerInstructions
7668 This is a literal string that specifies the assembler code. The string can
7669 contain any instructions recognized by the assembler, including directives.
7670 GCC does not parse the assembler instructions themselves and
7671 does not know what they mean or even whether they are valid assembler input.
7672
7673 You may place multiple assembler instructions together in a single @code{asm}
7674 string, separated by the characters normally used in assembly code for the
7675 system. A combination that works in most places is a newline to break the
7676 line, plus a tab character (written as @samp{\n\t}).
7677 Some assemblers allow semicolons as a line separator. However,
7678 note that some assembler dialects use semicolons to start a comment.
7679 @end table
7680
7681 @subsubheading Remarks
7682 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
7683 smaller, safer, and more efficient code, and in most cases it is a
7684 better solution than basic @code{asm}. However, there are two
7685 situations where only basic @code{asm} can be used:
7686
7687 @itemize @bullet
7688 @item
7689 Extended @code{asm} statements have to be inside a C
7690 function, so to write inline assembly language at file scope (``top-level''),
7691 outside of C functions, you must use basic @code{asm}.
7692 You can use this technique to emit assembler directives,
7693 define assembly language macros that can be invoked elsewhere in the file,
7694 or write entire functions in assembly language.
7695
7696 @item
7697 Functions declared
7698 with the @code{naked} attribute also require basic @code{asm}
7699 (@pxref{Function Attributes}).
7700 @end itemize
7701
7702 Safely accessing C data and calling functions from basic @code{asm} is more
7703 complex than it may appear. To access C data, it is better to use extended
7704 @code{asm}.
7705
7706 Do not expect a sequence of @code{asm} statements to remain perfectly
7707 consecutive after compilation. If certain instructions need to remain
7708 consecutive in the output, put them in a single multi-instruction @code{asm}
7709 statement. Note that GCC's optimizers can move @code{asm} statements
7710 relative to other code, including across jumps.
7711
7712 @code{asm} statements may not perform jumps into other @code{asm} statements.
7713 GCC does not know about these jumps, and therefore cannot take
7714 account of them when deciding how to optimize. Jumps from @code{asm} to C
7715 labels are only supported in extended @code{asm}.
7716
7717 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7718 assembly code when optimizing. This can lead to unexpected duplicate
7719 symbol errors during compilation if your assembly code defines symbols or
7720 labels.
7721
7722 @strong{Warning:} The C standards do not specify semantics for @code{asm},
7723 making it a potential source of incompatibilities between compilers. These
7724 incompatibilities may not produce compiler warnings/errors.
7725
7726 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
7727 means there is no way to communicate to the compiler what is happening
7728 inside them. GCC has no visibility of symbols in the @code{asm} and may
7729 discard them as unreferenced. It also does not know about side effects of
7730 the assembler code, such as modifications to memory or registers. Unlike
7731 some compilers, GCC assumes that no changes to general purpose registers
7732 occur. This assumption may change in a future release.
7733
7734 To avoid complications from future changes to the semantics and the
7735 compatibility issues between compilers, consider replacing basic @code{asm}
7736 with extended @code{asm}. See
7737 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
7738 from basic asm to extended asm} for information about how to perform this
7739 conversion.
7740
7741 The compiler copies the assembler instructions in a basic @code{asm}
7742 verbatim to the assembly language output file, without
7743 processing dialects or any of the @samp{%} operators that are available with
7744 extended @code{asm}. This results in minor differences between basic
7745 @code{asm} strings and extended @code{asm} templates. For example, to refer to
7746 registers you might use @samp{%eax} in basic @code{asm} and
7747 @samp{%%eax} in extended @code{asm}.
7748
7749 On targets such as x86 that support multiple assembler dialects,
7750 all basic @code{asm} blocks use the assembler dialect specified by the
7751 @option{-masm} command-line option (@pxref{x86 Options}).
7752 Basic @code{asm} provides no
7753 mechanism to provide different assembler strings for different dialects.
7754
7755 For basic @code{asm} with non-empty assembler string GCC assumes
7756 the assembler block does not change any general purpose registers,
7757 but it may read or write any globally accessible variable.
7758
7759 Here is an example of basic @code{asm} for i386:
7760
7761 @example
7762 /* Note that this code will not compile with -masm=intel */
7763 #define DebugBreak() asm("int $3")
7764 @end example
7765
7766 @node Extended Asm
7767 @subsection Extended Asm - Assembler Instructions with C Expression Operands
7768 @cindex extended @code{asm}
7769 @cindex assembly language in C, extended
7770
7771 With extended @code{asm} you can read and write C variables from
7772 assembler and perform jumps from assembler code to C labels.
7773 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
7774 the operand parameters after the assembler template:
7775
7776 @example
7777 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
7778 : @var{OutputOperands}
7779 @r{[} : @var{InputOperands}
7780 @r{[} : @var{Clobbers} @r{]} @r{]})
7781
7782 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
7783 :
7784 : @var{InputOperands}
7785 : @var{Clobbers}
7786 : @var{GotoLabels})
7787 @end example
7788
7789 The @code{asm} keyword is a GNU extension.
7790 When writing code that can be compiled with @option{-ansi} and the
7791 various @option{-std} options, use @code{__asm__} instead of
7792 @code{asm} (@pxref{Alternate Keywords}).
7793
7794 @subsubheading Qualifiers
7795 @table @code
7796
7797 @item volatile
7798 The typical use of extended @code{asm} statements is to manipulate input
7799 values to produce output values. However, your @code{asm} statements may
7800 also produce side effects. If so, you may need to use the @code{volatile}
7801 qualifier to disable certain optimizations. @xref{Volatile}.
7802
7803 @item goto
7804 This qualifier informs the compiler that the @code{asm} statement may
7805 perform a jump to one of the labels listed in the @var{GotoLabels}.
7806 @xref{GotoLabels}.
7807 @end table
7808
7809 @subsubheading Parameters
7810 @table @var
7811 @item AssemblerTemplate
7812 This is a literal string that is the template for the assembler code. It is a
7813 combination of fixed text and tokens that refer to the input, output,
7814 and goto parameters. @xref{AssemblerTemplate}.
7815
7816 @item OutputOperands
7817 A comma-separated list of the C variables modified by the instructions in the
7818 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
7819
7820 @item InputOperands
7821 A comma-separated list of C expressions read by the instructions in the
7822 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
7823
7824 @item Clobbers
7825 A comma-separated list of registers or other values changed by the
7826 @var{AssemblerTemplate}, beyond those listed as outputs.
7827 An empty list is permitted. @xref{Clobbers}.
7828
7829 @item GotoLabels
7830 When you are using the @code{goto} form of @code{asm}, this section contains
7831 the list of all C labels to which the code in the
7832 @var{AssemblerTemplate} may jump.
7833 @xref{GotoLabels}.
7834
7835 @code{asm} statements may not perform jumps into other @code{asm} statements,
7836 only to the listed @var{GotoLabels}.
7837 GCC's optimizers do not know about other jumps; therefore they cannot take
7838 account of them when deciding how to optimize.
7839 @end table
7840
7841 The total number of input + output + goto operands is limited to 30.
7842
7843 @subsubheading Remarks
7844 The @code{asm} statement allows you to include assembly instructions directly
7845 within C code. This may help you to maximize performance in time-sensitive
7846 code or to access assembly instructions that are not readily available to C
7847 programs.
7848
7849 Note that extended @code{asm} statements must be inside a function. Only
7850 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
7851 Functions declared with the @code{naked} attribute also require basic
7852 @code{asm} (@pxref{Function Attributes}).
7853
7854 While the uses of @code{asm} are many and varied, it may help to think of an
7855 @code{asm} statement as a series of low-level instructions that convert input
7856 parameters to output parameters. So a simple (if not particularly useful)
7857 example for i386 using @code{asm} might look like this:
7858
7859 @example
7860 int src = 1;
7861 int dst;
7862
7863 asm ("mov %1, %0\n\t"
7864 "add $1, %0"
7865 : "=r" (dst)
7866 : "r" (src));
7867
7868 printf("%d\n", dst);
7869 @end example
7870
7871 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
7872
7873 @anchor{Volatile}
7874 @subsubsection Volatile
7875 @cindex volatile @code{asm}
7876 @cindex @code{asm} volatile
7877
7878 GCC's optimizers sometimes discard @code{asm} statements if they determine
7879 there is no need for the output variables. Also, the optimizers may move
7880 code out of loops if they believe that the code will always return the same
7881 result (i.e. none of its input values change between calls). Using the
7882 @code{volatile} qualifier disables these optimizations. @code{asm} statements
7883 that have no output operands, including @code{asm goto} statements,
7884 are implicitly volatile.
7885
7886 This i386 code demonstrates a case that does not use (or require) the
7887 @code{volatile} qualifier. If it is performing assertion checking, this code
7888 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
7889 unreferenced by any code. As a result, the optimizers can discard the
7890 @code{asm} statement, which in turn removes the need for the entire
7891 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
7892 isn't needed you allow the optimizers to produce the most efficient code
7893 possible.
7894
7895 @example
7896 void DoCheck(uint32_t dwSomeValue)
7897 @{
7898 uint32_t dwRes;
7899
7900 // Assumes dwSomeValue is not zero.
7901 asm ("bsfl %1,%0"
7902 : "=r" (dwRes)
7903 : "r" (dwSomeValue)
7904 : "cc");
7905
7906 assert(dwRes > 3);
7907 @}
7908 @end example
7909
7910 The next example shows a case where the optimizers can recognize that the input
7911 (@code{dwSomeValue}) never changes during the execution of the function and can
7912 therefore move the @code{asm} outside the loop to produce more efficient code.
7913 Again, using @code{volatile} disables this type of optimization.
7914
7915 @example
7916 void do_print(uint32_t dwSomeValue)
7917 @{
7918 uint32_t dwRes;
7919
7920 for (uint32_t x=0; x < 5; x++)
7921 @{
7922 // Assumes dwSomeValue is not zero.
7923 asm ("bsfl %1,%0"
7924 : "=r" (dwRes)
7925 : "r" (dwSomeValue)
7926 : "cc");
7927
7928 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
7929 @}
7930 @}
7931 @end example
7932
7933 The following example demonstrates a case where you need to use the
7934 @code{volatile} qualifier.
7935 It uses the x86 @code{rdtsc} instruction, which reads
7936 the computer's time-stamp counter. Without the @code{volatile} qualifier,
7937 the optimizers might assume that the @code{asm} block will always return the
7938 same value and therefore optimize away the second call.
7939
7940 @example
7941 uint64_t msr;
7942
7943 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7944 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7945 "or %%rdx, %0" // 'Or' in the lower bits.
7946 : "=a" (msr)
7947 :
7948 : "rdx");
7949
7950 printf("msr: %llx\n", msr);
7951
7952 // Do other work...
7953
7954 // Reprint the timestamp
7955 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7956 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7957 "or %%rdx, %0" // 'Or' in the lower bits.
7958 : "=a" (msr)
7959 :
7960 : "rdx");
7961
7962 printf("msr: %llx\n", msr);
7963 @end example
7964
7965 GCC's optimizers do not treat this code like the non-volatile code in the
7966 earlier examples. They do not move it out of loops or omit it on the
7967 assumption that the result from a previous call is still valid.
7968
7969 Note that the compiler can move even volatile @code{asm} instructions relative
7970 to other code, including across jump instructions. For example, on many
7971 targets there is a system register that controls the rounding mode of
7972 floating-point operations. Setting it with a volatile @code{asm}, as in the
7973 following PowerPC example, does not work reliably.
7974
7975 @example
7976 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
7977 sum = x + y;
7978 @end example
7979
7980 The compiler may move the addition back before the volatile @code{asm}. To
7981 make it work as expected, add an artificial dependency to the @code{asm} by
7982 referencing a variable in the subsequent code, for example:
7983
7984 @example
7985 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
7986 sum = x + y;
7987 @end example
7988
7989 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7990 assembly code when optimizing. This can lead to unexpected duplicate symbol
7991 errors during compilation if your asm code defines symbols or labels.
7992 Using @samp{%=}
7993 (@pxref{AssemblerTemplate}) may help resolve this problem.
7994
7995 @anchor{AssemblerTemplate}
7996 @subsubsection Assembler Template
7997 @cindex @code{asm} assembler template
7998
7999 An assembler template is a literal string containing assembler instructions.
8000 The compiler replaces tokens in the template that refer
8001 to inputs, outputs, and goto labels,
8002 and then outputs the resulting string to the assembler. The
8003 string can contain any instructions recognized by the assembler, including
8004 directives. GCC does not parse the assembler instructions
8005 themselves and does not know what they mean or even whether they are valid
8006 assembler input. However, it does count the statements
8007 (@pxref{Size of an asm}).
8008
8009 You may place multiple assembler instructions together in a single @code{asm}
8010 string, separated by the characters normally used in assembly code for the
8011 system. A combination that works in most places is a newline to break the
8012 line, plus a tab character to move to the instruction field (written as
8013 @samp{\n\t}).
8014 Some assemblers allow semicolons as a line separator. However, note
8015 that some assembler dialects use semicolons to start a comment.
8016
8017 Do not expect a sequence of @code{asm} statements to remain perfectly
8018 consecutive after compilation, even when you are using the @code{volatile}
8019 qualifier. If certain instructions need to remain consecutive in the output,
8020 put them in a single multi-instruction asm statement.
8021
8022 Accessing data from C programs without using input/output operands (such as
8023 by using global symbols directly from the assembler template) may not work as
8024 expected. Similarly, calling functions directly from an assembler template
8025 requires a detailed understanding of the target assembler and ABI.
8026
8027 Since GCC does not parse the assembler template,
8028 it has no visibility of any
8029 symbols it references. This may result in GCC discarding those symbols as
8030 unreferenced unless they are also listed as input, output, or goto operands.
8031
8032 @subsubheading Special format strings
8033
8034 In addition to the tokens described by the input, output, and goto operands,
8035 these tokens have special meanings in the assembler template:
8036
8037 @table @samp
8038 @item %%
8039 Outputs a single @samp{%} into the assembler code.
8040
8041 @item %=
8042 Outputs a number that is unique to each instance of the @code{asm}
8043 statement in the entire compilation. This option is useful when creating local
8044 labels and referring to them multiple times in a single template that
8045 generates multiple assembler instructions.
8046
8047 @item %@{
8048 @itemx %|
8049 @itemx %@}
8050 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8051 into the assembler code. When unescaped, these characters have special
8052 meaning to indicate multiple assembler dialects, as described below.
8053 @end table
8054
8055 @subsubheading Multiple assembler dialects in @code{asm} templates
8056
8057 On targets such as x86, GCC supports multiple assembler dialects.
8058 The @option{-masm} option controls which dialect GCC uses as its
8059 default for inline assembler. The target-specific documentation for the
8060 @option{-masm} option contains the list of supported dialects, as well as the
8061 default dialect if the option is not specified. This information may be
8062 important to understand, since assembler code that works correctly when
8063 compiled using one dialect will likely fail if compiled using another.
8064 @xref{x86 Options}.
8065
8066 If your code needs to support multiple assembler dialects (for example, if
8067 you are writing public headers that need to support a variety of compilation
8068 options), use constructs of this form:
8069
8070 @example
8071 @{ dialect0 | dialect1 | dialect2... @}
8072 @end example
8073
8074 This construct outputs @code{dialect0}
8075 when using dialect #0 to compile the code,
8076 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8077 braces than the number of dialects the compiler supports, the construct
8078 outputs nothing.
8079
8080 For example, if an x86 compiler supports two dialects
8081 (@samp{att}, @samp{intel}), an
8082 assembler template such as this:
8083
8084 @example
8085 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8086 @end example
8087
8088 @noindent
8089 is equivalent to one of
8090
8091 @example
8092 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8093 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8094 @end example
8095
8096 Using that same compiler, this code:
8097
8098 @example
8099 "xchg@{l@}\t@{%%@}ebx, %1"
8100 @end example
8101
8102 @noindent
8103 corresponds to either
8104
8105 @example
8106 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8107 "xchg\tebx, %1" @r{/* intel dialect */}
8108 @end example
8109
8110 There is no support for nesting dialect alternatives.
8111
8112 @anchor{OutputOperands}
8113 @subsubsection Output Operands
8114 @cindex @code{asm} output operands
8115
8116 An @code{asm} statement has zero or more output operands indicating the names
8117 of C variables modified by the assembler code.
8118
8119 In this i386 example, @code{old} (referred to in the template string as
8120 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8121 (@code{%2}) is an input:
8122
8123 @example
8124 bool old;
8125
8126 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8127 "sbb %0,%0" // Use the CF to calculate old.
8128 : "=r" (old), "+rm" (*Base)
8129 : "Ir" (Offset)
8130 : "cc");
8131
8132 return old;
8133 @end example
8134
8135 Operands are separated by commas. Each operand has this format:
8136
8137 @example
8138 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8139 @end example
8140
8141 @table @var
8142 @item asmSymbolicName
8143 Specifies a symbolic name for the operand.
8144 Reference the name in the assembler template
8145 by enclosing it in square brackets
8146 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8147 that contains the definition. Any valid C variable name is acceptable,
8148 including names already defined in the surrounding code. No two operands
8149 within the same @code{asm} statement can use the same symbolic name.
8150
8151 When not using an @var{asmSymbolicName}, use the (zero-based) position
8152 of the operand
8153 in the list of operands in the assembler template. For example if there are
8154 three output operands, use @samp{%0} in the template to refer to the first,
8155 @samp{%1} for the second, and @samp{%2} for the third.
8156
8157 @item constraint
8158 A string constant specifying constraints on the placement of the operand;
8159 @xref{Constraints}, for details.
8160
8161 Output constraints must begin with either @samp{=} (a variable overwriting an
8162 existing value) or @samp{+} (when reading and writing). When using
8163 @samp{=}, do not assume the location contains the existing value
8164 on entry to the @code{asm}, except
8165 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8166
8167 After the prefix, there must be one or more additional constraints
8168 (@pxref{Constraints}) that describe where the value resides. Common
8169 constraints include @samp{r} for register and @samp{m} for memory.
8170 When you list more than one possible location (for example, @code{"=rm"}),
8171 the compiler chooses the most efficient one based on the current context.
8172 If you list as many alternates as the @code{asm} statement allows, you permit
8173 the optimizers to produce the best possible code.
8174 If you must use a specific register, but your Machine Constraints do not
8175 provide sufficient control to select the specific register you want,
8176 local register variables may provide a solution (@pxref{Local Register
8177 Variables}).
8178
8179 @item cvariablename
8180 Specifies a C lvalue expression to hold the output, typically a variable name.
8181 The enclosing parentheses are a required part of the syntax.
8182
8183 @end table
8184
8185 When the compiler selects the registers to use to
8186 represent the output operands, it does not use any of the clobbered registers
8187 (@pxref{Clobbers}).
8188
8189 Output operand expressions must be lvalues. The compiler cannot check whether
8190 the operands have data types that are reasonable for the instruction being
8191 executed. For output expressions that are not directly addressable (for
8192 example a bit-field), the constraint must allow a register. In that case, GCC
8193 uses the register as the output of the @code{asm}, and then stores that
8194 register into the output.
8195
8196 Operands using the @samp{+} constraint modifier count as two operands
8197 (that is, both as input and output) towards the total maximum of 30 operands
8198 per @code{asm} statement.
8199
8200 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8201 operands that must not overlap an input. Otherwise,
8202 GCC may allocate the output operand in the same register as an unrelated
8203 input operand, on the assumption that the assembler code consumes its
8204 inputs before producing outputs. This assumption may be false if the assembler
8205 code actually consists of more than one instruction.
8206
8207 The same problem can occur if one output parameter (@var{a}) allows a register
8208 constraint and another output parameter (@var{b}) allows a memory constraint.
8209 The code generated by GCC to access the memory address in @var{b} can contain
8210 registers which @emph{might} be shared by @var{a}, and GCC considers those
8211 registers to be inputs to the asm. As above, GCC assumes that such input
8212 registers are consumed before any outputs are written. This assumption may
8213 result in incorrect behavior if the asm writes to @var{a} before using
8214 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8215 ensures that modifying @var{a} does not affect the address referenced by
8216 @var{b}. Otherwise, the location of @var{b}
8217 is undefined if @var{a} is modified before using @var{b}.
8218
8219 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8220 instead of simply @samp{%2}). Typically these qualifiers are hardware
8221 dependent. The list of supported modifiers for x86 is found at
8222 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8223
8224 If the C code that follows the @code{asm} makes no use of any of the output
8225 operands, use @code{volatile} for the @code{asm} statement to prevent the
8226 optimizers from discarding the @code{asm} statement as unneeded
8227 (see @ref{Volatile}).
8228
8229 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8230 references the first output operand as @code{%0} (were there a second, it
8231 would be @code{%1}, etc). The number of the first input operand is one greater
8232 than that of the last output operand. In this i386 example, that makes
8233 @code{Mask} referenced as @code{%1}:
8234
8235 @example
8236 uint32_t Mask = 1234;
8237 uint32_t Index;
8238
8239 asm ("bsfl %1, %0"
8240 : "=r" (Index)
8241 : "r" (Mask)
8242 : "cc");
8243 @end example
8244
8245 That code overwrites the variable @code{Index} (@samp{=}),
8246 placing the value in a register (@samp{r}).
8247 Using the generic @samp{r} constraint instead of a constraint for a specific
8248 register allows the compiler to pick the register to use, which can result
8249 in more efficient code. This may not be possible if an assembler instruction
8250 requires a specific register.
8251
8252 The following i386 example uses the @var{asmSymbolicName} syntax.
8253 It produces the
8254 same result as the code above, but some may consider it more readable or more
8255 maintainable since reordering index numbers is not necessary when adding or
8256 removing operands. The names @code{aIndex} and @code{aMask}
8257 are only used in this example to emphasize which
8258 names get used where.
8259 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8260
8261 @example
8262 uint32_t Mask = 1234;
8263 uint32_t Index;
8264
8265 asm ("bsfl %[aMask], %[aIndex]"
8266 : [aIndex] "=r" (Index)
8267 : [aMask] "r" (Mask)
8268 : "cc");
8269 @end example
8270
8271 Here are some more examples of output operands.
8272
8273 @example
8274 uint32_t c = 1;
8275 uint32_t d;
8276 uint32_t *e = &c;
8277
8278 asm ("mov %[e], %[d]"
8279 : [d] "=rm" (d)
8280 : [e] "rm" (*e));
8281 @end example
8282
8283 Here, @code{d} may either be in a register or in memory. Since the compiler
8284 might already have the current value of the @code{uint32_t} location
8285 pointed to by @code{e}
8286 in a register, you can enable it to choose the best location
8287 for @code{d} by specifying both constraints.
8288
8289 @anchor{FlagOutputOperands}
8290 @subsubsection Flag Output Operands
8291 @cindex @code{asm} flag output operands
8292
8293 Some targets have a special register that holds the ``flags'' for the
8294 result of an operation or comparison. Normally, the contents of that
8295 register are either unmodifed by the asm, or the asm is considered to
8296 clobber the contents.
8297
8298 On some targets, a special form of output operand exists by which
8299 conditions in the flags register may be outputs of the asm. The set of
8300 conditions supported are target specific, but the general rule is that
8301 the output variable must be a scalar integer, and the value is boolean.
8302 When supported, the target defines the preprocessor symbol
8303 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8304
8305 Because of the special nature of the flag output operands, the constraint
8306 may not include alternatives.
8307
8308 Most often, the target has only one flags register, and thus is an implied
8309 operand of many instructions. In this case, the operand should not be
8310 referenced within the assembler template via @code{%0} etc, as there's
8311 no corresponding text in the assembly language.
8312
8313 @table @asis
8314 @item x86 family
8315 The flag output constraints for the x86 family are of the form
8316 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8317 conditions defined in the ISA manual for @code{j@var{cc}} or
8318 @code{set@var{cc}}.
8319
8320 @table @code
8321 @item a
8322 ``above'' or unsigned greater than
8323 @item ae
8324 ``above or equal'' or unsigned greater than or equal
8325 @item b
8326 ``below'' or unsigned less than
8327 @item be
8328 ``below or equal'' or unsigned less than or equal
8329 @item c
8330 carry flag set
8331 @item e
8332 @itemx z
8333 ``equal'' or zero flag set
8334 @item g
8335 signed greater than
8336 @item ge
8337 signed greater than or equal
8338 @item l
8339 signed less than
8340 @item le
8341 signed less than or equal
8342 @item o
8343 overflow flag set
8344 @item p
8345 parity flag set
8346 @item s
8347 sign flag set
8348 @item na
8349 @itemx nae
8350 @itemx nb
8351 @itemx nbe
8352 @itemx nc
8353 @itemx ne
8354 @itemx ng
8355 @itemx nge
8356 @itemx nl
8357 @itemx nle
8358 @itemx no
8359 @itemx np
8360 @itemx ns
8361 @itemx nz
8362 ``not'' @var{flag}, or inverted versions of those above
8363 @end table
8364
8365 @end table
8366
8367 @anchor{InputOperands}
8368 @subsubsection Input Operands
8369 @cindex @code{asm} input operands
8370 @cindex @code{asm} expressions
8371
8372 Input operands make values from C variables and expressions available to the
8373 assembly code.
8374
8375 Operands are separated by commas. Each operand has this format:
8376
8377 @example
8378 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8379 @end example
8380
8381 @table @var
8382 @item asmSymbolicName
8383 Specifies a symbolic name for the operand.
8384 Reference the name in the assembler template
8385 by enclosing it in square brackets
8386 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8387 that contains the definition. Any valid C variable name is acceptable,
8388 including names already defined in the surrounding code. No two operands
8389 within the same @code{asm} statement can use the same symbolic name.
8390
8391 When not using an @var{asmSymbolicName}, use the (zero-based) position
8392 of the operand
8393 in the list of operands in the assembler template. For example if there are
8394 two output operands and three inputs,
8395 use @samp{%2} in the template to refer to the first input operand,
8396 @samp{%3} for the second, and @samp{%4} for the third.
8397
8398 @item constraint
8399 A string constant specifying constraints on the placement of the operand;
8400 @xref{Constraints}, for details.
8401
8402 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8403 When you list more than one possible location (for example, @samp{"irm"}),
8404 the compiler chooses the most efficient one based on the current context.
8405 If you must use a specific register, but your Machine Constraints do not
8406 provide sufficient control to select the specific register you want,
8407 local register variables may provide a solution (@pxref{Local Register
8408 Variables}).
8409
8410 Input constraints can also be digits (for example, @code{"0"}). This indicates
8411 that the specified input must be in the same place as the output constraint
8412 at the (zero-based) index in the output constraint list.
8413 When using @var{asmSymbolicName} syntax for the output operands,
8414 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8415
8416 @item cexpression
8417 This is the C variable or expression being passed to the @code{asm} statement
8418 as input. The enclosing parentheses are a required part of the syntax.
8419
8420 @end table
8421
8422 When the compiler selects the registers to use to represent the input
8423 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8424
8425 If there are no output operands but there are input operands, place two
8426 consecutive colons where the output operands would go:
8427
8428 @example
8429 __asm__ ("some instructions"
8430 : /* No outputs. */
8431 : "r" (Offset / 8));
8432 @end example
8433
8434 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8435 (except for inputs tied to outputs). The compiler assumes that on exit from
8436 the @code{asm} statement these operands contain the same values as they
8437 had before executing the statement.
8438 It is @emph{not} possible to use clobbers
8439 to inform the compiler that the values in these inputs are changing. One
8440 common work-around is to tie the changing input variable to an output variable
8441 that never gets used. Note, however, that if the code that follows the
8442 @code{asm} statement makes no use of any of the output operands, the GCC
8443 optimizers may discard the @code{asm} statement as unneeded
8444 (see @ref{Volatile}).
8445
8446 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8447 instead of simply @samp{%2}). Typically these qualifiers are hardware
8448 dependent. The list of supported modifiers for x86 is found at
8449 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8450
8451 In this example using the fictitious @code{combine} instruction, the
8452 constraint @code{"0"} for input operand 1 says that it must occupy the same
8453 location as output operand 0. Only input operands may use numbers in
8454 constraints, and they must each refer to an output operand. Only a number (or
8455 the symbolic assembler name) in the constraint can guarantee that one operand
8456 is in the same place as another. The mere fact that @code{foo} is the value of
8457 both operands is not enough to guarantee that they are in the same place in
8458 the generated assembler code.
8459
8460 @example
8461 asm ("combine %2, %0"
8462 : "=r" (foo)
8463 : "0" (foo), "g" (bar));
8464 @end example
8465
8466 Here is an example using symbolic names.
8467
8468 @example
8469 asm ("cmoveq %1, %2, %[result]"
8470 : [result] "=r"(result)
8471 : "r" (test), "r" (new), "[result]" (old));
8472 @end example
8473
8474 @anchor{Clobbers}
8475 @subsubsection Clobbers
8476 @cindex @code{asm} clobbers
8477
8478 While the compiler is aware of changes to entries listed in the output
8479 operands, the inline @code{asm} code may modify more than just the outputs. For
8480 example, calculations may require additional registers, or the processor may
8481 overwrite a register as a side effect of a particular assembler instruction.
8482 In order to inform the compiler of these changes, list them in the clobber
8483 list. Clobber list items are either register names or the special clobbers
8484 (listed below). Each clobber list item is a string constant
8485 enclosed in double quotes and separated by commas.
8486
8487 Clobber descriptions may not in any way overlap with an input or output
8488 operand. For example, you may not have an operand describing a register class
8489 with one member when listing that register in the clobber list. Variables
8490 declared to live in specific registers (@pxref{Explicit Register
8491 Variables}) and used
8492 as @code{asm} input or output operands must have no part mentioned in the
8493 clobber description. In particular, there is no way to specify that input
8494 operands get modified without also specifying them as output operands.
8495
8496 When the compiler selects which registers to use to represent input and output
8497 operands, it does not use any of the clobbered registers. As a result,
8498 clobbered registers are available for any use in the assembler code.
8499
8500 Here is a realistic example for the VAX showing the use of clobbered
8501 registers:
8502
8503 @example
8504 asm volatile ("movc3 %0, %1, %2"
8505 : /* No outputs. */
8506 : "g" (from), "g" (to), "g" (count)
8507 : "r0", "r1", "r2", "r3", "r4", "r5");
8508 @end example
8509
8510 Also, there are two special clobber arguments:
8511
8512 @table @code
8513 @item "cc"
8514 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8515 register. On some machines, GCC represents the condition codes as a specific
8516 hardware register; @code{"cc"} serves to name this register.
8517 On other machines, condition code handling is different,
8518 and specifying @code{"cc"} has no effect. But
8519 it is valid no matter what the target.
8520
8521 @item "memory"
8522 The @code{"memory"} clobber tells the compiler that the assembly code
8523 performs memory
8524 reads or writes to items other than those listed in the input and output
8525 operands (for example, accessing the memory pointed to by one of the input
8526 parameters). To ensure memory contains correct values, GCC may need to flush
8527 specific register values to memory before executing the @code{asm}. Further,
8528 the compiler does not assume that any values read from memory before an
8529 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8530 needed.
8531 Using the @code{"memory"} clobber effectively forms a read/write
8532 memory barrier for the compiler.
8533
8534 Note that this clobber does not prevent the @emph{processor} from doing
8535 speculative reads past the @code{asm} statement. To prevent that, you need
8536 processor-specific fence instructions.
8537
8538 Flushing registers to memory has performance implications and may be an issue
8539 for time-sensitive code. You can use a trick to avoid this if the size of
8540 the memory being accessed is known at compile time. For example, if accessing
8541 ten bytes of a string, use a memory input like:
8542
8543 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8544
8545 @end table
8546
8547 @anchor{GotoLabels}
8548 @subsubsection Goto Labels
8549 @cindex @code{asm} goto labels
8550
8551 @code{asm goto} allows assembly code to jump to one or more C labels. The
8552 @var{GotoLabels} section in an @code{asm goto} statement contains
8553 a comma-separated
8554 list of all C labels to which the assembler code may jump. GCC assumes that
8555 @code{asm} execution falls through to the next statement (if this is not the
8556 case, consider using the @code{__builtin_unreachable} intrinsic after the
8557 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8558 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8559 Attributes}).
8560
8561 An @code{asm goto} statement cannot have outputs.
8562 This is due to an internal restriction of
8563 the compiler: control transfer instructions cannot have outputs.
8564 If the assembler code does modify anything, use the @code{"memory"} clobber
8565 to force the
8566 optimizers to flush all register values to memory and reload them if
8567 necessary after the @code{asm} statement.
8568
8569 Also note that an @code{asm goto} statement is always implicitly
8570 considered volatile.
8571
8572 To reference a label in the assembler template,
8573 prefix it with @samp{%l} (lowercase @samp{L}) followed
8574 by its (zero-based) position in @var{GotoLabels} plus the number of input
8575 operands. For example, if the @code{asm} has three inputs and references two
8576 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8577
8578 Alternately, you can reference labels using the actual C label name enclosed
8579 in brackets. For example, to reference a label named @code{carry}, you can
8580 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8581 section when using this approach.
8582
8583 Here is an example of @code{asm goto} for i386:
8584
8585 @example
8586 asm goto (
8587 "btl %1, %0\n\t"
8588 "jc %l2"
8589 : /* No outputs. */
8590 : "r" (p1), "r" (p2)
8591 : "cc"
8592 : carry);
8593
8594 return 0;
8595
8596 carry:
8597 return 1;
8598 @end example
8599
8600 The following example shows an @code{asm goto} that uses a memory clobber.
8601
8602 @example
8603 int frob(int x)
8604 @{
8605 int y;
8606 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8607 : /* No outputs. */
8608 : "r"(x), "r"(&y)
8609 : "r5", "memory"
8610 : error);
8611 return y;
8612 error:
8613 return -1;
8614 @}
8615 @end example
8616
8617 @anchor{x86Operandmodifiers}
8618 @subsubsection x86 Operand Modifiers
8619
8620 References to input, output, and goto operands in the assembler template
8621 of extended @code{asm} statements can use
8622 modifiers to affect the way the operands are formatted in
8623 the code output to the assembler. For example, the
8624 following code uses the @samp{h} and @samp{b} modifiers for x86:
8625
8626 @example
8627 uint16_t num;
8628 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8629 @end example
8630
8631 @noindent
8632 These modifiers generate this assembler code:
8633
8634 @example
8635 xchg %ah, %al
8636 @end example
8637
8638 The rest of this discussion uses the following code for illustrative purposes.
8639
8640 @example
8641 int main()
8642 @{
8643 int iInt = 1;
8644
8645 top:
8646
8647 asm volatile goto ("some assembler instructions here"
8648 : /* No outputs. */
8649 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8650 : /* No clobbers. */
8651 : top);
8652 @}
8653 @end example
8654
8655 With no modifiers, this is what the output from the operands would be for the
8656 @samp{att} and @samp{intel} dialects of assembler:
8657
8658 @multitable {Operand} {masm=att} {OFFSET FLAT:.L2}
8659 @headitem Operand @tab masm=att @tab masm=intel
8660 @item @code{%0}
8661 @tab @code{%eax}
8662 @tab @code{eax}
8663 @item @code{%1}
8664 @tab @code{$2}
8665 @tab @code{2}
8666 @item @code{%2}
8667 @tab @code{$.L2}
8668 @tab @code{OFFSET FLAT:.L2}
8669 @end multitable
8670
8671 The table below shows the list of supported modifiers and their effects.
8672
8673 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {masm=att} {masm=intel}
8674 @headitem Modifier @tab Description @tab Operand @tab @option{masm=att} @tab @option{masm=intel}
8675 @item @code{z}
8676 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8677 @tab @code{%z0}
8678 @tab @code{l}
8679 @tab
8680 @item @code{b}
8681 @tab Print the QImode name of the register.
8682 @tab @code{%b0}
8683 @tab @code{%al}
8684 @tab @code{al}
8685 @item @code{h}
8686 @tab Print the QImode name for a ``high'' register.
8687 @tab @code{%h0}
8688 @tab @code{%ah}
8689 @tab @code{ah}
8690 @item @code{w}
8691 @tab Print the HImode name of the register.
8692 @tab @code{%w0}
8693 @tab @code{%ax}
8694 @tab @code{ax}
8695 @item @code{k}
8696 @tab Print the SImode name of the register.
8697 @tab @code{%k0}
8698 @tab @code{%eax}
8699 @tab @code{eax}
8700 @item @code{q}
8701 @tab Print the DImode name of the register.
8702 @tab @code{%q0}
8703 @tab @code{%rax}
8704 @tab @code{rax}
8705 @item @code{l}
8706 @tab Print the label name with no punctuation.
8707 @tab @code{%l2}
8708 @tab @code{.L2}
8709 @tab @code{.L2}
8710 @item @code{c}
8711 @tab Require a constant operand and print the constant expression with no punctuation.
8712 @tab @code{%c1}
8713 @tab @code{2}
8714 @tab @code{2}
8715 @end multitable
8716
8717 @anchor{x86floatingpointasmoperands}
8718 @subsubsection x86 Floating-Point @code{asm} Operands
8719
8720 On x86 targets, there are several rules on the usage of stack-like registers
8721 in the operands of an @code{asm}. These rules apply only to the operands
8722 that are stack-like registers:
8723
8724 @enumerate
8725 @item
8726 Given a set of input registers that die in an @code{asm}, it is
8727 necessary to know which are implicitly popped by the @code{asm}, and
8728 which must be explicitly popped by GCC@.
8729
8730 An input register that is implicitly popped by the @code{asm} must be
8731 explicitly clobbered, unless it is constrained to match an
8732 output operand.
8733
8734 @item
8735 For any input register that is implicitly popped by an @code{asm}, it is
8736 necessary to know how to adjust the stack to compensate for the pop.
8737 If any non-popped input is closer to the top of the reg-stack than
8738 the implicitly popped register, it would not be possible to know what the
8739 stack looked like---it's not clear how the rest of the stack ``slides
8740 up''.
8741
8742 All implicitly popped input registers must be closer to the top of
8743 the reg-stack than any input that is not implicitly popped.
8744
8745 It is possible that if an input dies in an @code{asm}, the compiler might
8746 use the input register for an output reload. Consider this example:
8747
8748 @smallexample
8749 asm ("foo" : "=t" (a) : "f" (b));
8750 @end smallexample
8751
8752 @noindent
8753 This code says that input @code{b} is not popped by the @code{asm}, and that
8754 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
8755 deeper after the @code{asm} than it was before. But, it is possible that
8756 reload may think that it can use the same register for both the input and
8757 the output.
8758
8759 To prevent this from happening,
8760 if any input operand uses the @samp{f} constraint, all output register
8761 constraints must use the @samp{&} early-clobber modifier.
8762
8763 The example above is correctly written as:
8764
8765 @smallexample
8766 asm ("foo" : "=&t" (a) : "f" (b));
8767 @end smallexample
8768
8769 @item
8770 Some operands need to be in particular places on the stack. All
8771 output operands fall in this category---GCC has no other way to
8772 know which registers the outputs appear in unless you indicate
8773 this in the constraints.
8774
8775 Output operands must specifically indicate which register an output
8776 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
8777 constraints must select a class with a single register.
8778
8779 @item
8780 Output operands may not be ``inserted'' between existing stack registers.
8781 Since no 387 opcode uses a read/write operand, all output operands
8782 are dead before the @code{asm}, and are pushed by the @code{asm}.
8783 It makes no sense to push anywhere but the top of the reg-stack.
8784
8785 Output operands must start at the top of the reg-stack: output
8786 operands may not ``skip'' a register.
8787
8788 @item
8789 Some @code{asm} statements may need extra stack space for internal
8790 calculations. This can be guaranteed by clobbering stack registers
8791 unrelated to the inputs and outputs.
8792
8793 @end enumerate
8794
8795 This @code{asm}
8796 takes one input, which is internally popped, and produces two outputs.
8797
8798 @smallexample
8799 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
8800 @end smallexample
8801
8802 @noindent
8803 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
8804 and replaces them with one output. The @code{st(1)} clobber is necessary
8805 for the compiler to know that @code{fyl2xp1} pops both inputs.
8806
8807 @smallexample
8808 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
8809 @end smallexample
8810
8811 @lowersections
8812 @include md.texi
8813 @raisesections
8814
8815 @node Asm Labels
8816 @subsection Controlling Names Used in Assembler Code
8817 @cindex assembler names for identifiers
8818 @cindex names used in assembler code
8819 @cindex identifiers, names in assembler code
8820
8821 You can specify the name to be used in the assembler code for a C
8822 function or variable by writing the @code{asm} (or @code{__asm__})
8823 keyword after the declarator.
8824 It is up to you to make sure that the assembler names you choose do not
8825 conflict with any other assembler symbols, or reference registers.
8826
8827 @subsubheading Assembler names for data:
8828
8829 This sample shows how to specify the assembler name for data:
8830
8831 @smallexample
8832 int foo asm ("myfoo") = 2;
8833 @end smallexample
8834
8835 @noindent
8836 This specifies that the name to be used for the variable @code{foo} in
8837 the assembler code should be @samp{myfoo} rather than the usual
8838 @samp{_foo}.
8839
8840 On systems where an underscore is normally prepended to the name of a C
8841 variable, this feature allows you to define names for the
8842 linker that do not start with an underscore.
8843
8844 GCC does not support using this feature with a non-static local variable
8845 since such variables do not have assembler names. If you are
8846 trying to put the variable in a particular register, see
8847 @ref{Explicit Register Variables}.
8848
8849 @subsubheading Assembler names for functions:
8850
8851 To specify the assembler name for functions, write a declaration for the
8852 function before its definition and put @code{asm} there, like this:
8853
8854 @smallexample
8855 int func (int x, int y) asm ("MYFUNC");
8856
8857 int func (int x, int y)
8858 @{
8859 /* @r{@dots{}} */
8860 @end smallexample
8861
8862 @noindent
8863 This specifies that the name to be used for the function @code{func} in
8864 the assembler code should be @code{MYFUNC}.
8865
8866 @node Explicit Register Variables
8867 @subsection Variables in Specified Registers
8868 @anchor{Explicit Reg Vars}
8869 @cindex explicit register variables
8870 @cindex variables in specified registers
8871 @cindex specified registers
8872
8873 GNU C allows you to associate specific hardware registers with C
8874 variables. In almost all cases, allowing the compiler to assign
8875 registers produces the best code. However under certain unusual
8876 circumstances, more precise control over the variable storage is
8877 required.
8878
8879 Both global and local variables can be associated with a register. The
8880 consequences of performing this association are very different between
8881 the two, as explained in the sections below.
8882
8883 @menu
8884 * Global Register Variables:: Variables declared at global scope.
8885 * Local Register Variables:: Variables declared within a function.
8886 @end menu
8887
8888 @node Global Register Variables
8889 @subsubsection Defining Global Register Variables
8890 @anchor{Global Reg Vars}
8891 @cindex global register variables
8892 @cindex registers, global variables in
8893 @cindex registers, global allocation
8894
8895 You can define a global register variable and associate it with a specified
8896 register like this:
8897
8898 @smallexample
8899 register int *foo asm ("r12");
8900 @end smallexample
8901
8902 @noindent
8903 Here @code{r12} is the name of the register that should be used. Note that
8904 this is the same syntax used for defining local register variables, but for
8905 a global variable the declaration appears outside a function. The
8906 @code{register} keyword is required, and cannot be combined with
8907 @code{static}. The register name must be a valid register name for the
8908 target platform.
8909
8910 Registers are a scarce resource on most systems and allowing the
8911 compiler to manage their usage usually results in the best code. However,
8912 under special circumstances it can make sense to reserve some globally.
8913 For example this may be useful in programs such as programming language
8914 interpreters that have a couple of global variables that are accessed
8915 very often.
8916
8917 After defining a global register variable, for the current compilation
8918 unit:
8919
8920 @itemize @bullet
8921 @item The register is reserved entirely for this use, and will not be
8922 allocated for any other purpose.
8923 @item The register is not saved and restored by any functions.
8924 @item Stores into this register are never deleted even if they appear to be
8925 dead, but references may be deleted, moved or simplified.
8926 @end itemize
8927
8928 Note that these points @emph{only} apply to code that is compiled with the
8929 definition. The behavior of code that is merely linked in (for example
8930 code from libraries) is not affected.
8931
8932 If you want to recompile source files that do not actually use your global
8933 register variable so they do not use the specified register for any other
8934 purpose, you need not actually add the global register declaration to
8935 their source code. It suffices to specify the compiler option
8936 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
8937 register.
8938
8939 @subsubheading Declaring the variable
8940
8941 Global register variables can not have initial values, because an
8942 executable file has no means to supply initial contents for a register.
8943
8944 When selecting a register, choose one that is normally saved and
8945 restored by function calls on your machine. This ensures that code
8946 which is unaware of this reservation (such as library routines) will
8947 restore it before returning.
8948
8949 On machines with register windows, be sure to choose a global
8950 register that is not affected magically by the function call mechanism.
8951
8952 @subsubheading Using the variable
8953
8954 @cindex @code{qsort}, and global register variables
8955 When calling routines that are not aware of the reservation, be
8956 cautious if those routines call back into code which uses them. As an
8957 example, if you call the system library version of @code{qsort}, it may
8958 clobber your registers during execution, but (if you have selected
8959 appropriate registers) it will restore them before returning. However
8960 it will @emph{not} restore them before calling @code{qsort}'s comparison
8961 function. As a result, global values will not reliably be available to
8962 the comparison function unless the @code{qsort} function itself is rebuilt.
8963
8964 Similarly, it is not safe to access the global register variables from signal
8965 handlers or from more than one thread of control. Unless you recompile
8966 them specially for the task at hand, the system library routines may
8967 temporarily use the register for other things.
8968
8969 @cindex register variable after @code{longjmp}
8970 @cindex global register after @code{longjmp}
8971 @cindex value after @code{longjmp}
8972 @findex longjmp
8973 @findex setjmp
8974 On most machines, @code{longjmp} restores to each global register
8975 variable the value it had at the time of the @code{setjmp}. On some
8976 machines, however, @code{longjmp} does not change the value of global
8977 register variables. To be portable, the function that called @code{setjmp}
8978 should make other arrangements to save the values of the global register
8979 variables, and to restore them in a @code{longjmp}. This way, the same
8980 thing happens regardless of what @code{longjmp} does.
8981
8982 Eventually there may be a way of asking the compiler to choose a register
8983 automatically, but first we need to figure out how it should choose and
8984 how to enable you to guide the choice. No solution is evident.
8985
8986 @node Local Register Variables
8987 @subsubsection Specifying Registers for Local Variables
8988 @anchor{Local Reg Vars}
8989 @cindex local variables, specifying registers
8990 @cindex specifying registers for local variables
8991 @cindex registers for local variables
8992
8993 You can define a local register variable and associate it with a specified
8994 register like this:
8995
8996 @smallexample
8997 register int *foo asm ("r12");
8998 @end smallexample
8999
9000 @noindent
9001 Here @code{r12} is the name of the register that should be used. Note
9002 that this is the same syntax used for defining global register variables,
9003 but for a local variable the declaration appears within a function. The
9004 @code{register} keyword is required, and cannot be combined with
9005 @code{static}. The register name must be a valid register name for the
9006 target platform.
9007
9008 As with global register variables, it is recommended that you choose
9009 a register that is normally saved and restored by function calls on your
9010 machine, so that calls to library routines will not clobber it.
9011
9012 The only supported use for this feature is to specify registers
9013 for input and output operands when calling Extended @code{asm}
9014 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9015 particular machine don't provide sufficient control to select the desired
9016 register. To force an operand into a register, create a local variable
9017 and specify the register name after the variable's declaration. Then use
9018 the local variable for the @code{asm} operand and specify any constraint
9019 letter that matches the register:
9020
9021 @smallexample
9022 register int *p1 asm ("r0") = @dots{};
9023 register int *p2 asm ("r1") = @dots{};
9024 register int *result asm ("r0");
9025 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9026 @end smallexample
9027
9028 @emph{Warning:} In the above example, be aware that a register (for example
9029 @code{r0}) can be call-clobbered by subsequent code, including function
9030 calls and library calls for arithmetic operators on other variables (for
9031 example the initialization of @code{p2}). In this case, use temporary
9032 variables for expressions between the register assignments:
9033
9034 @smallexample
9035 int t1 = @dots{};
9036 register int *p1 asm ("r0") = @dots{};
9037 register int *p2 asm ("r1") = t1;
9038 register int *result asm ("r0");
9039 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9040 @end smallexample
9041
9042 Defining a register variable does not reserve the register. Other than
9043 when invoking the Extended @code{asm}, the contents of the specified
9044 register are not guaranteed. For this reason, the following uses
9045 are explicitly @emph{not} supported. If they appear to work, it is only
9046 happenstance, and may stop working as intended due to (seemingly)
9047 unrelated changes in surrounding code, or even minor changes in the
9048 optimization of a future version of gcc:
9049
9050 @itemize @bullet
9051 @item Passing parameters to or from Basic @code{asm}
9052 @item Passing parameters to or from Extended @code{asm} without using input
9053 or output operands.
9054 @item Passing parameters to or from routines written in assembler (or
9055 other languages) using non-standard calling conventions.
9056 @end itemize
9057
9058 Some developers use Local Register Variables in an attempt to improve
9059 gcc's allocation of registers, especially in large functions. In this
9060 case the register name is essentially a hint to the register allocator.
9061 While in some instances this can generate better code, improvements are
9062 subject to the whims of the allocator/optimizers. Since there are no
9063 guarantees that your improvements won't be lost, this usage of Local
9064 Register Variables is discouraged.
9065
9066 On the MIPS platform, there is related use for local register variables
9067 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9068 Defining coprocessor specifics for MIPS targets, gccint,
9069 GNU Compiler Collection (GCC) Internals}).
9070
9071 @node Size of an asm
9072 @subsection Size of an @code{asm}
9073
9074 Some targets require that GCC track the size of each instruction used
9075 in order to generate correct code. Because the final length of the
9076 code produced by an @code{asm} statement is only known by the
9077 assembler, GCC must make an estimate as to how big it will be. It
9078 does this by counting the number of instructions in the pattern of the
9079 @code{asm} and multiplying that by the length of the longest
9080 instruction supported by that processor. (When working out the number
9081 of instructions, it assumes that any occurrence of a newline or of
9082 whatever statement separator character is supported by the assembler --
9083 typically @samp{;} --- indicates the end of an instruction.)
9084
9085 Normally, GCC's estimate is adequate to ensure that correct
9086 code is generated, but it is possible to confuse the compiler if you use
9087 pseudo instructions or assembler macros that expand into multiple real
9088 instructions, or if you use assembler directives that expand to more
9089 space in the object file than is needed for a single instruction.
9090 If this happens then the assembler may produce a diagnostic saying that
9091 a label is unreachable.
9092
9093 @node Alternate Keywords
9094 @section Alternate Keywords
9095 @cindex alternate keywords
9096 @cindex keywords, alternate
9097
9098 @option{-ansi} and the various @option{-std} options disable certain
9099 keywords. This causes trouble when you want to use GNU C extensions, or
9100 a general-purpose header file that should be usable by all programs,
9101 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9102 @code{inline} are not available in programs compiled with
9103 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9104 program compiled with @option{-std=c99} or @option{-std=c11}). The
9105 ISO C99 keyword
9106 @code{restrict} is only available when @option{-std=gnu99} (which will
9107 eventually be the default) or @option{-std=c99} (or the equivalent
9108 @option{-std=iso9899:1999}), or an option for a later standard
9109 version, is used.
9110
9111 The way to solve these problems is to put @samp{__} at the beginning and
9112 end of each problematical keyword. For example, use @code{__asm__}
9113 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9114
9115 Other C compilers won't accept these alternative keywords; if you want to
9116 compile with another compiler, you can define the alternate keywords as
9117 macros to replace them with the customary keywords. It looks like this:
9118
9119 @smallexample
9120 #ifndef __GNUC__
9121 #define __asm__ asm
9122 #endif
9123 @end smallexample
9124
9125 @findex __extension__
9126 @opindex pedantic
9127 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9128 You can
9129 prevent such warnings within one expression by writing
9130 @code{__extension__} before the expression. @code{__extension__} has no
9131 effect aside from this.
9132
9133 @node Incomplete Enums
9134 @section Incomplete @code{enum} Types
9135
9136 You can define an @code{enum} tag without specifying its possible values.
9137 This results in an incomplete type, much like what you get if you write
9138 @code{struct foo} without describing the elements. A later declaration
9139 that does specify the possible values completes the type.
9140
9141 You can't allocate variables or storage using the type while it is
9142 incomplete. However, you can work with pointers to that type.
9143
9144 This extension may not be very useful, but it makes the handling of
9145 @code{enum} more consistent with the way @code{struct} and @code{union}
9146 are handled.
9147
9148 This extension is not supported by GNU C++.
9149
9150 @node Function Names
9151 @section Function Names as Strings
9152 @cindex @code{__func__} identifier
9153 @cindex @code{__FUNCTION__} identifier
9154 @cindex @code{__PRETTY_FUNCTION__} identifier
9155
9156 GCC provides three magic constants that hold the name of the current
9157 function as a string. In C++11 and later modes, all three are treated
9158 as constant expressions and can be used in @code{constexpr} constexts.
9159 The first of these constants is @code{__func__}, which is part of
9160 the C99 standard:
9161
9162 The identifier @code{__func__} is implicitly declared by the translator
9163 as if, immediately following the opening brace of each function
9164 definition, the declaration
9165
9166 @smallexample
9167 static const char __func__[] = "function-name";
9168 @end smallexample
9169
9170 @noindent
9171 appeared, where function-name is the name of the lexically-enclosing
9172 function. This name is the unadorned name of the function. As an
9173 extension, at file (or, in C++, namespace scope), @code{__func__}
9174 evaluates to the empty string.
9175
9176 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9177 backward compatibility with old versions of GCC.
9178
9179 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9180 @code{__func__}, except that at file (or, in C++, namespace scope),
9181 it evaluates to the string @code{"top level"}. In addition, in C++,
9182 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9183 well as its bare name. For example, this program:
9184
9185 @smallexample
9186 extern "C" int printf (const char *, ...);
9187
9188 class a @{
9189 public:
9190 void sub (int i)
9191 @{
9192 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9193 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9194 @}
9195 @};
9196
9197 int
9198 main (void)
9199 @{
9200 a ax;
9201 ax.sub (0);
9202 return 0;
9203 @}
9204 @end smallexample
9205
9206 @noindent
9207 gives this output:
9208
9209 @smallexample
9210 __FUNCTION__ = sub
9211 __PRETTY_FUNCTION__ = void a::sub(int)
9212 @end smallexample
9213
9214 These identifiers are variables, not preprocessor macros, and may not
9215 be used to initialize @code{char} arrays or be concatenated with string
9216 literals.
9217
9218 @node Return Address
9219 @section Getting the Return or Frame Address of a Function
9220
9221 These functions may be used to get information about the callers of a
9222 function.
9223
9224 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9225 This function returns the return address of the current function, or of
9226 one of its callers. The @var{level} argument is number of frames to
9227 scan up the call stack. A value of @code{0} yields the return address
9228 of the current function, a value of @code{1} yields the return address
9229 of the caller of the current function, and so forth. When inlining
9230 the expected behavior is that the function returns the address of
9231 the function that is returned to. To work around this behavior use
9232 the @code{noinline} function attribute.
9233
9234 The @var{level} argument must be a constant integer.
9235
9236 On some machines it may be impossible to determine the return address of
9237 any function other than the current one; in such cases, or when the top
9238 of the stack has been reached, this function returns @code{0} or a
9239 random value. In addition, @code{__builtin_frame_address} may be used
9240 to determine if the top of the stack has been reached.
9241
9242 Additional post-processing of the returned value may be needed, see
9243 @code{__builtin_extract_return_addr}.
9244
9245 Calling this function with a nonzero argument can have unpredictable
9246 effects, including crashing the calling program. As a result, calls
9247 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9248 option is in effect. Such calls should only be made in debugging
9249 situations.
9250 @end deftypefn
9251
9252 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9253 The address as returned by @code{__builtin_return_address} may have to be fed
9254 through this function to get the actual encoded address. For example, on the
9255 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9256 platforms an offset has to be added for the true next instruction to be
9257 executed.
9258
9259 If no fixup is needed, this function simply passes through @var{addr}.
9260 @end deftypefn
9261
9262 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9263 This function does the reverse of @code{__builtin_extract_return_addr}.
9264 @end deftypefn
9265
9266 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9267 This function is similar to @code{__builtin_return_address}, but it
9268 returns the address of the function frame rather than the return address
9269 of the function. Calling @code{__builtin_frame_address} with a value of
9270 @code{0} yields the frame address of the current function, a value of
9271 @code{1} yields the frame address of the caller of the current function,
9272 and so forth.
9273
9274 The frame is the area on the stack that holds local variables and saved
9275 registers. The frame address is normally the address of the first word
9276 pushed on to the stack by the function. However, the exact definition
9277 depends upon the processor and the calling convention. If the processor
9278 has a dedicated frame pointer register, and the function has a frame,
9279 then @code{__builtin_frame_address} returns the value of the frame
9280 pointer register.
9281
9282 On some machines it may be impossible to determine the frame address of
9283 any function other than the current one; in such cases, or when the top
9284 of the stack has been reached, this function returns @code{0} if
9285 the first frame pointer is properly initialized by the startup code.
9286
9287 Calling this function with a nonzero argument can have unpredictable
9288 effects, including crashing the calling program. As a result, calls
9289 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9290 option is in effect. Such calls should only be made in debugging
9291 situations.
9292 @end deftypefn
9293
9294 @node Vector Extensions
9295 @section Using Vector Instructions through Built-in Functions
9296
9297 On some targets, the instruction set contains SIMD vector instructions which
9298 operate on multiple values contained in one large register at the same time.
9299 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9300 this way.
9301
9302 The first step in using these extensions is to provide the necessary data
9303 types. This should be done using an appropriate @code{typedef}:
9304
9305 @smallexample
9306 typedef int v4si __attribute__ ((vector_size (16)));
9307 @end smallexample
9308
9309 @noindent
9310 The @code{int} type specifies the base type, while the attribute specifies
9311 the vector size for the variable, measured in bytes. For example, the
9312 declaration above causes the compiler to set the mode for the @code{v4si}
9313 type to be 16 bytes wide and divided into @code{int} sized units. For
9314 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9315 corresponding mode of @code{foo} is @acronym{V4SI}.
9316
9317 The @code{vector_size} attribute is only applicable to integral and
9318 float scalars, although arrays, pointers, and function return values
9319 are allowed in conjunction with this construct. Only sizes that are
9320 a power of two are currently allowed.
9321
9322 All the basic integer types can be used as base types, both as signed
9323 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9324 @code{long long}. In addition, @code{float} and @code{double} can be
9325 used to build floating-point vector types.
9326
9327 Specifying a combination that is not valid for the current architecture
9328 causes GCC to synthesize the instructions using a narrower mode.
9329 For example, if you specify a variable of type @code{V4SI} and your
9330 architecture does not allow for this specific SIMD type, GCC
9331 produces code that uses 4 @code{SIs}.
9332
9333 The types defined in this manner can be used with a subset of normal C
9334 operations. Currently, GCC allows using the following operators
9335 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9336
9337 The operations behave like C++ @code{valarrays}. Addition is defined as
9338 the addition of the corresponding elements of the operands. For
9339 example, in the code below, each of the 4 elements in @var{a} is
9340 added to the corresponding 4 elements in @var{b} and the resulting
9341 vector is stored in @var{c}.
9342
9343 @smallexample
9344 typedef int v4si __attribute__ ((vector_size (16)));
9345
9346 v4si a, b, c;
9347
9348 c = a + b;
9349 @end smallexample
9350
9351 Subtraction, multiplication, division, and the logical operations
9352 operate in a similar manner. Likewise, the result of using the unary
9353 minus or complement operators on a vector type is a vector whose
9354 elements are the negative or complemented values of the corresponding
9355 elements in the operand.
9356
9357 It is possible to use shifting operators @code{<<}, @code{>>} on
9358 integer-type vectors. The operation is defined as following: @code{@{a0,
9359 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9360 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9361 elements.
9362
9363 For convenience, it is allowed to use a binary vector operation
9364 where one operand is a scalar. In that case the compiler transforms
9365 the scalar operand into a vector where each element is the scalar from
9366 the operation. The transformation happens only if the scalar could be
9367 safely converted to the vector-element type.
9368 Consider the following code.
9369
9370 @smallexample
9371 typedef int v4si __attribute__ ((vector_size (16)));
9372
9373 v4si a, b, c;
9374 long l;
9375
9376 a = b + 1; /* a = b + @{1,1,1,1@}; */
9377 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9378
9379 a = l + a; /* Error, cannot convert long to int. */
9380 @end smallexample
9381
9382 Vectors can be subscripted as if the vector were an array with
9383 the same number of elements and base type. Out of bound accesses
9384 invoke undefined behavior at run time. Warnings for out of bound
9385 accesses for vector subscription can be enabled with
9386 @option{-Warray-bounds}.
9387
9388 Vector comparison is supported with standard comparison
9389 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9390 vector expressions of integer-type or real-type. Comparison between
9391 integer-type vectors and real-type vectors are not supported. The
9392 result of the comparison is a vector of the same width and number of
9393 elements as the comparison operands with a signed integral element
9394 type.
9395
9396 Vectors are compared element-wise producing 0 when comparison is false
9397 and -1 (constant of the appropriate type where all bits are set)
9398 otherwise. Consider the following example.
9399
9400 @smallexample
9401 typedef int v4si __attribute__ ((vector_size (16)));
9402
9403 v4si a = @{1,2,3,4@};
9404 v4si b = @{3,2,1,4@};
9405 v4si c;
9406
9407 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9408 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9409 @end smallexample
9410
9411 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9412 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9413 integer vector with the same number of elements of the same size as @code{b}
9414 and @code{c}, computes all three arguments and creates a vector
9415 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9416 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9417 As in the case of binary operations, this syntax is also accepted when
9418 one of @code{b} or @code{c} is a scalar that is then transformed into a
9419 vector. If both @code{b} and @code{c} are scalars and the type of
9420 @code{true?b:c} has the same size as the element type of @code{a}, then
9421 @code{b} and @code{c} are converted to a vector type whose elements have
9422 this type and with the same number of elements as @code{a}.
9423
9424 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9425 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9426 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9427 For mixed operations between a scalar @code{s} and a vector @code{v},
9428 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9429 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9430
9431 Vector shuffling is available using functions
9432 @code{__builtin_shuffle (vec, mask)} and
9433 @code{__builtin_shuffle (vec0, vec1, mask)}.
9434 Both functions construct a permutation of elements from one or two
9435 vectors and return a vector of the same type as the input vector(s).
9436 The @var{mask} is an integral vector with the same width (@var{W})
9437 and element count (@var{N}) as the output vector.
9438
9439 The elements of the input vectors are numbered in memory ordering of
9440 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9441 elements of @var{mask} are considered modulo @var{N} in the single-operand
9442 case and modulo @math{2*@var{N}} in the two-operand case.
9443
9444 Consider the following example,
9445
9446 @smallexample
9447 typedef int v4si __attribute__ ((vector_size (16)));
9448
9449 v4si a = @{1,2,3,4@};
9450 v4si b = @{5,6,7,8@};
9451 v4si mask1 = @{0,1,1,3@};
9452 v4si mask2 = @{0,4,2,5@};
9453 v4si res;
9454
9455 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9456 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9457 @end smallexample
9458
9459 Note that @code{__builtin_shuffle} is intentionally semantically
9460 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9461
9462 You can declare variables and use them in function calls and returns, as
9463 well as in assignments and some casts. You can specify a vector type as
9464 a return type for a function. Vector types can also be used as function
9465 arguments. It is possible to cast from one vector type to another,
9466 provided they are of the same size (in fact, you can also cast vectors
9467 to and from other datatypes of the same size).
9468
9469 You cannot operate between vectors of different lengths or different
9470 signedness without a cast.
9471
9472 @node Offsetof
9473 @section Support for @code{offsetof}
9474 @findex __builtin_offsetof
9475
9476 GCC implements for both C and C++ a syntactic extension to implement
9477 the @code{offsetof} macro.
9478
9479 @smallexample
9480 primary:
9481 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9482
9483 offsetof_member_designator:
9484 @code{identifier}
9485 | offsetof_member_designator "." @code{identifier}
9486 | offsetof_member_designator "[" @code{expr} "]"
9487 @end smallexample
9488
9489 This extension is sufficient such that
9490
9491 @smallexample
9492 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9493 @end smallexample
9494
9495 @noindent
9496 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9497 may be dependent. In either case, @var{member} may consist of a single
9498 identifier, or a sequence of member accesses and array references.
9499
9500 @node __sync Builtins
9501 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9502
9503 The following built-in functions
9504 are intended to be compatible with those described
9505 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9506 section 7.4. As such, they depart from normal GCC practice by not using
9507 the @samp{__builtin_} prefix and also by being overloaded so that they
9508 work on multiple types.
9509
9510 The definition given in the Intel documentation allows only for the use of
9511 the types @code{int}, @code{long}, @code{long long} or their unsigned
9512 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9513 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9514 Operations on pointer arguments are performed as if the operands were
9515 of the @code{uintptr_t} type. That is, they are not scaled by the size
9516 of the type to which the pointer points.
9517
9518 These functions are implemented in terms of the @samp{__atomic}
9519 builtins (@pxref{__atomic Builtins}). They should not be used for new
9520 code which should use the @samp{__atomic} builtins instead.
9521
9522 Not all operations are supported by all target processors. If a particular
9523 operation cannot be implemented on the target processor, a warning is
9524 generated and a call to an external function is generated. The external
9525 function carries the same name as the built-in version,
9526 with an additional suffix
9527 @samp{_@var{n}} where @var{n} is the size of the data type.
9528
9529 @c ??? Should we have a mechanism to suppress this warning? This is almost
9530 @c useful for implementing the operation under the control of an external
9531 @c mutex.
9532
9533 In most cases, these built-in functions are considered a @dfn{full barrier}.
9534 That is,
9535 no memory operand is moved across the operation, either forward or
9536 backward. Further, instructions are issued as necessary to prevent the
9537 processor from speculating loads across the operation and from queuing stores
9538 after the operation.
9539
9540 All of the routines are described in the Intel documentation to take
9541 ``an optional list of variables protected by the memory barrier''. It's
9542 not clear what is meant by that; it could mean that @emph{only} the
9543 listed variables are protected, or it could mean a list of additional
9544 variables to be protected. The list is ignored by GCC which treats it as
9545 empty. GCC interprets an empty list as meaning that all globally
9546 accessible variables should be protected.
9547
9548 @table @code
9549 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9550 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9551 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9552 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9553 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9554 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9555 @findex __sync_fetch_and_add
9556 @findex __sync_fetch_and_sub
9557 @findex __sync_fetch_and_or
9558 @findex __sync_fetch_and_and
9559 @findex __sync_fetch_and_xor
9560 @findex __sync_fetch_and_nand
9561 These built-in functions perform the operation suggested by the name, and
9562 returns the value that had previously been in memory. That is, operations
9563 on integer operands have the following semantics. Operations on pointer
9564 arguments are performed as if the operands were of the @code{uintptr_t}
9565 type. That is, they are not scaled by the size of the type to which
9566 the pointer points.
9567
9568 @smallexample
9569 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9570 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9571 @end smallexample
9572
9573 The object pointed to by the first argument must be of integer or pointer
9574 type. It must not be a boolean type.
9575
9576 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9577 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9578
9579 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9580 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9581 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9582 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9583 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9584 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9585 @findex __sync_add_and_fetch
9586 @findex __sync_sub_and_fetch
9587 @findex __sync_or_and_fetch
9588 @findex __sync_and_and_fetch
9589 @findex __sync_xor_and_fetch
9590 @findex __sync_nand_and_fetch
9591 These built-in functions perform the operation suggested by the name, and
9592 return the new value. That is, operations on integer operands have
9593 the following semantics. Operations on pointer operands are performed as
9594 if the operand's type were @code{uintptr_t}.
9595
9596 @smallexample
9597 @{ *ptr @var{op}= value; return *ptr; @}
9598 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9599 @end smallexample
9600
9601 The same constraints on arguments apply as for the corresponding
9602 @code{__sync_op_and_fetch} built-in functions.
9603
9604 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9605 as @code{*ptr = ~(*ptr & value)} instead of
9606 @code{*ptr = ~*ptr & value}.
9607
9608 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9609 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9610 @findex __sync_bool_compare_and_swap
9611 @findex __sync_val_compare_and_swap
9612 These built-in functions perform an atomic compare and swap.
9613 That is, if the current
9614 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9615 @code{*@var{ptr}}.
9616
9617 The ``bool'' version returns true if the comparison is successful and
9618 @var{newval} is written. The ``val'' version returns the contents
9619 of @code{*@var{ptr}} before the operation.
9620
9621 @item __sync_synchronize (...)
9622 @findex __sync_synchronize
9623 This built-in function issues a full memory barrier.
9624
9625 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9626 @findex __sync_lock_test_and_set
9627 This built-in function, as described by Intel, is not a traditional test-and-set
9628 operation, but rather an atomic exchange operation. It writes @var{value}
9629 into @code{*@var{ptr}}, and returns the previous contents of
9630 @code{*@var{ptr}}.
9631
9632 Many targets have only minimal support for such locks, and do not support
9633 a full exchange operation. In this case, a target may support reduced
9634 functionality here by which the @emph{only} valid value to store is the
9635 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9636 is implementation defined.
9637
9638 This built-in function is not a full barrier,
9639 but rather an @dfn{acquire barrier}.
9640 This means that references after the operation cannot move to (or be
9641 speculated to) before the operation, but previous memory stores may not
9642 be globally visible yet, and previous memory loads may not yet be
9643 satisfied.
9644
9645 @item void __sync_lock_release (@var{type} *ptr, ...)
9646 @findex __sync_lock_release
9647 This built-in function releases the lock acquired by
9648 @code{__sync_lock_test_and_set}.
9649 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9650
9651 This built-in function is not a full barrier,
9652 but rather a @dfn{release barrier}.
9653 This means that all previous memory stores are globally visible, and all
9654 previous memory loads have been satisfied, but following memory reads
9655 are not prevented from being speculated to before the barrier.
9656 @end table
9657
9658 @node __atomic Builtins
9659 @section Built-in Functions for Memory Model Aware Atomic Operations
9660
9661 The following built-in functions approximately match the requirements
9662 for the C++11 memory model. They are all
9663 identified by being prefixed with @samp{__atomic} and most are
9664 overloaded so that they work with multiple types.
9665
9666 These functions are intended to replace the legacy @samp{__sync}
9667 builtins. The main difference is that the memory order that is requested
9668 is a parameter to the functions. New code should always use the
9669 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9670
9671 Note that the @samp{__atomic} builtins assume that programs will
9672 conform to the C++11 memory model. In particular, they assume
9673 that programs are free of data races. See the C++11 standard for
9674 detailed requirements.
9675
9676 The @samp{__atomic} builtins can be used with any integral scalar or
9677 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9678 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9679 supported by the architecture.
9680
9681 The four non-arithmetic functions (load, store, exchange, and
9682 compare_exchange) all have a generic version as well. This generic
9683 version works on any data type. It uses the lock-free built-in function
9684 if the specific data type size makes that possible; otherwise, an
9685 external call is left to be resolved at run time. This external call is
9686 the same format with the addition of a @samp{size_t} parameter inserted
9687 as the first parameter indicating the size of the object being pointed to.
9688 All objects must be the same size.
9689
9690 There are 6 different memory orders that can be specified. These map
9691 to the C++11 memory orders with the same names, see the C++11 standard
9692 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9693 on atomic synchronization} for detailed definitions. Individual
9694 targets may also support additional memory orders for use on specific
9695 architectures. Refer to the target documentation for details of
9696 these.
9697
9698 An atomic operation can both constrain code motion and
9699 be mapped to hardware instructions for synchronization between threads
9700 (e.g., a fence). To which extent this happens is controlled by the
9701 memory orders, which are listed here in approximately ascending order of
9702 strength. The description of each memory order is only meant to roughly
9703 illustrate the effects and is not a specification; see the C++11
9704 memory model for precise semantics.
9705
9706 @table @code
9707 @item __ATOMIC_RELAXED
9708 Implies no inter-thread ordering constraints.
9709 @item __ATOMIC_CONSUME
9710 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9711 memory order because of a deficiency in C++11's semantics for
9712 @code{memory_order_consume}.
9713 @item __ATOMIC_ACQUIRE
9714 Creates an inter-thread happens-before constraint from the release (or
9715 stronger) semantic store to this acquire load. Can prevent hoisting
9716 of code to before the operation.
9717 @item __ATOMIC_RELEASE
9718 Creates an inter-thread happens-before constraint to acquire (or stronger)
9719 semantic loads that read from this release store. Can prevent sinking
9720 of code to after the operation.
9721 @item __ATOMIC_ACQ_REL
9722 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9723 @code{__ATOMIC_RELEASE}.
9724 @item __ATOMIC_SEQ_CST
9725 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9726 @end table
9727
9728 Note that in the C++11 memory model, @emph{fences} (e.g.,
9729 @samp{__atomic_thread_fence}) take effect in combination with other
9730 atomic operations on specific memory locations (e.g., atomic loads);
9731 operations on specific memory locations do not necessarily affect other
9732 operations in the same way.
9733
9734 Target architectures are encouraged to provide their own patterns for
9735 each of the atomic built-in functions. If no target is provided, the original
9736 non-memory model set of @samp{__sync} atomic built-in functions are
9737 used, along with any required synchronization fences surrounding it in
9738 order to achieve the proper behavior. Execution in this case is subject
9739 to the same restrictions as those built-in functions.
9740
9741 If there is no pattern or mechanism to provide a lock-free instruction
9742 sequence, a call is made to an external routine with the same parameters
9743 to be resolved at run time.
9744
9745 When implementing patterns for these built-in functions, the memory order
9746 parameter can be ignored as long as the pattern implements the most
9747 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
9748 orders execute correctly with this memory order but they may not execute as
9749 efficiently as they could with a more appropriate implementation of the
9750 relaxed requirements.
9751
9752 Note that the C++11 standard allows for the memory order parameter to be
9753 determined at run time rather than at compile time. These built-in
9754 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
9755 than invoke a runtime library call or inline a switch statement. This is
9756 standard compliant, safe, and the simplest approach for now.
9757
9758 The memory order parameter is a signed int, but only the lower 16 bits are
9759 reserved for the memory order. The remainder of the signed int is reserved
9760 for target use and should be 0. Use of the predefined atomic values
9761 ensures proper usage.
9762
9763 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
9764 This built-in function implements an atomic load operation. It returns the
9765 contents of @code{*@var{ptr}}.
9766
9767 The valid memory order variants are
9768 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9769 and @code{__ATOMIC_CONSUME}.
9770
9771 @end deftypefn
9772
9773 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
9774 This is the generic version of an atomic load. It returns the
9775 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
9776
9777 @end deftypefn
9778
9779 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
9780 This built-in function implements an atomic store operation. It writes
9781 @code{@var{val}} into @code{*@var{ptr}}.
9782
9783 The valid memory order variants are
9784 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
9785
9786 @end deftypefn
9787
9788 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
9789 This is the generic version of an atomic store. It stores the value
9790 of @code{*@var{val}} into @code{*@var{ptr}}.
9791
9792 @end deftypefn
9793
9794 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
9795 This built-in function implements an atomic exchange operation. It writes
9796 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
9797 @code{*@var{ptr}}.
9798
9799 The valid memory order variants are
9800 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9801 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
9802
9803 @end deftypefn
9804
9805 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
9806 This is the generic version of an atomic exchange. It stores the
9807 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
9808 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
9809
9810 @end deftypefn
9811
9812 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
9813 This built-in function implements an atomic compare and exchange operation.
9814 This compares the contents of @code{*@var{ptr}} with the contents of
9815 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
9816 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
9817 equal, the operation is a @emph{read} and the current contents of
9818 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
9819 for weak compare_exchange, which may fail spuriously, and false for
9820 the strong variation, which never fails spuriously. Many targets
9821 only offer the strong variation and ignore the parameter. When in doubt, use
9822 the strong variation.
9823
9824 If @var{desired} is written into @code{*@var{ptr}} then true is returned
9825 and memory is affected according to the
9826 memory order specified by @var{success_memorder}. There are no
9827 restrictions on what memory order can be used here.
9828
9829 Otherwise, false is returned and memory is affected according
9830 to @var{failure_memorder}. This memory order cannot be
9831 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
9832 stronger order than that specified by @var{success_memorder}.
9833
9834 @end deftypefn
9835
9836 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
9837 This built-in function implements the generic version of
9838 @code{__atomic_compare_exchange}. The function is virtually identical to
9839 @code{__atomic_compare_exchange_n}, except the desired value is also a
9840 pointer.
9841
9842 @end deftypefn
9843
9844 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
9845 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
9846 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
9847 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
9848 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
9849 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
9850 These built-in functions perform the operation suggested by the name, and
9851 return the result of the operation. Operations on pointer arguments are
9852 performed as if the operands were of the @code{uintptr_t} type. That is,
9853 they are not scaled by the size of the type to which the pointer points.
9854
9855 @smallexample
9856 @{ *ptr @var{op}= val; return *ptr; @}
9857 @end smallexample
9858
9859 The object pointed to by the first argument must be of integer or pointer
9860 type. It must not be a boolean type. All memory orders are valid.
9861
9862 @end deftypefn
9863
9864 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
9865 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
9866 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
9867 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
9868 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
9869 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
9870 These built-in functions perform the operation suggested by the name, and
9871 return the value that had previously been in @code{*@var{ptr}}. Operations
9872 on pointer arguments are performed as if the operands were of
9873 the @code{uintptr_t} type. That is, they are not scaled by the size of
9874 the type to which the pointer points.
9875
9876 @smallexample
9877 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
9878 @end smallexample
9879
9880 The same constraints on arguments apply as for the corresponding
9881 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
9882
9883 @end deftypefn
9884
9885 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
9886
9887 This built-in function performs an atomic test-and-set operation on
9888 the byte at @code{*@var{ptr}}. The byte is set to some implementation
9889 defined nonzero ``set'' value and the return value is @code{true} if and only
9890 if the previous contents were ``set''.
9891 It should be only used for operands of type @code{bool} or @code{char}. For
9892 other types only part of the value may be set.
9893
9894 All memory orders are valid.
9895
9896 @end deftypefn
9897
9898 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
9899
9900 This built-in function performs an atomic clear operation on
9901 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
9902 It should be only used for operands of type @code{bool} or @code{char} and
9903 in conjunction with @code{__atomic_test_and_set}.
9904 For other types it may only clear partially. If the type is not @code{bool}
9905 prefer using @code{__atomic_store}.
9906
9907 The valid memory order variants are
9908 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
9909 @code{__ATOMIC_RELEASE}.
9910
9911 @end deftypefn
9912
9913 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
9914
9915 This built-in function acts as a synchronization fence between threads
9916 based on the specified memory order.
9917
9918 All memory orders are valid.
9919
9920 @end deftypefn
9921
9922 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
9923
9924 This built-in function acts as a synchronization fence between a thread
9925 and signal handlers based in the same thread.
9926
9927 All memory orders are valid.
9928
9929 @end deftypefn
9930
9931 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
9932
9933 This built-in function returns true if objects of @var{size} bytes always
9934 generate lock-free atomic instructions for the target architecture.
9935 @var{size} must resolve to a compile-time constant and the result also
9936 resolves to a compile-time constant.
9937
9938 @var{ptr} is an optional pointer to the object that may be used to determine
9939 alignment. A value of 0 indicates typical alignment should be used. The
9940 compiler may also ignore this parameter.
9941
9942 @smallexample
9943 if (__atomic_always_lock_free (sizeof (long long), 0))
9944 @end smallexample
9945
9946 @end deftypefn
9947
9948 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
9949
9950 This built-in function returns true if objects of @var{size} bytes always
9951 generate lock-free atomic instructions for the target architecture. If
9952 the built-in function is not known to be lock-free, a call is made to a
9953 runtime routine named @code{__atomic_is_lock_free}.
9954
9955 @var{ptr} is an optional pointer to the object that may be used to determine
9956 alignment. A value of 0 indicates typical alignment should be used. The
9957 compiler may also ignore this parameter.
9958 @end deftypefn
9959
9960 @node Integer Overflow Builtins
9961 @section Built-in Functions to Perform Arithmetic with Overflow Checking
9962
9963 The following built-in functions allow performing simple arithmetic operations
9964 together with checking whether the operations overflowed.
9965
9966 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9967 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
9968 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
9969 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
9970 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
9971 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9972 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
9973
9974 These built-in functions promote the first two operands into infinite precision signed
9975 type and perform addition on those promoted operands. The result is then
9976 cast to the type the third pointer argument points to and stored there.
9977 If the stored result is equal to the infinite precision result, the built-in
9978 functions return false, otherwise they return true. As the addition is
9979 performed in infinite signed precision, these built-in functions have fully defined
9980 behavior for all argument values.
9981
9982 The first built-in function allows arbitrary integral types for operands and
9983 the result type must be pointer to some integral type other than enumerated or
9984 boolean type, the rest of the built-in functions have explicit integer types.
9985
9986 The compiler will attempt to use hardware instructions to implement
9987 these built-in functions where possible, like conditional jump on overflow
9988 after addition, conditional jump on carry etc.
9989
9990 @end deftypefn
9991
9992 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9993 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
9994 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
9995 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
9996 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
9997 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9998 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
9999
10000 These built-in functions are similar to the add overflow checking built-in
10001 functions above, except they perform subtraction, subtract the second argument
10002 from the first one, instead of addition.
10003
10004 @end deftypefn
10005
10006 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10007 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10008 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10009 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10010 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10011 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10012 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10013
10014 These built-in functions are similar to the add overflow checking built-in
10015 functions above, except they perform multiplication, instead of addition.
10016
10017 @end deftypefn
10018
10019 The following built-in functions allow checking if simple arithmetic operation
10020 would overflow.
10021
10022 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10023 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10024 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10025
10026 These built-in functions are similar to @code{__builtin_add_overflow},
10027 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10028 they don't store the result of the arithmetic operation anywhere and the
10029 last argument is not a pointer, but some expression with integral type other
10030 than enumerated or boolean type.
10031
10032 The built-in functions promote the first two operands into infinite precision signed type
10033 and perform addition on those promoted operands. The result is then
10034 cast to the type of the third argument. If the cast result is equal to the infinite
10035 precision result, the built-in functions return false, otherwise they return true.
10036 The value of the third argument is ignored, just the side-effects in the third argument
10037 are evaluated, and no integral argument promotions are performed on the last argument.
10038 If the third argument is a bit-field, the type used for the result cast has the
10039 precision and signedness of the given bit-field, rather than precision and signedness
10040 of the underlying type.
10041
10042 For example, the following macro can be used to portably check, at
10043 compile-time, whether or not adding two constant integers will overflow,
10044 and perform the addition only when it is known to be safe and not to trigger
10045 a @option{-Woverflow} warning.
10046
10047 @smallexample
10048 #define INT_ADD_OVERFLOW_P(a, b) \
10049 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10050
10051 enum @{
10052 A = INT_MAX, B = 3,
10053 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10054 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10055 @};
10056 @end smallexample
10057
10058 The compiler will attempt to use hardware instructions to implement
10059 these built-in functions where possible, like conditional jump on overflow
10060 after addition, conditional jump on carry etc.
10061
10062 @end deftypefn
10063
10064 @node x86 specific memory model extensions for transactional memory
10065 @section x86-Specific Memory Model Extensions for Transactional Memory
10066
10067 The x86 architecture supports additional memory ordering flags
10068 to mark lock critical sections for hardware lock elision.
10069 These must be specified in addition to an existing memory order to
10070 atomic intrinsics.
10071
10072 @table @code
10073 @item __ATOMIC_HLE_ACQUIRE
10074 Start lock elision on a lock variable.
10075 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10076 @item __ATOMIC_HLE_RELEASE
10077 End lock elision on a lock variable.
10078 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10079 @end table
10080
10081 When a lock acquire fails, it is required for good performance to abort
10082 the transaction quickly. This can be done with a @code{_mm_pause}.
10083
10084 @smallexample
10085 #include <immintrin.h> // For _mm_pause
10086
10087 int lockvar;
10088
10089 /* Acquire lock with lock elision */
10090 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10091 _mm_pause(); /* Abort failed transaction */
10092 ...
10093 /* Free lock with lock elision */
10094 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10095 @end smallexample
10096
10097 @node Object Size Checking
10098 @section Object Size Checking Built-in Functions
10099 @findex __builtin_object_size
10100 @findex __builtin___memcpy_chk
10101 @findex __builtin___mempcpy_chk
10102 @findex __builtin___memmove_chk
10103 @findex __builtin___memset_chk
10104 @findex __builtin___strcpy_chk
10105 @findex __builtin___stpcpy_chk
10106 @findex __builtin___strncpy_chk
10107 @findex __builtin___strcat_chk
10108 @findex __builtin___strncat_chk
10109 @findex __builtin___sprintf_chk
10110 @findex __builtin___snprintf_chk
10111 @findex __builtin___vsprintf_chk
10112 @findex __builtin___vsnprintf_chk
10113 @findex __builtin___printf_chk
10114 @findex __builtin___vprintf_chk
10115 @findex __builtin___fprintf_chk
10116 @findex __builtin___vfprintf_chk
10117
10118 GCC implements a limited buffer overflow protection mechanism that can
10119 prevent some buffer overflow attacks by determining the sizes of objects
10120 into which data is about to be written and preventing the writes when
10121 the size isn't sufficient. The built-in functions described below yield
10122 the best results when used together and when optimization is enabled.
10123 For example, to detect object sizes across function boundaries or to
10124 follow pointer assignments through non-trivial control flow they rely
10125 on various optimization passes enabled with @option{-O2}. However, to
10126 a limited extent, they can be used without optimization as well.
10127
10128 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
10129 is a built-in construct that returns a constant number of bytes from
10130 @var{ptr} to the end of the object @var{ptr} pointer points to
10131 (if known at compile time). @code{__builtin_object_size} never evaluates
10132 its arguments for side-effects. If there are any side-effects in them, it
10133 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10134 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10135 point to and all of them are known at compile time, the returned number
10136 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10137 0 and minimum if nonzero. If it is not possible to determine which objects
10138 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10139 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10140 for @var{type} 2 or 3.
10141
10142 @var{type} is an integer constant from 0 to 3. If the least significant
10143 bit is clear, objects are whole variables, if it is set, a closest
10144 surrounding subobject is considered the object a pointer points to.
10145 The second bit determines if maximum or minimum of remaining bytes
10146 is computed.
10147
10148 @smallexample
10149 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10150 char *p = &var.buf1[1], *q = &var.b;
10151
10152 /* Here the object p points to is var. */
10153 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10154 /* The subobject p points to is var.buf1. */
10155 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10156 /* The object q points to is var. */
10157 assert (__builtin_object_size (q, 0)
10158 == (char *) (&var + 1) - (char *) &var.b);
10159 /* The subobject q points to is var.b. */
10160 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10161 @end smallexample
10162 @end deftypefn
10163
10164 There are built-in functions added for many common string operation
10165 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10166 built-in is provided. This built-in has an additional last argument,
10167 which is the number of bytes remaining in object the @var{dest}
10168 argument points to or @code{(size_t) -1} if the size is not known.
10169
10170 The built-in functions are optimized into the normal string functions
10171 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10172 it is known at compile time that the destination object will not
10173 be overflown. If the compiler can determine at compile time the
10174 object will be always overflown, it issues a warning.
10175
10176 The intended use can be e.g.@:
10177
10178 @smallexample
10179 #undef memcpy
10180 #define bos0(dest) __builtin_object_size (dest, 0)
10181 #define memcpy(dest, src, n) \
10182 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10183
10184 char *volatile p;
10185 char buf[10];
10186 /* It is unknown what object p points to, so this is optimized
10187 into plain memcpy - no checking is possible. */
10188 memcpy (p, "abcde", n);
10189 /* Destination is known and length too. It is known at compile
10190 time there will be no overflow. */
10191 memcpy (&buf[5], "abcde", 5);
10192 /* Destination is known, but the length is not known at compile time.
10193 This will result in __memcpy_chk call that can check for overflow
10194 at run time. */
10195 memcpy (&buf[5], "abcde", n);
10196 /* Destination is known and it is known at compile time there will
10197 be overflow. There will be a warning and __memcpy_chk call that
10198 will abort the program at run time. */
10199 memcpy (&buf[6], "abcde", 5);
10200 @end smallexample
10201
10202 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10203 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10204 @code{strcat} and @code{strncat}.
10205
10206 There are also checking built-in functions for formatted output functions.
10207 @smallexample
10208 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10209 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10210 const char *fmt, ...);
10211 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10212 va_list ap);
10213 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10214 const char *fmt, va_list ap);
10215 @end smallexample
10216
10217 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10218 etc.@: functions and can contain implementation specific flags on what
10219 additional security measures the checking function might take, such as
10220 handling @code{%n} differently.
10221
10222 The @var{os} argument is the object size @var{s} points to, like in the
10223 other built-in functions. There is a small difference in the behavior
10224 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10225 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10226 the checking function is called with @var{os} argument set to
10227 @code{(size_t) -1}.
10228
10229 In addition to this, there are checking built-in functions
10230 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10231 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10232 These have just one additional argument, @var{flag}, right before
10233 format string @var{fmt}. If the compiler is able to optimize them to
10234 @code{fputc} etc.@: functions, it does, otherwise the checking function
10235 is called and the @var{flag} argument passed to it.
10236
10237 @node Pointer Bounds Checker builtins
10238 @section Pointer Bounds Checker Built-in Functions
10239 @cindex Pointer Bounds Checker builtins
10240 @findex __builtin___bnd_set_ptr_bounds
10241 @findex __builtin___bnd_narrow_ptr_bounds
10242 @findex __builtin___bnd_copy_ptr_bounds
10243 @findex __builtin___bnd_init_ptr_bounds
10244 @findex __builtin___bnd_null_ptr_bounds
10245 @findex __builtin___bnd_store_ptr_bounds
10246 @findex __builtin___bnd_chk_ptr_lbounds
10247 @findex __builtin___bnd_chk_ptr_ubounds
10248 @findex __builtin___bnd_chk_ptr_bounds
10249 @findex __builtin___bnd_get_ptr_lbound
10250 @findex __builtin___bnd_get_ptr_ubound
10251
10252 GCC provides a set of built-in functions to control Pointer Bounds Checker
10253 instrumentation. Note that all Pointer Bounds Checker builtins can be used
10254 even if you compile with Pointer Bounds Checker off
10255 (@option{-fno-check-pointer-bounds}).
10256 The behavior may differ in such case as documented below.
10257
10258 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
10259
10260 This built-in function returns a new pointer with the value of @var{q}, and
10261 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
10262 Bounds Checker off, the built-in function just returns the first argument.
10263
10264 @smallexample
10265 extern void *__wrap_malloc (size_t n)
10266 @{
10267 void *p = (void *)__real_malloc (n);
10268 if (!p) return __builtin___bnd_null_ptr_bounds (p);
10269 return __builtin___bnd_set_ptr_bounds (p, n);
10270 @}
10271 @end smallexample
10272
10273 @end deftypefn
10274
10275 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10276
10277 This built-in function returns a new pointer with the value of @var{p}
10278 and associates it with the narrowed bounds formed by the intersection
10279 of bounds associated with @var{q} and the bounds
10280 [@var{p}, @var{p} + @var{size} - 1].
10281 With Pointer Bounds Checker off, the built-in function just returns the first
10282 argument.
10283
10284 @smallexample
10285 void init_objects (object *objs, size_t size)
10286 @{
10287 size_t i;
10288 /* Initialize objects one-by-one passing pointers with bounds of
10289 an object, not the full array of objects. */
10290 for (i = 0; i < size; i++)
10291 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10292 sizeof(object)));
10293 @}
10294 @end smallexample
10295
10296 @end deftypefn
10297
10298 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10299
10300 This built-in function returns a new pointer with the value of @var{q},
10301 and associates it with the bounds already associated with pointer @var{r}.
10302 With Pointer Bounds Checker off, the built-in function just returns the first
10303 argument.
10304
10305 @smallexample
10306 /* Here is a way to get pointer to object's field but
10307 still with the full object's bounds. */
10308 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10309 objptr);
10310 @end smallexample
10311
10312 @end deftypefn
10313
10314 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10315
10316 This built-in function returns a new pointer with the value of @var{q}, and
10317 associates it with INIT (allowing full memory access) bounds. With Pointer
10318 Bounds Checker off, the built-in function just returns the first argument.
10319
10320 @end deftypefn
10321
10322 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10323
10324 This built-in function returns a new pointer with the value of @var{q}, and
10325 associates it with NULL (allowing no memory access) bounds. With Pointer
10326 Bounds Checker off, the built-in function just returns the first argument.
10327
10328 @end deftypefn
10329
10330 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10331
10332 This built-in function stores the bounds associated with pointer @var{ptr_val}
10333 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10334 bounds from legacy code without touching the associated pointer's memory when
10335 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10336 function call is ignored.
10337
10338 @end deftypefn
10339
10340 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10341
10342 This built-in function checks if the pointer @var{q} is within the lower
10343 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10344 function call is ignored.
10345
10346 @smallexample
10347 extern void *__wrap_memset (void *dst, int c, size_t len)
10348 @{
10349 if (len > 0)
10350 @{
10351 __builtin___bnd_chk_ptr_lbounds (dst);
10352 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10353 __real_memset (dst, c, len);
10354 @}
10355 return dst;
10356 @}
10357 @end smallexample
10358
10359 @end deftypefn
10360
10361 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10362
10363 This built-in function checks if the pointer @var{q} is within the upper
10364 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10365 function call is ignored.
10366
10367 @end deftypefn
10368
10369 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10370
10371 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10372 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10373 off, the built-in function call is ignored.
10374
10375 @smallexample
10376 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10377 @{
10378 if (n > 0)
10379 @{
10380 __bnd_chk_ptr_bounds (dst, n);
10381 __bnd_chk_ptr_bounds (src, n);
10382 __real_memcpy (dst, src, n);
10383 @}
10384 return dst;
10385 @}
10386 @end smallexample
10387
10388 @end deftypefn
10389
10390 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10391
10392 This built-in function returns the lower bound associated
10393 with the pointer @var{q}, as a pointer value.
10394 This is useful for debugging using @code{printf}.
10395 With Pointer Bounds Checker off, the built-in function returns 0.
10396
10397 @smallexample
10398 void *lb = __builtin___bnd_get_ptr_lbound (q);
10399 void *ub = __builtin___bnd_get_ptr_ubound (q);
10400 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10401 @end smallexample
10402
10403 @end deftypefn
10404
10405 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10406
10407 This built-in function returns the upper bound (which is a pointer) associated
10408 with the pointer @var{q}. With Pointer Bounds Checker off,
10409 the built-in function returns -1.
10410
10411 @end deftypefn
10412
10413 @node Cilk Plus Builtins
10414 @section Cilk Plus C/C++ Language Extension Built-in Functions
10415
10416 GCC provides support for the following built-in reduction functions if Cilk Plus
10417 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10418
10419 @itemize @bullet
10420 @item @code{__sec_implicit_index}
10421 @item @code{__sec_reduce}
10422 @item @code{__sec_reduce_add}
10423 @item @code{__sec_reduce_all_nonzero}
10424 @item @code{__sec_reduce_all_zero}
10425 @item @code{__sec_reduce_any_nonzero}
10426 @item @code{__sec_reduce_any_zero}
10427 @item @code{__sec_reduce_max}
10428 @item @code{__sec_reduce_min}
10429 @item @code{__sec_reduce_max_ind}
10430 @item @code{__sec_reduce_min_ind}
10431 @item @code{__sec_reduce_mul}
10432 @item @code{__sec_reduce_mutating}
10433 @end itemize
10434
10435 Further details and examples about these built-in functions are described
10436 in the Cilk Plus language manual which can be found at
10437 @uref{http://www.cilkplus.org}.
10438
10439 @node Other Builtins
10440 @section Other Built-in Functions Provided by GCC
10441 @cindex built-in functions
10442 @findex __builtin_alloca
10443 @findex __builtin_alloca_with_align
10444 @findex __builtin_call_with_static_chain
10445 @findex __builtin_fpclassify
10446 @findex __builtin_isfinite
10447 @findex __builtin_isnormal
10448 @findex __builtin_isgreater
10449 @findex __builtin_isgreaterequal
10450 @findex __builtin_isinf_sign
10451 @findex __builtin_isless
10452 @findex __builtin_islessequal
10453 @findex __builtin_islessgreater
10454 @findex __builtin_isunordered
10455 @findex __builtin_powi
10456 @findex __builtin_powif
10457 @findex __builtin_powil
10458 @findex _Exit
10459 @findex _exit
10460 @findex abort
10461 @findex abs
10462 @findex acos
10463 @findex acosf
10464 @findex acosh
10465 @findex acoshf
10466 @findex acoshl
10467 @findex acosl
10468 @findex alloca
10469 @findex asin
10470 @findex asinf
10471 @findex asinh
10472 @findex asinhf
10473 @findex asinhl
10474 @findex asinl
10475 @findex atan
10476 @findex atan2
10477 @findex atan2f
10478 @findex atan2l
10479 @findex atanf
10480 @findex atanh
10481 @findex atanhf
10482 @findex atanhl
10483 @findex atanl
10484 @findex bcmp
10485 @findex bzero
10486 @findex cabs
10487 @findex cabsf
10488 @findex cabsl
10489 @findex cacos
10490 @findex cacosf
10491 @findex cacosh
10492 @findex cacoshf
10493 @findex cacoshl
10494 @findex cacosl
10495 @findex calloc
10496 @findex carg
10497 @findex cargf
10498 @findex cargl
10499 @findex casin
10500 @findex casinf
10501 @findex casinh
10502 @findex casinhf
10503 @findex casinhl
10504 @findex casinl
10505 @findex catan
10506 @findex catanf
10507 @findex catanh
10508 @findex catanhf
10509 @findex catanhl
10510 @findex catanl
10511 @findex cbrt
10512 @findex cbrtf
10513 @findex cbrtl
10514 @findex ccos
10515 @findex ccosf
10516 @findex ccosh
10517 @findex ccoshf
10518 @findex ccoshl
10519 @findex ccosl
10520 @findex ceil
10521 @findex ceilf
10522 @findex ceill
10523 @findex cexp
10524 @findex cexpf
10525 @findex cexpl
10526 @findex cimag
10527 @findex cimagf
10528 @findex cimagl
10529 @findex clog
10530 @findex clogf
10531 @findex clogl
10532 @findex clog10
10533 @findex clog10f
10534 @findex clog10l
10535 @findex conj
10536 @findex conjf
10537 @findex conjl
10538 @findex copysign
10539 @findex copysignf
10540 @findex copysignl
10541 @findex cos
10542 @findex cosf
10543 @findex cosh
10544 @findex coshf
10545 @findex coshl
10546 @findex cosl
10547 @findex cpow
10548 @findex cpowf
10549 @findex cpowl
10550 @findex cproj
10551 @findex cprojf
10552 @findex cprojl
10553 @findex creal
10554 @findex crealf
10555 @findex creall
10556 @findex csin
10557 @findex csinf
10558 @findex csinh
10559 @findex csinhf
10560 @findex csinhl
10561 @findex csinl
10562 @findex csqrt
10563 @findex csqrtf
10564 @findex csqrtl
10565 @findex ctan
10566 @findex ctanf
10567 @findex ctanh
10568 @findex ctanhf
10569 @findex ctanhl
10570 @findex ctanl
10571 @findex dcgettext
10572 @findex dgettext
10573 @findex drem
10574 @findex dremf
10575 @findex dreml
10576 @findex erf
10577 @findex erfc
10578 @findex erfcf
10579 @findex erfcl
10580 @findex erff
10581 @findex erfl
10582 @findex exit
10583 @findex exp
10584 @findex exp10
10585 @findex exp10f
10586 @findex exp10l
10587 @findex exp2
10588 @findex exp2f
10589 @findex exp2l
10590 @findex expf
10591 @findex expl
10592 @findex expm1
10593 @findex expm1f
10594 @findex expm1l
10595 @findex fabs
10596 @findex fabsf
10597 @findex fabsl
10598 @findex fdim
10599 @findex fdimf
10600 @findex fdiml
10601 @findex ffs
10602 @findex floor
10603 @findex floorf
10604 @findex floorl
10605 @findex fma
10606 @findex fmaf
10607 @findex fmal
10608 @findex fmax
10609 @findex fmaxf
10610 @findex fmaxl
10611 @findex fmin
10612 @findex fminf
10613 @findex fminl
10614 @findex fmod
10615 @findex fmodf
10616 @findex fmodl
10617 @findex fprintf
10618 @findex fprintf_unlocked
10619 @findex fputs
10620 @findex fputs_unlocked
10621 @findex frexp
10622 @findex frexpf
10623 @findex frexpl
10624 @findex fscanf
10625 @findex gamma
10626 @findex gammaf
10627 @findex gammal
10628 @findex gamma_r
10629 @findex gammaf_r
10630 @findex gammal_r
10631 @findex gettext
10632 @findex hypot
10633 @findex hypotf
10634 @findex hypotl
10635 @findex ilogb
10636 @findex ilogbf
10637 @findex ilogbl
10638 @findex imaxabs
10639 @findex index
10640 @findex isalnum
10641 @findex isalpha
10642 @findex isascii
10643 @findex isblank
10644 @findex iscntrl
10645 @findex isdigit
10646 @findex isgraph
10647 @findex islower
10648 @findex isprint
10649 @findex ispunct
10650 @findex isspace
10651 @findex isupper
10652 @findex iswalnum
10653 @findex iswalpha
10654 @findex iswblank
10655 @findex iswcntrl
10656 @findex iswdigit
10657 @findex iswgraph
10658 @findex iswlower
10659 @findex iswprint
10660 @findex iswpunct
10661 @findex iswspace
10662 @findex iswupper
10663 @findex iswxdigit
10664 @findex isxdigit
10665 @findex j0
10666 @findex j0f
10667 @findex j0l
10668 @findex j1
10669 @findex j1f
10670 @findex j1l
10671 @findex jn
10672 @findex jnf
10673 @findex jnl
10674 @findex labs
10675 @findex ldexp
10676 @findex ldexpf
10677 @findex ldexpl
10678 @findex lgamma
10679 @findex lgammaf
10680 @findex lgammal
10681 @findex lgamma_r
10682 @findex lgammaf_r
10683 @findex lgammal_r
10684 @findex llabs
10685 @findex llrint
10686 @findex llrintf
10687 @findex llrintl
10688 @findex llround
10689 @findex llroundf
10690 @findex llroundl
10691 @findex log
10692 @findex log10
10693 @findex log10f
10694 @findex log10l
10695 @findex log1p
10696 @findex log1pf
10697 @findex log1pl
10698 @findex log2
10699 @findex log2f
10700 @findex log2l
10701 @findex logb
10702 @findex logbf
10703 @findex logbl
10704 @findex logf
10705 @findex logl
10706 @findex lrint
10707 @findex lrintf
10708 @findex lrintl
10709 @findex lround
10710 @findex lroundf
10711 @findex lroundl
10712 @findex malloc
10713 @findex memchr
10714 @findex memcmp
10715 @findex memcpy
10716 @findex mempcpy
10717 @findex memset
10718 @findex modf
10719 @findex modff
10720 @findex modfl
10721 @findex nearbyint
10722 @findex nearbyintf
10723 @findex nearbyintl
10724 @findex nextafter
10725 @findex nextafterf
10726 @findex nextafterl
10727 @findex nexttoward
10728 @findex nexttowardf
10729 @findex nexttowardl
10730 @findex pow
10731 @findex pow10
10732 @findex pow10f
10733 @findex pow10l
10734 @findex powf
10735 @findex powl
10736 @findex printf
10737 @findex printf_unlocked
10738 @findex putchar
10739 @findex puts
10740 @findex remainder
10741 @findex remainderf
10742 @findex remainderl
10743 @findex remquo
10744 @findex remquof
10745 @findex remquol
10746 @findex rindex
10747 @findex rint
10748 @findex rintf
10749 @findex rintl
10750 @findex round
10751 @findex roundf
10752 @findex roundl
10753 @findex scalb
10754 @findex scalbf
10755 @findex scalbl
10756 @findex scalbln
10757 @findex scalblnf
10758 @findex scalblnf
10759 @findex scalbn
10760 @findex scalbnf
10761 @findex scanfnl
10762 @findex signbit
10763 @findex signbitf
10764 @findex signbitl
10765 @findex signbitd32
10766 @findex signbitd64
10767 @findex signbitd128
10768 @findex significand
10769 @findex significandf
10770 @findex significandl
10771 @findex sin
10772 @findex sincos
10773 @findex sincosf
10774 @findex sincosl
10775 @findex sinf
10776 @findex sinh
10777 @findex sinhf
10778 @findex sinhl
10779 @findex sinl
10780 @findex snprintf
10781 @findex sprintf
10782 @findex sqrt
10783 @findex sqrtf
10784 @findex sqrtl
10785 @findex sscanf
10786 @findex stpcpy
10787 @findex stpncpy
10788 @findex strcasecmp
10789 @findex strcat
10790 @findex strchr
10791 @findex strcmp
10792 @findex strcpy
10793 @findex strcspn
10794 @findex strdup
10795 @findex strfmon
10796 @findex strftime
10797 @findex strlen
10798 @findex strncasecmp
10799 @findex strncat
10800 @findex strncmp
10801 @findex strncpy
10802 @findex strndup
10803 @findex strpbrk
10804 @findex strrchr
10805 @findex strspn
10806 @findex strstr
10807 @findex tan
10808 @findex tanf
10809 @findex tanh
10810 @findex tanhf
10811 @findex tanhl
10812 @findex tanl
10813 @findex tgamma
10814 @findex tgammaf
10815 @findex tgammal
10816 @findex toascii
10817 @findex tolower
10818 @findex toupper
10819 @findex towlower
10820 @findex towupper
10821 @findex trunc
10822 @findex truncf
10823 @findex truncl
10824 @findex vfprintf
10825 @findex vfscanf
10826 @findex vprintf
10827 @findex vscanf
10828 @findex vsnprintf
10829 @findex vsprintf
10830 @findex vsscanf
10831 @findex y0
10832 @findex y0f
10833 @findex y0l
10834 @findex y1
10835 @findex y1f
10836 @findex y1l
10837 @findex yn
10838 @findex ynf
10839 @findex ynl
10840
10841 GCC provides a large number of built-in functions other than the ones
10842 mentioned above. Some of these are for internal use in the processing
10843 of exceptions or variable-length argument lists and are not
10844 documented here because they may change from time to time; we do not
10845 recommend general use of these functions.
10846
10847 The remaining functions are provided for optimization purposes.
10848
10849 With the exception of built-ins that have library equivalents such as
10850 the standard C library functions discussed below, or that expand to
10851 library calls, GCC built-in functions are always expanded inline and
10852 thus do not have corresponding entry points and their address cannot
10853 be obtained. Attempting to use them in an expression other than
10854 a function call results in a compile-time error.
10855
10856 @opindex fno-builtin
10857 GCC includes built-in versions of many of the functions in the standard
10858 C library. These functions come in two forms: one whose names start with
10859 the @code{__builtin_} prefix, and the other without. Both forms have the
10860 same type (including prototype), the same address (when their address is
10861 taken), and the same meaning as the C library functions even if you specify
10862 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
10863 functions are only optimized in certain cases; if they are not optimized in
10864 a particular case, a call to the library function is emitted.
10865
10866 @opindex ansi
10867 @opindex std
10868 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
10869 @option{-std=c99} or @option{-std=c11}), the functions
10870 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
10871 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
10872 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
10873 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
10874 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
10875 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
10876 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
10877 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
10878 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
10879 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
10880 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
10881 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
10882 @code{signbitd64}, @code{signbitd128}, @code{significandf},
10883 @code{significandl}, @code{significand}, @code{sincosf},
10884 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
10885 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
10886 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
10887 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
10888 @code{yn}
10889 may be handled as built-in functions.
10890 All these functions have corresponding versions
10891 prefixed with @code{__builtin_}, which may be used even in strict C90
10892 mode.
10893
10894 The ISO C99 functions
10895 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
10896 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
10897 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
10898 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
10899 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
10900 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
10901 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
10902 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
10903 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
10904 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
10905 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
10906 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
10907 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
10908 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
10909 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
10910 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
10911 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
10912 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
10913 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
10914 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
10915 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
10916 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
10917 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
10918 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
10919 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
10920 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
10921 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
10922 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
10923 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
10924 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
10925 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
10926 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
10927 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
10928 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
10929 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
10930 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
10931 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
10932 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
10933 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
10934 are handled as built-in functions
10935 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10936
10937 There are also built-in versions of the ISO C99 functions
10938 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
10939 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
10940 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
10941 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
10942 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
10943 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
10944 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
10945 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
10946 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
10947 that are recognized in any mode since ISO C90 reserves these names for
10948 the purpose to which ISO C99 puts them. All these functions have
10949 corresponding versions prefixed with @code{__builtin_}.
10950
10951 There are also built-in functions @code{__builtin_fabsf@var{n}},
10952 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
10953 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
10954 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
10955 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
10956 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
10957
10958 There are also GNU extension functions @code{clog10}, @code{clog10f} and
10959 @code{clog10l} which names are reserved by ISO C99 for future use.
10960 All these functions have versions prefixed with @code{__builtin_}.
10961
10962 The ISO C94 functions
10963 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
10964 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
10965 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
10966 @code{towupper}
10967 are handled as built-in functions
10968 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10969
10970 The ISO C90 functions
10971 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
10972 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
10973 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
10974 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
10975 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
10976 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
10977 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
10978 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
10979 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
10980 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
10981 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
10982 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
10983 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
10984 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
10985 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
10986 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
10987 are all recognized as built-in functions unless
10988 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
10989 is specified for an individual function). All of these functions have
10990 corresponding versions prefixed with @code{__builtin_}.
10991
10992 GCC provides built-in versions of the ISO C99 floating-point comparison
10993 macros that avoid raising exceptions for unordered operands. They have
10994 the same names as the standard macros ( @code{isgreater},
10995 @code{isgreaterequal}, @code{isless}, @code{islessequal},
10996 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
10997 prefixed. We intend for a library implementor to be able to simply
10998 @code{#define} each standard macro to its built-in equivalent.
10999 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11000 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11001 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
11002 built-in functions appear both with and without the @code{__builtin_} prefix.
11003
11004 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11005 The @code{__builtin_alloca} function must be called at block scope.
11006 The function allocates an object @var{size} bytes large on the stack
11007 of the calling function. The object is aligned on the default stack
11008 alignment boundary for the target determined by the
11009 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
11010 function returns a pointer to the first byte of the allocated object.
11011 The lifetime of the allocated object ends just before the calling
11012 function returns to its caller. This is so even when
11013 @code{__builtin_alloca} is called within a nested block.
11014
11015 For example, the following function allocates eight objects of @code{n}
11016 bytes each on the stack, storing a pointer to each in consecutive elements
11017 of the array @code{a}. It then passes the array to function @code{g}
11018 which can safely use the storage pointed to by each of the array elements.
11019
11020 @smallexample
11021 void f (unsigned n)
11022 @{
11023 void *a [8];
11024 for (int i = 0; i != 8; ++i)
11025 a [i] = __builtin_alloca (n);
11026
11027 g (a, n); // @r{safe}
11028 @}
11029 @end smallexample
11030
11031 Since the @code{__builtin_alloca} function doesn't validate its argument
11032 it is the responsibility of its caller to make sure the argument doesn't
11033 cause it to exceed the stack size limit.
11034 The @code{__builtin_alloca} function is provided to make it possible to
11035 allocate on the stack arrays of bytes with an upper bound that may be
11036 computed at run time. Since C99 Variable Length Arrays offer
11037 similar functionality under a portable, more convenient, and safer
11038 interface they are recommended instead, in both C99 and C++ programs
11039 where GCC provides them as an extension.
11040 @xref{Variable Length}, for details.
11041
11042 @end deftypefn
11043
11044 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11045 The @code{__builtin_alloca_with_align} function must be called at block
11046 scope. The function allocates an object @var{size} bytes large on
11047 the stack of the calling function. The allocated object is aligned on
11048 the boundary specified by the argument @var{alignment} whose unit is given
11049 in bits (not bytes). The @var{size} argument must be positive and not
11050 exceed the stack size limit. The @var{alignment} argument must be a constant
11051 integer expression that evaluates to a power of 2 greater than or equal to
11052 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11053 with other values are rejected with an error indicating the valid bounds.
11054 The function returns a pointer to the first byte of the allocated object.
11055 The lifetime of the allocated object ends at the end of the block in which
11056 the function was called. The allocated storage is released no later than
11057 just before the calling function returns to its caller, but may be released
11058 at the end of the block in which the function was called.
11059
11060 For example, in the following function the call to @code{g} is unsafe
11061 because when @code{overalign} is non-zero, the space allocated by
11062 @code{__builtin_alloca_with_align} may have been released at the end
11063 of the @code{if} statement in which it was called.
11064
11065 @smallexample
11066 void f (unsigned n, bool overalign)
11067 @{
11068 void *p;
11069 if (overalign)
11070 p = __builtin_alloca_with_align (n, 64 /* bits */);
11071 else
11072 p = __builtin_alloc (n);
11073
11074 g (p, n); // @r{unsafe}
11075 @}
11076 @end smallexample
11077
11078 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11079 @var{size} argument it is the responsibility of its caller to make sure
11080 the argument doesn't cause it to exceed the stack size limit.
11081 The @code{__builtin_alloca_with_align} function is provided to make
11082 it possible to allocate on the stack overaligned arrays of bytes with
11083 an upper bound that may be computed at run time. Since C99
11084 Variable Length Arrays offer the same functionality under
11085 a portable, more convenient, and safer interface they are recommended
11086 instead, in both C99 and C++ programs where GCC provides them as
11087 an extension. @xref{Variable Length}, for details.
11088
11089 @end deftypefn
11090
11091 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11092
11093 You can use the built-in function @code{__builtin_types_compatible_p} to
11094 determine whether two types are the same.
11095
11096 This built-in function returns 1 if the unqualified versions of the
11097 types @var{type1} and @var{type2} (which are types, not expressions) are
11098 compatible, 0 otherwise. The result of this built-in function can be
11099 used in integer constant expressions.
11100
11101 This built-in function ignores top level qualifiers (e.g., @code{const},
11102 @code{volatile}). For example, @code{int} is equivalent to @code{const
11103 int}.
11104
11105 The type @code{int[]} and @code{int[5]} are compatible. On the other
11106 hand, @code{int} and @code{char *} are not compatible, even if the size
11107 of their types, on the particular architecture are the same. Also, the
11108 amount of pointer indirection is taken into account when determining
11109 similarity. Consequently, @code{short *} is not similar to
11110 @code{short **}. Furthermore, two types that are typedefed are
11111 considered compatible if their underlying types are compatible.
11112
11113 An @code{enum} type is not considered to be compatible with another
11114 @code{enum} type even if both are compatible with the same integer
11115 type; this is what the C standard specifies.
11116 For example, @code{enum @{foo, bar@}} is not similar to
11117 @code{enum @{hot, dog@}}.
11118
11119 You typically use this function in code whose execution varies
11120 depending on the arguments' types. For example:
11121
11122 @smallexample
11123 #define foo(x) \
11124 (@{ \
11125 typeof (x) tmp = (x); \
11126 if (__builtin_types_compatible_p (typeof (x), long double)) \
11127 tmp = foo_long_double (tmp); \
11128 else if (__builtin_types_compatible_p (typeof (x), double)) \
11129 tmp = foo_double (tmp); \
11130 else if (__builtin_types_compatible_p (typeof (x), float)) \
11131 tmp = foo_float (tmp); \
11132 else \
11133 abort (); \
11134 tmp; \
11135 @})
11136 @end smallexample
11137
11138 @emph{Note:} This construct is only available for C@.
11139
11140 @end deftypefn
11141
11142 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11143
11144 The @var{call_exp} expression must be a function call, and the
11145 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11146 is passed to the function call in the target's static chain location.
11147 The result of builtin is the result of the function call.
11148
11149 @emph{Note:} This builtin is only available for C@.
11150 This builtin can be used to call Go closures from C.
11151
11152 @end deftypefn
11153
11154 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11155
11156 You can use the built-in function @code{__builtin_choose_expr} to
11157 evaluate code depending on the value of a constant expression. This
11158 built-in function returns @var{exp1} if @var{const_exp}, which is an
11159 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11160
11161 This built-in function is analogous to the @samp{? :} operator in C,
11162 except that the expression returned has its type unaltered by promotion
11163 rules. Also, the built-in function does not evaluate the expression
11164 that is not chosen. For example, if @var{const_exp} evaluates to true,
11165 @var{exp2} is not evaluated even if it has side-effects.
11166
11167 This built-in function can return an lvalue if the chosen argument is an
11168 lvalue.
11169
11170 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11171 type. Similarly, if @var{exp2} is returned, its return type is the same
11172 as @var{exp2}.
11173
11174 Example:
11175
11176 @smallexample
11177 #define foo(x) \
11178 __builtin_choose_expr ( \
11179 __builtin_types_compatible_p (typeof (x), double), \
11180 foo_double (x), \
11181 __builtin_choose_expr ( \
11182 __builtin_types_compatible_p (typeof (x), float), \
11183 foo_float (x), \
11184 /* @r{The void expression results in a compile-time error} \
11185 @r{when assigning the result to something.} */ \
11186 (void)0))
11187 @end smallexample
11188
11189 @emph{Note:} This construct is only available for C@. Furthermore, the
11190 unused expression (@var{exp1} or @var{exp2} depending on the value of
11191 @var{const_exp}) may still generate syntax errors. This may change in
11192 future revisions.
11193
11194 @end deftypefn
11195
11196 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11197
11198 The built-in function @code{__builtin_complex} is provided for use in
11199 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11200 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11201 real binary floating-point type, and the result has the corresponding
11202 complex type with real and imaginary parts @var{real} and @var{imag}.
11203 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11204 infinities, NaNs and negative zeros are involved.
11205
11206 @end deftypefn
11207
11208 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11209 You can use the built-in function @code{__builtin_constant_p} to
11210 determine if a value is known to be constant at compile time and hence
11211 that GCC can perform constant-folding on expressions involving that
11212 value. The argument of the function is the value to test. The function
11213 returns the integer 1 if the argument is known to be a compile-time
11214 constant and 0 if it is not known to be a compile-time constant. A
11215 return of 0 does not indicate that the value is @emph{not} a constant,
11216 but merely that GCC cannot prove it is a constant with the specified
11217 value of the @option{-O} option.
11218
11219 You typically use this function in an embedded application where
11220 memory is a critical resource. If you have some complex calculation,
11221 you may want it to be folded if it involves constants, but need to call
11222 a function if it does not. For example:
11223
11224 @smallexample
11225 #define Scale_Value(X) \
11226 (__builtin_constant_p (X) \
11227 ? ((X) * SCALE + OFFSET) : Scale (X))
11228 @end smallexample
11229
11230 You may use this built-in function in either a macro or an inline
11231 function. However, if you use it in an inlined function and pass an
11232 argument of the function as the argument to the built-in, GCC
11233 never returns 1 when you call the inline function with a string constant
11234 or compound literal (@pxref{Compound Literals}) and does not return 1
11235 when you pass a constant numeric value to the inline function unless you
11236 specify the @option{-O} option.
11237
11238 You may also use @code{__builtin_constant_p} in initializers for static
11239 data. For instance, you can write
11240
11241 @smallexample
11242 static const int table[] = @{
11243 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11244 /* @r{@dots{}} */
11245 @};
11246 @end smallexample
11247
11248 @noindent
11249 This is an acceptable initializer even if @var{EXPRESSION} is not a
11250 constant expression, including the case where
11251 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11252 folded to a constant but @var{EXPRESSION} contains operands that are
11253 not otherwise permitted in a static initializer (for example,
11254 @code{0 && foo ()}). GCC must be more conservative about evaluating the
11255 built-in in this case, because it has no opportunity to perform
11256 optimization.
11257 @end deftypefn
11258
11259 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11260 @opindex fprofile-arcs
11261 You may use @code{__builtin_expect} to provide the compiler with
11262 branch prediction information. In general, you should prefer to
11263 use actual profile feedback for this (@option{-fprofile-arcs}), as
11264 programmers are notoriously bad at predicting how their programs
11265 actually perform. However, there are applications in which this
11266 data is hard to collect.
11267
11268 The return value is the value of @var{exp}, which should be an integral
11269 expression. The semantics of the built-in are that it is expected that
11270 @var{exp} == @var{c}. For example:
11271
11272 @smallexample
11273 if (__builtin_expect (x, 0))
11274 foo ();
11275 @end smallexample
11276
11277 @noindent
11278 indicates that we do not expect to call @code{foo}, since
11279 we expect @code{x} to be zero. Since you are limited to integral
11280 expressions for @var{exp}, you should use constructions such as
11281
11282 @smallexample
11283 if (__builtin_expect (ptr != NULL, 1))
11284 foo (*ptr);
11285 @end smallexample
11286
11287 @noindent
11288 when testing pointer or floating-point values.
11289 @end deftypefn
11290
11291 @deftypefn {Built-in Function} void __builtin_trap (void)
11292 This function causes the program to exit abnormally. GCC implements
11293 this function by using a target-dependent mechanism (such as
11294 intentionally executing an illegal instruction) or by calling
11295 @code{abort}. The mechanism used may vary from release to release so
11296 you should not rely on any particular implementation.
11297 @end deftypefn
11298
11299 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11300 If control flow reaches the point of the @code{__builtin_unreachable},
11301 the program is undefined. It is useful in situations where the
11302 compiler cannot deduce the unreachability of the code.
11303
11304 One such case is immediately following an @code{asm} statement that
11305 either never terminates, or one that transfers control elsewhere
11306 and never returns. In this example, without the
11307 @code{__builtin_unreachable}, GCC issues a warning that control
11308 reaches the end of a non-void function. It also generates code
11309 to return after the @code{asm}.
11310
11311 @smallexample
11312 int f (int c, int v)
11313 @{
11314 if (c)
11315 @{
11316 return v;
11317 @}
11318 else
11319 @{
11320 asm("jmp error_handler");
11321 __builtin_unreachable ();
11322 @}
11323 @}
11324 @end smallexample
11325
11326 @noindent
11327 Because the @code{asm} statement unconditionally transfers control out
11328 of the function, control never reaches the end of the function
11329 body. The @code{__builtin_unreachable} is in fact unreachable and
11330 communicates this fact to the compiler.
11331
11332 Another use for @code{__builtin_unreachable} is following a call a
11333 function that never returns but that is not declared
11334 @code{__attribute__((noreturn))}, as in this example:
11335
11336 @smallexample
11337 void function_that_never_returns (void);
11338
11339 int g (int c)
11340 @{
11341 if (c)
11342 @{
11343 return 1;
11344 @}
11345 else
11346 @{
11347 function_that_never_returns ();
11348 __builtin_unreachable ();
11349 @}
11350 @}
11351 @end smallexample
11352
11353 @end deftypefn
11354
11355 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11356 This function returns its first argument, and allows the compiler
11357 to assume that the returned pointer is at least @var{align} bytes
11358 aligned. This built-in can have either two or three arguments,
11359 if it has three, the third argument should have integer type, and
11360 if it is nonzero means misalignment offset. For example:
11361
11362 @smallexample
11363 void *x = __builtin_assume_aligned (arg, 16);
11364 @end smallexample
11365
11366 @noindent
11367 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11368 16-byte aligned, while:
11369
11370 @smallexample
11371 void *x = __builtin_assume_aligned (arg, 32, 8);
11372 @end smallexample
11373
11374 @noindent
11375 means that the compiler can assume for @code{x}, set to @code{arg}, that
11376 @code{(char *) x - 8} is 32-byte aligned.
11377 @end deftypefn
11378
11379 @deftypefn {Built-in Function} int __builtin_LINE ()
11380 This function is the equivalent of the preprocessor @code{__LINE__}
11381 macro and returns a constant integer expression that evaluates to
11382 the line number of the invocation of the built-in. When used as a C++
11383 default argument for a function @var{F}, it returns the line number
11384 of the call to @var{F}.
11385 @end deftypefn
11386
11387 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11388 This function is the equivalent of the @code{__FUNCTION__} symbol
11389 and returns an address constant pointing to the name of the function
11390 from which the built-in was invoked, or the empty string if
11391 the invocation is not at function scope. When used as a C++ default
11392 argument for a function @var{F}, it returns the name of @var{F}'s
11393 caller or the empty string if the call was not made at function
11394 scope.
11395 @end deftypefn
11396
11397 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11398 This function is the equivalent of the preprocessor @code{__FILE__}
11399 macro and returns an address constant pointing to the file name
11400 containing the invocation of the built-in, or the empty string if
11401 the invocation is not at function scope. When used as a C++ default
11402 argument for a function @var{F}, it returns the file name of the call
11403 to @var{F} or the empty string if the call was not made at function
11404 scope.
11405
11406 For example, in the following, each call to function @code{foo} will
11407 print a line similar to @code{"file.c:123: foo: message"} with the name
11408 of the file and the line number of the @code{printf} call, the name of
11409 the function @code{foo}, followed by the word @code{message}.
11410
11411 @smallexample
11412 const char*
11413 function (const char *func = __builtin_FUNCTION ())
11414 @{
11415 return func;
11416 @}
11417
11418 void foo (void)
11419 @{
11420 printf ("%s:%i: %s: message\n", file (), line (), function ());
11421 @}
11422 @end smallexample
11423
11424 @end deftypefn
11425
11426 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11427 This function is used to flush the processor's instruction cache for
11428 the region of memory between @var{begin} inclusive and @var{end}
11429 exclusive. Some targets require that the instruction cache be
11430 flushed, after modifying memory containing code, in order to obtain
11431 deterministic behavior.
11432
11433 If the target does not require instruction cache flushes,
11434 @code{__builtin___clear_cache} has no effect. Otherwise either
11435 instructions are emitted in-line to clear the instruction cache or a
11436 call to the @code{__clear_cache} function in libgcc is made.
11437 @end deftypefn
11438
11439 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11440 This function is used to minimize cache-miss latency by moving data into
11441 a cache before it is accessed.
11442 You can insert calls to @code{__builtin_prefetch} into code for which
11443 you know addresses of data in memory that is likely to be accessed soon.
11444 If the target supports them, data prefetch instructions are generated.
11445 If the prefetch is done early enough before the access then the data will
11446 be in the cache by the time it is accessed.
11447
11448 The value of @var{addr} is the address of the memory to prefetch.
11449 There are two optional arguments, @var{rw} and @var{locality}.
11450 The value of @var{rw} is a compile-time constant one or zero; one
11451 means that the prefetch is preparing for a write to the memory address
11452 and zero, the default, means that the prefetch is preparing for a read.
11453 The value @var{locality} must be a compile-time constant integer between
11454 zero and three. A value of zero means that the data has no temporal
11455 locality, so it need not be left in the cache after the access. A value
11456 of three means that the data has a high degree of temporal locality and
11457 should be left in all levels of cache possible. Values of one and two
11458 mean, respectively, a low or moderate degree of temporal locality. The
11459 default is three.
11460
11461 @smallexample
11462 for (i = 0; i < n; i++)
11463 @{
11464 a[i] = a[i] + b[i];
11465 __builtin_prefetch (&a[i+j], 1, 1);
11466 __builtin_prefetch (&b[i+j], 0, 1);
11467 /* @r{@dots{}} */
11468 @}
11469 @end smallexample
11470
11471 Data prefetch does not generate faults if @var{addr} is invalid, but
11472 the address expression itself must be valid. For example, a prefetch
11473 of @code{p->next} does not fault if @code{p->next} is not a valid
11474 address, but evaluation faults if @code{p} is not a valid address.
11475
11476 If the target does not support data prefetch, the address expression
11477 is evaluated if it includes side effects but no other code is generated
11478 and GCC does not issue a warning.
11479 @end deftypefn
11480
11481 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11482 Returns a positive infinity, if supported by the floating-point format,
11483 else @code{DBL_MAX}. This function is suitable for implementing the
11484 ISO C macro @code{HUGE_VAL}.
11485 @end deftypefn
11486
11487 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11488 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11489 @end deftypefn
11490
11491 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11492 Similar to @code{__builtin_huge_val}, except the return
11493 type is @code{long double}.
11494 @end deftypefn
11495
11496 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
11497 Similar to @code{__builtin_huge_val}, except the return type is
11498 @code{_Float@var{n}}.
11499 @end deftypefn
11500
11501 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
11502 Similar to @code{__builtin_huge_val}, except the return type is
11503 @code{_Float@var{n}x}.
11504 @end deftypefn
11505
11506 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11507 This built-in implements the C99 fpclassify functionality. The first
11508 five int arguments should be the target library's notion of the
11509 possible FP classes and are used for return values. They must be
11510 constant values and they must appear in this order: @code{FP_NAN},
11511 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
11512 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
11513 to classify. GCC treats the last argument as type-generic, which
11514 means it does not do default promotion from float to double.
11515 @end deftypefn
11516
11517 @deftypefn {Built-in Function} double __builtin_inf (void)
11518 Similar to @code{__builtin_huge_val}, except a warning is generated
11519 if the target floating-point format does not support infinities.
11520 @end deftypefn
11521
11522 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
11523 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11524 @end deftypefn
11525
11526 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11527 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11528 @end deftypefn
11529
11530 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11531 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11532 @end deftypefn
11533
11534 @deftypefn {Built-in Function} float __builtin_inff (void)
11535 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11536 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11537 @end deftypefn
11538
11539 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11540 Similar to @code{__builtin_inf}, except the return
11541 type is @code{long double}.
11542 @end deftypefn
11543
11544 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
11545 Similar to @code{__builtin_inf}, except the return
11546 type is @code{_Float@var{n}}.
11547 @end deftypefn
11548
11549 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
11550 Similar to @code{__builtin_inf}, except the return
11551 type is @code{_Float@var{n}x}.
11552 @end deftypefn
11553
11554 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11555 Similar to @code{isinf}, except the return value is -1 for
11556 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11557 Note while the parameter list is an
11558 ellipsis, this function only accepts exactly one floating-point
11559 argument. GCC treats this parameter as type-generic, which means it
11560 does not do default promotion from float to double.
11561 @end deftypefn
11562
11563 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11564 This is an implementation of the ISO C99 function @code{nan}.
11565
11566 Since ISO C99 defines this function in terms of @code{strtod}, which we
11567 do not implement, a description of the parsing is in order. The string
11568 is parsed as by @code{strtol}; that is, the base is recognized by
11569 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11570 in the significand such that the least significant bit of the number
11571 is at the least significant bit of the significand. The number is
11572 truncated to fit the significand field provided. The significand is
11573 forced to be a quiet NaN@.
11574
11575 This function, if given a string literal all of which would have been
11576 consumed by @code{strtol}, is evaluated early enough that it is considered a
11577 compile-time constant.
11578 @end deftypefn
11579
11580 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11581 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11582 @end deftypefn
11583
11584 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11585 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11586 @end deftypefn
11587
11588 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11589 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11590 @end deftypefn
11591
11592 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11593 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11594 @end deftypefn
11595
11596 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11597 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11598 @end deftypefn
11599
11600 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
11601 Similar to @code{__builtin_nan}, except the return type is
11602 @code{_Float@var{n}}.
11603 @end deftypefn
11604
11605 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
11606 Similar to @code{__builtin_nan}, except the return type is
11607 @code{_Float@var{n}x}.
11608 @end deftypefn
11609
11610 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11611 Similar to @code{__builtin_nan}, except the significand is forced
11612 to be a signaling NaN@. The @code{nans} function is proposed by
11613 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11614 @end deftypefn
11615
11616 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11617 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11618 @end deftypefn
11619
11620 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11621 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11622 @end deftypefn
11623
11624 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
11625 Similar to @code{__builtin_nans}, except the return type is
11626 @code{_Float@var{n}}.
11627 @end deftypefn
11628
11629 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
11630 Similar to @code{__builtin_nans}, except the return type is
11631 @code{_Float@var{n}x}.
11632 @end deftypefn
11633
11634 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11635 Returns one plus the index of the least significant 1-bit of @var{x}, or
11636 if @var{x} is zero, returns zero.
11637 @end deftypefn
11638
11639 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11640 Returns the number of leading 0-bits in @var{x}, starting at the most
11641 significant bit position. If @var{x} is 0, the result is undefined.
11642 @end deftypefn
11643
11644 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11645 Returns the number of trailing 0-bits in @var{x}, starting at the least
11646 significant bit position. If @var{x} is 0, the result is undefined.
11647 @end deftypefn
11648
11649 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11650 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11651 number of bits following the most significant bit that are identical
11652 to it. There are no special cases for 0 or other values.
11653 @end deftypefn
11654
11655 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11656 Returns the number of 1-bits in @var{x}.
11657 @end deftypefn
11658
11659 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11660 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11661 modulo 2.
11662 @end deftypefn
11663
11664 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11665 Similar to @code{__builtin_ffs}, except the argument type is
11666 @code{long}.
11667 @end deftypefn
11668
11669 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11670 Similar to @code{__builtin_clz}, except the argument type is
11671 @code{unsigned long}.
11672 @end deftypefn
11673
11674 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11675 Similar to @code{__builtin_ctz}, except the argument type is
11676 @code{unsigned long}.
11677 @end deftypefn
11678
11679 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11680 Similar to @code{__builtin_clrsb}, except the argument type is
11681 @code{long}.
11682 @end deftypefn
11683
11684 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11685 Similar to @code{__builtin_popcount}, except the argument type is
11686 @code{unsigned long}.
11687 @end deftypefn
11688
11689 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11690 Similar to @code{__builtin_parity}, except the argument type is
11691 @code{unsigned long}.
11692 @end deftypefn
11693
11694 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11695 Similar to @code{__builtin_ffs}, except the argument type is
11696 @code{long long}.
11697 @end deftypefn
11698
11699 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11700 Similar to @code{__builtin_clz}, except the argument type is
11701 @code{unsigned long long}.
11702 @end deftypefn
11703
11704 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11705 Similar to @code{__builtin_ctz}, except the argument type is
11706 @code{unsigned long long}.
11707 @end deftypefn
11708
11709 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11710 Similar to @code{__builtin_clrsb}, except the argument type is
11711 @code{long long}.
11712 @end deftypefn
11713
11714 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11715 Similar to @code{__builtin_popcount}, except the argument type is
11716 @code{unsigned long long}.
11717 @end deftypefn
11718
11719 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11720 Similar to @code{__builtin_parity}, except the argument type is
11721 @code{unsigned long long}.
11722 @end deftypefn
11723
11724 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11725 Returns the first argument raised to the power of the second. Unlike the
11726 @code{pow} function no guarantees about precision and rounding are made.
11727 @end deftypefn
11728
11729 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11730 Similar to @code{__builtin_powi}, except the argument and return types
11731 are @code{float}.
11732 @end deftypefn
11733
11734 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11735 Similar to @code{__builtin_powi}, except the argument and return types
11736 are @code{long double}.
11737 @end deftypefn
11738
11739 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11740 Returns @var{x} with the order of the bytes reversed; for example,
11741 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11742 exactly 8 bits.
11743 @end deftypefn
11744
11745 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
11746 Similar to @code{__builtin_bswap16}, except the argument and return types
11747 are 32 bit.
11748 @end deftypefn
11749
11750 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
11751 Similar to @code{__builtin_bswap32}, except the argument and return types
11752 are 64 bit.
11753 @end deftypefn
11754
11755 @node Target Builtins
11756 @section Built-in Functions Specific to Particular Target Machines
11757
11758 On some target machines, GCC supports many built-in functions specific
11759 to those machines. Generally these generate calls to specific machine
11760 instructions, but allow the compiler to schedule those calls.
11761
11762 @menu
11763 * AArch64 Built-in Functions::
11764 * Alpha Built-in Functions::
11765 * Altera Nios II Built-in Functions::
11766 * ARC Built-in Functions::
11767 * ARC SIMD Built-in Functions::
11768 * ARM iWMMXt Built-in Functions::
11769 * ARM C Language Extensions (ACLE)::
11770 * ARM Floating Point Status and Control Intrinsics::
11771 * AVR Built-in Functions::
11772 * Blackfin Built-in Functions::
11773 * FR-V Built-in Functions::
11774 * MIPS DSP Built-in Functions::
11775 * MIPS Paired-Single Support::
11776 * MIPS Loongson Built-in Functions::
11777 * MIPS SIMD Architecture (MSA) Support::
11778 * Other MIPS Built-in Functions::
11779 * MSP430 Built-in Functions::
11780 * NDS32 Built-in Functions::
11781 * picoChip Built-in Functions::
11782 * PowerPC Built-in Functions::
11783 * PowerPC AltiVec/VSX Built-in Functions::
11784 * PowerPC Hardware Transactional Memory Built-in Functions::
11785 * RX Built-in Functions::
11786 * S/390 System z Built-in Functions::
11787 * SH Built-in Functions::
11788 * SPARC VIS Built-in Functions::
11789 * SPU Built-in Functions::
11790 * TI C6X Built-in Functions::
11791 * TILE-Gx Built-in Functions::
11792 * TILEPro Built-in Functions::
11793 * x86 Built-in Functions::
11794 * x86 transactional memory intrinsics::
11795 @end menu
11796
11797 @node AArch64 Built-in Functions
11798 @subsection AArch64 Built-in Functions
11799
11800 These built-in functions are available for the AArch64 family of
11801 processors.
11802 @smallexample
11803 unsigned int __builtin_aarch64_get_fpcr ()
11804 void __builtin_aarch64_set_fpcr (unsigned int)
11805 unsigned int __builtin_aarch64_get_fpsr ()
11806 void __builtin_aarch64_set_fpsr (unsigned int)
11807 @end smallexample
11808
11809 @node Alpha Built-in Functions
11810 @subsection Alpha Built-in Functions
11811
11812 These built-in functions are available for the Alpha family of
11813 processors, depending on the command-line switches used.
11814
11815 The following built-in functions are always available. They
11816 all generate the machine instruction that is part of the name.
11817
11818 @smallexample
11819 long __builtin_alpha_implver (void)
11820 long __builtin_alpha_rpcc (void)
11821 long __builtin_alpha_amask (long)
11822 long __builtin_alpha_cmpbge (long, long)
11823 long __builtin_alpha_extbl (long, long)
11824 long __builtin_alpha_extwl (long, long)
11825 long __builtin_alpha_extll (long, long)
11826 long __builtin_alpha_extql (long, long)
11827 long __builtin_alpha_extwh (long, long)
11828 long __builtin_alpha_extlh (long, long)
11829 long __builtin_alpha_extqh (long, long)
11830 long __builtin_alpha_insbl (long, long)
11831 long __builtin_alpha_inswl (long, long)
11832 long __builtin_alpha_insll (long, long)
11833 long __builtin_alpha_insql (long, long)
11834 long __builtin_alpha_inswh (long, long)
11835 long __builtin_alpha_inslh (long, long)
11836 long __builtin_alpha_insqh (long, long)
11837 long __builtin_alpha_mskbl (long, long)
11838 long __builtin_alpha_mskwl (long, long)
11839 long __builtin_alpha_mskll (long, long)
11840 long __builtin_alpha_mskql (long, long)
11841 long __builtin_alpha_mskwh (long, long)
11842 long __builtin_alpha_msklh (long, long)
11843 long __builtin_alpha_mskqh (long, long)
11844 long __builtin_alpha_umulh (long, long)
11845 long __builtin_alpha_zap (long, long)
11846 long __builtin_alpha_zapnot (long, long)
11847 @end smallexample
11848
11849 The following built-in functions are always with @option{-mmax}
11850 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
11851 later. They all generate the machine instruction that is part
11852 of the name.
11853
11854 @smallexample
11855 long __builtin_alpha_pklb (long)
11856 long __builtin_alpha_pkwb (long)
11857 long __builtin_alpha_unpkbl (long)
11858 long __builtin_alpha_unpkbw (long)
11859 long __builtin_alpha_minub8 (long, long)
11860 long __builtin_alpha_minsb8 (long, long)
11861 long __builtin_alpha_minuw4 (long, long)
11862 long __builtin_alpha_minsw4 (long, long)
11863 long __builtin_alpha_maxub8 (long, long)
11864 long __builtin_alpha_maxsb8 (long, long)
11865 long __builtin_alpha_maxuw4 (long, long)
11866 long __builtin_alpha_maxsw4 (long, long)
11867 long __builtin_alpha_perr (long, long)
11868 @end smallexample
11869
11870 The following built-in functions are always with @option{-mcix}
11871 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
11872 later. They all generate the machine instruction that is part
11873 of the name.
11874
11875 @smallexample
11876 long __builtin_alpha_cttz (long)
11877 long __builtin_alpha_ctlz (long)
11878 long __builtin_alpha_ctpop (long)
11879 @end smallexample
11880
11881 The following built-in functions are available on systems that use the OSF/1
11882 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
11883 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
11884 @code{rdval} and @code{wrval}.
11885
11886 @smallexample
11887 void *__builtin_thread_pointer (void)
11888 void __builtin_set_thread_pointer (void *)
11889 @end smallexample
11890
11891 @node Altera Nios II Built-in Functions
11892 @subsection Altera Nios II Built-in Functions
11893
11894 These built-in functions are available for the Altera Nios II
11895 family of processors.
11896
11897 The following built-in functions are always available. They
11898 all generate the machine instruction that is part of the name.
11899
11900 @example
11901 int __builtin_ldbio (volatile const void *)
11902 int __builtin_ldbuio (volatile const void *)
11903 int __builtin_ldhio (volatile const void *)
11904 int __builtin_ldhuio (volatile const void *)
11905 int __builtin_ldwio (volatile const void *)
11906 void __builtin_stbio (volatile void *, int)
11907 void __builtin_sthio (volatile void *, int)
11908 void __builtin_stwio (volatile void *, int)
11909 void __builtin_sync (void)
11910 int __builtin_rdctl (int)
11911 int __builtin_rdprs (int, int)
11912 void __builtin_wrctl (int, int)
11913 void __builtin_flushd (volatile void *)
11914 void __builtin_flushda (volatile void *)
11915 int __builtin_wrpie (int);
11916 void __builtin_eni (int);
11917 int __builtin_ldex (volatile const void *)
11918 int __builtin_stex (volatile void *, int)
11919 int __builtin_ldsex (volatile const void *)
11920 int __builtin_stsex (volatile void *, int)
11921 @end example
11922
11923 The following built-in functions are always available. They
11924 all generate a Nios II Custom Instruction. The name of the
11925 function represents the types that the function takes and
11926 returns. The letter before the @code{n} is the return type
11927 or void if absent. The @code{n} represents the first parameter
11928 to all the custom instructions, the custom instruction number.
11929 The two letters after the @code{n} represent the up to two
11930 parameters to the function.
11931
11932 The letters represent the following data types:
11933 @table @code
11934 @item <no letter>
11935 @code{void} for return type and no parameter for parameter types.
11936
11937 @item i
11938 @code{int} for return type and parameter type
11939
11940 @item f
11941 @code{float} for return type and parameter type
11942
11943 @item p
11944 @code{void *} for return type and parameter type
11945
11946 @end table
11947
11948 And the function names are:
11949 @example
11950 void __builtin_custom_n (void)
11951 void __builtin_custom_ni (int)
11952 void __builtin_custom_nf (float)
11953 void __builtin_custom_np (void *)
11954 void __builtin_custom_nii (int, int)
11955 void __builtin_custom_nif (int, float)
11956 void __builtin_custom_nip (int, void *)
11957 void __builtin_custom_nfi (float, int)
11958 void __builtin_custom_nff (float, float)
11959 void __builtin_custom_nfp (float, void *)
11960 void __builtin_custom_npi (void *, int)
11961 void __builtin_custom_npf (void *, float)
11962 void __builtin_custom_npp (void *, void *)
11963 int __builtin_custom_in (void)
11964 int __builtin_custom_ini (int)
11965 int __builtin_custom_inf (float)
11966 int __builtin_custom_inp (void *)
11967 int __builtin_custom_inii (int, int)
11968 int __builtin_custom_inif (int, float)
11969 int __builtin_custom_inip (int, void *)
11970 int __builtin_custom_infi (float, int)
11971 int __builtin_custom_inff (float, float)
11972 int __builtin_custom_infp (float, void *)
11973 int __builtin_custom_inpi (void *, int)
11974 int __builtin_custom_inpf (void *, float)
11975 int __builtin_custom_inpp (void *, void *)
11976 float __builtin_custom_fn (void)
11977 float __builtin_custom_fni (int)
11978 float __builtin_custom_fnf (float)
11979 float __builtin_custom_fnp (void *)
11980 float __builtin_custom_fnii (int, int)
11981 float __builtin_custom_fnif (int, float)
11982 float __builtin_custom_fnip (int, void *)
11983 float __builtin_custom_fnfi (float, int)
11984 float __builtin_custom_fnff (float, float)
11985 float __builtin_custom_fnfp (float, void *)
11986 float __builtin_custom_fnpi (void *, int)
11987 float __builtin_custom_fnpf (void *, float)
11988 float __builtin_custom_fnpp (void *, void *)
11989 void * __builtin_custom_pn (void)
11990 void * __builtin_custom_pni (int)
11991 void * __builtin_custom_pnf (float)
11992 void * __builtin_custom_pnp (void *)
11993 void * __builtin_custom_pnii (int, int)
11994 void * __builtin_custom_pnif (int, float)
11995 void * __builtin_custom_pnip (int, void *)
11996 void * __builtin_custom_pnfi (float, int)
11997 void * __builtin_custom_pnff (float, float)
11998 void * __builtin_custom_pnfp (float, void *)
11999 void * __builtin_custom_pnpi (void *, int)
12000 void * __builtin_custom_pnpf (void *, float)
12001 void * __builtin_custom_pnpp (void *, void *)
12002 @end example
12003
12004 @node ARC Built-in Functions
12005 @subsection ARC Built-in Functions
12006
12007 The following built-in functions are provided for ARC targets. The
12008 built-ins generate the corresponding assembly instructions. In the
12009 examples given below, the generated code often requires an operand or
12010 result to be in a register. Where necessary further code will be
12011 generated to ensure this is true, but for brevity this is not
12012 described in each case.
12013
12014 @emph{Note:} Using a built-in to generate an instruction not supported
12015 by a target may cause problems. At present the compiler is not
12016 guaranteed to detect such misuse, and as a result an internal compiler
12017 error may be generated.
12018
12019 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12020 Return 1 if @var{val} is known to have the byte alignment given
12021 by @var{alignval}, otherwise return 0.
12022 Note that this is different from
12023 @smallexample
12024 __alignof__(*(char *)@var{val}) >= alignval
12025 @end smallexample
12026 because __alignof__ sees only the type of the dereference, whereas
12027 __builtin_arc_align uses alignment information from the pointer
12028 as well as from the pointed-to type.
12029 The information available will depend on optimization level.
12030 @end deftypefn
12031
12032 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12033 Generates
12034 @example
12035 brk
12036 @end example
12037 @end deftypefn
12038
12039 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12040 The operand is the number of a register to be read. Generates:
12041 @example
12042 mov @var{dest}, r@var{regno}
12043 @end example
12044 where the value in @var{dest} will be the result returned from the
12045 built-in.
12046 @end deftypefn
12047
12048 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12049 The first operand is the number of a register to be written, the
12050 second operand is a compile time constant to write into that
12051 register. Generates:
12052 @example
12053 mov r@var{regno}, @var{val}
12054 @end example
12055 @end deftypefn
12056
12057 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12058 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12059 Generates:
12060 @example
12061 divaw @var{dest}, @var{a}, @var{b}
12062 @end example
12063 where the value in @var{dest} will be the result returned from the
12064 built-in.
12065 @end deftypefn
12066
12067 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12068 Generates
12069 @example
12070 flag @var{a}
12071 @end example
12072 @end deftypefn
12073
12074 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12075 The operand, @var{auxv}, is the address of an auxiliary register and
12076 must be a compile time constant. Generates:
12077 @example
12078 lr @var{dest}, [@var{auxr}]
12079 @end example
12080 Where the value in @var{dest} will be the result returned from the
12081 built-in.
12082 @end deftypefn
12083
12084 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12085 Only available with @option{-mmul64}. Generates:
12086 @example
12087 mul64 @var{a}, @var{b}
12088 @end example
12089 @end deftypefn
12090
12091 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12092 Only available with @option{-mmul64}. Generates:
12093 @example
12094 mulu64 @var{a}, @var{b}
12095 @end example
12096 @end deftypefn
12097
12098 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12099 Generates:
12100 @example
12101 nop
12102 @end example
12103 @end deftypefn
12104
12105 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12106 Only valid if the @samp{norm} instruction is available through the
12107 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12108 Generates:
12109 @example
12110 norm @var{dest}, @var{src}
12111 @end example
12112 Where the value in @var{dest} will be the result returned from the
12113 built-in.
12114 @end deftypefn
12115
12116 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12117 Only valid if the @samp{normw} instruction is available through the
12118 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12119 Generates:
12120 @example
12121 normw @var{dest}, @var{src}
12122 @end example
12123 Where the value in @var{dest} will be the result returned from the
12124 built-in.
12125 @end deftypefn
12126
12127 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12128 Generates:
12129 @example
12130 rtie
12131 @end example
12132 @end deftypefn
12133
12134 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12135 Generates:
12136 @example
12137 sleep @var{a}
12138 @end example
12139 @end deftypefn
12140
12141 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12142 The first argument, @var{auxv}, is the address of an auxiliary
12143 register, the second argument, @var{val}, is a compile time constant
12144 to be written to the register. Generates:
12145 @example
12146 sr @var{auxr}, [@var{val}]
12147 @end example
12148 @end deftypefn
12149
12150 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12151 Only valid with @option{-mswap}. Generates:
12152 @example
12153 swap @var{dest}, @var{src}
12154 @end example
12155 Where the value in @var{dest} will be the result returned from the
12156 built-in.
12157 @end deftypefn
12158
12159 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12160 Generates:
12161 @example
12162 swi
12163 @end example
12164 @end deftypefn
12165
12166 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12167 Only available with @option{-mcpu=ARC700}. Generates:
12168 @example
12169 sync
12170 @end example
12171 @end deftypefn
12172
12173 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12174 Only available with @option{-mcpu=ARC700}. Generates:
12175 @example
12176 trap_s @var{c}
12177 @end example
12178 @end deftypefn
12179
12180 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12181 Only available with @option{-mcpu=ARC700}. Generates:
12182 @example
12183 unimp_s
12184 @end example
12185 @end deftypefn
12186
12187 The instructions generated by the following builtins are not
12188 considered as candidates for scheduling. They are not moved around by
12189 the compiler during scheduling, and thus can be expected to appear
12190 where they are put in the C code:
12191 @example
12192 __builtin_arc_brk()
12193 __builtin_arc_core_read()
12194 __builtin_arc_core_write()
12195 __builtin_arc_flag()
12196 __builtin_arc_lr()
12197 __builtin_arc_sleep()
12198 __builtin_arc_sr()
12199 __builtin_arc_swi()
12200 @end example
12201
12202 @node ARC SIMD Built-in Functions
12203 @subsection ARC SIMD Built-in Functions
12204
12205 SIMD builtins provided by the compiler can be used to generate the
12206 vector instructions. This section describes the available builtins
12207 and their usage in programs. With the @option{-msimd} option, the
12208 compiler provides 128-bit vector types, which can be specified using
12209 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12210 can be included to use the following predefined types:
12211 @example
12212 typedef int __v4si __attribute__((vector_size(16)));
12213 typedef short __v8hi __attribute__((vector_size(16)));
12214 @end example
12215
12216 These types can be used to define 128-bit variables. The built-in
12217 functions listed in the following section can be used on these
12218 variables to generate the vector operations.
12219
12220 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12221 @file{arc-simd.h} also provides equivalent macros called
12222 @code{_@var{someinsn}} that can be used for programming ease and
12223 improved readability. The following macros for DMA control are also
12224 provided:
12225 @example
12226 #define _setup_dma_in_channel_reg _vdiwr
12227 #define _setup_dma_out_channel_reg _vdowr
12228 @end example
12229
12230 The following is a complete list of all the SIMD built-ins provided
12231 for ARC, grouped by calling signature.
12232
12233 The following take two @code{__v8hi} arguments and return a
12234 @code{__v8hi} result:
12235 @example
12236 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12237 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12238 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12239 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12240 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12241 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12242 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12243 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12244 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12245 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12246 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12247 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12248 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12249 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12250 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
12251 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
12252 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
12253 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
12254 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
12255 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
12256 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
12257 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
12258 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
12259 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
12260 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
12261 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
12262 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
12263 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
12264 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
12265 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
12266 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
12267 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
12268 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
12269 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
12270 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
12271 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
12272 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
12273 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
12274 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
12275 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
12276 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
12277 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
12278 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
12279 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
12280 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
12281 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
12282 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
12283 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
12284 @end example
12285
12286 The following take one @code{__v8hi} and one @code{int} argument and return a
12287 @code{__v8hi} result:
12288
12289 @example
12290 __v8hi __builtin_arc_vbaddw (__v8hi, int)
12291 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
12292 __v8hi __builtin_arc_vbminw (__v8hi, int)
12293 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
12294 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
12295 __v8hi __builtin_arc_vbmulw (__v8hi, int)
12296 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
12297 __v8hi __builtin_arc_vbsubw (__v8hi, int)
12298 @end example
12299
12300 The following take one @code{__v8hi} argument and one @code{int} argument which
12301 must be a 3-bit compile time constant indicating a register number
12302 I0-I7. They return a @code{__v8hi} result.
12303 @example
12304 __v8hi __builtin_arc_vasrw (__v8hi, const int)
12305 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
12306 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
12307 @end example
12308
12309 The following take one @code{__v8hi} argument and one @code{int}
12310 argument which must be a 6-bit compile time constant. They return a
12311 @code{__v8hi} result.
12312 @example
12313 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
12314 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
12315 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
12316 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
12317 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
12318 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
12319 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
12320 @end example
12321
12322 The following take one @code{__v8hi} argument and one @code{int} argument which
12323 must be a 8-bit compile time constant. They return a @code{__v8hi}
12324 result.
12325 @example
12326 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12327 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12328 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12329 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12330 @end example
12331
12332 The following take two @code{int} arguments, the second of which which
12333 must be a 8-bit compile time constant. They return a @code{__v8hi}
12334 result:
12335 @example
12336 __v8hi __builtin_arc_vmovaw (int, const int)
12337 __v8hi __builtin_arc_vmovw (int, const int)
12338 __v8hi __builtin_arc_vmovzw (int, const int)
12339 @end example
12340
12341 The following take a single @code{__v8hi} argument and return a
12342 @code{__v8hi} result:
12343 @example
12344 __v8hi __builtin_arc_vabsaw (__v8hi)
12345 __v8hi __builtin_arc_vabsw (__v8hi)
12346 __v8hi __builtin_arc_vaddsuw (__v8hi)
12347 __v8hi __builtin_arc_vexch1 (__v8hi)
12348 __v8hi __builtin_arc_vexch2 (__v8hi)
12349 __v8hi __builtin_arc_vexch4 (__v8hi)
12350 __v8hi __builtin_arc_vsignw (__v8hi)
12351 __v8hi __builtin_arc_vupbaw (__v8hi)
12352 __v8hi __builtin_arc_vupbw (__v8hi)
12353 __v8hi __builtin_arc_vupsbaw (__v8hi)
12354 __v8hi __builtin_arc_vupsbw (__v8hi)
12355 @end example
12356
12357 The following take two @code{int} arguments and return no result:
12358 @example
12359 void __builtin_arc_vdirun (int, int)
12360 void __builtin_arc_vdorun (int, int)
12361 @end example
12362
12363 The following take two @code{int} arguments and return no result. The
12364 first argument must a 3-bit compile time constant indicating one of
12365 the DR0-DR7 DMA setup channels:
12366 @example
12367 void __builtin_arc_vdiwr (const int, int)
12368 void __builtin_arc_vdowr (const int, int)
12369 @end example
12370
12371 The following take an @code{int} argument and return no result:
12372 @example
12373 void __builtin_arc_vendrec (int)
12374 void __builtin_arc_vrec (int)
12375 void __builtin_arc_vrecrun (int)
12376 void __builtin_arc_vrun (int)
12377 @end example
12378
12379 The following take a @code{__v8hi} argument and two @code{int}
12380 arguments and return a @code{__v8hi} result. The second argument must
12381 be a 3-bit compile time constants, indicating one the registers I0-I7,
12382 and the third argument must be an 8-bit compile time constant.
12383
12384 @emph{Note:} Although the equivalent hardware instructions do not take
12385 an SIMD register as an operand, these builtins overwrite the relevant
12386 bits of the @code{__v8hi} register provided as the first argument with
12387 the value loaded from the @code{[Ib, u8]} location in the SDM.
12388
12389 @example
12390 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12391 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12392 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12393 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12394 @end example
12395
12396 The following take two @code{int} arguments and return a @code{__v8hi}
12397 result. The first argument must be a 3-bit compile time constants,
12398 indicating one the registers I0-I7, and the second argument must be an
12399 8-bit compile time constant.
12400
12401 @example
12402 __v8hi __builtin_arc_vld128 (const int, const int)
12403 __v8hi __builtin_arc_vld64w (const int, const int)
12404 @end example
12405
12406 The following take a @code{__v8hi} argument and two @code{int}
12407 arguments and return no result. The second argument must be a 3-bit
12408 compile time constants, indicating one the registers I0-I7, and the
12409 third argument must be an 8-bit compile time constant.
12410
12411 @example
12412 void __builtin_arc_vst128 (__v8hi, const int, const int)
12413 void __builtin_arc_vst64 (__v8hi, const int, const int)
12414 @end example
12415
12416 The following take a @code{__v8hi} argument and three @code{int}
12417 arguments and return no result. The second argument must be a 3-bit
12418 compile-time constant, identifying the 16-bit sub-register to be
12419 stored, the third argument must be a 3-bit compile time constants,
12420 indicating one the registers I0-I7, and the fourth argument must be an
12421 8-bit compile time constant.
12422
12423 @example
12424 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12425 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12426 @end example
12427
12428 @node ARM iWMMXt Built-in Functions
12429 @subsection ARM iWMMXt Built-in Functions
12430
12431 These built-in functions are available for the ARM family of
12432 processors when the @option{-mcpu=iwmmxt} switch is used:
12433
12434 @smallexample
12435 typedef int v2si __attribute__ ((vector_size (8)));
12436 typedef short v4hi __attribute__ ((vector_size (8)));
12437 typedef char v8qi __attribute__ ((vector_size (8)));
12438
12439 int __builtin_arm_getwcgr0 (void)
12440 void __builtin_arm_setwcgr0 (int)
12441 int __builtin_arm_getwcgr1 (void)
12442 void __builtin_arm_setwcgr1 (int)
12443 int __builtin_arm_getwcgr2 (void)
12444 void __builtin_arm_setwcgr2 (int)
12445 int __builtin_arm_getwcgr3 (void)
12446 void __builtin_arm_setwcgr3 (int)
12447 int __builtin_arm_textrmsb (v8qi, int)
12448 int __builtin_arm_textrmsh (v4hi, int)
12449 int __builtin_arm_textrmsw (v2si, int)
12450 int __builtin_arm_textrmub (v8qi, int)
12451 int __builtin_arm_textrmuh (v4hi, int)
12452 int __builtin_arm_textrmuw (v2si, int)
12453 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12454 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12455 v2si __builtin_arm_tinsrw (v2si, int, int)
12456 long long __builtin_arm_tmia (long long, int, int)
12457 long long __builtin_arm_tmiabb (long long, int, int)
12458 long long __builtin_arm_tmiabt (long long, int, int)
12459 long long __builtin_arm_tmiaph (long long, int, int)
12460 long long __builtin_arm_tmiatb (long long, int, int)
12461 long long __builtin_arm_tmiatt (long long, int, int)
12462 int __builtin_arm_tmovmskb (v8qi)
12463 int __builtin_arm_tmovmskh (v4hi)
12464 int __builtin_arm_tmovmskw (v2si)
12465 long long __builtin_arm_waccb (v8qi)
12466 long long __builtin_arm_wacch (v4hi)
12467 long long __builtin_arm_waccw (v2si)
12468 v8qi __builtin_arm_waddb (v8qi, v8qi)
12469 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12470 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12471 v4hi __builtin_arm_waddh (v4hi, v4hi)
12472 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12473 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12474 v2si __builtin_arm_waddw (v2si, v2si)
12475 v2si __builtin_arm_waddwss (v2si, v2si)
12476 v2si __builtin_arm_waddwus (v2si, v2si)
12477 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12478 long long __builtin_arm_wand(long long, long long)
12479 long long __builtin_arm_wandn (long long, long long)
12480 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12481 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12482 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12483 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12484 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12485 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12486 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12487 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12488 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12489 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12490 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12491 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12492 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12493 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12494 long long __builtin_arm_wmacsz (v4hi, v4hi)
12495 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12496 long long __builtin_arm_wmacuz (v4hi, v4hi)
12497 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12498 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12499 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12500 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12501 v2si __builtin_arm_wmaxsw (v2si, v2si)
12502 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12503 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12504 v2si __builtin_arm_wmaxuw (v2si, v2si)
12505 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12506 v4hi __builtin_arm_wminsh (v4hi, v4hi)
12507 v2si __builtin_arm_wminsw (v2si, v2si)
12508 v8qi __builtin_arm_wminub (v8qi, v8qi)
12509 v4hi __builtin_arm_wminuh (v4hi, v4hi)
12510 v2si __builtin_arm_wminuw (v2si, v2si)
12511 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
12512 v4hi __builtin_arm_wmulul (v4hi, v4hi)
12513 v4hi __builtin_arm_wmulum (v4hi, v4hi)
12514 long long __builtin_arm_wor (long long, long long)
12515 v2si __builtin_arm_wpackdss (long long, long long)
12516 v2si __builtin_arm_wpackdus (long long, long long)
12517 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
12518 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
12519 v4hi __builtin_arm_wpackwss (v2si, v2si)
12520 v4hi __builtin_arm_wpackwus (v2si, v2si)
12521 long long __builtin_arm_wrord (long long, long long)
12522 long long __builtin_arm_wrordi (long long, int)
12523 v4hi __builtin_arm_wrorh (v4hi, long long)
12524 v4hi __builtin_arm_wrorhi (v4hi, int)
12525 v2si __builtin_arm_wrorw (v2si, long long)
12526 v2si __builtin_arm_wrorwi (v2si, int)
12527 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
12528 v2si __builtin_arm_wsadbz (v8qi, v8qi)
12529 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
12530 v2si __builtin_arm_wsadhz (v4hi, v4hi)
12531 v4hi __builtin_arm_wshufh (v4hi, int)
12532 long long __builtin_arm_wslld (long long, long long)
12533 long long __builtin_arm_wslldi (long long, int)
12534 v4hi __builtin_arm_wsllh (v4hi, long long)
12535 v4hi __builtin_arm_wsllhi (v4hi, int)
12536 v2si __builtin_arm_wsllw (v2si, long long)
12537 v2si __builtin_arm_wsllwi (v2si, int)
12538 long long __builtin_arm_wsrad (long long, long long)
12539 long long __builtin_arm_wsradi (long long, int)
12540 v4hi __builtin_arm_wsrah (v4hi, long long)
12541 v4hi __builtin_arm_wsrahi (v4hi, int)
12542 v2si __builtin_arm_wsraw (v2si, long long)
12543 v2si __builtin_arm_wsrawi (v2si, int)
12544 long long __builtin_arm_wsrld (long long, long long)
12545 long long __builtin_arm_wsrldi (long long, int)
12546 v4hi __builtin_arm_wsrlh (v4hi, long long)
12547 v4hi __builtin_arm_wsrlhi (v4hi, int)
12548 v2si __builtin_arm_wsrlw (v2si, long long)
12549 v2si __builtin_arm_wsrlwi (v2si, int)
12550 v8qi __builtin_arm_wsubb (v8qi, v8qi)
12551 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
12552 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
12553 v4hi __builtin_arm_wsubh (v4hi, v4hi)
12554 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12555 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12556 v2si __builtin_arm_wsubw (v2si, v2si)
12557 v2si __builtin_arm_wsubwss (v2si, v2si)
12558 v2si __builtin_arm_wsubwus (v2si, v2si)
12559 v4hi __builtin_arm_wunpckehsb (v8qi)
12560 v2si __builtin_arm_wunpckehsh (v4hi)
12561 long long __builtin_arm_wunpckehsw (v2si)
12562 v4hi __builtin_arm_wunpckehub (v8qi)
12563 v2si __builtin_arm_wunpckehuh (v4hi)
12564 long long __builtin_arm_wunpckehuw (v2si)
12565 v4hi __builtin_arm_wunpckelsb (v8qi)
12566 v2si __builtin_arm_wunpckelsh (v4hi)
12567 long long __builtin_arm_wunpckelsw (v2si)
12568 v4hi __builtin_arm_wunpckelub (v8qi)
12569 v2si __builtin_arm_wunpckeluh (v4hi)
12570 long long __builtin_arm_wunpckeluw (v2si)
12571 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12572 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12573 v2si __builtin_arm_wunpckihw (v2si, v2si)
12574 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12575 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12576 v2si __builtin_arm_wunpckilw (v2si, v2si)
12577 long long __builtin_arm_wxor (long long, long long)
12578 long long __builtin_arm_wzero ()
12579 @end smallexample
12580
12581
12582 @node ARM C Language Extensions (ACLE)
12583 @subsection ARM C Language Extensions (ACLE)
12584
12585 GCC implements extensions for C as described in the ARM C Language
12586 Extensions (ACLE) specification, which can be found at
12587 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12588
12589 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12590 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12591 intrinsics can be found at
12592 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12593 The built-in intrinsics for the Advanced SIMD extension are available when
12594 NEON is enabled.
12595
12596 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12597 back ends support CRC32 intrinsics from @file{arm_acle.h}. The ARM back end's
12598 16-bit floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12599 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12600 intrinsics yet.
12601
12602 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12603 availability of extensions.
12604
12605 @node ARM Floating Point Status and Control Intrinsics
12606 @subsection ARM Floating Point Status and Control Intrinsics
12607
12608 These built-in functions are available for the ARM family of
12609 processors with floating-point unit.
12610
12611 @smallexample
12612 unsigned int __builtin_arm_get_fpscr ()
12613 void __builtin_arm_set_fpscr (unsigned int)
12614 @end smallexample
12615
12616 @node AVR Built-in Functions
12617 @subsection AVR Built-in Functions
12618
12619 For each built-in function for AVR, there is an equally named,
12620 uppercase built-in macro defined. That way users can easily query if
12621 or if not a specific built-in is implemented or not. For example, if
12622 @code{__builtin_avr_nop} is available the macro
12623 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12624
12625 The following built-in functions map to the respective machine
12626 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12627 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12628 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12629 as library call if no hardware multiplier is available.
12630
12631 @smallexample
12632 void __builtin_avr_nop (void)
12633 void __builtin_avr_sei (void)
12634 void __builtin_avr_cli (void)
12635 void __builtin_avr_sleep (void)
12636 void __builtin_avr_wdr (void)
12637 unsigned char __builtin_avr_swap (unsigned char)
12638 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12639 int __builtin_avr_fmuls (char, char)
12640 int __builtin_avr_fmulsu (char, unsigned char)
12641 @end smallexample
12642
12643 In order to delay execution for a specific number of cycles, GCC
12644 implements
12645 @smallexample
12646 void __builtin_avr_delay_cycles (unsigned long ticks)
12647 @end smallexample
12648
12649 @noindent
12650 @code{ticks} is the number of ticks to delay execution. Note that this
12651 built-in does not take into account the effect of interrupts that
12652 might increase delay time. @code{ticks} must be a compile-time
12653 integer constant; delays with a variable number of cycles are not supported.
12654
12655 @smallexample
12656 char __builtin_avr_flash_segment (const __memx void*)
12657 @end smallexample
12658
12659 @noindent
12660 This built-in takes a byte address to the 24-bit
12661 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12662 the number of the flash segment (the 64 KiB chunk) where the address
12663 points to. Counting starts at @code{0}.
12664 If the address does not point to flash memory, return @code{-1}.
12665
12666 @smallexample
12667 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
12668 @end smallexample
12669
12670 @noindent
12671 Insert bits from @var{bits} into @var{val} and return the resulting
12672 value. The nibbles of @var{map} determine how the insertion is
12673 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12674 @enumerate
12675 @item If @var{X} is @code{0xf},
12676 then the @var{n}-th bit of @var{val} is returned unaltered.
12677
12678 @item If X is in the range 0@dots{}7,
12679 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12680
12681 @item If X is in the range 8@dots{}@code{0xe},
12682 then the @var{n}-th result bit is undefined.
12683 @end enumerate
12684
12685 @noindent
12686 One typical use case for this built-in is adjusting input and
12687 output values to non-contiguous port layouts. Some examples:
12688
12689 @smallexample
12690 // same as val, bits is unused
12691 __builtin_avr_insert_bits (0xffffffff, bits, val)
12692 @end smallexample
12693
12694 @smallexample
12695 // same as bits, val is unused
12696 __builtin_avr_insert_bits (0x76543210, bits, val)
12697 @end smallexample
12698
12699 @smallexample
12700 // same as rotating bits by 4
12701 __builtin_avr_insert_bits (0x32107654, bits, 0)
12702 @end smallexample
12703
12704 @smallexample
12705 // high nibble of result is the high nibble of val
12706 // low nibble of result is the low nibble of bits
12707 __builtin_avr_insert_bits (0xffff3210, bits, val)
12708 @end smallexample
12709
12710 @smallexample
12711 // reverse the bit order of bits
12712 __builtin_avr_insert_bits (0x01234567, bits, 0)
12713 @end smallexample
12714
12715 @smallexample
12716 void __builtin_avr_nops (unsigned count)
12717 @end smallexample
12718
12719 @noindent
12720 Insert @code{count} @code{NOP} instructions.
12721 The number of instructions must be a compile-time integer constant.
12722
12723 @node Blackfin Built-in Functions
12724 @subsection Blackfin Built-in Functions
12725
12726 Currently, there are two Blackfin-specific built-in functions. These are
12727 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
12728 using inline assembly; by using these built-in functions the compiler can
12729 automatically add workarounds for hardware errata involving these
12730 instructions. These functions are named as follows:
12731
12732 @smallexample
12733 void __builtin_bfin_csync (void)
12734 void __builtin_bfin_ssync (void)
12735 @end smallexample
12736
12737 @node FR-V Built-in Functions
12738 @subsection FR-V Built-in Functions
12739
12740 GCC provides many FR-V-specific built-in functions. In general,
12741 these functions are intended to be compatible with those described
12742 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
12743 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
12744 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
12745 pointer rather than by value.
12746
12747 Most of the functions are named after specific FR-V instructions.
12748 Such functions are said to be ``directly mapped'' and are summarized
12749 here in tabular form.
12750
12751 @menu
12752 * Argument Types::
12753 * Directly-mapped Integer Functions::
12754 * Directly-mapped Media Functions::
12755 * Raw read/write Functions::
12756 * Other Built-in Functions::
12757 @end menu
12758
12759 @node Argument Types
12760 @subsubsection Argument Types
12761
12762 The arguments to the built-in functions can be divided into three groups:
12763 register numbers, compile-time constants and run-time values. In order
12764 to make this classification clear at a glance, the arguments and return
12765 values are given the following pseudo types:
12766
12767 @multitable @columnfractions .20 .30 .15 .35
12768 @item Pseudo type @tab Real C type @tab Constant? @tab Description
12769 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
12770 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
12771 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
12772 @item @code{uw2} @tab @code{unsigned long long} @tab No
12773 @tab an unsigned doubleword
12774 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
12775 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
12776 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
12777 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
12778 @end multitable
12779
12780 These pseudo types are not defined by GCC, they are simply a notational
12781 convenience used in this manual.
12782
12783 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
12784 and @code{sw2} are evaluated at run time. They correspond to
12785 register operands in the underlying FR-V instructions.
12786
12787 @code{const} arguments represent immediate operands in the underlying
12788 FR-V instructions. They must be compile-time constants.
12789
12790 @code{acc} arguments are evaluated at compile time and specify the number
12791 of an accumulator register. For example, an @code{acc} argument of 2
12792 selects the ACC2 register.
12793
12794 @code{iacc} arguments are similar to @code{acc} arguments but specify the
12795 number of an IACC register. See @pxref{Other Built-in Functions}
12796 for more details.
12797
12798 @node Directly-mapped Integer Functions
12799 @subsubsection Directly-Mapped Integer Functions
12800
12801 The functions listed below map directly to FR-V I-type instructions.
12802
12803 @multitable @columnfractions .45 .32 .23
12804 @item Function prototype @tab Example usage @tab Assembly output
12805 @item @code{sw1 __ADDSS (sw1, sw1)}
12806 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
12807 @tab @code{ADDSS @var{a},@var{b},@var{c}}
12808 @item @code{sw1 __SCAN (sw1, sw1)}
12809 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
12810 @tab @code{SCAN @var{a},@var{b},@var{c}}
12811 @item @code{sw1 __SCUTSS (sw1)}
12812 @tab @code{@var{b} = __SCUTSS (@var{a})}
12813 @tab @code{SCUTSS @var{a},@var{b}}
12814 @item @code{sw1 __SLASS (sw1, sw1)}
12815 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
12816 @tab @code{SLASS @var{a},@var{b},@var{c}}
12817 @item @code{void __SMASS (sw1, sw1)}
12818 @tab @code{__SMASS (@var{a}, @var{b})}
12819 @tab @code{SMASS @var{a},@var{b}}
12820 @item @code{void __SMSSS (sw1, sw1)}
12821 @tab @code{__SMSSS (@var{a}, @var{b})}
12822 @tab @code{SMSSS @var{a},@var{b}}
12823 @item @code{void __SMU (sw1, sw1)}
12824 @tab @code{__SMU (@var{a}, @var{b})}
12825 @tab @code{SMU @var{a},@var{b}}
12826 @item @code{sw2 __SMUL (sw1, sw1)}
12827 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
12828 @tab @code{SMUL @var{a},@var{b},@var{c}}
12829 @item @code{sw1 __SUBSS (sw1, sw1)}
12830 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
12831 @tab @code{SUBSS @var{a},@var{b},@var{c}}
12832 @item @code{uw2 __UMUL (uw1, uw1)}
12833 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
12834 @tab @code{UMUL @var{a},@var{b},@var{c}}
12835 @end multitable
12836
12837 @node Directly-mapped Media Functions
12838 @subsubsection Directly-Mapped Media Functions
12839
12840 The functions listed below map directly to FR-V M-type instructions.
12841
12842 @multitable @columnfractions .45 .32 .23
12843 @item Function prototype @tab Example usage @tab Assembly output
12844 @item @code{uw1 __MABSHS (sw1)}
12845 @tab @code{@var{b} = __MABSHS (@var{a})}
12846 @tab @code{MABSHS @var{a},@var{b}}
12847 @item @code{void __MADDACCS (acc, acc)}
12848 @tab @code{__MADDACCS (@var{b}, @var{a})}
12849 @tab @code{MADDACCS @var{a},@var{b}}
12850 @item @code{sw1 __MADDHSS (sw1, sw1)}
12851 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
12852 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
12853 @item @code{uw1 __MADDHUS (uw1, uw1)}
12854 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
12855 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
12856 @item @code{uw1 __MAND (uw1, uw1)}
12857 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
12858 @tab @code{MAND @var{a},@var{b},@var{c}}
12859 @item @code{void __MASACCS (acc, acc)}
12860 @tab @code{__MASACCS (@var{b}, @var{a})}
12861 @tab @code{MASACCS @var{a},@var{b}}
12862 @item @code{uw1 __MAVEH (uw1, uw1)}
12863 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
12864 @tab @code{MAVEH @var{a},@var{b},@var{c}}
12865 @item @code{uw2 __MBTOH (uw1)}
12866 @tab @code{@var{b} = __MBTOH (@var{a})}
12867 @tab @code{MBTOH @var{a},@var{b}}
12868 @item @code{void __MBTOHE (uw1 *, uw1)}
12869 @tab @code{__MBTOHE (&@var{b}, @var{a})}
12870 @tab @code{MBTOHE @var{a},@var{b}}
12871 @item @code{void __MCLRACC (acc)}
12872 @tab @code{__MCLRACC (@var{a})}
12873 @tab @code{MCLRACC @var{a}}
12874 @item @code{void __MCLRACCA (void)}
12875 @tab @code{__MCLRACCA ()}
12876 @tab @code{MCLRACCA}
12877 @item @code{uw1 __Mcop1 (uw1, uw1)}
12878 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
12879 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
12880 @item @code{uw1 __Mcop2 (uw1, uw1)}
12881 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
12882 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
12883 @item @code{uw1 __MCPLHI (uw2, const)}
12884 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
12885 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
12886 @item @code{uw1 __MCPLI (uw2, const)}
12887 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
12888 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
12889 @item @code{void __MCPXIS (acc, sw1, sw1)}
12890 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
12891 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
12892 @item @code{void __MCPXIU (acc, uw1, uw1)}
12893 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
12894 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
12895 @item @code{void __MCPXRS (acc, sw1, sw1)}
12896 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
12897 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
12898 @item @code{void __MCPXRU (acc, uw1, uw1)}
12899 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
12900 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
12901 @item @code{uw1 __MCUT (acc, uw1)}
12902 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
12903 @tab @code{MCUT @var{a},@var{b},@var{c}}
12904 @item @code{uw1 __MCUTSS (acc, sw1)}
12905 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
12906 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
12907 @item @code{void __MDADDACCS (acc, acc)}
12908 @tab @code{__MDADDACCS (@var{b}, @var{a})}
12909 @tab @code{MDADDACCS @var{a},@var{b}}
12910 @item @code{void __MDASACCS (acc, acc)}
12911 @tab @code{__MDASACCS (@var{b}, @var{a})}
12912 @tab @code{MDASACCS @var{a},@var{b}}
12913 @item @code{uw2 __MDCUTSSI (acc, const)}
12914 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
12915 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
12916 @item @code{uw2 __MDPACKH (uw2, uw2)}
12917 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
12918 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
12919 @item @code{uw2 __MDROTLI (uw2, const)}
12920 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
12921 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
12922 @item @code{void __MDSUBACCS (acc, acc)}
12923 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
12924 @tab @code{MDSUBACCS @var{a},@var{b}}
12925 @item @code{void __MDUNPACKH (uw1 *, uw2)}
12926 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
12927 @tab @code{MDUNPACKH @var{a},@var{b}}
12928 @item @code{uw2 __MEXPDHD (uw1, const)}
12929 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
12930 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
12931 @item @code{uw1 __MEXPDHW (uw1, const)}
12932 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
12933 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
12934 @item @code{uw1 __MHDSETH (uw1, const)}
12935 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
12936 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
12937 @item @code{sw1 __MHDSETS (const)}
12938 @tab @code{@var{b} = __MHDSETS (@var{a})}
12939 @tab @code{MHDSETS #@var{a},@var{b}}
12940 @item @code{uw1 __MHSETHIH (uw1, const)}
12941 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
12942 @tab @code{MHSETHIH #@var{a},@var{b}}
12943 @item @code{sw1 __MHSETHIS (sw1, const)}
12944 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
12945 @tab @code{MHSETHIS #@var{a},@var{b}}
12946 @item @code{uw1 __MHSETLOH (uw1, const)}
12947 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
12948 @tab @code{MHSETLOH #@var{a},@var{b}}
12949 @item @code{sw1 __MHSETLOS (sw1, const)}
12950 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
12951 @tab @code{MHSETLOS #@var{a},@var{b}}
12952 @item @code{uw1 __MHTOB (uw2)}
12953 @tab @code{@var{b} = __MHTOB (@var{a})}
12954 @tab @code{MHTOB @var{a},@var{b}}
12955 @item @code{void __MMACHS (acc, sw1, sw1)}
12956 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
12957 @tab @code{MMACHS @var{a},@var{b},@var{c}}
12958 @item @code{void __MMACHU (acc, uw1, uw1)}
12959 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
12960 @tab @code{MMACHU @var{a},@var{b},@var{c}}
12961 @item @code{void __MMRDHS (acc, sw1, sw1)}
12962 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
12963 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
12964 @item @code{void __MMRDHU (acc, uw1, uw1)}
12965 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
12966 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
12967 @item @code{void __MMULHS (acc, sw1, sw1)}
12968 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
12969 @tab @code{MMULHS @var{a},@var{b},@var{c}}
12970 @item @code{void __MMULHU (acc, uw1, uw1)}
12971 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
12972 @tab @code{MMULHU @var{a},@var{b},@var{c}}
12973 @item @code{void __MMULXHS (acc, sw1, sw1)}
12974 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
12975 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
12976 @item @code{void __MMULXHU (acc, uw1, uw1)}
12977 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
12978 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
12979 @item @code{uw1 __MNOT (uw1)}
12980 @tab @code{@var{b} = __MNOT (@var{a})}
12981 @tab @code{MNOT @var{a},@var{b}}
12982 @item @code{uw1 __MOR (uw1, uw1)}
12983 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
12984 @tab @code{MOR @var{a},@var{b},@var{c}}
12985 @item @code{uw1 __MPACKH (uh, uh)}
12986 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
12987 @tab @code{MPACKH @var{a},@var{b},@var{c}}
12988 @item @code{sw2 __MQADDHSS (sw2, sw2)}
12989 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
12990 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
12991 @item @code{uw2 __MQADDHUS (uw2, uw2)}
12992 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
12993 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
12994 @item @code{void __MQCPXIS (acc, sw2, sw2)}
12995 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
12996 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
12997 @item @code{void __MQCPXIU (acc, uw2, uw2)}
12998 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
12999 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13000 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13001 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13002 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13003 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13004 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13005 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13006 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13007 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13008 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13009 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13010 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13011 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13012 @item @code{void __MQMACHS (acc, sw2, sw2)}
13013 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13014 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13015 @item @code{void __MQMACHU (acc, uw2, uw2)}
13016 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13017 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13018 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13019 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13020 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13021 @item @code{void __MQMULHS (acc, sw2, sw2)}
13022 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13023 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13024 @item @code{void __MQMULHU (acc, uw2, uw2)}
13025 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13026 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13027 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13028 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13029 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13030 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13031 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13032 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13033 @item @code{sw2 __MQSATHS (sw2, sw2)}
13034 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13035 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13036 @item @code{uw2 __MQSLLHI (uw2, int)}
13037 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13038 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13039 @item @code{sw2 __MQSRAHI (sw2, int)}
13040 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13041 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13042 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13043 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13044 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13045 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13046 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13047 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13048 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13049 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13050 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13051 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13052 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13053 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13054 @item @code{uw1 __MRDACC (acc)}
13055 @tab @code{@var{b} = __MRDACC (@var{a})}
13056 @tab @code{MRDACC @var{a},@var{b}}
13057 @item @code{uw1 __MRDACCG (acc)}
13058 @tab @code{@var{b} = __MRDACCG (@var{a})}
13059 @tab @code{MRDACCG @var{a},@var{b}}
13060 @item @code{uw1 __MROTLI (uw1, const)}
13061 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13062 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13063 @item @code{uw1 __MROTRI (uw1, const)}
13064 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13065 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13066 @item @code{sw1 __MSATHS (sw1, sw1)}
13067 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13068 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13069 @item @code{uw1 __MSATHU (uw1, uw1)}
13070 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13071 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13072 @item @code{uw1 __MSLLHI (uw1, const)}
13073 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13074 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13075 @item @code{sw1 __MSRAHI (sw1, const)}
13076 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13077 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13078 @item @code{uw1 __MSRLHI (uw1, const)}
13079 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13080 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13081 @item @code{void __MSUBACCS (acc, acc)}
13082 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13083 @tab @code{MSUBACCS @var{a},@var{b}}
13084 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13085 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13086 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13087 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13088 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13089 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13090 @item @code{void __MTRAP (void)}
13091 @tab @code{__MTRAP ()}
13092 @tab @code{MTRAP}
13093 @item @code{uw2 __MUNPACKH (uw1)}
13094 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13095 @tab @code{MUNPACKH @var{a},@var{b}}
13096 @item @code{uw1 __MWCUT (uw2, uw1)}
13097 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13098 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13099 @item @code{void __MWTACC (acc, uw1)}
13100 @tab @code{__MWTACC (@var{b}, @var{a})}
13101 @tab @code{MWTACC @var{a},@var{b}}
13102 @item @code{void __MWTACCG (acc, uw1)}
13103 @tab @code{__MWTACCG (@var{b}, @var{a})}
13104 @tab @code{MWTACCG @var{a},@var{b}}
13105 @item @code{uw1 __MXOR (uw1, uw1)}
13106 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13107 @tab @code{MXOR @var{a},@var{b},@var{c}}
13108 @end multitable
13109
13110 @node Raw read/write Functions
13111 @subsubsection Raw Read/Write Functions
13112
13113 This sections describes built-in functions related to read and write
13114 instructions to access memory. These functions generate
13115 @code{membar} instructions to flush the I/O load and stores where
13116 appropriate, as described in Fujitsu's manual described above.
13117
13118 @table @code
13119
13120 @item unsigned char __builtin_read8 (void *@var{data})
13121 @item unsigned short __builtin_read16 (void *@var{data})
13122 @item unsigned long __builtin_read32 (void *@var{data})
13123 @item unsigned long long __builtin_read64 (void *@var{data})
13124
13125 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13126 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13127 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13128 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13129 @end table
13130
13131 @node Other Built-in Functions
13132 @subsubsection Other Built-in Functions
13133
13134 This section describes built-in functions that are not named after
13135 a specific FR-V instruction.
13136
13137 @table @code
13138 @item sw2 __IACCreadll (iacc @var{reg})
13139 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13140 for future expansion and must be 0.
13141
13142 @item sw1 __IACCreadl (iacc @var{reg})
13143 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13144 Other values of @var{reg} are rejected as invalid.
13145
13146 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13147 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13148 is reserved for future expansion and must be 0.
13149
13150 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13151 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13152 is 1. Other values of @var{reg} are rejected as invalid.
13153
13154 @item void __data_prefetch0 (const void *@var{x})
13155 Use the @code{dcpl} instruction to load the contents of address @var{x}
13156 into the data cache.
13157
13158 @item void __data_prefetch (const void *@var{x})
13159 Use the @code{nldub} instruction to load the contents of address @var{x}
13160 into the data cache. The instruction is issued in slot I1@.
13161 @end table
13162
13163 @node MIPS DSP Built-in Functions
13164 @subsection MIPS DSP Built-in Functions
13165
13166 The MIPS DSP Application-Specific Extension (ASE) includes new
13167 instructions that are designed to improve the performance of DSP and
13168 media applications. It provides instructions that operate on packed
13169 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13170
13171 GCC supports MIPS DSP operations using both the generic
13172 vector extensions (@pxref{Vector Extensions}) and a collection of
13173 MIPS-specific built-in functions. Both kinds of support are
13174 enabled by the @option{-mdsp} command-line option.
13175
13176 Revision 2 of the ASE was introduced in the second half of 2006.
13177 This revision adds extra instructions to the original ASE, but is
13178 otherwise backwards-compatible with it. You can select revision 2
13179 using the command-line option @option{-mdspr2}; this option implies
13180 @option{-mdsp}.
13181
13182 The SCOUNT and POS bits of the DSP control register are global. The
13183 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13184 POS bits. During optimization, the compiler does not delete these
13185 instructions and it does not delete calls to functions containing
13186 these instructions.
13187
13188 At present, GCC only provides support for operations on 32-bit
13189 vectors. The vector type associated with 8-bit integer data is
13190 usually called @code{v4i8}, the vector type associated with Q7
13191 is usually called @code{v4q7}, the vector type associated with 16-bit
13192 integer data is usually called @code{v2i16}, and the vector type
13193 associated with Q15 is usually called @code{v2q15}. They can be
13194 defined in C as follows:
13195
13196 @smallexample
13197 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13198 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13199 typedef short v2i16 __attribute__ ((vector_size(4)));
13200 typedef short v2q15 __attribute__ ((vector_size(4)));
13201 @end smallexample
13202
13203 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13204 initialized in the same way as aggregates. For example:
13205
13206 @smallexample
13207 v4i8 a = @{1, 2, 3, 4@};
13208 v4i8 b;
13209 b = (v4i8) @{5, 6, 7, 8@};
13210
13211 v2q15 c = @{0x0fcb, 0x3a75@};
13212 v2q15 d;
13213 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13214 @end smallexample
13215
13216 @emph{Note:} The CPU's endianness determines the order in which values
13217 are packed. On little-endian targets, the first value is the least
13218 significant and the last value is the most significant. The opposite
13219 order applies to big-endian targets. For example, the code above
13220 sets the lowest byte of @code{a} to @code{1} on little-endian targets
13221 and @code{4} on big-endian targets.
13222
13223 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
13224 representation. As shown in this example, the integer representation
13225 of a Q7 value can be obtained by multiplying the fractional value by
13226 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
13227 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
13228 @code{0x1.0p31}.
13229
13230 The table below lists the @code{v4i8} and @code{v2q15} operations for which
13231 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
13232 and @code{c} and @code{d} are @code{v2q15} values.
13233
13234 @multitable @columnfractions .50 .50
13235 @item C code @tab MIPS instruction
13236 @item @code{a + b} @tab @code{addu.qb}
13237 @item @code{c + d} @tab @code{addq.ph}
13238 @item @code{a - b} @tab @code{subu.qb}
13239 @item @code{c - d} @tab @code{subq.ph}
13240 @end multitable
13241
13242 The table below lists the @code{v2i16} operation for which
13243 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
13244 @code{v2i16} values.
13245
13246 @multitable @columnfractions .50 .50
13247 @item C code @tab MIPS instruction
13248 @item @code{e * f} @tab @code{mul.ph}
13249 @end multitable
13250
13251 It is easier to describe the DSP built-in functions if we first define
13252 the following types:
13253
13254 @smallexample
13255 typedef int q31;
13256 typedef int i32;
13257 typedef unsigned int ui32;
13258 typedef long long a64;
13259 @end smallexample
13260
13261 @code{q31} and @code{i32} are actually the same as @code{int}, but we
13262 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
13263 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
13264 @code{long long}, but we use @code{a64} to indicate values that are
13265 placed in one of the four DSP accumulators (@code{$ac0},
13266 @code{$ac1}, @code{$ac2} or @code{$ac3}).
13267
13268 Also, some built-in functions prefer or require immediate numbers as
13269 parameters, because the corresponding DSP instructions accept both immediate
13270 numbers and register operands, or accept immediate numbers only. The
13271 immediate parameters are listed as follows.
13272
13273 @smallexample
13274 imm0_3: 0 to 3.
13275 imm0_7: 0 to 7.
13276 imm0_15: 0 to 15.
13277 imm0_31: 0 to 31.
13278 imm0_63: 0 to 63.
13279 imm0_255: 0 to 255.
13280 imm_n32_31: -32 to 31.
13281 imm_n512_511: -512 to 511.
13282 @end smallexample
13283
13284 The following built-in functions map directly to a particular MIPS DSP
13285 instruction. Please refer to the architecture specification
13286 for details on what each instruction does.
13287
13288 @smallexample
13289 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
13290 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
13291 q31 __builtin_mips_addq_s_w (q31, q31)
13292 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
13293 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
13294 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
13295 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
13296 q31 __builtin_mips_subq_s_w (q31, q31)
13297 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
13298 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
13299 i32 __builtin_mips_addsc (i32, i32)
13300 i32 __builtin_mips_addwc (i32, i32)
13301 i32 __builtin_mips_modsub (i32, i32)
13302 i32 __builtin_mips_raddu_w_qb (v4i8)
13303 v2q15 __builtin_mips_absq_s_ph (v2q15)
13304 q31 __builtin_mips_absq_s_w (q31)
13305 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
13306 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
13307 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
13308 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
13309 q31 __builtin_mips_preceq_w_phl (v2q15)
13310 q31 __builtin_mips_preceq_w_phr (v2q15)
13311 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
13312 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
13313 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
13314 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
13315 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
13316 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
13317 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
13318 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
13319 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
13320 v4i8 __builtin_mips_shll_qb (v4i8, i32)
13321 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
13322 v2q15 __builtin_mips_shll_ph (v2q15, i32)
13323 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
13324 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
13325 q31 __builtin_mips_shll_s_w (q31, imm0_31)
13326 q31 __builtin_mips_shll_s_w (q31, i32)
13327 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
13328 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
13329 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
13330 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13331 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13332 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13333 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13334 q31 __builtin_mips_shra_r_w (q31, i32)
13335 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13336 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13337 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13338 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13339 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13340 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13341 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13342 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13343 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13344 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13345 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13346 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13347 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13348 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13349 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13350 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13351 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13352 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13353 i32 __builtin_mips_bitrev (i32)
13354 i32 __builtin_mips_insv (i32, i32)
13355 v4i8 __builtin_mips_repl_qb (imm0_255)
13356 v4i8 __builtin_mips_repl_qb (i32)
13357 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13358 v2q15 __builtin_mips_repl_ph (i32)
13359 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13360 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13361 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13362 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13363 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13364 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13365 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13366 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13367 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13368 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13369 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13370 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13371 i32 __builtin_mips_extr_w (a64, imm0_31)
13372 i32 __builtin_mips_extr_w (a64, i32)
13373 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13374 i32 __builtin_mips_extr_s_h (a64, i32)
13375 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13376 i32 __builtin_mips_extr_rs_w (a64, i32)
13377 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13378 i32 __builtin_mips_extr_r_w (a64, i32)
13379 i32 __builtin_mips_extp (a64, imm0_31)
13380 i32 __builtin_mips_extp (a64, i32)
13381 i32 __builtin_mips_extpdp (a64, imm0_31)
13382 i32 __builtin_mips_extpdp (a64, i32)
13383 a64 __builtin_mips_shilo (a64, imm_n32_31)
13384 a64 __builtin_mips_shilo (a64, i32)
13385 a64 __builtin_mips_mthlip (a64, i32)
13386 void __builtin_mips_wrdsp (i32, imm0_63)
13387 i32 __builtin_mips_rddsp (imm0_63)
13388 i32 __builtin_mips_lbux (void *, i32)
13389 i32 __builtin_mips_lhx (void *, i32)
13390 i32 __builtin_mips_lwx (void *, i32)
13391 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13392 i32 __builtin_mips_bposge32 (void)
13393 a64 __builtin_mips_madd (a64, i32, i32);
13394 a64 __builtin_mips_maddu (a64, ui32, ui32);
13395 a64 __builtin_mips_msub (a64, i32, i32);
13396 a64 __builtin_mips_msubu (a64, ui32, ui32);
13397 a64 __builtin_mips_mult (i32, i32);
13398 a64 __builtin_mips_multu (ui32, ui32);
13399 @end smallexample
13400
13401 The following built-in functions map directly to a particular MIPS DSP REV 2
13402 instruction. Please refer to the architecture specification
13403 for details on what each instruction does.
13404
13405 @smallexample
13406 v4q7 __builtin_mips_absq_s_qb (v4q7);
13407 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13408 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13409 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13410 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13411 i32 __builtin_mips_append (i32, i32, imm0_31);
13412 i32 __builtin_mips_balign (i32, i32, imm0_3);
13413 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13414 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13415 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13416 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13417 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13418 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13419 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13420 q31 __builtin_mips_mulq_rs_w (q31, q31);
13421 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13422 q31 __builtin_mips_mulq_s_w (q31, q31);
13423 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13424 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13425 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13426 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13427 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13428 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13429 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13430 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13431 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13432 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13433 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13434 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13435 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13436 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13437 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13438 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13439 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13440 q31 __builtin_mips_addqh_w (q31, q31);
13441 q31 __builtin_mips_addqh_r_w (q31, q31);
13442 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13443 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13444 q31 __builtin_mips_subqh_w (q31, q31);
13445 q31 __builtin_mips_subqh_r_w (q31, q31);
13446 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13447 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13448 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13449 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13450 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13451 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13452 @end smallexample
13453
13454
13455 @node MIPS Paired-Single Support
13456 @subsection MIPS Paired-Single Support
13457
13458 The MIPS64 architecture includes a number of instructions that
13459 operate on pairs of single-precision floating-point values.
13460 Each pair is packed into a 64-bit floating-point register,
13461 with one element being designated the ``upper half'' and
13462 the other being designated the ``lower half''.
13463
13464 GCC supports paired-single operations using both the generic
13465 vector extensions (@pxref{Vector Extensions}) and a collection of
13466 MIPS-specific built-in functions. Both kinds of support are
13467 enabled by the @option{-mpaired-single} command-line option.
13468
13469 The vector type associated with paired-single values is usually
13470 called @code{v2sf}. It can be defined in C as follows:
13471
13472 @smallexample
13473 typedef float v2sf __attribute__ ((vector_size (8)));
13474 @end smallexample
13475
13476 @code{v2sf} values are initialized in the same way as aggregates.
13477 For example:
13478
13479 @smallexample
13480 v2sf a = @{1.5, 9.1@};
13481 v2sf b;
13482 float e, f;
13483 b = (v2sf) @{e, f@};
13484 @end smallexample
13485
13486 @emph{Note:} The CPU's endianness determines which value is stored in
13487 the upper half of a register and which value is stored in the lower half.
13488 On little-endian targets, the first value is the lower one and the second
13489 value is the upper one. The opposite order applies to big-endian targets.
13490 For example, the code above sets the lower half of @code{a} to
13491 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
13492
13493 @node MIPS Loongson Built-in Functions
13494 @subsection MIPS Loongson Built-in Functions
13495
13496 GCC provides intrinsics to access the SIMD instructions provided by the
13497 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
13498 available after inclusion of the @code{loongson.h} header file,
13499 operate on the following 64-bit vector types:
13500
13501 @itemize
13502 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
13503 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
13504 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
13505 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
13506 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
13507 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
13508 @end itemize
13509
13510 The intrinsics provided are listed below; each is named after the
13511 machine instruction to which it corresponds, with suffixes added as
13512 appropriate to distinguish intrinsics that expand to the same machine
13513 instruction yet have different argument types. Refer to the architecture
13514 documentation for a description of the functionality of each
13515 instruction.
13516
13517 @smallexample
13518 int16x4_t packsswh (int32x2_t s, int32x2_t t);
13519 int8x8_t packsshb (int16x4_t s, int16x4_t t);
13520 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
13521 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
13522 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
13523 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
13524 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
13525 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
13526 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
13527 uint64_t paddd_u (uint64_t s, uint64_t t);
13528 int64_t paddd_s (int64_t s, int64_t t);
13529 int16x4_t paddsh (int16x4_t s, int16x4_t t);
13530 int8x8_t paddsb (int8x8_t s, int8x8_t t);
13531 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
13532 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
13533 uint64_t pandn_ud (uint64_t s, uint64_t t);
13534 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
13535 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
13536 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
13537 int64_t pandn_sd (int64_t s, int64_t t);
13538 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
13539 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
13540 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
13541 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
13542 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
13543 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
13544 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
13545 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
13546 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
13547 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
13548 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
13549 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
13550 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
13551 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
13552 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
13553 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
13554 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
13555 uint16x4_t pextrh_u (uint16x4_t s, int field);
13556 int16x4_t pextrh_s (int16x4_t s, int field);
13557 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
13558 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
13559 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
13560 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
13561 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
13562 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13563 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13564 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13565 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13566 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13567 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13568 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13569 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13570 uint8x8_t pmovmskb_u (uint8x8_t s);
13571 int8x8_t pmovmskb_s (int8x8_t s);
13572 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13573 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13574 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13575 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13576 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13577 uint16x4_t biadd (uint8x8_t s);
13578 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13579 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13580 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13581 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13582 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13583 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13584 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13585 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13586 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13587 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13588 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13589 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13590 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13591 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13592 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13593 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13594 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13595 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13596 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13597 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13598 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13599 uint64_t psubd_u (uint64_t s, uint64_t t);
13600 int64_t psubd_s (int64_t s, int64_t t);
13601 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13602 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13603 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13604 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13605 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13606 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13607 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13608 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13609 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13610 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13611 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13612 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13613 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13614 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13615 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13616 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13617 @end smallexample
13618
13619 @menu
13620 * Paired-Single Arithmetic::
13621 * Paired-Single Built-in Functions::
13622 * MIPS-3D Built-in Functions::
13623 @end menu
13624
13625 @node Paired-Single Arithmetic
13626 @subsubsection Paired-Single Arithmetic
13627
13628 The table below lists the @code{v2sf} operations for which hardware
13629 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13630 values and @code{x} is an integral value.
13631
13632 @multitable @columnfractions .50 .50
13633 @item C code @tab MIPS instruction
13634 @item @code{a + b} @tab @code{add.ps}
13635 @item @code{a - b} @tab @code{sub.ps}
13636 @item @code{-a} @tab @code{neg.ps}
13637 @item @code{a * b} @tab @code{mul.ps}
13638 @item @code{a * b + c} @tab @code{madd.ps}
13639 @item @code{a * b - c} @tab @code{msub.ps}
13640 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13641 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13642 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13643 @end multitable
13644
13645 Note that the multiply-accumulate instructions can be disabled
13646 using the command-line option @code{-mno-fused-madd}.
13647
13648 @node Paired-Single Built-in Functions
13649 @subsubsection Paired-Single Built-in Functions
13650
13651 The following paired-single functions map directly to a particular
13652 MIPS instruction. Please refer to the architecture specification
13653 for details on what each instruction does.
13654
13655 @table @code
13656 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13657 Pair lower lower (@code{pll.ps}).
13658
13659 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13660 Pair upper lower (@code{pul.ps}).
13661
13662 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13663 Pair lower upper (@code{plu.ps}).
13664
13665 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13666 Pair upper upper (@code{puu.ps}).
13667
13668 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13669 Convert pair to paired single (@code{cvt.ps.s}).
13670
13671 @item float __builtin_mips_cvt_s_pl (v2sf)
13672 Convert pair lower to single (@code{cvt.s.pl}).
13673
13674 @item float __builtin_mips_cvt_s_pu (v2sf)
13675 Convert pair upper to single (@code{cvt.s.pu}).
13676
13677 @item v2sf __builtin_mips_abs_ps (v2sf)
13678 Absolute value (@code{abs.ps}).
13679
13680 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13681 Align variable (@code{alnv.ps}).
13682
13683 @emph{Note:} The value of the third parameter must be 0 or 4
13684 modulo 8, otherwise the result is unpredictable. Please read the
13685 instruction description for details.
13686 @end table
13687
13688 The following multi-instruction functions are also available.
13689 In each case, @var{cond} can be any of the 16 floating-point conditions:
13690 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13691 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13692 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13693
13694 @table @code
13695 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13696 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13697 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13698 @code{movt.ps}/@code{movf.ps}).
13699
13700 The @code{movt} functions return the value @var{x} computed by:
13701
13702 @smallexample
13703 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13704 mov.ps @var{x},@var{c}
13705 movt.ps @var{x},@var{d},@var{cc}
13706 @end smallexample
13707
13708 The @code{movf} functions are similar but use @code{movf.ps} instead
13709 of @code{movt.ps}.
13710
13711 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13712 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13713 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13714 @code{bc1t}/@code{bc1f}).
13715
13716 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13717 and return either the upper or lower half of the result. For example:
13718
13719 @smallexample
13720 v2sf a, b;
13721 if (__builtin_mips_upper_c_eq_ps (a, b))
13722 upper_halves_are_equal ();
13723 else
13724 upper_halves_are_unequal ();
13725
13726 if (__builtin_mips_lower_c_eq_ps (a, b))
13727 lower_halves_are_equal ();
13728 else
13729 lower_halves_are_unequal ();
13730 @end smallexample
13731 @end table
13732
13733 @node MIPS-3D Built-in Functions
13734 @subsubsection MIPS-3D Built-in Functions
13735
13736 The MIPS-3D Application-Specific Extension (ASE) includes additional
13737 paired-single instructions that are designed to improve the performance
13738 of 3D graphics operations. Support for these instructions is controlled
13739 by the @option{-mips3d} command-line option.
13740
13741 The functions listed below map directly to a particular MIPS-3D
13742 instruction. Please refer to the architecture specification for
13743 more details on what each instruction does.
13744
13745 @table @code
13746 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13747 Reduction add (@code{addr.ps}).
13748
13749 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13750 Reduction multiply (@code{mulr.ps}).
13751
13752 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13753 Convert paired single to paired word (@code{cvt.pw.ps}).
13754
13755 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13756 Convert paired word to paired single (@code{cvt.ps.pw}).
13757
13758 @item float __builtin_mips_recip1_s (float)
13759 @itemx double __builtin_mips_recip1_d (double)
13760 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13761 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13762
13763 @item float __builtin_mips_recip2_s (float, float)
13764 @itemx double __builtin_mips_recip2_d (double, double)
13765 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13766 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13767
13768 @item float __builtin_mips_rsqrt1_s (float)
13769 @itemx double __builtin_mips_rsqrt1_d (double)
13770 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13771 Reduced-precision reciprocal square root (sequence step 1)
13772 (@code{rsqrt1.@var{fmt}}).
13773
13774 @item float __builtin_mips_rsqrt2_s (float, float)
13775 @itemx double __builtin_mips_rsqrt2_d (double, double)
13776 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13777 Reduced-precision reciprocal square root (sequence step 2)
13778 (@code{rsqrt2.@var{fmt}}).
13779 @end table
13780
13781 The following multi-instruction functions are also available.
13782 In each case, @var{cond} can be any of the 16 floating-point conditions:
13783 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13784 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13785 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13786
13787 @table @code
13788 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13789 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13790 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13791 @code{bc1t}/@code{bc1f}).
13792
13793 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13794 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13795 For example:
13796
13797 @smallexample
13798 float a, b;
13799 if (__builtin_mips_cabs_eq_s (a, b))
13800 true ();
13801 else
13802 false ();
13803 @end smallexample
13804
13805 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13806 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13807 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13808 @code{bc1t}/@code{bc1f}).
13809
13810 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13811 and return either the upper or lower half of the result. For example:
13812
13813 @smallexample
13814 v2sf a, b;
13815 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13816 upper_halves_are_equal ();
13817 else
13818 upper_halves_are_unequal ();
13819
13820 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13821 lower_halves_are_equal ();
13822 else
13823 lower_halves_are_unequal ();
13824 @end smallexample
13825
13826 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13827 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13828 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13829 @code{movt.ps}/@code{movf.ps}).
13830
13831 The @code{movt} functions return the value @var{x} computed by:
13832
13833 @smallexample
13834 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13835 mov.ps @var{x},@var{c}
13836 movt.ps @var{x},@var{d},@var{cc}
13837 @end smallexample
13838
13839 The @code{movf} functions are similar but use @code{movf.ps} instead
13840 of @code{movt.ps}.
13841
13842 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13843 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13844 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13845 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13846 Comparison of two paired-single values
13847 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13848 @code{bc1any2t}/@code{bc1any2f}).
13849
13850 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13851 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13852 result is true and the @code{all} forms return true if both results are true.
13853 For example:
13854
13855 @smallexample
13856 v2sf a, b;
13857 if (__builtin_mips_any_c_eq_ps (a, b))
13858 one_is_true ();
13859 else
13860 both_are_false ();
13861
13862 if (__builtin_mips_all_c_eq_ps (a, b))
13863 both_are_true ();
13864 else
13865 one_is_false ();
13866 @end smallexample
13867
13868 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13869 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13870 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13871 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13872 Comparison of four paired-single values
13873 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13874 @code{bc1any4t}/@code{bc1any4f}).
13875
13876 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13877 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13878 The @code{any} forms return true if any of the four results are true
13879 and the @code{all} forms return true if all four results are true.
13880 For example:
13881
13882 @smallexample
13883 v2sf a, b, c, d;
13884 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13885 some_are_true ();
13886 else
13887 all_are_false ();
13888
13889 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13890 all_are_true ();
13891 else
13892 some_are_false ();
13893 @end smallexample
13894 @end table
13895
13896 @node MIPS SIMD Architecture (MSA) Support
13897 @subsection MIPS SIMD Architecture (MSA) Support
13898
13899 @menu
13900 * MIPS SIMD Architecture Built-in Functions::
13901 @end menu
13902
13903 GCC provides intrinsics to access the SIMD instructions provided by the
13904 MSA MIPS SIMD Architecture. The interface is made available by including
13905 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
13906 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
13907 @code{__msa_*}.
13908
13909 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
13910 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
13911 data elements. The following vectors typedefs are included in @code{msa.h}:
13912 @itemize
13913 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
13914 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
13915 @item @code{v8i16}, a vector of eight signed 16-bit integers;
13916 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
13917 @item @code{v4i32}, a vector of four signed 32-bit integers;
13918 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
13919 @item @code{v2i64}, a vector of two signed 64-bit integers;
13920 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
13921 @item @code{v4f32}, a vector of four 32-bit floats;
13922 @item @code{v2f64}, a vector of two 64-bit doubles.
13923 @end itemize
13924
13925 Intructions and corresponding built-ins may have additional restrictions and/or
13926 input/output values manipulated:
13927 @itemize
13928 @item @code{imm0_1}, an integer literal in range 0 to 1;
13929 @item @code{imm0_3}, an integer literal in range 0 to 3;
13930 @item @code{imm0_7}, an integer literal in range 0 to 7;
13931 @item @code{imm0_15}, an integer literal in range 0 to 15;
13932 @item @code{imm0_31}, an integer literal in range 0 to 31;
13933 @item @code{imm0_63}, an integer literal in range 0 to 63;
13934 @item @code{imm0_255}, an integer literal in range 0 to 255;
13935 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
13936 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
13937 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
13938 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
13939 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
13940 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
13941 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
13942 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
13943 @item @code{imm1_4}, an integer literal in range 1 to 4;
13944 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
13945 @end itemize
13946
13947 @smallexample
13948 @{
13949 typedef int i32;
13950 #if __LONG_MAX__ == __LONG_LONG_MAX__
13951 typedef long i64;
13952 #else
13953 typedef long long i64;
13954 #endif
13955
13956 typedef unsigned int u32;
13957 #if __LONG_MAX__ == __LONG_LONG_MAX__
13958 typedef unsigned long u64;
13959 #else
13960 typedef unsigned long long u64;
13961 #endif
13962
13963 typedef double f64;
13964 typedef float f32;
13965 @}
13966 @end smallexample
13967
13968 @node MIPS SIMD Architecture Built-in Functions
13969 @subsubsection MIPS SIMD Architecture Built-in Functions
13970
13971 The intrinsics provided are listed below; each is named after the
13972 machine instruction.
13973
13974 @smallexample
13975 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
13976 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
13977 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
13978 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
13979
13980 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
13981 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
13982 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
13983 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
13984
13985 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
13986 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
13987 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
13988 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
13989
13990 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
13991 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
13992 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
13993 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
13994
13995 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
13996 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
13997 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
13998 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
13999
14000 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14001 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14002 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14003 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14004
14005 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14006
14007 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14008
14009 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14010 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14011 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14012 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14013
14014 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14015 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14016 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14017 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14018
14019 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14020 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14021 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14022 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14023
14024 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14025 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14026 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14027 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14028
14029 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14030 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14031 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14032 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14033
14034 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14035 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14036 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14037 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14038
14039 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14040 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14041 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14042 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14043
14044 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14045 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14046 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14047 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14048
14049 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14050 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14051 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14052 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14053
14054 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14055 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14056 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14057 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14058
14059 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14060 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14061 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14062 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14063
14064 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14065 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14066 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14067 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14068
14069 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14070
14071 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14072
14073 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14074
14075 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14076
14077 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14078 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14079 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14080 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14081
14082 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14083 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14084 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14085 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14086
14087 i32 __builtin_msa_bnz_b (v16u8);
14088 i32 __builtin_msa_bnz_h (v8u16);
14089 i32 __builtin_msa_bnz_w (v4u32);
14090 i32 __builtin_msa_bnz_d (v2u64);
14091
14092 i32 __builtin_msa_bnz_v (v16u8);
14093
14094 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14095
14096 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14097
14098 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14099 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14100 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14101 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14102
14103 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14104 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14105 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14106 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14107
14108 i32 __builtin_msa_bz_b (v16u8);
14109 i32 __builtin_msa_bz_h (v8u16);
14110 i32 __builtin_msa_bz_w (v4u32);
14111 i32 __builtin_msa_bz_d (v2u64);
14112
14113 i32 __builtin_msa_bz_v (v16u8);
14114
14115 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14116 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14117 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14118 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14119
14120 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14121 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14122 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14123 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14124
14125 i32 __builtin_msa_cfcmsa (imm0_31);
14126
14127 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14128 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14129 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14130 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14131
14132 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14133 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14134 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14135 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14136
14137 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14138 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14139 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14140 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14141
14142 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14143 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14144 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14145 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14146
14147 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14148 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14149 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14150 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14151
14152 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14153 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14154 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14155 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14156
14157 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14158 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14159 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14160 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14161
14162 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14163 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14164 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14165 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14166
14167 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14168 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14169 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14170 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14171
14172 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14173 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14174 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14175 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14176
14177 void __builtin_msa_ctcmsa (imm0_31, i32);
14178
14179 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14180 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14181 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14182 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14183
14184 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14185 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14186 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14187 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14188
14189 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14190 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14191 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14192
14193 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14194 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14195 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14196
14197 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14198 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14199 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14200
14201 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14202 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14203 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14204
14205 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14206 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14207 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14208
14209 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14210 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14211 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14212
14213 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14214 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14215
14216 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14217 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14218
14219 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
14220 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
14221
14222 v4i32 __builtin_msa_fclass_w (v4f32);
14223 v2i64 __builtin_msa_fclass_d (v2f64);
14224
14225 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
14226 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
14227
14228 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
14229 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
14230
14231 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
14232 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
14233
14234 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
14235 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
14236
14237 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
14238 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
14239
14240 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
14241 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
14242
14243 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
14244 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
14245
14246 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
14247 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
14248
14249 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
14250 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
14251
14252 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
14253 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
14254
14255 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
14256 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
14257
14258 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
14259 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
14260
14261 v4f32 __builtin_msa_fexupl_w (v8i16);
14262 v2f64 __builtin_msa_fexupl_d (v4f32);
14263
14264 v4f32 __builtin_msa_fexupr_w (v8i16);
14265 v2f64 __builtin_msa_fexupr_d (v4f32);
14266
14267 v4f32 __builtin_msa_ffint_s_w (v4i32);
14268 v2f64 __builtin_msa_ffint_s_d (v2i64);
14269
14270 v4f32 __builtin_msa_ffint_u_w (v4u32);
14271 v2f64 __builtin_msa_ffint_u_d (v2u64);
14272
14273 v4f32 __builtin_msa_ffql_w (v8i16);
14274 v2f64 __builtin_msa_ffql_d (v4i32);
14275
14276 v4f32 __builtin_msa_ffqr_w (v8i16);
14277 v2f64 __builtin_msa_ffqr_d (v4i32);
14278
14279 v16i8 __builtin_msa_fill_b (i32);
14280 v8i16 __builtin_msa_fill_h (i32);
14281 v4i32 __builtin_msa_fill_w (i32);
14282 v2i64 __builtin_msa_fill_d (i64);
14283
14284 v4f32 __builtin_msa_flog2_w (v4f32);
14285 v2f64 __builtin_msa_flog2_d (v2f64);
14286
14287 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
14288 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
14289
14290 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
14291 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
14292
14293 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
14294 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
14295
14296 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
14297 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
14298
14299 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
14300 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
14301
14302 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
14303 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
14304
14305 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
14306 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
14307
14308 v4f32 __builtin_msa_frint_w (v4f32);
14309 v2f64 __builtin_msa_frint_d (v2f64);
14310
14311 v4f32 __builtin_msa_frcp_w (v4f32);
14312 v2f64 __builtin_msa_frcp_d (v2f64);
14313
14314 v4f32 __builtin_msa_frsqrt_w (v4f32);
14315 v2f64 __builtin_msa_frsqrt_d (v2f64);
14316
14317 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
14318 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
14319
14320 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
14321 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
14322
14323 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
14324 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
14325
14326 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
14327 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
14328
14329 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
14330 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14331
14332 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14333 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14334
14335 v4f32 __builtin_msa_fsqrt_w (v4f32);
14336 v2f64 __builtin_msa_fsqrt_d (v2f64);
14337
14338 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14339 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14340
14341 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14342 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14343
14344 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14345 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14346
14347 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14348 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14349
14350 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14351 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14352
14353 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14354 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14355
14356 v4i32 __builtin_msa_ftint_s_w (v4f32);
14357 v2i64 __builtin_msa_ftint_s_d (v2f64);
14358
14359 v4u32 __builtin_msa_ftint_u_w (v4f32);
14360 v2u64 __builtin_msa_ftint_u_d (v2f64);
14361
14362 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14363 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14364
14365 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14366 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14367
14368 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14369 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14370
14371 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14372 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14373 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14374
14375 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14376 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14377 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14378
14379 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14380 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14381 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14382
14383 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14384 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14385 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14386
14387 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14388 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14389 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14390 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14391
14392 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14393 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14394 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14395 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14396
14397 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14398 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14399 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14400 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14401
14402 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14403 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14404 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14405 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14406
14407 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14408 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14409 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14410 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14411
14412 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14413 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14414 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14415 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14416
14417 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14418 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14419 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14420 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14421
14422 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14423 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14424 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14425 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14426
14427 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14428 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14429
14430 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14431 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14432
14433 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14434 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14435 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14436 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14437
14438 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14439 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14440 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14441 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14442
14443 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14444 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14445 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14446 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14447
14448 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14449 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14450 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14451 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14452
14453 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14454 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14455 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14456 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14457
14458 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14459 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14460 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14461 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14462
14463 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14464 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14465 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14466 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14467
14468 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14469 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14470 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14471 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14472
14473 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14474 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14475 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
14476 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
14477
14478 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
14479 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
14480 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
14481 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
14482
14483 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
14484 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
14485 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
14486 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
14487
14488 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
14489 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
14490 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
14491 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
14492
14493 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
14494 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
14495 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
14496 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
14497
14498 v16i8 __builtin_msa_move_v (v16i8);
14499
14500 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
14501 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
14502
14503 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
14504 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
14505
14506 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
14507 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
14508 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
14509 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
14510
14511 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
14512 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
14513
14514 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
14515 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
14516
14517 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
14518 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
14519 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
14520 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
14521
14522 v16i8 __builtin_msa_nloc_b (v16i8);
14523 v8i16 __builtin_msa_nloc_h (v8i16);
14524 v4i32 __builtin_msa_nloc_w (v4i32);
14525 v2i64 __builtin_msa_nloc_d (v2i64);
14526
14527 v16i8 __builtin_msa_nlzc_b (v16i8);
14528 v8i16 __builtin_msa_nlzc_h (v8i16);
14529 v4i32 __builtin_msa_nlzc_w (v4i32);
14530 v2i64 __builtin_msa_nlzc_d (v2i64);
14531
14532 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
14533
14534 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
14535
14536 v16u8 __builtin_msa_or_v (v16u8, v16u8);
14537
14538 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
14539
14540 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
14541 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
14542 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
14543 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
14544
14545 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
14546 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
14547 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
14548 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
14549
14550 v16i8 __builtin_msa_pcnt_b (v16i8);
14551 v8i16 __builtin_msa_pcnt_h (v8i16);
14552 v4i32 __builtin_msa_pcnt_w (v4i32);
14553 v2i64 __builtin_msa_pcnt_d (v2i64);
14554
14555 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
14556 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
14557 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
14558 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
14559
14560 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
14561 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
14562 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
14563 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
14564
14565 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
14566 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
14567 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
14568
14569 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
14570 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
14571 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
14572 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
14573
14574 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
14575 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
14576 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
14577 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
14578
14579 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
14580 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
14581 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
14582 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
14583
14584 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
14585 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
14586 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
14587 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
14588
14589 v16i8 __builtin_msa_splat_b (v16i8, i32);
14590 v8i16 __builtin_msa_splat_h (v8i16, i32);
14591 v4i32 __builtin_msa_splat_w (v4i32, i32);
14592 v2i64 __builtin_msa_splat_d (v2i64, i32);
14593
14594 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
14595 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
14596 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
14597 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
14598
14599 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
14600 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
14601 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
14602 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
14603
14604 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
14605 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
14606 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
14607 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
14608
14609 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
14610 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
14611 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
14612 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
14613
14614 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
14615 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
14616 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
14617 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
14618
14619 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
14620 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
14621 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
14622 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
14623
14624 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
14625 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
14626 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
14627 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
14628
14629 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
14630 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
14631 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
14632 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
14633
14634 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
14635 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
14636 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
14637 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
14638
14639 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
14640 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
14641 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
14642 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
14643
14644 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
14645 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
14646 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
14647 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
14648
14649 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
14650 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
14651 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
14652 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
14653
14654 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
14655 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
14656 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
14657 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
14658
14659 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
14660 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
14661 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
14662 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
14663
14664 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
14665 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
14666 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
14667 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
14668
14669 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
14670 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
14671 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
14672 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
14673
14674 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
14675 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
14676 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
14677 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
14678
14679 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
14680
14681 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
14682 @end smallexample
14683
14684 @node Other MIPS Built-in Functions
14685 @subsection Other MIPS Built-in Functions
14686
14687 GCC provides other MIPS-specific built-in functions:
14688
14689 @table @code
14690 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
14691 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
14692 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
14693 when this function is available.
14694
14695 @item unsigned int __builtin_mips_get_fcsr (void)
14696 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
14697 Get and set the contents of the floating-point control and status register
14698 (FPU control register 31). These functions are only available in hard-float
14699 code but can be called in both MIPS16 and non-MIPS16 contexts.
14700
14701 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
14702 register except the condition codes, which GCC assumes are preserved.
14703 @end table
14704
14705 @node MSP430 Built-in Functions
14706 @subsection MSP430 Built-in Functions
14707
14708 GCC provides a couple of special builtin functions to aid in the
14709 writing of interrupt handlers in C.
14710
14711 @table @code
14712 @item __bic_SR_register_on_exit (int @var{mask})
14713 This clears the indicated bits in the saved copy of the status register
14714 currently residing on the stack. This only works inside interrupt
14715 handlers and the changes to the status register will only take affect
14716 once the handler returns.
14717
14718 @item __bis_SR_register_on_exit (int @var{mask})
14719 This sets the indicated bits in the saved copy of the status register
14720 currently residing on the stack. This only works inside interrupt
14721 handlers and the changes to the status register will only take affect
14722 once the handler returns.
14723
14724 @item __delay_cycles (long long @var{cycles})
14725 This inserts an instruction sequence that takes exactly @var{cycles}
14726 cycles (between 0 and about 17E9) to complete. The inserted sequence
14727 may use jumps, loops, or no-ops, and does not interfere with any other
14728 instructions. Note that @var{cycles} must be a compile-time constant
14729 integer - that is, you must pass a number, not a variable that may be
14730 optimized to a constant later. The number of cycles delayed by this
14731 builtin is exact.
14732 @end table
14733
14734 @node NDS32 Built-in Functions
14735 @subsection NDS32 Built-in Functions
14736
14737 These built-in functions are available for the NDS32 target:
14738
14739 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
14740 Insert an ISYNC instruction into the instruction stream where
14741 @var{addr} is an instruction address for serialization.
14742 @end deftypefn
14743
14744 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
14745 Insert an ISB instruction into the instruction stream.
14746 @end deftypefn
14747
14748 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
14749 Return the content of a system register which is mapped by @var{sr}.
14750 @end deftypefn
14751
14752 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
14753 Return the content of a user space register which is mapped by @var{usr}.
14754 @end deftypefn
14755
14756 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
14757 Move the @var{value} to a system register which is mapped by @var{sr}.
14758 @end deftypefn
14759
14760 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
14761 Move the @var{value} to a user space register which is mapped by @var{usr}.
14762 @end deftypefn
14763
14764 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
14765 Enable global interrupt.
14766 @end deftypefn
14767
14768 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
14769 Disable global interrupt.
14770 @end deftypefn
14771
14772 @node picoChip Built-in Functions
14773 @subsection picoChip Built-in Functions
14774
14775 GCC provides an interface to selected machine instructions from the
14776 picoChip instruction set.
14777
14778 @table @code
14779 @item int __builtin_sbc (int @var{value})
14780 Sign bit count. Return the number of consecutive bits in @var{value}
14781 that have the same value as the sign bit. The result is the number of
14782 leading sign bits minus one, giving the number of redundant sign bits in
14783 @var{value}.
14784
14785 @item int __builtin_byteswap (int @var{value})
14786 Byte swap. Return the result of swapping the upper and lower bytes of
14787 @var{value}.
14788
14789 @item int __builtin_brev (int @var{value})
14790 Bit reversal. Return the result of reversing the bits in
14791 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
14792 and so on.
14793
14794 @item int __builtin_adds (int @var{x}, int @var{y})
14795 Saturating addition. Return the result of adding @var{x} and @var{y},
14796 storing the value 32767 if the result overflows.
14797
14798 @item int __builtin_subs (int @var{x}, int @var{y})
14799 Saturating subtraction. Return the result of subtracting @var{y} from
14800 @var{x}, storing the value @minus{}32768 if the result overflows.
14801
14802 @item void __builtin_halt (void)
14803 Halt. The processor stops execution. This built-in is useful for
14804 implementing assertions.
14805
14806 @end table
14807
14808 @node PowerPC Built-in Functions
14809 @subsection PowerPC Built-in Functions
14810
14811 The following built-in functions are always available and can be used to
14812 check the PowerPC target platform type:
14813
14814 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
14815 This function is a @code{nop} on the PowerPC platform and is included solely
14816 to maintain API compatibility with the x86 builtins.
14817 @end deftypefn
14818
14819 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
14820 This function returns a value of @code{1} if the run-time CPU is of type
14821 @var{cpuname} and returns @code{0} otherwise. The following CPU names can be
14822 detected:
14823
14824 @table @samp
14825 @item power9
14826 IBM POWER9 Server CPU.
14827 @item power8
14828 IBM POWER8 Server CPU.
14829 @item power7
14830 IBM POWER7 Server CPU.
14831 @item power6x
14832 IBM POWER6 Server CPU (RAW mode).
14833 @item power6
14834 IBM POWER6 Server CPU (Architected mode).
14835 @item power5+
14836 IBM POWER5+ Server CPU.
14837 @item power5
14838 IBM POWER5 Server CPU.
14839 @item ppc970
14840 IBM 970 Server CPU (ie, Apple G5).
14841 @item power4
14842 IBM POWER4 Server CPU.
14843 @item ppca2
14844 IBM A2 64-bit Embedded CPU
14845 @item ppc476
14846 IBM PowerPC 476FP 32-bit Embedded CPU.
14847 @item ppc464
14848 IBM PowerPC 464 32-bit Embedded CPU.
14849 @item ppc440
14850 PowerPC 440 32-bit Embedded CPU.
14851 @item ppc405
14852 PowerPC 405 32-bit Embedded CPU.
14853 @item ppc-cell-be
14854 IBM PowerPC Cell Broadband Engine Architecture CPU.
14855 @end table
14856
14857 Here is an example:
14858 @smallexample
14859 if (__builtin_cpu_is ("power8"))
14860 @{
14861 do_power8 (); // POWER8 specific implementation.
14862 @}
14863 else
14864 @{
14865 do_generic (); // Generic implementation.
14866 @}
14867 @end smallexample
14868 @end deftypefn
14869
14870 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
14871 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
14872 feature @var{feature} and returns @code{0} otherwise. The following features can be
14873 detected:
14874
14875 @table @samp
14876 @item 4xxmac
14877 4xx CPU has a Multiply Accumulator.
14878 @item altivec
14879 CPU has a SIMD/Vector Unit.
14880 @item arch_2_05
14881 CPU supports ISA 2.05 (eg, POWER6)
14882 @item arch_2_06
14883 CPU supports ISA 2.06 (eg, POWER7)
14884 @item arch_2_07
14885 CPU supports ISA 2.07 (eg, POWER8)
14886 @item arch_3_00
14887 CPU supports ISA 3.0 (eg, POWER9)
14888 @item archpmu
14889 CPU supports the set of compatible performance monitoring events.
14890 @item booke
14891 CPU supports the Embedded ISA category.
14892 @item cellbe
14893 CPU has a CELL broadband engine.
14894 @item dfp
14895 CPU has a decimal floating point unit.
14896 @item dscr
14897 CPU supports the data stream control register.
14898 @item ebb
14899 CPU supports event base branching.
14900 @item efpdouble
14901 CPU has a SPE double precision floating point unit.
14902 @item efpsingle
14903 CPU has a SPE single precision floating point unit.
14904 @item fpu
14905 CPU has a floating point unit.
14906 @item htm
14907 CPU has hardware transaction memory instructions.
14908 @item htm-nosc
14909 Kernel aborts hardware transactions when a syscall is made.
14910 @item ic_snoop
14911 CPU supports icache snooping capabilities.
14912 @item ieee128
14913 CPU supports 128-bit IEEE binary floating point instructions.
14914 @item isel
14915 CPU supports the integer select instruction.
14916 @item mmu
14917 CPU has a memory management unit.
14918 @item notb
14919 CPU does not have a timebase (eg, 601 and 403gx).
14920 @item pa6t
14921 CPU supports the PA Semi 6T CORE ISA.
14922 @item power4
14923 CPU supports ISA 2.00 (eg, POWER4)
14924 @item power5
14925 CPU supports ISA 2.02 (eg, POWER5)
14926 @item power5+
14927 CPU supports ISA 2.03 (eg, POWER5+)
14928 @item power6x
14929 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
14930 @item ppc32
14931 CPU supports 32-bit mode execution.
14932 @item ppc601
14933 CPU supports the old POWER ISA (eg, 601)
14934 @item ppc64
14935 CPU supports 64-bit mode execution.
14936 @item ppcle
14937 CPU supports a little-endian mode that uses address swizzling.
14938 @item smt
14939 CPU support simultaneous multi-threading.
14940 @item spe
14941 CPU has a signal processing extension unit.
14942 @item tar
14943 CPU supports the target address register.
14944 @item true_le
14945 CPU supports true little-endian mode.
14946 @item ucache
14947 CPU has unified I/D cache.
14948 @item vcrypto
14949 CPU supports the vector cryptography instructions.
14950 @item vsx
14951 CPU supports the vector-scalar extension.
14952 @end table
14953
14954 Here is an example:
14955 @smallexample
14956 if (__builtin_cpu_supports ("fpu"))
14957 @{
14958 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
14959 @}
14960 else
14961 @{
14962 dst = __fadd (src1, src2); // Software FP addition function.
14963 @}
14964 @end smallexample
14965 @end deftypefn
14966
14967 These built-in functions are available for the PowerPC family of
14968 processors:
14969 @smallexample
14970 float __builtin_recipdivf (float, float);
14971 float __builtin_rsqrtf (float);
14972 double __builtin_recipdiv (double, double);
14973 double __builtin_rsqrt (double);
14974 uint64_t __builtin_ppc_get_timebase ();
14975 unsigned long __builtin_ppc_mftb ();
14976 double __builtin_unpack_longdouble (long double, int);
14977 long double __builtin_pack_longdouble (double, double);
14978 @end smallexample
14979
14980 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
14981 @code{__builtin_rsqrtf} functions generate multiple instructions to
14982 implement the reciprocal sqrt functionality using reciprocal sqrt
14983 estimate instructions.
14984
14985 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
14986 functions generate multiple instructions to implement division using
14987 the reciprocal estimate instructions.
14988
14989 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
14990 functions generate instructions to read the Time Base Register. The
14991 @code{__builtin_ppc_get_timebase} function may generate multiple
14992 instructions and always returns the 64 bits of the Time Base Register.
14993 The @code{__builtin_ppc_mftb} function always generates one instruction and
14994 returns the Time Base Register value as an unsigned long, throwing away
14995 the most significant word on 32-bit environments.
14996
14997 Additional built-in functions are available for the 64-bit PowerPC
14998 family of processors, for efficient use of 128-bit floating point
14999 (@code{__float128}) values.
15000
15001 The following floating-point built-in functions are available with
15002 @code{-mfloat128} and Altivec support. All of them implement the
15003 function that is part of the name.
15004
15005 @smallexample
15006 __float128 __builtin_fabsq (__float128)
15007 __float128 __builtin_copysignq (__float128, __float128)
15008 @end smallexample
15009
15010 The following built-in functions are available with @code{-mfloat128}
15011 and Altivec support.
15012
15013 @table @code
15014 @item __float128 __builtin_infq (void)
15015 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
15016 @findex __builtin_infq
15017
15018 @item __float128 __builtin_huge_valq (void)
15019 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
15020 @findex __builtin_huge_valq
15021
15022 @item __float128 __builtin_nanq (void)
15023 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
15024 @findex __builtin_nanq
15025
15026 @item __float128 __builtin_nansq (void)
15027 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
15028 @findex __builtin_nansq
15029 @end table
15030
15031 The following built-in functions are available for the PowerPC family
15032 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
15033 or @option{-mpopcntd}):
15034 @smallexample
15035 long __builtin_bpermd (long, long);
15036 int __builtin_divwe (int, int);
15037 int __builtin_divweo (int, int);
15038 unsigned int __builtin_divweu (unsigned int, unsigned int);
15039 unsigned int __builtin_divweuo (unsigned int, unsigned int);
15040 long __builtin_divde (long, long);
15041 long __builtin_divdeo (long, long);
15042 unsigned long __builtin_divdeu (unsigned long, unsigned long);
15043 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
15044 unsigned int cdtbcd (unsigned int);
15045 unsigned int cbcdtd (unsigned int);
15046 unsigned int addg6s (unsigned int, unsigned int);
15047 @end smallexample
15048
15049 The @code{__builtin_divde}, @code{__builtin_divdeo},
15050 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
15051 64-bit environment support ISA 2.06 or later.
15052
15053 The following built-in functions are available for the PowerPC family
15054 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
15055 @smallexample
15056 long long __builtin_darn (void);
15057 long long __builtin_darn_raw (void);
15058 int __builtin_darn_32 (void);
15059
15060 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
15061 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
15062 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
15063 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
15064
15065 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
15066 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
15067 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
15068 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
15069
15070 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
15071 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
15072 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
15073 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
15074
15075 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
15076 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
15077 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
15078 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
15079
15080 unsigned int scalar_extract_exp (double source);
15081 unsigned long long int scalar_extract_sig (double source);
15082
15083 double
15084 scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
15085
15086 int scalar_cmp_exp_gt (double arg1, double arg2);
15087 int scalar_cmp_exp_lt (double arg1, double arg2);
15088 int scalar_cmp_exp_eq (double arg1, double arg2);
15089 int scalar_cmp_exp_unordered (double arg1, double arg2);
15090
15091 int scalar_test_data_class (float source, unsigned int condition);
15092 int scalar_test_data_class (double source, unsigned int condition);
15093
15094 int scalar_test_neg (float source);
15095 int scalar_test_neg (double source);
15096 @end smallexample
15097
15098 The @code{__builtin_darn} and @code{__builtin_darn_raw}
15099 functions require a
15100 64-bit environment supporting ISA 3.0 or later.
15101 The @code{__builtin_darn} function provides a 64-bit conditioned
15102 random number. The @code{__builtin_darn_raw} function provides a
15103 64-bit raw random number. The @code{__builtin_darn_32} function
15104 provides a 32-bit random number.
15105
15106 The @code{scalar_extract_sig} and @code{scalar_insert_exp}
15107 functions require a 64-bit environment supporting ISA 3.0 or later.
15108 The @code{scalar_extract_exp} and @code{vec_extract_sig} built-in
15109 functions return the significand and exponent respectively of their
15110 @code{source} arguments. The
15111 @code{scalar_insert_exp} built-in function returns a double-precision
15112 floating point value that is constructed by assembling the values of its
15113 @code{significand} and @code{exponent} arguments. The sign of the
15114 result is copied from the most significant bit of the
15115 @code{significand} argument. The significand and exponent components
15116 of the result are composed of the least significant 11 bits of the
15117 @code{significand} argument and the least significant 52 bits of the
15118 @code{exponent} argument.
15119
15120 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
15121 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
15122 functions return a non-zero value if @code{arg1} is greater than, less
15123 than, equal to, or not comparable to @code{arg2} respectively. The
15124 arguments are not comparable if one or the other equals NaN (not a
15125 number).
15126
15127 The @code{scalar_test_data_class} built-in functions return a non-zero
15128 value if any of the condition tests enabled by the value of the
15129 @code{condition} variable are true. The
15130 @code{condition} argument must be an unsigned integer with value not
15131 exceeding 127. The
15132 @code{condition} argument is encoded as a bitmask with each bit
15133 enabling the testing of a different condition, as characterized by the
15134 following:
15135 @smallexample
15136 0x40 Test for NaN
15137 0x20 Test for +Infinity
15138 0x10 Test for -Infinity
15139 0x08 Test for +Zero
15140 0x04 Test for -Zero
15141 0x02 Test for +Denormal
15142 0x01 Test for -Denormal
15143 @end smallexample
15144
15145 If all of the enabled test conditions are false, the return value is 0.
15146
15147 The @code{scalar_test_neg} built-in functions return a non-zero value
15148 if their @code{source} argument holds a negative value.
15149
15150 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
15151 if and only if the number of signficant digits of its @code{value} argument
15152 is less than its @code{comparison} argument. The
15153 @code{__builtin_dfp_dtstsfi_lt_dd} and
15154 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
15155 require that the type of the @code{value} argument be
15156 @code{__Decimal64} and @code{__Decimal128} respectively.
15157
15158 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
15159 if and only if the number of signficant digits of its @code{value} argument
15160 is greater than its @code{comparison} argument. The
15161 @code{__builtin_dfp_dtstsfi_gt_dd} and
15162 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
15163 require that the type of the @code{value} argument be
15164 @code{__Decimal64} and @code{__Decimal128} respectively.
15165
15166 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
15167 if and only if the number of signficant digits of its @code{value} argument
15168 equals its @code{comparison} argument. The
15169 @code{__builtin_dfp_dtstsfi_eq_dd} and
15170 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
15171 require that the type of the @code{value} argument be
15172 @code{__Decimal64} and @code{__Decimal128} respectively.
15173
15174 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
15175 if and only if its @code{value} argument has an undefined number of
15176 significant digits, such as when @code{value} is an encoding of @code{NaN}.
15177 The @code{__builtin_dfp_dtstsfi_ov_dd} and
15178 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
15179 require that the type of the @code{value} argument be
15180 @code{__Decimal64} and @code{__Decimal128} respectively.
15181
15182 The following built-in functions are also available for the PowerPC family
15183 of processors, starting with ISA 3.0 or later
15184 (@option{-mcpu=power9}). These string functions are described
15185 separately in order to group the descriptions closer to the function
15186 prototypes:
15187 @smallexample
15188 int vec_all_nez (vector signed char, vector signed char);
15189 int vec_all_nez (vector unsigned char, vector unsigned char);
15190 int vec_all_nez (vector signed short, vector signed short);
15191 int vec_all_nez (vector unsigned short, vector unsigned short);
15192 int vec_all_nez (vector signed int, vector signed int);
15193 int vec_all_nez (vector unsigned int, vector unsigned int);
15194
15195 int vec_any_eqz (vector signed char, vector signed char);
15196 int vec_any_eqz (vector unsigned char, vector unsigned char);
15197 int vec_any_eqz (vector signed short, vector signed short);
15198 int vec_any_eqz (vector unsigned short, vector unsigned short);
15199 int vec_any_eqz (vector signed int, vector signed int);
15200 int vec_any_eqz (vector unsigned int, vector unsigned int);
15201
15202 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
15203 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
15204 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
15205 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
15206 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
15207 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
15208
15209 signed int vec_cntlz_lsbb (vector signed char);
15210 signed int vec_cntlz_lsbb (vector unsigned char);
15211
15212 signed int vec_cnttz_lsbb (vector signed char);
15213 signed int vec_cnttz_lsbb (vector unsigned char);
15214
15215 vector signed char vec_xl_len (signed char *addr, size_t len);
15216 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
15217 vector signed int vec_xl_len (signed int *addr, size_t len);
15218 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
15219 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
15220 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
15221 vector signed long long vec_xl_len (signed long long *addr, size_t len);
15222 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
15223 vector signed short vec_xl_len (signed short *addr, size_t len);
15224 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
15225 vector double vec_xl_len (double *addr, size_t len);
15226 vector float vec_xl_len (float *addr, size_t len);
15227
15228 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
15229 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
15230 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
15231 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
15232 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
15233 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
15234 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
15235 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
15236 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
15237 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
15238 void vec_xst_len (vector double data, double *addr, size_t len);
15239 void vec_xst_len (vector float data, float *addr, size_t len);
15240
15241 signed char vec_xlx (unsigned int index, vector signed char data);
15242 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
15243 signed short vec_xlx (unsigned int index, vector signed short data);
15244 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
15245 signed int vec_xlx (unsigned int index, vector signed int data);
15246 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
15247 float vec_xlx (unsigned int index, vector float data);
15248
15249 signed char vec_xrx (unsigned int index, vector signed char data);
15250 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
15251 signed short vec_xrx (unsigned int index, vector signed short data);
15252 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
15253 signed int vec_xrx (unsigned int index, vector signed int data);
15254 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
15255 float vec_xrx (unsigned int index, vector float data);
15256 @end smallexample
15257
15258 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
15259 perform pairwise comparisons between the elements at the same
15260 positions within their two vector arguments.
15261 The @code{vec_all_nez} function returns a
15262 non-zero value if and only if all pairwise comparisons are not
15263 equal and no element of either vector argument contains a zero.
15264 The @code{vec_any_eqz} function returns a
15265 non-zero value if and only if at least one pairwise comparison is equal
15266 or if at least one element of either vector argument contains a zero.
15267 The @code{vec_cmpnez} function returns a vector of the same type as
15268 its two arguments, within which each element consists of all ones to
15269 denote that either the corresponding elements of the incoming arguments are
15270 not equal or that at least one of the corresponding elements contains
15271 zero. Otherwise, the element of the returned vector contains all zeros.
15272
15273 The @code{vec_cntlz_lsbb} function returns the count of the number of
15274 consecutive leading byte elements (starting from position 0 within the
15275 supplied vector argument) for which the least-significant bit
15276 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
15277 the number of consecutive trailing byte elements (starting from
15278 position 15 and counting backwards within the supplied vector
15279 argument) for which the least-significant bit equals zero.
15280
15281 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
15282 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
15283 function loads a variable length vector from memory. The
15284 @code{vec_xst_len} function stores a variable length vector to memory.
15285 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
15286 @code{addr} argument represents the memory address to or from which
15287 data will be transferred, and the
15288 @code{len} argument represents the number of bytes to be
15289 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
15290 If this expression's value is not a multiple of the vector element's
15291 size, the behavior of this function is undefined.
15292 In the case that the underlying computer is configured to run in
15293 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
15294 the corresponding vector. In little-endian mode, the data transfer
15295 moves bytes @code{(16 - len)} to @code{15} of the corresponding
15296 vector. For the load function, any bytes of the result vector that
15297 are not loaded from memory are set to zero.
15298 The value of the @code{addr} argument need not be aligned on a
15299 multiple of the vector's element size.
15300
15301 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
15302 element selected by the @code{index} argument from the vector
15303 represented by the @code{data} argument. The @code{index} argument
15304 always specifies a byte offset, regardless of the size of the vector
15305 element. With @code{vec_xlx}, @code{index} is the offset of the first
15306 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
15307 represents the last byte of the element to be extracted, measured
15308 from the right end of the vector. In other words, the last byte of
15309 the element to be extracted is found at position @code{(15 - index)}.
15310 There is no requirement that @code{index} be a multiple of the vector
15311 element size. However, if the size of the vector element added to
15312 @code{index} is greater than 15, the content of the returned value is
15313 undefined.
15314
15315 The following built-in functions are available for the PowerPC family
15316 of processors when hardware decimal floating point
15317 (@option{-mhard-dfp}) is available:
15318 @smallexample
15319 _Decimal64 __builtin_dxex (_Decimal64);
15320 _Decimal128 __builtin_dxexq (_Decimal128);
15321 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15322 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15323 _Decimal64 __builtin_denbcd (int, _Decimal64);
15324 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15325 _Decimal64 __builtin_diex (_Decimal64, _Decimal64);
15326 _Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
15327 _Decimal64 __builtin_dscli (_Decimal64, int);
15328 _Decimal128 __builtin_dscliq (_Decimal128, int);
15329 _Decimal64 __builtin_dscri (_Decimal64, int);
15330 _Decimal128 __builtin_dscriq (_Decimal128, int);
15331 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15332 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15333 @end smallexample
15334
15335 The following built-in functions are available for the PowerPC family
15336 of processors when the Vector Scalar (vsx) instruction set is
15337 available:
15338 @smallexample
15339 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
15340 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
15341 unsigned long long);
15342 @end smallexample
15343
15344 @node PowerPC AltiVec/VSX Built-in Functions
15345 @subsection PowerPC AltiVec Built-in Functions
15346
15347 GCC provides an interface for the PowerPC family of processors to access
15348 the AltiVec operations described in Motorola's AltiVec Programming
15349 Interface Manual. The interface is made available by including
15350 @code{<altivec.h>} and using @option{-maltivec} and
15351 @option{-mabi=altivec}. The interface supports the following vector
15352 types.
15353
15354 @smallexample
15355 vector unsigned char
15356 vector signed char
15357 vector bool char
15358
15359 vector unsigned short
15360 vector signed short
15361 vector bool short
15362 vector pixel
15363
15364 vector unsigned int
15365 vector signed int
15366 vector bool int
15367 vector float
15368 @end smallexample
15369
15370 If @option{-mvsx} is used the following additional vector types are
15371 implemented.
15372
15373 @smallexample
15374 vector unsigned long
15375 vector signed long
15376 vector double
15377 @end smallexample
15378
15379 The long types are only implemented for 64-bit code generation, and
15380 the long type is only used in the floating point/integer conversion
15381 instructions.
15382
15383 GCC's implementation of the high-level language interface available from
15384 C and C++ code differs from Motorola's documentation in several ways.
15385
15386 @itemize @bullet
15387
15388 @item
15389 A vector constant is a list of constant expressions within curly braces.
15390
15391 @item
15392 A vector initializer requires no cast if the vector constant is of the
15393 same type as the variable it is initializing.
15394
15395 @item
15396 If @code{signed} or @code{unsigned} is omitted, the signedness of the
15397 vector type is the default signedness of the base type. The default
15398 varies depending on the operating system, so a portable program should
15399 always specify the signedness.
15400
15401 @item
15402 Compiling with @option{-maltivec} adds keywords @code{__vector},
15403 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
15404 @code{bool}. When compiling ISO C, the context-sensitive substitution
15405 of the keywords @code{vector}, @code{pixel} and @code{bool} is
15406 disabled. To use them, you must include @code{<altivec.h>} instead.
15407
15408 @item
15409 GCC allows using a @code{typedef} name as the type specifier for a
15410 vector type.
15411
15412 @item
15413 For C, overloaded functions are implemented with macros so the following
15414 does not work:
15415
15416 @smallexample
15417 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
15418 @end smallexample
15419
15420 @noindent
15421 Since @code{vec_add} is a macro, the vector constant in the example
15422 is treated as four separate arguments. Wrap the entire argument in
15423 parentheses for this to work.
15424 @end itemize
15425
15426 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
15427 Internally, GCC uses built-in functions to achieve the functionality in
15428 the aforementioned header file, but they are not supported and are
15429 subject to change without notice.
15430
15431 The following interfaces are supported for the generic and specific
15432 AltiVec operations and the AltiVec predicates. In cases where there
15433 is a direct mapping between generic and specific operations, only the
15434 generic names are shown here, although the specific operations can also
15435 be used.
15436
15437 Arguments that are documented as @code{const int} require literal
15438 integral values within the range required for that operation.
15439
15440 @smallexample
15441 vector signed char vec_abs (vector signed char);
15442 vector signed short vec_abs (vector signed short);
15443 vector signed int vec_abs (vector signed int);
15444 vector float vec_abs (vector float);
15445
15446 vector signed char vec_abss (vector signed char);
15447 vector signed short vec_abss (vector signed short);
15448 vector signed int vec_abss (vector signed int);
15449
15450 vector signed char vec_add (vector bool char, vector signed char);
15451 vector signed char vec_add (vector signed char, vector bool char);
15452 vector signed char vec_add (vector signed char, vector signed char);
15453 vector unsigned char vec_add (vector bool char, vector unsigned char);
15454 vector unsigned char vec_add (vector unsigned char, vector bool char);
15455 vector unsigned char vec_add (vector unsigned char,
15456 vector unsigned char);
15457 vector signed short vec_add (vector bool short, vector signed short);
15458 vector signed short vec_add (vector signed short, vector bool short);
15459 vector signed short vec_add (vector signed short, vector signed short);
15460 vector unsigned short vec_add (vector bool short,
15461 vector unsigned short);
15462 vector unsigned short vec_add (vector unsigned short,
15463 vector bool short);
15464 vector unsigned short vec_add (vector unsigned short,
15465 vector unsigned short);
15466 vector signed int vec_add (vector bool int, vector signed int);
15467 vector signed int vec_add (vector signed int, vector bool int);
15468 vector signed int vec_add (vector signed int, vector signed int);
15469 vector unsigned int vec_add (vector bool int, vector unsigned int);
15470 vector unsigned int vec_add (vector unsigned int, vector bool int);
15471 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
15472 vector float vec_add (vector float, vector float);
15473
15474 vector float vec_vaddfp (vector float, vector float);
15475
15476 vector signed int vec_vadduwm (vector bool int, vector signed int);
15477 vector signed int vec_vadduwm (vector signed int, vector bool int);
15478 vector signed int vec_vadduwm (vector signed int, vector signed int);
15479 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
15480 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
15481 vector unsigned int vec_vadduwm (vector unsigned int,
15482 vector unsigned int);
15483
15484 vector signed short vec_vadduhm (vector bool short,
15485 vector signed short);
15486 vector signed short vec_vadduhm (vector signed short,
15487 vector bool short);
15488 vector signed short vec_vadduhm (vector signed short,
15489 vector signed short);
15490 vector unsigned short vec_vadduhm (vector bool short,
15491 vector unsigned short);
15492 vector unsigned short vec_vadduhm (vector unsigned short,
15493 vector bool short);
15494 vector unsigned short vec_vadduhm (vector unsigned short,
15495 vector unsigned short);
15496
15497 vector signed char vec_vaddubm (vector bool char, vector signed char);
15498 vector signed char vec_vaddubm (vector signed char, vector bool char);
15499 vector signed char vec_vaddubm (vector signed char, vector signed char);
15500 vector unsigned char vec_vaddubm (vector bool char,
15501 vector unsigned char);
15502 vector unsigned char vec_vaddubm (vector unsigned char,
15503 vector bool char);
15504 vector unsigned char vec_vaddubm (vector unsigned char,
15505 vector unsigned char);
15506
15507 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
15508
15509 vector unsigned char vec_adds (vector bool char, vector unsigned char);
15510 vector unsigned char vec_adds (vector unsigned char, vector bool char);
15511 vector unsigned char vec_adds (vector unsigned char,
15512 vector unsigned char);
15513 vector signed char vec_adds (vector bool char, vector signed char);
15514 vector signed char vec_adds (vector signed char, vector bool char);
15515 vector signed char vec_adds (vector signed char, vector signed char);
15516 vector unsigned short vec_adds (vector bool short,
15517 vector unsigned short);
15518 vector unsigned short vec_adds (vector unsigned short,
15519 vector bool short);
15520 vector unsigned short vec_adds (vector unsigned short,
15521 vector unsigned short);
15522 vector signed short vec_adds (vector bool short, vector signed short);
15523 vector signed short vec_adds (vector signed short, vector bool short);
15524 vector signed short vec_adds (vector signed short, vector signed short);
15525 vector unsigned int vec_adds (vector bool int, vector unsigned int);
15526 vector unsigned int vec_adds (vector unsigned int, vector bool int);
15527 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
15528 vector signed int vec_adds (vector bool int, vector signed int);
15529 vector signed int vec_adds (vector signed int, vector bool int);
15530 vector signed int vec_adds (vector signed int, vector signed int);
15531
15532 vector signed int vec_vaddsws (vector bool int, vector signed int);
15533 vector signed int vec_vaddsws (vector signed int, vector bool int);
15534 vector signed int vec_vaddsws (vector signed int, vector signed int);
15535
15536 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
15537 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
15538 vector unsigned int vec_vadduws (vector unsigned int,
15539 vector unsigned int);
15540
15541 vector signed short vec_vaddshs (vector bool short,
15542 vector signed short);
15543 vector signed short vec_vaddshs (vector signed short,
15544 vector bool short);
15545 vector signed short vec_vaddshs (vector signed short,
15546 vector signed short);
15547
15548 vector unsigned short vec_vadduhs (vector bool short,
15549 vector unsigned short);
15550 vector unsigned short vec_vadduhs (vector unsigned short,
15551 vector bool short);
15552 vector unsigned short vec_vadduhs (vector unsigned short,
15553 vector unsigned short);
15554
15555 vector signed char vec_vaddsbs (vector bool char, vector signed char);
15556 vector signed char vec_vaddsbs (vector signed char, vector bool char);
15557 vector signed char vec_vaddsbs (vector signed char, vector signed char);
15558
15559 vector unsigned char vec_vaddubs (vector bool char,
15560 vector unsigned char);
15561 vector unsigned char vec_vaddubs (vector unsigned char,
15562 vector bool char);
15563 vector unsigned char vec_vaddubs (vector unsigned char,
15564 vector unsigned char);
15565
15566 vector float vec_and (vector float, vector float);
15567 vector float vec_and (vector float, vector bool int);
15568 vector float vec_and (vector bool int, vector float);
15569 vector bool int vec_and (vector bool int, vector bool int);
15570 vector signed int vec_and (vector bool int, vector signed int);
15571 vector signed int vec_and (vector signed int, vector bool int);
15572 vector signed int vec_and (vector signed int, vector signed int);
15573 vector unsigned int vec_and (vector bool int, vector unsigned int);
15574 vector unsigned int vec_and (vector unsigned int, vector bool int);
15575 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
15576 vector bool short vec_and (vector bool short, vector bool short);
15577 vector signed short vec_and (vector bool short, vector signed short);
15578 vector signed short vec_and (vector signed short, vector bool short);
15579 vector signed short vec_and (vector signed short, vector signed short);
15580 vector unsigned short vec_and (vector bool short,
15581 vector unsigned short);
15582 vector unsigned short vec_and (vector unsigned short,
15583 vector bool short);
15584 vector unsigned short vec_and (vector unsigned short,
15585 vector unsigned short);
15586 vector signed char vec_and (vector bool char, vector signed char);
15587 vector bool char vec_and (vector bool char, vector bool char);
15588 vector signed char vec_and (vector signed char, vector bool char);
15589 vector signed char vec_and (vector signed char, vector signed char);
15590 vector unsigned char vec_and (vector bool char, vector unsigned char);
15591 vector unsigned char vec_and (vector unsigned char, vector bool char);
15592 vector unsigned char vec_and (vector unsigned char,
15593 vector unsigned char);
15594
15595 vector float vec_andc (vector float, vector float);
15596 vector float vec_andc (vector float, vector bool int);
15597 vector float vec_andc (vector bool int, vector float);
15598 vector bool int vec_andc (vector bool int, vector bool int);
15599 vector signed int vec_andc (vector bool int, vector signed int);
15600 vector signed int vec_andc (vector signed int, vector bool int);
15601 vector signed int vec_andc (vector signed int, vector signed int);
15602 vector unsigned int vec_andc (vector bool int, vector unsigned int);
15603 vector unsigned int vec_andc (vector unsigned int, vector bool int);
15604 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
15605 vector bool short vec_andc (vector bool short, vector bool short);
15606 vector signed short vec_andc (vector bool short, vector signed short);
15607 vector signed short vec_andc (vector signed short, vector bool short);
15608 vector signed short vec_andc (vector signed short, vector signed short);
15609 vector unsigned short vec_andc (vector bool short,
15610 vector unsigned short);
15611 vector unsigned short vec_andc (vector unsigned short,
15612 vector bool short);
15613 vector unsigned short vec_andc (vector unsigned short,
15614 vector unsigned short);
15615 vector signed char vec_andc (vector bool char, vector signed char);
15616 vector bool char vec_andc (vector bool char, vector bool char);
15617 vector signed char vec_andc (vector signed char, vector bool char);
15618 vector signed char vec_andc (vector signed char, vector signed char);
15619 vector unsigned char vec_andc (vector bool char, vector unsigned char);
15620 vector unsigned char vec_andc (vector unsigned char, vector bool char);
15621 vector unsigned char vec_andc (vector unsigned char,
15622 vector unsigned char);
15623
15624 vector unsigned char vec_avg (vector unsigned char,
15625 vector unsigned char);
15626 vector signed char vec_avg (vector signed char, vector signed char);
15627 vector unsigned short vec_avg (vector unsigned short,
15628 vector unsigned short);
15629 vector signed short vec_avg (vector signed short, vector signed short);
15630 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
15631 vector signed int vec_avg (vector signed int, vector signed int);
15632
15633 vector signed int vec_vavgsw (vector signed int, vector signed int);
15634
15635 vector unsigned int vec_vavguw (vector unsigned int,
15636 vector unsigned int);
15637
15638 vector signed short vec_vavgsh (vector signed short,
15639 vector signed short);
15640
15641 vector unsigned short vec_vavguh (vector unsigned short,
15642 vector unsigned short);
15643
15644 vector signed char vec_vavgsb (vector signed char, vector signed char);
15645
15646 vector unsigned char vec_vavgub (vector unsigned char,
15647 vector unsigned char);
15648
15649 vector float vec_copysign (vector float);
15650
15651 vector float vec_ceil (vector float);
15652
15653 vector signed int vec_cmpb (vector float, vector float);
15654
15655 vector bool char vec_cmpeq (vector signed char, vector signed char);
15656 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
15657 vector bool short vec_cmpeq (vector signed short, vector signed short);
15658 vector bool short vec_cmpeq (vector unsigned short,
15659 vector unsigned short);
15660 vector bool int vec_cmpeq (vector signed int, vector signed int);
15661 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
15662 vector bool int vec_cmpeq (vector float, vector float);
15663
15664 vector bool int vec_vcmpeqfp (vector float, vector float);
15665
15666 vector bool int vec_vcmpequw (vector signed int, vector signed int);
15667 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
15668
15669 vector bool short vec_vcmpequh (vector signed short,
15670 vector signed short);
15671 vector bool short vec_vcmpequh (vector unsigned short,
15672 vector unsigned short);
15673
15674 vector bool char vec_vcmpequb (vector signed char, vector signed char);
15675 vector bool char vec_vcmpequb (vector unsigned char,
15676 vector unsigned char);
15677
15678 vector bool int vec_cmpge (vector float, vector float);
15679
15680 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
15681 vector bool char vec_cmpgt (vector signed char, vector signed char);
15682 vector bool short vec_cmpgt (vector unsigned short,
15683 vector unsigned short);
15684 vector bool short vec_cmpgt (vector signed short, vector signed short);
15685 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
15686 vector bool int vec_cmpgt (vector signed int, vector signed int);
15687 vector bool int vec_cmpgt (vector float, vector float);
15688
15689 vector bool int vec_vcmpgtfp (vector float, vector float);
15690
15691 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
15692
15693 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
15694
15695 vector bool short vec_vcmpgtsh (vector signed short,
15696 vector signed short);
15697
15698 vector bool short vec_vcmpgtuh (vector unsigned short,
15699 vector unsigned short);
15700
15701 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
15702
15703 vector bool char vec_vcmpgtub (vector unsigned char,
15704 vector unsigned char);
15705
15706 vector bool int vec_cmple (vector float, vector float);
15707
15708 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
15709 vector bool char vec_cmplt (vector signed char, vector signed char);
15710 vector bool short vec_cmplt (vector unsigned short,
15711 vector unsigned short);
15712 vector bool short vec_cmplt (vector signed short, vector signed short);
15713 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
15714 vector bool int vec_cmplt (vector signed int, vector signed int);
15715 vector bool int vec_cmplt (vector float, vector float);
15716
15717 vector float vec_cpsgn (vector float, vector float);
15718
15719 vector float vec_ctf (vector unsigned int, const int);
15720 vector float vec_ctf (vector signed int, const int);
15721 vector double vec_ctf (vector unsigned long, const int);
15722 vector double vec_ctf (vector signed long, const int);
15723
15724 vector float vec_vcfsx (vector signed int, const int);
15725
15726 vector float vec_vcfux (vector unsigned int, const int);
15727
15728 vector signed int vec_cts (vector float, const int);
15729 vector signed long vec_cts (vector double, const int);
15730
15731 vector unsigned int vec_ctu (vector float, const int);
15732 vector unsigned long vec_ctu (vector double, const int);
15733
15734 void vec_dss (const int);
15735
15736 void vec_dssall (void);
15737
15738 void vec_dst (const vector unsigned char *, int, const int);
15739 void vec_dst (const vector signed char *, int, const int);
15740 void vec_dst (const vector bool char *, int, const int);
15741 void vec_dst (const vector unsigned short *, int, const int);
15742 void vec_dst (const vector signed short *, int, const int);
15743 void vec_dst (const vector bool short *, int, const int);
15744 void vec_dst (const vector pixel *, int, const int);
15745 void vec_dst (const vector unsigned int *, int, const int);
15746 void vec_dst (const vector signed int *, int, const int);
15747 void vec_dst (const vector bool int *, int, const int);
15748 void vec_dst (const vector float *, int, const int);
15749 void vec_dst (const unsigned char *, int, const int);
15750 void vec_dst (const signed char *, int, const int);
15751 void vec_dst (const unsigned short *, int, const int);
15752 void vec_dst (const short *, int, const int);
15753 void vec_dst (const unsigned int *, int, const int);
15754 void vec_dst (const int *, int, const int);
15755 void vec_dst (const unsigned long *, int, const int);
15756 void vec_dst (const long *, int, const int);
15757 void vec_dst (const float *, int, const int);
15758
15759 void vec_dstst (const vector unsigned char *, int, const int);
15760 void vec_dstst (const vector signed char *, int, const int);
15761 void vec_dstst (const vector bool char *, int, const int);
15762 void vec_dstst (const vector unsigned short *, int, const int);
15763 void vec_dstst (const vector signed short *, int, const int);
15764 void vec_dstst (const vector bool short *, int, const int);
15765 void vec_dstst (const vector pixel *, int, const int);
15766 void vec_dstst (const vector unsigned int *, int, const int);
15767 void vec_dstst (const vector signed int *, int, const int);
15768 void vec_dstst (const vector bool int *, int, const int);
15769 void vec_dstst (const vector float *, int, const int);
15770 void vec_dstst (const unsigned char *, int, const int);
15771 void vec_dstst (const signed char *, int, const int);
15772 void vec_dstst (const unsigned short *, int, const int);
15773 void vec_dstst (const short *, int, const int);
15774 void vec_dstst (const unsigned int *, int, const int);
15775 void vec_dstst (const int *, int, const int);
15776 void vec_dstst (const unsigned long *, int, const int);
15777 void vec_dstst (const long *, int, const int);
15778 void vec_dstst (const float *, int, const int);
15779
15780 void vec_dststt (const vector unsigned char *, int, const int);
15781 void vec_dststt (const vector signed char *, int, const int);
15782 void vec_dststt (const vector bool char *, int, const int);
15783 void vec_dststt (const vector unsigned short *, int, const int);
15784 void vec_dststt (const vector signed short *, int, const int);
15785 void vec_dststt (const vector bool short *, int, const int);
15786 void vec_dststt (const vector pixel *, int, const int);
15787 void vec_dststt (const vector unsigned int *, int, const int);
15788 void vec_dststt (const vector signed int *, int, const int);
15789 void vec_dststt (const vector bool int *, int, const int);
15790 void vec_dststt (const vector float *, int, const int);
15791 void vec_dststt (const unsigned char *, int, const int);
15792 void vec_dststt (const signed char *, int, const int);
15793 void vec_dststt (const unsigned short *, int, const int);
15794 void vec_dststt (const short *, int, const int);
15795 void vec_dststt (const unsigned int *, int, const int);
15796 void vec_dststt (const int *, int, const int);
15797 void vec_dststt (const unsigned long *, int, const int);
15798 void vec_dststt (const long *, int, const int);
15799 void vec_dststt (const float *, int, const int);
15800
15801 void vec_dstt (const vector unsigned char *, int, const int);
15802 void vec_dstt (const vector signed char *, int, const int);
15803 void vec_dstt (const vector bool char *, int, const int);
15804 void vec_dstt (const vector unsigned short *, int, const int);
15805 void vec_dstt (const vector signed short *, int, const int);
15806 void vec_dstt (const vector bool short *, int, const int);
15807 void vec_dstt (const vector pixel *, int, const int);
15808 void vec_dstt (const vector unsigned int *, int, const int);
15809 void vec_dstt (const vector signed int *, int, const int);
15810 void vec_dstt (const vector bool int *, int, const int);
15811 void vec_dstt (const vector float *, int, const int);
15812 void vec_dstt (const unsigned char *, int, const int);
15813 void vec_dstt (const signed char *, int, const int);
15814 void vec_dstt (const unsigned short *, int, const int);
15815 void vec_dstt (const short *, int, const int);
15816 void vec_dstt (const unsigned int *, int, const int);
15817 void vec_dstt (const int *, int, const int);
15818 void vec_dstt (const unsigned long *, int, const int);
15819 void vec_dstt (const long *, int, const int);
15820 void vec_dstt (const float *, int, const int);
15821
15822 vector float vec_expte (vector float);
15823
15824 vector float vec_floor (vector float);
15825
15826 vector float vec_ld (int, const vector float *);
15827 vector float vec_ld (int, const float *);
15828 vector bool int vec_ld (int, const vector bool int *);
15829 vector signed int vec_ld (int, const vector signed int *);
15830 vector signed int vec_ld (int, const int *);
15831 vector signed int vec_ld (int, const long *);
15832 vector unsigned int vec_ld (int, const vector unsigned int *);
15833 vector unsigned int vec_ld (int, const unsigned int *);
15834 vector unsigned int vec_ld (int, const unsigned long *);
15835 vector bool short vec_ld (int, const vector bool short *);
15836 vector pixel vec_ld (int, const vector pixel *);
15837 vector signed short vec_ld (int, const vector signed short *);
15838 vector signed short vec_ld (int, const short *);
15839 vector unsigned short vec_ld (int, const vector unsigned short *);
15840 vector unsigned short vec_ld (int, const unsigned short *);
15841 vector bool char vec_ld (int, const vector bool char *);
15842 vector signed char vec_ld (int, const vector signed char *);
15843 vector signed char vec_ld (int, const signed char *);
15844 vector unsigned char vec_ld (int, const vector unsigned char *);
15845 vector unsigned char vec_ld (int, const unsigned char *);
15846
15847 vector signed char vec_lde (int, const signed char *);
15848 vector unsigned char vec_lde (int, const unsigned char *);
15849 vector signed short vec_lde (int, const short *);
15850 vector unsigned short vec_lde (int, const unsigned short *);
15851 vector float vec_lde (int, const float *);
15852 vector signed int vec_lde (int, const int *);
15853 vector unsigned int vec_lde (int, const unsigned int *);
15854 vector signed int vec_lde (int, const long *);
15855 vector unsigned int vec_lde (int, const unsigned long *);
15856
15857 vector float vec_lvewx (int, float *);
15858 vector signed int vec_lvewx (int, int *);
15859 vector unsigned int vec_lvewx (int, unsigned int *);
15860 vector signed int vec_lvewx (int, long *);
15861 vector unsigned int vec_lvewx (int, unsigned long *);
15862
15863 vector signed short vec_lvehx (int, short *);
15864 vector unsigned short vec_lvehx (int, unsigned short *);
15865
15866 vector signed char vec_lvebx (int, char *);
15867 vector unsigned char vec_lvebx (int, unsigned char *);
15868
15869 vector float vec_ldl (int, const vector float *);
15870 vector float vec_ldl (int, const float *);
15871 vector bool int vec_ldl (int, const vector bool int *);
15872 vector signed int vec_ldl (int, const vector signed int *);
15873 vector signed int vec_ldl (int, const int *);
15874 vector signed int vec_ldl (int, const long *);
15875 vector unsigned int vec_ldl (int, const vector unsigned int *);
15876 vector unsigned int vec_ldl (int, const unsigned int *);
15877 vector unsigned int vec_ldl (int, const unsigned long *);
15878 vector bool short vec_ldl (int, const vector bool short *);
15879 vector pixel vec_ldl (int, const vector pixel *);
15880 vector signed short vec_ldl (int, const vector signed short *);
15881 vector signed short vec_ldl (int, const short *);
15882 vector unsigned short vec_ldl (int, const vector unsigned short *);
15883 vector unsigned short vec_ldl (int, const unsigned short *);
15884 vector bool char vec_ldl (int, const vector bool char *);
15885 vector signed char vec_ldl (int, const vector signed char *);
15886 vector signed char vec_ldl (int, const signed char *);
15887 vector unsigned char vec_ldl (int, const vector unsigned char *);
15888 vector unsigned char vec_ldl (int, const unsigned char *);
15889
15890 vector float vec_loge (vector float);
15891
15892 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
15893 vector unsigned char vec_lvsl (int, const volatile signed char *);
15894 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
15895 vector unsigned char vec_lvsl (int, const volatile short *);
15896 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
15897 vector unsigned char vec_lvsl (int, const volatile int *);
15898 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
15899 vector unsigned char vec_lvsl (int, const volatile long *);
15900 vector unsigned char vec_lvsl (int, const volatile float *);
15901
15902 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
15903 vector unsigned char vec_lvsr (int, const volatile signed char *);
15904 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
15905 vector unsigned char vec_lvsr (int, const volatile short *);
15906 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
15907 vector unsigned char vec_lvsr (int, const volatile int *);
15908 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
15909 vector unsigned char vec_lvsr (int, const volatile long *);
15910 vector unsigned char vec_lvsr (int, const volatile float *);
15911
15912 vector float vec_madd (vector float, vector float, vector float);
15913
15914 vector signed short vec_madds (vector signed short,
15915 vector signed short,
15916 vector signed short);
15917
15918 vector unsigned char vec_max (vector bool char, vector unsigned char);
15919 vector unsigned char vec_max (vector unsigned char, vector bool char);
15920 vector unsigned char vec_max (vector unsigned char,
15921 vector unsigned char);
15922 vector signed char vec_max (vector bool char, vector signed char);
15923 vector signed char vec_max (vector signed char, vector bool char);
15924 vector signed char vec_max (vector signed char, vector signed char);
15925 vector unsigned short vec_max (vector bool short,
15926 vector unsigned short);
15927 vector unsigned short vec_max (vector unsigned short,
15928 vector bool short);
15929 vector unsigned short vec_max (vector unsigned short,
15930 vector unsigned short);
15931 vector signed short vec_max (vector bool short, vector signed short);
15932 vector signed short vec_max (vector signed short, vector bool short);
15933 vector signed short vec_max (vector signed short, vector signed short);
15934 vector unsigned int vec_max (vector bool int, vector unsigned int);
15935 vector unsigned int vec_max (vector unsigned int, vector bool int);
15936 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
15937 vector signed int vec_max (vector bool int, vector signed int);
15938 vector signed int vec_max (vector signed int, vector bool int);
15939 vector signed int vec_max (vector signed int, vector signed int);
15940 vector float vec_max (vector float, vector float);
15941
15942 vector float vec_vmaxfp (vector float, vector float);
15943
15944 vector signed int vec_vmaxsw (vector bool int, vector signed int);
15945 vector signed int vec_vmaxsw (vector signed int, vector bool int);
15946 vector signed int vec_vmaxsw (vector signed int, vector signed int);
15947
15948 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
15949 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
15950 vector unsigned int vec_vmaxuw (vector unsigned int,
15951 vector unsigned int);
15952
15953 vector signed short vec_vmaxsh (vector bool short, vector signed short);
15954 vector signed short vec_vmaxsh (vector signed short, vector bool short);
15955 vector signed short vec_vmaxsh (vector signed short,
15956 vector signed short);
15957
15958 vector unsigned short vec_vmaxuh (vector bool short,
15959 vector unsigned short);
15960 vector unsigned short vec_vmaxuh (vector unsigned short,
15961 vector bool short);
15962 vector unsigned short vec_vmaxuh (vector unsigned short,
15963 vector unsigned short);
15964
15965 vector signed char vec_vmaxsb (vector bool char, vector signed char);
15966 vector signed char vec_vmaxsb (vector signed char, vector bool char);
15967 vector signed char vec_vmaxsb (vector signed char, vector signed char);
15968
15969 vector unsigned char vec_vmaxub (vector bool char,
15970 vector unsigned char);
15971 vector unsigned char vec_vmaxub (vector unsigned char,
15972 vector bool char);
15973 vector unsigned char vec_vmaxub (vector unsigned char,
15974 vector unsigned char);
15975
15976 vector bool char vec_mergeh (vector bool char, vector bool char);
15977 vector signed char vec_mergeh (vector signed char, vector signed char);
15978 vector unsigned char vec_mergeh (vector unsigned char,
15979 vector unsigned char);
15980 vector bool short vec_mergeh (vector bool short, vector bool short);
15981 vector pixel vec_mergeh (vector pixel, vector pixel);
15982 vector signed short vec_mergeh (vector signed short,
15983 vector signed short);
15984 vector unsigned short vec_mergeh (vector unsigned short,
15985 vector unsigned short);
15986 vector float vec_mergeh (vector float, vector float);
15987 vector bool int vec_mergeh (vector bool int, vector bool int);
15988 vector signed int vec_mergeh (vector signed int, vector signed int);
15989 vector unsigned int vec_mergeh (vector unsigned int,
15990 vector unsigned int);
15991
15992 vector float vec_vmrghw (vector float, vector float);
15993 vector bool int vec_vmrghw (vector bool int, vector bool int);
15994 vector signed int vec_vmrghw (vector signed int, vector signed int);
15995 vector unsigned int vec_vmrghw (vector unsigned int,
15996 vector unsigned int);
15997
15998 vector bool short vec_vmrghh (vector bool short, vector bool short);
15999 vector signed short vec_vmrghh (vector signed short,
16000 vector signed short);
16001 vector unsigned short vec_vmrghh (vector unsigned short,
16002 vector unsigned short);
16003 vector pixel vec_vmrghh (vector pixel, vector pixel);
16004
16005 vector bool char vec_vmrghb (vector bool char, vector bool char);
16006 vector signed char vec_vmrghb (vector signed char, vector signed char);
16007 vector unsigned char vec_vmrghb (vector unsigned char,
16008 vector unsigned char);
16009
16010 vector bool char vec_mergel (vector bool char, vector bool char);
16011 vector signed char vec_mergel (vector signed char, vector signed char);
16012 vector unsigned char vec_mergel (vector unsigned char,
16013 vector unsigned char);
16014 vector bool short vec_mergel (vector bool short, vector bool short);
16015 vector pixel vec_mergel (vector pixel, vector pixel);
16016 vector signed short vec_mergel (vector signed short,
16017 vector signed short);
16018 vector unsigned short vec_mergel (vector unsigned short,
16019 vector unsigned short);
16020 vector float vec_mergel (vector float, vector float);
16021 vector bool int vec_mergel (vector bool int, vector bool int);
16022 vector signed int vec_mergel (vector signed int, vector signed int);
16023 vector unsigned int vec_mergel (vector unsigned int,
16024 vector unsigned int);
16025
16026 vector float vec_vmrglw (vector float, vector float);
16027 vector signed int vec_vmrglw (vector signed int, vector signed int);
16028 vector unsigned int vec_vmrglw (vector unsigned int,
16029 vector unsigned int);
16030 vector bool int vec_vmrglw (vector bool int, vector bool int);
16031
16032 vector bool short vec_vmrglh (vector bool short, vector bool short);
16033 vector signed short vec_vmrglh (vector signed short,
16034 vector signed short);
16035 vector unsigned short vec_vmrglh (vector unsigned short,
16036 vector unsigned short);
16037 vector pixel vec_vmrglh (vector pixel, vector pixel);
16038
16039 vector bool char vec_vmrglb (vector bool char, vector bool char);
16040 vector signed char vec_vmrglb (vector signed char, vector signed char);
16041 vector unsigned char vec_vmrglb (vector unsigned char,
16042 vector unsigned char);
16043
16044 vector unsigned short vec_mfvscr (void);
16045
16046 vector unsigned char vec_min (vector bool char, vector unsigned char);
16047 vector unsigned char vec_min (vector unsigned char, vector bool char);
16048 vector unsigned char vec_min (vector unsigned char,
16049 vector unsigned char);
16050 vector signed char vec_min (vector bool char, vector signed char);
16051 vector signed char vec_min (vector signed char, vector bool char);
16052 vector signed char vec_min (vector signed char, vector signed char);
16053 vector unsigned short vec_min (vector bool short,
16054 vector unsigned short);
16055 vector unsigned short vec_min (vector unsigned short,
16056 vector bool short);
16057 vector unsigned short vec_min (vector unsigned short,
16058 vector unsigned short);
16059 vector signed short vec_min (vector bool short, vector signed short);
16060 vector signed short vec_min (vector signed short, vector bool short);
16061 vector signed short vec_min (vector signed short, vector signed short);
16062 vector unsigned int vec_min (vector bool int, vector unsigned int);
16063 vector unsigned int vec_min (vector unsigned int, vector bool int);
16064 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16065 vector signed int vec_min (vector bool int, vector signed int);
16066 vector signed int vec_min (vector signed int, vector bool int);
16067 vector signed int vec_min (vector signed int, vector signed int);
16068 vector float vec_min (vector float, vector float);
16069
16070 vector float vec_vminfp (vector float, vector float);
16071
16072 vector signed int vec_vminsw (vector bool int, vector signed int);
16073 vector signed int vec_vminsw (vector signed int, vector bool int);
16074 vector signed int vec_vminsw (vector signed int, vector signed int);
16075
16076 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
16077 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
16078 vector unsigned int vec_vminuw (vector unsigned int,
16079 vector unsigned int);
16080
16081 vector signed short vec_vminsh (vector bool short, vector signed short);
16082 vector signed short vec_vminsh (vector signed short, vector bool short);
16083 vector signed short vec_vminsh (vector signed short,
16084 vector signed short);
16085
16086 vector unsigned short vec_vminuh (vector bool short,
16087 vector unsigned short);
16088 vector unsigned short vec_vminuh (vector unsigned short,
16089 vector bool short);
16090 vector unsigned short vec_vminuh (vector unsigned short,
16091 vector unsigned short);
16092
16093 vector signed char vec_vminsb (vector bool char, vector signed char);
16094 vector signed char vec_vminsb (vector signed char, vector bool char);
16095 vector signed char vec_vminsb (vector signed char, vector signed char);
16096
16097 vector unsigned char vec_vminub (vector bool char,
16098 vector unsigned char);
16099 vector unsigned char vec_vminub (vector unsigned char,
16100 vector bool char);
16101 vector unsigned char vec_vminub (vector unsigned char,
16102 vector unsigned char);
16103
16104 vector signed short vec_mladd (vector signed short,
16105 vector signed short,
16106 vector signed short);
16107 vector signed short vec_mladd (vector signed short,
16108 vector unsigned short,
16109 vector unsigned short);
16110 vector signed short vec_mladd (vector unsigned short,
16111 vector signed short,
16112 vector signed short);
16113 vector unsigned short vec_mladd (vector unsigned short,
16114 vector unsigned short,
16115 vector unsigned short);
16116
16117 vector signed short vec_mradds (vector signed short,
16118 vector signed short,
16119 vector signed short);
16120
16121 vector unsigned int vec_msum (vector unsigned char,
16122 vector unsigned char,
16123 vector unsigned int);
16124 vector signed int vec_msum (vector signed char,
16125 vector unsigned char,
16126 vector signed int);
16127 vector unsigned int vec_msum (vector unsigned short,
16128 vector unsigned short,
16129 vector unsigned int);
16130 vector signed int vec_msum (vector signed short,
16131 vector signed short,
16132 vector signed int);
16133
16134 vector signed int vec_vmsumshm (vector signed short,
16135 vector signed short,
16136 vector signed int);
16137
16138 vector unsigned int vec_vmsumuhm (vector unsigned short,
16139 vector unsigned short,
16140 vector unsigned int);
16141
16142 vector signed int vec_vmsummbm (vector signed char,
16143 vector unsigned char,
16144 vector signed int);
16145
16146 vector unsigned int vec_vmsumubm (vector unsigned char,
16147 vector unsigned char,
16148 vector unsigned int);
16149
16150 vector unsigned int vec_msums (vector unsigned short,
16151 vector unsigned short,
16152 vector unsigned int);
16153 vector signed int vec_msums (vector signed short,
16154 vector signed short,
16155 vector signed int);
16156
16157 vector signed int vec_vmsumshs (vector signed short,
16158 vector signed short,
16159 vector signed int);
16160
16161 vector unsigned int vec_vmsumuhs (vector unsigned short,
16162 vector unsigned short,
16163 vector unsigned int);
16164
16165 void vec_mtvscr (vector signed int);
16166 void vec_mtvscr (vector unsigned int);
16167 void vec_mtvscr (vector bool int);
16168 void vec_mtvscr (vector signed short);
16169 void vec_mtvscr (vector unsigned short);
16170 void vec_mtvscr (vector bool short);
16171 void vec_mtvscr (vector pixel);
16172 void vec_mtvscr (vector signed char);
16173 void vec_mtvscr (vector unsigned char);
16174 void vec_mtvscr (vector bool char);
16175
16176 vector unsigned short vec_mule (vector unsigned char,
16177 vector unsigned char);
16178 vector signed short vec_mule (vector signed char,
16179 vector signed char);
16180 vector unsigned int vec_mule (vector unsigned short,
16181 vector unsigned short);
16182 vector signed int vec_mule (vector signed short, vector signed short);
16183
16184 vector signed int vec_vmulesh (vector signed short,
16185 vector signed short);
16186
16187 vector unsigned int vec_vmuleuh (vector unsigned short,
16188 vector unsigned short);
16189
16190 vector signed short vec_vmulesb (vector signed char,
16191 vector signed char);
16192
16193 vector unsigned short vec_vmuleub (vector unsigned char,
16194 vector unsigned char);
16195
16196 vector unsigned short vec_mulo (vector unsigned char,
16197 vector unsigned char);
16198 vector signed short vec_mulo (vector signed char, vector signed char);
16199 vector unsigned int vec_mulo (vector unsigned short,
16200 vector unsigned short);
16201 vector signed int vec_mulo (vector signed short, vector signed short);
16202
16203 vector signed int vec_vmulosh (vector signed short,
16204 vector signed short);
16205
16206 vector unsigned int vec_vmulouh (vector unsigned short,
16207 vector unsigned short);
16208
16209 vector signed short vec_vmulosb (vector signed char,
16210 vector signed char);
16211
16212 vector unsigned short vec_vmuloub (vector unsigned char,
16213 vector unsigned char);
16214
16215 vector float vec_nmsub (vector float, vector float, vector float);
16216
16217 vector float vec_nor (vector float, vector float);
16218 vector signed int vec_nor (vector signed int, vector signed int);
16219 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16220 vector bool int vec_nor (vector bool int, vector bool int);
16221 vector signed short vec_nor (vector signed short, vector signed short);
16222 vector unsigned short vec_nor (vector unsigned short,
16223 vector unsigned short);
16224 vector bool short vec_nor (vector bool short, vector bool short);
16225 vector signed char vec_nor (vector signed char, vector signed char);
16226 vector unsigned char vec_nor (vector unsigned char,
16227 vector unsigned char);
16228 vector bool char vec_nor (vector bool char, vector bool char);
16229
16230 vector float vec_or (vector float, vector float);
16231 vector float vec_or (vector float, vector bool int);
16232 vector float vec_or (vector bool int, vector float);
16233 vector bool int vec_or (vector bool int, vector bool int);
16234 vector signed int vec_or (vector bool int, vector signed int);
16235 vector signed int vec_or (vector signed int, vector bool int);
16236 vector signed int vec_or (vector signed int, vector signed int);
16237 vector unsigned int vec_or (vector bool int, vector unsigned int);
16238 vector unsigned int vec_or (vector unsigned int, vector bool int);
16239 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
16240 vector bool short vec_or (vector bool short, vector bool short);
16241 vector signed short vec_or (vector bool short, vector signed short);
16242 vector signed short vec_or (vector signed short, vector bool short);
16243 vector signed short vec_or (vector signed short, vector signed short);
16244 vector unsigned short vec_or (vector bool short, vector unsigned short);
16245 vector unsigned short vec_or (vector unsigned short, vector bool short);
16246 vector unsigned short vec_or (vector unsigned short,
16247 vector unsigned short);
16248 vector signed char vec_or (vector bool char, vector signed char);
16249 vector bool char vec_or (vector bool char, vector bool char);
16250 vector signed char vec_or (vector signed char, vector bool char);
16251 vector signed char vec_or (vector signed char, vector signed char);
16252 vector unsigned char vec_or (vector bool char, vector unsigned char);
16253 vector unsigned char vec_or (vector unsigned char, vector bool char);
16254 vector unsigned char vec_or (vector unsigned char,
16255 vector unsigned char);
16256
16257 vector signed char vec_pack (vector signed short, vector signed short);
16258 vector unsigned char vec_pack (vector unsigned short,
16259 vector unsigned short);
16260 vector bool char vec_pack (vector bool short, vector bool short);
16261 vector signed short vec_pack (vector signed int, vector signed int);
16262 vector unsigned short vec_pack (vector unsigned int,
16263 vector unsigned int);
16264 vector bool short vec_pack (vector bool int, vector bool int);
16265
16266 vector bool short vec_vpkuwum (vector bool int, vector bool int);
16267 vector signed short vec_vpkuwum (vector signed int, vector signed int);
16268 vector unsigned short vec_vpkuwum (vector unsigned int,
16269 vector unsigned int);
16270
16271 vector bool char vec_vpkuhum (vector bool short, vector bool short);
16272 vector signed char vec_vpkuhum (vector signed short,
16273 vector signed short);
16274 vector unsigned char vec_vpkuhum (vector unsigned short,
16275 vector unsigned short);
16276
16277 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
16278
16279 vector unsigned char vec_packs (vector unsigned short,
16280 vector unsigned short);
16281 vector signed char vec_packs (vector signed short, vector signed short);
16282 vector unsigned short vec_packs (vector unsigned int,
16283 vector unsigned int);
16284 vector signed short vec_packs (vector signed int, vector signed int);
16285
16286 vector signed short vec_vpkswss (vector signed int, vector signed int);
16287
16288 vector unsigned short vec_vpkuwus (vector unsigned int,
16289 vector unsigned int);
16290
16291 vector signed char vec_vpkshss (vector signed short,
16292 vector signed short);
16293
16294 vector unsigned char vec_vpkuhus (vector unsigned short,
16295 vector unsigned short);
16296
16297 vector unsigned char vec_packsu (vector unsigned short,
16298 vector unsigned short);
16299 vector unsigned char vec_packsu (vector signed short,
16300 vector signed short);
16301 vector unsigned short vec_packsu (vector unsigned int,
16302 vector unsigned int);
16303 vector unsigned short vec_packsu (vector signed int, vector signed int);
16304
16305 vector unsigned short vec_vpkswus (vector signed int,
16306 vector signed int);
16307
16308 vector unsigned char vec_vpkshus (vector signed short,
16309 vector signed short);
16310
16311 vector float vec_perm (vector float,
16312 vector float,
16313 vector unsigned char);
16314 vector signed int vec_perm (vector signed int,
16315 vector signed int,
16316 vector unsigned char);
16317 vector unsigned int vec_perm (vector unsigned int,
16318 vector unsigned int,
16319 vector unsigned char);
16320 vector bool int vec_perm (vector bool int,
16321 vector bool int,
16322 vector unsigned char);
16323 vector signed short vec_perm (vector signed short,
16324 vector signed short,
16325 vector unsigned char);
16326 vector unsigned short vec_perm (vector unsigned short,
16327 vector unsigned short,
16328 vector unsigned char);
16329 vector bool short vec_perm (vector bool short,
16330 vector bool short,
16331 vector unsigned char);
16332 vector pixel vec_perm (vector pixel,
16333 vector pixel,
16334 vector unsigned char);
16335 vector signed char vec_perm (vector signed char,
16336 vector signed char,
16337 vector unsigned char);
16338 vector unsigned char vec_perm (vector unsigned char,
16339 vector unsigned char,
16340 vector unsigned char);
16341 vector bool char vec_perm (vector bool char,
16342 vector bool char,
16343 vector unsigned char);
16344
16345 vector float vec_re (vector float);
16346
16347 vector signed char vec_rl (vector signed char,
16348 vector unsigned char);
16349 vector unsigned char vec_rl (vector unsigned char,
16350 vector unsigned char);
16351 vector signed short vec_rl (vector signed short, vector unsigned short);
16352 vector unsigned short vec_rl (vector unsigned short,
16353 vector unsigned short);
16354 vector signed int vec_rl (vector signed int, vector unsigned int);
16355 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
16356
16357 vector signed int vec_vrlw (vector signed int, vector unsigned int);
16358 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
16359
16360 vector signed short vec_vrlh (vector signed short,
16361 vector unsigned short);
16362 vector unsigned short vec_vrlh (vector unsigned short,
16363 vector unsigned short);
16364
16365 vector signed char vec_vrlb (vector signed char, vector unsigned char);
16366 vector unsigned char vec_vrlb (vector unsigned char,
16367 vector unsigned char);
16368
16369 vector float vec_round (vector float);
16370
16371 vector float vec_recip (vector float, vector float);
16372
16373 vector float vec_rsqrt (vector float);
16374
16375 vector float vec_rsqrte (vector float);
16376
16377 vector float vec_sel (vector float, vector float, vector bool int);
16378 vector float vec_sel (vector float, vector float, vector unsigned int);
16379 vector signed int vec_sel (vector signed int,
16380 vector signed int,
16381 vector bool int);
16382 vector signed int vec_sel (vector signed int,
16383 vector signed int,
16384 vector unsigned int);
16385 vector unsigned int vec_sel (vector unsigned int,
16386 vector unsigned int,
16387 vector bool int);
16388 vector unsigned int vec_sel (vector unsigned int,
16389 vector unsigned int,
16390 vector unsigned int);
16391 vector bool int vec_sel (vector bool int,
16392 vector bool int,
16393 vector bool int);
16394 vector bool int vec_sel (vector bool int,
16395 vector bool int,
16396 vector unsigned int);
16397 vector signed short vec_sel (vector signed short,
16398 vector signed short,
16399 vector bool short);
16400 vector signed short vec_sel (vector signed short,
16401 vector signed short,
16402 vector unsigned short);
16403 vector unsigned short vec_sel (vector unsigned short,
16404 vector unsigned short,
16405 vector bool short);
16406 vector unsigned short vec_sel (vector unsigned short,
16407 vector unsigned short,
16408 vector unsigned short);
16409 vector bool short vec_sel (vector bool short,
16410 vector bool short,
16411 vector bool short);
16412 vector bool short vec_sel (vector bool short,
16413 vector bool short,
16414 vector unsigned short);
16415 vector signed char vec_sel (vector signed char,
16416 vector signed char,
16417 vector bool char);
16418 vector signed char vec_sel (vector signed char,
16419 vector signed char,
16420 vector unsigned char);
16421 vector unsigned char vec_sel (vector unsigned char,
16422 vector unsigned char,
16423 vector bool char);
16424 vector unsigned char vec_sel (vector unsigned char,
16425 vector unsigned char,
16426 vector unsigned char);
16427 vector bool char vec_sel (vector bool char,
16428 vector bool char,
16429 vector bool char);
16430 vector bool char vec_sel (vector bool char,
16431 vector bool char,
16432 vector unsigned char);
16433
16434 vector signed char vec_sl (vector signed char,
16435 vector unsigned char);
16436 vector unsigned char vec_sl (vector unsigned char,
16437 vector unsigned char);
16438 vector signed short vec_sl (vector signed short, vector unsigned short);
16439 vector unsigned short vec_sl (vector unsigned short,
16440 vector unsigned short);
16441 vector signed int vec_sl (vector signed int, vector unsigned int);
16442 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
16443
16444 vector signed int vec_vslw (vector signed int, vector unsigned int);
16445 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
16446
16447 vector signed short vec_vslh (vector signed short,
16448 vector unsigned short);
16449 vector unsigned short vec_vslh (vector unsigned short,
16450 vector unsigned short);
16451
16452 vector signed char vec_vslb (vector signed char, vector unsigned char);
16453 vector unsigned char vec_vslb (vector unsigned char,
16454 vector unsigned char);
16455
16456 vector float vec_sld (vector float, vector float, const int);
16457 vector signed int vec_sld (vector signed int,
16458 vector signed int,
16459 const int);
16460 vector unsigned int vec_sld (vector unsigned int,
16461 vector unsigned int,
16462 const int);
16463 vector bool int vec_sld (vector bool int,
16464 vector bool int,
16465 const int);
16466 vector signed short vec_sld (vector signed short,
16467 vector signed short,
16468 const int);
16469 vector unsigned short vec_sld (vector unsigned short,
16470 vector unsigned short,
16471 const int);
16472 vector bool short vec_sld (vector bool short,
16473 vector bool short,
16474 const int);
16475 vector pixel vec_sld (vector pixel,
16476 vector pixel,
16477 const int);
16478 vector signed char vec_sld (vector signed char,
16479 vector signed char,
16480 const int);
16481 vector unsigned char vec_sld (vector unsigned char,
16482 vector unsigned char,
16483 const int);
16484 vector bool char vec_sld (vector bool char,
16485 vector bool char,
16486 const int);
16487
16488 vector signed int vec_sll (vector signed int,
16489 vector unsigned int);
16490 vector signed int vec_sll (vector signed int,
16491 vector unsigned short);
16492 vector signed int vec_sll (vector signed int,
16493 vector unsigned char);
16494 vector unsigned int vec_sll (vector unsigned int,
16495 vector unsigned int);
16496 vector unsigned int vec_sll (vector unsigned int,
16497 vector unsigned short);
16498 vector unsigned int vec_sll (vector unsigned int,
16499 vector unsigned char);
16500 vector bool int vec_sll (vector bool int,
16501 vector unsigned int);
16502 vector bool int vec_sll (vector bool int,
16503 vector unsigned short);
16504 vector bool int vec_sll (vector bool int,
16505 vector unsigned char);
16506 vector signed short vec_sll (vector signed short,
16507 vector unsigned int);
16508 vector signed short vec_sll (vector signed short,
16509 vector unsigned short);
16510 vector signed short vec_sll (vector signed short,
16511 vector unsigned char);
16512 vector unsigned short vec_sll (vector unsigned short,
16513 vector unsigned int);
16514 vector unsigned short vec_sll (vector unsigned short,
16515 vector unsigned short);
16516 vector unsigned short vec_sll (vector unsigned short,
16517 vector unsigned char);
16518 vector bool short vec_sll (vector bool short, vector unsigned int);
16519 vector bool short vec_sll (vector bool short, vector unsigned short);
16520 vector bool short vec_sll (vector bool short, vector unsigned char);
16521 vector pixel vec_sll (vector pixel, vector unsigned int);
16522 vector pixel vec_sll (vector pixel, vector unsigned short);
16523 vector pixel vec_sll (vector pixel, vector unsigned char);
16524 vector signed char vec_sll (vector signed char, vector unsigned int);
16525 vector signed char vec_sll (vector signed char, vector unsigned short);
16526 vector signed char vec_sll (vector signed char, vector unsigned char);
16527 vector unsigned char vec_sll (vector unsigned char,
16528 vector unsigned int);
16529 vector unsigned char vec_sll (vector unsigned char,
16530 vector unsigned short);
16531 vector unsigned char vec_sll (vector unsigned char,
16532 vector unsigned char);
16533 vector bool char vec_sll (vector bool char, vector unsigned int);
16534 vector bool char vec_sll (vector bool char, vector unsigned short);
16535 vector bool char vec_sll (vector bool char, vector unsigned char);
16536
16537 vector float vec_slo (vector float, vector signed char);
16538 vector float vec_slo (vector float, vector unsigned char);
16539 vector signed int vec_slo (vector signed int, vector signed char);
16540 vector signed int vec_slo (vector signed int, vector unsigned char);
16541 vector unsigned int vec_slo (vector unsigned int, vector signed char);
16542 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
16543 vector signed short vec_slo (vector signed short, vector signed char);
16544 vector signed short vec_slo (vector signed short, vector unsigned char);
16545 vector unsigned short vec_slo (vector unsigned short,
16546 vector signed char);
16547 vector unsigned short vec_slo (vector unsigned short,
16548 vector unsigned char);
16549 vector pixel vec_slo (vector pixel, vector signed char);
16550 vector pixel vec_slo (vector pixel, vector unsigned char);
16551 vector signed char vec_slo (vector signed char, vector signed char);
16552 vector signed char vec_slo (vector signed char, vector unsigned char);
16553 vector unsigned char vec_slo (vector unsigned char, vector signed char);
16554 vector unsigned char vec_slo (vector unsigned char,
16555 vector unsigned char);
16556
16557 vector signed char vec_splat (vector signed char, const int);
16558 vector unsigned char vec_splat (vector unsigned char, const int);
16559 vector bool char vec_splat (vector bool char, const int);
16560 vector signed short vec_splat (vector signed short, const int);
16561 vector unsigned short vec_splat (vector unsigned short, const int);
16562 vector bool short vec_splat (vector bool short, const int);
16563 vector pixel vec_splat (vector pixel, const int);
16564 vector float vec_splat (vector float, const int);
16565 vector signed int vec_splat (vector signed int, const int);
16566 vector unsigned int vec_splat (vector unsigned int, const int);
16567 vector bool int vec_splat (vector bool int, const int);
16568 vector signed long vec_splat (vector signed long, const int);
16569 vector unsigned long vec_splat (vector unsigned long, const int);
16570
16571 vector signed char vec_splats (signed char);
16572 vector unsigned char vec_splats (unsigned char);
16573 vector signed short vec_splats (signed short);
16574 vector unsigned short vec_splats (unsigned short);
16575 vector signed int vec_splats (signed int);
16576 vector unsigned int vec_splats (unsigned int);
16577 vector float vec_splats (float);
16578
16579 vector float vec_vspltw (vector float, const int);
16580 vector signed int vec_vspltw (vector signed int, const int);
16581 vector unsigned int vec_vspltw (vector unsigned int, const int);
16582 vector bool int vec_vspltw (vector bool int, const int);
16583
16584 vector bool short vec_vsplth (vector bool short, const int);
16585 vector signed short vec_vsplth (vector signed short, const int);
16586 vector unsigned short vec_vsplth (vector unsigned short, const int);
16587 vector pixel vec_vsplth (vector pixel, const int);
16588
16589 vector signed char vec_vspltb (vector signed char, const int);
16590 vector unsigned char vec_vspltb (vector unsigned char, const int);
16591 vector bool char vec_vspltb (vector bool char, const int);
16592
16593 vector signed char vec_splat_s8 (const int);
16594
16595 vector signed short vec_splat_s16 (const int);
16596
16597 vector signed int vec_splat_s32 (const int);
16598
16599 vector unsigned char vec_splat_u8 (const int);
16600
16601 vector unsigned short vec_splat_u16 (const int);
16602
16603 vector unsigned int vec_splat_u32 (const int);
16604
16605 vector signed char vec_sr (vector signed char, vector unsigned char);
16606 vector unsigned char vec_sr (vector unsigned char,
16607 vector unsigned char);
16608 vector signed short vec_sr (vector signed short,
16609 vector unsigned short);
16610 vector unsigned short vec_sr (vector unsigned short,
16611 vector unsigned short);
16612 vector signed int vec_sr (vector signed int, vector unsigned int);
16613 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
16614
16615 vector signed int vec_vsrw (vector signed int, vector unsigned int);
16616 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
16617
16618 vector signed short vec_vsrh (vector signed short,
16619 vector unsigned short);
16620 vector unsigned short vec_vsrh (vector unsigned short,
16621 vector unsigned short);
16622
16623 vector signed char vec_vsrb (vector signed char, vector unsigned char);
16624 vector unsigned char vec_vsrb (vector unsigned char,
16625 vector unsigned char);
16626
16627 vector signed char vec_sra (vector signed char, vector unsigned char);
16628 vector unsigned char vec_sra (vector unsigned char,
16629 vector unsigned char);
16630 vector signed short vec_sra (vector signed short,
16631 vector unsigned short);
16632 vector unsigned short vec_sra (vector unsigned short,
16633 vector unsigned short);
16634 vector signed int vec_sra (vector signed int, vector unsigned int);
16635 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
16636
16637 vector signed int vec_vsraw (vector signed int, vector unsigned int);
16638 vector unsigned int vec_vsraw (vector unsigned int,
16639 vector unsigned int);
16640
16641 vector signed short vec_vsrah (vector signed short,
16642 vector unsigned short);
16643 vector unsigned short vec_vsrah (vector unsigned short,
16644 vector unsigned short);
16645
16646 vector signed char vec_vsrab (vector signed char, vector unsigned char);
16647 vector unsigned char vec_vsrab (vector unsigned char,
16648 vector unsigned char);
16649
16650 vector signed int vec_srl (vector signed int, vector unsigned int);
16651 vector signed int vec_srl (vector signed int, vector unsigned short);
16652 vector signed int vec_srl (vector signed int, vector unsigned char);
16653 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
16654 vector unsigned int vec_srl (vector unsigned int,
16655 vector unsigned short);
16656 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
16657 vector bool int vec_srl (vector bool int, vector unsigned int);
16658 vector bool int vec_srl (vector bool int, vector unsigned short);
16659 vector bool int vec_srl (vector bool int, vector unsigned char);
16660 vector signed short vec_srl (vector signed short, vector unsigned int);
16661 vector signed short vec_srl (vector signed short,
16662 vector unsigned short);
16663 vector signed short vec_srl (vector signed short, vector unsigned char);
16664 vector unsigned short vec_srl (vector unsigned short,
16665 vector unsigned int);
16666 vector unsigned short vec_srl (vector unsigned short,
16667 vector unsigned short);
16668 vector unsigned short vec_srl (vector unsigned short,
16669 vector unsigned char);
16670 vector bool short vec_srl (vector bool short, vector unsigned int);
16671 vector bool short vec_srl (vector bool short, vector unsigned short);
16672 vector bool short vec_srl (vector bool short, vector unsigned char);
16673 vector pixel vec_srl (vector pixel, vector unsigned int);
16674 vector pixel vec_srl (vector pixel, vector unsigned short);
16675 vector pixel vec_srl (vector pixel, vector unsigned char);
16676 vector signed char vec_srl (vector signed char, vector unsigned int);
16677 vector signed char vec_srl (vector signed char, vector unsigned short);
16678 vector signed char vec_srl (vector signed char, vector unsigned char);
16679 vector unsigned char vec_srl (vector unsigned char,
16680 vector unsigned int);
16681 vector unsigned char vec_srl (vector unsigned char,
16682 vector unsigned short);
16683 vector unsigned char vec_srl (vector unsigned char,
16684 vector unsigned char);
16685 vector bool char vec_srl (vector bool char, vector unsigned int);
16686 vector bool char vec_srl (vector bool char, vector unsigned short);
16687 vector bool char vec_srl (vector bool char, vector unsigned char);
16688
16689 vector float vec_sro (vector float, vector signed char);
16690 vector float vec_sro (vector float, vector unsigned char);
16691 vector signed int vec_sro (vector signed int, vector signed char);
16692 vector signed int vec_sro (vector signed int, vector unsigned char);
16693 vector unsigned int vec_sro (vector unsigned int, vector signed char);
16694 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
16695 vector signed short vec_sro (vector signed short, vector signed char);
16696 vector signed short vec_sro (vector signed short, vector unsigned char);
16697 vector unsigned short vec_sro (vector unsigned short,
16698 vector signed char);
16699 vector unsigned short vec_sro (vector unsigned short,
16700 vector unsigned char);
16701 vector pixel vec_sro (vector pixel, vector signed char);
16702 vector pixel vec_sro (vector pixel, vector unsigned char);
16703 vector signed char vec_sro (vector signed char, vector signed char);
16704 vector signed char vec_sro (vector signed char, vector unsigned char);
16705 vector unsigned char vec_sro (vector unsigned char, vector signed char);
16706 vector unsigned char vec_sro (vector unsigned char,
16707 vector unsigned char);
16708
16709 void vec_st (vector float, int, vector float *);
16710 void vec_st (vector float, int, float *);
16711 void vec_st (vector signed int, int, vector signed int *);
16712 void vec_st (vector signed int, int, int *);
16713 void vec_st (vector unsigned int, int, vector unsigned int *);
16714 void vec_st (vector unsigned int, int, unsigned int *);
16715 void vec_st (vector bool int, int, vector bool int *);
16716 void vec_st (vector bool int, int, unsigned int *);
16717 void vec_st (vector bool int, int, int *);
16718 void vec_st (vector signed short, int, vector signed short *);
16719 void vec_st (vector signed short, int, short *);
16720 void vec_st (vector unsigned short, int, vector unsigned short *);
16721 void vec_st (vector unsigned short, int, unsigned short *);
16722 void vec_st (vector bool short, int, vector bool short *);
16723 void vec_st (vector bool short, int, unsigned short *);
16724 void vec_st (vector pixel, int, vector pixel *);
16725 void vec_st (vector pixel, int, unsigned short *);
16726 void vec_st (vector pixel, int, short *);
16727 void vec_st (vector bool short, int, short *);
16728 void vec_st (vector signed char, int, vector signed char *);
16729 void vec_st (vector signed char, int, signed char *);
16730 void vec_st (vector unsigned char, int, vector unsigned char *);
16731 void vec_st (vector unsigned char, int, unsigned char *);
16732 void vec_st (vector bool char, int, vector bool char *);
16733 void vec_st (vector bool char, int, unsigned char *);
16734 void vec_st (vector bool char, int, signed char *);
16735
16736 void vec_ste (vector signed char, int, signed char *);
16737 void vec_ste (vector unsigned char, int, unsigned char *);
16738 void vec_ste (vector bool char, int, signed char *);
16739 void vec_ste (vector bool char, int, unsigned char *);
16740 void vec_ste (vector signed short, int, short *);
16741 void vec_ste (vector unsigned short, int, unsigned short *);
16742 void vec_ste (vector bool short, int, short *);
16743 void vec_ste (vector bool short, int, unsigned short *);
16744 void vec_ste (vector pixel, int, short *);
16745 void vec_ste (vector pixel, int, unsigned short *);
16746 void vec_ste (vector float, int, float *);
16747 void vec_ste (vector signed int, int, int *);
16748 void vec_ste (vector unsigned int, int, unsigned int *);
16749 void vec_ste (vector bool int, int, int *);
16750 void vec_ste (vector bool int, int, unsigned int *);
16751
16752 void vec_stvewx (vector float, int, float *);
16753 void vec_stvewx (vector signed int, int, int *);
16754 void vec_stvewx (vector unsigned int, int, unsigned int *);
16755 void vec_stvewx (vector bool int, int, int *);
16756 void vec_stvewx (vector bool int, int, unsigned int *);
16757
16758 void vec_stvehx (vector signed short, int, short *);
16759 void vec_stvehx (vector unsigned short, int, unsigned short *);
16760 void vec_stvehx (vector bool short, int, short *);
16761 void vec_stvehx (vector bool short, int, unsigned short *);
16762 void vec_stvehx (vector pixel, int, short *);
16763 void vec_stvehx (vector pixel, int, unsigned short *);
16764
16765 void vec_stvebx (vector signed char, int, signed char *);
16766 void vec_stvebx (vector unsigned char, int, unsigned char *);
16767 void vec_stvebx (vector bool char, int, signed char *);
16768 void vec_stvebx (vector bool char, int, unsigned char *);
16769
16770 void vec_stl (vector float, int, vector float *);
16771 void vec_stl (vector float, int, float *);
16772 void vec_stl (vector signed int, int, vector signed int *);
16773 void vec_stl (vector signed int, int, int *);
16774 void vec_stl (vector unsigned int, int, vector unsigned int *);
16775 void vec_stl (vector unsigned int, int, unsigned int *);
16776 void vec_stl (vector bool int, int, vector bool int *);
16777 void vec_stl (vector bool int, int, unsigned int *);
16778 void vec_stl (vector bool int, int, int *);
16779 void vec_stl (vector signed short, int, vector signed short *);
16780 void vec_stl (vector signed short, int, short *);
16781 void vec_stl (vector unsigned short, int, vector unsigned short *);
16782 void vec_stl (vector unsigned short, int, unsigned short *);
16783 void vec_stl (vector bool short, int, vector bool short *);
16784 void vec_stl (vector bool short, int, unsigned short *);
16785 void vec_stl (vector bool short, int, short *);
16786 void vec_stl (vector pixel, int, vector pixel *);
16787 void vec_stl (vector pixel, int, unsigned short *);
16788 void vec_stl (vector pixel, int, short *);
16789 void vec_stl (vector signed char, int, vector signed char *);
16790 void vec_stl (vector signed char, int, signed char *);
16791 void vec_stl (vector unsigned char, int, vector unsigned char *);
16792 void vec_stl (vector unsigned char, int, unsigned char *);
16793 void vec_stl (vector bool char, int, vector bool char *);
16794 void vec_stl (vector bool char, int, unsigned char *);
16795 void vec_stl (vector bool char, int, signed char *);
16796
16797 vector signed char vec_sub (vector bool char, vector signed char);
16798 vector signed char vec_sub (vector signed char, vector bool char);
16799 vector signed char vec_sub (vector signed char, vector signed char);
16800 vector unsigned char vec_sub (vector bool char, vector unsigned char);
16801 vector unsigned char vec_sub (vector unsigned char, vector bool char);
16802 vector unsigned char vec_sub (vector unsigned char,
16803 vector unsigned char);
16804 vector signed short vec_sub (vector bool short, vector signed short);
16805 vector signed short vec_sub (vector signed short, vector bool short);
16806 vector signed short vec_sub (vector signed short, vector signed short);
16807 vector unsigned short vec_sub (vector bool short,
16808 vector unsigned short);
16809 vector unsigned short vec_sub (vector unsigned short,
16810 vector bool short);
16811 vector unsigned short vec_sub (vector unsigned short,
16812 vector unsigned short);
16813 vector signed int vec_sub (vector bool int, vector signed int);
16814 vector signed int vec_sub (vector signed int, vector bool int);
16815 vector signed int vec_sub (vector signed int, vector signed int);
16816 vector unsigned int vec_sub (vector bool int, vector unsigned int);
16817 vector unsigned int vec_sub (vector unsigned int, vector bool int);
16818 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
16819 vector float vec_sub (vector float, vector float);
16820
16821 vector float vec_vsubfp (vector float, vector float);
16822
16823 vector signed int vec_vsubuwm (vector bool int, vector signed int);
16824 vector signed int vec_vsubuwm (vector signed int, vector bool int);
16825 vector signed int vec_vsubuwm (vector signed int, vector signed int);
16826 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
16827 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
16828 vector unsigned int vec_vsubuwm (vector unsigned int,
16829 vector unsigned int);
16830
16831 vector signed short vec_vsubuhm (vector bool short,
16832 vector signed short);
16833 vector signed short vec_vsubuhm (vector signed short,
16834 vector bool short);
16835 vector signed short vec_vsubuhm (vector signed short,
16836 vector signed short);
16837 vector unsigned short vec_vsubuhm (vector bool short,
16838 vector unsigned short);
16839 vector unsigned short vec_vsubuhm (vector unsigned short,
16840 vector bool short);
16841 vector unsigned short vec_vsubuhm (vector unsigned short,
16842 vector unsigned short);
16843
16844 vector signed char vec_vsububm (vector bool char, vector signed char);
16845 vector signed char vec_vsububm (vector signed char, vector bool char);
16846 vector signed char vec_vsububm (vector signed char, vector signed char);
16847 vector unsigned char vec_vsububm (vector bool char,
16848 vector unsigned char);
16849 vector unsigned char vec_vsububm (vector unsigned char,
16850 vector bool char);
16851 vector unsigned char vec_vsububm (vector unsigned char,
16852 vector unsigned char);
16853
16854 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
16855
16856 vector unsigned char vec_subs (vector bool char, vector unsigned char);
16857 vector unsigned char vec_subs (vector unsigned char, vector bool char);
16858 vector unsigned char vec_subs (vector unsigned char,
16859 vector unsigned char);
16860 vector signed char vec_subs (vector bool char, vector signed char);
16861 vector signed char vec_subs (vector signed char, vector bool char);
16862 vector signed char vec_subs (vector signed char, vector signed char);
16863 vector unsigned short vec_subs (vector bool short,
16864 vector unsigned short);
16865 vector unsigned short vec_subs (vector unsigned short,
16866 vector bool short);
16867 vector unsigned short vec_subs (vector unsigned short,
16868 vector unsigned short);
16869 vector signed short vec_subs (vector bool short, vector signed short);
16870 vector signed short vec_subs (vector signed short, vector bool short);
16871 vector signed short vec_subs (vector signed short, vector signed short);
16872 vector unsigned int vec_subs (vector bool int, vector unsigned int);
16873 vector unsigned int vec_subs (vector unsigned int, vector bool int);
16874 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
16875 vector signed int vec_subs (vector bool int, vector signed int);
16876 vector signed int vec_subs (vector signed int, vector bool int);
16877 vector signed int vec_subs (vector signed int, vector signed int);
16878
16879 vector signed int vec_vsubsws (vector bool int, vector signed int);
16880 vector signed int vec_vsubsws (vector signed int, vector bool int);
16881 vector signed int vec_vsubsws (vector signed int, vector signed int);
16882
16883 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
16884 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
16885 vector unsigned int vec_vsubuws (vector unsigned int,
16886 vector unsigned int);
16887
16888 vector signed short vec_vsubshs (vector bool short,
16889 vector signed short);
16890 vector signed short vec_vsubshs (vector signed short,
16891 vector bool short);
16892 vector signed short vec_vsubshs (vector signed short,
16893 vector signed short);
16894
16895 vector unsigned short vec_vsubuhs (vector bool short,
16896 vector unsigned short);
16897 vector unsigned short vec_vsubuhs (vector unsigned short,
16898 vector bool short);
16899 vector unsigned short vec_vsubuhs (vector unsigned short,
16900 vector unsigned short);
16901
16902 vector signed char vec_vsubsbs (vector bool char, vector signed char);
16903 vector signed char vec_vsubsbs (vector signed char, vector bool char);
16904 vector signed char vec_vsubsbs (vector signed char, vector signed char);
16905
16906 vector unsigned char vec_vsububs (vector bool char,
16907 vector unsigned char);
16908 vector unsigned char vec_vsububs (vector unsigned char,
16909 vector bool char);
16910 vector unsigned char vec_vsububs (vector unsigned char,
16911 vector unsigned char);
16912
16913 vector unsigned int vec_sum4s (vector unsigned char,
16914 vector unsigned int);
16915 vector signed int vec_sum4s (vector signed char, vector signed int);
16916 vector signed int vec_sum4s (vector signed short, vector signed int);
16917
16918 vector signed int vec_vsum4shs (vector signed short, vector signed int);
16919
16920 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
16921
16922 vector unsigned int vec_vsum4ubs (vector unsigned char,
16923 vector unsigned int);
16924
16925 vector signed int vec_sum2s (vector signed int, vector signed int);
16926
16927 vector signed int vec_sums (vector signed int, vector signed int);
16928
16929 vector float vec_trunc (vector float);
16930
16931 vector signed short vec_unpackh (vector signed char);
16932 vector bool short vec_unpackh (vector bool char);
16933 vector signed int vec_unpackh (vector signed short);
16934 vector bool int vec_unpackh (vector bool short);
16935 vector unsigned int vec_unpackh (vector pixel);
16936
16937 vector bool int vec_vupkhsh (vector bool short);
16938 vector signed int vec_vupkhsh (vector signed short);
16939
16940 vector unsigned int vec_vupkhpx (vector pixel);
16941
16942 vector bool short vec_vupkhsb (vector bool char);
16943 vector signed short vec_vupkhsb (vector signed char);
16944
16945 vector signed short vec_unpackl (vector signed char);
16946 vector bool short vec_unpackl (vector bool char);
16947 vector unsigned int vec_unpackl (vector pixel);
16948 vector signed int vec_unpackl (vector signed short);
16949 vector bool int vec_unpackl (vector bool short);
16950
16951 vector unsigned int vec_vupklpx (vector pixel);
16952
16953 vector bool int vec_vupklsh (vector bool short);
16954 vector signed int vec_vupklsh (vector signed short);
16955
16956 vector bool short vec_vupklsb (vector bool char);
16957 vector signed short vec_vupklsb (vector signed char);
16958
16959 vector float vec_xor (vector float, vector float);
16960 vector float vec_xor (vector float, vector bool int);
16961 vector float vec_xor (vector bool int, vector float);
16962 vector bool int vec_xor (vector bool int, vector bool int);
16963 vector signed int vec_xor (vector bool int, vector signed int);
16964 vector signed int vec_xor (vector signed int, vector bool int);
16965 vector signed int vec_xor (vector signed int, vector signed int);
16966 vector unsigned int vec_xor (vector bool int, vector unsigned int);
16967 vector unsigned int vec_xor (vector unsigned int, vector bool int);
16968 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
16969 vector bool short vec_xor (vector bool short, vector bool short);
16970 vector signed short vec_xor (vector bool short, vector signed short);
16971 vector signed short vec_xor (vector signed short, vector bool short);
16972 vector signed short vec_xor (vector signed short, vector signed short);
16973 vector unsigned short vec_xor (vector bool short,
16974 vector unsigned short);
16975 vector unsigned short vec_xor (vector unsigned short,
16976 vector bool short);
16977 vector unsigned short vec_xor (vector unsigned short,
16978 vector unsigned short);
16979 vector signed char vec_xor (vector bool char, vector signed char);
16980 vector bool char vec_xor (vector bool char, vector bool char);
16981 vector signed char vec_xor (vector signed char, vector bool char);
16982 vector signed char vec_xor (vector signed char, vector signed char);
16983 vector unsigned char vec_xor (vector bool char, vector unsigned char);
16984 vector unsigned char vec_xor (vector unsigned char, vector bool char);
16985 vector unsigned char vec_xor (vector unsigned char,
16986 vector unsigned char);
16987
16988 int vec_all_eq (vector signed char, vector bool char);
16989 int vec_all_eq (vector signed char, vector signed char);
16990 int vec_all_eq (vector unsigned char, vector bool char);
16991 int vec_all_eq (vector unsigned char, vector unsigned char);
16992 int vec_all_eq (vector bool char, vector bool char);
16993 int vec_all_eq (vector bool char, vector unsigned char);
16994 int vec_all_eq (vector bool char, vector signed char);
16995 int vec_all_eq (vector signed short, vector bool short);
16996 int vec_all_eq (vector signed short, vector signed short);
16997 int vec_all_eq (vector unsigned short, vector bool short);
16998 int vec_all_eq (vector unsigned short, vector unsigned short);
16999 int vec_all_eq (vector bool short, vector bool short);
17000 int vec_all_eq (vector bool short, vector unsigned short);
17001 int vec_all_eq (vector bool short, vector signed short);
17002 int vec_all_eq (vector pixel, vector pixel);
17003 int vec_all_eq (vector signed int, vector bool int);
17004 int vec_all_eq (vector signed int, vector signed int);
17005 int vec_all_eq (vector unsigned int, vector bool int);
17006 int vec_all_eq (vector unsigned int, vector unsigned int);
17007 int vec_all_eq (vector bool int, vector bool int);
17008 int vec_all_eq (vector bool int, vector unsigned int);
17009 int vec_all_eq (vector bool int, vector signed int);
17010 int vec_all_eq (vector float, vector float);
17011
17012 int vec_all_ge (vector bool char, vector unsigned char);
17013 int vec_all_ge (vector unsigned char, vector bool char);
17014 int vec_all_ge (vector unsigned char, vector unsigned char);
17015 int vec_all_ge (vector bool char, vector signed char);
17016 int vec_all_ge (vector signed char, vector bool char);
17017 int vec_all_ge (vector signed char, vector signed char);
17018 int vec_all_ge (vector bool short, vector unsigned short);
17019 int vec_all_ge (vector unsigned short, vector bool short);
17020 int vec_all_ge (vector unsigned short, vector unsigned short);
17021 int vec_all_ge (vector signed short, vector signed short);
17022 int vec_all_ge (vector bool short, vector signed short);
17023 int vec_all_ge (vector signed short, vector bool short);
17024 int vec_all_ge (vector bool int, vector unsigned int);
17025 int vec_all_ge (vector unsigned int, vector bool int);
17026 int vec_all_ge (vector unsigned int, vector unsigned int);
17027 int vec_all_ge (vector bool int, vector signed int);
17028 int vec_all_ge (vector signed int, vector bool int);
17029 int vec_all_ge (vector signed int, vector signed int);
17030 int vec_all_ge (vector float, vector float);
17031
17032 int vec_all_gt (vector bool char, vector unsigned char);
17033 int vec_all_gt (vector unsigned char, vector bool char);
17034 int vec_all_gt (vector unsigned char, vector unsigned char);
17035 int vec_all_gt (vector bool char, vector signed char);
17036 int vec_all_gt (vector signed char, vector bool char);
17037 int vec_all_gt (vector signed char, vector signed char);
17038 int vec_all_gt (vector bool short, vector unsigned short);
17039 int vec_all_gt (vector unsigned short, vector bool short);
17040 int vec_all_gt (vector unsigned short, vector unsigned short);
17041 int vec_all_gt (vector bool short, vector signed short);
17042 int vec_all_gt (vector signed short, vector bool short);
17043 int vec_all_gt (vector signed short, vector signed short);
17044 int vec_all_gt (vector bool int, vector unsigned int);
17045 int vec_all_gt (vector unsigned int, vector bool int);
17046 int vec_all_gt (vector unsigned int, vector unsigned int);
17047 int vec_all_gt (vector bool int, vector signed int);
17048 int vec_all_gt (vector signed int, vector bool int);
17049 int vec_all_gt (vector signed int, vector signed int);
17050 int vec_all_gt (vector float, vector float);
17051
17052 int vec_all_in (vector float, vector float);
17053
17054 int vec_all_le (vector bool char, vector unsigned char);
17055 int vec_all_le (vector unsigned char, vector bool char);
17056 int vec_all_le (vector unsigned char, vector unsigned char);
17057 int vec_all_le (vector bool char, vector signed char);
17058 int vec_all_le (vector signed char, vector bool char);
17059 int vec_all_le (vector signed char, vector signed char);
17060 int vec_all_le (vector bool short, vector unsigned short);
17061 int vec_all_le (vector unsigned short, vector bool short);
17062 int vec_all_le (vector unsigned short, vector unsigned short);
17063 int vec_all_le (vector bool short, vector signed short);
17064 int vec_all_le (vector signed short, vector bool short);
17065 int vec_all_le (vector signed short, vector signed short);
17066 int vec_all_le (vector bool int, vector unsigned int);
17067 int vec_all_le (vector unsigned int, vector bool int);
17068 int vec_all_le (vector unsigned int, vector unsigned int);
17069 int vec_all_le (vector bool int, vector signed int);
17070 int vec_all_le (vector signed int, vector bool int);
17071 int vec_all_le (vector signed int, vector signed int);
17072 int vec_all_le (vector float, vector float);
17073
17074 int vec_all_lt (vector bool char, vector unsigned char);
17075 int vec_all_lt (vector unsigned char, vector bool char);
17076 int vec_all_lt (vector unsigned char, vector unsigned char);
17077 int vec_all_lt (vector bool char, vector signed char);
17078 int vec_all_lt (vector signed char, vector bool char);
17079 int vec_all_lt (vector signed char, vector signed char);
17080 int vec_all_lt (vector bool short, vector unsigned short);
17081 int vec_all_lt (vector unsigned short, vector bool short);
17082 int vec_all_lt (vector unsigned short, vector unsigned short);
17083 int vec_all_lt (vector bool short, vector signed short);
17084 int vec_all_lt (vector signed short, vector bool short);
17085 int vec_all_lt (vector signed short, vector signed short);
17086 int vec_all_lt (vector bool int, vector unsigned int);
17087 int vec_all_lt (vector unsigned int, vector bool int);
17088 int vec_all_lt (vector unsigned int, vector unsigned int);
17089 int vec_all_lt (vector bool int, vector signed int);
17090 int vec_all_lt (vector signed int, vector bool int);
17091 int vec_all_lt (vector signed int, vector signed int);
17092 int vec_all_lt (vector float, vector float);
17093
17094 int vec_all_nan (vector float);
17095
17096 int vec_all_ne (vector signed char, vector bool char);
17097 int vec_all_ne (vector signed char, vector signed char);
17098 int vec_all_ne (vector unsigned char, vector bool char);
17099 int vec_all_ne (vector unsigned char, vector unsigned char);
17100 int vec_all_ne (vector bool char, vector bool char);
17101 int vec_all_ne (vector bool char, vector unsigned char);
17102 int vec_all_ne (vector bool char, vector signed char);
17103 int vec_all_ne (vector signed short, vector bool short);
17104 int vec_all_ne (vector signed short, vector signed short);
17105 int vec_all_ne (vector unsigned short, vector bool short);
17106 int vec_all_ne (vector unsigned short, vector unsigned short);
17107 int vec_all_ne (vector bool short, vector bool short);
17108 int vec_all_ne (vector bool short, vector unsigned short);
17109 int vec_all_ne (vector bool short, vector signed short);
17110 int vec_all_ne (vector pixel, vector pixel);
17111 int vec_all_ne (vector signed int, vector bool int);
17112 int vec_all_ne (vector signed int, vector signed int);
17113 int vec_all_ne (vector unsigned int, vector bool int);
17114 int vec_all_ne (vector unsigned int, vector unsigned int);
17115 int vec_all_ne (vector bool int, vector bool int);
17116 int vec_all_ne (vector bool int, vector unsigned int);
17117 int vec_all_ne (vector bool int, vector signed int);
17118 int vec_all_ne (vector float, vector float);
17119
17120 int vec_all_nge (vector float, vector float);
17121
17122 int vec_all_ngt (vector float, vector float);
17123
17124 int vec_all_nle (vector float, vector float);
17125
17126 int vec_all_nlt (vector float, vector float);
17127
17128 int vec_all_numeric (vector float);
17129
17130 int vec_any_eq (vector signed char, vector bool char);
17131 int vec_any_eq (vector signed char, vector signed char);
17132 int vec_any_eq (vector unsigned char, vector bool char);
17133 int vec_any_eq (vector unsigned char, vector unsigned char);
17134 int vec_any_eq (vector bool char, vector bool char);
17135 int vec_any_eq (vector bool char, vector unsigned char);
17136 int vec_any_eq (vector bool char, vector signed char);
17137 int vec_any_eq (vector signed short, vector bool short);
17138 int vec_any_eq (vector signed short, vector signed short);
17139 int vec_any_eq (vector unsigned short, vector bool short);
17140 int vec_any_eq (vector unsigned short, vector unsigned short);
17141 int vec_any_eq (vector bool short, vector bool short);
17142 int vec_any_eq (vector bool short, vector unsigned short);
17143 int vec_any_eq (vector bool short, vector signed short);
17144 int vec_any_eq (vector pixel, vector pixel);
17145 int vec_any_eq (vector signed int, vector bool int);
17146 int vec_any_eq (vector signed int, vector signed int);
17147 int vec_any_eq (vector unsigned int, vector bool int);
17148 int vec_any_eq (vector unsigned int, vector unsigned int);
17149 int vec_any_eq (vector bool int, vector bool int);
17150 int vec_any_eq (vector bool int, vector unsigned int);
17151 int vec_any_eq (vector bool int, vector signed int);
17152 int vec_any_eq (vector float, vector float);
17153
17154 int vec_any_ge (vector signed char, vector bool char);
17155 int vec_any_ge (vector unsigned char, vector bool char);
17156 int vec_any_ge (vector unsigned char, vector unsigned char);
17157 int vec_any_ge (vector signed char, vector signed char);
17158 int vec_any_ge (vector bool char, vector unsigned char);
17159 int vec_any_ge (vector bool char, vector signed char);
17160 int vec_any_ge (vector unsigned short, vector bool short);
17161 int vec_any_ge (vector unsigned short, vector unsigned short);
17162 int vec_any_ge (vector signed short, vector signed short);
17163 int vec_any_ge (vector signed short, vector bool short);
17164 int vec_any_ge (vector bool short, vector unsigned short);
17165 int vec_any_ge (vector bool short, vector signed short);
17166 int vec_any_ge (vector signed int, vector bool int);
17167 int vec_any_ge (vector unsigned int, vector bool int);
17168 int vec_any_ge (vector unsigned int, vector unsigned int);
17169 int vec_any_ge (vector signed int, vector signed int);
17170 int vec_any_ge (vector bool int, vector unsigned int);
17171 int vec_any_ge (vector bool int, vector signed int);
17172 int vec_any_ge (vector float, vector float);
17173
17174 int vec_any_gt (vector bool char, vector unsigned char);
17175 int vec_any_gt (vector unsigned char, vector bool char);
17176 int vec_any_gt (vector unsigned char, vector unsigned char);
17177 int vec_any_gt (vector bool char, vector signed char);
17178 int vec_any_gt (vector signed char, vector bool char);
17179 int vec_any_gt (vector signed char, vector signed char);
17180 int vec_any_gt (vector bool short, vector unsigned short);
17181 int vec_any_gt (vector unsigned short, vector bool short);
17182 int vec_any_gt (vector unsigned short, vector unsigned short);
17183 int vec_any_gt (vector bool short, vector signed short);
17184 int vec_any_gt (vector signed short, vector bool short);
17185 int vec_any_gt (vector signed short, vector signed short);
17186 int vec_any_gt (vector bool int, vector unsigned int);
17187 int vec_any_gt (vector unsigned int, vector bool int);
17188 int vec_any_gt (vector unsigned int, vector unsigned int);
17189 int vec_any_gt (vector bool int, vector signed int);
17190 int vec_any_gt (vector signed int, vector bool int);
17191 int vec_any_gt (vector signed int, vector signed int);
17192 int vec_any_gt (vector float, vector float);
17193
17194 int vec_any_le (vector bool char, vector unsigned char);
17195 int vec_any_le (vector unsigned char, vector bool char);
17196 int vec_any_le (vector unsigned char, vector unsigned char);
17197 int vec_any_le (vector bool char, vector signed char);
17198 int vec_any_le (vector signed char, vector bool char);
17199 int vec_any_le (vector signed char, vector signed char);
17200 int vec_any_le (vector bool short, vector unsigned short);
17201 int vec_any_le (vector unsigned short, vector bool short);
17202 int vec_any_le (vector unsigned short, vector unsigned short);
17203 int vec_any_le (vector bool short, vector signed short);
17204 int vec_any_le (vector signed short, vector bool short);
17205 int vec_any_le (vector signed short, vector signed short);
17206 int vec_any_le (vector bool int, vector unsigned int);
17207 int vec_any_le (vector unsigned int, vector bool int);
17208 int vec_any_le (vector unsigned int, vector unsigned int);
17209 int vec_any_le (vector bool int, vector signed int);
17210 int vec_any_le (vector signed int, vector bool int);
17211 int vec_any_le (vector signed int, vector signed int);
17212 int vec_any_le (vector float, vector float);
17213
17214 int vec_any_lt (vector bool char, vector unsigned char);
17215 int vec_any_lt (vector unsigned char, vector bool char);
17216 int vec_any_lt (vector unsigned char, vector unsigned char);
17217 int vec_any_lt (vector bool char, vector signed char);
17218 int vec_any_lt (vector signed char, vector bool char);
17219 int vec_any_lt (vector signed char, vector signed char);
17220 int vec_any_lt (vector bool short, vector unsigned short);
17221 int vec_any_lt (vector unsigned short, vector bool short);
17222 int vec_any_lt (vector unsigned short, vector unsigned short);
17223 int vec_any_lt (vector bool short, vector signed short);
17224 int vec_any_lt (vector signed short, vector bool short);
17225 int vec_any_lt (vector signed short, vector signed short);
17226 int vec_any_lt (vector bool int, vector unsigned int);
17227 int vec_any_lt (vector unsigned int, vector bool int);
17228 int vec_any_lt (vector unsigned int, vector unsigned int);
17229 int vec_any_lt (vector bool int, vector signed int);
17230 int vec_any_lt (vector signed int, vector bool int);
17231 int vec_any_lt (vector signed int, vector signed int);
17232 int vec_any_lt (vector float, vector float);
17233
17234 int vec_any_nan (vector float);
17235
17236 int vec_any_ne (vector signed char, vector bool char);
17237 int vec_any_ne (vector signed char, vector signed char);
17238 int vec_any_ne (vector unsigned char, vector bool char);
17239 int vec_any_ne (vector unsigned char, vector unsigned char);
17240 int vec_any_ne (vector bool char, vector bool char);
17241 int vec_any_ne (vector bool char, vector unsigned char);
17242 int vec_any_ne (vector bool char, vector signed char);
17243 int vec_any_ne (vector signed short, vector bool short);
17244 int vec_any_ne (vector signed short, vector signed short);
17245 int vec_any_ne (vector unsigned short, vector bool short);
17246 int vec_any_ne (vector unsigned short, vector unsigned short);
17247 int vec_any_ne (vector bool short, vector bool short);
17248 int vec_any_ne (vector bool short, vector unsigned short);
17249 int vec_any_ne (vector bool short, vector signed short);
17250 int vec_any_ne (vector pixel, vector pixel);
17251 int vec_any_ne (vector signed int, vector bool int);
17252 int vec_any_ne (vector signed int, vector signed int);
17253 int vec_any_ne (vector unsigned int, vector bool int);
17254 int vec_any_ne (vector unsigned int, vector unsigned int);
17255 int vec_any_ne (vector bool int, vector bool int);
17256 int vec_any_ne (vector bool int, vector unsigned int);
17257 int vec_any_ne (vector bool int, vector signed int);
17258 int vec_any_ne (vector float, vector float);
17259
17260 int vec_any_nge (vector float, vector float);
17261
17262 int vec_any_ngt (vector float, vector float);
17263
17264 int vec_any_nle (vector float, vector float);
17265
17266 int vec_any_nlt (vector float, vector float);
17267
17268 int vec_any_numeric (vector float);
17269
17270 int vec_any_out (vector float, vector float);
17271 @end smallexample
17272
17273 If the vector/scalar (VSX) instruction set is available, the following
17274 additional functions are available:
17275
17276 @smallexample
17277 vector double vec_abs (vector double);
17278 vector double vec_add (vector double, vector double);
17279 vector double vec_and (vector double, vector double);
17280 vector double vec_and (vector double, vector bool long);
17281 vector double vec_and (vector bool long, vector double);
17282 vector long vec_and (vector long, vector long);
17283 vector long vec_and (vector long, vector bool long);
17284 vector long vec_and (vector bool long, vector long);
17285 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17286 vector unsigned long vec_and (vector unsigned long, vector bool long);
17287 vector unsigned long vec_and (vector bool long, vector unsigned long);
17288 vector double vec_andc (vector double, vector double);
17289 vector double vec_andc (vector double, vector bool long);
17290 vector double vec_andc (vector bool long, vector double);
17291 vector long vec_andc (vector long, vector long);
17292 vector long vec_andc (vector long, vector bool long);
17293 vector long vec_andc (vector bool long, vector long);
17294 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17295 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17296 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17297 vector double vec_ceil (vector double);
17298 vector bool long vec_cmpeq (vector double, vector double);
17299 vector bool long vec_cmpge (vector double, vector double);
17300 vector bool long vec_cmpgt (vector double, vector double);
17301 vector bool long vec_cmple (vector double, vector double);
17302 vector bool long vec_cmplt (vector double, vector double);
17303 vector double vec_cpsgn (vector double, vector double);
17304 vector float vec_div (vector float, vector float);
17305 vector double vec_div (vector double, vector double);
17306 vector long vec_div (vector long, vector long);
17307 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
17308 vector double vec_floor (vector double);
17309 vector double vec_ld (int, const vector double *);
17310 vector double vec_ld (int, const double *);
17311 vector double vec_ldl (int, const vector double *);
17312 vector double vec_ldl (int, const double *);
17313 vector unsigned char vec_lvsl (int, const volatile double *);
17314 vector unsigned char vec_lvsr (int, const volatile double *);
17315 vector double vec_madd (vector double, vector double, vector double);
17316 vector double vec_max (vector double, vector double);
17317 vector signed long vec_mergeh (vector signed long, vector signed long);
17318 vector signed long vec_mergeh (vector signed long, vector bool long);
17319 vector signed long vec_mergeh (vector bool long, vector signed long);
17320 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
17321 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
17322 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
17323 vector signed long vec_mergel (vector signed long, vector signed long);
17324 vector signed long vec_mergel (vector signed long, vector bool long);
17325 vector signed long vec_mergel (vector bool long, vector signed long);
17326 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
17327 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
17328 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
17329 vector double vec_min (vector double, vector double);
17330 vector float vec_msub (vector float, vector float, vector float);
17331 vector double vec_msub (vector double, vector double, vector double);
17332 vector float vec_mul (vector float, vector float);
17333 vector double vec_mul (vector double, vector double);
17334 vector long vec_mul (vector long, vector long);
17335 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17336 vector float vec_nearbyint (vector float);
17337 vector double vec_nearbyint (vector double);
17338 vector float vec_nmadd (vector float, vector float, vector float);
17339 vector double vec_nmadd (vector double, vector double, vector double);
17340 vector double vec_nmsub (vector double, vector double, vector double);
17341 vector double vec_nor (vector double, vector double);
17342 vector long vec_nor (vector long, vector long);
17343 vector long vec_nor (vector long, vector bool long);
17344 vector long vec_nor (vector bool long, vector long);
17345 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
17346 vector unsigned long vec_nor (vector unsigned long, vector bool long);
17347 vector unsigned long vec_nor (vector bool long, vector unsigned long);
17348 vector double vec_or (vector double, vector double);
17349 vector double vec_or (vector double, vector bool long);
17350 vector double vec_or (vector bool long, vector double);
17351 vector long vec_or (vector long, vector long);
17352 vector long vec_or (vector long, vector bool long);
17353 vector long vec_or (vector bool long, vector long);
17354 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
17355 vector unsigned long vec_or (vector unsigned long, vector bool long);
17356 vector unsigned long vec_or (vector bool long, vector unsigned long);
17357 vector double vec_perm (vector double, vector double, vector unsigned char);
17358 vector long vec_perm (vector long, vector long, vector unsigned char);
17359 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
17360 vector unsigned char);
17361 vector double vec_rint (vector double);
17362 vector double vec_recip (vector double, vector double);
17363 vector double vec_rsqrt (vector double);
17364 vector double vec_rsqrte (vector double);
17365 vector double vec_sel (vector double, vector double, vector bool long);
17366 vector double vec_sel (vector double, vector double, vector unsigned long);
17367 vector long vec_sel (vector long, vector long, vector long);
17368 vector long vec_sel (vector long, vector long, vector unsigned long);
17369 vector long vec_sel (vector long, vector long, vector bool long);
17370 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17371 vector long);
17372 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17373 vector unsigned long);
17374 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17375 vector bool long);
17376 vector double vec_splats (double);
17377 vector signed long vec_splats (signed long);
17378 vector unsigned long vec_splats (unsigned long);
17379 vector float vec_sqrt (vector float);
17380 vector double vec_sqrt (vector double);
17381 void vec_st (vector double, int, vector double *);
17382 void vec_st (vector double, int, double *);
17383 vector double vec_sub (vector double, vector double);
17384 vector double vec_trunc (vector double);
17385 vector double vec_xl (int, vector double *);
17386 vector double vec_xl (int, double *);
17387 vector long long vec_xl (int, vector long long *);
17388 vector long long vec_xl (int, long long *);
17389 vector unsigned long long vec_xl (int, vector unsigned long long *);
17390 vector unsigned long long vec_xl (int, unsigned long long *);
17391 vector float vec_xl (int, vector float *);
17392 vector float vec_xl (int, float *);
17393 vector int vec_xl (int, vector int *);
17394 vector int vec_xl (int, int *);
17395 vector unsigned int vec_xl (int, vector unsigned int *);
17396 vector unsigned int vec_xl (int, unsigned int *);
17397 vector double vec_xor (vector double, vector double);
17398 vector double vec_xor (vector double, vector bool long);
17399 vector double vec_xor (vector bool long, vector double);
17400 vector long vec_xor (vector long, vector long);
17401 vector long vec_xor (vector long, vector bool long);
17402 vector long vec_xor (vector bool long, vector long);
17403 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
17404 vector unsigned long vec_xor (vector unsigned long, vector bool long);
17405 vector unsigned long vec_xor (vector bool long, vector unsigned long);
17406 void vec_xst (vector double, int, vector double *);
17407 void vec_xst (vector double, int, double *);
17408 void vec_xst (vector long long, int, vector long long *);
17409 void vec_xst (vector long long, int, long long *);
17410 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
17411 void vec_xst (vector unsigned long long, int, unsigned long long *);
17412 void vec_xst (vector float, int, vector float *);
17413 void vec_xst (vector float, int, float *);
17414 void vec_xst (vector int, int, vector int *);
17415 void vec_xst (vector int, int, int *);
17416 void vec_xst (vector unsigned int, int, vector unsigned int *);
17417 void vec_xst (vector unsigned int, int, unsigned int *);
17418 int vec_all_eq (vector double, vector double);
17419 int vec_all_ge (vector double, vector double);
17420 int vec_all_gt (vector double, vector double);
17421 int vec_all_le (vector double, vector double);
17422 int vec_all_lt (vector double, vector double);
17423 int vec_all_nan (vector double);
17424 int vec_all_ne (vector double, vector double);
17425 int vec_all_nge (vector double, vector double);
17426 int vec_all_ngt (vector double, vector double);
17427 int vec_all_nle (vector double, vector double);
17428 int vec_all_nlt (vector double, vector double);
17429 int vec_all_numeric (vector double);
17430 int vec_any_eq (vector double, vector double);
17431 int vec_any_ge (vector double, vector double);
17432 int vec_any_gt (vector double, vector double);
17433 int vec_any_le (vector double, vector double);
17434 int vec_any_lt (vector double, vector double);
17435 int vec_any_nan (vector double);
17436 int vec_any_ne (vector double, vector double);
17437 int vec_any_nge (vector double, vector double);
17438 int vec_any_ngt (vector double, vector double);
17439 int vec_any_nle (vector double, vector double);
17440 int vec_any_nlt (vector double, vector double);
17441 int vec_any_numeric (vector double);
17442
17443 vector double vec_vsx_ld (int, const vector double *);
17444 vector double vec_vsx_ld (int, const double *);
17445 vector float vec_vsx_ld (int, const vector float *);
17446 vector float vec_vsx_ld (int, const float *);
17447 vector bool int vec_vsx_ld (int, const vector bool int *);
17448 vector signed int vec_vsx_ld (int, const vector signed int *);
17449 vector signed int vec_vsx_ld (int, const int *);
17450 vector signed int vec_vsx_ld (int, const long *);
17451 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
17452 vector unsigned int vec_vsx_ld (int, const unsigned int *);
17453 vector unsigned int vec_vsx_ld (int, const unsigned long *);
17454 vector bool short vec_vsx_ld (int, const vector bool short *);
17455 vector pixel vec_vsx_ld (int, const vector pixel *);
17456 vector signed short vec_vsx_ld (int, const vector signed short *);
17457 vector signed short vec_vsx_ld (int, const short *);
17458 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
17459 vector unsigned short vec_vsx_ld (int, const unsigned short *);
17460 vector bool char vec_vsx_ld (int, const vector bool char *);
17461 vector signed char vec_vsx_ld (int, const vector signed char *);
17462 vector signed char vec_vsx_ld (int, const signed char *);
17463 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
17464 vector unsigned char vec_vsx_ld (int, const unsigned char *);
17465
17466 void vec_vsx_st (vector double, int, vector double *);
17467 void vec_vsx_st (vector double, int, double *);
17468 void vec_vsx_st (vector float, int, vector float *);
17469 void vec_vsx_st (vector float, int, float *);
17470 void vec_vsx_st (vector signed int, int, vector signed int *);
17471 void vec_vsx_st (vector signed int, int, int *);
17472 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
17473 void vec_vsx_st (vector unsigned int, int, unsigned int *);
17474 void vec_vsx_st (vector bool int, int, vector bool int *);
17475 void vec_vsx_st (vector bool int, int, unsigned int *);
17476 void vec_vsx_st (vector bool int, int, int *);
17477 void vec_vsx_st (vector signed short, int, vector signed short *);
17478 void vec_vsx_st (vector signed short, int, short *);
17479 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
17480 void vec_vsx_st (vector unsigned short, int, unsigned short *);
17481 void vec_vsx_st (vector bool short, int, vector bool short *);
17482 void vec_vsx_st (vector bool short, int, unsigned short *);
17483 void vec_vsx_st (vector pixel, int, vector pixel *);
17484 void vec_vsx_st (vector pixel, int, unsigned short *);
17485 void vec_vsx_st (vector pixel, int, short *);
17486 void vec_vsx_st (vector bool short, int, short *);
17487 void vec_vsx_st (vector signed char, int, vector signed char *);
17488 void vec_vsx_st (vector signed char, int, signed char *);
17489 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
17490 void vec_vsx_st (vector unsigned char, int, unsigned char *);
17491 void vec_vsx_st (vector bool char, int, vector bool char *);
17492 void vec_vsx_st (vector bool char, int, unsigned char *);
17493 void vec_vsx_st (vector bool char, int, signed char *);
17494
17495 vector double vec_xxpermdi (vector double, vector double, int);
17496 vector float vec_xxpermdi (vector float, vector float, int);
17497 vector long long vec_xxpermdi (vector long long, vector long long, int);
17498 vector unsigned long long vec_xxpermdi (vector unsigned long long,
17499 vector unsigned long long, int);
17500 vector int vec_xxpermdi (vector int, vector int, int);
17501 vector unsigned int vec_xxpermdi (vector unsigned int,
17502 vector unsigned int, int);
17503 vector short vec_xxpermdi (vector short, vector short, int);
17504 vector unsigned short vec_xxpermdi (vector unsigned short,
17505 vector unsigned short, int);
17506 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
17507 vector unsigned char vec_xxpermdi (vector unsigned char,
17508 vector unsigned char, int);
17509
17510 vector double vec_xxsldi (vector double, vector double, int);
17511 vector float vec_xxsldi (vector float, vector float, int);
17512 vector long long vec_xxsldi (vector long long, vector long long, int);
17513 vector unsigned long long vec_xxsldi (vector unsigned long long,
17514 vector unsigned long long, int);
17515 vector int vec_xxsldi (vector int, vector int, int);
17516 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
17517 vector short vec_xxsldi (vector short, vector short, int);
17518 vector unsigned short vec_xxsldi (vector unsigned short,
17519 vector unsigned short, int);
17520 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
17521 vector unsigned char vec_xxsldi (vector unsigned char,
17522 vector unsigned char, int);
17523 @end smallexample
17524
17525 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
17526 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
17527 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
17528 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
17529 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
17530
17531 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17532 instruction set are available, the following additional functions are
17533 available for both 32-bit and 64-bit targets. For 64-bit targets, you
17534 can use @var{vector long} instead of @var{vector long long},
17535 @var{vector bool long} instead of @var{vector bool long long}, and
17536 @var{vector unsigned long} instead of @var{vector unsigned long long}.
17537
17538 @smallexample
17539 vector long long vec_abs (vector long long);
17540
17541 vector long long vec_add (vector long long, vector long long);
17542 vector unsigned long long vec_add (vector unsigned long long,
17543 vector unsigned long long);
17544
17545 int vec_all_eq (vector long long, vector long long);
17546 int vec_all_eq (vector unsigned long long, vector unsigned long long);
17547 int vec_all_ge (vector long long, vector long long);
17548 int vec_all_ge (vector unsigned long long, vector unsigned long long);
17549 int vec_all_gt (vector long long, vector long long);
17550 int vec_all_gt (vector unsigned long long, vector unsigned long long);
17551 int vec_all_le (vector long long, vector long long);
17552 int vec_all_le (vector unsigned long long, vector unsigned long long);
17553 int vec_all_lt (vector long long, vector long long);
17554 int vec_all_lt (vector unsigned long long, vector unsigned long long);
17555 int vec_all_ne (vector long long, vector long long);
17556 int vec_all_ne (vector unsigned long long, vector unsigned long long);
17557
17558 int vec_any_eq (vector long long, vector long long);
17559 int vec_any_eq (vector unsigned long long, vector unsigned long long);
17560 int vec_any_ge (vector long long, vector long long);
17561 int vec_any_ge (vector unsigned long long, vector unsigned long long);
17562 int vec_any_gt (vector long long, vector long long);
17563 int vec_any_gt (vector unsigned long long, vector unsigned long long);
17564 int vec_any_le (vector long long, vector long long);
17565 int vec_any_le (vector unsigned long long, vector unsigned long long);
17566 int vec_any_lt (vector long long, vector long long);
17567 int vec_any_lt (vector unsigned long long, vector unsigned long long);
17568 int vec_any_ne (vector long long, vector long long);
17569 int vec_any_ne (vector unsigned long long, vector unsigned long long);
17570
17571 vector long long vec_eqv (vector long long, vector long long);
17572 vector long long vec_eqv (vector bool long long, vector long long);
17573 vector long long vec_eqv (vector long long, vector bool long long);
17574 vector unsigned long long vec_eqv (vector unsigned long long,
17575 vector unsigned long long);
17576 vector unsigned long long vec_eqv (vector bool long long,
17577 vector unsigned long long);
17578 vector unsigned long long vec_eqv (vector unsigned long long,
17579 vector bool long long);
17580 vector int vec_eqv (vector int, vector int);
17581 vector int vec_eqv (vector bool int, vector int);
17582 vector int vec_eqv (vector int, vector bool int);
17583 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
17584 vector unsigned int vec_eqv (vector bool unsigned int,
17585 vector unsigned int);
17586 vector unsigned int vec_eqv (vector unsigned int,
17587 vector bool unsigned int);
17588 vector short vec_eqv (vector short, vector short);
17589 vector short vec_eqv (vector bool short, vector short);
17590 vector short vec_eqv (vector short, vector bool short);
17591 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
17592 vector unsigned short vec_eqv (vector bool unsigned short,
17593 vector unsigned short);
17594 vector unsigned short vec_eqv (vector unsigned short,
17595 vector bool unsigned short);
17596 vector signed char vec_eqv (vector signed char, vector signed char);
17597 vector signed char vec_eqv (vector bool signed char, vector signed char);
17598 vector signed char vec_eqv (vector signed char, vector bool signed char);
17599 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
17600 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
17601 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
17602
17603 vector long long vec_max (vector long long, vector long long);
17604 vector unsigned long long vec_max (vector unsigned long long,
17605 vector unsigned long long);
17606
17607 vector signed int vec_mergee (vector signed int, vector signed int);
17608 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
17609 vector bool int vec_mergee (vector bool int, vector bool int);
17610
17611 vector signed int vec_mergeo (vector signed int, vector signed int);
17612 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
17613 vector bool int vec_mergeo (vector bool int, vector bool int);
17614
17615 vector long long vec_min (vector long long, vector long long);
17616 vector unsigned long long vec_min (vector unsigned long long,
17617 vector unsigned long long);
17618
17619 vector long long vec_nand (vector long long, vector long long);
17620 vector long long vec_nand (vector bool long long, vector long long);
17621 vector long long vec_nand (vector long long, vector bool long long);
17622 vector unsigned long long vec_nand (vector unsigned long long,
17623 vector unsigned long long);
17624 vector unsigned long long vec_nand (vector bool long long,
17625 vector unsigned long long);
17626 vector unsigned long long vec_nand (vector unsigned long long,
17627 vector bool long long);
17628 vector int vec_nand (vector int, vector int);
17629 vector int vec_nand (vector bool int, vector int);
17630 vector int vec_nand (vector int, vector bool int);
17631 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
17632 vector unsigned int vec_nand (vector bool unsigned int,
17633 vector unsigned int);
17634 vector unsigned int vec_nand (vector unsigned int,
17635 vector bool unsigned int);
17636 vector short vec_nand (vector short, vector short);
17637 vector short vec_nand (vector bool short, vector short);
17638 vector short vec_nand (vector short, vector bool short);
17639 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
17640 vector unsigned short vec_nand (vector bool unsigned short,
17641 vector unsigned short);
17642 vector unsigned short vec_nand (vector unsigned short,
17643 vector bool unsigned short);
17644 vector signed char vec_nand (vector signed char, vector signed char);
17645 vector signed char vec_nand (vector bool signed char, vector signed char);
17646 vector signed char vec_nand (vector signed char, vector bool signed char);
17647 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
17648 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
17649 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
17650
17651 vector long long vec_orc (vector long long, vector long long);
17652 vector long long vec_orc (vector bool long long, vector long long);
17653 vector long long vec_orc (vector long long, vector bool long long);
17654 vector unsigned long long vec_orc (vector unsigned long long,
17655 vector unsigned long long);
17656 vector unsigned long long vec_orc (vector bool long long,
17657 vector unsigned long long);
17658 vector unsigned long long vec_orc (vector unsigned long long,
17659 vector bool long long);
17660 vector int vec_orc (vector int, vector int);
17661 vector int vec_orc (vector bool int, vector int);
17662 vector int vec_orc (vector int, vector bool int);
17663 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
17664 vector unsigned int vec_orc (vector bool unsigned int,
17665 vector unsigned int);
17666 vector unsigned int vec_orc (vector unsigned int,
17667 vector bool unsigned int);
17668 vector short vec_orc (vector short, vector short);
17669 vector short vec_orc (vector bool short, vector short);
17670 vector short vec_orc (vector short, vector bool short);
17671 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
17672 vector unsigned short vec_orc (vector bool unsigned short,
17673 vector unsigned short);
17674 vector unsigned short vec_orc (vector unsigned short,
17675 vector bool unsigned short);
17676 vector signed char vec_orc (vector signed char, vector signed char);
17677 vector signed char vec_orc (vector bool signed char, vector signed char);
17678 vector signed char vec_orc (vector signed char, vector bool signed char);
17679 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
17680 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
17681 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
17682
17683 vector int vec_pack (vector long long, vector long long);
17684 vector unsigned int vec_pack (vector unsigned long long,
17685 vector unsigned long long);
17686 vector bool int vec_pack (vector bool long long, vector bool long long);
17687
17688 vector int vec_packs (vector long long, vector long long);
17689 vector unsigned int vec_packs (vector unsigned long long,
17690 vector unsigned long long);
17691
17692 vector unsigned int vec_packsu (vector long long, vector long long);
17693 vector unsigned int vec_packsu (vector unsigned long long,
17694 vector unsigned long long);
17695
17696 vector long long vec_rl (vector long long,
17697 vector unsigned long long);
17698 vector long long vec_rl (vector unsigned long long,
17699 vector unsigned long long);
17700
17701 vector long long vec_sl (vector long long, vector unsigned long long);
17702 vector long long vec_sl (vector unsigned long long,
17703 vector unsigned long long);
17704
17705 vector long long vec_sr (vector long long, vector unsigned long long);
17706 vector unsigned long long char vec_sr (vector unsigned long long,
17707 vector unsigned long long);
17708
17709 vector long long vec_sra (vector long long, vector unsigned long long);
17710 vector unsigned long long vec_sra (vector unsigned long long,
17711 vector unsigned long long);
17712
17713 vector long long vec_sub (vector long long, vector long long);
17714 vector unsigned long long vec_sub (vector unsigned long long,
17715 vector unsigned long long);
17716
17717 vector long long vec_unpackh (vector int);
17718 vector unsigned long long vec_unpackh (vector unsigned int);
17719
17720 vector long long vec_unpackl (vector int);
17721 vector unsigned long long vec_unpackl (vector unsigned int);
17722
17723 vector long long vec_vaddudm (vector long long, vector long long);
17724 vector long long vec_vaddudm (vector bool long long, vector long long);
17725 vector long long vec_vaddudm (vector long long, vector bool long long);
17726 vector unsigned long long vec_vaddudm (vector unsigned long long,
17727 vector unsigned long long);
17728 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
17729 vector unsigned long long);
17730 vector unsigned long long vec_vaddudm (vector unsigned long long,
17731 vector bool unsigned long long);
17732
17733 vector long long vec_vbpermq (vector signed char, vector signed char);
17734 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
17735
17736 vector long long vec_cntlz (vector long long);
17737 vector unsigned long long vec_cntlz (vector unsigned long long);
17738 vector int vec_cntlz (vector int);
17739 vector unsigned int vec_cntlz (vector int);
17740 vector short vec_cntlz (vector short);
17741 vector unsigned short vec_cntlz (vector unsigned short);
17742 vector signed char vec_cntlz (vector signed char);
17743 vector unsigned char vec_cntlz (vector unsigned char);
17744
17745 vector long long vec_vclz (vector long long);
17746 vector unsigned long long vec_vclz (vector unsigned long long);
17747 vector int vec_vclz (vector int);
17748 vector unsigned int vec_vclz (vector int);
17749 vector short vec_vclz (vector short);
17750 vector unsigned short vec_vclz (vector unsigned short);
17751 vector signed char vec_vclz (vector signed char);
17752 vector unsigned char vec_vclz (vector unsigned char);
17753
17754 vector signed char vec_vclzb (vector signed char);
17755 vector unsigned char vec_vclzb (vector unsigned char);
17756
17757 vector long long vec_vclzd (vector long long);
17758 vector unsigned long long vec_vclzd (vector unsigned long long);
17759
17760 vector short vec_vclzh (vector short);
17761 vector unsigned short vec_vclzh (vector unsigned short);
17762
17763 vector int vec_vclzw (vector int);
17764 vector unsigned int vec_vclzw (vector int);
17765
17766 vector signed char vec_vgbbd (vector signed char);
17767 vector unsigned char vec_vgbbd (vector unsigned char);
17768
17769 vector long long vec_vmaxsd (vector long long, vector long long);
17770
17771 vector unsigned long long vec_vmaxud (vector unsigned long long,
17772 unsigned vector long long);
17773
17774 vector long long vec_vminsd (vector long long, vector long long);
17775
17776 vector unsigned long long vec_vminud (vector long long,
17777 vector long long);
17778
17779 vector int vec_vpksdss (vector long long, vector long long);
17780 vector unsigned int vec_vpksdss (vector long long, vector long long);
17781
17782 vector unsigned int vec_vpkudus (vector unsigned long long,
17783 vector unsigned long long);
17784
17785 vector int vec_vpkudum (vector long long, vector long long);
17786 vector unsigned int vec_vpkudum (vector unsigned long long,
17787 vector unsigned long long);
17788 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
17789
17790 vector long long vec_vpopcnt (vector long long);
17791 vector unsigned long long vec_vpopcnt (vector unsigned long long);
17792 vector int vec_vpopcnt (vector int);
17793 vector unsigned int vec_vpopcnt (vector int);
17794 vector short vec_vpopcnt (vector short);
17795 vector unsigned short vec_vpopcnt (vector unsigned short);
17796 vector signed char vec_vpopcnt (vector signed char);
17797 vector unsigned char vec_vpopcnt (vector unsigned char);
17798
17799 vector signed char vec_vpopcntb (vector signed char);
17800 vector unsigned char vec_vpopcntb (vector unsigned char);
17801
17802 vector long long vec_vpopcntd (vector long long);
17803 vector unsigned long long vec_vpopcntd (vector unsigned long long);
17804
17805 vector short vec_vpopcnth (vector short);
17806 vector unsigned short vec_vpopcnth (vector unsigned short);
17807
17808 vector int vec_vpopcntw (vector int);
17809 vector unsigned int vec_vpopcntw (vector int);
17810
17811 vector long long vec_vrld (vector long long, vector unsigned long long);
17812 vector unsigned long long vec_vrld (vector unsigned long long,
17813 vector unsigned long long);
17814
17815 vector long long vec_vsld (vector long long, vector unsigned long long);
17816 vector long long vec_vsld (vector unsigned long long,
17817 vector unsigned long long);
17818
17819 vector long long vec_vsrad (vector long long, vector unsigned long long);
17820 vector unsigned long long vec_vsrad (vector unsigned long long,
17821 vector unsigned long long);
17822
17823 vector long long vec_vsrd (vector long long, vector unsigned long long);
17824 vector unsigned long long char vec_vsrd (vector unsigned long long,
17825 vector unsigned long long);
17826
17827 vector long long vec_vsubudm (vector long long, vector long long);
17828 vector long long vec_vsubudm (vector bool long long, vector long long);
17829 vector long long vec_vsubudm (vector long long, vector bool long long);
17830 vector unsigned long long vec_vsubudm (vector unsigned long long,
17831 vector unsigned long long);
17832 vector unsigned long long vec_vsubudm (vector bool long long,
17833 vector unsigned long long);
17834 vector unsigned long long vec_vsubudm (vector unsigned long long,
17835 vector bool long long);
17836
17837 vector long long vec_vupkhsw (vector int);
17838 vector unsigned long long vec_vupkhsw (vector unsigned int);
17839
17840 vector long long vec_vupklsw (vector int);
17841 vector unsigned long long vec_vupklsw (vector int);
17842 @end smallexample
17843
17844 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17845 instruction set are available, the following additional functions are
17846 available for 64-bit targets. New vector types
17847 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
17848 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
17849 builtins.
17850
17851 The normal vector extract, and set operations work on
17852 @var{vector __int128_t} and @var{vector __uint128_t} types,
17853 but the index value must be 0.
17854
17855 @smallexample
17856 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
17857 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
17858
17859 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
17860 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
17861
17862 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
17863 vector __int128_t);
17864 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
17865 vector __uint128_t);
17866
17867 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
17868 vector __int128_t);
17869 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
17870 vector __uint128_t);
17871
17872 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
17873 vector __int128_t);
17874 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
17875 vector __uint128_t);
17876
17877 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
17878 vector __int128_t);
17879 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
17880 vector __uint128_t);
17881
17882 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
17883 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
17884
17885 __int128_t vec_vsubuqm (__int128_t, __int128_t);
17886 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
17887
17888 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
17889 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
17890 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
17891 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
17892 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
17893 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
17894 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
17895 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
17896 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
17897 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
17898 @end smallexample
17899
17900 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
17901 are available:
17902
17903 @smallexample
17904 vector long long vec_vctz (vector long long);
17905 vector unsigned long long vec_vctz (vector unsigned long long);
17906 vector int vec_vctz (vector int);
17907 vector unsigned int vec_vctz (vector int);
17908 vector short vec_vctz (vector short);
17909 vector unsigned short vec_vctz (vector unsigned short);
17910 vector signed char vec_vctz (vector signed char);
17911 vector unsigned char vec_vctz (vector unsigned char);
17912
17913 vector signed char vec_vctzb (vector signed char);
17914 vector unsigned char vec_vctzb (vector unsigned char);
17915
17916 vector long long vec_vctzd (vector long long);
17917 vector unsigned long long vec_vctzd (vector unsigned long long);
17918
17919 vector short vec_vctzh (vector short);
17920 vector unsigned short vec_vctzh (vector unsigned short);
17921
17922 vector int vec_vctzw (vector int);
17923 vector unsigned int vec_vctzw (vector int);
17924
17925 vector int vec_vprtyb (vector int);
17926 vector unsigned int vec_vprtyb (vector unsigned int);
17927 vector long long vec_vprtyb (vector long long);
17928 vector unsigned long long vec_vprtyb (vector unsigned long long);
17929
17930 vector int vec_vprtybw (vector int);
17931 vector unsigned int vec_vprtybw (vector unsigned int);
17932
17933 vector long long vec_vprtybd (vector long long);
17934 vector unsigned long long vec_vprtybd (vector unsigned long long);
17935 @end smallexample
17936
17937 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
17938 are available:
17939
17940 @smallexample
17941 vector long vec_vprtyb (vector long);
17942 vector unsigned long vec_vprtyb (vector unsigned long);
17943 vector __int128_t vec_vprtyb (vector __int128_t);
17944 vector __uint128_t vec_vprtyb (vector __uint128_t);
17945
17946 vector long vec_vprtybd (vector long);
17947 vector unsigned long vec_vprtybd (vector unsigned long);
17948
17949 vector __int128_t vec_vprtybq (vector __int128_t);
17950 vector __uint128_t vec_vprtybd (vector __uint128_t);
17951 @end smallexample
17952
17953 The following built-in vector functions are available for the PowerPC family
17954 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
17955 @smallexample
17956 __vector unsigned char
17957 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
17958 __vector unsigned char
17959 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
17960 @end smallexample
17961
17962 The @code{vec_slv} and @code{vec_srv} functions operate on
17963 all of the bytes of their @code{src} and @code{shift_distance}
17964 arguments in parallel. The behavior of the @code{vec_slv} is as if
17965 there existed a temporary array of 17 unsigned characters
17966 @code{slv_array} within which elements 0 through 15 are the same as
17967 the entries in the @code{src} array and element 16 equals 0. The
17968 result returned from the @code{vec_slv} function is a
17969 @code{__vector} of 16 unsigned characters within which element
17970 @code{i} is computed using the C expression
17971 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
17972 shift_distance[i]))},
17973 with this resulting value coerced to the @code{unsigned char} type.
17974 The behavior of the @code{vec_srv} is as if
17975 there existed a temporary array of 17 unsigned characters
17976 @code{srv_array} within which element 0 equals zero and
17977 elements 1 through 16 equal the elements 0 through 15 of
17978 the @code{src} array. The
17979 result returned from the @code{vec_srv} function is a
17980 @code{__vector} of 16 unsigned characters within which element
17981 @code{i} is computed using the C expression
17982 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
17983 (0x07 & shift_distance[i]))},
17984 with this resulting value coerced to the @code{unsigned char} type.
17985
17986 The following built-in functions are available for the PowerPC family
17987 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
17988 @smallexample
17989 __vector unsigned char
17990 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
17991 __vector unsigned short
17992 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
17993 __vector unsigned int
17994 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
17995
17996 __vector unsigned char
17997 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
17998 __vector unsigned short
17999 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
18000 __vector unsigned int
18001 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
18002 @end smallexample
18003
18004 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
18005 @code{vec_absdw} built-in functions each computes the absolute
18006 differences of the pairs of vector elements supplied in its two vector
18007 arguments, placing the absolute differences into the corresponding
18008 elements of the vector result.
18009
18010 The following built-in functions are available for the PowerPC family
18011 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18012 @smallexample
18013 __vector int
18014 vec_extract_exp (__vector float source);
18015 __vector long long int
18016 vec_extract_exp (__vector double source);
18017
18018 __vector int
18019 vec_extract_sig (__vector float source);
18020 __vector long long int
18021 vec_extract_sig (__vector double source);
18022
18023 __vector float
18024 vec_insert_exp (__vector unsigned int significands, __vector unsigned int exponents);
18025 __vector double
18026 vec_insert_exp (__vector unsigned long long int significands,
18027 __vector unsigned long long int exponents);
18028
18029 __vector int vec_test_data_class (__vector float source, unsigned int condition);
18030 __vector long long int vec_test_data_class (__vector double source, unsigned int condition);
18031 @end smallexample
18032
18033 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
18034 functions return vectors representing the significands and exponents
18035 of their @code{source} arguments respectively. The
18036 @code{vec_insert_exp} built-in functions return a vector of single- or
18037 double-precision floating
18038 point values constructed by assembling the values of their
18039 @code{significands} and @code{exponents} arguments into the
18040 corresponding elements of the returned vector. The sign of each
18041 element of the result is copied from the most significant bit of the
18042 corresponding entry within the @code{significands} argument. The
18043 significand and exponent components of each element of the result are
18044 composed of the least significant bits of the corresponding
18045 @code{significands} element and the least significant bits of the
18046 corresponding @code{exponents} element.
18047
18048 The @code{vec_test_data_class} built-in function returns a vector
18049 representing the results of testing the @code{source} vector for the
18050 condition selected by the @code{condition} argument. The
18051 @code{condition} argument must be an unsigned integer with value not
18052 exceeding 127. The
18053 @code{condition} argument is encoded as a bitmask with each bit
18054 enabling the testing of a different condition, as characterized by the
18055 following:
18056 @smallexample
18057 0x40 Test for NaN
18058 0x20 Test for +Infinity
18059 0x10 Test for -Infinity
18060 0x08 Test for +Zero
18061 0x04 Test for -Zero
18062 0x02 Test for +Denormal
18063 0x01 Test for -Denormal
18064 @end smallexample
18065
18066 If any of the enabled test conditions is true, the corresponding entry
18067 in the result vector is -1. Otherwise (all of the enabled test
18068 conditions are false), the corresponding entry of the result vector is 0.
18069
18070 If the cryptographic instructions are enabled (@option{-mcrypto} or
18071 @option{-mcpu=power8}), the following builtins are enabled.
18072
18073 @smallexample
18074 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
18075
18076 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
18077 vector unsigned long long);
18078
18079 vector unsigned long long __builtin_crypto_vcipherlast
18080 (vector unsigned long long,
18081 vector unsigned long long);
18082
18083 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
18084 vector unsigned long long);
18085
18086 vector unsigned long long __builtin_crypto_vncipherlast
18087 (vector unsigned long long,
18088 vector unsigned long long);
18089
18090 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
18091 vector unsigned char,
18092 vector unsigned char);
18093
18094 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
18095 vector unsigned short,
18096 vector unsigned short);
18097
18098 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
18099 vector unsigned int,
18100 vector unsigned int);
18101
18102 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
18103 vector unsigned long long,
18104 vector unsigned long long);
18105
18106 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
18107 vector unsigned char);
18108
18109 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
18110 vector unsigned short);
18111
18112 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
18113 vector unsigned int);
18114
18115 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
18116 vector unsigned long long);
18117
18118 vector unsigned long long __builtin_crypto_vshasigmad
18119 (vector unsigned long long, int, int);
18120
18121 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
18122 int, int);
18123 @end smallexample
18124
18125 The second argument to the @var{__builtin_crypto_vshasigmad} and
18126 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
18127 integer that is 0 or 1. The third argument to these builtin functions
18128 must be a constant integer in the range of 0 to 15.
18129
18130 If the ISA 3.0 instruction set additions
18131 are enabled (@option{-mcpu=power9}), the following additional
18132 functions are available for both 32-bit and 64-bit targets.
18133
18134 vector short vec_xl (int, vector short *);
18135 vector short vec_xl (int, short *);
18136 vector unsigned short vec_xl (int, vector unsigned short *);
18137 vector unsigned short vec_xl (int, unsigned short *);
18138 vector char vec_xl (int, vector char *);
18139 vector char vec_xl (int, char *);
18140 vector unsigned char vec_xl (int, vector unsigned char *);
18141 vector unsigned char vec_xl (int, unsigned char *);
18142
18143 void vec_xst (vector short, int, vector short *);
18144 void vec_xst (vector short, int, short *);
18145 void vec_xst (vector unsigned short, int, vector unsigned short *);
18146 void vec_xst (vector unsigned short, int, unsigned short *);
18147 void vec_xst (vector char, int, vector char *);
18148 void vec_xst (vector char, int, char *);
18149 void vec_xst (vector unsigned char, int, vector unsigned char *);
18150 void vec_xst (vector unsigned char, int, unsigned char *);
18151
18152 @node PowerPC Hardware Transactional Memory Built-in Functions
18153 @subsection PowerPC Hardware Transactional Memory Built-in Functions
18154 GCC provides two interfaces for accessing the Hardware Transactional
18155 Memory (HTM) instructions available on some of the PowerPC family
18156 of processors (eg, POWER8). The two interfaces come in a low level
18157 interface, consisting of built-in functions specific to PowerPC and a
18158 higher level interface consisting of inline functions that are common
18159 between PowerPC and S/390.
18160
18161 @subsubsection PowerPC HTM Low Level Built-in Functions
18162
18163 The following low level built-in functions are available with
18164 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
18165 They all generate the machine instruction that is part of the name.
18166
18167 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
18168 the full 4-bit condition register value set by their associated hardware
18169 instruction. The header file @code{htmintrin.h} defines some macros that can
18170 be used to decipher the return value. The @code{__builtin_tbegin} builtin
18171 returns a simple true or false value depending on whether a transaction was
18172 successfully started or not. The arguments of the builtins match exactly the
18173 type and order of the associated hardware instruction's operands, except for
18174 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
18175 Refer to the ISA manual for a description of each instruction's operands.
18176
18177 @smallexample
18178 unsigned int __builtin_tbegin (unsigned int)
18179 unsigned int __builtin_tend (unsigned int)
18180
18181 unsigned int __builtin_tabort (unsigned int)
18182 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
18183 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
18184 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
18185 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
18186
18187 unsigned int __builtin_tcheck (void)
18188 unsigned int __builtin_treclaim (unsigned int)
18189 unsigned int __builtin_trechkpt (void)
18190 unsigned int __builtin_tsr (unsigned int)
18191 @end smallexample
18192
18193 In addition to the above HTM built-ins, we have added built-ins for
18194 some common extended mnemonics of the HTM instructions:
18195
18196 @smallexample
18197 unsigned int __builtin_tendall (void)
18198 unsigned int __builtin_tresume (void)
18199 unsigned int __builtin_tsuspend (void)
18200 @end smallexample
18201
18202 Note that the semantics of the above HTM builtins are required to mimic
18203 the locking semantics used for critical sections. Builtins that are used
18204 to create a new transaction or restart a suspended transaction must have
18205 lock acquisition like semantics while those builtins that end or suspend a
18206 transaction must have lock release like semantics. Specifically, this must
18207 mimic lock semantics as specified by C++11, for example: Lock acquisition is
18208 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
18209 that returns 0, and lock release is as-if an execution of
18210 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
18211 implicit implementation-defined lock used for all transactions. The HTM
18212 instructions associated with with the builtins inherently provide the
18213 correct acquisition and release hardware barriers required. However,
18214 the compiler must also be prohibited from moving loads and stores across
18215 the builtins in a way that would violate their semantics. This has been
18216 accomplished by adding memory barriers to the associated HTM instructions
18217 (which is a conservative approach to provide acquire and release semantics).
18218 Earlier versions of the compiler did not treat the HTM instructions as
18219 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
18220 be used to determine whether the current compiler treats HTM instructions
18221 as memory barriers or not. This allows the user to explicitly add memory
18222 barriers to their code when using an older version of the compiler.
18223
18224 The following set of built-in functions are available to gain access
18225 to the HTM specific special purpose registers.
18226
18227 @smallexample
18228 unsigned long __builtin_get_texasr (void)
18229 unsigned long __builtin_get_texasru (void)
18230 unsigned long __builtin_get_tfhar (void)
18231 unsigned long __builtin_get_tfiar (void)
18232
18233 void __builtin_set_texasr (unsigned long);
18234 void __builtin_set_texasru (unsigned long);
18235 void __builtin_set_tfhar (unsigned long);
18236 void __builtin_set_tfiar (unsigned long);
18237 @end smallexample
18238
18239 Example usage of these low level built-in functions may look like:
18240
18241 @smallexample
18242 #include <htmintrin.h>
18243
18244 int num_retries = 10;
18245
18246 while (1)
18247 @{
18248 if (__builtin_tbegin (0))
18249 @{
18250 /* Transaction State Initiated. */
18251 if (is_locked (lock))
18252 __builtin_tabort (0);
18253 ... transaction code...
18254 __builtin_tend (0);
18255 break;
18256 @}
18257 else
18258 @{
18259 /* Transaction State Failed. Use locks if the transaction
18260 failure is "persistent" or we've tried too many times. */
18261 if (num_retries-- <= 0
18262 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
18263 @{
18264 acquire_lock (lock);
18265 ... non transactional fallback path...
18266 release_lock (lock);
18267 break;
18268 @}
18269 @}
18270 @}
18271 @end smallexample
18272
18273 One final built-in function has been added that returns the value of
18274 the 2-bit Transaction State field of the Machine Status Register (MSR)
18275 as stored in @code{CR0}.
18276
18277 @smallexample
18278 unsigned long __builtin_ttest (void)
18279 @end smallexample
18280
18281 This built-in can be used to determine the current transaction state
18282 using the following code example:
18283
18284 @smallexample
18285 #include <htmintrin.h>
18286
18287 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
18288
18289 if (tx_state == _HTM_TRANSACTIONAL)
18290 @{
18291 /* Code to use in transactional state. */
18292 @}
18293 else if (tx_state == _HTM_NONTRANSACTIONAL)
18294 @{
18295 /* Code to use in non-transactional state. */
18296 @}
18297 else if (tx_state == _HTM_SUSPENDED)
18298 @{
18299 /* Code to use in transaction suspended state. */
18300 @}
18301 @end smallexample
18302
18303 @subsubsection PowerPC HTM High Level Inline Functions
18304
18305 The following high level HTM interface is made available by including
18306 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
18307 where CPU is `power8' or later. This interface is common between PowerPC
18308 and S/390, allowing users to write one HTM source implementation that
18309 can be compiled and executed on either system.
18310
18311 @smallexample
18312 long __TM_simple_begin (void)
18313 long __TM_begin (void* const TM_buff)
18314 long __TM_end (void)
18315 void __TM_abort (void)
18316 void __TM_named_abort (unsigned char const code)
18317 void __TM_resume (void)
18318 void __TM_suspend (void)
18319
18320 long __TM_is_user_abort (void* const TM_buff)
18321 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
18322 long __TM_is_illegal (void* const TM_buff)
18323 long __TM_is_footprint_exceeded (void* const TM_buff)
18324 long __TM_nesting_depth (void* const TM_buff)
18325 long __TM_is_nested_too_deep(void* const TM_buff)
18326 long __TM_is_conflict(void* const TM_buff)
18327 long __TM_is_failure_persistent(void* const TM_buff)
18328 long __TM_failure_address(void* const TM_buff)
18329 long long __TM_failure_code(void* const TM_buff)
18330 @end smallexample
18331
18332 Using these common set of HTM inline functions, we can create
18333 a more portable version of the HTM example in the previous
18334 section that will work on either PowerPC or S/390:
18335
18336 @smallexample
18337 #include <htmxlintrin.h>
18338
18339 int num_retries = 10;
18340 TM_buff_type TM_buff;
18341
18342 while (1)
18343 @{
18344 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
18345 @{
18346 /* Transaction State Initiated. */
18347 if (is_locked (lock))
18348 __TM_abort ();
18349 ... transaction code...
18350 __TM_end ();
18351 break;
18352 @}
18353 else
18354 @{
18355 /* Transaction State Failed. Use locks if the transaction
18356 failure is "persistent" or we've tried too many times. */
18357 if (num_retries-- <= 0
18358 || __TM_is_failure_persistent (TM_buff))
18359 @{
18360 acquire_lock (lock);
18361 ... non transactional fallback path...
18362 release_lock (lock);
18363 break;
18364 @}
18365 @}
18366 @}
18367 @end smallexample
18368
18369 @node RX Built-in Functions
18370 @subsection RX Built-in Functions
18371 GCC supports some of the RX instructions which cannot be expressed in
18372 the C programming language via the use of built-in functions. The
18373 following functions are supported:
18374
18375 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
18376 Generates the @code{brk} machine instruction.
18377 @end deftypefn
18378
18379 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
18380 Generates the @code{clrpsw} machine instruction to clear the specified
18381 bit in the processor status word.
18382 @end deftypefn
18383
18384 @deftypefn {Built-in Function} void __builtin_rx_int (int)
18385 Generates the @code{int} machine instruction to generate an interrupt
18386 with the specified value.
18387 @end deftypefn
18388
18389 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
18390 Generates the @code{machi} machine instruction to add the result of
18391 multiplying the top 16 bits of the two arguments into the
18392 accumulator.
18393 @end deftypefn
18394
18395 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
18396 Generates the @code{maclo} machine instruction to add the result of
18397 multiplying the bottom 16 bits of the two arguments into the
18398 accumulator.
18399 @end deftypefn
18400
18401 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
18402 Generates the @code{mulhi} machine instruction to place the result of
18403 multiplying the top 16 bits of the two arguments into the
18404 accumulator.
18405 @end deftypefn
18406
18407 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
18408 Generates the @code{mullo} machine instruction to place the result of
18409 multiplying the bottom 16 bits of the two arguments into the
18410 accumulator.
18411 @end deftypefn
18412
18413 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
18414 Generates the @code{mvfachi} machine instruction to read the top
18415 32 bits of the accumulator.
18416 @end deftypefn
18417
18418 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
18419 Generates the @code{mvfacmi} machine instruction to read the middle
18420 32 bits of the accumulator.
18421 @end deftypefn
18422
18423 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
18424 Generates the @code{mvfc} machine instruction which reads the control
18425 register specified in its argument and returns its value.
18426 @end deftypefn
18427
18428 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
18429 Generates the @code{mvtachi} machine instruction to set the top
18430 32 bits of the accumulator.
18431 @end deftypefn
18432
18433 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
18434 Generates the @code{mvtaclo} machine instruction to set the bottom
18435 32 bits of the accumulator.
18436 @end deftypefn
18437
18438 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
18439 Generates the @code{mvtc} machine instruction which sets control
18440 register number @code{reg} to @code{val}.
18441 @end deftypefn
18442
18443 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
18444 Generates the @code{mvtipl} machine instruction set the interrupt
18445 priority level.
18446 @end deftypefn
18447
18448 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
18449 Generates the @code{racw} machine instruction to round the accumulator
18450 according to the specified mode.
18451 @end deftypefn
18452
18453 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
18454 Generates the @code{revw} machine instruction which swaps the bytes in
18455 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
18456 and also bits 16--23 occupy bits 24--31 and vice versa.
18457 @end deftypefn
18458
18459 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
18460 Generates the @code{rmpa} machine instruction which initiates a
18461 repeated multiply and accumulate sequence.
18462 @end deftypefn
18463
18464 @deftypefn {Built-in Function} void __builtin_rx_round (float)
18465 Generates the @code{round} machine instruction which returns the
18466 floating-point argument rounded according to the current rounding mode
18467 set in the floating-point status word register.
18468 @end deftypefn
18469
18470 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
18471 Generates the @code{sat} machine instruction which returns the
18472 saturated value of the argument.
18473 @end deftypefn
18474
18475 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
18476 Generates the @code{setpsw} machine instruction to set the specified
18477 bit in the processor status word.
18478 @end deftypefn
18479
18480 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
18481 Generates the @code{wait} machine instruction.
18482 @end deftypefn
18483
18484 @node S/390 System z Built-in Functions
18485 @subsection S/390 System z Built-in Functions
18486 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
18487 Generates the @code{tbegin} machine instruction starting a
18488 non-constrained hardware transaction. If the parameter is non-NULL the
18489 memory area is used to store the transaction diagnostic buffer and
18490 will be passed as first operand to @code{tbegin}. This buffer can be
18491 defined using the @code{struct __htm_tdb} C struct defined in
18492 @code{htmintrin.h} and must reside on a double-word boundary. The
18493 second tbegin operand is set to @code{0xff0c}. This enables
18494 save/restore of all GPRs and disables aborts for FPR and AR
18495 manipulations inside the transaction body. The condition code set by
18496 the tbegin instruction is returned as integer value. The tbegin
18497 instruction by definition overwrites the content of all FPRs. The
18498 compiler will generate code which saves and restores the FPRs. For
18499 soft-float code it is recommended to used the @code{*_nofloat}
18500 variant. In order to prevent a TDB from being written it is required
18501 to pass a constant zero value as parameter. Passing a zero value
18502 through a variable is not sufficient. Although modifications of
18503 access registers inside the transaction will not trigger an
18504 transaction abort it is not supported to actually modify them. Access
18505 registers do not get saved when entering a transaction. They will have
18506 undefined state when reaching the abort code.
18507 @end deftypefn
18508
18509 Macros for the possible return codes of tbegin are defined in the
18510 @code{htmintrin.h} header file:
18511
18512 @table @code
18513 @item _HTM_TBEGIN_STARTED
18514 @code{tbegin} has been executed as part of normal processing. The
18515 transaction body is supposed to be executed.
18516 @item _HTM_TBEGIN_INDETERMINATE
18517 The transaction was aborted due to an indeterminate condition which
18518 might be persistent.
18519 @item _HTM_TBEGIN_TRANSIENT
18520 The transaction aborted due to a transient failure. The transaction
18521 should be re-executed in that case.
18522 @item _HTM_TBEGIN_PERSISTENT
18523 The transaction aborted due to a persistent failure. Re-execution
18524 under same circumstances will not be productive.
18525 @end table
18526
18527 @defmac _HTM_FIRST_USER_ABORT_CODE
18528 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
18529 specifies the first abort code which can be used for
18530 @code{__builtin_tabort}. Values below this threshold are reserved for
18531 machine use.
18532 @end defmac
18533
18534 @deftp {Data type} {struct __htm_tdb}
18535 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
18536 the structure of the transaction diagnostic block as specified in the
18537 Principles of Operation manual chapter 5-91.
18538 @end deftp
18539
18540 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
18541 Same as @code{__builtin_tbegin} but without FPR saves and restores.
18542 Using this variant in code making use of FPRs will leave the FPRs in
18543 undefined state when entering the transaction abort handler code.
18544 @end deftypefn
18545
18546 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
18547 In addition to @code{__builtin_tbegin} a loop for transient failures
18548 is generated. If tbegin returns a condition code of 2 the transaction
18549 will be retried as often as specified in the second argument. The
18550 perform processor assist instruction is used to tell the CPU about the
18551 number of fails so far.
18552 @end deftypefn
18553
18554 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
18555 Same as @code{__builtin_tbegin_retry} but without FPR saves and
18556 restores. Using this variant in code making use of FPRs will leave
18557 the FPRs in undefined state when entering the transaction abort
18558 handler code.
18559 @end deftypefn
18560
18561 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
18562 Generates the @code{tbeginc} machine instruction starting a constrained
18563 hardware transaction. The second operand is set to @code{0xff08}.
18564 @end deftypefn
18565
18566 @deftypefn {Built-in Function} int __builtin_tend (void)
18567 Generates the @code{tend} machine instruction finishing a transaction
18568 and making the changes visible to other threads. The condition code
18569 generated by tend is returned as integer value.
18570 @end deftypefn
18571
18572 @deftypefn {Built-in Function} void __builtin_tabort (int)
18573 Generates the @code{tabort} machine instruction with the specified
18574 abort code. Abort codes from 0 through 255 are reserved and will
18575 result in an error message.
18576 @end deftypefn
18577
18578 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
18579 Generates the @code{ppa rX,rY,1} machine instruction. Where the
18580 integer parameter is loaded into rX and a value of zero is loaded into
18581 rY. The integer parameter specifies the number of times the
18582 transaction repeatedly aborted.
18583 @end deftypefn
18584
18585 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
18586 Generates the @code{etnd} machine instruction. The current nesting
18587 depth is returned as integer value. For a nesting depth of 0 the code
18588 is not executed as part of an transaction.
18589 @end deftypefn
18590
18591 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
18592
18593 Generates the @code{ntstg} machine instruction. The second argument
18594 is written to the first arguments location. The store operation will
18595 not be rolled-back in case of an transaction abort.
18596 @end deftypefn
18597
18598 @node SH Built-in Functions
18599 @subsection SH Built-in Functions
18600 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
18601 families of processors:
18602
18603 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
18604 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
18605 used by system code that manages threads and execution contexts. The compiler
18606 normally does not generate code that modifies the contents of @samp{GBR} and
18607 thus the value is preserved across function calls. Changing the @samp{GBR}
18608 value in user code must be done with caution, since the compiler might use
18609 @samp{GBR} in order to access thread local variables.
18610
18611 @end deftypefn
18612
18613 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
18614 Returns the value that is currently set in the @samp{GBR} register.
18615 Memory loads and stores that use the thread pointer as a base address are
18616 turned into @samp{GBR} based displacement loads and stores, if possible.
18617 For example:
18618 @smallexample
18619 struct my_tcb
18620 @{
18621 int a, b, c, d, e;
18622 @};
18623
18624 int get_tcb_value (void)
18625 @{
18626 // Generate @samp{mov.l @@(8,gbr),r0} instruction
18627 return ((my_tcb*)__builtin_thread_pointer ())->c;
18628 @}
18629
18630 @end smallexample
18631 @end deftypefn
18632
18633 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
18634 Returns the value that is currently set in the @samp{FPSCR} register.
18635 @end deftypefn
18636
18637 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
18638 Sets the @samp{FPSCR} register to the specified value @var{val}, while
18639 preserving the current values of the FR, SZ and PR bits.
18640 @end deftypefn
18641
18642 @node SPARC VIS Built-in Functions
18643 @subsection SPARC VIS Built-in Functions
18644
18645 GCC supports SIMD operations on the SPARC using both the generic vector
18646 extensions (@pxref{Vector Extensions}) as well as built-in functions for
18647 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
18648 switch, the VIS extension is exposed as the following built-in functions:
18649
18650 @smallexample
18651 typedef int v1si __attribute__ ((vector_size (4)));
18652 typedef int v2si __attribute__ ((vector_size (8)));
18653 typedef short v4hi __attribute__ ((vector_size (8)));
18654 typedef short v2hi __attribute__ ((vector_size (4)));
18655 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
18656 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
18657
18658 void __builtin_vis_write_gsr (int64_t);
18659 int64_t __builtin_vis_read_gsr (void);
18660
18661 void * __builtin_vis_alignaddr (void *, long);
18662 void * __builtin_vis_alignaddrl (void *, long);
18663 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
18664 v2si __builtin_vis_faligndatav2si (v2si, v2si);
18665 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
18666 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
18667
18668 v4hi __builtin_vis_fexpand (v4qi);
18669
18670 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
18671 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
18672 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
18673 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
18674 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
18675 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
18676 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
18677
18678 v4qi __builtin_vis_fpack16 (v4hi);
18679 v8qi __builtin_vis_fpack32 (v2si, v8qi);
18680 v2hi __builtin_vis_fpackfix (v2si);
18681 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
18682
18683 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
18684
18685 long __builtin_vis_edge8 (void *, void *);
18686 long __builtin_vis_edge8l (void *, void *);
18687 long __builtin_vis_edge16 (void *, void *);
18688 long __builtin_vis_edge16l (void *, void *);
18689 long __builtin_vis_edge32 (void *, void *);
18690 long __builtin_vis_edge32l (void *, void *);
18691
18692 long __builtin_vis_fcmple16 (v4hi, v4hi);
18693 long __builtin_vis_fcmple32 (v2si, v2si);
18694 long __builtin_vis_fcmpne16 (v4hi, v4hi);
18695 long __builtin_vis_fcmpne32 (v2si, v2si);
18696 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
18697 long __builtin_vis_fcmpgt32 (v2si, v2si);
18698 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
18699 long __builtin_vis_fcmpeq32 (v2si, v2si);
18700
18701 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
18702 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
18703 v2si __builtin_vis_fpadd32 (v2si, v2si);
18704 v1si __builtin_vis_fpadd32s (v1si, v1si);
18705 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
18706 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
18707 v2si __builtin_vis_fpsub32 (v2si, v2si);
18708 v1si __builtin_vis_fpsub32s (v1si, v1si);
18709
18710 long __builtin_vis_array8 (long, long);
18711 long __builtin_vis_array16 (long, long);
18712 long __builtin_vis_array32 (long, long);
18713 @end smallexample
18714
18715 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
18716 functions also become available:
18717
18718 @smallexample
18719 long __builtin_vis_bmask (long, long);
18720 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
18721 v2si __builtin_vis_bshufflev2si (v2si, v2si);
18722 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
18723 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
18724
18725 long __builtin_vis_edge8n (void *, void *);
18726 long __builtin_vis_edge8ln (void *, void *);
18727 long __builtin_vis_edge16n (void *, void *);
18728 long __builtin_vis_edge16ln (void *, void *);
18729 long __builtin_vis_edge32n (void *, void *);
18730 long __builtin_vis_edge32ln (void *, void *);
18731 @end smallexample
18732
18733 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
18734 functions also become available:
18735
18736 @smallexample
18737 void __builtin_vis_cmask8 (long);
18738 void __builtin_vis_cmask16 (long);
18739 void __builtin_vis_cmask32 (long);
18740
18741 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
18742
18743 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
18744 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
18745 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
18746 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
18747 v2si __builtin_vis_fsll16 (v2si, v2si);
18748 v2si __builtin_vis_fslas16 (v2si, v2si);
18749 v2si __builtin_vis_fsrl16 (v2si, v2si);
18750 v2si __builtin_vis_fsra16 (v2si, v2si);
18751
18752 long __builtin_vis_pdistn (v8qi, v8qi);
18753
18754 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
18755
18756 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
18757 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
18758
18759 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
18760 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
18761 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
18762 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
18763 v2si __builtin_vis_fpadds32 (v2si, v2si);
18764 v1si __builtin_vis_fpadds32s (v1si, v1si);
18765 v2si __builtin_vis_fpsubs32 (v2si, v2si);
18766 v1si __builtin_vis_fpsubs32s (v1si, v1si);
18767
18768 long __builtin_vis_fucmple8 (v8qi, v8qi);
18769 long __builtin_vis_fucmpne8 (v8qi, v8qi);
18770 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
18771 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
18772
18773 float __builtin_vis_fhadds (float, float);
18774 double __builtin_vis_fhaddd (double, double);
18775 float __builtin_vis_fhsubs (float, float);
18776 double __builtin_vis_fhsubd (double, double);
18777 float __builtin_vis_fnhadds (float, float);
18778 double __builtin_vis_fnhaddd (double, double);
18779
18780 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
18781 int64_t __builtin_vis_xmulx (int64_t, int64_t);
18782 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
18783 @end smallexample
18784
18785 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
18786 functions also become available:
18787
18788 @smallexample
18789 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
18790 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
18791 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
18792 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
18793
18794 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
18795 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
18796 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
18797 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
18798
18799 long __builtin_vis_fpcmple8 (v8qi, v8qi);
18800 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
18801 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
18802 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
18803 long __builtin_vis_fpcmpule32 (v2si, v2si);
18804 long __builtin_vis_fpcmpugt32 (v2si, v2si);
18805
18806 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
18807 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
18808 v2si __builtin_vis_fpmax32 (v2si, v2si);
18809
18810 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
18811 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
18812 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
18813
18814
18815 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
18816 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
18817 v2si __builtin_vis_fpmin32 (v2si, v2si);
18818
18819 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
18820 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
18821 v2si __builtin_vis_fpminu32 (v2si, v2si);
18822 @end smallexample
18823
18824 @node SPU Built-in Functions
18825 @subsection SPU Built-in Functions
18826
18827 GCC provides extensions for the SPU processor as described in the
18828 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
18829 implementation differs in several ways.
18830
18831 @itemize @bullet
18832
18833 @item
18834 The optional extension of specifying vector constants in parentheses is
18835 not supported.
18836
18837 @item
18838 A vector initializer requires no cast if the vector constant is of the
18839 same type as the variable it is initializing.
18840
18841 @item
18842 If @code{signed} or @code{unsigned} is omitted, the signedness of the
18843 vector type is the default signedness of the base type. The default
18844 varies depending on the operating system, so a portable program should
18845 always specify the signedness.
18846
18847 @item
18848 By default, the keyword @code{__vector} is added. The macro
18849 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
18850 undefined.
18851
18852 @item
18853 GCC allows using a @code{typedef} name as the type specifier for a
18854 vector type.
18855
18856 @item
18857 For C, overloaded functions are implemented with macros so the following
18858 does not work:
18859
18860 @smallexample
18861 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
18862 @end smallexample
18863
18864 @noindent
18865 Since @code{spu_add} is a macro, the vector constant in the example
18866 is treated as four separate arguments. Wrap the entire argument in
18867 parentheses for this to work.
18868
18869 @item
18870 The extended version of @code{__builtin_expect} is not supported.
18871
18872 @end itemize
18873
18874 @emph{Note:} Only the interface described in the aforementioned
18875 specification is supported. Internally, GCC uses built-in functions to
18876 implement the required functionality, but these are not supported and
18877 are subject to change without notice.
18878
18879 @node TI C6X Built-in Functions
18880 @subsection TI C6X Built-in Functions
18881
18882 GCC provides intrinsics to access certain instructions of the TI C6X
18883 processors. These intrinsics, listed below, are available after
18884 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
18885 to C6X instructions.
18886
18887 @smallexample
18888
18889 int _sadd (int, int)
18890 int _ssub (int, int)
18891 int _sadd2 (int, int)
18892 int _ssub2 (int, int)
18893 long long _mpy2 (int, int)
18894 long long _smpy2 (int, int)
18895 int _add4 (int, int)
18896 int _sub4 (int, int)
18897 int _saddu4 (int, int)
18898
18899 int _smpy (int, int)
18900 int _smpyh (int, int)
18901 int _smpyhl (int, int)
18902 int _smpylh (int, int)
18903
18904 int _sshl (int, int)
18905 int _subc (int, int)
18906
18907 int _avg2 (int, int)
18908 int _avgu4 (int, int)
18909
18910 int _clrr (int, int)
18911 int _extr (int, int)
18912 int _extru (int, int)
18913 int _abs (int)
18914 int _abs2 (int)
18915
18916 @end smallexample
18917
18918 @node TILE-Gx Built-in Functions
18919 @subsection TILE-Gx Built-in Functions
18920
18921 GCC provides intrinsics to access every instruction of the TILE-Gx
18922 processor. The intrinsics are of the form:
18923
18924 @smallexample
18925
18926 unsigned long long __insn_@var{op} (...)
18927
18928 @end smallexample
18929
18930 Where @var{op} is the name of the instruction. Refer to the ISA manual
18931 for the complete list of instructions.
18932
18933 GCC also provides intrinsics to directly access the network registers.
18934 The intrinsics are:
18935
18936 @smallexample
18937
18938 unsigned long long __tile_idn0_receive (void)
18939 unsigned long long __tile_idn1_receive (void)
18940 unsigned long long __tile_udn0_receive (void)
18941 unsigned long long __tile_udn1_receive (void)
18942 unsigned long long __tile_udn2_receive (void)
18943 unsigned long long __tile_udn3_receive (void)
18944 void __tile_idn_send (unsigned long long)
18945 void __tile_udn_send (unsigned long long)
18946
18947 @end smallexample
18948
18949 The intrinsic @code{void __tile_network_barrier (void)} is used to
18950 guarantee that no network operations before it are reordered with
18951 those after it.
18952
18953 @node TILEPro Built-in Functions
18954 @subsection TILEPro Built-in Functions
18955
18956 GCC provides intrinsics to access every instruction of the TILEPro
18957 processor. The intrinsics are of the form:
18958
18959 @smallexample
18960
18961 unsigned __insn_@var{op} (...)
18962
18963 @end smallexample
18964
18965 @noindent
18966 where @var{op} is the name of the instruction. Refer to the ISA manual
18967 for the complete list of instructions.
18968
18969 GCC also provides intrinsics to directly access the network registers.
18970 The intrinsics are:
18971
18972 @smallexample
18973
18974 unsigned __tile_idn0_receive (void)
18975 unsigned __tile_idn1_receive (void)
18976 unsigned __tile_sn_receive (void)
18977 unsigned __tile_udn0_receive (void)
18978 unsigned __tile_udn1_receive (void)
18979 unsigned __tile_udn2_receive (void)
18980 unsigned __tile_udn3_receive (void)
18981 void __tile_idn_send (unsigned)
18982 void __tile_sn_send (unsigned)
18983 void __tile_udn_send (unsigned)
18984
18985 @end smallexample
18986
18987 The intrinsic @code{void __tile_network_barrier (void)} is used to
18988 guarantee that no network operations before it are reordered with
18989 those after it.
18990
18991 @node x86 Built-in Functions
18992 @subsection x86 Built-in Functions
18993
18994 These built-in functions are available for the x86-32 and x86-64 family
18995 of computers, depending on the command-line switches used.
18996
18997 If you specify command-line switches such as @option{-msse},
18998 the compiler could use the extended instruction sets even if the built-ins
18999 are not used explicitly in the program. For this reason, applications
19000 that perform run-time CPU detection must compile separate files for each
19001 supported architecture, using the appropriate flags. In particular,
19002 the file containing the CPU detection code should be compiled without
19003 these options.
19004
19005 The following machine modes are available for use with MMX built-in functions
19006 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
19007 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
19008 vector of eight 8-bit integers. Some of the built-in functions operate on
19009 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
19010
19011 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
19012 of two 32-bit floating-point values.
19013
19014 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
19015 floating-point values. Some instructions use a vector of four 32-bit
19016 integers, these use @code{V4SI}. Finally, some instructions operate on an
19017 entire vector register, interpreting it as a 128-bit integer, these use mode
19018 @code{TI}.
19019
19020 The x86-32 and x86-64 family of processors use additional built-in
19021 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
19022 floating point and @code{TC} 128-bit complex floating-point values.
19023
19024 The following floating-point built-in functions are always available. All
19025 of them implement the function that is part of the name.
19026
19027 @smallexample
19028 __float128 __builtin_fabsq (__float128)
19029 __float128 __builtin_copysignq (__float128, __float128)
19030 @end smallexample
19031
19032 The following built-in functions are always available.
19033
19034 @table @code
19035 @item __float128 __builtin_infq (void)
19036 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
19037 @findex __builtin_infq
19038
19039 @item __float128 __builtin_huge_valq (void)
19040 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
19041 @findex __builtin_huge_valq
19042
19043 @item __float128 __builtin_nanq (void)
19044 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
19045 @findex __builtin_nanq
19046
19047 @item __float128 __builtin_nansq (void)
19048 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
19049 @findex __builtin_nansq
19050 @end table
19051
19052 The following built-in function is always available.
19053
19054 @table @code
19055 @item void __builtin_ia32_pause (void)
19056 Generates the @code{pause} machine instruction with a compiler memory
19057 barrier.
19058 @end table
19059
19060 The following built-in functions are always available and can be used to
19061 check the target platform type.
19062
19063 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
19064 This function runs the CPU detection code to check the type of CPU and the
19065 features supported. This built-in function needs to be invoked along with the built-in functions
19066 to check CPU type and features, @code{__builtin_cpu_is} and
19067 @code{__builtin_cpu_supports}, only when used in a function that is
19068 executed before any constructors are called. The CPU detection code is
19069 automatically executed in a very high priority constructor.
19070
19071 For example, this function has to be used in @code{ifunc} resolvers that
19072 check for CPU type using the built-in functions @code{__builtin_cpu_is}
19073 and @code{__builtin_cpu_supports}, or in constructors on targets that
19074 don't support constructor priority.
19075 @smallexample
19076
19077 static void (*resolve_memcpy (void)) (void)
19078 @{
19079 // ifunc resolvers fire before constructors, explicitly call the init
19080 // function.
19081 __builtin_cpu_init ();
19082 if (__builtin_cpu_supports ("ssse3"))
19083 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
19084 else
19085 return default_memcpy;
19086 @}
19087
19088 void *memcpy (void *, const void *, size_t)
19089 __attribute__ ((ifunc ("resolve_memcpy")));
19090 @end smallexample
19091
19092 @end deftypefn
19093
19094 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
19095 This function returns a positive integer if the run-time CPU
19096 is of type @var{cpuname}
19097 and returns @code{0} otherwise. The following CPU names can be detected:
19098
19099 @table @samp
19100 @item intel
19101 Intel CPU.
19102
19103 @item atom
19104 Intel Atom CPU.
19105
19106 @item core2
19107 Intel Core 2 CPU.
19108
19109 @item corei7
19110 Intel Core i7 CPU.
19111
19112 @item nehalem
19113 Intel Core i7 Nehalem CPU.
19114
19115 @item westmere
19116 Intel Core i7 Westmere CPU.
19117
19118 @item sandybridge
19119 Intel Core i7 Sandy Bridge CPU.
19120
19121 @item amd
19122 AMD CPU.
19123
19124 @item amdfam10h
19125 AMD Family 10h CPU.
19126
19127 @item barcelona
19128 AMD Family 10h Barcelona CPU.
19129
19130 @item shanghai
19131 AMD Family 10h Shanghai CPU.
19132
19133 @item istanbul
19134 AMD Family 10h Istanbul CPU.
19135
19136 @item btver1
19137 AMD Family 14h CPU.
19138
19139 @item amdfam15h
19140 AMD Family 15h CPU.
19141
19142 @item bdver1
19143 AMD Family 15h Bulldozer version 1.
19144
19145 @item bdver2
19146 AMD Family 15h Bulldozer version 2.
19147
19148 @item bdver3
19149 AMD Family 15h Bulldozer version 3.
19150
19151 @item bdver4
19152 AMD Family 15h Bulldozer version 4.
19153
19154 @item btver2
19155 AMD Family 16h CPU.
19156
19157 @item znver1
19158 AMD Family 17h CPU.
19159 @end table
19160
19161 Here is an example:
19162 @smallexample
19163 if (__builtin_cpu_is ("corei7"))
19164 @{
19165 do_corei7 (); // Core i7 specific implementation.
19166 @}
19167 else
19168 @{
19169 do_generic (); // Generic implementation.
19170 @}
19171 @end smallexample
19172 @end deftypefn
19173
19174 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
19175 This function returns a positive integer if the run-time CPU
19176 supports @var{feature}
19177 and returns @code{0} otherwise. The following features can be detected:
19178
19179 @table @samp
19180 @item cmov
19181 CMOV instruction.
19182 @item mmx
19183 MMX instructions.
19184 @item popcnt
19185 POPCNT instruction.
19186 @item sse
19187 SSE instructions.
19188 @item sse2
19189 SSE2 instructions.
19190 @item sse3
19191 SSE3 instructions.
19192 @item ssse3
19193 SSSE3 instructions.
19194 @item sse4.1
19195 SSE4.1 instructions.
19196 @item sse4.2
19197 SSE4.2 instructions.
19198 @item avx
19199 AVX instructions.
19200 @item avx2
19201 AVX2 instructions.
19202 @item avx512f
19203 AVX512F instructions.
19204 @end table
19205
19206 Here is an example:
19207 @smallexample
19208 if (__builtin_cpu_supports ("popcnt"))
19209 @{
19210 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
19211 @}
19212 else
19213 @{
19214 count = generic_countbits (n); //generic implementation.
19215 @}
19216 @end smallexample
19217 @end deftypefn
19218
19219
19220 The following built-in functions are made available by @option{-mmmx}.
19221 All of them generate the machine instruction that is part of the name.
19222
19223 @smallexample
19224 v8qi __builtin_ia32_paddb (v8qi, v8qi)
19225 v4hi __builtin_ia32_paddw (v4hi, v4hi)
19226 v2si __builtin_ia32_paddd (v2si, v2si)
19227 v8qi __builtin_ia32_psubb (v8qi, v8qi)
19228 v4hi __builtin_ia32_psubw (v4hi, v4hi)
19229 v2si __builtin_ia32_psubd (v2si, v2si)
19230 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
19231 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
19232 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
19233 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
19234 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
19235 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
19236 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
19237 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
19238 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
19239 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
19240 di __builtin_ia32_pand (di, di)
19241 di __builtin_ia32_pandn (di,di)
19242 di __builtin_ia32_por (di, di)
19243 di __builtin_ia32_pxor (di, di)
19244 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
19245 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
19246 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
19247 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
19248 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
19249 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
19250 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
19251 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
19252 v2si __builtin_ia32_punpckhdq (v2si, v2si)
19253 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
19254 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
19255 v2si __builtin_ia32_punpckldq (v2si, v2si)
19256 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
19257 v4hi __builtin_ia32_packssdw (v2si, v2si)
19258 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
19259
19260 v4hi __builtin_ia32_psllw (v4hi, v4hi)
19261 v2si __builtin_ia32_pslld (v2si, v2si)
19262 v1di __builtin_ia32_psllq (v1di, v1di)
19263 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
19264 v2si __builtin_ia32_psrld (v2si, v2si)
19265 v1di __builtin_ia32_psrlq (v1di, v1di)
19266 v4hi __builtin_ia32_psraw (v4hi, v4hi)
19267 v2si __builtin_ia32_psrad (v2si, v2si)
19268 v4hi __builtin_ia32_psllwi (v4hi, int)
19269 v2si __builtin_ia32_pslldi (v2si, int)
19270 v1di __builtin_ia32_psllqi (v1di, int)
19271 v4hi __builtin_ia32_psrlwi (v4hi, int)
19272 v2si __builtin_ia32_psrldi (v2si, int)
19273 v1di __builtin_ia32_psrlqi (v1di, int)
19274 v4hi __builtin_ia32_psrawi (v4hi, int)
19275 v2si __builtin_ia32_psradi (v2si, int)
19276
19277 @end smallexample
19278
19279 The following built-in functions are made available either with
19280 @option{-msse}, or with a combination of @option{-m3dnow} and
19281 @option{-march=athlon}. All of them generate the machine
19282 instruction that is part of the name.
19283
19284 @smallexample
19285 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
19286 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
19287 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
19288 v1di __builtin_ia32_psadbw (v8qi, v8qi)
19289 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
19290 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
19291 v8qi __builtin_ia32_pminub (v8qi, v8qi)
19292 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
19293 int __builtin_ia32_pmovmskb (v8qi)
19294 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
19295 void __builtin_ia32_movntq (di *, di)
19296 void __builtin_ia32_sfence (void)
19297 @end smallexample
19298
19299 The following built-in functions are available when @option{-msse} is used.
19300 All of them generate the machine instruction that is part of the name.
19301
19302 @smallexample
19303 int __builtin_ia32_comieq (v4sf, v4sf)
19304 int __builtin_ia32_comineq (v4sf, v4sf)
19305 int __builtin_ia32_comilt (v4sf, v4sf)
19306 int __builtin_ia32_comile (v4sf, v4sf)
19307 int __builtin_ia32_comigt (v4sf, v4sf)
19308 int __builtin_ia32_comige (v4sf, v4sf)
19309 int __builtin_ia32_ucomieq (v4sf, v4sf)
19310 int __builtin_ia32_ucomineq (v4sf, v4sf)
19311 int __builtin_ia32_ucomilt (v4sf, v4sf)
19312 int __builtin_ia32_ucomile (v4sf, v4sf)
19313 int __builtin_ia32_ucomigt (v4sf, v4sf)
19314 int __builtin_ia32_ucomige (v4sf, v4sf)
19315 v4sf __builtin_ia32_addps (v4sf, v4sf)
19316 v4sf __builtin_ia32_subps (v4sf, v4sf)
19317 v4sf __builtin_ia32_mulps (v4sf, v4sf)
19318 v4sf __builtin_ia32_divps (v4sf, v4sf)
19319 v4sf __builtin_ia32_addss (v4sf, v4sf)
19320 v4sf __builtin_ia32_subss (v4sf, v4sf)
19321 v4sf __builtin_ia32_mulss (v4sf, v4sf)
19322 v4sf __builtin_ia32_divss (v4sf, v4sf)
19323 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
19324 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
19325 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
19326 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
19327 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
19328 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
19329 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
19330 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
19331 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
19332 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
19333 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
19334 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
19335 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
19336 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
19337 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
19338 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
19339 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
19340 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
19341 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
19342 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
19343 v4sf __builtin_ia32_maxps (v4sf, v4sf)
19344 v4sf __builtin_ia32_maxss (v4sf, v4sf)
19345 v4sf __builtin_ia32_minps (v4sf, v4sf)
19346 v4sf __builtin_ia32_minss (v4sf, v4sf)
19347 v4sf __builtin_ia32_andps (v4sf, v4sf)
19348 v4sf __builtin_ia32_andnps (v4sf, v4sf)
19349 v4sf __builtin_ia32_orps (v4sf, v4sf)
19350 v4sf __builtin_ia32_xorps (v4sf, v4sf)
19351 v4sf __builtin_ia32_movss (v4sf, v4sf)
19352 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
19353 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
19354 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
19355 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
19356 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
19357 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
19358 v2si __builtin_ia32_cvtps2pi (v4sf)
19359 int __builtin_ia32_cvtss2si (v4sf)
19360 v2si __builtin_ia32_cvttps2pi (v4sf)
19361 int __builtin_ia32_cvttss2si (v4sf)
19362 v4sf __builtin_ia32_rcpps (v4sf)
19363 v4sf __builtin_ia32_rsqrtps (v4sf)
19364 v4sf __builtin_ia32_sqrtps (v4sf)
19365 v4sf __builtin_ia32_rcpss (v4sf)
19366 v4sf __builtin_ia32_rsqrtss (v4sf)
19367 v4sf __builtin_ia32_sqrtss (v4sf)
19368 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
19369 void __builtin_ia32_movntps (float *, v4sf)
19370 int __builtin_ia32_movmskps (v4sf)
19371 @end smallexample
19372
19373 The following built-in functions are available when @option{-msse} is used.
19374
19375 @table @code
19376 @item v4sf __builtin_ia32_loadups (float *)
19377 Generates the @code{movups} machine instruction as a load from memory.
19378 @item void __builtin_ia32_storeups (float *, v4sf)
19379 Generates the @code{movups} machine instruction as a store to memory.
19380 @item v4sf __builtin_ia32_loadss (float *)
19381 Generates the @code{movss} machine instruction as a load from memory.
19382 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
19383 Generates the @code{movhps} machine instruction as a load from memory.
19384 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
19385 Generates the @code{movlps} machine instruction as a load from memory
19386 @item void __builtin_ia32_storehps (v2sf *, v4sf)
19387 Generates the @code{movhps} machine instruction as a store to memory.
19388 @item void __builtin_ia32_storelps (v2sf *, v4sf)
19389 Generates the @code{movlps} machine instruction as a store to memory.
19390 @end table
19391
19392 The following built-in functions are available when @option{-msse2} is used.
19393 All of them generate the machine instruction that is part of the name.
19394
19395 @smallexample
19396 int __builtin_ia32_comisdeq (v2df, v2df)
19397 int __builtin_ia32_comisdlt (v2df, v2df)
19398 int __builtin_ia32_comisdle (v2df, v2df)
19399 int __builtin_ia32_comisdgt (v2df, v2df)
19400 int __builtin_ia32_comisdge (v2df, v2df)
19401 int __builtin_ia32_comisdneq (v2df, v2df)
19402 int __builtin_ia32_ucomisdeq (v2df, v2df)
19403 int __builtin_ia32_ucomisdlt (v2df, v2df)
19404 int __builtin_ia32_ucomisdle (v2df, v2df)
19405 int __builtin_ia32_ucomisdgt (v2df, v2df)
19406 int __builtin_ia32_ucomisdge (v2df, v2df)
19407 int __builtin_ia32_ucomisdneq (v2df, v2df)
19408 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
19409 v2df __builtin_ia32_cmpltpd (v2df, v2df)
19410 v2df __builtin_ia32_cmplepd (v2df, v2df)
19411 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
19412 v2df __builtin_ia32_cmpgepd (v2df, v2df)
19413 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
19414 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
19415 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
19416 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
19417 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
19418 v2df __builtin_ia32_cmpngepd (v2df, v2df)
19419 v2df __builtin_ia32_cmpordpd (v2df, v2df)
19420 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
19421 v2df __builtin_ia32_cmpltsd (v2df, v2df)
19422 v2df __builtin_ia32_cmplesd (v2df, v2df)
19423 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
19424 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
19425 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
19426 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
19427 v2df __builtin_ia32_cmpordsd (v2df, v2df)
19428 v2di __builtin_ia32_paddq (v2di, v2di)
19429 v2di __builtin_ia32_psubq (v2di, v2di)
19430 v2df __builtin_ia32_addpd (v2df, v2df)
19431 v2df __builtin_ia32_subpd (v2df, v2df)
19432 v2df __builtin_ia32_mulpd (v2df, v2df)
19433 v2df __builtin_ia32_divpd (v2df, v2df)
19434 v2df __builtin_ia32_addsd (v2df, v2df)
19435 v2df __builtin_ia32_subsd (v2df, v2df)
19436 v2df __builtin_ia32_mulsd (v2df, v2df)
19437 v2df __builtin_ia32_divsd (v2df, v2df)
19438 v2df __builtin_ia32_minpd (v2df, v2df)
19439 v2df __builtin_ia32_maxpd (v2df, v2df)
19440 v2df __builtin_ia32_minsd (v2df, v2df)
19441 v2df __builtin_ia32_maxsd (v2df, v2df)
19442 v2df __builtin_ia32_andpd (v2df, v2df)
19443 v2df __builtin_ia32_andnpd (v2df, v2df)
19444 v2df __builtin_ia32_orpd (v2df, v2df)
19445 v2df __builtin_ia32_xorpd (v2df, v2df)
19446 v2df __builtin_ia32_movsd (v2df, v2df)
19447 v2df __builtin_ia32_unpckhpd (v2df, v2df)
19448 v2df __builtin_ia32_unpcklpd (v2df, v2df)
19449 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
19450 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
19451 v4si __builtin_ia32_paddd128 (v4si, v4si)
19452 v2di __builtin_ia32_paddq128 (v2di, v2di)
19453 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
19454 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
19455 v4si __builtin_ia32_psubd128 (v4si, v4si)
19456 v2di __builtin_ia32_psubq128 (v2di, v2di)
19457 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
19458 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
19459 v2di __builtin_ia32_pand128 (v2di, v2di)
19460 v2di __builtin_ia32_pandn128 (v2di, v2di)
19461 v2di __builtin_ia32_por128 (v2di, v2di)
19462 v2di __builtin_ia32_pxor128 (v2di, v2di)
19463 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
19464 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
19465 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
19466 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
19467 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
19468 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
19469 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
19470 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
19471 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
19472 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
19473 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
19474 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
19475 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
19476 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
19477 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
19478 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
19479 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
19480 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
19481 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
19482 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
19483 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
19484 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
19485 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
19486 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
19487 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
19488 v2df __builtin_ia32_loadupd (double *)
19489 void __builtin_ia32_storeupd (double *, v2df)
19490 v2df __builtin_ia32_loadhpd (v2df, double const *)
19491 v2df __builtin_ia32_loadlpd (v2df, double const *)
19492 int __builtin_ia32_movmskpd (v2df)
19493 int __builtin_ia32_pmovmskb128 (v16qi)
19494 void __builtin_ia32_movnti (int *, int)
19495 void __builtin_ia32_movnti64 (long long int *, long long int)
19496 void __builtin_ia32_movntpd (double *, v2df)
19497 void __builtin_ia32_movntdq (v2df *, v2df)
19498 v4si __builtin_ia32_pshufd (v4si, int)
19499 v8hi __builtin_ia32_pshuflw (v8hi, int)
19500 v8hi __builtin_ia32_pshufhw (v8hi, int)
19501 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
19502 v2df __builtin_ia32_sqrtpd (v2df)
19503 v2df __builtin_ia32_sqrtsd (v2df)
19504 v2df __builtin_ia32_shufpd (v2df, v2df, int)
19505 v2df __builtin_ia32_cvtdq2pd (v4si)
19506 v4sf __builtin_ia32_cvtdq2ps (v4si)
19507 v4si __builtin_ia32_cvtpd2dq (v2df)
19508 v2si __builtin_ia32_cvtpd2pi (v2df)
19509 v4sf __builtin_ia32_cvtpd2ps (v2df)
19510 v4si __builtin_ia32_cvttpd2dq (v2df)
19511 v2si __builtin_ia32_cvttpd2pi (v2df)
19512 v2df __builtin_ia32_cvtpi2pd (v2si)
19513 int __builtin_ia32_cvtsd2si (v2df)
19514 int __builtin_ia32_cvttsd2si (v2df)
19515 long long __builtin_ia32_cvtsd2si64 (v2df)
19516 long long __builtin_ia32_cvttsd2si64 (v2df)
19517 v4si __builtin_ia32_cvtps2dq (v4sf)
19518 v2df __builtin_ia32_cvtps2pd (v4sf)
19519 v4si __builtin_ia32_cvttps2dq (v4sf)
19520 v2df __builtin_ia32_cvtsi2sd (v2df, int)
19521 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
19522 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
19523 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
19524 void __builtin_ia32_clflush (const void *)
19525 void __builtin_ia32_lfence (void)
19526 void __builtin_ia32_mfence (void)
19527 v16qi __builtin_ia32_loaddqu (const char *)
19528 void __builtin_ia32_storedqu (char *, v16qi)
19529 v1di __builtin_ia32_pmuludq (v2si, v2si)
19530 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
19531 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
19532 v4si __builtin_ia32_pslld128 (v4si, v4si)
19533 v2di __builtin_ia32_psllq128 (v2di, v2di)
19534 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
19535 v4si __builtin_ia32_psrld128 (v4si, v4si)
19536 v2di __builtin_ia32_psrlq128 (v2di, v2di)
19537 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
19538 v4si __builtin_ia32_psrad128 (v4si, v4si)
19539 v2di __builtin_ia32_pslldqi128 (v2di, int)
19540 v8hi __builtin_ia32_psllwi128 (v8hi, int)
19541 v4si __builtin_ia32_pslldi128 (v4si, int)
19542 v2di __builtin_ia32_psllqi128 (v2di, int)
19543 v2di __builtin_ia32_psrldqi128 (v2di, int)
19544 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
19545 v4si __builtin_ia32_psrldi128 (v4si, int)
19546 v2di __builtin_ia32_psrlqi128 (v2di, int)
19547 v8hi __builtin_ia32_psrawi128 (v8hi, int)
19548 v4si __builtin_ia32_psradi128 (v4si, int)
19549 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
19550 v2di __builtin_ia32_movq128 (v2di)
19551 @end smallexample
19552
19553 The following built-in functions are available when @option{-msse3} is used.
19554 All of them generate the machine instruction that is part of the name.
19555
19556 @smallexample
19557 v2df __builtin_ia32_addsubpd (v2df, v2df)
19558 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
19559 v2df __builtin_ia32_haddpd (v2df, v2df)
19560 v4sf __builtin_ia32_haddps (v4sf, v4sf)
19561 v2df __builtin_ia32_hsubpd (v2df, v2df)
19562 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
19563 v16qi __builtin_ia32_lddqu (char const *)
19564 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
19565 v4sf __builtin_ia32_movshdup (v4sf)
19566 v4sf __builtin_ia32_movsldup (v4sf)
19567 void __builtin_ia32_mwait (unsigned int, unsigned int)
19568 @end smallexample
19569
19570 The following built-in functions are available when @option{-mssse3} is used.
19571 All of them generate the machine instruction that is part of the name.
19572
19573 @smallexample
19574 v2si __builtin_ia32_phaddd (v2si, v2si)
19575 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
19576 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
19577 v2si __builtin_ia32_phsubd (v2si, v2si)
19578 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
19579 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
19580 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
19581 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
19582 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
19583 v8qi __builtin_ia32_psignb (v8qi, v8qi)
19584 v2si __builtin_ia32_psignd (v2si, v2si)
19585 v4hi __builtin_ia32_psignw (v4hi, v4hi)
19586 v1di __builtin_ia32_palignr (v1di, v1di, int)
19587 v8qi __builtin_ia32_pabsb (v8qi)
19588 v2si __builtin_ia32_pabsd (v2si)
19589 v4hi __builtin_ia32_pabsw (v4hi)
19590 @end smallexample
19591
19592 The following built-in functions are available when @option{-mssse3} is used.
19593 All of them generate the machine instruction that is part of the name.
19594
19595 @smallexample
19596 v4si __builtin_ia32_phaddd128 (v4si, v4si)
19597 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
19598 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
19599 v4si __builtin_ia32_phsubd128 (v4si, v4si)
19600 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
19601 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
19602 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
19603 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
19604 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
19605 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
19606 v4si __builtin_ia32_psignd128 (v4si, v4si)
19607 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
19608 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
19609 v16qi __builtin_ia32_pabsb128 (v16qi)
19610 v4si __builtin_ia32_pabsd128 (v4si)
19611 v8hi __builtin_ia32_pabsw128 (v8hi)
19612 @end smallexample
19613
19614 The following built-in functions are available when @option{-msse4.1} is
19615 used. All of them generate the machine instruction that is part of the
19616 name.
19617
19618 @smallexample
19619 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
19620 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
19621 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
19622 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
19623 v2df __builtin_ia32_dppd (v2df, v2df, const int)
19624 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
19625 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
19626 v2di __builtin_ia32_movntdqa (v2di *);
19627 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
19628 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
19629 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
19630 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
19631 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
19632 v8hi __builtin_ia32_phminposuw128 (v8hi)
19633 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
19634 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
19635 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
19636 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
19637 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
19638 v4si __builtin_ia32_pminsd128 (v4si, v4si)
19639 v4si __builtin_ia32_pminud128 (v4si, v4si)
19640 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
19641 v4si __builtin_ia32_pmovsxbd128 (v16qi)
19642 v2di __builtin_ia32_pmovsxbq128 (v16qi)
19643 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
19644 v2di __builtin_ia32_pmovsxdq128 (v4si)
19645 v4si __builtin_ia32_pmovsxwd128 (v8hi)
19646 v2di __builtin_ia32_pmovsxwq128 (v8hi)
19647 v4si __builtin_ia32_pmovzxbd128 (v16qi)
19648 v2di __builtin_ia32_pmovzxbq128 (v16qi)
19649 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
19650 v2di __builtin_ia32_pmovzxdq128 (v4si)
19651 v4si __builtin_ia32_pmovzxwd128 (v8hi)
19652 v2di __builtin_ia32_pmovzxwq128 (v8hi)
19653 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
19654 v4si __builtin_ia32_pmulld128 (v4si, v4si)
19655 int __builtin_ia32_ptestc128 (v2di, v2di)
19656 int __builtin_ia32_ptestnzc128 (v2di, v2di)
19657 int __builtin_ia32_ptestz128 (v2di, v2di)
19658 v2df __builtin_ia32_roundpd (v2df, const int)
19659 v4sf __builtin_ia32_roundps (v4sf, const int)
19660 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
19661 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
19662 @end smallexample
19663
19664 The following built-in functions are available when @option{-msse4.1} is
19665 used.
19666
19667 @table @code
19668 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
19669 Generates the @code{insertps} machine instruction.
19670 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
19671 Generates the @code{pextrb} machine instruction.
19672 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
19673 Generates the @code{pinsrb} machine instruction.
19674 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
19675 Generates the @code{pinsrd} machine instruction.
19676 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
19677 Generates the @code{pinsrq} machine instruction in 64bit mode.
19678 @end table
19679
19680 The following built-in functions are changed to generate new SSE4.1
19681 instructions when @option{-msse4.1} is used.
19682
19683 @table @code
19684 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
19685 Generates the @code{extractps} machine instruction.
19686 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
19687 Generates the @code{pextrd} machine instruction.
19688 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
19689 Generates the @code{pextrq} machine instruction in 64bit mode.
19690 @end table
19691
19692 The following built-in functions are available when @option{-msse4.2} is
19693 used. All of them generate the machine instruction that is part of the
19694 name.
19695
19696 @smallexample
19697 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
19698 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
19699 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
19700 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
19701 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
19702 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
19703 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
19704 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
19705 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
19706 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
19707 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
19708 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
19709 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
19710 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
19711 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
19712 @end smallexample
19713
19714 The following built-in functions are available when @option{-msse4.2} is
19715 used.
19716
19717 @table @code
19718 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
19719 Generates the @code{crc32b} machine instruction.
19720 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
19721 Generates the @code{crc32w} machine instruction.
19722 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
19723 Generates the @code{crc32l} machine instruction.
19724 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
19725 Generates the @code{crc32q} machine instruction.
19726 @end table
19727
19728 The following built-in functions are changed to generate new SSE4.2
19729 instructions when @option{-msse4.2} is used.
19730
19731 @table @code
19732 @item int __builtin_popcount (unsigned int)
19733 Generates the @code{popcntl} machine instruction.
19734 @item int __builtin_popcountl (unsigned long)
19735 Generates the @code{popcntl} or @code{popcntq} machine instruction,
19736 depending on the size of @code{unsigned long}.
19737 @item int __builtin_popcountll (unsigned long long)
19738 Generates the @code{popcntq} machine instruction.
19739 @end table
19740
19741 The following built-in functions are available when @option{-mavx} is
19742 used. All of them generate the machine instruction that is part of the
19743 name.
19744
19745 @smallexample
19746 v4df __builtin_ia32_addpd256 (v4df,v4df)
19747 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
19748 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
19749 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
19750 v4df __builtin_ia32_andnpd256 (v4df,v4df)
19751 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
19752 v4df __builtin_ia32_andpd256 (v4df,v4df)
19753 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
19754 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
19755 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
19756 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
19757 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
19758 v2df __builtin_ia32_cmppd (v2df,v2df,int)
19759 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
19760 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
19761 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
19762 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
19763 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
19764 v4df __builtin_ia32_cvtdq2pd256 (v4si)
19765 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
19766 v4si __builtin_ia32_cvtpd2dq256 (v4df)
19767 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
19768 v8si __builtin_ia32_cvtps2dq256 (v8sf)
19769 v4df __builtin_ia32_cvtps2pd256 (v4sf)
19770 v4si __builtin_ia32_cvttpd2dq256 (v4df)
19771 v8si __builtin_ia32_cvttps2dq256 (v8sf)
19772 v4df __builtin_ia32_divpd256 (v4df,v4df)
19773 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
19774 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
19775 v4df __builtin_ia32_haddpd256 (v4df,v4df)
19776 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
19777 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
19778 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
19779 v32qi __builtin_ia32_lddqu256 (pcchar)
19780 v32qi __builtin_ia32_loaddqu256 (pcchar)
19781 v4df __builtin_ia32_loadupd256 (pcdouble)
19782 v8sf __builtin_ia32_loadups256 (pcfloat)
19783 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
19784 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
19785 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
19786 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
19787 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
19788 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
19789 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
19790 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
19791 v4df __builtin_ia32_maxpd256 (v4df,v4df)
19792 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
19793 v4df __builtin_ia32_minpd256 (v4df,v4df)
19794 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
19795 v4df __builtin_ia32_movddup256 (v4df)
19796 int __builtin_ia32_movmskpd256 (v4df)
19797 int __builtin_ia32_movmskps256 (v8sf)
19798 v8sf __builtin_ia32_movshdup256 (v8sf)
19799 v8sf __builtin_ia32_movsldup256 (v8sf)
19800 v4df __builtin_ia32_mulpd256 (v4df,v4df)
19801 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
19802 v4df __builtin_ia32_orpd256 (v4df,v4df)
19803 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
19804 v2df __builtin_ia32_pd_pd256 (v4df)
19805 v4df __builtin_ia32_pd256_pd (v2df)
19806 v4sf __builtin_ia32_ps_ps256 (v8sf)
19807 v8sf __builtin_ia32_ps256_ps (v4sf)
19808 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
19809 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
19810 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
19811 v8sf __builtin_ia32_rcpps256 (v8sf)
19812 v4df __builtin_ia32_roundpd256 (v4df,int)
19813 v8sf __builtin_ia32_roundps256 (v8sf,int)
19814 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
19815 v8sf __builtin_ia32_rsqrtps256 (v8sf)
19816 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
19817 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
19818 v4si __builtin_ia32_si_si256 (v8si)
19819 v8si __builtin_ia32_si256_si (v4si)
19820 v4df __builtin_ia32_sqrtpd256 (v4df)
19821 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
19822 v8sf __builtin_ia32_sqrtps256 (v8sf)
19823 void __builtin_ia32_storedqu256 (pchar,v32qi)
19824 void __builtin_ia32_storeupd256 (pdouble,v4df)
19825 void __builtin_ia32_storeups256 (pfloat,v8sf)
19826 v4df __builtin_ia32_subpd256 (v4df,v4df)
19827 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
19828 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
19829 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
19830 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
19831 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
19832 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
19833 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
19834 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
19835 v4sf __builtin_ia32_vbroadcastss (pcfloat)
19836 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
19837 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
19838 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
19839 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
19840 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
19841 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
19842 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
19843 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
19844 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
19845 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
19846 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
19847 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
19848 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
19849 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
19850 v2df __builtin_ia32_vpermilpd (v2df,int)
19851 v4df __builtin_ia32_vpermilpd256 (v4df,int)
19852 v4sf __builtin_ia32_vpermilps (v4sf,int)
19853 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
19854 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
19855 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
19856 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
19857 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
19858 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
19859 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
19860 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
19861 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
19862 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
19863 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
19864 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
19865 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
19866 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
19867 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
19868 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
19869 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
19870 void __builtin_ia32_vzeroall (void)
19871 void __builtin_ia32_vzeroupper (void)
19872 v4df __builtin_ia32_xorpd256 (v4df,v4df)
19873 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
19874 @end smallexample
19875
19876 The following built-in functions are available when @option{-mavx2} is
19877 used. All of them generate the machine instruction that is part of the
19878 name.
19879
19880 @smallexample
19881 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
19882 v32qi __builtin_ia32_pabsb256 (v32qi)
19883 v16hi __builtin_ia32_pabsw256 (v16hi)
19884 v8si __builtin_ia32_pabsd256 (v8si)
19885 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
19886 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
19887 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
19888 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
19889 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
19890 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
19891 v8si __builtin_ia32_paddd256 (v8si,v8si)
19892 v4di __builtin_ia32_paddq256 (v4di,v4di)
19893 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
19894 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
19895 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
19896 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
19897 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
19898 v4di __builtin_ia32_andsi256 (v4di,v4di)
19899 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
19900 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
19901 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
19902 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
19903 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
19904 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
19905 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
19906 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
19907 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
19908 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
19909 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
19910 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
19911 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
19912 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
19913 v8si __builtin_ia32_phaddd256 (v8si,v8si)
19914 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
19915 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
19916 v8si __builtin_ia32_phsubd256 (v8si,v8si)
19917 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
19918 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
19919 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
19920 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
19921 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
19922 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
19923 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
19924 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
19925 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
19926 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
19927 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
19928 v8si __builtin_ia32_pminsd256 (v8si,v8si)
19929 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
19930 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
19931 v8si __builtin_ia32_pminud256 (v8si,v8si)
19932 int __builtin_ia32_pmovmskb256 (v32qi)
19933 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
19934 v8si __builtin_ia32_pmovsxbd256 (v16qi)
19935 v4di __builtin_ia32_pmovsxbq256 (v16qi)
19936 v8si __builtin_ia32_pmovsxwd256 (v8hi)
19937 v4di __builtin_ia32_pmovsxwq256 (v8hi)
19938 v4di __builtin_ia32_pmovsxdq256 (v4si)
19939 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
19940 v8si __builtin_ia32_pmovzxbd256 (v16qi)
19941 v4di __builtin_ia32_pmovzxbq256 (v16qi)
19942 v8si __builtin_ia32_pmovzxwd256 (v8hi)
19943 v4di __builtin_ia32_pmovzxwq256 (v8hi)
19944 v4di __builtin_ia32_pmovzxdq256 (v4si)
19945 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
19946 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
19947 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
19948 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
19949 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
19950 v8si __builtin_ia32_pmulld256 (v8si,v8si)
19951 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
19952 v4di __builtin_ia32_por256 (v4di,v4di)
19953 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
19954 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
19955 v8si __builtin_ia32_pshufd256 (v8si,int)
19956 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
19957 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
19958 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
19959 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
19960 v8si __builtin_ia32_psignd256 (v8si,v8si)
19961 v4di __builtin_ia32_pslldqi256 (v4di,int)
19962 v16hi __builtin_ia32_psllwi256 (16hi,int)
19963 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
19964 v8si __builtin_ia32_pslldi256 (v8si,int)
19965 v8si __builtin_ia32_pslld256(v8si,v4si)
19966 v4di __builtin_ia32_psllqi256 (v4di,int)
19967 v4di __builtin_ia32_psllq256(v4di,v2di)
19968 v16hi __builtin_ia32_psrawi256 (v16hi,int)
19969 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
19970 v8si __builtin_ia32_psradi256 (v8si,int)
19971 v8si __builtin_ia32_psrad256 (v8si,v4si)
19972 v4di __builtin_ia32_psrldqi256 (v4di, int)
19973 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
19974 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
19975 v8si __builtin_ia32_psrldi256 (v8si,int)
19976 v8si __builtin_ia32_psrld256 (v8si,v4si)
19977 v4di __builtin_ia32_psrlqi256 (v4di,int)
19978 v4di __builtin_ia32_psrlq256(v4di,v2di)
19979 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
19980 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
19981 v8si __builtin_ia32_psubd256 (v8si,v8si)
19982 v4di __builtin_ia32_psubq256 (v4di,v4di)
19983 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
19984 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
19985 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
19986 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
19987 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
19988 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
19989 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
19990 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
19991 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
19992 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
19993 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
19994 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
19995 v4di __builtin_ia32_pxor256 (v4di,v4di)
19996 v4di __builtin_ia32_movntdqa256 (pv4di)
19997 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
19998 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
19999 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
20000 v4di __builtin_ia32_vbroadcastsi256 (v2di)
20001 v4si __builtin_ia32_pblendd128 (v4si,v4si)
20002 v8si __builtin_ia32_pblendd256 (v8si,v8si)
20003 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
20004 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
20005 v8si __builtin_ia32_pbroadcastd256 (v4si)
20006 v4di __builtin_ia32_pbroadcastq256 (v2di)
20007 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
20008 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
20009 v4si __builtin_ia32_pbroadcastd128 (v4si)
20010 v2di __builtin_ia32_pbroadcastq128 (v2di)
20011 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
20012 v4df __builtin_ia32_permdf256 (v4df,int)
20013 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
20014 v4di __builtin_ia32_permdi256 (v4di,int)
20015 v4di __builtin_ia32_permti256 (v4di,v4di,int)
20016 v4di __builtin_ia32_extract128i256 (v4di,int)
20017 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
20018 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
20019 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
20020 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
20021 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
20022 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
20023 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
20024 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
20025 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
20026 v8si __builtin_ia32_psllv8si (v8si,v8si)
20027 v4si __builtin_ia32_psllv4si (v4si,v4si)
20028 v4di __builtin_ia32_psllv4di (v4di,v4di)
20029 v2di __builtin_ia32_psllv2di (v2di,v2di)
20030 v8si __builtin_ia32_psrav8si (v8si,v8si)
20031 v4si __builtin_ia32_psrav4si (v4si,v4si)
20032 v8si __builtin_ia32_psrlv8si (v8si,v8si)
20033 v4si __builtin_ia32_psrlv4si (v4si,v4si)
20034 v4di __builtin_ia32_psrlv4di (v4di,v4di)
20035 v2di __builtin_ia32_psrlv2di (v2di,v2di)
20036 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
20037 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
20038 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
20039 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
20040 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
20041 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
20042 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
20043 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
20044 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
20045 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
20046 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
20047 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
20048 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
20049 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
20050 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
20051 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
20052 @end smallexample
20053
20054 The following built-in functions are available when @option{-maes} is
20055 used. All of them generate the machine instruction that is part of the
20056 name.
20057
20058 @smallexample
20059 v2di __builtin_ia32_aesenc128 (v2di, v2di)
20060 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
20061 v2di __builtin_ia32_aesdec128 (v2di, v2di)
20062 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
20063 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
20064 v2di __builtin_ia32_aesimc128 (v2di)
20065 @end smallexample
20066
20067 The following built-in function is available when @option{-mpclmul} is
20068 used.
20069
20070 @table @code
20071 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
20072 Generates the @code{pclmulqdq} machine instruction.
20073 @end table
20074
20075 The following built-in function is available when @option{-mfsgsbase} is
20076 used. All of them generate the machine instruction that is part of the
20077 name.
20078
20079 @smallexample
20080 unsigned int __builtin_ia32_rdfsbase32 (void)
20081 unsigned long long __builtin_ia32_rdfsbase64 (void)
20082 unsigned int __builtin_ia32_rdgsbase32 (void)
20083 unsigned long long __builtin_ia32_rdgsbase64 (void)
20084 void _writefsbase_u32 (unsigned int)
20085 void _writefsbase_u64 (unsigned long long)
20086 void _writegsbase_u32 (unsigned int)
20087 void _writegsbase_u64 (unsigned long long)
20088 @end smallexample
20089
20090 The following built-in function is available when @option{-mrdrnd} is
20091 used. All of them generate the machine instruction that is part of the
20092 name.
20093
20094 @smallexample
20095 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
20096 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
20097 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
20098 @end smallexample
20099
20100 The following built-in functions are available when @option{-msse4a} is used.
20101 All of them generate the machine instruction that is part of the name.
20102
20103 @smallexample
20104 void __builtin_ia32_movntsd (double *, v2df)
20105 void __builtin_ia32_movntss (float *, v4sf)
20106 v2di __builtin_ia32_extrq (v2di, v16qi)
20107 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
20108 v2di __builtin_ia32_insertq (v2di, v2di)
20109 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
20110 @end smallexample
20111
20112 The following built-in functions are available when @option{-mxop} is used.
20113 @smallexample
20114 v2df __builtin_ia32_vfrczpd (v2df)
20115 v4sf __builtin_ia32_vfrczps (v4sf)
20116 v2df __builtin_ia32_vfrczsd (v2df)
20117 v4sf __builtin_ia32_vfrczss (v4sf)
20118 v4df __builtin_ia32_vfrczpd256 (v4df)
20119 v8sf __builtin_ia32_vfrczps256 (v8sf)
20120 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
20121 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
20122 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
20123 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
20124 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
20125 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
20126 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
20127 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
20128 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
20129 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
20130 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
20131 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
20132 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
20133 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
20134 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20135 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
20136 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
20137 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
20138 v4si __builtin_ia32_vpcomequd (v4si, v4si)
20139 v2di __builtin_ia32_vpcomequq (v2di, v2di)
20140 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
20141 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20142 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
20143 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
20144 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
20145 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
20146 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
20147 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
20148 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
20149 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
20150 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
20151 v4si __builtin_ia32_vpcomged (v4si, v4si)
20152 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
20153 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
20154 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
20155 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
20156 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
20157 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
20158 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
20159 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
20160 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
20161 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
20162 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
20163 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
20164 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
20165 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
20166 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
20167 v4si __builtin_ia32_vpcomled (v4si, v4si)
20168 v2di __builtin_ia32_vpcomleq (v2di, v2di)
20169 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
20170 v4si __builtin_ia32_vpcomleud (v4si, v4si)
20171 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
20172 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
20173 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
20174 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
20175 v4si __builtin_ia32_vpcomltd (v4si, v4si)
20176 v2di __builtin_ia32_vpcomltq (v2di, v2di)
20177 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
20178 v4si __builtin_ia32_vpcomltud (v4si, v4si)
20179 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
20180 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
20181 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
20182 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
20183 v4si __builtin_ia32_vpcomned (v4si, v4si)
20184 v2di __builtin_ia32_vpcomneq (v2di, v2di)
20185 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
20186 v4si __builtin_ia32_vpcomneud (v4si, v4si)
20187 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
20188 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
20189 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
20190 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
20191 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
20192 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
20193 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
20194 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
20195 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
20196 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
20197 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
20198 v4si __builtin_ia32_vphaddbd (v16qi)
20199 v2di __builtin_ia32_vphaddbq (v16qi)
20200 v8hi __builtin_ia32_vphaddbw (v16qi)
20201 v2di __builtin_ia32_vphadddq (v4si)
20202 v4si __builtin_ia32_vphaddubd (v16qi)
20203 v2di __builtin_ia32_vphaddubq (v16qi)
20204 v8hi __builtin_ia32_vphaddubw (v16qi)
20205 v2di __builtin_ia32_vphaddudq (v4si)
20206 v4si __builtin_ia32_vphadduwd (v8hi)
20207 v2di __builtin_ia32_vphadduwq (v8hi)
20208 v4si __builtin_ia32_vphaddwd (v8hi)
20209 v2di __builtin_ia32_vphaddwq (v8hi)
20210 v8hi __builtin_ia32_vphsubbw (v16qi)
20211 v2di __builtin_ia32_vphsubdq (v4si)
20212 v4si __builtin_ia32_vphsubwd (v8hi)
20213 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
20214 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
20215 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
20216 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
20217 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
20218 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
20219 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
20220 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
20221 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
20222 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
20223 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
20224 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
20225 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
20226 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
20227 v4si __builtin_ia32_vprotd (v4si, v4si)
20228 v2di __builtin_ia32_vprotq (v2di, v2di)
20229 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
20230 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
20231 v4si __builtin_ia32_vpshad (v4si, v4si)
20232 v2di __builtin_ia32_vpshaq (v2di, v2di)
20233 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
20234 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
20235 v4si __builtin_ia32_vpshld (v4si, v4si)
20236 v2di __builtin_ia32_vpshlq (v2di, v2di)
20237 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
20238 @end smallexample
20239
20240 The following built-in functions are available when @option{-mfma4} is used.
20241 All of them generate the machine instruction that is part of the name.
20242
20243 @smallexample
20244 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
20245 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
20246 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
20247 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
20248 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
20249 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
20250 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
20251 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
20252 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
20253 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
20254 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
20255 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
20256 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
20257 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
20258 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
20259 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
20260 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
20261 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
20262 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
20263 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
20264 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
20265 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
20266 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
20267 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
20268 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
20269 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
20270 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
20271 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
20272 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
20273 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
20274 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
20275 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
20276
20277 @end smallexample
20278
20279 The following built-in functions are available when @option{-mlwp} is used.
20280
20281 @smallexample
20282 void __builtin_ia32_llwpcb16 (void *);
20283 void __builtin_ia32_llwpcb32 (void *);
20284 void __builtin_ia32_llwpcb64 (void *);
20285 void * __builtin_ia32_llwpcb16 (void);
20286 void * __builtin_ia32_llwpcb32 (void);
20287 void * __builtin_ia32_llwpcb64 (void);
20288 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
20289 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
20290 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
20291 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
20292 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
20293 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
20294 @end smallexample
20295
20296 The following built-in functions are available when @option{-mbmi} is used.
20297 All of them generate the machine instruction that is part of the name.
20298 @smallexample
20299 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
20300 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
20301 @end smallexample
20302
20303 The following built-in functions are available when @option{-mbmi2} is used.
20304 All of them generate the machine instruction that is part of the name.
20305 @smallexample
20306 unsigned int _bzhi_u32 (unsigned int, unsigned int)
20307 unsigned int _pdep_u32 (unsigned int, unsigned int)
20308 unsigned int _pext_u32 (unsigned int, unsigned int)
20309 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
20310 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
20311 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
20312 @end smallexample
20313
20314 The following built-in functions are available when @option{-mlzcnt} is used.
20315 All of them generate the machine instruction that is part of the name.
20316 @smallexample
20317 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
20318 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
20319 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
20320 @end smallexample
20321
20322 The following built-in functions are available when @option{-mfxsr} is used.
20323 All of them generate the machine instruction that is part of the name.
20324 @smallexample
20325 void __builtin_ia32_fxsave (void *)
20326 void __builtin_ia32_fxrstor (void *)
20327 void __builtin_ia32_fxsave64 (void *)
20328 void __builtin_ia32_fxrstor64 (void *)
20329 @end smallexample
20330
20331 The following built-in functions are available when @option{-mxsave} is used.
20332 All of them generate the machine instruction that is part of the name.
20333 @smallexample
20334 void __builtin_ia32_xsave (void *, long long)
20335 void __builtin_ia32_xrstor (void *, long long)
20336 void __builtin_ia32_xsave64 (void *, long long)
20337 void __builtin_ia32_xrstor64 (void *, long long)
20338 @end smallexample
20339
20340 The following built-in functions are available when @option{-mxsaveopt} is used.
20341 All of them generate the machine instruction that is part of the name.
20342 @smallexample
20343 void __builtin_ia32_xsaveopt (void *, long long)
20344 void __builtin_ia32_xsaveopt64 (void *, long long)
20345 @end smallexample
20346
20347 The following built-in functions are available when @option{-mtbm} is used.
20348 Both of them generate the immediate form of the bextr machine instruction.
20349 @smallexample
20350 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
20351 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
20352 @end smallexample
20353
20354
20355 The following built-in functions are available when @option{-m3dnow} is used.
20356 All of them generate the machine instruction that is part of the name.
20357
20358 @smallexample
20359 void __builtin_ia32_femms (void)
20360 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
20361 v2si __builtin_ia32_pf2id (v2sf)
20362 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
20363 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
20364 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
20365 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
20366 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
20367 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
20368 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
20369 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
20370 v2sf __builtin_ia32_pfrcp (v2sf)
20371 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
20372 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
20373 v2sf __builtin_ia32_pfrsqrt (v2sf)
20374 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
20375 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
20376 v2sf __builtin_ia32_pi2fd (v2si)
20377 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
20378 @end smallexample
20379
20380 The following built-in functions are available when both @option{-m3dnow}
20381 and @option{-march=athlon} are used. All of them generate the machine
20382 instruction that is part of the name.
20383
20384 @smallexample
20385 v2si __builtin_ia32_pf2iw (v2sf)
20386 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
20387 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
20388 v2sf __builtin_ia32_pi2fw (v2si)
20389 v2sf __builtin_ia32_pswapdsf (v2sf)
20390 v2si __builtin_ia32_pswapdsi (v2si)
20391 @end smallexample
20392
20393 The following built-in functions are available when @option{-mrtm} is used
20394 They are used for restricted transactional memory. These are the internal
20395 low level functions. Normally the functions in
20396 @ref{x86 transactional memory intrinsics} should be used instead.
20397
20398 @smallexample
20399 int __builtin_ia32_xbegin ()
20400 void __builtin_ia32_xend ()
20401 void __builtin_ia32_xabort (status)
20402 int __builtin_ia32_xtest ()
20403 @end smallexample
20404
20405 The following built-in functions are available when @option{-mmwaitx} is used.
20406 All of them generate the machine instruction that is part of the name.
20407 @smallexample
20408 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
20409 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
20410 @end smallexample
20411
20412 The following built-in functions are available when @option{-mclzero} is used.
20413 All of them generate the machine instruction that is part of the name.
20414 @smallexample
20415 void __builtin_i32_clzero (void *)
20416 @end smallexample
20417
20418 The following built-in functions are available when @option{-mpku} is used.
20419 They generate reads and writes to PKRU.
20420 @smallexample
20421 void __builtin_ia32_wrpkru (unsigned int)
20422 unsigned int __builtin_ia32_rdpkru ()
20423 @end smallexample
20424
20425 @node x86 transactional memory intrinsics
20426 @subsection x86 Transactional Memory Intrinsics
20427
20428 These hardware transactional memory intrinsics for x86 allow you to use
20429 memory transactions with RTM (Restricted Transactional Memory).
20430 This support is enabled with the @option{-mrtm} option.
20431 For using HLE (Hardware Lock Elision) see
20432 @ref{x86 specific memory model extensions for transactional memory} instead.
20433
20434 A memory transaction commits all changes to memory in an atomic way,
20435 as visible to other threads. If the transaction fails it is rolled back
20436 and all side effects discarded.
20437
20438 Generally there is no guarantee that a memory transaction ever succeeds
20439 and suitable fallback code always needs to be supplied.
20440
20441 @deftypefn {RTM Function} {unsigned} _xbegin ()
20442 Start a RTM (Restricted Transactional Memory) transaction.
20443 Returns @code{_XBEGIN_STARTED} when the transaction
20444 started successfully (note this is not 0, so the constant has to be
20445 explicitly tested).
20446
20447 If the transaction aborts, all side-effects
20448 are undone and an abort code encoded as a bit mask is returned.
20449 The following macros are defined:
20450
20451 @table @code
20452 @item _XABORT_EXPLICIT
20453 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
20454 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
20455 @item _XABORT_RETRY
20456 Transaction retry is possible.
20457 @item _XABORT_CONFLICT
20458 Transaction abort due to a memory conflict with another thread.
20459 @item _XABORT_CAPACITY
20460 Transaction abort due to the transaction using too much memory.
20461 @item _XABORT_DEBUG
20462 Transaction abort due to a debug trap.
20463 @item _XABORT_NESTED
20464 Transaction abort in an inner nested transaction.
20465 @end table
20466
20467 There is no guarantee
20468 any transaction ever succeeds, so there always needs to be a valid
20469 fallback path.
20470 @end deftypefn
20471
20472 @deftypefn {RTM Function} {void} _xend ()
20473 Commit the current transaction. When no transaction is active this faults.
20474 All memory side-effects of the transaction become visible
20475 to other threads in an atomic manner.
20476 @end deftypefn
20477
20478 @deftypefn {RTM Function} {int} _xtest ()
20479 Return a nonzero value if a transaction is currently active, otherwise 0.
20480 @end deftypefn
20481
20482 @deftypefn {RTM Function} {void} _xabort (status)
20483 Abort the current transaction. When no transaction is active this is a no-op.
20484 The @var{status} is an 8-bit constant; its value is encoded in the return
20485 value from @code{_xbegin}.
20486 @end deftypefn
20487
20488 Here is an example showing handling for @code{_XABORT_RETRY}
20489 and a fallback path for other failures:
20490
20491 @smallexample
20492 #include <immintrin.h>
20493
20494 int n_tries, max_tries;
20495 unsigned status = _XABORT_EXPLICIT;
20496 ...
20497
20498 for (n_tries = 0; n_tries < max_tries; n_tries++)
20499 @{
20500 status = _xbegin ();
20501 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
20502 break;
20503 @}
20504 if (status == _XBEGIN_STARTED)
20505 @{
20506 ... transaction code...
20507 _xend ();
20508 @}
20509 else
20510 @{
20511 ... non-transactional fallback path...
20512 @}
20513 @end smallexample
20514
20515 @noindent
20516 Note that, in most cases, the transactional and non-transactional code
20517 must synchronize together to ensure consistency.
20518
20519 @node Target Format Checks
20520 @section Format Checks Specific to Particular Target Machines
20521
20522 For some target machines, GCC supports additional options to the
20523 format attribute
20524 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
20525
20526 @menu
20527 * Solaris Format Checks::
20528 * Darwin Format Checks::
20529 @end menu
20530
20531 @node Solaris Format Checks
20532 @subsection Solaris Format Checks
20533
20534 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
20535 check. @code{cmn_err} accepts a subset of the standard @code{printf}
20536 conversions, and the two-argument @code{%b} conversion for displaying
20537 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
20538
20539 @node Darwin Format Checks
20540 @subsection Darwin Format Checks
20541
20542 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
20543 attribute context. Declarations made with such attribution are parsed for correct syntax
20544 and format argument types. However, parsing of the format string itself is currently undefined
20545 and is not carried out by this version of the compiler.
20546
20547 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
20548 also be used as format arguments. Note that the relevant headers are only likely to be
20549 available on Darwin (OSX) installations. On such installations, the XCode and system
20550 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
20551 associated functions.
20552
20553 @node Pragmas
20554 @section Pragmas Accepted by GCC
20555 @cindex pragmas
20556 @cindex @code{#pragma}
20557
20558 GCC supports several types of pragmas, primarily in order to compile
20559 code originally written for other compilers. Note that in general
20560 we do not recommend the use of pragmas; @xref{Function Attributes},
20561 for further explanation.
20562
20563 @menu
20564 * AArch64 Pragmas::
20565 * ARM Pragmas::
20566 * M32C Pragmas::
20567 * MeP Pragmas::
20568 * RS/6000 and PowerPC Pragmas::
20569 * S/390 Pragmas::
20570 * Darwin Pragmas::
20571 * Solaris Pragmas::
20572 * Symbol-Renaming Pragmas::
20573 * Structure-Layout Pragmas::
20574 * Weak Pragmas::
20575 * Diagnostic Pragmas::
20576 * Visibility Pragmas::
20577 * Push/Pop Macro Pragmas::
20578 * Function Specific Option Pragmas::
20579 * Loop-Specific Pragmas::
20580 @end menu
20581
20582 @node AArch64 Pragmas
20583 @subsection AArch64 Pragmas
20584
20585 The pragmas defined by the AArch64 target correspond to the AArch64
20586 target function attributes. They can be specified as below:
20587 @smallexample
20588 #pragma GCC target("string")
20589 @end smallexample
20590
20591 where @code{@var{string}} can be any string accepted as an AArch64 target
20592 attribute. @xref{AArch64 Function Attributes}, for more details
20593 on the permissible values of @code{string}.
20594
20595 @node ARM Pragmas
20596 @subsection ARM Pragmas
20597
20598 The ARM target defines pragmas for controlling the default addition of
20599 @code{long_call} and @code{short_call} attributes to functions.
20600 @xref{Function Attributes}, for information about the effects of these
20601 attributes.
20602
20603 @table @code
20604 @item long_calls
20605 @cindex pragma, long_calls
20606 Set all subsequent functions to have the @code{long_call} attribute.
20607
20608 @item no_long_calls
20609 @cindex pragma, no_long_calls
20610 Set all subsequent functions to have the @code{short_call} attribute.
20611
20612 @item long_calls_off
20613 @cindex pragma, long_calls_off
20614 Do not affect the @code{long_call} or @code{short_call} attributes of
20615 subsequent functions.
20616 @end table
20617
20618 @node M32C Pragmas
20619 @subsection M32C Pragmas
20620
20621 @table @code
20622 @item GCC memregs @var{number}
20623 @cindex pragma, memregs
20624 Overrides the command-line option @code{-memregs=} for the current
20625 file. Use with care! This pragma must be before any function in the
20626 file, and mixing different memregs values in different objects may
20627 make them incompatible. This pragma is useful when a
20628 performance-critical function uses a memreg for temporary values,
20629 as it may allow you to reduce the number of memregs used.
20630
20631 @item ADDRESS @var{name} @var{address}
20632 @cindex pragma, address
20633 For any declared symbols matching @var{name}, this does three things
20634 to that symbol: it forces the symbol to be located at the given
20635 address (a number), it forces the symbol to be volatile, and it
20636 changes the symbol's scope to be static. This pragma exists for
20637 compatibility with other compilers, but note that the common
20638 @code{1234H} numeric syntax is not supported (use @code{0x1234}
20639 instead). Example:
20640
20641 @smallexample
20642 #pragma ADDRESS port3 0x103
20643 char port3;
20644 @end smallexample
20645
20646 @end table
20647
20648 @node MeP Pragmas
20649 @subsection MeP Pragmas
20650
20651 @table @code
20652
20653 @item custom io_volatile (on|off)
20654 @cindex pragma, custom io_volatile
20655 Overrides the command-line option @code{-mio-volatile} for the current
20656 file. Note that for compatibility with future GCC releases, this
20657 option should only be used once before any @code{io} variables in each
20658 file.
20659
20660 @item GCC coprocessor available @var{registers}
20661 @cindex pragma, coprocessor available
20662 Specifies which coprocessor registers are available to the register
20663 allocator. @var{registers} may be a single register, register range
20664 separated by ellipses, or comma-separated list of those. Example:
20665
20666 @smallexample
20667 #pragma GCC coprocessor available $c0...$c10, $c28
20668 @end smallexample
20669
20670 @item GCC coprocessor call_saved @var{registers}
20671 @cindex pragma, coprocessor call_saved
20672 Specifies which coprocessor registers are to be saved and restored by
20673 any function using them. @var{registers} may be a single register,
20674 register range separated by ellipses, or comma-separated list of
20675 those. Example:
20676
20677 @smallexample
20678 #pragma GCC coprocessor call_saved $c4...$c6, $c31
20679 @end smallexample
20680
20681 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
20682 @cindex pragma, coprocessor subclass
20683 Creates and defines a register class. These register classes can be
20684 used by inline @code{asm} constructs. @var{registers} may be a single
20685 register, register range separated by ellipses, or comma-separated
20686 list of those. Example:
20687
20688 @smallexample
20689 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
20690
20691 asm ("cpfoo %0" : "=B" (x));
20692 @end smallexample
20693
20694 @item GCC disinterrupt @var{name} , @var{name} @dots{}
20695 @cindex pragma, disinterrupt
20696 For the named functions, the compiler adds code to disable interrupts
20697 for the duration of those functions. If any functions so named
20698 are not encountered in the source, a warning is emitted that the pragma is
20699 not used. Examples:
20700
20701 @smallexample
20702 #pragma disinterrupt foo
20703 #pragma disinterrupt bar, grill
20704 int foo () @{ @dots{} @}
20705 @end smallexample
20706
20707 @item GCC call @var{name} , @var{name} @dots{}
20708 @cindex pragma, call
20709 For the named functions, the compiler always uses a register-indirect
20710 call model when calling the named functions. Examples:
20711
20712 @smallexample
20713 extern int foo ();
20714 #pragma call foo
20715 @end smallexample
20716
20717 @end table
20718
20719 @node RS/6000 and PowerPC Pragmas
20720 @subsection RS/6000 and PowerPC Pragmas
20721
20722 The RS/6000 and PowerPC targets define one pragma for controlling
20723 whether or not the @code{longcall} attribute is added to function
20724 declarations by default. This pragma overrides the @option{-mlongcall}
20725 option, but not the @code{longcall} and @code{shortcall} attributes.
20726 @xref{RS/6000 and PowerPC Options}, for more information about when long
20727 calls are and are not necessary.
20728
20729 @table @code
20730 @item longcall (1)
20731 @cindex pragma, longcall
20732 Apply the @code{longcall} attribute to all subsequent function
20733 declarations.
20734
20735 @item longcall (0)
20736 Do not apply the @code{longcall} attribute to subsequent function
20737 declarations.
20738 @end table
20739
20740 @c Describe h8300 pragmas here.
20741 @c Describe sh pragmas here.
20742 @c Describe v850 pragmas here.
20743
20744 @node S/390 Pragmas
20745 @subsection S/390 Pragmas
20746
20747 The pragmas defined by the S/390 target correspond to the S/390
20748 target function attributes and some the additional options:
20749
20750 @table @samp
20751 @item zvector
20752 @itemx no-zvector
20753 @end table
20754
20755 Note that options of the pragma, unlike options of the target
20756 attribute, do change the value of preprocessor macros like
20757 @code{__VEC__}. They can be specified as below:
20758
20759 @smallexample
20760 #pragma GCC target("string[,string]...")
20761 #pragma GCC target("string"[,"string"]...)
20762 @end smallexample
20763
20764 @node Darwin Pragmas
20765 @subsection Darwin Pragmas
20766
20767 The following pragmas are available for all architectures running the
20768 Darwin operating system. These are useful for compatibility with other
20769 Mac OS compilers.
20770
20771 @table @code
20772 @item mark @var{tokens}@dots{}
20773 @cindex pragma, mark
20774 This pragma is accepted, but has no effect.
20775
20776 @item options align=@var{alignment}
20777 @cindex pragma, options align
20778 This pragma sets the alignment of fields in structures. The values of
20779 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
20780 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
20781 properly; to restore the previous setting, use @code{reset} for the
20782 @var{alignment}.
20783
20784 @item segment @var{tokens}@dots{}
20785 @cindex pragma, segment
20786 This pragma is accepted, but has no effect.
20787
20788 @item unused (@var{var} [, @var{var}]@dots{})
20789 @cindex pragma, unused
20790 This pragma declares variables to be possibly unused. GCC does not
20791 produce warnings for the listed variables. The effect is similar to
20792 that of the @code{unused} attribute, except that this pragma may appear
20793 anywhere within the variables' scopes.
20794 @end table
20795
20796 @node Solaris Pragmas
20797 @subsection Solaris Pragmas
20798
20799 The Solaris target supports @code{#pragma redefine_extname}
20800 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
20801 @code{#pragma} directives for compatibility with the system compiler.
20802
20803 @table @code
20804 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
20805 @cindex pragma, align
20806
20807 Increase the minimum alignment of each @var{variable} to @var{alignment}.
20808 This is the same as GCC's @code{aligned} attribute @pxref{Variable
20809 Attributes}). Macro expansion occurs on the arguments to this pragma
20810 when compiling C and Objective-C@. It does not currently occur when
20811 compiling C++, but this is a bug which may be fixed in a future
20812 release.
20813
20814 @item fini (@var{function} [, @var{function}]...)
20815 @cindex pragma, fini
20816
20817 This pragma causes each listed @var{function} to be called after
20818 main, or during shared module unloading, by adding a call to the
20819 @code{.fini} section.
20820
20821 @item init (@var{function} [, @var{function}]...)
20822 @cindex pragma, init
20823
20824 This pragma causes each listed @var{function} to be called during
20825 initialization (before @code{main}) or during shared module loading, by
20826 adding a call to the @code{.init} section.
20827
20828 @end table
20829
20830 @node Symbol-Renaming Pragmas
20831 @subsection Symbol-Renaming Pragmas
20832
20833 GCC supports a @code{#pragma} directive that changes the name used in
20834 assembly for a given declaration. While this pragma is supported on all
20835 platforms, it is intended primarily to provide compatibility with the
20836 Solaris system headers. This effect can also be achieved using the asm
20837 labels extension (@pxref{Asm Labels}).
20838
20839 @table @code
20840 @item redefine_extname @var{oldname} @var{newname}
20841 @cindex pragma, redefine_extname
20842
20843 This pragma gives the C function @var{oldname} the assembly symbol
20844 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
20845 is defined if this pragma is available (currently on all platforms).
20846 @end table
20847
20848 This pragma and the asm labels extension interact in a complicated
20849 manner. Here are some corner cases you may want to be aware of:
20850
20851 @enumerate
20852 @item This pragma silently applies only to declarations with external
20853 linkage. Asm labels do not have this restriction.
20854
20855 @item In C++, this pragma silently applies only to declarations with
20856 ``C'' linkage. Again, asm labels do not have this restriction.
20857
20858 @item If either of the ways of changing the assembly name of a
20859 declaration are applied to a declaration whose assembly name has
20860 already been determined (either by a previous use of one of these
20861 features, or because the compiler needed the assembly name in order to
20862 generate code), and the new name is different, a warning issues and
20863 the name does not change.
20864
20865 @item The @var{oldname} used by @code{#pragma redefine_extname} is
20866 always the C-language name.
20867 @end enumerate
20868
20869 @node Structure-Layout Pragmas
20870 @subsection Structure-Layout Pragmas
20871
20872 For compatibility with Microsoft Windows compilers, GCC supports a
20873 set of @code{#pragma} directives that change the maximum alignment of
20874 members of structures (other than zero-width bit-fields), unions, and
20875 classes subsequently defined. The @var{n} value below always is required
20876 to be a small power of two and specifies the new alignment in bytes.
20877
20878 @enumerate
20879 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
20880 @item @code{#pragma pack()} sets the alignment to the one that was in
20881 effect when compilation started (see also command-line option
20882 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
20883 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
20884 setting on an internal stack and then optionally sets the new alignment.
20885 @item @code{#pragma pack(pop)} restores the alignment setting to the one
20886 saved at the top of the internal stack (and removes that stack entry).
20887 Note that @code{#pragma pack([@var{n}])} does not influence this internal
20888 stack; thus it is possible to have @code{#pragma pack(push)} followed by
20889 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
20890 @code{#pragma pack(pop)}.
20891 @end enumerate
20892
20893 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
20894 directive which lays out structures and unions subsequently defined as the
20895 documented @code{__attribute__ ((ms_struct))}.
20896
20897 @enumerate
20898 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
20899 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
20900 @item @code{#pragma ms_struct reset} goes back to the default layout.
20901 @end enumerate
20902
20903 Most targets also support the @code{#pragma scalar_storage_order} directive
20904 which lays out structures and unions subsequently defined as the documented
20905 @code{__attribute__ ((scalar_storage_order))}.
20906
20907 @enumerate
20908 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
20909 of the scalar fields to big-endian.
20910 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
20911 of the scalar fields to little-endian.
20912 @item @code{#pragma scalar_storage_order default} goes back to the endianness
20913 that was in effect when compilation started (see also command-line option
20914 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
20915 @end enumerate
20916
20917 @node Weak Pragmas
20918 @subsection Weak Pragmas
20919
20920 For compatibility with SVR4, GCC supports a set of @code{#pragma}
20921 directives for declaring symbols to be weak, and defining weak
20922 aliases.
20923
20924 @table @code
20925 @item #pragma weak @var{symbol}
20926 @cindex pragma, weak
20927 This pragma declares @var{symbol} to be weak, as if the declaration
20928 had the attribute of the same name. The pragma may appear before
20929 or after the declaration of @var{symbol}. It is not an error for
20930 @var{symbol} to never be defined at all.
20931
20932 @item #pragma weak @var{symbol1} = @var{symbol2}
20933 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
20934 It is an error if @var{symbol2} is not defined in the current
20935 translation unit.
20936 @end table
20937
20938 @node Diagnostic Pragmas
20939 @subsection Diagnostic Pragmas
20940
20941 GCC allows the user to selectively enable or disable certain types of
20942 diagnostics, and change the kind of the diagnostic. For example, a
20943 project's policy might require that all sources compile with
20944 @option{-Werror} but certain files might have exceptions allowing
20945 specific types of warnings. Or, a project might selectively enable
20946 diagnostics and treat them as errors depending on which preprocessor
20947 macros are defined.
20948
20949 @table @code
20950 @item #pragma GCC diagnostic @var{kind} @var{option}
20951 @cindex pragma, diagnostic
20952
20953 Modifies the disposition of a diagnostic. Note that not all
20954 diagnostics are modifiable; at the moment only warnings (normally
20955 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
20956 Use @option{-fdiagnostics-show-option} to determine which diagnostics
20957 are controllable and which option controls them.
20958
20959 @var{kind} is @samp{error} to treat this diagnostic as an error,
20960 @samp{warning} to treat it like a warning (even if @option{-Werror} is
20961 in effect), or @samp{ignored} if the diagnostic is to be ignored.
20962 @var{option} is a double quoted string that matches the command-line
20963 option.
20964
20965 @smallexample
20966 #pragma GCC diagnostic warning "-Wformat"
20967 #pragma GCC diagnostic error "-Wformat"
20968 #pragma GCC diagnostic ignored "-Wformat"
20969 @end smallexample
20970
20971 Note that these pragmas override any command-line options. GCC keeps
20972 track of the location of each pragma, and issues diagnostics according
20973 to the state as of that point in the source file. Thus, pragmas occurring
20974 after a line do not affect diagnostics caused by that line.
20975
20976 @item #pragma GCC diagnostic push
20977 @itemx #pragma GCC diagnostic pop
20978
20979 Causes GCC to remember the state of the diagnostics as of each
20980 @code{push}, and restore to that point at each @code{pop}. If a
20981 @code{pop} has no matching @code{push}, the command-line options are
20982 restored.
20983
20984 @smallexample
20985 #pragma GCC diagnostic error "-Wuninitialized"
20986 foo(a); /* error is given for this one */
20987 #pragma GCC diagnostic push
20988 #pragma GCC diagnostic ignored "-Wuninitialized"
20989 foo(b); /* no diagnostic for this one */
20990 #pragma GCC diagnostic pop
20991 foo(c); /* error is given for this one */
20992 #pragma GCC diagnostic pop
20993 foo(d); /* depends on command-line options */
20994 @end smallexample
20995
20996 @end table
20997
20998 GCC also offers a simple mechanism for printing messages during
20999 compilation.
21000
21001 @table @code
21002 @item #pragma message @var{string}
21003 @cindex pragma, diagnostic
21004
21005 Prints @var{string} as a compiler message on compilation. The message
21006 is informational only, and is neither a compilation warning nor an error.
21007
21008 @smallexample
21009 #pragma message "Compiling " __FILE__ "..."
21010 @end smallexample
21011
21012 @var{string} may be parenthesized, and is printed with location
21013 information. For example,
21014
21015 @smallexample
21016 #define DO_PRAGMA(x) _Pragma (#x)
21017 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
21018
21019 TODO(Remember to fix this)
21020 @end smallexample
21021
21022 @noindent
21023 prints @samp{/tmp/file.c:4: note: #pragma message:
21024 TODO - Remember to fix this}.
21025
21026 @end table
21027
21028 @node Visibility Pragmas
21029 @subsection Visibility Pragmas
21030
21031 @table @code
21032 @item #pragma GCC visibility push(@var{visibility})
21033 @itemx #pragma GCC visibility pop
21034 @cindex pragma, visibility
21035
21036 This pragma allows the user to set the visibility for multiple
21037 declarations without having to give each a visibility attribute
21038 (@pxref{Function Attributes}).
21039
21040 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
21041 declarations. Class members and template specializations are not
21042 affected; if you want to override the visibility for a particular
21043 member or instantiation, you must use an attribute.
21044
21045 @end table
21046
21047
21048 @node Push/Pop Macro Pragmas
21049 @subsection Push/Pop Macro Pragmas
21050
21051 For compatibility with Microsoft Windows compilers, GCC supports
21052 @samp{#pragma push_macro(@var{"macro_name"})}
21053 and @samp{#pragma pop_macro(@var{"macro_name"})}.
21054
21055 @table @code
21056 @item #pragma push_macro(@var{"macro_name"})
21057 @cindex pragma, push_macro
21058 This pragma saves the value of the macro named as @var{macro_name} to
21059 the top of the stack for this macro.
21060
21061 @item #pragma pop_macro(@var{"macro_name"})
21062 @cindex pragma, pop_macro
21063 This pragma sets the value of the macro named as @var{macro_name} to
21064 the value on top of the stack for this macro. If the stack for
21065 @var{macro_name} is empty, the value of the macro remains unchanged.
21066 @end table
21067
21068 For example:
21069
21070 @smallexample
21071 #define X 1
21072 #pragma push_macro("X")
21073 #undef X
21074 #define X -1
21075 #pragma pop_macro("X")
21076 int x [X];
21077 @end smallexample
21078
21079 @noindent
21080 In this example, the definition of X as 1 is saved by @code{#pragma
21081 push_macro} and restored by @code{#pragma pop_macro}.
21082
21083 @node Function Specific Option Pragmas
21084 @subsection Function Specific Option Pragmas
21085
21086 @table @code
21087 @item #pragma GCC target (@var{"string"}...)
21088 @cindex pragma GCC target
21089
21090 This pragma allows you to set target specific options for functions
21091 defined later in the source file. One or more strings can be
21092 specified. Each function that is defined after this point is as
21093 if @code{attribute((target("STRING")))} was specified for that
21094 function. The parenthesis around the options is optional.
21095 @xref{Function Attributes}, for more information about the
21096 @code{target} attribute and the attribute syntax.
21097
21098 The @code{#pragma GCC target} pragma is presently implemented for
21099 x86, PowerPC, and Nios II targets only.
21100 @end table
21101
21102 @table @code
21103 @item #pragma GCC optimize (@var{"string"}...)
21104 @cindex pragma GCC optimize
21105
21106 This pragma allows you to set global optimization options for functions
21107 defined later in the source file. One or more strings can be
21108 specified. Each function that is defined after this point is as
21109 if @code{attribute((optimize("STRING")))} was specified for that
21110 function. The parenthesis around the options is optional.
21111 @xref{Function Attributes}, for more information about the
21112 @code{optimize} attribute and the attribute syntax.
21113 @end table
21114
21115 @table @code
21116 @item #pragma GCC push_options
21117 @itemx #pragma GCC pop_options
21118 @cindex pragma GCC push_options
21119 @cindex pragma GCC pop_options
21120
21121 These pragmas maintain a stack of the current target and optimization
21122 options. It is intended for include files where you temporarily want
21123 to switch to using a different @samp{#pragma GCC target} or
21124 @samp{#pragma GCC optimize} and then to pop back to the previous
21125 options.
21126 @end table
21127
21128 @table @code
21129 @item #pragma GCC reset_options
21130 @cindex pragma GCC reset_options
21131
21132 This pragma clears the current @code{#pragma GCC target} and
21133 @code{#pragma GCC optimize} to use the default switches as specified
21134 on the command line.
21135 @end table
21136
21137 @node Loop-Specific Pragmas
21138 @subsection Loop-Specific Pragmas
21139
21140 @table @code
21141 @item #pragma GCC ivdep
21142 @cindex pragma GCC ivdep
21143 @end table
21144
21145 With this pragma, the programmer asserts that there are no loop-carried
21146 dependencies which would prevent consecutive iterations of
21147 the following loop from executing concurrently with SIMD
21148 (single instruction multiple data) instructions.
21149
21150 For example, the compiler can only unconditionally vectorize the following
21151 loop with the pragma:
21152
21153 @smallexample
21154 void foo (int n, int *a, int *b, int *c)
21155 @{
21156 int i, j;
21157 #pragma GCC ivdep
21158 for (i = 0; i < n; ++i)
21159 a[i] = b[i] + c[i];
21160 @}
21161 @end smallexample
21162
21163 @noindent
21164 In this example, using the @code{restrict} qualifier had the same
21165 effect. In the following example, that would not be possible. Assume
21166 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
21167 that it can unconditionally vectorize the following loop:
21168
21169 @smallexample
21170 void ignore_vec_dep (int *a, int k, int c, int m)
21171 @{
21172 #pragma GCC ivdep
21173 for (int i = 0; i < m; i++)
21174 a[i] = a[i + k] * c;
21175 @}
21176 @end smallexample
21177
21178
21179 @node Unnamed Fields
21180 @section Unnamed Structure and Union Fields
21181 @cindex @code{struct}
21182 @cindex @code{union}
21183
21184 As permitted by ISO C11 and for compatibility with other compilers,
21185 GCC allows you to define
21186 a structure or union that contains, as fields, structures and unions
21187 without names. For example:
21188
21189 @smallexample
21190 struct @{
21191 int a;
21192 union @{
21193 int b;
21194 float c;
21195 @};
21196 int d;
21197 @} foo;
21198 @end smallexample
21199
21200 @noindent
21201 In this example, you are able to access members of the unnamed
21202 union with code like @samp{foo.b}. Note that only unnamed structs and
21203 unions are allowed, you may not have, for example, an unnamed
21204 @code{int}.
21205
21206 You must never create such structures that cause ambiguous field definitions.
21207 For example, in this structure:
21208
21209 @smallexample
21210 struct @{
21211 int a;
21212 struct @{
21213 int a;
21214 @};
21215 @} foo;
21216 @end smallexample
21217
21218 @noindent
21219 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
21220 The compiler gives errors for such constructs.
21221
21222 @opindex fms-extensions
21223 Unless @option{-fms-extensions} is used, the unnamed field must be a
21224 structure or union definition without a tag (for example, @samp{struct
21225 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
21226 also be a definition with a tag such as @samp{struct foo @{ int a;
21227 @};}, a reference to a previously defined structure or union such as
21228 @samp{struct foo;}, or a reference to a @code{typedef} name for a
21229 previously defined structure or union type.
21230
21231 @opindex fplan9-extensions
21232 The option @option{-fplan9-extensions} enables
21233 @option{-fms-extensions} as well as two other extensions. First, a
21234 pointer to a structure is automatically converted to a pointer to an
21235 anonymous field for assignments and function calls. For example:
21236
21237 @smallexample
21238 struct s1 @{ int a; @};
21239 struct s2 @{ struct s1; @};
21240 extern void f1 (struct s1 *);
21241 void f2 (struct s2 *p) @{ f1 (p); @}
21242 @end smallexample
21243
21244 @noindent
21245 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
21246 converted into a pointer to the anonymous field.
21247
21248 Second, when the type of an anonymous field is a @code{typedef} for a
21249 @code{struct} or @code{union}, code may refer to the field using the
21250 name of the @code{typedef}.
21251
21252 @smallexample
21253 typedef struct @{ int a; @} s1;
21254 struct s2 @{ s1; @};
21255 s1 f1 (struct s2 *p) @{ return p->s1; @}
21256 @end smallexample
21257
21258 These usages are only permitted when they are not ambiguous.
21259
21260 @node Thread-Local
21261 @section Thread-Local Storage
21262 @cindex Thread-Local Storage
21263 @cindex @acronym{TLS}
21264 @cindex @code{__thread}
21265
21266 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
21267 are allocated such that there is one instance of the variable per extant
21268 thread. The runtime model GCC uses to implement this originates
21269 in the IA-64 processor-specific ABI, but has since been migrated
21270 to other processors as well. It requires significant support from
21271 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
21272 system libraries (@file{libc.so} and @file{libpthread.so}), so it
21273 is not available everywhere.
21274
21275 At the user level, the extension is visible with a new storage
21276 class keyword: @code{__thread}. For example:
21277
21278 @smallexample
21279 __thread int i;
21280 extern __thread struct state s;
21281 static __thread char *p;
21282 @end smallexample
21283
21284 The @code{__thread} specifier may be used alone, with the @code{extern}
21285 or @code{static} specifiers, but with no other storage class specifier.
21286 When used with @code{extern} or @code{static}, @code{__thread} must appear
21287 immediately after the other storage class specifier.
21288
21289 The @code{__thread} specifier may be applied to any global, file-scoped
21290 static, function-scoped static, or static data member of a class. It may
21291 not be applied to block-scoped automatic or non-static data member.
21292
21293 When the address-of operator is applied to a thread-local variable, it is
21294 evaluated at run time and returns the address of the current thread's
21295 instance of that variable. An address so obtained may be used by any
21296 thread. When a thread terminates, any pointers to thread-local variables
21297 in that thread become invalid.
21298
21299 No static initialization may refer to the address of a thread-local variable.
21300
21301 In C++, if an initializer is present for a thread-local variable, it must
21302 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
21303 standard.
21304
21305 See @uref{http://www.akkadia.org/drepper/tls.pdf,
21306 ELF Handling For Thread-Local Storage} for a detailed explanation of
21307 the four thread-local storage addressing models, and how the runtime
21308 is expected to function.
21309
21310 @menu
21311 * C99 Thread-Local Edits::
21312 * C++98 Thread-Local Edits::
21313 @end menu
21314
21315 @node C99 Thread-Local Edits
21316 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
21317
21318 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
21319 that document the exact semantics of the language extension.
21320
21321 @itemize @bullet
21322 @item
21323 @cite{5.1.2 Execution environments}
21324
21325 Add new text after paragraph 1
21326
21327 @quotation
21328 Within either execution environment, a @dfn{thread} is a flow of
21329 control within a program. It is implementation defined whether
21330 or not there may be more than one thread associated with a program.
21331 It is implementation defined how threads beyond the first are
21332 created, the name and type of the function called at thread
21333 startup, and how threads may be terminated. However, objects
21334 with thread storage duration shall be initialized before thread
21335 startup.
21336 @end quotation
21337
21338 @item
21339 @cite{6.2.4 Storage durations of objects}
21340
21341 Add new text before paragraph 3
21342
21343 @quotation
21344 An object whose identifier is declared with the storage-class
21345 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
21346 Its lifetime is the entire execution of the thread, and its
21347 stored value is initialized only once, prior to thread startup.
21348 @end quotation
21349
21350 @item
21351 @cite{6.4.1 Keywords}
21352
21353 Add @code{__thread}.
21354
21355 @item
21356 @cite{6.7.1 Storage-class specifiers}
21357
21358 Add @code{__thread} to the list of storage class specifiers in
21359 paragraph 1.
21360
21361 Change paragraph 2 to
21362
21363 @quotation
21364 With the exception of @code{__thread}, at most one storage-class
21365 specifier may be given [@dots{}]. The @code{__thread} specifier may
21366 be used alone, or immediately following @code{extern} or
21367 @code{static}.
21368 @end quotation
21369
21370 Add new text after paragraph 6
21371
21372 @quotation
21373 The declaration of an identifier for a variable that has
21374 block scope that specifies @code{__thread} shall also
21375 specify either @code{extern} or @code{static}.
21376
21377 The @code{__thread} specifier shall be used only with
21378 variables.
21379 @end quotation
21380 @end itemize
21381
21382 @node C++98 Thread-Local Edits
21383 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
21384
21385 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
21386 that document the exact semantics of the language extension.
21387
21388 @itemize @bullet
21389 @item
21390 @b{[intro.execution]}
21391
21392 New text after paragraph 4
21393
21394 @quotation
21395 A @dfn{thread} is a flow of control within the abstract machine.
21396 It is implementation defined whether or not there may be more than
21397 one thread.
21398 @end quotation
21399
21400 New text after paragraph 7
21401
21402 @quotation
21403 It is unspecified whether additional action must be taken to
21404 ensure when and whether side effects are visible to other threads.
21405 @end quotation
21406
21407 @item
21408 @b{[lex.key]}
21409
21410 Add @code{__thread}.
21411
21412 @item
21413 @b{[basic.start.main]}
21414
21415 Add after paragraph 5
21416
21417 @quotation
21418 The thread that begins execution at the @code{main} function is called
21419 the @dfn{main thread}. It is implementation defined how functions
21420 beginning threads other than the main thread are designated or typed.
21421 A function so designated, as well as the @code{main} function, is called
21422 a @dfn{thread startup function}. It is implementation defined what
21423 happens if a thread startup function returns. It is implementation
21424 defined what happens to other threads when any thread calls @code{exit}.
21425 @end quotation
21426
21427 @item
21428 @b{[basic.start.init]}
21429
21430 Add after paragraph 4
21431
21432 @quotation
21433 The storage for an object of thread storage duration shall be
21434 statically initialized before the first statement of the thread startup
21435 function. An object of thread storage duration shall not require
21436 dynamic initialization.
21437 @end quotation
21438
21439 @item
21440 @b{[basic.start.term]}
21441
21442 Add after paragraph 3
21443
21444 @quotation
21445 The type of an object with thread storage duration shall not have a
21446 non-trivial destructor, nor shall it be an array type whose elements
21447 (directly or indirectly) have non-trivial destructors.
21448 @end quotation
21449
21450 @item
21451 @b{[basic.stc]}
21452
21453 Add ``thread storage duration'' to the list in paragraph 1.
21454
21455 Change paragraph 2
21456
21457 @quotation
21458 Thread, static, and automatic storage durations are associated with
21459 objects introduced by declarations [@dots{}].
21460 @end quotation
21461
21462 Add @code{__thread} to the list of specifiers in paragraph 3.
21463
21464 @item
21465 @b{[basic.stc.thread]}
21466
21467 New section before @b{[basic.stc.static]}
21468
21469 @quotation
21470 The keyword @code{__thread} applied to a non-local object gives the
21471 object thread storage duration.
21472
21473 A local variable or class data member declared both @code{static}
21474 and @code{__thread} gives the variable or member thread storage
21475 duration.
21476 @end quotation
21477
21478 @item
21479 @b{[basic.stc.static]}
21480
21481 Change paragraph 1
21482
21483 @quotation
21484 All objects that have neither thread storage duration, dynamic
21485 storage duration nor are local [@dots{}].
21486 @end quotation
21487
21488 @item
21489 @b{[dcl.stc]}
21490
21491 Add @code{__thread} to the list in paragraph 1.
21492
21493 Change paragraph 1
21494
21495 @quotation
21496 With the exception of @code{__thread}, at most one
21497 @var{storage-class-specifier} shall appear in a given
21498 @var{decl-specifier-seq}. The @code{__thread} specifier may
21499 be used alone, or immediately following the @code{extern} or
21500 @code{static} specifiers. [@dots{}]
21501 @end quotation
21502
21503 Add after paragraph 5
21504
21505 @quotation
21506 The @code{__thread} specifier can be applied only to the names of objects
21507 and to anonymous unions.
21508 @end quotation
21509
21510 @item
21511 @b{[class.mem]}
21512
21513 Add after paragraph 6
21514
21515 @quotation
21516 Non-@code{static} members shall not be @code{__thread}.
21517 @end quotation
21518 @end itemize
21519
21520 @node Binary constants
21521 @section Binary Constants using the @samp{0b} Prefix
21522 @cindex Binary constants using the @samp{0b} prefix
21523
21524 Integer constants can be written as binary constants, consisting of a
21525 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
21526 @samp{0B}. This is particularly useful in environments that operate a
21527 lot on the bit level (like microcontrollers).
21528
21529 The following statements are identical:
21530
21531 @smallexample
21532 i = 42;
21533 i = 0x2a;
21534 i = 052;
21535 i = 0b101010;
21536 @end smallexample
21537
21538 The type of these constants follows the same rules as for octal or
21539 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
21540 can be applied.
21541
21542 @node C++ Extensions
21543 @chapter Extensions to the C++ Language
21544 @cindex extensions, C++ language
21545 @cindex C++ language extensions
21546
21547 The GNU compiler provides these extensions to the C++ language (and you
21548 can also use most of the C language extensions in your C++ programs). If you
21549 want to write code that checks whether these features are available, you can
21550 test for the GNU compiler the same way as for C programs: check for a
21551 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
21552 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
21553 Predefined Macros,cpp,The GNU C Preprocessor}).
21554
21555 @menu
21556 * C++ Volatiles:: What constitutes an access to a volatile object.
21557 * Restricted Pointers:: C99 restricted pointers and references.
21558 * Vague Linkage:: Where G++ puts inlines, vtables and such.
21559 * C++ Interface:: You can use a single C++ header file for both
21560 declarations and definitions.
21561 * Template Instantiation:: Methods for ensuring that exactly one copy of
21562 each needed template instantiation is emitted.
21563 * Bound member functions:: You can extract a function pointer to the
21564 method denoted by a @samp{->*} or @samp{.*} expression.
21565 * C++ Attributes:: Variable, function, and type attributes for C++ only.
21566 * Function Multiversioning:: Declaring multiple function versions.
21567 * Namespace Association:: Strong using-directives for namespace association.
21568 * Type Traits:: Compiler support for type traits.
21569 * C++ Concepts:: Improved support for generic programming.
21570 * Deprecated Features:: Things will disappear from G++.
21571 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
21572 @end menu
21573
21574 @node C++ Volatiles
21575 @section When is a Volatile C++ Object Accessed?
21576 @cindex accessing volatiles
21577 @cindex volatile read
21578 @cindex volatile write
21579 @cindex volatile access
21580
21581 The C++ standard differs from the C standard in its treatment of
21582 volatile objects. It fails to specify what constitutes a volatile
21583 access, except to say that C++ should behave in a similar manner to C
21584 with respect to volatiles, where possible. However, the different
21585 lvalueness of expressions between C and C++ complicate the behavior.
21586 G++ behaves the same as GCC for volatile access, @xref{C
21587 Extensions,,Volatiles}, for a description of GCC's behavior.
21588
21589 The C and C++ language specifications differ when an object is
21590 accessed in a void context:
21591
21592 @smallexample
21593 volatile int *src = @var{somevalue};
21594 *src;
21595 @end smallexample
21596
21597 The C++ standard specifies that such expressions do not undergo lvalue
21598 to rvalue conversion, and that the type of the dereferenced object may
21599 be incomplete. The C++ standard does not specify explicitly that it
21600 is lvalue to rvalue conversion that is responsible for causing an
21601 access. There is reason to believe that it is, because otherwise
21602 certain simple expressions become undefined. However, because it
21603 would surprise most programmers, G++ treats dereferencing a pointer to
21604 volatile object of complete type as GCC would do for an equivalent
21605 type in C@. When the object has incomplete type, G++ issues a
21606 warning; if you wish to force an error, you must force a conversion to
21607 rvalue with, for instance, a static cast.
21608
21609 When using a reference to volatile, G++ does not treat equivalent
21610 expressions as accesses to volatiles, but instead issues a warning that
21611 no volatile is accessed. The rationale for this is that otherwise it
21612 becomes difficult to determine where volatile access occur, and not
21613 possible to ignore the return value from functions returning volatile
21614 references. Again, if you wish to force a read, cast the reference to
21615 an rvalue.
21616
21617 G++ implements the same behavior as GCC does when assigning to a
21618 volatile object---there is no reread of the assigned-to object, the
21619 assigned rvalue is reused. Note that in C++ assignment expressions
21620 are lvalues, and if used as an lvalue, the volatile object is
21621 referred to. For instance, @var{vref} refers to @var{vobj}, as
21622 expected, in the following example:
21623
21624 @smallexample
21625 volatile int vobj;
21626 volatile int &vref = vobj = @var{something};
21627 @end smallexample
21628
21629 @node Restricted Pointers
21630 @section Restricting Pointer Aliasing
21631 @cindex restricted pointers
21632 @cindex restricted references
21633 @cindex restricted this pointer
21634
21635 As with the C front end, G++ understands the C99 feature of restricted pointers,
21636 specified with the @code{__restrict__}, or @code{__restrict} type
21637 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
21638 language flag, @code{restrict} is not a keyword in C++.
21639
21640 In addition to allowing restricted pointers, you can specify restricted
21641 references, which indicate that the reference is not aliased in the local
21642 context.
21643
21644 @smallexample
21645 void fn (int *__restrict__ rptr, int &__restrict__ rref)
21646 @{
21647 /* @r{@dots{}} */
21648 @}
21649 @end smallexample
21650
21651 @noindent
21652 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
21653 @var{rref} refers to a (different) unaliased integer.
21654
21655 You may also specify whether a member function's @var{this} pointer is
21656 unaliased by using @code{__restrict__} as a member function qualifier.
21657
21658 @smallexample
21659 void T::fn () __restrict__
21660 @{
21661 /* @r{@dots{}} */
21662 @}
21663 @end smallexample
21664
21665 @noindent
21666 Within the body of @code{T::fn}, @var{this} has the effective
21667 definition @code{T *__restrict__ const this}. Notice that the
21668 interpretation of a @code{__restrict__} member function qualifier is
21669 different to that of @code{const} or @code{volatile} qualifier, in that it
21670 is applied to the pointer rather than the object. This is consistent with
21671 other compilers that implement restricted pointers.
21672
21673 As with all outermost parameter qualifiers, @code{__restrict__} is
21674 ignored in function definition matching. This means you only need to
21675 specify @code{__restrict__} in a function definition, rather than
21676 in a function prototype as well.
21677
21678 @node Vague Linkage
21679 @section Vague Linkage
21680 @cindex vague linkage
21681
21682 There are several constructs in C++ that require space in the object
21683 file but are not clearly tied to a single translation unit. We say that
21684 these constructs have ``vague linkage''. Typically such constructs are
21685 emitted wherever they are needed, though sometimes we can be more
21686 clever.
21687
21688 @table @asis
21689 @item Inline Functions
21690 Inline functions are typically defined in a header file which can be
21691 included in many different compilations. Hopefully they can usually be
21692 inlined, but sometimes an out-of-line copy is necessary, if the address
21693 of the function is taken or if inlining fails. In general, we emit an
21694 out-of-line copy in all translation units where one is needed. As an
21695 exception, we only emit inline virtual functions with the vtable, since
21696 it always requires a copy.
21697
21698 Local static variables and string constants used in an inline function
21699 are also considered to have vague linkage, since they must be shared
21700 between all inlined and out-of-line instances of the function.
21701
21702 @item VTables
21703 @cindex vtable
21704 C++ virtual functions are implemented in most compilers using a lookup
21705 table, known as a vtable. The vtable contains pointers to the virtual
21706 functions provided by a class, and each object of the class contains a
21707 pointer to its vtable (or vtables, in some multiple-inheritance
21708 situations). If the class declares any non-inline, non-pure virtual
21709 functions, the first one is chosen as the ``key method'' for the class,
21710 and the vtable is only emitted in the translation unit where the key
21711 method is defined.
21712
21713 @emph{Note:} If the chosen key method is later defined as inline, the
21714 vtable is still emitted in every translation unit that defines it.
21715 Make sure that any inline virtuals are declared inline in the class
21716 body, even if they are not defined there.
21717
21718 @item @code{type_info} objects
21719 @cindex @code{type_info}
21720 @cindex RTTI
21721 C++ requires information about types to be written out in order to
21722 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
21723 For polymorphic classes (classes with virtual functions), the @samp{type_info}
21724 object is written out along with the vtable so that @samp{dynamic_cast}
21725 can determine the dynamic type of a class object at run time. For all
21726 other types, we write out the @samp{type_info} object when it is used: when
21727 applying @samp{typeid} to an expression, throwing an object, or
21728 referring to a type in a catch clause or exception specification.
21729
21730 @item Template Instantiations
21731 Most everything in this section also applies to template instantiations,
21732 but there are other options as well.
21733 @xref{Template Instantiation,,Where's the Template?}.
21734
21735 @end table
21736
21737 When used with GNU ld version 2.8 or later on an ELF system such as
21738 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
21739 these constructs will be discarded at link time. This is known as
21740 COMDAT support.
21741
21742 On targets that don't support COMDAT, but do support weak symbols, GCC
21743 uses them. This way one copy overrides all the others, but
21744 the unused copies still take up space in the executable.
21745
21746 For targets that do not support either COMDAT or weak symbols,
21747 most entities with vague linkage are emitted as local symbols to
21748 avoid duplicate definition errors from the linker. This does not happen
21749 for local statics in inlines, however, as having multiple copies
21750 almost certainly breaks things.
21751
21752 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
21753 another way to control placement of these constructs.
21754
21755 @node C++ Interface
21756 @section C++ Interface and Implementation Pragmas
21757
21758 @cindex interface and implementation headers, C++
21759 @cindex C++ interface and implementation headers
21760 @cindex pragmas, interface and implementation
21761
21762 @code{#pragma interface} and @code{#pragma implementation} provide the
21763 user with a way of explicitly directing the compiler to emit entities
21764 with vague linkage (and debugging information) in a particular
21765 translation unit.
21766
21767 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
21768 by COMDAT support and the ``key method'' heuristic
21769 mentioned in @ref{Vague Linkage}. Using them can actually cause your
21770 program to grow due to unnecessary out-of-line copies of inline
21771 functions.
21772
21773 @table @code
21774 @item #pragma interface
21775 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
21776 @kindex #pragma interface
21777 Use this directive in @emph{header files} that define object classes, to save
21778 space in most of the object files that use those classes. Normally,
21779 local copies of certain information (backup copies of inline member
21780 functions, debugging information, and the internal tables that implement
21781 virtual functions) must be kept in each object file that includes class
21782 definitions. You can use this pragma to avoid such duplication. When a
21783 header file containing @samp{#pragma interface} is included in a
21784 compilation, this auxiliary information is not generated (unless
21785 the main input source file itself uses @samp{#pragma implementation}).
21786 Instead, the object files contain references to be resolved at link
21787 time.
21788
21789 The second form of this directive is useful for the case where you have
21790 multiple headers with the same name in different directories. If you
21791 use this form, you must specify the same string to @samp{#pragma
21792 implementation}.
21793
21794 @item #pragma implementation
21795 @itemx #pragma implementation "@var{objects}.h"
21796 @kindex #pragma implementation
21797 Use this pragma in a @emph{main input file}, when you want full output from
21798 included header files to be generated (and made globally visible). The
21799 included header file, in turn, should use @samp{#pragma interface}.
21800 Backup copies of inline member functions, debugging information, and the
21801 internal tables used to implement virtual functions are all generated in
21802 implementation files.
21803
21804 @cindex implied @code{#pragma implementation}
21805 @cindex @code{#pragma implementation}, implied
21806 @cindex naming convention, implementation headers
21807 If you use @samp{#pragma implementation} with no argument, it applies to
21808 an include file with the same basename@footnote{A file's @dfn{basename}
21809 is the name stripped of all leading path information and of trailing
21810 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
21811 file. For example, in @file{allclass.cc}, giving just
21812 @samp{#pragma implementation}
21813 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
21814
21815 Use the string argument if you want a single implementation file to
21816 include code from multiple header files. (You must also use
21817 @samp{#include} to include the header file; @samp{#pragma
21818 implementation} only specifies how to use the file---it doesn't actually
21819 include it.)
21820
21821 There is no way to split up the contents of a single header file into
21822 multiple implementation files.
21823 @end table
21824
21825 @cindex inlining and C++ pragmas
21826 @cindex C++ pragmas, effect on inlining
21827 @cindex pragmas in C++, effect on inlining
21828 @samp{#pragma implementation} and @samp{#pragma interface} also have an
21829 effect on function inlining.
21830
21831 If you define a class in a header file marked with @samp{#pragma
21832 interface}, the effect on an inline function defined in that class is
21833 similar to an explicit @code{extern} declaration---the compiler emits
21834 no code at all to define an independent version of the function. Its
21835 definition is used only for inlining with its callers.
21836
21837 @opindex fno-implement-inlines
21838 Conversely, when you include the same header file in a main source file
21839 that declares it as @samp{#pragma implementation}, the compiler emits
21840 code for the function itself; this defines a version of the function
21841 that can be found via pointers (or by callers compiled without
21842 inlining). If all calls to the function can be inlined, you can avoid
21843 emitting the function by compiling with @option{-fno-implement-inlines}.
21844 If any calls are not inlined, you will get linker errors.
21845
21846 @node Template Instantiation
21847 @section Where's the Template?
21848 @cindex template instantiation
21849
21850 C++ templates were the first language feature to require more
21851 intelligence from the environment than was traditionally found on a UNIX
21852 system. Somehow the compiler and linker have to make sure that each
21853 template instance occurs exactly once in the executable if it is needed,
21854 and not at all otherwise. There are two basic approaches to this
21855 problem, which are referred to as the Borland model and the Cfront model.
21856
21857 @table @asis
21858 @item Borland model
21859 Borland C++ solved the template instantiation problem by adding the code
21860 equivalent of common blocks to their linker; the compiler emits template
21861 instances in each translation unit that uses them, and the linker
21862 collapses them together. The advantage of this model is that the linker
21863 only has to consider the object files themselves; there is no external
21864 complexity to worry about. The disadvantage is that compilation time
21865 is increased because the template code is being compiled repeatedly.
21866 Code written for this model tends to include definitions of all
21867 templates in the header file, since they must be seen to be
21868 instantiated.
21869
21870 @item Cfront model
21871 The AT&T C++ translator, Cfront, solved the template instantiation
21872 problem by creating the notion of a template repository, an
21873 automatically maintained place where template instances are stored. A
21874 more modern version of the repository works as follows: As individual
21875 object files are built, the compiler places any template definitions and
21876 instantiations encountered in the repository. At link time, the link
21877 wrapper adds in the objects in the repository and compiles any needed
21878 instances that were not previously emitted. The advantages of this
21879 model are more optimal compilation speed and the ability to use the
21880 system linker; to implement the Borland model a compiler vendor also
21881 needs to replace the linker. The disadvantages are vastly increased
21882 complexity, and thus potential for error; for some code this can be
21883 just as transparent, but in practice it can been very difficult to build
21884 multiple programs in one directory and one program in multiple
21885 directories. Code written for this model tends to separate definitions
21886 of non-inline member templates into a separate file, which should be
21887 compiled separately.
21888 @end table
21889
21890 G++ implements the Borland model on targets where the linker supports it,
21891 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
21892 Otherwise G++ implements neither automatic model.
21893
21894 You have the following options for dealing with template instantiations:
21895
21896 @enumerate
21897 @item
21898 Do nothing. Code written for the Borland model works fine, but
21899 each translation unit contains instances of each of the templates it
21900 uses. The duplicate instances will be discarded by the linker, but in
21901 a large program, this can lead to an unacceptable amount of code
21902 duplication in object files or shared libraries.
21903
21904 Duplicate instances of a template can be avoided by defining an explicit
21905 instantiation in one object file, and preventing the compiler from doing
21906 implicit instantiations in any other object files by using an explicit
21907 instantiation declaration, using the @code{extern template} syntax:
21908
21909 @smallexample
21910 extern template int max (int, int);
21911 @end smallexample
21912
21913 This syntax is defined in the C++ 2011 standard, but has been supported by
21914 G++ and other compilers since well before 2011.
21915
21916 Explicit instantiations can be used for the largest or most frequently
21917 duplicated instances, without having to know exactly which other instances
21918 are used in the rest of the program. You can scatter the explicit
21919 instantiations throughout your program, perhaps putting them in the
21920 translation units where the instances are used or the translation units
21921 that define the templates themselves; you can put all of the explicit
21922 instantiations you need into one big file; or you can create small files
21923 like
21924
21925 @smallexample
21926 #include "Foo.h"
21927 #include "Foo.cc"
21928
21929 template class Foo<int>;
21930 template ostream& operator <<
21931 (ostream&, const Foo<int>&);
21932 @end smallexample
21933
21934 @noindent
21935 for each of the instances you need, and create a template instantiation
21936 library from those.
21937
21938 This is the simplest option, but also offers flexibility and
21939 fine-grained control when necessary. It is also the most portable
21940 alternative and programs using this approach will work with most modern
21941 compilers.
21942
21943 @item
21944 @opindex frepo
21945 Compile your template-using code with @option{-frepo}. The compiler
21946 generates files with the extension @samp{.rpo} listing all of the
21947 template instantiations used in the corresponding object files that
21948 could be instantiated there; the link wrapper, @samp{collect2},
21949 then updates the @samp{.rpo} files to tell the compiler where to place
21950 those instantiations and rebuild any affected object files. The
21951 link-time overhead is negligible after the first pass, as the compiler
21952 continues to place the instantiations in the same files.
21953
21954 This can be a suitable option for application code written for the Borland
21955 model, as it usually just works. Code written for the Cfront model
21956 needs to be modified so that the template definitions are available at
21957 one or more points of instantiation; usually this is as simple as adding
21958 @code{#include <tmethods.cc>} to the end of each template header.
21959
21960 For library code, if you want the library to provide all of the template
21961 instantiations it needs, just try to link all of its object files
21962 together; the link will fail, but cause the instantiations to be
21963 generated as a side effect. Be warned, however, that this may cause
21964 conflicts if multiple libraries try to provide the same instantiations.
21965 For greater control, use explicit instantiation as described in the next
21966 option.
21967
21968 @item
21969 @opindex fno-implicit-templates
21970 Compile your code with @option{-fno-implicit-templates} to disable the
21971 implicit generation of template instances, and explicitly instantiate
21972 all the ones you use. This approach requires more knowledge of exactly
21973 which instances you need than do the others, but it's less
21974 mysterious and allows greater control if you want to ensure that only
21975 the intended instances are used.
21976
21977 If you are using Cfront-model code, you can probably get away with not
21978 using @option{-fno-implicit-templates} when compiling files that don't
21979 @samp{#include} the member template definitions.
21980
21981 If you use one big file to do the instantiations, you may want to
21982 compile it without @option{-fno-implicit-templates} so you get all of the
21983 instances required by your explicit instantiations (but not by any
21984 other files) without having to specify them as well.
21985
21986 In addition to forward declaration of explicit instantiations
21987 (with @code{extern}), G++ has extended the template instantiation
21988 syntax to support instantiation of the compiler support data for a
21989 template class (i.e.@: the vtable) without instantiating any of its
21990 members (with @code{inline}), and instantiation of only the static data
21991 members of a template class, without the support data or member
21992 functions (with @code{static}):
21993
21994 @smallexample
21995 inline template class Foo<int>;
21996 static template class Foo<int>;
21997 @end smallexample
21998 @end enumerate
21999
22000 @node Bound member functions
22001 @section Extracting the Function Pointer from a Bound Pointer to Member Function
22002 @cindex pmf
22003 @cindex pointer to member function
22004 @cindex bound pointer to member function
22005
22006 In C++, pointer to member functions (PMFs) are implemented using a wide
22007 pointer of sorts to handle all the possible call mechanisms; the PMF
22008 needs to store information about how to adjust the @samp{this} pointer,
22009 and if the function pointed to is virtual, where to find the vtable, and
22010 where in the vtable to look for the member function. If you are using
22011 PMFs in an inner loop, you should really reconsider that decision. If
22012 that is not an option, you can extract the pointer to the function that
22013 would be called for a given object/PMF pair and call it directly inside
22014 the inner loop, to save a bit of time.
22015
22016 Note that you still pay the penalty for the call through a
22017 function pointer; on most modern architectures, such a call defeats the
22018 branch prediction features of the CPU@. This is also true of normal
22019 virtual function calls.
22020
22021 The syntax for this extension is
22022
22023 @smallexample
22024 extern A a;
22025 extern int (A::*fp)();
22026 typedef int (*fptr)(A *);
22027
22028 fptr p = (fptr)(a.*fp);
22029 @end smallexample
22030
22031 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
22032 no object is needed to obtain the address of the function. They can be
22033 converted to function pointers directly:
22034
22035 @smallexample
22036 fptr p1 = (fptr)(&A::foo);
22037 @end smallexample
22038
22039 @opindex Wno-pmf-conversions
22040 You must specify @option{-Wno-pmf-conversions} to use this extension.
22041
22042 @node C++ Attributes
22043 @section C++-Specific Variable, Function, and Type Attributes
22044
22045 Some attributes only make sense for C++ programs.
22046
22047 @table @code
22048 @item abi_tag ("@var{tag}", ...)
22049 @cindex @code{abi_tag} function attribute
22050 @cindex @code{abi_tag} variable attribute
22051 @cindex @code{abi_tag} type attribute
22052 The @code{abi_tag} attribute can be applied to a function, variable, or class
22053 declaration. It modifies the mangled name of the entity to
22054 incorporate the tag name, in order to distinguish the function or
22055 class from an earlier version with a different ABI; perhaps the class
22056 has changed size, or the function has a different return type that is
22057 not encoded in the mangled name.
22058
22059 The attribute can also be applied to an inline namespace, but does not
22060 affect the mangled name of the namespace; in this case it is only used
22061 for @option{-Wabi-tag} warnings and automatic tagging of functions and
22062 variables. Tagging inline namespaces is generally preferable to
22063 tagging individual declarations, but the latter is sometimes
22064 necessary, such as when only certain members of a class need to be
22065 tagged.
22066
22067 The argument can be a list of strings of arbitrary length. The
22068 strings are sorted on output, so the order of the list is
22069 unimportant.
22070
22071 A redeclaration of an entity must not add new ABI tags,
22072 since doing so would change the mangled name.
22073
22074 The ABI tags apply to a name, so all instantiations and
22075 specializations of a template have the same tags. The attribute will
22076 be ignored if applied to an explicit specialization or instantiation.
22077
22078 The @option{-Wabi-tag} flag enables a warning about a class which does
22079 not have all the ABI tags used by its subobjects and virtual functions; for users with code
22080 that needs to coexist with an earlier ABI, using this option can help
22081 to find all affected types that need to be tagged.
22082
22083 When a type involving an ABI tag is used as the type of a variable or
22084 return type of a function where that tag is not already present in the
22085 signature of the function, the tag is automatically applied to the
22086 variable or function. @option{-Wabi-tag} also warns about this
22087 situation; this warning can be avoided by explicitly tagging the
22088 variable or function or moving it into a tagged inline namespace.
22089
22090 @item init_priority (@var{priority})
22091 @cindex @code{init_priority} variable attribute
22092
22093 In Standard C++, objects defined at namespace scope are guaranteed to be
22094 initialized in an order in strict accordance with that of their definitions
22095 @emph{in a given translation unit}. No guarantee is made for initializations
22096 across translation units. However, GNU C++ allows users to control the
22097 order of initialization of objects defined at namespace scope with the
22098 @code{init_priority} attribute by specifying a relative @var{priority},
22099 a constant integral expression currently bounded between 101 and 65535
22100 inclusive. Lower numbers indicate a higher priority.
22101
22102 In the following example, @code{A} would normally be created before
22103 @code{B}, but the @code{init_priority} attribute reverses that order:
22104
22105 @smallexample
22106 Some_Class A __attribute__ ((init_priority (2000)));
22107 Some_Class B __attribute__ ((init_priority (543)));
22108 @end smallexample
22109
22110 @noindent
22111 Note that the particular values of @var{priority} do not matter; only their
22112 relative ordering.
22113
22114 @item warn_unused
22115 @cindex @code{warn_unused} type attribute
22116
22117 For C++ types with non-trivial constructors and/or destructors it is
22118 impossible for the compiler to determine whether a variable of this
22119 type is truly unused if it is not referenced. This type attribute
22120 informs the compiler that variables of this type should be warned
22121 about if they appear to be unused, just like variables of fundamental
22122 types.
22123
22124 This attribute is appropriate for types which just represent a value,
22125 such as @code{std::string}; it is not appropriate for types which
22126 control a resource, such as @code{std::lock_guard}.
22127
22128 This attribute is also accepted in C, but it is unnecessary because C
22129 does not have constructors or destructors.
22130
22131 @end table
22132
22133 See also @ref{Namespace Association}.
22134
22135 @node Function Multiversioning
22136 @section Function Multiversioning
22137 @cindex function versions
22138
22139 With the GNU C++ front end, for x86 targets, you may specify multiple
22140 versions of a function, where each function is specialized for a
22141 specific target feature. At runtime, the appropriate version of the
22142 function is automatically executed depending on the characteristics of
22143 the execution platform. Here is an example.
22144
22145 @smallexample
22146 __attribute__ ((target ("default")))
22147 int foo ()
22148 @{
22149 // The default version of foo.
22150 return 0;
22151 @}
22152
22153 __attribute__ ((target ("sse4.2")))
22154 int foo ()
22155 @{
22156 // foo version for SSE4.2
22157 return 1;
22158 @}
22159
22160 __attribute__ ((target ("arch=atom")))
22161 int foo ()
22162 @{
22163 // foo version for the Intel ATOM processor
22164 return 2;
22165 @}
22166
22167 __attribute__ ((target ("arch=amdfam10")))
22168 int foo ()
22169 @{
22170 // foo version for the AMD Family 0x10 processors.
22171 return 3;
22172 @}
22173
22174 int main ()
22175 @{
22176 int (*p)() = &foo;
22177 assert ((*p) () == foo ());
22178 return 0;
22179 @}
22180 @end smallexample
22181
22182 In the above example, four versions of function foo are created. The
22183 first version of foo with the target attribute "default" is the default
22184 version. This version gets executed when no other target specific
22185 version qualifies for execution on a particular platform. A new version
22186 of foo is created by using the same function signature but with a
22187 different target string. Function foo is called or a pointer to it is
22188 taken just like a regular function. GCC takes care of doing the
22189 dispatching to call the right version at runtime. Refer to the
22190 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
22191 Function Multiversioning} for more details.
22192
22193 @node Namespace Association
22194 @section Namespace Association
22195
22196 @strong{Caution:} The semantics of this extension are equivalent
22197 to C++ 2011 inline namespaces. Users should use inline namespaces
22198 instead as this extension will be removed in future versions of G++.
22199
22200 A using-directive with @code{__attribute ((strong))} is stronger
22201 than a normal using-directive in two ways:
22202
22203 @itemize @bullet
22204 @item
22205 Templates from the used namespace can be specialized and explicitly
22206 instantiated as though they were members of the using namespace.
22207
22208 @item
22209 The using namespace is considered an associated namespace of all
22210 templates in the used namespace for purposes of argument-dependent
22211 name lookup.
22212 @end itemize
22213
22214 The used namespace must be nested within the using namespace so that
22215 normal unqualified lookup works properly.
22216
22217 This is useful for composing a namespace transparently from
22218 implementation namespaces. For example:
22219
22220 @smallexample
22221 namespace std @{
22222 namespace debug @{
22223 template <class T> struct A @{ @};
22224 @}
22225 using namespace debug __attribute ((__strong__));
22226 template <> struct A<int> @{ @}; // @r{OK to specialize}
22227
22228 template <class T> void f (A<T>);
22229 @}
22230
22231 int main()
22232 @{
22233 f (std::A<float>()); // @r{lookup finds} std::f
22234 f (std::A<int>());
22235 @}
22236 @end smallexample
22237
22238 @node Type Traits
22239 @section Type Traits
22240
22241 The C++ front end implements syntactic extensions that allow
22242 compile-time determination of
22243 various characteristics of a type (or of a
22244 pair of types).
22245
22246 @table @code
22247 @item __has_nothrow_assign (type)
22248 If @code{type} is const qualified or is a reference type then the trait is
22249 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
22250 is true, else if @code{type} is a cv class or union type with copy assignment
22251 operators that are known not to throw an exception then the trait is true,
22252 else it is false. Requires: @code{type} shall be a complete type,
22253 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22254
22255 @item __has_nothrow_copy (type)
22256 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
22257 @code{type} is a cv class or union type with copy constructors that
22258 are known not to throw an exception then the trait is true, else it is false.
22259 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
22260 @code{void}, or an array of unknown bound.
22261
22262 @item __has_nothrow_constructor (type)
22263 If @code{__has_trivial_constructor (type)} is true then the trait is
22264 true, else if @code{type} is a cv class or union type (or array
22265 thereof) with a default constructor that is known not to throw an
22266 exception then the trait is true, else it is false. Requires:
22267 @code{type} shall be a complete type, (possibly cv-qualified)
22268 @code{void}, or an array of unknown bound.
22269
22270 @item __has_trivial_assign (type)
22271 If @code{type} is const qualified or is a reference type then the trait is
22272 false. Otherwise if @code{__is_pod (type)} is true then the trait is
22273 true, else if @code{type} is a cv class or union type with a trivial
22274 copy assignment ([class.copy]) then the trait is true, else it is
22275 false. Requires: @code{type} shall be a complete type, (possibly
22276 cv-qualified) @code{void}, or an array of unknown bound.
22277
22278 @item __has_trivial_copy (type)
22279 If @code{__is_pod (type)} is true or @code{type} is a reference type
22280 then the trait is true, else if @code{type} is a cv class or union type
22281 with a trivial copy constructor ([class.copy]) then the trait
22282 is true, else it is false. Requires: @code{type} shall be a complete
22283 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22284
22285 @item __has_trivial_constructor (type)
22286 If @code{__is_pod (type)} is true then the trait is true, else if
22287 @code{type} is a cv class or union type (or array thereof) with a
22288 trivial default constructor ([class.ctor]) then the trait is true,
22289 else it is false. Requires: @code{type} shall be a complete
22290 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22291
22292 @item __has_trivial_destructor (type)
22293 If @code{__is_pod (type)} is true or @code{type} is a reference type then
22294 the trait is true, else if @code{type} is a cv class or union type (or
22295 array thereof) with a trivial destructor ([class.dtor]) then the trait
22296 is true, else it is false. Requires: @code{type} shall be a complete
22297 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22298
22299 @item __has_virtual_destructor (type)
22300 If @code{type} is a class type with a virtual destructor
22301 ([class.dtor]) then the trait is true, else it is false. Requires:
22302 @code{type} shall be a complete type, (possibly cv-qualified)
22303 @code{void}, or an array of unknown bound.
22304
22305 @item __is_abstract (type)
22306 If @code{type} is an abstract class ([class.abstract]) then the trait
22307 is true, else it is false. Requires: @code{type} shall be a complete
22308 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22309
22310 @item __is_base_of (base_type, derived_type)
22311 If @code{base_type} is a base class of @code{derived_type}
22312 ([class.derived]) then the trait is true, otherwise it is false.
22313 Top-level cv qualifications of @code{base_type} and
22314 @code{derived_type} are ignored. For the purposes of this trait, a
22315 class type is considered is own base. Requires: if @code{__is_class
22316 (base_type)} and @code{__is_class (derived_type)} are true and
22317 @code{base_type} and @code{derived_type} are not the same type
22318 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
22319 type. A diagnostic is produced if this requirement is not met.
22320
22321 @item __is_class (type)
22322 If @code{type} is a cv class type, and not a union type
22323 ([basic.compound]) the trait is true, else it is false.
22324
22325 @item __is_empty (type)
22326 If @code{__is_class (type)} is false then the trait is false.
22327 Otherwise @code{type} is considered empty if and only if: @code{type}
22328 has no non-static data members, or all non-static data members, if
22329 any, are bit-fields of length 0, and @code{type} has no virtual
22330 members, and @code{type} has no virtual base classes, and @code{type}
22331 has no base classes @code{base_type} for which
22332 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
22333 be a complete type, (possibly cv-qualified) @code{void}, or an array
22334 of unknown bound.
22335
22336 @item __is_enum (type)
22337 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
22338 true, else it is false.
22339
22340 @item __is_literal_type (type)
22341 If @code{type} is a literal type ([basic.types]) the trait is
22342 true, else it is false. Requires: @code{type} shall be a complete type,
22343 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22344
22345 @item __is_pod (type)
22346 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
22347 else it is false. Requires: @code{type} shall be a complete type,
22348 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22349
22350 @item __is_polymorphic (type)
22351 If @code{type} is a polymorphic class ([class.virtual]) then the trait
22352 is true, else it is false. Requires: @code{type} shall be a complete
22353 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22354
22355 @item __is_standard_layout (type)
22356 If @code{type} is a standard-layout type ([basic.types]) the trait is
22357 true, else it is false. Requires: @code{type} shall be a complete
22358 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22359
22360 @item __is_trivial (type)
22361 If @code{type} is a trivial type ([basic.types]) the trait is
22362 true, else it is false. Requires: @code{type} shall be a complete
22363 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22364
22365 @item __is_union (type)
22366 If @code{type} is a cv union type ([basic.compound]) the trait is
22367 true, else it is false.
22368
22369 @item __underlying_type (type)
22370 The underlying type of @code{type}. Requires: @code{type} shall be
22371 an enumeration type ([dcl.enum]).
22372
22373 @end table
22374
22375
22376 @node C++ Concepts
22377 @section C++ Concepts
22378
22379 C++ concepts provide much-improved support for generic programming. In
22380 particular, they allow the specification of constraints on template arguments.
22381 The constraints are used to extend the usual overloading and partial
22382 specialization capabilities of the language, allowing generic data structures
22383 and algorithms to be ``refined'' based on their properties rather than their
22384 type names.
22385
22386 The following keywords are reserved for concepts.
22387
22388 @table @code
22389 @item assumes
22390 States an expression as an assumption, and if possible, verifies that the
22391 assumption is valid. For example, @code{assume(n > 0)}.
22392
22393 @item axiom
22394 Introduces an axiom definition. Axioms introduce requirements on values.
22395
22396 @item forall
22397 Introduces a universally quantified object in an axiom. For example,
22398 @code{forall (int n) n + 0 == n}).
22399
22400 @item concept
22401 Introduces a concept definition. Concepts are sets of syntactic and semantic
22402 requirements on types and their values.
22403
22404 @item requires
22405 Introduces constraints on template arguments or requirements for a member
22406 function of a class template.
22407
22408 @end table
22409
22410 The front end also exposes a number of internal mechanism that can be used
22411 to simplify the writing of type traits. Note that some of these traits are
22412 likely to be removed in the future.
22413
22414 @table @code
22415 @item __is_same (type1, type2)
22416 A binary type trait: true whenever the type arguments are the same.
22417
22418 @end table
22419
22420
22421 @node Deprecated Features
22422 @section Deprecated Features
22423
22424 In the past, the GNU C++ compiler was extended to experiment with new
22425 features, at a time when the C++ language was still evolving. Now that
22426 the C++ standard is complete, some of those features are superseded by
22427 superior alternatives. Using the old features might cause a warning in
22428 some cases that the feature will be dropped in the future. In other
22429 cases, the feature might be gone already.
22430
22431 While the list below is not exhaustive, it documents some of the options
22432 that are now deprecated:
22433
22434 @table @code
22435 @item -fexternal-templates
22436 @itemx -falt-external-templates
22437 These are two of the many ways for G++ to implement template
22438 instantiation. @xref{Template Instantiation}. The C++ standard clearly
22439 defines how template definitions have to be organized across
22440 implementation units. G++ has an implicit instantiation mechanism that
22441 should work just fine for standard-conforming code.
22442
22443 @item -fstrict-prototype
22444 @itemx -fno-strict-prototype
22445 Previously it was possible to use an empty prototype parameter list to
22446 indicate an unspecified number of parameters (like C), rather than no
22447 parameters, as C++ demands. This feature has been removed, except where
22448 it is required for backwards compatibility. @xref{Backwards Compatibility}.
22449 @end table
22450
22451 G++ allows a virtual function returning @samp{void *} to be overridden
22452 by one returning a different pointer type. This extension to the
22453 covariant return type rules is now deprecated and will be removed from a
22454 future version.
22455
22456 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
22457 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
22458 and are now removed from G++. Code using these operators should be
22459 modified to use @code{std::min} and @code{std::max} instead.
22460
22461 The named return value extension has been deprecated, and is now
22462 removed from G++.
22463
22464 The use of initializer lists with new expressions has been deprecated,
22465 and is now removed from G++.
22466
22467 Floating and complex non-type template parameters have been deprecated,
22468 and are now removed from G++.
22469
22470 The implicit typename extension has been deprecated and is now
22471 removed from G++.
22472
22473 The use of default arguments in function pointers, function typedefs
22474 and other places where they are not permitted by the standard is
22475 deprecated and will be removed from a future version of G++.
22476
22477 G++ allows floating-point literals to appear in integral constant expressions,
22478 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
22479 This extension is deprecated and will be removed from a future version.
22480
22481 G++ allows static data members of const floating-point type to be declared
22482 with an initializer in a class definition. The standard only allows
22483 initializers for static members of const integral types and const
22484 enumeration types so this extension has been deprecated and will be removed
22485 from a future version.
22486
22487 @node Backwards Compatibility
22488 @section Backwards Compatibility
22489 @cindex Backwards Compatibility
22490 @cindex ARM [Annotated C++ Reference Manual]
22491
22492 Now that there is a definitive ISO standard C++, G++ has a specification
22493 to adhere to. The C++ language evolved over time, and features that
22494 used to be acceptable in previous drafts of the standard, such as the ARM
22495 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
22496 compilation of C++ written to such drafts, G++ contains some backwards
22497 compatibilities. @emph{All such backwards compatibility features are
22498 liable to disappear in future versions of G++.} They should be considered
22499 deprecated. @xref{Deprecated Features}.
22500
22501 @table @code
22502 @item For scope
22503 If a variable is declared at for scope, it used to remain in scope until
22504 the end of the scope that contained the for statement (rather than just
22505 within the for scope). G++ retains this, but issues a warning, if such a
22506 variable is accessed outside the for scope.
22507
22508 @item Implicit C language
22509 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
22510 scope to set the language. On such systems, all header files are
22511 implicitly scoped inside a C language scope. Also, an empty prototype
22512 @code{()} is treated as an unspecified number of arguments, rather
22513 than no arguments, as C++ demands.
22514 @end table
22515
22516 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
22517 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr