re PR target/78093 ([avr] New variable attribute "absdata" and option "-mabsdata...
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Inquiring about the alignment of a type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
76 function.
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
86 checking.
87 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
88 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
89 * Other Builtins:: Other built-in functions.
90 * Target Builtins:: Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas:: Pragmas accepted by GCC.
93 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
94 * Thread-Local:: Per-thread variables.
95 * Binary constants:: Binary constants using the @samp{0b} prefix.
96 @end menu
97
98 @node Statement Exprs
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
104
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@. This allows you to use loops, switches, and local variables
109 within an expression.
110
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces. For
113 example:
114
115 @smallexample
116 (@{ int y = foo (); int z;
117 if (y > 0) z = y;
118 else z = - y;
119 z; @})
120 @end smallexample
121
122 @noindent
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
125
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct. (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
131
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once). For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
135 follows:
136
137 @smallexample
138 #define max(a,b) ((a) > (b) ? (a) : (b))
139 @end smallexample
140
141 @noindent
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects. In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
147
148 @smallexample
149 #define maxint(a,b) \
150 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 @end smallexample
152
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
156
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
159
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression. For instance, if @code{A} is a class, then
163
164 @smallexample
165 A a;
166
167 (@{a;@}).Foo ()
168 @end smallexample
169
170 @noindent
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 address of @code{a}.
175
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end. This makes statement
178 expressions inside macros slightly different from function calls. In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call. In the statement expression case they are destroyed during
182 the statement expression. For instance,
183
184 @smallexample
185 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
187
188 void foo ()
189 @{
190 macro (X ());
191 function (X ());
192 @}
193 @end smallexample
194
195 @noindent
196 has different places where temporaries are destroyed. For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}. In the @code{function} case that
199 temporary is destroyed when the function returns.
200
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++. (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
205 bug.)
206
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted. Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression. In any case, as with a function call, the evaluation of a
218 statement expression is not interleaved with the evaluation of other
219 parts of the containing expression. For example,
220
221 @smallexample
222 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
223 @end smallexample
224
225 @noindent
226 calls @code{foo} and @code{bar1} and does not call @code{baz} but
227 may or may not call @code{bar2}. If @code{bar2} is called, it is
228 called after @code{foo} and before @code{bar1}.
229
230 @node Local Labels
231 @section Locally Declared Labels
232 @cindex local labels
233 @cindex macros, local labels
234
235 GCC allows you to declare @dfn{local labels} in any nested block
236 scope. A local label is just like an ordinary label, but you can
237 only reference it (with a @code{goto} statement, or by taking its
238 address) within the block in which it is declared.
239
240 A local label declaration looks like this:
241
242 @smallexample
243 __label__ @var{label};
244 @end smallexample
245
246 @noindent
247 or
248
249 @smallexample
250 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
251 @end smallexample
252
253 Local label declarations must come at the beginning of the block,
254 before any ordinary declarations or statements.
255
256 The label declaration defines the label @emph{name}, but does not define
257 the label itself. You must do this in the usual way, with
258 @code{@var{label}:}, within the statements of the statement expression.
259
260 The local label feature is useful for complex macros. If a macro
261 contains nested loops, a @code{goto} can be useful for breaking out of
262 them. However, an ordinary label whose scope is the whole function
263 cannot be used: if the macro can be expanded several times in one
264 function, the label is multiply defined in that function. A
265 local label avoids this problem. For example:
266
267 @smallexample
268 #define SEARCH(value, array, target) \
269 do @{ \
270 __label__ found; \
271 typeof (target) _SEARCH_target = (target); \
272 typeof (*(array)) *_SEARCH_array = (array); \
273 int i, j; \
274 int value; \
275 for (i = 0; i < max; i++) \
276 for (j = 0; j < max; j++) \
277 if (_SEARCH_array[i][j] == _SEARCH_target) \
278 @{ (value) = i; goto found; @} \
279 (value) = -1; \
280 found:; \
281 @} while (0)
282 @end smallexample
283
284 This could also be written using a statement expression:
285
286 @smallexample
287 #define SEARCH(array, target) \
288 (@{ \
289 __label__ found; \
290 typeof (target) _SEARCH_target = (target); \
291 typeof (*(array)) *_SEARCH_array = (array); \
292 int i, j; \
293 int value; \
294 for (i = 0; i < max; i++) \
295 for (j = 0; j < max; j++) \
296 if (_SEARCH_array[i][j] == _SEARCH_target) \
297 @{ value = i; goto found; @} \
298 value = -1; \
299 found: \
300 value; \
301 @})
302 @end smallexample
303
304 Local label declarations also make the labels they declare visible to
305 nested functions, if there are any. @xref{Nested Functions}, for details.
306
307 @node Labels as Values
308 @section Labels as Values
309 @cindex labels as values
310 @cindex computed gotos
311 @cindex goto with computed label
312 @cindex address of a label
313
314 You can get the address of a label defined in the current function
315 (or a containing function) with the unary operator @samp{&&}. The
316 value has type @code{void *}. This value is a constant and can be used
317 wherever a constant of that type is valid. For example:
318
319 @smallexample
320 void *ptr;
321 /* @r{@dots{}} */
322 ptr = &&foo;
323 @end smallexample
324
325 To use these values, you need to be able to jump to one. This is done
326 with the computed goto statement@footnote{The analogous feature in
327 Fortran is called an assigned goto, but that name seems inappropriate in
328 C, where one can do more than simply store label addresses in label
329 variables.}, @code{goto *@var{exp};}. For example,
330
331 @smallexample
332 goto *ptr;
333 @end smallexample
334
335 @noindent
336 Any expression of type @code{void *} is allowed.
337
338 One way of using these constants is in initializing a static array that
339 serves as a jump table:
340
341 @smallexample
342 static void *array[] = @{ &&foo, &&bar, &&hack @};
343 @end smallexample
344
345 @noindent
346 Then you can select a label with indexing, like this:
347
348 @smallexample
349 goto *array[i];
350 @end smallexample
351
352 @noindent
353 Note that this does not check whether the subscript is in bounds---array
354 indexing in C never does that.
355
356 Such an array of label values serves a purpose much like that of the
357 @code{switch} statement. The @code{switch} statement is cleaner, so
358 use that rather than an array unless the problem does not fit a
359 @code{switch} statement very well.
360
361 Another use of label values is in an interpreter for threaded code.
362 The labels within the interpreter function can be stored in the
363 threaded code for super-fast dispatching.
364
365 You may not use this mechanism to jump to code in a different function.
366 If you do that, totally unpredictable things happen. The best way to
367 avoid this is to store the label address only in automatic variables and
368 never pass it as an argument.
369
370 An alternate way to write the above example is
371
372 @smallexample
373 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
374 &&hack - &&foo @};
375 goto *(&&foo + array[i]);
376 @end smallexample
377
378 @noindent
379 This is more friendly to code living in shared libraries, as it reduces
380 the number of dynamic relocations that are needed, and by consequence,
381 allows the data to be read-only.
382 This alternative with label differences is not supported for the AVR target,
383 please use the first approach for AVR programs.
384
385 The @code{&&foo} expressions for the same label might have different
386 values if the containing function is inlined or cloned. If a program
387 relies on them being always the same,
388 @code{__attribute__((__noinline__,__noclone__))} should be used to
389 prevent inlining and cloning. If @code{&&foo} is used in a static
390 variable initializer, inlining and cloning is forbidden.
391
392 @node Nested Functions
393 @section Nested Functions
394 @cindex nested functions
395 @cindex downward funargs
396 @cindex thunks
397
398 A @dfn{nested function} is a function defined inside another function.
399 Nested functions are supported as an extension in GNU C, but are not
400 supported by GNU C++.
401
402 The nested function's name is local to the block where it is defined.
403 For example, here we define a nested function named @code{square}, and
404 call it twice:
405
406 @smallexample
407 @group
408 foo (double a, double b)
409 @{
410 double square (double z) @{ return z * z; @}
411
412 return square (a) + square (b);
413 @}
414 @end group
415 @end smallexample
416
417 The nested function can access all the variables of the containing
418 function that are visible at the point of its definition. This is
419 called @dfn{lexical scoping}. For example, here we show a nested
420 function which uses an inherited variable named @code{offset}:
421
422 @smallexample
423 @group
424 bar (int *array, int offset, int size)
425 @{
426 int access (int *array, int index)
427 @{ return array[index + offset]; @}
428 int i;
429 /* @r{@dots{}} */
430 for (i = 0; i < size; i++)
431 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
432 @}
433 @end group
434 @end smallexample
435
436 Nested function definitions are permitted within functions in the places
437 where variable definitions are allowed; that is, in any block, mixed
438 with the other declarations and statements in the block.
439
440 It is possible to call the nested function from outside the scope of its
441 name by storing its address or passing the address to another function:
442
443 @smallexample
444 hack (int *array, int size)
445 @{
446 void store (int index, int value)
447 @{ array[index] = value; @}
448
449 intermediate (store, size);
450 @}
451 @end smallexample
452
453 Here, the function @code{intermediate} receives the address of
454 @code{store} as an argument. If @code{intermediate} calls @code{store},
455 the arguments given to @code{store} are used to store into @code{array}.
456 But this technique works only so long as the containing function
457 (@code{hack}, in this example) does not exit.
458
459 If you try to call the nested function through its address after the
460 containing function exits, all hell breaks loose. If you try
461 to call it after a containing scope level exits, and if it refers
462 to some of the variables that are no longer in scope, you may be lucky,
463 but it's not wise to take the risk. If, however, the nested function
464 does not refer to anything that has gone out of scope, you should be
465 safe.
466
467 GCC implements taking the address of a nested function using a technique
468 called @dfn{trampolines}. This technique was described in
469 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
470 C++ Conference Proceedings, October 17-21, 1988).
471
472 A nested function can jump to a label inherited from a containing
473 function, provided the label is explicitly declared in the containing
474 function (@pxref{Local Labels}). Such a jump returns instantly to the
475 containing function, exiting the nested function that did the
476 @code{goto} and any intermediate functions as well. Here is an example:
477
478 @smallexample
479 @group
480 bar (int *array, int offset, int size)
481 @{
482 __label__ failure;
483 int access (int *array, int index)
484 @{
485 if (index > size)
486 goto failure;
487 return array[index + offset];
488 @}
489 int i;
490 /* @r{@dots{}} */
491 for (i = 0; i < size; i++)
492 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
493 /* @r{@dots{}} */
494 return 0;
495
496 /* @r{Control comes here from @code{access}
497 if it detects an error.} */
498 failure:
499 return -1;
500 @}
501 @end group
502 @end smallexample
503
504 A nested function always has no linkage. Declaring one with
505 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
506 before its definition, use @code{auto} (which is otherwise meaningless
507 for function declarations).
508
509 @smallexample
510 bar (int *array, int offset, int size)
511 @{
512 __label__ failure;
513 auto int access (int *, int);
514 /* @r{@dots{}} */
515 int access (int *array, int index)
516 @{
517 if (index > size)
518 goto failure;
519 return array[index + offset];
520 @}
521 /* @r{@dots{}} */
522 @}
523 @end smallexample
524
525 @node Constructing Calls
526 @section Constructing Function Calls
527 @cindex constructing calls
528 @cindex forwarding calls
529
530 Using the built-in functions described below, you can record
531 the arguments a function received, and call another function
532 with the same arguments, without knowing the number or types
533 of the arguments.
534
535 You can also record the return value of that function call,
536 and later return that value, without knowing what data type
537 the function tried to return (as long as your caller expects
538 that data type).
539
540 However, these built-in functions may interact badly with some
541 sophisticated features or other extensions of the language. It
542 is, therefore, not recommended to use them outside very simple
543 functions acting as mere forwarders for their arguments.
544
545 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
546 This built-in function returns a pointer to data
547 describing how to perform a call with the same arguments as are passed
548 to the current function.
549
550 The function saves the arg pointer register, structure value address,
551 and all registers that might be used to pass arguments to a function
552 into a block of memory allocated on the stack. Then it returns the
553 address of that block.
554 @end deftypefn
555
556 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
557 This built-in function invokes @var{function}
558 with a copy of the parameters described by @var{arguments}
559 and @var{size}.
560
561 The value of @var{arguments} should be the value returned by
562 @code{__builtin_apply_args}. The argument @var{size} specifies the size
563 of the stack argument data, in bytes.
564
565 This function returns a pointer to data describing
566 how to return whatever value is returned by @var{function}. The data
567 is saved in a block of memory allocated on the stack.
568
569 It is not always simple to compute the proper value for @var{size}. The
570 value is used by @code{__builtin_apply} to compute the amount of data
571 that should be pushed on the stack and copied from the incoming argument
572 area.
573 @end deftypefn
574
575 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
576 This built-in function returns the value described by @var{result} from
577 the containing function. You should specify, for @var{result}, a value
578 returned by @code{__builtin_apply}.
579 @end deftypefn
580
581 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
582 This built-in function represents all anonymous arguments of an inline
583 function. It can be used only in inline functions that are always
584 inlined, never compiled as a separate function, such as those using
585 @code{__attribute__ ((__always_inline__))} or
586 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
587 It must be only passed as last argument to some other function
588 with variable arguments. This is useful for writing small wrapper
589 inlines for variable argument functions, when using preprocessor
590 macros is undesirable. For example:
591 @smallexample
592 extern int myprintf (FILE *f, const char *format, ...);
593 extern inline __attribute__ ((__gnu_inline__)) int
594 myprintf (FILE *f, const char *format, ...)
595 @{
596 int r = fprintf (f, "myprintf: ");
597 if (r < 0)
598 return r;
599 int s = fprintf (f, format, __builtin_va_arg_pack ());
600 if (s < 0)
601 return s;
602 return r + s;
603 @}
604 @end smallexample
605 @end deftypefn
606
607 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
608 This built-in function returns the number of anonymous arguments of
609 an inline function. It can be used only in inline functions that
610 are always inlined, never compiled as a separate function, such
611 as those using @code{__attribute__ ((__always_inline__))} or
612 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
613 For example following does link- or run-time checking of open
614 arguments for optimized code:
615 @smallexample
616 #ifdef __OPTIMIZE__
617 extern inline __attribute__((__gnu_inline__)) int
618 myopen (const char *path, int oflag, ...)
619 @{
620 if (__builtin_va_arg_pack_len () > 1)
621 warn_open_too_many_arguments ();
622
623 if (__builtin_constant_p (oflag))
624 @{
625 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
626 @{
627 warn_open_missing_mode ();
628 return __open_2 (path, oflag);
629 @}
630 return open (path, oflag, __builtin_va_arg_pack ());
631 @}
632
633 if (__builtin_va_arg_pack_len () < 1)
634 return __open_2 (path, oflag);
635
636 return open (path, oflag, __builtin_va_arg_pack ());
637 @}
638 #endif
639 @end smallexample
640 @end deftypefn
641
642 @node Typeof
643 @section Referring to a Type with @code{typeof}
644 @findex typeof
645 @findex sizeof
646 @cindex macros, types of arguments
647
648 Another way to refer to the type of an expression is with @code{typeof}.
649 The syntax of using of this keyword looks like @code{sizeof}, but the
650 construct acts semantically like a type name defined with @code{typedef}.
651
652 There are two ways of writing the argument to @code{typeof}: with an
653 expression or with a type. Here is an example with an expression:
654
655 @smallexample
656 typeof (x[0](1))
657 @end smallexample
658
659 @noindent
660 This assumes that @code{x} is an array of pointers to functions;
661 the type described is that of the values of the functions.
662
663 Here is an example with a typename as the argument:
664
665 @smallexample
666 typeof (int *)
667 @end smallexample
668
669 @noindent
670 Here the type described is that of pointers to @code{int}.
671
672 If you are writing a header file that must work when included in ISO C
673 programs, write @code{__typeof__} instead of @code{typeof}.
674 @xref{Alternate Keywords}.
675
676 A @code{typeof} construct can be used anywhere a typedef name can be
677 used. For example, you can use it in a declaration, in a cast, or inside
678 of @code{sizeof} or @code{typeof}.
679
680 The operand of @code{typeof} is evaluated for its side effects if and
681 only if it is an expression of variably modified type or the name of
682 such a type.
683
684 @code{typeof} is often useful in conjunction with
685 statement expressions (@pxref{Statement Exprs}).
686 Here is how the two together can
687 be used to define a safe ``maximum'' macro which operates on any
688 arithmetic type and evaluates each of its arguments exactly once:
689
690 @smallexample
691 #define max(a,b) \
692 (@{ typeof (a) _a = (a); \
693 typeof (b) _b = (b); \
694 _a > _b ? _a : _b; @})
695 @end smallexample
696
697 @cindex underscores in variables in macros
698 @cindex @samp{_} in variables in macros
699 @cindex local variables in macros
700 @cindex variables, local, in macros
701 @cindex macros, local variables in
702
703 The reason for using names that start with underscores for the local
704 variables is to avoid conflicts with variable names that occur within the
705 expressions that are substituted for @code{a} and @code{b}. Eventually we
706 hope to design a new form of declaration syntax that allows you to declare
707 variables whose scopes start only after their initializers; this will be a
708 more reliable way to prevent such conflicts.
709
710 @noindent
711 Some more examples of the use of @code{typeof}:
712
713 @itemize @bullet
714 @item
715 This declares @code{y} with the type of what @code{x} points to.
716
717 @smallexample
718 typeof (*x) y;
719 @end smallexample
720
721 @item
722 This declares @code{y} as an array of such values.
723
724 @smallexample
725 typeof (*x) y[4];
726 @end smallexample
727
728 @item
729 This declares @code{y} as an array of pointers to characters:
730
731 @smallexample
732 typeof (typeof (char *)[4]) y;
733 @end smallexample
734
735 @noindent
736 It is equivalent to the following traditional C declaration:
737
738 @smallexample
739 char *y[4];
740 @end smallexample
741
742 To see the meaning of the declaration using @code{typeof}, and why it
743 might be a useful way to write, rewrite it with these macros:
744
745 @smallexample
746 #define pointer(T) typeof(T *)
747 #define array(T, N) typeof(T [N])
748 @end smallexample
749
750 @noindent
751 Now the declaration can be rewritten this way:
752
753 @smallexample
754 array (pointer (char), 4) y;
755 @end smallexample
756
757 @noindent
758 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
759 pointers to @code{char}.
760 @end itemize
761
762 In GNU C, but not GNU C++, you may also declare the type of a variable
763 as @code{__auto_type}. In that case, the declaration must declare
764 only one variable, whose declarator must just be an identifier, the
765 declaration must be initialized, and the type of the variable is
766 determined by the initializer; the name of the variable is not in
767 scope until after the initializer. (In C++, you should use C++11
768 @code{auto} for this purpose.) Using @code{__auto_type}, the
769 ``maximum'' macro above could be written as:
770
771 @smallexample
772 #define max(a,b) \
773 (@{ __auto_type _a = (a); \
774 __auto_type _b = (b); \
775 _a > _b ? _a : _b; @})
776 @end smallexample
777
778 Using @code{__auto_type} instead of @code{typeof} has two advantages:
779
780 @itemize @bullet
781 @item Each argument to the macro appears only once in the expansion of
782 the macro. This prevents the size of the macro expansion growing
783 exponentially when calls to such macros are nested inside arguments of
784 such macros.
785
786 @item If the argument to the macro has variably modified type, it is
787 evaluated only once when using @code{__auto_type}, but twice if
788 @code{typeof} is used.
789 @end itemize
790
791 @node Conditionals
792 @section Conditionals with Omitted Operands
793 @cindex conditional expressions, extensions
794 @cindex omitted middle-operands
795 @cindex middle-operands, omitted
796 @cindex extensions, @code{?:}
797 @cindex @code{?:} extensions
798
799 The middle operand in a conditional expression may be omitted. Then
800 if the first operand is nonzero, its value is the value of the conditional
801 expression.
802
803 Therefore, the expression
804
805 @smallexample
806 x ? : y
807 @end smallexample
808
809 @noindent
810 has the value of @code{x} if that is nonzero; otherwise, the value of
811 @code{y}.
812
813 This example is perfectly equivalent to
814
815 @smallexample
816 x ? x : y
817 @end smallexample
818
819 @cindex side effect in @code{?:}
820 @cindex @code{?:} side effect
821 @noindent
822 In this simple case, the ability to omit the middle operand is not
823 especially useful. When it becomes useful is when the first operand does,
824 or may (if it is a macro argument), contain a side effect. Then repeating
825 the operand in the middle would perform the side effect twice. Omitting
826 the middle operand uses the value already computed without the undesirable
827 effects of recomputing it.
828
829 @node __int128
830 @section 128-bit Integers
831 @cindex @code{__int128} data types
832
833 As an extension the integer scalar type @code{__int128} is supported for
834 targets which have an integer mode wide enough to hold 128 bits.
835 Simply write @code{__int128} for a signed 128-bit integer, or
836 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
837 support in GCC for expressing an integer constant of type @code{__int128}
838 for targets with @code{long long} integer less than 128 bits wide.
839
840 @node Long Long
841 @section Double-Word Integers
842 @cindex @code{long long} data types
843 @cindex double-word arithmetic
844 @cindex multiprecision arithmetic
845 @cindex @code{LL} integer suffix
846 @cindex @code{ULL} integer suffix
847
848 ISO C99 supports data types for integers that are at least 64 bits wide,
849 and as an extension GCC supports them in C90 mode and in C++.
850 Simply write @code{long long int} for a signed integer, or
851 @code{unsigned long long int} for an unsigned integer. To make an
852 integer constant of type @code{long long int}, add the suffix @samp{LL}
853 to the integer. To make an integer constant of type @code{unsigned long
854 long int}, add the suffix @samp{ULL} to the integer.
855
856 You can use these types in arithmetic like any other integer types.
857 Addition, subtraction, and bitwise boolean operations on these types
858 are open-coded on all types of machines. Multiplication is open-coded
859 if the machine supports a fullword-to-doubleword widening multiply
860 instruction. Division and shifts are open-coded only on machines that
861 provide special support. The operations that are not open-coded use
862 special library routines that come with GCC@.
863
864 There may be pitfalls when you use @code{long long} types for function
865 arguments without function prototypes. If a function
866 expects type @code{int} for its argument, and you pass a value of type
867 @code{long long int}, confusion results because the caller and the
868 subroutine disagree about the number of bytes for the argument.
869 Likewise, if the function expects @code{long long int} and you pass
870 @code{int}. The best way to avoid such problems is to use prototypes.
871
872 @node Complex
873 @section Complex Numbers
874 @cindex complex numbers
875 @cindex @code{_Complex} keyword
876 @cindex @code{__complex__} keyword
877
878 ISO C99 supports complex floating data types, and as an extension GCC
879 supports them in C90 mode and in C++. GCC also supports complex integer data
880 types which are not part of ISO C99. You can declare complex types
881 using the keyword @code{_Complex}. As an extension, the older GNU
882 keyword @code{__complex__} is also supported.
883
884 For example, @samp{_Complex double x;} declares @code{x} as a
885 variable whose real part and imaginary part are both of type
886 @code{double}. @samp{_Complex short int y;} declares @code{y} to
887 have real and imaginary parts of type @code{short int}; this is not
888 likely to be useful, but it shows that the set of complex types is
889 complete.
890
891 To write a constant with a complex data type, use the suffix @samp{i} or
892 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
893 has type @code{_Complex float} and @code{3i} has type
894 @code{_Complex int}. Such a constant always has a pure imaginary
895 value, but you can form any complex value you like by adding one to a
896 real constant. This is a GNU extension; if you have an ISO C99
897 conforming C library (such as the GNU C Library), and want to construct complex
898 constants of floating type, you should include @code{<complex.h>} and
899 use the macros @code{I} or @code{_Complex_I} instead.
900
901 @cindex @code{__real__} keyword
902 @cindex @code{__imag__} keyword
903 To extract the real part of a complex-valued expression @var{exp}, write
904 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
905 extract the imaginary part. This is a GNU extension; for values of
906 floating type, you should use the ISO C99 functions @code{crealf},
907 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
908 @code{cimagl}, declared in @code{<complex.h>} and also provided as
909 built-in functions by GCC@.
910
911 @cindex complex conjugation
912 The operator @samp{~} performs complex conjugation when used on a value
913 with a complex type. This is a GNU extension; for values of
914 floating type, you should use the ISO C99 functions @code{conjf},
915 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
916 provided as built-in functions by GCC@.
917
918 GCC can allocate complex automatic variables in a noncontiguous
919 fashion; it's even possible for the real part to be in a register while
920 the imaginary part is on the stack (or vice versa). Only the DWARF
921 debug info format can represent this, so use of DWARF is recommended.
922 If you are using the stabs debug info format, GCC describes a noncontiguous
923 complex variable as if it were two separate variables of noncomplex type.
924 If the variable's actual name is @code{foo}, the two fictitious
925 variables are named @code{foo$real} and @code{foo$imag}. You can
926 examine and set these two fictitious variables with your debugger.
927
928 @node Floating Types
929 @section Additional Floating Types
930 @cindex additional floating types
931 @cindex @code{_Float@var{n}} data types
932 @cindex @code{_Float@var{n}x} data types
933 @cindex @code{__float80} data type
934 @cindex @code{__float128} data type
935 @cindex @code{__ibm128} data type
936 @cindex @code{w} floating point suffix
937 @cindex @code{q} floating point suffix
938 @cindex @code{W} floating point suffix
939 @cindex @code{Q} floating point suffix
940
941 ISO/IEC TS 18661-3:2015 defines C support for additional floating
942 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
943 these type names; the set of types supported depends on the target
944 architecture. These types are not supported when compiling C++.
945 Constants with these types use suffixes @code{f@var{n}} or
946 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
947 names can be used together with @code{_Complex} to declare complex
948 types.
949
950 As an extension, GNU C and GNU C++ support additional floating
951 types, @code{__float80} and @code{__float128} to support 80-bit
952 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types; these are
953 aliases for the type names @code{_Float64x} and @code{_Float128}.
954 Support for additional types includes the arithmetic operators:
955 add, subtract, multiply, divide; unary arithmetic operators;
956 relational operators; equality operators; and conversions to and from
957 integer and other floating types. Use a suffix @samp{w} or @samp{W}
958 in a literal constant of type @code{__float80} or type
959 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
960
961 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
962 types using the corresponding internal complex type, @code{XCmode} for
963 @code{__float80} type and @code{TCmode} for @code{__float128} type:
964
965 @smallexample
966 typedef _Complex float __attribute__((mode(TC))) _Complex128;
967 typedef _Complex float __attribute__((mode(XC))) _Complex80;
968 @end smallexample
969
970 In order to use @code{_Float128}, @code{__float128} and
971 @code{__ibm128} on PowerPC Linux
972 systems, you must use the @option{-mfloat128}. It is expected in
973 future versions of GCC that @code{_Float128} and @code{__float128}
974 will be enabled
975 automatically. In addition, there are currently problems in using the
976 complex @code{__float128} type. When these problems are fixed, you
977 would use the following syntax to declare @code{_Complex128} to be a
978 complex @code{__float128} type:
979
980 On the PowerPC Linux VSX targets, you can declare complex types using
981 the corresponding internal complex type, @code{KCmode} for
982 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
983
984 @smallexample
985 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
986 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
987 @end smallexample
988
989 Not all targets support additional floating-point types.
990 @code{__float80} and @code{__float128} types are supported on x86 and
991 IA-64 targets. The @code{__float128} type is supported on hppa HP-UX.
992 The @code{__float128} type is supported on PowerPC 64-bit Linux
993 systems by default if the vector scalar instruction set (VSX) is
994 enabled. The @code{_Float128} type is supported on all systems where
995 @code{__float128} is supported or where @code{long double} has the
996 IEEE binary128 format. The @code{_Float64x} type is supported on all
997 systems where @code{__float128} is supported. The @code{_Float32}
998 type is supported on all systems supporting IEEE binary32; the
999 @code{_Float64} and @code{Float32x} types are supported on all systems
1000 supporting IEEE binary64. GCC does not currently support
1001 @code{_Float16} or @code{_Float128x} on any systems.
1002
1003 On the PowerPC, @code{__ibm128} provides access to the IBM extended
1004 double format, and it is intended to be used by the library functions
1005 that handle conversions if/when long double is changed to be IEEE
1006 128-bit floating point.
1007
1008 @node Half-Precision
1009 @section Half-Precision Floating Point
1010 @cindex half-precision floating point
1011 @cindex @code{__fp16} data type
1012
1013 On ARM targets, GCC supports half-precision (16-bit) floating point via
1014 the @code{__fp16} type. You must enable this type explicitly
1015 with the @option{-mfp16-format} command-line option in order to use it.
1016
1017 ARM supports two incompatible representations for half-precision
1018 floating-point values. You must choose one of the representations and
1019 use it consistently in your program.
1020
1021 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1022 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1023 There are 11 bits of significand precision, approximately 3
1024 decimal digits.
1025
1026 Specifying @option{-mfp16-format=alternative} selects the ARM
1027 alternative format. This representation is similar to the IEEE
1028 format, but does not support infinities or NaNs. Instead, the range
1029 of exponents is extended, so that this format can represent normalized
1030 values in the range of @math{2^{-14}} to 131008.
1031
1032 The @code{__fp16} type is a storage format only. For purposes
1033 of arithmetic and other operations, @code{__fp16} values in C or C++
1034 expressions are automatically promoted to @code{float}. In addition,
1035 you cannot declare a function with a return value or parameters
1036 of type @code{__fp16}.
1037
1038 Note that conversions from @code{double} to @code{__fp16}
1039 involve an intermediate conversion to @code{float}. Because
1040 of rounding, this can sometimes produce a different result than a
1041 direct conversion.
1042
1043 ARM provides hardware support for conversions between
1044 @code{__fp16} and @code{float} values
1045 as an extension to VFP and NEON (Advanced SIMD). GCC generates
1046 code using these hardware instructions if you compile with
1047 options to select an FPU that provides them;
1048 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1049 in addition to the @option{-mfp16-format} option to select
1050 a half-precision format.
1051
1052 Language-level support for the @code{__fp16} data type is
1053 independent of whether GCC generates code using hardware floating-point
1054 instructions. In cases where hardware support is not specified, GCC
1055 implements conversions between @code{__fp16} and @code{float} values
1056 as library calls.
1057
1058 @node Decimal Float
1059 @section Decimal Floating Types
1060 @cindex decimal floating types
1061 @cindex @code{_Decimal32} data type
1062 @cindex @code{_Decimal64} data type
1063 @cindex @code{_Decimal128} data type
1064 @cindex @code{df} integer suffix
1065 @cindex @code{dd} integer suffix
1066 @cindex @code{dl} integer suffix
1067 @cindex @code{DF} integer suffix
1068 @cindex @code{DD} integer suffix
1069 @cindex @code{DL} integer suffix
1070
1071 As an extension, GNU C supports decimal floating types as
1072 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1073 floating types in GCC will evolve as the draft technical report changes.
1074 Calling conventions for any target might also change. Not all targets
1075 support decimal floating types.
1076
1077 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1078 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1079 @code{float}, @code{double}, and @code{long double} whose radix is not
1080 specified by the C standard but is usually two.
1081
1082 Support for decimal floating types includes the arithmetic operators
1083 add, subtract, multiply, divide; unary arithmetic operators;
1084 relational operators; equality operators; and conversions to and from
1085 integer and other floating types. Use a suffix @samp{df} or
1086 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1087 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1088 @code{_Decimal128}.
1089
1090 GCC support of decimal float as specified by the draft technical report
1091 is incomplete:
1092
1093 @itemize @bullet
1094 @item
1095 When the value of a decimal floating type cannot be represented in the
1096 integer type to which it is being converted, the result is undefined
1097 rather than the result value specified by the draft technical report.
1098
1099 @item
1100 GCC does not provide the C library functionality associated with
1101 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1102 @file{wchar.h}, which must come from a separate C library implementation.
1103 Because of this the GNU C compiler does not define macro
1104 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1105 the technical report.
1106 @end itemize
1107
1108 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1109 are supported by the DWARF debug information format.
1110
1111 @node Hex Floats
1112 @section Hex Floats
1113 @cindex hex floats
1114
1115 ISO C99 supports floating-point numbers written not only in the usual
1116 decimal notation, such as @code{1.55e1}, but also numbers such as
1117 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1118 supports this in C90 mode (except in some cases when strictly
1119 conforming) and in C++. In that format the
1120 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1121 mandatory. The exponent is a decimal number that indicates the power of
1122 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1123 @tex
1124 $1 {15\over16}$,
1125 @end tex
1126 @ifnottex
1127 1 15/16,
1128 @end ifnottex
1129 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1130 is the same as @code{1.55e1}.
1131
1132 Unlike for floating-point numbers in the decimal notation the exponent
1133 is always required in the hexadecimal notation. Otherwise the compiler
1134 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1135 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1136 extension for floating-point constants of type @code{float}.
1137
1138 @node Fixed-Point
1139 @section Fixed-Point Types
1140 @cindex fixed-point types
1141 @cindex @code{_Fract} data type
1142 @cindex @code{_Accum} data type
1143 @cindex @code{_Sat} data type
1144 @cindex @code{hr} fixed-suffix
1145 @cindex @code{r} fixed-suffix
1146 @cindex @code{lr} fixed-suffix
1147 @cindex @code{llr} fixed-suffix
1148 @cindex @code{uhr} fixed-suffix
1149 @cindex @code{ur} fixed-suffix
1150 @cindex @code{ulr} fixed-suffix
1151 @cindex @code{ullr} fixed-suffix
1152 @cindex @code{hk} fixed-suffix
1153 @cindex @code{k} fixed-suffix
1154 @cindex @code{lk} fixed-suffix
1155 @cindex @code{llk} fixed-suffix
1156 @cindex @code{uhk} fixed-suffix
1157 @cindex @code{uk} fixed-suffix
1158 @cindex @code{ulk} fixed-suffix
1159 @cindex @code{ullk} fixed-suffix
1160 @cindex @code{HR} fixed-suffix
1161 @cindex @code{R} fixed-suffix
1162 @cindex @code{LR} fixed-suffix
1163 @cindex @code{LLR} fixed-suffix
1164 @cindex @code{UHR} fixed-suffix
1165 @cindex @code{UR} fixed-suffix
1166 @cindex @code{ULR} fixed-suffix
1167 @cindex @code{ULLR} fixed-suffix
1168 @cindex @code{HK} fixed-suffix
1169 @cindex @code{K} fixed-suffix
1170 @cindex @code{LK} fixed-suffix
1171 @cindex @code{LLK} fixed-suffix
1172 @cindex @code{UHK} fixed-suffix
1173 @cindex @code{UK} fixed-suffix
1174 @cindex @code{ULK} fixed-suffix
1175 @cindex @code{ULLK} fixed-suffix
1176
1177 As an extension, GNU C supports fixed-point types as
1178 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1179 types in GCC will evolve as the draft technical report changes.
1180 Calling conventions for any target might also change. Not all targets
1181 support fixed-point types.
1182
1183 The fixed-point types are
1184 @code{short _Fract},
1185 @code{_Fract},
1186 @code{long _Fract},
1187 @code{long long _Fract},
1188 @code{unsigned short _Fract},
1189 @code{unsigned _Fract},
1190 @code{unsigned long _Fract},
1191 @code{unsigned long long _Fract},
1192 @code{_Sat short _Fract},
1193 @code{_Sat _Fract},
1194 @code{_Sat long _Fract},
1195 @code{_Sat long long _Fract},
1196 @code{_Sat unsigned short _Fract},
1197 @code{_Sat unsigned _Fract},
1198 @code{_Sat unsigned long _Fract},
1199 @code{_Sat unsigned long long _Fract},
1200 @code{short _Accum},
1201 @code{_Accum},
1202 @code{long _Accum},
1203 @code{long long _Accum},
1204 @code{unsigned short _Accum},
1205 @code{unsigned _Accum},
1206 @code{unsigned long _Accum},
1207 @code{unsigned long long _Accum},
1208 @code{_Sat short _Accum},
1209 @code{_Sat _Accum},
1210 @code{_Sat long _Accum},
1211 @code{_Sat long long _Accum},
1212 @code{_Sat unsigned short _Accum},
1213 @code{_Sat unsigned _Accum},
1214 @code{_Sat unsigned long _Accum},
1215 @code{_Sat unsigned long long _Accum}.
1216
1217 Fixed-point data values contain fractional and optional integral parts.
1218 The format of fixed-point data varies and depends on the target machine.
1219
1220 Support for fixed-point types includes:
1221 @itemize @bullet
1222 @item
1223 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1224 @item
1225 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1226 @item
1227 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1228 @item
1229 binary shift operators (@code{<<}, @code{>>})
1230 @item
1231 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1232 @item
1233 equality operators (@code{==}, @code{!=})
1234 @item
1235 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1236 @code{<<=}, @code{>>=})
1237 @item
1238 conversions to and from integer, floating-point, or fixed-point types
1239 @end itemize
1240
1241 Use a suffix in a fixed-point literal constant:
1242 @itemize
1243 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1244 @code{_Sat short _Fract}
1245 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1246 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1247 @code{_Sat long _Fract}
1248 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1249 @code{_Sat long long _Fract}
1250 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1251 @code{_Sat unsigned short _Fract}
1252 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1253 @code{_Sat unsigned _Fract}
1254 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1255 @code{_Sat unsigned long _Fract}
1256 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1257 and @code{_Sat unsigned long long _Fract}
1258 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1259 @code{_Sat short _Accum}
1260 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1261 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1262 @code{_Sat long _Accum}
1263 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1264 @code{_Sat long long _Accum}
1265 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1266 @code{_Sat unsigned short _Accum}
1267 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1268 @code{_Sat unsigned _Accum}
1269 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1270 @code{_Sat unsigned long _Accum}
1271 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1272 and @code{_Sat unsigned long long _Accum}
1273 @end itemize
1274
1275 GCC support of fixed-point types as specified by the draft technical report
1276 is incomplete:
1277
1278 @itemize @bullet
1279 @item
1280 Pragmas to control overflow and rounding behaviors are not implemented.
1281 @end itemize
1282
1283 Fixed-point types are supported by the DWARF debug information format.
1284
1285 @node Named Address Spaces
1286 @section Named Address Spaces
1287 @cindex Named Address Spaces
1288
1289 As an extension, GNU C supports named address spaces as
1290 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1291 address spaces in GCC will evolve as the draft technical report
1292 changes. Calling conventions for any target might also change. At
1293 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1294 address spaces other than the generic address space.
1295
1296 Address space identifiers may be used exactly like any other C type
1297 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1298 document for more details.
1299
1300 @anchor{AVR Named Address Spaces}
1301 @subsection AVR Named Address Spaces
1302
1303 On the AVR target, there are several address spaces that can be used
1304 in order to put read-only data into the flash memory and access that
1305 data by means of the special instructions @code{LPM} or @code{ELPM}
1306 needed to read from flash.
1307
1308 Per default, any data including read-only data is located in RAM
1309 (the generic address space) so that non-generic address spaces are
1310 needed to locate read-only data in flash memory
1311 @emph{and} to generate the right instructions to access this data
1312 without using (inline) assembler code.
1313
1314 @table @code
1315 @item __flash
1316 @cindex @code{__flash} AVR Named Address Spaces
1317 The @code{__flash} qualifier locates data in the
1318 @code{.progmem.data} section. Data is read using the @code{LPM}
1319 instruction. Pointers to this address space are 16 bits wide.
1320
1321 @item __flash1
1322 @itemx __flash2
1323 @itemx __flash3
1324 @itemx __flash4
1325 @itemx __flash5
1326 @cindex @code{__flash1} AVR Named Address Spaces
1327 @cindex @code{__flash2} AVR Named Address Spaces
1328 @cindex @code{__flash3} AVR Named Address Spaces
1329 @cindex @code{__flash4} AVR Named Address Spaces
1330 @cindex @code{__flash5} AVR Named Address Spaces
1331 These are 16-bit address spaces locating data in section
1332 @code{.progmem@var{N}.data} where @var{N} refers to
1333 address space @code{__flash@var{N}}.
1334 The compiler sets the @code{RAMPZ} segment register appropriately
1335 before reading data by means of the @code{ELPM} instruction.
1336
1337 @item __memx
1338 @cindex @code{__memx} AVR Named Address Spaces
1339 This is a 24-bit address space that linearizes flash and RAM:
1340 If the high bit of the address is set, data is read from
1341 RAM using the lower two bytes as RAM address.
1342 If the high bit of the address is clear, data is read from flash
1343 with @code{RAMPZ} set according to the high byte of the address.
1344 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1345
1346 Objects in this address space are located in @code{.progmemx.data}.
1347 @end table
1348
1349 @b{Example}
1350
1351 @smallexample
1352 char my_read (const __flash char ** p)
1353 @{
1354 /* p is a pointer to RAM that points to a pointer to flash.
1355 The first indirection of p reads that flash pointer
1356 from RAM and the second indirection reads a char from this
1357 flash address. */
1358
1359 return **p;
1360 @}
1361
1362 /* Locate array[] in flash memory */
1363 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1364
1365 int i = 1;
1366
1367 int main (void)
1368 @{
1369 /* Return 17 by reading from flash memory */
1370 return array[array[i]];
1371 @}
1372 @end smallexample
1373
1374 @noindent
1375 For each named address space supported by avr-gcc there is an equally
1376 named but uppercase built-in macro defined.
1377 The purpose is to facilitate testing if respective address space
1378 support is available or not:
1379
1380 @smallexample
1381 #ifdef __FLASH
1382 const __flash int var = 1;
1383
1384 int read_var (void)
1385 @{
1386 return var;
1387 @}
1388 #else
1389 #include <avr/pgmspace.h> /* From AVR-LibC */
1390
1391 const int var PROGMEM = 1;
1392
1393 int read_var (void)
1394 @{
1395 return (int) pgm_read_word (&var);
1396 @}
1397 #endif /* __FLASH */
1398 @end smallexample
1399
1400 @noindent
1401 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1402 locates data in flash but
1403 accesses to these data read from generic address space, i.e.@:
1404 from RAM,
1405 so that you need special accessors like @code{pgm_read_byte}
1406 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1407 together with attribute @code{progmem}.
1408
1409 @noindent
1410 @b{Limitations and caveats}
1411
1412 @itemize
1413 @item
1414 Reading across the 64@tie{}KiB section boundary of
1415 the @code{__flash} or @code{__flash@var{N}} address spaces
1416 shows undefined behavior. The only address space that
1417 supports reading across the 64@tie{}KiB flash segment boundaries is
1418 @code{__memx}.
1419
1420 @item
1421 If you use one of the @code{__flash@var{N}} address spaces
1422 you must arrange your linker script to locate the
1423 @code{.progmem@var{N}.data} sections according to your needs.
1424
1425 @item
1426 Any data or pointers to the non-generic address spaces must
1427 be qualified as @code{const}, i.e.@: as read-only data.
1428 This still applies if the data in one of these address
1429 spaces like software version number or calibration lookup table are intended to
1430 be changed after load time by, say, a boot loader. In this case
1431 the right qualification is @code{const} @code{volatile} so that the compiler
1432 must not optimize away known values or insert them
1433 as immediates into operands of instructions.
1434
1435 @item
1436 The following code initializes a variable @code{pfoo}
1437 located in static storage with a 24-bit address:
1438 @smallexample
1439 extern const __memx char foo;
1440 const __memx void *pfoo = &foo;
1441 @end smallexample
1442
1443 @noindent
1444 Such code requires at least binutils 2.23, see
1445 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1446
1447 @item
1448 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1449 Data can be put into and read from flash memory by means of
1450 attribute @code{progmem}, see @ref{AVR Variable Attributes}.
1451
1452 @end itemize
1453
1454 @subsection M32C Named Address Spaces
1455 @cindex @code{__far} M32C Named Address Spaces
1456
1457 On the M32C target, with the R8C and M16C CPU variants, variables
1458 qualified with @code{__far} are accessed using 32-bit addresses in
1459 order to access memory beyond the first 64@tie{}Ki bytes. If
1460 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1461 effect.
1462
1463 @subsection RL78 Named Address Spaces
1464 @cindex @code{__far} RL78 Named Address Spaces
1465
1466 On the RL78 target, variables qualified with @code{__far} are accessed
1467 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1468 addresses. Non-far variables are assumed to appear in the topmost
1469 64@tie{}KiB of the address space.
1470
1471 @subsection SPU Named Address Spaces
1472 @cindex @code{__ea} SPU Named Address Spaces
1473
1474 On the SPU target variables may be declared as
1475 belonging to another address space by qualifying the type with the
1476 @code{__ea} address space identifier:
1477
1478 @smallexample
1479 extern int __ea i;
1480 @end smallexample
1481
1482 @noindent
1483 The compiler generates special code to access the variable @code{i}.
1484 It may use runtime library
1485 support, or generate special machine instructions to access that address
1486 space.
1487
1488 @subsection x86 Named Address Spaces
1489 @cindex x86 named address spaces
1490
1491 On the x86 target, variables may be declared as being relative
1492 to the @code{%fs} or @code{%gs} segments.
1493
1494 @table @code
1495 @item __seg_fs
1496 @itemx __seg_gs
1497 @cindex @code{__seg_fs} x86 named address space
1498 @cindex @code{__seg_gs} x86 named address space
1499 The object is accessed with the respective segment override prefix.
1500
1501 The respective segment base must be set via some method specific to
1502 the operating system. Rather than require an expensive system call
1503 to retrieve the segment base, these address spaces are not considered
1504 to be subspaces of the generic (flat) address space. This means that
1505 explicit casts are required to convert pointers between these address
1506 spaces and the generic address space. In practice the application
1507 should cast to @code{uintptr_t} and apply the segment base offset
1508 that it installed previously.
1509
1510 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1511 defined when these address spaces are supported.
1512 @end table
1513
1514 @node Zero Length
1515 @section Arrays of Length Zero
1516 @cindex arrays of length zero
1517 @cindex zero-length arrays
1518 @cindex length-zero arrays
1519 @cindex flexible array members
1520
1521 Zero-length arrays are allowed in GNU C@. They are very useful as the
1522 last element of a structure that is really a header for a variable-length
1523 object:
1524
1525 @smallexample
1526 struct line @{
1527 int length;
1528 char contents[0];
1529 @};
1530
1531 struct line *thisline = (struct line *)
1532 malloc (sizeof (struct line) + this_length);
1533 thisline->length = this_length;
1534 @end smallexample
1535
1536 In ISO C90, you would have to give @code{contents} a length of 1, which
1537 means either you waste space or complicate the argument to @code{malloc}.
1538
1539 In ISO C99, you would use a @dfn{flexible array member}, which is
1540 slightly different in syntax and semantics:
1541
1542 @itemize @bullet
1543 @item
1544 Flexible array members are written as @code{contents[]} without
1545 the @code{0}.
1546
1547 @item
1548 Flexible array members have incomplete type, and so the @code{sizeof}
1549 operator may not be applied. As a quirk of the original implementation
1550 of zero-length arrays, @code{sizeof} evaluates to zero.
1551
1552 @item
1553 Flexible array members may only appear as the last member of a
1554 @code{struct} that is otherwise non-empty.
1555
1556 @item
1557 A structure containing a flexible array member, or a union containing
1558 such a structure (possibly recursively), may not be a member of a
1559 structure or an element of an array. (However, these uses are
1560 permitted by GCC as extensions.)
1561 @end itemize
1562
1563 Non-empty initialization of zero-length
1564 arrays is treated like any case where there are more initializer
1565 elements than the array holds, in that a suitable warning about ``excess
1566 elements in array'' is given, and the excess elements (all of them, in
1567 this case) are ignored.
1568
1569 GCC allows static initialization of flexible array members.
1570 This is equivalent to defining a new structure containing the original
1571 structure followed by an array of sufficient size to contain the data.
1572 E.g.@: in the following, @code{f1} is constructed as if it were declared
1573 like @code{f2}.
1574
1575 @smallexample
1576 struct f1 @{
1577 int x; int y[];
1578 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1579
1580 struct f2 @{
1581 struct f1 f1; int data[3];
1582 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1583 @end smallexample
1584
1585 @noindent
1586 The convenience of this extension is that @code{f1} has the desired
1587 type, eliminating the need to consistently refer to @code{f2.f1}.
1588
1589 This has symmetry with normal static arrays, in that an array of
1590 unknown size is also written with @code{[]}.
1591
1592 Of course, this extension only makes sense if the extra data comes at
1593 the end of a top-level object, as otherwise we would be overwriting
1594 data at subsequent offsets. To avoid undue complication and confusion
1595 with initialization of deeply nested arrays, we simply disallow any
1596 non-empty initialization except when the structure is the top-level
1597 object. For example:
1598
1599 @smallexample
1600 struct foo @{ int x; int y[]; @};
1601 struct bar @{ struct foo z; @};
1602
1603 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1604 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1605 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1606 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1607 @end smallexample
1608
1609 @node Empty Structures
1610 @section Structures with No Members
1611 @cindex empty structures
1612 @cindex zero-size structures
1613
1614 GCC permits a C structure to have no members:
1615
1616 @smallexample
1617 struct empty @{
1618 @};
1619 @end smallexample
1620
1621 The structure has size zero. In C++, empty structures are part
1622 of the language. G++ treats empty structures as if they had a single
1623 member of type @code{char}.
1624
1625 @node Variable Length
1626 @section Arrays of Variable Length
1627 @cindex variable-length arrays
1628 @cindex arrays of variable length
1629 @cindex VLAs
1630
1631 Variable-length automatic arrays are allowed in ISO C99, and as an
1632 extension GCC accepts them in C90 mode and in C++. These arrays are
1633 declared like any other automatic arrays, but with a length that is not
1634 a constant expression. The storage is allocated at the point of
1635 declaration and deallocated when the block scope containing the declaration
1636 exits. For
1637 example:
1638
1639 @smallexample
1640 FILE *
1641 concat_fopen (char *s1, char *s2, char *mode)
1642 @{
1643 char str[strlen (s1) + strlen (s2) + 1];
1644 strcpy (str, s1);
1645 strcat (str, s2);
1646 return fopen (str, mode);
1647 @}
1648 @end smallexample
1649
1650 @cindex scope of a variable length array
1651 @cindex variable-length array scope
1652 @cindex deallocating variable length arrays
1653 Jumping or breaking out of the scope of the array name deallocates the
1654 storage. Jumping into the scope is not allowed; you get an error
1655 message for it.
1656
1657 @cindex variable-length array in a structure
1658 As an extension, GCC accepts variable-length arrays as a member of
1659 a structure or a union. For example:
1660
1661 @smallexample
1662 void
1663 foo (int n)
1664 @{
1665 struct S @{ int x[n]; @};
1666 @}
1667 @end smallexample
1668
1669 @cindex @code{alloca} vs variable-length arrays
1670 You can use the function @code{alloca} to get an effect much like
1671 variable-length arrays. The function @code{alloca} is available in
1672 many other C implementations (but not in all). On the other hand,
1673 variable-length arrays are more elegant.
1674
1675 There are other differences between these two methods. Space allocated
1676 with @code{alloca} exists until the containing @emph{function} returns.
1677 The space for a variable-length array is deallocated as soon as the array
1678 name's scope ends, unless you also use @code{alloca} in this scope.
1679
1680 You can also use variable-length arrays as arguments to functions:
1681
1682 @smallexample
1683 struct entry
1684 tester (int len, char data[len][len])
1685 @{
1686 /* @r{@dots{}} */
1687 @}
1688 @end smallexample
1689
1690 The length of an array is computed once when the storage is allocated
1691 and is remembered for the scope of the array in case you access it with
1692 @code{sizeof}.
1693
1694 If you want to pass the array first and the length afterward, you can
1695 use a forward declaration in the parameter list---another GNU extension.
1696
1697 @smallexample
1698 struct entry
1699 tester (int len; char data[len][len], int len)
1700 @{
1701 /* @r{@dots{}} */
1702 @}
1703 @end smallexample
1704
1705 @cindex parameter forward declaration
1706 The @samp{int len} before the semicolon is a @dfn{parameter forward
1707 declaration}, and it serves the purpose of making the name @code{len}
1708 known when the declaration of @code{data} is parsed.
1709
1710 You can write any number of such parameter forward declarations in the
1711 parameter list. They can be separated by commas or semicolons, but the
1712 last one must end with a semicolon, which is followed by the ``real''
1713 parameter declarations. Each forward declaration must match a ``real''
1714 declaration in parameter name and data type. ISO C99 does not support
1715 parameter forward declarations.
1716
1717 @node Variadic Macros
1718 @section Macros with a Variable Number of Arguments.
1719 @cindex variable number of arguments
1720 @cindex macro with variable arguments
1721 @cindex rest argument (in macro)
1722 @cindex variadic macros
1723
1724 In the ISO C standard of 1999, a macro can be declared to accept a
1725 variable number of arguments much as a function can. The syntax for
1726 defining the macro is similar to that of a function. Here is an
1727 example:
1728
1729 @smallexample
1730 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1731 @end smallexample
1732
1733 @noindent
1734 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1735 such a macro, it represents the zero or more tokens until the closing
1736 parenthesis that ends the invocation, including any commas. This set of
1737 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1738 wherever it appears. See the CPP manual for more information.
1739
1740 GCC has long supported variadic macros, and used a different syntax that
1741 allowed you to give a name to the variable arguments just like any other
1742 argument. Here is an example:
1743
1744 @smallexample
1745 #define debug(format, args...) fprintf (stderr, format, args)
1746 @end smallexample
1747
1748 @noindent
1749 This is in all ways equivalent to the ISO C example above, but arguably
1750 more readable and descriptive.
1751
1752 GNU CPP has two further variadic macro extensions, and permits them to
1753 be used with either of the above forms of macro definition.
1754
1755 In standard C, you are not allowed to leave the variable argument out
1756 entirely; but you are allowed to pass an empty argument. For example,
1757 this invocation is invalid in ISO C, because there is no comma after
1758 the string:
1759
1760 @smallexample
1761 debug ("A message")
1762 @end smallexample
1763
1764 GNU CPP permits you to completely omit the variable arguments in this
1765 way. In the above examples, the compiler would complain, though since
1766 the expansion of the macro still has the extra comma after the format
1767 string.
1768
1769 To help solve this problem, CPP behaves specially for variable arguments
1770 used with the token paste operator, @samp{##}. If instead you write
1771
1772 @smallexample
1773 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1774 @end smallexample
1775
1776 @noindent
1777 and if the variable arguments are omitted or empty, the @samp{##}
1778 operator causes the preprocessor to remove the comma before it. If you
1779 do provide some variable arguments in your macro invocation, GNU CPP
1780 does not complain about the paste operation and instead places the
1781 variable arguments after the comma. Just like any other pasted macro
1782 argument, these arguments are not macro expanded.
1783
1784 @node Escaped Newlines
1785 @section Slightly Looser Rules for Escaped Newlines
1786 @cindex escaped newlines
1787 @cindex newlines (escaped)
1788
1789 The preprocessor treatment of escaped newlines is more relaxed
1790 than that specified by the C90 standard, which requires the newline
1791 to immediately follow a backslash.
1792 GCC's implementation allows whitespace in the form
1793 of spaces, horizontal and vertical tabs, and form feeds between the
1794 backslash and the subsequent newline. The preprocessor issues a
1795 warning, but treats it as a valid escaped newline and combines the two
1796 lines to form a single logical line. This works within comments and
1797 tokens, as well as between tokens. Comments are @emph{not} treated as
1798 whitespace for the purposes of this relaxation, since they have not
1799 yet been replaced with spaces.
1800
1801 @node Subscripting
1802 @section Non-Lvalue Arrays May Have Subscripts
1803 @cindex subscripting
1804 @cindex arrays, non-lvalue
1805
1806 @cindex subscripting and function values
1807 In ISO C99, arrays that are not lvalues still decay to pointers, and
1808 may be subscripted, although they may not be modified or used after
1809 the next sequence point and the unary @samp{&} operator may not be
1810 applied to them. As an extension, GNU C allows such arrays to be
1811 subscripted in C90 mode, though otherwise they do not decay to
1812 pointers outside C99 mode. For example,
1813 this is valid in GNU C though not valid in C90:
1814
1815 @smallexample
1816 @group
1817 struct foo @{int a[4];@};
1818
1819 struct foo f();
1820
1821 bar (int index)
1822 @{
1823 return f().a[index];
1824 @}
1825 @end group
1826 @end smallexample
1827
1828 @node Pointer Arith
1829 @section Arithmetic on @code{void}- and Function-Pointers
1830 @cindex void pointers, arithmetic
1831 @cindex void, size of pointer to
1832 @cindex function pointers, arithmetic
1833 @cindex function, size of pointer to
1834
1835 In GNU C, addition and subtraction operations are supported on pointers to
1836 @code{void} and on pointers to functions. This is done by treating the
1837 size of a @code{void} or of a function as 1.
1838
1839 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1840 and on function types, and returns 1.
1841
1842 @opindex Wpointer-arith
1843 The option @option{-Wpointer-arith} requests a warning if these extensions
1844 are used.
1845
1846 @node Pointers to Arrays
1847 @section Pointers to Arrays with Qualifiers Work as Expected
1848 @cindex pointers to arrays
1849 @cindex const qualifier
1850
1851 In GNU C, pointers to arrays with qualifiers work similar to pointers
1852 to other qualified types. For example, a value of type @code{int (*)[5]}
1853 can be used to initialize a variable of type @code{const int (*)[5]}.
1854 These types are incompatible in ISO C because the @code{const} qualifier
1855 is formally attached to the element type of the array and not the
1856 array itself.
1857
1858 @smallexample
1859 extern void
1860 transpose (int N, int M, double out[M][N], const double in[N][M]);
1861 double x[3][2];
1862 double y[2][3];
1863 @r{@dots{}}
1864 transpose(3, 2, y, x);
1865 @end smallexample
1866
1867 @node Initializers
1868 @section Non-Constant Initializers
1869 @cindex initializers, non-constant
1870 @cindex non-constant initializers
1871
1872 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1873 automatic variable are not required to be constant expressions in GNU C@.
1874 Here is an example of an initializer with run-time varying elements:
1875
1876 @smallexample
1877 foo (float f, float g)
1878 @{
1879 float beat_freqs[2] = @{ f-g, f+g @};
1880 /* @r{@dots{}} */
1881 @}
1882 @end smallexample
1883
1884 @node Compound Literals
1885 @section Compound Literals
1886 @cindex constructor expressions
1887 @cindex initializations in expressions
1888 @cindex structures, constructor expression
1889 @cindex expressions, constructor
1890 @cindex compound literals
1891 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1892
1893 A compound literal looks like a cast of a brace-enclosed aggregate
1894 initializer list. Its value is an object of the type specified in
1895 the cast, containing the elements specified in the initializer.
1896 Unlike the result of a cast, a compound literal is an lvalue. ISO
1897 C99 and later support compound literals. As an extension, GCC
1898 supports compound literals also in C90 mode and in C++, although
1899 as explained below, the C++ semantics are somewhat different.
1900
1901 Usually, the specified type of a compound literal is a structure. Assume
1902 that @code{struct foo} and @code{structure} are declared as shown:
1903
1904 @smallexample
1905 struct foo @{int a; char b[2];@} structure;
1906 @end smallexample
1907
1908 @noindent
1909 Here is an example of constructing a @code{struct foo} with a compound literal:
1910
1911 @smallexample
1912 structure = ((struct foo) @{x + y, 'a', 0@});
1913 @end smallexample
1914
1915 @noindent
1916 This is equivalent to writing the following:
1917
1918 @smallexample
1919 @{
1920 struct foo temp = @{x + y, 'a', 0@};
1921 structure = temp;
1922 @}
1923 @end smallexample
1924
1925 You can also construct an array, though this is dangerous in C++, as
1926 explained below. If all the elements of the compound literal are
1927 (made up of) simple constant expressions suitable for use in
1928 initializers of objects of static storage duration, then the compound
1929 literal can be coerced to a pointer to its first element and used in
1930 such an initializer, as shown here:
1931
1932 @smallexample
1933 char **foo = (char *[]) @{ "x", "y", "z" @};
1934 @end smallexample
1935
1936 Compound literals for scalar types and union types are also allowed. In
1937 the following example the variable @code{i} is initialized to the value
1938 @code{2}, the result of incrementing the unnamed object created by
1939 the compound literal.
1940
1941 @smallexample
1942 int i = ++(int) @{ 1 @};
1943 @end smallexample
1944
1945 As a GNU extension, GCC allows initialization of objects with static storage
1946 duration by compound literals (which is not possible in ISO C99 because
1947 the initializer is not a constant).
1948 It is handled as if the object were initialized only with the brace-enclosed
1949 list if the types of the compound literal and the object match.
1950 The elements of the compound literal must be constant.
1951 If the object being initialized has array type of unknown size, the size is
1952 determined by the size of the compound literal.
1953
1954 @smallexample
1955 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1956 static int y[] = (int []) @{1, 2, 3@};
1957 static int z[] = (int [3]) @{1@};
1958 @end smallexample
1959
1960 @noindent
1961 The above lines are equivalent to the following:
1962 @smallexample
1963 static struct foo x = @{1, 'a', 'b'@};
1964 static int y[] = @{1, 2, 3@};
1965 static int z[] = @{1, 0, 0@};
1966 @end smallexample
1967
1968 In C, a compound literal designates an unnamed object with static or
1969 automatic storage duration. In C++, a compound literal designates a
1970 temporary object that only lives until the end of its full-expression.
1971 As a result, well-defined C code that takes the address of a subobject
1972 of a compound literal can be undefined in C++, so G++ rejects
1973 the conversion of a temporary array to a pointer. For instance, if
1974 the array compound literal example above appeared inside a function,
1975 any subsequent use of @code{foo} in C++ would have undefined behavior
1976 because the lifetime of the array ends after the declaration of @code{foo}.
1977
1978 As an optimization, G++ sometimes gives array compound literals longer
1979 lifetimes: when the array either appears outside a function or has
1980 a @code{const}-qualified type. If @code{foo} and its initializer had
1981 elements of type @code{char *const} rather than @code{char *}, or if
1982 @code{foo} were a global variable, the array would have static storage
1983 duration. But it is probably safest just to avoid the use of array
1984 compound literals in C++ code.
1985
1986 @node Designated Inits
1987 @section Designated Initializers
1988 @cindex initializers with labeled elements
1989 @cindex labeled elements in initializers
1990 @cindex case labels in initializers
1991 @cindex designated initializers
1992
1993 Standard C90 requires the elements of an initializer to appear in a fixed
1994 order, the same as the order of the elements in the array or structure
1995 being initialized.
1996
1997 In ISO C99 you can give the elements in any order, specifying the array
1998 indices or structure field names they apply to, and GNU C allows this as
1999 an extension in C90 mode as well. This extension is not
2000 implemented in GNU C++.
2001
2002 To specify an array index, write
2003 @samp{[@var{index}] =} before the element value. For example,
2004
2005 @smallexample
2006 int a[6] = @{ [4] = 29, [2] = 15 @};
2007 @end smallexample
2008
2009 @noindent
2010 is equivalent to
2011
2012 @smallexample
2013 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2014 @end smallexample
2015
2016 @noindent
2017 The index values must be constant expressions, even if the array being
2018 initialized is automatic.
2019
2020 An alternative syntax for this that has been obsolete since GCC 2.5 but
2021 GCC still accepts is to write @samp{[@var{index}]} before the element
2022 value, with no @samp{=}.
2023
2024 To initialize a range of elements to the same value, write
2025 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2026 extension. For example,
2027
2028 @smallexample
2029 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2030 @end smallexample
2031
2032 @noindent
2033 If the value in it has side-effects, the side-effects happen only once,
2034 not for each initialized field by the range initializer.
2035
2036 @noindent
2037 Note that the length of the array is the highest value specified
2038 plus one.
2039
2040 In a structure initializer, specify the name of a field to initialize
2041 with @samp{.@var{fieldname} =} before the element value. For example,
2042 given the following structure,
2043
2044 @smallexample
2045 struct point @{ int x, y; @};
2046 @end smallexample
2047
2048 @noindent
2049 the following initialization
2050
2051 @smallexample
2052 struct point p = @{ .y = yvalue, .x = xvalue @};
2053 @end smallexample
2054
2055 @noindent
2056 is equivalent to
2057
2058 @smallexample
2059 struct point p = @{ xvalue, yvalue @};
2060 @end smallexample
2061
2062 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2063 @samp{@var{fieldname}:}, as shown here:
2064
2065 @smallexample
2066 struct point p = @{ y: yvalue, x: xvalue @};
2067 @end smallexample
2068
2069 Omitted field members are implicitly initialized the same as objects
2070 that have static storage duration.
2071
2072 @cindex designators
2073 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2074 @dfn{designator}. You can also use a designator (or the obsolete colon
2075 syntax) when initializing a union, to specify which element of the union
2076 should be used. For example,
2077
2078 @smallexample
2079 union foo @{ int i; double d; @};
2080
2081 union foo f = @{ .d = 4 @};
2082 @end smallexample
2083
2084 @noindent
2085 converts 4 to a @code{double} to store it in the union using
2086 the second element. By contrast, casting 4 to type @code{union foo}
2087 stores it into the union as the integer @code{i}, since it is
2088 an integer. (@xref{Cast to Union}.)
2089
2090 You can combine this technique of naming elements with ordinary C
2091 initialization of successive elements. Each initializer element that
2092 does not have a designator applies to the next consecutive element of the
2093 array or structure. For example,
2094
2095 @smallexample
2096 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2097 @end smallexample
2098
2099 @noindent
2100 is equivalent to
2101
2102 @smallexample
2103 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2104 @end smallexample
2105
2106 Labeling the elements of an array initializer is especially useful
2107 when the indices are characters or belong to an @code{enum} type.
2108 For example:
2109
2110 @smallexample
2111 int whitespace[256]
2112 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2113 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2114 @end smallexample
2115
2116 @cindex designator lists
2117 You can also write a series of @samp{.@var{fieldname}} and
2118 @samp{[@var{index}]} designators before an @samp{=} to specify a
2119 nested subobject to initialize; the list is taken relative to the
2120 subobject corresponding to the closest surrounding brace pair. For
2121 example, with the @samp{struct point} declaration above:
2122
2123 @smallexample
2124 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2125 @end smallexample
2126
2127 @noindent
2128 If the same field is initialized multiple times, it has the value from
2129 the last initialization. If any such overridden initialization has
2130 side-effect, it is unspecified whether the side-effect happens or not.
2131 Currently, GCC discards them and issues a warning.
2132
2133 @node Case Ranges
2134 @section Case Ranges
2135 @cindex case ranges
2136 @cindex ranges in case statements
2137
2138 You can specify a range of consecutive values in a single @code{case} label,
2139 like this:
2140
2141 @smallexample
2142 case @var{low} ... @var{high}:
2143 @end smallexample
2144
2145 @noindent
2146 This has the same effect as the proper number of individual @code{case}
2147 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2148
2149 This feature is especially useful for ranges of ASCII character codes:
2150
2151 @smallexample
2152 case 'A' ... 'Z':
2153 @end smallexample
2154
2155 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2156 it may be parsed wrong when you use it with integer values. For example,
2157 write this:
2158
2159 @smallexample
2160 case 1 ... 5:
2161 @end smallexample
2162
2163 @noindent
2164 rather than this:
2165
2166 @smallexample
2167 case 1...5:
2168 @end smallexample
2169
2170 @node Cast to Union
2171 @section Cast to a Union Type
2172 @cindex cast to a union
2173 @cindex union, casting to a
2174
2175 A cast to union type looks similar to other casts, except that the type
2176 specified is a union type. You can specify the type either with the
2177 @code{union} keyword or with a @code{typedef} name that refers to
2178 a union. A cast to a union actually creates a compound literal and
2179 yields an lvalue, not an rvalue like true casts do.
2180 (@xref{Compound Literals}.)
2181
2182 The types that may be cast to the union type are those of the members
2183 of the union. Thus, given the following union and variables:
2184
2185 @smallexample
2186 union foo @{ int i; double d; @};
2187 int x;
2188 double y;
2189 @end smallexample
2190
2191 @noindent
2192 both @code{x} and @code{y} can be cast to type @code{union foo}.
2193
2194 Using the cast as the right-hand side of an assignment to a variable of
2195 union type is equivalent to storing in a member of the union:
2196
2197 @smallexample
2198 union foo u;
2199 /* @r{@dots{}} */
2200 u = (union foo) x @equiv{} u.i = x
2201 u = (union foo) y @equiv{} u.d = y
2202 @end smallexample
2203
2204 You can also use the union cast as a function argument:
2205
2206 @smallexample
2207 void hack (union foo);
2208 /* @r{@dots{}} */
2209 hack ((union foo) x);
2210 @end smallexample
2211
2212 @node Mixed Declarations
2213 @section Mixed Declarations and Code
2214 @cindex mixed declarations and code
2215 @cindex declarations, mixed with code
2216 @cindex code, mixed with declarations
2217
2218 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2219 within compound statements. As an extension, GNU C also allows this in
2220 C90 mode. For example, you could do:
2221
2222 @smallexample
2223 int i;
2224 /* @r{@dots{}} */
2225 i++;
2226 int j = i + 2;
2227 @end smallexample
2228
2229 Each identifier is visible from where it is declared until the end of
2230 the enclosing block.
2231
2232 @node Function Attributes
2233 @section Declaring Attributes of Functions
2234 @cindex function attributes
2235 @cindex declaring attributes of functions
2236 @cindex @code{volatile} applied to function
2237 @cindex @code{const} applied to function
2238
2239 In GNU C, you can use function attributes to declare certain things
2240 about functions called in your program which help the compiler
2241 optimize calls and check your code more carefully. For example, you
2242 can use attributes to declare that a function never returns
2243 (@code{noreturn}), returns a value depending only on its arguments
2244 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2245
2246 You can also use attributes to control memory placement, code
2247 generation options or call/return conventions within the function
2248 being annotated. Many of these attributes are target-specific. For
2249 example, many targets support attributes for defining interrupt
2250 handler functions, which typically must follow special register usage
2251 and return conventions.
2252
2253 Function attributes are introduced by the @code{__attribute__} keyword
2254 on a declaration, followed by an attribute specification inside double
2255 parentheses. You can specify multiple attributes in a declaration by
2256 separating them by commas within the double parentheses or by
2257 immediately following an attribute declaration with another attribute
2258 declaration. @xref{Attribute Syntax}, for the exact rules on
2259 attribute syntax and placement.
2260
2261 GCC also supports attributes on
2262 variable declarations (@pxref{Variable Attributes}),
2263 labels (@pxref{Label Attributes}),
2264 enumerators (@pxref{Enumerator Attributes}),
2265 statements (@pxref{Statement Attributes}),
2266 and types (@pxref{Type Attributes}).
2267
2268 There is some overlap between the purposes of attributes and pragmas
2269 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2270 found convenient to use @code{__attribute__} to achieve a natural
2271 attachment of attributes to their corresponding declarations, whereas
2272 @code{#pragma} is of use for compatibility with other compilers
2273 or constructs that do not naturally form part of the grammar.
2274
2275 In addition to the attributes documented here,
2276 GCC plugins may provide their own attributes.
2277
2278 @menu
2279 * Common Function Attributes::
2280 * AArch64 Function Attributes::
2281 * ARC Function Attributes::
2282 * ARM Function Attributes::
2283 * AVR Function Attributes::
2284 * Blackfin Function Attributes::
2285 * CR16 Function Attributes::
2286 * Epiphany Function Attributes::
2287 * H8/300 Function Attributes::
2288 * IA-64 Function Attributes::
2289 * M32C Function Attributes::
2290 * M32R/D Function Attributes::
2291 * m68k Function Attributes::
2292 * MCORE Function Attributes::
2293 * MeP Function Attributes::
2294 * MicroBlaze Function Attributes::
2295 * Microsoft Windows Function Attributes::
2296 * MIPS Function Attributes::
2297 * MSP430 Function Attributes::
2298 * NDS32 Function Attributes::
2299 * Nios II Function Attributes::
2300 * Nvidia PTX Function Attributes::
2301 * PowerPC Function Attributes::
2302 * RL78 Function Attributes::
2303 * RX Function Attributes::
2304 * S/390 Function Attributes::
2305 * SH Function Attributes::
2306 * SPU Function Attributes::
2307 * Symbian OS Function Attributes::
2308 * V850 Function Attributes::
2309 * Visium Function Attributes::
2310 * x86 Function Attributes::
2311 * Xstormy16 Function Attributes::
2312 @end menu
2313
2314 @node Common Function Attributes
2315 @subsection Common Function Attributes
2316
2317 The following attributes are supported on most targets.
2318
2319 @table @code
2320 @c Keep this table alphabetized by attribute name. Treat _ as space.
2321
2322 @item alias ("@var{target}")
2323 @cindex @code{alias} function attribute
2324 The @code{alias} attribute causes the declaration to be emitted as an
2325 alias for another symbol, which must be specified. For instance,
2326
2327 @smallexample
2328 void __f () @{ /* @r{Do something.} */; @}
2329 void f () __attribute__ ((weak, alias ("__f")));
2330 @end smallexample
2331
2332 @noindent
2333 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2334 mangled name for the target must be used. It is an error if @samp{__f}
2335 is not defined in the same translation unit.
2336
2337 This attribute requires assembler and object file support,
2338 and may not be available on all targets.
2339
2340 @item aligned (@var{alignment})
2341 @cindex @code{aligned} function attribute
2342 This attribute specifies a minimum alignment for the function,
2343 measured in bytes.
2344
2345 You cannot use this attribute to decrease the alignment of a function,
2346 only to increase it. However, when you explicitly specify a function
2347 alignment this overrides the effect of the
2348 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2349 function.
2350
2351 Note that the effectiveness of @code{aligned} attributes may be
2352 limited by inherent limitations in your linker. On many systems, the
2353 linker is only able to arrange for functions to be aligned up to a
2354 certain maximum alignment. (For some linkers, the maximum supported
2355 alignment may be very very small.) See your linker documentation for
2356 further information.
2357
2358 The @code{aligned} attribute can also be used for variables and fields
2359 (@pxref{Variable Attributes}.)
2360
2361 @item alloc_align
2362 @cindex @code{alloc_align} function attribute
2363 The @code{alloc_align} attribute is used to tell the compiler that the
2364 function return value points to memory, where the returned pointer minimum
2365 alignment is given by one of the functions parameters. GCC uses this
2366 information to improve pointer alignment analysis.
2367
2368 The function parameter denoting the allocated alignment is specified by
2369 one integer argument, whose number is the argument of the attribute.
2370 Argument numbering starts at one.
2371
2372 For instance,
2373
2374 @smallexample
2375 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2376 @end smallexample
2377
2378 @noindent
2379 declares that @code{my_memalign} returns memory with minimum alignment
2380 given by parameter 1.
2381
2382 @item alloc_size
2383 @cindex @code{alloc_size} function attribute
2384 The @code{alloc_size} attribute is used to tell the compiler that the
2385 function return value points to memory, where the size is given by
2386 one or two of the functions parameters. GCC uses this
2387 information to improve the correctness of @code{__builtin_object_size}.
2388
2389 The function parameter(s) denoting the allocated size are specified by
2390 one or two integer arguments supplied to the attribute. The allocated size
2391 is either the value of the single function argument specified or the product
2392 of the two function arguments specified. Argument numbering starts at
2393 one.
2394
2395 For instance,
2396
2397 @smallexample
2398 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2399 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2400 @end smallexample
2401
2402 @noindent
2403 declares that @code{my_calloc} returns memory of the size given by
2404 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2405 of the size given by parameter 2.
2406
2407 @item always_inline
2408 @cindex @code{always_inline} function attribute
2409 Generally, functions are not inlined unless optimization is specified.
2410 For functions declared inline, this attribute inlines the function
2411 independent of any restrictions that otherwise apply to inlining.
2412 Failure to inline such a function is diagnosed as an error.
2413 Note that if such a function is called indirectly the compiler may
2414 or may not inline it depending on optimization level and a failure
2415 to inline an indirect call may or may not be diagnosed.
2416
2417 @item artificial
2418 @cindex @code{artificial} function attribute
2419 This attribute is useful for small inline wrappers that if possible
2420 should appear during debugging as a unit. Depending on the debug
2421 info format it either means marking the function as artificial
2422 or using the caller location for all instructions within the inlined
2423 body.
2424
2425 @item assume_aligned
2426 @cindex @code{assume_aligned} function attribute
2427 The @code{assume_aligned} attribute is used to tell the compiler that the
2428 function return value points to memory, where the returned pointer minimum
2429 alignment is given by the first argument.
2430 If the attribute has two arguments, the second argument is misalignment offset.
2431
2432 For instance
2433
2434 @smallexample
2435 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2436 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2437 @end smallexample
2438
2439 @noindent
2440 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2441 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2442 to 8.
2443
2444 @item bnd_instrument
2445 @cindex @code{bnd_instrument} function attribute
2446 The @code{bnd_instrument} attribute on functions is used to inform the
2447 compiler that the function should be instrumented when compiled
2448 with the @option{-fchkp-instrument-marked-only} option.
2449
2450 @item bnd_legacy
2451 @cindex @code{bnd_legacy} function attribute
2452 @cindex Pointer Bounds Checker attributes
2453 The @code{bnd_legacy} attribute on functions is used to inform the
2454 compiler that the function should not be instrumented when compiled
2455 with the @option{-fcheck-pointer-bounds} option.
2456
2457 @item cold
2458 @cindex @code{cold} function attribute
2459 The @code{cold} attribute on functions is used to inform the compiler that
2460 the function is unlikely to be executed. The function is optimized for
2461 size rather than speed and on many targets it is placed into a special
2462 subsection of the text section so all cold functions appear close together,
2463 improving code locality of non-cold parts of program. The paths leading
2464 to calls of cold functions within code are marked as unlikely by the branch
2465 prediction mechanism. It is thus useful to mark functions used to handle
2466 unlikely conditions, such as @code{perror}, as cold to improve optimization
2467 of hot functions that do call marked functions in rare occasions.
2468
2469 When profile feedback is available, via @option{-fprofile-use}, cold functions
2470 are automatically detected and this attribute is ignored.
2471
2472 @item const
2473 @cindex @code{const} function attribute
2474 @cindex functions that have no side effects
2475 Many functions do not examine any values except their arguments, and
2476 have no effects except the return value. Basically this is just slightly
2477 more strict class than the @code{pure} attribute below, since function is not
2478 allowed to read global memory.
2479
2480 @cindex pointer arguments
2481 Note that a function that has pointer arguments and examines the data
2482 pointed to must @emph{not} be declared @code{const}. Likewise, a
2483 function that calls a non-@code{const} function usually must not be
2484 @code{const}. It does not make sense for a @code{const} function to
2485 return @code{void}.
2486
2487 @item constructor
2488 @itemx destructor
2489 @itemx constructor (@var{priority})
2490 @itemx destructor (@var{priority})
2491 @cindex @code{constructor} function attribute
2492 @cindex @code{destructor} function attribute
2493 The @code{constructor} attribute causes the function to be called
2494 automatically before execution enters @code{main ()}. Similarly, the
2495 @code{destructor} attribute causes the function to be called
2496 automatically after @code{main ()} completes or @code{exit ()} is
2497 called. Functions with these attributes are useful for
2498 initializing data that is used implicitly during the execution of
2499 the program.
2500
2501 You may provide an optional integer priority to control the order in
2502 which constructor and destructor functions are run. A constructor
2503 with a smaller priority number runs before a constructor with a larger
2504 priority number; the opposite relationship holds for destructors. So,
2505 if you have a constructor that allocates a resource and a destructor
2506 that deallocates the same resource, both functions typically have the
2507 same priority. The priorities for constructor and destructor
2508 functions are the same as those specified for namespace-scope C++
2509 objects (@pxref{C++ Attributes}).
2510
2511 @item deprecated
2512 @itemx deprecated (@var{msg})
2513 @cindex @code{deprecated} function attribute
2514 The @code{deprecated} attribute results in a warning if the function
2515 is used anywhere in the source file. This is useful when identifying
2516 functions that are expected to be removed in a future version of a
2517 program. The warning also includes the location of the declaration
2518 of the deprecated function, to enable users to easily find further
2519 information about why the function is deprecated, or what they should
2520 do instead. Note that the warnings only occurs for uses:
2521
2522 @smallexample
2523 int old_fn () __attribute__ ((deprecated));
2524 int old_fn ();
2525 int (*fn_ptr)() = old_fn;
2526 @end smallexample
2527
2528 @noindent
2529 results in a warning on line 3 but not line 2. The optional @var{msg}
2530 argument, which must be a string, is printed in the warning if
2531 present.
2532
2533 The @code{deprecated} attribute can also be used for variables and
2534 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2535
2536 @item error ("@var{message}")
2537 @itemx warning ("@var{message}")
2538 @cindex @code{error} function attribute
2539 @cindex @code{warning} function attribute
2540 If the @code{error} or @code{warning} attribute
2541 is used on a function declaration and a call to such a function
2542 is not eliminated through dead code elimination or other optimizations,
2543 an error or warning (respectively) that includes @var{message} is diagnosed.
2544 This is useful
2545 for compile-time checking, especially together with @code{__builtin_constant_p}
2546 and inline functions where checking the inline function arguments is not
2547 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2548
2549 While it is possible to leave the function undefined and thus invoke
2550 a link failure (to define the function with
2551 a message in @code{.gnu.warning*} section),
2552 when using these attributes the problem is diagnosed
2553 earlier and with exact location of the call even in presence of inline
2554 functions or when not emitting debugging information.
2555
2556 @item externally_visible
2557 @cindex @code{externally_visible} function attribute
2558 This attribute, attached to a global variable or function, nullifies
2559 the effect of the @option{-fwhole-program} command-line option, so the
2560 object remains visible outside the current compilation unit.
2561
2562 If @option{-fwhole-program} is used together with @option{-flto} and
2563 @command{gold} is used as the linker plugin,
2564 @code{externally_visible} attributes are automatically added to functions
2565 (not variable yet due to a current @command{gold} issue)
2566 that are accessed outside of LTO objects according to resolution file
2567 produced by @command{gold}.
2568 For other linkers that cannot generate resolution file,
2569 explicit @code{externally_visible} attributes are still necessary.
2570
2571 @item flatten
2572 @cindex @code{flatten} function attribute
2573 Generally, inlining into a function is limited. For a function marked with
2574 this attribute, every call inside this function is inlined, if possible.
2575 Whether the function itself is considered for inlining depends on its size and
2576 the current inlining parameters.
2577
2578 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2579 @cindex @code{format} function attribute
2580 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2581 @opindex Wformat
2582 The @code{format} attribute specifies that a function takes @code{printf},
2583 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2584 should be type-checked against a format string. For example, the
2585 declaration:
2586
2587 @smallexample
2588 extern int
2589 my_printf (void *my_object, const char *my_format, ...)
2590 __attribute__ ((format (printf, 2, 3)));
2591 @end smallexample
2592
2593 @noindent
2594 causes the compiler to check the arguments in calls to @code{my_printf}
2595 for consistency with the @code{printf} style format string argument
2596 @code{my_format}.
2597
2598 The parameter @var{archetype} determines how the format string is
2599 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2600 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2601 @code{strfmon}. (You can also use @code{__printf__},
2602 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2603 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2604 @code{ms_strftime} are also present.
2605 @var{archetype} values such as @code{printf} refer to the formats accepted
2606 by the system's C runtime library,
2607 while values prefixed with @samp{gnu_} always refer
2608 to the formats accepted by the GNU C Library. On Microsoft Windows
2609 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2610 @file{msvcrt.dll} library.
2611 The parameter @var{string-index}
2612 specifies which argument is the format string argument (starting
2613 from 1), while @var{first-to-check} is the number of the first
2614 argument to check against the format string. For functions
2615 where the arguments are not available to be checked (such as
2616 @code{vprintf}), specify the third parameter as zero. In this case the
2617 compiler only checks the format string for consistency. For
2618 @code{strftime} formats, the third parameter is required to be zero.
2619 Since non-static C++ methods have an implicit @code{this} argument, the
2620 arguments of such methods should be counted from two, not one, when
2621 giving values for @var{string-index} and @var{first-to-check}.
2622
2623 In the example above, the format string (@code{my_format}) is the second
2624 argument of the function @code{my_print}, and the arguments to check
2625 start with the third argument, so the correct parameters for the format
2626 attribute are 2 and 3.
2627
2628 @opindex ffreestanding
2629 @opindex fno-builtin
2630 The @code{format} attribute allows you to identify your own functions
2631 that take format strings as arguments, so that GCC can check the
2632 calls to these functions for errors. The compiler always (unless
2633 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2634 for the standard library functions @code{printf}, @code{fprintf},
2635 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2636 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2637 warnings are requested (using @option{-Wformat}), so there is no need to
2638 modify the header file @file{stdio.h}. In C99 mode, the functions
2639 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2640 @code{vsscanf} are also checked. Except in strictly conforming C
2641 standard modes, the X/Open function @code{strfmon} is also checked as
2642 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2643 @xref{C Dialect Options,,Options Controlling C Dialect}.
2644
2645 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2646 recognized in the same context. Declarations including these format attributes
2647 are parsed for correct syntax, however the result of checking of such format
2648 strings is not yet defined, and is not carried out by this version of the
2649 compiler.
2650
2651 The target may also provide additional types of format checks.
2652 @xref{Target Format Checks,,Format Checks Specific to Particular
2653 Target Machines}.
2654
2655 @item format_arg (@var{string-index})
2656 @cindex @code{format_arg} function attribute
2657 @opindex Wformat-nonliteral
2658 The @code{format_arg} attribute specifies that a function takes a format
2659 string for a @code{printf}, @code{scanf}, @code{strftime} or
2660 @code{strfmon} style function and modifies it (for example, to translate
2661 it into another language), so the result can be passed to a
2662 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2663 function (with the remaining arguments to the format function the same
2664 as they would have been for the unmodified string). For example, the
2665 declaration:
2666
2667 @smallexample
2668 extern char *
2669 my_dgettext (char *my_domain, const char *my_format)
2670 __attribute__ ((format_arg (2)));
2671 @end smallexample
2672
2673 @noindent
2674 causes the compiler to check the arguments in calls to a @code{printf},
2675 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2676 format string argument is a call to the @code{my_dgettext} function, for
2677 consistency with the format string argument @code{my_format}. If the
2678 @code{format_arg} attribute had not been specified, all the compiler
2679 could tell in such calls to format functions would be that the format
2680 string argument is not constant; this would generate a warning when
2681 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2682 without the attribute.
2683
2684 The parameter @var{string-index} specifies which argument is the format
2685 string argument (starting from one). Since non-static C++ methods have
2686 an implicit @code{this} argument, the arguments of such methods should
2687 be counted from two.
2688
2689 The @code{format_arg} attribute allows you to identify your own
2690 functions that modify format strings, so that GCC can check the
2691 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2692 type function whose operands are a call to one of your own function.
2693 The compiler always treats @code{gettext}, @code{dgettext}, and
2694 @code{dcgettext} in this manner except when strict ISO C support is
2695 requested by @option{-ansi} or an appropriate @option{-std} option, or
2696 @option{-ffreestanding} or @option{-fno-builtin}
2697 is used. @xref{C Dialect Options,,Options
2698 Controlling C Dialect}.
2699
2700 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2701 @code{NSString} reference for compatibility with the @code{format} attribute
2702 above.
2703
2704 The target may also allow additional types in @code{format-arg} attributes.
2705 @xref{Target Format Checks,,Format Checks Specific to Particular
2706 Target Machines}.
2707
2708 @item gnu_inline
2709 @cindex @code{gnu_inline} function attribute
2710 This attribute should be used with a function that is also declared
2711 with the @code{inline} keyword. It directs GCC to treat the function
2712 as if it were defined in gnu90 mode even when compiling in C99 or
2713 gnu99 mode.
2714
2715 If the function is declared @code{extern}, then this definition of the
2716 function is used only for inlining. In no case is the function
2717 compiled as a standalone function, not even if you take its address
2718 explicitly. Such an address becomes an external reference, as if you
2719 had only declared the function, and had not defined it. This has
2720 almost the effect of a macro. The way to use this is to put a
2721 function definition in a header file with this attribute, and put
2722 another copy of the function, without @code{extern}, in a library
2723 file. The definition in the header file causes most calls to the
2724 function to be inlined. If any uses of the function remain, they
2725 refer to the single copy in the library. Note that the two
2726 definitions of the functions need not be precisely the same, although
2727 if they do not have the same effect your program may behave oddly.
2728
2729 In C, if the function is neither @code{extern} nor @code{static}, then
2730 the function is compiled as a standalone function, as well as being
2731 inlined where possible.
2732
2733 This is how GCC traditionally handled functions declared
2734 @code{inline}. Since ISO C99 specifies a different semantics for
2735 @code{inline}, this function attribute is provided as a transition
2736 measure and as a useful feature in its own right. This attribute is
2737 available in GCC 4.1.3 and later. It is available if either of the
2738 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2739 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2740 Function is As Fast As a Macro}.
2741
2742 In C++, this attribute does not depend on @code{extern} in any way,
2743 but it still requires the @code{inline} keyword to enable its special
2744 behavior.
2745
2746 @item hot
2747 @cindex @code{hot} function attribute
2748 The @code{hot} attribute on a function is used to inform the compiler that
2749 the function is a hot spot of the compiled program. The function is
2750 optimized more aggressively and on many targets it is placed into a special
2751 subsection of the text section so all hot functions appear close together,
2752 improving locality.
2753
2754 When profile feedback is available, via @option{-fprofile-use}, hot functions
2755 are automatically detected and this attribute is ignored.
2756
2757 @item ifunc ("@var{resolver}")
2758 @cindex @code{ifunc} function attribute
2759 @cindex indirect functions
2760 @cindex functions that are dynamically resolved
2761 The @code{ifunc} attribute is used to mark a function as an indirect
2762 function using the STT_GNU_IFUNC symbol type extension to the ELF
2763 standard. This allows the resolution of the symbol value to be
2764 determined dynamically at load time, and an optimized version of the
2765 routine can be selected for the particular processor or other system
2766 characteristics determined then. To use this attribute, first define
2767 the implementation functions available, and a resolver function that
2768 returns a pointer to the selected implementation function. The
2769 implementation functions' declarations must match the API of the
2770 function being implemented, the resolver's declaration is be a
2771 function returning pointer to void function returning void:
2772
2773 @smallexample
2774 void *my_memcpy (void *dst, const void *src, size_t len)
2775 @{
2776 @dots{}
2777 @}
2778
2779 static void (*resolve_memcpy (void)) (void)
2780 @{
2781 return my_memcpy; // we'll just always select this routine
2782 @}
2783 @end smallexample
2784
2785 @noindent
2786 The exported header file declaring the function the user calls would
2787 contain:
2788
2789 @smallexample
2790 extern void *memcpy (void *, const void *, size_t);
2791 @end smallexample
2792
2793 @noindent
2794 allowing the user to call this as a regular function, unaware of the
2795 implementation. Finally, the indirect function needs to be defined in
2796 the same translation unit as the resolver function:
2797
2798 @smallexample
2799 void *memcpy (void *, const void *, size_t)
2800 __attribute__ ((ifunc ("resolve_memcpy")));
2801 @end smallexample
2802
2803 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2804 and GNU C Library version 2.11.1 are required to use this feature.
2805
2806 @item interrupt
2807 @itemx interrupt_handler
2808 Many GCC back ends support attributes to indicate that a function is
2809 an interrupt handler, which tells the compiler to generate function
2810 entry and exit sequences that differ from those from regular
2811 functions. The exact syntax and behavior are target-specific;
2812 refer to the following subsections for details.
2813
2814 @item leaf
2815 @cindex @code{leaf} function attribute
2816 Calls to external functions with this attribute must return to the
2817 current compilation unit only by return or by exception handling. In
2818 particular, a leaf function is not allowed to invoke callback functions
2819 passed to it from the current compilation unit, directly call functions
2820 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2821 might still call functions from other compilation units and thus they
2822 are not necessarily leaf in the sense that they contain no function
2823 calls at all.
2824
2825 The attribute is intended for library functions to improve dataflow
2826 analysis. The compiler takes the hint that any data not escaping the
2827 current compilation unit cannot be used or modified by the leaf
2828 function. For example, the @code{sin} function is a leaf function, but
2829 @code{qsort} is not.
2830
2831 Note that leaf functions might indirectly run a signal handler defined
2832 in the current compilation unit that uses static variables. Similarly,
2833 when lazy symbol resolution is in effect, leaf functions might invoke
2834 indirect functions whose resolver function or implementation function is
2835 defined in the current compilation unit and uses static variables. There
2836 is no standard-compliant way to write such a signal handler, resolver
2837 function, or implementation function, and the best that you can do is to
2838 remove the @code{leaf} attribute or mark all such static variables
2839 @code{volatile}. Lastly, for ELF-based systems that support symbol
2840 interposition, care should be taken that functions defined in the
2841 current compilation unit do not unexpectedly interpose other symbols
2842 based on the defined standards mode and defined feature test macros;
2843 otherwise an inadvertent callback would be added.
2844
2845 The attribute has no effect on functions defined within the current
2846 compilation unit. This is to allow easy merging of multiple compilation
2847 units into one, for example, by using the link-time optimization. For
2848 this reason the attribute is not allowed on types to annotate indirect
2849 calls.
2850
2851 @item malloc
2852 @cindex @code{malloc} function attribute
2853 @cindex functions that behave like malloc
2854 This tells the compiler that a function is @code{malloc}-like, i.e.,
2855 that the pointer @var{P} returned by the function cannot alias any
2856 other pointer valid when the function returns, and moreover no
2857 pointers to valid objects occur in any storage addressed by @var{P}.
2858
2859 Using this attribute can improve optimization. Functions like
2860 @code{malloc} and @code{calloc} have this property because they return
2861 a pointer to uninitialized or zeroed-out storage. However, functions
2862 like @code{realloc} do not have this property, as they can return a
2863 pointer to storage containing pointers.
2864
2865 @item no_icf
2866 @cindex @code{no_icf} function attribute
2867 This function attribute prevents a functions from being merged with another
2868 semantically equivalent function.
2869
2870 @item no_instrument_function
2871 @cindex @code{no_instrument_function} function attribute
2872 @opindex finstrument-functions
2873 If @option{-finstrument-functions} is given, profiling function calls are
2874 generated at entry and exit of most user-compiled functions.
2875 Functions with this attribute are not so instrumented.
2876
2877 @item no_profile_instrument_function
2878 @cindex @code{no_profile_instrument_function} function attribute
2879 The @code{no_profile_instrument_function} attribute on functions is used
2880 to inform the compiler that it should not process any profile feedback based
2881 optimization code instrumentation.
2882
2883 @item no_reorder
2884 @cindex @code{no_reorder} function attribute
2885 Do not reorder functions or variables marked @code{no_reorder}
2886 against each other or top level assembler statements the executable.
2887 The actual order in the program will depend on the linker command
2888 line. Static variables marked like this are also not removed.
2889 This has a similar effect
2890 as the @option{-fno-toplevel-reorder} option, but only applies to the
2891 marked symbols.
2892
2893 @item no_sanitize_address
2894 @itemx no_address_safety_analysis
2895 @cindex @code{no_sanitize_address} function attribute
2896 The @code{no_sanitize_address} attribute on functions is used
2897 to inform the compiler that it should not instrument memory accesses
2898 in the function when compiling with the @option{-fsanitize=address} option.
2899 The @code{no_address_safety_analysis} is a deprecated alias of the
2900 @code{no_sanitize_address} attribute, new code should use
2901 @code{no_sanitize_address}.
2902
2903 @item no_sanitize_thread
2904 @cindex @code{no_sanitize_thread} function attribute
2905 The @code{no_sanitize_thread} attribute on functions is used
2906 to inform the compiler that it should not instrument memory accesses
2907 in the function when compiling with the @option{-fsanitize=thread} option.
2908
2909 @item no_sanitize_undefined
2910 @cindex @code{no_sanitize_undefined} function attribute
2911 The @code{no_sanitize_undefined} attribute on functions is used
2912 to inform the compiler that it should not check for undefined behavior
2913 in the function when compiling with the @option{-fsanitize=undefined} option.
2914
2915 @item no_split_stack
2916 @cindex @code{no_split_stack} function attribute
2917 @opindex fsplit-stack
2918 If @option{-fsplit-stack} is given, functions have a small
2919 prologue which decides whether to split the stack. Functions with the
2920 @code{no_split_stack} attribute do not have that prologue, and thus
2921 may run with only a small amount of stack space available.
2922
2923 @item no_stack_limit
2924 @cindex @code{no_stack_limit} function attribute
2925 This attribute locally overrides the @option{-fstack-limit-register}
2926 and @option{-fstack-limit-symbol} command-line options; it has the effect
2927 of disabling stack limit checking in the function it applies to.
2928
2929 @item noclone
2930 @cindex @code{noclone} function attribute
2931 This function attribute prevents a function from being considered for
2932 cloning---a mechanism that produces specialized copies of functions
2933 and which is (currently) performed by interprocedural constant
2934 propagation.
2935
2936 @item noinline
2937 @cindex @code{noinline} function attribute
2938 This function attribute prevents a function from being considered for
2939 inlining.
2940 @c Don't enumerate the optimizations by name here; we try to be
2941 @c future-compatible with this mechanism.
2942 If the function does not have side-effects, there are optimizations
2943 other than inlining that cause function calls to be optimized away,
2944 although the function call is live. To keep such calls from being
2945 optimized away, put
2946 @smallexample
2947 asm ("");
2948 @end smallexample
2949
2950 @noindent
2951 (@pxref{Extended Asm}) in the called function, to serve as a special
2952 side-effect.
2953
2954 @item nonnull (@var{arg-index}, @dots{})
2955 @cindex @code{nonnull} function attribute
2956 @cindex functions with non-null pointer arguments
2957 The @code{nonnull} attribute specifies that some function parameters should
2958 be non-null pointers. For instance, the declaration:
2959
2960 @smallexample
2961 extern void *
2962 my_memcpy (void *dest, const void *src, size_t len)
2963 __attribute__((nonnull (1, 2)));
2964 @end smallexample
2965
2966 @noindent
2967 causes the compiler to check that, in calls to @code{my_memcpy},
2968 arguments @var{dest} and @var{src} are non-null. If the compiler
2969 determines that a null pointer is passed in an argument slot marked
2970 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2971 is issued. The compiler may also choose to make optimizations based
2972 on the knowledge that certain function arguments will never be null.
2973
2974 If no argument index list is given to the @code{nonnull} attribute,
2975 all pointer arguments are marked as non-null. To illustrate, the
2976 following declaration is equivalent to the previous example:
2977
2978 @smallexample
2979 extern void *
2980 my_memcpy (void *dest, const void *src, size_t len)
2981 __attribute__((nonnull));
2982 @end smallexample
2983
2984 @item noplt
2985 @cindex @code{noplt} function attribute
2986 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
2987 Calls to functions marked with this attribute in position-independent code
2988 do not use the PLT.
2989
2990 @smallexample
2991 @group
2992 /* Externally defined function foo. */
2993 int foo () __attribute__ ((noplt));
2994
2995 int
2996 main (/* @r{@dots{}} */)
2997 @{
2998 /* @r{@dots{}} */
2999 foo ();
3000 /* @r{@dots{}} */
3001 @}
3002 @end group
3003 @end smallexample
3004
3005 The @code{noplt} attribute on function @code{foo}
3006 tells the compiler to assume that
3007 the function @code{foo} is externally defined and that the call to
3008 @code{foo} must avoid the PLT
3009 in position-independent code.
3010
3011 In position-dependent code, a few targets also convert calls to
3012 functions that are marked to not use the PLT to use the GOT instead.
3013
3014 @item noreturn
3015 @cindex @code{noreturn} function attribute
3016 @cindex functions that never return
3017 A few standard library functions, such as @code{abort} and @code{exit},
3018 cannot return. GCC knows this automatically. Some programs define
3019 their own functions that never return. You can declare them
3020 @code{noreturn} to tell the compiler this fact. For example,
3021
3022 @smallexample
3023 @group
3024 void fatal () __attribute__ ((noreturn));
3025
3026 void
3027 fatal (/* @r{@dots{}} */)
3028 @{
3029 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3030 exit (1);
3031 @}
3032 @end group
3033 @end smallexample
3034
3035 The @code{noreturn} keyword tells the compiler to assume that
3036 @code{fatal} cannot return. It can then optimize without regard to what
3037 would happen if @code{fatal} ever did return. This makes slightly
3038 better code. More importantly, it helps avoid spurious warnings of
3039 uninitialized variables.
3040
3041 The @code{noreturn} keyword does not affect the exceptional path when that
3042 applies: a @code{noreturn}-marked function may still return to the caller
3043 by throwing an exception or calling @code{longjmp}.
3044
3045 Do not assume that registers saved by the calling function are
3046 restored before calling the @code{noreturn} function.
3047
3048 It does not make sense for a @code{noreturn} function to have a return
3049 type other than @code{void}.
3050
3051 @item nothrow
3052 @cindex @code{nothrow} function attribute
3053 The @code{nothrow} attribute is used to inform the compiler that a
3054 function cannot throw an exception. For example, most functions in
3055 the standard C library can be guaranteed not to throw an exception
3056 with the notable exceptions of @code{qsort} and @code{bsearch} that
3057 take function pointer arguments.
3058
3059 @item optimize
3060 @cindex @code{optimize} function attribute
3061 The @code{optimize} attribute is used to specify that a function is to
3062 be compiled with different optimization options than specified on the
3063 command line. Arguments can either be numbers or strings. Numbers
3064 are assumed to be an optimization level. Strings that begin with
3065 @code{O} are assumed to be an optimization option, while other options
3066 are assumed to be used with a @code{-f} prefix. You can also use the
3067 @samp{#pragma GCC optimize} pragma to set the optimization options
3068 that affect more than one function.
3069 @xref{Function Specific Option Pragmas}, for details about the
3070 @samp{#pragma GCC optimize} pragma.
3071
3072 This attribute should be used for debugging purposes only. It is not
3073 suitable in production code.
3074
3075 @item pure
3076 @cindex @code{pure} function attribute
3077 @cindex functions that have no side effects
3078 Many functions have no effects except the return value and their
3079 return value depends only on the parameters and/or global variables.
3080 Such a function can be subject
3081 to common subexpression elimination and loop optimization just as an
3082 arithmetic operator would be. These functions should be declared
3083 with the attribute @code{pure}. For example,
3084
3085 @smallexample
3086 int square (int) __attribute__ ((pure));
3087 @end smallexample
3088
3089 @noindent
3090 says that the hypothetical function @code{square} is safe to call
3091 fewer times than the program says.
3092
3093 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3094 Interesting non-pure functions are functions with infinite loops or those
3095 depending on volatile memory or other system resource, that may change between
3096 two consecutive calls (such as @code{feof} in a multithreading environment).
3097
3098 @item returns_nonnull
3099 @cindex @code{returns_nonnull} function attribute
3100 The @code{returns_nonnull} attribute specifies that the function
3101 return value should be a non-null pointer. For instance, the declaration:
3102
3103 @smallexample
3104 extern void *
3105 mymalloc (size_t len) __attribute__((returns_nonnull));
3106 @end smallexample
3107
3108 @noindent
3109 lets the compiler optimize callers based on the knowledge
3110 that the return value will never be null.
3111
3112 @item returns_twice
3113 @cindex @code{returns_twice} function attribute
3114 @cindex functions that return more than once
3115 The @code{returns_twice} attribute tells the compiler that a function may
3116 return more than one time. The compiler ensures that all registers
3117 are dead before calling such a function and emits a warning about
3118 the variables that may be clobbered after the second return from the
3119 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3120 The @code{longjmp}-like counterpart of such function, if any, might need
3121 to be marked with the @code{noreturn} attribute.
3122
3123 @item section ("@var{section-name}")
3124 @cindex @code{section} function attribute
3125 @cindex functions in arbitrary sections
3126 Normally, the compiler places the code it generates in the @code{text} section.
3127 Sometimes, however, you need additional sections, or you need certain
3128 particular functions to appear in special sections. The @code{section}
3129 attribute specifies that a function lives in a particular section.
3130 For example, the declaration:
3131
3132 @smallexample
3133 extern void foobar (void) __attribute__ ((section ("bar")));
3134 @end smallexample
3135
3136 @noindent
3137 puts the function @code{foobar} in the @code{bar} section.
3138
3139 Some file formats do not support arbitrary sections so the @code{section}
3140 attribute is not available on all platforms.
3141 If you need to map the entire contents of a module to a particular
3142 section, consider using the facilities of the linker instead.
3143
3144 @item sentinel
3145 @cindex @code{sentinel} function attribute
3146 This function attribute ensures that a parameter in a function call is
3147 an explicit @code{NULL}. The attribute is only valid on variadic
3148 functions. By default, the sentinel is located at position zero, the
3149 last parameter of the function call. If an optional integer position
3150 argument P is supplied to the attribute, the sentinel must be located at
3151 position P counting backwards from the end of the argument list.
3152
3153 @smallexample
3154 __attribute__ ((sentinel))
3155 is equivalent to
3156 __attribute__ ((sentinel(0)))
3157 @end smallexample
3158
3159 The attribute is automatically set with a position of 0 for the built-in
3160 functions @code{execl} and @code{execlp}. The built-in function
3161 @code{execle} has the attribute set with a position of 1.
3162
3163 A valid @code{NULL} in this context is defined as zero with any pointer
3164 type. If your system defines the @code{NULL} macro with an integer type
3165 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3166 with a copy that redefines NULL appropriately.
3167
3168 The warnings for missing or incorrect sentinels are enabled with
3169 @option{-Wformat}.
3170
3171 @item simd
3172 @itemx simd("@var{mask}")
3173 @cindex @code{simd} function attribute
3174 This attribute enables creation of one or more function versions that
3175 can process multiple arguments using SIMD instructions from a
3176 single invocation. Specifying this attribute allows compiler to
3177 assume that such versions are available at link time (provided
3178 in the same or another translation unit). Generated versions are
3179 target-dependent and described in the corresponding Vector ABI document. For
3180 x86_64 target this document can be found
3181 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3182
3183 The optional argument @var{mask} may have the value
3184 @code{notinbranch} or @code{inbranch},
3185 and instructs the compiler to generate non-masked or masked
3186 clones correspondingly. By default, all clones are generated.
3187
3188 The attribute should not be used together with Cilk Plus @code{vector}
3189 attribute on the same function.
3190
3191 If the attribute is specified and @code{#pragma omp declare simd} is
3192 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3193 switch is specified, then the attribute is ignored.
3194
3195 @item stack_protect
3196 @cindex @code{stack_protect} function attribute
3197 This attribute adds stack protection code to the function if
3198 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3199 or @option{-fstack-protector-explicit} are set.
3200
3201 @item target (@var{options})
3202 @cindex @code{target} function attribute
3203 Multiple target back ends implement the @code{target} attribute
3204 to specify that a function is to
3205 be compiled with different target options than specified on the
3206 command line. This can be used for instance to have functions
3207 compiled with a different ISA (instruction set architecture) than the
3208 default. You can also use the @samp{#pragma GCC target} pragma to set
3209 more than one function to be compiled with specific target options.
3210 @xref{Function Specific Option Pragmas}, for details about the
3211 @samp{#pragma GCC target} pragma.
3212
3213 For instance, on an x86, you could declare one function with the
3214 @code{target("sse4.1,arch=core2")} attribute and another with
3215 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3216 compiling the first function with @option{-msse4.1} and
3217 @option{-march=core2} options, and the second function with
3218 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3219 to make sure that a function is only invoked on a machine that
3220 supports the particular ISA it is compiled for (for example by using
3221 @code{cpuid} on x86 to determine what feature bits and architecture
3222 family are used).
3223
3224 @smallexample
3225 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3226 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3227 @end smallexample
3228
3229 You can either use multiple
3230 strings separated by commas to specify multiple options,
3231 or separate the options with a comma (@samp{,}) within a single string.
3232
3233 The options supported are specific to each target; refer to @ref{x86
3234 Function Attributes}, @ref{PowerPC Function Attributes},
3235 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3236 for details.
3237
3238 @item target_clones (@var{options})
3239 @cindex @code{target_clones} function attribute
3240 The @code{target_clones} attribute is used to specify that a function
3241 be cloned into multiple versions compiled with different target options
3242 than specified on the command line. The supported options and restrictions
3243 are the same as for @code{target} attribute.
3244
3245 For instance, on an x86, you could compile a function with
3246 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3247 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3248 It also creates a resolver function (see the @code{ifunc} attribute
3249 above) that dynamically selects a clone suitable for current architecture.
3250
3251 @item unused
3252 @cindex @code{unused} function attribute
3253 This attribute, attached to a function, means that the function is meant
3254 to be possibly unused. GCC does not produce a warning for this
3255 function.
3256
3257 @item used
3258 @cindex @code{used} function attribute
3259 This attribute, attached to a function, means that code must be emitted
3260 for the function even if it appears that the function is not referenced.
3261 This is useful, for example, when the function is referenced only in
3262 inline assembly.
3263
3264 When applied to a member function of a C++ class template, the
3265 attribute also means that the function is instantiated if the
3266 class itself is instantiated.
3267
3268 @item visibility ("@var{visibility_type}")
3269 @cindex @code{visibility} function attribute
3270 This attribute affects the linkage of the declaration to which it is attached.
3271 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3272 (@pxref{Common Type Attributes}) as well as functions.
3273
3274 There are four supported @var{visibility_type} values: default,
3275 hidden, protected or internal visibility.
3276
3277 @smallexample
3278 void __attribute__ ((visibility ("protected")))
3279 f () @{ /* @r{Do something.} */; @}
3280 int i __attribute__ ((visibility ("hidden")));
3281 @end smallexample
3282
3283 The possible values of @var{visibility_type} correspond to the
3284 visibility settings in the ELF gABI.
3285
3286 @table @code
3287 @c keep this list of visibilities in alphabetical order.
3288
3289 @item default
3290 Default visibility is the normal case for the object file format.
3291 This value is available for the visibility attribute to override other
3292 options that may change the assumed visibility of entities.
3293
3294 On ELF, default visibility means that the declaration is visible to other
3295 modules and, in shared libraries, means that the declared entity may be
3296 overridden.
3297
3298 On Darwin, default visibility means that the declaration is visible to
3299 other modules.
3300
3301 Default visibility corresponds to ``external linkage'' in the language.
3302
3303 @item hidden
3304 Hidden visibility indicates that the entity declared has a new
3305 form of linkage, which we call ``hidden linkage''. Two
3306 declarations of an object with hidden linkage refer to the same object
3307 if they are in the same shared object.
3308
3309 @item internal
3310 Internal visibility is like hidden visibility, but with additional
3311 processor specific semantics. Unless otherwise specified by the
3312 psABI, GCC defines internal visibility to mean that a function is
3313 @emph{never} called from another module. Compare this with hidden
3314 functions which, while they cannot be referenced directly by other
3315 modules, can be referenced indirectly via function pointers. By
3316 indicating that a function cannot be called from outside the module,
3317 GCC may for instance omit the load of a PIC register since it is known
3318 that the calling function loaded the correct value.
3319
3320 @item protected
3321 Protected visibility is like default visibility except that it
3322 indicates that references within the defining module bind to the
3323 definition in that module. That is, the declared entity cannot be
3324 overridden by another module.
3325
3326 @end table
3327
3328 All visibilities are supported on many, but not all, ELF targets
3329 (supported when the assembler supports the @samp{.visibility}
3330 pseudo-op). Default visibility is supported everywhere. Hidden
3331 visibility is supported on Darwin targets.
3332
3333 The visibility attribute should be applied only to declarations that
3334 would otherwise have external linkage. The attribute should be applied
3335 consistently, so that the same entity should not be declared with
3336 different settings of the attribute.
3337
3338 In C++, the visibility attribute applies to types as well as functions
3339 and objects, because in C++ types have linkage. A class must not have
3340 greater visibility than its non-static data member types and bases,
3341 and class members default to the visibility of their class. Also, a
3342 declaration without explicit visibility is limited to the visibility
3343 of its type.
3344
3345 In C++, you can mark member functions and static member variables of a
3346 class with the visibility attribute. This is useful if you know a
3347 particular method or static member variable should only be used from
3348 one shared object; then you can mark it hidden while the rest of the
3349 class has default visibility. Care must be taken to avoid breaking
3350 the One Definition Rule; for example, it is usually not useful to mark
3351 an inline method as hidden without marking the whole class as hidden.
3352
3353 A C++ namespace declaration can also have the visibility attribute.
3354
3355 @smallexample
3356 namespace nspace1 __attribute__ ((visibility ("protected")))
3357 @{ /* @r{Do something.} */; @}
3358 @end smallexample
3359
3360 This attribute applies only to the particular namespace body, not to
3361 other definitions of the same namespace; it is equivalent to using
3362 @samp{#pragma GCC visibility} before and after the namespace
3363 definition (@pxref{Visibility Pragmas}).
3364
3365 In C++, if a template argument has limited visibility, this
3366 restriction is implicitly propagated to the template instantiation.
3367 Otherwise, template instantiations and specializations default to the
3368 visibility of their template.
3369
3370 If both the template and enclosing class have explicit visibility, the
3371 visibility from the template is used.
3372
3373 @item warn_unused_result
3374 @cindex @code{warn_unused_result} function attribute
3375 The @code{warn_unused_result} attribute causes a warning to be emitted
3376 if a caller of the function with this attribute does not use its
3377 return value. This is useful for functions where not checking
3378 the result is either a security problem or always a bug, such as
3379 @code{realloc}.
3380
3381 @smallexample
3382 int fn () __attribute__ ((warn_unused_result));
3383 int foo ()
3384 @{
3385 if (fn () < 0) return -1;
3386 fn ();
3387 return 0;
3388 @}
3389 @end smallexample
3390
3391 @noindent
3392 results in warning on line 5.
3393
3394 @item weak
3395 @cindex @code{weak} function attribute
3396 The @code{weak} attribute causes the declaration to be emitted as a weak
3397 symbol rather than a global. This is primarily useful in defining
3398 library functions that can be overridden in user code, though it can
3399 also be used with non-function declarations. Weak symbols are supported
3400 for ELF targets, and also for a.out targets when using the GNU assembler
3401 and linker.
3402
3403 @item weakref
3404 @itemx weakref ("@var{target}")
3405 @cindex @code{weakref} function attribute
3406 The @code{weakref} attribute marks a declaration as a weak reference.
3407 Without arguments, it should be accompanied by an @code{alias} attribute
3408 naming the target symbol. Optionally, the @var{target} may be given as
3409 an argument to @code{weakref} itself. In either case, @code{weakref}
3410 implicitly marks the declaration as @code{weak}. Without a
3411 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3412 @code{weakref} is equivalent to @code{weak}.
3413
3414 @smallexample
3415 static int x() __attribute__ ((weakref ("y")));
3416 /* is equivalent to... */
3417 static int x() __attribute__ ((weak, weakref, alias ("y")));
3418 /* and to... */
3419 static int x() __attribute__ ((weakref));
3420 static int x() __attribute__ ((alias ("y")));
3421 @end smallexample
3422
3423 A weak reference is an alias that does not by itself require a
3424 definition to be given for the target symbol. If the target symbol is
3425 only referenced through weak references, then it becomes a @code{weak}
3426 undefined symbol. If it is directly referenced, however, then such
3427 strong references prevail, and a definition is required for the
3428 symbol, not necessarily in the same translation unit.
3429
3430 The effect is equivalent to moving all references to the alias to a
3431 separate translation unit, renaming the alias to the aliased symbol,
3432 declaring it as weak, compiling the two separate translation units and
3433 performing a reloadable link on them.
3434
3435 At present, a declaration to which @code{weakref} is attached can
3436 only be @code{static}.
3437
3438
3439 @end table
3440
3441 @c This is the end of the target-independent attribute table
3442
3443 @node AArch64 Function Attributes
3444 @subsection AArch64 Function Attributes
3445
3446 The following target-specific function attributes are available for the
3447 AArch64 target. For the most part, these options mirror the behavior of
3448 similar command-line options (@pxref{AArch64 Options}), but on a
3449 per-function basis.
3450
3451 @table @code
3452 @item general-regs-only
3453 @cindex @code{general-regs-only} function attribute, AArch64
3454 Indicates that no floating-point or Advanced SIMD registers should be
3455 used when generating code for this function. If the function explicitly
3456 uses floating-point code, then the compiler gives an error. This is
3457 the same behavior as that of the command-line option
3458 @option{-mgeneral-regs-only}.
3459
3460 @item fix-cortex-a53-835769
3461 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3462 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3463 applied to this function. To explicitly disable the workaround for this
3464 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3465 This corresponds to the behavior of the command line options
3466 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3467
3468 @item cmodel=
3469 @cindex @code{cmodel=} function attribute, AArch64
3470 Indicates that code should be generated for a particular code model for
3471 this function. The behavior and permissible arguments are the same as
3472 for the command line option @option{-mcmodel=}.
3473
3474 @item strict-align
3475 @cindex @code{strict-align} function attribute, AArch64
3476 Indicates that the compiler should not assume that unaligned memory references
3477 are handled by the system. The behavior is the same as for the command-line
3478 option @option{-mstrict-align}.
3479
3480 @item omit-leaf-frame-pointer
3481 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3482 Indicates that the frame pointer should be omitted for a leaf function call.
3483 To keep the frame pointer, the inverse attribute
3484 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3485 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3486 and @option{-mno-omit-leaf-frame-pointer}.
3487
3488 @item tls-dialect=
3489 @cindex @code{tls-dialect=} function attribute, AArch64
3490 Specifies the TLS dialect to use for this function. The behavior and
3491 permissible arguments are the same as for the command-line option
3492 @option{-mtls-dialect=}.
3493
3494 @item arch=
3495 @cindex @code{arch=} function attribute, AArch64
3496 Specifies the architecture version and architectural extensions to use
3497 for this function. The behavior and permissible arguments are the same as
3498 for the @option{-march=} command-line option.
3499
3500 @item tune=
3501 @cindex @code{tune=} function attribute, AArch64
3502 Specifies the core for which to tune the performance of this function.
3503 The behavior and permissible arguments are the same as for the @option{-mtune=}
3504 command-line option.
3505
3506 @item cpu=
3507 @cindex @code{cpu=} function attribute, AArch64
3508 Specifies the core for which to tune the performance of this function and also
3509 whose architectural features to use. The behavior and valid arguments are the
3510 same as for the @option{-mcpu=} command-line option.
3511
3512 @end table
3513
3514 The above target attributes can be specified as follows:
3515
3516 @smallexample
3517 __attribute__((target("@var{attr-string}")))
3518 int
3519 f (int a)
3520 @{
3521 return a + 5;
3522 @}
3523 @end smallexample
3524
3525 where @code{@var{attr-string}} is one of the attribute strings specified above.
3526
3527 Additionally, the architectural extension string may be specified on its
3528 own. This can be used to turn on and off particular architectural extensions
3529 without having to specify a particular architecture version or core. Example:
3530
3531 @smallexample
3532 __attribute__((target("+crc+nocrypto")))
3533 int
3534 foo (int a)
3535 @{
3536 return a + 5;
3537 @}
3538 @end smallexample
3539
3540 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3541 extension and disables the @code{crypto} extension for the function @code{foo}
3542 without modifying an existing @option{-march=} or @option{-mcpu} option.
3543
3544 Multiple target function attributes can be specified by separating them with
3545 a comma. For example:
3546 @smallexample
3547 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3548 int
3549 foo (int a)
3550 @{
3551 return a + 5;
3552 @}
3553 @end smallexample
3554
3555 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3556 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3557
3558 @subsubsection Inlining rules
3559 Specifying target attributes on individual functions or performing link-time
3560 optimization across translation units compiled with different target options
3561 can affect function inlining rules:
3562
3563 In particular, a caller function can inline a callee function only if the
3564 architectural features available to the callee are a subset of the features
3565 available to the caller.
3566 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3567 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3568 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3569 because the all the architectural features that function @code{bar} requires
3570 are available to function @code{foo}. Conversely, function @code{bar} cannot
3571 inline function @code{foo}.
3572
3573 Additionally inlining a function compiled with @option{-mstrict-align} into a
3574 function compiled without @code{-mstrict-align} is not allowed.
3575 However, inlining a function compiled without @option{-mstrict-align} into a
3576 function compiled with @option{-mstrict-align} is allowed.
3577
3578 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3579 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3580 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3581 architectural feature rules specified above.
3582
3583 @node ARC Function Attributes
3584 @subsection ARC Function Attributes
3585
3586 These function attributes are supported by the ARC back end:
3587
3588 @table @code
3589 @item interrupt
3590 @cindex @code{interrupt} function attribute, ARC
3591 Use this attribute to indicate
3592 that the specified function is an interrupt handler. The compiler generates
3593 function entry and exit sequences suitable for use in an interrupt handler
3594 when this attribute is present.
3595
3596 On the ARC, you must specify the kind of interrupt to be handled
3597 in a parameter to the interrupt attribute like this:
3598
3599 @smallexample
3600 void f () __attribute__ ((interrupt ("ilink1")));
3601 @end smallexample
3602
3603 Permissible values for this parameter are: @w{@code{ilink1}} and
3604 @w{@code{ilink2}}.
3605
3606 @item long_call
3607 @itemx medium_call
3608 @itemx short_call
3609 @cindex @code{long_call} function attribute, ARC
3610 @cindex @code{medium_call} function attribute, ARC
3611 @cindex @code{short_call} function attribute, ARC
3612 @cindex indirect calls, ARC
3613 These attributes specify how a particular function is called.
3614 These attributes override the
3615 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3616 command-line switches and @code{#pragma long_calls} settings.
3617
3618 For ARC, a function marked with the @code{long_call} attribute is
3619 always called using register-indirect jump-and-link instructions,
3620 thereby enabling the called function to be placed anywhere within the
3621 32-bit address space. A function marked with the @code{medium_call}
3622 attribute will always be close enough to be called with an unconditional
3623 branch-and-link instruction, which has a 25-bit offset from
3624 the call site. A function marked with the @code{short_call}
3625 attribute will always be close enough to be called with a conditional
3626 branch-and-link instruction, which has a 21-bit offset from
3627 the call site.
3628 @end table
3629
3630 @node ARM Function Attributes
3631 @subsection ARM Function Attributes
3632
3633 These function attributes are supported for ARM targets:
3634
3635 @table @code
3636 @item interrupt
3637 @cindex @code{interrupt} function attribute, ARM
3638 Use this attribute to indicate
3639 that the specified function is an interrupt handler. The compiler generates
3640 function entry and exit sequences suitable for use in an interrupt handler
3641 when this attribute is present.
3642
3643 You can specify the kind of interrupt to be handled by
3644 adding an optional parameter to the interrupt attribute like this:
3645
3646 @smallexample
3647 void f () __attribute__ ((interrupt ("IRQ")));
3648 @end smallexample
3649
3650 @noindent
3651 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3652 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3653
3654 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3655 may be called with a word-aligned stack pointer.
3656
3657 @item isr
3658 @cindex @code{isr} function attribute, ARM
3659 Use this attribute on ARM to write Interrupt Service Routines. This is an
3660 alias to the @code{interrupt} attribute above.
3661
3662 @item long_call
3663 @itemx short_call
3664 @cindex @code{long_call} function attribute, ARM
3665 @cindex @code{short_call} function attribute, ARM
3666 @cindex indirect calls, ARM
3667 These attributes specify how a particular function is called.
3668 These attributes override the
3669 @option{-mlong-calls} (@pxref{ARM Options})
3670 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3671 @code{long_call} attribute indicates that the function might be far
3672 away from the call site and require a different (more expensive)
3673 calling sequence. The @code{short_call} attribute always places
3674 the offset to the function from the call site into the @samp{BL}
3675 instruction directly.
3676
3677 @item naked
3678 @cindex @code{naked} function attribute, ARM
3679 This attribute allows the compiler to construct the
3680 requisite function declaration, while allowing the body of the
3681 function to be assembly code. The specified function will not have
3682 prologue/epilogue sequences generated by the compiler. Only basic
3683 @code{asm} statements can safely be included in naked functions
3684 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3685 basic @code{asm} and C code may appear to work, they cannot be
3686 depended upon to work reliably and are not supported.
3687
3688 @item pcs
3689 @cindex @code{pcs} function attribute, ARM
3690
3691 The @code{pcs} attribute can be used to control the calling convention
3692 used for a function on ARM. The attribute takes an argument that specifies
3693 the calling convention to use.
3694
3695 When compiling using the AAPCS ABI (or a variant of it) then valid
3696 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3697 order to use a variant other than @code{"aapcs"} then the compiler must
3698 be permitted to use the appropriate co-processor registers (i.e., the
3699 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3700 For example,
3701
3702 @smallexample
3703 /* Argument passed in r0, and result returned in r0+r1. */
3704 double f2d (float) __attribute__((pcs("aapcs")));
3705 @end smallexample
3706
3707 Variadic functions always use the @code{"aapcs"} calling convention and
3708 the compiler rejects attempts to specify an alternative.
3709
3710 @item target (@var{options})
3711 @cindex @code{target} function attribute
3712 As discussed in @ref{Common Function Attributes}, this attribute
3713 allows specification of target-specific compilation options.
3714
3715 On ARM, the following options are allowed:
3716
3717 @table @samp
3718 @item thumb
3719 @cindex @code{target("thumb")} function attribute, ARM
3720 Force code generation in the Thumb (T16/T32) ISA, depending on the
3721 architecture level.
3722
3723 @item arm
3724 @cindex @code{target("arm")} function attribute, ARM
3725 Force code generation in the ARM (A32) ISA.
3726
3727 Functions from different modes can be inlined in the caller's mode.
3728
3729 @item fpu=
3730 @cindex @code{target("fpu=")} function attribute, ARM
3731 Specifies the fpu for which to tune the performance of this function.
3732 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3733 command-line option.
3734
3735 @end table
3736
3737 @end table
3738
3739 @node AVR Function Attributes
3740 @subsection AVR Function Attributes
3741
3742 These function attributes are supported by the AVR back end:
3743
3744 @table @code
3745 @item interrupt
3746 @cindex @code{interrupt} function attribute, AVR
3747 Use this attribute to indicate
3748 that the specified function is an interrupt handler. The compiler generates
3749 function entry and exit sequences suitable for use in an interrupt handler
3750 when this attribute is present.
3751
3752 On the AVR, the hardware globally disables interrupts when an
3753 interrupt is executed. The first instruction of an interrupt handler
3754 declared with this attribute is a @code{SEI} instruction to
3755 re-enable interrupts. See also the @code{signal} function attribute
3756 that does not insert a @code{SEI} instruction. If both @code{signal} and
3757 @code{interrupt} are specified for the same function, @code{signal}
3758 is silently ignored.
3759
3760 @item naked
3761 @cindex @code{naked} function attribute, AVR
3762 This attribute allows the compiler to construct the
3763 requisite function declaration, while allowing the body of the
3764 function to be assembly code. The specified function will not have
3765 prologue/epilogue sequences generated by the compiler. Only basic
3766 @code{asm} statements can safely be included in naked functions
3767 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3768 basic @code{asm} and C code may appear to work, they cannot be
3769 depended upon to work reliably and are not supported.
3770
3771 @item OS_main
3772 @itemx OS_task
3773 @cindex @code{OS_main} function attribute, AVR
3774 @cindex @code{OS_task} function attribute, AVR
3775 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3776 do not save/restore any call-saved register in their prologue/epilogue.
3777
3778 The @code{OS_main} attribute can be used when there @emph{is
3779 guarantee} that interrupts are disabled at the time when the function
3780 is entered. This saves resources when the stack pointer has to be
3781 changed to set up a frame for local variables.
3782
3783 The @code{OS_task} attribute can be used when there is @emph{no
3784 guarantee} that interrupts are disabled at that time when the function
3785 is entered like for, e@.g@. task functions in a multi-threading operating
3786 system. In that case, changing the stack pointer register is
3787 guarded by save/clear/restore of the global interrupt enable flag.
3788
3789 The differences to the @code{naked} function attribute are:
3790 @itemize @bullet
3791 @item @code{naked} functions do not have a return instruction whereas
3792 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3793 @code{RETI} return instruction.
3794 @item @code{naked} functions do not set up a frame for local variables
3795 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3796 as needed.
3797 @end itemize
3798
3799 @item signal
3800 @cindex @code{signal} function attribute, AVR
3801 Use this attribute on the AVR to indicate that the specified
3802 function is an interrupt handler. The compiler generates function
3803 entry and exit sequences suitable for use in an interrupt handler when this
3804 attribute is present.
3805
3806 See also the @code{interrupt} function attribute.
3807
3808 The AVR hardware globally disables interrupts when an interrupt is executed.
3809 Interrupt handler functions defined with the @code{signal} attribute
3810 do not re-enable interrupts. It is save to enable interrupts in a
3811 @code{signal} handler. This ``save'' only applies to the code
3812 generated by the compiler and not to the IRQ layout of the
3813 application which is responsibility of the application.
3814
3815 If both @code{signal} and @code{interrupt} are specified for the same
3816 function, @code{signal} is silently ignored.
3817 @end table
3818
3819 @node Blackfin Function Attributes
3820 @subsection Blackfin Function Attributes
3821
3822 These function attributes are supported by the Blackfin back end:
3823
3824 @table @code
3825
3826 @item exception_handler
3827 @cindex @code{exception_handler} function attribute
3828 @cindex exception handler functions, Blackfin
3829 Use this attribute on the Blackfin to indicate that the specified function
3830 is an exception handler. The compiler generates function entry and
3831 exit sequences suitable for use in an exception handler when this
3832 attribute is present.
3833
3834 @item interrupt_handler
3835 @cindex @code{interrupt_handler} function attribute, Blackfin
3836 Use this attribute to
3837 indicate that the specified function is an interrupt handler. The compiler
3838 generates function entry and exit sequences suitable for use in an
3839 interrupt handler when this attribute is present.
3840
3841 @item kspisusp
3842 @cindex @code{kspisusp} function attribute, Blackfin
3843 @cindex User stack pointer in interrupts on the Blackfin
3844 When used together with @code{interrupt_handler}, @code{exception_handler}
3845 or @code{nmi_handler}, code is generated to load the stack pointer
3846 from the USP register in the function prologue.
3847
3848 @item l1_text
3849 @cindex @code{l1_text} function attribute, Blackfin
3850 This attribute specifies a function to be placed into L1 Instruction
3851 SRAM@. The function is put into a specific section named @code{.l1.text}.
3852 With @option{-mfdpic}, function calls with a such function as the callee
3853 or caller uses inlined PLT.
3854
3855 @item l2
3856 @cindex @code{l2} function attribute, Blackfin
3857 This attribute specifies a function to be placed into L2
3858 SRAM. The function is put into a specific section named
3859 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3860 an inlined PLT.
3861
3862 @item longcall
3863 @itemx shortcall
3864 @cindex indirect calls, Blackfin
3865 @cindex @code{longcall} function attribute, Blackfin
3866 @cindex @code{shortcall} function attribute, Blackfin
3867 The @code{longcall} attribute
3868 indicates that the function might be far away from the call site and
3869 require a different (more expensive) calling sequence. The
3870 @code{shortcall} attribute indicates that the function is always close
3871 enough for the shorter calling sequence to be used. These attributes
3872 override the @option{-mlongcall} switch.
3873
3874 @item nesting
3875 @cindex @code{nesting} function attribute, Blackfin
3876 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3877 Use this attribute together with @code{interrupt_handler},
3878 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3879 entry code should enable nested interrupts or exceptions.
3880
3881 @item nmi_handler
3882 @cindex @code{nmi_handler} function attribute, Blackfin
3883 @cindex NMI handler functions on the Blackfin processor
3884 Use this attribute on the Blackfin to indicate that the specified function
3885 is an NMI handler. The compiler generates function entry and
3886 exit sequences suitable for use in an NMI handler when this
3887 attribute is present.
3888
3889 @item saveall
3890 @cindex @code{saveall} function attribute, Blackfin
3891 @cindex save all registers on the Blackfin
3892 Use this attribute to indicate that
3893 all registers except the stack pointer should be saved in the prologue
3894 regardless of whether they are used or not.
3895 @end table
3896
3897 @node CR16 Function Attributes
3898 @subsection CR16 Function Attributes
3899
3900 These function attributes are supported by the CR16 back end:
3901
3902 @table @code
3903 @item interrupt
3904 @cindex @code{interrupt} function attribute, CR16
3905 Use this attribute to indicate
3906 that the specified function is an interrupt handler. The compiler generates
3907 function entry and exit sequences suitable for use in an interrupt handler
3908 when this attribute is present.
3909 @end table
3910
3911 @node Epiphany Function Attributes
3912 @subsection Epiphany Function Attributes
3913
3914 These function attributes are supported by the Epiphany back end:
3915
3916 @table @code
3917 @item disinterrupt
3918 @cindex @code{disinterrupt} function attribute, Epiphany
3919 This attribute causes the compiler to emit
3920 instructions to disable interrupts for the duration of the given
3921 function.
3922
3923 @item forwarder_section
3924 @cindex @code{forwarder_section} function attribute, Epiphany
3925 This attribute modifies the behavior of an interrupt handler.
3926 The interrupt handler may be in external memory which cannot be
3927 reached by a branch instruction, so generate a local memory trampoline
3928 to transfer control. The single parameter identifies the section where
3929 the trampoline is placed.
3930
3931 @item interrupt
3932 @cindex @code{interrupt} function attribute, Epiphany
3933 Use this attribute to indicate
3934 that the specified function is an interrupt handler. The compiler generates
3935 function entry and exit sequences suitable for use in an interrupt handler
3936 when this attribute is present. It may also generate
3937 a special section with code to initialize the interrupt vector table.
3938
3939 On Epiphany targets one or more optional parameters can be added like this:
3940
3941 @smallexample
3942 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3943 @end smallexample
3944
3945 Permissible values for these parameters are: @w{@code{reset}},
3946 @w{@code{software_exception}}, @w{@code{page_miss}},
3947 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
3948 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
3949 Multiple parameters indicate that multiple entries in the interrupt
3950 vector table should be initialized for this function, i.e.@: for each
3951 parameter @w{@var{name}}, a jump to the function is emitted in
3952 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3953 entirely, in which case no interrupt vector table entry is provided.
3954
3955 Note that interrupts are enabled inside the function
3956 unless the @code{disinterrupt} attribute is also specified.
3957
3958 The following examples are all valid uses of these attributes on
3959 Epiphany targets:
3960 @smallexample
3961 void __attribute__ ((interrupt)) universal_handler ();
3962 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3963 void __attribute__ ((interrupt ("dma0, dma1")))
3964 universal_dma_handler ();
3965 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3966 fast_timer_handler ();
3967 void __attribute__ ((interrupt ("dma0, dma1"),
3968 forwarder_section ("tramp")))
3969 external_dma_handler ();
3970 @end smallexample
3971
3972 @item long_call
3973 @itemx short_call
3974 @cindex @code{long_call} function attribute, Epiphany
3975 @cindex @code{short_call} function attribute, Epiphany
3976 @cindex indirect calls, Epiphany
3977 These attributes specify how a particular function is called.
3978 These attributes override the
3979 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
3980 command-line switch and @code{#pragma long_calls} settings.
3981 @end table
3982
3983
3984 @node H8/300 Function Attributes
3985 @subsection H8/300 Function Attributes
3986
3987 These function attributes are available for H8/300 targets:
3988
3989 @table @code
3990 @item function_vector
3991 @cindex @code{function_vector} function attribute, H8/300
3992 Use this attribute on the H8/300, H8/300H, and H8S to indicate
3993 that the specified function should be called through the function vector.
3994 Calling a function through the function vector reduces code size; however,
3995 the function vector has a limited size (maximum 128 entries on the H8/300
3996 and 64 entries on the H8/300H and H8S)
3997 and shares space with the interrupt vector.
3998
3999 @item interrupt_handler
4000 @cindex @code{interrupt_handler} function attribute, H8/300
4001 Use this attribute on the H8/300, H8/300H, and H8S to
4002 indicate that the specified function is an interrupt handler. The compiler
4003 generates function entry and exit sequences suitable for use in an
4004 interrupt handler when this attribute is present.
4005
4006 @item saveall
4007 @cindex @code{saveall} function attribute, H8/300
4008 @cindex save all registers on the H8/300, H8/300H, and H8S
4009 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4010 all registers except the stack pointer should be saved in the prologue
4011 regardless of whether they are used or not.
4012 @end table
4013
4014 @node IA-64 Function Attributes
4015 @subsection IA-64 Function Attributes
4016
4017 These function attributes are supported on IA-64 targets:
4018
4019 @table @code
4020 @item syscall_linkage
4021 @cindex @code{syscall_linkage} function attribute, IA-64
4022 This attribute is used to modify the IA-64 calling convention by marking
4023 all input registers as live at all function exits. This makes it possible
4024 to restart a system call after an interrupt without having to save/restore
4025 the input registers. This also prevents kernel data from leaking into
4026 application code.
4027
4028 @item version_id
4029 @cindex @code{version_id} function attribute, IA-64
4030 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4031 symbol to contain a version string, thus allowing for function level
4032 versioning. HP-UX system header files may use function level versioning
4033 for some system calls.
4034
4035 @smallexample
4036 extern int foo () __attribute__((version_id ("20040821")));
4037 @end smallexample
4038
4039 @noindent
4040 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4041 @end table
4042
4043 @node M32C Function Attributes
4044 @subsection M32C Function Attributes
4045
4046 These function attributes are supported by the M32C back end:
4047
4048 @table @code
4049 @item bank_switch
4050 @cindex @code{bank_switch} function attribute, M32C
4051 When added to an interrupt handler with the M32C port, causes the
4052 prologue and epilogue to use bank switching to preserve the registers
4053 rather than saving them on the stack.
4054
4055 @item fast_interrupt
4056 @cindex @code{fast_interrupt} function attribute, M32C
4057 Use this attribute on the M32C port to indicate that the specified
4058 function is a fast interrupt handler. This is just like the
4059 @code{interrupt} attribute, except that @code{freit} is used to return
4060 instead of @code{reit}.
4061
4062 @item function_vector
4063 @cindex @code{function_vector} function attribute, M16C/M32C
4064 On M16C/M32C targets, the @code{function_vector} attribute declares a
4065 special page subroutine call function. Use of this attribute reduces
4066 the code size by 2 bytes for each call generated to the
4067 subroutine. The argument to the attribute is the vector number entry
4068 from the special page vector table which contains the 16 low-order
4069 bits of the subroutine's entry address. Each vector table has special
4070 page number (18 to 255) that is used in @code{jsrs} instructions.
4071 Jump addresses of the routines are generated by adding 0x0F0000 (in
4072 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4073 2-byte addresses set in the vector table. Therefore you need to ensure
4074 that all the special page vector routines should get mapped within the
4075 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4076 (for M32C).
4077
4078 In the following example 2 bytes are saved for each call to
4079 function @code{foo}.
4080
4081 @smallexample
4082 void foo (void) __attribute__((function_vector(0x18)));
4083 void foo (void)
4084 @{
4085 @}
4086
4087 void bar (void)
4088 @{
4089 foo();
4090 @}
4091 @end smallexample
4092
4093 If functions are defined in one file and are called in another file,
4094 then be sure to write this declaration in both files.
4095
4096 This attribute is ignored for R8C target.
4097
4098 @item interrupt
4099 @cindex @code{interrupt} function attribute, M32C
4100 Use this attribute to indicate
4101 that the specified function is an interrupt handler. The compiler generates
4102 function entry and exit sequences suitable for use in an interrupt handler
4103 when this attribute is present.
4104 @end table
4105
4106 @node M32R/D Function Attributes
4107 @subsection M32R/D Function Attributes
4108
4109 These function attributes are supported by the M32R/D back end:
4110
4111 @table @code
4112 @item interrupt
4113 @cindex @code{interrupt} function attribute, M32R/D
4114 Use this attribute to indicate
4115 that the specified function is an interrupt handler. The compiler generates
4116 function entry and exit sequences suitable for use in an interrupt handler
4117 when this attribute is present.
4118
4119 @item model (@var{model-name})
4120 @cindex @code{model} function attribute, M32R/D
4121 @cindex function addressability on the M32R/D
4122
4123 On the M32R/D, use this attribute to set the addressability of an
4124 object, and of the code generated for a function. The identifier
4125 @var{model-name} is one of @code{small}, @code{medium}, or
4126 @code{large}, representing each of the code models.
4127
4128 Small model objects live in the lower 16MB of memory (so that their
4129 addresses can be loaded with the @code{ld24} instruction), and are
4130 callable with the @code{bl} instruction.
4131
4132 Medium model objects may live anywhere in the 32-bit address space (the
4133 compiler generates @code{seth/add3} instructions to load their addresses),
4134 and are callable with the @code{bl} instruction.
4135
4136 Large model objects may live anywhere in the 32-bit address space (the
4137 compiler generates @code{seth/add3} instructions to load their addresses),
4138 and may not be reachable with the @code{bl} instruction (the compiler
4139 generates the much slower @code{seth/add3/jl} instruction sequence).
4140 @end table
4141
4142 @node m68k Function Attributes
4143 @subsection m68k Function Attributes
4144
4145 These function attributes are supported by the m68k back end:
4146
4147 @table @code
4148 @item interrupt
4149 @itemx interrupt_handler
4150 @cindex @code{interrupt} function attribute, m68k
4151 @cindex @code{interrupt_handler} function attribute, m68k
4152 Use this attribute to
4153 indicate that the specified function is an interrupt handler. The compiler
4154 generates function entry and exit sequences suitable for use in an
4155 interrupt handler when this attribute is present. Either name may be used.
4156
4157 @item interrupt_thread
4158 @cindex @code{interrupt_thread} function attribute, fido
4159 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4160 that the specified function is an interrupt handler that is designed
4161 to run as a thread. The compiler omits generate prologue/epilogue
4162 sequences and replaces the return instruction with a @code{sleep}
4163 instruction. This attribute is available only on fido.
4164 @end table
4165
4166 @node MCORE Function Attributes
4167 @subsection MCORE Function Attributes
4168
4169 These function attributes are supported by the MCORE back end:
4170
4171 @table @code
4172 @item naked
4173 @cindex @code{naked} function attribute, MCORE
4174 This attribute allows the compiler to construct the
4175 requisite function declaration, while allowing the body of the
4176 function to be assembly code. The specified function will not have
4177 prologue/epilogue sequences generated by the compiler. Only basic
4178 @code{asm} statements can safely be included in naked functions
4179 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4180 basic @code{asm} and C code may appear to work, they cannot be
4181 depended upon to work reliably and are not supported.
4182 @end table
4183
4184 @node MeP Function Attributes
4185 @subsection MeP Function Attributes
4186
4187 These function attributes are supported by the MeP back end:
4188
4189 @table @code
4190 @item disinterrupt
4191 @cindex @code{disinterrupt} function attribute, MeP
4192 On MeP targets, this attribute causes the compiler to emit
4193 instructions to disable interrupts for the duration of the given
4194 function.
4195
4196 @item interrupt
4197 @cindex @code{interrupt} function attribute, MeP
4198 Use this attribute to indicate
4199 that the specified function is an interrupt handler. The compiler generates
4200 function entry and exit sequences suitable for use in an interrupt handler
4201 when this attribute is present.
4202
4203 @item near
4204 @cindex @code{near} function attribute, MeP
4205 This attribute causes the compiler to assume the called
4206 function is close enough to use the normal calling convention,
4207 overriding the @option{-mtf} command-line option.
4208
4209 @item far
4210 @cindex @code{far} function attribute, MeP
4211 On MeP targets this causes the compiler to use a calling convention
4212 that assumes the called function is too far away for the built-in
4213 addressing modes.
4214
4215 @item vliw
4216 @cindex @code{vliw} function attribute, MeP
4217 The @code{vliw} attribute tells the compiler to emit
4218 instructions in VLIW mode instead of core mode. Note that this
4219 attribute is not allowed unless a VLIW coprocessor has been configured
4220 and enabled through command-line options.
4221 @end table
4222
4223 @node MicroBlaze Function Attributes
4224 @subsection MicroBlaze Function Attributes
4225
4226 These function attributes are supported on MicroBlaze targets:
4227
4228 @table @code
4229 @item save_volatiles
4230 @cindex @code{save_volatiles} function attribute, MicroBlaze
4231 Use this attribute to indicate that the function is
4232 an interrupt handler. All volatile registers (in addition to non-volatile
4233 registers) are saved in the function prologue. If the function is a leaf
4234 function, only volatiles used by the function are saved. A normal function
4235 return is generated instead of a return from interrupt.
4236
4237 @item break_handler
4238 @cindex @code{break_handler} function attribute, MicroBlaze
4239 @cindex break handler functions
4240 Use this attribute to indicate that
4241 the specified function is a break handler. The compiler generates function
4242 entry and exit sequences suitable for use in an break handler when this
4243 attribute is present. The return from @code{break_handler} is done through
4244 the @code{rtbd} instead of @code{rtsd}.
4245
4246 @smallexample
4247 void f () __attribute__ ((break_handler));
4248 @end smallexample
4249
4250 @item interrupt_handler
4251 @itemx fast_interrupt
4252 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4253 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4254 These attributes indicate that the specified function is an interrupt
4255 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4256 used in low-latency interrupt mode, and @code{interrupt_handler} for
4257 interrupts that do not use low-latency handlers. In both cases, GCC
4258 emits appropriate prologue code and generates a return from the handler
4259 using @code{rtid} instead of @code{rtsd}.
4260 @end table
4261
4262 @node Microsoft Windows Function Attributes
4263 @subsection Microsoft Windows Function Attributes
4264
4265 The following attributes are available on Microsoft Windows and Symbian OS
4266 targets.
4267
4268 @table @code
4269 @item dllexport
4270 @cindex @code{dllexport} function attribute
4271 @cindex @code{__declspec(dllexport)}
4272 On Microsoft Windows targets and Symbian OS targets the
4273 @code{dllexport} attribute causes the compiler to provide a global
4274 pointer to a pointer in a DLL, so that it can be referenced with the
4275 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4276 name is formed by combining @code{_imp__} and the function or variable
4277 name.
4278
4279 You can use @code{__declspec(dllexport)} as a synonym for
4280 @code{__attribute__ ((dllexport))} for compatibility with other
4281 compilers.
4282
4283 On systems that support the @code{visibility} attribute, this
4284 attribute also implies ``default'' visibility. It is an error to
4285 explicitly specify any other visibility.
4286
4287 GCC's default behavior is to emit all inline functions with the
4288 @code{dllexport} attribute. Since this can cause object file-size bloat,
4289 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4290 ignore the attribute for inlined functions unless the
4291 @option{-fkeep-inline-functions} flag is used instead.
4292
4293 The attribute is ignored for undefined symbols.
4294
4295 When applied to C++ classes, the attribute marks defined non-inlined
4296 member functions and static data members as exports. Static consts
4297 initialized in-class are not marked unless they are also defined
4298 out-of-class.
4299
4300 For Microsoft Windows targets there are alternative methods for
4301 including the symbol in the DLL's export table such as using a
4302 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4303 the @option{--export-all} linker flag.
4304
4305 @item dllimport
4306 @cindex @code{dllimport} function attribute
4307 @cindex @code{__declspec(dllimport)}
4308 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4309 attribute causes the compiler to reference a function or variable via
4310 a global pointer to a pointer that is set up by the DLL exporting the
4311 symbol. The attribute implies @code{extern}. On Microsoft Windows
4312 targets, the pointer name is formed by combining @code{_imp__} and the
4313 function or variable name.
4314
4315 You can use @code{__declspec(dllimport)} as a synonym for
4316 @code{__attribute__ ((dllimport))} for compatibility with other
4317 compilers.
4318
4319 On systems that support the @code{visibility} attribute, this
4320 attribute also implies ``default'' visibility. It is an error to
4321 explicitly specify any other visibility.
4322
4323 Currently, the attribute is ignored for inlined functions. If the
4324 attribute is applied to a symbol @emph{definition}, an error is reported.
4325 If a symbol previously declared @code{dllimport} is later defined, the
4326 attribute is ignored in subsequent references, and a warning is emitted.
4327 The attribute is also overridden by a subsequent declaration as
4328 @code{dllexport}.
4329
4330 When applied to C++ classes, the attribute marks non-inlined
4331 member functions and static data members as imports. However, the
4332 attribute is ignored for virtual methods to allow creation of vtables
4333 using thunks.
4334
4335 On the SH Symbian OS target the @code{dllimport} attribute also has
4336 another affect---it can cause the vtable and run-time type information
4337 for a class to be exported. This happens when the class has a
4338 dllimported constructor or a non-inline, non-pure virtual function
4339 and, for either of those two conditions, the class also has an inline
4340 constructor or destructor and has a key function that is defined in
4341 the current translation unit.
4342
4343 For Microsoft Windows targets the use of the @code{dllimport}
4344 attribute on functions is not necessary, but provides a small
4345 performance benefit by eliminating a thunk in the DLL@. The use of the
4346 @code{dllimport} attribute on imported variables can be avoided by passing the
4347 @option{--enable-auto-import} switch to the GNU linker. As with
4348 functions, using the attribute for a variable eliminates a thunk in
4349 the DLL@.
4350
4351 One drawback to using this attribute is that a pointer to a
4352 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4353 address. However, a pointer to a @emph{function} with the
4354 @code{dllimport} attribute can be used as a constant initializer; in
4355 this case, the address of a stub function in the import lib is
4356 referenced. On Microsoft Windows targets, the attribute can be disabled
4357 for functions by setting the @option{-mnop-fun-dllimport} flag.
4358 @end table
4359
4360 @node MIPS Function Attributes
4361 @subsection MIPS Function Attributes
4362
4363 These function attributes are supported by the MIPS back end:
4364
4365 @table @code
4366 @item interrupt
4367 @cindex @code{interrupt} function attribute, MIPS
4368 Use this attribute to indicate that the specified function is an interrupt
4369 handler. The compiler generates function entry and exit sequences suitable
4370 for use in an interrupt handler when this attribute is present.
4371 An optional argument is supported for the interrupt attribute which allows
4372 the interrupt mode to be described. By default GCC assumes the external
4373 interrupt controller (EIC) mode is in use, this can be explicitly set using
4374 @code{eic}. When interrupts are non-masked then the requested Interrupt
4375 Priority Level (IPL) is copied to the current IPL which has the effect of only
4376 enabling higher priority interrupts. To use vectored interrupt mode use
4377 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4378 the behavior of the non-masked interrupt support and GCC will arrange to mask
4379 all interrupts from sw0 up to and including the specified interrupt vector.
4380
4381 You can use the following attributes to modify the behavior
4382 of an interrupt handler:
4383 @table @code
4384 @item use_shadow_register_set
4385 @cindex @code{use_shadow_register_set} function attribute, MIPS
4386 Assume that the handler uses a shadow register set, instead of
4387 the main general-purpose registers. An optional argument @code{intstack} is
4388 supported to indicate that the shadow register set contains a valid stack
4389 pointer.
4390
4391 @item keep_interrupts_masked
4392 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4393 Keep interrupts masked for the whole function. Without this attribute,
4394 GCC tries to reenable interrupts for as much of the function as it can.
4395
4396 @item use_debug_exception_return
4397 @cindex @code{use_debug_exception_return} function attribute, MIPS
4398 Return using the @code{deret} instruction. Interrupt handlers that don't
4399 have this attribute return using @code{eret} instead.
4400 @end table
4401
4402 You can use any combination of these attributes, as shown below:
4403 @smallexample
4404 void __attribute__ ((interrupt)) v0 ();
4405 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4406 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4407 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4408 void __attribute__ ((interrupt, use_shadow_register_set,
4409 keep_interrupts_masked)) v4 ();
4410 void __attribute__ ((interrupt, use_shadow_register_set,
4411 use_debug_exception_return)) v5 ();
4412 void __attribute__ ((interrupt, keep_interrupts_masked,
4413 use_debug_exception_return)) v6 ();
4414 void __attribute__ ((interrupt, use_shadow_register_set,
4415 keep_interrupts_masked,
4416 use_debug_exception_return)) v7 ();
4417 void __attribute__ ((interrupt("eic"))) v8 ();
4418 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4419 @end smallexample
4420
4421 @item long_call
4422 @itemx near
4423 @itemx far
4424 @cindex indirect calls, MIPS
4425 @cindex @code{long_call} function attribute, MIPS
4426 @cindex @code{near} function attribute, MIPS
4427 @cindex @code{far} function attribute, MIPS
4428 These attributes specify how a particular function is called on MIPS@.
4429 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4430 command-line switch. The @code{long_call} and @code{far} attributes are
4431 synonyms, and cause the compiler to always call
4432 the function by first loading its address into a register, and then using
4433 the contents of that register. The @code{near} attribute has the opposite
4434 effect; it specifies that non-PIC calls should be made using the more
4435 efficient @code{jal} instruction.
4436
4437 @item mips16
4438 @itemx nomips16
4439 @cindex @code{mips16} function attribute, MIPS
4440 @cindex @code{nomips16} function attribute, MIPS
4441
4442 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4443 function attributes to locally select or turn off MIPS16 code generation.
4444 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4445 while MIPS16 code generation is disabled for functions with the
4446 @code{nomips16} attribute. These attributes override the
4447 @option{-mips16} and @option{-mno-mips16} options on the command line
4448 (@pxref{MIPS Options}).
4449
4450 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4451 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4452 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4453 may interact badly with some GCC extensions such as @code{__builtin_apply}
4454 (@pxref{Constructing Calls}).
4455
4456 @item micromips, MIPS
4457 @itemx nomicromips, MIPS
4458 @cindex @code{micromips} function attribute
4459 @cindex @code{nomicromips} function attribute
4460
4461 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4462 function attributes to locally select or turn off microMIPS code generation.
4463 A function with the @code{micromips} attribute is emitted as microMIPS code,
4464 while microMIPS code generation is disabled for functions with the
4465 @code{nomicromips} attribute. These attributes override the
4466 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4467 (@pxref{MIPS Options}).
4468
4469 When compiling files containing mixed microMIPS and non-microMIPS code, the
4470 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4471 command line,
4472 not that within individual functions. Mixed microMIPS and non-microMIPS code
4473 may interact badly with some GCC extensions such as @code{__builtin_apply}
4474 (@pxref{Constructing Calls}).
4475
4476 @item nocompression
4477 @cindex @code{nocompression} function attribute, MIPS
4478 On MIPS targets, you can use the @code{nocompression} function attribute
4479 to locally turn off MIPS16 and microMIPS code generation. This attribute
4480 overrides the @option{-mips16} and @option{-mmicromips} options on the
4481 command line (@pxref{MIPS Options}).
4482 @end table
4483
4484 @node MSP430 Function Attributes
4485 @subsection MSP430 Function Attributes
4486
4487 These function attributes are supported by the MSP430 back end:
4488
4489 @table @code
4490 @item critical
4491 @cindex @code{critical} function attribute, MSP430
4492 Critical functions disable interrupts upon entry and restore the
4493 previous interrupt state upon exit. Critical functions cannot also
4494 have the @code{naked} or @code{reentrant} attributes. They can have
4495 the @code{interrupt} attribute.
4496
4497 @item interrupt
4498 @cindex @code{interrupt} function attribute, MSP430
4499 Use this attribute to indicate
4500 that the specified function is an interrupt handler. The compiler generates
4501 function entry and exit sequences suitable for use in an interrupt handler
4502 when this attribute is present.
4503
4504 You can provide an argument to the interrupt
4505 attribute which specifies a name or number. If the argument is a
4506 number it indicates the slot in the interrupt vector table (0 - 31) to
4507 which this handler should be assigned. If the argument is a name it
4508 is treated as a symbolic name for the vector slot. These names should
4509 match up with appropriate entries in the linker script. By default
4510 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4511 @code{reset} for vector 31 are recognized.
4512
4513 @item naked
4514 @cindex @code{naked} function attribute, MSP430
4515 This attribute allows the compiler to construct the
4516 requisite function declaration, while allowing the body of the
4517 function to be assembly code. The specified function will not have
4518 prologue/epilogue sequences generated by the compiler. Only basic
4519 @code{asm} statements can safely be included in naked functions
4520 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4521 basic @code{asm} and C code may appear to work, they cannot be
4522 depended upon to work reliably and are not supported.
4523
4524 @item reentrant
4525 @cindex @code{reentrant} function attribute, MSP430
4526 Reentrant functions disable interrupts upon entry and enable them
4527 upon exit. Reentrant functions cannot also have the @code{naked}
4528 or @code{critical} attributes. They can have the @code{interrupt}
4529 attribute.
4530
4531 @item wakeup
4532 @cindex @code{wakeup} function attribute, MSP430
4533 This attribute only applies to interrupt functions. It is silently
4534 ignored if applied to a non-interrupt function. A wakeup interrupt
4535 function will rouse the processor from any low-power state that it
4536 might be in when the function exits.
4537
4538 @item lower
4539 @itemx upper
4540 @itemx either
4541 @cindex @code{lower} function attribute, MSP430
4542 @cindex @code{upper} function attribute, MSP430
4543 @cindex @code{either} function attribute, MSP430
4544 On the MSP430 target these attributes can be used to specify whether
4545 the function or variable should be placed into low memory, high
4546 memory, or the placement should be left to the linker to decide. The
4547 attributes are only significant if compiling for the MSP430X
4548 architecture.
4549
4550 The attributes work in conjunction with a linker script that has been
4551 augmented to specify where to place sections with a @code{.lower} and
4552 a @code{.upper} prefix. So, for example, as well as placing the
4553 @code{.data} section, the script also specifies the placement of a
4554 @code{.lower.data} and a @code{.upper.data} section. The intention
4555 is that @code{lower} sections are placed into a small but easier to
4556 access memory region and the upper sections are placed into a larger, but
4557 slower to access, region.
4558
4559 The @code{either} attribute is special. It tells the linker to place
4560 the object into the corresponding @code{lower} section if there is
4561 room for it. If there is insufficient room then the object is placed
4562 into the corresponding @code{upper} section instead. Note that the
4563 placement algorithm is not very sophisticated. It does not attempt to
4564 find an optimal packing of the @code{lower} sections. It just makes
4565 one pass over the objects and does the best that it can. Using the
4566 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4567 options can help the packing, however, since they produce smaller,
4568 easier to pack regions.
4569 @end table
4570
4571 @node NDS32 Function Attributes
4572 @subsection NDS32 Function Attributes
4573
4574 These function attributes are supported by the NDS32 back end:
4575
4576 @table @code
4577 @item exception
4578 @cindex @code{exception} function attribute
4579 @cindex exception handler functions, NDS32
4580 Use this attribute on the NDS32 target to indicate that the specified function
4581 is an exception handler. The compiler will generate corresponding sections
4582 for use in an exception handler.
4583
4584 @item interrupt
4585 @cindex @code{interrupt} function attribute, NDS32
4586 On NDS32 target, this attribute indicates that the specified function
4587 is an interrupt handler. The compiler generates corresponding sections
4588 for use in an interrupt handler. You can use the following attributes
4589 to modify the behavior:
4590 @table @code
4591 @item nested
4592 @cindex @code{nested} function attribute, NDS32
4593 This interrupt service routine is interruptible.
4594 @item not_nested
4595 @cindex @code{not_nested} function attribute, NDS32
4596 This interrupt service routine is not interruptible.
4597 @item nested_ready
4598 @cindex @code{nested_ready} function attribute, NDS32
4599 This interrupt service routine is interruptible after @code{PSW.GIE}
4600 (global interrupt enable) is set. This allows interrupt service routine to
4601 finish some short critical code before enabling interrupts.
4602 @item save_all
4603 @cindex @code{save_all} function attribute, NDS32
4604 The system will help save all registers into stack before entering
4605 interrupt handler.
4606 @item partial_save
4607 @cindex @code{partial_save} function attribute, NDS32
4608 The system will help save caller registers into stack before entering
4609 interrupt handler.
4610 @end table
4611
4612 @item naked
4613 @cindex @code{naked} function attribute, NDS32
4614 This attribute allows the compiler to construct the
4615 requisite function declaration, while allowing the body of the
4616 function to be assembly code. The specified function will not have
4617 prologue/epilogue sequences generated by the compiler. Only basic
4618 @code{asm} statements can safely be included in naked functions
4619 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4620 basic @code{asm} and C code may appear to work, they cannot be
4621 depended upon to work reliably and are not supported.
4622
4623 @item reset
4624 @cindex @code{reset} function attribute, NDS32
4625 @cindex reset handler functions
4626 Use this attribute on the NDS32 target to indicate that the specified function
4627 is a reset handler. The compiler will generate corresponding sections
4628 for use in a reset handler. You can use the following attributes
4629 to provide extra exception handling:
4630 @table @code
4631 @item nmi
4632 @cindex @code{nmi} function attribute, NDS32
4633 Provide a user-defined function to handle NMI exception.
4634 @item warm
4635 @cindex @code{warm} function attribute, NDS32
4636 Provide a user-defined function to handle warm reset exception.
4637 @end table
4638 @end table
4639
4640 @node Nios II Function Attributes
4641 @subsection Nios II Function Attributes
4642
4643 These function attributes are supported by the Nios II back end:
4644
4645 @table @code
4646 @item target (@var{options})
4647 @cindex @code{target} function attribute
4648 As discussed in @ref{Common Function Attributes}, this attribute
4649 allows specification of target-specific compilation options.
4650
4651 When compiling for Nios II, the following options are allowed:
4652
4653 @table @samp
4654 @item custom-@var{insn}=@var{N}
4655 @itemx no-custom-@var{insn}
4656 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4657 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4658 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4659 custom instruction with encoding @var{N} when generating code that uses
4660 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4661 the custom instruction @var{insn}.
4662 These target attributes correspond to the
4663 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4664 command-line options, and support the same set of @var{insn} keywords.
4665 @xref{Nios II Options}, for more information.
4666
4667 @item custom-fpu-cfg=@var{name}
4668 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4669 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4670 command-line option, to select a predefined set of custom instructions
4671 named @var{name}.
4672 @xref{Nios II Options}, for more information.
4673 @end table
4674 @end table
4675
4676 @node Nvidia PTX Function Attributes
4677 @subsection Nvidia PTX Function Attributes
4678
4679 These function attributes are supported by the Nvidia PTX back end:
4680
4681 @table @code
4682 @item kernel
4683 @cindex @code{kernel} attribute, Nvidia PTX
4684 This attribute indicates that the corresponding function should be compiled
4685 as a kernel function, which can be invoked from the host via the CUDA RT
4686 library.
4687 By default functions are only callable only from other PTX functions.
4688
4689 Kernel functions must have @code{void} return type.
4690 @end table
4691
4692 @node PowerPC Function Attributes
4693 @subsection PowerPC Function Attributes
4694
4695 These function attributes are supported by the PowerPC back end:
4696
4697 @table @code
4698 @item longcall
4699 @itemx shortcall
4700 @cindex indirect calls, PowerPC
4701 @cindex @code{longcall} function attribute, PowerPC
4702 @cindex @code{shortcall} function attribute, PowerPC
4703 The @code{longcall} attribute
4704 indicates that the function might be far away from the call site and
4705 require a different (more expensive) calling sequence. The
4706 @code{shortcall} attribute indicates that the function is always close
4707 enough for the shorter calling sequence to be used. These attributes
4708 override both the @option{-mlongcall} switch and
4709 the @code{#pragma longcall} setting.
4710
4711 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4712 calls are necessary.
4713
4714 @item target (@var{options})
4715 @cindex @code{target} function attribute
4716 As discussed in @ref{Common Function Attributes}, this attribute
4717 allows specification of target-specific compilation options.
4718
4719 On the PowerPC, the following options are allowed:
4720
4721 @table @samp
4722 @item altivec
4723 @itemx no-altivec
4724 @cindex @code{target("altivec")} function attribute, PowerPC
4725 Generate code that uses (does not use) AltiVec instructions. In
4726 32-bit code, you cannot enable AltiVec instructions unless
4727 @option{-mabi=altivec} is used on the command line.
4728
4729 @item cmpb
4730 @itemx no-cmpb
4731 @cindex @code{target("cmpb")} function attribute, PowerPC
4732 Generate code that uses (does not use) the compare bytes instruction
4733 implemented on the POWER6 processor and other processors that support
4734 the PowerPC V2.05 architecture.
4735
4736 @item dlmzb
4737 @itemx no-dlmzb
4738 @cindex @code{target("dlmzb")} function attribute, PowerPC
4739 Generate code that uses (does not use) the string-search @samp{dlmzb}
4740 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4741 generated by default when targeting those processors.
4742
4743 @item fprnd
4744 @itemx no-fprnd
4745 @cindex @code{target("fprnd")} function attribute, PowerPC
4746 Generate code that uses (does not use) the FP round to integer
4747 instructions implemented on the POWER5+ processor and other processors
4748 that support the PowerPC V2.03 architecture.
4749
4750 @item hard-dfp
4751 @itemx no-hard-dfp
4752 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4753 Generate code that uses (does not use) the decimal floating-point
4754 instructions implemented on some POWER processors.
4755
4756 @item isel
4757 @itemx no-isel
4758 @cindex @code{target("isel")} function attribute, PowerPC
4759 Generate code that uses (does not use) ISEL instruction.
4760
4761 @item mfcrf
4762 @itemx no-mfcrf
4763 @cindex @code{target("mfcrf")} function attribute, PowerPC
4764 Generate code that uses (does not use) the move from condition
4765 register field instruction implemented on the POWER4 processor and
4766 other processors that support the PowerPC V2.01 architecture.
4767
4768 @item mfpgpr
4769 @itemx no-mfpgpr
4770 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4771 Generate code that uses (does not use) the FP move to/from general
4772 purpose register instructions implemented on the POWER6X processor and
4773 other processors that support the extended PowerPC V2.05 architecture.
4774
4775 @item mulhw
4776 @itemx no-mulhw
4777 @cindex @code{target("mulhw")} function attribute, PowerPC
4778 Generate code that uses (does not use) the half-word multiply and
4779 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4780 These instructions are generated by default when targeting those
4781 processors.
4782
4783 @item multiple
4784 @itemx no-multiple
4785 @cindex @code{target("multiple")} function attribute, PowerPC
4786 Generate code that uses (does not use) the load multiple word
4787 instructions and the store multiple word instructions.
4788
4789 @item update
4790 @itemx no-update
4791 @cindex @code{target("update")} function attribute, PowerPC
4792 Generate code that uses (does not use) the load or store instructions
4793 that update the base register to the address of the calculated memory
4794 location.
4795
4796 @item popcntb
4797 @itemx no-popcntb
4798 @cindex @code{target("popcntb")} function attribute, PowerPC
4799 Generate code that uses (does not use) the popcount and double-precision
4800 FP reciprocal estimate instruction implemented on the POWER5
4801 processor and other processors that support the PowerPC V2.02
4802 architecture.
4803
4804 @item popcntd
4805 @itemx no-popcntd
4806 @cindex @code{target("popcntd")} function attribute, PowerPC
4807 Generate code that uses (does not use) the popcount instruction
4808 implemented on the POWER7 processor and other processors that support
4809 the PowerPC V2.06 architecture.
4810
4811 @item powerpc-gfxopt
4812 @itemx no-powerpc-gfxopt
4813 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4814 Generate code that uses (does not use) the optional PowerPC
4815 architecture instructions in the Graphics group, including
4816 floating-point select.
4817
4818 @item powerpc-gpopt
4819 @itemx no-powerpc-gpopt
4820 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4821 Generate code that uses (does not use) the optional PowerPC
4822 architecture instructions in the General Purpose group, including
4823 floating-point square root.
4824
4825 @item recip-precision
4826 @itemx no-recip-precision
4827 @cindex @code{target("recip-precision")} function attribute, PowerPC
4828 Assume (do not assume) that the reciprocal estimate instructions
4829 provide higher-precision estimates than is mandated by the PowerPC
4830 ABI.
4831
4832 @item string
4833 @itemx no-string
4834 @cindex @code{target("string")} function attribute, PowerPC
4835 Generate code that uses (does not use) the load string instructions
4836 and the store string word instructions to save multiple registers and
4837 do small block moves.
4838
4839 @item vsx
4840 @itemx no-vsx
4841 @cindex @code{target("vsx")} function attribute, PowerPC
4842 Generate code that uses (does not use) vector/scalar (VSX)
4843 instructions, and also enable the use of built-in functions that allow
4844 more direct access to the VSX instruction set. In 32-bit code, you
4845 cannot enable VSX or AltiVec instructions unless
4846 @option{-mabi=altivec} is used on the command line.
4847
4848 @item friz
4849 @itemx no-friz
4850 @cindex @code{target("friz")} function attribute, PowerPC
4851 Generate (do not generate) the @code{friz} instruction when the
4852 @option{-funsafe-math-optimizations} option is used to optimize
4853 rounding a floating-point value to 64-bit integer and back to floating
4854 point. The @code{friz} instruction does not return the same value if
4855 the floating-point number is too large to fit in an integer.
4856
4857 @item avoid-indexed-addresses
4858 @itemx no-avoid-indexed-addresses
4859 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4860 Generate code that tries to avoid (not avoid) the use of indexed load
4861 or store instructions.
4862
4863 @item paired
4864 @itemx no-paired
4865 @cindex @code{target("paired")} function attribute, PowerPC
4866 Generate code that uses (does not use) the generation of PAIRED simd
4867 instructions.
4868
4869 @item longcall
4870 @itemx no-longcall
4871 @cindex @code{target("longcall")} function attribute, PowerPC
4872 Generate code that assumes (does not assume) that all calls are far
4873 away so that a longer more expensive calling sequence is required.
4874
4875 @item cpu=@var{CPU}
4876 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4877 Specify the architecture to generate code for when compiling the
4878 function. If you select the @code{target("cpu=power7")} attribute when
4879 generating 32-bit code, VSX and AltiVec instructions are not generated
4880 unless you use the @option{-mabi=altivec} option on the command line.
4881
4882 @item tune=@var{TUNE}
4883 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4884 Specify the architecture to tune for when compiling the function. If
4885 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4886 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4887 compilation tunes for the @var{CPU} architecture, and not the
4888 default tuning specified on the command line.
4889 @end table
4890
4891 On the PowerPC, the inliner does not inline a
4892 function that has different target options than the caller, unless the
4893 callee has a subset of the target options of the caller.
4894 @end table
4895
4896 @node RL78 Function Attributes
4897 @subsection RL78 Function Attributes
4898
4899 These function attributes are supported by the RL78 back end:
4900
4901 @table @code
4902 @item interrupt
4903 @itemx brk_interrupt
4904 @cindex @code{interrupt} function attribute, RL78
4905 @cindex @code{brk_interrupt} function attribute, RL78
4906 These attributes indicate
4907 that the specified function is an interrupt handler. The compiler generates
4908 function entry and exit sequences suitable for use in an interrupt handler
4909 when this attribute is present.
4910
4911 Use @code{brk_interrupt} instead of @code{interrupt} for
4912 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
4913 that must end with @code{RETB} instead of @code{RETI}).
4914
4915 @item naked
4916 @cindex @code{naked} function attribute, RL78
4917 This attribute allows the compiler to construct the
4918 requisite function declaration, while allowing the body of the
4919 function to be assembly code. The specified function will not have
4920 prologue/epilogue sequences generated by the compiler. Only basic
4921 @code{asm} statements can safely be included in naked functions
4922 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4923 basic @code{asm} and C code may appear to work, they cannot be
4924 depended upon to work reliably and are not supported.
4925 @end table
4926
4927 @node RX Function Attributes
4928 @subsection RX Function Attributes
4929
4930 These function attributes are supported by the RX back end:
4931
4932 @table @code
4933 @item fast_interrupt
4934 @cindex @code{fast_interrupt} function attribute, RX
4935 Use this attribute on the RX port to indicate that the specified
4936 function is a fast interrupt handler. This is just like the
4937 @code{interrupt} attribute, except that @code{freit} is used to return
4938 instead of @code{reit}.
4939
4940 @item interrupt
4941 @cindex @code{interrupt} function attribute, RX
4942 Use this attribute to indicate
4943 that the specified function is an interrupt handler. The compiler generates
4944 function entry and exit sequences suitable for use in an interrupt handler
4945 when this attribute is present.
4946
4947 On RX targets, you may specify one or more vector numbers as arguments
4948 to the attribute, as well as naming an alternate table name.
4949 Parameters are handled sequentially, so one handler can be assigned to
4950 multiple entries in multiple tables. One may also pass the magic
4951 string @code{"$default"} which causes the function to be used for any
4952 unfilled slots in the current table.
4953
4954 This example shows a simple assignment of a function to one vector in
4955 the default table (note that preprocessor macros may be used for
4956 chip-specific symbolic vector names):
4957 @smallexample
4958 void __attribute__ ((interrupt (5))) txd1_handler ();
4959 @end smallexample
4960
4961 This example assigns a function to two slots in the default table
4962 (using preprocessor macros defined elsewhere) and makes it the default
4963 for the @code{dct} table:
4964 @smallexample
4965 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
4966 txd1_handler ();
4967 @end smallexample
4968
4969 @item naked
4970 @cindex @code{naked} function attribute, RX
4971 This attribute allows the compiler to construct the
4972 requisite function declaration, while allowing the body of the
4973 function to be assembly code. The specified function will not have
4974 prologue/epilogue sequences generated by the compiler. Only basic
4975 @code{asm} statements can safely be included in naked functions
4976 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4977 basic @code{asm} and C code may appear to work, they cannot be
4978 depended upon to work reliably and are not supported.
4979
4980 @item vector
4981 @cindex @code{vector} function attribute, RX
4982 This RX attribute is similar to the @code{interrupt} attribute, including its
4983 parameters, but does not make the function an interrupt-handler type
4984 function (i.e. it retains the normal C function calling ABI). See the
4985 @code{interrupt} attribute for a description of its arguments.
4986 @end table
4987
4988 @node S/390 Function Attributes
4989 @subsection S/390 Function Attributes
4990
4991 These function attributes are supported on the S/390:
4992
4993 @table @code
4994 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
4995 @cindex @code{hotpatch} function attribute, S/390
4996
4997 On S/390 System z targets, you can use this function attribute to
4998 make GCC generate a ``hot-patching'' function prologue. If the
4999 @option{-mhotpatch=} command-line option is used at the same time,
5000 the @code{hotpatch} attribute takes precedence. The first of the
5001 two arguments specifies the number of halfwords to be added before
5002 the function label. A second argument can be used to specify the
5003 number of halfwords to be added after the function label. For
5004 both arguments the maximum allowed value is 1000000.
5005
5006 If both arguments are zero, hotpatching is disabled.
5007
5008 @item target (@var{options})
5009 @cindex @code{target} function attribute
5010 As discussed in @ref{Common Function Attributes}, this attribute
5011 allows specification of target-specific compilation options.
5012
5013 On S/390, the following options are supported:
5014
5015 @table @samp
5016 @item arch=
5017 @item tune=
5018 @item stack-guard=
5019 @item stack-size=
5020 @item branch-cost=
5021 @item warn-framesize=
5022 @item backchain
5023 @itemx no-backchain
5024 @item hard-dfp
5025 @itemx no-hard-dfp
5026 @item hard-float
5027 @itemx soft-float
5028 @item htm
5029 @itemx no-htm
5030 @item vx
5031 @itemx no-vx
5032 @item packed-stack
5033 @itemx no-packed-stack
5034 @item small-exec
5035 @itemx no-small-exec
5036 @item mvcle
5037 @itemx no-mvcle
5038 @item warn-dynamicstack
5039 @itemx no-warn-dynamicstack
5040 @end table
5041
5042 The options work exactly like the S/390 specific command line
5043 options (without the prefix @option{-m}) except that they do not
5044 change any feature macros. For example,
5045
5046 @smallexample
5047 @code{target("no-vx")}
5048 @end smallexample
5049
5050 does not undefine the @code{__VEC__} macro.
5051 @end table
5052
5053 @node SH Function Attributes
5054 @subsection SH Function Attributes
5055
5056 These function attributes are supported on the SH family of processors:
5057
5058 @table @code
5059 @item function_vector
5060 @cindex @code{function_vector} function attribute, SH
5061 @cindex calling functions through the function vector on SH2A
5062 On SH2A targets, this attribute declares a function to be called using the
5063 TBR relative addressing mode. The argument to this attribute is the entry
5064 number of the same function in a vector table containing all the TBR
5065 relative addressable functions. For correct operation the TBR must be setup
5066 accordingly to point to the start of the vector table before any functions with
5067 this attribute are invoked. Usually a good place to do the initialization is
5068 the startup routine. The TBR relative vector table can have at max 256 function
5069 entries. The jumps to these functions are generated using a SH2A specific,
5070 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5071 from GNU binutils version 2.7 or later for this attribute to work correctly.
5072
5073 In an application, for a function being called once, this attribute
5074 saves at least 8 bytes of code; and if other successive calls are being
5075 made to the same function, it saves 2 bytes of code per each of these
5076 calls.
5077
5078 @item interrupt_handler
5079 @cindex @code{interrupt_handler} function attribute, SH
5080 Use this attribute to
5081 indicate that the specified function is an interrupt handler. The compiler
5082 generates function entry and exit sequences suitable for use in an
5083 interrupt handler when this attribute is present.
5084
5085 @item nosave_low_regs
5086 @cindex @code{nosave_low_regs} function attribute, SH
5087 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5088 function should not save and restore registers R0..R7. This can be used on SH3*
5089 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5090 interrupt handlers.
5091
5092 @item renesas
5093 @cindex @code{renesas} function attribute, SH
5094 On SH targets this attribute specifies that the function or struct follows the
5095 Renesas ABI.
5096
5097 @item resbank
5098 @cindex @code{resbank} function attribute, SH
5099 On the SH2A target, this attribute enables the high-speed register
5100 saving and restoration using a register bank for @code{interrupt_handler}
5101 routines. Saving to the bank is performed automatically after the CPU
5102 accepts an interrupt that uses a register bank.
5103
5104 The nineteen 32-bit registers comprising general register R0 to R14,
5105 control register GBR, and system registers MACH, MACL, and PR and the
5106 vector table address offset are saved into a register bank. Register
5107 banks are stacked in first-in last-out (FILO) sequence. Restoration
5108 from the bank is executed by issuing a RESBANK instruction.
5109
5110 @item sp_switch
5111 @cindex @code{sp_switch} function attribute, SH
5112 Use this attribute on the SH to indicate an @code{interrupt_handler}
5113 function should switch to an alternate stack. It expects a string
5114 argument that names a global variable holding the address of the
5115 alternate stack.
5116
5117 @smallexample
5118 void *alt_stack;
5119 void f () __attribute__ ((interrupt_handler,
5120 sp_switch ("alt_stack")));
5121 @end smallexample
5122
5123 @item trap_exit
5124 @cindex @code{trap_exit} function attribute, SH
5125 Use this attribute on the SH for an @code{interrupt_handler} to return using
5126 @code{trapa} instead of @code{rte}. This attribute expects an integer
5127 argument specifying the trap number to be used.
5128
5129 @item trapa_handler
5130 @cindex @code{trapa_handler} function attribute, SH
5131 On SH targets this function attribute is similar to @code{interrupt_handler}
5132 but it does not save and restore all registers.
5133 @end table
5134
5135 @node SPU Function Attributes
5136 @subsection SPU Function Attributes
5137
5138 These function attributes are supported by the SPU back end:
5139
5140 @table @code
5141 @item naked
5142 @cindex @code{naked} function attribute, SPU
5143 This attribute allows the compiler to construct the
5144 requisite function declaration, while allowing the body of the
5145 function to be assembly code. The specified function will not have
5146 prologue/epilogue sequences generated by the compiler. Only basic
5147 @code{asm} statements can safely be included in naked functions
5148 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5149 basic @code{asm} and C code may appear to work, they cannot be
5150 depended upon to work reliably and are not supported.
5151 @end table
5152
5153 @node Symbian OS Function Attributes
5154 @subsection Symbian OS Function Attributes
5155
5156 @xref{Microsoft Windows Function Attributes}, for discussion of the
5157 @code{dllexport} and @code{dllimport} attributes.
5158
5159 @node V850 Function Attributes
5160 @subsection V850 Function Attributes
5161
5162 The V850 back end supports these function attributes:
5163
5164 @table @code
5165 @item interrupt
5166 @itemx interrupt_handler
5167 @cindex @code{interrupt} function attribute, V850
5168 @cindex @code{interrupt_handler} function attribute, V850
5169 Use these attributes to indicate
5170 that the specified function is an interrupt handler. The compiler generates
5171 function entry and exit sequences suitable for use in an interrupt handler
5172 when either attribute is present.
5173 @end table
5174
5175 @node Visium Function Attributes
5176 @subsection Visium Function Attributes
5177
5178 These function attributes are supported by the Visium back end:
5179
5180 @table @code
5181 @item interrupt
5182 @cindex @code{interrupt} function attribute, Visium
5183 Use this attribute to indicate
5184 that the specified function is an interrupt handler. The compiler generates
5185 function entry and exit sequences suitable for use in an interrupt handler
5186 when this attribute is present.
5187 @end table
5188
5189 @node x86 Function Attributes
5190 @subsection x86 Function Attributes
5191
5192 These function attributes are supported by the x86 back end:
5193
5194 @table @code
5195 @item cdecl
5196 @cindex @code{cdecl} function attribute, x86-32
5197 @cindex functions that pop the argument stack on x86-32
5198 @opindex mrtd
5199 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5200 assume that the calling function pops off the stack space used to
5201 pass arguments. This is
5202 useful to override the effects of the @option{-mrtd} switch.
5203
5204 @item fastcall
5205 @cindex @code{fastcall} function attribute, x86-32
5206 @cindex functions that pop the argument stack on x86-32
5207 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5208 pass the first argument (if of integral type) in the register ECX and
5209 the second argument (if of integral type) in the register EDX@. Subsequent
5210 and other typed arguments are passed on the stack. The called function
5211 pops the arguments off the stack. If the number of arguments is variable all
5212 arguments are pushed on the stack.
5213
5214 @item thiscall
5215 @cindex @code{thiscall} function attribute, x86-32
5216 @cindex functions that pop the argument stack on x86-32
5217 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5218 pass the first argument (if of integral type) in the register ECX.
5219 Subsequent and other typed arguments are passed on the stack. The called
5220 function pops the arguments off the stack.
5221 If the number of arguments is variable all arguments are pushed on the
5222 stack.
5223 The @code{thiscall} attribute is intended for C++ non-static member functions.
5224 As a GCC extension, this calling convention can be used for C functions
5225 and for static member methods.
5226
5227 @item ms_abi
5228 @itemx sysv_abi
5229 @cindex @code{ms_abi} function attribute, x86
5230 @cindex @code{sysv_abi} function attribute, x86
5231
5232 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5233 to indicate which calling convention should be used for a function. The
5234 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5235 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5236 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5237 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5238
5239 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5240 requires the @option{-maccumulate-outgoing-args} option.
5241
5242 @item callee_pop_aggregate_return (@var{number})
5243 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5244
5245 On x86-32 targets, you can use this attribute to control how
5246 aggregates are returned in memory. If the caller is responsible for
5247 popping the hidden pointer together with the rest of the arguments, specify
5248 @var{number} equal to zero. If callee is responsible for popping the
5249 hidden pointer, specify @var{number} equal to one.
5250
5251 The default x86-32 ABI assumes that the callee pops the
5252 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5253 the compiler assumes that the
5254 caller pops the stack for hidden pointer.
5255
5256 @item ms_hook_prologue
5257 @cindex @code{ms_hook_prologue} function attribute, x86
5258
5259 On 32-bit and 64-bit x86 targets, you can use
5260 this function attribute to make GCC generate the ``hot-patching'' function
5261 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5262 and newer.
5263
5264 @item regparm (@var{number})
5265 @cindex @code{regparm} function attribute, x86
5266 @cindex functions that are passed arguments in registers on x86-32
5267 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5268 pass arguments number one to @var{number} if they are of integral type
5269 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5270 take a variable number of arguments continue to be passed all of their
5271 arguments on the stack.
5272
5273 Beware that on some ELF systems this attribute is unsuitable for
5274 global functions in shared libraries with lazy binding (which is the
5275 default). Lazy binding sends the first call via resolving code in
5276 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5277 per the standard calling conventions. Solaris 8 is affected by this.
5278 Systems with the GNU C Library version 2.1 or higher
5279 and FreeBSD are believed to be
5280 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5281 disabled with the linker or the loader if desired, to avoid the
5282 problem.)
5283
5284 @item sseregparm
5285 @cindex @code{sseregparm} function attribute, x86
5286 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5287 causes the compiler to pass up to 3 floating-point arguments in
5288 SSE registers instead of on the stack. Functions that take a
5289 variable number of arguments continue to pass all of their
5290 floating-point arguments on the stack.
5291
5292 @item force_align_arg_pointer
5293 @cindex @code{force_align_arg_pointer} function attribute, x86
5294 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5295 applied to individual function definitions, generating an alternate
5296 prologue and epilogue that realigns the run-time stack if necessary.
5297 This supports mixing legacy codes that run with a 4-byte aligned stack
5298 with modern codes that keep a 16-byte stack for SSE compatibility.
5299
5300 @item stdcall
5301 @cindex @code{stdcall} function attribute, x86-32
5302 @cindex functions that pop the argument stack on x86-32
5303 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5304 assume that the called function pops off the stack space used to
5305 pass arguments, unless it takes a variable number of arguments.
5306
5307 @item no_caller_saved_registers
5308 @cindex @code{no_caller_saved_registers} function attribute, x86
5309 Use this attribute to indicate that the specified function has no
5310 caller-saved registers. That is, all registers are callee-saved. For
5311 example, this attribute can be used for a function called from an
5312 interrupt handler. The compiler generates proper function entry and
5313 exit sequences to save and restore any modified registers, except for
5314 the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87
5315 states, the GCC option @option{-mgeneral-regs-only} should be used to
5316 compile functions with @code{no_caller_saved_registers} attribute.
5317
5318 @item interrupt
5319 @cindex @code{interrupt} function attribute, x86
5320 Use this attribute to indicate that the specified function is an
5321 interrupt handler or an exception handler (depending on parameters passed
5322 to the function, explained further). The compiler generates function
5323 entry and exit sequences suitable for use in an interrupt handler when
5324 this attribute is present. The @code{IRET} instruction, instead of the
5325 @code{RET} instruction, is used to return from interrupt handlers. All
5326 registers, except for the EFLAGS register which is restored by the
5327 @code{IRET} instruction, are preserved by the compiler. Since GCC
5328 doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option
5329 @option{-mgeneral-regs-only} should be used to compile interrupt and
5330 exception handlers.
5331
5332 Any interruptible-without-stack-switch code must be compiled with
5333 @option{-mno-red-zone} since interrupt handlers can and will, because
5334 of the hardware design, touch the red zone.
5335
5336 An interrupt handler must be declared with a mandatory pointer
5337 argument:
5338
5339 @smallexample
5340 struct interrupt_frame;
5341
5342 __attribute__ ((interrupt))
5343 void
5344 f (struct interrupt_frame *frame)
5345 @{
5346 @}
5347 @end smallexample
5348
5349 @noindent
5350 and you must define @code{struct interrupt_frame} as described in the
5351 processor's manual.
5352
5353 Exception handlers differ from interrupt handlers because the system
5354 pushes an error code on the stack. An exception handler declaration is
5355 similar to that for an interrupt handler, but with a different mandatory
5356 function signature. The compiler arranges to pop the error code off the
5357 stack before the @code{IRET} instruction.
5358
5359 @smallexample
5360 #ifdef __x86_64__
5361 typedef unsigned long long int uword_t;
5362 #else
5363 typedef unsigned int uword_t;
5364 #endif
5365
5366 struct interrupt_frame;
5367
5368 __attribute__ ((interrupt))
5369 void
5370 f (struct interrupt_frame *frame, uword_t error_code)
5371 @{
5372 ...
5373 @}
5374 @end smallexample
5375
5376 Exception handlers should only be used for exceptions that push an error
5377 code; you should use an interrupt handler in other cases. The system
5378 will crash if the wrong kind of handler is used.
5379
5380 @item target (@var{options})
5381 @cindex @code{target} function attribute
5382 As discussed in @ref{Common Function Attributes}, this attribute
5383 allows specification of target-specific compilation options.
5384
5385 On the x86, the following options are allowed:
5386 @table @samp
5387 @item abm
5388 @itemx no-abm
5389 @cindex @code{target("abm")} function attribute, x86
5390 Enable/disable the generation of the advanced bit instructions.
5391
5392 @item aes
5393 @itemx no-aes
5394 @cindex @code{target("aes")} function attribute, x86
5395 Enable/disable the generation of the AES instructions.
5396
5397 @item default
5398 @cindex @code{target("default")} function attribute, x86
5399 @xref{Function Multiversioning}, where it is used to specify the
5400 default function version.
5401
5402 @item mmx
5403 @itemx no-mmx
5404 @cindex @code{target("mmx")} function attribute, x86
5405 Enable/disable the generation of the MMX instructions.
5406
5407 @item pclmul
5408 @itemx no-pclmul
5409 @cindex @code{target("pclmul")} function attribute, x86
5410 Enable/disable the generation of the PCLMUL instructions.
5411
5412 @item popcnt
5413 @itemx no-popcnt
5414 @cindex @code{target("popcnt")} function attribute, x86
5415 Enable/disable the generation of the POPCNT instruction.
5416
5417 @item sse
5418 @itemx no-sse
5419 @cindex @code{target("sse")} function attribute, x86
5420 Enable/disable the generation of the SSE instructions.
5421
5422 @item sse2
5423 @itemx no-sse2
5424 @cindex @code{target("sse2")} function attribute, x86
5425 Enable/disable the generation of the SSE2 instructions.
5426
5427 @item sse3
5428 @itemx no-sse3
5429 @cindex @code{target("sse3")} function attribute, x86
5430 Enable/disable the generation of the SSE3 instructions.
5431
5432 @item sse4
5433 @itemx no-sse4
5434 @cindex @code{target("sse4")} function attribute, x86
5435 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5436 and SSE4.2).
5437
5438 @item sse4.1
5439 @itemx no-sse4.1
5440 @cindex @code{target("sse4.1")} function attribute, x86
5441 Enable/disable the generation of the sse4.1 instructions.
5442
5443 @item sse4.2
5444 @itemx no-sse4.2
5445 @cindex @code{target("sse4.2")} function attribute, x86
5446 Enable/disable the generation of the sse4.2 instructions.
5447
5448 @item sse4a
5449 @itemx no-sse4a
5450 @cindex @code{target("sse4a")} function attribute, x86
5451 Enable/disable the generation of the SSE4A instructions.
5452
5453 @item fma4
5454 @itemx no-fma4
5455 @cindex @code{target("fma4")} function attribute, x86
5456 Enable/disable the generation of the FMA4 instructions.
5457
5458 @item xop
5459 @itemx no-xop
5460 @cindex @code{target("xop")} function attribute, x86
5461 Enable/disable the generation of the XOP instructions.
5462
5463 @item lwp
5464 @itemx no-lwp
5465 @cindex @code{target("lwp")} function attribute, x86
5466 Enable/disable the generation of the LWP instructions.
5467
5468 @item ssse3
5469 @itemx no-ssse3
5470 @cindex @code{target("ssse3")} function attribute, x86
5471 Enable/disable the generation of the SSSE3 instructions.
5472
5473 @item cld
5474 @itemx no-cld
5475 @cindex @code{target("cld")} function attribute, x86
5476 Enable/disable the generation of the CLD before string moves.
5477
5478 @item fancy-math-387
5479 @itemx no-fancy-math-387
5480 @cindex @code{target("fancy-math-387")} function attribute, x86
5481 Enable/disable the generation of the @code{sin}, @code{cos}, and
5482 @code{sqrt} instructions on the 387 floating-point unit.
5483
5484 @item ieee-fp
5485 @itemx no-ieee-fp
5486 @cindex @code{target("ieee-fp")} function attribute, x86
5487 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5488
5489 @item inline-all-stringops
5490 @itemx no-inline-all-stringops
5491 @cindex @code{target("inline-all-stringops")} function attribute, x86
5492 Enable/disable inlining of string operations.
5493
5494 @item inline-stringops-dynamically
5495 @itemx no-inline-stringops-dynamically
5496 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5497 Enable/disable the generation of the inline code to do small string
5498 operations and calling the library routines for large operations.
5499
5500 @item align-stringops
5501 @itemx no-align-stringops
5502 @cindex @code{target("align-stringops")} function attribute, x86
5503 Do/do not align destination of inlined string operations.
5504
5505 @item recip
5506 @itemx no-recip
5507 @cindex @code{target("recip")} function attribute, x86
5508 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5509 instructions followed an additional Newton-Raphson step instead of
5510 doing a floating-point division.
5511
5512 @item arch=@var{ARCH}
5513 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5514 Specify the architecture to generate code for in compiling the function.
5515
5516 @item tune=@var{TUNE}
5517 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5518 Specify the architecture to tune for in compiling the function.
5519
5520 @item fpmath=@var{FPMATH}
5521 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5522 Specify which floating-point unit to use. You must specify the
5523 @code{target("fpmath=sse,387")} option as
5524 @code{target("fpmath=sse+387")} because the comma would separate
5525 different options.
5526 @end table
5527
5528 On the x86, the inliner does not inline a
5529 function that has different target options than the caller, unless the
5530 callee has a subset of the target options of the caller. For example
5531 a function declared with @code{target("sse3")} can inline a function
5532 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5533 @end table
5534
5535 @node Xstormy16 Function Attributes
5536 @subsection Xstormy16 Function Attributes
5537
5538 These function attributes are supported by the Xstormy16 back end:
5539
5540 @table @code
5541 @item interrupt
5542 @cindex @code{interrupt} function attribute, Xstormy16
5543 Use this attribute to indicate
5544 that the specified function is an interrupt handler. The compiler generates
5545 function entry and exit sequences suitable for use in an interrupt handler
5546 when this attribute is present.
5547 @end table
5548
5549 @node Variable Attributes
5550 @section Specifying Attributes of Variables
5551 @cindex attribute of variables
5552 @cindex variable attributes
5553
5554 The keyword @code{__attribute__} allows you to specify special
5555 attributes of variables or structure fields. This keyword is followed
5556 by an attribute specification inside double parentheses. Some
5557 attributes are currently defined generically for variables.
5558 Other attributes are defined for variables on particular target
5559 systems. Other attributes are available for functions
5560 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5561 enumerators (@pxref{Enumerator Attributes}), statements
5562 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5563 Other front ends might define more attributes
5564 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5565
5566 @xref{Attribute Syntax}, for details of the exact syntax for using
5567 attributes.
5568
5569 @menu
5570 * Common Variable Attributes::
5571 * AVR Variable Attributes::
5572 * Blackfin Variable Attributes::
5573 * H8/300 Variable Attributes::
5574 * IA-64 Variable Attributes::
5575 * M32R/D Variable Attributes::
5576 * MeP Variable Attributes::
5577 * Microsoft Windows Variable Attributes::
5578 * MSP430 Variable Attributes::
5579 * PowerPC Variable Attributes::
5580 * RL78 Variable Attributes::
5581 * SPU Variable Attributes::
5582 * V850 Variable Attributes::
5583 * x86 Variable Attributes::
5584 * Xstormy16 Variable Attributes::
5585 @end menu
5586
5587 @node Common Variable Attributes
5588 @subsection Common Variable Attributes
5589
5590 The following attributes are supported on most targets.
5591
5592 @table @code
5593 @cindex @code{aligned} variable attribute
5594 @item aligned (@var{alignment})
5595 This attribute specifies a minimum alignment for the variable or
5596 structure field, measured in bytes. For example, the declaration:
5597
5598 @smallexample
5599 int x __attribute__ ((aligned (16))) = 0;
5600 @end smallexample
5601
5602 @noindent
5603 causes the compiler to allocate the global variable @code{x} on a
5604 16-byte boundary. On a 68040, this could be used in conjunction with
5605 an @code{asm} expression to access the @code{move16} instruction which
5606 requires 16-byte aligned operands.
5607
5608 You can also specify the alignment of structure fields. For example, to
5609 create a double-word aligned @code{int} pair, you could write:
5610
5611 @smallexample
5612 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5613 @end smallexample
5614
5615 @noindent
5616 This is an alternative to creating a union with a @code{double} member,
5617 which forces the union to be double-word aligned.
5618
5619 As in the preceding examples, you can explicitly specify the alignment
5620 (in bytes) that you wish the compiler to use for a given variable or
5621 structure field. Alternatively, you can leave out the alignment factor
5622 and just ask the compiler to align a variable or field to the
5623 default alignment for the target architecture you are compiling for.
5624 The default alignment is sufficient for all scalar types, but may not be
5625 enough for all vector types on a target that supports vector operations.
5626 The default alignment is fixed for a particular target ABI.
5627
5628 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5629 which is the largest alignment ever used for any data type on the
5630 target machine you are compiling for. For example, you could write:
5631
5632 @smallexample
5633 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5634 @end smallexample
5635
5636 The compiler automatically sets the alignment for the declared
5637 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5638 often make copy operations more efficient, because the compiler can
5639 use whatever instructions copy the biggest chunks of memory when
5640 performing copies to or from the variables or fields that you have
5641 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5642 may change depending on command-line options.
5643
5644 When used on a struct, or struct member, the @code{aligned} attribute can
5645 only increase the alignment; in order to decrease it, the @code{packed}
5646 attribute must be specified as well. When used as part of a typedef, the
5647 @code{aligned} attribute can both increase and decrease alignment, and
5648 specifying the @code{packed} attribute generates a warning.
5649
5650 Note that the effectiveness of @code{aligned} attributes may be limited
5651 by inherent limitations in your linker. On many systems, the linker is
5652 only able to arrange for variables to be aligned up to a certain maximum
5653 alignment. (For some linkers, the maximum supported alignment may
5654 be very very small.) If your linker is only able to align variables
5655 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5656 in an @code{__attribute__} still only provides you with 8-byte
5657 alignment. See your linker documentation for further information.
5658
5659 The @code{aligned} attribute can also be used for functions
5660 (@pxref{Common Function Attributes}.)
5661
5662 @item cleanup (@var{cleanup_function})
5663 @cindex @code{cleanup} variable attribute
5664 The @code{cleanup} attribute runs a function when the variable goes
5665 out of scope. This attribute can only be applied to auto function
5666 scope variables; it may not be applied to parameters or variables
5667 with static storage duration. The function must take one parameter,
5668 a pointer to a type compatible with the variable. The return value
5669 of the function (if any) is ignored.
5670
5671 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5672 is run during the stack unwinding that happens during the
5673 processing of the exception. Note that the @code{cleanup} attribute
5674 does not allow the exception to be caught, only to perform an action.
5675 It is undefined what happens if @var{cleanup_function} does not
5676 return normally.
5677
5678 @item common
5679 @itemx nocommon
5680 @cindex @code{common} variable attribute
5681 @cindex @code{nocommon} variable attribute
5682 @opindex fcommon
5683 @opindex fno-common
5684 The @code{common} attribute requests GCC to place a variable in
5685 ``common'' storage. The @code{nocommon} attribute requests the
5686 opposite---to allocate space for it directly.
5687
5688 These attributes override the default chosen by the
5689 @option{-fno-common} and @option{-fcommon} flags respectively.
5690
5691 @item deprecated
5692 @itemx deprecated (@var{msg})
5693 @cindex @code{deprecated} variable attribute
5694 The @code{deprecated} attribute results in a warning if the variable
5695 is used anywhere in the source file. This is useful when identifying
5696 variables that are expected to be removed in a future version of a
5697 program. The warning also includes the location of the declaration
5698 of the deprecated variable, to enable users to easily find further
5699 information about why the variable is deprecated, or what they should
5700 do instead. Note that the warning only occurs for uses:
5701
5702 @smallexample
5703 extern int old_var __attribute__ ((deprecated));
5704 extern int old_var;
5705 int new_fn () @{ return old_var; @}
5706 @end smallexample
5707
5708 @noindent
5709 results in a warning on line 3 but not line 2. The optional @var{msg}
5710 argument, which must be a string, is printed in the warning if
5711 present.
5712
5713 The @code{deprecated} attribute can also be used for functions and
5714 types (@pxref{Common Function Attributes},
5715 @pxref{Common Type Attributes}).
5716
5717 @item mode (@var{mode})
5718 @cindex @code{mode} variable attribute
5719 This attribute specifies the data type for the declaration---whichever
5720 type corresponds to the mode @var{mode}. This in effect lets you
5721 request an integer or floating-point type according to its width.
5722
5723 You may also specify a mode of @code{byte} or @code{__byte__} to
5724 indicate the mode corresponding to a one-byte integer, @code{word} or
5725 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5726 or @code{__pointer__} for the mode used to represent pointers.
5727
5728 @item packed
5729 @cindex @code{packed} variable attribute
5730 The @code{packed} attribute specifies that a variable or structure field
5731 should have the smallest possible alignment---one byte for a variable,
5732 and one bit for a field, unless you specify a larger value with the
5733 @code{aligned} attribute.
5734
5735 Here is a structure in which the field @code{x} is packed, so that it
5736 immediately follows @code{a}:
5737
5738 @smallexample
5739 struct foo
5740 @{
5741 char a;
5742 int x[2] __attribute__ ((packed));
5743 @};
5744 @end smallexample
5745
5746 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5747 @code{packed} attribute on bit-fields of type @code{char}. This has
5748 been fixed in GCC 4.4 but the change can lead to differences in the
5749 structure layout. See the documentation of
5750 @option{-Wpacked-bitfield-compat} for more information.
5751
5752 @item section ("@var{section-name}")
5753 @cindex @code{section} variable attribute
5754 Normally, the compiler places the objects it generates in sections like
5755 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5756 or you need certain particular variables to appear in special sections,
5757 for example to map to special hardware. The @code{section}
5758 attribute specifies that a variable (or function) lives in a particular
5759 section. For example, this small program uses several specific section names:
5760
5761 @smallexample
5762 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5763 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5764 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5765 int init_data __attribute__ ((section ("INITDATA")));
5766
5767 main()
5768 @{
5769 /* @r{Initialize stack pointer} */
5770 init_sp (stack + sizeof (stack));
5771
5772 /* @r{Initialize initialized data} */
5773 memcpy (&init_data, &data, &edata - &data);
5774
5775 /* @r{Turn on the serial ports} */
5776 init_duart (&a);
5777 init_duart (&b);
5778 @}
5779 @end smallexample
5780
5781 @noindent
5782 Use the @code{section} attribute with
5783 @emph{global} variables and not @emph{local} variables,
5784 as shown in the example.
5785
5786 You may use the @code{section} attribute with initialized or
5787 uninitialized global variables but the linker requires
5788 each object be defined once, with the exception that uninitialized
5789 variables tentatively go in the @code{common} (or @code{bss}) section
5790 and can be multiply ``defined''. Using the @code{section} attribute
5791 changes what section the variable goes into and may cause the
5792 linker to issue an error if an uninitialized variable has multiple
5793 definitions. You can force a variable to be initialized with the
5794 @option{-fno-common} flag or the @code{nocommon} attribute.
5795
5796 Some file formats do not support arbitrary sections so the @code{section}
5797 attribute is not available on all platforms.
5798 If you need to map the entire contents of a module to a particular
5799 section, consider using the facilities of the linker instead.
5800
5801 @item tls_model ("@var{tls_model}")
5802 @cindex @code{tls_model} variable attribute
5803 The @code{tls_model} attribute sets thread-local storage model
5804 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5805 overriding @option{-ftls-model=} command-line switch on a per-variable
5806 basis.
5807 The @var{tls_model} argument should be one of @code{global-dynamic},
5808 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5809
5810 Not all targets support this attribute.
5811
5812 @item unused
5813 @cindex @code{unused} variable attribute
5814 This attribute, attached to a variable, means that the variable is meant
5815 to be possibly unused. GCC does not produce a warning for this
5816 variable.
5817
5818 @item used
5819 @cindex @code{used} variable attribute
5820 This attribute, attached to a variable with static storage, means that
5821 the variable must be emitted even if it appears that the variable is not
5822 referenced.
5823
5824 When applied to a static data member of a C++ class template, the
5825 attribute also means that the member is instantiated if the
5826 class itself is instantiated.
5827
5828 @item vector_size (@var{bytes})
5829 @cindex @code{vector_size} variable attribute
5830 This attribute specifies the vector size for the variable, measured in
5831 bytes. For example, the declaration:
5832
5833 @smallexample
5834 int foo __attribute__ ((vector_size (16)));
5835 @end smallexample
5836
5837 @noindent
5838 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5839 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5840 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5841
5842 This attribute is only applicable to integral and float scalars,
5843 although arrays, pointers, and function return values are allowed in
5844 conjunction with this construct.
5845
5846 Aggregates with this attribute are invalid, even if they are of the same
5847 size as a corresponding scalar. For example, the declaration:
5848
5849 @smallexample
5850 struct S @{ int a; @};
5851 struct S __attribute__ ((vector_size (16))) foo;
5852 @end smallexample
5853
5854 @noindent
5855 is invalid even if the size of the structure is the same as the size of
5856 the @code{int}.
5857
5858 @item visibility ("@var{visibility_type}")
5859 @cindex @code{visibility} variable attribute
5860 This attribute affects the linkage of the declaration to which it is attached.
5861 The @code{visibility} attribute is described in
5862 @ref{Common Function Attributes}.
5863
5864 @item weak
5865 @cindex @code{weak} variable attribute
5866 The @code{weak} attribute is described in
5867 @ref{Common Function Attributes}.
5868
5869 @end table
5870
5871 @node AVR Variable Attributes
5872 @subsection AVR Variable Attributes
5873
5874 @table @code
5875 @item progmem
5876 @cindex @code{progmem} variable attribute, AVR
5877 The @code{progmem} attribute is used on the AVR to place read-only
5878 data in the non-volatile program memory (flash). The @code{progmem}
5879 attribute accomplishes this by putting respective variables into a
5880 section whose name starts with @code{.progmem}.
5881
5882 This attribute works similar to the @code{section} attribute
5883 but adds additional checking.
5884
5885 @table @asis
5886 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
5887 @code{progmem} affects the location
5888 of the data but not how this data is accessed.
5889 In order to read data located with the @code{progmem} attribute
5890 (inline) assembler must be used.
5891 @smallexample
5892 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5893 #include <avr/pgmspace.h>
5894
5895 /* Locate var in flash memory */
5896 const int var[2] PROGMEM = @{ 1, 2 @};
5897
5898 int read_var (int i)
5899 @{
5900 /* Access var[] by accessor macro from avr/pgmspace.h */
5901 return (int) pgm_read_word (& var[i]);
5902 @}
5903 @end smallexample
5904
5905 AVR is a Harvard architecture processor and data and read-only data
5906 normally resides in the data memory (RAM).
5907
5908 See also the @ref{AVR Named Address Spaces} section for
5909 an alternate way to locate and access data in flash memory.
5910
5911 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
5912 The compiler adds @code{0x4000}
5913 to the addresses of objects and declarations in @code{progmem} and locates
5914 the objects in flash memory, namely in section @code{.progmem.data}.
5915 The offset is needed because the flash memory is visible in the RAM
5916 address space starting at address @code{0x4000}.
5917
5918 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
5919 no special functions or macros are needed.
5920
5921 @smallexample
5922 /* var is located in flash memory */
5923 extern const int var[2] __attribute__((progmem));
5924
5925 int read_var (int i)
5926 @{
5927 return var[i];
5928 @}
5929 @end smallexample
5930
5931 @end table
5932
5933 @item io
5934 @itemx io (@var{addr})
5935 @cindex @code{io} variable attribute, AVR
5936 Variables with the @code{io} attribute are used to address
5937 memory-mapped peripherals in the io address range.
5938 If an address is specified, the variable
5939 is assigned that address, and the value is interpreted as an
5940 address in the data address space.
5941 Example:
5942
5943 @smallexample
5944 volatile int porta __attribute__((io (0x22)));
5945 @end smallexample
5946
5947 The address specified in the address in the data address range.
5948
5949 Otherwise, the variable it is not assigned an address, but the
5950 compiler will still use in/out instructions where applicable,
5951 assuming some other module assigns an address in the io address range.
5952 Example:
5953
5954 @smallexample
5955 extern volatile int porta __attribute__((io));
5956 @end smallexample
5957
5958 @item io_low
5959 @itemx io_low (@var{addr})
5960 @cindex @code{io_low} variable attribute, AVR
5961 This is like the @code{io} attribute, but additionally it informs the
5962 compiler that the object lies in the lower half of the I/O area,
5963 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
5964 instructions.
5965
5966 @item address
5967 @itemx address (@var{addr})
5968 @cindex @code{address} variable attribute, AVR
5969 Variables with the @code{address} attribute are used to address
5970 memory-mapped peripherals that may lie outside the io address range.
5971
5972 @smallexample
5973 volatile int porta __attribute__((address (0x600)));
5974 @end smallexample
5975
5976 @item absdata
5977 @cindex @code{absdata} variable attribute, AVR
5978 Variables in static storage and with the @code{absdata} attribute can
5979 be accessed by the @code{LDS} and @code{STS} instructions which take
5980 absolute addresses.
5981
5982 @itemize @bullet
5983 @item
5984 This attribute is only supported for the reduced AVR Tiny core
5985 like ATtiny40.
5986
5987 @item
5988 You must make sure that respective data is located in the
5989 address range @code{0x40}@dots{}@code{0xbf} accessible by
5990 @code{LDS} and @code{STS}. One way to achieve this as an
5991 appropriate linker description file.
5992
5993 @item
5994 If the location does not fit the address range of @code{LDS}
5995 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
5996 warning like
5997 @quotation
5998 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
5999 @end quotation
6000
6001 @end itemize
6002
6003 @end table
6004
6005 @node Blackfin Variable Attributes
6006 @subsection Blackfin Variable Attributes
6007
6008 Three attributes are currently defined for the Blackfin.
6009
6010 @table @code
6011 @item l1_data
6012 @itemx l1_data_A
6013 @itemx l1_data_B
6014 @cindex @code{l1_data} variable attribute, Blackfin
6015 @cindex @code{l1_data_A} variable attribute, Blackfin
6016 @cindex @code{l1_data_B} variable attribute, Blackfin
6017 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6018 Variables with @code{l1_data} attribute are put into the specific section
6019 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6020 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6021 attribute are put into the specific section named @code{.l1.data.B}.
6022
6023 @item l2
6024 @cindex @code{l2} variable attribute, Blackfin
6025 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6026 Variables with @code{l2} attribute are put into the specific section
6027 named @code{.l2.data}.
6028 @end table
6029
6030 @node H8/300 Variable Attributes
6031 @subsection H8/300 Variable Attributes
6032
6033 These variable attributes are available for H8/300 targets:
6034
6035 @table @code
6036 @item eightbit_data
6037 @cindex @code{eightbit_data} variable attribute, H8/300
6038 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6039 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6040 variable should be placed into the eight-bit data section.
6041 The compiler generates more efficient code for certain operations
6042 on data in the eight-bit data area. Note the eight-bit data area is limited to
6043 256 bytes of data.
6044
6045 You must use GAS and GLD from GNU binutils version 2.7 or later for
6046 this attribute to work correctly.
6047
6048 @item tiny_data
6049 @cindex @code{tiny_data} variable attribute, H8/300
6050 @cindex tiny data section on the H8/300H and H8S
6051 Use this attribute on the H8/300H and H8S to indicate that the specified
6052 variable should be placed into the tiny data section.
6053 The compiler generates more efficient code for loads and stores
6054 on data in the tiny data section. Note the tiny data area is limited to
6055 slightly under 32KB of data.
6056
6057 @end table
6058
6059 @node IA-64 Variable Attributes
6060 @subsection IA-64 Variable Attributes
6061
6062 The IA-64 back end supports the following variable attribute:
6063
6064 @table @code
6065 @item model (@var{model-name})
6066 @cindex @code{model} variable attribute, IA-64
6067
6068 On IA-64, use this attribute to set the addressability of an object.
6069 At present, the only supported identifier for @var{model-name} is
6070 @code{small}, indicating addressability via ``small'' (22-bit)
6071 addresses (so that their addresses can be loaded with the @code{addl}
6072 instruction). Caveat: such addressing is by definition not position
6073 independent and hence this attribute must not be used for objects
6074 defined by shared libraries.
6075
6076 @end table
6077
6078 @node M32R/D Variable Attributes
6079 @subsection M32R/D Variable Attributes
6080
6081 One attribute is currently defined for the M32R/D@.
6082
6083 @table @code
6084 @item model (@var{model-name})
6085 @cindex @code{model-name} variable attribute, M32R/D
6086 @cindex variable addressability on the M32R/D
6087 Use this attribute on the M32R/D to set the addressability of an object.
6088 The identifier @var{model-name} is one of @code{small}, @code{medium},
6089 or @code{large}, representing each of the code models.
6090
6091 Small model objects live in the lower 16MB of memory (so that their
6092 addresses can be loaded with the @code{ld24} instruction).
6093
6094 Medium and large model objects may live anywhere in the 32-bit address space
6095 (the compiler generates @code{seth/add3} instructions to load their
6096 addresses).
6097 @end table
6098
6099 @node MeP Variable Attributes
6100 @subsection MeP Variable Attributes
6101
6102 The MeP target has a number of addressing modes and busses. The
6103 @code{near} space spans the standard memory space's first 16 megabytes
6104 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6105 The @code{based} space is a 128-byte region in the memory space that
6106 is addressed relative to the @code{$tp} register. The @code{tiny}
6107 space is a 65536-byte region relative to the @code{$gp} register. In
6108 addition to these memory regions, the MeP target has a separate 16-bit
6109 control bus which is specified with @code{cb} attributes.
6110
6111 @table @code
6112
6113 @item based
6114 @cindex @code{based} variable attribute, MeP
6115 Any variable with the @code{based} attribute is assigned to the
6116 @code{.based} section, and is accessed with relative to the
6117 @code{$tp} register.
6118
6119 @item tiny
6120 @cindex @code{tiny} variable attribute, MeP
6121 Likewise, the @code{tiny} attribute assigned variables to the
6122 @code{.tiny} section, relative to the @code{$gp} register.
6123
6124 @item near
6125 @cindex @code{near} variable attribute, MeP
6126 Variables with the @code{near} attribute are assumed to have addresses
6127 that fit in a 24-bit addressing mode. This is the default for large
6128 variables (@code{-mtiny=4} is the default) but this attribute can
6129 override @code{-mtiny=} for small variables, or override @code{-ml}.
6130
6131 @item far
6132 @cindex @code{far} variable attribute, MeP
6133 Variables with the @code{far} attribute are addressed using a full
6134 32-bit address. Since this covers the entire memory space, this
6135 allows modules to make no assumptions about where variables might be
6136 stored.
6137
6138 @item io
6139 @cindex @code{io} variable attribute, MeP
6140 @itemx io (@var{addr})
6141 Variables with the @code{io} attribute are used to address
6142 memory-mapped peripherals. If an address is specified, the variable
6143 is assigned that address, else it is not assigned an address (it is
6144 assumed some other module assigns an address). Example:
6145
6146 @smallexample
6147 int timer_count __attribute__((io(0x123)));
6148 @end smallexample
6149
6150 @item cb
6151 @itemx cb (@var{addr})
6152 @cindex @code{cb} variable attribute, MeP
6153 Variables with the @code{cb} attribute are used to access the control
6154 bus, using special instructions. @code{addr} indicates the control bus
6155 address. Example:
6156
6157 @smallexample
6158 int cpu_clock __attribute__((cb(0x123)));
6159 @end smallexample
6160
6161 @end table
6162
6163 @node Microsoft Windows Variable Attributes
6164 @subsection Microsoft Windows Variable Attributes
6165
6166 You can use these attributes on Microsoft Windows targets.
6167 @ref{x86 Variable Attributes} for additional Windows compatibility
6168 attributes available on all x86 targets.
6169
6170 @table @code
6171 @item dllimport
6172 @itemx dllexport
6173 @cindex @code{dllimport} variable attribute
6174 @cindex @code{dllexport} variable attribute
6175 The @code{dllimport} and @code{dllexport} attributes are described in
6176 @ref{Microsoft Windows Function Attributes}.
6177
6178 @item selectany
6179 @cindex @code{selectany} variable attribute
6180 The @code{selectany} attribute causes an initialized global variable to
6181 have link-once semantics. When multiple definitions of the variable are
6182 encountered by the linker, the first is selected and the remainder are
6183 discarded. Following usage by the Microsoft compiler, the linker is told
6184 @emph{not} to warn about size or content differences of the multiple
6185 definitions.
6186
6187 Although the primary usage of this attribute is for POD types, the
6188 attribute can also be applied to global C++ objects that are initialized
6189 by a constructor. In this case, the static initialization and destruction
6190 code for the object is emitted in each translation defining the object,
6191 but the calls to the constructor and destructor are protected by a
6192 link-once guard variable.
6193
6194 The @code{selectany} attribute is only available on Microsoft Windows
6195 targets. You can use @code{__declspec (selectany)} as a synonym for
6196 @code{__attribute__ ((selectany))} for compatibility with other
6197 compilers.
6198
6199 @item shared
6200 @cindex @code{shared} variable attribute
6201 On Microsoft Windows, in addition to putting variable definitions in a named
6202 section, the section can also be shared among all running copies of an
6203 executable or DLL@. For example, this small program defines shared data
6204 by putting it in a named section @code{shared} and marking the section
6205 shareable:
6206
6207 @smallexample
6208 int foo __attribute__((section ("shared"), shared)) = 0;
6209
6210 int
6211 main()
6212 @{
6213 /* @r{Read and write foo. All running
6214 copies see the same value.} */
6215 return 0;
6216 @}
6217 @end smallexample
6218
6219 @noindent
6220 You may only use the @code{shared} attribute along with @code{section}
6221 attribute with a fully-initialized global definition because of the way
6222 linkers work. See @code{section} attribute for more information.
6223
6224 The @code{shared} attribute is only available on Microsoft Windows@.
6225
6226 @end table
6227
6228 @node MSP430 Variable Attributes
6229 @subsection MSP430 Variable Attributes
6230
6231 @table @code
6232 @item noinit
6233 @cindex @code{noinit} variable attribute, MSP430
6234 Any data with the @code{noinit} attribute will not be initialised by
6235 the C runtime startup code, or the program loader. Not initialising
6236 data in this way can reduce program startup times.
6237
6238 @item persistent
6239 @cindex @code{persistent} variable attribute, MSP430
6240 Any variable with the @code{persistent} attribute will not be
6241 initialised by the C runtime startup code. Instead its value will be
6242 set once, when the application is loaded, and then never initialised
6243 again, even if the processor is reset or the program restarts.
6244 Persistent data is intended to be placed into FLASH RAM, where its
6245 value will be retained across resets. The linker script being used to
6246 create the application should ensure that persistent data is correctly
6247 placed.
6248
6249 @item lower
6250 @itemx upper
6251 @itemx either
6252 @cindex @code{lower} variable attribute, MSP430
6253 @cindex @code{upper} variable attribute, MSP430
6254 @cindex @code{either} variable attribute, MSP430
6255 These attributes are the same as the MSP430 function attributes of the
6256 same name (@pxref{MSP430 Function Attributes}).
6257 These attributes can be applied to both functions and variables.
6258 @end table
6259
6260 @node PowerPC Variable Attributes
6261 @subsection PowerPC Variable Attributes
6262
6263 Three attributes currently are defined for PowerPC configurations:
6264 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6265
6266 @cindex @code{ms_struct} variable attribute, PowerPC
6267 @cindex @code{gcc_struct} variable attribute, PowerPC
6268 For full documentation of the struct attributes please see the
6269 documentation in @ref{x86 Variable Attributes}.
6270
6271 @cindex @code{altivec} variable attribute, PowerPC
6272 For documentation of @code{altivec} attribute please see the
6273 documentation in @ref{PowerPC Type Attributes}.
6274
6275 @node RL78 Variable Attributes
6276 @subsection RL78 Variable Attributes
6277
6278 @cindex @code{saddr} variable attribute, RL78
6279 The RL78 back end supports the @code{saddr} variable attribute. This
6280 specifies placement of the corresponding variable in the SADDR area,
6281 which can be accessed more efficiently than the default memory region.
6282
6283 @node SPU Variable Attributes
6284 @subsection SPU Variable Attributes
6285
6286 @cindex @code{spu_vector} variable attribute, SPU
6287 The SPU supports the @code{spu_vector} attribute for variables. For
6288 documentation of this attribute please see the documentation in
6289 @ref{SPU Type Attributes}.
6290
6291 @node V850 Variable Attributes
6292 @subsection V850 Variable Attributes
6293
6294 These variable attributes are supported by the V850 back end:
6295
6296 @table @code
6297
6298 @item sda
6299 @cindex @code{sda} variable attribute, V850
6300 Use this attribute to explicitly place a variable in the small data area,
6301 which can hold up to 64 kilobytes.
6302
6303 @item tda
6304 @cindex @code{tda} variable attribute, V850
6305 Use this attribute to explicitly place a variable in the tiny data area,
6306 which can hold up to 256 bytes in total.
6307
6308 @item zda
6309 @cindex @code{zda} variable attribute, V850
6310 Use this attribute to explicitly place a variable in the first 32 kilobytes
6311 of memory.
6312 @end table
6313
6314 @node x86 Variable Attributes
6315 @subsection x86 Variable Attributes
6316
6317 Two attributes are currently defined for x86 configurations:
6318 @code{ms_struct} and @code{gcc_struct}.
6319
6320 @table @code
6321 @item ms_struct
6322 @itemx gcc_struct
6323 @cindex @code{ms_struct} variable attribute, x86
6324 @cindex @code{gcc_struct} variable attribute, x86
6325
6326 If @code{packed} is used on a structure, or if bit-fields are used,
6327 it may be that the Microsoft ABI lays out the structure differently
6328 than the way GCC normally does. Particularly when moving packed
6329 data between functions compiled with GCC and the native Microsoft compiler
6330 (either via function call or as data in a file), it may be necessary to access
6331 either format.
6332
6333 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6334 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6335 command-line options, respectively;
6336 see @ref{x86 Options}, for details of how structure layout is affected.
6337 @xref{x86 Type Attributes}, for information about the corresponding
6338 attributes on types.
6339
6340 @end table
6341
6342 @node Xstormy16 Variable Attributes
6343 @subsection Xstormy16 Variable Attributes
6344
6345 One attribute is currently defined for xstormy16 configurations:
6346 @code{below100}.
6347
6348 @table @code
6349 @item below100
6350 @cindex @code{below100} variable attribute, Xstormy16
6351
6352 If a variable has the @code{below100} attribute (@code{BELOW100} is
6353 allowed also), GCC places the variable in the first 0x100 bytes of
6354 memory and use special opcodes to access it. Such variables are
6355 placed in either the @code{.bss_below100} section or the
6356 @code{.data_below100} section.
6357
6358 @end table
6359
6360 @node Type Attributes
6361 @section Specifying Attributes of Types
6362 @cindex attribute of types
6363 @cindex type attributes
6364
6365 The keyword @code{__attribute__} allows you to specify special
6366 attributes of types. Some type attributes apply only to @code{struct}
6367 and @code{union} types, while others can apply to any type defined
6368 via a @code{typedef} declaration. Other attributes are defined for
6369 functions (@pxref{Function Attributes}), labels (@pxref{Label
6370 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6371 statements (@pxref{Statement Attributes}), and for
6372 variables (@pxref{Variable Attributes}).
6373
6374 The @code{__attribute__} keyword is followed by an attribute specification
6375 inside double parentheses.
6376
6377 You may specify type attributes in an enum, struct or union type
6378 declaration or definition by placing them immediately after the
6379 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6380 syntax is to place them just past the closing curly brace of the
6381 definition.
6382
6383 You can also include type attributes in a @code{typedef} declaration.
6384 @xref{Attribute Syntax}, for details of the exact syntax for using
6385 attributes.
6386
6387 @menu
6388 * Common Type Attributes::
6389 * ARM Type Attributes::
6390 * MeP Type Attributes::
6391 * PowerPC Type Attributes::
6392 * SPU Type Attributes::
6393 * x86 Type Attributes::
6394 @end menu
6395
6396 @node Common Type Attributes
6397 @subsection Common Type Attributes
6398
6399 The following type attributes are supported on most targets.
6400
6401 @table @code
6402 @cindex @code{aligned} type attribute
6403 @item aligned (@var{alignment})
6404 This attribute specifies a minimum alignment (in bytes) for variables
6405 of the specified type. For example, the declarations:
6406
6407 @smallexample
6408 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6409 typedef int more_aligned_int __attribute__ ((aligned (8)));
6410 @end smallexample
6411
6412 @noindent
6413 force the compiler to ensure (as far as it can) that each variable whose
6414 type is @code{struct S} or @code{more_aligned_int} is allocated and
6415 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6416 variables of type @code{struct S} aligned to 8-byte boundaries allows
6417 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6418 store) instructions when copying one variable of type @code{struct S} to
6419 another, thus improving run-time efficiency.
6420
6421 Note that the alignment of any given @code{struct} or @code{union} type
6422 is required by the ISO C standard to be at least a perfect multiple of
6423 the lowest common multiple of the alignments of all of the members of
6424 the @code{struct} or @code{union} in question. This means that you @emph{can}
6425 effectively adjust the alignment of a @code{struct} or @code{union}
6426 type by attaching an @code{aligned} attribute to any one of the members
6427 of such a type, but the notation illustrated in the example above is a
6428 more obvious, intuitive, and readable way to request the compiler to
6429 adjust the alignment of an entire @code{struct} or @code{union} type.
6430
6431 As in the preceding example, you can explicitly specify the alignment
6432 (in bytes) that you wish the compiler to use for a given @code{struct}
6433 or @code{union} type. Alternatively, you can leave out the alignment factor
6434 and just ask the compiler to align a type to the maximum
6435 useful alignment for the target machine you are compiling for. For
6436 example, you could write:
6437
6438 @smallexample
6439 struct S @{ short f[3]; @} __attribute__ ((aligned));
6440 @end smallexample
6441
6442 Whenever you leave out the alignment factor in an @code{aligned}
6443 attribute specification, the compiler automatically sets the alignment
6444 for the type to the largest alignment that is ever used for any data
6445 type on the target machine you are compiling for. Doing this can often
6446 make copy operations more efficient, because the compiler can use
6447 whatever instructions copy the biggest chunks of memory when performing
6448 copies to or from the variables that have types that you have aligned
6449 this way.
6450
6451 In the example above, if the size of each @code{short} is 2 bytes, then
6452 the size of the entire @code{struct S} type is 6 bytes. The smallest
6453 power of two that is greater than or equal to that is 8, so the
6454 compiler sets the alignment for the entire @code{struct S} type to 8
6455 bytes.
6456
6457 Note that although you can ask the compiler to select a time-efficient
6458 alignment for a given type and then declare only individual stand-alone
6459 objects of that type, the compiler's ability to select a time-efficient
6460 alignment is primarily useful only when you plan to create arrays of
6461 variables having the relevant (efficiently aligned) type. If you
6462 declare or use arrays of variables of an efficiently-aligned type, then
6463 it is likely that your program also does pointer arithmetic (or
6464 subscripting, which amounts to the same thing) on pointers to the
6465 relevant type, and the code that the compiler generates for these
6466 pointer arithmetic operations is often more efficient for
6467 efficiently-aligned types than for other types.
6468
6469 Note that the effectiveness of @code{aligned} attributes may be limited
6470 by inherent limitations in your linker. On many systems, the linker is
6471 only able to arrange for variables to be aligned up to a certain maximum
6472 alignment. (For some linkers, the maximum supported alignment may
6473 be very very small.) If your linker is only able to align variables
6474 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6475 in an @code{__attribute__} still only provides you with 8-byte
6476 alignment. See your linker documentation for further information.
6477
6478 The @code{aligned} attribute can only increase alignment. Alignment
6479 can be decreased by specifying the @code{packed} attribute. See below.
6480
6481 @item bnd_variable_size
6482 @cindex @code{bnd_variable_size} type attribute
6483 @cindex Pointer Bounds Checker attributes
6484 When applied to a structure field, this attribute tells Pointer
6485 Bounds Checker that the size of this field should not be computed
6486 using static type information. It may be used to mark variably-sized
6487 static array fields placed at the end of a structure.
6488
6489 @smallexample
6490 struct S
6491 @{
6492 int size;
6493 char data[1];
6494 @}
6495 S *p = (S *)malloc (sizeof(S) + 100);
6496 p->data[10] = 0; //Bounds violation
6497 @end smallexample
6498
6499 @noindent
6500 By using an attribute for the field we may avoid unwanted bound
6501 violation checks:
6502
6503 @smallexample
6504 struct S
6505 @{
6506 int size;
6507 char data[1] __attribute__((bnd_variable_size));
6508 @}
6509 S *p = (S *)malloc (sizeof(S) + 100);
6510 p->data[10] = 0; //OK
6511 @end smallexample
6512
6513 @item deprecated
6514 @itemx deprecated (@var{msg})
6515 @cindex @code{deprecated} type attribute
6516 The @code{deprecated} attribute results in a warning if the type
6517 is used anywhere in the source file. This is useful when identifying
6518 types that are expected to be removed in a future version of a program.
6519 If possible, the warning also includes the location of the declaration
6520 of the deprecated type, to enable users to easily find further
6521 information about why the type is deprecated, or what they should do
6522 instead. Note that the warnings only occur for uses and then only
6523 if the type is being applied to an identifier that itself is not being
6524 declared as deprecated.
6525
6526 @smallexample
6527 typedef int T1 __attribute__ ((deprecated));
6528 T1 x;
6529 typedef T1 T2;
6530 T2 y;
6531 typedef T1 T3 __attribute__ ((deprecated));
6532 T3 z __attribute__ ((deprecated));
6533 @end smallexample
6534
6535 @noindent
6536 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6537 warning is issued for line 4 because T2 is not explicitly
6538 deprecated. Line 5 has no warning because T3 is explicitly
6539 deprecated. Similarly for line 6. The optional @var{msg}
6540 argument, which must be a string, is printed in the warning if
6541 present.
6542
6543 The @code{deprecated} attribute can also be used for functions and
6544 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6545
6546 @item designated_init
6547 @cindex @code{designated_init} type attribute
6548 This attribute may only be applied to structure types. It indicates
6549 that any initialization of an object of this type must use designated
6550 initializers rather than positional initializers. The intent of this
6551 attribute is to allow the programmer to indicate that a structure's
6552 layout may change, and that therefore relying on positional
6553 initialization will result in future breakage.
6554
6555 GCC emits warnings based on this attribute by default; use
6556 @option{-Wno-designated-init} to suppress them.
6557
6558 @item may_alias
6559 @cindex @code{may_alias} type attribute
6560 Accesses through pointers to types with this attribute are not subject
6561 to type-based alias analysis, but are instead assumed to be able to alias
6562 any other type of objects.
6563 In the context of section 6.5 paragraph 7 of the C99 standard,
6564 an lvalue expression
6565 dereferencing such a pointer is treated like having a character type.
6566 See @option{-fstrict-aliasing} for more information on aliasing issues.
6567 This extension exists to support some vector APIs, in which pointers to
6568 one vector type are permitted to alias pointers to a different vector type.
6569
6570 Note that an object of a type with this attribute does not have any
6571 special semantics.
6572
6573 Example of use:
6574
6575 @smallexample
6576 typedef short __attribute__((__may_alias__)) short_a;
6577
6578 int
6579 main (void)
6580 @{
6581 int a = 0x12345678;
6582 short_a *b = (short_a *) &a;
6583
6584 b[1] = 0;
6585
6586 if (a == 0x12345678)
6587 abort();
6588
6589 exit(0);
6590 @}
6591 @end smallexample
6592
6593 @noindent
6594 If you replaced @code{short_a} with @code{short} in the variable
6595 declaration, the above program would abort when compiled with
6596 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6597 above.
6598
6599 @item packed
6600 @cindex @code{packed} type attribute
6601 This attribute, attached to @code{struct} or @code{union} type
6602 definition, specifies that each member (other than zero-width bit-fields)
6603 of the structure or union is placed to minimize the memory required. When
6604 attached to an @code{enum} definition, it indicates that the smallest
6605 integral type should be used.
6606
6607 @opindex fshort-enums
6608 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6609 types is equivalent to specifying the @code{packed} attribute on each
6610 of the structure or union members. Specifying the @option{-fshort-enums}
6611 flag on the command line is equivalent to specifying the @code{packed}
6612 attribute on all @code{enum} definitions.
6613
6614 In the following example @code{struct my_packed_struct}'s members are
6615 packed closely together, but the internal layout of its @code{s} member
6616 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6617 be packed too.
6618
6619 @smallexample
6620 struct my_unpacked_struct
6621 @{
6622 char c;
6623 int i;
6624 @};
6625
6626 struct __attribute__ ((__packed__)) my_packed_struct
6627 @{
6628 char c;
6629 int i;
6630 struct my_unpacked_struct s;
6631 @};
6632 @end smallexample
6633
6634 You may only specify the @code{packed} attribute attribute on the definition
6635 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
6636 that does not also define the enumerated type, structure or union.
6637
6638 @item scalar_storage_order ("@var{endianness}")
6639 @cindex @code{scalar_storage_order} type attribute
6640 When attached to a @code{union} or a @code{struct}, this attribute sets
6641 the storage order, aka endianness, of the scalar fields of the type, as
6642 well as the array fields whose component is scalar. The supported
6643 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
6644 has no effects on fields which are themselves a @code{union}, a @code{struct}
6645 or an array whose component is a @code{union} or a @code{struct}, and it is
6646 possible for these fields to have a different scalar storage order than the
6647 enclosing type.
6648
6649 This attribute is supported only for targets that use a uniform default
6650 scalar storage order (fortunately, most of them), i.e. targets that store
6651 the scalars either all in big-endian or all in little-endian.
6652
6653 Additional restrictions are enforced for types with the reverse scalar
6654 storage order with regard to the scalar storage order of the target:
6655
6656 @itemize
6657 @item Taking the address of a scalar field of a @code{union} or a
6658 @code{struct} with reverse scalar storage order is not permitted and yields
6659 an error.
6660 @item Taking the address of an array field, whose component is scalar, of
6661 a @code{union} or a @code{struct} with reverse scalar storage order is
6662 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
6663 is specified.
6664 @item Taking the address of a @code{union} or a @code{struct} with reverse
6665 scalar storage order is permitted.
6666 @end itemize
6667
6668 These restrictions exist because the storage order attribute is lost when
6669 the address of a scalar or the address of an array with scalar component is
6670 taken, so storing indirectly through this address generally does not work.
6671 The second case is nevertheless allowed to be able to perform a block copy
6672 from or to the array.
6673
6674 Moreover, the use of type punning or aliasing to toggle the storage order
6675 is not supported; that is to say, a given scalar object cannot be accessed
6676 through distinct types that assign a different storage order to it.
6677
6678 @item transparent_union
6679 @cindex @code{transparent_union} type attribute
6680
6681 This attribute, attached to a @code{union} type definition, indicates
6682 that any function parameter having that union type causes calls to that
6683 function to be treated in a special way.
6684
6685 First, the argument corresponding to a transparent union type can be of
6686 any type in the union; no cast is required. Also, if the union contains
6687 a pointer type, the corresponding argument can be a null pointer
6688 constant or a void pointer expression; and if the union contains a void
6689 pointer type, the corresponding argument can be any pointer expression.
6690 If the union member type is a pointer, qualifiers like @code{const} on
6691 the referenced type must be respected, just as with normal pointer
6692 conversions.
6693
6694 Second, the argument is passed to the function using the calling
6695 conventions of the first member of the transparent union, not the calling
6696 conventions of the union itself. All members of the union must have the
6697 same machine representation; this is necessary for this argument passing
6698 to work properly.
6699
6700 Transparent unions are designed for library functions that have multiple
6701 interfaces for compatibility reasons. For example, suppose the
6702 @code{wait} function must accept either a value of type @code{int *} to
6703 comply with POSIX, or a value of type @code{union wait *} to comply with
6704 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6705 @code{wait} would accept both kinds of arguments, but it would also
6706 accept any other pointer type and this would make argument type checking
6707 less useful. Instead, @code{<sys/wait.h>} might define the interface
6708 as follows:
6709
6710 @smallexample
6711 typedef union __attribute__ ((__transparent_union__))
6712 @{
6713 int *__ip;
6714 union wait *__up;
6715 @} wait_status_ptr_t;
6716
6717 pid_t wait (wait_status_ptr_t);
6718 @end smallexample
6719
6720 @noindent
6721 This interface allows either @code{int *} or @code{union wait *}
6722 arguments to be passed, using the @code{int *} calling convention.
6723 The program can call @code{wait} with arguments of either type:
6724
6725 @smallexample
6726 int w1 () @{ int w; return wait (&w); @}
6727 int w2 () @{ union wait w; return wait (&w); @}
6728 @end smallexample
6729
6730 @noindent
6731 With this interface, @code{wait}'s implementation might look like this:
6732
6733 @smallexample
6734 pid_t wait (wait_status_ptr_t p)
6735 @{
6736 return waitpid (-1, p.__ip, 0);
6737 @}
6738 @end smallexample
6739
6740 @item unused
6741 @cindex @code{unused} type attribute
6742 When attached to a type (including a @code{union} or a @code{struct}),
6743 this attribute means that variables of that type are meant to appear
6744 possibly unused. GCC does not produce a warning for any variables of
6745 that type, even if the variable appears to do nothing. This is often
6746 the case with lock or thread classes, which are usually defined and then
6747 not referenced, but contain constructors and destructors that have
6748 nontrivial bookkeeping functions.
6749
6750 @item visibility
6751 @cindex @code{visibility} type attribute
6752 In C++, attribute visibility (@pxref{Function Attributes}) can also be
6753 applied to class, struct, union and enum types. Unlike other type
6754 attributes, the attribute must appear between the initial keyword and
6755 the name of the type; it cannot appear after the body of the type.
6756
6757 Note that the type visibility is applied to vague linkage entities
6758 associated with the class (vtable, typeinfo node, etc.). In
6759 particular, if a class is thrown as an exception in one shared object
6760 and caught in another, the class must have default visibility.
6761 Otherwise the two shared objects are unable to use the same
6762 typeinfo node and exception handling will break.
6763
6764 @end table
6765
6766 To specify multiple attributes, separate them by commas within the
6767 double parentheses: for example, @samp{__attribute__ ((aligned (16),
6768 packed))}.
6769
6770 @node ARM Type Attributes
6771 @subsection ARM Type Attributes
6772
6773 @cindex @code{notshared} type attribute, ARM
6774 On those ARM targets that support @code{dllimport} (such as Symbian
6775 OS), you can use the @code{notshared} attribute to indicate that the
6776 virtual table and other similar data for a class should not be
6777 exported from a DLL@. For example:
6778
6779 @smallexample
6780 class __declspec(notshared) C @{
6781 public:
6782 __declspec(dllimport) C();
6783 virtual void f();
6784 @}
6785
6786 __declspec(dllexport)
6787 C::C() @{@}
6788 @end smallexample
6789
6790 @noindent
6791 In this code, @code{C::C} is exported from the current DLL, but the
6792 virtual table for @code{C} is not exported. (You can use
6793 @code{__attribute__} instead of @code{__declspec} if you prefer, but
6794 most Symbian OS code uses @code{__declspec}.)
6795
6796 @node MeP Type Attributes
6797 @subsection MeP Type Attributes
6798
6799 @cindex @code{based} type attribute, MeP
6800 @cindex @code{tiny} type attribute, MeP
6801 @cindex @code{near} type attribute, MeP
6802 @cindex @code{far} type attribute, MeP
6803 Many of the MeP variable attributes may be applied to types as well.
6804 Specifically, the @code{based}, @code{tiny}, @code{near}, and
6805 @code{far} attributes may be applied to either. The @code{io} and
6806 @code{cb} attributes may not be applied to types.
6807
6808 @node PowerPC Type Attributes
6809 @subsection PowerPC Type Attributes
6810
6811 Three attributes currently are defined for PowerPC configurations:
6812 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6813
6814 @cindex @code{ms_struct} type attribute, PowerPC
6815 @cindex @code{gcc_struct} type attribute, PowerPC
6816 For full documentation of the @code{ms_struct} and @code{gcc_struct}
6817 attributes please see the documentation in @ref{x86 Type Attributes}.
6818
6819 @cindex @code{altivec} type attribute, PowerPC
6820 The @code{altivec} attribute allows one to declare AltiVec vector data
6821 types supported by the AltiVec Programming Interface Manual. The
6822 attribute requires an argument to specify one of three vector types:
6823 @code{vector__}, @code{pixel__} (always followed by unsigned short),
6824 and @code{bool__} (always followed by unsigned).
6825
6826 @smallexample
6827 __attribute__((altivec(vector__)))
6828 __attribute__((altivec(pixel__))) unsigned short
6829 __attribute__((altivec(bool__))) unsigned
6830 @end smallexample
6831
6832 These attributes mainly are intended to support the @code{__vector},
6833 @code{__pixel}, and @code{__bool} AltiVec keywords.
6834
6835 @node SPU Type Attributes
6836 @subsection SPU Type Attributes
6837
6838 @cindex @code{spu_vector} type attribute, SPU
6839 The SPU supports the @code{spu_vector} attribute for types. This attribute
6840 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
6841 Language Extensions Specification. It is intended to support the
6842 @code{__vector} keyword.
6843
6844 @node x86 Type Attributes
6845 @subsection x86 Type Attributes
6846
6847 Two attributes are currently defined for x86 configurations:
6848 @code{ms_struct} and @code{gcc_struct}.
6849
6850 @table @code
6851
6852 @item ms_struct
6853 @itemx gcc_struct
6854 @cindex @code{ms_struct} type attribute, x86
6855 @cindex @code{gcc_struct} type attribute, x86
6856
6857 If @code{packed} is used on a structure, or if bit-fields are used
6858 it may be that the Microsoft ABI packs them differently
6859 than GCC normally packs them. Particularly when moving packed
6860 data between functions compiled with GCC and the native Microsoft compiler
6861 (either via function call or as data in a file), it may be necessary to access
6862 either format.
6863
6864 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6865 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6866 command-line options, respectively;
6867 see @ref{x86 Options}, for details of how structure layout is affected.
6868 @xref{x86 Variable Attributes}, for information about the corresponding
6869 attributes on variables.
6870
6871 @end table
6872
6873 @node Label Attributes
6874 @section Label Attributes
6875 @cindex Label Attributes
6876
6877 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
6878 details of the exact syntax for using attributes. Other attributes are
6879 available for functions (@pxref{Function Attributes}), variables
6880 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
6881 statements (@pxref{Statement Attributes}), and for types
6882 (@pxref{Type Attributes}).
6883
6884 This example uses the @code{cold} label attribute to indicate the
6885 @code{ErrorHandling} branch is unlikely to be taken and that the
6886 @code{ErrorHandling} label is unused:
6887
6888 @smallexample
6889
6890 asm goto ("some asm" : : : : NoError);
6891
6892 /* This branch (the fall-through from the asm) is less commonly used */
6893 ErrorHandling:
6894 __attribute__((cold, unused)); /* Semi-colon is required here */
6895 printf("error\n");
6896 return 0;
6897
6898 NoError:
6899 printf("no error\n");
6900 return 1;
6901 @end smallexample
6902
6903 @table @code
6904 @item unused
6905 @cindex @code{unused} label attribute
6906 This feature is intended for program-generated code that may contain
6907 unused labels, but which is compiled with @option{-Wall}. It is
6908 not normally appropriate to use in it human-written code, though it
6909 could be useful in cases where the code that jumps to the label is
6910 contained within an @code{#ifdef} conditional.
6911
6912 @item hot
6913 @cindex @code{hot} label attribute
6914 The @code{hot} attribute on a label is used to inform the compiler that
6915 the path following the label is more likely than paths that are not so
6916 annotated. This attribute is used in cases where @code{__builtin_expect}
6917 cannot be used, for instance with computed goto or @code{asm goto}.
6918
6919 @item cold
6920 @cindex @code{cold} label attribute
6921 The @code{cold} attribute on labels is used to inform the compiler that
6922 the path following the label is unlikely to be executed. This attribute
6923 is used in cases where @code{__builtin_expect} cannot be used, for instance
6924 with computed goto or @code{asm goto}.
6925
6926 @end table
6927
6928 @node Enumerator Attributes
6929 @section Enumerator Attributes
6930 @cindex Enumerator Attributes
6931
6932 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
6933 details of the exact syntax for using attributes. Other attributes are
6934 available for functions (@pxref{Function Attributes}), variables
6935 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
6936 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
6937
6938 This example uses the @code{deprecated} enumerator attribute to indicate the
6939 @code{oldval} enumerator is deprecated:
6940
6941 @smallexample
6942 enum E @{
6943 oldval __attribute__((deprecated)),
6944 newval
6945 @};
6946
6947 int
6948 fn (void)
6949 @{
6950 return oldval;
6951 @}
6952 @end smallexample
6953
6954 @table @code
6955 @item deprecated
6956 @cindex @code{deprecated} enumerator attribute
6957 The @code{deprecated} attribute results in a warning if the enumerator
6958 is used anywhere in the source file. This is useful when identifying
6959 enumerators that are expected to be removed in a future version of a
6960 program. The warning also includes the location of the declaration
6961 of the deprecated enumerator, to enable users to easily find further
6962 information about why the enumerator is deprecated, or what they should
6963 do instead. Note that the warnings only occurs for uses.
6964
6965 @end table
6966
6967 @node Statement Attributes
6968 @section Statement Attributes
6969 @cindex Statement Attributes
6970
6971 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
6972 for details of the exact syntax for using attributes. Other attributes are
6973 available for functions (@pxref{Function Attributes}), variables
6974 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
6975 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
6976
6977 This example uses the @code{fallthrough} statement attribute to indicate that
6978 the @option{-Wimplicit-fallthrough} warning should not be emitted:
6979
6980 @smallexample
6981 switch (cond)
6982 @{
6983 case 1:
6984 bar (1);
6985 __attribute__((fallthrough));
6986 case 2:
6987 @dots{}
6988 @}
6989 @end smallexample
6990
6991 @table @code
6992 @item fallthrough
6993 @cindex @code{fallthrough} statement attribute
6994 The @code{fallthrough} attribute with a null statement serves as a
6995 fallthrough statement. It hints to the compiler that a statement
6996 that falls through to another case label, or user-defined label
6997 in a switch statement is intentional and thus the
6998 @option{-Wimplicit-fallthrough} warning must not trigger. The
6999 fallthrough attribute may appear at most once in each attribute
7000 list, and may not be mixed with other attributes. It can only
7001 be used in a switch statement (the compiler will issue an error
7002 otherwise), after a preceding statement and before a logically
7003 succeeding case label, or user-defined label.
7004
7005 @end table
7006
7007 @node Attribute Syntax
7008 @section Attribute Syntax
7009 @cindex attribute syntax
7010
7011 This section describes the syntax with which @code{__attribute__} may be
7012 used, and the constructs to which attribute specifiers bind, for the C
7013 language. Some details may vary for C++ and Objective-C@. Because of
7014 infelicities in the grammar for attributes, some forms described here
7015 may not be successfully parsed in all cases.
7016
7017 There are some problems with the semantics of attributes in C++. For
7018 example, there are no manglings for attributes, although they may affect
7019 code generation, so problems may arise when attributed types are used in
7020 conjunction with templates or overloading. Similarly, @code{typeid}
7021 does not distinguish between types with different attributes. Support
7022 for attributes in C++ may be restricted in future to attributes on
7023 declarations only, but not on nested declarators.
7024
7025 @xref{Function Attributes}, for details of the semantics of attributes
7026 applying to functions. @xref{Variable Attributes}, for details of the
7027 semantics of attributes applying to variables. @xref{Type Attributes},
7028 for details of the semantics of attributes applying to structure, union
7029 and enumerated types.
7030 @xref{Label Attributes}, for details of the semantics of attributes
7031 applying to labels.
7032 @xref{Enumerator Attributes}, for details of the semantics of attributes
7033 applying to enumerators.
7034 @xref{Statement Attributes}, for details of the semantics of attributes
7035 applying to statements.
7036
7037 An @dfn{attribute specifier} is of the form
7038 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7039 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7040 each attribute is one of the following:
7041
7042 @itemize @bullet
7043 @item
7044 Empty. Empty attributes are ignored.
7045
7046 @item
7047 An attribute name
7048 (which may be an identifier such as @code{unused}, or a reserved
7049 word such as @code{const}).
7050
7051 @item
7052 An attribute name followed by a parenthesized list of
7053 parameters for the attribute.
7054 These parameters take one of the following forms:
7055
7056 @itemize @bullet
7057 @item
7058 An identifier. For example, @code{mode} attributes use this form.
7059
7060 @item
7061 An identifier followed by a comma and a non-empty comma-separated list
7062 of expressions. For example, @code{format} attributes use this form.
7063
7064 @item
7065 A possibly empty comma-separated list of expressions. For example,
7066 @code{format_arg} attributes use this form with the list being a single
7067 integer constant expression, and @code{alias} attributes use this form
7068 with the list being a single string constant.
7069 @end itemize
7070 @end itemize
7071
7072 An @dfn{attribute specifier list} is a sequence of one or more attribute
7073 specifiers, not separated by any other tokens.
7074
7075 You may optionally specify attribute names with @samp{__}
7076 preceding and following the name.
7077 This allows you to use them in header files without
7078 being concerned about a possible macro of the same name. For example,
7079 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7080
7081
7082 @subsubheading Label Attributes
7083
7084 In GNU C, an attribute specifier list may appear after the colon following a
7085 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7086 attributes on labels if the attribute specifier is immediately
7087 followed by a semicolon (i.e., the label applies to an empty
7088 statement). If the semicolon is missing, C++ label attributes are
7089 ambiguous, as it is permissible for a declaration, which could begin
7090 with an attribute list, to be labelled in C++. Declarations cannot be
7091 labelled in C90 or C99, so the ambiguity does not arise there.
7092
7093 @subsubheading Enumerator Attributes
7094
7095 In GNU C, an attribute specifier list may appear as part of an enumerator.
7096 The attribute goes after the enumeration constant, before @code{=}, if
7097 present. The optional attribute in the enumerator appertains to the
7098 enumeration constant. It is not possible to place the attribute after
7099 the constant expression, if present.
7100
7101 @subsubheading Statement Attributes
7102 In GNU C, an attribute specifier list may appear as part of a null
7103 statement. The attribute goes before the semicolon.
7104
7105 @subsubheading Type Attributes
7106
7107 An attribute specifier list may appear as part of a @code{struct},
7108 @code{union} or @code{enum} specifier. It may go either immediately
7109 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7110 the closing brace. The former syntax is preferred.
7111 Where attribute specifiers follow the closing brace, they are considered
7112 to relate to the structure, union or enumerated type defined, not to any
7113 enclosing declaration the type specifier appears in, and the type
7114 defined is not complete until after the attribute specifiers.
7115 @c Otherwise, there would be the following problems: a shift/reduce
7116 @c conflict between attributes binding the struct/union/enum and
7117 @c binding to the list of specifiers/qualifiers; and "aligned"
7118 @c attributes could use sizeof for the structure, but the size could be
7119 @c changed later by "packed" attributes.
7120
7121
7122 @subsubheading All other attributes
7123
7124 Otherwise, an attribute specifier appears as part of a declaration,
7125 counting declarations of unnamed parameters and type names, and relates
7126 to that declaration (which may be nested in another declaration, for
7127 example in the case of a parameter declaration), or to a particular declarator
7128 within a declaration. Where an
7129 attribute specifier is applied to a parameter declared as a function or
7130 an array, it should apply to the function or array rather than the
7131 pointer to which the parameter is implicitly converted, but this is not
7132 yet correctly implemented.
7133
7134 Any list of specifiers and qualifiers at the start of a declaration may
7135 contain attribute specifiers, whether or not such a list may in that
7136 context contain storage class specifiers. (Some attributes, however,
7137 are essentially in the nature of storage class specifiers, and only make
7138 sense where storage class specifiers may be used; for example,
7139 @code{section}.) There is one necessary limitation to this syntax: the
7140 first old-style parameter declaration in a function definition cannot
7141 begin with an attribute specifier, because such an attribute applies to
7142 the function instead by syntax described below (which, however, is not
7143 yet implemented in this case). In some other cases, attribute
7144 specifiers are permitted by this grammar but not yet supported by the
7145 compiler. All attribute specifiers in this place relate to the
7146 declaration as a whole. In the obsolescent usage where a type of
7147 @code{int} is implied by the absence of type specifiers, such a list of
7148 specifiers and qualifiers may be an attribute specifier list with no
7149 other specifiers or qualifiers.
7150
7151 At present, the first parameter in a function prototype must have some
7152 type specifier that is not an attribute specifier; this resolves an
7153 ambiguity in the interpretation of @code{void f(int
7154 (__attribute__((foo)) x))}, but is subject to change. At present, if
7155 the parentheses of a function declarator contain only attributes then
7156 those attributes are ignored, rather than yielding an error or warning
7157 or implying a single parameter of type int, but this is subject to
7158 change.
7159
7160 An attribute specifier list may appear immediately before a declarator
7161 (other than the first) in a comma-separated list of declarators in a
7162 declaration of more than one identifier using a single list of
7163 specifiers and qualifiers. Such attribute specifiers apply
7164 only to the identifier before whose declarator they appear. For
7165 example, in
7166
7167 @smallexample
7168 __attribute__((noreturn)) void d0 (void),
7169 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7170 d2 (void);
7171 @end smallexample
7172
7173 @noindent
7174 the @code{noreturn} attribute applies to all the functions
7175 declared; the @code{format} attribute only applies to @code{d1}.
7176
7177 An attribute specifier list may appear immediately before the comma,
7178 @code{=} or semicolon terminating the declaration of an identifier other
7179 than a function definition. Such attribute specifiers apply
7180 to the declared object or function. Where an
7181 assembler name for an object or function is specified (@pxref{Asm
7182 Labels}), the attribute must follow the @code{asm}
7183 specification.
7184
7185 An attribute specifier list may, in future, be permitted to appear after
7186 the declarator in a function definition (before any old-style parameter
7187 declarations or the function body).
7188
7189 Attribute specifiers may be mixed with type qualifiers appearing inside
7190 the @code{[]} of a parameter array declarator, in the C99 construct by
7191 which such qualifiers are applied to the pointer to which the array is
7192 implicitly converted. Such attribute specifiers apply to the pointer,
7193 not to the array, but at present this is not implemented and they are
7194 ignored.
7195
7196 An attribute specifier list may appear at the start of a nested
7197 declarator. At present, there are some limitations in this usage: the
7198 attributes correctly apply to the declarator, but for most individual
7199 attributes the semantics this implies are not implemented.
7200 When attribute specifiers follow the @code{*} of a pointer
7201 declarator, they may be mixed with any type qualifiers present.
7202 The following describes the formal semantics of this syntax. It makes the
7203 most sense if you are familiar with the formal specification of
7204 declarators in the ISO C standard.
7205
7206 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7207 D1}, where @code{T} contains declaration specifiers that specify a type
7208 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7209 contains an identifier @var{ident}. The type specified for @var{ident}
7210 for derived declarators whose type does not include an attribute
7211 specifier is as in the ISO C standard.
7212
7213 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7214 and the declaration @code{T D} specifies the type
7215 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7216 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7217 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7218
7219 If @code{D1} has the form @code{*
7220 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7221 declaration @code{T D} specifies the type
7222 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7223 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7224 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7225 @var{ident}.
7226
7227 For example,
7228
7229 @smallexample
7230 void (__attribute__((noreturn)) ****f) (void);
7231 @end smallexample
7232
7233 @noindent
7234 specifies the type ``pointer to pointer to pointer to pointer to
7235 non-returning function returning @code{void}''. As another example,
7236
7237 @smallexample
7238 char *__attribute__((aligned(8))) *f;
7239 @end smallexample
7240
7241 @noindent
7242 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7243 Note again that this does not work with most attributes; for example,
7244 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7245 is not yet supported.
7246
7247 For compatibility with existing code written for compiler versions that
7248 did not implement attributes on nested declarators, some laxity is
7249 allowed in the placing of attributes. If an attribute that only applies
7250 to types is applied to a declaration, it is treated as applying to
7251 the type of that declaration. If an attribute that only applies to
7252 declarations is applied to the type of a declaration, it is treated
7253 as applying to that declaration; and, for compatibility with code
7254 placing the attributes immediately before the identifier declared, such
7255 an attribute applied to a function return type is treated as
7256 applying to the function type, and such an attribute applied to an array
7257 element type is treated as applying to the array type. If an
7258 attribute that only applies to function types is applied to a
7259 pointer-to-function type, it is treated as applying to the pointer
7260 target type; if such an attribute is applied to a function return type
7261 that is not a pointer-to-function type, it is treated as applying
7262 to the function type.
7263
7264 @node Function Prototypes
7265 @section Prototypes and Old-Style Function Definitions
7266 @cindex function prototype declarations
7267 @cindex old-style function definitions
7268 @cindex promotion of formal parameters
7269
7270 GNU C extends ISO C to allow a function prototype to override a later
7271 old-style non-prototype definition. Consider the following example:
7272
7273 @smallexample
7274 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7275 #ifdef __STDC__
7276 #define P(x) x
7277 #else
7278 #define P(x) ()
7279 #endif
7280
7281 /* @r{Prototype function declaration.} */
7282 int isroot P((uid_t));
7283
7284 /* @r{Old-style function definition.} */
7285 int
7286 isroot (x) /* @r{??? lossage here ???} */
7287 uid_t x;
7288 @{
7289 return x == 0;
7290 @}
7291 @end smallexample
7292
7293 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7294 not allow this example, because subword arguments in old-style
7295 non-prototype definitions are promoted. Therefore in this example the
7296 function definition's argument is really an @code{int}, which does not
7297 match the prototype argument type of @code{short}.
7298
7299 This restriction of ISO C makes it hard to write code that is portable
7300 to traditional C compilers, because the programmer does not know
7301 whether the @code{uid_t} type is @code{short}, @code{int}, or
7302 @code{long}. Therefore, in cases like these GNU C allows a prototype
7303 to override a later old-style definition. More precisely, in GNU C, a
7304 function prototype argument type overrides the argument type specified
7305 by a later old-style definition if the former type is the same as the
7306 latter type before promotion. Thus in GNU C the above example is
7307 equivalent to the following:
7308
7309 @smallexample
7310 int isroot (uid_t);
7311
7312 int
7313 isroot (uid_t x)
7314 @{
7315 return x == 0;
7316 @}
7317 @end smallexample
7318
7319 @noindent
7320 GNU C++ does not support old-style function definitions, so this
7321 extension is irrelevant.
7322
7323 @node C++ Comments
7324 @section C++ Style Comments
7325 @cindex @code{//}
7326 @cindex C++ comments
7327 @cindex comments, C++ style
7328
7329 In GNU C, you may use C++ style comments, which start with @samp{//} and
7330 continue until the end of the line. Many other C implementations allow
7331 such comments, and they are included in the 1999 C standard. However,
7332 C++ style comments are not recognized if you specify an @option{-std}
7333 option specifying a version of ISO C before C99, or @option{-ansi}
7334 (equivalent to @option{-std=c90}).
7335
7336 @node Dollar Signs
7337 @section Dollar Signs in Identifier Names
7338 @cindex $
7339 @cindex dollar signs in identifier names
7340 @cindex identifier names, dollar signs in
7341
7342 In GNU C, you may normally use dollar signs in identifier names.
7343 This is because many traditional C implementations allow such identifiers.
7344 However, dollar signs in identifiers are not supported on a few target
7345 machines, typically because the target assembler does not allow them.
7346
7347 @node Character Escapes
7348 @section The Character @key{ESC} in Constants
7349
7350 You can use the sequence @samp{\e} in a string or character constant to
7351 stand for the ASCII character @key{ESC}.
7352
7353 @node Alignment
7354 @section Inquiring on Alignment of Types or Variables
7355 @cindex alignment
7356 @cindex type alignment
7357 @cindex variable alignment
7358
7359 The keyword @code{__alignof__} allows you to inquire about how an object
7360 is aligned, or the minimum alignment usually required by a type. Its
7361 syntax is just like @code{sizeof}.
7362
7363 For example, if the target machine requires a @code{double} value to be
7364 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7365 This is true on many RISC machines. On more traditional machine
7366 designs, @code{__alignof__ (double)} is 4 or even 2.
7367
7368 Some machines never actually require alignment; they allow reference to any
7369 data type even at an odd address. For these machines, @code{__alignof__}
7370 reports the smallest alignment that GCC gives the data type, usually as
7371 mandated by the target ABI.
7372
7373 If the operand of @code{__alignof__} is an lvalue rather than a type,
7374 its value is the required alignment for its type, taking into account
7375 any minimum alignment specified with GCC's @code{__attribute__}
7376 extension (@pxref{Variable Attributes}). For example, after this
7377 declaration:
7378
7379 @smallexample
7380 struct foo @{ int x; char y; @} foo1;
7381 @end smallexample
7382
7383 @noindent
7384 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7385 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7386
7387 It is an error to ask for the alignment of an incomplete type.
7388
7389
7390 @node Inline
7391 @section An Inline Function is As Fast As a Macro
7392 @cindex inline functions
7393 @cindex integrating function code
7394 @cindex open coding
7395 @cindex macros, inline alternative
7396
7397 By declaring a function inline, you can direct GCC to make
7398 calls to that function faster. One way GCC can achieve this is to
7399 integrate that function's code into the code for its callers. This
7400 makes execution faster by eliminating the function-call overhead; in
7401 addition, if any of the actual argument values are constant, their
7402 known values may permit simplifications at compile time so that not
7403 all of the inline function's code needs to be included. The effect on
7404 code size is less predictable; object code may be larger or smaller
7405 with function inlining, depending on the particular case. You can
7406 also direct GCC to try to integrate all ``simple enough'' functions
7407 into their callers with the option @option{-finline-functions}.
7408
7409 GCC implements three different semantics of declaring a function
7410 inline. One is available with @option{-std=gnu89} or
7411 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7412 on all inline declarations, another when
7413 @option{-std=c99}, @option{-std=c11},
7414 @option{-std=gnu99} or @option{-std=gnu11}
7415 (without @option{-fgnu89-inline}), and the third
7416 is used when compiling C++.
7417
7418 To declare a function inline, use the @code{inline} keyword in its
7419 declaration, like this:
7420
7421 @smallexample
7422 static inline int
7423 inc (int *a)
7424 @{
7425 return (*a)++;
7426 @}
7427 @end smallexample
7428
7429 If you are writing a header file to be included in ISO C90 programs, write
7430 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7431
7432 The three types of inlining behave similarly in two important cases:
7433 when the @code{inline} keyword is used on a @code{static} function,
7434 like the example above, and when a function is first declared without
7435 using the @code{inline} keyword and then is defined with
7436 @code{inline}, like this:
7437
7438 @smallexample
7439 extern int inc (int *a);
7440 inline int
7441 inc (int *a)
7442 @{
7443 return (*a)++;
7444 @}
7445 @end smallexample
7446
7447 In both of these common cases, the program behaves the same as if you
7448 had not used the @code{inline} keyword, except for its speed.
7449
7450 @cindex inline functions, omission of
7451 @opindex fkeep-inline-functions
7452 When a function is both inline and @code{static}, if all calls to the
7453 function are integrated into the caller, and the function's address is
7454 never used, then the function's own assembler code is never referenced.
7455 In this case, GCC does not actually output assembler code for the
7456 function, unless you specify the option @option{-fkeep-inline-functions}.
7457 If there is a nonintegrated call, then the function is compiled to
7458 assembler code as usual. The function must also be compiled as usual if
7459 the program refers to its address, because that can't be inlined.
7460
7461 @opindex Winline
7462 Note that certain usages in a function definition can make it unsuitable
7463 for inline substitution. Among these usages are: variadic functions,
7464 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7465 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7466 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7467 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7468 function marked @code{inline} could not be substituted, and gives the
7469 reason for the failure.
7470
7471 @cindex automatic @code{inline} for C++ member fns
7472 @cindex @code{inline} automatic for C++ member fns
7473 @cindex member fns, automatically @code{inline}
7474 @cindex C++ member fns, automatically @code{inline}
7475 @opindex fno-default-inline
7476 As required by ISO C++, GCC considers member functions defined within
7477 the body of a class to be marked inline even if they are
7478 not explicitly declared with the @code{inline} keyword. You can
7479 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7480 Options,,Options Controlling C++ Dialect}.
7481
7482 GCC does not inline any functions when not optimizing unless you specify
7483 the @samp{always_inline} attribute for the function, like this:
7484
7485 @smallexample
7486 /* @r{Prototype.} */
7487 inline void foo (const char) __attribute__((always_inline));
7488 @end smallexample
7489
7490 The remainder of this section is specific to GNU C90 inlining.
7491
7492 @cindex non-static inline function
7493 When an inline function is not @code{static}, then the compiler must assume
7494 that there may be calls from other source files; since a global symbol can
7495 be defined only once in any program, the function must not be defined in
7496 the other source files, so the calls therein cannot be integrated.
7497 Therefore, a non-@code{static} inline function is always compiled on its
7498 own in the usual fashion.
7499
7500 If you specify both @code{inline} and @code{extern} in the function
7501 definition, then the definition is used only for inlining. In no case
7502 is the function compiled on its own, not even if you refer to its
7503 address explicitly. Such an address becomes an external reference, as
7504 if you had only declared the function, and had not defined it.
7505
7506 This combination of @code{inline} and @code{extern} has almost the
7507 effect of a macro. The way to use it is to put a function definition in
7508 a header file with these keywords, and put another copy of the
7509 definition (lacking @code{inline} and @code{extern}) in a library file.
7510 The definition in the header file causes most calls to the function
7511 to be inlined. If any uses of the function remain, they refer to
7512 the single copy in the library.
7513
7514 @node Volatiles
7515 @section When is a Volatile Object Accessed?
7516 @cindex accessing volatiles
7517 @cindex volatile read
7518 @cindex volatile write
7519 @cindex volatile access
7520
7521 C has the concept of volatile objects. These are normally accessed by
7522 pointers and used for accessing hardware or inter-thread
7523 communication. The standard encourages compilers to refrain from
7524 optimizations concerning accesses to volatile objects, but leaves it
7525 implementation defined as to what constitutes a volatile access. The
7526 minimum requirement is that at a sequence point all previous accesses
7527 to volatile objects have stabilized and no subsequent accesses have
7528 occurred. Thus an implementation is free to reorder and combine
7529 volatile accesses that occur between sequence points, but cannot do
7530 so for accesses across a sequence point. The use of volatile does
7531 not allow you to violate the restriction on updating objects multiple
7532 times between two sequence points.
7533
7534 Accesses to non-volatile objects are not ordered with respect to
7535 volatile accesses. You cannot use a volatile object as a memory
7536 barrier to order a sequence of writes to non-volatile memory. For
7537 instance:
7538
7539 @smallexample
7540 int *ptr = @var{something};
7541 volatile int vobj;
7542 *ptr = @var{something};
7543 vobj = 1;
7544 @end smallexample
7545
7546 @noindent
7547 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7548 that the write to @var{*ptr} occurs by the time the update
7549 of @var{vobj} happens. If you need this guarantee, you must use
7550 a stronger memory barrier such as:
7551
7552 @smallexample
7553 int *ptr = @var{something};
7554 volatile int vobj;
7555 *ptr = @var{something};
7556 asm volatile ("" : : : "memory");
7557 vobj = 1;
7558 @end smallexample
7559
7560 A scalar volatile object is read when it is accessed in a void context:
7561
7562 @smallexample
7563 volatile int *src = @var{somevalue};
7564 *src;
7565 @end smallexample
7566
7567 Such expressions are rvalues, and GCC implements this as a
7568 read of the volatile object being pointed to.
7569
7570 Assignments are also expressions and have an rvalue. However when
7571 assigning to a scalar volatile, the volatile object is not reread,
7572 regardless of whether the assignment expression's rvalue is used or
7573 not. If the assignment's rvalue is used, the value is that assigned
7574 to the volatile object. For instance, there is no read of @var{vobj}
7575 in all the following cases:
7576
7577 @smallexample
7578 int obj;
7579 volatile int vobj;
7580 vobj = @var{something};
7581 obj = vobj = @var{something};
7582 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7583 obj = (@var{something}, vobj = @var{anotherthing});
7584 @end smallexample
7585
7586 If you need to read the volatile object after an assignment has
7587 occurred, you must use a separate expression with an intervening
7588 sequence point.
7589
7590 As bit-fields are not individually addressable, volatile bit-fields may
7591 be implicitly read when written to, or when adjacent bit-fields are
7592 accessed. Bit-field operations may be optimized such that adjacent
7593 bit-fields are only partially accessed, if they straddle a storage unit
7594 boundary. For these reasons it is unwise to use volatile bit-fields to
7595 access hardware.
7596
7597 @node Using Assembly Language with C
7598 @section How to Use Inline Assembly Language in C Code
7599 @cindex @code{asm} keyword
7600 @cindex assembly language in C
7601 @cindex inline assembly language
7602 @cindex mixing assembly language and C
7603
7604 The @code{asm} keyword allows you to embed assembler instructions
7605 within C code. GCC provides two forms of inline @code{asm}
7606 statements. A @dfn{basic @code{asm}} statement is one with no
7607 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7608 statement (@pxref{Extended Asm}) includes one or more operands.
7609 The extended form is preferred for mixing C and assembly language
7610 within a function, but to include assembly language at
7611 top level you must use basic @code{asm}.
7612
7613 You can also use the @code{asm} keyword to override the assembler name
7614 for a C symbol, or to place a C variable in a specific register.
7615
7616 @menu
7617 * Basic Asm:: Inline assembler without operands.
7618 * Extended Asm:: Inline assembler with operands.
7619 * Constraints:: Constraints for @code{asm} operands
7620 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7621 * Explicit Register Variables:: Defining variables residing in specified
7622 registers.
7623 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7624 @end menu
7625
7626 @node Basic Asm
7627 @subsection Basic Asm --- Assembler Instructions Without Operands
7628 @cindex basic @code{asm}
7629 @cindex assembly language in C, basic
7630
7631 A basic @code{asm} statement has the following syntax:
7632
7633 @example
7634 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7635 @end example
7636
7637 The @code{asm} keyword is a GNU extension.
7638 When writing code that can be compiled with @option{-ansi} and the
7639 various @option{-std} options, use @code{__asm__} instead of
7640 @code{asm} (@pxref{Alternate Keywords}).
7641
7642 @subsubheading Qualifiers
7643 @table @code
7644 @item volatile
7645 The optional @code{volatile} qualifier has no effect.
7646 All basic @code{asm} blocks are implicitly volatile.
7647 @end table
7648
7649 @subsubheading Parameters
7650 @table @var
7651
7652 @item AssemblerInstructions
7653 This is a literal string that specifies the assembler code. The string can
7654 contain any instructions recognized by the assembler, including directives.
7655 GCC does not parse the assembler instructions themselves and
7656 does not know what they mean or even whether they are valid assembler input.
7657
7658 You may place multiple assembler instructions together in a single @code{asm}
7659 string, separated by the characters normally used in assembly code for the
7660 system. A combination that works in most places is a newline to break the
7661 line, plus a tab character (written as @samp{\n\t}).
7662 Some assemblers allow semicolons as a line separator. However,
7663 note that some assembler dialects use semicolons to start a comment.
7664 @end table
7665
7666 @subsubheading Remarks
7667 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
7668 smaller, safer, and more efficient code, and in most cases it is a
7669 better solution than basic @code{asm}. However, there are two
7670 situations where only basic @code{asm} can be used:
7671
7672 @itemize @bullet
7673 @item
7674 Extended @code{asm} statements have to be inside a C
7675 function, so to write inline assembly language at file scope (``top-level''),
7676 outside of C functions, you must use basic @code{asm}.
7677 You can use this technique to emit assembler directives,
7678 define assembly language macros that can be invoked elsewhere in the file,
7679 or write entire functions in assembly language.
7680
7681 @item
7682 Functions declared
7683 with the @code{naked} attribute also require basic @code{asm}
7684 (@pxref{Function Attributes}).
7685 @end itemize
7686
7687 Safely accessing C data and calling functions from basic @code{asm} is more
7688 complex than it may appear. To access C data, it is better to use extended
7689 @code{asm}.
7690
7691 Do not expect a sequence of @code{asm} statements to remain perfectly
7692 consecutive after compilation. If certain instructions need to remain
7693 consecutive in the output, put them in a single multi-instruction @code{asm}
7694 statement. Note that GCC's optimizers can move @code{asm} statements
7695 relative to other code, including across jumps.
7696
7697 @code{asm} statements may not perform jumps into other @code{asm} statements.
7698 GCC does not know about these jumps, and therefore cannot take
7699 account of them when deciding how to optimize. Jumps from @code{asm} to C
7700 labels are only supported in extended @code{asm}.
7701
7702 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7703 assembly code when optimizing. This can lead to unexpected duplicate
7704 symbol errors during compilation if your assembly code defines symbols or
7705 labels.
7706
7707 @strong{Warning:} The C standards do not specify semantics for @code{asm},
7708 making it a potential source of incompatibilities between compilers. These
7709 incompatibilities may not produce compiler warnings/errors.
7710
7711 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
7712 means there is no way to communicate to the compiler what is happening
7713 inside them. GCC has no visibility of symbols in the @code{asm} and may
7714 discard them as unreferenced. It also does not know about side effects of
7715 the assembler code, such as modifications to memory or registers. Unlike
7716 some compilers, GCC assumes that no changes to general purpose registers
7717 occur. This assumption may change in a future release.
7718
7719 To avoid complications from future changes to the semantics and the
7720 compatibility issues between compilers, consider replacing basic @code{asm}
7721 with extended @code{asm}. See
7722 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
7723 from basic asm to extended asm} for information about how to perform this
7724 conversion.
7725
7726 The compiler copies the assembler instructions in a basic @code{asm}
7727 verbatim to the assembly language output file, without
7728 processing dialects or any of the @samp{%} operators that are available with
7729 extended @code{asm}. This results in minor differences between basic
7730 @code{asm} strings and extended @code{asm} templates. For example, to refer to
7731 registers you might use @samp{%eax} in basic @code{asm} and
7732 @samp{%%eax} in extended @code{asm}.
7733
7734 On targets such as x86 that support multiple assembler dialects,
7735 all basic @code{asm} blocks use the assembler dialect specified by the
7736 @option{-masm} command-line option (@pxref{x86 Options}).
7737 Basic @code{asm} provides no
7738 mechanism to provide different assembler strings for different dialects.
7739
7740 For basic @code{asm} with non-empty assembler string GCC assumes
7741 the assembler block does not change any general purpose registers,
7742 but it may read or write any globally accessible variable.
7743
7744 Here is an example of basic @code{asm} for i386:
7745
7746 @example
7747 /* Note that this code will not compile with -masm=intel */
7748 #define DebugBreak() asm("int $3")
7749 @end example
7750
7751 @node Extended Asm
7752 @subsection Extended Asm - Assembler Instructions with C Expression Operands
7753 @cindex extended @code{asm}
7754 @cindex assembly language in C, extended
7755
7756 With extended @code{asm} you can read and write C variables from
7757 assembler and perform jumps from assembler code to C labels.
7758 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
7759 the operand parameters after the assembler template:
7760
7761 @example
7762 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
7763 : @var{OutputOperands}
7764 @r{[} : @var{InputOperands}
7765 @r{[} : @var{Clobbers} @r{]} @r{]})
7766
7767 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
7768 :
7769 : @var{InputOperands}
7770 : @var{Clobbers}
7771 : @var{GotoLabels})
7772 @end example
7773
7774 The @code{asm} keyword is a GNU extension.
7775 When writing code that can be compiled with @option{-ansi} and the
7776 various @option{-std} options, use @code{__asm__} instead of
7777 @code{asm} (@pxref{Alternate Keywords}).
7778
7779 @subsubheading Qualifiers
7780 @table @code
7781
7782 @item volatile
7783 The typical use of extended @code{asm} statements is to manipulate input
7784 values to produce output values. However, your @code{asm} statements may
7785 also produce side effects. If so, you may need to use the @code{volatile}
7786 qualifier to disable certain optimizations. @xref{Volatile}.
7787
7788 @item goto
7789 This qualifier informs the compiler that the @code{asm} statement may
7790 perform a jump to one of the labels listed in the @var{GotoLabels}.
7791 @xref{GotoLabels}.
7792 @end table
7793
7794 @subsubheading Parameters
7795 @table @var
7796 @item AssemblerTemplate
7797 This is a literal string that is the template for the assembler code. It is a
7798 combination of fixed text and tokens that refer to the input, output,
7799 and goto parameters. @xref{AssemblerTemplate}.
7800
7801 @item OutputOperands
7802 A comma-separated list of the C variables modified by the instructions in the
7803 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
7804
7805 @item InputOperands
7806 A comma-separated list of C expressions read by the instructions in the
7807 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
7808
7809 @item Clobbers
7810 A comma-separated list of registers or other values changed by the
7811 @var{AssemblerTemplate}, beyond those listed as outputs.
7812 An empty list is permitted. @xref{Clobbers}.
7813
7814 @item GotoLabels
7815 When you are using the @code{goto} form of @code{asm}, this section contains
7816 the list of all C labels to which the code in the
7817 @var{AssemblerTemplate} may jump.
7818 @xref{GotoLabels}.
7819
7820 @code{asm} statements may not perform jumps into other @code{asm} statements,
7821 only to the listed @var{GotoLabels}.
7822 GCC's optimizers do not know about other jumps; therefore they cannot take
7823 account of them when deciding how to optimize.
7824 @end table
7825
7826 The total number of input + output + goto operands is limited to 30.
7827
7828 @subsubheading Remarks
7829 The @code{asm} statement allows you to include assembly instructions directly
7830 within C code. This may help you to maximize performance in time-sensitive
7831 code or to access assembly instructions that are not readily available to C
7832 programs.
7833
7834 Note that extended @code{asm} statements must be inside a function. Only
7835 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
7836 Functions declared with the @code{naked} attribute also require basic
7837 @code{asm} (@pxref{Function Attributes}).
7838
7839 While the uses of @code{asm} are many and varied, it may help to think of an
7840 @code{asm} statement as a series of low-level instructions that convert input
7841 parameters to output parameters. So a simple (if not particularly useful)
7842 example for i386 using @code{asm} might look like this:
7843
7844 @example
7845 int src = 1;
7846 int dst;
7847
7848 asm ("mov %1, %0\n\t"
7849 "add $1, %0"
7850 : "=r" (dst)
7851 : "r" (src));
7852
7853 printf("%d\n", dst);
7854 @end example
7855
7856 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
7857
7858 @anchor{Volatile}
7859 @subsubsection Volatile
7860 @cindex volatile @code{asm}
7861 @cindex @code{asm} volatile
7862
7863 GCC's optimizers sometimes discard @code{asm} statements if they determine
7864 there is no need for the output variables. Also, the optimizers may move
7865 code out of loops if they believe that the code will always return the same
7866 result (i.e. none of its input values change between calls). Using the
7867 @code{volatile} qualifier disables these optimizations. @code{asm} statements
7868 that have no output operands, including @code{asm goto} statements,
7869 are implicitly volatile.
7870
7871 This i386 code demonstrates a case that does not use (or require) the
7872 @code{volatile} qualifier. If it is performing assertion checking, this code
7873 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
7874 unreferenced by any code. As a result, the optimizers can discard the
7875 @code{asm} statement, which in turn removes the need for the entire
7876 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
7877 isn't needed you allow the optimizers to produce the most efficient code
7878 possible.
7879
7880 @example
7881 void DoCheck(uint32_t dwSomeValue)
7882 @{
7883 uint32_t dwRes;
7884
7885 // Assumes dwSomeValue is not zero.
7886 asm ("bsfl %1,%0"
7887 : "=r" (dwRes)
7888 : "r" (dwSomeValue)
7889 : "cc");
7890
7891 assert(dwRes > 3);
7892 @}
7893 @end example
7894
7895 The next example shows a case where the optimizers can recognize that the input
7896 (@code{dwSomeValue}) never changes during the execution of the function and can
7897 therefore move the @code{asm} outside the loop to produce more efficient code.
7898 Again, using @code{volatile} disables this type of optimization.
7899
7900 @example
7901 void do_print(uint32_t dwSomeValue)
7902 @{
7903 uint32_t dwRes;
7904
7905 for (uint32_t x=0; x < 5; x++)
7906 @{
7907 // Assumes dwSomeValue is not zero.
7908 asm ("bsfl %1,%0"
7909 : "=r" (dwRes)
7910 : "r" (dwSomeValue)
7911 : "cc");
7912
7913 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
7914 @}
7915 @}
7916 @end example
7917
7918 The following example demonstrates a case where you need to use the
7919 @code{volatile} qualifier.
7920 It uses the x86 @code{rdtsc} instruction, which reads
7921 the computer's time-stamp counter. Without the @code{volatile} qualifier,
7922 the optimizers might assume that the @code{asm} block will always return the
7923 same value and therefore optimize away the second call.
7924
7925 @example
7926 uint64_t msr;
7927
7928 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7929 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7930 "or %%rdx, %0" // 'Or' in the lower bits.
7931 : "=a" (msr)
7932 :
7933 : "rdx");
7934
7935 printf("msr: %llx\n", msr);
7936
7937 // Do other work...
7938
7939 // Reprint the timestamp
7940 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7941 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7942 "or %%rdx, %0" // 'Or' in the lower bits.
7943 : "=a" (msr)
7944 :
7945 : "rdx");
7946
7947 printf("msr: %llx\n", msr);
7948 @end example
7949
7950 GCC's optimizers do not treat this code like the non-volatile code in the
7951 earlier examples. They do not move it out of loops or omit it on the
7952 assumption that the result from a previous call is still valid.
7953
7954 Note that the compiler can move even volatile @code{asm} instructions relative
7955 to other code, including across jump instructions. For example, on many
7956 targets there is a system register that controls the rounding mode of
7957 floating-point operations. Setting it with a volatile @code{asm}, as in the
7958 following PowerPC example, does not work reliably.
7959
7960 @example
7961 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
7962 sum = x + y;
7963 @end example
7964
7965 The compiler may move the addition back before the volatile @code{asm}. To
7966 make it work as expected, add an artificial dependency to the @code{asm} by
7967 referencing a variable in the subsequent code, for example:
7968
7969 @example
7970 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
7971 sum = x + y;
7972 @end example
7973
7974 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7975 assembly code when optimizing. This can lead to unexpected duplicate symbol
7976 errors during compilation if your asm code defines symbols or labels.
7977 Using @samp{%=}
7978 (@pxref{AssemblerTemplate}) may help resolve this problem.
7979
7980 @anchor{AssemblerTemplate}
7981 @subsubsection Assembler Template
7982 @cindex @code{asm} assembler template
7983
7984 An assembler template is a literal string containing assembler instructions.
7985 The compiler replaces tokens in the template that refer
7986 to inputs, outputs, and goto labels,
7987 and then outputs the resulting string to the assembler. The
7988 string can contain any instructions recognized by the assembler, including
7989 directives. GCC does not parse the assembler instructions
7990 themselves and does not know what they mean or even whether they are valid
7991 assembler input. However, it does count the statements
7992 (@pxref{Size of an asm}).
7993
7994 You may place multiple assembler instructions together in a single @code{asm}
7995 string, separated by the characters normally used in assembly code for the
7996 system. A combination that works in most places is a newline to break the
7997 line, plus a tab character to move to the instruction field (written as
7998 @samp{\n\t}).
7999 Some assemblers allow semicolons as a line separator. However, note
8000 that some assembler dialects use semicolons to start a comment.
8001
8002 Do not expect a sequence of @code{asm} statements to remain perfectly
8003 consecutive after compilation, even when you are using the @code{volatile}
8004 qualifier. If certain instructions need to remain consecutive in the output,
8005 put them in a single multi-instruction asm statement.
8006
8007 Accessing data from C programs without using input/output operands (such as
8008 by using global symbols directly from the assembler template) may not work as
8009 expected. Similarly, calling functions directly from an assembler template
8010 requires a detailed understanding of the target assembler and ABI.
8011
8012 Since GCC does not parse the assembler template,
8013 it has no visibility of any
8014 symbols it references. This may result in GCC discarding those symbols as
8015 unreferenced unless they are also listed as input, output, or goto operands.
8016
8017 @subsubheading Special format strings
8018
8019 In addition to the tokens described by the input, output, and goto operands,
8020 these tokens have special meanings in the assembler template:
8021
8022 @table @samp
8023 @item %%
8024 Outputs a single @samp{%} into the assembler code.
8025
8026 @item %=
8027 Outputs a number that is unique to each instance of the @code{asm}
8028 statement in the entire compilation. This option is useful when creating local
8029 labels and referring to them multiple times in a single template that
8030 generates multiple assembler instructions.
8031
8032 @item %@{
8033 @itemx %|
8034 @itemx %@}
8035 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8036 into the assembler code. When unescaped, these characters have special
8037 meaning to indicate multiple assembler dialects, as described below.
8038 @end table
8039
8040 @subsubheading Multiple assembler dialects in @code{asm} templates
8041
8042 On targets such as x86, GCC supports multiple assembler dialects.
8043 The @option{-masm} option controls which dialect GCC uses as its
8044 default for inline assembler. The target-specific documentation for the
8045 @option{-masm} option contains the list of supported dialects, as well as the
8046 default dialect if the option is not specified. This information may be
8047 important to understand, since assembler code that works correctly when
8048 compiled using one dialect will likely fail if compiled using another.
8049 @xref{x86 Options}.
8050
8051 If your code needs to support multiple assembler dialects (for example, if
8052 you are writing public headers that need to support a variety of compilation
8053 options), use constructs of this form:
8054
8055 @example
8056 @{ dialect0 | dialect1 | dialect2... @}
8057 @end example
8058
8059 This construct outputs @code{dialect0}
8060 when using dialect #0 to compile the code,
8061 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8062 braces than the number of dialects the compiler supports, the construct
8063 outputs nothing.
8064
8065 For example, if an x86 compiler supports two dialects
8066 (@samp{att}, @samp{intel}), an
8067 assembler template such as this:
8068
8069 @example
8070 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8071 @end example
8072
8073 @noindent
8074 is equivalent to one of
8075
8076 @example
8077 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8078 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8079 @end example
8080
8081 Using that same compiler, this code:
8082
8083 @example
8084 "xchg@{l@}\t@{%%@}ebx, %1"
8085 @end example
8086
8087 @noindent
8088 corresponds to either
8089
8090 @example
8091 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8092 "xchg\tebx, %1" @r{/* intel dialect */}
8093 @end example
8094
8095 There is no support for nesting dialect alternatives.
8096
8097 @anchor{OutputOperands}
8098 @subsubsection Output Operands
8099 @cindex @code{asm} output operands
8100
8101 An @code{asm} statement has zero or more output operands indicating the names
8102 of C variables modified by the assembler code.
8103
8104 In this i386 example, @code{old} (referred to in the template string as
8105 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8106 (@code{%2}) is an input:
8107
8108 @example
8109 bool old;
8110
8111 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8112 "sbb %0,%0" // Use the CF to calculate old.
8113 : "=r" (old), "+rm" (*Base)
8114 : "Ir" (Offset)
8115 : "cc");
8116
8117 return old;
8118 @end example
8119
8120 Operands are separated by commas. Each operand has this format:
8121
8122 @example
8123 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8124 @end example
8125
8126 @table @var
8127 @item asmSymbolicName
8128 Specifies a symbolic name for the operand.
8129 Reference the name in the assembler template
8130 by enclosing it in square brackets
8131 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8132 that contains the definition. Any valid C variable name is acceptable,
8133 including names already defined in the surrounding code. No two operands
8134 within the same @code{asm} statement can use the same symbolic name.
8135
8136 When not using an @var{asmSymbolicName}, use the (zero-based) position
8137 of the operand
8138 in the list of operands in the assembler template. For example if there are
8139 three output operands, use @samp{%0} in the template to refer to the first,
8140 @samp{%1} for the second, and @samp{%2} for the third.
8141
8142 @item constraint
8143 A string constant specifying constraints on the placement of the operand;
8144 @xref{Constraints}, for details.
8145
8146 Output constraints must begin with either @samp{=} (a variable overwriting an
8147 existing value) or @samp{+} (when reading and writing). When using
8148 @samp{=}, do not assume the location contains the existing value
8149 on entry to the @code{asm}, except
8150 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8151
8152 After the prefix, there must be one or more additional constraints
8153 (@pxref{Constraints}) that describe where the value resides. Common
8154 constraints include @samp{r} for register and @samp{m} for memory.
8155 When you list more than one possible location (for example, @code{"=rm"}),
8156 the compiler chooses the most efficient one based on the current context.
8157 If you list as many alternates as the @code{asm} statement allows, you permit
8158 the optimizers to produce the best possible code.
8159 If you must use a specific register, but your Machine Constraints do not
8160 provide sufficient control to select the specific register you want,
8161 local register variables may provide a solution (@pxref{Local Register
8162 Variables}).
8163
8164 @item cvariablename
8165 Specifies a C lvalue expression to hold the output, typically a variable name.
8166 The enclosing parentheses are a required part of the syntax.
8167
8168 @end table
8169
8170 When the compiler selects the registers to use to
8171 represent the output operands, it does not use any of the clobbered registers
8172 (@pxref{Clobbers}).
8173
8174 Output operand expressions must be lvalues. The compiler cannot check whether
8175 the operands have data types that are reasonable for the instruction being
8176 executed. For output expressions that are not directly addressable (for
8177 example a bit-field), the constraint must allow a register. In that case, GCC
8178 uses the register as the output of the @code{asm}, and then stores that
8179 register into the output.
8180
8181 Operands using the @samp{+} constraint modifier count as two operands
8182 (that is, both as input and output) towards the total maximum of 30 operands
8183 per @code{asm} statement.
8184
8185 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8186 operands that must not overlap an input. Otherwise,
8187 GCC may allocate the output operand in the same register as an unrelated
8188 input operand, on the assumption that the assembler code consumes its
8189 inputs before producing outputs. This assumption may be false if the assembler
8190 code actually consists of more than one instruction.
8191
8192 The same problem can occur if one output parameter (@var{a}) allows a register
8193 constraint and another output parameter (@var{b}) allows a memory constraint.
8194 The code generated by GCC to access the memory address in @var{b} can contain
8195 registers which @emph{might} be shared by @var{a}, and GCC considers those
8196 registers to be inputs to the asm. As above, GCC assumes that such input
8197 registers are consumed before any outputs are written. This assumption may
8198 result in incorrect behavior if the asm writes to @var{a} before using
8199 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8200 ensures that modifying @var{a} does not affect the address referenced by
8201 @var{b}. Otherwise, the location of @var{b}
8202 is undefined if @var{a} is modified before using @var{b}.
8203
8204 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8205 instead of simply @samp{%2}). Typically these qualifiers are hardware
8206 dependent. The list of supported modifiers for x86 is found at
8207 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8208
8209 If the C code that follows the @code{asm} makes no use of any of the output
8210 operands, use @code{volatile} for the @code{asm} statement to prevent the
8211 optimizers from discarding the @code{asm} statement as unneeded
8212 (see @ref{Volatile}).
8213
8214 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8215 references the first output operand as @code{%0} (were there a second, it
8216 would be @code{%1}, etc). The number of the first input operand is one greater
8217 than that of the last output operand. In this i386 example, that makes
8218 @code{Mask} referenced as @code{%1}:
8219
8220 @example
8221 uint32_t Mask = 1234;
8222 uint32_t Index;
8223
8224 asm ("bsfl %1, %0"
8225 : "=r" (Index)
8226 : "r" (Mask)
8227 : "cc");
8228 @end example
8229
8230 That code overwrites the variable @code{Index} (@samp{=}),
8231 placing the value in a register (@samp{r}).
8232 Using the generic @samp{r} constraint instead of a constraint for a specific
8233 register allows the compiler to pick the register to use, which can result
8234 in more efficient code. This may not be possible if an assembler instruction
8235 requires a specific register.
8236
8237 The following i386 example uses the @var{asmSymbolicName} syntax.
8238 It produces the
8239 same result as the code above, but some may consider it more readable or more
8240 maintainable since reordering index numbers is not necessary when adding or
8241 removing operands. The names @code{aIndex} and @code{aMask}
8242 are only used in this example to emphasize which
8243 names get used where.
8244 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8245
8246 @example
8247 uint32_t Mask = 1234;
8248 uint32_t Index;
8249
8250 asm ("bsfl %[aMask], %[aIndex]"
8251 : [aIndex] "=r" (Index)
8252 : [aMask] "r" (Mask)
8253 : "cc");
8254 @end example
8255
8256 Here are some more examples of output operands.
8257
8258 @example
8259 uint32_t c = 1;
8260 uint32_t d;
8261 uint32_t *e = &c;
8262
8263 asm ("mov %[e], %[d]"
8264 : [d] "=rm" (d)
8265 : [e] "rm" (*e));
8266 @end example
8267
8268 Here, @code{d} may either be in a register or in memory. Since the compiler
8269 might already have the current value of the @code{uint32_t} location
8270 pointed to by @code{e}
8271 in a register, you can enable it to choose the best location
8272 for @code{d} by specifying both constraints.
8273
8274 @anchor{FlagOutputOperands}
8275 @subsubsection Flag Output Operands
8276 @cindex @code{asm} flag output operands
8277
8278 Some targets have a special register that holds the ``flags'' for the
8279 result of an operation or comparison. Normally, the contents of that
8280 register are either unmodifed by the asm, or the asm is considered to
8281 clobber the contents.
8282
8283 On some targets, a special form of output operand exists by which
8284 conditions in the flags register may be outputs of the asm. The set of
8285 conditions supported are target specific, but the general rule is that
8286 the output variable must be a scalar integer, and the value is boolean.
8287 When supported, the target defines the preprocessor symbol
8288 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8289
8290 Because of the special nature of the flag output operands, the constraint
8291 may not include alternatives.
8292
8293 Most often, the target has only one flags register, and thus is an implied
8294 operand of many instructions. In this case, the operand should not be
8295 referenced within the assembler template via @code{%0} etc, as there's
8296 no corresponding text in the assembly language.
8297
8298 @table @asis
8299 @item x86 family
8300 The flag output constraints for the x86 family are of the form
8301 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8302 conditions defined in the ISA manual for @code{j@var{cc}} or
8303 @code{set@var{cc}}.
8304
8305 @table @code
8306 @item a
8307 ``above'' or unsigned greater than
8308 @item ae
8309 ``above or equal'' or unsigned greater than or equal
8310 @item b
8311 ``below'' or unsigned less than
8312 @item be
8313 ``below or equal'' or unsigned less than or equal
8314 @item c
8315 carry flag set
8316 @item e
8317 @itemx z
8318 ``equal'' or zero flag set
8319 @item g
8320 signed greater than
8321 @item ge
8322 signed greater than or equal
8323 @item l
8324 signed less than
8325 @item le
8326 signed less than or equal
8327 @item o
8328 overflow flag set
8329 @item p
8330 parity flag set
8331 @item s
8332 sign flag set
8333 @item na
8334 @itemx nae
8335 @itemx nb
8336 @itemx nbe
8337 @itemx nc
8338 @itemx ne
8339 @itemx ng
8340 @itemx nge
8341 @itemx nl
8342 @itemx nle
8343 @itemx no
8344 @itemx np
8345 @itemx ns
8346 @itemx nz
8347 ``not'' @var{flag}, or inverted versions of those above
8348 @end table
8349
8350 @end table
8351
8352 @anchor{InputOperands}
8353 @subsubsection Input Operands
8354 @cindex @code{asm} input operands
8355 @cindex @code{asm} expressions
8356
8357 Input operands make values from C variables and expressions available to the
8358 assembly code.
8359
8360 Operands are separated by commas. Each operand has this format:
8361
8362 @example
8363 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8364 @end example
8365
8366 @table @var
8367 @item asmSymbolicName
8368 Specifies a symbolic name for the operand.
8369 Reference the name in the assembler template
8370 by enclosing it in square brackets
8371 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8372 that contains the definition. Any valid C variable name is acceptable,
8373 including names already defined in the surrounding code. No two operands
8374 within the same @code{asm} statement can use the same symbolic name.
8375
8376 When not using an @var{asmSymbolicName}, use the (zero-based) position
8377 of the operand
8378 in the list of operands in the assembler template. For example if there are
8379 two output operands and three inputs,
8380 use @samp{%2} in the template to refer to the first input operand,
8381 @samp{%3} for the second, and @samp{%4} for the third.
8382
8383 @item constraint
8384 A string constant specifying constraints on the placement of the operand;
8385 @xref{Constraints}, for details.
8386
8387 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8388 When you list more than one possible location (for example, @samp{"irm"}),
8389 the compiler chooses the most efficient one based on the current context.
8390 If you must use a specific register, but your Machine Constraints do not
8391 provide sufficient control to select the specific register you want,
8392 local register variables may provide a solution (@pxref{Local Register
8393 Variables}).
8394
8395 Input constraints can also be digits (for example, @code{"0"}). This indicates
8396 that the specified input must be in the same place as the output constraint
8397 at the (zero-based) index in the output constraint list.
8398 When using @var{asmSymbolicName} syntax for the output operands,
8399 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8400
8401 @item cexpression
8402 This is the C variable or expression being passed to the @code{asm} statement
8403 as input. The enclosing parentheses are a required part of the syntax.
8404
8405 @end table
8406
8407 When the compiler selects the registers to use to represent the input
8408 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8409
8410 If there are no output operands but there are input operands, place two
8411 consecutive colons where the output operands would go:
8412
8413 @example
8414 __asm__ ("some instructions"
8415 : /* No outputs. */
8416 : "r" (Offset / 8));
8417 @end example
8418
8419 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8420 (except for inputs tied to outputs). The compiler assumes that on exit from
8421 the @code{asm} statement these operands contain the same values as they
8422 had before executing the statement.
8423 It is @emph{not} possible to use clobbers
8424 to inform the compiler that the values in these inputs are changing. One
8425 common work-around is to tie the changing input variable to an output variable
8426 that never gets used. Note, however, that if the code that follows the
8427 @code{asm} statement makes no use of any of the output operands, the GCC
8428 optimizers may discard the @code{asm} statement as unneeded
8429 (see @ref{Volatile}).
8430
8431 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8432 instead of simply @samp{%2}). Typically these qualifiers are hardware
8433 dependent. The list of supported modifiers for x86 is found at
8434 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8435
8436 In this example using the fictitious @code{combine} instruction, the
8437 constraint @code{"0"} for input operand 1 says that it must occupy the same
8438 location as output operand 0. Only input operands may use numbers in
8439 constraints, and they must each refer to an output operand. Only a number (or
8440 the symbolic assembler name) in the constraint can guarantee that one operand
8441 is in the same place as another. The mere fact that @code{foo} is the value of
8442 both operands is not enough to guarantee that they are in the same place in
8443 the generated assembler code.
8444
8445 @example
8446 asm ("combine %2, %0"
8447 : "=r" (foo)
8448 : "0" (foo), "g" (bar));
8449 @end example
8450
8451 Here is an example using symbolic names.
8452
8453 @example
8454 asm ("cmoveq %1, %2, %[result]"
8455 : [result] "=r"(result)
8456 : "r" (test), "r" (new), "[result]" (old));
8457 @end example
8458
8459 @anchor{Clobbers}
8460 @subsubsection Clobbers
8461 @cindex @code{asm} clobbers
8462
8463 While the compiler is aware of changes to entries listed in the output
8464 operands, the inline @code{asm} code may modify more than just the outputs. For
8465 example, calculations may require additional registers, or the processor may
8466 overwrite a register as a side effect of a particular assembler instruction.
8467 In order to inform the compiler of these changes, list them in the clobber
8468 list. Clobber list items are either register names or the special clobbers
8469 (listed below). Each clobber list item is a string constant
8470 enclosed in double quotes and separated by commas.
8471
8472 Clobber descriptions may not in any way overlap with an input or output
8473 operand. For example, you may not have an operand describing a register class
8474 with one member when listing that register in the clobber list. Variables
8475 declared to live in specific registers (@pxref{Explicit Register
8476 Variables}) and used
8477 as @code{asm} input or output operands must have no part mentioned in the
8478 clobber description. In particular, there is no way to specify that input
8479 operands get modified without also specifying them as output operands.
8480
8481 When the compiler selects which registers to use to represent input and output
8482 operands, it does not use any of the clobbered registers. As a result,
8483 clobbered registers are available for any use in the assembler code.
8484
8485 Here is a realistic example for the VAX showing the use of clobbered
8486 registers:
8487
8488 @example
8489 asm volatile ("movc3 %0, %1, %2"
8490 : /* No outputs. */
8491 : "g" (from), "g" (to), "g" (count)
8492 : "r0", "r1", "r2", "r3", "r4", "r5");
8493 @end example
8494
8495 Also, there are two special clobber arguments:
8496
8497 @table @code
8498 @item "cc"
8499 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8500 register. On some machines, GCC represents the condition codes as a specific
8501 hardware register; @code{"cc"} serves to name this register.
8502 On other machines, condition code handling is different,
8503 and specifying @code{"cc"} has no effect. But
8504 it is valid no matter what the target.
8505
8506 @item "memory"
8507 The @code{"memory"} clobber tells the compiler that the assembly code
8508 performs memory
8509 reads or writes to items other than those listed in the input and output
8510 operands (for example, accessing the memory pointed to by one of the input
8511 parameters). To ensure memory contains correct values, GCC may need to flush
8512 specific register values to memory before executing the @code{asm}. Further,
8513 the compiler does not assume that any values read from memory before an
8514 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8515 needed.
8516 Using the @code{"memory"} clobber effectively forms a read/write
8517 memory barrier for the compiler.
8518
8519 Note that this clobber does not prevent the @emph{processor} from doing
8520 speculative reads past the @code{asm} statement. To prevent that, you need
8521 processor-specific fence instructions.
8522
8523 Flushing registers to memory has performance implications and may be an issue
8524 for time-sensitive code. You can use a trick to avoid this if the size of
8525 the memory being accessed is known at compile time. For example, if accessing
8526 ten bytes of a string, use a memory input like:
8527
8528 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8529
8530 @end table
8531
8532 @anchor{GotoLabels}
8533 @subsubsection Goto Labels
8534 @cindex @code{asm} goto labels
8535
8536 @code{asm goto} allows assembly code to jump to one or more C labels. The
8537 @var{GotoLabels} section in an @code{asm goto} statement contains
8538 a comma-separated
8539 list of all C labels to which the assembler code may jump. GCC assumes that
8540 @code{asm} execution falls through to the next statement (if this is not the
8541 case, consider using the @code{__builtin_unreachable} intrinsic after the
8542 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8543 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8544 Attributes}).
8545
8546 An @code{asm goto} statement cannot have outputs.
8547 This is due to an internal restriction of
8548 the compiler: control transfer instructions cannot have outputs.
8549 If the assembler code does modify anything, use the @code{"memory"} clobber
8550 to force the
8551 optimizers to flush all register values to memory and reload them if
8552 necessary after the @code{asm} statement.
8553
8554 Also note that an @code{asm goto} statement is always implicitly
8555 considered volatile.
8556
8557 To reference a label in the assembler template,
8558 prefix it with @samp{%l} (lowercase @samp{L}) followed
8559 by its (zero-based) position in @var{GotoLabels} plus the number of input
8560 operands. For example, if the @code{asm} has three inputs and references two
8561 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8562
8563 Alternately, you can reference labels using the actual C label name enclosed
8564 in brackets. For example, to reference a label named @code{carry}, you can
8565 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8566 section when using this approach.
8567
8568 Here is an example of @code{asm goto} for i386:
8569
8570 @example
8571 asm goto (
8572 "btl %1, %0\n\t"
8573 "jc %l2"
8574 : /* No outputs. */
8575 : "r" (p1), "r" (p2)
8576 : "cc"
8577 : carry);
8578
8579 return 0;
8580
8581 carry:
8582 return 1;
8583 @end example
8584
8585 The following example shows an @code{asm goto} that uses a memory clobber.
8586
8587 @example
8588 int frob(int x)
8589 @{
8590 int y;
8591 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8592 : /* No outputs. */
8593 : "r"(x), "r"(&y)
8594 : "r5", "memory"
8595 : error);
8596 return y;
8597 error:
8598 return -1;
8599 @}
8600 @end example
8601
8602 @anchor{x86Operandmodifiers}
8603 @subsubsection x86 Operand Modifiers
8604
8605 References to input, output, and goto operands in the assembler template
8606 of extended @code{asm} statements can use
8607 modifiers to affect the way the operands are formatted in
8608 the code output to the assembler. For example, the
8609 following code uses the @samp{h} and @samp{b} modifiers for x86:
8610
8611 @example
8612 uint16_t num;
8613 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8614 @end example
8615
8616 @noindent
8617 These modifiers generate this assembler code:
8618
8619 @example
8620 xchg %ah, %al
8621 @end example
8622
8623 The rest of this discussion uses the following code for illustrative purposes.
8624
8625 @example
8626 int main()
8627 @{
8628 int iInt = 1;
8629
8630 top:
8631
8632 asm volatile goto ("some assembler instructions here"
8633 : /* No outputs. */
8634 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8635 : /* No clobbers. */
8636 : top);
8637 @}
8638 @end example
8639
8640 With no modifiers, this is what the output from the operands would be for the
8641 @samp{att} and @samp{intel} dialects of assembler:
8642
8643 @multitable {Operand} {masm=att} {OFFSET FLAT:.L2}
8644 @headitem Operand @tab masm=att @tab masm=intel
8645 @item @code{%0}
8646 @tab @code{%eax}
8647 @tab @code{eax}
8648 @item @code{%1}
8649 @tab @code{$2}
8650 @tab @code{2}
8651 @item @code{%2}
8652 @tab @code{$.L2}
8653 @tab @code{OFFSET FLAT:.L2}
8654 @end multitable
8655
8656 The table below shows the list of supported modifiers and their effects.
8657
8658 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {masm=att} {masm=intel}
8659 @headitem Modifier @tab Description @tab Operand @tab @option{masm=att} @tab @option{masm=intel}
8660 @item @code{z}
8661 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8662 @tab @code{%z0}
8663 @tab @code{l}
8664 @tab
8665 @item @code{b}
8666 @tab Print the QImode name of the register.
8667 @tab @code{%b0}
8668 @tab @code{%al}
8669 @tab @code{al}
8670 @item @code{h}
8671 @tab Print the QImode name for a ``high'' register.
8672 @tab @code{%h0}
8673 @tab @code{%ah}
8674 @tab @code{ah}
8675 @item @code{w}
8676 @tab Print the HImode name of the register.
8677 @tab @code{%w0}
8678 @tab @code{%ax}
8679 @tab @code{ax}
8680 @item @code{k}
8681 @tab Print the SImode name of the register.
8682 @tab @code{%k0}
8683 @tab @code{%eax}
8684 @tab @code{eax}
8685 @item @code{q}
8686 @tab Print the DImode name of the register.
8687 @tab @code{%q0}
8688 @tab @code{%rax}
8689 @tab @code{rax}
8690 @item @code{l}
8691 @tab Print the label name with no punctuation.
8692 @tab @code{%l2}
8693 @tab @code{.L2}
8694 @tab @code{.L2}
8695 @item @code{c}
8696 @tab Require a constant operand and print the constant expression with no punctuation.
8697 @tab @code{%c1}
8698 @tab @code{2}
8699 @tab @code{2}
8700 @end multitable
8701
8702 @anchor{x86floatingpointasmoperands}
8703 @subsubsection x86 Floating-Point @code{asm} Operands
8704
8705 On x86 targets, there are several rules on the usage of stack-like registers
8706 in the operands of an @code{asm}. These rules apply only to the operands
8707 that are stack-like registers:
8708
8709 @enumerate
8710 @item
8711 Given a set of input registers that die in an @code{asm}, it is
8712 necessary to know which are implicitly popped by the @code{asm}, and
8713 which must be explicitly popped by GCC@.
8714
8715 An input register that is implicitly popped by the @code{asm} must be
8716 explicitly clobbered, unless it is constrained to match an
8717 output operand.
8718
8719 @item
8720 For any input register that is implicitly popped by an @code{asm}, it is
8721 necessary to know how to adjust the stack to compensate for the pop.
8722 If any non-popped input is closer to the top of the reg-stack than
8723 the implicitly popped register, it would not be possible to know what the
8724 stack looked like---it's not clear how the rest of the stack ``slides
8725 up''.
8726
8727 All implicitly popped input registers must be closer to the top of
8728 the reg-stack than any input that is not implicitly popped.
8729
8730 It is possible that if an input dies in an @code{asm}, the compiler might
8731 use the input register for an output reload. Consider this example:
8732
8733 @smallexample
8734 asm ("foo" : "=t" (a) : "f" (b));
8735 @end smallexample
8736
8737 @noindent
8738 This code says that input @code{b} is not popped by the @code{asm}, and that
8739 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
8740 deeper after the @code{asm} than it was before. But, it is possible that
8741 reload may think that it can use the same register for both the input and
8742 the output.
8743
8744 To prevent this from happening,
8745 if any input operand uses the @samp{f} constraint, all output register
8746 constraints must use the @samp{&} early-clobber modifier.
8747
8748 The example above is correctly written as:
8749
8750 @smallexample
8751 asm ("foo" : "=&t" (a) : "f" (b));
8752 @end smallexample
8753
8754 @item
8755 Some operands need to be in particular places on the stack. All
8756 output operands fall in this category---GCC has no other way to
8757 know which registers the outputs appear in unless you indicate
8758 this in the constraints.
8759
8760 Output operands must specifically indicate which register an output
8761 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
8762 constraints must select a class with a single register.
8763
8764 @item
8765 Output operands may not be ``inserted'' between existing stack registers.
8766 Since no 387 opcode uses a read/write operand, all output operands
8767 are dead before the @code{asm}, and are pushed by the @code{asm}.
8768 It makes no sense to push anywhere but the top of the reg-stack.
8769
8770 Output operands must start at the top of the reg-stack: output
8771 operands may not ``skip'' a register.
8772
8773 @item
8774 Some @code{asm} statements may need extra stack space for internal
8775 calculations. This can be guaranteed by clobbering stack registers
8776 unrelated to the inputs and outputs.
8777
8778 @end enumerate
8779
8780 This @code{asm}
8781 takes one input, which is internally popped, and produces two outputs.
8782
8783 @smallexample
8784 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
8785 @end smallexample
8786
8787 @noindent
8788 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
8789 and replaces them with one output. The @code{st(1)} clobber is necessary
8790 for the compiler to know that @code{fyl2xp1} pops both inputs.
8791
8792 @smallexample
8793 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
8794 @end smallexample
8795
8796 @lowersections
8797 @include md.texi
8798 @raisesections
8799
8800 @node Asm Labels
8801 @subsection Controlling Names Used in Assembler Code
8802 @cindex assembler names for identifiers
8803 @cindex names used in assembler code
8804 @cindex identifiers, names in assembler code
8805
8806 You can specify the name to be used in the assembler code for a C
8807 function or variable by writing the @code{asm} (or @code{__asm__})
8808 keyword after the declarator.
8809 It is up to you to make sure that the assembler names you choose do not
8810 conflict with any other assembler symbols, or reference registers.
8811
8812 @subsubheading Assembler names for data:
8813
8814 This sample shows how to specify the assembler name for data:
8815
8816 @smallexample
8817 int foo asm ("myfoo") = 2;
8818 @end smallexample
8819
8820 @noindent
8821 This specifies that the name to be used for the variable @code{foo} in
8822 the assembler code should be @samp{myfoo} rather than the usual
8823 @samp{_foo}.
8824
8825 On systems where an underscore is normally prepended to the name of a C
8826 variable, this feature allows you to define names for the
8827 linker that do not start with an underscore.
8828
8829 GCC does not support using this feature with a non-static local variable
8830 since such variables do not have assembler names. If you are
8831 trying to put the variable in a particular register, see
8832 @ref{Explicit Register Variables}.
8833
8834 @subsubheading Assembler names for functions:
8835
8836 To specify the assembler name for functions, write a declaration for the
8837 function before its definition and put @code{asm} there, like this:
8838
8839 @smallexample
8840 int func (int x, int y) asm ("MYFUNC");
8841
8842 int func (int x, int y)
8843 @{
8844 /* @r{@dots{}} */
8845 @end smallexample
8846
8847 @noindent
8848 This specifies that the name to be used for the function @code{func} in
8849 the assembler code should be @code{MYFUNC}.
8850
8851 @node Explicit Register Variables
8852 @subsection Variables in Specified Registers
8853 @anchor{Explicit Reg Vars}
8854 @cindex explicit register variables
8855 @cindex variables in specified registers
8856 @cindex specified registers
8857
8858 GNU C allows you to associate specific hardware registers with C
8859 variables. In almost all cases, allowing the compiler to assign
8860 registers produces the best code. However under certain unusual
8861 circumstances, more precise control over the variable storage is
8862 required.
8863
8864 Both global and local variables can be associated with a register. The
8865 consequences of performing this association are very different between
8866 the two, as explained in the sections below.
8867
8868 @menu
8869 * Global Register Variables:: Variables declared at global scope.
8870 * Local Register Variables:: Variables declared within a function.
8871 @end menu
8872
8873 @node Global Register Variables
8874 @subsubsection Defining Global Register Variables
8875 @anchor{Global Reg Vars}
8876 @cindex global register variables
8877 @cindex registers, global variables in
8878 @cindex registers, global allocation
8879
8880 You can define a global register variable and associate it with a specified
8881 register like this:
8882
8883 @smallexample
8884 register int *foo asm ("r12");
8885 @end smallexample
8886
8887 @noindent
8888 Here @code{r12} is the name of the register that should be used. Note that
8889 this is the same syntax used for defining local register variables, but for
8890 a global variable the declaration appears outside a function. The
8891 @code{register} keyword is required, and cannot be combined with
8892 @code{static}. The register name must be a valid register name for the
8893 target platform.
8894
8895 Registers are a scarce resource on most systems and allowing the
8896 compiler to manage their usage usually results in the best code. However,
8897 under special circumstances it can make sense to reserve some globally.
8898 For example this may be useful in programs such as programming language
8899 interpreters that have a couple of global variables that are accessed
8900 very often.
8901
8902 After defining a global register variable, for the current compilation
8903 unit:
8904
8905 @itemize @bullet
8906 @item The register is reserved entirely for this use, and will not be
8907 allocated for any other purpose.
8908 @item The register is not saved and restored by any functions.
8909 @item Stores into this register are never deleted even if they appear to be
8910 dead, but references may be deleted, moved or simplified.
8911 @end itemize
8912
8913 Note that these points @emph{only} apply to code that is compiled with the
8914 definition. The behavior of code that is merely linked in (for example
8915 code from libraries) is not affected.
8916
8917 If you want to recompile source files that do not actually use your global
8918 register variable so they do not use the specified register for any other
8919 purpose, you need not actually add the global register declaration to
8920 their source code. It suffices to specify the compiler option
8921 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
8922 register.
8923
8924 @subsubheading Declaring the variable
8925
8926 Global register variables can not have initial values, because an
8927 executable file has no means to supply initial contents for a register.
8928
8929 When selecting a register, choose one that is normally saved and
8930 restored by function calls on your machine. This ensures that code
8931 which is unaware of this reservation (such as library routines) will
8932 restore it before returning.
8933
8934 On machines with register windows, be sure to choose a global
8935 register that is not affected magically by the function call mechanism.
8936
8937 @subsubheading Using the variable
8938
8939 @cindex @code{qsort}, and global register variables
8940 When calling routines that are not aware of the reservation, be
8941 cautious if those routines call back into code which uses them. As an
8942 example, if you call the system library version of @code{qsort}, it may
8943 clobber your registers during execution, but (if you have selected
8944 appropriate registers) it will restore them before returning. However
8945 it will @emph{not} restore them before calling @code{qsort}'s comparison
8946 function. As a result, global values will not reliably be available to
8947 the comparison function unless the @code{qsort} function itself is rebuilt.
8948
8949 Similarly, it is not safe to access the global register variables from signal
8950 handlers or from more than one thread of control. Unless you recompile
8951 them specially for the task at hand, the system library routines may
8952 temporarily use the register for other things.
8953
8954 @cindex register variable after @code{longjmp}
8955 @cindex global register after @code{longjmp}
8956 @cindex value after @code{longjmp}
8957 @findex longjmp
8958 @findex setjmp
8959 On most machines, @code{longjmp} restores to each global register
8960 variable the value it had at the time of the @code{setjmp}. On some
8961 machines, however, @code{longjmp} does not change the value of global
8962 register variables. To be portable, the function that called @code{setjmp}
8963 should make other arrangements to save the values of the global register
8964 variables, and to restore them in a @code{longjmp}. This way, the same
8965 thing happens regardless of what @code{longjmp} does.
8966
8967 Eventually there may be a way of asking the compiler to choose a register
8968 automatically, but first we need to figure out how it should choose and
8969 how to enable you to guide the choice. No solution is evident.
8970
8971 @node Local Register Variables
8972 @subsubsection Specifying Registers for Local Variables
8973 @anchor{Local Reg Vars}
8974 @cindex local variables, specifying registers
8975 @cindex specifying registers for local variables
8976 @cindex registers for local variables
8977
8978 You can define a local register variable and associate it with a specified
8979 register like this:
8980
8981 @smallexample
8982 register int *foo asm ("r12");
8983 @end smallexample
8984
8985 @noindent
8986 Here @code{r12} is the name of the register that should be used. Note
8987 that this is the same syntax used for defining global register variables,
8988 but for a local variable the declaration appears within a function. The
8989 @code{register} keyword is required, and cannot be combined with
8990 @code{static}. The register name must be a valid register name for the
8991 target platform.
8992
8993 As with global register variables, it is recommended that you choose
8994 a register that is normally saved and restored by function calls on your
8995 machine, so that calls to library routines will not clobber it.
8996
8997 The only supported use for this feature is to specify registers
8998 for input and output operands when calling Extended @code{asm}
8999 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9000 particular machine don't provide sufficient control to select the desired
9001 register. To force an operand into a register, create a local variable
9002 and specify the register name after the variable's declaration. Then use
9003 the local variable for the @code{asm} operand and specify any constraint
9004 letter that matches the register:
9005
9006 @smallexample
9007 register int *p1 asm ("r0") = @dots{};
9008 register int *p2 asm ("r1") = @dots{};
9009 register int *result asm ("r0");
9010 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9011 @end smallexample
9012
9013 @emph{Warning:} In the above example, be aware that a register (for example
9014 @code{r0}) can be call-clobbered by subsequent code, including function
9015 calls and library calls for arithmetic operators on other variables (for
9016 example the initialization of @code{p2}). In this case, use temporary
9017 variables for expressions between the register assignments:
9018
9019 @smallexample
9020 int t1 = @dots{};
9021 register int *p1 asm ("r0") = @dots{};
9022 register int *p2 asm ("r1") = t1;
9023 register int *result asm ("r0");
9024 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9025 @end smallexample
9026
9027 Defining a register variable does not reserve the register. Other than
9028 when invoking the Extended @code{asm}, the contents of the specified
9029 register are not guaranteed. For this reason, the following uses
9030 are explicitly @emph{not} supported. If they appear to work, it is only
9031 happenstance, and may stop working as intended due to (seemingly)
9032 unrelated changes in surrounding code, or even minor changes in the
9033 optimization of a future version of gcc:
9034
9035 @itemize @bullet
9036 @item Passing parameters to or from Basic @code{asm}
9037 @item Passing parameters to or from Extended @code{asm} without using input
9038 or output operands.
9039 @item Passing parameters to or from routines written in assembler (or
9040 other languages) using non-standard calling conventions.
9041 @end itemize
9042
9043 Some developers use Local Register Variables in an attempt to improve
9044 gcc's allocation of registers, especially in large functions. In this
9045 case the register name is essentially a hint to the register allocator.
9046 While in some instances this can generate better code, improvements are
9047 subject to the whims of the allocator/optimizers. Since there are no
9048 guarantees that your improvements won't be lost, this usage of Local
9049 Register Variables is discouraged.
9050
9051 On the MIPS platform, there is related use for local register variables
9052 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9053 Defining coprocessor specifics for MIPS targets, gccint,
9054 GNU Compiler Collection (GCC) Internals}).
9055
9056 @node Size of an asm
9057 @subsection Size of an @code{asm}
9058
9059 Some targets require that GCC track the size of each instruction used
9060 in order to generate correct code. Because the final length of the
9061 code produced by an @code{asm} statement is only known by the
9062 assembler, GCC must make an estimate as to how big it will be. It
9063 does this by counting the number of instructions in the pattern of the
9064 @code{asm} and multiplying that by the length of the longest
9065 instruction supported by that processor. (When working out the number
9066 of instructions, it assumes that any occurrence of a newline or of
9067 whatever statement separator character is supported by the assembler --
9068 typically @samp{;} --- indicates the end of an instruction.)
9069
9070 Normally, GCC's estimate is adequate to ensure that correct
9071 code is generated, but it is possible to confuse the compiler if you use
9072 pseudo instructions or assembler macros that expand into multiple real
9073 instructions, or if you use assembler directives that expand to more
9074 space in the object file than is needed for a single instruction.
9075 If this happens then the assembler may produce a diagnostic saying that
9076 a label is unreachable.
9077
9078 @node Alternate Keywords
9079 @section Alternate Keywords
9080 @cindex alternate keywords
9081 @cindex keywords, alternate
9082
9083 @option{-ansi} and the various @option{-std} options disable certain
9084 keywords. This causes trouble when you want to use GNU C extensions, or
9085 a general-purpose header file that should be usable by all programs,
9086 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9087 @code{inline} are not available in programs compiled with
9088 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9089 program compiled with @option{-std=c99} or @option{-std=c11}). The
9090 ISO C99 keyword
9091 @code{restrict} is only available when @option{-std=gnu99} (which will
9092 eventually be the default) or @option{-std=c99} (or the equivalent
9093 @option{-std=iso9899:1999}), or an option for a later standard
9094 version, is used.
9095
9096 The way to solve these problems is to put @samp{__} at the beginning and
9097 end of each problematical keyword. For example, use @code{__asm__}
9098 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9099
9100 Other C compilers won't accept these alternative keywords; if you want to
9101 compile with another compiler, you can define the alternate keywords as
9102 macros to replace them with the customary keywords. It looks like this:
9103
9104 @smallexample
9105 #ifndef __GNUC__
9106 #define __asm__ asm
9107 #endif
9108 @end smallexample
9109
9110 @findex __extension__
9111 @opindex pedantic
9112 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9113 You can
9114 prevent such warnings within one expression by writing
9115 @code{__extension__} before the expression. @code{__extension__} has no
9116 effect aside from this.
9117
9118 @node Incomplete Enums
9119 @section Incomplete @code{enum} Types
9120
9121 You can define an @code{enum} tag without specifying its possible values.
9122 This results in an incomplete type, much like what you get if you write
9123 @code{struct foo} without describing the elements. A later declaration
9124 that does specify the possible values completes the type.
9125
9126 You can't allocate variables or storage using the type while it is
9127 incomplete. However, you can work with pointers to that type.
9128
9129 This extension may not be very useful, but it makes the handling of
9130 @code{enum} more consistent with the way @code{struct} and @code{union}
9131 are handled.
9132
9133 This extension is not supported by GNU C++.
9134
9135 @node Function Names
9136 @section Function Names as Strings
9137 @cindex @code{__func__} identifier
9138 @cindex @code{__FUNCTION__} identifier
9139 @cindex @code{__PRETTY_FUNCTION__} identifier
9140
9141 GCC provides three magic constants that hold the name of the current
9142 function as a string. In C++11 and later modes, all three are treated
9143 as constant expressions and can be used in @code{constexpr} constexts.
9144 The first of these constants is @code{__func__}, which is part of
9145 the C99 standard:
9146
9147 The identifier @code{__func__} is implicitly declared by the translator
9148 as if, immediately following the opening brace of each function
9149 definition, the declaration
9150
9151 @smallexample
9152 static const char __func__[] = "function-name";
9153 @end smallexample
9154
9155 @noindent
9156 appeared, where function-name is the name of the lexically-enclosing
9157 function. This name is the unadorned name of the function. As an
9158 extension, at file (or, in C++, namespace scope), @code{__func__}
9159 evaluates to the empty string.
9160
9161 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9162 backward compatibility with old versions of GCC.
9163
9164 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9165 @code{__func__}, except that at file (or, in C++, namespace scope),
9166 it evaluates to the string @code{"top level"}. In addition, in C++,
9167 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9168 well as its bare name. For example, this program:
9169
9170 @smallexample
9171 extern "C" int printf (const char *, ...);
9172
9173 class a @{
9174 public:
9175 void sub (int i)
9176 @{
9177 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9178 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9179 @}
9180 @};
9181
9182 int
9183 main (void)
9184 @{
9185 a ax;
9186 ax.sub (0);
9187 return 0;
9188 @}
9189 @end smallexample
9190
9191 @noindent
9192 gives this output:
9193
9194 @smallexample
9195 __FUNCTION__ = sub
9196 __PRETTY_FUNCTION__ = void a::sub(int)
9197 @end smallexample
9198
9199 These identifiers are variables, not preprocessor macros, and may not
9200 be used to initialize @code{char} arrays or be concatenated with string
9201 literals.
9202
9203 @node Return Address
9204 @section Getting the Return or Frame Address of a Function
9205
9206 These functions may be used to get information about the callers of a
9207 function.
9208
9209 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9210 This function returns the return address of the current function, or of
9211 one of its callers. The @var{level} argument is number of frames to
9212 scan up the call stack. A value of @code{0} yields the return address
9213 of the current function, a value of @code{1} yields the return address
9214 of the caller of the current function, and so forth. When inlining
9215 the expected behavior is that the function returns the address of
9216 the function that is returned to. To work around this behavior use
9217 the @code{noinline} function attribute.
9218
9219 The @var{level} argument must be a constant integer.
9220
9221 On some machines it may be impossible to determine the return address of
9222 any function other than the current one; in such cases, or when the top
9223 of the stack has been reached, this function returns @code{0} or a
9224 random value. In addition, @code{__builtin_frame_address} may be used
9225 to determine if the top of the stack has been reached.
9226
9227 Additional post-processing of the returned value may be needed, see
9228 @code{__builtin_extract_return_addr}.
9229
9230 Calling this function with a nonzero argument can have unpredictable
9231 effects, including crashing the calling program. As a result, calls
9232 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9233 option is in effect. Such calls should only be made in debugging
9234 situations.
9235 @end deftypefn
9236
9237 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9238 The address as returned by @code{__builtin_return_address} may have to be fed
9239 through this function to get the actual encoded address. For example, on the
9240 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9241 platforms an offset has to be added for the true next instruction to be
9242 executed.
9243
9244 If no fixup is needed, this function simply passes through @var{addr}.
9245 @end deftypefn
9246
9247 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9248 This function does the reverse of @code{__builtin_extract_return_addr}.
9249 @end deftypefn
9250
9251 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9252 This function is similar to @code{__builtin_return_address}, but it
9253 returns the address of the function frame rather than the return address
9254 of the function. Calling @code{__builtin_frame_address} with a value of
9255 @code{0} yields the frame address of the current function, a value of
9256 @code{1} yields the frame address of the caller of the current function,
9257 and so forth.
9258
9259 The frame is the area on the stack that holds local variables and saved
9260 registers. The frame address is normally the address of the first word
9261 pushed on to the stack by the function. However, the exact definition
9262 depends upon the processor and the calling convention. If the processor
9263 has a dedicated frame pointer register, and the function has a frame,
9264 then @code{__builtin_frame_address} returns the value of the frame
9265 pointer register.
9266
9267 On some machines it may be impossible to determine the frame address of
9268 any function other than the current one; in such cases, or when the top
9269 of the stack has been reached, this function returns @code{0} if
9270 the first frame pointer is properly initialized by the startup code.
9271
9272 Calling this function with a nonzero argument can have unpredictable
9273 effects, including crashing the calling program. As a result, calls
9274 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9275 option is in effect. Such calls should only be made in debugging
9276 situations.
9277 @end deftypefn
9278
9279 @node Vector Extensions
9280 @section Using Vector Instructions through Built-in Functions
9281
9282 On some targets, the instruction set contains SIMD vector instructions which
9283 operate on multiple values contained in one large register at the same time.
9284 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9285 this way.
9286
9287 The first step in using these extensions is to provide the necessary data
9288 types. This should be done using an appropriate @code{typedef}:
9289
9290 @smallexample
9291 typedef int v4si __attribute__ ((vector_size (16)));
9292 @end smallexample
9293
9294 @noindent
9295 The @code{int} type specifies the base type, while the attribute specifies
9296 the vector size for the variable, measured in bytes. For example, the
9297 declaration above causes the compiler to set the mode for the @code{v4si}
9298 type to be 16 bytes wide and divided into @code{int} sized units. For
9299 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9300 corresponding mode of @code{foo} is @acronym{V4SI}.
9301
9302 The @code{vector_size} attribute is only applicable to integral and
9303 float scalars, although arrays, pointers, and function return values
9304 are allowed in conjunction with this construct. Only sizes that are
9305 a power of two are currently allowed.
9306
9307 All the basic integer types can be used as base types, both as signed
9308 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9309 @code{long long}. In addition, @code{float} and @code{double} can be
9310 used to build floating-point vector types.
9311
9312 Specifying a combination that is not valid for the current architecture
9313 causes GCC to synthesize the instructions using a narrower mode.
9314 For example, if you specify a variable of type @code{V4SI} and your
9315 architecture does not allow for this specific SIMD type, GCC
9316 produces code that uses 4 @code{SIs}.
9317
9318 The types defined in this manner can be used with a subset of normal C
9319 operations. Currently, GCC allows using the following operators
9320 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9321
9322 The operations behave like C++ @code{valarrays}. Addition is defined as
9323 the addition of the corresponding elements of the operands. For
9324 example, in the code below, each of the 4 elements in @var{a} is
9325 added to the corresponding 4 elements in @var{b} and the resulting
9326 vector is stored in @var{c}.
9327
9328 @smallexample
9329 typedef int v4si __attribute__ ((vector_size (16)));
9330
9331 v4si a, b, c;
9332
9333 c = a + b;
9334 @end smallexample
9335
9336 Subtraction, multiplication, division, and the logical operations
9337 operate in a similar manner. Likewise, the result of using the unary
9338 minus or complement operators on a vector type is a vector whose
9339 elements are the negative or complemented values of the corresponding
9340 elements in the operand.
9341
9342 It is possible to use shifting operators @code{<<}, @code{>>} on
9343 integer-type vectors. The operation is defined as following: @code{@{a0,
9344 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9345 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9346 elements.
9347
9348 For convenience, it is allowed to use a binary vector operation
9349 where one operand is a scalar. In that case the compiler transforms
9350 the scalar operand into a vector where each element is the scalar from
9351 the operation. The transformation happens only if the scalar could be
9352 safely converted to the vector-element type.
9353 Consider the following code.
9354
9355 @smallexample
9356 typedef int v4si __attribute__ ((vector_size (16)));
9357
9358 v4si a, b, c;
9359 long l;
9360
9361 a = b + 1; /* a = b + @{1,1,1,1@}; */
9362 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9363
9364 a = l + a; /* Error, cannot convert long to int. */
9365 @end smallexample
9366
9367 Vectors can be subscripted as if the vector were an array with
9368 the same number of elements and base type. Out of bound accesses
9369 invoke undefined behavior at run time. Warnings for out of bound
9370 accesses for vector subscription can be enabled with
9371 @option{-Warray-bounds}.
9372
9373 Vector comparison is supported with standard comparison
9374 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9375 vector expressions of integer-type or real-type. Comparison between
9376 integer-type vectors and real-type vectors are not supported. The
9377 result of the comparison is a vector of the same width and number of
9378 elements as the comparison operands with a signed integral element
9379 type.
9380
9381 Vectors are compared element-wise producing 0 when comparison is false
9382 and -1 (constant of the appropriate type where all bits are set)
9383 otherwise. Consider the following example.
9384
9385 @smallexample
9386 typedef int v4si __attribute__ ((vector_size (16)));
9387
9388 v4si a = @{1,2,3,4@};
9389 v4si b = @{3,2,1,4@};
9390 v4si c;
9391
9392 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9393 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9394 @end smallexample
9395
9396 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9397 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9398 integer vector with the same number of elements of the same size as @code{b}
9399 and @code{c}, computes all three arguments and creates a vector
9400 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9401 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9402 As in the case of binary operations, this syntax is also accepted when
9403 one of @code{b} or @code{c} is a scalar that is then transformed into a
9404 vector. If both @code{b} and @code{c} are scalars and the type of
9405 @code{true?b:c} has the same size as the element type of @code{a}, then
9406 @code{b} and @code{c} are converted to a vector type whose elements have
9407 this type and with the same number of elements as @code{a}.
9408
9409 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9410 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9411 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9412 For mixed operations between a scalar @code{s} and a vector @code{v},
9413 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9414 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9415
9416 Vector shuffling is available using functions
9417 @code{__builtin_shuffle (vec, mask)} and
9418 @code{__builtin_shuffle (vec0, vec1, mask)}.
9419 Both functions construct a permutation of elements from one or two
9420 vectors and return a vector of the same type as the input vector(s).
9421 The @var{mask} is an integral vector with the same width (@var{W})
9422 and element count (@var{N}) as the output vector.
9423
9424 The elements of the input vectors are numbered in memory ordering of
9425 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9426 elements of @var{mask} are considered modulo @var{N} in the single-operand
9427 case and modulo @math{2*@var{N}} in the two-operand case.
9428
9429 Consider the following example,
9430
9431 @smallexample
9432 typedef int v4si __attribute__ ((vector_size (16)));
9433
9434 v4si a = @{1,2,3,4@};
9435 v4si b = @{5,6,7,8@};
9436 v4si mask1 = @{0,1,1,3@};
9437 v4si mask2 = @{0,4,2,5@};
9438 v4si res;
9439
9440 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9441 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9442 @end smallexample
9443
9444 Note that @code{__builtin_shuffle} is intentionally semantically
9445 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9446
9447 You can declare variables and use them in function calls and returns, as
9448 well as in assignments and some casts. You can specify a vector type as
9449 a return type for a function. Vector types can also be used as function
9450 arguments. It is possible to cast from one vector type to another,
9451 provided they are of the same size (in fact, you can also cast vectors
9452 to and from other datatypes of the same size).
9453
9454 You cannot operate between vectors of different lengths or different
9455 signedness without a cast.
9456
9457 @node Offsetof
9458 @section Support for @code{offsetof}
9459 @findex __builtin_offsetof
9460
9461 GCC implements for both C and C++ a syntactic extension to implement
9462 the @code{offsetof} macro.
9463
9464 @smallexample
9465 primary:
9466 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9467
9468 offsetof_member_designator:
9469 @code{identifier}
9470 | offsetof_member_designator "." @code{identifier}
9471 | offsetof_member_designator "[" @code{expr} "]"
9472 @end smallexample
9473
9474 This extension is sufficient such that
9475
9476 @smallexample
9477 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9478 @end smallexample
9479
9480 @noindent
9481 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9482 may be dependent. In either case, @var{member} may consist of a single
9483 identifier, or a sequence of member accesses and array references.
9484
9485 @node __sync Builtins
9486 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9487
9488 The following built-in functions
9489 are intended to be compatible with those described
9490 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9491 section 7.4. As such, they depart from normal GCC practice by not using
9492 the @samp{__builtin_} prefix and also by being overloaded so that they
9493 work on multiple types.
9494
9495 The definition given in the Intel documentation allows only for the use of
9496 the types @code{int}, @code{long}, @code{long long} or their unsigned
9497 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9498 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9499 Operations on pointer arguments are performed as if the operands were
9500 of the @code{uintptr_t} type. That is, they are not scaled by the size
9501 of the type to which the pointer points.
9502
9503 These functions are implemented in terms of the @samp{__atomic}
9504 builtins (@pxref{__atomic Builtins}). They should not be used for new
9505 code which should use the @samp{__atomic} builtins instead.
9506
9507 Not all operations are supported by all target processors. If a particular
9508 operation cannot be implemented on the target processor, a warning is
9509 generated and a call to an external function is generated. The external
9510 function carries the same name as the built-in version,
9511 with an additional suffix
9512 @samp{_@var{n}} where @var{n} is the size of the data type.
9513
9514 @c ??? Should we have a mechanism to suppress this warning? This is almost
9515 @c useful for implementing the operation under the control of an external
9516 @c mutex.
9517
9518 In most cases, these built-in functions are considered a @dfn{full barrier}.
9519 That is,
9520 no memory operand is moved across the operation, either forward or
9521 backward. Further, instructions are issued as necessary to prevent the
9522 processor from speculating loads across the operation and from queuing stores
9523 after the operation.
9524
9525 All of the routines are described in the Intel documentation to take
9526 ``an optional list of variables protected by the memory barrier''. It's
9527 not clear what is meant by that; it could mean that @emph{only} the
9528 listed variables are protected, or it could mean a list of additional
9529 variables to be protected. The list is ignored by GCC which treats it as
9530 empty. GCC interprets an empty list as meaning that all globally
9531 accessible variables should be protected.
9532
9533 @table @code
9534 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9535 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9536 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9537 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9538 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9539 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9540 @findex __sync_fetch_and_add
9541 @findex __sync_fetch_and_sub
9542 @findex __sync_fetch_and_or
9543 @findex __sync_fetch_and_and
9544 @findex __sync_fetch_and_xor
9545 @findex __sync_fetch_and_nand
9546 These built-in functions perform the operation suggested by the name, and
9547 returns the value that had previously been in memory. That is, operations
9548 on integer operands have the following semantics. Operations on pointer
9549 arguments are performed as if the operands were of the @code{uintptr_t}
9550 type. That is, they are not scaled by the size of the type to which
9551 the pointer points.
9552
9553 @smallexample
9554 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9555 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9556 @end smallexample
9557
9558 The object pointed to by the first argument must be of integer or pointer
9559 type. It must not be a boolean type.
9560
9561 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9562 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9563
9564 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9565 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9566 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9567 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9568 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9569 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9570 @findex __sync_add_and_fetch
9571 @findex __sync_sub_and_fetch
9572 @findex __sync_or_and_fetch
9573 @findex __sync_and_and_fetch
9574 @findex __sync_xor_and_fetch
9575 @findex __sync_nand_and_fetch
9576 These built-in functions perform the operation suggested by the name, and
9577 return the new value. That is, operations on integer operands have
9578 the following semantics. Operations on pointer operands are performed as
9579 if the operand's type were @code{uintptr_t}.
9580
9581 @smallexample
9582 @{ *ptr @var{op}= value; return *ptr; @}
9583 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9584 @end smallexample
9585
9586 The same constraints on arguments apply as for the corresponding
9587 @code{__sync_op_and_fetch} built-in functions.
9588
9589 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9590 as @code{*ptr = ~(*ptr & value)} instead of
9591 @code{*ptr = ~*ptr & value}.
9592
9593 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9594 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9595 @findex __sync_bool_compare_and_swap
9596 @findex __sync_val_compare_and_swap
9597 These built-in functions perform an atomic compare and swap.
9598 That is, if the current
9599 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9600 @code{*@var{ptr}}.
9601
9602 The ``bool'' version returns true if the comparison is successful and
9603 @var{newval} is written. The ``val'' version returns the contents
9604 of @code{*@var{ptr}} before the operation.
9605
9606 @item __sync_synchronize (...)
9607 @findex __sync_synchronize
9608 This built-in function issues a full memory barrier.
9609
9610 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9611 @findex __sync_lock_test_and_set
9612 This built-in function, as described by Intel, is not a traditional test-and-set
9613 operation, but rather an atomic exchange operation. It writes @var{value}
9614 into @code{*@var{ptr}}, and returns the previous contents of
9615 @code{*@var{ptr}}.
9616
9617 Many targets have only minimal support for such locks, and do not support
9618 a full exchange operation. In this case, a target may support reduced
9619 functionality here by which the @emph{only} valid value to store is the
9620 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9621 is implementation defined.
9622
9623 This built-in function is not a full barrier,
9624 but rather an @dfn{acquire barrier}.
9625 This means that references after the operation cannot move to (or be
9626 speculated to) before the operation, but previous memory stores may not
9627 be globally visible yet, and previous memory loads may not yet be
9628 satisfied.
9629
9630 @item void __sync_lock_release (@var{type} *ptr, ...)
9631 @findex __sync_lock_release
9632 This built-in function releases the lock acquired by
9633 @code{__sync_lock_test_and_set}.
9634 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9635
9636 This built-in function is not a full barrier,
9637 but rather a @dfn{release barrier}.
9638 This means that all previous memory stores are globally visible, and all
9639 previous memory loads have been satisfied, but following memory reads
9640 are not prevented from being speculated to before the barrier.
9641 @end table
9642
9643 @node __atomic Builtins
9644 @section Built-in Functions for Memory Model Aware Atomic Operations
9645
9646 The following built-in functions approximately match the requirements
9647 for the C++11 memory model. They are all
9648 identified by being prefixed with @samp{__atomic} and most are
9649 overloaded so that they work with multiple types.
9650
9651 These functions are intended to replace the legacy @samp{__sync}
9652 builtins. The main difference is that the memory order that is requested
9653 is a parameter to the functions. New code should always use the
9654 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9655
9656 Note that the @samp{__atomic} builtins assume that programs will
9657 conform to the C++11 memory model. In particular, they assume
9658 that programs are free of data races. See the C++11 standard for
9659 detailed requirements.
9660
9661 The @samp{__atomic} builtins can be used with any integral scalar or
9662 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9663 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9664 supported by the architecture.
9665
9666 The four non-arithmetic functions (load, store, exchange, and
9667 compare_exchange) all have a generic version as well. This generic
9668 version works on any data type. It uses the lock-free built-in function
9669 if the specific data type size makes that possible; otherwise, an
9670 external call is left to be resolved at run time. This external call is
9671 the same format with the addition of a @samp{size_t} parameter inserted
9672 as the first parameter indicating the size of the object being pointed to.
9673 All objects must be the same size.
9674
9675 There are 6 different memory orders that can be specified. These map
9676 to the C++11 memory orders with the same names, see the C++11 standard
9677 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9678 on atomic synchronization} for detailed definitions. Individual
9679 targets may also support additional memory orders for use on specific
9680 architectures. Refer to the target documentation for details of
9681 these.
9682
9683 An atomic operation can both constrain code motion and
9684 be mapped to hardware instructions for synchronization between threads
9685 (e.g., a fence). To which extent this happens is controlled by the
9686 memory orders, which are listed here in approximately ascending order of
9687 strength. The description of each memory order is only meant to roughly
9688 illustrate the effects and is not a specification; see the C++11
9689 memory model for precise semantics.
9690
9691 @table @code
9692 @item __ATOMIC_RELAXED
9693 Implies no inter-thread ordering constraints.
9694 @item __ATOMIC_CONSUME
9695 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9696 memory order because of a deficiency in C++11's semantics for
9697 @code{memory_order_consume}.
9698 @item __ATOMIC_ACQUIRE
9699 Creates an inter-thread happens-before constraint from the release (or
9700 stronger) semantic store to this acquire load. Can prevent hoisting
9701 of code to before the operation.
9702 @item __ATOMIC_RELEASE
9703 Creates an inter-thread happens-before constraint to acquire (or stronger)
9704 semantic loads that read from this release store. Can prevent sinking
9705 of code to after the operation.
9706 @item __ATOMIC_ACQ_REL
9707 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9708 @code{__ATOMIC_RELEASE}.
9709 @item __ATOMIC_SEQ_CST
9710 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9711 @end table
9712
9713 Note that in the C++11 memory model, @emph{fences} (e.g.,
9714 @samp{__atomic_thread_fence}) take effect in combination with other
9715 atomic operations on specific memory locations (e.g., atomic loads);
9716 operations on specific memory locations do not necessarily affect other
9717 operations in the same way.
9718
9719 Target architectures are encouraged to provide their own patterns for
9720 each of the atomic built-in functions. If no target is provided, the original
9721 non-memory model set of @samp{__sync} atomic built-in functions are
9722 used, along with any required synchronization fences surrounding it in
9723 order to achieve the proper behavior. Execution in this case is subject
9724 to the same restrictions as those built-in functions.
9725
9726 If there is no pattern or mechanism to provide a lock-free instruction
9727 sequence, a call is made to an external routine with the same parameters
9728 to be resolved at run time.
9729
9730 When implementing patterns for these built-in functions, the memory order
9731 parameter can be ignored as long as the pattern implements the most
9732 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
9733 orders execute correctly with this memory order but they may not execute as
9734 efficiently as they could with a more appropriate implementation of the
9735 relaxed requirements.
9736
9737 Note that the C++11 standard allows for the memory order parameter to be
9738 determined at run time rather than at compile time. These built-in
9739 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
9740 than invoke a runtime library call or inline a switch statement. This is
9741 standard compliant, safe, and the simplest approach for now.
9742
9743 The memory order parameter is a signed int, but only the lower 16 bits are
9744 reserved for the memory order. The remainder of the signed int is reserved
9745 for target use and should be 0. Use of the predefined atomic values
9746 ensures proper usage.
9747
9748 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
9749 This built-in function implements an atomic load operation. It returns the
9750 contents of @code{*@var{ptr}}.
9751
9752 The valid memory order variants are
9753 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9754 and @code{__ATOMIC_CONSUME}.
9755
9756 @end deftypefn
9757
9758 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
9759 This is the generic version of an atomic load. It returns the
9760 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
9761
9762 @end deftypefn
9763
9764 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
9765 This built-in function implements an atomic store operation. It writes
9766 @code{@var{val}} into @code{*@var{ptr}}.
9767
9768 The valid memory order variants are
9769 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
9770
9771 @end deftypefn
9772
9773 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
9774 This is the generic version of an atomic store. It stores the value
9775 of @code{*@var{val}} into @code{*@var{ptr}}.
9776
9777 @end deftypefn
9778
9779 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
9780 This built-in function implements an atomic exchange operation. It writes
9781 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
9782 @code{*@var{ptr}}.
9783
9784 The valid memory order variants are
9785 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9786 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
9787
9788 @end deftypefn
9789
9790 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
9791 This is the generic version of an atomic exchange. It stores the
9792 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
9793 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
9794
9795 @end deftypefn
9796
9797 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
9798 This built-in function implements an atomic compare and exchange operation.
9799 This compares the contents of @code{*@var{ptr}} with the contents of
9800 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
9801 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
9802 equal, the operation is a @emph{read} and the current contents of
9803 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
9804 for weak compare_exchange, which may fail spuriously, and false for
9805 the strong variation, which never fails spuriously. Many targets
9806 only offer the strong variation and ignore the parameter. When in doubt, use
9807 the strong variation.
9808
9809 If @var{desired} is written into @code{*@var{ptr}} then true is returned
9810 and memory is affected according to the
9811 memory order specified by @var{success_memorder}. There are no
9812 restrictions on what memory order can be used here.
9813
9814 Otherwise, false is returned and memory is affected according
9815 to @var{failure_memorder}. This memory order cannot be
9816 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
9817 stronger order than that specified by @var{success_memorder}.
9818
9819 @end deftypefn
9820
9821 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
9822 This built-in function implements the generic version of
9823 @code{__atomic_compare_exchange}. The function is virtually identical to
9824 @code{__atomic_compare_exchange_n}, except the desired value is also a
9825 pointer.
9826
9827 @end deftypefn
9828
9829 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
9830 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
9831 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
9832 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
9833 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
9834 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
9835 These built-in functions perform the operation suggested by the name, and
9836 return the result of the operation. Operations on pointer arguments are
9837 performed as if the operands were of the @code{uintptr_t} type. That is,
9838 they are not scaled by the size of the type to which the pointer points.
9839
9840 @smallexample
9841 @{ *ptr @var{op}= val; return *ptr; @}
9842 @end smallexample
9843
9844 The object pointed to by the first argument must be of integer or pointer
9845 type. It must not be a boolean type. All memory orders are valid.
9846
9847 @end deftypefn
9848
9849 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
9850 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
9851 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
9852 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
9853 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
9854 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
9855 These built-in functions perform the operation suggested by the name, and
9856 return the value that had previously been in @code{*@var{ptr}}. Operations
9857 on pointer arguments are performed as if the operands were of
9858 the @code{uintptr_t} type. That is, they are not scaled by the size of
9859 the type to which the pointer points.
9860
9861 @smallexample
9862 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
9863 @end smallexample
9864
9865 The same constraints on arguments apply as for the corresponding
9866 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
9867
9868 @end deftypefn
9869
9870 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
9871
9872 This built-in function performs an atomic test-and-set operation on
9873 the byte at @code{*@var{ptr}}. The byte is set to some implementation
9874 defined nonzero ``set'' value and the return value is @code{true} if and only
9875 if the previous contents were ``set''.
9876 It should be only used for operands of type @code{bool} or @code{char}. For
9877 other types only part of the value may be set.
9878
9879 All memory orders are valid.
9880
9881 @end deftypefn
9882
9883 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
9884
9885 This built-in function performs an atomic clear operation on
9886 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
9887 It should be only used for operands of type @code{bool} or @code{char} and
9888 in conjunction with @code{__atomic_test_and_set}.
9889 For other types it may only clear partially. If the type is not @code{bool}
9890 prefer using @code{__atomic_store}.
9891
9892 The valid memory order variants are
9893 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
9894 @code{__ATOMIC_RELEASE}.
9895
9896 @end deftypefn
9897
9898 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
9899
9900 This built-in function acts as a synchronization fence between threads
9901 based on the specified memory order.
9902
9903 All memory orders are valid.
9904
9905 @end deftypefn
9906
9907 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
9908
9909 This built-in function acts as a synchronization fence between a thread
9910 and signal handlers based in the same thread.
9911
9912 All memory orders are valid.
9913
9914 @end deftypefn
9915
9916 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
9917
9918 This built-in function returns true if objects of @var{size} bytes always
9919 generate lock-free atomic instructions for the target architecture.
9920 @var{size} must resolve to a compile-time constant and the result also
9921 resolves to a compile-time constant.
9922
9923 @var{ptr} is an optional pointer to the object that may be used to determine
9924 alignment. A value of 0 indicates typical alignment should be used. The
9925 compiler may also ignore this parameter.
9926
9927 @smallexample
9928 if (__atomic_always_lock_free (sizeof (long long), 0))
9929 @end smallexample
9930
9931 @end deftypefn
9932
9933 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
9934
9935 This built-in function returns true if objects of @var{size} bytes always
9936 generate lock-free atomic instructions for the target architecture. If
9937 the built-in function is not known to be lock-free, a call is made to a
9938 runtime routine named @code{__atomic_is_lock_free}.
9939
9940 @var{ptr} is an optional pointer to the object that may be used to determine
9941 alignment. A value of 0 indicates typical alignment should be used. The
9942 compiler may also ignore this parameter.
9943 @end deftypefn
9944
9945 @node Integer Overflow Builtins
9946 @section Built-in Functions to Perform Arithmetic with Overflow Checking
9947
9948 The following built-in functions allow performing simple arithmetic operations
9949 together with checking whether the operations overflowed.
9950
9951 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9952 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
9953 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
9954 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
9955 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
9956 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9957 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
9958
9959 These built-in functions promote the first two operands into infinite precision signed
9960 type and perform addition on those promoted operands. The result is then
9961 cast to the type the third pointer argument points to and stored there.
9962 If the stored result is equal to the infinite precision result, the built-in
9963 functions return false, otherwise they return true. As the addition is
9964 performed in infinite signed precision, these built-in functions have fully defined
9965 behavior for all argument values.
9966
9967 The first built-in function allows arbitrary integral types for operands and
9968 the result type must be pointer to some integral type other than enumerated or
9969 boolean type, the rest of the built-in functions have explicit integer types.
9970
9971 The compiler will attempt to use hardware instructions to implement
9972 these built-in functions where possible, like conditional jump on overflow
9973 after addition, conditional jump on carry etc.
9974
9975 @end deftypefn
9976
9977 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9978 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
9979 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
9980 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
9981 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
9982 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9983 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
9984
9985 These built-in functions are similar to the add overflow checking built-in
9986 functions above, except they perform subtraction, subtract the second argument
9987 from the first one, instead of addition.
9988
9989 @end deftypefn
9990
9991 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9992 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
9993 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
9994 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
9995 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
9996 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9997 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
9998
9999 These built-in functions are similar to the add overflow checking built-in
10000 functions above, except they perform multiplication, instead of addition.
10001
10002 @end deftypefn
10003
10004 The following built-in functions allow checking if simple arithmetic operation
10005 would overflow.
10006
10007 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10008 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10009 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10010
10011 These built-in functions are similar to @code{__builtin_add_overflow},
10012 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10013 they don't store the result of the arithmetic operation anywhere and the
10014 last argument is not a pointer, but some expression with integral type other
10015 than enumerated or boolean type.
10016
10017 The built-in functions promote the first two operands into infinite precision signed type
10018 and perform addition on those promoted operands. The result is then
10019 cast to the type of the third argument. If the cast result is equal to the infinite
10020 precision result, the built-in functions return false, otherwise they return true.
10021 The value of the third argument is ignored, just the side-effects in the third argument
10022 are evaluated, and no integral argument promotions are performed on the last argument.
10023 If the third argument is a bit-field, the type used for the result cast has the
10024 precision and signedness of the given bit-field, rather than precision and signedness
10025 of the underlying type.
10026
10027 For example, the following macro can be used to portably check, at
10028 compile-time, whether or not adding two constant integers will overflow,
10029 and perform the addition only when it is known to be safe and not to trigger
10030 a @option{-Woverflow} warning.
10031
10032 @smallexample
10033 #define INT_ADD_OVERFLOW_P(a, b) \
10034 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10035
10036 enum @{
10037 A = INT_MAX, B = 3,
10038 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10039 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10040 @};
10041 @end smallexample
10042
10043 The compiler will attempt to use hardware instructions to implement
10044 these built-in functions where possible, like conditional jump on overflow
10045 after addition, conditional jump on carry etc.
10046
10047 @end deftypefn
10048
10049 @node x86 specific memory model extensions for transactional memory
10050 @section x86-Specific Memory Model Extensions for Transactional Memory
10051
10052 The x86 architecture supports additional memory ordering flags
10053 to mark lock critical sections for hardware lock elision.
10054 These must be specified in addition to an existing memory order to
10055 atomic intrinsics.
10056
10057 @table @code
10058 @item __ATOMIC_HLE_ACQUIRE
10059 Start lock elision on a lock variable.
10060 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10061 @item __ATOMIC_HLE_RELEASE
10062 End lock elision on a lock variable.
10063 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10064 @end table
10065
10066 When a lock acquire fails, it is required for good performance to abort
10067 the transaction quickly. This can be done with a @code{_mm_pause}.
10068
10069 @smallexample
10070 #include <immintrin.h> // For _mm_pause
10071
10072 int lockvar;
10073
10074 /* Acquire lock with lock elision */
10075 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10076 _mm_pause(); /* Abort failed transaction */
10077 ...
10078 /* Free lock with lock elision */
10079 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10080 @end smallexample
10081
10082 @node Object Size Checking
10083 @section Object Size Checking Built-in Functions
10084 @findex __builtin_object_size
10085 @findex __builtin___memcpy_chk
10086 @findex __builtin___mempcpy_chk
10087 @findex __builtin___memmove_chk
10088 @findex __builtin___memset_chk
10089 @findex __builtin___strcpy_chk
10090 @findex __builtin___stpcpy_chk
10091 @findex __builtin___strncpy_chk
10092 @findex __builtin___strcat_chk
10093 @findex __builtin___strncat_chk
10094 @findex __builtin___sprintf_chk
10095 @findex __builtin___snprintf_chk
10096 @findex __builtin___vsprintf_chk
10097 @findex __builtin___vsnprintf_chk
10098 @findex __builtin___printf_chk
10099 @findex __builtin___vprintf_chk
10100 @findex __builtin___fprintf_chk
10101 @findex __builtin___vfprintf_chk
10102
10103 GCC implements a limited buffer overflow protection mechanism that can
10104 prevent some buffer overflow attacks by determining the sizes of objects
10105 into which data is about to be written and preventing the writes when
10106 the size isn't sufficient. The built-in functions described below yield
10107 the best results when used together and when optimization is enabled.
10108 For example, to detect object sizes across function boundaries or to
10109 follow pointer assignments through non-trivial control flow they rely
10110 on various optimization passes enabled with @option{-O2}. However, to
10111 a limited extent, they can be used without optimization as well.
10112
10113 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
10114 is a built-in construct that returns a constant number of bytes from
10115 @var{ptr} to the end of the object @var{ptr} pointer points to
10116 (if known at compile time). @code{__builtin_object_size} never evaluates
10117 its arguments for side-effects. If there are any side-effects in them, it
10118 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10119 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10120 point to and all of them are known at compile time, the returned number
10121 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10122 0 and minimum if nonzero. If it is not possible to determine which objects
10123 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10124 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10125 for @var{type} 2 or 3.
10126
10127 @var{type} is an integer constant from 0 to 3. If the least significant
10128 bit is clear, objects are whole variables, if it is set, a closest
10129 surrounding subobject is considered the object a pointer points to.
10130 The second bit determines if maximum or minimum of remaining bytes
10131 is computed.
10132
10133 @smallexample
10134 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10135 char *p = &var.buf1[1], *q = &var.b;
10136
10137 /* Here the object p points to is var. */
10138 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10139 /* The subobject p points to is var.buf1. */
10140 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10141 /* The object q points to is var. */
10142 assert (__builtin_object_size (q, 0)
10143 == (char *) (&var + 1) - (char *) &var.b);
10144 /* The subobject q points to is var.b. */
10145 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10146 @end smallexample
10147 @end deftypefn
10148
10149 There are built-in functions added for many common string operation
10150 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10151 built-in is provided. This built-in has an additional last argument,
10152 which is the number of bytes remaining in object the @var{dest}
10153 argument points to or @code{(size_t) -1} if the size is not known.
10154
10155 The built-in functions are optimized into the normal string functions
10156 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10157 it is known at compile time that the destination object will not
10158 be overflown. If the compiler can determine at compile time the
10159 object will be always overflown, it issues a warning.
10160
10161 The intended use can be e.g.@:
10162
10163 @smallexample
10164 #undef memcpy
10165 #define bos0(dest) __builtin_object_size (dest, 0)
10166 #define memcpy(dest, src, n) \
10167 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10168
10169 char *volatile p;
10170 char buf[10];
10171 /* It is unknown what object p points to, so this is optimized
10172 into plain memcpy - no checking is possible. */
10173 memcpy (p, "abcde", n);
10174 /* Destination is known and length too. It is known at compile
10175 time there will be no overflow. */
10176 memcpy (&buf[5], "abcde", 5);
10177 /* Destination is known, but the length is not known at compile time.
10178 This will result in __memcpy_chk call that can check for overflow
10179 at run time. */
10180 memcpy (&buf[5], "abcde", n);
10181 /* Destination is known and it is known at compile time there will
10182 be overflow. There will be a warning and __memcpy_chk call that
10183 will abort the program at run time. */
10184 memcpy (&buf[6], "abcde", 5);
10185 @end smallexample
10186
10187 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10188 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10189 @code{strcat} and @code{strncat}.
10190
10191 There are also checking built-in functions for formatted output functions.
10192 @smallexample
10193 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10194 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10195 const char *fmt, ...);
10196 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10197 va_list ap);
10198 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10199 const char *fmt, va_list ap);
10200 @end smallexample
10201
10202 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10203 etc.@: functions and can contain implementation specific flags on what
10204 additional security measures the checking function might take, such as
10205 handling @code{%n} differently.
10206
10207 The @var{os} argument is the object size @var{s} points to, like in the
10208 other built-in functions. There is a small difference in the behavior
10209 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10210 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10211 the checking function is called with @var{os} argument set to
10212 @code{(size_t) -1}.
10213
10214 In addition to this, there are checking built-in functions
10215 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10216 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10217 These have just one additional argument, @var{flag}, right before
10218 format string @var{fmt}. If the compiler is able to optimize them to
10219 @code{fputc} etc.@: functions, it does, otherwise the checking function
10220 is called and the @var{flag} argument passed to it.
10221
10222 @node Pointer Bounds Checker builtins
10223 @section Pointer Bounds Checker Built-in Functions
10224 @cindex Pointer Bounds Checker builtins
10225 @findex __builtin___bnd_set_ptr_bounds
10226 @findex __builtin___bnd_narrow_ptr_bounds
10227 @findex __builtin___bnd_copy_ptr_bounds
10228 @findex __builtin___bnd_init_ptr_bounds
10229 @findex __builtin___bnd_null_ptr_bounds
10230 @findex __builtin___bnd_store_ptr_bounds
10231 @findex __builtin___bnd_chk_ptr_lbounds
10232 @findex __builtin___bnd_chk_ptr_ubounds
10233 @findex __builtin___bnd_chk_ptr_bounds
10234 @findex __builtin___bnd_get_ptr_lbound
10235 @findex __builtin___bnd_get_ptr_ubound
10236
10237 GCC provides a set of built-in functions to control Pointer Bounds Checker
10238 instrumentation. Note that all Pointer Bounds Checker builtins can be used
10239 even if you compile with Pointer Bounds Checker off
10240 (@option{-fno-check-pointer-bounds}).
10241 The behavior may differ in such case as documented below.
10242
10243 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
10244
10245 This built-in function returns a new pointer with the value of @var{q}, and
10246 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
10247 Bounds Checker off, the built-in function just returns the first argument.
10248
10249 @smallexample
10250 extern void *__wrap_malloc (size_t n)
10251 @{
10252 void *p = (void *)__real_malloc (n);
10253 if (!p) return __builtin___bnd_null_ptr_bounds (p);
10254 return __builtin___bnd_set_ptr_bounds (p, n);
10255 @}
10256 @end smallexample
10257
10258 @end deftypefn
10259
10260 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10261
10262 This built-in function returns a new pointer with the value of @var{p}
10263 and associates it with the narrowed bounds formed by the intersection
10264 of bounds associated with @var{q} and the bounds
10265 [@var{p}, @var{p} + @var{size} - 1].
10266 With Pointer Bounds Checker off, the built-in function just returns the first
10267 argument.
10268
10269 @smallexample
10270 void init_objects (object *objs, size_t size)
10271 @{
10272 size_t i;
10273 /* Initialize objects one-by-one passing pointers with bounds of
10274 an object, not the full array of objects. */
10275 for (i = 0; i < size; i++)
10276 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10277 sizeof(object)));
10278 @}
10279 @end smallexample
10280
10281 @end deftypefn
10282
10283 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10284
10285 This built-in function returns a new pointer with the value of @var{q},
10286 and associates it with the bounds already associated with pointer @var{r}.
10287 With Pointer Bounds Checker off, the built-in function just returns the first
10288 argument.
10289
10290 @smallexample
10291 /* Here is a way to get pointer to object's field but
10292 still with the full object's bounds. */
10293 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10294 objptr);
10295 @end smallexample
10296
10297 @end deftypefn
10298
10299 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10300
10301 This built-in function returns a new pointer with the value of @var{q}, and
10302 associates it with INIT (allowing full memory access) bounds. With Pointer
10303 Bounds Checker off, the built-in function just returns the first argument.
10304
10305 @end deftypefn
10306
10307 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10308
10309 This built-in function returns a new pointer with the value of @var{q}, and
10310 associates it with NULL (allowing no memory access) bounds. With Pointer
10311 Bounds Checker off, the built-in function just returns the first argument.
10312
10313 @end deftypefn
10314
10315 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10316
10317 This built-in function stores the bounds associated with pointer @var{ptr_val}
10318 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10319 bounds from legacy code without touching the associated pointer's memory when
10320 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10321 function call is ignored.
10322
10323 @end deftypefn
10324
10325 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10326
10327 This built-in function checks if the pointer @var{q} is within the lower
10328 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10329 function call is ignored.
10330
10331 @smallexample
10332 extern void *__wrap_memset (void *dst, int c, size_t len)
10333 @{
10334 if (len > 0)
10335 @{
10336 __builtin___bnd_chk_ptr_lbounds (dst);
10337 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10338 __real_memset (dst, c, len);
10339 @}
10340 return dst;
10341 @}
10342 @end smallexample
10343
10344 @end deftypefn
10345
10346 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10347
10348 This built-in function checks if the pointer @var{q} is within the upper
10349 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10350 function call is ignored.
10351
10352 @end deftypefn
10353
10354 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10355
10356 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10357 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10358 off, the built-in function call is ignored.
10359
10360 @smallexample
10361 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10362 @{
10363 if (n > 0)
10364 @{
10365 __bnd_chk_ptr_bounds (dst, n);
10366 __bnd_chk_ptr_bounds (src, n);
10367 __real_memcpy (dst, src, n);
10368 @}
10369 return dst;
10370 @}
10371 @end smallexample
10372
10373 @end deftypefn
10374
10375 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10376
10377 This built-in function returns the lower bound associated
10378 with the pointer @var{q}, as a pointer value.
10379 This is useful for debugging using @code{printf}.
10380 With Pointer Bounds Checker off, the built-in function returns 0.
10381
10382 @smallexample
10383 void *lb = __builtin___bnd_get_ptr_lbound (q);
10384 void *ub = __builtin___bnd_get_ptr_ubound (q);
10385 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10386 @end smallexample
10387
10388 @end deftypefn
10389
10390 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10391
10392 This built-in function returns the upper bound (which is a pointer) associated
10393 with the pointer @var{q}. With Pointer Bounds Checker off,
10394 the built-in function returns -1.
10395
10396 @end deftypefn
10397
10398 @node Cilk Plus Builtins
10399 @section Cilk Plus C/C++ Language Extension Built-in Functions
10400
10401 GCC provides support for the following built-in reduction functions if Cilk Plus
10402 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10403
10404 @itemize @bullet
10405 @item @code{__sec_implicit_index}
10406 @item @code{__sec_reduce}
10407 @item @code{__sec_reduce_add}
10408 @item @code{__sec_reduce_all_nonzero}
10409 @item @code{__sec_reduce_all_zero}
10410 @item @code{__sec_reduce_any_nonzero}
10411 @item @code{__sec_reduce_any_zero}
10412 @item @code{__sec_reduce_max}
10413 @item @code{__sec_reduce_min}
10414 @item @code{__sec_reduce_max_ind}
10415 @item @code{__sec_reduce_min_ind}
10416 @item @code{__sec_reduce_mul}
10417 @item @code{__sec_reduce_mutating}
10418 @end itemize
10419
10420 Further details and examples about these built-in functions are described
10421 in the Cilk Plus language manual which can be found at
10422 @uref{http://www.cilkplus.org}.
10423
10424 @node Other Builtins
10425 @section Other Built-in Functions Provided by GCC
10426 @cindex built-in functions
10427 @findex __builtin_alloca
10428 @findex __builtin_alloca_with_align
10429 @findex __builtin_call_with_static_chain
10430 @findex __builtin_fpclassify
10431 @findex __builtin_isfinite
10432 @findex __builtin_isnormal
10433 @findex __builtin_isgreater
10434 @findex __builtin_isgreaterequal
10435 @findex __builtin_isinf_sign
10436 @findex __builtin_isless
10437 @findex __builtin_islessequal
10438 @findex __builtin_islessgreater
10439 @findex __builtin_isunordered
10440 @findex __builtin_powi
10441 @findex __builtin_powif
10442 @findex __builtin_powil
10443 @findex _Exit
10444 @findex _exit
10445 @findex abort
10446 @findex abs
10447 @findex acos
10448 @findex acosf
10449 @findex acosh
10450 @findex acoshf
10451 @findex acoshl
10452 @findex acosl
10453 @findex alloca
10454 @findex asin
10455 @findex asinf
10456 @findex asinh
10457 @findex asinhf
10458 @findex asinhl
10459 @findex asinl
10460 @findex atan
10461 @findex atan2
10462 @findex atan2f
10463 @findex atan2l
10464 @findex atanf
10465 @findex atanh
10466 @findex atanhf
10467 @findex atanhl
10468 @findex atanl
10469 @findex bcmp
10470 @findex bzero
10471 @findex cabs
10472 @findex cabsf
10473 @findex cabsl
10474 @findex cacos
10475 @findex cacosf
10476 @findex cacosh
10477 @findex cacoshf
10478 @findex cacoshl
10479 @findex cacosl
10480 @findex calloc
10481 @findex carg
10482 @findex cargf
10483 @findex cargl
10484 @findex casin
10485 @findex casinf
10486 @findex casinh
10487 @findex casinhf
10488 @findex casinhl
10489 @findex casinl
10490 @findex catan
10491 @findex catanf
10492 @findex catanh
10493 @findex catanhf
10494 @findex catanhl
10495 @findex catanl
10496 @findex cbrt
10497 @findex cbrtf
10498 @findex cbrtl
10499 @findex ccos
10500 @findex ccosf
10501 @findex ccosh
10502 @findex ccoshf
10503 @findex ccoshl
10504 @findex ccosl
10505 @findex ceil
10506 @findex ceilf
10507 @findex ceill
10508 @findex cexp
10509 @findex cexpf
10510 @findex cexpl
10511 @findex cimag
10512 @findex cimagf
10513 @findex cimagl
10514 @findex clog
10515 @findex clogf
10516 @findex clogl
10517 @findex clog10
10518 @findex clog10f
10519 @findex clog10l
10520 @findex conj
10521 @findex conjf
10522 @findex conjl
10523 @findex copysign
10524 @findex copysignf
10525 @findex copysignl
10526 @findex cos
10527 @findex cosf
10528 @findex cosh
10529 @findex coshf
10530 @findex coshl
10531 @findex cosl
10532 @findex cpow
10533 @findex cpowf
10534 @findex cpowl
10535 @findex cproj
10536 @findex cprojf
10537 @findex cprojl
10538 @findex creal
10539 @findex crealf
10540 @findex creall
10541 @findex csin
10542 @findex csinf
10543 @findex csinh
10544 @findex csinhf
10545 @findex csinhl
10546 @findex csinl
10547 @findex csqrt
10548 @findex csqrtf
10549 @findex csqrtl
10550 @findex ctan
10551 @findex ctanf
10552 @findex ctanh
10553 @findex ctanhf
10554 @findex ctanhl
10555 @findex ctanl
10556 @findex dcgettext
10557 @findex dgettext
10558 @findex drem
10559 @findex dremf
10560 @findex dreml
10561 @findex erf
10562 @findex erfc
10563 @findex erfcf
10564 @findex erfcl
10565 @findex erff
10566 @findex erfl
10567 @findex exit
10568 @findex exp
10569 @findex exp10
10570 @findex exp10f
10571 @findex exp10l
10572 @findex exp2
10573 @findex exp2f
10574 @findex exp2l
10575 @findex expf
10576 @findex expl
10577 @findex expm1
10578 @findex expm1f
10579 @findex expm1l
10580 @findex fabs
10581 @findex fabsf
10582 @findex fabsl
10583 @findex fdim
10584 @findex fdimf
10585 @findex fdiml
10586 @findex ffs
10587 @findex floor
10588 @findex floorf
10589 @findex floorl
10590 @findex fma
10591 @findex fmaf
10592 @findex fmal
10593 @findex fmax
10594 @findex fmaxf
10595 @findex fmaxl
10596 @findex fmin
10597 @findex fminf
10598 @findex fminl
10599 @findex fmod
10600 @findex fmodf
10601 @findex fmodl
10602 @findex fprintf
10603 @findex fprintf_unlocked
10604 @findex fputs
10605 @findex fputs_unlocked
10606 @findex frexp
10607 @findex frexpf
10608 @findex frexpl
10609 @findex fscanf
10610 @findex gamma
10611 @findex gammaf
10612 @findex gammal
10613 @findex gamma_r
10614 @findex gammaf_r
10615 @findex gammal_r
10616 @findex gettext
10617 @findex hypot
10618 @findex hypotf
10619 @findex hypotl
10620 @findex ilogb
10621 @findex ilogbf
10622 @findex ilogbl
10623 @findex imaxabs
10624 @findex index
10625 @findex isalnum
10626 @findex isalpha
10627 @findex isascii
10628 @findex isblank
10629 @findex iscntrl
10630 @findex isdigit
10631 @findex isgraph
10632 @findex islower
10633 @findex isprint
10634 @findex ispunct
10635 @findex isspace
10636 @findex isupper
10637 @findex iswalnum
10638 @findex iswalpha
10639 @findex iswblank
10640 @findex iswcntrl
10641 @findex iswdigit
10642 @findex iswgraph
10643 @findex iswlower
10644 @findex iswprint
10645 @findex iswpunct
10646 @findex iswspace
10647 @findex iswupper
10648 @findex iswxdigit
10649 @findex isxdigit
10650 @findex j0
10651 @findex j0f
10652 @findex j0l
10653 @findex j1
10654 @findex j1f
10655 @findex j1l
10656 @findex jn
10657 @findex jnf
10658 @findex jnl
10659 @findex labs
10660 @findex ldexp
10661 @findex ldexpf
10662 @findex ldexpl
10663 @findex lgamma
10664 @findex lgammaf
10665 @findex lgammal
10666 @findex lgamma_r
10667 @findex lgammaf_r
10668 @findex lgammal_r
10669 @findex llabs
10670 @findex llrint
10671 @findex llrintf
10672 @findex llrintl
10673 @findex llround
10674 @findex llroundf
10675 @findex llroundl
10676 @findex log
10677 @findex log10
10678 @findex log10f
10679 @findex log10l
10680 @findex log1p
10681 @findex log1pf
10682 @findex log1pl
10683 @findex log2
10684 @findex log2f
10685 @findex log2l
10686 @findex logb
10687 @findex logbf
10688 @findex logbl
10689 @findex logf
10690 @findex logl
10691 @findex lrint
10692 @findex lrintf
10693 @findex lrintl
10694 @findex lround
10695 @findex lroundf
10696 @findex lroundl
10697 @findex malloc
10698 @findex memchr
10699 @findex memcmp
10700 @findex memcpy
10701 @findex mempcpy
10702 @findex memset
10703 @findex modf
10704 @findex modff
10705 @findex modfl
10706 @findex nearbyint
10707 @findex nearbyintf
10708 @findex nearbyintl
10709 @findex nextafter
10710 @findex nextafterf
10711 @findex nextafterl
10712 @findex nexttoward
10713 @findex nexttowardf
10714 @findex nexttowardl
10715 @findex pow
10716 @findex pow10
10717 @findex pow10f
10718 @findex pow10l
10719 @findex powf
10720 @findex powl
10721 @findex printf
10722 @findex printf_unlocked
10723 @findex putchar
10724 @findex puts
10725 @findex remainder
10726 @findex remainderf
10727 @findex remainderl
10728 @findex remquo
10729 @findex remquof
10730 @findex remquol
10731 @findex rindex
10732 @findex rint
10733 @findex rintf
10734 @findex rintl
10735 @findex round
10736 @findex roundf
10737 @findex roundl
10738 @findex scalb
10739 @findex scalbf
10740 @findex scalbl
10741 @findex scalbln
10742 @findex scalblnf
10743 @findex scalblnf
10744 @findex scalbn
10745 @findex scalbnf
10746 @findex scanfnl
10747 @findex signbit
10748 @findex signbitf
10749 @findex signbitl
10750 @findex signbitd32
10751 @findex signbitd64
10752 @findex signbitd128
10753 @findex significand
10754 @findex significandf
10755 @findex significandl
10756 @findex sin
10757 @findex sincos
10758 @findex sincosf
10759 @findex sincosl
10760 @findex sinf
10761 @findex sinh
10762 @findex sinhf
10763 @findex sinhl
10764 @findex sinl
10765 @findex snprintf
10766 @findex sprintf
10767 @findex sqrt
10768 @findex sqrtf
10769 @findex sqrtl
10770 @findex sscanf
10771 @findex stpcpy
10772 @findex stpncpy
10773 @findex strcasecmp
10774 @findex strcat
10775 @findex strchr
10776 @findex strcmp
10777 @findex strcpy
10778 @findex strcspn
10779 @findex strdup
10780 @findex strfmon
10781 @findex strftime
10782 @findex strlen
10783 @findex strncasecmp
10784 @findex strncat
10785 @findex strncmp
10786 @findex strncpy
10787 @findex strndup
10788 @findex strpbrk
10789 @findex strrchr
10790 @findex strspn
10791 @findex strstr
10792 @findex tan
10793 @findex tanf
10794 @findex tanh
10795 @findex tanhf
10796 @findex tanhl
10797 @findex tanl
10798 @findex tgamma
10799 @findex tgammaf
10800 @findex tgammal
10801 @findex toascii
10802 @findex tolower
10803 @findex toupper
10804 @findex towlower
10805 @findex towupper
10806 @findex trunc
10807 @findex truncf
10808 @findex truncl
10809 @findex vfprintf
10810 @findex vfscanf
10811 @findex vprintf
10812 @findex vscanf
10813 @findex vsnprintf
10814 @findex vsprintf
10815 @findex vsscanf
10816 @findex y0
10817 @findex y0f
10818 @findex y0l
10819 @findex y1
10820 @findex y1f
10821 @findex y1l
10822 @findex yn
10823 @findex ynf
10824 @findex ynl
10825
10826 GCC provides a large number of built-in functions other than the ones
10827 mentioned above. Some of these are for internal use in the processing
10828 of exceptions or variable-length argument lists and are not
10829 documented here because they may change from time to time; we do not
10830 recommend general use of these functions.
10831
10832 The remaining functions are provided for optimization purposes.
10833
10834 With the exception of built-ins that have library equivalents such as
10835 the standard C library functions discussed below, or that expand to
10836 library calls, GCC built-in functions are always expanded inline and
10837 thus do not have corresponding entry points and their address cannot
10838 be obtained. Attempting to use them in an expression other than
10839 a function call results in a compile-time error.
10840
10841 @opindex fno-builtin
10842 GCC includes built-in versions of many of the functions in the standard
10843 C library. These functions come in two forms: one whose names start with
10844 the @code{__builtin_} prefix, and the other without. Both forms have the
10845 same type (including prototype), the same address (when their address is
10846 taken), and the same meaning as the C library functions even if you specify
10847 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
10848 functions are only optimized in certain cases; if they are not optimized in
10849 a particular case, a call to the library function is emitted.
10850
10851 @opindex ansi
10852 @opindex std
10853 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
10854 @option{-std=c99} or @option{-std=c11}), the functions
10855 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
10856 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
10857 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
10858 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
10859 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
10860 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
10861 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
10862 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
10863 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
10864 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
10865 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
10866 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
10867 @code{signbitd64}, @code{signbitd128}, @code{significandf},
10868 @code{significandl}, @code{significand}, @code{sincosf},
10869 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
10870 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
10871 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
10872 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
10873 @code{yn}
10874 may be handled as built-in functions.
10875 All these functions have corresponding versions
10876 prefixed with @code{__builtin_}, which may be used even in strict C90
10877 mode.
10878
10879 The ISO C99 functions
10880 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
10881 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
10882 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
10883 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
10884 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
10885 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
10886 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
10887 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
10888 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
10889 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
10890 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
10891 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
10892 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
10893 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
10894 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
10895 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
10896 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
10897 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
10898 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
10899 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
10900 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
10901 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
10902 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
10903 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
10904 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
10905 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
10906 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
10907 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
10908 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
10909 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
10910 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
10911 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
10912 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
10913 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
10914 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
10915 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
10916 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
10917 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
10918 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
10919 are handled as built-in functions
10920 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10921
10922 There are also built-in versions of the ISO C99 functions
10923 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
10924 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
10925 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
10926 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
10927 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
10928 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
10929 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
10930 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
10931 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
10932 that are recognized in any mode since ISO C90 reserves these names for
10933 the purpose to which ISO C99 puts them. All these functions have
10934 corresponding versions prefixed with @code{__builtin_}.
10935
10936 There are also built-in functions @code{__builtin_fabsf@var{n}},
10937 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
10938 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
10939 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
10940 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
10941 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
10942
10943 There are also GNU extension functions @code{clog10}, @code{clog10f} and
10944 @code{clog10l} which names are reserved by ISO C99 for future use.
10945 All these functions have versions prefixed with @code{__builtin_}.
10946
10947 The ISO C94 functions
10948 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
10949 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
10950 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
10951 @code{towupper}
10952 are handled as built-in functions
10953 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10954
10955 The ISO C90 functions
10956 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
10957 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
10958 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
10959 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
10960 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
10961 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
10962 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
10963 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
10964 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
10965 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
10966 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
10967 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
10968 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
10969 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
10970 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
10971 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
10972 are all recognized as built-in functions unless
10973 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
10974 is specified for an individual function). All of these functions have
10975 corresponding versions prefixed with @code{__builtin_}.
10976
10977 GCC provides built-in versions of the ISO C99 floating-point comparison
10978 macros that avoid raising exceptions for unordered operands. They have
10979 the same names as the standard macros ( @code{isgreater},
10980 @code{isgreaterequal}, @code{isless}, @code{islessequal},
10981 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
10982 prefixed. We intend for a library implementor to be able to simply
10983 @code{#define} each standard macro to its built-in equivalent.
10984 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
10985 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
10986 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
10987 built-in functions appear both with and without the @code{__builtin_} prefix.
10988
10989 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
10990 The @code{__builtin_alloca} function must be called at block scope.
10991 The function allocates an object @var{size} bytes large on the stack
10992 of the calling function. The object is aligned on the default stack
10993 alignment boundary for the target determined by the
10994 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
10995 function returns a pointer to the first byte of the allocated object.
10996 The lifetime of the allocated object ends just before the calling
10997 function returns to its caller. This is so even when
10998 @code{__builtin_alloca} is called within a nested block.
10999
11000 For example, the following function allocates eight objects of @code{n}
11001 bytes each on the stack, storing a pointer to each in consecutive elements
11002 of the array @code{a}. It then passes the array to function @code{g}
11003 which can safely use the storage pointed to by each of the array elements.
11004
11005 @smallexample
11006 void f (unsigned n)
11007 @{
11008 void *a [8];
11009 for (int i = 0; i != 8; ++i)
11010 a [i] = __builtin_alloca (n);
11011
11012 g (a, n); // @r{safe}
11013 @}
11014 @end smallexample
11015
11016 Since the @code{__builtin_alloca} function doesn't validate its argument
11017 it is the responsibility of its caller to make sure the argument doesn't
11018 cause it to exceed the stack size limit.
11019 The @code{__builtin_alloca} function is provided to make it possible to
11020 allocate on the stack arrays of bytes with an upper bound that may be
11021 computed at run time. Since C99 Variable Length Arrays offer
11022 similar functionality under a portable, more convenient, and safer
11023 interface they are recommended instead, in both C99 and C++ programs
11024 where GCC provides them as an extension.
11025 @xref{Variable Length}, for details.
11026
11027 @end deftypefn
11028
11029 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11030 The @code{__builtin_alloca_with_align} function must be called at block
11031 scope. The function allocates an object @var{size} bytes large on
11032 the stack of the calling function. The allocated object is aligned on
11033 the boundary specified by the argument @var{alignment} whose unit is given
11034 in bits (not bytes). The @var{size} argument must be positive and not
11035 exceed the stack size limit. The @var{alignment} argument must be a constant
11036 integer expression that evaluates to a power of 2 greater than or equal to
11037 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11038 with other values are rejected with an error indicating the valid bounds.
11039 The function returns a pointer to the first byte of the allocated object.
11040 The lifetime of the allocated object ends at the end of the block in which
11041 the function was called. The allocated storage is released no later than
11042 just before the calling function returns to its caller, but may be released
11043 at the end of the block in which the function was called.
11044
11045 For example, in the following function the call to @code{g} is unsafe
11046 because when @code{overalign} is non-zero, the space allocated by
11047 @code{__builtin_alloca_with_align} may have been released at the end
11048 of the @code{if} statement in which it was called.
11049
11050 @smallexample
11051 void f (unsigned n, bool overalign)
11052 @{
11053 void *p;
11054 if (overalign)
11055 p = __builtin_alloca_with_align (n, 64 /* bits */);
11056 else
11057 p = __builtin_alloc (n);
11058
11059 g (p, n); // @r{unsafe}
11060 @}
11061 @end smallexample
11062
11063 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11064 @var{size} argument it is the responsibility of its caller to make sure
11065 the argument doesn't cause it to exceed the stack size limit.
11066 The @code{__builtin_alloca_with_align} function is provided to make
11067 it possible to allocate on the stack overaligned arrays of bytes with
11068 an upper bound that may be computed at run time. Since C99
11069 Variable Length Arrays offer the same functionality under
11070 a portable, more convenient, and safer interface they are recommended
11071 instead, in both C99 and C++ programs where GCC provides them as
11072 an extension. @xref{Variable Length}, for details.
11073
11074 @end deftypefn
11075
11076 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11077
11078 You can use the built-in function @code{__builtin_types_compatible_p} to
11079 determine whether two types are the same.
11080
11081 This built-in function returns 1 if the unqualified versions of the
11082 types @var{type1} and @var{type2} (which are types, not expressions) are
11083 compatible, 0 otherwise. The result of this built-in function can be
11084 used in integer constant expressions.
11085
11086 This built-in function ignores top level qualifiers (e.g., @code{const},
11087 @code{volatile}). For example, @code{int} is equivalent to @code{const
11088 int}.
11089
11090 The type @code{int[]} and @code{int[5]} are compatible. On the other
11091 hand, @code{int} and @code{char *} are not compatible, even if the size
11092 of their types, on the particular architecture are the same. Also, the
11093 amount of pointer indirection is taken into account when determining
11094 similarity. Consequently, @code{short *} is not similar to
11095 @code{short **}. Furthermore, two types that are typedefed are
11096 considered compatible if their underlying types are compatible.
11097
11098 An @code{enum} type is not considered to be compatible with another
11099 @code{enum} type even if both are compatible with the same integer
11100 type; this is what the C standard specifies.
11101 For example, @code{enum @{foo, bar@}} is not similar to
11102 @code{enum @{hot, dog@}}.
11103
11104 You typically use this function in code whose execution varies
11105 depending on the arguments' types. For example:
11106
11107 @smallexample
11108 #define foo(x) \
11109 (@{ \
11110 typeof (x) tmp = (x); \
11111 if (__builtin_types_compatible_p (typeof (x), long double)) \
11112 tmp = foo_long_double (tmp); \
11113 else if (__builtin_types_compatible_p (typeof (x), double)) \
11114 tmp = foo_double (tmp); \
11115 else if (__builtin_types_compatible_p (typeof (x), float)) \
11116 tmp = foo_float (tmp); \
11117 else \
11118 abort (); \
11119 tmp; \
11120 @})
11121 @end smallexample
11122
11123 @emph{Note:} This construct is only available for C@.
11124
11125 @end deftypefn
11126
11127 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11128
11129 The @var{call_exp} expression must be a function call, and the
11130 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11131 is passed to the function call in the target's static chain location.
11132 The result of builtin is the result of the function call.
11133
11134 @emph{Note:} This builtin is only available for C@.
11135 This builtin can be used to call Go closures from C.
11136
11137 @end deftypefn
11138
11139 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11140
11141 You can use the built-in function @code{__builtin_choose_expr} to
11142 evaluate code depending on the value of a constant expression. This
11143 built-in function returns @var{exp1} if @var{const_exp}, which is an
11144 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11145
11146 This built-in function is analogous to the @samp{? :} operator in C,
11147 except that the expression returned has its type unaltered by promotion
11148 rules. Also, the built-in function does not evaluate the expression
11149 that is not chosen. For example, if @var{const_exp} evaluates to true,
11150 @var{exp2} is not evaluated even if it has side-effects.
11151
11152 This built-in function can return an lvalue if the chosen argument is an
11153 lvalue.
11154
11155 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11156 type. Similarly, if @var{exp2} is returned, its return type is the same
11157 as @var{exp2}.
11158
11159 Example:
11160
11161 @smallexample
11162 #define foo(x) \
11163 __builtin_choose_expr ( \
11164 __builtin_types_compatible_p (typeof (x), double), \
11165 foo_double (x), \
11166 __builtin_choose_expr ( \
11167 __builtin_types_compatible_p (typeof (x), float), \
11168 foo_float (x), \
11169 /* @r{The void expression results in a compile-time error} \
11170 @r{when assigning the result to something.} */ \
11171 (void)0))
11172 @end smallexample
11173
11174 @emph{Note:} This construct is only available for C@. Furthermore, the
11175 unused expression (@var{exp1} or @var{exp2} depending on the value of
11176 @var{const_exp}) may still generate syntax errors. This may change in
11177 future revisions.
11178
11179 @end deftypefn
11180
11181 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11182
11183 The built-in function @code{__builtin_complex} is provided for use in
11184 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11185 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11186 real binary floating-point type, and the result has the corresponding
11187 complex type with real and imaginary parts @var{real} and @var{imag}.
11188 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11189 infinities, NaNs and negative zeros are involved.
11190
11191 @end deftypefn
11192
11193 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11194 You can use the built-in function @code{__builtin_constant_p} to
11195 determine if a value is known to be constant at compile time and hence
11196 that GCC can perform constant-folding on expressions involving that
11197 value. The argument of the function is the value to test. The function
11198 returns the integer 1 if the argument is known to be a compile-time
11199 constant and 0 if it is not known to be a compile-time constant. A
11200 return of 0 does not indicate that the value is @emph{not} a constant,
11201 but merely that GCC cannot prove it is a constant with the specified
11202 value of the @option{-O} option.
11203
11204 You typically use this function in an embedded application where
11205 memory is a critical resource. If you have some complex calculation,
11206 you may want it to be folded if it involves constants, but need to call
11207 a function if it does not. For example:
11208
11209 @smallexample
11210 #define Scale_Value(X) \
11211 (__builtin_constant_p (X) \
11212 ? ((X) * SCALE + OFFSET) : Scale (X))
11213 @end smallexample
11214
11215 You may use this built-in function in either a macro or an inline
11216 function. However, if you use it in an inlined function and pass an
11217 argument of the function as the argument to the built-in, GCC
11218 never returns 1 when you call the inline function with a string constant
11219 or compound literal (@pxref{Compound Literals}) and does not return 1
11220 when you pass a constant numeric value to the inline function unless you
11221 specify the @option{-O} option.
11222
11223 You may also use @code{__builtin_constant_p} in initializers for static
11224 data. For instance, you can write
11225
11226 @smallexample
11227 static const int table[] = @{
11228 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11229 /* @r{@dots{}} */
11230 @};
11231 @end smallexample
11232
11233 @noindent
11234 This is an acceptable initializer even if @var{EXPRESSION} is not a
11235 constant expression, including the case where
11236 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11237 folded to a constant but @var{EXPRESSION} contains operands that are
11238 not otherwise permitted in a static initializer (for example,
11239 @code{0 && foo ()}). GCC must be more conservative about evaluating the
11240 built-in in this case, because it has no opportunity to perform
11241 optimization.
11242 @end deftypefn
11243
11244 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11245 @opindex fprofile-arcs
11246 You may use @code{__builtin_expect} to provide the compiler with
11247 branch prediction information. In general, you should prefer to
11248 use actual profile feedback for this (@option{-fprofile-arcs}), as
11249 programmers are notoriously bad at predicting how their programs
11250 actually perform. However, there are applications in which this
11251 data is hard to collect.
11252
11253 The return value is the value of @var{exp}, which should be an integral
11254 expression. The semantics of the built-in are that it is expected that
11255 @var{exp} == @var{c}. For example:
11256
11257 @smallexample
11258 if (__builtin_expect (x, 0))
11259 foo ();
11260 @end smallexample
11261
11262 @noindent
11263 indicates that we do not expect to call @code{foo}, since
11264 we expect @code{x} to be zero. Since you are limited to integral
11265 expressions for @var{exp}, you should use constructions such as
11266
11267 @smallexample
11268 if (__builtin_expect (ptr != NULL, 1))
11269 foo (*ptr);
11270 @end smallexample
11271
11272 @noindent
11273 when testing pointer or floating-point values.
11274 @end deftypefn
11275
11276 @deftypefn {Built-in Function} void __builtin_trap (void)
11277 This function causes the program to exit abnormally. GCC implements
11278 this function by using a target-dependent mechanism (such as
11279 intentionally executing an illegal instruction) or by calling
11280 @code{abort}. The mechanism used may vary from release to release so
11281 you should not rely on any particular implementation.
11282 @end deftypefn
11283
11284 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11285 If control flow reaches the point of the @code{__builtin_unreachable},
11286 the program is undefined. It is useful in situations where the
11287 compiler cannot deduce the unreachability of the code.
11288
11289 One such case is immediately following an @code{asm} statement that
11290 either never terminates, or one that transfers control elsewhere
11291 and never returns. In this example, without the
11292 @code{__builtin_unreachable}, GCC issues a warning that control
11293 reaches the end of a non-void function. It also generates code
11294 to return after the @code{asm}.
11295
11296 @smallexample
11297 int f (int c, int v)
11298 @{
11299 if (c)
11300 @{
11301 return v;
11302 @}
11303 else
11304 @{
11305 asm("jmp error_handler");
11306 __builtin_unreachable ();
11307 @}
11308 @}
11309 @end smallexample
11310
11311 @noindent
11312 Because the @code{asm} statement unconditionally transfers control out
11313 of the function, control never reaches the end of the function
11314 body. The @code{__builtin_unreachable} is in fact unreachable and
11315 communicates this fact to the compiler.
11316
11317 Another use for @code{__builtin_unreachable} is following a call a
11318 function that never returns but that is not declared
11319 @code{__attribute__((noreturn))}, as in this example:
11320
11321 @smallexample
11322 void function_that_never_returns (void);
11323
11324 int g (int c)
11325 @{
11326 if (c)
11327 @{
11328 return 1;
11329 @}
11330 else
11331 @{
11332 function_that_never_returns ();
11333 __builtin_unreachable ();
11334 @}
11335 @}
11336 @end smallexample
11337
11338 @end deftypefn
11339
11340 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11341 This function returns its first argument, and allows the compiler
11342 to assume that the returned pointer is at least @var{align} bytes
11343 aligned. This built-in can have either two or three arguments,
11344 if it has three, the third argument should have integer type, and
11345 if it is nonzero means misalignment offset. For example:
11346
11347 @smallexample
11348 void *x = __builtin_assume_aligned (arg, 16);
11349 @end smallexample
11350
11351 @noindent
11352 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11353 16-byte aligned, while:
11354
11355 @smallexample
11356 void *x = __builtin_assume_aligned (arg, 32, 8);
11357 @end smallexample
11358
11359 @noindent
11360 means that the compiler can assume for @code{x}, set to @code{arg}, that
11361 @code{(char *) x - 8} is 32-byte aligned.
11362 @end deftypefn
11363
11364 @deftypefn {Built-in Function} int __builtin_LINE ()
11365 This function is the equivalent of the preprocessor @code{__LINE__}
11366 macro and returns a constant integer expression that evaluates to
11367 the line number of the invocation of the built-in. When used as a C++
11368 default argument for a function @var{F}, it returns the line number
11369 of the call to @var{F}.
11370 @end deftypefn
11371
11372 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11373 This function is the equivalent of the @code{__FUNCTION__} symbol
11374 and returns an address constant pointing to the name of the function
11375 from which the built-in was invoked, or the empty string if
11376 the invocation is not at function scope. When used as a C++ default
11377 argument for a function @var{F}, it returns the name of @var{F}'s
11378 caller or the empty string if the call was not made at function
11379 scope.
11380 @end deftypefn
11381
11382 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11383 This function is the equivalent of the preprocessor @code{__FILE__}
11384 macro and returns an address constant pointing to the file name
11385 containing the invocation of the built-in, or the empty string if
11386 the invocation is not at function scope. When used as a C++ default
11387 argument for a function @var{F}, it returns the file name of the call
11388 to @var{F} or the empty string if the call was not made at function
11389 scope.
11390
11391 For example, in the following, each call to function @code{foo} will
11392 print a line similar to @code{"file.c:123: foo: message"} with the name
11393 of the file and the line number of the @code{printf} call, the name of
11394 the function @code{foo}, followed by the word @code{message}.
11395
11396 @smallexample
11397 const char*
11398 function (const char *func = __builtin_FUNCTION ())
11399 @{
11400 return func;
11401 @}
11402
11403 void foo (void)
11404 @{
11405 printf ("%s:%i: %s: message\n", file (), line (), function ());
11406 @}
11407 @end smallexample
11408
11409 @end deftypefn
11410
11411 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11412 This function is used to flush the processor's instruction cache for
11413 the region of memory between @var{begin} inclusive and @var{end}
11414 exclusive. Some targets require that the instruction cache be
11415 flushed, after modifying memory containing code, in order to obtain
11416 deterministic behavior.
11417
11418 If the target does not require instruction cache flushes,
11419 @code{__builtin___clear_cache} has no effect. Otherwise either
11420 instructions are emitted in-line to clear the instruction cache or a
11421 call to the @code{__clear_cache} function in libgcc is made.
11422 @end deftypefn
11423
11424 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11425 This function is used to minimize cache-miss latency by moving data into
11426 a cache before it is accessed.
11427 You can insert calls to @code{__builtin_prefetch} into code for which
11428 you know addresses of data in memory that is likely to be accessed soon.
11429 If the target supports them, data prefetch instructions are generated.
11430 If the prefetch is done early enough before the access then the data will
11431 be in the cache by the time it is accessed.
11432
11433 The value of @var{addr} is the address of the memory to prefetch.
11434 There are two optional arguments, @var{rw} and @var{locality}.
11435 The value of @var{rw} is a compile-time constant one or zero; one
11436 means that the prefetch is preparing for a write to the memory address
11437 and zero, the default, means that the prefetch is preparing for a read.
11438 The value @var{locality} must be a compile-time constant integer between
11439 zero and three. A value of zero means that the data has no temporal
11440 locality, so it need not be left in the cache after the access. A value
11441 of three means that the data has a high degree of temporal locality and
11442 should be left in all levels of cache possible. Values of one and two
11443 mean, respectively, a low or moderate degree of temporal locality. The
11444 default is three.
11445
11446 @smallexample
11447 for (i = 0; i < n; i++)
11448 @{
11449 a[i] = a[i] + b[i];
11450 __builtin_prefetch (&a[i+j], 1, 1);
11451 __builtin_prefetch (&b[i+j], 0, 1);
11452 /* @r{@dots{}} */
11453 @}
11454 @end smallexample
11455
11456 Data prefetch does not generate faults if @var{addr} is invalid, but
11457 the address expression itself must be valid. For example, a prefetch
11458 of @code{p->next} does not fault if @code{p->next} is not a valid
11459 address, but evaluation faults if @code{p} is not a valid address.
11460
11461 If the target does not support data prefetch, the address expression
11462 is evaluated if it includes side effects but no other code is generated
11463 and GCC does not issue a warning.
11464 @end deftypefn
11465
11466 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11467 Returns a positive infinity, if supported by the floating-point format,
11468 else @code{DBL_MAX}. This function is suitable for implementing the
11469 ISO C macro @code{HUGE_VAL}.
11470 @end deftypefn
11471
11472 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11473 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11474 @end deftypefn
11475
11476 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11477 Similar to @code{__builtin_huge_val}, except the return
11478 type is @code{long double}.
11479 @end deftypefn
11480
11481 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
11482 Similar to @code{__builtin_huge_val}, except the return type is
11483 @code{_Float@var{n}}.
11484 @end deftypefn
11485
11486 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
11487 Similar to @code{__builtin_huge_val}, except the return type is
11488 @code{_Float@var{n}x}.
11489 @end deftypefn
11490
11491 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11492 This built-in implements the C99 fpclassify functionality. The first
11493 five int arguments should be the target library's notion of the
11494 possible FP classes and are used for return values. They must be
11495 constant values and they must appear in this order: @code{FP_NAN},
11496 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
11497 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
11498 to classify. GCC treats the last argument as type-generic, which
11499 means it does not do default promotion from float to double.
11500 @end deftypefn
11501
11502 @deftypefn {Built-in Function} double __builtin_inf (void)
11503 Similar to @code{__builtin_huge_val}, except a warning is generated
11504 if the target floating-point format does not support infinities.
11505 @end deftypefn
11506
11507 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
11508 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11509 @end deftypefn
11510
11511 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11512 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11513 @end deftypefn
11514
11515 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11516 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11517 @end deftypefn
11518
11519 @deftypefn {Built-in Function} float __builtin_inff (void)
11520 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11521 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11522 @end deftypefn
11523
11524 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11525 Similar to @code{__builtin_inf}, except the return
11526 type is @code{long double}.
11527 @end deftypefn
11528
11529 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
11530 Similar to @code{__builtin_inf}, except the return
11531 type is @code{_Float@var{n}}.
11532 @end deftypefn
11533
11534 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
11535 Similar to @code{__builtin_inf}, except the return
11536 type is @code{_Float@var{n}x}.
11537 @end deftypefn
11538
11539 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11540 Similar to @code{isinf}, except the return value is -1 for
11541 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11542 Note while the parameter list is an
11543 ellipsis, this function only accepts exactly one floating-point
11544 argument. GCC treats this parameter as type-generic, which means it
11545 does not do default promotion from float to double.
11546 @end deftypefn
11547
11548 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11549 This is an implementation of the ISO C99 function @code{nan}.
11550
11551 Since ISO C99 defines this function in terms of @code{strtod}, which we
11552 do not implement, a description of the parsing is in order. The string
11553 is parsed as by @code{strtol}; that is, the base is recognized by
11554 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11555 in the significand such that the least significant bit of the number
11556 is at the least significant bit of the significand. The number is
11557 truncated to fit the significand field provided. The significand is
11558 forced to be a quiet NaN@.
11559
11560 This function, if given a string literal all of which would have been
11561 consumed by @code{strtol}, is evaluated early enough that it is considered a
11562 compile-time constant.
11563 @end deftypefn
11564
11565 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11566 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11567 @end deftypefn
11568
11569 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11570 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11571 @end deftypefn
11572
11573 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11574 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11575 @end deftypefn
11576
11577 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11578 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11579 @end deftypefn
11580
11581 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11582 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11583 @end deftypefn
11584
11585 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
11586 Similar to @code{__builtin_nan}, except the return type is
11587 @code{_Float@var{n}}.
11588 @end deftypefn
11589
11590 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
11591 Similar to @code{__builtin_nan}, except the return type is
11592 @code{_Float@var{n}x}.
11593 @end deftypefn
11594
11595 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11596 Similar to @code{__builtin_nan}, except the significand is forced
11597 to be a signaling NaN@. The @code{nans} function is proposed by
11598 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11599 @end deftypefn
11600
11601 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11602 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11603 @end deftypefn
11604
11605 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11606 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11607 @end deftypefn
11608
11609 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
11610 Similar to @code{__builtin_nans}, except the return type is
11611 @code{_Float@var{n}}.
11612 @end deftypefn
11613
11614 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
11615 Similar to @code{__builtin_nans}, except the return type is
11616 @code{_Float@var{n}x}.
11617 @end deftypefn
11618
11619 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11620 Returns one plus the index of the least significant 1-bit of @var{x}, or
11621 if @var{x} is zero, returns zero.
11622 @end deftypefn
11623
11624 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11625 Returns the number of leading 0-bits in @var{x}, starting at the most
11626 significant bit position. If @var{x} is 0, the result is undefined.
11627 @end deftypefn
11628
11629 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11630 Returns the number of trailing 0-bits in @var{x}, starting at the least
11631 significant bit position. If @var{x} is 0, the result is undefined.
11632 @end deftypefn
11633
11634 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11635 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11636 number of bits following the most significant bit that are identical
11637 to it. There are no special cases for 0 or other values.
11638 @end deftypefn
11639
11640 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11641 Returns the number of 1-bits in @var{x}.
11642 @end deftypefn
11643
11644 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11645 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11646 modulo 2.
11647 @end deftypefn
11648
11649 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11650 Similar to @code{__builtin_ffs}, except the argument type is
11651 @code{long}.
11652 @end deftypefn
11653
11654 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11655 Similar to @code{__builtin_clz}, except the argument type is
11656 @code{unsigned long}.
11657 @end deftypefn
11658
11659 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11660 Similar to @code{__builtin_ctz}, except the argument type is
11661 @code{unsigned long}.
11662 @end deftypefn
11663
11664 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11665 Similar to @code{__builtin_clrsb}, except the argument type is
11666 @code{long}.
11667 @end deftypefn
11668
11669 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11670 Similar to @code{__builtin_popcount}, except the argument type is
11671 @code{unsigned long}.
11672 @end deftypefn
11673
11674 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11675 Similar to @code{__builtin_parity}, except the argument type is
11676 @code{unsigned long}.
11677 @end deftypefn
11678
11679 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11680 Similar to @code{__builtin_ffs}, except the argument type is
11681 @code{long long}.
11682 @end deftypefn
11683
11684 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11685 Similar to @code{__builtin_clz}, except the argument type is
11686 @code{unsigned long long}.
11687 @end deftypefn
11688
11689 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11690 Similar to @code{__builtin_ctz}, except the argument type is
11691 @code{unsigned long long}.
11692 @end deftypefn
11693
11694 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11695 Similar to @code{__builtin_clrsb}, except the argument type is
11696 @code{long long}.
11697 @end deftypefn
11698
11699 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11700 Similar to @code{__builtin_popcount}, except the argument type is
11701 @code{unsigned long long}.
11702 @end deftypefn
11703
11704 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11705 Similar to @code{__builtin_parity}, except the argument type is
11706 @code{unsigned long long}.
11707 @end deftypefn
11708
11709 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11710 Returns the first argument raised to the power of the second. Unlike the
11711 @code{pow} function no guarantees about precision and rounding are made.
11712 @end deftypefn
11713
11714 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11715 Similar to @code{__builtin_powi}, except the argument and return types
11716 are @code{float}.
11717 @end deftypefn
11718
11719 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11720 Similar to @code{__builtin_powi}, except the argument and return types
11721 are @code{long double}.
11722 @end deftypefn
11723
11724 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11725 Returns @var{x} with the order of the bytes reversed; for example,
11726 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11727 exactly 8 bits.
11728 @end deftypefn
11729
11730 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
11731 Similar to @code{__builtin_bswap16}, except the argument and return types
11732 are 32 bit.
11733 @end deftypefn
11734
11735 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
11736 Similar to @code{__builtin_bswap32}, except the argument and return types
11737 are 64 bit.
11738 @end deftypefn
11739
11740 @node Target Builtins
11741 @section Built-in Functions Specific to Particular Target Machines
11742
11743 On some target machines, GCC supports many built-in functions specific
11744 to those machines. Generally these generate calls to specific machine
11745 instructions, but allow the compiler to schedule those calls.
11746
11747 @menu
11748 * AArch64 Built-in Functions::
11749 * Alpha Built-in Functions::
11750 * Altera Nios II Built-in Functions::
11751 * ARC Built-in Functions::
11752 * ARC SIMD Built-in Functions::
11753 * ARM iWMMXt Built-in Functions::
11754 * ARM C Language Extensions (ACLE)::
11755 * ARM Floating Point Status and Control Intrinsics::
11756 * AVR Built-in Functions::
11757 * Blackfin Built-in Functions::
11758 * FR-V Built-in Functions::
11759 * MIPS DSP Built-in Functions::
11760 * MIPS Paired-Single Support::
11761 * MIPS Loongson Built-in Functions::
11762 * MIPS SIMD Architecture (MSA) Support::
11763 * Other MIPS Built-in Functions::
11764 * MSP430 Built-in Functions::
11765 * NDS32 Built-in Functions::
11766 * picoChip Built-in Functions::
11767 * PowerPC Built-in Functions::
11768 * PowerPC AltiVec/VSX Built-in Functions::
11769 * PowerPC Hardware Transactional Memory Built-in Functions::
11770 * RX Built-in Functions::
11771 * S/390 System z Built-in Functions::
11772 * SH Built-in Functions::
11773 * SPARC VIS Built-in Functions::
11774 * SPU Built-in Functions::
11775 * TI C6X Built-in Functions::
11776 * TILE-Gx Built-in Functions::
11777 * TILEPro Built-in Functions::
11778 * x86 Built-in Functions::
11779 * x86 transactional memory intrinsics::
11780 @end menu
11781
11782 @node AArch64 Built-in Functions
11783 @subsection AArch64 Built-in Functions
11784
11785 These built-in functions are available for the AArch64 family of
11786 processors.
11787 @smallexample
11788 unsigned int __builtin_aarch64_get_fpcr ()
11789 void __builtin_aarch64_set_fpcr (unsigned int)
11790 unsigned int __builtin_aarch64_get_fpsr ()
11791 void __builtin_aarch64_set_fpsr (unsigned int)
11792 @end smallexample
11793
11794 @node Alpha Built-in Functions
11795 @subsection Alpha Built-in Functions
11796
11797 These built-in functions are available for the Alpha family of
11798 processors, depending on the command-line switches used.
11799
11800 The following built-in functions are always available. They
11801 all generate the machine instruction that is part of the name.
11802
11803 @smallexample
11804 long __builtin_alpha_implver (void)
11805 long __builtin_alpha_rpcc (void)
11806 long __builtin_alpha_amask (long)
11807 long __builtin_alpha_cmpbge (long, long)
11808 long __builtin_alpha_extbl (long, long)
11809 long __builtin_alpha_extwl (long, long)
11810 long __builtin_alpha_extll (long, long)
11811 long __builtin_alpha_extql (long, long)
11812 long __builtin_alpha_extwh (long, long)
11813 long __builtin_alpha_extlh (long, long)
11814 long __builtin_alpha_extqh (long, long)
11815 long __builtin_alpha_insbl (long, long)
11816 long __builtin_alpha_inswl (long, long)
11817 long __builtin_alpha_insll (long, long)
11818 long __builtin_alpha_insql (long, long)
11819 long __builtin_alpha_inswh (long, long)
11820 long __builtin_alpha_inslh (long, long)
11821 long __builtin_alpha_insqh (long, long)
11822 long __builtin_alpha_mskbl (long, long)
11823 long __builtin_alpha_mskwl (long, long)
11824 long __builtin_alpha_mskll (long, long)
11825 long __builtin_alpha_mskql (long, long)
11826 long __builtin_alpha_mskwh (long, long)
11827 long __builtin_alpha_msklh (long, long)
11828 long __builtin_alpha_mskqh (long, long)
11829 long __builtin_alpha_umulh (long, long)
11830 long __builtin_alpha_zap (long, long)
11831 long __builtin_alpha_zapnot (long, long)
11832 @end smallexample
11833
11834 The following built-in functions are always with @option{-mmax}
11835 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
11836 later. They all generate the machine instruction that is part
11837 of the name.
11838
11839 @smallexample
11840 long __builtin_alpha_pklb (long)
11841 long __builtin_alpha_pkwb (long)
11842 long __builtin_alpha_unpkbl (long)
11843 long __builtin_alpha_unpkbw (long)
11844 long __builtin_alpha_minub8 (long, long)
11845 long __builtin_alpha_minsb8 (long, long)
11846 long __builtin_alpha_minuw4 (long, long)
11847 long __builtin_alpha_minsw4 (long, long)
11848 long __builtin_alpha_maxub8 (long, long)
11849 long __builtin_alpha_maxsb8 (long, long)
11850 long __builtin_alpha_maxuw4 (long, long)
11851 long __builtin_alpha_maxsw4 (long, long)
11852 long __builtin_alpha_perr (long, long)
11853 @end smallexample
11854
11855 The following built-in functions are always with @option{-mcix}
11856 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
11857 later. They all generate the machine instruction that is part
11858 of the name.
11859
11860 @smallexample
11861 long __builtin_alpha_cttz (long)
11862 long __builtin_alpha_ctlz (long)
11863 long __builtin_alpha_ctpop (long)
11864 @end smallexample
11865
11866 The following built-in functions are available on systems that use the OSF/1
11867 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
11868 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
11869 @code{rdval} and @code{wrval}.
11870
11871 @smallexample
11872 void *__builtin_thread_pointer (void)
11873 void __builtin_set_thread_pointer (void *)
11874 @end smallexample
11875
11876 @node Altera Nios II Built-in Functions
11877 @subsection Altera Nios II Built-in Functions
11878
11879 These built-in functions are available for the Altera Nios II
11880 family of processors.
11881
11882 The following built-in functions are always available. They
11883 all generate the machine instruction that is part of the name.
11884
11885 @example
11886 int __builtin_ldbio (volatile const void *)
11887 int __builtin_ldbuio (volatile const void *)
11888 int __builtin_ldhio (volatile const void *)
11889 int __builtin_ldhuio (volatile const void *)
11890 int __builtin_ldwio (volatile const void *)
11891 void __builtin_stbio (volatile void *, int)
11892 void __builtin_sthio (volatile void *, int)
11893 void __builtin_stwio (volatile void *, int)
11894 void __builtin_sync (void)
11895 int __builtin_rdctl (int)
11896 int __builtin_rdprs (int, int)
11897 void __builtin_wrctl (int, int)
11898 void __builtin_flushd (volatile void *)
11899 void __builtin_flushda (volatile void *)
11900 int __builtin_wrpie (int);
11901 void __builtin_eni (int);
11902 int __builtin_ldex (volatile const void *)
11903 int __builtin_stex (volatile void *, int)
11904 int __builtin_ldsex (volatile const void *)
11905 int __builtin_stsex (volatile void *, int)
11906 @end example
11907
11908 The following built-in functions are always available. They
11909 all generate a Nios II Custom Instruction. The name of the
11910 function represents the types that the function takes and
11911 returns. The letter before the @code{n} is the return type
11912 or void if absent. The @code{n} represents the first parameter
11913 to all the custom instructions, the custom instruction number.
11914 The two letters after the @code{n} represent the up to two
11915 parameters to the function.
11916
11917 The letters represent the following data types:
11918 @table @code
11919 @item <no letter>
11920 @code{void} for return type and no parameter for parameter types.
11921
11922 @item i
11923 @code{int} for return type and parameter type
11924
11925 @item f
11926 @code{float} for return type and parameter type
11927
11928 @item p
11929 @code{void *} for return type and parameter type
11930
11931 @end table
11932
11933 And the function names are:
11934 @example
11935 void __builtin_custom_n (void)
11936 void __builtin_custom_ni (int)
11937 void __builtin_custom_nf (float)
11938 void __builtin_custom_np (void *)
11939 void __builtin_custom_nii (int, int)
11940 void __builtin_custom_nif (int, float)
11941 void __builtin_custom_nip (int, void *)
11942 void __builtin_custom_nfi (float, int)
11943 void __builtin_custom_nff (float, float)
11944 void __builtin_custom_nfp (float, void *)
11945 void __builtin_custom_npi (void *, int)
11946 void __builtin_custom_npf (void *, float)
11947 void __builtin_custom_npp (void *, void *)
11948 int __builtin_custom_in (void)
11949 int __builtin_custom_ini (int)
11950 int __builtin_custom_inf (float)
11951 int __builtin_custom_inp (void *)
11952 int __builtin_custom_inii (int, int)
11953 int __builtin_custom_inif (int, float)
11954 int __builtin_custom_inip (int, void *)
11955 int __builtin_custom_infi (float, int)
11956 int __builtin_custom_inff (float, float)
11957 int __builtin_custom_infp (float, void *)
11958 int __builtin_custom_inpi (void *, int)
11959 int __builtin_custom_inpf (void *, float)
11960 int __builtin_custom_inpp (void *, void *)
11961 float __builtin_custom_fn (void)
11962 float __builtin_custom_fni (int)
11963 float __builtin_custom_fnf (float)
11964 float __builtin_custom_fnp (void *)
11965 float __builtin_custom_fnii (int, int)
11966 float __builtin_custom_fnif (int, float)
11967 float __builtin_custom_fnip (int, void *)
11968 float __builtin_custom_fnfi (float, int)
11969 float __builtin_custom_fnff (float, float)
11970 float __builtin_custom_fnfp (float, void *)
11971 float __builtin_custom_fnpi (void *, int)
11972 float __builtin_custom_fnpf (void *, float)
11973 float __builtin_custom_fnpp (void *, void *)
11974 void * __builtin_custom_pn (void)
11975 void * __builtin_custom_pni (int)
11976 void * __builtin_custom_pnf (float)
11977 void * __builtin_custom_pnp (void *)
11978 void * __builtin_custom_pnii (int, int)
11979 void * __builtin_custom_pnif (int, float)
11980 void * __builtin_custom_pnip (int, void *)
11981 void * __builtin_custom_pnfi (float, int)
11982 void * __builtin_custom_pnff (float, float)
11983 void * __builtin_custom_pnfp (float, void *)
11984 void * __builtin_custom_pnpi (void *, int)
11985 void * __builtin_custom_pnpf (void *, float)
11986 void * __builtin_custom_pnpp (void *, void *)
11987 @end example
11988
11989 @node ARC Built-in Functions
11990 @subsection ARC Built-in Functions
11991
11992 The following built-in functions are provided for ARC targets. The
11993 built-ins generate the corresponding assembly instructions. In the
11994 examples given below, the generated code often requires an operand or
11995 result to be in a register. Where necessary further code will be
11996 generated to ensure this is true, but for brevity this is not
11997 described in each case.
11998
11999 @emph{Note:} Using a built-in to generate an instruction not supported
12000 by a target may cause problems. At present the compiler is not
12001 guaranteed to detect such misuse, and as a result an internal compiler
12002 error may be generated.
12003
12004 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12005 Return 1 if @var{val} is known to have the byte alignment given
12006 by @var{alignval}, otherwise return 0.
12007 Note that this is different from
12008 @smallexample
12009 __alignof__(*(char *)@var{val}) >= alignval
12010 @end smallexample
12011 because __alignof__ sees only the type of the dereference, whereas
12012 __builtin_arc_align uses alignment information from the pointer
12013 as well as from the pointed-to type.
12014 The information available will depend on optimization level.
12015 @end deftypefn
12016
12017 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12018 Generates
12019 @example
12020 brk
12021 @end example
12022 @end deftypefn
12023
12024 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12025 The operand is the number of a register to be read. Generates:
12026 @example
12027 mov @var{dest}, r@var{regno}
12028 @end example
12029 where the value in @var{dest} will be the result returned from the
12030 built-in.
12031 @end deftypefn
12032
12033 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12034 The first operand is the number of a register to be written, the
12035 second operand is a compile time constant to write into that
12036 register. Generates:
12037 @example
12038 mov r@var{regno}, @var{val}
12039 @end example
12040 @end deftypefn
12041
12042 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12043 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12044 Generates:
12045 @example
12046 divaw @var{dest}, @var{a}, @var{b}
12047 @end example
12048 where the value in @var{dest} will be the result returned from the
12049 built-in.
12050 @end deftypefn
12051
12052 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12053 Generates
12054 @example
12055 flag @var{a}
12056 @end example
12057 @end deftypefn
12058
12059 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12060 The operand, @var{auxv}, is the address of an auxiliary register and
12061 must be a compile time constant. Generates:
12062 @example
12063 lr @var{dest}, [@var{auxr}]
12064 @end example
12065 Where the value in @var{dest} will be the result returned from the
12066 built-in.
12067 @end deftypefn
12068
12069 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12070 Only available with @option{-mmul64}. Generates:
12071 @example
12072 mul64 @var{a}, @var{b}
12073 @end example
12074 @end deftypefn
12075
12076 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12077 Only available with @option{-mmul64}. Generates:
12078 @example
12079 mulu64 @var{a}, @var{b}
12080 @end example
12081 @end deftypefn
12082
12083 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12084 Generates:
12085 @example
12086 nop
12087 @end example
12088 @end deftypefn
12089
12090 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12091 Only valid if the @samp{norm} instruction is available through the
12092 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12093 Generates:
12094 @example
12095 norm @var{dest}, @var{src}
12096 @end example
12097 Where the value in @var{dest} will be the result returned from the
12098 built-in.
12099 @end deftypefn
12100
12101 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12102 Only valid if the @samp{normw} instruction is available through the
12103 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12104 Generates:
12105 @example
12106 normw @var{dest}, @var{src}
12107 @end example
12108 Where the value in @var{dest} will be the result returned from the
12109 built-in.
12110 @end deftypefn
12111
12112 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12113 Generates:
12114 @example
12115 rtie
12116 @end example
12117 @end deftypefn
12118
12119 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12120 Generates:
12121 @example
12122 sleep @var{a}
12123 @end example
12124 @end deftypefn
12125
12126 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12127 The first argument, @var{auxv}, is the address of an auxiliary
12128 register, the second argument, @var{val}, is a compile time constant
12129 to be written to the register. Generates:
12130 @example
12131 sr @var{auxr}, [@var{val}]
12132 @end example
12133 @end deftypefn
12134
12135 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12136 Only valid with @option{-mswap}. Generates:
12137 @example
12138 swap @var{dest}, @var{src}
12139 @end example
12140 Where the value in @var{dest} will be the result returned from the
12141 built-in.
12142 @end deftypefn
12143
12144 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12145 Generates:
12146 @example
12147 swi
12148 @end example
12149 @end deftypefn
12150
12151 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12152 Only available with @option{-mcpu=ARC700}. Generates:
12153 @example
12154 sync
12155 @end example
12156 @end deftypefn
12157
12158 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12159 Only available with @option{-mcpu=ARC700}. Generates:
12160 @example
12161 trap_s @var{c}
12162 @end example
12163 @end deftypefn
12164
12165 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12166 Only available with @option{-mcpu=ARC700}. Generates:
12167 @example
12168 unimp_s
12169 @end example
12170 @end deftypefn
12171
12172 The instructions generated by the following builtins are not
12173 considered as candidates for scheduling. They are not moved around by
12174 the compiler during scheduling, and thus can be expected to appear
12175 where they are put in the C code:
12176 @example
12177 __builtin_arc_brk()
12178 __builtin_arc_core_read()
12179 __builtin_arc_core_write()
12180 __builtin_arc_flag()
12181 __builtin_arc_lr()
12182 __builtin_arc_sleep()
12183 __builtin_arc_sr()
12184 __builtin_arc_swi()
12185 @end example
12186
12187 @node ARC SIMD Built-in Functions
12188 @subsection ARC SIMD Built-in Functions
12189
12190 SIMD builtins provided by the compiler can be used to generate the
12191 vector instructions. This section describes the available builtins
12192 and their usage in programs. With the @option{-msimd} option, the
12193 compiler provides 128-bit vector types, which can be specified using
12194 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12195 can be included to use the following predefined types:
12196 @example
12197 typedef int __v4si __attribute__((vector_size(16)));
12198 typedef short __v8hi __attribute__((vector_size(16)));
12199 @end example
12200
12201 These types can be used to define 128-bit variables. The built-in
12202 functions listed in the following section can be used on these
12203 variables to generate the vector operations.
12204
12205 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12206 @file{arc-simd.h} also provides equivalent macros called
12207 @code{_@var{someinsn}} that can be used for programming ease and
12208 improved readability. The following macros for DMA control are also
12209 provided:
12210 @example
12211 #define _setup_dma_in_channel_reg _vdiwr
12212 #define _setup_dma_out_channel_reg _vdowr
12213 @end example
12214
12215 The following is a complete list of all the SIMD built-ins provided
12216 for ARC, grouped by calling signature.
12217
12218 The following take two @code{__v8hi} arguments and return a
12219 @code{__v8hi} result:
12220 @example
12221 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12222 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12223 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12224 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12225 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12226 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12227 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12228 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12229 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12230 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12231 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12232 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12233 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12234 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12235 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
12236 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
12237 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
12238 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
12239 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
12240 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
12241 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
12242 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
12243 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
12244 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
12245 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
12246 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
12247 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
12248 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
12249 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
12250 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
12251 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
12252 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
12253 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
12254 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
12255 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
12256 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
12257 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
12258 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
12259 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
12260 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
12261 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
12262 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
12263 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
12264 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
12265 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
12266 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
12267 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
12268 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
12269 @end example
12270
12271 The following take one @code{__v8hi} and one @code{int} argument and return a
12272 @code{__v8hi} result:
12273
12274 @example
12275 __v8hi __builtin_arc_vbaddw (__v8hi, int)
12276 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
12277 __v8hi __builtin_arc_vbminw (__v8hi, int)
12278 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
12279 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
12280 __v8hi __builtin_arc_vbmulw (__v8hi, int)
12281 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
12282 __v8hi __builtin_arc_vbsubw (__v8hi, int)
12283 @end example
12284
12285 The following take one @code{__v8hi} argument and one @code{int} argument which
12286 must be a 3-bit compile time constant indicating a register number
12287 I0-I7. They return a @code{__v8hi} result.
12288 @example
12289 __v8hi __builtin_arc_vasrw (__v8hi, const int)
12290 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
12291 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
12292 @end example
12293
12294 The following take one @code{__v8hi} argument and one @code{int}
12295 argument which must be a 6-bit compile time constant. They return a
12296 @code{__v8hi} result.
12297 @example
12298 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
12299 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
12300 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
12301 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
12302 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
12303 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
12304 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
12305 @end example
12306
12307 The following take one @code{__v8hi} argument and one @code{int} argument which
12308 must be a 8-bit compile time constant. They return a @code{__v8hi}
12309 result.
12310 @example
12311 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12312 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12313 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12314 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12315 @end example
12316
12317 The following take two @code{int} arguments, the second of which which
12318 must be a 8-bit compile time constant. They return a @code{__v8hi}
12319 result:
12320 @example
12321 __v8hi __builtin_arc_vmovaw (int, const int)
12322 __v8hi __builtin_arc_vmovw (int, const int)
12323 __v8hi __builtin_arc_vmovzw (int, const int)
12324 @end example
12325
12326 The following take a single @code{__v8hi} argument and return a
12327 @code{__v8hi} result:
12328 @example
12329 __v8hi __builtin_arc_vabsaw (__v8hi)
12330 __v8hi __builtin_arc_vabsw (__v8hi)
12331 __v8hi __builtin_arc_vaddsuw (__v8hi)
12332 __v8hi __builtin_arc_vexch1 (__v8hi)
12333 __v8hi __builtin_arc_vexch2 (__v8hi)
12334 __v8hi __builtin_arc_vexch4 (__v8hi)
12335 __v8hi __builtin_arc_vsignw (__v8hi)
12336 __v8hi __builtin_arc_vupbaw (__v8hi)
12337 __v8hi __builtin_arc_vupbw (__v8hi)
12338 __v8hi __builtin_arc_vupsbaw (__v8hi)
12339 __v8hi __builtin_arc_vupsbw (__v8hi)
12340 @end example
12341
12342 The following take two @code{int} arguments and return no result:
12343 @example
12344 void __builtin_arc_vdirun (int, int)
12345 void __builtin_arc_vdorun (int, int)
12346 @end example
12347
12348 The following take two @code{int} arguments and return no result. The
12349 first argument must a 3-bit compile time constant indicating one of
12350 the DR0-DR7 DMA setup channels:
12351 @example
12352 void __builtin_arc_vdiwr (const int, int)
12353 void __builtin_arc_vdowr (const int, int)
12354 @end example
12355
12356 The following take an @code{int} argument and return no result:
12357 @example
12358 void __builtin_arc_vendrec (int)
12359 void __builtin_arc_vrec (int)
12360 void __builtin_arc_vrecrun (int)
12361 void __builtin_arc_vrun (int)
12362 @end example
12363
12364 The following take a @code{__v8hi} argument and two @code{int}
12365 arguments and return a @code{__v8hi} result. The second argument must
12366 be a 3-bit compile time constants, indicating one the registers I0-I7,
12367 and the third argument must be an 8-bit compile time constant.
12368
12369 @emph{Note:} Although the equivalent hardware instructions do not take
12370 an SIMD register as an operand, these builtins overwrite the relevant
12371 bits of the @code{__v8hi} register provided as the first argument with
12372 the value loaded from the @code{[Ib, u8]} location in the SDM.
12373
12374 @example
12375 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12376 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12377 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12378 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12379 @end example
12380
12381 The following take two @code{int} arguments and return a @code{__v8hi}
12382 result. The first argument must be a 3-bit compile time constants,
12383 indicating one the registers I0-I7, and the second argument must be an
12384 8-bit compile time constant.
12385
12386 @example
12387 __v8hi __builtin_arc_vld128 (const int, const int)
12388 __v8hi __builtin_arc_vld64w (const int, const int)
12389 @end example
12390
12391 The following take a @code{__v8hi} argument and two @code{int}
12392 arguments and return no result. The second argument must be a 3-bit
12393 compile time constants, indicating one the registers I0-I7, and the
12394 third argument must be an 8-bit compile time constant.
12395
12396 @example
12397 void __builtin_arc_vst128 (__v8hi, const int, const int)
12398 void __builtin_arc_vst64 (__v8hi, const int, const int)
12399 @end example
12400
12401 The following take a @code{__v8hi} argument and three @code{int}
12402 arguments and return no result. The second argument must be a 3-bit
12403 compile-time constant, identifying the 16-bit sub-register to be
12404 stored, the third argument must be a 3-bit compile time constants,
12405 indicating one the registers I0-I7, and the fourth argument must be an
12406 8-bit compile time constant.
12407
12408 @example
12409 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12410 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12411 @end example
12412
12413 @node ARM iWMMXt Built-in Functions
12414 @subsection ARM iWMMXt Built-in Functions
12415
12416 These built-in functions are available for the ARM family of
12417 processors when the @option{-mcpu=iwmmxt} switch is used:
12418
12419 @smallexample
12420 typedef int v2si __attribute__ ((vector_size (8)));
12421 typedef short v4hi __attribute__ ((vector_size (8)));
12422 typedef char v8qi __attribute__ ((vector_size (8)));
12423
12424 int __builtin_arm_getwcgr0 (void)
12425 void __builtin_arm_setwcgr0 (int)
12426 int __builtin_arm_getwcgr1 (void)
12427 void __builtin_arm_setwcgr1 (int)
12428 int __builtin_arm_getwcgr2 (void)
12429 void __builtin_arm_setwcgr2 (int)
12430 int __builtin_arm_getwcgr3 (void)
12431 void __builtin_arm_setwcgr3 (int)
12432 int __builtin_arm_textrmsb (v8qi, int)
12433 int __builtin_arm_textrmsh (v4hi, int)
12434 int __builtin_arm_textrmsw (v2si, int)
12435 int __builtin_arm_textrmub (v8qi, int)
12436 int __builtin_arm_textrmuh (v4hi, int)
12437 int __builtin_arm_textrmuw (v2si, int)
12438 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12439 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12440 v2si __builtin_arm_tinsrw (v2si, int, int)
12441 long long __builtin_arm_tmia (long long, int, int)
12442 long long __builtin_arm_tmiabb (long long, int, int)
12443 long long __builtin_arm_tmiabt (long long, int, int)
12444 long long __builtin_arm_tmiaph (long long, int, int)
12445 long long __builtin_arm_tmiatb (long long, int, int)
12446 long long __builtin_arm_tmiatt (long long, int, int)
12447 int __builtin_arm_tmovmskb (v8qi)
12448 int __builtin_arm_tmovmskh (v4hi)
12449 int __builtin_arm_tmovmskw (v2si)
12450 long long __builtin_arm_waccb (v8qi)
12451 long long __builtin_arm_wacch (v4hi)
12452 long long __builtin_arm_waccw (v2si)
12453 v8qi __builtin_arm_waddb (v8qi, v8qi)
12454 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12455 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12456 v4hi __builtin_arm_waddh (v4hi, v4hi)
12457 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12458 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12459 v2si __builtin_arm_waddw (v2si, v2si)
12460 v2si __builtin_arm_waddwss (v2si, v2si)
12461 v2si __builtin_arm_waddwus (v2si, v2si)
12462 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12463 long long __builtin_arm_wand(long long, long long)
12464 long long __builtin_arm_wandn (long long, long long)
12465 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12466 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12467 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12468 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12469 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12470 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12471 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12472 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12473 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12474 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12475 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12476 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12477 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12478 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12479 long long __builtin_arm_wmacsz (v4hi, v4hi)
12480 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12481 long long __builtin_arm_wmacuz (v4hi, v4hi)
12482 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12483 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12484 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12485 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12486 v2si __builtin_arm_wmaxsw (v2si, v2si)
12487 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12488 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12489 v2si __builtin_arm_wmaxuw (v2si, v2si)
12490 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12491 v4hi __builtin_arm_wminsh (v4hi, v4hi)
12492 v2si __builtin_arm_wminsw (v2si, v2si)
12493 v8qi __builtin_arm_wminub (v8qi, v8qi)
12494 v4hi __builtin_arm_wminuh (v4hi, v4hi)
12495 v2si __builtin_arm_wminuw (v2si, v2si)
12496 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
12497 v4hi __builtin_arm_wmulul (v4hi, v4hi)
12498 v4hi __builtin_arm_wmulum (v4hi, v4hi)
12499 long long __builtin_arm_wor (long long, long long)
12500 v2si __builtin_arm_wpackdss (long long, long long)
12501 v2si __builtin_arm_wpackdus (long long, long long)
12502 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
12503 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
12504 v4hi __builtin_arm_wpackwss (v2si, v2si)
12505 v4hi __builtin_arm_wpackwus (v2si, v2si)
12506 long long __builtin_arm_wrord (long long, long long)
12507 long long __builtin_arm_wrordi (long long, int)
12508 v4hi __builtin_arm_wrorh (v4hi, long long)
12509 v4hi __builtin_arm_wrorhi (v4hi, int)
12510 v2si __builtin_arm_wrorw (v2si, long long)
12511 v2si __builtin_arm_wrorwi (v2si, int)
12512 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
12513 v2si __builtin_arm_wsadbz (v8qi, v8qi)
12514 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
12515 v2si __builtin_arm_wsadhz (v4hi, v4hi)
12516 v4hi __builtin_arm_wshufh (v4hi, int)
12517 long long __builtin_arm_wslld (long long, long long)
12518 long long __builtin_arm_wslldi (long long, int)
12519 v4hi __builtin_arm_wsllh (v4hi, long long)
12520 v4hi __builtin_arm_wsllhi (v4hi, int)
12521 v2si __builtin_arm_wsllw (v2si, long long)
12522 v2si __builtin_arm_wsllwi (v2si, int)
12523 long long __builtin_arm_wsrad (long long, long long)
12524 long long __builtin_arm_wsradi (long long, int)
12525 v4hi __builtin_arm_wsrah (v4hi, long long)
12526 v4hi __builtin_arm_wsrahi (v4hi, int)
12527 v2si __builtin_arm_wsraw (v2si, long long)
12528 v2si __builtin_arm_wsrawi (v2si, int)
12529 long long __builtin_arm_wsrld (long long, long long)
12530 long long __builtin_arm_wsrldi (long long, int)
12531 v4hi __builtin_arm_wsrlh (v4hi, long long)
12532 v4hi __builtin_arm_wsrlhi (v4hi, int)
12533 v2si __builtin_arm_wsrlw (v2si, long long)
12534 v2si __builtin_arm_wsrlwi (v2si, int)
12535 v8qi __builtin_arm_wsubb (v8qi, v8qi)
12536 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
12537 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
12538 v4hi __builtin_arm_wsubh (v4hi, v4hi)
12539 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12540 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12541 v2si __builtin_arm_wsubw (v2si, v2si)
12542 v2si __builtin_arm_wsubwss (v2si, v2si)
12543 v2si __builtin_arm_wsubwus (v2si, v2si)
12544 v4hi __builtin_arm_wunpckehsb (v8qi)
12545 v2si __builtin_arm_wunpckehsh (v4hi)
12546 long long __builtin_arm_wunpckehsw (v2si)
12547 v4hi __builtin_arm_wunpckehub (v8qi)
12548 v2si __builtin_arm_wunpckehuh (v4hi)
12549 long long __builtin_arm_wunpckehuw (v2si)
12550 v4hi __builtin_arm_wunpckelsb (v8qi)
12551 v2si __builtin_arm_wunpckelsh (v4hi)
12552 long long __builtin_arm_wunpckelsw (v2si)
12553 v4hi __builtin_arm_wunpckelub (v8qi)
12554 v2si __builtin_arm_wunpckeluh (v4hi)
12555 long long __builtin_arm_wunpckeluw (v2si)
12556 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12557 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12558 v2si __builtin_arm_wunpckihw (v2si, v2si)
12559 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12560 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12561 v2si __builtin_arm_wunpckilw (v2si, v2si)
12562 long long __builtin_arm_wxor (long long, long long)
12563 long long __builtin_arm_wzero ()
12564 @end smallexample
12565
12566
12567 @node ARM C Language Extensions (ACLE)
12568 @subsection ARM C Language Extensions (ACLE)
12569
12570 GCC implements extensions for C as described in the ARM C Language
12571 Extensions (ACLE) specification, which can be found at
12572 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12573
12574 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12575 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12576 intrinsics can be found at
12577 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12578 The built-in intrinsics for the Advanced SIMD extension are available when
12579 NEON is enabled.
12580
12581 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12582 back ends support CRC32 intrinsics from @file{arm_acle.h}. The ARM back end's
12583 16-bit floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12584 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12585 intrinsics yet.
12586
12587 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12588 availability of extensions.
12589
12590 @node ARM Floating Point Status and Control Intrinsics
12591 @subsection ARM Floating Point Status and Control Intrinsics
12592
12593 These built-in functions are available for the ARM family of
12594 processors with floating-point unit.
12595
12596 @smallexample
12597 unsigned int __builtin_arm_get_fpscr ()
12598 void __builtin_arm_set_fpscr (unsigned int)
12599 @end smallexample
12600
12601 @node AVR Built-in Functions
12602 @subsection AVR Built-in Functions
12603
12604 For each built-in function for AVR, there is an equally named,
12605 uppercase built-in macro defined. That way users can easily query if
12606 or if not a specific built-in is implemented or not. For example, if
12607 @code{__builtin_avr_nop} is available the macro
12608 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12609
12610 The following built-in functions map to the respective machine
12611 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12612 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12613 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12614 as library call if no hardware multiplier is available.
12615
12616 @smallexample
12617 void __builtin_avr_nop (void)
12618 void __builtin_avr_sei (void)
12619 void __builtin_avr_cli (void)
12620 void __builtin_avr_sleep (void)
12621 void __builtin_avr_wdr (void)
12622 unsigned char __builtin_avr_swap (unsigned char)
12623 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12624 int __builtin_avr_fmuls (char, char)
12625 int __builtin_avr_fmulsu (char, unsigned char)
12626 @end smallexample
12627
12628 In order to delay execution for a specific number of cycles, GCC
12629 implements
12630 @smallexample
12631 void __builtin_avr_delay_cycles (unsigned long ticks)
12632 @end smallexample
12633
12634 @noindent
12635 @code{ticks} is the number of ticks to delay execution. Note that this
12636 built-in does not take into account the effect of interrupts that
12637 might increase delay time. @code{ticks} must be a compile-time
12638 integer constant; delays with a variable number of cycles are not supported.
12639
12640 @smallexample
12641 char __builtin_avr_flash_segment (const __memx void*)
12642 @end smallexample
12643
12644 @noindent
12645 This built-in takes a byte address to the 24-bit
12646 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12647 the number of the flash segment (the 64 KiB chunk) where the address
12648 points to. Counting starts at @code{0}.
12649 If the address does not point to flash memory, return @code{-1}.
12650
12651 @smallexample
12652 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
12653 @end smallexample
12654
12655 @noindent
12656 Insert bits from @var{bits} into @var{val} and return the resulting
12657 value. The nibbles of @var{map} determine how the insertion is
12658 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12659 @enumerate
12660 @item If @var{X} is @code{0xf},
12661 then the @var{n}-th bit of @var{val} is returned unaltered.
12662
12663 @item If X is in the range 0@dots{}7,
12664 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12665
12666 @item If X is in the range 8@dots{}@code{0xe},
12667 then the @var{n}-th result bit is undefined.
12668 @end enumerate
12669
12670 @noindent
12671 One typical use case for this built-in is adjusting input and
12672 output values to non-contiguous port layouts. Some examples:
12673
12674 @smallexample
12675 // same as val, bits is unused
12676 __builtin_avr_insert_bits (0xffffffff, bits, val)
12677 @end smallexample
12678
12679 @smallexample
12680 // same as bits, val is unused
12681 __builtin_avr_insert_bits (0x76543210, bits, val)
12682 @end smallexample
12683
12684 @smallexample
12685 // same as rotating bits by 4
12686 __builtin_avr_insert_bits (0x32107654, bits, 0)
12687 @end smallexample
12688
12689 @smallexample
12690 // high nibble of result is the high nibble of val
12691 // low nibble of result is the low nibble of bits
12692 __builtin_avr_insert_bits (0xffff3210, bits, val)
12693 @end smallexample
12694
12695 @smallexample
12696 // reverse the bit order of bits
12697 __builtin_avr_insert_bits (0x01234567, bits, 0)
12698 @end smallexample
12699
12700 @smallexample
12701 void __builtin_avr_nops (unsigned count)
12702 @end smallexample
12703
12704 @noindent
12705 Insert @code{count} @code{NOP} instructions.
12706 The number of instructions must be a compile-time integer constant.
12707
12708 @node Blackfin Built-in Functions
12709 @subsection Blackfin Built-in Functions
12710
12711 Currently, there are two Blackfin-specific built-in functions. These are
12712 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
12713 using inline assembly; by using these built-in functions the compiler can
12714 automatically add workarounds for hardware errata involving these
12715 instructions. These functions are named as follows:
12716
12717 @smallexample
12718 void __builtin_bfin_csync (void)
12719 void __builtin_bfin_ssync (void)
12720 @end smallexample
12721
12722 @node FR-V Built-in Functions
12723 @subsection FR-V Built-in Functions
12724
12725 GCC provides many FR-V-specific built-in functions. In general,
12726 these functions are intended to be compatible with those described
12727 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
12728 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
12729 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
12730 pointer rather than by value.
12731
12732 Most of the functions are named after specific FR-V instructions.
12733 Such functions are said to be ``directly mapped'' and are summarized
12734 here in tabular form.
12735
12736 @menu
12737 * Argument Types::
12738 * Directly-mapped Integer Functions::
12739 * Directly-mapped Media Functions::
12740 * Raw read/write Functions::
12741 * Other Built-in Functions::
12742 @end menu
12743
12744 @node Argument Types
12745 @subsubsection Argument Types
12746
12747 The arguments to the built-in functions can be divided into three groups:
12748 register numbers, compile-time constants and run-time values. In order
12749 to make this classification clear at a glance, the arguments and return
12750 values are given the following pseudo types:
12751
12752 @multitable @columnfractions .20 .30 .15 .35
12753 @item Pseudo type @tab Real C type @tab Constant? @tab Description
12754 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
12755 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
12756 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
12757 @item @code{uw2} @tab @code{unsigned long long} @tab No
12758 @tab an unsigned doubleword
12759 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
12760 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
12761 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
12762 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
12763 @end multitable
12764
12765 These pseudo types are not defined by GCC, they are simply a notational
12766 convenience used in this manual.
12767
12768 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
12769 and @code{sw2} are evaluated at run time. They correspond to
12770 register operands in the underlying FR-V instructions.
12771
12772 @code{const} arguments represent immediate operands in the underlying
12773 FR-V instructions. They must be compile-time constants.
12774
12775 @code{acc} arguments are evaluated at compile time and specify the number
12776 of an accumulator register. For example, an @code{acc} argument of 2
12777 selects the ACC2 register.
12778
12779 @code{iacc} arguments are similar to @code{acc} arguments but specify the
12780 number of an IACC register. See @pxref{Other Built-in Functions}
12781 for more details.
12782
12783 @node Directly-mapped Integer Functions
12784 @subsubsection Directly-Mapped Integer Functions
12785
12786 The functions listed below map directly to FR-V I-type instructions.
12787
12788 @multitable @columnfractions .45 .32 .23
12789 @item Function prototype @tab Example usage @tab Assembly output
12790 @item @code{sw1 __ADDSS (sw1, sw1)}
12791 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
12792 @tab @code{ADDSS @var{a},@var{b},@var{c}}
12793 @item @code{sw1 __SCAN (sw1, sw1)}
12794 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
12795 @tab @code{SCAN @var{a},@var{b},@var{c}}
12796 @item @code{sw1 __SCUTSS (sw1)}
12797 @tab @code{@var{b} = __SCUTSS (@var{a})}
12798 @tab @code{SCUTSS @var{a},@var{b}}
12799 @item @code{sw1 __SLASS (sw1, sw1)}
12800 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
12801 @tab @code{SLASS @var{a},@var{b},@var{c}}
12802 @item @code{void __SMASS (sw1, sw1)}
12803 @tab @code{__SMASS (@var{a}, @var{b})}
12804 @tab @code{SMASS @var{a},@var{b}}
12805 @item @code{void __SMSSS (sw1, sw1)}
12806 @tab @code{__SMSSS (@var{a}, @var{b})}
12807 @tab @code{SMSSS @var{a},@var{b}}
12808 @item @code{void __SMU (sw1, sw1)}
12809 @tab @code{__SMU (@var{a}, @var{b})}
12810 @tab @code{SMU @var{a},@var{b}}
12811 @item @code{sw2 __SMUL (sw1, sw1)}
12812 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
12813 @tab @code{SMUL @var{a},@var{b},@var{c}}
12814 @item @code{sw1 __SUBSS (sw1, sw1)}
12815 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
12816 @tab @code{SUBSS @var{a},@var{b},@var{c}}
12817 @item @code{uw2 __UMUL (uw1, uw1)}
12818 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
12819 @tab @code{UMUL @var{a},@var{b},@var{c}}
12820 @end multitable
12821
12822 @node Directly-mapped Media Functions
12823 @subsubsection Directly-Mapped Media Functions
12824
12825 The functions listed below map directly to FR-V M-type instructions.
12826
12827 @multitable @columnfractions .45 .32 .23
12828 @item Function prototype @tab Example usage @tab Assembly output
12829 @item @code{uw1 __MABSHS (sw1)}
12830 @tab @code{@var{b} = __MABSHS (@var{a})}
12831 @tab @code{MABSHS @var{a},@var{b}}
12832 @item @code{void __MADDACCS (acc, acc)}
12833 @tab @code{__MADDACCS (@var{b}, @var{a})}
12834 @tab @code{MADDACCS @var{a},@var{b}}
12835 @item @code{sw1 __MADDHSS (sw1, sw1)}
12836 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
12837 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
12838 @item @code{uw1 __MADDHUS (uw1, uw1)}
12839 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
12840 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
12841 @item @code{uw1 __MAND (uw1, uw1)}
12842 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
12843 @tab @code{MAND @var{a},@var{b},@var{c}}
12844 @item @code{void __MASACCS (acc, acc)}
12845 @tab @code{__MASACCS (@var{b}, @var{a})}
12846 @tab @code{MASACCS @var{a},@var{b}}
12847 @item @code{uw1 __MAVEH (uw1, uw1)}
12848 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
12849 @tab @code{MAVEH @var{a},@var{b},@var{c}}
12850 @item @code{uw2 __MBTOH (uw1)}
12851 @tab @code{@var{b} = __MBTOH (@var{a})}
12852 @tab @code{MBTOH @var{a},@var{b}}
12853 @item @code{void __MBTOHE (uw1 *, uw1)}
12854 @tab @code{__MBTOHE (&@var{b}, @var{a})}
12855 @tab @code{MBTOHE @var{a},@var{b}}
12856 @item @code{void __MCLRACC (acc)}
12857 @tab @code{__MCLRACC (@var{a})}
12858 @tab @code{MCLRACC @var{a}}
12859 @item @code{void __MCLRACCA (void)}
12860 @tab @code{__MCLRACCA ()}
12861 @tab @code{MCLRACCA}
12862 @item @code{uw1 __Mcop1 (uw1, uw1)}
12863 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
12864 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
12865 @item @code{uw1 __Mcop2 (uw1, uw1)}
12866 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
12867 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
12868 @item @code{uw1 __MCPLHI (uw2, const)}
12869 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
12870 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
12871 @item @code{uw1 __MCPLI (uw2, const)}
12872 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
12873 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
12874 @item @code{void __MCPXIS (acc, sw1, sw1)}
12875 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
12876 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
12877 @item @code{void __MCPXIU (acc, uw1, uw1)}
12878 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
12879 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
12880 @item @code{void __MCPXRS (acc, sw1, sw1)}
12881 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
12882 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
12883 @item @code{void __MCPXRU (acc, uw1, uw1)}
12884 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
12885 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
12886 @item @code{uw1 __MCUT (acc, uw1)}
12887 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
12888 @tab @code{MCUT @var{a},@var{b},@var{c}}
12889 @item @code{uw1 __MCUTSS (acc, sw1)}
12890 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
12891 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
12892 @item @code{void __MDADDACCS (acc, acc)}
12893 @tab @code{__MDADDACCS (@var{b}, @var{a})}
12894 @tab @code{MDADDACCS @var{a},@var{b}}
12895 @item @code{void __MDASACCS (acc, acc)}
12896 @tab @code{__MDASACCS (@var{b}, @var{a})}
12897 @tab @code{MDASACCS @var{a},@var{b}}
12898 @item @code{uw2 __MDCUTSSI (acc, const)}
12899 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
12900 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
12901 @item @code{uw2 __MDPACKH (uw2, uw2)}
12902 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
12903 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
12904 @item @code{uw2 __MDROTLI (uw2, const)}
12905 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
12906 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
12907 @item @code{void __MDSUBACCS (acc, acc)}
12908 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
12909 @tab @code{MDSUBACCS @var{a},@var{b}}
12910 @item @code{void __MDUNPACKH (uw1 *, uw2)}
12911 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
12912 @tab @code{MDUNPACKH @var{a},@var{b}}
12913 @item @code{uw2 __MEXPDHD (uw1, const)}
12914 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
12915 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
12916 @item @code{uw1 __MEXPDHW (uw1, const)}
12917 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
12918 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
12919 @item @code{uw1 __MHDSETH (uw1, const)}
12920 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
12921 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
12922 @item @code{sw1 __MHDSETS (const)}
12923 @tab @code{@var{b} = __MHDSETS (@var{a})}
12924 @tab @code{MHDSETS #@var{a},@var{b}}
12925 @item @code{uw1 __MHSETHIH (uw1, const)}
12926 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
12927 @tab @code{MHSETHIH #@var{a},@var{b}}
12928 @item @code{sw1 __MHSETHIS (sw1, const)}
12929 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
12930 @tab @code{MHSETHIS #@var{a},@var{b}}
12931 @item @code{uw1 __MHSETLOH (uw1, const)}
12932 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
12933 @tab @code{MHSETLOH #@var{a},@var{b}}
12934 @item @code{sw1 __MHSETLOS (sw1, const)}
12935 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
12936 @tab @code{MHSETLOS #@var{a},@var{b}}
12937 @item @code{uw1 __MHTOB (uw2)}
12938 @tab @code{@var{b} = __MHTOB (@var{a})}
12939 @tab @code{MHTOB @var{a},@var{b}}
12940 @item @code{void __MMACHS (acc, sw1, sw1)}
12941 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
12942 @tab @code{MMACHS @var{a},@var{b},@var{c}}
12943 @item @code{void __MMACHU (acc, uw1, uw1)}
12944 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
12945 @tab @code{MMACHU @var{a},@var{b},@var{c}}
12946 @item @code{void __MMRDHS (acc, sw1, sw1)}
12947 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
12948 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
12949 @item @code{void __MMRDHU (acc, uw1, uw1)}
12950 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
12951 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
12952 @item @code{void __MMULHS (acc, sw1, sw1)}
12953 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
12954 @tab @code{MMULHS @var{a},@var{b},@var{c}}
12955 @item @code{void __MMULHU (acc, uw1, uw1)}
12956 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
12957 @tab @code{MMULHU @var{a},@var{b},@var{c}}
12958 @item @code{void __MMULXHS (acc, sw1, sw1)}
12959 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
12960 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
12961 @item @code{void __MMULXHU (acc, uw1, uw1)}
12962 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
12963 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
12964 @item @code{uw1 __MNOT (uw1)}
12965 @tab @code{@var{b} = __MNOT (@var{a})}
12966 @tab @code{MNOT @var{a},@var{b}}
12967 @item @code{uw1 __MOR (uw1, uw1)}
12968 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
12969 @tab @code{MOR @var{a},@var{b},@var{c}}
12970 @item @code{uw1 __MPACKH (uh, uh)}
12971 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
12972 @tab @code{MPACKH @var{a},@var{b},@var{c}}
12973 @item @code{sw2 __MQADDHSS (sw2, sw2)}
12974 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
12975 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
12976 @item @code{uw2 __MQADDHUS (uw2, uw2)}
12977 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
12978 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
12979 @item @code{void __MQCPXIS (acc, sw2, sw2)}
12980 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
12981 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
12982 @item @code{void __MQCPXIU (acc, uw2, uw2)}
12983 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
12984 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
12985 @item @code{void __MQCPXRS (acc, sw2, sw2)}
12986 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
12987 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
12988 @item @code{void __MQCPXRU (acc, uw2, uw2)}
12989 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
12990 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
12991 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
12992 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
12993 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
12994 @item @code{sw2 __MQLMTHS (sw2, sw2)}
12995 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
12996 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
12997 @item @code{void __MQMACHS (acc, sw2, sw2)}
12998 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
12999 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13000 @item @code{void __MQMACHU (acc, uw2, uw2)}
13001 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13002 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13003 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13004 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13005 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13006 @item @code{void __MQMULHS (acc, sw2, sw2)}
13007 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13008 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13009 @item @code{void __MQMULHU (acc, uw2, uw2)}
13010 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13011 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13012 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13013 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13014 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13015 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13016 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13017 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13018 @item @code{sw2 __MQSATHS (sw2, sw2)}
13019 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13020 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13021 @item @code{uw2 __MQSLLHI (uw2, int)}
13022 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13023 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13024 @item @code{sw2 __MQSRAHI (sw2, int)}
13025 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13026 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13027 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13028 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13029 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13030 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13031 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13032 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13033 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13034 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13035 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13036 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13037 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13038 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13039 @item @code{uw1 __MRDACC (acc)}
13040 @tab @code{@var{b} = __MRDACC (@var{a})}
13041 @tab @code{MRDACC @var{a},@var{b}}
13042 @item @code{uw1 __MRDACCG (acc)}
13043 @tab @code{@var{b} = __MRDACCG (@var{a})}
13044 @tab @code{MRDACCG @var{a},@var{b}}
13045 @item @code{uw1 __MROTLI (uw1, const)}
13046 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13047 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13048 @item @code{uw1 __MROTRI (uw1, const)}
13049 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13050 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13051 @item @code{sw1 __MSATHS (sw1, sw1)}
13052 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13053 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13054 @item @code{uw1 __MSATHU (uw1, uw1)}
13055 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13056 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13057 @item @code{uw1 __MSLLHI (uw1, const)}
13058 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13059 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13060 @item @code{sw1 __MSRAHI (sw1, const)}
13061 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13062 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13063 @item @code{uw1 __MSRLHI (uw1, const)}
13064 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13065 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13066 @item @code{void __MSUBACCS (acc, acc)}
13067 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13068 @tab @code{MSUBACCS @var{a},@var{b}}
13069 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13070 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13071 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13072 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13073 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13074 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13075 @item @code{void __MTRAP (void)}
13076 @tab @code{__MTRAP ()}
13077 @tab @code{MTRAP}
13078 @item @code{uw2 __MUNPACKH (uw1)}
13079 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13080 @tab @code{MUNPACKH @var{a},@var{b}}
13081 @item @code{uw1 __MWCUT (uw2, uw1)}
13082 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13083 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13084 @item @code{void __MWTACC (acc, uw1)}
13085 @tab @code{__MWTACC (@var{b}, @var{a})}
13086 @tab @code{MWTACC @var{a},@var{b}}
13087 @item @code{void __MWTACCG (acc, uw1)}
13088 @tab @code{__MWTACCG (@var{b}, @var{a})}
13089 @tab @code{MWTACCG @var{a},@var{b}}
13090 @item @code{uw1 __MXOR (uw1, uw1)}
13091 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13092 @tab @code{MXOR @var{a},@var{b},@var{c}}
13093 @end multitable
13094
13095 @node Raw read/write Functions
13096 @subsubsection Raw Read/Write Functions
13097
13098 This sections describes built-in functions related to read and write
13099 instructions to access memory. These functions generate
13100 @code{membar} instructions to flush the I/O load and stores where
13101 appropriate, as described in Fujitsu's manual described above.
13102
13103 @table @code
13104
13105 @item unsigned char __builtin_read8 (void *@var{data})
13106 @item unsigned short __builtin_read16 (void *@var{data})
13107 @item unsigned long __builtin_read32 (void *@var{data})
13108 @item unsigned long long __builtin_read64 (void *@var{data})
13109
13110 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13111 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13112 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13113 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13114 @end table
13115
13116 @node Other Built-in Functions
13117 @subsubsection Other Built-in Functions
13118
13119 This section describes built-in functions that are not named after
13120 a specific FR-V instruction.
13121
13122 @table @code
13123 @item sw2 __IACCreadll (iacc @var{reg})
13124 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13125 for future expansion and must be 0.
13126
13127 @item sw1 __IACCreadl (iacc @var{reg})
13128 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13129 Other values of @var{reg} are rejected as invalid.
13130
13131 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13132 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13133 is reserved for future expansion and must be 0.
13134
13135 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13136 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13137 is 1. Other values of @var{reg} are rejected as invalid.
13138
13139 @item void __data_prefetch0 (const void *@var{x})
13140 Use the @code{dcpl} instruction to load the contents of address @var{x}
13141 into the data cache.
13142
13143 @item void __data_prefetch (const void *@var{x})
13144 Use the @code{nldub} instruction to load the contents of address @var{x}
13145 into the data cache. The instruction is issued in slot I1@.
13146 @end table
13147
13148 @node MIPS DSP Built-in Functions
13149 @subsection MIPS DSP Built-in Functions
13150
13151 The MIPS DSP Application-Specific Extension (ASE) includes new
13152 instructions that are designed to improve the performance of DSP and
13153 media applications. It provides instructions that operate on packed
13154 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13155
13156 GCC supports MIPS DSP operations using both the generic
13157 vector extensions (@pxref{Vector Extensions}) and a collection of
13158 MIPS-specific built-in functions. Both kinds of support are
13159 enabled by the @option{-mdsp} command-line option.
13160
13161 Revision 2 of the ASE was introduced in the second half of 2006.
13162 This revision adds extra instructions to the original ASE, but is
13163 otherwise backwards-compatible with it. You can select revision 2
13164 using the command-line option @option{-mdspr2}; this option implies
13165 @option{-mdsp}.
13166
13167 The SCOUNT and POS bits of the DSP control register are global. The
13168 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13169 POS bits. During optimization, the compiler does not delete these
13170 instructions and it does not delete calls to functions containing
13171 these instructions.
13172
13173 At present, GCC only provides support for operations on 32-bit
13174 vectors. The vector type associated with 8-bit integer data is
13175 usually called @code{v4i8}, the vector type associated with Q7
13176 is usually called @code{v4q7}, the vector type associated with 16-bit
13177 integer data is usually called @code{v2i16}, and the vector type
13178 associated with Q15 is usually called @code{v2q15}. They can be
13179 defined in C as follows:
13180
13181 @smallexample
13182 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13183 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13184 typedef short v2i16 __attribute__ ((vector_size(4)));
13185 typedef short v2q15 __attribute__ ((vector_size(4)));
13186 @end smallexample
13187
13188 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13189 initialized in the same way as aggregates. For example:
13190
13191 @smallexample
13192 v4i8 a = @{1, 2, 3, 4@};
13193 v4i8 b;
13194 b = (v4i8) @{5, 6, 7, 8@};
13195
13196 v2q15 c = @{0x0fcb, 0x3a75@};
13197 v2q15 d;
13198 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13199 @end smallexample
13200
13201 @emph{Note:} The CPU's endianness determines the order in which values
13202 are packed. On little-endian targets, the first value is the least
13203 significant and the last value is the most significant. The opposite
13204 order applies to big-endian targets. For example, the code above
13205 sets the lowest byte of @code{a} to @code{1} on little-endian targets
13206 and @code{4} on big-endian targets.
13207
13208 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
13209 representation. As shown in this example, the integer representation
13210 of a Q7 value can be obtained by multiplying the fractional value by
13211 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
13212 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
13213 @code{0x1.0p31}.
13214
13215 The table below lists the @code{v4i8} and @code{v2q15} operations for which
13216 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
13217 and @code{c} and @code{d} are @code{v2q15} values.
13218
13219 @multitable @columnfractions .50 .50
13220 @item C code @tab MIPS instruction
13221 @item @code{a + b} @tab @code{addu.qb}
13222 @item @code{c + d} @tab @code{addq.ph}
13223 @item @code{a - b} @tab @code{subu.qb}
13224 @item @code{c - d} @tab @code{subq.ph}
13225 @end multitable
13226
13227 The table below lists the @code{v2i16} operation for which
13228 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
13229 @code{v2i16} values.
13230
13231 @multitable @columnfractions .50 .50
13232 @item C code @tab MIPS instruction
13233 @item @code{e * f} @tab @code{mul.ph}
13234 @end multitable
13235
13236 It is easier to describe the DSP built-in functions if we first define
13237 the following types:
13238
13239 @smallexample
13240 typedef int q31;
13241 typedef int i32;
13242 typedef unsigned int ui32;
13243 typedef long long a64;
13244 @end smallexample
13245
13246 @code{q31} and @code{i32} are actually the same as @code{int}, but we
13247 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
13248 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
13249 @code{long long}, but we use @code{a64} to indicate values that are
13250 placed in one of the four DSP accumulators (@code{$ac0},
13251 @code{$ac1}, @code{$ac2} or @code{$ac3}).
13252
13253 Also, some built-in functions prefer or require immediate numbers as
13254 parameters, because the corresponding DSP instructions accept both immediate
13255 numbers and register operands, or accept immediate numbers only. The
13256 immediate parameters are listed as follows.
13257
13258 @smallexample
13259 imm0_3: 0 to 3.
13260 imm0_7: 0 to 7.
13261 imm0_15: 0 to 15.
13262 imm0_31: 0 to 31.
13263 imm0_63: 0 to 63.
13264 imm0_255: 0 to 255.
13265 imm_n32_31: -32 to 31.
13266 imm_n512_511: -512 to 511.
13267 @end smallexample
13268
13269 The following built-in functions map directly to a particular MIPS DSP
13270 instruction. Please refer to the architecture specification
13271 for details on what each instruction does.
13272
13273 @smallexample
13274 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
13275 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
13276 q31 __builtin_mips_addq_s_w (q31, q31)
13277 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
13278 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
13279 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
13280 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
13281 q31 __builtin_mips_subq_s_w (q31, q31)
13282 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
13283 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
13284 i32 __builtin_mips_addsc (i32, i32)
13285 i32 __builtin_mips_addwc (i32, i32)
13286 i32 __builtin_mips_modsub (i32, i32)
13287 i32 __builtin_mips_raddu_w_qb (v4i8)
13288 v2q15 __builtin_mips_absq_s_ph (v2q15)
13289 q31 __builtin_mips_absq_s_w (q31)
13290 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
13291 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
13292 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
13293 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
13294 q31 __builtin_mips_preceq_w_phl (v2q15)
13295 q31 __builtin_mips_preceq_w_phr (v2q15)
13296 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
13297 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
13298 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
13299 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
13300 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
13301 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
13302 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
13303 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
13304 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
13305 v4i8 __builtin_mips_shll_qb (v4i8, i32)
13306 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
13307 v2q15 __builtin_mips_shll_ph (v2q15, i32)
13308 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
13309 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
13310 q31 __builtin_mips_shll_s_w (q31, imm0_31)
13311 q31 __builtin_mips_shll_s_w (q31, i32)
13312 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
13313 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
13314 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
13315 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13316 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13317 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13318 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13319 q31 __builtin_mips_shra_r_w (q31, i32)
13320 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13321 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13322 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13323 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13324 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13325 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13326 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13327 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13328 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13329 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13330 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13331 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13332 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13333 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13334 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13335 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13336 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13337 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13338 i32 __builtin_mips_bitrev (i32)
13339 i32 __builtin_mips_insv (i32, i32)
13340 v4i8 __builtin_mips_repl_qb (imm0_255)
13341 v4i8 __builtin_mips_repl_qb (i32)
13342 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13343 v2q15 __builtin_mips_repl_ph (i32)
13344 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13345 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13346 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13347 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13348 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13349 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13350 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13351 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13352 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13353 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13354 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13355 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13356 i32 __builtin_mips_extr_w (a64, imm0_31)
13357 i32 __builtin_mips_extr_w (a64, i32)
13358 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13359 i32 __builtin_mips_extr_s_h (a64, i32)
13360 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13361 i32 __builtin_mips_extr_rs_w (a64, i32)
13362 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13363 i32 __builtin_mips_extr_r_w (a64, i32)
13364 i32 __builtin_mips_extp (a64, imm0_31)
13365 i32 __builtin_mips_extp (a64, i32)
13366 i32 __builtin_mips_extpdp (a64, imm0_31)
13367 i32 __builtin_mips_extpdp (a64, i32)
13368 a64 __builtin_mips_shilo (a64, imm_n32_31)
13369 a64 __builtin_mips_shilo (a64, i32)
13370 a64 __builtin_mips_mthlip (a64, i32)
13371 void __builtin_mips_wrdsp (i32, imm0_63)
13372 i32 __builtin_mips_rddsp (imm0_63)
13373 i32 __builtin_mips_lbux (void *, i32)
13374 i32 __builtin_mips_lhx (void *, i32)
13375 i32 __builtin_mips_lwx (void *, i32)
13376 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13377 i32 __builtin_mips_bposge32 (void)
13378 a64 __builtin_mips_madd (a64, i32, i32);
13379 a64 __builtin_mips_maddu (a64, ui32, ui32);
13380 a64 __builtin_mips_msub (a64, i32, i32);
13381 a64 __builtin_mips_msubu (a64, ui32, ui32);
13382 a64 __builtin_mips_mult (i32, i32);
13383 a64 __builtin_mips_multu (ui32, ui32);
13384 @end smallexample
13385
13386 The following built-in functions map directly to a particular MIPS DSP REV 2
13387 instruction. Please refer to the architecture specification
13388 for details on what each instruction does.
13389
13390 @smallexample
13391 v4q7 __builtin_mips_absq_s_qb (v4q7);
13392 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13393 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13394 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13395 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13396 i32 __builtin_mips_append (i32, i32, imm0_31);
13397 i32 __builtin_mips_balign (i32, i32, imm0_3);
13398 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13399 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13400 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13401 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13402 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13403 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13404 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13405 q31 __builtin_mips_mulq_rs_w (q31, q31);
13406 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13407 q31 __builtin_mips_mulq_s_w (q31, q31);
13408 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13409 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13410 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13411 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13412 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13413 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13414 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13415 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13416 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13417 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13418 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13419 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13420 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13421 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13422 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13423 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13424 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13425 q31 __builtin_mips_addqh_w (q31, q31);
13426 q31 __builtin_mips_addqh_r_w (q31, q31);
13427 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13428 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13429 q31 __builtin_mips_subqh_w (q31, q31);
13430 q31 __builtin_mips_subqh_r_w (q31, q31);
13431 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13432 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13433 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13434 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13435 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13436 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13437 @end smallexample
13438
13439
13440 @node MIPS Paired-Single Support
13441 @subsection MIPS Paired-Single Support
13442
13443 The MIPS64 architecture includes a number of instructions that
13444 operate on pairs of single-precision floating-point values.
13445 Each pair is packed into a 64-bit floating-point register,
13446 with one element being designated the ``upper half'' and
13447 the other being designated the ``lower half''.
13448
13449 GCC supports paired-single operations using both the generic
13450 vector extensions (@pxref{Vector Extensions}) and a collection of
13451 MIPS-specific built-in functions. Both kinds of support are
13452 enabled by the @option{-mpaired-single} command-line option.
13453
13454 The vector type associated with paired-single values is usually
13455 called @code{v2sf}. It can be defined in C as follows:
13456
13457 @smallexample
13458 typedef float v2sf __attribute__ ((vector_size (8)));
13459 @end smallexample
13460
13461 @code{v2sf} values are initialized in the same way as aggregates.
13462 For example:
13463
13464 @smallexample
13465 v2sf a = @{1.5, 9.1@};
13466 v2sf b;
13467 float e, f;
13468 b = (v2sf) @{e, f@};
13469 @end smallexample
13470
13471 @emph{Note:} The CPU's endianness determines which value is stored in
13472 the upper half of a register and which value is stored in the lower half.
13473 On little-endian targets, the first value is the lower one and the second
13474 value is the upper one. The opposite order applies to big-endian targets.
13475 For example, the code above sets the lower half of @code{a} to
13476 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
13477
13478 @node MIPS Loongson Built-in Functions
13479 @subsection MIPS Loongson Built-in Functions
13480
13481 GCC provides intrinsics to access the SIMD instructions provided by the
13482 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
13483 available after inclusion of the @code{loongson.h} header file,
13484 operate on the following 64-bit vector types:
13485
13486 @itemize
13487 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
13488 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
13489 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
13490 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
13491 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
13492 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
13493 @end itemize
13494
13495 The intrinsics provided are listed below; each is named after the
13496 machine instruction to which it corresponds, with suffixes added as
13497 appropriate to distinguish intrinsics that expand to the same machine
13498 instruction yet have different argument types. Refer to the architecture
13499 documentation for a description of the functionality of each
13500 instruction.
13501
13502 @smallexample
13503 int16x4_t packsswh (int32x2_t s, int32x2_t t);
13504 int8x8_t packsshb (int16x4_t s, int16x4_t t);
13505 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
13506 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
13507 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
13508 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
13509 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
13510 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
13511 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
13512 uint64_t paddd_u (uint64_t s, uint64_t t);
13513 int64_t paddd_s (int64_t s, int64_t t);
13514 int16x4_t paddsh (int16x4_t s, int16x4_t t);
13515 int8x8_t paddsb (int8x8_t s, int8x8_t t);
13516 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
13517 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
13518 uint64_t pandn_ud (uint64_t s, uint64_t t);
13519 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
13520 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
13521 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
13522 int64_t pandn_sd (int64_t s, int64_t t);
13523 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
13524 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
13525 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
13526 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
13527 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
13528 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
13529 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
13530 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
13531 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
13532 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
13533 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
13534 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
13535 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
13536 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
13537 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
13538 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
13539 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
13540 uint16x4_t pextrh_u (uint16x4_t s, int field);
13541 int16x4_t pextrh_s (int16x4_t s, int field);
13542 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
13543 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
13544 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
13545 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
13546 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
13547 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13548 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13549 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13550 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13551 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13552 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13553 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13554 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13555 uint8x8_t pmovmskb_u (uint8x8_t s);
13556 int8x8_t pmovmskb_s (int8x8_t s);
13557 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13558 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13559 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13560 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13561 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13562 uint16x4_t biadd (uint8x8_t s);
13563 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13564 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13565 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13566 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13567 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13568 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13569 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13570 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13571 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13572 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13573 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13574 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13575 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13576 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13577 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13578 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13579 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13580 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13581 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13582 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13583 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13584 uint64_t psubd_u (uint64_t s, uint64_t t);
13585 int64_t psubd_s (int64_t s, int64_t t);
13586 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13587 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13588 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13589 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13590 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13591 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13592 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13593 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13594 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13595 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13596 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13597 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13598 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13599 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13600 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13601 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13602 @end smallexample
13603
13604 @menu
13605 * Paired-Single Arithmetic::
13606 * Paired-Single Built-in Functions::
13607 * MIPS-3D Built-in Functions::
13608 @end menu
13609
13610 @node Paired-Single Arithmetic
13611 @subsubsection Paired-Single Arithmetic
13612
13613 The table below lists the @code{v2sf} operations for which hardware
13614 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13615 values and @code{x} is an integral value.
13616
13617 @multitable @columnfractions .50 .50
13618 @item C code @tab MIPS instruction
13619 @item @code{a + b} @tab @code{add.ps}
13620 @item @code{a - b} @tab @code{sub.ps}
13621 @item @code{-a} @tab @code{neg.ps}
13622 @item @code{a * b} @tab @code{mul.ps}
13623 @item @code{a * b + c} @tab @code{madd.ps}
13624 @item @code{a * b - c} @tab @code{msub.ps}
13625 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13626 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13627 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13628 @end multitable
13629
13630 Note that the multiply-accumulate instructions can be disabled
13631 using the command-line option @code{-mno-fused-madd}.
13632
13633 @node Paired-Single Built-in Functions
13634 @subsubsection Paired-Single Built-in Functions
13635
13636 The following paired-single functions map directly to a particular
13637 MIPS instruction. Please refer to the architecture specification
13638 for details on what each instruction does.
13639
13640 @table @code
13641 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13642 Pair lower lower (@code{pll.ps}).
13643
13644 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13645 Pair upper lower (@code{pul.ps}).
13646
13647 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13648 Pair lower upper (@code{plu.ps}).
13649
13650 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13651 Pair upper upper (@code{puu.ps}).
13652
13653 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13654 Convert pair to paired single (@code{cvt.ps.s}).
13655
13656 @item float __builtin_mips_cvt_s_pl (v2sf)
13657 Convert pair lower to single (@code{cvt.s.pl}).
13658
13659 @item float __builtin_mips_cvt_s_pu (v2sf)
13660 Convert pair upper to single (@code{cvt.s.pu}).
13661
13662 @item v2sf __builtin_mips_abs_ps (v2sf)
13663 Absolute value (@code{abs.ps}).
13664
13665 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13666 Align variable (@code{alnv.ps}).
13667
13668 @emph{Note:} The value of the third parameter must be 0 or 4
13669 modulo 8, otherwise the result is unpredictable. Please read the
13670 instruction description for details.
13671 @end table
13672
13673 The following multi-instruction functions are also available.
13674 In each case, @var{cond} can be any of the 16 floating-point conditions:
13675 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13676 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13677 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13678
13679 @table @code
13680 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13681 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13682 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13683 @code{movt.ps}/@code{movf.ps}).
13684
13685 The @code{movt} functions return the value @var{x} computed by:
13686
13687 @smallexample
13688 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13689 mov.ps @var{x},@var{c}
13690 movt.ps @var{x},@var{d},@var{cc}
13691 @end smallexample
13692
13693 The @code{movf} functions are similar but use @code{movf.ps} instead
13694 of @code{movt.ps}.
13695
13696 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13697 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13698 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13699 @code{bc1t}/@code{bc1f}).
13700
13701 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13702 and return either the upper or lower half of the result. For example:
13703
13704 @smallexample
13705 v2sf a, b;
13706 if (__builtin_mips_upper_c_eq_ps (a, b))
13707 upper_halves_are_equal ();
13708 else
13709 upper_halves_are_unequal ();
13710
13711 if (__builtin_mips_lower_c_eq_ps (a, b))
13712 lower_halves_are_equal ();
13713 else
13714 lower_halves_are_unequal ();
13715 @end smallexample
13716 @end table
13717
13718 @node MIPS-3D Built-in Functions
13719 @subsubsection MIPS-3D Built-in Functions
13720
13721 The MIPS-3D Application-Specific Extension (ASE) includes additional
13722 paired-single instructions that are designed to improve the performance
13723 of 3D graphics operations. Support for these instructions is controlled
13724 by the @option{-mips3d} command-line option.
13725
13726 The functions listed below map directly to a particular MIPS-3D
13727 instruction. Please refer to the architecture specification for
13728 more details on what each instruction does.
13729
13730 @table @code
13731 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13732 Reduction add (@code{addr.ps}).
13733
13734 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13735 Reduction multiply (@code{mulr.ps}).
13736
13737 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13738 Convert paired single to paired word (@code{cvt.pw.ps}).
13739
13740 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13741 Convert paired word to paired single (@code{cvt.ps.pw}).
13742
13743 @item float __builtin_mips_recip1_s (float)
13744 @itemx double __builtin_mips_recip1_d (double)
13745 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13746 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13747
13748 @item float __builtin_mips_recip2_s (float, float)
13749 @itemx double __builtin_mips_recip2_d (double, double)
13750 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13751 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13752
13753 @item float __builtin_mips_rsqrt1_s (float)
13754 @itemx double __builtin_mips_rsqrt1_d (double)
13755 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13756 Reduced-precision reciprocal square root (sequence step 1)
13757 (@code{rsqrt1.@var{fmt}}).
13758
13759 @item float __builtin_mips_rsqrt2_s (float, float)
13760 @itemx double __builtin_mips_rsqrt2_d (double, double)
13761 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13762 Reduced-precision reciprocal square root (sequence step 2)
13763 (@code{rsqrt2.@var{fmt}}).
13764 @end table
13765
13766 The following multi-instruction functions are also available.
13767 In each case, @var{cond} can be any of the 16 floating-point conditions:
13768 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13769 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13770 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13771
13772 @table @code
13773 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13774 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13775 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13776 @code{bc1t}/@code{bc1f}).
13777
13778 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13779 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13780 For example:
13781
13782 @smallexample
13783 float a, b;
13784 if (__builtin_mips_cabs_eq_s (a, b))
13785 true ();
13786 else
13787 false ();
13788 @end smallexample
13789
13790 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13791 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13792 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13793 @code{bc1t}/@code{bc1f}).
13794
13795 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13796 and return either the upper or lower half of the result. For example:
13797
13798 @smallexample
13799 v2sf a, b;
13800 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13801 upper_halves_are_equal ();
13802 else
13803 upper_halves_are_unequal ();
13804
13805 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13806 lower_halves_are_equal ();
13807 else
13808 lower_halves_are_unequal ();
13809 @end smallexample
13810
13811 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13812 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13813 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13814 @code{movt.ps}/@code{movf.ps}).
13815
13816 The @code{movt} functions return the value @var{x} computed by:
13817
13818 @smallexample
13819 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13820 mov.ps @var{x},@var{c}
13821 movt.ps @var{x},@var{d},@var{cc}
13822 @end smallexample
13823
13824 The @code{movf} functions are similar but use @code{movf.ps} instead
13825 of @code{movt.ps}.
13826
13827 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13828 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13829 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13830 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13831 Comparison of two paired-single values
13832 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13833 @code{bc1any2t}/@code{bc1any2f}).
13834
13835 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13836 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13837 result is true and the @code{all} forms return true if both results are true.
13838 For example:
13839
13840 @smallexample
13841 v2sf a, b;
13842 if (__builtin_mips_any_c_eq_ps (a, b))
13843 one_is_true ();
13844 else
13845 both_are_false ();
13846
13847 if (__builtin_mips_all_c_eq_ps (a, b))
13848 both_are_true ();
13849 else
13850 one_is_false ();
13851 @end smallexample
13852
13853 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13854 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13855 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13856 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13857 Comparison of four paired-single values
13858 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13859 @code{bc1any4t}/@code{bc1any4f}).
13860
13861 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13862 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13863 The @code{any} forms return true if any of the four results are true
13864 and the @code{all} forms return true if all four results are true.
13865 For example:
13866
13867 @smallexample
13868 v2sf a, b, c, d;
13869 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13870 some_are_true ();
13871 else
13872 all_are_false ();
13873
13874 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13875 all_are_true ();
13876 else
13877 some_are_false ();
13878 @end smallexample
13879 @end table
13880
13881 @node MIPS SIMD Architecture (MSA) Support
13882 @subsection MIPS SIMD Architecture (MSA) Support
13883
13884 @menu
13885 * MIPS SIMD Architecture Built-in Functions::
13886 @end menu
13887
13888 GCC provides intrinsics to access the SIMD instructions provided by the
13889 MSA MIPS SIMD Architecture. The interface is made available by including
13890 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
13891 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
13892 @code{__msa_*}.
13893
13894 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
13895 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
13896 data elements. The following vectors typedefs are included in @code{msa.h}:
13897 @itemize
13898 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
13899 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
13900 @item @code{v8i16}, a vector of eight signed 16-bit integers;
13901 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
13902 @item @code{v4i32}, a vector of four signed 32-bit integers;
13903 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
13904 @item @code{v2i64}, a vector of two signed 64-bit integers;
13905 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
13906 @item @code{v4f32}, a vector of four 32-bit floats;
13907 @item @code{v2f64}, a vector of two 64-bit doubles.
13908 @end itemize
13909
13910 Intructions and corresponding built-ins may have additional restrictions and/or
13911 input/output values manipulated:
13912 @itemize
13913 @item @code{imm0_1}, an integer literal in range 0 to 1;
13914 @item @code{imm0_3}, an integer literal in range 0 to 3;
13915 @item @code{imm0_7}, an integer literal in range 0 to 7;
13916 @item @code{imm0_15}, an integer literal in range 0 to 15;
13917 @item @code{imm0_31}, an integer literal in range 0 to 31;
13918 @item @code{imm0_63}, an integer literal in range 0 to 63;
13919 @item @code{imm0_255}, an integer literal in range 0 to 255;
13920 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
13921 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
13922 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
13923 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
13924 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
13925 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
13926 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
13927 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
13928 @item @code{imm1_4}, an integer literal in range 1 to 4;
13929 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
13930 @end itemize
13931
13932 @smallexample
13933 @{
13934 typedef int i32;
13935 #if __LONG_MAX__ == __LONG_LONG_MAX__
13936 typedef long i64;
13937 #else
13938 typedef long long i64;
13939 #endif
13940
13941 typedef unsigned int u32;
13942 #if __LONG_MAX__ == __LONG_LONG_MAX__
13943 typedef unsigned long u64;
13944 #else
13945 typedef unsigned long long u64;
13946 #endif
13947
13948 typedef double f64;
13949 typedef float f32;
13950 @}
13951 @end smallexample
13952
13953 @node MIPS SIMD Architecture Built-in Functions
13954 @subsubsection MIPS SIMD Architecture Built-in Functions
13955
13956 The intrinsics provided are listed below; each is named after the
13957 machine instruction.
13958
13959 @smallexample
13960 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
13961 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
13962 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
13963 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
13964
13965 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
13966 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
13967 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
13968 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
13969
13970 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
13971 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
13972 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
13973 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
13974
13975 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
13976 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
13977 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
13978 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
13979
13980 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
13981 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
13982 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
13983 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
13984
13985 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
13986 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
13987 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
13988 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
13989
13990 v16u8 __builtin_msa_and_v (v16u8, v16u8);
13991
13992 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
13993
13994 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
13995 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
13996 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
13997 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
13998
13999 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14000 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14001 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14002 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14003
14004 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14005 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14006 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14007 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14008
14009 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14010 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14011 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14012 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14013
14014 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14015 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14016 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14017 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14018
14019 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14020 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14021 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14022 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14023
14024 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14025 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14026 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14027 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14028
14029 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14030 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14031 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14032 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14033
14034 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14035 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14036 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14037 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14038
14039 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14040 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14041 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14042 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14043
14044 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14045 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14046 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14047 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14048
14049 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14050 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14051 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14052 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14053
14054 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14055
14056 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14057
14058 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14059
14060 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14061
14062 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14063 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14064 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14065 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14066
14067 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14068 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14069 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14070 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14071
14072 i32 __builtin_msa_bnz_b (v16u8);
14073 i32 __builtin_msa_bnz_h (v8u16);
14074 i32 __builtin_msa_bnz_w (v4u32);
14075 i32 __builtin_msa_bnz_d (v2u64);
14076
14077 i32 __builtin_msa_bnz_v (v16u8);
14078
14079 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14080
14081 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14082
14083 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14084 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14085 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14086 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14087
14088 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14089 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14090 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14091 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14092
14093 i32 __builtin_msa_bz_b (v16u8);
14094 i32 __builtin_msa_bz_h (v8u16);
14095 i32 __builtin_msa_bz_w (v4u32);
14096 i32 __builtin_msa_bz_d (v2u64);
14097
14098 i32 __builtin_msa_bz_v (v16u8);
14099
14100 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14101 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14102 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14103 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14104
14105 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14106 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14107 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14108 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14109
14110 i32 __builtin_msa_cfcmsa (imm0_31);
14111
14112 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14113 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14114 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14115 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14116
14117 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14118 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14119 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14120 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14121
14122 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14123 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14124 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14125 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14126
14127 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14128 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14129 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14130 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14131
14132 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14133 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14134 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14135 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14136
14137 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14138 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14139 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14140 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14141
14142 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14143 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14144 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14145 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14146
14147 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14148 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14149 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14150 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14151
14152 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14153 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14154 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14155 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14156
14157 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14158 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14159 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14160 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14161
14162 void __builtin_msa_ctcmsa (imm0_31, i32);
14163
14164 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14165 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14166 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14167 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14168
14169 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14170 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14171 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14172 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14173
14174 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14175 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14176 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14177
14178 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14179 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14180 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14181
14182 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14183 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14184 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14185
14186 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14187 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14188 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14189
14190 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14191 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14192 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14193
14194 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14195 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14196 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14197
14198 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14199 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14200
14201 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14202 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14203
14204 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
14205 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
14206
14207 v4i32 __builtin_msa_fclass_w (v4f32);
14208 v2i64 __builtin_msa_fclass_d (v2f64);
14209
14210 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
14211 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
14212
14213 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
14214 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
14215
14216 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
14217 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
14218
14219 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
14220 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
14221
14222 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
14223 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
14224
14225 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
14226 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
14227
14228 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
14229 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
14230
14231 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
14232 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
14233
14234 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
14235 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
14236
14237 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
14238 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
14239
14240 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
14241 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
14242
14243 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
14244 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
14245
14246 v4f32 __builtin_msa_fexupl_w (v8i16);
14247 v2f64 __builtin_msa_fexupl_d (v4f32);
14248
14249 v4f32 __builtin_msa_fexupr_w (v8i16);
14250 v2f64 __builtin_msa_fexupr_d (v4f32);
14251
14252 v4f32 __builtin_msa_ffint_s_w (v4i32);
14253 v2f64 __builtin_msa_ffint_s_d (v2i64);
14254
14255 v4f32 __builtin_msa_ffint_u_w (v4u32);
14256 v2f64 __builtin_msa_ffint_u_d (v2u64);
14257
14258 v4f32 __builtin_msa_ffql_w (v8i16);
14259 v2f64 __builtin_msa_ffql_d (v4i32);
14260
14261 v4f32 __builtin_msa_ffqr_w (v8i16);
14262 v2f64 __builtin_msa_ffqr_d (v4i32);
14263
14264 v16i8 __builtin_msa_fill_b (i32);
14265 v8i16 __builtin_msa_fill_h (i32);
14266 v4i32 __builtin_msa_fill_w (i32);
14267 v2i64 __builtin_msa_fill_d (i64);
14268
14269 v4f32 __builtin_msa_flog2_w (v4f32);
14270 v2f64 __builtin_msa_flog2_d (v2f64);
14271
14272 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
14273 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
14274
14275 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
14276 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
14277
14278 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
14279 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
14280
14281 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
14282 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
14283
14284 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
14285 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
14286
14287 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
14288 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
14289
14290 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
14291 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
14292
14293 v4f32 __builtin_msa_frint_w (v4f32);
14294 v2f64 __builtin_msa_frint_d (v2f64);
14295
14296 v4f32 __builtin_msa_frcp_w (v4f32);
14297 v2f64 __builtin_msa_frcp_d (v2f64);
14298
14299 v4f32 __builtin_msa_frsqrt_w (v4f32);
14300 v2f64 __builtin_msa_frsqrt_d (v2f64);
14301
14302 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
14303 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
14304
14305 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
14306 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
14307
14308 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
14309 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
14310
14311 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
14312 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
14313
14314 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
14315 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14316
14317 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14318 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14319
14320 v4f32 __builtin_msa_fsqrt_w (v4f32);
14321 v2f64 __builtin_msa_fsqrt_d (v2f64);
14322
14323 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14324 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14325
14326 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14327 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14328
14329 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14330 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14331
14332 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14333 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14334
14335 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14336 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14337
14338 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14339 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14340
14341 v4i32 __builtin_msa_ftint_s_w (v4f32);
14342 v2i64 __builtin_msa_ftint_s_d (v2f64);
14343
14344 v4u32 __builtin_msa_ftint_u_w (v4f32);
14345 v2u64 __builtin_msa_ftint_u_d (v2f64);
14346
14347 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14348 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14349
14350 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14351 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14352
14353 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14354 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14355
14356 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14357 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14358 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14359
14360 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14361 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14362 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14363
14364 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14365 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14366 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14367
14368 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14369 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14370 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14371
14372 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14373 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14374 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14375 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14376
14377 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14378 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14379 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14380 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14381
14382 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14383 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14384 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14385 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14386
14387 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14388 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14389 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14390 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14391
14392 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14393 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14394 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14395 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14396
14397 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14398 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14399 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14400 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14401
14402 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14403 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14404 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14405 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14406
14407 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14408 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14409 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14410 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14411
14412 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14413 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14414
14415 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14416 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14417
14418 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14419 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14420 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14421 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14422
14423 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14424 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14425 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14426 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14427
14428 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14429 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14430 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14431 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14432
14433 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14434 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14435 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14436 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14437
14438 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14439 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14440 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14441 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14442
14443 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14444 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14445 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14446 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14447
14448 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14449 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14450 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14451 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14452
14453 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14454 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14455 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14456 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14457
14458 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14459 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14460 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
14461 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
14462
14463 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
14464 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
14465 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
14466 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
14467
14468 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
14469 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
14470 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
14471 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
14472
14473 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
14474 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
14475 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
14476 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
14477
14478 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
14479 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
14480 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
14481 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
14482
14483 v16i8 __builtin_msa_move_v (v16i8);
14484
14485 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
14486 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
14487
14488 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
14489 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
14490
14491 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
14492 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
14493 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
14494 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
14495
14496 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
14497 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
14498
14499 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
14500 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
14501
14502 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
14503 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
14504 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
14505 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
14506
14507 v16i8 __builtin_msa_nloc_b (v16i8);
14508 v8i16 __builtin_msa_nloc_h (v8i16);
14509 v4i32 __builtin_msa_nloc_w (v4i32);
14510 v2i64 __builtin_msa_nloc_d (v2i64);
14511
14512 v16i8 __builtin_msa_nlzc_b (v16i8);
14513 v8i16 __builtin_msa_nlzc_h (v8i16);
14514 v4i32 __builtin_msa_nlzc_w (v4i32);
14515 v2i64 __builtin_msa_nlzc_d (v2i64);
14516
14517 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
14518
14519 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
14520
14521 v16u8 __builtin_msa_or_v (v16u8, v16u8);
14522
14523 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
14524
14525 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
14526 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
14527 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
14528 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
14529
14530 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
14531 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
14532 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
14533 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
14534
14535 v16i8 __builtin_msa_pcnt_b (v16i8);
14536 v8i16 __builtin_msa_pcnt_h (v8i16);
14537 v4i32 __builtin_msa_pcnt_w (v4i32);
14538 v2i64 __builtin_msa_pcnt_d (v2i64);
14539
14540 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
14541 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
14542 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
14543 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
14544
14545 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
14546 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
14547 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
14548 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
14549
14550 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
14551 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
14552 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
14553
14554 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
14555 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
14556 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
14557 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
14558
14559 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
14560 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
14561 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
14562 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
14563
14564 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
14565 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
14566 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
14567 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
14568
14569 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
14570 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
14571 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
14572 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
14573
14574 v16i8 __builtin_msa_splat_b (v16i8, i32);
14575 v8i16 __builtin_msa_splat_h (v8i16, i32);
14576 v4i32 __builtin_msa_splat_w (v4i32, i32);
14577 v2i64 __builtin_msa_splat_d (v2i64, i32);
14578
14579 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
14580 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
14581 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
14582 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
14583
14584 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
14585 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
14586 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
14587 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
14588
14589 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
14590 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
14591 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
14592 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
14593
14594 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
14595 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
14596 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
14597 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
14598
14599 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
14600 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
14601 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
14602 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
14603
14604 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
14605 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
14606 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
14607 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
14608
14609 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
14610 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
14611 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
14612 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
14613
14614 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
14615 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
14616 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
14617 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
14618
14619 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
14620 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
14621 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
14622 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
14623
14624 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
14625 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
14626 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
14627 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
14628
14629 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
14630 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
14631 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
14632 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
14633
14634 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
14635 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
14636 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
14637 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
14638
14639 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
14640 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
14641 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
14642 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
14643
14644 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
14645 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
14646 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
14647 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
14648
14649 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
14650 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
14651 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
14652 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
14653
14654 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
14655 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
14656 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
14657 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
14658
14659 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
14660 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
14661 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
14662 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
14663
14664 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
14665
14666 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
14667 @end smallexample
14668
14669 @node Other MIPS Built-in Functions
14670 @subsection Other MIPS Built-in Functions
14671
14672 GCC provides other MIPS-specific built-in functions:
14673
14674 @table @code
14675 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
14676 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
14677 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
14678 when this function is available.
14679
14680 @item unsigned int __builtin_mips_get_fcsr (void)
14681 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
14682 Get and set the contents of the floating-point control and status register
14683 (FPU control register 31). These functions are only available in hard-float
14684 code but can be called in both MIPS16 and non-MIPS16 contexts.
14685
14686 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
14687 register except the condition codes, which GCC assumes are preserved.
14688 @end table
14689
14690 @node MSP430 Built-in Functions
14691 @subsection MSP430 Built-in Functions
14692
14693 GCC provides a couple of special builtin functions to aid in the
14694 writing of interrupt handlers in C.
14695
14696 @table @code
14697 @item __bic_SR_register_on_exit (int @var{mask})
14698 This clears the indicated bits in the saved copy of the status register
14699 currently residing on the stack. This only works inside interrupt
14700 handlers and the changes to the status register will only take affect
14701 once the handler returns.
14702
14703 @item __bis_SR_register_on_exit (int @var{mask})
14704 This sets the indicated bits in the saved copy of the status register
14705 currently residing on the stack. This only works inside interrupt
14706 handlers and the changes to the status register will only take affect
14707 once the handler returns.
14708
14709 @item __delay_cycles (long long @var{cycles})
14710 This inserts an instruction sequence that takes exactly @var{cycles}
14711 cycles (between 0 and about 17E9) to complete. The inserted sequence
14712 may use jumps, loops, or no-ops, and does not interfere with any other
14713 instructions. Note that @var{cycles} must be a compile-time constant
14714 integer - that is, you must pass a number, not a variable that may be
14715 optimized to a constant later. The number of cycles delayed by this
14716 builtin is exact.
14717 @end table
14718
14719 @node NDS32 Built-in Functions
14720 @subsection NDS32 Built-in Functions
14721
14722 These built-in functions are available for the NDS32 target:
14723
14724 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
14725 Insert an ISYNC instruction into the instruction stream where
14726 @var{addr} is an instruction address for serialization.
14727 @end deftypefn
14728
14729 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
14730 Insert an ISB instruction into the instruction stream.
14731 @end deftypefn
14732
14733 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
14734 Return the content of a system register which is mapped by @var{sr}.
14735 @end deftypefn
14736
14737 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
14738 Return the content of a user space register which is mapped by @var{usr}.
14739 @end deftypefn
14740
14741 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
14742 Move the @var{value} to a system register which is mapped by @var{sr}.
14743 @end deftypefn
14744
14745 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
14746 Move the @var{value} to a user space register which is mapped by @var{usr}.
14747 @end deftypefn
14748
14749 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
14750 Enable global interrupt.
14751 @end deftypefn
14752
14753 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
14754 Disable global interrupt.
14755 @end deftypefn
14756
14757 @node picoChip Built-in Functions
14758 @subsection picoChip Built-in Functions
14759
14760 GCC provides an interface to selected machine instructions from the
14761 picoChip instruction set.
14762
14763 @table @code
14764 @item int __builtin_sbc (int @var{value})
14765 Sign bit count. Return the number of consecutive bits in @var{value}
14766 that have the same value as the sign bit. The result is the number of
14767 leading sign bits minus one, giving the number of redundant sign bits in
14768 @var{value}.
14769
14770 @item int __builtin_byteswap (int @var{value})
14771 Byte swap. Return the result of swapping the upper and lower bytes of
14772 @var{value}.
14773
14774 @item int __builtin_brev (int @var{value})
14775 Bit reversal. Return the result of reversing the bits in
14776 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
14777 and so on.
14778
14779 @item int __builtin_adds (int @var{x}, int @var{y})
14780 Saturating addition. Return the result of adding @var{x} and @var{y},
14781 storing the value 32767 if the result overflows.
14782
14783 @item int __builtin_subs (int @var{x}, int @var{y})
14784 Saturating subtraction. Return the result of subtracting @var{y} from
14785 @var{x}, storing the value @minus{}32768 if the result overflows.
14786
14787 @item void __builtin_halt (void)
14788 Halt. The processor stops execution. This built-in is useful for
14789 implementing assertions.
14790
14791 @end table
14792
14793 @node PowerPC Built-in Functions
14794 @subsection PowerPC Built-in Functions
14795
14796 The following built-in functions are always available and can be used to
14797 check the PowerPC target platform type:
14798
14799 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
14800 This function is a @code{nop} on the PowerPC platform and is included solely
14801 to maintain API compatibility with the x86 builtins.
14802 @end deftypefn
14803
14804 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
14805 This function returns a value of @code{1} if the run-time CPU is of type
14806 @var{cpuname} and returns @code{0} otherwise. The following CPU names can be
14807 detected:
14808
14809 @table @samp
14810 @item power9
14811 IBM POWER9 Server CPU.
14812 @item power8
14813 IBM POWER8 Server CPU.
14814 @item power7
14815 IBM POWER7 Server CPU.
14816 @item power6x
14817 IBM POWER6 Server CPU (RAW mode).
14818 @item power6
14819 IBM POWER6 Server CPU (Architected mode).
14820 @item power5+
14821 IBM POWER5+ Server CPU.
14822 @item power5
14823 IBM POWER5 Server CPU.
14824 @item ppc970
14825 IBM 970 Server CPU (ie, Apple G5).
14826 @item power4
14827 IBM POWER4 Server CPU.
14828 @item ppca2
14829 IBM A2 64-bit Embedded CPU
14830 @item ppc476
14831 IBM PowerPC 476FP 32-bit Embedded CPU.
14832 @item ppc464
14833 IBM PowerPC 464 32-bit Embedded CPU.
14834 @item ppc440
14835 PowerPC 440 32-bit Embedded CPU.
14836 @item ppc405
14837 PowerPC 405 32-bit Embedded CPU.
14838 @item ppc-cell-be
14839 IBM PowerPC Cell Broadband Engine Architecture CPU.
14840 @end table
14841
14842 Here is an example:
14843 @smallexample
14844 if (__builtin_cpu_is ("power8"))
14845 @{
14846 do_power8 (); // POWER8 specific implementation.
14847 @}
14848 else
14849 @{
14850 do_generic (); // Generic implementation.
14851 @}
14852 @end smallexample
14853 @end deftypefn
14854
14855 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
14856 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
14857 feature @var{feature} and returns @code{0} otherwise. The following features can be
14858 detected:
14859
14860 @table @samp
14861 @item 4xxmac
14862 4xx CPU has a Multiply Accumulator.
14863 @item altivec
14864 CPU has a SIMD/Vector Unit.
14865 @item arch_2_05
14866 CPU supports ISA 2.05 (eg, POWER6)
14867 @item arch_2_06
14868 CPU supports ISA 2.06 (eg, POWER7)
14869 @item arch_2_07
14870 CPU supports ISA 2.07 (eg, POWER8)
14871 @item arch_3_00
14872 CPU supports ISA 3.0 (eg, POWER9)
14873 @item archpmu
14874 CPU supports the set of compatible performance monitoring events.
14875 @item booke
14876 CPU supports the Embedded ISA category.
14877 @item cellbe
14878 CPU has a CELL broadband engine.
14879 @item dfp
14880 CPU has a decimal floating point unit.
14881 @item dscr
14882 CPU supports the data stream control register.
14883 @item ebb
14884 CPU supports event base branching.
14885 @item efpdouble
14886 CPU has a SPE double precision floating point unit.
14887 @item efpsingle
14888 CPU has a SPE single precision floating point unit.
14889 @item fpu
14890 CPU has a floating point unit.
14891 @item htm
14892 CPU has hardware transaction memory instructions.
14893 @item htm-nosc
14894 Kernel aborts hardware transactions when a syscall is made.
14895 @item ic_snoop
14896 CPU supports icache snooping capabilities.
14897 @item ieee128
14898 CPU supports 128-bit IEEE binary floating point instructions.
14899 @item isel
14900 CPU supports the integer select instruction.
14901 @item mmu
14902 CPU has a memory management unit.
14903 @item notb
14904 CPU does not have a timebase (eg, 601 and 403gx).
14905 @item pa6t
14906 CPU supports the PA Semi 6T CORE ISA.
14907 @item power4
14908 CPU supports ISA 2.00 (eg, POWER4)
14909 @item power5
14910 CPU supports ISA 2.02 (eg, POWER5)
14911 @item power5+
14912 CPU supports ISA 2.03 (eg, POWER5+)
14913 @item power6x
14914 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
14915 @item ppc32
14916 CPU supports 32-bit mode execution.
14917 @item ppc601
14918 CPU supports the old POWER ISA (eg, 601)
14919 @item ppc64
14920 CPU supports 64-bit mode execution.
14921 @item ppcle
14922 CPU supports a little-endian mode that uses address swizzling.
14923 @item smt
14924 CPU support simultaneous multi-threading.
14925 @item spe
14926 CPU has a signal processing extension unit.
14927 @item tar
14928 CPU supports the target address register.
14929 @item true_le
14930 CPU supports true little-endian mode.
14931 @item ucache
14932 CPU has unified I/D cache.
14933 @item vcrypto
14934 CPU supports the vector cryptography instructions.
14935 @item vsx
14936 CPU supports the vector-scalar extension.
14937 @end table
14938
14939 Here is an example:
14940 @smallexample
14941 if (__builtin_cpu_supports ("fpu"))
14942 @{
14943 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
14944 @}
14945 else
14946 @{
14947 dst = __fadd (src1, src2); // Software FP addition function.
14948 @}
14949 @end smallexample
14950 @end deftypefn
14951
14952 These built-in functions are available for the PowerPC family of
14953 processors:
14954 @smallexample
14955 float __builtin_recipdivf (float, float);
14956 float __builtin_rsqrtf (float);
14957 double __builtin_recipdiv (double, double);
14958 double __builtin_rsqrt (double);
14959 uint64_t __builtin_ppc_get_timebase ();
14960 unsigned long __builtin_ppc_mftb ();
14961 double __builtin_unpack_longdouble (long double, int);
14962 long double __builtin_pack_longdouble (double, double);
14963 @end smallexample
14964
14965 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
14966 @code{__builtin_rsqrtf} functions generate multiple instructions to
14967 implement the reciprocal sqrt functionality using reciprocal sqrt
14968 estimate instructions.
14969
14970 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
14971 functions generate multiple instructions to implement division using
14972 the reciprocal estimate instructions.
14973
14974 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
14975 functions generate instructions to read the Time Base Register. The
14976 @code{__builtin_ppc_get_timebase} function may generate multiple
14977 instructions and always returns the 64 bits of the Time Base Register.
14978 The @code{__builtin_ppc_mftb} function always generates one instruction and
14979 returns the Time Base Register value as an unsigned long, throwing away
14980 the most significant word on 32-bit environments.
14981
14982 Additional built-in functions are available for the 64-bit PowerPC
14983 family of processors, for efficient use of 128-bit floating point
14984 (@code{__float128}) values.
14985
14986 The following floating-point built-in functions are available with
14987 @code{-mfloat128} and Altivec support. All of them implement the
14988 function that is part of the name.
14989
14990 @smallexample
14991 __float128 __builtin_fabsq (__float128)
14992 __float128 __builtin_copysignq (__float128, __float128)
14993 @end smallexample
14994
14995 The following built-in functions are available with @code{-mfloat128}
14996 and Altivec support.
14997
14998 @table @code
14999 @item __float128 __builtin_infq (void)
15000 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
15001 @findex __builtin_infq
15002
15003 @item __float128 __builtin_huge_valq (void)
15004 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
15005 @findex __builtin_huge_valq
15006
15007 @item __float128 __builtin_nanq (void)
15008 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
15009 @findex __builtin_nanq
15010
15011 @item __float128 __builtin_nansq (void)
15012 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
15013 @findex __builtin_nansq
15014 @end table
15015
15016 The following built-in functions are available for the PowerPC family
15017 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
15018 or @option{-mpopcntd}):
15019 @smallexample
15020 long __builtin_bpermd (long, long);
15021 int __builtin_divwe (int, int);
15022 int __builtin_divweo (int, int);
15023 unsigned int __builtin_divweu (unsigned int, unsigned int);
15024 unsigned int __builtin_divweuo (unsigned int, unsigned int);
15025 long __builtin_divde (long, long);
15026 long __builtin_divdeo (long, long);
15027 unsigned long __builtin_divdeu (unsigned long, unsigned long);
15028 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
15029 unsigned int cdtbcd (unsigned int);
15030 unsigned int cbcdtd (unsigned int);
15031 unsigned int addg6s (unsigned int, unsigned int);
15032 @end smallexample
15033
15034 The @code{__builtin_divde}, @code{__builtin_divdeo},
15035 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
15036 64-bit environment support ISA 2.06 or later.
15037
15038 The following built-in functions are available for the PowerPC family
15039 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
15040 @smallexample
15041 long long __builtin_darn (void);
15042 long long __builtin_darn_raw (void);
15043 int __builtin_darn_32 (void);
15044
15045 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
15046 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
15047 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
15048 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
15049
15050 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
15051 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
15052 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
15053 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
15054
15055 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
15056 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
15057 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
15058 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
15059
15060 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
15061 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
15062 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
15063 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
15064
15065 unsigned int scalar_extract_exp (double source);
15066 unsigned long long int scalar_extract_sig (double source);
15067
15068 double
15069 scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
15070
15071 int scalar_cmp_exp_gt (double arg1, double arg2);
15072 int scalar_cmp_exp_lt (double arg1, double arg2);
15073 int scalar_cmp_exp_eq (double arg1, double arg2);
15074 int scalar_cmp_exp_unordered (double arg1, double arg2);
15075
15076 int scalar_test_data_class (float source, unsigned int condition);
15077 int scalar_test_data_class (double source, unsigned int condition);
15078
15079 int scalar_test_neg (float source);
15080 int scalar_test_neg (double source);
15081 @end smallexample
15082
15083 The @code{__builtin_darn} and @code{__builtin_darn_raw}
15084 functions require a
15085 64-bit environment supporting ISA 3.0 or later.
15086 The @code{__builtin_darn} function provides a 64-bit conditioned
15087 random number. The @code{__builtin_darn_raw} function provides a
15088 64-bit raw random number. The @code{__builtin_darn_32} function
15089 provides a 32-bit random number.
15090
15091 The @code{scalar_extract_sig} and @code{scalar_insert_exp}
15092 functions require a 64-bit environment supporting ISA 3.0 or later.
15093 The @code{scalar_extract_exp} and @code{vec_extract_sig} built-in
15094 functions return the significand and exponent respectively of their
15095 @code{source} arguments. The
15096 @code{scalar_insert_exp} built-in function returns a double-precision
15097 floating point value that is constructed by assembling the values of its
15098 @code{significand} and @code{exponent} arguments. The sign of the
15099 result is copied from the most significant bit of the
15100 @code{significand} argument. The significand and exponent components
15101 of the result are composed of the least significant 11 bits of the
15102 @code{significand} argument and the least significant 52 bits of the
15103 @code{exponent} argument.
15104
15105 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
15106 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
15107 functions return a non-zero value if @code{arg1} is greater than, less
15108 than, equal to, or not comparable to @code{arg2} respectively. The
15109 arguments are not comparable if one or the other equals NaN (not a
15110 number).
15111
15112 The @code{scalar_test_data_class} built-in functions return a non-zero
15113 value if any of the condition tests enabled by the value of the
15114 @code{condition} variable are true. The
15115 @code{condition} argument must be an unsigned integer with value not
15116 exceeding 127. The
15117 @code{condition} argument is encoded as a bitmask with each bit
15118 enabling the testing of a different condition, as characterized by the
15119 following:
15120 @smallexample
15121 0x40 Test for NaN
15122 0x20 Test for +Infinity
15123 0x10 Test for -Infinity
15124 0x08 Test for +Zero
15125 0x04 Test for -Zero
15126 0x02 Test for +Denormal
15127 0x01 Test for -Denormal
15128 @end smallexample
15129
15130 If all of the enabled test conditions are false, the return value is 0.
15131
15132 The @code{scalar_test_neg} built-in functions return a non-zero value
15133 if their @code{source} argument holds a negative value.
15134
15135 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
15136 if and only if the number of signficant digits of its @code{value} argument
15137 is less than its @code{comparison} argument. The
15138 @code{__builtin_dfp_dtstsfi_lt_dd} and
15139 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
15140 require that the type of the @code{value} argument be
15141 @code{__Decimal64} and @code{__Decimal128} respectively.
15142
15143 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
15144 if and only if the number of signficant digits of its @code{value} argument
15145 is greater than its @code{comparison} argument. The
15146 @code{__builtin_dfp_dtstsfi_gt_dd} and
15147 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
15148 require that the type of the @code{value} argument be
15149 @code{__Decimal64} and @code{__Decimal128} respectively.
15150
15151 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
15152 if and only if the number of signficant digits of its @code{value} argument
15153 equals its @code{comparison} argument. The
15154 @code{__builtin_dfp_dtstsfi_eq_dd} and
15155 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
15156 require that the type of the @code{value} argument be
15157 @code{__Decimal64} and @code{__Decimal128} respectively.
15158
15159 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
15160 if and only if its @code{value} argument has an undefined number of
15161 significant digits, such as when @code{value} is an encoding of @code{NaN}.
15162 The @code{__builtin_dfp_dtstsfi_ov_dd} and
15163 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
15164 require that the type of the @code{value} argument be
15165 @code{__Decimal64} and @code{__Decimal128} respectively.
15166
15167 The following built-in functions are also available for the PowerPC family
15168 of processors, starting with ISA 3.0 or later
15169 (@option{-mcpu=power9}). These string functions are described
15170 separately in order to group the descriptions closer to the function
15171 prototypes:
15172 @smallexample
15173 int vec_all_nez (vector signed char, vector signed char);
15174 int vec_all_nez (vector unsigned char, vector unsigned char);
15175 int vec_all_nez (vector signed short, vector signed short);
15176 int vec_all_nez (vector unsigned short, vector unsigned short);
15177 int vec_all_nez (vector signed int, vector signed int);
15178 int vec_all_nez (vector unsigned int, vector unsigned int);
15179
15180 int vec_any_eqz (vector signed char, vector signed char);
15181 int vec_any_eqz (vector unsigned char, vector unsigned char);
15182 int vec_any_eqz (vector signed short, vector signed short);
15183 int vec_any_eqz (vector unsigned short, vector unsigned short);
15184 int vec_any_eqz (vector signed int, vector signed int);
15185 int vec_any_eqz (vector unsigned int, vector unsigned int);
15186
15187 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
15188 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
15189 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
15190 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
15191 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
15192 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
15193
15194 signed int vec_cntlz_lsbb (vector signed char);
15195 signed int vec_cntlz_lsbb (vector unsigned char);
15196
15197 signed int vec_cnttz_lsbb (vector signed char);
15198 signed int vec_cnttz_lsbb (vector unsigned char);
15199
15200 vector signed char vec_xl_len (signed char *addr, size_t len);
15201 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
15202 vector signed int vec_xl_len (signed int *addr, size_t len);
15203 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
15204 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
15205 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
15206 vector signed long long vec_xl_len (signed long long *addr, size_t len);
15207 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
15208 vector signed short vec_xl_len (signed short *addr, size_t len);
15209 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
15210 vector double vec_xl_len (double *addr, size_t len);
15211 vector float vec_xl_len (float *addr, size_t len);
15212
15213 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
15214 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
15215 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
15216 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
15217 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
15218 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
15219 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
15220 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
15221 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
15222 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
15223 void vec_xst_len (vector double data, double *addr, size_t len);
15224 void vec_xst_len (vector float data, float *addr, size_t len);
15225
15226 signed char vec_xlx (unsigned int index, vector signed char data);
15227 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
15228 signed short vec_xlx (unsigned int index, vector signed short data);
15229 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
15230 signed int vec_xlx (unsigned int index, vector signed int data);
15231 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
15232 float vec_xlx (unsigned int index, vector float data);
15233
15234 signed char vec_xrx (unsigned int index, vector signed char data);
15235 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
15236 signed short vec_xrx (unsigned int index, vector signed short data);
15237 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
15238 signed int vec_xrx (unsigned int index, vector signed int data);
15239 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
15240 float vec_xrx (unsigned int index, vector float data);
15241 @end smallexample
15242
15243 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
15244 perform pairwise comparisons between the elements at the same
15245 positions within their two vector arguments.
15246 The @code{vec_all_nez} function returns a
15247 non-zero value if and only if all pairwise comparisons are not
15248 equal and no element of either vector argument contains a zero.
15249 The @code{vec_any_eqz} function returns a
15250 non-zero value if and only if at least one pairwise comparison is equal
15251 or if at least one element of either vector argument contains a zero.
15252 The @code{vec_cmpnez} function returns a vector of the same type as
15253 its two arguments, within which each element consists of all ones to
15254 denote that either the corresponding elements of the incoming arguments are
15255 not equal or that at least one of the corresponding elements contains
15256 zero. Otherwise, the element of the returned vector contains all zeros.
15257
15258 The @code{vec_cntlz_lsbb} function returns the count of the number of
15259 consecutive leading byte elements (starting from position 0 within the
15260 supplied vector argument) for which the least-significant bit
15261 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
15262 the number of consecutive trailing byte elements (starting from
15263 position 15 and counting backwards within the supplied vector
15264 argument) for which the least-significant bit equals zero.
15265
15266 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
15267 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
15268 function loads a variable length vector from memory. The
15269 @code{vec_xst_len} function stores a variable length vector to memory.
15270 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
15271 @code{addr} argument represents the memory address to or from which
15272 data will be transferred, and the
15273 @code{len} argument represents the number of bytes to be
15274 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
15275 If this expression's value is not a multiple of the vector element's
15276 size, the behavior of this function is undefined.
15277 In the case that the underlying computer is configured to run in
15278 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
15279 the corresponding vector. In little-endian mode, the data transfer
15280 moves bytes @code{(16 - len)} to @code{15} of the corresponding
15281 vector. For the load function, any bytes of the result vector that
15282 are not loaded from memory are set to zero.
15283 The value of the @code{addr} argument need not be aligned on a
15284 multiple of the vector's element size.
15285
15286 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
15287 element selected by the @code{index} argument from the vector
15288 represented by the @code{data} argument. The @code{index} argument
15289 always specifies a byte offset, regardless of the size of the vector
15290 element. With @code{vec_xlx}, @code{index} is the offset of the first
15291 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
15292 represents the last byte of the element to be extracted, measured
15293 from the right end of the vector. In other words, the last byte of
15294 the element to be extracted is found at position @code{(15 - index)}.
15295 There is no requirement that @code{index} be a multiple of the vector
15296 element size. However, if the size of the vector element added to
15297 @code{index} is greater than 15, the content of the returned value is
15298 undefined.
15299
15300 The following built-in functions are available for the PowerPC family
15301 of processors when hardware decimal floating point
15302 (@option{-mhard-dfp}) is available:
15303 @smallexample
15304 _Decimal64 __builtin_dxex (_Decimal64);
15305 _Decimal128 __builtin_dxexq (_Decimal128);
15306 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15307 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15308 _Decimal64 __builtin_denbcd (int, _Decimal64);
15309 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15310 _Decimal64 __builtin_diex (_Decimal64, _Decimal64);
15311 _Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
15312 _Decimal64 __builtin_dscli (_Decimal64, int);
15313 _Decimal128 __builtin_dscliq (_Decimal128, int);
15314 _Decimal64 __builtin_dscri (_Decimal64, int);
15315 _Decimal128 __builtin_dscriq (_Decimal128, int);
15316 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15317 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15318 @end smallexample
15319
15320 The following built-in functions are available for the PowerPC family
15321 of processors when the Vector Scalar (vsx) instruction set is
15322 available:
15323 @smallexample
15324 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
15325 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
15326 unsigned long long);
15327 @end smallexample
15328
15329 @node PowerPC AltiVec/VSX Built-in Functions
15330 @subsection PowerPC AltiVec Built-in Functions
15331
15332 GCC provides an interface for the PowerPC family of processors to access
15333 the AltiVec operations described in Motorola's AltiVec Programming
15334 Interface Manual. The interface is made available by including
15335 @code{<altivec.h>} and using @option{-maltivec} and
15336 @option{-mabi=altivec}. The interface supports the following vector
15337 types.
15338
15339 @smallexample
15340 vector unsigned char
15341 vector signed char
15342 vector bool char
15343
15344 vector unsigned short
15345 vector signed short
15346 vector bool short
15347 vector pixel
15348
15349 vector unsigned int
15350 vector signed int
15351 vector bool int
15352 vector float
15353 @end smallexample
15354
15355 If @option{-mvsx} is used the following additional vector types are
15356 implemented.
15357
15358 @smallexample
15359 vector unsigned long
15360 vector signed long
15361 vector double
15362 @end smallexample
15363
15364 The long types are only implemented for 64-bit code generation, and
15365 the long type is only used in the floating point/integer conversion
15366 instructions.
15367
15368 GCC's implementation of the high-level language interface available from
15369 C and C++ code differs from Motorola's documentation in several ways.
15370
15371 @itemize @bullet
15372
15373 @item
15374 A vector constant is a list of constant expressions within curly braces.
15375
15376 @item
15377 A vector initializer requires no cast if the vector constant is of the
15378 same type as the variable it is initializing.
15379
15380 @item
15381 If @code{signed} or @code{unsigned} is omitted, the signedness of the
15382 vector type is the default signedness of the base type. The default
15383 varies depending on the operating system, so a portable program should
15384 always specify the signedness.
15385
15386 @item
15387 Compiling with @option{-maltivec} adds keywords @code{__vector},
15388 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
15389 @code{bool}. When compiling ISO C, the context-sensitive substitution
15390 of the keywords @code{vector}, @code{pixel} and @code{bool} is
15391 disabled. To use them, you must include @code{<altivec.h>} instead.
15392
15393 @item
15394 GCC allows using a @code{typedef} name as the type specifier for a
15395 vector type.
15396
15397 @item
15398 For C, overloaded functions are implemented with macros so the following
15399 does not work:
15400
15401 @smallexample
15402 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
15403 @end smallexample
15404
15405 @noindent
15406 Since @code{vec_add} is a macro, the vector constant in the example
15407 is treated as four separate arguments. Wrap the entire argument in
15408 parentheses for this to work.
15409 @end itemize
15410
15411 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
15412 Internally, GCC uses built-in functions to achieve the functionality in
15413 the aforementioned header file, but they are not supported and are
15414 subject to change without notice.
15415
15416 The following interfaces are supported for the generic and specific
15417 AltiVec operations and the AltiVec predicates. In cases where there
15418 is a direct mapping between generic and specific operations, only the
15419 generic names are shown here, although the specific operations can also
15420 be used.
15421
15422 Arguments that are documented as @code{const int} require literal
15423 integral values within the range required for that operation.
15424
15425 @smallexample
15426 vector signed char vec_abs (vector signed char);
15427 vector signed short vec_abs (vector signed short);
15428 vector signed int vec_abs (vector signed int);
15429 vector float vec_abs (vector float);
15430
15431 vector signed char vec_abss (vector signed char);
15432 vector signed short vec_abss (vector signed short);
15433 vector signed int vec_abss (vector signed int);
15434
15435 vector signed char vec_add (vector bool char, vector signed char);
15436 vector signed char vec_add (vector signed char, vector bool char);
15437 vector signed char vec_add (vector signed char, vector signed char);
15438 vector unsigned char vec_add (vector bool char, vector unsigned char);
15439 vector unsigned char vec_add (vector unsigned char, vector bool char);
15440 vector unsigned char vec_add (vector unsigned char,
15441 vector unsigned char);
15442 vector signed short vec_add (vector bool short, vector signed short);
15443 vector signed short vec_add (vector signed short, vector bool short);
15444 vector signed short vec_add (vector signed short, vector signed short);
15445 vector unsigned short vec_add (vector bool short,
15446 vector unsigned short);
15447 vector unsigned short vec_add (vector unsigned short,
15448 vector bool short);
15449 vector unsigned short vec_add (vector unsigned short,
15450 vector unsigned short);
15451 vector signed int vec_add (vector bool int, vector signed int);
15452 vector signed int vec_add (vector signed int, vector bool int);
15453 vector signed int vec_add (vector signed int, vector signed int);
15454 vector unsigned int vec_add (vector bool int, vector unsigned int);
15455 vector unsigned int vec_add (vector unsigned int, vector bool int);
15456 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
15457 vector float vec_add (vector float, vector float);
15458
15459 vector float vec_vaddfp (vector float, vector float);
15460
15461 vector signed int vec_vadduwm (vector bool int, vector signed int);
15462 vector signed int vec_vadduwm (vector signed int, vector bool int);
15463 vector signed int vec_vadduwm (vector signed int, vector signed int);
15464 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
15465 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
15466 vector unsigned int vec_vadduwm (vector unsigned int,
15467 vector unsigned int);
15468
15469 vector signed short vec_vadduhm (vector bool short,
15470 vector signed short);
15471 vector signed short vec_vadduhm (vector signed short,
15472 vector bool short);
15473 vector signed short vec_vadduhm (vector signed short,
15474 vector signed short);
15475 vector unsigned short vec_vadduhm (vector bool short,
15476 vector unsigned short);
15477 vector unsigned short vec_vadduhm (vector unsigned short,
15478 vector bool short);
15479 vector unsigned short vec_vadduhm (vector unsigned short,
15480 vector unsigned short);
15481
15482 vector signed char vec_vaddubm (vector bool char, vector signed char);
15483 vector signed char vec_vaddubm (vector signed char, vector bool char);
15484 vector signed char vec_vaddubm (vector signed char, vector signed char);
15485 vector unsigned char vec_vaddubm (vector bool char,
15486 vector unsigned char);
15487 vector unsigned char vec_vaddubm (vector unsigned char,
15488 vector bool char);
15489 vector unsigned char vec_vaddubm (vector unsigned char,
15490 vector unsigned char);
15491
15492 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
15493
15494 vector unsigned char vec_adds (vector bool char, vector unsigned char);
15495 vector unsigned char vec_adds (vector unsigned char, vector bool char);
15496 vector unsigned char vec_adds (vector unsigned char,
15497 vector unsigned char);
15498 vector signed char vec_adds (vector bool char, vector signed char);
15499 vector signed char vec_adds (vector signed char, vector bool char);
15500 vector signed char vec_adds (vector signed char, vector signed char);
15501 vector unsigned short vec_adds (vector bool short,
15502 vector unsigned short);
15503 vector unsigned short vec_adds (vector unsigned short,
15504 vector bool short);
15505 vector unsigned short vec_adds (vector unsigned short,
15506 vector unsigned short);
15507 vector signed short vec_adds (vector bool short, vector signed short);
15508 vector signed short vec_adds (vector signed short, vector bool short);
15509 vector signed short vec_adds (vector signed short, vector signed short);
15510 vector unsigned int vec_adds (vector bool int, vector unsigned int);
15511 vector unsigned int vec_adds (vector unsigned int, vector bool int);
15512 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
15513 vector signed int vec_adds (vector bool int, vector signed int);
15514 vector signed int vec_adds (vector signed int, vector bool int);
15515 vector signed int vec_adds (vector signed int, vector signed int);
15516
15517 vector signed int vec_vaddsws (vector bool int, vector signed int);
15518 vector signed int vec_vaddsws (vector signed int, vector bool int);
15519 vector signed int vec_vaddsws (vector signed int, vector signed int);
15520
15521 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
15522 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
15523 vector unsigned int vec_vadduws (vector unsigned int,
15524 vector unsigned int);
15525
15526 vector signed short vec_vaddshs (vector bool short,
15527 vector signed short);
15528 vector signed short vec_vaddshs (vector signed short,
15529 vector bool short);
15530 vector signed short vec_vaddshs (vector signed short,
15531 vector signed short);
15532
15533 vector unsigned short vec_vadduhs (vector bool short,
15534 vector unsigned short);
15535 vector unsigned short vec_vadduhs (vector unsigned short,
15536 vector bool short);
15537 vector unsigned short vec_vadduhs (vector unsigned short,
15538 vector unsigned short);
15539
15540 vector signed char vec_vaddsbs (vector bool char, vector signed char);
15541 vector signed char vec_vaddsbs (vector signed char, vector bool char);
15542 vector signed char vec_vaddsbs (vector signed char, vector signed char);
15543
15544 vector unsigned char vec_vaddubs (vector bool char,
15545 vector unsigned char);
15546 vector unsigned char vec_vaddubs (vector unsigned char,
15547 vector bool char);
15548 vector unsigned char vec_vaddubs (vector unsigned char,
15549 vector unsigned char);
15550
15551 vector float vec_and (vector float, vector float);
15552 vector float vec_and (vector float, vector bool int);
15553 vector float vec_and (vector bool int, vector float);
15554 vector bool int vec_and (vector bool int, vector bool int);
15555 vector signed int vec_and (vector bool int, vector signed int);
15556 vector signed int vec_and (vector signed int, vector bool int);
15557 vector signed int vec_and (vector signed int, vector signed int);
15558 vector unsigned int vec_and (vector bool int, vector unsigned int);
15559 vector unsigned int vec_and (vector unsigned int, vector bool int);
15560 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
15561 vector bool short vec_and (vector bool short, vector bool short);
15562 vector signed short vec_and (vector bool short, vector signed short);
15563 vector signed short vec_and (vector signed short, vector bool short);
15564 vector signed short vec_and (vector signed short, vector signed short);
15565 vector unsigned short vec_and (vector bool short,
15566 vector unsigned short);
15567 vector unsigned short vec_and (vector unsigned short,
15568 vector bool short);
15569 vector unsigned short vec_and (vector unsigned short,
15570 vector unsigned short);
15571 vector signed char vec_and (vector bool char, vector signed char);
15572 vector bool char vec_and (vector bool char, vector bool char);
15573 vector signed char vec_and (vector signed char, vector bool char);
15574 vector signed char vec_and (vector signed char, vector signed char);
15575 vector unsigned char vec_and (vector bool char, vector unsigned char);
15576 vector unsigned char vec_and (vector unsigned char, vector bool char);
15577 vector unsigned char vec_and (vector unsigned char,
15578 vector unsigned char);
15579
15580 vector float vec_andc (vector float, vector float);
15581 vector float vec_andc (vector float, vector bool int);
15582 vector float vec_andc (vector bool int, vector float);
15583 vector bool int vec_andc (vector bool int, vector bool int);
15584 vector signed int vec_andc (vector bool int, vector signed int);
15585 vector signed int vec_andc (vector signed int, vector bool int);
15586 vector signed int vec_andc (vector signed int, vector signed int);
15587 vector unsigned int vec_andc (vector bool int, vector unsigned int);
15588 vector unsigned int vec_andc (vector unsigned int, vector bool int);
15589 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
15590 vector bool short vec_andc (vector bool short, vector bool short);
15591 vector signed short vec_andc (vector bool short, vector signed short);
15592 vector signed short vec_andc (vector signed short, vector bool short);
15593 vector signed short vec_andc (vector signed short, vector signed short);
15594 vector unsigned short vec_andc (vector bool short,
15595 vector unsigned short);
15596 vector unsigned short vec_andc (vector unsigned short,
15597 vector bool short);
15598 vector unsigned short vec_andc (vector unsigned short,
15599 vector unsigned short);
15600 vector signed char vec_andc (vector bool char, vector signed char);
15601 vector bool char vec_andc (vector bool char, vector bool char);
15602 vector signed char vec_andc (vector signed char, vector bool char);
15603 vector signed char vec_andc (vector signed char, vector signed char);
15604 vector unsigned char vec_andc (vector bool char, vector unsigned char);
15605 vector unsigned char vec_andc (vector unsigned char, vector bool char);
15606 vector unsigned char vec_andc (vector unsigned char,
15607 vector unsigned char);
15608
15609 vector unsigned char vec_avg (vector unsigned char,
15610 vector unsigned char);
15611 vector signed char vec_avg (vector signed char, vector signed char);
15612 vector unsigned short vec_avg (vector unsigned short,
15613 vector unsigned short);
15614 vector signed short vec_avg (vector signed short, vector signed short);
15615 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
15616 vector signed int vec_avg (vector signed int, vector signed int);
15617
15618 vector signed int vec_vavgsw (vector signed int, vector signed int);
15619
15620 vector unsigned int vec_vavguw (vector unsigned int,
15621 vector unsigned int);
15622
15623 vector signed short vec_vavgsh (vector signed short,
15624 vector signed short);
15625
15626 vector unsigned short vec_vavguh (vector unsigned short,
15627 vector unsigned short);
15628
15629 vector signed char vec_vavgsb (vector signed char, vector signed char);
15630
15631 vector unsigned char vec_vavgub (vector unsigned char,
15632 vector unsigned char);
15633
15634 vector float vec_copysign (vector float);
15635
15636 vector float vec_ceil (vector float);
15637
15638 vector signed int vec_cmpb (vector float, vector float);
15639
15640 vector bool char vec_cmpeq (vector signed char, vector signed char);
15641 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
15642 vector bool short vec_cmpeq (vector signed short, vector signed short);
15643 vector bool short vec_cmpeq (vector unsigned short,
15644 vector unsigned short);
15645 vector bool int vec_cmpeq (vector signed int, vector signed int);
15646 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
15647 vector bool int vec_cmpeq (vector float, vector float);
15648
15649 vector bool int vec_vcmpeqfp (vector float, vector float);
15650
15651 vector bool int vec_vcmpequw (vector signed int, vector signed int);
15652 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
15653
15654 vector bool short vec_vcmpequh (vector signed short,
15655 vector signed short);
15656 vector bool short vec_vcmpequh (vector unsigned short,
15657 vector unsigned short);
15658
15659 vector bool char vec_vcmpequb (vector signed char, vector signed char);
15660 vector bool char vec_vcmpequb (vector unsigned char,
15661 vector unsigned char);
15662
15663 vector bool int vec_cmpge (vector float, vector float);
15664
15665 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
15666 vector bool char vec_cmpgt (vector signed char, vector signed char);
15667 vector bool short vec_cmpgt (vector unsigned short,
15668 vector unsigned short);
15669 vector bool short vec_cmpgt (vector signed short, vector signed short);
15670 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
15671 vector bool int vec_cmpgt (vector signed int, vector signed int);
15672 vector bool int vec_cmpgt (vector float, vector float);
15673
15674 vector bool int vec_vcmpgtfp (vector float, vector float);
15675
15676 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
15677
15678 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
15679
15680 vector bool short vec_vcmpgtsh (vector signed short,
15681 vector signed short);
15682
15683 vector bool short vec_vcmpgtuh (vector unsigned short,
15684 vector unsigned short);
15685
15686 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
15687
15688 vector bool char vec_vcmpgtub (vector unsigned char,
15689 vector unsigned char);
15690
15691 vector bool int vec_cmple (vector float, vector float);
15692
15693 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
15694 vector bool char vec_cmplt (vector signed char, vector signed char);
15695 vector bool short vec_cmplt (vector unsigned short,
15696 vector unsigned short);
15697 vector bool short vec_cmplt (vector signed short, vector signed short);
15698 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
15699 vector bool int vec_cmplt (vector signed int, vector signed int);
15700 vector bool int vec_cmplt (vector float, vector float);
15701
15702 vector float vec_cpsgn (vector float, vector float);
15703
15704 vector float vec_ctf (vector unsigned int, const int);
15705 vector float vec_ctf (vector signed int, const int);
15706 vector double vec_ctf (vector unsigned long, const int);
15707 vector double vec_ctf (vector signed long, const int);
15708
15709 vector float vec_vcfsx (vector signed int, const int);
15710
15711 vector float vec_vcfux (vector unsigned int, const int);
15712
15713 vector signed int vec_cts (vector float, const int);
15714 vector signed long vec_cts (vector double, const int);
15715
15716 vector unsigned int vec_ctu (vector float, const int);
15717 vector unsigned long vec_ctu (vector double, const int);
15718
15719 void vec_dss (const int);
15720
15721 void vec_dssall (void);
15722
15723 void vec_dst (const vector unsigned char *, int, const int);
15724 void vec_dst (const vector signed char *, int, const int);
15725 void vec_dst (const vector bool char *, int, const int);
15726 void vec_dst (const vector unsigned short *, int, const int);
15727 void vec_dst (const vector signed short *, int, const int);
15728 void vec_dst (const vector bool short *, int, const int);
15729 void vec_dst (const vector pixel *, int, const int);
15730 void vec_dst (const vector unsigned int *, int, const int);
15731 void vec_dst (const vector signed int *, int, const int);
15732 void vec_dst (const vector bool int *, int, const int);
15733 void vec_dst (const vector float *, int, const int);
15734 void vec_dst (const unsigned char *, int, const int);
15735 void vec_dst (const signed char *, int, const int);
15736 void vec_dst (const unsigned short *, int, const int);
15737 void vec_dst (const short *, int, const int);
15738 void vec_dst (const unsigned int *, int, const int);
15739 void vec_dst (const int *, int, const int);
15740 void vec_dst (const unsigned long *, int, const int);
15741 void vec_dst (const long *, int, const int);
15742 void vec_dst (const float *, int, const int);
15743
15744 void vec_dstst (const vector unsigned char *, int, const int);
15745 void vec_dstst (const vector signed char *, int, const int);
15746 void vec_dstst (const vector bool char *, int, const int);
15747 void vec_dstst (const vector unsigned short *, int, const int);
15748 void vec_dstst (const vector signed short *, int, const int);
15749 void vec_dstst (const vector bool short *, int, const int);
15750 void vec_dstst (const vector pixel *, int, const int);
15751 void vec_dstst (const vector unsigned int *, int, const int);
15752 void vec_dstst (const vector signed int *, int, const int);
15753 void vec_dstst (const vector bool int *, int, const int);
15754 void vec_dstst (const vector float *, int, const int);
15755 void vec_dstst (const unsigned char *, int, const int);
15756 void vec_dstst (const signed char *, int, const int);
15757 void vec_dstst (const unsigned short *, int, const int);
15758 void vec_dstst (const short *, int, const int);
15759 void vec_dstst (const unsigned int *, int, const int);
15760 void vec_dstst (const int *, int, const int);
15761 void vec_dstst (const unsigned long *, int, const int);
15762 void vec_dstst (const long *, int, const int);
15763 void vec_dstst (const float *, int, const int);
15764
15765 void vec_dststt (const vector unsigned char *, int, const int);
15766 void vec_dststt (const vector signed char *, int, const int);
15767 void vec_dststt (const vector bool char *, int, const int);
15768 void vec_dststt (const vector unsigned short *, int, const int);
15769 void vec_dststt (const vector signed short *, int, const int);
15770 void vec_dststt (const vector bool short *, int, const int);
15771 void vec_dststt (const vector pixel *, int, const int);
15772 void vec_dststt (const vector unsigned int *, int, const int);
15773 void vec_dststt (const vector signed int *, int, const int);
15774 void vec_dststt (const vector bool int *, int, const int);
15775 void vec_dststt (const vector float *, int, const int);
15776 void vec_dststt (const unsigned char *, int, const int);
15777 void vec_dststt (const signed char *, int, const int);
15778 void vec_dststt (const unsigned short *, int, const int);
15779 void vec_dststt (const short *, int, const int);
15780 void vec_dststt (const unsigned int *, int, const int);
15781 void vec_dststt (const int *, int, const int);
15782 void vec_dststt (const unsigned long *, int, const int);
15783 void vec_dststt (const long *, int, const int);
15784 void vec_dststt (const float *, int, const int);
15785
15786 void vec_dstt (const vector unsigned char *, int, const int);
15787 void vec_dstt (const vector signed char *, int, const int);
15788 void vec_dstt (const vector bool char *, int, const int);
15789 void vec_dstt (const vector unsigned short *, int, const int);
15790 void vec_dstt (const vector signed short *, int, const int);
15791 void vec_dstt (const vector bool short *, int, const int);
15792 void vec_dstt (const vector pixel *, int, const int);
15793 void vec_dstt (const vector unsigned int *, int, const int);
15794 void vec_dstt (const vector signed int *, int, const int);
15795 void vec_dstt (const vector bool int *, int, const int);
15796 void vec_dstt (const vector float *, int, const int);
15797 void vec_dstt (const unsigned char *, int, const int);
15798 void vec_dstt (const signed char *, int, const int);
15799 void vec_dstt (const unsigned short *, int, const int);
15800 void vec_dstt (const short *, int, const int);
15801 void vec_dstt (const unsigned int *, int, const int);
15802 void vec_dstt (const int *, int, const int);
15803 void vec_dstt (const unsigned long *, int, const int);
15804 void vec_dstt (const long *, int, const int);
15805 void vec_dstt (const float *, int, const int);
15806
15807 vector float vec_expte (vector float);
15808
15809 vector float vec_floor (vector float);
15810
15811 vector float vec_ld (int, const vector float *);
15812 vector float vec_ld (int, const float *);
15813 vector bool int vec_ld (int, const vector bool int *);
15814 vector signed int vec_ld (int, const vector signed int *);
15815 vector signed int vec_ld (int, const int *);
15816 vector signed int vec_ld (int, const long *);
15817 vector unsigned int vec_ld (int, const vector unsigned int *);
15818 vector unsigned int vec_ld (int, const unsigned int *);
15819 vector unsigned int vec_ld (int, const unsigned long *);
15820 vector bool short vec_ld (int, const vector bool short *);
15821 vector pixel vec_ld (int, const vector pixel *);
15822 vector signed short vec_ld (int, const vector signed short *);
15823 vector signed short vec_ld (int, const short *);
15824 vector unsigned short vec_ld (int, const vector unsigned short *);
15825 vector unsigned short vec_ld (int, const unsigned short *);
15826 vector bool char vec_ld (int, const vector bool char *);
15827 vector signed char vec_ld (int, const vector signed char *);
15828 vector signed char vec_ld (int, const signed char *);
15829 vector unsigned char vec_ld (int, const vector unsigned char *);
15830 vector unsigned char vec_ld (int, const unsigned char *);
15831
15832 vector signed char vec_lde (int, const signed char *);
15833 vector unsigned char vec_lde (int, const unsigned char *);
15834 vector signed short vec_lde (int, const short *);
15835 vector unsigned short vec_lde (int, const unsigned short *);
15836 vector float vec_lde (int, const float *);
15837 vector signed int vec_lde (int, const int *);
15838 vector unsigned int vec_lde (int, const unsigned int *);
15839 vector signed int vec_lde (int, const long *);
15840 vector unsigned int vec_lde (int, const unsigned long *);
15841
15842 vector float vec_lvewx (int, float *);
15843 vector signed int vec_lvewx (int, int *);
15844 vector unsigned int vec_lvewx (int, unsigned int *);
15845 vector signed int vec_lvewx (int, long *);
15846 vector unsigned int vec_lvewx (int, unsigned long *);
15847
15848 vector signed short vec_lvehx (int, short *);
15849 vector unsigned short vec_lvehx (int, unsigned short *);
15850
15851 vector signed char vec_lvebx (int, char *);
15852 vector unsigned char vec_lvebx (int, unsigned char *);
15853
15854 vector float vec_ldl (int, const vector float *);
15855 vector float vec_ldl (int, const float *);
15856 vector bool int vec_ldl (int, const vector bool int *);
15857 vector signed int vec_ldl (int, const vector signed int *);
15858 vector signed int vec_ldl (int, const int *);
15859 vector signed int vec_ldl (int, const long *);
15860 vector unsigned int vec_ldl (int, const vector unsigned int *);
15861 vector unsigned int vec_ldl (int, const unsigned int *);
15862 vector unsigned int vec_ldl (int, const unsigned long *);
15863 vector bool short vec_ldl (int, const vector bool short *);
15864 vector pixel vec_ldl (int, const vector pixel *);
15865 vector signed short vec_ldl (int, const vector signed short *);
15866 vector signed short vec_ldl (int, const short *);
15867 vector unsigned short vec_ldl (int, const vector unsigned short *);
15868 vector unsigned short vec_ldl (int, const unsigned short *);
15869 vector bool char vec_ldl (int, const vector bool char *);
15870 vector signed char vec_ldl (int, const vector signed char *);
15871 vector signed char vec_ldl (int, const signed char *);
15872 vector unsigned char vec_ldl (int, const vector unsigned char *);
15873 vector unsigned char vec_ldl (int, const unsigned char *);
15874
15875 vector float vec_loge (vector float);
15876
15877 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
15878 vector unsigned char vec_lvsl (int, const volatile signed char *);
15879 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
15880 vector unsigned char vec_lvsl (int, const volatile short *);
15881 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
15882 vector unsigned char vec_lvsl (int, const volatile int *);
15883 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
15884 vector unsigned char vec_lvsl (int, const volatile long *);
15885 vector unsigned char vec_lvsl (int, const volatile float *);
15886
15887 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
15888 vector unsigned char vec_lvsr (int, const volatile signed char *);
15889 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
15890 vector unsigned char vec_lvsr (int, const volatile short *);
15891 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
15892 vector unsigned char vec_lvsr (int, const volatile int *);
15893 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
15894 vector unsigned char vec_lvsr (int, const volatile long *);
15895 vector unsigned char vec_lvsr (int, const volatile float *);
15896
15897 vector float vec_madd (vector float, vector float, vector float);
15898
15899 vector signed short vec_madds (vector signed short,
15900 vector signed short,
15901 vector signed short);
15902
15903 vector unsigned char vec_max (vector bool char, vector unsigned char);
15904 vector unsigned char vec_max (vector unsigned char, vector bool char);
15905 vector unsigned char vec_max (vector unsigned char,
15906 vector unsigned char);
15907 vector signed char vec_max (vector bool char, vector signed char);
15908 vector signed char vec_max (vector signed char, vector bool char);
15909 vector signed char vec_max (vector signed char, vector signed char);
15910 vector unsigned short vec_max (vector bool short,
15911 vector unsigned short);
15912 vector unsigned short vec_max (vector unsigned short,
15913 vector bool short);
15914 vector unsigned short vec_max (vector unsigned short,
15915 vector unsigned short);
15916 vector signed short vec_max (vector bool short, vector signed short);
15917 vector signed short vec_max (vector signed short, vector bool short);
15918 vector signed short vec_max (vector signed short, vector signed short);
15919 vector unsigned int vec_max (vector bool int, vector unsigned int);
15920 vector unsigned int vec_max (vector unsigned int, vector bool int);
15921 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
15922 vector signed int vec_max (vector bool int, vector signed int);
15923 vector signed int vec_max (vector signed int, vector bool int);
15924 vector signed int vec_max (vector signed int, vector signed int);
15925 vector float vec_max (vector float, vector float);
15926
15927 vector float vec_vmaxfp (vector float, vector float);
15928
15929 vector signed int vec_vmaxsw (vector bool int, vector signed int);
15930 vector signed int vec_vmaxsw (vector signed int, vector bool int);
15931 vector signed int vec_vmaxsw (vector signed int, vector signed int);
15932
15933 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
15934 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
15935 vector unsigned int vec_vmaxuw (vector unsigned int,
15936 vector unsigned int);
15937
15938 vector signed short vec_vmaxsh (vector bool short, vector signed short);
15939 vector signed short vec_vmaxsh (vector signed short, vector bool short);
15940 vector signed short vec_vmaxsh (vector signed short,
15941 vector signed short);
15942
15943 vector unsigned short vec_vmaxuh (vector bool short,
15944 vector unsigned short);
15945 vector unsigned short vec_vmaxuh (vector unsigned short,
15946 vector bool short);
15947 vector unsigned short vec_vmaxuh (vector unsigned short,
15948 vector unsigned short);
15949
15950 vector signed char vec_vmaxsb (vector bool char, vector signed char);
15951 vector signed char vec_vmaxsb (vector signed char, vector bool char);
15952 vector signed char vec_vmaxsb (vector signed char, vector signed char);
15953
15954 vector unsigned char vec_vmaxub (vector bool char,
15955 vector unsigned char);
15956 vector unsigned char vec_vmaxub (vector unsigned char,
15957 vector bool char);
15958 vector unsigned char vec_vmaxub (vector unsigned char,
15959 vector unsigned char);
15960
15961 vector bool char vec_mergeh (vector bool char, vector bool char);
15962 vector signed char vec_mergeh (vector signed char, vector signed char);
15963 vector unsigned char vec_mergeh (vector unsigned char,
15964 vector unsigned char);
15965 vector bool short vec_mergeh (vector bool short, vector bool short);
15966 vector pixel vec_mergeh (vector pixel, vector pixel);
15967 vector signed short vec_mergeh (vector signed short,
15968 vector signed short);
15969 vector unsigned short vec_mergeh (vector unsigned short,
15970 vector unsigned short);
15971 vector float vec_mergeh (vector float, vector float);
15972 vector bool int vec_mergeh (vector bool int, vector bool int);
15973 vector signed int vec_mergeh (vector signed int, vector signed int);
15974 vector unsigned int vec_mergeh (vector unsigned int,
15975 vector unsigned int);
15976
15977 vector float vec_vmrghw (vector float, vector float);
15978 vector bool int vec_vmrghw (vector bool int, vector bool int);
15979 vector signed int vec_vmrghw (vector signed int, vector signed int);
15980 vector unsigned int vec_vmrghw (vector unsigned int,
15981 vector unsigned int);
15982
15983 vector bool short vec_vmrghh (vector bool short, vector bool short);
15984 vector signed short vec_vmrghh (vector signed short,
15985 vector signed short);
15986 vector unsigned short vec_vmrghh (vector unsigned short,
15987 vector unsigned short);
15988 vector pixel vec_vmrghh (vector pixel, vector pixel);
15989
15990 vector bool char vec_vmrghb (vector bool char, vector bool char);
15991 vector signed char vec_vmrghb (vector signed char, vector signed char);
15992 vector unsigned char vec_vmrghb (vector unsigned char,
15993 vector unsigned char);
15994
15995 vector bool char vec_mergel (vector bool char, vector bool char);
15996 vector signed char vec_mergel (vector signed char, vector signed char);
15997 vector unsigned char vec_mergel (vector unsigned char,
15998 vector unsigned char);
15999 vector bool short vec_mergel (vector bool short, vector bool short);
16000 vector pixel vec_mergel (vector pixel, vector pixel);
16001 vector signed short vec_mergel (vector signed short,
16002 vector signed short);
16003 vector unsigned short vec_mergel (vector unsigned short,
16004 vector unsigned short);
16005 vector float vec_mergel (vector float, vector float);
16006 vector bool int vec_mergel (vector bool int, vector bool int);
16007 vector signed int vec_mergel (vector signed int, vector signed int);
16008 vector unsigned int vec_mergel (vector unsigned int,
16009 vector unsigned int);
16010
16011 vector float vec_vmrglw (vector float, vector float);
16012 vector signed int vec_vmrglw (vector signed int, vector signed int);
16013 vector unsigned int vec_vmrglw (vector unsigned int,
16014 vector unsigned int);
16015 vector bool int vec_vmrglw (vector bool int, vector bool int);
16016
16017 vector bool short vec_vmrglh (vector bool short, vector bool short);
16018 vector signed short vec_vmrglh (vector signed short,
16019 vector signed short);
16020 vector unsigned short vec_vmrglh (vector unsigned short,
16021 vector unsigned short);
16022 vector pixel vec_vmrglh (vector pixel, vector pixel);
16023
16024 vector bool char vec_vmrglb (vector bool char, vector bool char);
16025 vector signed char vec_vmrglb (vector signed char, vector signed char);
16026 vector unsigned char vec_vmrglb (vector unsigned char,
16027 vector unsigned char);
16028
16029 vector unsigned short vec_mfvscr (void);
16030
16031 vector unsigned char vec_min (vector bool char, vector unsigned char);
16032 vector unsigned char vec_min (vector unsigned char, vector bool char);
16033 vector unsigned char vec_min (vector unsigned char,
16034 vector unsigned char);
16035 vector signed char vec_min (vector bool char, vector signed char);
16036 vector signed char vec_min (vector signed char, vector bool char);
16037 vector signed char vec_min (vector signed char, vector signed char);
16038 vector unsigned short vec_min (vector bool short,
16039 vector unsigned short);
16040 vector unsigned short vec_min (vector unsigned short,
16041 vector bool short);
16042 vector unsigned short vec_min (vector unsigned short,
16043 vector unsigned short);
16044 vector signed short vec_min (vector bool short, vector signed short);
16045 vector signed short vec_min (vector signed short, vector bool short);
16046 vector signed short vec_min (vector signed short, vector signed short);
16047 vector unsigned int vec_min (vector bool int, vector unsigned int);
16048 vector unsigned int vec_min (vector unsigned int, vector bool int);
16049 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16050 vector signed int vec_min (vector bool int, vector signed int);
16051 vector signed int vec_min (vector signed int, vector bool int);
16052 vector signed int vec_min (vector signed int, vector signed int);
16053 vector float vec_min (vector float, vector float);
16054
16055 vector float vec_vminfp (vector float, vector float);
16056
16057 vector signed int vec_vminsw (vector bool int, vector signed int);
16058 vector signed int vec_vminsw (vector signed int, vector bool int);
16059 vector signed int vec_vminsw (vector signed int, vector signed int);
16060
16061 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
16062 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
16063 vector unsigned int vec_vminuw (vector unsigned int,
16064 vector unsigned int);
16065
16066 vector signed short vec_vminsh (vector bool short, vector signed short);
16067 vector signed short vec_vminsh (vector signed short, vector bool short);
16068 vector signed short vec_vminsh (vector signed short,
16069 vector signed short);
16070
16071 vector unsigned short vec_vminuh (vector bool short,
16072 vector unsigned short);
16073 vector unsigned short vec_vminuh (vector unsigned short,
16074 vector bool short);
16075 vector unsigned short vec_vminuh (vector unsigned short,
16076 vector unsigned short);
16077
16078 vector signed char vec_vminsb (vector bool char, vector signed char);
16079 vector signed char vec_vminsb (vector signed char, vector bool char);
16080 vector signed char vec_vminsb (vector signed char, vector signed char);
16081
16082 vector unsigned char vec_vminub (vector bool char,
16083 vector unsigned char);
16084 vector unsigned char vec_vminub (vector unsigned char,
16085 vector bool char);
16086 vector unsigned char vec_vminub (vector unsigned char,
16087 vector unsigned char);
16088
16089 vector signed short vec_mladd (vector signed short,
16090 vector signed short,
16091 vector signed short);
16092 vector signed short vec_mladd (vector signed short,
16093 vector unsigned short,
16094 vector unsigned short);
16095 vector signed short vec_mladd (vector unsigned short,
16096 vector signed short,
16097 vector signed short);
16098 vector unsigned short vec_mladd (vector unsigned short,
16099 vector unsigned short,
16100 vector unsigned short);
16101
16102 vector signed short vec_mradds (vector signed short,
16103 vector signed short,
16104 vector signed short);
16105
16106 vector unsigned int vec_msum (vector unsigned char,
16107 vector unsigned char,
16108 vector unsigned int);
16109 vector signed int vec_msum (vector signed char,
16110 vector unsigned char,
16111 vector signed int);
16112 vector unsigned int vec_msum (vector unsigned short,
16113 vector unsigned short,
16114 vector unsigned int);
16115 vector signed int vec_msum (vector signed short,
16116 vector signed short,
16117 vector signed int);
16118
16119 vector signed int vec_vmsumshm (vector signed short,
16120 vector signed short,
16121 vector signed int);
16122
16123 vector unsigned int vec_vmsumuhm (vector unsigned short,
16124 vector unsigned short,
16125 vector unsigned int);
16126
16127 vector signed int vec_vmsummbm (vector signed char,
16128 vector unsigned char,
16129 vector signed int);
16130
16131 vector unsigned int vec_vmsumubm (vector unsigned char,
16132 vector unsigned char,
16133 vector unsigned int);
16134
16135 vector unsigned int vec_msums (vector unsigned short,
16136 vector unsigned short,
16137 vector unsigned int);
16138 vector signed int vec_msums (vector signed short,
16139 vector signed short,
16140 vector signed int);
16141
16142 vector signed int vec_vmsumshs (vector signed short,
16143 vector signed short,
16144 vector signed int);
16145
16146 vector unsigned int vec_vmsumuhs (vector unsigned short,
16147 vector unsigned short,
16148 vector unsigned int);
16149
16150 void vec_mtvscr (vector signed int);
16151 void vec_mtvscr (vector unsigned int);
16152 void vec_mtvscr (vector bool int);
16153 void vec_mtvscr (vector signed short);
16154 void vec_mtvscr (vector unsigned short);
16155 void vec_mtvscr (vector bool short);
16156 void vec_mtvscr (vector pixel);
16157 void vec_mtvscr (vector signed char);
16158 void vec_mtvscr (vector unsigned char);
16159 void vec_mtvscr (vector bool char);
16160
16161 vector unsigned short vec_mule (vector unsigned char,
16162 vector unsigned char);
16163 vector signed short vec_mule (vector signed char,
16164 vector signed char);
16165 vector unsigned int vec_mule (vector unsigned short,
16166 vector unsigned short);
16167 vector signed int vec_mule (vector signed short, vector signed short);
16168
16169 vector signed int vec_vmulesh (vector signed short,
16170 vector signed short);
16171
16172 vector unsigned int vec_vmuleuh (vector unsigned short,
16173 vector unsigned short);
16174
16175 vector signed short vec_vmulesb (vector signed char,
16176 vector signed char);
16177
16178 vector unsigned short vec_vmuleub (vector unsigned char,
16179 vector unsigned char);
16180
16181 vector unsigned short vec_mulo (vector unsigned char,
16182 vector unsigned char);
16183 vector signed short vec_mulo (vector signed char, vector signed char);
16184 vector unsigned int vec_mulo (vector unsigned short,
16185 vector unsigned short);
16186 vector signed int vec_mulo (vector signed short, vector signed short);
16187
16188 vector signed int vec_vmulosh (vector signed short,
16189 vector signed short);
16190
16191 vector unsigned int vec_vmulouh (vector unsigned short,
16192 vector unsigned short);
16193
16194 vector signed short vec_vmulosb (vector signed char,
16195 vector signed char);
16196
16197 vector unsigned short vec_vmuloub (vector unsigned char,
16198 vector unsigned char);
16199
16200 vector float vec_nmsub (vector float, vector float, vector float);
16201
16202 vector float vec_nor (vector float, vector float);
16203 vector signed int vec_nor (vector signed int, vector signed int);
16204 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16205 vector bool int vec_nor (vector bool int, vector bool int);
16206 vector signed short vec_nor (vector signed short, vector signed short);
16207 vector unsigned short vec_nor (vector unsigned short,
16208 vector unsigned short);
16209 vector bool short vec_nor (vector bool short, vector bool short);
16210 vector signed char vec_nor (vector signed char, vector signed char);
16211 vector unsigned char vec_nor (vector unsigned char,
16212 vector unsigned char);
16213 vector bool char vec_nor (vector bool char, vector bool char);
16214
16215 vector float vec_or (vector float, vector float);
16216 vector float vec_or (vector float, vector bool int);
16217 vector float vec_or (vector bool int, vector float);
16218 vector bool int vec_or (vector bool int, vector bool int);
16219 vector signed int vec_or (vector bool int, vector signed int);
16220 vector signed int vec_or (vector signed int, vector bool int);
16221 vector signed int vec_or (vector signed int, vector signed int);
16222 vector unsigned int vec_or (vector bool int, vector unsigned int);
16223 vector unsigned int vec_or (vector unsigned int, vector bool int);
16224 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
16225 vector bool short vec_or (vector bool short, vector bool short);
16226 vector signed short vec_or (vector bool short, vector signed short);
16227 vector signed short vec_or (vector signed short, vector bool short);
16228 vector signed short vec_or (vector signed short, vector signed short);
16229 vector unsigned short vec_or (vector bool short, vector unsigned short);
16230 vector unsigned short vec_or (vector unsigned short, vector bool short);
16231 vector unsigned short vec_or (vector unsigned short,
16232 vector unsigned short);
16233 vector signed char vec_or (vector bool char, vector signed char);
16234 vector bool char vec_or (vector bool char, vector bool char);
16235 vector signed char vec_or (vector signed char, vector bool char);
16236 vector signed char vec_or (vector signed char, vector signed char);
16237 vector unsigned char vec_or (vector bool char, vector unsigned char);
16238 vector unsigned char vec_or (vector unsigned char, vector bool char);
16239 vector unsigned char vec_or (vector unsigned char,
16240 vector unsigned char);
16241
16242 vector signed char vec_pack (vector signed short, vector signed short);
16243 vector unsigned char vec_pack (vector unsigned short,
16244 vector unsigned short);
16245 vector bool char vec_pack (vector bool short, vector bool short);
16246 vector signed short vec_pack (vector signed int, vector signed int);
16247 vector unsigned short vec_pack (vector unsigned int,
16248 vector unsigned int);
16249 vector bool short vec_pack (vector bool int, vector bool int);
16250
16251 vector bool short vec_vpkuwum (vector bool int, vector bool int);
16252 vector signed short vec_vpkuwum (vector signed int, vector signed int);
16253 vector unsigned short vec_vpkuwum (vector unsigned int,
16254 vector unsigned int);
16255
16256 vector bool char vec_vpkuhum (vector bool short, vector bool short);
16257 vector signed char vec_vpkuhum (vector signed short,
16258 vector signed short);
16259 vector unsigned char vec_vpkuhum (vector unsigned short,
16260 vector unsigned short);
16261
16262 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
16263
16264 vector unsigned char vec_packs (vector unsigned short,
16265 vector unsigned short);
16266 vector signed char vec_packs (vector signed short, vector signed short);
16267 vector unsigned short vec_packs (vector unsigned int,
16268 vector unsigned int);
16269 vector signed short vec_packs (vector signed int, vector signed int);
16270
16271 vector signed short vec_vpkswss (vector signed int, vector signed int);
16272
16273 vector unsigned short vec_vpkuwus (vector unsigned int,
16274 vector unsigned int);
16275
16276 vector signed char vec_vpkshss (vector signed short,
16277 vector signed short);
16278
16279 vector unsigned char vec_vpkuhus (vector unsigned short,
16280 vector unsigned short);
16281
16282 vector unsigned char vec_packsu (vector unsigned short,
16283 vector unsigned short);
16284 vector unsigned char vec_packsu (vector signed short,
16285 vector signed short);
16286 vector unsigned short vec_packsu (vector unsigned int,
16287 vector unsigned int);
16288 vector unsigned short vec_packsu (vector signed int, vector signed int);
16289
16290 vector unsigned short vec_vpkswus (vector signed int,
16291 vector signed int);
16292
16293 vector unsigned char vec_vpkshus (vector signed short,
16294 vector signed short);
16295
16296 vector float vec_perm (vector float,
16297 vector float,
16298 vector unsigned char);
16299 vector signed int vec_perm (vector signed int,
16300 vector signed int,
16301 vector unsigned char);
16302 vector unsigned int vec_perm (vector unsigned int,
16303 vector unsigned int,
16304 vector unsigned char);
16305 vector bool int vec_perm (vector bool int,
16306 vector bool int,
16307 vector unsigned char);
16308 vector signed short vec_perm (vector signed short,
16309 vector signed short,
16310 vector unsigned char);
16311 vector unsigned short vec_perm (vector unsigned short,
16312 vector unsigned short,
16313 vector unsigned char);
16314 vector bool short vec_perm (vector bool short,
16315 vector bool short,
16316 vector unsigned char);
16317 vector pixel vec_perm (vector pixel,
16318 vector pixel,
16319 vector unsigned char);
16320 vector signed char vec_perm (vector signed char,
16321 vector signed char,
16322 vector unsigned char);
16323 vector unsigned char vec_perm (vector unsigned char,
16324 vector unsigned char,
16325 vector unsigned char);
16326 vector bool char vec_perm (vector bool char,
16327 vector bool char,
16328 vector unsigned char);
16329
16330 vector float vec_re (vector float);
16331
16332 vector signed char vec_rl (vector signed char,
16333 vector unsigned char);
16334 vector unsigned char vec_rl (vector unsigned char,
16335 vector unsigned char);
16336 vector signed short vec_rl (vector signed short, vector unsigned short);
16337 vector unsigned short vec_rl (vector unsigned short,
16338 vector unsigned short);
16339 vector signed int vec_rl (vector signed int, vector unsigned int);
16340 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
16341
16342 vector signed int vec_vrlw (vector signed int, vector unsigned int);
16343 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
16344
16345 vector signed short vec_vrlh (vector signed short,
16346 vector unsigned short);
16347 vector unsigned short vec_vrlh (vector unsigned short,
16348 vector unsigned short);
16349
16350 vector signed char vec_vrlb (vector signed char, vector unsigned char);
16351 vector unsigned char vec_vrlb (vector unsigned char,
16352 vector unsigned char);
16353
16354 vector float vec_round (vector float);
16355
16356 vector float vec_recip (vector float, vector float);
16357
16358 vector float vec_rsqrt (vector float);
16359
16360 vector float vec_rsqrte (vector float);
16361
16362 vector float vec_sel (vector float, vector float, vector bool int);
16363 vector float vec_sel (vector float, vector float, vector unsigned int);
16364 vector signed int vec_sel (vector signed int,
16365 vector signed int,
16366 vector bool int);
16367 vector signed int vec_sel (vector signed int,
16368 vector signed int,
16369 vector unsigned int);
16370 vector unsigned int vec_sel (vector unsigned int,
16371 vector unsigned int,
16372 vector bool int);
16373 vector unsigned int vec_sel (vector unsigned int,
16374 vector unsigned int,
16375 vector unsigned int);
16376 vector bool int vec_sel (vector bool int,
16377 vector bool int,
16378 vector bool int);
16379 vector bool int vec_sel (vector bool int,
16380 vector bool int,
16381 vector unsigned int);
16382 vector signed short vec_sel (vector signed short,
16383 vector signed short,
16384 vector bool short);
16385 vector signed short vec_sel (vector signed short,
16386 vector signed short,
16387 vector unsigned short);
16388 vector unsigned short vec_sel (vector unsigned short,
16389 vector unsigned short,
16390 vector bool short);
16391 vector unsigned short vec_sel (vector unsigned short,
16392 vector unsigned short,
16393 vector unsigned short);
16394 vector bool short vec_sel (vector bool short,
16395 vector bool short,
16396 vector bool short);
16397 vector bool short vec_sel (vector bool short,
16398 vector bool short,
16399 vector unsigned short);
16400 vector signed char vec_sel (vector signed char,
16401 vector signed char,
16402 vector bool char);
16403 vector signed char vec_sel (vector signed char,
16404 vector signed char,
16405 vector unsigned char);
16406 vector unsigned char vec_sel (vector unsigned char,
16407 vector unsigned char,
16408 vector bool char);
16409 vector unsigned char vec_sel (vector unsigned char,
16410 vector unsigned char,
16411 vector unsigned char);
16412 vector bool char vec_sel (vector bool char,
16413 vector bool char,
16414 vector bool char);
16415 vector bool char vec_sel (vector bool char,
16416 vector bool char,
16417 vector unsigned char);
16418
16419 vector signed char vec_sl (vector signed char,
16420 vector unsigned char);
16421 vector unsigned char vec_sl (vector unsigned char,
16422 vector unsigned char);
16423 vector signed short vec_sl (vector signed short, vector unsigned short);
16424 vector unsigned short vec_sl (vector unsigned short,
16425 vector unsigned short);
16426 vector signed int vec_sl (vector signed int, vector unsigned int);
16427 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
16428
16429 vector signed int vec_vslw (vector signed int, vector unsigned int);
16430 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
16431
16432 vector signed short vec_vslh (vector signed short,
16433 vector unsigned short);
16434 vector unsigned short vec_vslh (vector unsigned short,
16435 vector unsigned short);
16436
16437 vector signed char vec_vslb (vector signed char, vector unsigned char);
16438 vector unsigned char vec_vslb (vector unsigned char,
16439 vector unsigned char);
16440
16441 vector float vec_sld (vector float, vector float, const int);
16442 vector signed int vec_sld (vector signed int,
16443 vector signed int,
16444 const int);
16445 vector unsigned int vec_sld (vector unsigned int,
16446 vector unsigned int,
16447 const int);
16448 vector bool int vec_sld (vector bool int,
16449 vector bool int,
16450 const int);
16451 vector signed short vec_sld (vector signed short,
16452 vector signed short,
16453 const int);
16454 vector unsigned short vec_sld (vector unsigned short,
16455 vector unsigned short,
16456 const int);
16457 vector bool short vec_sld (vector bool short,
16458 vector bool short,
16459 const int);
16460 vector pixel vec_sld (vector pixel,
16461 vector pixel,
16462 const int);
16463 vector signed char vec_sld (vector signed char,
16464 vector signed char,
16465 const int);
16466 vector unsigned char vec_sld (vector unsigned char,
16467 vector unsigned char,
16468 const int);
16469 vector bool char vec_sld (vector bool char,
16470 vector bool char,
16471 const int);
16472
16473 vector signed int vec_sll (vector signed int,
16474 vector unsigned int);
16475 vector signed int vec_sll (vector signed int,
16476 vector unsigned short);
16477 vector signed int vec_sll (vector signed int,
16478 vector unsigned char);
16479 vector unsigned int vec_sll (vector unsigned int,
16480 vector unsigned int);
16481 vector unsigned int vec_sll (vector unsigned int,
16482 vector unsigned short);
16483 vector unsigned int vec_sll (vector unsigned int,
16484 vector unsigned char);
16485 vector bool int vec_sll (vector bool int,
16486 vector unsigned int);
16487 vector bool int vec_sll (vector bool int,
16488 vector unsigned short);
16489 vector bool int vec_sll (vector bool int,
16490 vector unsigned char);
16491 vector signed short vec_sll (vector signed short,
16492 vector unsigned int);
16493 vector signed short vec_sll (vector signed short,
16494 vector unsigned short);
16495 vector signed short vec_sll (vector signed short,
16496 vector unsigned char);
16497 vector unsigned short vec_sll (vector unsigned short,
16498 vector unsigned int);
16499 vector unsigned short vec_sll (vector unsigned short,
16500 vector unsigned short);
16501 vector unsigned short vec_sll (vector unsigned short,
16502 vector unsigned char);
16503 vector bool short vec_sll (vector bool short, vector unsigned int);
16504 vector bool short vec_sll (vector bool short, vector unsigned short);
16505 vector bool short vec_sll (vector bool short, vector unsigned char);
16506 vector pixel vec_sll (vector pixel, vector unsigned int);
16507 vector pixel vec_sll (vector pixel, vector unsigned short);
16508 vector pixel vec_sll (vector pixel, vector unsigned char);
16509 vector signed char vec_sll (vector signed char, vector unsigned int);
16510 vector signed char vec_sll (vector signed char, vector unsigned short);
16511 vector signed char vec_sll (vector signed char, vector unsigned char);
16512 vector unsigned char vec_sll (vector unsigned char,
16513 vector unsigned int);
16514 vector unsigned char vec_sll (vector unsigned char,
16515 vector unsigned short);
16516 vector unsigned char vec_sll (vector unsigned char,
16517 vector unsigned char);
16518 vector bool char vec_sll (vector bool char, vector unsigned int);
16519 vector bool char vec_sll (vector bool char, vector unsigned short);
16520 vector bool char vec_sll (vector bool char, vector unsigned char);
16521
16522 vector float vec_slo (vector float, vector signed char);
16523 vector float vec_slo (vector float, vector unsigned char);
16524 vector signed int vec_slo (vector signed int, vector signed char);
16525 vector signed int vec_slo (vector signed int, vector unsigned char);
16526 vector unsigned int vec_slo (vector unsigned int, vector signed char);
16527 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
16528 vector signed short vec_slo (vector signed short, vector signed char);
16529 vector signed short vec_slo (vector signed short, vector unsigned char);
16530 vector unsigned short vec_slo (vector unsigned short,
16531 vector signed char);
16532 vector unsigned short vec_slo (vector unsigned short,
16533 vector unsigned char);
16534 vector pixel vec_slo (vector pixel, vector signed char);
16535 vector pixel vec_slo (vector pixel, vector unsigned char);
16536 vector signed char vec_slo (vector signed char, vector signed char);
16537 vector signed char vec_slo (vector signed char, vector unsigned char);
16538 vector unsigned char vec_slo (vector unsigned char, vector signed char);
16539 vector unsigned char vec_slo (vector unsigned char,
16540 vector unsigned char);
16541
16542 vector signed char vec_splat (vector signed char, const int);
16543 vector unsigned char vec_splat (vector unsigned char, const int);
16544 vector bool char vec_splat (vector bool char, const int);
16545 vector signed short vec_splat (vector signed short, const int);
16546 vector unsigned short vec_splat (vector unsigned short, const int);
16547 vector bool short vec_splat (vector bool short, const int);
16548 vector pixel vec_splat (vector pixel, const int);
16549 vector float vec_splat (vector float, const int);
16550 vector signed int vec_splat (vector signed int, const int);
16551 vector unsigned int vec_splat (vector unsigned int, const int);
16552 vector bool int vec_splat (vector bool int, const int);
16553 vector signed long vec_splat (vector signed long, const int);
16554 vector unsigned long vec_splat (vector unsigned long, const int);
16555
16556 vector signed char vec_splats (signed char);
16557 vector unsigned char vec_splats (unsigned char);
16558 vector signed short vec_splats (signed short);
16559 vector unsigned short vec_splats (unsigned short);
16560 vector signed int vec_splats (signed int);
16561 vector unsigned int vec_splats (unsigned int);
16562 vector float vec_splats (float);
16563
16564 vector float vec_vspltw (vector float, const int);
16565 vector signed int vec_vspltw (vector signed int, const int);
16566 vector unsigned int vec_vspltw (vector unsigned int, const int);
16567 vector bool int vec_vspltw (vector bool int, const int);
16568
16569 vector bool short vec_vsplth (vector bool short, const int);
16570 vector signed short vec_vsplth (vector signed short, const int);
16571 vector unsigned short vec_vsplth (vector unsigned short, const int);
16572 vector pixel vec_vsplth (vector pixel, const int);
16573
16574 vector signed char vec_vspltb (vector signed char, const int);
16575 vector unsigned char vec_vspltb (vector unsigned char, const int);
16576 vector bool char vec_vspltb (vector bool char, const int);
16577
16578 vector signed char vec_splat_s8 (const int);
16579
16580 vector signed short vec_splat_s16 (const int);
16581
16582 vector signed int vec_splat_s32 (const int);
16583
16584 vector unsigned char vec_splat_u8 (const int);
16585
16586 vector unsigned short vec_splat_u16 (const int);
16587
16588 vector unsigned int vec_splat_u32 (const int);
16589
16590 vector signed char vec_sr (vector signed char, vector unsigned char);
16591 vector unsigned char vec_sr (vector unsigned char,
16592 vector unsigned char);
16593 vector signed short vec_sr (vector signed short,
16594 vector unsigned short);
16595 vector unsigned short vec_sr (vector unsigned short,
16596 vector unsigned short);
16597 vector signed int vec_sr (vector signed int, vector unsigned int);
16598 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
16599
16600 vector signed int vec_vsrw (vector signed int, vector unsigned int);
16601 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
16602
16603 vector signed short vec_vsrh (vector signed short,
16604 vector unsigned short);
16605 vector unsigned short vec_vsrh (vector unsigned short,
16606 vector unsigned short);
16607
16608 vector signed char vec_vsrb (vector signed char, vector unsigned char);
16609 vector unsigned char vec_vsrb (vector unsigned char,
16610 vector unsigned char);
16611
16612 vector signed char vec_sra (vector signed char, vector unsigned char);
16613 vector unsigned char vec_sra (vector unsigned char,
16614 vector unsigned char);
16615 vector signed short vec_sra (vector signed short,
16616 vector unsigned short);
16617 vector unsigned short vec_sra (vector unsigned short,
16618 vector unsigned short);
16619 vector signed int vec_sra (vector signed int, vector unsigned int);
16620 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
16621
16622 vector signed int vec_vsraw (vector signed int, vector unsigned int);
16623 vector unsigned int vec_vsraw (vector unsigned int,
16624 vector unsigned int);
16625
16626 vector signed short vec_vsrah (vector signed short,
16627 vector unsigned short);
16628 vector unsigned short vec_vsrah (vector unsigned short,
16629 vector unsigned short);
16630
16631 vector signed char vec_vsrab (vector signed char, vector unsigned char);
16632 vector unsigned char vec_vsrab (vector unsigned char,
16633 vector unsigned char);
16634
16635 vector signed int vec_srl (vector signed int, vector unsigned int);
16636 vector signed int vec_srl (vector signed int, vector unsigned short);
16637 vector signed int vec_srl (vector signed int, vector unsigned char);
16638 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
16639 vector unsigned int vec_srl (vector unsigned int,
16640 vector unsigned short);
16641 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
16642 vector bool int vec_srl (vector bool int, vector unsigned int);
16643 vector bool int vec_srl (vector bool int, vector unsigned short);
16644 vector bool int vec_srl (vector bool int, vector unsigned char);
16645 vector signed short vec_srl (vector signed short, vector unsigned int);
16646 vector signed short vec_srl (vector signed short,
16647 vector unsigned short);
16648 vector signed short vec_srl (vector signed short, vector unsigned char);
16649 vector unsigned short vec_srl (vector unsigned short,
16650 vector unsigned int);
16651 vector unsigned short vec_srl (vector unsigned short,
16652 vector unsigned short);
16653 vector unsigned short vec_srl (vector unsigned short,
16654 vector unsigned char);
16655 vector bool short vec_srl (vector bool short, vector unsigned int);
16656 vector bool short vec_srl (vector bool short, vector unsigned short);
16657 vector bool short vec_srl (vector bool short, vector unsigned char);
16658 vector pixel vec_srl (vector pixel, vector unsigned int);
16659 vector pixel vec_srl (vector pixel, vector unsigned short);
16660 vector pixel vec_srl (vector pixel, vector unsigned char);
16661 vector signed char vec_srl (vector signed char, vector unsigned int);
16662 vector signed char vec_srl (vector signed char, vector unsigned short);
16663 vector signed char vec_srl (vector signed char, vector unsigned char);
16664 vector unsigned char vec_srl (vector unsigned char,
16665 vector unsigned int);
16666 vector unsigned char vec_srl (vector unsigned char,
16667 vector unsigned short);
16668 vector unsigned char vec_srl (vector unsigned char,
16669 vector unsigned char);
16670 vector bool char vec_srl (vector bool char, vector unsigned int);
16671 vector bool char vec_srl (vector bool char, vector unsigned short);
16672 vector bool char vec_srl (vector bool char, vector unsigned char);
16673
16674 vector float vec_sro (vector float, vector signed char);
16675 vector float vec_sro (vector float, vector unsigned char);
16676 vector signed int vec_sro (vector signed int, vector signed char);
16677 vector signed int vec_sro (vector signed int, vector unsigned char);
16678 vector unsigned int vec_sro (vector unsigned int, vector signed char);
16679 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
16680 vector signed short vec_sro (vector signed short, vector signed char);
16681 vector signed short vec_sro (vector signed short, vector unsigned char);
16682 vector unsigned short vec_sro (vector unsigned short,
16683 vector signed char);
16684 vector unsigned short vec_sro (vector unsigned short,
16685 vector unsigned char);
16686 vector pixel vec_sro (vector pixel, vector signed char);
16687 vector pixel vec_sro (vector pixel, vector unsigned char);
16688 vector signed char vec_sro (vector signed char, vector signed char);
16689 vector signed char vec_sro (vector signed char, vector unsigned char);
16690 vector unsigned char vec_sro (vector unsigned char, vector signed char);
16691 vector unsigned char vec_sro (vector unsigned char,
16692 vector unsigned char);
16693
16694 void vec_st (vector float, int, vector float *);
16695 void vec_st (vector float, int, float *);
16696 void vec_st (vector signed int, int, vector signed int *);
16697 void vec_st (vector signed int, int, int *);
16698 void vec_st (vector unsigned int, int, vector unsigned int *);
16699 void vec_st (vector unsigned int, int, unsigned int *);
16700 void vec_st (vector bool int, int, vector bool int *);
16701 void vec_st (vector bool int, int, unsigned int *);
16702 void vec_st (vector bool int, int, int *);
16703 void vec_st (vector signed short, int, vector signed short *);
16704 void vec_st (vector signed short, int, short *);
16705 void vec_st (vector unsigned short, int, vector unsigned short *);
16706 void vec_st (vector unsigned short, int, unsigned short *);
16707 void vec_st (vector bool short, int, vector bool short *);
16708 void vec_st (vector bool short, int, unsigned short *);
16709 void vec_st (vector pixel, int, vector pixel *);
16710 void vec_st (vector pixel, int, unsigned short *);
16711 void vec_st (vector pixel, int, short *);
16712 void vec_st (vector bool short, int, short *);
16713 void vec_st (vector signed char, int, vector signed char *);
16714 void vec_st (vector signed char, int, signed char *);
16715 void vec_st (vector unsigned char, int, vector unsigned char *);
16716 void vec_st (vector unsigned char, int, unsigned char *);
16717 void vec_st (vector bool char, int, vector bool char *);
16718 void vec_st (vector bool char, int, unsigned char *);
16719 void vec_st (vector bool char, int, signed char *);
16720
16721 void vec_ste (vector signed char, int, signed char *);
16722 void vec_ste (vector unsigned char, int, unsigned char *);
16723 void vec_ste (vector bool char, int, signed char *);
16724 void vec_ste (vector bool char, int, unsigned char *);
16725 void vec_ste (vector signed short, int, short *);
16726 void vec_ste (vector unsigned short, int, unsigned short *);
16727 void vec_ste (vector bool short, int, short *);
16728 void vec_ste (vector bool short, int, unsigned short *);
16729 void vec_ste (vector pixel, int, short *);
16730 void vec_ste (vector pixel, int, unsigned short *);
16731 void vec_ste (vector float, int, float *);
16732 void vec_ste (vector signed int, int, int *);
16733 void vec_ste (vector unsigned int, int, unsigned int *);
16734 void vec_ste (vector bool int, int, int *);
16735 void vec_ste (vector bool int, int, unsigned int *);
16736
16737 void vec_stvewx (vector float, int, float *);
16738 void vec_stvewx (vector signed int, int, int *);
16739 void vec_stvewx (vector unsigned int, int, unsigned int *);
16740 void vec_stvewx (vector bool int, int, int *);
16741 void vec_stvewx (vector bool int, int, unsigned int *);
16742
16743 void vec_stvehx (vector signed short, int, short *);
16744 void vec_stvehx (vector unsigned short, int, unsigned short *);
16745 void vec_stvehx (vector bool short, int, short *);
16746 void vec_stvehx (vector bool short, int, unsigned short *);
16747 void vec_stvehx (vector pixel, int, short *);
16748 void vec_stvehx (vector pixel, int, unsigned short *);
16749
16750 void vec_stvebx (vector signed char, int, signed char *);
16751 void vec_stvebx (vector unsigned char, int, unsigned char *);
16752 void vec_stvebx (vector bool char, int, signed char *);
16753 void vec_stvebx (vector bool char, int, unsigned char *);
16754
16755 void vec_stl (vector float, int, vector float *);
16756 void vec_stl (vector float, int, float *);
16757 void vec_stl (vector signed int, int, vector signed int *);
16758 void vec_stl (vector signed int, int, int *);
16759 void vec_stl (vector unsigned int, int, vector unsigned int *);
16760 void vec_stl (vector unsigned int, int, unsigned int *);
16761 void vec_stl (vector bool int, int, vector bool int *);
16762 void vec_stl (vector bool int, int, unsigned int *);
16763 void vec_stl (vector bool int, int, int *);
16764 void vec_stl (vector signed short, int, vector signed short *);
16765 void vec_stl (vector signed short, int, short *);
16766 void vec_stl (vector unsigned short, int, vector unsigned short *);
16767 void vec_stl (vector unsigned short, int, unsigned short *);
16768 void vec_stl (vector bool short, int, vector bool short *);
16769 void vec_stl (vector bool short, int, unsigned short *);
16770 void vec_stl (vector bool short, int, short *);
16771 void vec_stl (vector pixel, int, vector pixel *);
16772 void vec_stl (vector pixel, int, unsigned short *);
16773 void vec_stl (vector pixel, int, short *);
16774 void vec_stl (vector signed char, int, vector signed char *);
16775 void vec_stl (vector signed char, int, signed char *);
16776 void vec_stl (vector unsigned char, int, vector unsigned char *);
16777 void vec_stl (vector unsigned char, int, unsigned char *);
16778 void vec_stl (vector bool char, int, vector bool char *);
16779 void vec_stl (vector bool char, int, unsigned char *);
16780 void vec_stl (vector bool char, int, signed char *);
16781
16782 vector signed char vec_sub (vector bool char, vector signed char);
16783 vector signed char vec_sub (vector signed char, vector bool char);
16784 vector signed char vec_sub (vector signed char, vector signed char);
16785 vector unsigned char vec_sub (vector bool char, vector unsigned char);
16786 vector unsigned char vec_sub (vector unsigned char, vector bool char);
16787 vector unsigned char vec_sub (vector unsigned char,
16788 vector unsigned char);
16789 vector signed short vec_sub (vector bool short, vector signed short);
16790 vector signed short vec_sub (vector signed short, vector bool short);
16791 vector signed short vec_sub (vector signed short, vector signed short);
16792 vector unsigned short vec_sub (vector bool short,
16793 vector unsigned short);
16794 vector unsigned short vec_sub (vector unsigned short,
16795 vector bool short);
16796 vector unsigned short vec_sub (vector unsigned short,
16797 vector unsigned short);
16798 vector signed int vec_sub (vector bool int, vector signed int);
16799 vector signed int vec_sub (vector signed int, vector bool int);
16800 vector signed int vec_sub (vector signed int, vector signed int);
16801 vector unsigned int vec_sub (vector bool int, vector unsigned int);
16802 vector unsigned int vec_sub (vector unsigned int, vector bool int);
16803 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
16804 vector float vec_sub (vector float, vector float);
16805
16806 vector float vec_vsubfp (vector float, vector float);
16807
16808 vector signed int vec_vsubuwm (vector bool int, vector signed int);
16809 vector signed int vec_vsubuwm (vector signed int, vector bool int);
16810 vector signed int vec_vsubuwm (vector signed int, vector signed int);
16811 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
16812 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
16813 vector unsigned int vec_vsubuwm (vector unsigned int,
16814 vector unsigned int);
16815
16816 vector signed short vec_vsubuhm (vector bool short,
16817 vector signed short);
16818 vector signed short vec_vsubuhm (vector signed short,
16819 vector bool short);
16820 vector signed short vec_vsubuhm (vector signed short,
16821 vector signed short);
16822 vector unsigned short vec_vsubuhm (vector bool short,
16823 vector unsigned short);
16824 vector unsigned short vec_vsubuhm (vector unsigned short,
16825 vector bool short);
16826 vector unsigned short vec_vsubuhm (vector unsigned short,
16827 vector unsigned short);
16828
16829 vector signed char vec_vsububm (vector bool char, vector signed char);
16830 vector signed char vec_vsububm (vector signed char, vector bool char);
16831 vector signed char vec_vsububm (vector signed char, vector signed char);
16832 vector unsigned char vec_vsububm (vector bool char,
16833 vector unsigned char);
16834 vector unsigned char vec_vsububm (vector unsigned char,
16835 vector bool char);
16836 vector unsigned char vec_vsububm (vector unsigned char,
16837 vector unsigned char);
16838
16839 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
16840
16841 vector unsigned char vec_subs (vector bool char, vector unsigned char);
16842 vector unsigned char vec_subs (vector unsigned char, vector bool char);
16843 vector unsigned char vec_subs (vector unsigned char,
16844 vector unsigned char);
16845 vector signed char vec_subs (vector bool char, vector signed char);
16846 vector signed char vec_subs (vector signed char, vector bool char);
16847 vector signed char vec_subs (vector signed char, vector signed char);
16848 vector unsigned short vec_subs (vector bool short,
16849 vector unsigned short);
16850 vector unsigned short vec_subs (vector unsigned short,
16851 vector bool short);
16852 vector unsigned short vec_subs (vector unsigned short,
16853 vector unsigned short);
16854 vector signed short vec_subs (vector bool short, vector signed short);
16855 vector signed short vec_subs (vector signed short, vector bool short);
16856 vector signed short vec_subs (vector signed short, vector signed short);
16857 vector unsigned int vec_subs (vector bool int, vector unsigned int);
16858 vector unsigned int vec_subs (vector unsigned int, vector bool int);
16859 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
16860 vector signed int vec_subs (vector bool int, vector signed int);
16861 vector signed int vec_subs (vector signed int, vector bool int);
16862 vector signed int vec_subs (vector signed int, vector signed int);
16863
16864 vector signed int vec_vsubsws (vector bool int, vector signed int);
16865 vector signed int vec_vsubsws (vector signed int, vector bool int);
16866 vector signed int vec_vsubsws (vector signed int, vector signed int);
16867
16868 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
16869 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
16870 vector unsigned int vec_vsubuws (vector unsigned int,
16871 vector unsigned int);
16872
16873 vector signed short vec_vsubshs (vector bool short,
16874 vector signed short);
16875 vector signed short vec_vsubshs (vector signed short,
16876 vector bool short);
16877 vector signed short vec_vsubshs (vector signed short,
16878 vector signed short);
16879
16880 vector unsigned short vec_vsubuhs (vector bool short,
16881 vector unsigned short);
16882 vector unsigned short vec_vsubuhs (vector unsigned short,
16883 vector bool short);
16884 vector unsigned short vec_vsubuhs (vector unsigned short,
16885 vector unsigned short);
16886
16887 vector signed char vec_vsubsbs (vector bool char, vector signed char);
16888 vector signed char vec_vsubsbs (vector signed char, vector bool char);
16889 vector signed char vec_vsubsbs (vector signed char, vector signed char);
16890
16891 vector unsigned char vec_vsububs (vector bool char,
16892 vector unsigned char);
16893 vector unsigned char vec_vsububs (vector unsigned char,
16894 vector bool char);
16895 vector unsigned char vec_vsububs (vector unsigned char,
16896 vector unsigned char);
16897
16898 vector unsigned int vec_sum4s (vector unsigned char,
16899 vector unsigned int);
16900 vector signed int vec_sum4s (vector signed char, vector signed int);
16901 vector signed int vec_sum4s (vector signed short, vector signed int);
16902
16903 vector signed int vec_vsum4shs (vector signed short, vector signed int);
16904
16905 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
16906
16907 vector unsigned int vec_vsum4ubs (vector unsigned char,
16908 vector unsigned int);
16909
16910 vector signed int vec_sum2s (vector signed int, vector signed int);
16911
16912 vector signed int vec_sums (vector signed int, vector signed int);
16913
16914 vector float vec_trunc (vector float);
16915
16916 vector signed short vec_unpackh (vector signed char);
16917 vector bool short vec_unpackh (vector bool char);
16918 vector signed int vec_unpackh (vector signed short);
16919 vector bool int vec_unpackh (vector bool short);
16920 vector unsigned int vec_unpackh (vector pixel);
16921
16922 vector bool int vec_vupkhsh (vector bool short);
16923 vector signed int vec_vupkhsh (vector signed short);
16924
16925 vector unsigned int vec_vupkhpx (vector pixel);
16926
16927 vector bool short vec_vupkhsb (vector bool char);
16928 vector signed short vec_vupkhsb (vector signed char);
16929
16930 vector signed short vec_unpackl (vector signed char);
16931 vector bool short vec_unpackl (vector bool char);
16932 vector unsigned int vec_unpackl (vector pixel);
16933 vector signed int vec_unpackl (vector signed short);
16934 vector bool int vec_unpackl (vector bool short);
16935
16936 vector unsigned int vec_vupklpx (vector pixel);
16937
16938 vector bool int vec_vupklsh (vector bool short);
16939 vector signed int vec_vupklsh (vector signed short);
16940
16941 vector bool short vec_vupklsb (vector bool char);
16942 vector signed short vec_vupklsb (vector signed char);
16943
16944 vector float vec_xor (vector float, vector float);
16945 vector float vec_xor (vector float, vector bool int);
16946 vector float vec_xor (vector bool int, vector float);
16947 vector bool int vec_xor (vector bool int, vector bool int);
16948 vector signed int vec_xor (vector bool int, vector signed int);
16949 vector signed int vec_xor (vector signed int, vector bool int);
16950 vector signed int vec_xor (vector signed int, vector signed int);
16951 vector unsigned int vec_xor (vector bool int, vector unsigned int);
16952 vector unsigned int vec_xor (vector unsigned int, vector bool int);
16953 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
16954 vector bool short vec_xor (vector bool short, vector bool short);
16955 vector signed short vec_xor (vector bool short, vector signed short);
16956 vector signed short vec_xor (vector signed short, vector bool short);
16957 vector signed short vec_xor (vector signed short, vector signed short);
16958 vector unsigned short vec_xor (vector bool short,
16959 vector unsigned short);
16960 vector unsigned short vec_xor (vector unsigned short,
16961 vector bool short);
16962 vector unsigned short vec_xor (vector unsigned short,
16963 vector unsigned short);
16964 vector signed char vec_xor (vector bool char, vector signed char);
16965 vector bool char vec_xor (vector bool char, vector bool char);
16966 vector signed char vec_xor (vector signed char, vector bool char);
16967 vector signed char vec_xor (vector signed char, vector signed char);
16968 vector unsigned char vec_xor (vector bool char, vector unsigned char);
16969 vector unsigned char vec_xor (vector unsigned char, vector bool char);
16970 vector unsigned char vec_xor (vector unsigned char,
16971 vector unsigned char);
16972
16973 int vec_all_eq (vector signed char, vector bool char);
16974 int vec_all_eq (vector signed char, vector signed char);
16975 int vec_all_eq (vector unsigned char, vector bool char);
16976 int vec_all_eq (vector unsigned char, vector unsigned char);
16977 int vec_all_eq (vector bool char, vector bool char);
16978 int vec_all_eq (vector bool char, vector unsigned char);
16979 int vec_all_eq (vector bool char, vector signed char);
16980 int vec_all_eq (vector signed short, vector bool short);
16981 int vec_all_eq (vector signed short, vector signed short);
16982 int vec_all_eq (vector unsigned short, vector bool short);
16983 int vec_all_eq (vector unsigned short, vector unsigned short);
16984 int vec_all_eq (vector bool short, vector bool short);
16985 int vec_all_eq (vector bool short, vector unsigned short);
16986 int vec_all_eq (vector bool short, vector signed short);
16987 int vec_all_eq (vector pixel, vector pixel);
16988 int vec_all_eq (vector signed int, vector bool int);
16989 int vec_all_eq (vector signed int, vector signed int);
16990 int vec_all_eq (vector unsigned int, vector bool int);
16991 int vec_all_eq (vector unsigned int, vector unsigned int);
16992 int vec_all_eq (vector bool int, vector bool int);
16993 int vec_all_eq (vector bool int, vector unsigned int);
16994 int vec_all_eq (vector bool int, vector signed int);
16995 int vec_all_eq (vector float, vector float);
16996
16997 int vec_all_ge (vector bool char, vector unsigned char);
16998 int vec_all_ge (vector unsigned char, vector bool char);
16999 int vec_all_ge (vector unsigned char, vector unsigned char);
17000 int vec_all_ge (vector bool char, vector signed char);
17001 int vec_all_ge (vector signed char, vector bool char);
17002 int vec_all_ge (vector signed char, vector signed char);
17003 int vec_all_ge (vector bool short, vector unsigned short);
17004 int vec_all_ge (vector unsigned short, vector bool short);
17005 int vec_all_ge (vector unsigned short, vector unsigned short);
17006 int vec_all_ge (vector signed short, vector signed short);
17007 int vec_all_ge (vector bool short, vector signed short);
17008 int vec_all_ge (vector signed short, vector bool short);
17009 int vec_all_ge (vector bool int, vector unsigned int);
17010 int vec_all_ge (vector unsigned int, vector bool int);
17011 int vec_all_ge (vector unsigned int, vector unsigned int);
17012 int vec_all_ge (vector bool int, vector signed int);
17013 int vec_all_ge (vector signed int, vector bool int);
17014 int vec_all_ge (vector signed int, vector signed int);
17015 int vec_all_ge (vector float, vector float);
17016
17017 int vec_all_gt (vector bool char, vector unsigned char);
17018 int vec_all_gt (vector unsigned char, vector bool char);
17019 int vec_all_gt (vector unsigned char, vector unsigned char);
17020 int vec_all_gt (vector bool char, vector signed char);
17021 int vec_all_gt (vector signed char, vector bool char);
17022 int vec_all_gt (vector signed char, vector signed char);
17023 int vec_all_gt (vector bool short, vector unsigned short);
17024 int vec_all_gt (vector unsigned short, vector bool short);
17025 int vec_all_gt (vector unsigned short, vector unsigned short);
17026 int vec_all_gt (vector bool short, vector signed short);
17027 int vec_all_gt (vector signed short, vector bool short);
17028 int vec_all_gt (vector signed short, vector signed short);
17029 int vec_all_gt (vector bool int, vector unsigned int);
17030 int vec_all_gt (vector unsigned int, vector bool int);
17031 int vec_all_gt (vector unsigned int, vector unsigned int);
17032 int vec_all_gt (vector bool int, vector signed int);
17033 int vec_all_gt (vector signed int, vector bool int);
17034 int vec_all_gt (vector signed int, vector signed int);
17035 int vec_all_gt (vector float, vector float);
17036
17037 int vec_all_in (vector float, vector float);
17038
17039 int vec_all_le (vector bool char, vector unsigned char);
17040 int vec_all_le (vector unsigned char, vector bool char);
17041 int vec_all_le (vector unsigned char, vector unsigned char);
17042 int vec_all_le (vector bool char, vector signed char);
17043 int vec_all_le (vector signed char, vector bool char);
17044 int vec_all_le (vector signed char, vector signed char);
17045 int vec_all_le (vector bool short, vector unsigned short);
17046 int vec_all_le (vector unsigned short, vector bool short);
17047 int vec_all_le (vector unsigned short, vector unsigned short);
17048 int vec_all_le (vector bool short, vector signed short);
17049 int vec_all_le (vector signed short, vector bool short);
17050 int vec_all_le (vector signed short, vector signed short);
17051 int vec_all_le (vector bool int, vector unsigned int);
17052 int vec_all_le (vector unsigned int, vector bool int);
17053 int vec_all_le (vector unsigned int, vector unsigned int);
17054 int vec_all_le (vector bool int, vector signed int);
17055 int vec_all_le (vector signed int, vector bool int);
17056 int vec_all_le (vector signed int, vector signed int);
17057 int vec_all_le (vector float, vector float);
17058
17059 int vec_all_lt (vector bool char, vector unsigned char);
17060 int vec_all_lt (vector unsigned char, vector bool char);
17061 int vec_all_lt (vector unsigned char, vector unsigned char);
17062 int vec_all_lt (vector bool char, vector signed char);
17063 int vec_all_lt (vector signed char, vector bool char);
17064 int vec_all_lt (vector signed char, vector signed char);
17065 int vec_all_lt (vector bool short, vector unsigned short);
17066 int vec_all_lt (vector unsigned short, vector bool short);
17067 int vec_all_lt (vector unsigned short, vector unsigned short);
17068 int vec_all_lt (vector bool short, vector signed short);
17069 int vec_all_lt (vector signed short, vector bool short);
17070 int vec_all_lt (vector signed short, vector signed short);
17071 int vec_all_lt (vector bool int, vector unsigned int);
17072 int vec_all_lt (vector unsigned int, vector bool int);
17073 int vec_all_lt (vector unsigned int, vector unsigned int);
17074 int vec_all_lt (vector bool int, vector signed int);
17075 int vec_all_lt (vector signed int, vector bool int);
17076 int vec_all_lt (vector signed int, vector signed int);
17077 int vec_all_lt (vector float, vector float);
17078
17079 int vec_all_nan (vector float);
17080
17081 int vec_all_ne (vector signed char, vector bool char);
17082 int vec_all_ne (vector signed char, vector signed char);
17083 int vec_all_ne (vector unsigned char, vector bool char);
17084 int vec_all_ne (vector unsigned char, vector unsigned char);
17085 int vec_all_ne (vector bool char, vector bool char);
17086 int vec_all_ne (vector bool char, vector unsigned char);
17087 int vec_all_ne (vector bool char, vector signed char);
17088 int vec_all_ne (vector signed short, vector bool short);
17089 int vec_all_ne (vector signed short, vector signed short);
17090 int vec_all_ne (vector unsigned short, vector bool short);
17091 int vec_all_ne (vector unsigned short, vector unsigned short);
17092 int vec_all_ne (vector bool short, vector bool short);
17093 int vec_all_ne (vector bool short, vector unsigned short);
17094 int vec_all_ne (vector bool short, vector signed short);
17095 int vec_all_ne (vector pixel, vector pixel);
17096 int vec_all_ne (vector signed int, vector bool int);
17097 int vec_all_ne (vector signed int, vector signed int);
17098 int vec_all_ne (vector unsigned int, vector bool int);
17099 int vec_all_ne (vector unsigned int, vector unsigned int);
17100 int vec_all_ne (vector bool int, vector bool int);
17101 int vec_all_ne (vector bool int, vector unsigned int);
17102 int vec_all_ne (vector bool int, vector signed int);
17103 int vec_all_ne (vector float, vector float);
17104
17105 int vec_all_nge (vector float, vector float);
17106
17107 int vec_all_ngt (vector float, vector float);
17108
17109 int vec_all_nle (vector float, vector float);
17110
17111 int vec_all_nlt (vector float, vector float);
17112
17113 int vec_all_numeric (vector float);
17114
17115 int vec_any_eq (vector signed char, vector bool char);
17116 int vec_any_eq (vector signed char, vector signed char);
17117 int vec_any_eq (vector unsigned char, vector bool char);
17118 int vec_any_eq (vector unsigned char, vector unsigned char);
17119 int vec_any_eq (vector bool char, vector bool char);
17120 int vec_any_eq (vector bool char, vector unsigned char);
17121 int vec_any_eq (vector bool char, vector signed char);
17122 int vec_any_eq (vector signed short, vector bool short);
17123 int vec_any_eq (vector signed short, vector signed short);
17124 int vec_any_eq (vector unsigned short, vector bool short);
17125 int vec_any_eq (vector unsigned short, vector unsigned short);
17126 int vec_any_eq (vector bool short, vector bool short);
17127 int vec_any_eq (vector bool short, vector unsigned short);
17128 int vec_any_eq (vector bool short, vector signed short);
17129 int vec_any_eq (vector pixel, vector pixel);
17130 int vec_any_eq (vector signed int, vector bool int);
17131 int vec_any_eq (vector signed int, vector signed int);
17132 int vec_any_eq (vector unsigned int, vector bool int);
17133 int vec_any_eq (vector unsigned int, vector unsigned int);
17134 int vec_any_eq (vector bool int, vector bool int);
17135 int vec_any_eq (vector bool int, vector unsigned int);
17136 int vec_any_eq (vector bool int, vector signed int);
17137 int vec_any_eq (vector float, vector float);
17138
17139 int vec_any_ge (vector signed char, vector bool char);
17140 int vec_any_ge (vector unsigned char, vector bool char);
17141 int vec_any_ge (vector unsigned char, vector unsigned char);
17142 int vec_any_ge (vector signed char, vector signed char);
17143 int vec_any_ge (vector bool char, vector unsigned char);
17144 int vec_any_ge (vector bool char, vector signed char);
17145 int vec_any_ge (vector unsigned short, vector bool short);
17146 int vec_any_ge (vector unsigned short, vector unsigned short);
17147 int vec_any_ge (vector signed short, vector signed short);
17148 int vec_any_ge (vector signed short, vector bool short);
17149 int vec_any_ge (vector bool short, vector unsigned short);
17150 int vec_any_ge (vector bool short, vector signed short);
17151 int vec_any_ge (vector signed int, vector bool int);
17152 int vec_any_ge (vector unsigned int, vector bool int);
17153 int vec_any_ge (vector unsigned int, vector unsigned int);
17154 int vec_any_ge (vector signed int, vector signed int);
17155 int vec_any_ge (vector bool int, vector unsigned int);
17156 int vec_any_ge (vector bool int, vector signed int);
17157 int vec_any_ge (vector float, vector float);
17158
17159 int vec_any_gt (vector bool char, vector unsigned char);
17160 int vec_any_gt (vector unsigned char, vector bool char);
17161 int vec_any_gt (vector unsigned char, vector unsigned char);
17162 int vec_any_gt (vector bool char, vector signed char);
17163 int vec_any_gt (vector signed char, vector bool char);
17164 int vec_any_gt (vector signed char, vector signed char);
17165 int vec_any_gt (vector bool short, vector unsigned short);
17166 int vec_any_gt (vector unsigned short, vector bool short);
17167 int vec_any_gt (vector unsigned short, vector unsigned short);
17168 int vec_any_gt (vector bool short, vector signed short);
17169 int vec_any_gt (vector signed short, vector bool short);
17170 int vec_any_gt (vector signed short, vector signed short);
17171 int vec_any_gt (vector bool int, vector unsigned int);
17172 int vec_any_gt (vector unsigned int, vector bool int);
17173 int vec_any_gt (vector unsigned int, vector unsigned int);
17174 int vec_any_gt (vector bool int, vector signed int);
17175 int vec_any_gt (vector signed int, vector bool int);
17176 int vec_any_gt (vector signed int, vector signed int);
17177 int vec_any_gt (vector float, vector float);
17178
17179 int vec_any_le (vector bool char, vector unsigned char);
17180 int vec_any_le (vector unsigned char, vector bool char);
17181 int vec_any_le (vector unsigned char, vector unsigned char);
17182 int vec_any_le (vector bool char, vector signed char);
17183 int vec_any_le (vector signed char, vector bool char);
17184 int vec_any_le (vector signed char, vector signed char);
17185 int vec_any_le (vector bool short, vector unsigned short);
17186 int vec_any_le (vector unsigned short, vector bool short);
17187 int vec_any_le (vector unsigned short, vector unsigned short);
17188 int vec_any_le (vector bool short, vector signed short);
17189 int vec_any_le (vector signed short, vector bool short);
17190 int vec_any_le (vector signed short, vector signed short);
17191 int vec_any_le (vector bool int, vector unsigned int);
17192 int vec_any_le (vector unsigned int, vector bool int);
17193 int vec_any_le (vector unsigned int, vector unsigned int);
17194 int vec_any_le (vector bool int, vector signed int);
17195 int vec_any_le (vector signed int, vector bool int);
17196 int vec_any_le (vector signed int, vector signed int);
17197 int vec_any_le (vector float, vector float);
17198
17199 int vec_any_lt (vector bool char, vector unsigned char);
17200 int vec_any_lt (vector unsigned char, vector bool char);
17201 int vec_any_lt (vector unsigned char, vector unsigned char);
17202 int vec_any_lt (vector bool char, vector signed char);
17203 int vec_any_lt (vector signed char, vector bool char);
17204 int vec_any_lt (vector signed char, vector signed char);
17205 int vec_any_lt (vector bool short, vector unsigned short);
17206 int vec_any_lt (vector unsigned short, vector bool short);
17207 int vec_any_lt (vector unsigned short, vector unsigned short);
17208 int vec_any_lt (vector bool short, vector signed short);
17209 int vec_any_lt (vector signed short, vector bool short);
17210 int vec_any_lt (vector signed short, vector signed short);
17211 int vec_any_lt (vector bool int, vector unsigned int);
17212 int vec_any_lt (vector unsigned int, vector bool int);
17213 int vec_any_lt (vector unsigned int, vector unsigned int);
17214 int vec_any_lt (vector bool int, vector signed int);
17215 int vec_any_lt (vector signed int, vector bool int);
17216 int vec_any_lt (vector signed int, vector signed int);
17217 int vec_any_lt (vector float, vector float);
17218
17219 int vec_any_nan (vector float);
17220
17221 int vec_any_ne (vector signed char, vector bool char);
17222 int vec_any_ne (vector signed char, vector signed char);
17223 int vec_any_ne (vector unsigned char, vector bool char);
17224 int vec_any_ne (vector unsigned char, vector unsigned char);
17225 int vec_any_ne (vector bool char, vector bool char);
17226 int vec_any_ne (vector bool char, vector unsigned char);
17227 int vec_any_ne (vector bool char, vector signed char);
17228 int vec_any_ne (vector signed short, vector bool short);
17229 int vec_any_ne (vector signed short, vector signed short);
17230 int vec_any_ne (vector unsigned short, vector bool short);
17231 int vec_any_ne (vector unsigned short, vector unsigned short);
17232 int vec_any_ne (vector bool short, vector bool short);
17233 int vec_any_ne (vector bool short, vector unsigned short);
17234 int vec_any_ne (vector bool short, vector signed short);
17235 int vec_any_ne (vector pixel, vector pixel);
17236 int vec_any_ne (vector signed int, vector bool int);
17237 int vec_any_ne (vector signed int, vector signed int);
17238 int vec_any_ne (vector unsigned int, vector bool int);
17239 int vec_any_ne (vector unsigned int, vector unsigned int);
17240 int vec_any_ne (vector bool int, vector bool int);
17241 int vec_any_ne (vector bool int, vector unsigned int);
17242 int vec_any_ne (vector bool int, vector signed int);
17243 int vec_any_ne (vector float, vector float);
17244
17245 int vec_any_nge (vector float, vector float);
17246
17247 int vec_any_ngt (vector float, vector float);
17248
17249 int vec_any_nle (vector float, vector float);
17250
17251 int vec_any_nlt (vector float, vector float);
17252
17253 int vec_any_numeric (vector float);
17254
17255 int vec_any_out (vector float, vector float);
17256 @end smallexample
17257
17258 If the vector/scalar (VSX) instruction set is available, the following
17259 additional functions are available:
17260
17261 @smallexample
17262 vector double vec_abs (vector double);
17263 vector double vec_add (vector double, vector double);
17264 vector double vec_and (vector double, vector double);
17265 vector double vec_and (vector double, vector bool long);
17266 vector double vec_and (vector bool long, vector double);
17267 vector long vec_and (vector long, vector long);
17268 vector long vec_and (vector long, vector bool long);
17269 vector long vec_and (vector bool long, vector long);
17270 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17271 vector unsigned long vec_and (vector unsigned long, vector bool long);
17272 vector unsigned long vec_and (vector bool long, vector unsigned long);
17273 vector double vec_andc (vector double, vector double);
17274 vector double vec_andc (vector double, vector bool long);
17275 vector double vec_andc (vector bool long, vector double);
17276 vector long vec_andc (vector long, vector long);
17277 vector long vec_andc (vector long, vector bool long);
17278 vector long vec_andc (vector bool long, vector long);
17279 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17280 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17281 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17282 vector double vec_ceil (vector double);
17283 vector bool long vec_cmpeq (vector double, vector double);
17284 vector bool long vec_cmpge (vector double, vector double);
17285 vector bool long vec_cmpgt (vector double, vector double);
17286 vector bool long vec_cmple (vector double, vector double);
17287 vector bool long vec_cmplt (vector double, vector double);
17288 vector double vec_cpsgn (vector double, vector double);
17289 vector float vec_div (vector float, vector float);
17290 vector double vec_div (vector double, vector double);
17291 vector long vec_div (vector long, vector long);
17292 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
17293 vector double vec_floor (vector double);
17294 vector double vec_ld (int, const vector double *);
17295 vector double vec_ld (int, const double *);
17296 vector double vec_ldl (int, const vector double *);
17297 vector double vec_ldl (int, const double *);
17298 vector unsigned char vec_lvsl (int, const volatile double *);
17299 vector unsigned char vec_lvsr (int, const volatile double *);
17300 vector double vec_madd (vector double, vector double, vector double);
17301 vector double vec_max (vector double, vector double);
17302 vector signed long vec_mergeh (vector signed long, vector signed long);
17303 vector signed long vec_mergeh (vector signed long, vector bool long);
17304 vector signed long vec_mergeh (vector bool long, vector signed long);
17305 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
17306 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
17307 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
17308 vector signed long vec_mergel (vector signed long, vector signed long);
17309 vector signed long vec_mergel (vector signed long, vector bool long);
17310 vector signed long vec_mergel (vector bool long, vector signed long);
17311 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
17312 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
17313 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
17314 vector double vec_min (vector double, vector double);
17315 vector float vec_msub (vector float, vector float, vector float);
17316 vector double vec_msub (vector double, vector double, vector double);
17317 vector float vec_mul (vector float, vector float);
17318 vector double vec_mul (vector double, vector double);
17319 vector long vec_mul (vector long, vector long);
17320 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17321 vector float vec_nearbyint (vector float);
17322 vector double vec_nearbyint (vector double);
17323 vector float vec_nmadd (vector float, vector float, vector float);
17324 vector double vec_nmadd (vector double, vector double, vector double);
17325 vector double vec_nmsub (vector double, vector double, vector double);
17326 vector double vec_nor (vector double, vector double);
17327 vector long vec_nor (vector long, vector long);
17328 vector long vec_nor (vector long, vector bool long);
17329 vector long vec_nor (vector bool long, vector long);
17330 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
17331 vector unsigned long vec_nor (vector unsigned long, vector bool long);
17332 vector unsigned long vec_nor (vector bool long, vector unsigned long);
17333 vector double vec_or (vector double, vector double);
17334 vector double vec_or (vector double, vector bool long);
17335 vector double vec_or (vector bool long, vector double);
17336 vector long vec_or (vector long, vector long);
17337 vector long vec_or (vector long, vector bool long);
17338 vector long vec_or (vector bool long, vector long);
17339 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
17340 vector unsigned long vec_or (vector unsigned long, vector bool long);
17341 vector unsigned long vec_or (vector bool long, vector unsigned long);
17342 vector double vec_perm (vector double, vector double, vector unsigned char);
17343 vector long vec_perm (vector long, vector long, vector unsigned char);
17344 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
17345 vector unsigned char);
17346 vector double vec_rint (vector double);
17347 vector double vec_recip (vector double, vector double);
17348 vector double vec_rsqrt (vector double);
17349 vector double vec_rsqrte (vector double);
17350 vector double vec_sel (vector double, vector double, vector bool long);
17351 vector double vec_sel (vector double, vector double, vector unsigned long);
17352 vector long vec_sel (vector long, vector long, vector long);
17353 vector long vec_sel (vector long, vector long, vector unsigned long);
17354 vector long vec_sel (vector long, vector long, vector bool long);
17355 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17356 vector long);
17357 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17358 vector unsigned long);
17359 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
17360 vector bool long);
17361 vector double vec_splats (double);
17362 vector signed long vec_splats (signed long);
17363 vector unsigned long vec_splats (unsigned long);
17364 vector float vec_sqrt (vector float);
17365 vector double vec_sqrt (vector double);
17366 void vec_st (vector double, int, vector double *);
17367 void vec_st (vector double, int, double *);
17368 vector double vec_sub (vector double, vector double);
17369 vector double vec_trunc (vector double);
17370 vector double vec_xl (int, vector double *);
17371 vector double vec_xl (int, double *);
17372 vector long long vec_xl (int, vector long long *);
17373 vector long long vec_xl (int, long long *);
17374 vector unsigned long long vec_xl (int, vector unsigned long long *);
17375 vector unsigned long long vec_xl (int, unsigned long long *);
17376 vector float vec_xl (int, vector float *);
17377 vector float vec_xl (int, float *);
17378 vector int vec_xl (int, vector int *);
17379 vector int vec_xl (int, int *);
17380 vector unsigned int vec_xl (int, vector unsigned int *);
17381 vector unsigned int vec_xl (int, unsigned int *);
17382 vector double vec_xor (vector double, vector double);
17383 vector double vec_xor (vector double, vector bool long);
17384 vector double vec_xor (vector bool long, vector double);
17385 vector long vec_xor (vector long, vector long);
17386 vector long vec_xor (vector long, vector bool long);
17387 vector long vec_xor (vector bool long, vector long);
17388 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
17389 vector unsigned long vec_xor (vector unsigned long, vector bool long);
17390 vector unsigned long vec_xor (vector bool long, vector unsigned long);
17391 void vec_xst (vector double, int, vector double *);
17392 void vec_xst (vector double, int, double *);
17393 void vec_xst (vector long long, int, vector long long *);
17394 void vec_xst (vector long long, int, long long *);
17395 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
17396 void vec_xst (vector unsigned long long, int, unsigned long long *);
17397 void vec_xst (vector float, int, vector float *);
17398 void vec_xst (vector float, int, float *);
17399 void vec_xst (vector int, int, vector int *);
17400 void vec_xst (vector int, int, int *);
17401 void vec_xst (vector unsigned int, int, vector unsigned int *);
17402 void vec_xst (vector unsigned int, int, unsigned int *);
17403 int vec_all_eq (vector double, vector double);
17404 int vec_all_ge (vector double, vector double);
17405 int vec_all_gt (vector double, vector double);
17406 int vec_all_le (vector double, vector double);
17407 int vec_all_lt (vector double, vector double);
17408 int vec_all_nan (vector double);
17409 int vec_all_ne (vector double, vector double);
17410 int vec_all_nge (vector double, vector double);
17411 int vec_all_ngt (vector double, vector double);
17412 int vec_all_nle (vector double, vector double);
17413 int vec_all_nlt (vector double, vector double);
17414 int vec_all_numeric (vector double);
17415 int vec_any_eq (vector double, vector double);
17416 int vec_any_ge (vector double, vector double);
17417 int vec_any_gt (vector double, vector double);
17418 int vec_any_le (vector double, vector double);
17419 int vec_any_lt (vector double, vector double);
17420 int vec_any_nan (vector double);
17421 int vec_any_ne (vector double, vector double);
17422 int vec_any_nge (vector double, vector double);
17423 int vec_any_ngt (vector double, vector double);
17424 int vec_any_nle (vector double, vector double);
17425 int vec_any_nlt (vector double, vector double);
17426 int vec_any_numeric (vector double);
17427
17428 vector double vec_vsx_ld (int, const vector double *);
17429 vector double vec_vsx_ld (int, const double *);
17430 vector float vec_vsx_ld (int, const vector float *);
17431 vector float vec_vsx_ld (int, const float *);
17432 vector bool int vec_vsx_ld (int, const vector bool int *);
17433 vector signed int vec_vsx_ld (int, const vector signed int *);
17434 vector signed int vec_vsx_ld (int, const int *);
17435 vector signed int vec_vsx_ld (int, const long *);
17436 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
17437 vector unsigned int vec_vsx_ld (int, const unsigned int *);
17438 vector unsigned int vec_vsx_ld (int, const unsigned long *);
17439 vector bool short vec_vsx_ld (int, const vector bool short *);
17440 vector pixel vec_vsx_ld (int, const vector pixel *);
17441 vector signed short vec_vsx_ld (int, const vector signed short *);
17442 vector signed short vec_vsx_ld (int, const short *);
17443 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
17444 vector unsigned short vec_vsx_ld (int, const unsigned short *);
17445 vector bool char vec_vsx_ld (int, const vector bool char *);
17446 vector signed char vec_vsx_ld (int, const vector signed char *);
17447 vector signed char vec_vsx_ld (int, const signed char *);
17448 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
17449 vector unsigned char vec_vsx_ld (int, const unsigned char *);
17450
17451 void vec_vsx_st (vector double, int, vector double *);
17452 void vec_vsx_st (vector double, int, double *);
17453 void vec_vsx_st (vector float, int, vector float *);
17454 void vec_vsx_st (vector float, int, float *);
17455 void vec_vsx_st (vector signed int, int, vector signed int *);
17456 void vec_vsx_st (vector signed int, int, int *);
17457 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
17458 void vec_vsx_st (vector unsigned int, int, unsigned int *);
17459 void vec_vsx_st (vector bool int, int, vector bool int *);
17460 void vec_vsx_st (vector bool int, int, unsigned int *);
17461 void vec_vsx_st (vector bool int, int, int *);
17462 void vec_vsx_st (vector signed short, int, vector signed short *);
17463 void vec_vsx_st (vector signed short, int, short *);
17464 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
17465 void vec_vsx_st (vector unsigned short, int, unsigned short *);
17466 void vec_vsx_st (vector bool short, int, vector bool short *);
17467 void vec_vsx_st (vector bool short, int, unsigned short *);
17468 void vec_vsx_st (vector pixel, int, vector pixel *);
17469 void vec_vsx_st (vector pixel, int, unsigned short *);
17470 void vec_vsx_st (vector pixel, int, short *);
17471 void vec_vsx_st (vector bool short, int, short *);
17472 void vec_vsx_st (vector signed char, int, vector signed char *);
17473 void vec_vsx_st (vector signed char, int, signed char *);
17474 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
17475 void vec_vsx_st (vector unsigned char, int, unsigned char *);
17476 void vec_vsx_st (vector bool char, int, vector bool char *);
17477 void vec_vsx_st (vector bool char, int, unsigned char *);
17478 void vec_vsx_st (vector bool char, int, signed char *);
17479
17480 vector double vec_xxpermdi (vector double, vector double, int);
17481 vector float vec_xxpermdi (vector float, vector float, int);
17482 vector long long vec_xxpermdi (vector long long, vector long long, int);
17483 vector unsigned long long vec_xxpermdi (vector unsigned long long,
17484 vector unsigned long long, int);
17485 vector int vec_xxpermdi (vector int, vector int, int);
17486 vector unsigned int vec_xxpermdi (vector unsigned int,
17487 vector unsigned int, int);
17488 vector short vec_xxpermdi (vector short, vector short, int);
17489 vector unsigned short vec_xxpermdi (vector unsigned short,
17490 vector unsigned short, int);
17491 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
17492 vector unsigned char vec_xxpermdi (vector unsigned char,
17493 vector unsigned char, int);
17494
17495 vector double vec_xxsldi (vector double, vector double, int);
17496 vector float vec_xxsldi (vector float, vector float, int);
17497 vector long long vec_xxsldi (vector long long, vector long long, int);
17498 vector unsigned long long vec_xxsldi (vector unsigned long long,
17499 vector unsigned long long, int);
17500 vector int vec_xxsldi (vector int, vector int, int);
17501 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
17502 vector short vec_xxsldi (vector short, vector short, int);
17503 vector unsigned short vec_xxsldi (vector unsigned short,
17504 vector unsigned short, int);
17505 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
17506 vector unsigned char vec_xxsldi (vector unsigned char,
17507 vector unsigned char, int);
17508 @end smallexample
17509
17510 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
17511 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
17512 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
17513 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
17514 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
17515
17516 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17517 instruction set are available, the following additional functions are
17518 available for both 32-bit and 64-bit targets. For 64-bit targets, you
17519 can use @var{vector long} instead of @var{vector long long},
17520 @var{vector bool long} instead of @var{vector bool long long}, and
17521 @var{vector unsigned long} instead of @var{vector unsigned long long}.
17522
17523 @smallexample
17524 vector long long vec_abs (vector long long);
17525
17526 vector long long vec_add (vector long long, vector long long);
17527 vector unsigned long long vec_add (vector unsigned long long,
17528 vector unsigned long long);
17529
17530 int vec_all_eq (vector long long, vector long long);
17531 int vec_all_eq (vector unsigned long long, vector unsigned long long);
17532 int vec_all_ge (vector long long, vector long long);
17533 int vec_all_ge (vector unsigned long long, vector unsigned long long);
17534 int vec_all_gt (vector long long, vector long long);
17535 int vec_all_gt (vector unsigned long long, vector unsigned long long);
17536 int vec_all_le (vector long long, vector long long);
17537 int vec_all_le (vector unsigned long long, vector unsigned long long);
17538 int vec_all_lt (vector long long, vector long long);
17539 int vec_all_lt (vector unsigned long long, vector unsigned long long);
17540 int vec_all_ne (vector long long, vector long long);
17541 int vec_all_ne (vector unsigned long long, vector unsigned long long);
17542
17543 int vec_any_eq (vector long long, vector long long);
17544 int vec_any_eq (vector unsigned long long, vector unsigned long long);
17545 int vec_any_ge (vector long long, vector long long);
17546 int vec_any_ge (vector unsigned long long, vector unsigned long long);
17547 int vec_any_gt (vector long long, vector long long);
17548 int vec_any_gt (vector unsigned long long, vector unsigned long long);
17549 int vec_any_le (vector long long, vector long long);
17550 int vec_any_le (vector unsigned long long, vector unsigned long long);
17551 int vec_any_lt (vector long long, vector long long);
17552 int vec_any_lt (vector unsigned long long, vector unsigned long long);
17553 int vec_any_ne (vector long long, vector long long);
17554 int vec_any_ne (vector unsigned long long, vector unsigned long long);
17555
17556 vector long long vec_eqv (vector long long, vector long long);
17557 vector long long vec_eqv (vector bool long long, vector long long);
17558 vector long long vec_eqv (vector long long, vector bool long long);
17559 vector unsigned long long vec_eqv (vector unsigned long long,
17560 vector unsigned long long);
17561 vector unsigned long long vec_eqv (vector bool long long,
17562 vector unsigned long long);
17563 vector unsigned long long vec_eqv (vector unsigned long long,
17564 vector bool long long);
17565 vector int vec_eqv (vector int, vector int);
17566 vector int vec_eqv (vector bool int, vector int);
17567 vector int vec_eqv (vector int, vector bool int);
17568 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
17569 vector unsigned int vec_eqv (vector bool unsigned int,
17570 vector unsigned int);
17571 vector unsigned int vec_eqv (vector unsigned int,
17572 vector bool unsigned int);
17573 vector short vec_eqv (vector short, vector short);
17574 vector short vec_eqv (vector bool short, vector short);
17575 vector short vec_eqv (vector short, vector bool short);
17576 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
17577 vector unsigned short vec_eqv (vector bool unsigned short,
17578 vector unsigned short);
17579 vector unsigned short vec_eqv (vector unsigned short,
17580 vector bool unsigned short);
17581 vector signed char vec_eqv (vector signed char, vector signed char);
17582 vector signed char vec_eqv (vector bool signed char, vector signed char);
17583 vector signed char vec_eqv (vector signed char, vector bool signed char);
17584 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
17585 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
17586 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
17587
17588 vector long long vec_max (vector long long, vector long long);
17589 vector unsigned long long vec_max (vector unsigned long long,
17590 vector unsigned long long);
17591
17592 vector signed int vec_mergee (vector signed int, vector signed int);
17593 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
17594 vector bool int vec_mergee (vector bool int, vector bool int);
17595
17596 vector signed int vec_mergeo (vector signed int, vector signed int);
17597 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
17598 vector bool int vec_mergeo (vector bool int, vector bool int);
17599
17600 vector long long vec_min (vector long long, vector long long);
17601 vector unsigned long long vec_min (vector unsigned long long,
17602 vector unsigned long long);
17603
17604 vector long long vec_nand (vector long long, vector long long);
17605 vector long long vec_nand (vector bool long long, vector long long);
17606 vector long long vec_nand (vector long long, vector bool long long);
17607 vector unsigned long long vec_nand (vector unsigned long long,
17608 vector unsigned long long);
17609 vector unsigned long long vec_nand (vector bool long long,
17610 vector unsigned long long);
17611 vector unsigned long long vec_nand (vector unsigned long long,
17612 vector bool long long);
17613 vector int vec_nand (vector int, vector int);
17614 vector int vec_nand (vector bool int, vector int);
17615 vector int vec_nand (vector int, vector bool int);
17616 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
17617 vector unsigned int vec_nand (vector bool unsigned int,
17618 vector unsigned int);
17619 vector unsigned int vec_nand (vector unsigned int,
17620 vector bool unsigned int);
17621 vector short vec_nand (vector short, vector short);
17622 vector short vec_nand (vector bool short, vector short);
17623 vector short vec_nand (vector short, vector bool short);
17624 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
17625 vector unsigned short vec_nand (vector bool unsigned short,
17626 vector unsigned short);
17627 vector unsigned short vec_nand (vector unsigned short,
17628 vector bool unsigned short);
17629 vector signed char vec_nand (vector signed char, vector signed char);
17630 vector signed char vec_nand (vector bool signed char, vector signed char);
17631 vector signed char vec_nand (vector signed char, vector bool signed char);
17632 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
17633 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
17634 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
17635
17636 vector long long vec_orc (vector long long, vector long long);
17637 vector long long vec_orc (vector bool long long, vector long long);
17638 vector long long vec_orc (vector long long, vector bool long long);
17639 vector unsigned long long vec_orc (vector unsigned long long,
17640 vector unsigned long long);
17641 vector unsigned long long vec_orc (vector bool long long,
17642 vector unsigned long long);
17643 vector unsigned long long vec_orc (vector unsigned long long,
17644 vector bool long long);
17645 vector int vec_orc (vector int, vector int);
17646 vector int vec_orc (vector bool int, vector int);
17647 vector int vec_orc (vector int, vector bool int);
17648 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
17649 vector unsigned int vec_orc (vector bool unsigned int,
17650 vector unsigned int);
17651 vector unsigned int vec_orc (vector unsigned int,
17652 vector bool unsigned int);
17653 vector short vec_orc (vector short, vector short);
17654 vector short vec_orc (vector bool short, vector short);
17655 vector short vec_orc (vector short, vector bool short);
17656 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
17657 vector unsigned short vec_orc (vector bool unsigned short,
17658 vector unsigned short);
17659 vector unsigned short vec_orc (vector unsigned short,
17660 vector bool unsigned short);
17661 vector signed char vec_orc (vector signed char, vector signed char);
17662 vector signed char vec_orc (vector bool signed char, vector signed char);
17663 vector signed char vec_orc (vector signed char, vector bool signed char);
17664 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
17665 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
17666 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
17667
17668 vector int vec_pack (vector long long, vector long long);
17669 vector unsigned int vec_pack (vector unsigned long long,
17670 vector unsigned long long);
17671 vector bool int vec_pack (vector bool long long, vector bool long long);
17672
17673 vector int vec_packs (vector long long, vector long long);
17674 vector unsigned int vec_packs (vector unsigned long long,
17675 vector unsigned long long);
17676
17677 vector unsigned int vec_packsu (vector long long, vector long long);
17678 vector unsigned int vec_packsu (vector unsigned long long,
17679 vector unsigned long long);
17680
17681 vector long long vec_rl (vector long long,
17682 vector unsigned long long);
17683 vector long long vec_rl (vector unsigned long long,
17684 vector unsigned long long);
17685
17686 vector long long vec_sl (vector long long, vector unsigned long long);
17687 vector long long vec_sl (vector unsigned long long,
17688 vector unsigned long long);
17689
17690 vector long long vec_sr (vector long long, vector unsigned long long);
17691 vector unsigned long long char vec_sr (vector unsigned long long,
17692 vector unsigned long long);
17693
17694 vector long long vec_sra (vector long long, vector unsigned long long);
17695 vector unsigned long long vec_sra (vector unsigned long long,
17696 vector unsigned long long);
17697
17698 vector long long vec_sub (vector long long, vector long long);
17699 vector unsigned long long vec_sub (vector unsigned long long,
17700 vector unsigned long long);
17701
17702 vector long long vec_unpackh (vector int);
17703 vector unsigned long long vec_unpackh (vector unsigned int);
17704
17705 vector long long vec_unpackl (vector int);
17706 vector unsigned long long vec_unpackl (vector unsigned int);
17707
17708 vector long long vec_vaddudm (vector long long, vector long long);
17709 vector long long vec_vaddudm (vector bool long long, vector long long);
17710 vector long long vec_vaddudm (vector long long, vector bool long long);
17711 vector unsigned long long vec_vaddudm (vector unsigned long long,
17712 vector unsigned long long);
17713 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
17714 vector unsigned long long);
17715 vector unsigned long long vec_vaddudm (vector unsigned long long,
17716 vector bool unsigned long long);
17717
17718 vector long long vec_vbpermq (vector signed char, vector signed char);
17719 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
17720
17721 vector long long vec_cntlz (vector long long);
17722 vector unsigned long long vec_cntlz (vector unsigned long long);
17723 vector int vec_cntlz (vector int);
17724 vector unsigned int vec_cntlz (vector int);
17725 vector short vec_cntlz (vector short);
17726 vector unsigned short vec_cntlz (vector unsigned short);
17727 vector signed char vec_cntlz (vector signed char);
17728 vector unsigned char vec_cntlz (vector unsigned char);
17729
17730 vector long long vec_vclz (vector long long);
17731 vector unsigned long long vec_vclz (vector unsigned long long);
17732 vector int vec_vclz (vector int);
17733 vector unsigned int vec_vclz (vector int);
17734 vector short vec_vclz (vector short);
17735 vector unsigned short vec_vclz (vector unsigned short);
17736 vector signed char vec_vclz (vector signed char);
17737 vector unsigned char vec_vclz (vector unsigned char);
17738
17739 vector signed char vec_vclzb (vector signed char);
17740 vector unsigned char vec_vclzb (vector unsigned char);
17741
17742 vector long long vec_vclzd (vector long long);
17743 vector unsigned long long vec_vclzd (vector unsigned long long);
17744
17745 vector short vec_vclzh (vector short);
17746 vector unsigned short vec_vclzh (vector unsigned short);
17747
17748 vector int vec_vclzw (vector int);
17749 vector unsigned int vec_vclzw (vector int);
17750
17751 vector signed char vec_vgbbd (vector signed char);
17752 vector unsigned char vec_vgbbd (vector unsigned char);
17753
17754 vector long long vec_vmaxsd (vector long long, vector long long);
17755
17756 vector unsigned long long vec_vmaxud (vector unsigned long long,
17757 unsigned vector long long);
17758
17759 vector long long vec_vminsd (vector long long, vector long long);
17760
17761 vector unsigned long long vec_vminud (vector long long,
17762 vector long long);
17763
17764 vector int vec_vpksdss (vector long long, vector long long);
17765 vector unsigned int vec_vpksdss (vector long long, vector long long);
17766
17767 vector unsigned int vec_vpkudus (vector unsigned long long,
17768 vector unsigned long long);
17769
17770 vector int vec_vpkudum (vector long long, vector long long);
17771 vector unsigned int vec_vpkudum (vector unsigned long long,
17772 vector unsigned long long);
17773 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
17774
17775 vector long long vec_vpopcnt (vector long long);
17776 vector unsigned long long vec_vpopcnt (vector unsigned long long);
17777 vector int vec_vpopcnt (vector int);
17778 vector unsigned int vec_vpopcnt (vector int);
17779 vector short vec_vpopcnt (vector short);
17780 vector unsigned short vec_vpopcnt (vector unsigned short);
17781 vector signed char vec_vpopcnt (vector signed char);
17782 vector unsigned char vec_vpopcnt (vector unsigned char);
17783
17784 vector signed char vec_vpopcntb (vector signed char);
17785 vector unsigned char vec_vpopcntb (vector unsigned char);
17786
17787 vector long long vec_vpopcntd (vector long long);
17788 vector unsigned long long vec_vpopcntd (vector unsigned long long);
17789
17790 vector short vec_vpopcnth (vector short);
17791 vector unsigned short vec_vpopcnth (vector unsigned short);
17792
17793 vector int vec_vpopcntw (vector int);
17794 vector unsigned int vec_vpopcntw (vector int);
17795
17796 vector long long vec_vrld (vector long long, vector unsigned long long);
17797 vector unsigned long long vec_vrld (vector unsigned long long,
17798 vector unsigned long long);
17799
17800 vector long long vec_vsld (vector long long, vector unsigned long long);
17801 vector long long vec_vsld (vector unsigned long long,
17802 vector unsigned long long);
17803
17804 vector long long vec_vsrad (vector long long, vector unsigned long long);
17805 vector unsigned long long vec_vsrad (vector unsigned long long,
17806 vector unsigned long long);
17807
17808 vector long long vec_vsrd (vector long long, vector unsigned long long);
17809 vector unsigned long long char vec_vsrd (vector unsigned long long,
17810 vector unsigned long long);
17811
17812 vector long long vec_vsubudm (vector long long, vector long long);
17813 vector long long vec_vsubudm (vector bool long long, vector long long);
17814 vector long long vec_vsubudm (vector long long, vector bool long long);
17815 vector unsigned long long vec_vsubudm (vector unsigned long long,
17816 vector unsigned long long);
17817 vector unsigned long long vec_vsubudm (vector bool long long,
17818 vector unsigned long long);
17819 vector unsigned long long vec_vsubudm (vector unsigned long long,
17820 vector bool long long);
17821
17822 vector long long vec_vupkhsw (vector int);
17823 vector unsigned long long vec_vupkhsw (vector unsigned int);
17824
17825 vector long long vec_vupklsw (vector int);
17826 vector unsigned long long vec_vupklsw (vector int);
17827 @end smallexample
17828
17829 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17830 instruction set are available, the following additional functions are
17831 available for 64-bit targets. New vector types
17832 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
17833 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
17834 builtins.
17835
17836 The normal vector extract, and set operations work on
17837 @var{vector __int128_t} and @var{vector __uint128_t} types,
17838 but the index value must be 0.
17839
17840 @smallexample
17841 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
17842 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
17843
17844 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
17845 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
17846
17847 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
17848 vector __int128_t);
17849 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
17850 vector __uint128_t);
17851
17852 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
17853 vector __int128_t);
17854 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
17855 vector __uint128_t);
17856
17857 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
17858 vector __int128_t);
17859 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
17860 vector __uint128_t);
17861
17862 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
17863 vector __int128_t);
17864 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
17865 vector __uint128_t);
17866
17867 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
17868 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
17869
17870 __int128_t vec_vsubuqm (__int128_t, __int128_t);
17871 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
17872
17873 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
17874 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
17875 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
17876 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
17877 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
17878 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
17879 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
17880 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
17881 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
17882 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
17883 @end smallexample
17884
17885 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
17886 are available:
17887
17888 @smallexample
17889 vector long long vec_vctz (vector long long);
17890 vector unsigned long long vec_vctz (vector unsigned long long);
17891 vector int vec_vctz (vector int);
17892 vector unsigned int vec_vctz (vector int);
17893 vector short vec_vctz (vector short);
17894 vector unsigned short vec_vctz (vector unsigned short);
17895 vector signed char vec_vctz (vector signed char);
17896 vector unsigned char vec_vctz (vector unsigned char);
17897
17898 vector signed char vec_vctzb (vector signed char);
17899 vector unsigned char vec_vctzb (vector unsigned char);
17900
17901 vector long long vec_vctzd (vector long long);
17902 vector unsigned long long vec_vctzd (vector unsigned long long);
17903
17904 vector short vec_vctzh (vector short);
17905 vector unsigned short vec_vctzh (vector unsigned short);
17906
17907 vector int vec_vctzw (vector int);
17908 vector unsigned int vec_vctzw (vector int);
17909
17910 vector int vec_vprtyb (vector int);
17911 vector unsigned int vec_vprtyb (vector unsigned int);
17912 vector long long vec_vprtyb (vector long long);
17913 vector unsigned long long vec_vprtyb (vector unsigned long long);
17914
17915 vector int vec_vprtybw (vector int);
17916 vector unsigned int vec_vprtybw (vector unsigned int);
17917
17918 vector long long vec_vprtybd (vector long long);
17919 vector unsigned long long vec_vprtybd (vector unsigned long long);
17920 @end smallexample
17921
17922 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
17923 are available:
17924
17925 @smallexample
17926 vector long vec_vprtyb (vector long);
17927 vector unsigned long vec_vprtyb (vector unsigned long);
17928 vector __int128_t vec_vprtyb (vector __int128_t);
17929 vector __uint128_t vec_vprtyb (vector __uint128_t);
17930
17931 vector long vec_vprtybd (vector long);
17932 vector unsigned long vec_vprtybd (vector unsigned long);
17933
17934 vector __int128_t vec_vprtybq (vector __int128_t);
17935 vector __uint128_t vec_vprtybd (vector __uint128_t);
17936 @end smallexample
17937
17938 The following built-in vector functions are available for the PowerPC family
17939 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
17940 @smallexample
17941 __vector unsigned char
17942 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
17943 __vector unsigned char
17944 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
17945 @end smallexample
17946
17947 The @code{vec_slv} and @code{vec_srv} functions operate on
17948 all of the bytes of their @code{src} and @code{shift_distance}
17949 arguments in parallel. The behavior of the @code{vec_slv} is as if
17950 there existed a temporary array of 17 unsigned characters
17951 @code{slv_array} within which elements 0 through 15 are the same as
17952 the entries in the @code{src} array and element 16 equals 0. The
17953 result returned from the @code{vec_slv} function is a
17954 @code{__vector} of 16 unsigned characters within which element
17955 @code{i} is computed using the C expression
17956 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
17957 shift_distance[i]))},
17958 with this resulting value coerced to the @code{unsigned char} type.
17959 The behavior of the @code{vec_srv} is as if
17960 there existed a temporary array of 17 unsigned characters
17961 @code{srv_array} within which element 0 equals zero and
17962 elements 1 through 16 equal the elements 0 through 15 of
17963 the @code{src} array. The
17964 result returned from the @code{vec_srv} function is a
17965 @code{__vector} of 16 unsigned characters within which element
17966 @code{i} is computed using the C expression
17967 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
17968 (0x07 & shift_distance[i]))},
17969 with this resulting value coerced to the @code{unsigned char} type.
17970
17971 The following built-in functions are available for the PowerPC family
17972 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
17973 @smallexample
17974 __vector unsigned char
17975 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
17976 __vector unsigned short
17977 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
17978 __vector unsigned int
17979 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
17980
17981 __vector unsigned char
17982 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
17983 __vector unsigned short
17984 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
17985 __vector unsigned int
17986 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
17987 @end smallexample
17988
17989 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
17990 @code{vec_absdw} built-in functions each computes the absolute
17991 differences of the pairs of vector elements supplied in its two vector
17992 arguments, placing the absolute differences into the corresponding
17993 elements of the vector result.
17994
17995 The following built-in functions are available for the PowerPC family
17996 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
17997 @smallexample
17998 __vector int
17999 vec_extract_exp (__vector float source);
18000 __vector long long int
18001 vec_extract_exp (__vector double source);
18002
18003 __vector int
18004 vec_extract_sig (__vector float source);
18005 __vector long long int
18006 vec_extract_sig (__vector double source);
18007
18008 __vector float
18009 vec_insert_exp (__vector unsigned int significands, __vector unsigned int exponents);
18010 __vector double
18011 vec_insert_exp (__vector unsigned long long int significands,
18012 __vector unsigned long long int exponents);
18013
18014 __vector int vec_test_data_class (__vector float source, unsigned int condition);
18015 __vector long long int vec_test_data_class (__vector double source, unsigned int condition);
18016 @end smallexample
18017
18018 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
18019 functions return vectors representing the significands and exponents
18020 of their @code{source} arguments respectively. The
18021 @code{vec_insert_exp} built-in functions return a vector of single- or
18022 double-precision floating
18023 point values constructed by assembling the values of their
18024 @code{significands} and @code{exponents} arguments into the
18025 corresponding elements of the returned vector. The sign of each
18026 element of the result is copied from the most significant bit of the
18027 corresponding entry within the @code{significands} argument. The
18028 significand and exponent components of each element of the result are
18029 composed of the least significant bits of the corresponding
18030 @code{significands} element and the least significant bits of the
18031 corresponding @code{exponents} element.
18032
18033 The @code{vec_test_data_class} built-in function returns a vector
18034 representing the results of testing the @code{source} vector for the
18035 condition selected by the @code{condition} argument. The
18036 @code{condition} argument must be an unsigned integer with value not
18037 exceeding 127. The
18038 @code{condition} argument is encoded as a bitmask with each bit
18039 enabling the testing of a different condition, as characterized by the
18040 following:
18041 @smallexample
18042 0x40 Test for NaN
18043 0x20 Test for +Infinity
18044 0x10 Test for -Infinity
18045 0x08 Test for +Zero
18046 0x04 Test for -Zero
18047 0x02 Test for +Denormal
18048 0x01 Test for -Denormal
18049 @end smallexample
18050
18051 If any of the enabled test conditions is true, the corresponding entry
18052 in the result vector is -1. Otherwise (all of the enabled test
18053 conditions are false), the corresponding entry of the result vector is 0.
18054
18055 If the cryptographic instructions are enabled (@option{-mcrypto} or
18056 @option{-mcpu=power8}), the following builtins are enabled.
18057
18058 @smallexample
18059 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
18060
18061 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
18062 vector unsigned long long);
18063
18064 vector unsigned long long __builtin_crypto_vcipherlast
18065 (vector unsigned long long,
18066 vector unsigned long long);
18067
18068 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
18069 vector unsigned long long);
18070
18071 vector unsigned long long __builtin_crypto_vncipherlast
18072 (vector unsigned long long,
18073 vector unsigned long long);
18074
18075 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
18076 vector unsigned char,
18077 vector unsigned char);
18078
18079 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
18080 vector unsigned short,
18081 vector unsigned short);
18082
18083 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
18084 vector unsigned int,
18085 vector unsigned int);
18086
18087 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
18088 vector unsigned long long,
18089 vector unsigned long long);
18090
18091 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
18092 vector unsigned char);
18093
18094 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
18095 vector unsigned short);
18096
18097 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
18098 vector unsigned int);
18099
18100 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
18101 vector unsigned long long);
18102
18103 vector unsigned long long __builtin_crypto_vshasigmad
18104 (vector unsigned long long, int, int);
18105
18106 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
18107 int, int);
18108 @end smallexample
18109
18110 The second argument to the @var{__builtin_crypto_vshasigmad} and
18111 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
18112 integer that is 0 or 1. The third argument to these builtin functions
18113 must be a constant integer in the range of 0 to 15.
18114
18115 If the ISA 3.0 instruction set additions
18116 are enabled (@option{-mcpu=power9}), the following additional
18117 functions are available for both 32-bit and 64-bit targets.
18118
18119 vector short vec_xl (int, vector short *);
18120 vector short vec_xl (int, short *);
18121 vector unsigned short vec_xl (int, vector unsigned short *);
18122 vector unsigned short vec_xl (int, unsigned short *);
18123 vector char vec_xl (int, vector char *);
18124 vector char vec_xl (int, char *);
18125 vector unsigned char vec_xl (int, vector unsigned char *);
18126 vector unsigned char vec_xl (int, unsigned char *);
18127
18128 void vec_xst (vector short, int, vector short *);
18129 void vec_xst (vector short, int, short *);
18130 void vec_xst (vector unsigned short, int, vector unsigned short *);
18131 void vec_xst (vector unsigned short, int, unsigned short *);
18132 void vec_xst (vector char, int, vector char *);
18133 void vec_xst (vector char, int, char *);
18134 void vec_xst (vector unsigned char, int, vector unsigned char *);
18135 void vec_xst (vector unsigned char, int, unsigned char *);
18136
18137 @node PowerPC Hardware Transactional Memory Built-in Functions
18138 @subsection PowerPC Hardware Transactional Memory Built-in Functions
18139 GCC provides two interfaces for accessing the Hardware Transactional
18140 Memory (HTM) instructions available on some of the PowerPC family
18141 of processors (eg, POWER8). The two interfaces come in a low level
18142 interface, consisting of built-in functions specific to PowerPC and a
18143 higher level interface consisting of inline functions that are common
18144 between PowerPC and S/390.
18145
18146 @subsubsection PowerPC HTM Low Level Built-in Functions
18147
18148 The following low level built-in functions are available with
18149 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
18150 They all generate the machine instruction that is part of the name.
18151
18152 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
18153 the full 4-bit condition register value set by their associated hardware
18154 instruction. The header file @code{htmintrin.h} defines some macros that can
18155 be used to decipher the return value. The @code{__builtin_tbegin} builtin
18156 returns a simple true or false value depending on whether a transaction was
18157 successfully started or not. The arguments of the builtins match exactly the
18158 type and order of the associated hardware instruction's operands, except for
18159 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
18160 Refer to the ISA manual for a description of each instruction's operands.
18161
18162 @smallexample
18163 unsigned int __builtin_tbegin (unsigned int)
18164 unsigned int __builtin_tend (unsigned int)
18165
18166 unsigned int __builtin_tabort (unsigned int)
18167 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
18168 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
18169 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
18170 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
18171
18172 unsigned int __builtin_tcheck (void)
18173 unsigned int __builtin_treclaim (unsigned int)
18174 unsigned int __builtin_trechkpt (void)
18175 unsigned int __builtin_tsr (unsigned int)
18176 @end smallexample
18177
18178 In addition to the above HTM built-ins, we have added built-ins for
18179 some common extended mnemonics of the HTM instructions:
18180
18181 @smallexample
18182 unsigned int __builtin_tendall (void)
18183 unsigned int __builtin_tresume (void)
18184 unsigned int __builtin_tsuspend (void)
18185 @end smallexample
18186
18187 Note that the semantics of the above HTM builtins are required to mimic
18188 the locking semantics used for critical sections. Builtins that are used
18189 to create a new transaction or restart a suspended transaction must have
18190 lock acquisition like semantics while those builtins that end or suspend a
18191 transaction must have lock release like semantics. Specifically, this must
18192 mimic lock semantics as specified by C++11, for example: Lock acquisition is
18193 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
18194 that returns 0, and lock release is as-if an execution of
18195 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
18196 implicit implementation-defined lock used for all transactions. The HTM
18197 instructions associated with with the builtins inherently provide the
18198 correct acquisition and release hardware barriers required. However,
18199 the compiler must also be prohibited from moving loads and stores across
18200 the builtins in a way that would violate their semantics. This has been
18201 accomplished by adding memory barriers to the associated HTM instructions
18202 (which is a conservative approach to provide acquire and release semantics).
18203 Earlier versions of the compiler did not treat the HTM instructions as
18204 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
18205 be used to determine whether the current compiler treats HTM instructions
18206 as memory barriers or not. This allows the user to explicitly add memory
18207 barriers to their code when using an older version of the compiler.
18208
18209 The following set of built-in functions are available to gain access
18210 to the HTM specific special purpose registers.
18211
18212 @smallexample
18213 unsigned long __builtin_get_texasr (void)
18214 unsigned long __builtin_get_texasru (void)
18215 unsigned long __builtin_get_tfhar (void)
18216 unsigned long __builtin_get_tfiar (void)
18217
18218 void __builtin_set_texasr (unsigned long);
18219 void __builtin_set_texasru (unsigned long);
18220 void __builtin_set_tfhar (unsigned long);
18221 void __builtin_set_tfiar (unsigned long);
18222 @end smallexample
18223
18224 Example usage of these low level built-in functions may look like:
18225
18226 @smallexample
18227 #include <htmintrin.h>
18228
18229 int num_retries = 10;
18230
18231 while (1)
18232 @{
18233 if (__builtin_tbegin (0))
18234 @{
18235 /* Transaction State Initiated. */
18236 if (is_locked (lock))
18237 __builtin_tabort (0);
18238 ... transaction code...
18239 __builtin_tend (0);
18240 break;
18241 @}
18242 else
18243 @{
18244 /* Transaction State Failed. Use locks if the transaction
18245 failure is "persistent" or we've tried too many times. */
18246 if (num_retries-- <= 0
18247 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
18248 @{
18249 acquire_lock (lock);
18250 ... non transactional fallback path...
18251 release_lock (lock);
18252 break;
18253 @}
18254 @}
18255 @}
18256 @end smallexample
18257
18258 One final built-in function has been added that returns the value of
18259 the 2-bit Transaction State field of the Machine Status Register (MSR)
18260 as stored in @code{CR0}.
18261
18262 @smallexample
18263 unsigned long __builtin_ttest (void)
18264 @end smallexample
18265
18266 This built-in can be used to determine the current transaction state
18267 using the following code example:
18268
18269 @smallexample
18270 #include <htmintrin.h>
18271
18272 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
18273
18274 if (tx_state == _HTM_TRANSACTIONAL)
18275 @{
18276 /* Code to use in transactional state. */
18277 @}
18278 else if (tx_state == _HTM_NONTRANSACTIONAL)
18279 @{
18280 /* Code to use in non-transactional state. */
18281 @}
18282 else if (tx_state == _HTM_SUSPENDED)
18283 @{
18284 /* Code to use in transaction suspended state. */
18285 @}
18286 @end smallexample
18287
18288 @subsubsection PowerPC HTM High Level Inline Functions
18289
18290 The following high level HTM interface is made available by including
18291 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
18292 where CPU is `power8' or later. This interface is common between PowerPC
18293 and S/390, allowing users to write one HTM source implementation that
18294 can be compiled and executed on either system.
18295
18296 @smallexample
18297 long __TM_simple_begin (void)
18298 long __TM_begin (void* const TM_buff)
18299 long __TM_end (void)
18300 void __TM_abort (void)
18301 void __TM_named_abort (unsigned char const code)
18302 void __TM_resume (void)
18303 void __TM_suspend (void)
18304
18305 long __TM_is_user_abort (void* const TM_buff)
18306 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
18307 long __TM_is_illegal (void* const TM_buff)
18308 long __TM_is_footprint_exceeded (void* const TM_buff)
18309 long __TM_nesting_depth (void* const TM_buff)
18310 long __TM_is_nested_too_deep(void* const TM_buff)
18311 long __TM_is_conflict(void* const TM_buff)
18312 long __TM_is_failure_persistent(void* const TM_buff)
18313 long __TM_failure_address(void* const TM_buff)
18314 long long __TM_failure_code(void* const TM_buff)
18315 @end smallexample
18316
18317 Using these common set of HTM inline functions, we can create
18318 a more portable version of the HTM example in the previous
18319 section that will work on either PowerPC or S/390:
18320
18321 @smallexample
18322 #include <htmxlintrin.h>
18323
18324 int num_retries = 10;
18325 TM_buff_type TM_buff;
18326
18327 while (1)
18328 @{
18329 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
18330 @{
18331 /* Transaction State Initiated. */
18332 if (is_locked (lock))
18333 __TM_abort ();
18334 ... transaction code...
18335 __TM_end ();
18336 break;
18337 @}
18338 else
18339 @{
18340 /* Transaction State Failed. Use locks if the transaction
18341 failure is "persistent" or we've tried too many times. */
18342 if (num_retries-- <= 0
18343 || __TM_is_failure_persistent (TM_buff))
18344 @{
18345 acquire_lock (lock);
18346 ... non transactional fallback path...
18347 release_lock (lock);
18348 break;
18349 @}
18350 @}
18351 @}
18352 @end smallexample
18353
18354 @node RX Built-in Functions
18355 @subsection RX Built-in Functions
18356 GCC supports some of the RX instructions which cannot be expressed in
18357 the C programming language via the use of built-in functions. The
18358 following functions are supported:
18359
18360 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
18361 Generates the @code{brk} machine instruction.
18362 @end deftypefn
18363
18364 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
18365 Generates the @code{clrpsw} machine instruction to clear the specified
18366 bit in the processor status word.
18367 @end deftypefn
18368
18369 @deftypefn {Built-in Function} void __builtin_rx_int (int)
18370 Generates the @code{int} machine instruction to generate an interrupt
18371 with the specified value.
18372 @end deftypefn
18373
18374 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
18375 Generates the @code{machi} machine instruction to add the result of
18376 multiplying the top 16 bits of the two arguments into the
18377 accumulator.
18378 @end deftypefn
18379
18380 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
18381 Generates the @code{maclo} machine instruction to add the result of
18382 multiplying the bottom 16 bits of the two arguments into the
18383 accumulator.
18384 @end deftypefn
18385
18386 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
18387 Generates the @code{mulhi} machine instruction to place the result of
18388 multiplying the top 16 bits of the two arguments into the
18389 accumulator.
18390 @end deftypefn
18391
18392 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
18393 Generates the @code{mullo} machine instruction to place the result of
18394 multiplying the bottom 16 bits of the two arguments into the
18395 accumulator.
18396 @end deftypefn
18397
18398 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
18399 Generates the @code{mvfachi} machine instruction to read the top
18400 32 bits of the accumulator.
18401 @end deftypefn
18402
18403 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
18404 Generates the @code{mvfacmi} machine instruction to read the middle
18405 32 bits of the accumulator.
18406 @end deftypefn
18407
18408 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
18409 Generates the @code{mvfc} machine instruction which reads the control
18410 register specified in its argument and returns its value.
18411 @end deftypefn
18412
18413 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
18414 Generates the @code{mvtachi} machine instruction to set the top
18415 32 bits of the accumulator.
18416 @end deftypefn
18417
18418 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
18419 Generates the @code{mvtaclo} machine instruction to set the bottom
18420 32 bits of the accumulator.
18421 @end deftypefn
18422
18423 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
18424 Generates the @code{mvtc} machine instruction which sets control
18425 register number @code{reg} to @code{val}.
18426 @end deftypefn
18427
18428 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
18429 Generates the @code{mvtipl} machine instruction set the interrupt
18430 priority level.
18431 @end deftypefn
18432
18433 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
18434 Generates the @code{racw} machine instruction to round the accumulator
18435 according to the specified mode.
18436 @end deftypefn
18437
18438 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
18439 Generates the @code{revw} machine instruction which swaps the bytes in
18440 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
18441 and also bits 16--23 occupy bits 24--31 and vice versa.
18442 @end deftypefn
18443
18444 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
18445 Generates the @code{rmpa} machine instruction which initiates a
18446 repeated multiply and accumulate sequence.
18447 @end deftypefn
18448
18449 @deftypefn {Built-in Function} void __builtin_rx_round (float)
18450 Generates the @code{round} machine instruction which returns the
18451 floating-point argument rounded according to the current rounding mode
18452 set in the floating-point status word register.
18453 @end deftypefn
18454
18455 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
18456 Generates the @code{sat} machine instruction which returns the
18457 saturated value of the argument.
18458 @end deftypefn
18459
18460 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
18461 Generates the @code{setpsw} machine instruction to set the specified
18462 bit in the processor status word.
18463 @end deftypefn
18464
18465 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
18466 Generates the @code{wait} machine instruction.
18467 @end deftypefn
18468
18469 @node S/390 System z Built-in Functions
18470 @subsection S/390 System z Built-in Functions
18471 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
18472 Generates the @code{tbegin} machine instruction starting a
18473 non-constrained hardware transaction. If the parameter is non-NULL the
18474 memory area is used to store the transaction diagnostic buffer and
18475 will be passed as first operand to @code{tbegin}. This buffer can be
18476 defined using the @code{struct __htm_tdb} C struct defined in
18477 @code{htmintrin.h} and must reside on a double-word boundary. The
18478 second tbegin operand is set to @code{0xff0c}. This enables
18479 save/restore of all GPRs and disables aborts for FPR and AR
18480 manipulations inside the transaction body. The condition code set by
18481 the tbegin instruction is returned as integer value. The tbegin
18482 instruction by definition overwrites the content of all FPRs. The
18483 compiler will generate code which saves and restores the FPRs. For
18484 soft-float code it is recommended to used the @code{*_nofloat}
18485 variant. In order to prevent a TDB from being written it is required
18486 to pass a constant zero value as parameter. Passing a zero value
18487 through a variable is not sufficient. Although modifications of
18488 access registers inside the transaction will not trigger an
18489 transaction abort it is not supported to actually modify them. Access
18490 registers do not get saved when entering a transaction. They will have
18491 undefined state when reaching the abort code.
18492 @end deftypefn
18493
18494 Macros for the possible return codes of tbegin are defined in the
18495 @code{htmintrin.h} header file:
18496
18497 @table @code
18498 @item _HTM_TBEGIN_STARTED
18499 @code{tbegin} has been executed as part of normal processing. The
18500 transaction body is supposed to be executed.
18501 @item _HTM_TBEGIN_INDETERMINATE
18502 The transaction was aborted due to an indeterminate condition which
18503 might be persistent.
18504 @item _HTM_TBEGIN_TRANSIENT
18505 The transaction aborted due to a transient failure. The transaction
18506 should be re-executed in that case.
18507 @item _HTM_TBEGIN_PERSISTENT
18508 The transaction aborted due to a persistent failure. Re-execution
18509 under same circumstances will not be productive.
18510 @end table
18511
18512 @defmac _HTM_FIRST_USER_ABORT_CODE
18513 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
18514 specifies the first abort code which can be used for
18515 @code{__builtin_tabort}. Values below this threshold are reserved for
18516 machine use.
18517 @end defmac
18518
18519 @deftp {Data type} {struct __htm_tdb}
18520 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
18521 the structure of the transaction diagnostic block as specified in the
18522 Principles of Operation manual chapter 5-91.
18523 @end deftp
18524
18525 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
18526 Same as @code{__builtin_tbegin} but without FPR saves and restores.
18527 Using this variant in code making use of FPRs will leave the FPRs in
18528 undefined state when entering the transaction abort handler code.
18529 @end deftypefn
18530
18531 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
18532 In addition to @code{__builtin_tbegin} a loop for transient failures
18533 is generated. If tbegin returns a condition code of 2 the transaction
18534 will be retried as often as specified in the second argument. The
18535 perform processor assist instruction is used to tell the CPU about the
18536 number of fails so far.
18537 @end deftypefn
18538
18539 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
18540 Same as @code{__builtin_tbegin_retry} but without FPR saves and
18541 restores. Using this variant in code making use of FPRs will leave
18542 the FPRs in undefined state when entering the transaction abort
18543 handler code.
18544 @end deftypefn
18545
18546 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
18547 Generates the @code{tbeginc} machine instruction starting a constrained
18548 hardware transaction. The second operand is set to @code{0xff08}.
18549 @end deftypefn
18550
18551 @deftypefn {Built-in Function} int __builtin_tend (void)
18552 Generates the @code{tend} machine instruction finishing a transaction
18553 and making the changes visible to other threads. The condition code
18554 generated by tend is returned as integer value.
18555 @end deftypefn
18556
18557 @deftypefn {Built-in Function} void __builtin_tabort (int)
18558 Generates the @code{tabort} machine instruction with the specified
18559 abort code. Abort codes from 0 through 255 are reserved and will
18560 result in an error message.
18561 @end deftypefn
18562
18563 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
18564 Generates the @code{ppa rX,rY,1} machine instruction. Where the
18565 integer parameter is loaded into rX and a value of zero is loaded into
18566 rY. The integer parameter specifies the number of times the
18567 transaction repeatedly aborted.
18568 @end deftypefn
18569
18570 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
18571 Generates the @code{etnd} machine instruction. The current nesting
18572 depth is returned as integer value. For a nesting depth of 0 the code
18573 is not executed as part of an transaction.
18574 @end deftypefn
18575
18576 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
18577
18578 Generates the @code{ntstg} machine instruction. The second argument
18579 is written to the first arguments location. The store operation will
18580 not be rolled-back in case of an transaction abort.
18581 @end deftypefn
18582
18583 @node SH Built-in Functions
18584 @subsection SH Built-in Functions
18585 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
18586 families of processors:
18587
18588 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
18589 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
18590 used by system code that manages threads and execution contexts. The compiler
18591 normally does not generate code that modifies the contents of @samp{GBR} and
18592 thus the value is preserved across function calls. Changing the @samp{GBR}
18593 value in user code must be done with caution, since the compiler might use
18594 @samp{GBR} in order to access thread local variables.
18595
18596 @end deftypefn
18597
18598 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
18599 Returns the value that is currently set in the @samp{GBR} register.
18600 Memory loads and stores that use the thread pointer as a base address are
18601 turned into @samp{GBR} based displacement loads and stores, if possible.
18602 For example:
18603 @smallexample
18604 struct my_tcb
18605 @{
18606 int a, b, c, d, e;
18607 @};
18608
18609 int get_tcb_value (void)
18610 @{
18611 // Generate @samp{mov.l @@(8,gbr),r0} instruction
18612 return ((my_tcb*)__builtin_thread_pointer ())->c;
18613 @}
18614
18615 @end smallexample
18616 @end deftypefn
18617
18618 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
18619 Returns the value that is currently set in the @samp{FPSCR} register.
18620 @end deftypefn
18621
18622 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
18623 Sets the @samp{FPSCR} register to the specified value @var{val}, while
18624 preserving the current values of the FR, SZ and PR bits.
18625 @end deftypefn
18626
18627 @node SPARC VIS Built-in Functions
18628 @subsection SPARC VIS Built-in Functions
18629
18630 GCC supports SIMD operations on the SPARC using both the generic vector
18631 extensions (@pxref{Vector Extensions}) as well as built-in functions for
18632 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
18633 switch, the VIS extension is exposed as the following built-in functions:
18634
18635 @smallexample
18636 typedef int v1si __attribute__ ((vector_size (4)));
18637 typedef int v2si __attribute__ ((vector_size (8)));
18638 typedef short v4hi __attribute__ ((vector_size (8)));
18639 typedef short v2hi __attribute__ ((vector_size (4)));
18640 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
18641 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
18642
18643 void __builtin_vis_write_gsr (int64_t);
18644 int64_t __builtin_vis_read_gsr (void);
18645
18646 void * __builtin_vis_alignaddr (void *, long);
18647 void * __builtin_vis_alignaddrl (void *, long);
18648 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
18649 v2si __builtin_vis_faligndatav2si (v2si, v2si);
18650 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
18651 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
18652
18653 v4hi __builtin_vis_fexpand (v4qi);
18654
18655 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
18656 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
18657 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
18658 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
18659 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
18660 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
18661 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
18662
18663 v4qi __builtin_vis_fpack16 (v4hi);
18664 v8qi __builtin_vis_fpack32 (v2si, v8qi);
18665 v2hi __builtin_vis_fpackfix (v2si);
18666 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
18667
18668 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
18669
18670 long __builtin_vis_edge8 (void *, void *);
18671 long __builtin_vis_edge8l (void *, void *);
18672 long __builtin_vis_edge16 (void *, void *);
18673 long __builtin_vis_edge16l (void *, void *);
18674 long __builtin_vis_edge32 (void *, void *);
18675 long __builtin_vis_edge32l (void *, void *);
18676
18677 long __builtin_vis_fcmple16 (v4hi, v4hi);
18678 long __builtin_vis_fcmple32 (v2si, v2si);
18679 long __builtin_vis_fcmpne16 (v4hi, v4hi);
18680 long __builtin_vis_fcmpne32 (v2si, v2si);
18681 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
18682 long __builtin_vis_fcmpgt32 (v2si, v2si);
18683 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
18684 long __builtin_vis_fcmpeq32 (v2si, v2si);
18685
18686 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
18687 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
18688 v2si __builtin_vis_fpadd32 (v2si, v2si);
18689 v1si __builtin_vis_fpadd32s (v1si, v1si);
18690 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
18691 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
18692 v2si __builtin_vis_fpsub32 (v2si, v2si);
18693 v1si __builtin_vis_fpsub32s (v1si, v1si);
18694
18695 long __builtin_vis_array8 (long, long);
18696 long __builtin_vis_array16 (long, long);
18697 long __builtin_vis_array32 (long, long);
18698 @end smallexample
18699
18700 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
18701 functions also become available:
18702
18703 @smallexample
18704 long __builtin_vis_bmask (long, long);
18705 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
18706 v2si __builtin_vis_bshufflev2si (v2si, v2si);
18707 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
18708 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
18709
18710 long __builtin_vis_edge8n (void *, void *);
18711 long __builtin_vis_edge8ln (void *, void *);
18712 long __builtin_vis_edge16n (void *, void *);
18713 long __builtin_vis_edge16ln (void *, void *);
18714 long __builtin_vis_edge32n (void *, void *);
18715 long __builtin_vis_edge32ln (void *, void *);
18716 @end smallexample
18717
18718 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
18719 functions also become available:
18720
18721 @smallexample
18722 void __builtin_vis_cmask8 (long);
18723 void __builtin_vis_cmask16 (long);
18724 void __builtin_vis_cmask32 (long);
18725
18726 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
18727
18728 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
18729 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
18730 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
18731 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
18732 v2si __builtin_vis_fsll16 (v2si, v2si);
18733 v2si __builtin_vis_fslas16 (v2si, v2si);
18734 v2si __builtin_vis_fsrl16 (v2si, v2si);
18735 v2si __builtin_vis_fsra16 (v2si, v2si);
18736
18737 long __builtin_vis_pdistn (v8qi, v8qi);
18738
18739 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
18740
18741 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
18742 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
18743
18744 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
18745 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
18746 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
18747 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
18748 v2si __builtin_vis_fpadds32 (v2si, v2si);
18749 v1si __builtin_vis_fpadds32s (v1si, v1si);
18750 v2si __builtin_vis_fpsubs32 (v2si, v2si);
18751 v1si __builtin_vis_fpsubs32s (v1si, v1si);
18752
18753 long __builtin_vis_fucmple8 (v8qi, v8qi);
18754 long __builtin_vis_fucmpne8 (v8qi, v8qi);
18755 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
18756 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
18757
18758 float __builtin_vis_fhadds (float, float);
18759 double __builtin_vis_fhaddd (double, double);
18760 float __builtin_vis_fhsubs (float, float);
18761 double __builtin_vis_fhsubd (double, double);
18762 float __builtin_vis_fnhadds (float, float);
18763 double __builtin_vis_fnhaddd (double, double);
18764
18765 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
18766 int64_t __builtin_vis_xmulx (int64_t, int64_t);
18767 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
18768 @end smallexample
18769
18770 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
18771 functions also become available:
18772
18773 @smallexample
18774 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
18775 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
18776 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
18777 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
18778
18779 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
18780 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
18781 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
18782 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
18783
18784 long __builtin_vis_fpcmple8 (v8qi, v8qi);
18785 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
18786 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
18787 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
18788 long __builtin_vis_fpcmpule32 (v2si, v2si);
18789 long __builtin_vis_fpcmpugt32 (v2si, v2si);
18790
18791 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
18792 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
18793 v2si __builtin_vis_fpmax32 (v2si, v2si);
18794
18795 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
18796 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
18797 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
18798
18799
18800 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
18801 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
18802 v2si __builtin_vis_fpmin32 (v2si, v2si);
18803
18804 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
18805 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
18806 v2si __builtin_vis_fpminu32 (v2si, v2si);
18807 @end smallexample
18808
18809 @node SPU Built-in Functions
18810 @subsection SPU Built-in Functions
18811
18812 GCC provides extensions for the SPU processor as described in the
18813 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
18814 implementation differs in several ways.
18815
18816 @itemize @bullet
18817
18818 @item
18819 The optional extension of specifying vector constants in parentheses is
18820 not supported.
18821
18822 @item
18823 A vector initializer requires no cast if the vector constant is of the
18824 same type as the variable it is initializing.
18825
18826 @item
18827 If @code{signed} or @code{unsigned} is omitted, the signedness of the
18828 vector type is the default signedness of the base type. The default
18829 varies depending on the operating system, so a portable program should
18830 always specify the signedness.
18831
18832 @item
18833 By default, the keyword @code{__vector} is added. The macro
18834 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
18835 undefined.
18836
18837 @item
18838 GCC allows using a @code{typedef} name as the type specifier for a
18839 vector type.
18840
18841 @item
18842 For C, overloaded functions are implemented with macros so the following
18843 does not work:
18844
18845 @smallexample
18846 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
18847 @end smallexample
18848
18849 @noindent
18850 Since @code{spu_add} is a macro, the vector constant in the example
18851 is treated as four separate arguments. Wrap the entire argument in
18852 parentheses for this to work.
18853
18854 @item
18855 The extended version of @code{__builtin_expect} is not supported.
18856
18857 @end itemize
18858
18859 @emph{Note:} Only the interface described in the aforementioned
18860 specification is supported. Internally, GCC uses built-in functions to
18861 implement the required functionality, but these are not supported and
18862 are subject to change without notice.
18863
18864 @node TI C6X Built-in Functions
18865 @subsection TI C6X Built-in Functions
18866
18867 GCC provides intrinsics to access certain instructions of the TI C6X
18868 processors. These intrinsics, listed below, are available after
18869 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
18870 to C6X instructions.
18871
18872 @smallexample
18873
18874 int _sadd (int, int)
18875 int _ssub (int, int)
18876 int _sadd2 (int, int)
18877 int _ssub2 (int, int)
18878 long long _mpy2 (int, int)
18879 long long _smpy2 (int, int)
18880 int _add4 (int, int)
18881 int _sub4 (int, int)
18882 int _saddu4 (int, int)
18883
18884 int _smpy (int, int)
18885 int _smpyh (int, int)
18886 int _smpyhl (int, int)
18887 int _smpylh (int, int)
18888
18889 int _sshl (int, int)
18890 int _subc (int, int)
18891
18892 int _avg2 (int, int)
18893 int _avgu4 (int, int)
18894
18895 int _clrr (int, int)
18896 int _extr (int, int)
18897 int _extru (int, int)
18898 int _abs (int)
18899 int _abs2 (int)
18900
18901 @end smallexample
18902
18903 @node TILE-Gx Built-in Functions
18904 @subsection TILE-Gx Built-in Functions
18905
18906 GCC provides intrinsics to access every instruction of the TILE-Gx
18907 processor. The intrinsics are of the form:
18908
18909 @smallexample
18910
18911 unsigned long long __insn_@var{op} (...)
18912
18913 @end smallexample
18914
18915 Where @var{op} is the name of the instruction. Refer to the ISA manual
18916 for the complete list of instructions.
18917
18918 GCC also provides intrinsics to directly access the network registers.
18919 The intrinsics are:
18920
18921 @smallexample
18922
18923 unsigned long long __tile_idn0_receive (void)
18924 unsigned long long __tile_idn1_receive (void)
18925 unsigned long long __tile_udn0_receive (void)
18926 unsigned long long __tile_udn1_receive (void)
18927 unsigned long long __tile_udn2_receive (void)
18928 unsigned long long __tile_udn3_receive (void)
18929 void __tile_idn_send (unsigned long long)
18930 void __tile_udn_send (unsigned long long)
18931
18932 @end smallexample
18933
18934 The intrinsic @code{void __tile_network_barrier (void)} is used to
18935 guarantee that no network operations before it are reordered with
18936 those after it.
18937
18938 @node TILEPro Built-in Functions
18939 @subsection TILEPro Built-in Functions
18940
18941 GCC provides intrinsics to access every instruction of the TILEPro
18942 processor. The intrinsics are of the form:
18943
18944 @smallexample
18945
18946 unsigned __insn_@var{op} (...)
18947
18948 @end smallexample
18949
18950 @noindent
18951 where @var{op} is the name of the instruction. Refer to the ISA manual
18952 for the complete list of instructions.
18953
18954 GCC also provides intrinsics to directly access the network registers.
18955 The intrinsics are:
18956
18957 @smallexample
18958
18959 unsigned __tile_idn0_receive (void)
18960 unsigned __tile_idn1_receive (void)
18961 unsigned __tile_sn_receive (void)
18962 unsigned __tile_udn0_receive (void)
18963 unsigned __tile_udn1_receive (void)
18964 unsigned __tile_udn2_receive (void)
18965 unsigned __tile_udn3_receive (void)
18966 void __tile_idn_send (unsigned)
18967 void __tile_sn_send (unsigned)
18968 void __tile_udn_send (unsigned)
18969
18970 @end smallexample
18971
18972 The intrinsic @code{void __tile_network_barrier (void)} is used to
18973 guarantee that no network operations before it are reordered with
18974 those after it.
18975
18976 @node x86 Built-in Functions
18977 @subsection x86 Built-in Functions
18978
18979 These built-in functions are available for the x86-32 and x86-64 family
18980 of computers, depending on the command-line switches used.
18981
18982 If you specify command-line switches such as @option{-msse},
18983 the compiler could use the extended instruction sets even if the built-ins
18984 are not used explicitly in the program. For this reason, applications
18985 that perform run-time CPU detection must compile separate files for each
18986 supported architecture, using the appropriate flags. In particular,
18987 the file containing the CPU detection code should be compiled without
18988 these options.
18989
18990 The following machine modes are available for use with MMX built-in functions
18991 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
18992 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
18993 vector of eight 8-bit integers. Some of the built-in functions operate on
18994 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
18995
18996 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
18997 of two 32-bit floating-point values.
18998
18999 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
19000 floating-point values. Some instructions use a vector of four 32-bit
19001 integers, these use @code{V4SI}. Finally, some instructions operate on an
19002 entire vector register, interpreting it as a 128-bit integer, these use mode
19003 @code{TI}.
19004
19005 The x86-32 and x86-64 family of processors use additional built-in
19006 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
19007 floating point and @code{TC} 128-bit complex floating-point values.
19008
19009 The following floating-point built-in functions are always available. All
19010 of them implement the function that is part of the name.
19011
19012 @smallexample
19013 __float128 __builtin_fabsq (__float128)
19014 __float128 __builtin_copysignq (__float128, __float128)
19015 @end smallexample
19016
19017 The following built-in functions are always available.
19018
19019 @table @code
19020 @item __float128 __builtin_infq (void)
19021 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
19022 @findex __builtin_infq
19023
19024 @item __float128 __builtin_huge_valq (void)
19025 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
19026 @findex __builtin_huge_valq
19027
19028 @item __float128 __builtin_nanq (void)
19029 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
19030 @findex __builtin_nanq
19031
19032 @item __float128 __builtin_nansq (void)
19033 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
19034 @findex __builtin_nansq
19035 @end table
19036
19037 The following built-in function is always available.
19038
19039 @table @code
19040 @item void __builtin_ia32_pause (void)
19041 Generates the @code{pause} machine instruction with a compiler memory
19042 barrier.
19043 @end table
19044
19045 The following built-in functions are always available and can be used to
19046 check the target platform type.
19047
19048 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
19049 This function runs the CPU detection code to check the type of CPU and the
19050 features supported. This built-in function needs to be invoked along with the built-in functions
19051 to check CPU type and features, @code{__builtin_cpu_is} and
19052 @code{__builtin_cpu_supports}, only when used in a function that is
19053 executed before any constructors are called. The CPU detection code is
19054 automatically executed in a very high priority constructor.
19055
19056 For example, this function has to be used in @code{ifunc} resolvers that
19057 check for CPU type using the built-in functions @code{__builtin_cpu_is}
19058 and @code{__builtin_cpu_supports}, or in constructors on targets that
19059 don't support constructor priority.
19060 @smallexample
19061
19062 static void (*resolve_memcpy (void)) (void)
19063 @{
19064 // ifunc resolvers fire before constructors, explicitly call the init
19065 // function.
19066 __builtin_cpu_init ();
19067 if (__builtin_cpu_supports ("ssse3"))
19068 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
19069 else
19070 return default_memcpy;
19071 @}
19072
19073 void *memcpy (void *, const void *, size_t)
19074 __attribute__ ((ifunc ("resolve_memcpy")));
19075 @end smallexample
19076
19077 @end deftypefn
19078
19079 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
19080 This function returns a positive integer if the run-time CPU
19081 is of type @var{cpuname}
19082 and returns @code{0} otherwise. The following CPU names can be detected:
19083
19084 @table @samp
19085 @item intel
19086 Intel CPU.
19087
19088 @item atom
19089 Intel Atom CPU.
19090
19091 @item core2
19092 Intel Core 2 CPU.
19093
19094 @item corei7
19095 Intel Core i7 CPU.
19096
19097 @item nehalem
19098 Intel Core i7 Nehalem CPU.
19099
19100 @item westmere
19101 Intel Core i7 Westmere CPU.
19102
19103 @item sandybridge
19104 Intel Core i7 Sandy Bridge CPU.
19105
19106 @item amd
19107 AMD CPU.
19108
19109 @item amdfam10h
19110 AMD Family 10h CPU.
19111
19112 @item barcelona
19113 AMD Family 10h Barcelona CPU.
19114
19115 @item shanghai
19116 AMD Family 10h Shanghai CPU.
19117
19118 @item istanbul
19119 AMD Family 10h Istanbul CPU.
19120
19121 @item btver1
19122 AMD Family 14h CPU.
19123
19124 @item amdfam15h
19125 AMD Family 15h CPU.
19126
19127 @item bdver1
19128 AMD Family 15h Bulldozer version 1.
19129
19130 @item bdver2
19131 AMD Family 15h Bulldozer version 2.
19132
19133 @item bdver3
19134 AMD Family 15h Bulldozer version 3.
19135
19136 @item bdver4
19137 AMD Family 15h Bulldozer version 4.
19138
19139 @item btver2
19140 AMD Family 16h CPU.
19141
19142 @item znver1
19143 AMD Family 17h CPU.
19144 @end table
19145
19146 Here is an example:
19147 @smallexample
19148 if (__builtin_cpu_is ("corei7"))
19149 @{
19150 do_corei7 (); // Core i7 specific implementation.
19151 @}
19152 else
19153 @{
19154 do_generic (); // Generic implementation.
19155 @}
19156 @end smallexample
19157 @end deftypefn
19158
19159 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
19160 This function returns a positive integer if the run-time CPU
19161 supports @var{feature}
19162 and returns @code{0} otherwise. The following features can be detected:
19163
19164 @table @samp
19165 @item cmov
19166 CMOV instruction.
19167 @item mmx
19168 MMX instructions.
19169 @item popcnt
19170 POPCNT instruction.
19171 @item sse
19172 SSE instructions.
19173 @item sse2
19174 SSE2 instructions.
19175 @item sse3
19176 SSE3 instructions.
19177 @item ssse3
19178 SSSE3 instructions.
19179 @item sse4.1
19180 SSE4.1 instructions.
19181 @item sse4.2
19182 SSE4.2 instructions.
19183 @item avx
19184 AVX instructions.
19185 @item avx2
19186 AVX2 instructions.
19187 @item avx512f
19188 AVX512F instructions.
19189 @end table
19190
19191 Here is an example:
19192 @smallexample
19193 if (__builtin_cpu_supports ("popcnt"))
19194 @{
19195 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
19196 @}
19197 else
19198 @{
19199 count = generic_countbits (n); //generic implementation.
19200 @}
19201 @end smallexample
19202 @end deftypefn
19203
19204
19205 The following built-in functions are made available by @option{-mmmx}.
19206 All of them generate the machine instruction that is part of the name.
19207
19208 @smallexample
19209 v8qi __builtin_ia32_paddb (v8qi, v8qi)
19210 v4hi __builtin_ia32_paddw (v4hi, v4hi)
19211 v2si __builtin_ia32_paddd (v2si, v2si)
19212 v8qi __builtin_ia32_psubb (v8qi, v8qi)
19213 v4hi __builtin_ia32_psubw (v4hi, v4hi)
19214 v2si __builtin_ia32_psubd (v2si, v2si)
19215 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
19216 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
19217 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
19218 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
19219 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
19220 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
19221 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
19222 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
19223 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
19224 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
19225 di __builtin_ia32_pand (di, di)
19226 di __builtin_ia32_pandn (di,di)
19227 di __builtin_ia32_por (di, di)
19228 di __builtin_ia32_pxor (di, di)
19229 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
19230 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
19231 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
19232 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
19233 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
19234 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
19235 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
19236 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
19237 v2si __builtin_ia32_punpckhdq (v2si, v2si)
19238 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
19239 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
19240 v2si __builtin_ia32_punpckldq (v2si, v2si)
19241 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
19242 v4hi __builtin_ia32_packssdw (v2si, v2si)
19243 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
19244
19245 v4hi __builtin_ia32_psllw (v4hi, v4hi)
19246 v2si __builtin_ia32_pslld (v2si, v2si)
19247 v1di __builtin_ia32_psllq (v1di, v1di)
19248 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
19249 v2si __builtin_ia32_psrld (v2si, v2si)
19250 v1di __builtin_ia32_psrlq (v1di, v1di)
19251 v4hi __builtin_ia32_psraw (v4hi, v4hi)
19252 v2si __builtin_ia32_psrad (v2si, v2si)
19253 v4hi __builtin_ia32_psllwi (v4hi, int)
19254 v2si __builtin_ia32_pslldi (v2si, int)
19255 v1di __builtin_ia32_psllqi (v1di, int)
19256 v4hi __builtin_ia32_psrlwi (v4hi, int)
19257 v2si __builtin_ia32_psrldi (v2si, int)
19258 v1di __builtin_ia32_psrlqi (v1di, int)
19259 v4hi __builtin_ia32_psrawi (v4hi, int)
19260 v2si __builtin_ia32_psradi (v2si, int)
19261
19262 @end smallexample
19263
19264 The following built-in functions are made available either with
19265 @option{-msse}, or with a combination of @option{-m3dnow} and
19266 @option{-march=athlon}. All of them generate the machine
19267 instruction that is part of the name.
19268
19269 @smallexample
19270 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
19271 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
19272 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
19273 v1di __builtin_ia32_psadbw (v8qi, v8qi)
19274 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
19275 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
19276 v8qi __builtin_ia32_pminub (v8qi, v8qi)
19277 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
19278 int __builtin_ia32_pmovmskb (v8qi)
19279 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
19280 void __builtin_ia32_movntq (di *, di)
19281 void __builtin_ia32_sfence (void)
19282 @end smallexample
19283
19284 The following built-in functions are available when @option{-msse} is used.
19285 All of them generate the machine instruction that is part of the name.
19286
19287 @smallexample
19288 int __builtin_ia32_comieq (v4sf, v4sf)
19289 int __builtin_ia32_comineq (v4sf, v4sf)
19290 int __builtin_ia32_comilt (v4sf, v4sf)
19291 int __builtin_ia32_comile (v4sf, v4sf)
19292 int __builtin_ia32_comigt (v4sf, v4sf)
19293 int __builtin_ia32_comige (v4sf, v4sf)
19294 int __builtin_ia32_ucomieq (v4sf, v4sf)
19295 int __builtin_ia32_ucomineq (v4sf, v4sf)
19296 int __builtin_ia32_ucomilt (v4sf, v4sf)
19297 int __builtin_ia32_ucomile (v4sf, v4sf)
19298 int __builtin_ia32_ucomigt (v4sf, v4sf)
19299 int __builtin_ia32_ucomige (v4sf, v4sf)
19300 v4sf __builtin_ia32_addps (v4sf, v4sf)
19301 v4sf __builtin_ia32_subps (v4sf, v4sf)
19302 v4sf __builtin_ia32_mulps (v4sf, v4sf)
19303 v4sf __builtin_ia32_divps (v4sf, v4sf)
19304 v4sf __builtin_ia32_addss (v4sf, v4sf)
19305 v4sf __builtin_ia32_subss (v4sf, v4sf)
19306 v4sf __builtin_ia32_mulss (v4sf, v4sf)
19307 v4sf __builtin_ia32_divss (v4sf, v4sf)
19308 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
19309 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
19310 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
19311 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
19312 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
19313 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
19314 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
19315 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
19316 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
19317 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
19318 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
19319 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
19320 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
19321 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
19322 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
19323 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
19324 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
19325 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
19326 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
19327 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
19328 v4sf __builtin_ia32_maxps (v4sf, v4sf)
19329 v4sf __builtin_ia32_maxss (v4sf, v4sf)
19330 v4sf __builtin_ia32_minps (v4sf, v4sf)
19331 v4sf __builtin_ia32_minss (v4sf, v4sf)
19332 v4sf __builtin_ia32_andps (v4sf, v4sf)
19333 v4sf __builtin_ia32_andnps (v4sf, v4sf)
19334 v4sf __builtin_ia32_orps (v4sf, v4sf)
19335 v4sf __builtin_ia32_xorps (v4sf, v4sf)
19336 v4sf __builtin_ia32_movss (v4sf, v4sf)
19337 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
19338 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
19339 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
19340 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
19341 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
19342 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
19343 v2si __builtin_ia32_cvtps2pi (v4sf)
19344 int __builtin_ia32_cvtss2si (v4sf)
19345 v2si __builtin_ia32_cvttps2pi (v4sf)
19346 int __builtin_ia32_cvttss2si (v4sf)
19347 v4sf __builtin_ia32_rcpps (v4sf)
19348 v4sf __builtin_ia32_rsqrtps (v4sf)
19349 v4sf __builtin_ia32_sqrtps (v4sf)
19350 v4sf __builtin_ia32_rcpss (v4sf)
19351 v4sf __builtin_ia32_rsqrtss (v4sf)
19352 v4sf __builtin_ia32_sqrtss (v4sf)
19353 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
19354 void __builtin_ia32_movntps (float *, v4sf)
19355 int __builtin_ia32_movmskps (v4sf)
19356 @end smallexample
19357
19358 The following built-in functions are available when @option{-msse} is used.
19359
19360 @table @code
19361 @item v4sf __builtin_ia32_loadups (float *)
19362 Generates the @code{movups} machine instruction as a load from memory.
19363 @item void __builtin_ia32_storeups (float *, v4sf)
19364 Generates the @code{movups} machine instruction as a store to memory.
19365 @item v4sf __builtin_ia32_loadss (float *)
19366 Generates the @code{movss} machine instruction as a load from memory.
19367 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
19368 Generates the @code{movhps} machine instruction as a load from memory.
19369 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
19370 Generates the @code{movlps} machine instruction as a load from memory
19371 @item void __builtin_ia32_storehps (v2sf *, v4sf)
19372 Generates the @code{movhps} machine instruction as a store to memory.
19373 @item void __builtin_ia32_storelps (v2sf *, v4sf)
19374 Generates the @code{movlps} machine instruction as a store to memory.
19375 @end table
19376
19377 The following built-in functions are available when @option{-msse2} is used.
19378 All of them generate the machine instruction that is part of the name.
19379
19380 @smallexample
19381 int __builtin_ia32_comisdeq (v2df, v2df)
19382 int __builtin_ia32_comisdlt (v2df, v2df)
19383 int __builtin_ia32_comisdle (v2df, v2df)
19384 int __builtin_ia32_comisdgt (v2df, v2df)
19385 int __builtin_ia32_comisdge (v2df, v2df)
19386 int __builtin_ia32_comisdneq (v2df, v2df)
19387 int __builtin_ia32_ucomisdeq (v2df, v2df)
19388 int __builtin_ia32_ucomisdlt (v2df, v2df)
19389 int __builtin_ia32_ucomisdle (v2df, v2df)
19390 int __builtin_ia32_ucomisdgt (v2df, v2df)
19391 int __builtin_ia32_ucomisdge (v2df, v2df)
19392 int __builtin_ia32_ucomisdneq (v2df, v2df)
19393 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
19394 v2df __builtin_ia32_cmpltpd (v2df, v2df)
19395 v2df __builtin_ia32_cmplepd (v2df, v2df)
19396 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
19397 v2df __builtin_ia32_cmpgepd (v2df, v2df)
19398 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
19399 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
19400 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
19401 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
19402 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
19403 v2df __builtin_ia32_cmpngepd (v2df, v2df)
19404 v2df __builtin_ia32_cmpordpd (v2df, v2df)
19405 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
19406 v2df __builtin_ia32_cmpltsd (v2df, v2df)
19407 v2df __builtin_ia32_cmplesd (v2df, v2df)
19408 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
19409 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
19410 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
19411 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
19412 v2df __builtin_ia32_cmpordsd (v2df, v2df)
19413 v2di __builtin_ia32_paddq (v2di, v2di)
19414 v2di __builtin_ia32_psubq (v2di, v2di)
19415 v2df __builtin_ia32_addpd (v2df, v2df)
19416 v2df __builtin_ia32_subpd (v2df, v2df)
19417 v2df __builtin_ia32_mulpd (v2df, v2df)
19418 v2df __builtin_ia32_divpd (v2df, v2df)
19419 v2df __builtin_ia32_addsd (v2df, v2df)
19420 v2df __builtin_ia32_subsd (v2df, v2df)
19421 v2df __builtin_ia32_mulsd (v2df, v2df)
19422 v2df __builtin_ia32_divsd (v2df, v2df)
19423 v2df __builtin_ia32_minpd (v2df, v2df)
19424 v2df __builtin_ia32_maxpd (v2df, v2df)
19425 v2df __builtin_ia32_minsd (v2df, v2df)
19426 v2df __builtin_ia32_maxsd (v2df, v2df)
19427 v2df __builtin_ia32_andpd (v2df, v2df)
19428 v2df __builtin_ia32_andnpd (v2df, v2df)
19429 v2df __builtin_ia32_orpd (v2df, v2df)
19430 v2df __builtin_ia32_xorpd (v2df, v2df)
19431 v2df __builtin_ia32_movsd (v2df, v2df)
19432 v2df __builtin_ia32_unpckhpd (v2df, v2df)
19433 v2df __builtin_ia32_unpcklpd (v2df, v2df)
19434 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
19435 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
19436 v4si __builtin_ia32_paddd128 (v4si, v4si)
19437 v2di __builtin_ia32_paddq128 (v2di, v2di)
19438 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
19439 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
19440 v4si __builtin_ia32_psubd128 (v4si, v4si)
19441 v2di __builtin_ia32_psubq128 (v2di, v2di)
19442 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
19443 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
19444 v2di __builtin_ia32_pand128 (v2di, v2di)
19445 v2di __builtin_ia32_pandn128 (v2di, v2di)
19446 v2di __builtin_ia32_por128 (v2di, v2di)
19447 v2di __builtin_ia32_pxor128 (v2di, v2di)
19448 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
19449 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
19450 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
19451 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
19452 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
19453 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
19454 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
19455 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
19456 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
19457 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
19458 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
19459 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
19460 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
19461 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
19462 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
19463 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
19464 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
19465 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
19466 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
19467 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
19468 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
19469 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
19470 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
19471 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
19472 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
19473 v2df __builtin_ia32_loadupd (double *)
19474 void __builtin_ia32_storeupd (double *, v2df)
19475 v2df __builtin_ia32_loadhpd (v2df, double const *)
19476 v2df __builtin_ia32_loadlpd (v2df, double const *)
19477 int __builtin_ia32_movmskpd (v2df)
19478 int __builtin_ia32_pmovmskb128 (v16qi)
19479 void __builtin_ia32_movnti (int *, int)
19480 void __builtin_ia32_movnti64 (long long int *, long long int)
19481 void __builtin_ia32_movntpd (double *, v2df)
19482 void __builtin_ia32_movntdq (v2df *, v2df)
19483 v4si __builtin_ia32_pshufd (v4si, int)
19484 v8hi __builtin_ia32_pshuflw (v8hi, int)
19485 v8hi __builtin_ia32_pshufhw (v8hi, int)
19486 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
19487 v2df __builtin_ia32_sqrtpd (v2df)
19488 v2df __builtin_ia32_sqrtsd (v2df)
19489 v2df __builtin_ia32_shufpd (v2df, v2df, int)
19490 v2df __builtin_ia32_cvtdq2pd (v4si)
19491 v4sf __builtin_ia32_cvtdq2ps (v4si)
19492 v4si __builtin_ia32_cvtpd2dq (v2df)
19493 v2si __builtin_ia32_cvtpd2pi (v2df)
19494 v4sf __builtin_ia32_cvtpd2ps (v2df)
19495 v4si __builtin_ia32_cvttpd2dq (v2df)
19496 v2si __builtin_ia32_cvttpd2pi (v2df)
19497 v2df __builtin_ia32_cvtpi2pd (v2si)
19498 int __builtin_ia32_cvtsd2si (v2df)
19499 int __builtin_ia32_cvttsd2si (v2df)
19500 long long __builtin_ia32_cvtsd2si64 (v2df)
19501 long long __builtin_ia32_cvttsd2si64 (v2df)
19502 v4si __builtin_ia32_cvtps2dq (v4sf)
19503 v2df __builtin_ia32_cvtps2pd (v4sf)
19504 v4si __builtin_ia32_cvttps2dq (v4sf)
19505 v2df __builtin_ia32_cvtsi2sd (v2df, int)
19506 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
19507 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
19508 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
19509 void __builtin_ia32_clflush (const void *)
19510 void __builtin_ia32_lfence (void)
19511 void __builtin_ia32_mfence (void)
19512 v16qi __builtin_ia32_loaddqu (const char *)
19513 void __builtin_ia32_storedqu (char *, v16qi)
19514 v1di __builtin_ia32_pmuludq (v2si, v2si)
19515 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
19516 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
19517 v4si __builtin_ia32_pslld128 (v4si, v4si)
19518 v2di __builtin_ia32_psllq128 (v2di, v2di)
19519 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
19520 v4si __builtin_ia32_psrld128 (v4si, v4si)
19521 v2di __builtin_ia32_psrlq128 (v2di, v2di)
19522 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
19523 v4si __builtin_ia32_psrad128 (v4si, v4si)
19524 v2di __builtin_ia32_pslldqi128 (v2di, int)
19525 v8hi __builtin_ia32_psllwi128 (v8hi, int)
19526 v4si __builtin_ia32_pslldi128 (v4si, int)
19527 v2di __builtin_ia32_psllqi128 (v2di, int)
19528 v2di __builtin_ia32_psrldqi128 (v2di, int)
19529 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
19530 v4si __builtin_ia32_psrldi128 (v4si, int)
19531 v2di __builtin_ia32_psrlqi128 (v2di, int)
19532 v8hi __builtin_ia32_psrawi128 (v8hi, int)
19533 v4si __builtin_ia32_psradi128 (v4si, int)
19534 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
19535 v2di __builtin_ia32_movq128 (v2di)
19536 @end smallexample
19537
19538 The following built-in functions are available when @option{-msse3} is used.
19539 All of them generate the machine instruction that is part of the name.
19540
19541 @smallexample
19542 v2df __builtin_ia32_addsubpd (v2df, v2df)
19543 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
19544 v2df __builtin_ia32_haddpd (v2df, v2df)
19545 v4sf __builtin_ia32_haddps (v4sf, v4sf)
19546 v2df __builtin_ia32_hsubpd (v2df, v2df)
19547 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
19548 v16qi __builtin_ia32_lddqu (char const *)
19549 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
19550 v4sf __builtin_ia32_movshdup (v4sf)
19551 v4sf __builtin_ia32_movsldup (v4sf)
19552 void __builtin_ia32_mwait (unsigned int, unsigned int)
19553 @end smallexample
19554
19555 The following built-in functions are available when @option{-mssse3} is used.
19556 All of them generate the machine instruction that is part of the name.
19557
19558 @smallexample
19559 v2si __builtin_ia32_phaddd (v2si, v2si)
19560 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
19561 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
19562 v2si __builtin_ia32_phsubd (v2si, v2si)
19563 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
19564 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
19565 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
19566 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
19567 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
19568 v8qi __builtin_ia32_psignb (v8qi, v8qi)
19569 v2si __builtin_ia32_psignd (v2si, v2si)
19570 v4hi __builtin_ia32_psignw (v4hi, v4hi)
19571 v1di __builtin_ia32_palignr (v1di, v1di, int)
19572 v8qi __builtin_ia32_pabsb (v8qi)
19573 v2si __builtin_ia32_pabsd (v2si)
19574 v4hi __builtin_ia32_pabsw (v4hi)
19575 @end smallexample
19576
19577 The following built-in functions are available when @option{-mssse3} is used.
19578 All of them generate the machine instruction that is part of the name.
19579
19580 @smallexample
19581 v4si __builtin_ia32_phaddd128 (v4si, v4si)
19582 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
19583 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
19584 v4si __builtin_ia32_phsubd128 (v4si, v4si)
19585 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
19586 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
19587 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
19588 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
19589 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
19590 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
19591 v4si __builtin_ia32_psignd128 (v4si, v4si)
19592 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
19593 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
19594 v16qi __builtin_ia32_pabsb128 (v16qi)
19595 v4si __builtin_ia32_pabsd128 (v4si)
19596 v8hi __builtin_ia32_pabsw128 (v8hi)
19597 @end smallexample
19598
19599 The following built-in functions are available when @option{-msse4.1} is
19600 used. All of them generate the machine instruction that is part of the
19601 name.
19602
19603 @smallexample
19604 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
19605 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
19606 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
19607 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
19608 v2df __builtin_ia32_dppd (v2df, v2df, const int)
19609 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
19610 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
19611 v2di __builtin_ia32_movntdqa (v2di *);
19612 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
19613 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
19614 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
19615 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
19616 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
19617 v8hi __builtin_ia32_phminposuw128 (v8hi)
19618 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
19619 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
19620 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
19621 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
19622 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
19623 v4si __builtin_ia32_pminsd128 (v4si, v4si)
19624 v4si __builtin_ia32_pminud128 (v4si, v4si)
19625 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
19626 v4si __builtin_ia32_pmovsxbd128 (v16qi)
19627 v2di __builtin_ia32_pmovsxbq128 (v16qi)
19628 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
19629 v2di __builtin_ia32_pmovsxdq128 (v4si)
19630 v4si __builtin_ia32_pmovsxwd128 (v8hi)
19631 v2di __builtin_ia32_pmovsxwq128 (v8hi)
19632 v4si __builtin_ia32_pmovzxbd128 (v16qi)
19633 v2di __builtin_ia32_pmovzxbq128 (v16qi)
19634 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
19635 v2di __builtin_ia32_pmovzxdq128 (v4si)
19636 v4si __builtin_ia32_pmovzxwd128 (v8hi)
19637 v2di __builtin_ia32_pmovzxwq128 (v8hi)
19638 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
19639 v4si __builtin_ia32_pmulld128 (v4si, v4si)
19640 int __builtin_ia32_ptestc128 (v2di, v2di)
19641 int __builtin_ia32_ptestnzc128 (v2di, v2di)
19642 int __builtin_ia32_ptestz128 (v2di, v2di)
19643 v2df __builtin_ia32_roundpd (v2df, const int)
19644 v4sf __builtin_ia32_roundps (v4sf, const int)
19645 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
19646 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
19647 @end smallexample
19648
19649 The following built-in functions are available when @option{-msse4.1} is
19650 used.
19651
19652 @table @code
19653 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
19654 Generates the @code{insertps} machine instruction.
19655 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
19656 Generates the @code{pextrb} machine instruction.
19657 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
19658 Generates the @code{pinsrb} machine instruction.
19659 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
19660 Generates the @code{pinsrd} machine instruction.
19661 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
19662 Generates the @code{pinsrq} machine instruction in 64bit mode.
19663 @end table
19664
19665 The following built-in functions are changed to generate new SSE4.1
19666 instructions when @option{-msse4.1} is used.
19667
19668 @table @code
19669 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
19670 Generates the @code{extractps} machine instruction.
19671 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
19672 Generates the @code{pextrd} machine instruction.
19673 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
19674 Generates the @code{pextrq} machine instruction in 64bit mode.
19675 @end table
19676
19677 The following built-in functions are available when @option{-msse4.2} is
19678 used. All of them generate the machine instruction that is part of the
19679 name.
19680
19681 @smallexample
19682 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
19683 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
19684 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
19685 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
19686 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
19687 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
19688 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
19689 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
19690 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
19691 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
19692 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
19693 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
19694 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
19695 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
19696 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
19697 @end smallexample
19698
19699 The following built-in functions are available when @option{-msse4.2} is
19700 used.
19701
19702 @table @code
19703 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
19704 Generates the @code{crc32b} machine instruction.
19705 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
19706 Generates the @code{crc32w} machine instruction.
19707 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
19708 Generates the @code{crc32l} machine instruction.
19709 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
19710 Generates the @code{crc32q} machine instruction.
19711 @end table
19712
19713 The following built-in functions are changed to generate new SSE4.2
19714 instructions when @option{-msse4.2} is used.
19715
19716 @table @code
19717 @item int __builtin_popcount (unsigned int)
19718 Generates the @code{popcntl} machine instruction.
19719 @item int __builtin_popcountl (unsigned long)
19720 Generates the @code{popcntl} or @code{popcntq} machine instruction,
19721 depending on the size of @code{unsigned long}.
19722 @item int __builtin_popcountll (unsigned long long)
19723 Generates the @code{popcntq} machine instruction.
19724 @end table
19725
19726 The following built-in functions are available when @option{-mavx} is
19727 used. All of them generate the machine instruction that is part of the
19728 name.
19729
19730 @smallexample
19731 v4df __builtin_ia32_addpd256 (v4df,v4df)
19732 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
19733 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
19734 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
19735 v4df __builtin_ia32_andnpd256 (v4df,v4df)
19736 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
19737 v4df __builtin_ia32_andpd256 (v4df,v4df)
19738 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
19739 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
19740 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
19741 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
19742 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
19743 v2df __builtin_ia32_cmppd (v2df,v2df,int)
19744 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
19745 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
19746 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
19747 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
19748 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
19749 v4df __builtin_ia32_cvtdq2pd256 (v4si)
19750 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
19751 v4si __builtin_ia32_cvtpd2dq256 (v4df)
19752 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
19753 v8si __builtin_ia32_cvtps2dq256 (v8sf)
19754 v4df __builtin_ia32_cvtps2pd256 (v4sf)
19755 v4si __builtin_ia32_cvttpd2dq256 (v4df)
19756 v8si __builtin_ia32_cvttps2dq256 (v8sf)
19757 v4df __builtin_ia32_divpd256 (v4df,v4df)
19758 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
19759 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
19760 v4df __builtin_ia32_haddpd256 (v4df,v4df)
19761 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
19762 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
19763 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
19764 v32qi __builtin_ia32_lddqu256 (pcchar)
19765 v32qi __builtin_ia32_loaddqu256 (pcchar)
19766 v4df __builtin_ia32_loadupd256 (pcdouble)
19767 v8sf __builtin_ia32_loadups256 (pcfloat)
19768 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
19769 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
19770 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
19771 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
19772 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
19773 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
19774 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
19775 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
19776 v4df __builtin_ia32_maxpd256 (v4df,v4df)
19777 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
19778 v4df __builtin_ia32_minpd256 (v4df,v4df)
19779 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
19780 v4df __builtin_ia32_movddup256 (v4df)
19781 int __builtin_ia32_movmskpd256 (v4df)
19782 int __builtin_ia32_movmskps256 (v8sf)
19783 v8sf __builtin_ia32_movshdup256 (v8sf)
19784 v8sf __builtin_ia32_movsldup256 (v8sf)
19785 v4df __builtin_ia32_mulpd256 (v4df,v4df)
19786 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
19787 v4df __builtin_ia32_orpd256 (v4df,v4df)
19788 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
19789 v2df __builtin_ia32_pd_pd256 (v4df)
19790 v4df __builtin_ia32_pd256_pd (v2df)
19791 v4sf __builtin_ia32_ps_ps256 (v8sf)
19792 v8sf __builtin_ia32_ps256_ps (v4sf)
19793 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
19794 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
19795 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
19796 v8sf __builtin_ia32_rcpps256 (v8sf)
19797 v4df __builtin_ia32_roundpd256 (v4df,int)
19798 v8sf __builtin_ia32_roundps256 (v8sf,int)
19799 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
19800 v8sf __builtin_ia32_rsqrtps256 (v8sf)
19801 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
19802 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
19803 v4si __builtin_ia32_si_si256 (v8si)
19804 v8si __builtin_ia32_si256_si (v4si)
19805 v4df __builtin_ia32_sqrtpd256 (v4df)
19806 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
19807 v8sf __builtin_ia32_sqrtps256 (v8sf)
19808 void __builtin_ia32_storedqu256 (pchar,v32qi)
19809 void __builtin_ia32_storeupd256 (pdouble,v4df)
19810 void __builtin_ia32_storeups256 (pfloat,v8sf)
19811 v4df __builtin_ia32_subpd256 (v4df,v4df)
19812 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
19813 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
19814 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
19815 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
19816 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
19817 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
19818 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
19819 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
19820 v4sf __builtin_ia32_vbroadcastss (pcfloat)
19821 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
19822 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
19823 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
19824 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
19825 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
19826 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
19827 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
19828 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
19829 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
19830 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
19831 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
19832 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
19833 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
19834 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
19835 v2df __builtin_ia32_vpermilpd (v2df,int)
19836 v4df __builtin_ia32_vpermilpd256 (v4df,int)
19837 v4sf __builtin_ia32_vpermilps (v4sf,int)
19838 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
19839 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
19840 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
19841 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
19842 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
19843 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
19844 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
19845 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
19846 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
19847 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
19848 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
19849 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
19850 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
19851 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
19852 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
19853 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
19854 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
19855 void __builtin_ia32_vzeroall (void)
19856 void __builtin_ia32_vzeroupper (void)
19857 v4df __builtin_ia32_xorpd256 (v4df,v4df)
19858 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
19859 @end smallexample
19860
19861 The following built-in functions are available when @option{-mavx2} is
19862 used. All of them generate the machine instruction that is part of the
19863 name.
19864
19865 @smallexample
19866 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
19867 v32qi __builtin_ia32_pabsb256 (v32qi)
19868 v16hi __builtin_ia32_pabsw256 (v16hi)
19869 v8si __builtin_ia32_pabsd256 (v8si)
19870 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
19871 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
19872 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
19873 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
19874 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
19875 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
19876 v8si __builtin_ia32_paddd256 (v8si,v8si)
19877 v4di __builtin_ia32_paddq256 (v4di,v4di)
19878 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
19879 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
19880 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
19881 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
19882 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
19883 v4di __builtin_ia32_andsi256 (v4di,v4di)
19884 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
19885 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
19886 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
19887 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
19888 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
19889 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
19890 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
19891 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
19892 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
19893 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
19894 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
19895 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
19896 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
19897 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
19898 v8si __builtin_ia32_phaddd256 (v8si,v8si)
19899 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
19900 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
19901 v8si __builtin_ia32_phsubd256 (v8si,v8si)
19902 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
19903 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
19904 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
19905 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
19906 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
19907 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
19908 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
19909 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
19910 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
19911 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
19912 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
19913 v8si __builtin_ia32_pminsd256 (v8si,v8si)
19914 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
19915 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
19916 v8si __builtin_ia32_pminud256 (v8si,v8si)
19917 int __builtin_ia32_pmovmskb256 (v32qi)
19918 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
19919 v8si __builtin_ia32_pmovsxbd256 (v16qi)
19920 v4di __builtin_ia32_pmovsxbq256 (v16qi)
19921 v8si __builtin_ia32_pmovsxwd256 (v8hi)
19922 v4di __builtin_ia32_pmovsxwq256 (v8hi)
19923 v4di __builtin_ia32_pmovsxdq256 (v4si)
19924 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
19925 v8si __builtin_ia32_pmovzxbd256 (v16qi)
19926 v4di __builtin_ia32_pmovzxbq256 (v16qi)
19927 v8si __builtin_ia32_pmovzxwd256 (v8hi)
19928 v4di __builtin_ia32_pmovzxwq256 (v8hi)
19929 v4di __builtin_ia32_pmovzxdq256 (v4si)
19930 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
19931 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
19932 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
19933 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
19934 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
19935 v8si __builtin_ia32_pmulld256 (v8si,v8si)
19936 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
19937 v4di __builtin_ia32_por256 (v4di,v4di)
19938 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
19939 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
19940 v8si __builtin_ia32_pshufd256 (v8si,int)
19941 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
19942 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
19943 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
19944 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
19945 v8si __builtin_ia32_psignd256 (v8si,v8si)
19946 v4di __builtin_ia32_pslldqi256 (v4di,int)
19947 v16hi __builtin_ia32_psllwi256 (16hi,int)
19948 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
19949 v8si __builtin_ia32_pslldi256 (v8si,int)
19950 v8si __builtin_ia32_pslld256(v8si,v4si)
19951 v4di __builtin_ia32_psllqi256 (v4di,int)
19952 v4di __builtin_ia32_psllq256(v4di,v2di)
19953 v16hi __builtin_ia32_psrawi256 (v16hi,int)
19954 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
19955 v8si __builtin_ia32_psradi256 (v8si,int)
19956 v8si __builtin_ia32_psrad256 (v8si,v4si)
19957 v4di __builtin_ia32_psrldqi256 (v4di, int)
19958 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
19959 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
19960 v8si __builtin_ia32_psrldi256 (v8si,int)
19961 v8si __builtin_ia32_psrld256 (v8si,v4si)
19962 v4di __builtin_ia32_psrlqi256 (v4di,int)
19963 v4di __builtin_ia32_psrlq256(v4di,v2di)
19964 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
19965 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
19966 v8si __builtin_ia32_psubd256 (v8si,v8si)
19967 v4di __builtin_ia32_psubq256 (v4di,v4di)
19968 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
19969 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
19970 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
19971 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
19972 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
19973 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
19974 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
19975 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
19976 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
19977 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
19978 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
19979 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
19980 v4di __builtin_ia32_pxor256 (v4di,v4di)
19981 v4di __builtin_ia32_movntdqa256 (pv4di)
19982 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
19983 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
19984 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
19985 v4di __builtin_ia32_vbroadcastsi256 (v2di)
19986 v4si __builtin_ia32_pblendd128 (v4si,v4si)
19987 v8si __builtin_ia32_pblendd256 (v8si,v8si)
19988 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
19989 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
19990 v8si __builtin_ia32_pbroadcastd256 (v4si)
19991 v4di __builtin_ia32_pbroadcastq256 (v2di)
19992 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
19993 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
19994 v4si __builtin_ia32_pbroadcastd128 (v4si)
19995 v2di __builtin_ia32_pbroadcastq128 (v2di)
19996 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
19997 v4df __builtin_ia32_permdf256 (v4df,int)
19998 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
19999 v4di __builtin_ia32_permdi256 (v4di,int)
20000 v4di __builtin_ia32_permti256 (v4di,v4di,int)
20001 v4di __builtin_ia32_extract128i256 (v4di,int)
20002 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
20003 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
20004 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
20005 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
20006 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
20007 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
20008 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
20009 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
20010 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
20011 v8si __builtin_ia32_psllv8si (v8si,v8si)
20012 v4si __builtin_ia32_psllv4si (v4si,v4si)
20013 v4di __builtin_ia32_psllv4di (v4di,v4di)
20014 v2di __builtin_ia32_psllv2di (v2di,v2di)
20015 v8si __builtin_ia32_psrav8si (v8si,v8si)
20016 v4si __builtin_ia32_psrav4si (v4si,v4si)
20017 v8si __builtin_ia32_psrlv8si (v8si,v8si)
20018 v4si __builtin_ia32_psrlv4si (v4si,v4si)
20019 v4di __builtin_ia32_psrlv4di (v4di,v4di)
20020 v2di __builtin_ia32_psrlv2di (v2di,v2di)
20021 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
20022 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
20023 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
20024 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
20025 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
20026 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
20027 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
20028 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
20029 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
20030 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
20031 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
20032 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
20033 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
20034 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
20035 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
20036 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
20037 @end smallexample
20038
20039 The following built-in functions are available when @option{-maes} is
20040 used. All of them generate the machine instruction that is part of the
20041 name.
20042
20043 @smallexample
20044 v2di __builtin_ia32_aesenc128 (v2di, v2di)
20045 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
20046 v2di __builtin_ia32_aesdec128 (v2di, v2di)
20047 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
20048 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
20049 v2di __builtin_ia32_aesimc128 (v2di)
20050 @end smallexample
20051
20052 The following built-in function is available when @option{-mpclmul} is
20053 used.
20054
20055 @table @code
20056 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
20057 Generates the @code{pclmulqdq} machine instruction.
20058 @end table
20059
20060 The following built-in function is available when @option{-mfsgsbase} is
20061 used. All of them generate the machine instruction that is part of the
20062 name.
20063
20064 @smallexample
20065 unsigned int __builtin_ia32_rdfsbase32 (void)
20066 unsigned long long __builtin_ia32_rdfsbase64 (void)
20067 unsigned int __builtin_ia32_rdgsbase32 (void)
20068 unsigned long long __builtin_ia32_rdgsbase64 (void)
20069 void _writefsbase_u32 (unsigned int)
20070 void _writefsbase_u64 (unsigned long long)
20071 void _writegsbase_u32 (unsigned int)
20072 void _writegsbase_u64 (unsigned long long)
20073 @end smallexample
20074
20075 The following built-in function is available when @option{-mrdrnd} is
20076 used. All of them generate the machine instruction that is part of the
20077 name.
20078
20079 @smallexample
20080 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
20081 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
20082 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
20083 @end smallexample
20084
20085 The following built-in functions are available when @option{-msse4a} is used.
20086 All of them generate the machine instruction that is part of the name.
20087
20088 @smallexample
20089 void __builtin_ia32_movntsd (double *, v2df)
20090 void __builtin_ia32_movntss (float *, v4sf)
20091 v2di __builtin_ia32_extrq (v2di, v16qi)
20092 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
20093 v2di __builtin_ia32_insertq (v2di, v2di)
20094 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
20095 @end smallexample
20096
20097 The following built-in functions are available when @option{-mxop} is used.
20098 @smallexample
20099 v2df __builtin_ia32_vfrczpd (v2df)
20100 v4sf __builtin_ia32_vfrczps (v4sf)
20101 v2df __builtin_ia32_vfrczsd (v2df)
20102 v4sf __builtin_ia32_vfrczss (v4sf)
20103 v4df __builtin_ia32_vfrczpd256 (v4df)
20104 v8sf __builtin_ia32_vfrczps256 (v8sf)
20105 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
20106 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
20107 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
20108 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
20109 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
20110 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
20111 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
20112 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
20113 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
20114 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
20115 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
20116 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
20117 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
20118 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
20119 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20120 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
20121 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
20122 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
20123 v4si __builtin_ia32_vpcomequd (v4si, v4si)
20124 v2di __builtin_ia32_vpcomequq (v2di, v2di)
20125 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
20126 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
20127 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
20128 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
20129 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
20130 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
20131 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
20132 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
20133 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
20134 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
20135 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
20136 v4si __builtin_ia32_vpcomged (v4si, v4si)
20137 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
20138 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
20139 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
20140 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
20141 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
20142 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
20143 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
20144 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
20145 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
20146 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
20147 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
20148 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
20149 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
20150 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
20151 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
20152 v4si __builtin_ia32_vpcomled (v4si, v4si)
20153 v2di __builtin_ia32_vpcomleq (v2di, v2di)
20154 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
20155 v4si __builtin_ia32_vpcomleud (v4si, v4si)
20156 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
20157 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
20158 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
20159 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
20160 v4si __builtin_ia32_vpcomltd (v4si, v4si)
20161 v2di __builtin_ia32_vpcomltq (v2di, v2di)
20162 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
20163 v4si __builtin_ia32_vpcomltud (v4si, v4si)
20164 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
20165 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
20166 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
20167 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
20168 v4si __builtin_ia32_vpcomned (v4si, v4si)
20169 v2di __builtin_ia32_vpcomneq (v2di, v2di)
20170 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
20171 v4si __builtin_ia32_vpcomneud (v4si, v4si)
20172 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
20173 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
20174 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
20175 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
20176 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
20177 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
20178 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
20179 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
20180 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
20181 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
20182 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
20183 v4si __builtin_ia32_vphaddbd (v16qi)
20184 v2di __builtin_ia32_vphaddbq (v16qi)
20185 v8hi __builtin_ia32_vphaddbw (v16qi)
20186 v2di __builtin_ia32_vphadddq (v4si)
20187 v4si __builtin_ia32_vphaddubd (v16qi)
20188 v2di __builtin_ia32_vphaddubq (v16qi)
20189 v8hi __builtin_ia32_vphaddubw (v16qi)
20190 v2di __builtin_ia32_vphaddudq (v4si)
20191 v4si __builtin_ia32_vphadduwd (v8hi)
20192 v2di __builtin_ia32_vphadduwq (v8hi)
20193 v4si __builtin_ia32_vphaddwd (v8hi)
20194 v2di __builtin_ia32_vphaddwq (v8hi)
20195 v8hi __builtin_ia32_vphsubbw (v16qi)
20196 v2di __builtin_ia32_vphsubdq (v4si)
20197 v4si __builtin_ia32_vphsubwd (v8hi)
20198 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
20199 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
20200 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
20201 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
20202 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
20203 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
20204 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
20205 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
20206 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
20207 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
20208 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
20209 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
20210 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
20211 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
20212 v4si __builtin_ia32_vprotd (v4si, v4si)
20213 v2di __builtin_ia32_vprotq (v2di, v2di)
20214 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
20215 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
20216 v4si __builtin_ia32_vpshad (v4si, v4si)
20217 v2di __builtin_ia32_vpshaq (v2di, v2di)
20218 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
20219 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
20220 v4si __builtin_ia32_vpshld (v4si, v4si)
20221 v2di __builtin_ia32_vpshlq (v2di, v2di)
20222 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
20223 @end smallexample
20224
20225 The following built-in functions are available when @option{-mfma4} is used.
20226 All of them generate the machine instruction that is part of the name.
20227
20228 @smallexample
20229 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
20230 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
20231 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
20232 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
20233 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
20234 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
20235 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
20236 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
20237 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
20238 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
20239 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
20240 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
20241 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
20242 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
20243 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
20244 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
20245 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
20246 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
20247 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
20248 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
20249 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
20250 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
20251 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
20252 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
20253 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
20254 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
20255 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
20256 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
20257 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
20258 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
20259 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
20260 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
20261
20262 @end smallexample
20263
20264 The following built-in functions are available when @option{-mlwp} is used.
20265
20266 @smallexample
20267 void __builtin_ia32_llwpcb16 (void *);
20268 void __builtin_ia32_llwpcb32 (void *);
20269 void __builtin_ia32_llwpcb64 (void *);
20270 void * __builtin_ia32_llwpcb16 (void);
20271 void * __builtin_ia32_llwpcb32 (void);
20272 void * __builtin_ia32_llwpcb64 (void);
20273 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
20274 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
20275 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
20276 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
20277 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
20278 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
20279 @end smallexample
20280
20281 The following built-in functions are available when @option{-mbmi} is used.
20282 All of them generate the machine instruction that is part of the name.
20283 @smallexample
20284 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
20285 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
20286 @end smallexample
20287
20288 The following built-in functions are available when @option{-mbmi2} is used.
20289 All of them generate the machine instruction that is part of the name.
20290 @smallexample
20291 unsigned int _bzhi_u32 (unsigned int, unsigned int)
20292 unsigned int _pdep_u32 (unsigned int, unsigned int)
20293 unsigned int _pext_u32 (unsigned int, unsigned int)
20294 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
20295 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
20296 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
20297 @end smallexample
20298
20299 The following built-in functions are available when @option{-mlzcnt} is used.
20300 All of them generate the machine instruction that is part of the name.
20301 @smallexample
20302 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
20303 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
20304 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
20305 @end smallexample
20306
20307 The following built-in functions are available when @option{-mfxsr} is used.
20308 All of them generate the machine instruction that is part of the name.
20309 @smallexample
20310 void __builtin_ia32_fxsave (void *)
20311 void __builtin_ia32_fxrstor (void *)
20312 void __builtin_ia32_fxsave64 (void *)
20313 void __builtin_ia32_fxrstor64 (void *)
20314 @end smallexample
20315
20316 The following built-in functions are available when @option{-mxsave} is used.
20317 All of them generate the machine instruction that is part of the name.
20318 @smallexample
20319 void __builtin_ia32_xsave (void *, long long)
20320 void __builtin_ia32_xrstor (void *, long long)
20321 void __builtin_ia32_xsave64 (void *, long long)
20322 void __builtin_ia32_xrstor64 (void *, long long)
20323 @end smallexample
20324
20325 The following built-in functions are available when @option{-mxsaveopt} is used.
20326 All of them generate the machine instruction that is part of the name.
20327 @smallexample
20328 void __builtin_ia32_xsaveopt (void *, long long)
20329 void __builtin_ia32_xsaveopt64 (void *, long long)
20330 @end smallexample
20331
20332 The following built-in functions are available when @option{-mtbm} is used.
20333 Both of them generate the immediate form of the bextr machine instruction.
20334 @smallexample
20335 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
20336 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
20337 @end smallexample
20338
20339
20340 The following built-in functions are available when @option{-m3dnow} is used.
20341 All of them generate the machine instruction that is part of the name.
20342
20343 @smallexample
20344 void __builtin_ia32_femms (void)
20345 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
20346 v2si __builtin_ia32_pf2id (v2sf)
20347 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
20348 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
20349 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
20350 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
20351 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
20352 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
20353 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
20354 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
20355 v2sf __builtin_ia32_pfrcp (v2sf)
20356 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
20357 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
20358 v2sf __builtin_ia32_pfrsqrt (v2sf)
20359 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
20360 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
20361 v2sf __builtin_ia32_pi2fd (v2si)
20362 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
20363 @end smallexample
20364
20365 The following built-in functions are available when both @option{-m3dnow}
20366 and @option{-march=athlon} are used. All of them generate the machine
20367 instruction that is part of the name.
20368
20369 @smallexample
20370 v2si __builtin_ia32_pf2iw (v2sf)
20371 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
20372 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
20373 v2sf __builtin_ia32_pi2fw (v2si)
20374 v2sf __builtin_ia32_pswapdsf (v2sf)
20375 v2si __builtin_ia32_pswapdsi (v2si)
20376 @end smallexample
20377
20378 The following built-in functions are available when @option{-mrtm} is used
20379 They are used for restricted transactional memory. These are the internal
20380 low level functions. Normally the functions in
20381 @ref{x86 transactional memory intrinsics} should be used instead.
20382
20383 @smallexample
20384 int __builtin_ia32_xbegin ()
20385 void __builtin_ia32_xend ()
20386 void __builtin_ia32_xabort (status)
20387 int __builtin_ia32_xtest ()
20388 @end smallexample
20389
20390 The following built-in functions are available when @option{-mmwaitx} is used.
20391 All of them generate the machine instruction that is part of the name.
20392 @smallexample
20393 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
20394 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
20395 @end smallexample
20396
20397 The following built-in functions are available when @option{-mclzero} is used.
20398 All of them generate the machine instruction that is part of the name.
20399 @smallexample
20400 void __builtin_i32_clzero (void *)
20401 @end smallexample
20402
20403 The following built-in functions are available when @option{-mpku} is used.
20404 They generate reads and writes to PKRU.
20405 @smallexample
20406 void __builtin_ia32_wrpkru (unsigned int)
20407 unsigned int __builtin_ia32_rdpkru ()
20408 @end smallexample
20409
20410 @node x86 transactional memory intrinsics
20411 @subsection x86 Transactional Memory Intrinsics
20412
20413 These hardware transactional memory intrinsics for x86 allow you to use
20414 memory transactions with RTM (Restricted Transactional Memory).
20415 This support is enabled with the @option{-mrtm} option.
20416 For using HLE (Hardware Lock Elision) see
20417 @ref{x86 specific memory model extensions for transactional memory} instead.
20418
20419 A memory transaction commits all changes to memory in an atomic way,
20420 as visible to other threads. If the transaction fails it is rolled back
20421 and all side effects discarded.
20422
20423 Generally there is no guarantee that a memory transaction ever succeeds
20424 and suitable fallback code always needs to be supplied.
20425
20426 @deftypefn {RTM Function} {unsigned} _xbegin ()
20427 Start a RTM (Restricted Transactional Memory) transaction.
20428 Returns @code{_XBEGIN_STARTED} when the transaction
20429 started successfully (note this is not 0, so the constant has to be
20430 explicitly tested).
20431
20432 If the transaction aborts, all side-effects
20433 are undone and an abort code encoded as a bit mask is returned.
20434 The following macros are defined:
20435
20436 @table @code
20437 @item _XABORT_EXPLICIT
20438 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
20439 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
20440 @item _XABORT_RETRY
20441 Transaction retry is possible.
20442 @item _XABORT_CONFLICT
20443 Transaction abort due to a memory conflict with another thread.
20444 @item _XABORT_CAPACITY
20445 Transaction abort due to the transaction using too much memory.
20446 @item _XABORT_DEBUG
20447 Transaction abort due to a debug trap.
20448 @item _XABORT_NESTED
20449 Transaction abort in an inner nested transaction.
20450 @end table
20451
20452 There is no guarantee
20453 any transaction ever succeeds, so there always needs to be a valid
20454 fallback path.
20455 @end deftypefn
20456
20457 @deftypefn {RTM Function} {void} _xend ()
20458 Commit the current transaction. When no transaction is active this faults.
20459 All memory side-effects of the transaction become visible
20460 to other threads in an atomic manner.
20461 @end deftypefn
20462
20463 @deftypefn {RTM Function} {int} _xtest ()
20464 Return a nonzero value if a transaction is currently active, otherwise 0.
20465 @end deftypefn
20466
20467 @deftypefn {RTM Function} {void} _xabort (status)
20468 Abort the current transaction. When no transaction is active this is a no-op.
20469 The @var{status} is an 8-bit constant; its value is encoded in the return
20470 value from @code{_xbegin}.
20471 @end deftypefn
20472
20473 Here is an example showing handling for @code{_XABORT_RETRY}
20474 and a fallback path for other failures:
20475
20476 @smallexample
20477 #include <immintrin.h>
20478
20479 int n_tries, max_tries;
20480 unsigned status = _XABORT_EXPLICIT;
20481 ...
20482
20483 for (n_tries = 0; n_tries < max_tries; n_tries++)
20484 @{
20485 status = _xbegin ();
20486 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
20487 break;
20488 @}
20489 if (status == _XBEGIN_STARTED)
20490 @{
20491 ... transaction code...
20492 _xend ();
20493 @}
20494 else
20495 @{
20496 ... non-transactional fallback path...
20497 @}
20498 @end smallexample
20499
20500 @noindent
20501 Note that, in most cases, the transactional and non-transactional code
20502 must synchronize together to ensure consistency.
20503
20504 @node Target Format Checks
20505 @section Format Checks Specific to Particular Target Machines
20506
20507 For some target machines, GCC supports additional options to the
20508 format attribute
20509 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
20510
20511 @menu
20512 * Solaris Format Checks::
20513 * Darwin Format Checks::
20514 @end menu
20515
20516 @node Solaris Format Checks
20517 @subsection Solaris Format Checks
20518
20519 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
20520 check. @code{cmn_err} accepts a subset of the standard @code{printf}
20521 conversions, and the two-argument @code{%b} conversion for displaying
20522 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
20523
20524 @node Darwin Format Checks
20525 @subsection Darwin Format Checks
20526
20527 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
20528 attribute context. Declarations made with such attribution are parsed for correct syntax
20529 and format argument types. However, parsing of the format string itself is currently undefined
20530 and is not carried out by this version of the compiler.
20531
20532 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
20533 also be used as format arguments. Note that the relevant headers are only likely to be
20534 available on Darwin (OSX) installations. On such installations, the XCode and system
20535 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
20536 associated functions.
20537
20538 @node Pragmas
20539 @section Pragmas Accepted by GCC
20540 @cindex pragmas
20541 @cindex @code{#pragma}
20542
20543 GCC supports several types of pragmas, primarily in order to compile
20544 code originally written for other compilers. Note that in general
20545 we do not recommend the use of pragmas; @xref{Function Attributes},
20546 for further explanation.
20547
20548 @menu
20549 * AArch64 Pragmas::
20550 * ARM Pragmas::
20551 * M32C Pragmas::
20552 * MeP Pragmas::
20553 * RS/6000 and PowerPC Pragmas::
20554 * S/390 Pragmas::
20555 * Darwin Pragmas::
20556 * Solaris Pragmas::
20557 * Symbol-Renaming Pragmas::
20558 * Structure-Layout Pragmas::
20559 * Weak Pragmas::
20560 * Diagnostic Pragmas::
20561 * Visibility Pragmas::
20562 * Push/Pop Macro Pragmas::
20563 * Function Specific Option Pragmas::
20564 * Loop-Specific Pragmas::
20565 @end menu
20566
20567 @node AArch64 Pragmas
20568 @subsection AArch64 Pragmas
20569
20570 The pragmas defined by the AArch64 target correspond to the AArch64
20571 target function attributes. They can be specified as below:
20572 @smallexample
20573 #pragma GCC target("string")
20574 @end smallexample
20575
20576 where @code{@var{string}} can be any string accepted as an AArch64 target
20577 attribute. @xref{AArch64 Function Attributes}, for more details
20578 on the permissible values of @code{string}.
20579
20580 @node ARM Pragmas
20581 @subsection ARM Pragmas
20582
20583 The ARM target defines pragmas for controlling the default addition of
20584 @code{long_call} and @code{short_call} attributes to functions.
20585 @xref{Function Attributes}, for information about the effects of these
20586 attributes.
20587
20588 @table @code
20589 @item long_calls
20590 @cindex pragma, long_calls
20591 Set all subsequent functions to have the @code{long_call} attribute.
20592
20593 @item no_long_calls
20594 @cindex pragma, no_long_calls
20595 Set all subsequent functions to have the @code{short_call} attribute.
20596
20597 @item long_calls_off
20598 @cindex pragma, long_calls_off
20599 Do not affect the @code{long_call} or @code{short_call} attributes of
20600 subsequent functions.
20601 @end table
20602
20603 @node M32C Pragmas
20604 @subsection M32C Pragmas
20605
20606 @table @code
20607 @item GCC memregs @var{number}
20608 @cindex pragma, memregs
20609 Overrides the command-line option @code{-memregs=} for the current
20610 file. Use with care! This pragma must be before any function in the
20611 file, and mixing different memregs values in different objects may
20612 make them incompatible. This pragma is useful when a
20613 performance-critical function uses a memreg for temporary values,
20614 as it may allow you to reduce the number of memregs used.
20615
20616 @item ADDRESS @var{name} @var{address}
20617 @cindex pragma, address
20618 For any declared symbols matching @var{name}, this does three things
20619 to that symbol: it forces the symbol to be located at the given
20620 address (a number), it forces the symbol to be volatile, and it
20621 changes the symbol's scope to be static. This pragma exists for
20622 compatibility with other compilers, but note that the common
20623 @code{1234H} numeric syntax is not supported (use @code{0x1234}
20624 instead). Example:
20625
20626 @smallexample
20627 #pragma ADDRESS port3 0x103
20628 char port3;
20629 @end smallexample
20630
20631 @end table
20632
20633 @node MeP Pragmas
20634 @subsection MeP Pragmas
20635
20636 @table @code
20637
20638 @item custom io_volatile (on|off)
20639 @cindex pragma, custom io_volatile
20640 Overrides the command-line option @code{-mio-volatile} for the current
20641 file. Note that for compatibility with future GCC releases, this
20642 option should only be used once before any @code{io} variables in each
20643 file.
20644
20645 @item GCC coprocessor available @var{registers}
20646 @cindex pragma, coprocessor available
20647 Specifies which coprocessor registers are available to the register
20648 allocator. @var{registers} may be a single register, register range
20649 separated by ellipses, or comma-separated list of those. Example:
20650
20651 @smallexample
20652 #pragma GCC coprocessor available $c0...$c10, $c28
20653 @end smallexample
20654
20655 @item GCC coprocessor call_saved @var{registers}
20656 @cindex pragma, coprocessor call_saved
20657 Specifies which coprocessor registers are to be saved and restored by
20658 any function using them. @var{registers} may be a single register,
20659 register range separated by ellipses, or comma-separated list of
20660 those. Example:
20661
20662 @smallexample
20663 #pragma GCC coprocessor call_saved $c4...$c6, $c31
20664 @end smallexample
20665
20666 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
20667 @cindex pragma, coprocessor subclass
20668 Creates and defines a register class. These register classes can be
20669 used by inline @code{asm} constructs. @var{registers} may be a single
20670 register, register range separated by ellipses, or comma-separated
20671 list of those. Example:
20672
20673 @smallexample
20674 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
20675
20676 asm ("cpfoo %0" : "=B" (x));
20677 @end smallexample
20678
20679 @item GCC disinterrupt @var{name} , @var{name} @dots{}
20680 @cindex pragma, disinterrupt
20681 For the named functions, the compiler adds code to disable interrupts
20682 for the duration of those functions. If any functions so named
20683 are not encountered in the source, a warning is emitted that the pragma is
20684 not used. Examples:
20685
20686 @smallexample
20687 #pragma disinterrupt foo
20688 #pragma disinterrupt bar, grill
20689 int foo () @{ @dots{} @}
20690 @end smallexample
20691
20692 @item GCC call @var{name} , @var{name} @dots{}
20693 @cindex pragma, call
20694 For the named functions, the compiler always uses a register-indirect
20695 call model when calling the named functions. Examples:
20696
20697 @smallexample
20698 extern int foo ();
20699 #pragma call foo
20700 @end smallexample
20701
20702 @end table
20703
20704 @node RS/6000 and PowerPC Pragmas
20705 @subsection RS/6000 and PowerPC Pragmas
20706
20707 The RS/6000 and PowerPC targets define one pragma for controlling
20708 whether or not the @code{longcall} attribute is added to function
20709 declarations by default. This pragma overrides the @option{-mlongcall}
20710 option, but not the @code{longcall} and @code{shortcall} attributes.
20711 @xref{RS/6000 and PowerPC Options}, for more information about when long
20712 calls are and are not necessary.
20713
20714 @table @code
20715 @item longcall (1)
20716 @cindex pragma, longcall
20717 Apply the @code{longcall} attribute to all subsequent function
20718 declarations.
20719
20720 @item longcall (0)
20721 Do not apply the @code{longcall} attribute to subsequent function
20722 declarations.
20723 @end table
20724
20725 @c Describe h8300 pragmas here.
20726 @c Describe sh pragmas here.
20727 @c Describe v850 pragmas here.
20728
20729 @node S/390 Pragmas
20730 @subsection S/390 Pragmas
20731
20732 The pragmas defined by the S/390 target correspond to the S/390
20733 target function attributes and some the additional options:
20734
20735 @table @samp
20736 @item zvector
20737 @itemx no-zvector
20738 @end table
20739
20740 Note that options of the pragma, unlike options of the target
20741 attribute, do change the value of preprocessor macros like
20742 @code{__VEC__}. They can be specified as below:
20743
20744 @smallexample
20745 #pragma GCC target("string[,string]...")
20746 #pragma GCC target("string"[,"string"]...)
20747 @end smallexample
20748
20749 @node Darwin Pragmas
20750 @subsection Darwin Pragmas
20751
20752 The following pragmas are available for all architectures running the
20753 Darwin operating system. These are useful for compatibility with other
20754 Mac OS compilers.
20755
20756 @table @code
20757 @item mark @var{tokens}@dots{}
20758 @cindex pragma, mark
20759 This pragma is accepted, but has no effect.
20760
20761 @item options align=@var{alignment}
20762 @cindex pragma, options align
20763 This pragma sets the alignment of fields in structures. The values of
20764 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
20765 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
20766 properly; to restore the previous setting, use @code{reset} for the
20767 @var{alignment}.
20768
20769 @item segment @var{tokens}@dots{}
20770 @cindex pragma, segment
20771 This pragma is accepted, but has no effect.
20772
20773 @item unused (@var{var} [, @var{var}]@dots{})
20774 @cindex pragma, unused
20775 This pragma declares variables to be possibly unused. GCC does not
20776 produce warnings for the listed variables. The effect is similar to
20777 that of the @code{unused} attribute, except that this pragma may appear
20778 anywhere within the variables' scopes.
20779 @end table
20780
20781 @node Solaris Pragmas
20782 @subsection Solaris Pragmas
20783
20784 The Solaris target supports @code{#pragma redefine_extname}
20785 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
20786 @code{#pragma} directives for compatibility with the system compiler.
20787
20788 @table @code
20789 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
20790 @cindex pragma, align
20791
20792 Increase the minimum alignment of each @var{variable} to @var{alignment}.
20793 This is the same as GCC's @code{aligned} attribute @pxref{Variable
20794 Attributes}). Macro expansion occurs on the arguments to this pragma
20795 when compiling C and Objective-C@. It does not currently occur when
20796 compiling C++, but this is a bug which may be fixed in a future
20797 release.
20798
20799 @item fini (@var{function} [, @var{function}]...)
20800 @cindex pragma, fini
20801
20802 This pragma causes each listed @var{function} to be called after
20803 main, or during shared module unloading, by adding a call to the
20804 @code{.fini} section.
20805
20806 @item init (@var{function} [, @var{function}]...)
20807 @cindex pragma, init
20808
20809 This pragma causes each listed @var{function} to be called during
20810 initialization (before @code{main}) or during shared module loading, by
20811 adding a call to the @code{.init} section.
20812
20813 @end table
20814
20815 @node Symbol-Renaming Pragmas
20816 @subsection Symbol-Renaming Pragmas
20817
20818 GCC supports a @code{#pragma} directive that changes the name used in
20819 assembly for a given declaration. While this pragma is supported on all
20820 platforms, it is intended primarily to provide compatibility with the
20821 Solaris system headers. This effect can also be achieved using the asm
20822 labels extension (@pxref{Asm Labels}).
20823
20824 @table @code
20825 @item redefine_extname @var{oldname} @var{newname}
20826 @cindex pragma, redefine_extname
20827
20828 This pragma gives the C function @var{oldname} the assembly symbol
20829 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
20830 is defined if this pragma is available (currently on all platforms).
20831 @end table
20832
20833 This pragma and the asm labels extension interact in a complicated
20834 manner. Here are some corner cases you may want to be aware of:
20835
20836 @enumerate
20837 @item This pragma silently applies only to declarations with external
20838 linkage. Asm labels do not have this restriction.
20839
20840 @item In C++, this pragma silently applies only to declarations with
20841 ``C'' linkage. Again, asm labels do not have this restriction.
20842
20843 @item If either of the ways of changing the assembly name of a
20844 declaration are applied to a declaration whose assembly name has
20845 already been determined (either by a previous use of one of these
20846 features, or because the compiler needed the assembly name in order to
20847 generate code), and the new name is different, a warning issues and
20848 the name does not change.
20849
20850 @item The @var{oldname} used by @code{#pragma redefine_extname} is
20851 always the C-language name.
20852 @end enumerate
20853
20854 @node Structure-Layout Pragmas
20855 @subsection Structure-Layout Pragmas
20856
20857 For compatibility with Microsoft Windows compilers, GCC supports a
20858 set of @code{#pragma} directives that change the maximum alignment of
20859 members of structures (other than zero-width bit-fields), unions, and
20860 classes subsequently defined. The @var{n} value below always is required
20861 to be a small power of two and specifies the new alignment in bytes.
20862
20863 @enumerate
20864 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
20865 @item @code{#pragma pack()} sets the alignment to the one that was in
20866 effect when compilation started (see also command-line option
20867 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
20868 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
20869 setting on an internal stack and then optionally sets the new alignment.
20870 @item @code{#pragma pack(pop)} restores the alignment setting to the one
20871 saved at the top of the internal stack (and removes that stack entry).
20872 Note that @code{#pragma pack([@var{n}])} does not influence this internal
20873 stack; thus it is possible to have @code{#pragma pack(push)} followed by
20874 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
20875 @code{#pragma pack(pop)}.
20876 @end enumerate
20877
20878 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
20879 directive which lays out structures and unions subsequently defined as the
20880 documented @code{__attribute__ ((ms_struct))}.
20881
20882 @enumerate
20883 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
20884 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
20885 @item @code{#pragma ms_struct reset} goes back to the default layout.
20886 @end enumerate
20887
20888 Most targets also support the @code{#pragma scalar_storage_order} directive
20889 which lays out structures and unions subsequently defined as the documented
20890 @code{__attribute__ ((scalar_storage_order))}.
20891
20892 @enumerate
20893 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
20894 of the scalar fields to big-endian.
20895 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
20896 of the scalar fields to little-endian.
20897 @item @code{#pragma scalar_storage_order default} goes back to the endianness
20898 that was in effect when compilation started (see also command-line option
20899 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
20900 @end enumerate
20901
20902 @node Weak Pragmas
20903 @subsection Weak Pragmas
20904
20905 For compatibility with SVR4, GCC supports a set of @code{#pragma}
20906 directives for declaring symbols to be weak, and defining weak
20907 aliases.
20908
20909 @table @code
20910 @item #pragma weak @var{symbol}
20911 @cindex pragma, weak
20912 This pragma declares @var{symbol} to be weak, as if the declaration
20913 had the attribute of the same name. The pragma may appear before
20914 or after the declaration of @var{symbol}. It is not an error for
20915 @var{symbol} to never be defined at all.
20916
20917 @item #pragma weak @var{symbol1} = @var{symbol2}
20918 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
20919 It is an error if @var{symbol2} is not defined in the current
20920 translation unit.
20921 @end table
20922
20923 @node Diagnostic Pragmas
20924 @subsection Diagnostic Pragmas
20925
20926 GCC allows the user to selectively enable or disable certain types of
20927 diagnostics, and change the kind of the diagnostic. For example, a
20928 project's policy might require that all sources compile with
20929 @option{-Werror} but certain files might have exceptions allowing
20930 specific types of warnings. Or, a project might selectively enable
20931 diagnostics and treat them as errors depending on which preprocessor
20932 macros are defined.
20933
20934 @table @code
20935 @item #pragma GCC diagnostic @var{kind} @var{option}
20936 @cindex pragma, diagnostic
20937
20938 Modifies the disposition of a diagnostic. Note that not all
20939 diagnostics are modifiable; at the moment only warnings (normally
20940 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
20941 Use @option{-fdiagnostics-show-option} to determine which diagnostics
20942 are controllable and which option controls them.
20943
20944 @var{kind} is @samp{error} to treat this diagnostic as an error,
20945 @samp{warning} to treat it like a warning (even if @option{-Werror} is
20946 in effect), or @samp{ignored} if the diagnostic is to be ignored.
20947 @var{option} is a double quoted string that matches the command-line
20948 option.
20949
20950 @smallexample
20951 #pragma GCC diagnostic warning "-Wformat"
20952 #pragma GCC diagnostic error "-Wformat"
20953 #pragma GCC diagnostic ignored "-Wformat"
20954 @end smallexample
20955
20956 Note that these pragmas override any command-line options. GCC keeps
20957 track of the location of each pragma, and issues diagnostics according
20958 to the state as of that point in the source file. Thus, pragmas occurring
20959 after a line do not affect diagnostics caused by that line.
20960
20961 @item #pragma GCC diagnostic push
20962 @itemx #pragma GCC diagnostic pop
20963
20964 Causes GCC to remember the state of the diagnostics as of each
20965 @code{push}, and restore to that point at each @code{pop}. If a
20966 @code{pop} has no matching @code{push}, the command-line options are
20967 restored.
20968
20969 @smallexample
20970 #pragma GCC diagnostic error "-Wuninitialized"
20971 foo(a); /* error is given for this one */
20972 #pragma GCC diagnostic push
20973 #pragma GCC diagnostic ignored "-Wuninitialized"
20974 foo(b); /* no diagnostic for this one */
20975 #pragma GCC diagnostic pop
20976 foo(c); /* error is given for this one */
20977 #pragma GCC diagnostic pop
20978 foo(d); /* depends on command-line options */
20979 @end smallexample
20980
20981 @end table
20982
20983 GCC also offers a simple mechanism for printing messages during
20984 compilation.
20985
20986 @table @code
20987 @item #pragma message @var{string}
20988 @cindex pragma, diagnostic
20989
20990 Prints @var{string} as a compiler message on compilation. The message
20991 is informational only, and is neither a compilation warning nor an error.
20992
20993 @smallexample
20994 #pragma message "Compiling " __FILE__ "..."
20995 @end smallexample
20996
20997 @var{string} may be parenthesized, and is printed with location
20998 information. For example,
20999
21000 @smallexample
21001 #define DO_PRAGMA(x) _Pragma (#x)
21002 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
21003
21004 TODO(Remember to fix this)
21005 @end smallexample
21006
21007 @noindent
21008 prints @samp{/tmp/file.c:4: note: #pragma message:
21009 TODO - Remember to fix this}.
21010
21011 @end table
21012
21013 @node Visibility Pragmas
21014 @subsection Visibility Pragmas
21015
21016 @table @code
21017 @item #pragma GCC visibility push(@var{visibility})
21018 @itemx #pragma GCC visibility pop
21019 @cindex pragma, visibility
21020
21021 This pragma allows the user to set the visibility for multiple
21022 declarations without having to give each a visibility attribute
21023 (@pxref{Function Attributes}).
21024
21025 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
21026 declarations. Class members and template specializations are not
21027 affected; if you want to override the visibility for a particular
21028 member or instantiation, you must use an attribute.
21029
21030 @end table
21031
21032
21033 @node Push/Pop Macro Pragmas
21034 @subsection Push/Pop Macro Pragmas
21035
21036 For compatibility with Microsoft Windows compilers, GCC supports
21037 @samp{#pragma push_macro(@var{"macro_name"})}
21038 and @samp{#pragma pop_macro(@var{"macro_name"})}.
21039
21040 @table @code
21041 @item #pragma push_macro(@var{"macro_name"})
21042 @cindex pragma, push_macro
21043 This pragma saves the value of the macro named as @var{macro_name} to
21044 the top of the stack for this macro.
21045
21046 @item #pragma pop_macro(@var{"macro_name"})
21047 @cindex pragma, pop_macro
21048 This pragma sets the value of the macro named as @var{macro_name} to
21049 the value on top of the stack for this macro. If the stack for
21050 @var{macro_name} is empty, the value of the macro remains unchanged.
21051 @end table
21052
21053 For example:
21054
21055 @smallexample
21056 #define X 1
21057 #pragma push_macro("X")
21058 #undef X
21059 #define X -1
21060 #pragma pop_macro("X")
21061 int x [X];
21062 @end smallexample
21063
21064 @noindent
21065 In this example, the definition of X as 1 is saved by @code{#pragma
21066 push_macro} and restored by @code{#pragma pop_macro}.
21067
21068 @node Function Specific Option Pragmas
21069 @subsection Function Specific Option Pragmas
21070
21071 @table @code
21072 @item #pragma GCC target (@var{"string"}...)
21073 @cindex pragma GCC target
21074
21075 This pragma allows you to set target specific options for functions
21076 defined later in the source file. One or more strings can be
21077 specified. Each function that is defined after this point is as
21078 if @code{attribute((target("STRING")))} was specified for that
21079 function. The parenthesis around the options is optional.
21080 @xref{Function Attributes}, for more information about the
21081 @code{target} attribute and the attribute syntax.
21082
21083 The @code{#pragma GCC target} pragma is presently implemented for
21084 x86, PowerPC, and Nios II targets only.
21085 @end table
21086
21087 @table @code
21088 @item #pragma GCC optimize (@var{"string"}...)
21089 @cindex pragma GCC optimize
21090
21091 This pragma allows you to set global optimization options for functions
21092 defined later in the source file. One or more strings can be
21093 specified. Each function that is defined after this point is as
21094 if @code{attribute((optimize("STRING")))} was specified for that
21095 function. The parenthesis around the options is optional.
21096 @xref{Function Attributes}, for more information about the
21097 @code{optimize} attribute and the attribute syntax.
21098 @end table
21099
21100 @table @code
21101 @item #pragma GCC push_options
21102 @itemx #pragma GCC pop_options
21103 @cindex pragma GCC push_options
21104 @cindex pragma GCC pop_options
21105
21106 These pragmas maintain a stack of the current target and optimization
21107 options. It is intended for include files where you temporarily want
21108 to switch to using a different @samp{#pragma GCC target} or
21109 @samp{#pragma GCC optimize} and then to pop back to the previous
21110 options.
21111 @end table
21112
21113 @table @code
21114 @item #pragma GCC reset_options
21115 @cindex pragma GCC reset_options
21116
21117 This pragma clears the current @code{#pragma GCC target} and
21118 @code{#pragma GCC optimize} to use the default switches as specified
21119 on the command line.
21120 @end table
21121
21122 @node Loop-Specific Pragmas
21123 @subsection Loop-Specific Pragmas
21124
21125 @table @code
21126 @item #pragma GCC ivdep
21127 @cindex pragma GCC ivdep
21128 @end table
21129
21130 With this pragma, the programmer asserts that there are no loop-carried
21131 dependencies which would prevent consecutive iterations of
21132 the following loop from executing concurrently with SIMD
21133 (single instruction multiple data) instructions.
21134
21135 For example, the compiler can only unconditionally vectorize the following
21136 loop with the pragma:
21137
21138 @smallexample
21139 void foo (int n, int *a, int *b, int *c)
21140 @{
21141 int i, j;
21142 #pragma GCC ivdep
21143 for (i = 0; i < n; ++i)
21144 a[i] = b[i] + c[i];
21145 @}
21146 @end smallexample
21147
21148 @noindent
21149 In this example, using the @code{restrict} qualifier had the same
21150 effect. In the following example, that would not be possible. Assume
21151 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
21152 that it can unconditionally vectorize the following loop:
21153
21154 @smallexample
21155 void ignore_vec_dep (int *a, int k, int c, int m)
21156 @{
21157 #pragma GCC ivdep
21158 for (int i = 0; i < m; i++)
21159 a[i] = a[i + k] * c;
21160 @}
21161 @end smallexample
21162
21163
21164 @node Unnamed Fields
21165 @section Unnamed Structure and Union Fields
21166 @cindex @code{struct}
21167 @cindex @code{union}
21168
21169 As permitted by ISO C11 and for compatibility with other compilers,
21170 GCC allows you to define
21171 a structure or union that contains, as fields, structures and unions
21172 without names. For example:
21173
21174 @smallexample
21175 struct @{
21176 int a;
21177 union @{
21178 int b;
21179 float c;
21180 @};
21181 int d;
21182 @} foo;
21183 @end smallexample
21184
21185 @noindent
21186 In this example, you are able to access members of the unnamed
21187 union with code like @samp{foo.b}. Note that only unnamed structs and
21188 unions are allowed, you may not have, for example, an unnamed
21189 @code{int}.
21190
21191 You must never create such structures that cause ambiguous field definitions.
21192 For example, in this structure:
21193
21194 @smallexample
21195 struct @{
21196 int a;
21197 struct @{
21198 int a;
21199 @};
21200 @} foo;
21201 @end smallexample
21202
21203 @noindent
21204 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
21205 The compiler gives errors for such constructs.
21206
21207 @opindex fms-extensions
21208 Unless @option{-fms-extensions} is used, the unnamed field must be a
21209 structure or union definition without a tag (for example, @samp{struct
21210 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
21211 also be a definition with a tag such as @samp{struct foo @{ int a;
21212 @};}, a reference to a previously defined structure or union such as
21213 @samp{struct foo;}, or a reference to a @code{typedef} name for a
21214 previously defined structure or union type.
21215
21216 @opindex fplan9-extensions
21217 The option @option{-fplan9-extensions} enables
21218 @option{-fms-extensions} as well as two other extensions. First, a
21219 pointer to a structure is automatically converted to a pointer to an
21220 anonymous field for assignments and function calls. For example:
21221
21222 @smallexample
21223 struct s1 @{ int a; @};
21224 struct s2 @{ struct s1; @};
21225 extern void f1 (struct s1 *);
21226 void f2 (struct s2 *p) @{ f1 (p); @}
21227 @end smallexample
21228
21229 @noindent
21230 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
21231 converted into a pointer to the anonymous field.
21232
21233 Second, when the type of an anonymous field is a @code{typedef} for a
21234 @code{struct} or @code{union}, code may refer to the field using the
21235 name of the @code{typedef}.
21236
21237 @smallexample
21238 typedef struct @{ int a; @} s1;
21239 struct s2 @{ s1; @};
21240 s1 f1 (struct s2 *p) @{ return p->s1; @}
21241 @end smallexample
21242
21243 These usages are only permitted when they are not ambiguous.
21244
21245 @node Thread-Local
21246 @section Thread-Local Storage
21247 @cindex Thread-Local Storage
21248 @cindex @acronym{TLS}
21249 @cindex @code{__thread}
21250
21251 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
21252 are allocated such that there is one instance of the variable per extant
21253 thread. The runtime model GCC uses to implement this originates
21254 in the IA-64 processor-specific ABI, but has since been migrated
21255 to other processors as well. It requires significant support from
21256 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
21257 system libraries (@file{libc.so} and @file{libpthread.so}), so it
21258 is not available everywhere.
21259
21260 At the user level, the extension is visible with a new storage
21261 class keyword: @code{__thread}. For example:
21262
21263 @smallexample
21264 __thread int i;
21265 extern __thread struct state s;
21266 static __thread char *p;
21267 @end smallexample
21268
21269 The @code{__thread} specifier may be used alone, with the @code{extern}
21270 or @code{static} specifiers, but with no other storage class specifier.
21271 When used with @code{extern} or @code{static}, @code{__thread} must appear
21272 immediately after the other storage class specifier.
21273
21274 The @code{__thread} specifier may be applied to any global, file-scoped
21275 static, function-scoped static, or static data member of a class. It may
21276 not be applied to block-scoped automatic or non-static data member.
21277
21278 When the address-of operator is applied to a thread-local variable, it is
21279 evaluated at run time and returns the address of the current thread's
21280 instance of that variable. An address so obtained may be used by any
21281 thread. When a thread terminates, any pointers to thread-local variables
21282 in that thread become invalid.
21283
21284 No static initialization may refer to the address of a thread-local variable.
21285
21286 In C++, if an initializer is present for a thread-local variable, it must
21287 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
21288 standard.
21289
21290 See @uref{http://www.akkadia.org/drepper/tls.pdf,
21291 ELF Handling For Thread-Local Storage} for a detailed explanation of
21292 the four thread-local storage addressing models, and how the runtime
21293 is expected to function.
21294
21295 @menu
21296 * C99 Thread-Local Edits::
21297 * C++98 Thread-Local Edits::
21298 @end menu
21299
21300 @node C99 Thread-Local Edits
21301 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
21302
21303 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
21304 that document the exact semantics of the language extension.
21305
21306 @itemize @bullet
21307 @item
21308 @cite{5.1.2 Execution environments}
21309
21310 Add new text after paragraph 1
21311
21312 @quotation
21313 Within either execution environment, a @dfn{thread} is a flow of
21314 control within a program. It is implementation defined whether
21315 or not there may be more than one thread associated with a program.
21316 It is implementation defined how threads beyond the first are
21317 created, the name and type of the function called at thread
21318 startup, and how threads may be terminated. However, objects
21319 with thread storage duration shall be initialized before thread
21320 startup.
21321 @end quotation
21322
21323 @item
21324 @cite{6.2.4 Storage durations of objects}
21325
21326 Add new text before paragraph 3
21327
21328 @quotation
21329 An object whose identifier is declared with the storage-class
21330 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
21331 Its lifetime is the entire execution of the thread, and its
21332 stored value is initialized only once, prior to thread startup.
21333 @end quotation
21334
21335 @item
21336 @cite{6.4.1 Keywords}
21337
21338 Add @code{__thread}.
21339
21340 @item
21341 @cite{6.7.1 Storage-class specifiers}
21342
21343 Add @code{__thread} to the list of storage class specifiers in
21344 paragraph 1.
21345
21346 Change paragraph 2 to
21347
21348 @quotation
21349 With the exception of @code{__thread}, at most one storage-class
21350 specifier may be given [@dots{}]. The @code{__thread} specifier may
21351 be used alone, or immediately following @code{extern} or
21352 @code{static}.
21353 @end quotation
21354
21355 Add new text after paragraph 6
21356
21357 @quotation
21358 The declaration of an identifier for a variable that has
21359 block scope that specifies @code{__thread} shall also
21360 specify either @code{extern} or @code{static}.
21361
21362 The @code{__thread} specifier shall be used only with
21363 variables.
21364 @end quotation
21365 @end itemize
21366
21367 @node C++98 Thread-Local Edits
21368 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
21369
21370 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
21371 that document the exact semantics of the language extension.
21372
21373 @itemize @bullet
21374 @item
21375 @b{[intro.execution]}
21376
21377 New text after paragraph 4
21378
21379 @quotation
21380 A @dfn{thread} is a flow of control within the abstract machine.
21381 It is implementation defined whether or not there may be more than
21382 one thread.
21383 @end quotation
21384
21385 New text after paragraph 7
21386
21387 @quotation
21388 It is unspecified whether additional action must be taken to
21389 ensure when and whether side effects are visible to other threads.
21390 @end quotation
21391
21392 @item
21393 @b{[lex.key]}
21394
21395 Add @code{__thread}.
21396
21397 @item
21398 @b{[basic.start.main]}
21399
21400 Add after paragraph 5
21401
21402 @quotation
21403 The thread that begins execution at the @code{main} function is called
21404 the @dfn{main thread}. It is implementation defined how functions
21405 beginning threads other than the main thread are designated or typed.
21406 A function so designated, as well as the @code{main} function, is called
21407 a @dfn{thread startup function}. It is implementation defined what
21408 happens if a thread startup function returns. It is implementation
21409 defined what happens to other threads when any thread calls @code{exit}.
21410 @end quotation
21411
21412 @item
21413 @b{[basic.start.init]}
21414
21415 Add after paragraph 4
21416
21417 @quotation
21418 The storage for an object of thread storage duration shall be
21419 statically initialized before the first statement of the thread startup
21420 function. An object of thread storage duration shall not require
21421 dynamic initialization.
21422 @end quotation
21423
21424 @item
21425 @b{[basic.start.term]}
21426
21427 Add after paragraph 3
21428
21429 @quotation
21430 The type of an object with thread storage duration shall not have a
21431 non-trivial destructor, nor shall it be an array type whose elements
21432 (directly or indirectly) have non-trivial destructors.
21433 @end quotation
21434
21435 @item
21436 @b{[basic.stc]}
21437
21438 Add ``thread storage duration'' to the list in paragraph 1.
21439
21440 Change paragraph 2
21441
21442 @quotation
21443 Thread, static, and automatic storage durations are associated with
21444 objects introduced by declarations [@dots{}].
21445 @end quotation
21446
21447 Add @code{__thread} to the list of specifiers in paragraph 3.
21448
21449 @item
21450 @b{[basic.stc.thread]}
21451
21452 New section before @b{[basic.stc.static]}
21453
21454 @quotation
21455 The keyword @code{__thread} applied to a non-local object gives the
21456 object thread storage duration.
21457
21458 A local variable or class data member declared both @code{static}
21459 and @code{__thread} gives the variable or member thread storage
21460 duration.
21461 @end quotation
21462
21463 @item
21464 @b{[basic.stc.static]}
21465
21466 Change paragraph 1
21467
21468 @quotation
21469 All objects that have neither thread storage duration, dynamic
21470 storage duration nor are local [@dots{}].
21471 @end quotation
21472
21473 @item
21474 @b{[dcl.stc]}
21475
21476 Add @code{__thread} to the list in paragraph 1.
21477
21478 Change paragraph 1
21479
21480 @quotation
21481 With the exception of @code{__thread}, at most one
21482 @var{storage-class-specifier} shall appear in a given
21483 @var{decl-specifier-seq}. The @code{__thread} specifier may
21484 be used alone, or immediately following the @code{extern} or
21485 @code{static} specifiers. [@dots{}]
21486 @end quotation
21487
21488 Add after paragraph 5
21489
21490 @quotation
21491 The @code{__thread} specifier can be applied only to the names of objects
21492 and to anonymous unions.
21493 @end quotation
21494
21495 @item
21496 @b{[class.mem]}
21497
21498 Add after paragraph 6
21499
21500 @quotation
21501 Non-@code{static} members shall not be @code{__thread}.
21502 @end quotation
21503 @end itemize
21504
21505 @node Binary constants
21506 @section Binary Constants using the @samp{0b} Prefix
21507 @cindex Binary constants using the @samp{0b} prefix
21508
21509 Integer constants can be written as binary constants, consisting of a
21510 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
21511 @samp{0B}. This is particularly useful in environments that operate a
21512 lot on the bit level (like microcontrollers).
21513
21514 The following statements are identical:
21515
21516 @smallexample
21517 i = 42;
21518 i = 0x2a;
21519 i = 052;
21520 i = 0b101010;
21521 @end smallexample
21522
21523 The type of these constants follows the same rules as for octal or
21524 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
21525 can be applied.
21526
21527 @node C++ Extensions
21528 @chapter Extensions to the C++ Language
21529 @cindex extensions, C++ language
21530 @cindex C++ language extensions
21531
21532 The GNU compiler provides these extensions to the C++ language (and you
21533 can also use most of the C language extensions in your C++ programs). If you
21534 want to write code that checks whether these features are available, you can
21535 test for the GNU compiler the same way as for C programs: check for a
21536 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
21537 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
21538 Predefined Macros,cpp,The GNU C Preprocessor}).
21539
21540 @menu
21541 * C++ Volatiles:: What constitutes an access to a volatile object.
21542 * Restricted Pointers:: C99 restricted pointers and references.
21543 * Vague Linkage:: Where G++ puts inlines, vtables and such.
21544 * C++ Interface:: You can use a single C++ header file for both
21545 declarations and definitions.
21546 * Template Instantiation:: Methods for ensuring that exactly one copy of
21547 each needed template instantiation is emitted.
21548 * Bound member functions:: You can extract a function pointer to the
21549 method denoted by a @samp{->*} or @samp{.*} expression.
21550 * C++ Attributes:: Variable, function, and type attributes for C++ only.
21551 * Function Multiversioning:: Declaring multiple function versions.
21552 * Namespace Association:: Strong using-directives for namespace association.
21553 * Type Traits:: Compiler support for type traits.
21554 * C++ Concepts:: Improved support for generic programming.
21555 * Deprecated Features:: Things will disappear from G++.
21556 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
21557 @end menu
21558
21559 @node C++ Volatiles
21560 @section When is a Volatile C++ Object Accessed?
21561 @cindex accessing volatiles
21562 @cindex volatile read
21563 @cindex volatile write
21564 @cindex volatile access
21565
21566 The C++ standard differs from the C standard in its treatment of
21567 volatile objects. It fails to specify what constitutes a volatile
21568 access, except to say that C++ should behave in a similar manner to C
21569 with respect to volatiles, where possible. However, the different
21570 lvalueness of expressions between C and C++ complicate the behavior.
21571 G++ behaves the same as GCC for volatile access, @xref{C
21572 Extensions,,Volatiles}, for a description of GCC's behavior.
21573
21574 The C and C++ language specifications differ when an object is
21575 accessed in a void context:
21576
21577 @smallexample
21578 volatile int *src = @var{somevalue};
21579 *src;
21580 @end smallexample
21581
21582 The C++ standard specifies that such expressions do not undergo lvalue
21583 to rvalue conversion, and that the type of the dereferenced object may
21584 be incomplete. The C++ standard does not specify explicitly that it
21585 is lvalue to rvalue conversion that is responsible for causing an
21586 access. There is reason to believe that it is, because otherwise
21587 certain simple expressions become undefined. However, because it
21588 would surprise most programmers, G++ treats dereferencing a pointer to
21589 volatile object of complete type as GCC would do for an equivalent
21590 type in C@. When the object has incomplete type, G++ issues a
21591 warning; if you wish to force an error, you must force a conversion to
21592 rvalue with, for instance, a static cast.
21593
21594 When using a reference to volatile, G++ does not treat equivalent
21595 expressions as accesses to volatiles, but instead issues a warning that
21596 no volatile is accessed. The rationale for this is that otherwise it
21597 becomes difficult to determine where volatile access occur, and not
21598 possible to ignore the return value from functions returning volatile
21599 references. Again, if you wish to force a read, cast the reference to
21600 an rvalue.
21601
21602 G++ implements the same behavior as GCC does when assigning to a
21603 volatile object---there is no reread of the assigned-to object, the
21604 assigned rvalue is reused. Note that in C++ assignment expressions
21605 are lvalues, and if used as an lvalue, the volatile object is
21606 referred to. For instance, @var{vref} refers to @var{vobj}, as
21607 expected, in the following example:
21608
21609 @smallexample
21610 volatile int vobj;
21611 volatile int &vref = vobj = @var{something};
21612 @end smallexample
21613
21614 @node Restricted Pointers
21615 @section Restricting Pointer Aliasing
21616 @cindex restricted pointers
21617 @cindex restricted references
21618 @cindex restricted this pointer
21619
21620 As with the C front end, G++ understands the C99 feature of restricted pointers,
21621 specified with the @code{__restrict__}, or @code{__restrict} type
21622 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
21623 language flag, @code{restrict} is not a keyword in C++.
21624
21625 In addition to allowing restricted pointers, you can specify restricted
21626 references, which indicate that the reference is not aliased in the local
21627 context.
21628
21629 @smallexample
21630 void fn (int *__restrict__ rptr, int &__restrict__ rref)
21631 @{
21632 /* @r{@dots{}} */
21633 @}
21634 @end smallexample
21635
21636 @noindent
21637 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
21638 @var{rref} refers to a (different) unaliased integer.
21639
21640 You may also specify whether a member function's @var{this} pointer is
21641 unaliased by using @code{__restrict__} as a member function qualifier.
21642
21643 @smallexample
21644 void T::fn () __restrict__
21645 @{
21646 /* @r{@dots{}} */
21647 @}
21648 @end smallexample
21649
21650 @noindent
21651 Within the body of @code{T::fn}, @var{this} has the effective
21652 definition @code{T *__restrict__ const this}. Notice that the
21653 interpretation of a @code{__restrict__} member function qualifier is
21654 different to that of @code{const} or @code{volatile} qualifier, in that it
21655 is applied to the pointer rather than the object. This is consistent with
21656 other compilers that implement restricted pointers.
21657
21658 As with all outermost parameter qualifiers, @code{__restrict__} is
21659 ignored in function definition matching. This means you only need to
21660 specify @code{__restrict__} in a function definition, rather than
21661 in a function prototype as well.
21662
21663 @node Vague Linkage
21664 @section Vague Linkage
21665 @cindex vague linkage
21666
21667 There are several constructs in C++ that require space in the object
21668 file but are not clearly tied to a single translation unit. We say that
21669 these constructs have ``vague linkage''. Typically such constructs are
21670 emitted wherever they are needed, though sometimes we can be more
21671 clever.
21672
21673 @table @asis
21674 @item Inline Functions
21675 Inline functions are typically defined in a header file which can be
21676 included in many different compilations. Hopefully they can usually be
21677 inlined, but sometimes an out-of-line copy is necessary, if the address
21678 of the function is taken or if inlining fails. In general, we emit an
21679 out-of-line copy in all translation units where one is needed. As an
21680 exception, we only emit inline virtual functions with the vtable, since
21681 it always requires a copy.
21682
21683 Local static variables and string constants used in an inline function
21684 are also considered to have vague linkage, since they must be shared
21685 between all inlined and out-of-line instances of the function.
21686
21687 @item VTables
21688 @cindex vtable
21689 C++ virtual functions are implemented in most compilers using a lookup
21690 table, known as a vtable. The vtable contains pointers to the virtual
21691 functions provided by a class, and each object of the class contains a
21692 pointer to its vtable (or vtables, in some multiple-inheritance
21693 situations). If the class declares any non-inline, non-pure virtual
21694 functions, the first one is chosen as the ``key method'' for the class,
21695 and the vtable is only emitted in the translation unit where the key
21696 method is defined.
21697
21698 @emph{Note:} If the chosen key method is later defined as inline, the
21699 vtable is still emitted in every translation unit that defines it.
21700 Make sure that any inline virtuals are declared inline in the class
21701 body, even if they are not defined there.
21702
21703 @item @code{type_info} objects
21704 @cindex @code{type_info}
21705 @cindex RTTI
21706 C++ requires information about types to be written out in order to
21707 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
21708 For polymorphic classes (classes with virtual functions), the @samp{type_info}
21709 object is written out along with the vtable so that @samp{dynamic_cast}
21710 can determine the dynamic type of a class object at run time. For all
21711 other types, we write out the @samp{type_info} object when it is used: when
21712 applying @samp{typeid} to an expression, throwing an object, or
21713 referring to a type in a catch clause or exception specification.
21714
21715 @item Template Instantiations
21716 Most everything in this section also applies to template instantiations,
21717 but there are other options as well.
21718 @xref{Template Instantiation,,Where's the Template?}.
21719
21720 @end table
21721
21722 When used with GNU ld version 2.8 or later on an ELF system such as
21723 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
21724 these constructs will be discarded at link time. This is known as
21725 COMDAT support.
21726
21727 On targets that don't support COMDAT, but do support weak symbols, GCC
21728 uses them. This way one copy overrides all the others, but
21729 the unused copies still take up space in the executable.
21730
21731 For targets that do not support either COMDAT or weak symbols,
21732 most entities with vague linkage are emitted as local symbols to
21733 avoid duplicate definition errors from the linker. This does not happen
21734 for local statics in inlines, however, as having multiple copies
21735 almost certainly breaks things.
21736
21737 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
21738 another way to control placement of these constructs.
21739
21740 @node C++ Interface
21741 @section C++ Interface and Implementation Pragmas
21742
21743 @cindex interface and implementation headers, C++
21744 @cindex C++ interface and implementation headers
21745 @cindex pragmas, interface and implementation
21746
21747 @code{#pragma interface} and @code{#pragma implementation} provide the
21748 user with a way of explicitly directing the compiler to emit entities
21749 with vague linkage (and debugging information) in a particular
21750 translation unit.
21751
21752 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
21753 by COMDAT support and the ``key method'' heuristic
21754 mentioned in @ref{Vague Linkage}. Using them can actually cause your
21755 program to grow due to unnecessary out-of-line copies of inline
21756 functions.
21757
21758 @table @code
21759 @item #pragma interface
21760 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
21761 @kindex #pragma interface
21762 Use this directive in @emph{header files} that define object classes, to save
21763 space in most of the object files that use those classes. Normally,
21764 local copies of certain information (backup copies of inline member
21765 functions, debugging information, and the internal tables that implement
21766 virtual functions) must be kept in each object file that includes class
21767 definitions. You can use this pragma to avoid such duplication. When a
21768 header file containing @samp{#pragma interface} is included in a
21769 compilation, this auxiliary information is not generated (unless
21770 the main input source file itself uses @samp{#pragma implementation}).
21771 Instead, the object files contain references to be resolved at link
21772 time.
21773
21774 The second form of this directive is useful for the case where you have
21775 multiple headers with the same name in different directories. If you
21776 use this form, you must specify the same string to @samp{#pragma
21777 implementation}.
21778
21779 @item #pragma implementation
21780 @itemx #pragma implementation "@var{objects}.h"
21781 @kindex #pragma implementation
21782 Use this pragma in a @emph{main input file}, when you want full output from
21783 included header files to be generated (and made globally visible). The
21784 included header file, in turn, should use @samp{#pragma interface}.
21785 Backup copies of inline member functions, debugging information, and the
21786 internal tables used to implement virtual functions are all generated in
21787 implementation files.
21788
21789 @cindex implied @code{#pragma implementation}
21790 @cindex @code{#pragma implementation}, implied
21791 @cindex naming convention, implementation headers
21792 If you use @samp{#pragma implementation} with no argument, it applies to
21793 an include file with the same basename@footnote{A file's @dfn{basename}
21794 is the name stripped of all leading path information and of trailing
21795 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
21796 file. For example, in @file{allclass.cc}, giving just
21797 @samp{#pragma implementation}
21798 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
21799
21800 Use the string argument if you want a single implementation file to
21801 include code from multiple header files. (You must also use
21802 @samp{#include} to include the header file; @samp{#pragma
21803 implementation} only specifies how to use the file---it doesn't actually
21804 include it.)
21805
21806 There is no way to split up the contents of a single header file into
21807 multiple implementation files.
21808 @end table
21809
21810 @cindex inlining and C++ pragmas
21811 @cindex C++ pragmas, effect on inlining
21812 @cindex pragmas in C++, effect on inlining
21813 @samp{#pragma implementation} and @samp{#pragma interface} also have an
21814 effect on function inlining.
21815
21816 If you define a class in a header file marked with @samp{#pragma
21817 interface}, the effect on an inline function defined in that class is
21818 similar to an explicit @code{extern} declaration---the compiler emits
21819 no code at all to define an independent version of the function. Its
21820 definition is used only for inlining with its callers.
21821
21822 @opindex fno-implement-inlines
21823 Conversely, when you include the same header file in a main source file
21824 that declares it as @samp{#pragma implementation}, the compiler emits
21825 code for the function itself; this defines a version of the function
21826 that can be found via pointers (or by callers compiled without
21827 inlining). If all calls to the function can be inlined, you can avoid
21828 emitting the function by compiling with @option{-fno-implement-inlines}.
21829 If any calls are not inlined, you will get linker errors.
21830
21831 @node Template Instantiation
21832 @section Where's the Template?
21833 @cindex template instantiation
21834
21835 C++ templates were the first language feature to require more
21836 intelligence from the environment than was traditionally found on a UNIX
21837 system. Somehow the compiler and linker have to make sure that each
21838 template instance occurs exactly once in the executable if it is needed,
21839 and not at all otherwise. There are two basic approaches to this
21840 problem, which are referred to as the Borland model and the Cfront model.
21841
21842 @table @asis
21843 @item Borland model
21844 Borland C++ solved the template instantiation problem by adding the code
21845 equivalent of common blocks to their linker; the compiler emits template
21846 instances in each translation unit that uses them, and the linker
21847 collapses them together. The advantage of this model is that the linker
21848 only has to consider the object files themselves; there is no external
21849 complexity to worry about. The disadvantage is that compilation time
21850 is increased because the template code is being compiled repeatedly.
21851 Code written for this model tends to include definitions of all
21852 templates in the header file, since they must be seen to be
21853 instantiated.
21854
21855 @item Cfront model
21856 The AT&T C++ translator, Cfront, solved the template instantiation
21857 problem by creating the notion of a template repository, an
21858 automatically maintained place where template instances are stored. A
21859 more modern version of the repository works as follows: As individual
21860 object files are built, the compiler places any template definitions and
21861 instantiations encountered in the repository. At link time, the link
21862 wrapper adds in the objects in the repository and compiles any needed
21863 instances that were not previously emitted. The advantages of this
21864 model are more optimal compilation speed and the ability to use the
21865 system linker; to implement the Borland model a compiler vendor also
21866 needs to replace the linker. The disadvantages are vastly increased
21867 complexity, and thus potential for error; for some code this can be
21868 just as transparent, but in practice it can been very difficult to build
21869 multiple programs in one directory and one program in multiple
21870 directories. Code written for this model tends to separate definitions
21871 of non-inline member templates into a separate file, which should be
21872 compiled separately.
21873 @end table
21874
21875 G++ implements the Borland model on targets where the linker supports it,
21876 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
21877 Otherwise G++ implements neither automatic model.
21878
21879 You have the following options for dealing with template instantiations:
21880
21881 @enumerate
21882 @item
21883 Do nothing. Code written for the Borland model works fine, but
21884 each translation unit contains instances of each of the templates it
21885 uses. The duplicate instances will be discarded by the linker, but in
21886 a large program, this can lead to an unacceptable amount of code
21887 duplication in object files or shared libraries.
21888
21889 Duplicate instances of a template can be avoided by defining an explicit
21890 instantiation in one object file, and preventing the compiler from doing
21891 implicit instantiations in any other object files by using an explicit
21892 instantiation declaration, using the @code{extern template} syntax:
21893
21894 @smallexample
21895 extern template int max (int, int);
21896 @end smallexample
21897
21898 This syntax is defined in the C++ 2011 standard, but has been supported by
21899 G++ and other compilers since well before 2011.
21900
21901 Explicit instantiations can be used for the largest or most frequently
21902 duplicated instances, without having to know exactly which other instances
21903 are used in the rest of the program. You can scatter the explicit
21904 instantiations throughout your program, perhaps putting them in the
21905 translation units where the instances are used or the translation units
21906 that define the templates themselves; you can put all of the explicit
21907 instantiations you need into one big file; or you can create small files
21908 like
21909
21910 @smallexample
21911 #include "Foo.h"
21912 #include "Foo.cc"
21913
21914 template class Foo<int>;
21915 template ostream& operator <<
21916 (ostream&, const Foo<int>&);
21917 @end smallexample
21918
21919 @noindent
21920 for each of the instances you need, and create a template instantiation
21921 library from those.
21922
21923 This is the simplest option, but also offers flexibility and
21924 fine-grained control when necessary. It is also the most portable
21925 alternative and programs using this approach will work with most modern
21926 compilers.
21927
21928 @item
21929 @opindex frepo
21930 Compile your template-using code with @option{-frepo}. The compiler
21931 generates files with the extension @samp{.rpo} listing all of the
21932 template instantiations used in the corresponding object files that
21933 could be instantiated there; the link wrapper, @samp{collect2},
21934 then updates the @samp{.rpo} files to tell the compiler where to place
21935 those instantiations and rebuild any affected object files. The
21936 link-time overhead is negligible after the first pass, as the compiler
21937 continues to place the instantiations in the same files.
21938
21939 This can be a suitable option for application code written for the Borland
21940 model, as it usually just works. Code written for the Cfront model
21941 needs to be modified so that the template definitions are available at
21942 one or more points of instantiation; usually this is as simple as adding
21943 @code{#include <tmethods.cc>} to the end of each template header.
21944
21945 For library code, if you want the library to provide all of the template
21946 instantiations it needs, just try to link all of its object files
21947 together; the link will fail, but cause the instantiations to be
21948 generated as a side effect. Be warned, however, that this may cause
21949 conflicts if multiple libraries try to provide the same instantiations.
21950 For greater control, use explicit instantiation as described in the next
21951 option.
21952
21953 @item
21954 @opindex fno-implicit-templates
21955 Compile your code with @option{-fno-implicit-templates} to disable the
21956 implicit generation of template instances, and explicitly instantiate
21957 all the ones you use. This approach requires more knowledge of exactly
21958 which instances you need than do the others, but it's less
21959 mysterious and allows greater control if you want to ensure that only
21960 the intended instances are used.
21961
21962 If you are using Cfront-model code, you can probably get away with not
21963 using @option{-fno-implicit-templates} when compiling files that don't
21964 @samp{#include} the member template definitions.
21965
21966 If you use one big file to do the instantiations, you may want to
21967 compile it without @option{-fno-implicit-templates} so you get all of the
21968 instances required by your explicit instantiations (but not by any
21969 other files) without having to specify them as well.
21970
21971 In addition to forward declaration of explicit instantiations
21972 (with @code{extern}), G++ has extended the template instantiation
21973 syntax to support instantiation of the compiler support data for a
21974 template class (i.e.@: the vtable) without instantiating any of its
21975 members (with @code{inline}), and instantiation of only the static data
21976 members of a template class, without the support data or member
21977 functions (with @code{static}):
21978
21979 @smallexample
21980 inline template class Foo<int>;
21981 static template class Foo<int>;
21982 @end smallexample
21983 @end enumerate
21984
21985 @node Bound member functions
21986 @section Extracting the Function Pointer from a Bound Pointer to Member Function
21987 @cindex pmf
21988 @cindex pointer to member function
21989 @cindex bound pointer to member function
21990
21991 In C++, pointer to member functions (PMFs) are implemented using a wide
21992 pointer of sorts to handle all the possible call mechanisms; the PMF
21993 needs to store information about how to adjust the @samp{this} pointer,
21994 and if the function pointed to is virtual, where to find the vtable, and
21995 where in the vtable to look for the member function. If you are using
21996 PMFs in an inner loop, you should really reconsider that decision. If
21997 that is not an option, you can extract the pointer to the function that
21998 would be called for a given object/PMF pair and call it directly inside
21999 the inner loop, to save a bit of time.
22000
22001 Note that you still pay the penalty for the call through a
22002 function pointer; on most modern architectures, such a call defeats the
22003 branch prediction features of the CPU@. This is also true of normal
22004 virtual function calls.
22005
22006 The syntax for this extension is
22007
22008 @smallexample
22009 extern A a;
22010 extern int (A::*fp)();
22011 typedef int (*fptr)(A *);
22012
22013 fptr p = (fptr)(a.*fp);
22014 @end smallexample
22015
22016 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
22017 no object is needed to obtain the address of the function. They can be
22018 converted to function pointers directly:
22019
22020 @smallexample
22021 fptr p1 = (fptr)(&A::foo);
22022 @end smallexample
22023
22024 @opindex Wno-pmf-conversions
22025 You must specify @option{-Wno-pmf-conversions} to use this extension.
22026
22027 @node C++ Attributes
22028 @section C++-Specific Variable, Function, and Type Attributes
22029
22030 Some attributes only make sense for C++ programs.
22031
22032 @table @code
22033 @item abi_tag ("@var{tag}", ...)
22034 @cindex @code{abi_tag} function attribute
22035 @cindex @code{abi_tag} variable attribute
22036 @cindex @code{abi_tag} type attribute
22037 The @code{abi_tag} attribute can be applied to a function, variable, or class
22038 declaration. It modifies the mangled name of the entity to
22039 incorporate the tag name, in order to distinguish the function or
22040 class from an earlier version with a different ABI; perhaps the class
22041 has changed size, or the function has a different return type that is
22042 not encoded in the mangled name.
22043
22044 The attribute can also be applied to an inline namespace, but does not
22045 affect the mangled name of the namespace; in this case it is only used
22046 for @option{-Wabi-tag} warnings and automatic tagging of functions and
22047 variables. Tagging inline namespaces is generally preferable to
22048 tagging individual declarations, but the latter is sometimes
22049 necessary, such as when only certain members of a class need to be
22050 tagged.
22051
22052 The argument can be a list of strings of arbitrary length. The
22053 strings are sorted on output, so the order of the list is
22054 unimportant.
22055
22056 A redeclaration of an entity must not add new ABI tags,
22057 since doing so would change the mangled name.
22058
22059 The ABI tags apply to a name, so all instantiations and
22060 specializations of a template have the same tags. The attribute will
22061 be ignored if applied to an explicit specialization or instantiation.
22062
22063 The @option{-Wabi-tag} flag enables a warning about a class which does
22064 not have all the ABI tags used by its subobjects and virtual functions; for users with code
22065 that needs to coexist with an earlier ABI, using this option can help
22066 to find all affected types that need to be tagged.
22067
22068 When a type involving an ABI tag is used as the type of a variable or
22069 return type of a function where that tag is not already present in the
22070 signature of the function, the tag is automatically applied to the
22071 variable or function. @option{-Wabi-tag} also warns about this
22072 situation; this warning can be avoided by explicitly tagging the
22073 variable or function or moving it into a tagged inline namespace.
22074
22075 @item init_priority (@var{priority})
22076 @cindex @code{init_priority} variable attribute
22077
22078 In Standard C++, objects defined at namespace scope are guaranteed to be
22079 initialized in an order in strict accordance with that of their definitions
22080 @emph{in a given translation unit}. No guarantee is made for initializations
22081 across translation units. However, GNU C++ allows users to control the
22082 order of initialization of objects defined at namespace scope with the
22083 @code{init_priority} attribute by specifying a relative @var{priority},
22084 a constant integral expression currently bounded between 101 and 65535
22085 inclusive. Lower numbers indicate a higher priority.
22086
22087 In the following example, @code{A} would normally be created before
22088 @code{B}, but the @code{init_priority} attribute reverses that order:
22089
22090 @smallexample
22091 Some_Class A __attribute__ ((init_priority (2000)));
22092 Some_Class B __attribute__ ((init_priority (543)));
22093 @end smallexample
22094
22095 @noindent
22096 Note that the particular values of @var{priority} do not matter; only their
22097 relative ordering.
22098
22099 @item warn_unused
22100 @cindex @code{warn_unused} type attribute
22101
22102 For C++ types with non-trivial constructors and/or destructors it is
22103 impossible for the compiler to determine whether a variable of this
22104 type is truly unused if it is not referenced. This type attribute
22105 informs the compiler that variables of this type should be warned
22106 about if they appear to be unused, just like variables of fundamental
22107 types.
22108
22109 This attribute is appropriate for types which just represent a value,
22110 such as @code{std::string}; it is not appropriate for types which
22111 control a resource, such as @code{std::lock_guard}.
22112
22113 This attribute is also accepted in C, but it is unnecessary because C
22114 does not have constructors or destructors.
22115
22116 @end table
22117
22118 See also @ref{Namespace Association}.
22119
22120 @node Function Multiversioning
22121 @section Function Multiversioning
22122 @cindex function versions
22123
22124 With the GNU C++ front end, for x86 targets, you may specify multiple
22125 versions of a function, where each function is specialized for a
22126 specific target feature. At runtime, the appropriate version of the
22127 function is automatically executed depending on the characteristics of
22128 the execution platform. Here is an example.
22129
22130 @smallexample
22131 __attribute__ ((target ("default")))
22132 int foo ()
22133 @{
22134 // The default version of foo.
22135 return 0;
22136 @}
22137
22138 __attribute__ ((target ("sse4.2")))
22139 int foo ()
22140 @{
22141 // foo version for SSE4.2
22142 return 1;
22143 @}
22144
22145 __attribute__ ((target ("arch=atom")))
22146 int foo ()
22147 @{
22148 // foo version for the Intel ATOM processor
22149 return 2;
22150 @}
22151
22152 __attribute__ ((target ("arch=amdfam10")))
22153 int foo ()
22154 @{
22155 // foo version for the AMD Family 0x10 processors.
22156 return 3;
22157 @}
22158
22159 int main ()
22160 @{
22161 int (*p)() = &foo;
22162 assert ((*p) () == foo ());
22163 return 0;
22164 @}
22165 @end smallexample
22166
22167 In the above example, four versions of function foo are created. The
22168 first version of foo with the target attribute "default" is the default
22169 version. This version gets executed when no other target specific
22170 version qualifies for execution on a particular platform. A new version
22171 of foo is created by using the same function signature but with a
22172 different target string. Function foo is called or a pointer to it is
22173 taken just like a regular function. GCC takes care of doing the
22174 dispatching to call the right version at runtime. Refer to the
22175 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
22176 Function Multiversioning} for more details.
22177
22178 @node Namespace Association
22179 @section Namespace Association
22180
22181 @strong{Caution:} The semantics of this extension are equivalent
22182 to C++ 2011 inline namespaces. Users should use inline namespaces
22183 instead as this extension will be removed in future versions of G++.
22184
22185 A using-directive with @code{__attribute ((strong))} is stronger
22186 than a normal using-directive in two ways:
22187
22188 @itemize @bullet
22189 @item
22190 Templates from the used namespace can be specialized and explicitly
22191 instantiated as though they were members of the using namespace.
22192
22193 @item
22194 The using namespace is considered an associated namespace of all
22195 templates in the used namespace for purposes of argument-dependent
22196 name lookup.
22197 @end itemize
22198
22199 The used namespace must be nested within the using namespace so that
22200 normal unqualified lookup works properly.
22201
22202 This is useful for composing a namespace transparently from
22203 implementation namespaces. For example:
22204
22205 @smallexample
22206 namespace std @{
22207 namespace debug @{
22208 template <class T> struct A @{ @};
22209 @}
22210 using namespace debug __attribute ((__strong__));
22211 template <> struct A<int> @{ @}; // @r{OK to specialize}
22212
22213 template <class T> void f (A<T>);
22214 @}
22215
22216 int main()
22217 @{
22218 f (std::A<float>()); // @r{lookup finds} std::f
22219 f (std::A<int>());
22220 @}
22221 @end smallexample
22222
22223 @node Type Traits
22224 @section Type Traits
22225
22226 The C++ front end implements syntactic extensions that allow
22227 compile-time determination of
22228 various characteristics of a type (or of a
22229 pair of types).
22230
22231 @table @code
22232 @item __has_nothrow_assign (type)
22233 If @code{type} is const qualified or is a reference type then the trait is
22234 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
22235 is true, else if @code{type} is a cv class or union type with copy assignment
22236 operators that are known not to throw an exception then the trait is true,
22237 else it is false. Requires: @code{type} shall be a complete type,
22238 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22239
22240 @item __has_nothrow_copy (type)
22241 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
22242 @code{type} is a cv class or union type with copy constructors that
22243 are known not to throw an exception then the trait is true, else it is false.
22244 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
22245 @code{void}, or an array of unknown bound.
22246
22247 @item __has_nothrow_constructor (type)
22248 If @code{__has_trivial_constructor (type)} is true then the trait is
22249 true, else if @code{type} is a cv class or union type (or array
22250 thereof) with a default constructor that is known not to throw an
22251 exception then the trait is true, else it is false. Requires:
22252 @code{type} shall be a complete type, (possibly cv-qualified)
22253 @code{void}, or an array of unknown bound.
22254
22255 @item __has_trivial_assign (type)
22256 If @code{type} is const qualified or is a reference type then the trait is
22257 false. Otherwise if @code{__is_pod (type)} is true then the trait is
22258 true, else if @code{type} is a cv class or union type with a trivial
22259 copy assignment ([class.copy]) then the trait is true, else it is
22260 false. Requires: @code{type} shall be a complete type, (possibly
22261 cv-qualified) @code{void}, or an array of unknown bound.
22262
22263 @item __has_trivial_copy (type)
22264 If @code{__is_pod (type)} is true or @code{type} is a reference type
22265 then the trait is true, else if @code{type} is a cv class or union type
22266 with a trivial copy constructor ([class.copy]) then the trait
22267 is true, else it is false. Requires: @code{type} shall be a complete
22268 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22269
22270 @item __has_trivial_constructor (type)
22271 If @code{__is_pod (type)} is true then the trait is true, else if
22272 @code{type} is a cv class or union type (or array thereof) with a
22273 trivial default constructor ([class.ctor]) then the trait is true,
22274 else it is false. Requires: @code{type} shall be a complete
22275 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22276
22277 @item __has_trivial_destructor (type)
22278 If @code{__is_pod (type)} is true or @code{type} is a reference type then
22279 the trait is true, else if @code{type} is a cv class or union type (or
22280 array thereof) with a trivial destructor ([class.dtor]) then the trait
22281 is true, else it is false. Requires: @code{type} shall be a complete
22282 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22283
22284 @item __has_virtual_destructor (type)
22285 If @code{type} is a class type with a virtual destructor
22286 ([class.dtor]) then the trait is true, else it is false. Requires:
22287 @code{type} shall be a complete type, (possibly cv-qualified)
22288 @code{void}, or an array of unknown bound.
22289
22290 @item __is_abstract (type)
22291 If @code{type} is an abstract class ([class.abstract]) then the trait
22292 is true, else it is false. Requires: @code{type} shall be a complete
22293 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22294
22295 @item __is_base_of (base_type, derived_type)
22296 If @code{base_type} is a base class of @code{derived_type}
22297 ([class.derived]) then the trait is true, otherwise it is false.
22298 Top-level cv qualifications of @code{base_type} and
22299 @code{derived_type} are ignored. For the purposes of this trait, a
22300 class type is considered is own base. Requires: if @code{__is_class
22301 (base_type)} and @code{__is_class (derived_type)} are true and
22302 @code{base_type} and @code{derived_type} are not the same type
22303 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
22304 type. A diagnostic is produced if this requirement is not met.
22305
22306 @item __is_class (type)
22307 If @code{type} is a cv class type, and not a union type
22308 ([basic.compound]) the trait is true, else it is false.
22309
22310 @item __is_empty (type)
22311 If @code{__is_class (type)} is false then the trait is false.
22312 Otherwise @code{type} is considered empty if and only if: @code{type}
22313 has no non-static data members, or all non-static data members, if
22314 any, are bit-fields of length 0, and @code{type} has no virtual
22315 members, and @code{type} has no virtual base classes, and @code{type}
22316 has no base classes @code{base_type} for which
22317 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
22318 be a complete type, (possibly cv-qualified) @code{void}, or an array
22319 of unknown bound.
22320
22321 @item __is_enum (type)
22322 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
22323 true, else it is false.
22324
22325 @item __is_literal_type (type)
22326 If @code{type} is a literal type ([basic.types]) the trait is
22327 true, else it is false. Requires: @code{type} shall be a complete type,
22328 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22329
22330 @item __is_pod (type)
22331 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
22332 else it is false. Requires: @code{type} shall be a complete type,
22333 (possibly cv-qualified) @code{void}, or an array of unknown bound.
22334
22335 @item __is_polymorphic (type)
22336 If @code{type} is a polymorphic class ([class.virtual]) then the trait
22337 is true, else it is false. Requires: @code{type} shall be a complete
22338 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22339
22340 @item __is_standard_layout (type)
22341 If @code{type} is a standard-layout type ([basic.types]) the trait is
22342 true, else it is false. Requires: @code{type} shall be a complete
22343 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22344
22345 @item __is_trivial (type)
22346 If @code{type} is a trivial type ([basic.types]) the trait is
22347 true, else it is false. Requires: @code{type} shall be a complete
22348 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
22349
22350 @item __is_union (type)
22351 If @code{type} is a cv union type ([basic.compound]) the trait is
22352 true, else it is false.
22353
22354 @item __underlying_type (type)
22355 The underlying type of @code{type}. Requires: @code{type} shall be
22356 an enumeration type ([dcl.enum]).
22357
22358 @end table
22359
22360
22361 @node C++ Concepts
22362 @section C++ Concepts
22363
22364 C++ concepts provide much-improved support for generic programming. In
22365 particular, they allow the specification of constraints on template arguments.
22366 The constraints are used to extend the usual overloading and partial
22367 specialization capabilities of the language, allowing generic data structures
22368 and algorithms to be ``refined'' based on their properties rather than their
22369 type names.
22370
22371 The following keywords are reserved for concepts.
22372
22373 @table @code
22374 @item assumes
22375 States an expression as an assumption, and if possible, verifies that the
22376 assumption is valid. For example, @code{assume(n > 0)}.
22377
22378 @item axiom
22379 Introduces an axiom definition. Axioms introduce requirements on values.
22380
22381 @item forall
22382 Introduces a universally quantified object in an axiom. For example,
22383 @code{forall (int n) n + 0 == n}).
22384
22385 @item concept
22386 Introduces a concept definition. Concepts are sets of syntactic and semantic
22387 requirements on types and their values.
22388
22389 @item requires
22390 Introduces constraints on template arguments or requirements for a member
22391 function of a class template.
22392
22393 @end table
22394
22395 The front end also exposes a number of internal mechanism that can be used
22396 to simplify the writing of type traits. Note that some of these traits are
22397 likely to be removed in the future.
22398
22399 @table @code
22400 @item __is_same (type1, type2)
22401 A binary type trait: true whenever the type arguments are the same.
22402
22403 @end table
22404
22405
22406 @node Deprecated Features
22407 @section Deprecated Features
22408
22409 In the past, the GNU C++ compiler was extended to experiment with new
22410 features, at a time when the C++ language was still evolving. Now that
22411 the C++ standard is complete, some of those features are superseded by
22412 superior alternatives. Using the old features might cause a warning in
22413 some cases that the feature will be dropped in the future. In other
22414 cases, the feature might be gone already.
22415
22416 While the list below is not exhaustive, it documents some of the options
22417 that are now deprecated:
22418
22419 @table @code
22420 @item -fexternal-templates
22421 @itemx -falt-external-templates
22422 These are two of the many ways for G++ to implement template
22423 instantiation. @xref{Template Instantiation}. The C++ standard clearly
22424 defines how template definitions have to be organized across
22425 implementation units. G++ has an implicit instantiation mechanism that
22426 should work just fine for standard-conforming code.
22427
22428 @item -fstrict-prototype
22429 @itemx -fno-strict-prototype
22430 Previously it was possible to use an empty prototype parameter list to
22431 indicate an unspecified number of parameters (like C), rather than no
22432 parameters, as C++ demands. This feature has been removed, except where
22433 it is required for backwards compatibility. @xref{Backwards Compatibility}.
22434 @end table
22435
22436 G++ allows a virtual function returning @samp{void *} to be overridden
22437 by one returning a different pointer type. This extension to the
22438 covariant return type rules is now deprecated and will be removed from a
22439 future version.
22440
22441 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
22442 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
22443 and are now removed from G++. Code using these operators should be
22444 modified to use @code{std::min} and @code{std::max} instead.
22445
22446 The named return value extension has been deprecated, and is now
22447 removed from G++.
22448
22449 The use of initializer lists with new expressions has been deprecated,
22450 and is now removed from G++.
22451
22452 Floating and complex non-type template parameters have been deprecated,
22453 and are now removed from G++.
22454
22455 The implicit typename extension has been deprecated and is now
22456 removed from G++.
22457
22458 The use of default arguments in function pointers, function typedefs
22459 and other places where they are not permitted by the standard is
22460 deprecated and will be removed from a future version of G++.
22461
22462 G++ allows floating-point literals to appear in integral constant expressions,
22463 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
22464 This extension is deprecated and will be removed from a future version.
22465
22466 G++ allows static data members of const floating-point type to be declared
22467 with an initializer in a class definition. The standard only allows
22468 initializers for static members of const integral types and const
22469 enumeration types so this extension has been deprecated and will be removed
22470 from a future version.
22471
22472 @node Backwards Compatibility
22473 @section Backwards Compatibility
22474 @cindex Backwards Compatibility
22475 @cindex ARM [Annotated C++ Reference Manual]
22476
22477 Now that there is a definitive ISO standard C++, G++ has a specification
22478 to adhere to. The C++ language evolved over time, and features that
22479 used to be acceptable in previous drafts of the standard, such as the ARM
22480 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
22481 compilation of C++ written to such drafts, G++ contains some backwards
22482 compatibilities. @emph{All such backwards compatibility features are
22483 liable to disappear in future versions of G++.} They should be considered
22484 deprecated. @xref{Deprecated Features}.
22485
22486 @table @code
22487 @item For scope
22488 If a variable is declared at for scope, it used to remain in scope until
22489 the end of the scope that contained the for statement (rather than just
22490 within the for scope). G++ retains this, but issues a warning, if such a
22491 variable is accessed outside the for scope.
22492
22493 @item Implicit C language
22494 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
22495 scope to set the language. On such systems, all header files are
22496 implicitly scoped inside a C language scope. Also, an empty prototype
22497 @code{()} is treated as an unspecified number of arguments, rather
22498 than no arguments, as C++ demands.
22499 @end table
22500
22501 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
22502 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr