re PR target/1078 (Problems with attributes documentation)
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Attribute Syntax:: Formal syntax for attributes.
64 * Function Prototypes:: Prototype declarations and old-style definitions.
65 * C++ Comments:: C++ comments are recognized.
66 * Dollar Signs:: Dollar sign is allowed in identifiers.
67 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
68 * Alignment:: Inquiring about the alignment of a type or variable.
69 * Inline:: Defining inline functions (as fast as macros).
70 * Volatiles:: What constitutes an access to a volatile object.
71 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
72 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
73 * Incomplete Enums:: @code{enum foo;}, with details to follow.
74 * Function Names:: Printable strings which are the name of the current
75 function.
76 * Return Address:: Getting the return or frame address of a function.
77 * Vector Extensions:: Using vector instructions through built-in functions.
78 * Offsetof:: Special syntax for implementing @code{offsetof}.
79 * __sync Builtins:: Legacy built-in functions for atomic memory access.
80 * __atomic Builtins:: Atomic built-in functions with memory model.
81 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
82 arithmetic overflow checking.
83 * x86 specific memory model extensions for transactional memory:: x86 memory models.
84 * Object Size Checking:: Built-in functions for limited buffer overflow
85 checking.
86 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
87 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
88 * Other Builtins:: Other built-in functions.
89 * Target Builtins:: Built-in functions specific to particular targets.
90 * Target Format Checks:: Format checks specific to particular targets.
91 * Pragmas:: Pragmas accepted by GCC.
92 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
93 * Thread-Local:: Per-thread variables.
94 * Binary constants:: Binary constants using the @samp{0b} prefix.
95 @end menu
96
97 @node Statement Exprs
98 @section Statements and Declarations in Expressions
99 @cindex statements inside expressions
100 @cindex declarations inside expressions
101 @cindex expressions containing statements
102 @cindex macros, statements in expressions
103
104 @c the above section title wrapped and causes an underfull hbox.. i
105 @c changed it from "within" to "in". --mew 4feb93
106 A compound statement enclosed in parentheses may appear as an expression
107 in GNU C@. This allows you to use loops, switches, and local variables
108 within an expression.
109
110 Recall that a compound statement is a sequence of statements surrounded
111 by braces; in this construct, parentheses go around the braces. For
112 example:
113
114 @smallexample
115 (@{ int y = foo (); int z;
116 if (y > 0) z = y;
117 else z = - y;
118 z; @})
119 @end smallexample
120
121 @noindent
122 is a valid (though slightly more complex than necessary) expression
123 for the absolute value of @code{foo ()}.
124
125 The last thing in the compound statement should be an expression
126 followed by a semicolon; the value of this subexpression serves as the
127 value of the entire construct. (If you use some other kind of statement
128 last within the braces, the construct has type @code{void}, and thus
129 effectively no value.)
130
131 This feature is especially useful in making macro definitions ``safe'' (so
132 that they evaluate each operand exactly once). For example, the
133 ``maximum'' function is commonly defined as a macro in standard C as
134 follows:
135
136 @smallexample
137 #define max(a,b) ((a) > (b) ? (a) : (b))
138 @end smallexample
139
140 @noindent
141 @cindex side effects, macro argument
142 But this definition computes either @var{a} or @var{b} twice, with bad
143 results if the operand has side effects. In GNU C, if you know the
144 type of the operands (here taken as @code{int}), you can define
145 the macro safely as follows:
146
147 @smallexample
148 #define maxint(a,b) \
149 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
150 @end smallexample
151
152 Embedded statements are not allowed in constant expressions, such as
153 the value of an enumeration constant, the width of a bit-field, or
154 the initial value of a static variable.
155
156 If you don't know the type of the operand, you can still do this, but you
157 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
158
159 In G++, the result value of a statement expression undergoes array and
160 function pointer decay, and is returned by value to the enclosing
161 expression. For instance, if @code{A} is a class, then
162
163 @smallexample
164 A a;
165
166 (@{a;@}).Foo ()
167 @end smallexample
168
169 @noindent
170 constructs a temporary @code{A} object to hold the result of the
171 statement expression, and that is used to invoke @code{Foo}.
172 Therefore the @code{this} pointer observed by @code{Foo} is not the
173 address of @code{a}.
174
175 In a statement expression, any temporaries created within a statement
176 are destroyed at that statement's end. This makes statement
177 expressions inside macros slightly different from function calls. In
178 the latter case temporaries introduced during argument evaluation are
179 destroyed at the end of the statement that includes the function
180 call. In the statement expression case they are destroyed during
181 the statement expression. For instance,
182
183 @smallexample
184 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
185 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
186
187 void foo ()
188 @{
189 macro (X ());
190 function (X ());
191 @}
192 @end smallexample
193
194 @noindent
195 has different places where temporaries are destroyed. For the
196 @code{macro} case, the temporary @code{X} is destroyed just after
197 the initialization of @code{b}. In the @code{function} case that
198 temporary is destroyed when the function returns.
199
200 These considerations mean that it is probably a bad idea to use
201 statement expressions of this form in header files that are designed to
202 work with C++. (Note that some versions of the GNU C Library contained
203 header files using statement expressions that lead to precisely this
204 bug.)
205
206 Jumping into a statement expression with @code{goto} or using a
207 @code{switch} statement outside the statement expression with a
208 @code{case} or @code{default} label inside the statement expression is
209 not permitted. Jumping into a statement expression with a computed
210 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
211 Jumping out of a statement expression is permitted, but if the
212 statement expression is part of a larger expression then it is
213 unspecified which other subexpressions of that expression have been
214 evaluated except where the language definition requires certain
215 subexpressions to be evaluated before or after the statement
216 expression. In any case, as with a function call, the evaluation of a
217 statement expression is not interleaved with the evaluation of other
218 parts of the containing expression. For example,
219
220 @smallexample
221 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
222 @end smallexample
223
224 @noindent
225 calls @code{foo} and @code{bar1} and does not call @code{baz} but
226 may or may not call @code{bar2}. If @code{bar2} is called, it is
227 called after @code{foo} and before @code{bar1}.
228
229 @node Local Labels
230 @section Locally Declared Labels
231 @cindex local labels
232 @cindex macros, local labels
233
234 GCC allows you to declare @dfn{local labels} in any nested block
235 scope. A local label is just like an ordinary label, but you can
236 only reference it (with a @code{goto} statement, or by taking its
237 address) within the block in which it is declared.
238
239 A local label declaration looks like this:
240
241 @smallexample
242 __label__ @var{label};
243 @end smallexample
244
245 @noindent
246 or
247
248 @smallexample
249 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
250 @end smallexample
251
252 Local label declarations must come at the beginning of the block,
253 before any ordinary declarations or statements.
254
255 The label declaration defines the label @emph{name}, but does not define
256 the label itself. You must do this in the usual way, with
257 @code{@var{label}:}, within the statements of the statement expression.
258
259 The local label feature is useful for complex macros. If a macro
260 contains nested loops, a @code{goto} can be useful for breaking out of
261 them. However, an ordinary label whose scope is the whole function
262 cannot be used: if the macro can be expanded several times in one
263 function, the label is multiply defined in that function. A
264 local label avoids this problem. For example:
265
266 @smallexample
267 #define SEARCH(value, array, target) \
268 do @{ \
269 __label__ found; \
270 typeof (target) _SEARCH_target = (target); \
271 typeof (*(array)) *_SEARCH_array = (array); \
272 int i, j; \
273 int value; \
274 for (i = 0; i < max; i++) \
275 for (j = 0; j < max; j++) \
276 if (_SEARCH_array[i][j] == _SEARCH_target) \
277 @{ (value) = i; goto found; @} \
278 (value) = -1; \
279 found:; \
280 @} while (0)
281 @end smallexample
282
283 This could also be written using a statement expression:
284
285 @smallexample
286 #define SEARCH(array, target) \
287 (@{ \
288 __label__ found; \
289 typeof (target) _SEARCH_target = (target); \
290 typeof (*(array)) *_SEARCH_array = (array); \
291 int i, j; \
292 int value; \
293 for (i = 0; i < max; i++) \
294 for (j = 0; j < max; j++) \
295 if (_SEARCH_array[i][j] == _SEARCH_target) \
296 @{ value = i; goto found; @} \
297 value = -1; \
298 found: \
299 value; \
300 @})
301 @end smallexample
302
303 Local label declarations also make the labels they declare visible to
304 nested functions, if there are any. @xref{Nested Functions}, for details.
305
306 @node Labels as Values
307 @section Labels as Values
308 @cindex labels as values
309 @cindex computed gotos
310 @cindex goto with computed label
311 @cindex address of a label
312
313 You can get the address of a label defined in the current function
314 (or a containing function) with the unary operator @samp{&&}. The
315 value has type @code{void *}. This value is a constant and can be used
316 wherever a constant of that type is valid. For example:
317
318 @smallexample
319 void *ptr;
320 /* @r{@dots{}} */
321 ptr = &&foo;
322 @end smallexample
323
324 To use these values, you need to be able to jump to one. This is done
325 with the computed goto statement@footnote{The analogous feature in
326 Fortran is called an assigned goto, but that name seems inappropriate in
327 C, where one can do more than simply store label addresses in label
328 variables.}, @code{goto *@var{exp};}. For example,
329
330 @smallexample
331 goto *ptr;
332 @end smallexample
333
334 @noindent
335 Any expression of type @code{void *} is allowed.
336
337 One way of using these constants is in initializing a static array that
338 serves as a jump table:
339
340 @smallexample
341 static void *array[] = @{ &&foo, &&bar, &&hack @};
342 @end smallexample
343
344 @noindent
345 Then you can select a label with indexing, like this:
346
347 @smallexample
348 goto *array[i];
349 @end smallexample
350
351 @noindent
352 Note that this does not check whether the subscript is in bounds---array
353 indexing in C never does that.
354
355 Such an array of label values serves a purpose much like that of the
356 @code{switch} statement. The @code{switch} statement is cleaner, so
357 use that rather than an array unless the problem does not fit a
358 @code{switch} statement very well.
359
360 Another use of label values is in an interpreter for threaded code.
361 The labels within the interpreter function can be stored in the
362 threaded code for super-fast dispatching.
363
364 You may not use this mechanism to jump to code in a different function.
365 If you do that, totally unpredictable things happen. The best way to
366 avoid this is to store the label address only in automatic variables and
367 never pass it as an argument.
368
369 An alternate way to write the above example is
370
371 @smallexample
372 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
373 &&hack - &&foo @};
374 goto *(&&foo + array[i]);
375 @end smallexample
376
377 @noindent
378 This is more friendly to code living in shared libraries, as it reduces
379 the number of dynamic relocations that are needed, and by consequence,
380 allows the data to be read-only.
381 This alternative with label differences is not supported for the AVR target,
382 please use the first approach for AVR programs.
383
384 The @code{&&foo} expressions for the same label might have different
385 values if the containing function is inlined or cloned. If a program
386 relies on them being always the same,
387 @code{__attribute__((__noinline__,__noclone__))} should be used to
388 prevent inlining and cloning. If @code{&&foo} is used in a static
389 variable initializer, inlining and cloning is forbidden.
390
391 @node Nested Functions
392 @section Nested Functions
393 @cindex nested functions
394 @cindex downward funargs
395 @cindex thunks
396
397 A @dfn{nested function} is a function defined inside another function.
398 Nested functions are supported as an extension in GNU C, but are not
399 supported by GNU C++.
400
401 The nested function's name is local to the block where it is defined.
402 For example, here we define a nested function named @code{square}, and
403 call it twice:
404
405 @smallexample
406 @group
407 foo (double a, double b)
408 @{
409 double square (double z) @{ return z * z; @}
410
411 return square (a) + square (b);
412 @}
413 @end group
414 @end smallexample
415
416 The nested function can access all the variables of the containing
417 function that are visible at the point of its definition. This is
418 called @dfn{lexical scoping}. For example, here we show a nested
419 function which uses an inherited variable named @code{offset}:
420
421 @smallexample
422 @group
423 bar (int *array, int offset, int size)
424 @{
425 int access (int *array, int index)
426 @{ return array[index + offset]; @}
427 int i;
428 /* @r{@dots{}} */
429 for (i = 0; i < size; i++)
430 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
431 @}
432 @end group
433 @end smallexample
434
435 Nested function definitions are permitted within functions in the places
436 where variable definitions are allowed; that is, in any block, mixed
437 with the other declarations and statements in the block.
438
439 It is possible to call the nested function from outside the scope of its
440 name by storing its address or passing the address to another function:
441
442 @smallexample
443 hack (int *array, int size)
444 @{
445 void store (int index, int value)
446 @{ array[index] = value; @}
447
448 intermediate (store, size);
449 @}
450 @end smallexample
451
452 Here, the function @code{intermediate} receives the address of
453 @code{store} as an argument. If @code{intermediate} calls @code{store},
454 the arguments given to @code{store} are used to store into @code{array}.
455 But this technique works only so long as the containing function
456 (@code{hack}, in this example) does not exit.
457
458 If you try to call the nested function through its address after the
459 containing function exits, all hell breaks loose. If you try
460 to call it after a containing scope level exits, and if it refers
461 to some of the variables that are no longer in scope, you may be lucky,
462 but it's not wise to take the risk. If, however, the nested function
463 does not refer to anything that has gone out of scope, you should be
464 safe.
465
466 GCC implements taking the address of a nested function using a technique
467 called @dfn{trampolines}. This technique was described in
468 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
469 C++ Conference Proceedings, October 17-21, 1988).
470
471 A nested function can jump to a label inherited from a containing
472 function, provided the label is explicitly declared in the containing
473 function (@pxref{Local Labels}). Such a jump returns instantly to the
474 containing function, exiting the nested function that did the
475 @code{goto} and any intermediate functions as well. Here is an example:
476
477 @smallexample
478 @group
479 bar (int *array, int offset, int size)
480 @{
481 __label__ failure;
482 int access (int *array, int index)
483 @{
484 if (index > size)
485 goto failure;
486 return array[index + offset];
487 @}
488 int i;
489 /* @r{@dots{}} */
490 for (i = 0; i < size; i++)
491 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
492 /* @r{@dots{}} */
493 return 0;
494
495 /* @r{Control comes here from @code{access}
496 if it detects an error.} */
497 failure:
498 return -1;
499 @}
500 @end group
501 @end smallexample
502
503 A nested function always has no linkage. Declaring one with
504 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
505 before its definition, use @code{auto} (which is otherwise meaningless
506 for function declarations).
507
508 @smallexample
509 bar (int *array, int offset, int size)
510 @{
511 __label__ failure;
512 auto int access (int *, int);
513 /* @r{@dots{}} */
514 int access (int *array, int index)
515 @{
516 if (index > size)
517 goto failure;
518 return array[index + offset];
519 @}
520 /* @r{@dots{}} */
521 @}
522 @end smallexample
523
524 @node Constructing Calls
525 @section Constructing Function Calls
526 @cindex constructing calls
527 @cindex forwarding calls
528
529 Using the built-in functions described below, you can record
530 the arguments a function received, and call another function
531 with the same arguments, without knowing the number or types
532 of the arguments.
533
534 You can also record the return value of that function call,
535 and later return that value, without knowing what data type
536 the function tried to return (as long as your caller expects
537 that data type).
538
539 However, these built-in functions may interact badly with some
540 sophisticated features or other extensions of the language. It
541 is, therefore, not recommended to use them outside very simple
542 functions acting as mere forwarders for their arguments.
543
544 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
545 This built-in function returns a pointer to data
546 describing how to perform a call with the same arguments as are passed
547 to the current function.
548
549 The function saves the arg pointer register, structure value address,
550 and all registers that might be used to pass arguments to a function
551 into a block of memory allocated on the stack. Then it returns the
552 address of that block.
553 @end deftypefn
554
555 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
556 This built-in function invokes @var{function}
557 with a copy of the parameters described by @var{arguments}
558 and @var{size}.
559
560 The value of @var{arguments} should be the value returned by
561 @code{__builtin_apply_args}. The argument @var{size} specifies the size
562 of the stack argument data, in bytes.
563
564 This function returns a pointer to data describing
565 how to return whatever value is returned by @var{function}. The data
566 is saved in a block of memory allocated on the stack.
567
568 It is not always simple to compute the proper value for @var{size}. The
569 value is used by @code{__builtin_apply} to compute the amount of data
570 that should be pushed on the stack and copied from the incoming argument
571 area.
572 @end deftypefn
573
574 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
575 This built-in function returns the value described by @var{result} from
576 the containing function. You should specify, for @var{result}, a value
577 returned by @code{__builtin_apply}.
578 @end deftypefn
579
580 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
581 This built-in function represents all anonymous arguments of an inline
582 function. It can be used only in inline functions that are always
583 inlined, never compiled as a separate function, such as those using
584 @code{__attribute__ ((__always_inline__))} or
585 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
586 It must be only passed as last argument to some other function
587 with variable arguments. This is useful for writing small wrapper
588 inlines for variable argument functions, when using preprocessor
589 macros is undesirable. For example:
590 @smallexample
591 extern int myprintf (FILE *f, const char *format, ...);
592 extern inline __attribute__ ((__gnu_inline__)) int
593 myprintf (FILE *f, const char *format, ...)
594 @{
595 int r = fprintf (f, "myprintf: ");
596 if (r < 0)
597 return r;
598 int s = fprintf (f, format, __builtin_va_arg_pack ());
599 if (s < 0)
600 return s;
601 return r + s;
602 @}
603 @end smallexample
604 @end deftypefn
605
606 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
607 This built-in function returns the number of anonymous arguments of
608 an inline function. It can be used only in inline functions that
609 are always inlined, never compiled as a separate function, such
610 as those using @code{__attribute__ ((__always_inline__))} or
611 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
612 For example following does link- or run-time checking of open
613 arguments for optimized code:
614 @smallexample
615 #ifdef __OPTIMIZE__
616 extern inline __attribute__((__gnu_inline__)) int
617 myopen (const char *path, int oflag, ...)
618 @{
619 if (__builtin_va_arg_pack_len () > 1)
620 warn_open_too_many_arguments ();
621
622 if (__builtin_constant_p (oflag))
623 @{
624 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
625 @{
626 warn_open_missing_mode ();
627 return __open_2 (path, oflag);
628 @}
629 return open (path, oflag, __builtin_va_arg_pack ());
630 @}
631
632 if (__builtin_va_arg_pack_len () < 1)
633 return __open_2 (path, oflag);
634
635 return open (path, oflag, __builtin_va_arg_pack ());
636 @}
637 #endif
638 @end smallexample
639 @end deftypefn
640
641 @node Typeof
642 @section Referring to a Type with @code{typeof}
643 @findex typeof
644 @findex sizeof
645 @cindex macros, types of arguments
646
647 Another way to refer to the type of an expression is with @code{typeof}.
648 The syntax of using of this keyword looks like @code{sizeof}, but the
649 construct acts semantically like a type name defined with @code{typedef}.
650
651 There are two ways of writing the argument to @code{typeof}: with an
652 expression or with a type. Here is an example with an expression:
653
654 @smallexample
655 typeof (x[0](1))
656 @end smallexample
657
658 @noindent
659 This assumes that @code{x} is an array of pointers to functions;
660 the type described is that of the values of the functions.
661
662 Here is an example with a typename as the argument:
663
664 @smallexample
665 typeof (int *)
666 @end smallexample
667
668 @noindent
669 Here the type described is that of pointers to @code{int}.
670
671 If you are writing a header file that must work when included in ISO C
672 programs, write @code{__typeof__} instead of @code{typeof}.
673 @xref{Alternate Keywords}.
674
675 A @code{typeof} construct can be used anywhere a typedef name can be
676 used. For example, you can use it in a declaration, in a cast, or inside
677 of @code{sizeof} or @code{typeof}.
678
679 The operand of @code{typeof} is evaluated for its side effects if and
680 only if it is an expression of variably modified type or the name of
681 such a type.
682
683 @code{typeof} is often useful in conjunction with
684 statement expressions (@pxref{Statement Exprs}).
685 Here is how the two together can
686 be used to define a safe ``maximum'' macro which operates on any
687 arithmetic type and evaluates each of its arguments exactly once:
688
689 @smallexample
690 #define max(a,b) \
691 (@{ typeof (a) _a = (a); \
692 typeof (b) _b = (b); \
693 _a > _b ? _a : _b; @})
694 @end smallexample
695
696 @cindex underscores in variables in macros
697 @cindex @samp{_} in variables in macros
698 @cindex local variables in macros
699 @cindex variables, local, in macros
700 @cindex macros, local variables in
701
702 The reason for using names that start with underscores for the local
703 variables is to avoid conflicts with variable names that occur within the
704 expressions that are substituted for @code{a} and @code{b}. Eventually we
705 hope to design a new form of declaration syntax that allows you to declare
706 variables whose scopes start only after their initializers; this will be a
707 more reliable way to prevent such conflicts.
708
709 @noindent
710 Some more examples of the use of @code{typeof}:
711
712 @itemize @bullet
713 @item
714 This declares @code{y} with the type of what @code{x} points to.
715
716 @smallexample
717 typeof (*x) y;
718 @end smallexample
719
720 @item
721 This declares @code{y} as an array of such values.
722
723 @smallexample
724 typeof (*x) y[4];
725 @end smallexample
726
727 @item
728 This declares @code{y} as an array of pointers to characters:
729
730 @smallexample
731 typeof (typeof (char *)[4]) y;
732 @end smallexample
733
734 @noindent
735 It is equivalent to the following traditional C declaration:
736
737 @smallexample
738 char *y[4];
739 @end smallexample
740
741 To see the meaning of the declaration using @code{typeof}, and why it
742 might be a useful way to write, rewrite it with these macros:
743
744 @smallexample
745 #define pointer(T) typeof(T *)
746 #define array(T, N) typeof(T [N])
747 @end smallexample
748
749 @noindent
750 Now the declaration can be rewritten this way:
751
752 @smallexample
753 array (pointer (char), 4) y;
754 @end smallexample
755
756 @noindent
757 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
758 pointers to @code{char}.
759 @end itemize
760
761 In GNU C, but not GNU C++, you may also declare the type of a variable
762 as @code{__auto_type}. In that case, the declaration must declare
763 only one variable, whose declarator must just be an identifier, the
764 declaration must be initialized, and the type of the variable is
765 determined by the initializer; the name of the variable is not in
766 scope until after the initializer. (In C++, you should use C++11
767 @code{auto} for this purpose.) Using @code{__auto_type}, the
768 ``maximum'' macro above could be written as:
769
770 @smallexample
771 #define max(a,b) \
772 (@{ __auto_type _a = (a); \
773 __auto_type _b = (b); \
774 _a > _b ? _a : _b; @})
775 @end smallexample
776
777 Using @code{__auto_type} instead of @code{typeof} has two advantages:
778
779 @itemize @bullet
780 @item Each argument to the macro appears only once in the expansion of
781 the macro. This prevents the size of the macro expansion growing
782 exponentially when calls to such macros are nested inside arguments of
783 such macros.
784
785 @item If the argument to the macro has variably modified type, it is
786 evaluated only once when using @code{__auto_type}, but twice if
787 @code{typeof} is used.
788 @end itemize
789
790 @node Conditionals
791 @section Conditionals with Omitted Operands
792 @cindex conditional expressions, extensions
793 @cindex omitted middle-operands
794 @cindex middle-operands, omitted
795 @cindex extensions, @code{?:}
796 @cindex @code{?:} extensions
797
798 The middle operand in a conditional expression may be omitted. Then
799 if the first operand is nonzero, its value is the value of the conditional
800 expression.
801
802 Therefore, the expression
803
804 @smallexample
805 x ? : y
806 @end smallexample
807
808 @noindent
809 has the value of @code{x} if that is nonzero; otherwise, the value of
810 @code{y}.
811
812 This example is perfectly equivalent to
813
814 @smallexample
815 x ? x : y
816 @end smallexample
817
818 @cindex side effect in @code{?:}
819 @cindex @code{?:} side effect
820 @noindent
821 In this simple case, the ability to omit the middle operand is not
822 especially useful. When it becomes useful is when the first operand does,
823 or may (if it is a macro argument), contain a side effect. Then repeating
824 the operand in the middle would perform the side effect twice. Omitting
825 the middle operand uses the value already computed without the undesirable
826 effects of recomputing it.
827
828 @node __int128
829 @section 128-bit Integers
830 @cindex @code{__int128} data types
831
832 As an extension the integer scalar type @code{__int128} is supported for
833 targets which have an integer mode wide enough to hold 128 bits.
834 Simply write @code{__int128} for a signed 128-bit integer, or
835 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
836 support in GCC for expressing an integer constant of type @code{__int128}
837 for targets with @code{long long} integer less than 128 bits wide.
838
839 @node Long Long
840 @section Double-Word Integers
841 @cindex @code{long long} data types
842 @cindex double-word arithmetic
843 @cindex multiprecision arithmetic
844 @cindex @code{LL} integer suffix
845 @cindex @code{ULL} integer suffix
846
847 ISO C99 supports data types for integers that are at least 64 bits wide,
848 and as an extension GCC supports them in C90 mode and in C++.
849 Simply write @code{long long int} for a signed integer, or
850 @code{unsigned long long int} for an unsigned integer. To make an
851 integer constant of type @code{long long int}, add the suffix @samp{LL}
852 to the integer. To make an integer constant of type @code{unsigned long
853 long int}, add the suffix @samp{ULL} to the integer.
854
855 You can use these types in arithmetic like any other integer types.
856 Addition, subtraction, and bitwise boolean operations on these types
857 are open-coded on all types of machines. Multiplication is open-coded
858 if the machine supports a fullword-to-doubleword widening multiply
859 instruction. Division and shifts are open-coded only on machines that
860 provide special support. The operations that are not open-coded use
861 special library routines that come with GCC@.
862
863 There may be pitfalls when you use @code{long long} types for function
864 arguments without function prototypes. If a function
865 expects type @code{int} for its argument, and you pass a value of type
866 @code{long long int}, confusion results because the caller and the
867 subroutine disagree about the number of bytes for the argument.
868 Likewise, if the function expects @code{long long int} and you pass
869 @code{int}. The best way to avoid such problems is to use prototypes.
870
871 @node Complex
872 @section Complex Numbers
873 @cindex complex numbers
874 @cindex @code{_Complex} keyword
875 @cindex @code{__complex__} keyword
876
877 ISO C99 supports complex floating data types, and as an extension GCC
878 supports them in C90 mode and in C++. GCC also supports complex integer data
879 types which are not part of ISO C99. You can declare complex types
880 using the keyword @code{_Complex}. As an extension, the older GNU
881 keyword @code{__complex__} is also supported.
882
883 For example, @samp{_Complex double x;} declares @code{x} as a
884 variable whose real part and imaginary part are both of type
885 @code{double}. @samp{_Complex short int y;} declares @code{y} to
886 have real and imaginary parts of type @code{short int}; this is not
887 likely to be useful, but it shows that the set of complex types is
888 complete.
889
890 To write a constant with a complex data type, use the suffix @samp{i} or
891 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
892 has type @code{_Complex float} and @code{3i} has type
893 @code{_Complex int}. Such a constant always has a pure imaginary
894 value, but you can form any complex value you like by adding one to a
895 real constant. This is a GNU extension; if you have an ISO C99
896 conforming C library (such as the GNU C Library), and want to construct complex
897 constants of floating type, you should include @code{<complex.h>} and
898 use the macros @code{I} or @code{_Complex_I} instead.
899
900 @cindex @code{__real__} keyword
901 @cindex @code{__imag__} keyword
902 To extract the real part of a complex-valued expression @var{exp}, write
903 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
904 extract the imaginary part. This is a GNU extension; for values of
905 floating type, you should use the ISO C99 functions @code{crealf},
906 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
907 @code{cimagl}, declared in @code{<complex.h>} and also provided as
908 built-in functions by GCC@.
909
910 @cindex complex conjugation
911 The operator @samp{~} performs complex conjugation when used on a value
912 with a complex type. This is a GNU extension; for values of
913 floating type, you should use the ISO C99 functions @code{conjf},
914 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
915 provided as built-in functions by GCC@.
916
917 GCC can allocate complex automatic variables in a noncontiguous
918 fashion; it's even possible for the real part to be in a register while
919 the imaginary part is on the stack (or vice versa). Only the DWARF 2
920 debug info format can represent this, so use of DWARF 2 is recommended.
921 If you are using the stabs debug info format, GCC describes a noncontiguous
922 complex variable as if it were two separate variables of noncomplex type.
923 If the variable's actual name is @code{foo}, the two fictitious
924 variables are named @code{foo$real} and @code{foo$imag}. You can
925 examine and set these two fictitious variables with your debugger.
926
927 @node Floating Types
928 @section Additional Floating Types
929 @cindex additional floating types
930 @cindex @code{__float80} data type
931 @cindex @code{__float128} data type
932 @cindex @code{__ibm128} data type
933 @cindex @code{w} floating point suffix
934 @cindex @code{q} floating point suffix
935 @cindex @code{W} floating point suffix
936 @cindex @code{Q} floating point suffix
937
938 As an extension, GNU C supports additional floating
939 types, @code{__float80} and @code{__float128} to support 80-bit
940 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types.
941 Support for additional types includes the arithmetic operators:
942 add, subtract, multiply, divide; unary arithmetic operators;
943 relational operators; equality operators; and conversions to and from
944 integer and other floating types. Use a suffix @samp{w} or @samp{W}
945 in a literal constant of type @code{__float80} or type
946 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
947
948 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
949 types using the corresponding internal complex type, @code{XCmode} for
950 @code{__float80} type and @code{TCmode} for @code{__float128} type:
951
952 @smallexample
953 typedef _Complex float __attribute__((mode(TC))) _Complex128;
954 typedef _Complex float __attribute__((mode(XC))) _Complex80;
955 @end smallexample
956
957 On PowerPC 64-bit Linux systems there are currently problems in using
958 the complex @code{__float128} type. When these problems are fixed,
959 you would use:
960
961 @smallexample
962 typedef _Complex float __attribute__((mode(KC))) _Complex128;
963 @end smallexample
964
965 Not all targets support additional floating-point types.
966 @code{__float80} and @code{__float128} types are supported on x86 and
967 IA-64 targets. The @code{__float128} type is supported on hppa HP-UX.
968 The @code{__float128} type is supported on PowerPC 64-bit Linux
969 systems by default if the vector scalar instruction set (VSX) is
970 enabled.
971
972 On the PowerPC, @code{__ibm128} provides access to the IBM extended
973 double format, and it is intended to be used by the library functions
974 that handle conversions if/when long double is changed to be IEEE
975 128-bit floating point.
976
977 @node Half-Precision
978 @section Half-Precision Floating Point
979 @cindex half-precision floating point
980 @cindex @code{__fp16} data type
981
982 On ARM targets, GCC supports half-precision (16-bit) floating point via
983 the @code{__fp16} type. You must enable this type explicitly
984 with the @option{-mfp16-format} command-line option in order to use it.
985
986 ARM supports two incompatible representations for half-precision
987 floating-point values. You must choose one of the representations and
988 use it consistently in your program.
989
990 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
991 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
992 There are 11 bits of significand precision, approximately 3
993 decimal digits.
994
995 Specifying @option{-mfp16-format=alternative} selects the ARM
996 alternative format. This representation is similar to the IEEE
997 format, but does not support infinities or NaNs. Instead, the range
998 of exponents is extended, so that this format can represent normalized
999 values in the range of @math{2^{-14}} to 131008.
1000
1001 The @code{__fp16} type is a storage format only. For purposes
1002 of arithmetic and other operations, @code{__fp16} values in C or C++
1003 expressions are automatically promoted to @code{float}. In addition,
1004 you cannot declare a function with a return value or parameters
1005 of type @code{__fp16}.
1006
1007 Note that conversions from @code{double} to @code{__fp16}
1008 involve an intermediate conversion to @code{float}. Because
1009 of rounding, this can sometimes produce a different result than a
1010 direct conversion.
1011
1012 ARM provides hardware support for conversions between
1013 @code{__fp16} and @code{float} values
1014 as an extension to VFP and NEON (Advanced SIMD). GCC generates
1015 code using these hardware instructions if you compile with
1016 options to select an FPU that provides them;
1017 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1018 in addition to the @option{-mfp16-format} option to select
1019 a half-precision format.
1020
1021 Language-level support for the @code{__fp16} data type is
1022 independent of whether GCC generates code using hardware floating-point
1023 instructions. In cases where hardware support is not specified, GCC
1024 implements conversions between @code{__fp16} and @code{float} values
1025 as library calls.
1026
1027 @node Decimal Float
1028 @section Decimal Floating Types
1029 @cindex decimal floating types
1030 @cindex @code{_Decimal32} data type
1031 @cindex @code{_Decimal64} data type
1032 @cindex @code{_Decimal128} data type
1033 @cindex @code{df} integer suffix
1034 @cindex @code{dd} integer suffix
1035 @cindex @code{dl} integer suffix
1036 @cindex @code{DF} integer suffix
1037 @cindex @code{DD} integer suffix
1038 @cindex @code{DL} integer suffix
1039
1040 As an extension, GNU C supports decimal floating types as
1041 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1042 floating types in GCC will evolve as the draft technical report changes.
1043 Calling conventions for any target might also change. Not all targets
1044 support decimal floating types.
1045
1046 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1047 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1048 @code{float}, @code{double}, and @code{long double} whose radix is not
1049 specified by the C standard but is usually two.
1050
1051 Support for decimal floating types includes the arithmetic operators
1052 add, subtract, multiply, divide; unary arithmetic operators;
1053 relational operators; equality operators; and conversions to and from
1054 integer and other floating types. Use a suffix @samp{df} or
1055 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1056 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1057 @code{_Decimal128}.
1058
1059 GCC support of decimal float as specified by the draft technical report
1060 is incomplete:
1061
1062 @itemize @bullet
1063 @item
1064 When the value of a decimal floating type cannot be represented in the
1065 integer type to which it is being converted, the result is undefined
1066 rather than the result value specified by the draft technical report.
1067
1068 @item
1069 GCC does not provide the C library functionality associated with
1070 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1071 @file{wchar.h}, which must come from a separate C library implementation.
1072 Because of this the GNU C compiler does not define macro
1073 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1074 the technical report.
1075 @end itemize
1076
1077 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1078 are supported by the DWARF 2 debug information format.
1079
1080 @node Hex Floats
1081 @section Hex Floats
1082 @cindex hex floats
1083
1084 ISO C99 supports floating-point numbers written not only in the usual
1085 decimal notation, such as @code{1.55e1}, but also numbers such as
1086 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1087 supports this in C90 mode (except in some cases when strictly
1088 conforming) and in C++. In that format the
1089 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1090 mandatory. The exponent is a decimal number that indicates the power of
1091 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1092 @tex
1093 $1 {15\over16}$,
1094 @end tex
1095 @ifnottex
1096 1 15/16,
1097 @end ifnottex
1098 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1099 is the same as @code{1.55e1}.
1100
1101 Unlike for floating-point numbers in the decimal notation the exponent
1102 is always required in the hexadecimal notation. Otherwise the compiler
1103 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1104 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1105 extension for floating-point constants of type @code{float}.
1106
1107 @node Fixed-Point
1108 @section Fixed-Point Types
1109 @cindex fixed-point types
1110 @cindex @code{_Fract} data type
1111 @cindex @code{_Accum} data type
1112 @cindex @code{_Sat} data type
1113 @cindex @code{hr} fixed-suffix
1114 @cindex @code{r} fixed-suffix
1115 @cindex @code{lr} fixed-suffix
1116 @cindex @code{llr} fixed-suffix
1117 @cindex @code{uhr} fixed-suffix
1118 @cindex @code{ur} fixed-suffix
1119 @cindex @code{ulr} fixed-suffix
1120 @cindex @code{ullr} fixed-suffix
1121 @cindex @code{hk} fixed-suffix
1122 @cindex @code{k} fixed-suffix
1123 @cindex @code{lk} fixed-suffix
1124 @cindex @code{llk} fixed-suffix
1125 @cindex @code{uhk} fixed-suffix
1126 @cindex @code{uk} fixed-suffix
1127 @cindex @code{ulk} fixed-suffix
1128 @cindex @code{ullk} fixed-suffix
1129 @cindex @code{HR} fixed-suffix
1130 @cindex @code{R} fixed-suffix
1131 @cindex @code{LR} fixed-suffix
1132 @cindex @code{LLR} fixed-suffix
1133 @cindex @code{UHR} fixed-suffix
1134 @cindex @code{UR} fixed-suffix
1135 @cindex @code{ULR} fixed-suffix
1136 @cindex @code{ULLR} fixed-suffix
1137 @cindex @code{HK} fixed-suffix
1138 @cindex @code{K} fixed-suffix
1139 @cindex @code{LK} fixed-suffix
1140 @cindex @code{LLK} fixed-suffix
1141 @cindex @code{UHK} fixed-suffix
1142 @cindex @code{UK} fixed-suffix
1143 @cindex @code{ULK} fixed-suffix
1144 @cindex @code{ULLK} fixed-suffix
1145
1146 As an extension, GNU C supports fixed-point types as
1147 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1148 types in GCC will evolve as the draft technical report changes.
1149 Calling conventions for any target might also change. Not all targets
1150 support fixed-point types.
1151
1152 The fixed-point types are
1153 @code{short _Fract},
1154 @code{_Fract},
1155 @code{long _Fract},
1156 @code{long long _Fract},
1157 @code{unsigned short _Fract},
1158 @code{unsigned _Fract},
1159 @code{unsigned long _Fract},
1160 @code{unsigned long long _Fract},
1161 @code{_Sat short _Fract},
1162 @code{_Sat _Fract},
1163 @code{_Sat long _Fract},
1164 @code{_Sat long long _Fract},
1165 @code{_Sat unsigned short _Fract},
1166 @code{_Sat unsigned _Fract},
1167 @code{_Sat unsigned long _Fract},
1168 @code{_Sat unsigned long long _Fract},
1169 @code{short _Accum},
1170 @code{_Accum},
1171 @code{long _Accum},
1172 @code{long long _Accum},
1173 @code{unsigned short _Accum},
1174 @code{unsigned _Accum},
1175 @code{unsigned long _Accum},
1176 @code{unsigned long long _Accum},
1177 @code{_Sat short _Accum},
1178 @code{_Sat _Accum},
1179 @code{_Sat long _Accum},
1180 @code{_Sat long long _Accum},
1181 @code{_Sat unsigned short _Accum},
1182 @code{_Sat unsigned _Accum},
1183 @code{_Sat unsigned long _Accum},
1184 @code{_Sat unsigned long long _Accum}.
1185
1186 Fixed-point data values contain fractional and optional integral parts.
1187 The format of fixed-point data varies and depends on the target machine.
1188
1189 Support for fixed-point types includes:
1190 @itemize @bullet
1191 @item
1192 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1193 @item
1194 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1195 @item
1196 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1197 @item
1198 binary shift operators (@code{<<}, @code{>>})
1199 @item
1200 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1201 @item
1202 equality operators (@code{==}, @code{!=})
1203 @item
1204 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1205 @code{<<=}, @code{>>=})
1206 @item
1207 conversions to and from integer, floating-point, or fixed-point types
1208 @end itemize
1209
1210 Use a suffix in a fixed-point literal constant:
1211 @itemize
1212 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1213 @code{_Sat short _Fract}
1214 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1215 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1216 @code{_Sat long _Fract}
1217 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1218 @code{_Sat long long _Fract}
1219 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1220 @code{_Sat unsigned short _Fract}
1221 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1222 @code{_Sat unsigned _Fract}
1223 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1224 @code{_Sat unsigned long _Fract}
1225 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1226 and @code{_Sat unsigned long long _Fract}
1227 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1228 @code{_Sat short _Accum}
1229 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1230 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1231 @code{_Sat long _Accum}
1232 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1233 @code{_Sat long long _Accum}
1234 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1235 @code{_Sat unsigned short _Accum}
1236 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1237 @code{_Sat unsigned _Accum}
1238 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1239 @code{_Sat unsigned long _Accum}
1240 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1241 and @code{_Sat unsigned long long _Accum}
1242 @end itemize
1243
1244 GCC support of fixed-point types as specified by the draft technical report
1245 is incomplete:
1246
1247 @itemize @bullet
1248 @item
1249 Pragmas to control overflow and rounding behaviors are not implemented.
1250 @end itemize
1251
1252 Fixed-point types are supported by the DWARF 2 debug information format.
1253
1254 @node Named Address Spaces
1255 @section Named Address Spaces
1256 @cindex Named Address Spaces
1257
1258 As an extension, GNU C supports named address spaces as
1259 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1260 address spaces in GCC will evolve as the draft technical report
1261 changes. Calling conventions for any target might also change. At
1262 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1263 address spaces other than the generic address space.
1264
1265 Address space identifiers may be used exactly like any other C type
1266 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1267 document for more details.
1268
1269 @anchor{AVR Named Address Spaces}
1270 @subsection AVR Named Address Spaces
1271
1272 On the AVR target, there are several address spaces that can be used
1273 in order to put read-only data into the flash memory and access that
1274 data by means of the special instructions @code{LPM} or @code{ELPM}
1275 needed to read from flash.
1276
1277 Per default, any data including read-only data is located in RAM
1278 (the generic address space) so that non-generic address spaces are
1279 needed to locate read-only data in flash memory
1280 @emph{and} to generate the right instructions to access this data
1281 without using (inline) assembler code.
1282
1283 @table @code
1284 @item __flash
1285 @cindex @code{__flash} AVR Named Address Spaces
1286 The @code{__flash} qualifier locates data in the
1287 @code{.progmem.data} section. Data is read using the @code{LPM}
1288 instruction. Pointers to this address space are 16 bits wide.
1289
1290 @item __flash1
1291 @itemx __flash2
1292 @itemx __flash3
1293 @itemx __flash4
1294 @itemx __flash5
1295 @cindex @code{__flash1} AVR Named Address Spaces
1296 @cindex @code{__flash2} AVR Named Address Spaces
1297 @cindex @code{__flash3} AVR Named Address Spaces
1298 @cindex @code{__flash4} AVR Named Address Spaces
1299 @cindex @code{__flash5} AVR Named Address Spaces
1300 These are 16-bit address spaces locating data in section
1301 @code{.progmem@var{N}.data} where @var{N} refers to
1302 address space @code{__flash@var{N}}.
1303 The compiler sets the @code{RAMPZ} segment register appropriately
1304 before reading data by means of the @code{ELPM} instruction.
1305
1306 @item __memx
1307 @cindex @code{__memx} AVR Named Address Spaces
1308 This is a 24-bit address space that linearizes flash and RAM:
1309 If the high bit of the address is set, data is read from
1310 RAM using the lower two bytes as RAM address.
1311 If the high bit of the address is clear, data is read from flash
1312 with @code{RAMPZ} set according to the high byte of the address.
1313 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1314
1315 Objects in this address space are located in @code{.progmemx.data}.
1316 @end table
1317
1318 @b{Example}
1319
1320 @smallexample
1321 char my_read (const __flash char ** p)
1322 @{
1323 /* p is a pointer to RAM that points to a pointer to flash.
1324 The first indirection of p reads that flash pointer
1325 from RAM and the second indirection reads a char from this
1326 flash address. */
1327
1328 return **p;
1329 @}
1330
1331 /* Locate array[] in flash memory */
1332 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1333
1334 int i = 1;
1335
1336 int main (void)
1337 @{
1338 /* Return 17 by reading from flash memory */
1339 return array[array[i]];
1340 @}
1341 @end smallexample
1342
1343 @noindent
1344 For each named address space supported by avr-gcc there is an equally
1345 named but uppercase built-in macro defined.
1346 The purpose is to facilitate testing if respective address space
1347 support is available or not:
1348
1349 @smallexample
1350 #ifdef __FLASH
1351 const __flash int var = 1;
1352
1353 int read_var (void)
1354 @{
1355 return var;
1356 @}
1357 #else
1358 #include <avr/pgmspace.h> /* From AVR-LibC */
1359
1360 const int var PROGMEM = 1;
1361
1362 int read_var (void)
1363 @{
1364 return (int) pgm_read_word (&var);
1365 @}
1366 #endif /* __FLASH */
1367 @end smallexample
1368
1369 @noindent
1370 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1371 locates data in flash but
1372 accesses to these data read from generic address space, i.e.@:
1373 from RAM,
1374 so that you need special accessors like @code{pgm_read_byte}
1375 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1376 together with attribute @code{progmem}.
1377
1378 @noindent
1379 @b{Limitations and caveats}
1380
1381 @itemize
1382 @item
1383 Reading across the 64@tie{}KiB section boundary of
1384 the @code{__flash} or @code{__flash@var{N}} address spaces
1385 shows undefined behavior. The only address space that
1386 supports reading across the 64@tie{}KiB flash segment boundaries is
1387 @code{__memx}.
1388
1389 @item
1390 If you use one of the @code{__flash@var{N}} address spaces
1391 you must arrange your linker script to locate the
1392 @code{.progmem@var{N}.data} sections according to your needs.
1393
1394 @item
1395 Any data or pointers to the non-generic address spaces must
1396 be qualified as @code{const}, i.e.@: as read-only data.
1397 This still applies if the data in one of these address
1398 spaces like software version number or calibration lookup table are intended to
1399 be changed after load time by, say, a boot loader. In this case
1400 the right qualification is @code{const} @code{volatile} so that the compiler
1401 must not optimize away known values or insert them
1402 as immediates into operands of instructions.
1403
1404 @item
1405 The following code initializes a variable @code{pfoo}
1406 located in static storage with a 24-bit address:
1407 @smallexample
1408 extern const __memx char foo;
1409 const __memx void *pfoo = &foo;
1410 @end smallexample
1411
1412 @noindent
1413 Such code requires at least binutils 2.23, see
1414 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1415
1416 @end itemize
1417
1418 @subsection M32C Named Address Spaces
1419 @cindex @code{__far} M32C Named Address Spaces
1420
1421 On the M32C target, with the R8C and M16C CPU variants, variables
1422 qualified with @code{__far} are accessed using 32-bit addresses in
1423 order to access memory beyond the first 64@tie{}Ki bytes. If
1424 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1425 effect.
1426
1427 @subsection RL78 Named Address Spaces
1428 @cindex @code{__far} RL78 Named Address Spaces
1429
1430 On the RL78 target, variables qualified with @code{__far} are accessed
1431 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1432 addresses. Non-far variables are assumed to appear in the topmost
1433 64@tie{}KiB of the address space.
1434
1435 @subsection SPU Named Address Spaces
1436 @cindex @code{__ea} SPU Named Address Spaces
1437
1438 On the SPU target variables may be declared as
1439 belonging to another address space by qualifying the type with the
1440 @code{__ea} address space identifier:
1441
1442 @smallexample
1443 extern int __ea i;
1444 @end smallexample
1445
1446 @noindent
1447 The compiler generates special code to access the variable @code{i}.
1448 It may use runtime library
1449 support, or generate special machine instructions to access that address
1450 space.
1451
1452 @subsection x86 Named Address Spaces
1453 @cindex x86 named address spaces
1454
1455 On the x86 target, variables may be declared as being relative
1456 to the @code{%fs} or @code{%gs} segments.
1457
1458 @table @code
1459 @item __seg_fs
1460 @itemx __seg_gs
1461 @cindex @code{__seg_fs} x86 named address space
1462 @cindex @code{__seg_gs} x86 named address space
1463 The object is accessed with the respective segment override prefix.
1464
1465 The respective segment base must be set via some method specific to
1466 the operating system. Rather than require an expensive system call
1467 to retrieve the segment base, these address spaces are not considered
1468 to be subspaces of the generic (flat) address space. This means that
1469 explicit casts are required to convert pointers between these address
1470 spaces and the generic address space. In practice the application
1471 should cast to @code{uintptr_t} and apply the segment base offset
1472 that it installed previously.
1473
1474 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1475 defined when these address spaces are supported.
1476
1477 @item __seg_tls
1478 @cindex @code{__seg_tls} x86 named address space
1479 Some operating systems define either the @code{%fs} or @code{%gs}
1480 segment as the thread-local storage base for each thread. Objects
1481 within this address space are accessed with the appropriate
1482 segment override prefix.
1483
1484 The pointer located at address 0 within the segment contains the
1485 offset of the segment within the generic address space. Thus this
1486 address space is considered a subspace of the generic address space,
1487 and the known segment offset is applied when converting addresses
1488 to and from the generic address space.
1489
1490 The preprocessor symbol @code{__SEG_TLS} is defined when this
1491 address space is supported.
1492
1493 @end table
1494
1495 @node Zero Length
1496 @section Arrays of Length Zero
1497 @cindex arrays of length zero
1498 @cindex zero-length arrays
1499 @cindex length-zero arrays
1500 @cindex flexible array members
1501
1502 Zero-length arrays are allowed in GNU C@. They are very useful as the
1503 last element of a structure that is really a header for a variable-length
1504 object:
1505
1506 @smallexample
1507 struct line @{
1508 int length;
1509 char contents[0];
1510 @};
1511
1512 struct line *thisline = (struct line *)
1513 malloc (sizeof (struct line) + this_length);
1514 thisline->length = this_length;
1515 @end smallexample
1516
1517 In ISO C90, you would have to give @code{contents} a length of 1, which
1518 means either you waste space or complicate the argument to @code{malloc}.
1519
1520 In ISO C99, you would use a @dfn{flexible array member}, which is
1521 slightly different in syntax and semantics:
1522
1523 @itemize @bullet
1524 @item
1525 Flexible array members are written as @code{contents[]} without
1526 the @code{0}.
1527
1528 @item
1529 Flexible array members have incomplete type, and so the @code{sizeof}
1530 operator may not be applied. As a quirk of the original implementation
1531 of zero-length arrays, @code{sizeof} evaluates to zero.
1532
1533 @item
1534 Flexible array members may only appear as the last member of a
1535 @code{struct} that is otherwise non-empty.
1536
1537 @item
1538 A structure containing a flexible array member, or a union containing
1539 such a structure (possibly recursively), may not be a member of a
1540 structure or an element of an array. (However, these uses are
1541 permitted by GCC as extensions.)
1542 @end itemize
1543
1544 Non-empty initialization of zero-length
1545 arrays is treated like any case where there are more initializer
1546 elements than the array holds, in that a suitable warning about ``excess
1547 elements in array'' is given, and the excess elements (all of them, in
1548 this case) are ignored.
1549
1550 GCC allows static initialization of flexible array members.
1551 This is equivalent to defining a new structure containing the original
1552 structure followed by an array of sufficient size to contain the data.
1553 E.g.@: in the following, @code{f1} is constructed as if it were declared
1554 like @code{f2}.
1555
1556 @smallexample
1557 struct f1 @{
1558 int x; int y[];
1559 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1560
1561 struct f2 @{
1562 struct f1 f1; int data[3];
1563 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1564 @end smallexample
1565
1566 @noindent
1567 The convenience of this extension is that @code{f1} has the desired
1568 type, eliminating the need to consistently refer to @code{f2.f1}.
1569
1570 This has symmetry with normal static arrays, in that an array of
1571 unknown size is also written with @code{[]}.
1572
1573 Of course, this extension only makes sense if the extra data comes at
1574 the end of a top-level object, as otherwise we would be overwriting
1575 data at subsequent offsets. To avoid undue complication and confusion
1576 with initialization of deeply nested arrays, we simply disallow any
1577 non-empty initialization except when the structure is the top-level
1578 object. For example:
1579
1580 @smallexample
1581 struct foo @{ int x; int y[]; @};
1582 struct bar @{ struct foo z; @};
1583
1584 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1585 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1586 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1587 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1588 @end smallexample
1589
1590 @node Empty Structures
1591 @section Structures with No Members
1592 @cindex empty structures
1593 @cindex zero-size structures
1594
1595 GCC permits a C structure to have no members:
1596
1597 @smallexample
1598 struct empty @{
1599 @};
1600 @end smallexample
1601
1602 The structure has size zero. In C++, empty structures are part
1603 of the language. G++ treats empty structures as if they had a single
1604 member of type @code{char}.
1605
1606 @node Variable Length
1607 @section Arrays of Variable Length
1608 @cindex variable-length arrays
1609 @cindex arrays of variable length
1610 @cindex VLAs
1611
1612 Variable-length automatic arrays are allowed in ISO C99, and as an
1613 extension GCC accepts them in C90 mode and in C++. These arrays are
1614 declared like any other automatic arrays, but with a length that is not
1615 a constant expression. The storage is allocated at the point of
1616 declaration and deallocated when the block scope containing the declaration
1617 exits. For
1618 example:
1619
1620 @smallexample
1621 FILE *
1622 concat_fopen (char *s1, char *s2, char *mode)
1623 @{
1624 char str[strlen (s1) + strlen (s2) + 1];
1625 strcpy (str, s1);
1626 strcat (str, s2);
1627 return fopen (str, mode);
1628 @}
1629 @end smallexample
1630
1631 @cindex scope of a variable length array
1632 @cindex variable-length array scope
1633 @cindex deallocating variable length arrays
1634 Jumping or breaking out of the scope of the array name deallocates the
1635 storage. Jumping into the scope is not allowed; you get an error
1636 message for it.
1637
1638 @cindex variable-length array in a structure
1639 As an extension, GCC accepts variable-length arrays as a member of
1640 a structure or a union. For example:
1641
1642 @smallexample
1643 void
1644 foo (int n)
1645 @{
1646 struct S @{ int x[n]; @};
1647 @}
1648 @end smallexample
1649
1650 @cindex @code{alloca} vs variable-length arrays
1651 You can use the function @code{alloca} to get an effect much like
1652 variable-length arrays. The function @code{alloca} is available in
1653 many other C implementations (but not in all). On the other hand,
1654 variable-length arrays are more elegant.
1655
1656 There are other differences between these two methods. Space allocated
1657 with @code{alloca} exists until the containing @emph{function} returns.
1658 The space for a variable-length array is deallocated as soon as the array
1659 name's scope ends, unless you also use @code{alloca} in this scope.
1660
1661 You can also use variable-length arrays as arguments to functions:
1662
1663 @smallexample
1664 struct entry
1665 tester (int len, char data[len][len])
1666 @{
1667 /* @r{@dots{}} */
1668 @}
1669 @end smallexample
1670
1671 The length of an array is computed once when the storage is allocated
1672 and is remembered for the scope of the array in case you access it with
1673 @code{sizeof}.
1674
1675 If you want to pass the array first and the length afterward, you can
1676 use a forward declaration in the parameter list---another GNU extension.
1677
1678 @smallexample
1679 struct entry
1680 tester (int len; char data[len][len], int len)
1681 @{
1682 /* @r{@dots{}} */
1683 @}
1684 @end smallexample
1685
1686 @cindex parameter forward declaration
1687 The @samp{int len} before the semicolon is a @dfn{parameter forward
1688 declaration}, and it serves the purpose of making the name @code{len}
1689 known when the declaration of @code{data} is parsed.
1690
1691 You can write any number of such parameter forward declarations in the
1692 parameter list. They can be separated by commas or semicolons, but the
1693 last one must end with a semicolon, which is followed by the ``real''
1694 parameter declarations. Each forward declaration must match a ``real''
1695 declaration in parameter name and data type. ISO C99 does not support
1696 parameter forward declarations.
1697
1698 @node Variadic Macros
1699 @section Macros with a Variable Number of Arguments.
1700 @cindex variable number of arguments
1701 @cindex macro with variable arguments
1702 @cindex rest argument (in macro)
1703 @cindex variadic macros
1704
1705 In the ISO C standard of 1999, a macro can be declared to accept a
1706 variable number of arguments much as a function can. The syntax for
1707 defining the macro is similar to that of a function. Here is an
1708 example:
1709
1710 @smallexample
1711 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1712 @end smallexample
1713
1714 @noindent
1715 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1716 such a macro, it represents the zero or more tokens until the closing
1717 parenthesis that ends the invocation, including any commas. This set of
1718 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1719 wherever it appears. See the CPP manual for more information.
1720
1721 GCC has long supported variadic macros, and used a different syntax that
1722 allowed you to give a name to the variable arguments just like any other
1723 argument. Here is an example:
1724
1725 @smallexample
1726 #define debug(format, args...) fprintf (stderr, format, args)
1727 @end smallexample
1728
1729 @noindent
1730 This is in all ways equivalent to the ISO C example above, but arguably
1731 more readable and descriptive.
1732
1733 GNU CPP has two further variadic macro extensions, and permits them to
1734 be used with either of the above forms of macro definition.
1735
1736 In standard C, you are not allowed to leave the variable argument out
1737 entirely; but you are allowed to pass an empty argument. For example,
1738 this invocation is invalid in ISO C, because there is no comma after
1739 the string:
1740
1741 @smallexample
1742 debug ("A message")
1743 @end smallexample
1744
1745 GNU CPP permits you to completely omit the variable arguments in this
1746 way. In the above examples, the compiler would complain, though since
1747 the expansion of the macro still has the extra comma after the format
1748 string.
1749
1750 To help solve this problem, CPP behaves specially for variable arguments
1751 used with the token paste operator, @samp{##}. If instead you write
1752
1753 @smallexample
1754 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1755 @end smallexample
1756
1757 @noindent
1758 and if the variable arguments are omitted or empty, the @samp{##}
1759 operator causes the preprocessor to remove the comma before it. If you
1760 do provide some variable arguments in your macro invocation, GNU CPP
1761 does not complain about the paste operation and instead places the
1762 variable arguments after the comma. Just like any other pasted macro
1763 argument, these arguments are not macro expanded.
1764
1765 @node Escaped Newlines
1766 @section Slightly Looser Rules for Escaped Newlines
1767 @cindex escaped newlines
1768 @cindex newlines (escaped)
1769
1770 The preprocessor treatment of escaped newlines is more relaxed
1771 than that specified by the C90 standard, which requires the newline
1772 to immediately follow a backslash.
1773 GCC's implementation allows whitespace in the form
1774 of spaces, horizontal and vertical tabs, and form feeds between the
1775 backslash and the subsequent newline. The preprocessor issues a
1776 warning, but treats it as a valid escaped newline and combines the two
1777 lines to form a single logical line. This works within comments and
1778 tokens, as well as between tokens. Comments are @emph{not} treated as
1779 whitespace for the purposes of this relaxation, since they have not
1780 yet been replaced with spaces.
1781
1782 @node Subscripting
1783 @section Non-Lvalue Arrays May Have Subscripts
1784 @cindex subscripting
1785 @cindex arrays, non-lvalue
1786
1787 @cindex subscripting and function values
1788 In ISO C99, arrays that are not lvalues still decay to pointers, and
1789 may be subscripted, although they may not be modified or used after
1790 the next sequence point and the unary @samp{&} operator may not be
1791 applied to them. As an extension, GNU C allows such arrays to be
1792 subscripted in C90 mode, though otherwise they do not decay to
1793 pointers outside C99 mode. For example,
1794 this is valid in GNU C though not valid in C90:
1795
1796 @smallexample
1797 @group
1798 struct foo @{int a[4];@};
1799
1800 struct foo f();
1801
1802 bar (int index)
1803 @{
1804 return f().a[index];
1805 @}
1806 @end group
1807 @end smallexample
1808
1809 @node Pointer Arith
1810 @section Arithmetic on @code{void}- and Function-Pointers
1811 @cindex void pointers, arithmetic
1812 @cindex void, size of pointer to
1813 @cindex function pointers, arithmetic
1814 @cindex function, size of pointer to
1815
1816 In GNU C, addition and subtraction operations are supported on pointers to
1817 @code{void} and on pointers to functions. This is done by treating the
1818 size of a @code{void} or of a function as 1.
1819
1820 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1821 and on function types, and returns 1.
1822
1823 @opindex Wpointer-arith
1824 The option @option{-Wpointer-arith} requests a warning if these extensions
1825 are used.
1826
1827 @node Pointers to Arrays
1828 @section Pointers to Arrays with Qualifiers Work as Expected
1829 @cindex pointers to arrays
1830 @cindex const qualifier
1831
1832 In GNU C, pointers to arrays with qualifiers work similar to pointers
1833 to other qualified types. For example, a value of type @code{int (*)[5]}
1834 can be used to initialize a variable of type @code{const int (*)[5]}.
1835 These types are incompatible in ISO C because the @code{const} qualifier
1836 is formally attached to the element type of the array and not the
1837 array itself.
1838
1839 @smallexample
1840 extern void
1841 transpose (int N, int M, double out[M][N], const double in[N][M]);
1842 double x[3][2];
1843 double y[2][3];
1844 @r{@dots{}}
1845 transpose(3, 2, y, x);
1846 @end smallexample
1847
1848 @node Initializers
1849 @section Non-Constant Initializers
1850 @cindex initializers, non-constant
1851 @cindex non-constant initializers
1852
1853 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1854 automatic variable are not required to be constant expressions in GNU C@.
1855 Here is an example of an initializer with run-time varying elements:
1856
1857 @smallexample
1858 foo (float f, float g)
1859 @{
1860 float beat_freqs[2] = @{ f-g, f+g @};
1861 /* @r{@dots{}} */
1862 @}
1863 @end smallexample
1864
1865 @node Compound Literals
1866 @section Compound Literals
1867 @cindex constructor expressions
1868 @cindex initializations in expressions
1869 @cindex structures, constructor expression
1870 @cindex expressions, constructor
1871 @cindex compound literals
1872 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1873
1874 ISO C99 supports compound literals. A compound literal looks like
1875 a cast containing an initializer. Its value is an object of the
1876 type specified in the cast, containing the elements specified in
1877 the initializer; it is an lvalue. As an extension, GCC supports
1878 compound literals in C90 mode and in C++, though the semantics are
1879 somewhat different in C++.
1880
1881 Usually, the specified type is a structure. Assume that
1882 @code{struct foo} and @code{structure} are declared as shown:
1883
1884 @smallexample
1885 struct foo @{int a; char b[2];@} structure;
1886 @end smallexample
1887
1888 @noindent
1889 Here is an example of constructing a @code{struct foo} with a compound literal:
1890
1891 @smallexample
1892 structure = ((struct foo) @{x + y, 'a', 0@});
1893 @end smallexample
1894
1895 @noindent
1896 This is equivalent to writing the following:
1897
1898 @smallexample
1899 @{
1900 struct foo temp = @{x + y, 'a', 0@};
1901 structure = temp;
1902 @}
1903 @end smallexample
1904
1905 You can also construct an array, though this is dangerous in C++, as
1906 explained below. If all the elements of the compound literal are
1907 (made up of) simple constant expressions, suitable for use in
1908 initializers of objects of static storage duration, then the compound
1909 literal can be coerced to a pointer to its first element and used in
1910 such an initializer, as shown here:
1911
1912 @smallexample
1913 char **foo = (char *[]) @{ "x", "y", "z" @};
1914 @end smallexample
1915
1916 Compound literals for scalar types and union types are
1917 also allowed, but then the compound literal is equivalent
1918 to a cast.
1919
1920 As a GNU extension, GCC allows initialization of objects with static storage
1921 duration by compound literals (which is not possible in ISO C99, because
1922 the initializer is not a constant).
1923 It is handled as if the object is initialized only with the bracket
1924 enclosed list if the types of the compound literal and the object match.
1925 The initializer list of the compound literal must be constant.
1926 If the object being initialized has array type of unknown size, the size is
1927 determined by compound literal size.
1928
1929 @smallexample
1930 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1931 static int y[] = (int []) @{1, 2, 3@};
1932 static int z[] = (int [3]) @{1@};
1933 @end smallexample
1934
1935 @noindent
1936 The above lines are equivalent to the following:
1937 @smallexample
1938 static struct foo x = @{1, 'a', 'b'@};
1939 static int y[] = @{1, 2, 3@};
1940 static int z[] = @{1, 0, 0@};
1941 @end smallexample
1942
1943 In C, a compound literal designates an unnamed object with static or
1944 automatic storage duration. In C++, a compound literal designates a
1945 temporary object, which only lives until the end of its
1946 full-expression. As a result, well-defined C code that takes the
1947 address of a subobject of a compound literal can be undefined in C++,
1948 so the C++ compiler rejects the conversion of a temporary array to a pointer.
1949 For instance, if the array compound literal example above appeared
1950 inside a function, any subsequent use of @samp{foo} in C++ has
1951 undefined behavior because the lifetime of the array ends after the
1952 declaration of @samp{foo}.
1953
1954 As an optimization, the C++ compiler sometimes gives array compound
1955 literals longer lifetimes: when the array either appears outside a
1956 function or has const-qualified type. If @samp{foo} and its
1957 initializer had elements of @samp{char *const} type rather than
1958 @samp{char *}, or if @samp{foo} were a global variable, the array
1959 would have static storage duration. But it is probably safest just to
1960 avoid the use of array compound literals in code compiled as C++.
1961
1962 @node Designated Inits
1963 @section Designated Initializers
1964 @cindex initializers with labeled elements
1965 @cindex labeled elements in initializers
1966 @cindex case labels in initializers
1967 @cindex designated initializers
1968
1969 Standard C90 requires the elements of an initializer to appear in a fixed
1970 order, the same as the order of the elements in the array or structure
1971 being initialized.
1972
1973 In ISO C99 you can give the elements in any order, specifying the array
1974 indices or structure field names they apply to, and GNU C allows this as
1975 an extension in C90 mode as well. This extension is not
1976 implemented in GNU C++.
1977
1978 To specify an array index, write
1979 @samp{[@var{index}] =} before the element value. For example,
1980
1981 @smallexample
1982 int a[6] = @{ [4] = 29, [2] = 15 @};
1983 @end smallexample
1984
1985 @noindent
1986 is equivalent to
1987
1988 @smallexample
1989 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1990 @end smallexample
1991
1992 @noindent
1993 The index values must be constant expressions, even if the array being
1994 initialized is automatic.
1995
1996 An alternative syntax for this that has been obsolete since GCC 2.5 but
1997 GCC still accepts is to write @samp{[@var{index}]} before the element
1998 value, with no @samp{=}.
1999
2000 To initialize a range of elements to the same value, write
2001 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2002 extension. For example,
2003
2004 @smallexample
2005 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2006 @end smallexample
2007
2008 @noindent
2009 If the value in it has side-effects, the side-effects happen only once,
2010 not for each initialized field by the range initializer.
2011
2012 @noindent
2013 Note that the length of the array is the highest value specified
2014 plus one.
2015
2016 In a structure initializer, specify the name of a field to initialize
2017 with @samp{.@var{fieldname} =} before the element value. For example,
2018 given the following structure,
2019
2020 @smallexample
2021 struct point @{ int x, y; @};
2022 @end smallexample
2023
2024 @noindent
2025 the following initialization
2026
2027 @smallexample
2028 struct point p = @{ .y = yvalue, .x = xvalue @};
2029 @end smallexample
2030
2031 @noindent
2032 is equivalent to
2033
2034 @smallexample
2035 struct point p = @{ xvalue, yvalue @};
2036 @end smallexample
2037
2038 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2039 @samp{@var{fieldname}:}, as shown here:
2040
2041 @smallexample
2042 struct point p = @{ y: yvalue, x: xvalue @};
2043 @end smallexample
2044
2045 Omitted field members are implicitly initialized the same as objects
2046 that have static storage duration.
2047
2048 @cindex designators
2049 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2050 @dfn{designator}. You can also use a designator (or the obsolete colon
2051 syntax) when initializing a union, to specify which element of the union
2052 should be used. For example,
2053
2054 @smallexample
2055 union foo @{ int i; double d; @};
2056
2057 union foo f = @{ .d = 4 @};
2058 @end smallexample
2059
2060 @noindent
2061 converts 4 to a @code{double} to store it in the union using
2062 the second element. By contrast, casting 4 to type @code{union foo}
2063 stores it into the union as the integer @code{i}, since it is
2064 an integer. (@xref{Cast to Union}.)
2065
2066 You can combine this technique of naming elements with ordinary C
2067 initialization of successive elements. Each initializer element that
2068 does not have a designator applies to the next consecutive element of the
2069 array or structure. For example,
2070
2071 @smallexample
2072 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2073 @end smallexample
2074
2075 @noindent
2076 is equivalent to
2077
2078 @smallexample
2079 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2080 @end smallexample
2081
2082 Labeling the elements of an array initializer is especially useful
2083 when the indices are characters or belong to an @code{enum} type.
2084 For example:
2085
2086 @smallexample
2087 int whitespace[256]
2088 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2089 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2090 @end smallexample
2091
2092 @cindex designator lists
2093 You can also write a series of @samp{.@var{fieldname}} and
2094 @samp{[@var{index}]} designators before an @samp{=} to specify a
2095 nested subobject to initialize; the list is taken relative to the
2096 subobject corresponding to the closest surrounding brace pair. For
2097 example, with the @samp{struct point} declaration above:
2098
2099 @smallexample
2100 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2101 @end smallexample
2102
2103 @noindent
2104 If the same field is initialized multiple times, it has the value from
2105 the last initialization. If any such overridden initialization has
2106 side-effect, it is unspecified whether the side-effect happens or not.
2107 Currently, GCC discards them and issues a warning.
2108
2109 @node Case Ranges
2110 @section Case Ranges
2111 @cindex case ranges
2112 @cindex ranges in case statements
2113
2114 You can specify a range of consecutive values in a single @code{case} label,
2115 like this:
2116
2117 @smallexample
2118 case @var{low} ... @var{high}:
2119 @end smallexample
2120
2121 @noindent
2122 This has the same effect as the proper number of individual @code{case}
2123 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2124
2125 This feature is especially useful for ranges of ASCII character codes:
2126
2127 @smallexample
2128 case 'A' ... 'Z':
2129 @end smallexample
2130
2131 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2132 it may be parsed wrong when you use it with integer values. For example,
2133 write this:
2134
2135 @smallexample
2136 case 1 ... 5:
2137 @end smallexample
2138
2139 @noindent
2140 rather than this:
2141
2142 @smallexample
2143 case 1...5:
2144 @end smallexample
2145
2146 @node Cast to Union
2147 @section Cast to a Union Type
2148 @cindex cast to a union
2149 @cindex union, casting to a
2150
2151 A cast to union type is similar to other casts, except that the type
2152 specified is a union type. You can specify the type either with
2153 @code{union @var{tag}} or with a typedef name. A cast to union is actually
2154 a constructor, not a cast, and hence does not yield an lvalue like
2155 normal casts. (@xref{Compound Literals}.)
2156
2157 The types that may be cast to the union type are those of the members
2158 of the union. Thus, given the following union and variables:
2159
2160 @smallexample
2161 union foo @{ int i; double d; @};
2162 int x;
2163 double y;
2164 @end smallexample
2165
2166 @noindent
2167 both @code{x} and @code{y} can be cast to type @code{union foo}.
2168
2169 Using the cast as the right-hand side of an assignment to a variable of
2170 union type is equivalent to storing in a member of the union:
2171
2172 @smallexample
2173 union foo u;
2174 /* @r{@dots{}} */
2175 u = (union foo) x @equiv{} u.i = x
2176 u = (union foo) y @equiv{} u.d = y
2177 @end smallexample
2178
2179 You can also use the union cast as a function argument:
2180
2181 @smallexample
2182 void hack (union foo);
2183 /* @r{@dots{}} */
2184 hack ((union foo) x);
2185 @end smallexample
2186
2187 @node Mixed Declarations
2188 @section Mixed Declarations and Code
2189 @cindex mixed declarations and code
2190 @cindex declarations, mixed with code
2191 @cindex code, mixed with declarations
2192
2193 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2194 within compound statements. As an extension, GNU C also allows this in
2195 C90 mode. For example, you could do:
2196
2197 @smallexample
2198 int i;
2199 /* @r{@dots{}} */
2200 i++;
2201 int j = i + 2;
2202 @end smallexample
2203
2204 Each identifier is visible from where it is declared until the end of
2205 the enclosing block.
2206
2207 @node Function Attributes
2208 @section Declaring Attributes of Functions
2209 @cindex function attributes
2210 @cindex declaring attributes of functions
2211 @cindex @code{volatile} applied to function
2212 @cindex @code{const} applied to function
2213
2214 In GNU C, you can use function attributes to declare certain things
2215 about functions called in your program which help the compiler
2216 optimize calls and check your code more carefully. For example, you
2217 can use attributes to declare that a function never returns
2218 (@code{noreturn}), returns a value depending only on its arguments
2219 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2220
2221 You can also use attributes to control memory placement, code
2222 generation options or call/return conventions within the function
2223 being annotated. Many of these attributes are target-specific. For
2224 example, many targets support attributes for defining interrupt
2225 handler functions, which typically must follow special register usage
2226 and return conventions.
2227
2228 Function attributes are introduced by the @code{__attribute__} keyword
2229 on a declaration, followed by an attribute specification inside double
2230 parentheses. You can specify multiple attributes in a declaration by
2231 separating them by commas within the double parentheses or by
2232 immediately following an attribute declaration with another attribute
2233 declaration. @xref{Attribute Syntax}, for the exact rules on
2234 attribute syntax and placement.
2235
2236 GCC also supports attributes on
2237 variable declarations (@pxref{Variable Attributes}),
2238 labels (@pxref{Label Attributes}),
2239 enumerators (@pxref{Enumerator Attributes}),
2240 and types (@pxref{Type Attributes}).
2241
2242 There is some overlap between the purposes of attributes and pragmas
2243 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2244 found convenient to use @code{__attribute__} to achieve a natural
2245 attachment of attributes to their corresponding declarations, whereas
2246 @code{#pragma} is of use for compatibility with other compilers
2247 or constructs that do not naturally form part of the grammar.
2248
2249 In addition to the attributes documented here,
2250 GCC plugins may provide their own attributes.
2251
2252 @menu
2253 * Common Function Attributes::
2254 * AArch64 Function Attributes::
2255 * ARC Function Attributes::
2256 * ARM Function Attributes::
2257 * AVR Function Attributes::
2258 * Blackfin Function Attributes::
2259 * CR16 Function Attributes::
2260 * Epiphany Function Attributes::
2261 * H8/300 Function Attributes::
2262 * IA-64 Function Attributes::
2263 * M32C Function Attributes::
2264 * M32R/D Function Attributes::
2265 * m68k Function Attributes::
2266 * MCORE Function Attributes::
2267 * MeP Function Attributes::
2268 * MicroBlaze Function Attributes::
2269 * Microsoft Windows Function Attributes::
2270 * MIPS Function Attributes::
2271 * MSP430 Function Attributes::
2272 * NDS32 Function Attributes::
2273 * Nios II Function Attributes::
2274 * PowerPC Function Attributes::
2275 * RL78 Function Attributes::
2276 * RX Function Attributes::
2277 * S/390 Function Attributes::
2278 * SH Function Attributes::
2279 * SPU Function Attributes::
2280 * Symbian OS Function Attributes::
2281 * Visium Function Attributes::
2282 * x86 Function Attributes::
2283 * Xstormy16 Function Attributes::
2284 @end menu
2285
2286 @node Common Function Attributes
2287 @subsection Common Function Attributes
2288
2289 The following attributes are supported on most targets.
2290
2291 @table @code
2292 @c Keep this table alphabetized by attribute name. Treat _ as space.
2293
2294 @item alias ("@var{target}")
2295 @cindex @code{alias} function attribute
2296 The @code{alias} attribute causes the declaration to be emitted as an
2297 alias for another symbol, which must be specified. For instance,
2298
2299 @smallexample
2300 void __f () @{ /* @r{Do something.} */; @}
2301 void f () __attribute__ ((weak, alias ("__f")));
2302 @end smallexample
2303
2304 @noindent
2305 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2306 mangled name for the target must be used. It is an error if @samp{__f}
2307 is not defined in the same translation unit.
2308
2309 This attribute requires assembler and object file support,
2310 and may not be available on all targets.
2311
2312 @item aligned (@var{alignment})
2313 @cindex @code{aligned} function attribute
2314 This attribute specifies a minimum alignment for the function,
2315 measured in bytes.
2316
2317 You cannot use this attribute to decrease the alignment of a function,
2318 only to increase it. However, when you explicitly specify a function
2319 alignment this overrides the effect of the
2320 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2321 function.
2322
2323 Note that the effectiveness of @code{aligned} attributes may be
2324 limited by inherent limitations in your linker. On many systems, the
2325 linker is only able to arrange for functions to be aligned up to a
2326 certain maximum alignment. (For some linkers, the maximum supported
2327 alignment may be very very small.) See your linker documentation for
2328 further information.
2329
2330 The @code{aligned} attribute can also be used for variables and fields
2331 (@pxref{Variable Attributes}.)
2332
2333 @item alloc_align
2334 @cindex @code{alloc_align} function attribute
2335 The @code{alloc_align} attribute is used to tell the compiler that the
2336 function return value points to memory, where the returned pointer minimum
2337 alignment is given by one of the functions parameters. GCC uses this
2338 information to improve pointer alignment analysis.
2339
2340 The function parameter denoting the allocated alignment is specified by
2341 one integer argument, whose number is the argument of the attribute.
2342 Argument numbering starts at one.
2343
2344 For instance,
2345
2346 @smallexample
2347 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2348 @end smallexample
2349
2350 @noindent
2351 declares that @code{my_memalign} returns memory with minimum alignment
2352 given by parameter 1.
2353
2354 @item alloc_size
2355 @cindex @code{alloc_size} function attribute
2356 The @code{alloc_size} attribute is used to tell the compiler that the
2357 function return value points to memory, where the size is given by
2358 one or two of the functions parameters. GCC uses this
2359 information to improve the correctness of @code{__builtin_object_size}.
2360
2361 The function parameter(s) denoting the allocated size are specified by
2362 one or two integer arguments supplied to the attribute. The allocated size
2363 is either the value of the single function argument specified or the product
2364 of the two function arguments specified. Argument numbering starts at
2365 one.
2366
2367 For instance,
2368
2369 @smallexample
2370 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2371 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2372 @end smallexample
2373
2374 @noindent
2375 declares that @code{my_calloc} returns memory of the size given by
2376 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2377 of the size given by parameter 2.
2378
2379 @item always_inline
2380 @cindex @code{always_inline} function attribute
2381 Generally, functions are not inlined unless optimization is specified.
2382 For functions declared inline, this attribute inlines the function
2383 independent of any restrictions that otherwise apply to inlining.
2384 Failure to inline such a function is diagnosed as an error.
2385 Note that if such a function is called indirectly the compiler may
2386 or may not inline it depending on optimization level and a failure
2387 to inline an indirect call may or may not be diagnosed.
2388
2389 @item artificial
2390 @cindex @code{artificial} function attribute
2391 This attribute is useful for small inline wrappers that if possible
2392 should appear during debugging as a unit. Depending on the debug
2393 info format it either means marking the function as artificial
2394 or using the caller location for all instructions within the inlined
2395 body.
2396
2397 @item assume_aligned
2398 @cindex @code{assume_aligned} function attribute
2399 The @code{assume_aligned} attribute is used to tell the compiler that the
2400 function return value points to memory, where the returned pointer minimum
2401 alignment is given by the first argument.
2402 If the attribute has two arguments, the second argument is misalignment offset.
2403
2404 For instance
2405
2406 @smallexample
2407 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2408 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2409 @end smallexample
2410
2411 @noindent
2412 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2413 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2414 to 8.
2415
2416 @item bnd_instrument
2417 @cindex @code{bnd_instrument} function attribute
2418 The @code{bnd_instrument} attribute on functions is used to inform the
2419 compiler that the function should be instrumented when compiled
2420 with the @option{-fchkp-instrument-marked-only} option.
2421
2422 @item bnd_legacy
2423 @cindex @code{bnd_legacy} function attribute
2424 @cindex Pointer Bounds Checker attributes
2425 The @code{bnd_legacy} attribute on functions is used to inform the
2426 compiler that the function should not be instrumented when compiled
2427 with the @option{-fcheck-pointer-bounds} option.
2428
2429 @item cold
2430 @cindex @code{cold} function attribute
2431 The @code{cold} attribute on functions is used to inform the compiler that
2432 the function is unlikely to be executed. The function is optimized for
2433 size rather than speed and on many targets it is placed into a special
2434 subsection of the text section so all cold functions appear close together,
2435 improving code locality of non-cold parts of program. The paths leading
2436 to calls of cold functions within code are marked as unlikely by the branch
2437 prediction mechanism. It is thus useful to mark functions used to handle
2438 unlikely conditions, such as @code{perror}, as cold to improve optimization
2439 of hot functions that do call marked functions in rare occasions.
2440
2441 When profile feedback is available, via @option{-fprofile-use}, cold functions
2442 are automatically detected and this attribute is ignored.
2443
2444 @item const
2445 @cindex @code{const} function attribute
2446 @cindex functions that have no side effects
2447 Many functions do not examine any values except their arguments, and
2448 have no effects except the return value. Basically this is just slightly
2449 more strict class than the @code{pure} attribute below, since function is not
2450 allowed to read global memory.
2451
2452 @cindex pointer arguments
2453 Note that a function that has pointer arguments and examines the data
2454 pointed to must @emph{not} be declared @code{const}. Likewise, a
2455 function that calls a non-@code{const} function usually must not be
2456 @code{const}. It does not make sense for a @code{const} function to
2457 return @code{void}.
2458
2459 @item constructor
2460 @itemx destructor
2461 @itemx constructor (@var{priority})
2462 @itemx destructor (@var{priority})
2463 @cindex @code{constructor} function attribute
2464 @cindex @code{destructor} function attribute
2465 The @code{constructor} attribute causes the function to be called
2466 automatically before execution enters @code{main ()}. Similarly, the
2467 @code{destructor} attribute causes the function to be called
2468 automatically after @code{main ()} completes or @code{exit ()} is
2469 called. Functions with these attributes are useful for
2470 initializing data that is used implicitly during the execution of
2471 the program.
2472
2473 You may provide an optional integer priority to control the order in
2474 which constructor and destructor functions are run. A constructor
2475 with a smaller priority number runs before a constructor with a larger
2476 priority number; the opposite relationship holds for destructors. So,
2477 if you have a constructor that allocates a resource and a destructor
2478 that deallocates the same resource, both functions typically have the
2479 same priority. The priorities for constructor and destructor
2480 functions are the same as those specified for namespace-scope C++
2481 objects (@pxref{C++ Attributes}).
2482
2483 These attributes are not currently implemented for Objective-C@.
2484
2485 @item deprecated
2486 @itemx deprecated (@var{msg})
2487 @cindex @code{deprecated} function attribute
2488 The @code{deprecated} attribute results in a warning if the function
2489 is used anywhere in the source file. This is useful when identifying
2490 functions that are expected to be removed in a future version of a
2491 program. The warning also includes the location of the declaration
2492 of the deprecated function, to enable users to easily find further
2493 information about why the function is deprecated, or what they should
2494 do instead. Note that the warnings only occurs for uses:
2495
2496 @smallexample
2497 int old_fn () __attribute__ ((deprecated));
2498 int old_fn ();
2499 int (*fn_ptr)() = old_fn;
2500 @end smallexample
2501
2502 @noindent
2503 results in a warning on line 3 but not line 2. The optional @var{msg}
2504 argument, which must be a string, is printed in the warning if
2505 present.
2506
2507 The @code{deprecated} attribute can also be used for variables and
2508 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2509
2510 @item error ("@var{message}")
2511 @itemx warning ("@var{message}")
2512 @cindex @code{error} function attribute
2513 @cindex @code{warning} function attribute
2514 If the @code{error} or @code{warning} attribute
2515 is used on a function declaration and a call to such a function
2516 is not eliminated through dead code elimination or other optimizations,
2517 an error or warning (respectively) that includes @var{message} is diagnosed.
2518 This is useful
2519 for compile-time checking, especially together with @code{__builtin_constant_p}
2520 and inline functions where checking the inline function arguments is not
2521 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2522
2523 While it is possible to leave the function undefined and thus invoke
2524 a link failure (to define the function with
2525 a message in @code{.gnu.warning*} section),
2526 when using these attributes the problem is diagnosed
2527 earlier and with exact location of the call even in presence of inline
2528 functions or when not emitting debugging information.
2529
2530 @item externally_visible
2531 @cindex @code{externally_visible} function attribute
2532 This attribute, attached to a global variable or function, nullifies
2533 the effect of the @option{-fwhole-program} command-line option, so the
2534 object remains visible outside the current compilation unit.
2535
2536 If @option{-fwhole-program} is used together with @option{-flto} and
2537 @command{gold} is used as the linker plugin,
2538 @code{externally_visible} attributes are automatically added to functions
2539 (not variable yet due to a current @command{gold} issue)
2540 that are accessed outside of LTO objects according to resolution file
2541 produced by @command{gold}.
2542 For other linkers that cannot generate resolution file,
2543 explicit @code{externally_visible} attributes are still necessary.
2544
2545 @item flatten
2546 @cindex @code{flatten} function attribute
2547 Generally, inlining into a function is limited. For a function marked with
2548 this attribute, every call inside this function is inlined, if possible.
2549 Whether the function itself is considered for inlining depends on its size and
2550 the current inlining parameters.
2551
2552 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2553 @cindex @code{format} function attribute
2554 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2555 @opindex Wformat
2556 The @code{format} attribute specifies that a function takes @code{printf},
2557 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2558 should be type-checked against a format string. For example, the
2559 declaration:
2560
2561 @smallexample
2562 extern int
2563 my_printf (void *my_object, const char *my_format, ...)
2564 __attribute__ ((format (printf, 2, 3)));
2565 @end smallexample
2566
2567 @noindent
2568 causes the compiler to check the arguments in calls to @code{my_printf}
2569 for consistency with the @code{printf} style format string argument
2570 @code{my_format}.
2571
2572 The parameter @var{archetype} determines how the format string is
2573 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2574 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2575 @code{strfmon}. (You can also use @code{__printf__},
2576 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2577 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2578 @code{ms_strftime} are also present.
2579 @var{archetype} values such as @code{printf} refer to the formats accepted
2580 by the system's C runtime library,
2581 while values prefixed with @samp{gnu_} always refer
2582 to the formats accepted by the GNU C Library. On Microsoft Windows
2583 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2584 @file{msvcrt.dll} library.
2585 The parameter @var{string-index}
2586 specifies which argument is the format string argument (starting
2587 from 1), while @var{first-to-check} is the number of the first
2588 argument to check against the format string. For functions
2589 where the arguments are not available to be checked (such as
2590 @code{vprintf}), specify the third parameter as zero. In this case the
2591 compiler only checks the format string for consistency. For
2592 @code{strftime} formats, the third parameter is required to be zero.
2593 Since non-static C++ methods have an implicit @code{this} argument, the
2594 arguments of such methods should be counted from two, not one, when
2595 giving values for @var{string-index} and @var{first-to-check}.
2596
2597 In the example above, the format string (@code{my_format}) is the second
2598 argument of the function @code{my_print}, and the arguments to check
2599 start with the third argument, so the correct parameters for the format
2600 attribute are 2 and 3.
2601
2602 @opindex ffreestanding
2603 @opindex fno-builtin
2604 The @code{format} attribute allows you to identify your own functions
2605 that take format strings as arguments, so that GCC can check the
2606 calls to these functions for errors. The compiler always (unless
2607 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2608 for the standard library functions @code{printf}, @code{fprintf},
2609 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2610 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2611 warnings are requested (using @option{-Wformat}), so there is no need to
2612 modify the header file @file{stdio.h}. In C99 mode, the functions
2613 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2614 @code{vsscanf} are also checked. Except in strictly conforming C
2615 standard modes, the X/Open function @code{strfmon} is also checked as
2616 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2617 @xref{C Dialect Options,,Options Controlling C Dialect}.
2618
2619 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2620 recognized in the same context. Declarations including these format attributes
2621 are parsed for correct syntax, however the result of checking of such format
2622 strings is not yet defined, and is not carried out by this version of the
2623 compiler.
2624
2625 The target may also provide additional types of format checks.
2626 @xref{Target Format Checks,,Format Checks Specific to Particular
2627 Target Machines}.
2628
2629 @item format_arg (@var{string-index})
2630 @cindex @code{format_arg} function attribute
2631 @opindex Wformat-nonliteral
2632 The @code{format_arg} attribute specifies that a function takes a format
2633 string for a @code{printf}, @code{scanf}, @code{strftime} or
2634 @code{strfmon} style function and modifies it (for example, to translate
2635 it into another language), so the result can be passed to a
2636 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2637 function (with the remaining arguments to the format function the same
2638 as they would have been for the unmodified string). For example, the
2639 declaration:
2640
2641 @smallexample
2642 extern char *
2643 my_dgettext (char *my_domain, const char *my_format)
2644 __attribute__ ((format_arg (2)));
2645 @end smallexample
2646
2647 @noindent
2648 causes the compiler to check the arguments in calls to a @code{printf},
2649 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2650 format string argument is a call to the @code{my_dgettext} function, for
2651 consistency with the format string argument @code{my_format}. If the
2652 @code{format_arg} attribute had not been specified, all the compiler
2653 could tell in such calls to format functions would be that the format
2654 string argument is not constant; this would generate a warning when
2655 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2656 without the attribute.
2657
2658 The parameter @var{string-index} specifies which argument is the format
2659 string argument (starting from one). Since non-static C++ methods have
2660 an implicit @code{this} argument, the arguments of such methods should
2661 be counted from two.
2662
2663 The @code{format_arg} attribute allows you to identify your own
2664 functions that modify format strings, so that GCC can check the
2665 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2666 type function whose operands are a call to one of your own function.
2667 The compiler always treats @code{gettext}, @code{dgettext}, and
2668 @code{dcgettext} in this manner except when strict ISO C support is
2669 requested by @option{-ansi} or an appropriate @option{-std} option, or
2670 @option{-ffreestanding} or @option{-fno-builtin}
2671 is used. @xref{C Dialect Options,,Options
2672 Controlling C Dialect}.
2673
2674 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2675 @code{NSString} reference for compatibility with the @code{format} attribute
2676 above.
2677
2678 The target may also allow additional types in @code{format-arg} attributes.
2679 @xref{Target Format Checks,,Format Checks Specific to Particular
2680 Target Machines}.
2681
2682 @item gnu_inline
2683 @cindex @code{gnu_inline} function attribute
2684 This attribute should be used with a function that is also declared
2685 with the @code{inline} keyword. It directs GCC to treat the function
2686 as if it were defined in gnu90 mode even when compiling in C99 or
2687 gnu99 mode.
2688
2689 If the function is declared @code{extern}, then this definition of the
2690 function is used only for inlining. In no case is the function
2691 compiled as a standalone function, not even if you take its address
2692 explicitly. Such an address becomes an external reference, as if you
2693 had only declared the function, and had not defined it. This has
2694 almost the effect of a macro. The way to use this is to put a
2695 function definition in a header file with this attribute, and put
2696 another copy of the function, without @code{extern}, in a library
2697 file. The definition in the header file causes most calls to the
2698 function to be inlined. If any uses of the function remain, they
2699 refer to the single copy in the library. Note that the two
2700 definitions of the functions need not be precisely the same, although
2701 if they do not have the same effect your program may behave oddly.
2702
2703 In C, if the function is neither @code{extern} nor @code{static}, then
2704 the function is compiled as a standalone function, as well as being
2705 inlined where possible.
2706
2707 This is how GCC traditionally handled functions declared
2708 @code{inline}. Since ISO C99 specifies a different semantics for
2709 @code{inline}, this function attribute is provided as a transition
2710 measure and as a useful feature in its own right. This attribute is
2711 available in GCC 4.1.3 and later. It is available if either of the
2712 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2713 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2714 Function is As Fast As a Macro}.
2715
2716 In C++, this attribute does not depend on @code{extern} in any way,
2717 but it still requires the @code{inline} keyword to enable its special
2718 behavior.
2719
2720 @item hot
2721 @cindex @code{hot} function attribute
2722 The @code{hot} attribute on a function is used to inform the compiler that
2723 the function is a hot spot of the compiled program. The function is
2724 optimized more aggressively and on many targets it is placed into a special
2725 subsection of the text section so all hot functions appear close together,
2726 improving locality.
2727
2728 When profile feedback is available, via @option{-fprofile-use}, hot functions
2729 are automatically detected and this attribute is ignored.
2730
2731 @item ifunc ("@var{resolver}")
2732 @cindex @code{ifunc} function attribute
2733 @cindex indirect functions
2734 @cindex functions that are dynamically resolved
2735 The @code{ifunc} attribute is used to mark a function as an indirect
2736 function using the STT_GNU_IFUNC symbol type extension to the ELF
2737 standard. This allows the resolution of the symbol value to be
2738 determined dynamically at load time, and an optimized version of the
2739 routine can be selected for the particular processor or other system
2740 characteristics determined then. To use this attribute, first define
2741 the implementation functions available, and a resolver function that
2742 returns a pointer to the selected implementation function. The
2743 implementation functions' declarations must match the API of the
2744 function being implemented, the resolver's declaration is be a
2745 function returning pointer to void function returning void:
2746
2747 @smallexample
2748 void *my_memcpy (void *dst, const void *src, size_t len)
2749 @{
2750 @dots{}
2751 @}
2752
2753 static void (*resolve_memcpy (void)) (void)
2754 @{
2755 return my_memcpy; // we'll just always select this routine
2756 @}
2757 @end smallexample
2758
2759 @noindent
2760 The exported header file declaring the function the user calls would
2761 contain:
2762
2763 @smallexample
2764 extern void *memcpy (void *, const void *, size_t);
2765 @end smallexample
2766
2767 @noindent
2768 allowing the user to call this as a regular function, unaware of the
2769 implementation. Finally, the indirect function needs to be defined in
2770 the same translation unit as the resolver function:
2771
2772 @smallexample
2773 void *memcpy (void *, const void *, size_t)
2774 __attribute__ ((ifunc ("resolve_memcpy")));
2775 @end smallexample
2776
2777 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2778 and GNU C Library version 2.11.1 are required to use this feature.
2779
2780 @item interrupt
2781 @itemx interrupt_handler
2782 Many GCC back ends support attributes to indicate that a function is
2783 an interrupt handler, which tells the compiler to generate function
2784 entry and exit sequences that differ from those from regular
2785 functions. The exact syntax and behavior are target-specific;
2786 refer to the following subsections for details.
2787
2788 @item leaf
2789 @cindex @code{leaf} function attribute
2790 Calls to external functions with this attribute must return to the current
2791 compilation unit only by return or by exception handling. In particular, leaf
2792 functions are not allowed to call callback function passed to it from the current
2793 compilation unit or directly call functions exported by the unit or longjmp
2794 into the unit. Leaf function might still call functions from other compilation
2795 units and thus they are not necessarily leaf in the sense that they contain no
2796 function calls at all.
2797
2798 The attribute is intended for library functions to improve dataflow analysis.
2799 The compiler takes the hint that any data not escaping the current compilation unit can
2800 not be used or modified by the leaf function. For example, the @code{sin} function
2801 is a leaf function, but @code{qsort} is not.
2802
2803 Note that leaf functions might invoke signals and signal handlers might be
2804 defined in the current compilation unit and use static variables. The only
2805 compliant way to write such a signal handler is to declare such variables
2806 @code{volatile}.
2807
2808 The attribute has no effect on functions defined within the current compilation
2809 unit. This is to allow easy merging of multiple compilation units into one,
2810 for example, by using the link-time optimization. For this reason the
2811 attribute is not allowed on types to annotate indirect calls.
2812
2813
2814 @item malloc
2815 @cindex @code{malloc} function attribute
2816 @cindex functions that behave like malloc
2817 This tells the compiler that a function is @code{malloc}-like, i.e.,
2818 that the pointer @var{P} returned by the function cannot alias any
2819 other pointer valid when the function returns, and moreover no
2820 pointers to valid objects occur in any storage addressed by @var{P}.
2821
2822 Using this attribute can improve optimization. Functions like
2823 @code{malloc} and @code{calloc} have this property because they return
2824 a pointer to uninitialized or zeroed-out storage. However, functions
2825 like @code{realloc} do not have this property, as they can return a
2826 pointer to storage containing pointers.
2827
2828 @item no_icf
2829 @cindex @code{no_icf} function attribute
2830 This function attribute prevents a functions from being merged with another
2831 semantically equivalent function.
2832
2833 @item no_instrument_function
2834 @cindex @code{no_instrument_function} function attribute
2835 @opindex finstrument-functions
2836 If @option{-finstrument-functions} is given, profiling function calls are
2837 generated at entry and exit of most user-compiled functions.
2838 Functions with this attribute are not so instrumented.
2839
2840 @item no_reorder
2841 @cindex @code{no_reorder} function attribute
2842 Do not reorder functions or variables marked @code{no_reorder}
2843 against each other or top level assembler statements the executable.
2844 The actual order in the program will depend on the linker command
2845 line. Static variables marked like this are also not removed.
2846 This has a similar effect
2847 as the @option{-fno-toplevel-reorder} option, but only applies to the
2848 marked symbols.
2849
2850 @item no_sanitize_address
2851 @itemx no_address_safety_analysis
2852 @cindex @code{no_sanitize_address} function attribute
2853 The @code{no_sanitize_address} attribute on functions is used
2854 to inform the compiler that it should not instrument memory accesses
2855 in the function when compiling with the @option{-fsanitize=address} option.
2856 The @code{no_address_safety_analysis} is a deprecated alias of the
2857 @code{no_sanitize_address} attribute, new code should use
2858 @code{no_sanitize_address}.
2859
2860 @item no_sanitize_thread
2861 @cindex @code{no_sanitize_thread} function attribute
2862 The @code{no_sanitize_thread} attribute on functions is used
2863 to inform the compiler that it should not instrument memory accesses
2864 in the function when compiling with the @option{-fsanitize=thread} option.
2865
2866 @item no_sanitize_undefined
2867 @cindex @code{no_sanitize_undefined} function attribute
2868 The @code{no_sanitize_undefined} attribute on functions is used
2869 to inform the compiler that it should not check for undefined behavior
2870 in the function when compiling with the @option{-fsanitize=undefined} option.
2871
2872 @item no_split_stack
2873 @cindex @code{no_split_stack} function attribute
2874 @opindex fsplit-stack
2875 If @option{-fsplit-stack} is given, functions have a small
2876 prologue which decides whether to split the stack. Functions with the
2877 @code{no_split_stack} attribute do not have that prologue, and thus
2878 may run with only a small amount of stack space available.
2879
2880 @item no_stack_limit
2881 @cindex @code{no_stack_limit} function attribute
2882 This attribute locally overrides the @option{-fstack-limit-register}
2883 and @option{-fstack-limit-symbol} command-line options; it has the effect
2884 of disabling stack limit checking in the function it applies to.
2885
2886 @item noclone
2887 @cindex @code{noclone} function attribute
2888 This function attribute prevents a function from being considered for
2889 cloning---a mechanism that produces specialized copies of functions
2890 and which is (currently) performed by interprocedural constant
2891 propagation.
2892
2893 @item noinline
2894 @cindex @code{noinline} function attribute
2895 This function attribute prevents a function from being considered for
2896 inlining.
2897 @c Don't enumerate the optimizations by name here; we try to be
2898 @c future-compatible with this mechanism.
2899 If the function does not have side-effects, there are optimizations
2900 other than inlining that cause function calls to be optimized away,
2901 although the function call is live. To keep such calls from being
2902 optimized away, put
2903 @smallexample
2904 asm ("");
2905 @end smallexample
2906
2907 @noindent
2908 (@pxref{Extended Asm}) in the called function, to serve as a special
2909 side-effect.
2910
2911 @item nonnull (@var{arg-index}, @dots{})
2912 @cindex @code{nonnull} function attribute
2913 @cindex functions with non-null pointer arguments
2914 The @code{nonnull} attribute specifies that some function parameters should
2915 be non-null pointers. For instance, the declaration:
2916
2917 @smallexample
2918 extern void *
2919 my_memcpy (void *dest, const void *src, size_t len)
2920 __attribute__((nonnull (1, 2)));
2921 @end smallexample
2922
2923 @noindent
2924 causes the compiler to check that, in calls to @code{my_memcpy},
2925 arguments @var{dest} and @var{src} are non-null. If the compiler
2926 determines that a null pointer is passed in an argument slot marked
2927 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2928 is issued. The compiler may also choose to make optimizations based
2929 on the knowledge that certain function arguments will never be null.
2930
2931 If no argument index list is given to the @code{nonnull} attribute,
2932 all pointer arguments are marked as non-null. To illustrate, the
2933 following declaration is equivalent to the previous example:
2934
2935 @smallexample
2936 extern void *
2937 my_memcpy (void *dest, const void *src, size_t len)
2938 __attribute__((nonnull));
2939 @end smallexample
2940
2941 @item noplt
2942 @cindex @code{noplt} function attribute
2943 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
2944 Calls to functions marked with this attribute in position-independent code
2945 do not use the PLT.
2946
2947 @smallexample
2948 @group
2949 /* Externally defined function foo. */
2950 int foo () __attribute__ ((noplt));
2951
2952 int
2953 main (/* @r{@dots{}} */)
2954 @{
2955 /* @r{@dots{}} */
2956 foo ();
2957 /* @r{@dots{}} */
2958 @}
2959 @end group
2960 @end smallexample
2961
2962 The @code{noplt} attribute on function @code{foo}
2963 tells the compiler to assume that
2964 the function @code{foo} is externally defined and that the call to
2965 @code{foo} must avoid the PLT
2966 in position-independent code.
2967
2968 In position-dependent code, a few targets also convert calls to
2969 functions that are marked to not use the PLT to use the GOT instead.
2970
2971 @item noreturn
2972 @cindex @code{noreturn} function attribute
2973 @cindex functions that never return
2974 A few standard library functions, such as @code{abort} and @code{exit},
2975 cannot return. GCC knows this automatically. Some programs define
2976 their own functions that never return. You can declare them
2977 @code{noreturn} to tell the compiler this fact. For example,
2978
2979 @smallexample
2980 @group
2981 void fatal () __attribute__ ((noreturn));
2982
2983 void
2984 fatal (/* @r{@dots{}} */)
2985 @{
2986 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
2987 exit (1);
2988 @}
2989 @end group
2990 @end smallexample
2991
2992 The @code{noreturn} keyword tells the compiler to assume that
2993 @code{fatal} cannot return. It can then optimize without regard to what
2994 would happen if @code{fatal} ever did return. This makes slightly
2995 better code. More importantly, it helps avoid spurious warnings of
2996 uninitialized variables.
2997
2998 The @code{noreturn} keyword does not affect the exceptional path when that
2999 applies: a @code{noreturn}-marked function may still return to the caller
3000 by throwing an exception or calling @code{longjmp}.
3001
3002 Do not assume that registers saved by the calling function are
3003 restored before calling the @code{noreturn} function.
3004
3005 It does not make sense for a @code{noreturn} function to have a return
3006 type other than @code{void}.
3007
3008 @item nothrow
3009 @cindex @code{nothrow} function attribute
3010 The @code{nothrow} attribute is used to inform the compiler that a
3011 function cannot throw an exception. For example, most functions in
3012 the standard C library can be guaranteed not to throw an exception
3013 with the notable exceptions of @code{qsort} and @code{bsearch} that
3014 take function pointer arguments.
3015
3016 @item optimize
3017 @cindex @code{optimize} function attribute
3018 The @code{optimize} attribute is used to specify that a function is to
3019 be compiled with different optimization options than specified on the
3020 command line. Arguments can either be numbers or strings. Numbers
3021 are assumed to be an optimization level. Strings that begin with
3022 @code{O} are assumed to be an optimization option, while other options
3023 are assumed to be used with a @code{-f} prefix. You can also use the
3024 @samp{#pragma GCC optimize} pragma to set the optimization options
3025 that affect more than one function.
3026 @xref{Function Specific Option Pragmas}, for details about the
3027 @samp{#pragma GCC optimize} pragma.
3028
3029 This can be used for instance to have frequently-executed functions
3030 compiled with more aggressive optimization options that produce faster
3031 and larger code, while other functions can be compiled with less
3032 aggressive options.
3033
3034 @item pure
3035 @cindex @code{pure} function attribute
3036 @cindex functions that have no side effects
3037 Many functions have no effects except the return value and their
3038 return value depends only on the parameters and/or global variables.
3039 Such a function can be subject
3040 to common subexpression elimination and loop optimization just as an
3041 arithmetic operator would be. These functions should be declared
3042 with the attribute @code{pure}. For example,
3043
3044 @smallexample
3045 int square (int) __attribute__ ((pure));
3046 @end smallexample
3047
3048 @noindent
3049 says that the hypothetical function @code{square} is safe to call
3050 fewer times than the program says.
3051
3052 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3053 Interesting non-pure functions are functions with infinite loops or those
3054 depending on volatile memory or other system resource, that may change between
3055 two consecutive calls (such as @code{feof} in a multithreading environment).
3056
3057 @item returns_nonnull
3058 @cindex @code{returns_nonnull} function attribute
3059 The @code{returns_nonnull} attribute specifies that the function
3060 return value should be a non-null pointer. For instance, the declaration:
3061
3062 @smallexample
3063 extern void *
3064 mymalloc (size_t len) __attribute__((returns_nonnull));
3065 @end smallexample
3066
3067 @noindent
3068 lets the compiler optimize callers based on the knowledge
3069 that the return value will never be null.
3070
3071 @item returns_twice
3072 @cindex @code{returns_twice} function attribute
3073 @cindex functions that return more than once
3074 The @code{returns_twice} attribute tells the compiler that a function may
3075 return more than one time. The compiler ensures that all registers
3076 are dead before calling such a function and emits a warning about
3077 the variables that may be clobbered after the second return from the
3078 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3079 The @code{longjmp}-like counterpart of such function, if any, might need
3080 to be marked with the @code{noreturn} attribute.
3081
3082 @item section ("@var{section-name}")
3083 @cindex @code{section} function attribute
3084 @cindex functions in arbitrary sections
3085 Normally, the compiler places the code it generates in the @code{text} section.
3086 Sometimes, however, you need additional sections, or you need certain
3087 particular functions to appear in special sections. The @code{section}
3088 attribute specifies that a function lives in a particular section.
3089 For example, the declaration:
3090
3091 @smallexample
3092 extern void foobar (void) __attribute__ ((section ("bar")));
3093 @end smallexample
3094
3095 @noindent
3096 puts the function @code{foobar} in the @code{bar} section.
3097
3098 Some file formats do not support arbitrary sections so the @code{section}
3099 attribute is not available on all platforms.
3100 If you need to map the entire contents of a module to a particular
3101 section, consider using the facilities of the linker instead.
3102
3103 @item sentinel
3104 @cindex @code{sentinel} function attribute
3105 This function attribute ensures that a parameter in a function call is
3106 an explicit @code{NULL}. The attribute is only valid on variadic
3107 functions. By default, the sentinel is located at position zero, the
3108 last parameter of the function call. If an optional integer position
3109 argument P is supplied to the attribute, the sentinel must be located at
3110 position P counting backwards from the end of the argument list.
3111
3112 @smallexample
3113 __attribute__ ((sentinel))
3114 is equivalent to
3115 __attribute__ ((sentinel(0)))
3116 @end smallexample
3117
3118 The attribute is automatically set with a position of 0 for the built-in
3119 functions @code{execl} and @code{execlp}. The built-in function
3120 @code{execle} has the attribute set with a position of 1.
3121
3122 A valid @code{NULL} in this context is defined as zero with any pointer
3123 type. If your system defines the @code{NULL} macro with an integer type
3124 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3125 with a copy that redefines NULL appropriately.
3126
3127 The warnings for missing or incorrect sentinels are enabled with
3128 @option{-Wformat}.
3129
3130 @item simd
3131 @itemx simd("@var{mask}")
3132 @cindex @code{simd} function attribute
3133 This attribute enables creation of one or more function versions that
3134 can process multiple arguments using SIMD instructions from a
3135 single invocation. Specifying this attribute allows compiler to
3136 assume that such versions are available at link time (provided
3137 in the same or another translation unit). Generated versions are
3138 target-dependent and described in the corresponding Vector ABI document. For
3139 x86_64 target this document can be found
3140 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3141
3142 The optional argument @var{mask} may have the value
3143 @code{notinbranch} or @code{inbranch},
3144 and instructs the compiler to generate non-masked or masked
3145 clones correspondingly. By default, all clones are generated.
3146
3147 The attribute should not be used together with Cilk Plus @code{vector}
3148 attribute on the same function.
3149
3150 If the attribute is specified and @code{#pragma omp declare simd} is
3151 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3152 switch is specified, then the attribute is ignored.
3153
3154 @item stack_protect
3155 @cindex @code{stack_protect} function attribute
3156 This attribute adds stack protection code to the function if
3157 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3158 or @option{-fstack-protector-explicit} are set.
3159
3160 @item target (@var{options})
3161 @cindex @code{target} function attribute
3162 Multiple target back ends implement the @code{target} attribute
3163 to specify that a function is to
3164 be compiled with different target options than specified on the
3165 command line. This can be used for instance to have functions
3166 compiled with a different ISA (instruction set architecture) than the
3167 default. You can also use the @samp{#pragma GCC target} pragma to set
3168 more than one function to be compiled with specific target options.
3169 @xref{Function Specific Option Pragmas}, for details about the
3170 @samp{#pragma GCC target} pragma.
3171
3172 For instance, on an x86, you could declare one function with the
3173 @code{target("sse4.1,arch=core2")} attribute and another with
3174 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3175 compiling the first function with @option{-msse4.1} and
3176 @option{-march=core2} options, and the second function with
3177 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3178 to make sure that a function is only invoked on a machine that
3179 supports the particular ISA it is compiled for (for example by using
3180 @code{cpuid} on x86 to determine what feature bits and architecture
3181 family are used).
3182
3183 @smallexample
3184 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3185 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3186 @end smallexample
3187
3188 You can either use multiple
3189 strings separated by commas to specify multiple options,
3190 or separate the options with a comma (@samp{,}) within a single string.
3191
3192 The options supported are specific to each target; refer to @ref{x86
3193 Function Attributes}, @ref{PowerPC Function Attributes},
3194 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3195 for details.
3196
3197 @item target_clones (@var{options})
3198 @cindex @code{target_clones} function attribute
3199 The @code{target_clones} attribute is used to specify that a function
3200 be cloned into multiple versions compiled with different target options
3201 than specified on the command line. The supported options and restrictions
3202 are the same as for @code{target} attribute.
3203
3204 For instance, on an x86, you could compile a function with
3205 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3206 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3207 It also creates a resolver function (see the @code{ifunc} attribute
3208 above) that dynamically selects a clone suitable for current architecture.
3209
3210 @item unused
3211 @cindex @code{unused} function attribute
3212 This attribute, attached to a function, means that the function is meant
3213 to be possibly unused. GCC does not produce a warning for this
3214 function.
3215
3216 @item used
3217 @cindex @code{used} function attribute
3218 This attribute, attached to a function, means that code must be emitted
3219 for the function even if it appears that the function is not referenced.
3220 This is useful, for example, when the function is referenced only in
3221 inline assembly.
3222
3223 When applied to a member function of a C++ class template, the
3224 attribute also means that the function is instantiated if the
3225 class itself is instantiated.
3226
3227 @item visibility ("@var{visibility_type}")
3228 @cindex @code{visibility} function attribute
3229 This attribute affects the linkage of the declaration to which it is attached.
3230 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3231 (@pxref{Common Type Attributes}) as well as functions.
3232
3233 There are four supported @var{visibility_type} values: default,
3234 hidden, protected or internal visibility.
3235
3236 @smallexample
3237 void __attribute__ ((visibility ("protected")))
3238 f () @{ /* @r{Do something.} */; @}
3239 int i __attribute__ ((visibility ("hidden")));
3240 @end smallexample
3241
3242 The possible values of @var{visibility_type} correspond to the
3243 visibility settings in the ELF gABI.
3244
3245 @table @code
3246 @c keep this list of visibilities in alphabetical order.
3247
3248 @item default
3249 Default visibility is the normal case for the object file format.
3250 This value is available for the visibility attribute to override other
3251 options that may change the assumed visibility of entities.
3252
3253 On ELF, default visibility means that the declaration is visible to other
3254 modules and, in shared libraries, means that the declared entity may be
3255 overridden.
3256
3257 On Darwin, default visibility means that the declaration is visible to
3258 other modules.
3259
3260 Default visibility corresponds to ``external linkage'' in the language.
3261
3262 @item hidden
3263 Hidden visibility indicates that the entity declared has a new
3264 form of linkage, which we call ``hidden linkage''. Two
3265 declarations of an object with hidden linkage refer to the same object
3266 if they are in the same shared object.
3267
3268 @item internal
3269 Internal visibility is like hidden visibility, but with additional
3270 processor specific semantics. Unless otherwise specified by the
3271 psABI, GCC defines internal visibility to mean that a function is
3272 @emph{never} called from another module. Compare this with hidden
3273 functions which, while they cannot be referenced directly by other
3274 modules, can be referenced indirectly via function pointers. By
3275 indicating that a function cannot be called from outside the module,
3276 GCC may for instance omit the load of a PIC register since it is known
3277 that the calling function loaded the correct value.
3278
3279 @item protected
3280 Protected visibility is like default visibility except that it
3281 indicates that references within the defining module bind to the
3282 definition in that module. That is, the declared entity cannot be
3283 overridden by another module.
3284
3285 @end table
3286
3287 All visibilities are supported on many, but not all, ELF targets
3288 (supported when the assembler supports the @samp{.visibility}
3289 pseudo-op). Default visibility is supported everywhere. Hidden
3290 visibility is supported on Darwin targets.
3291
3292 The visibility attribute should be applied only to declarations that
3293 would otherwise have external linkage. The attribute should be applied
3294 consistently, so that the same entity should not be declared with
3295 different settings of the attribute.
3296
3297 In C++, the visibility attribute applies to types as well as functions
3298 and objects, because in C++ types have linkage. A class must not have
3299 greater visibility than its non-static data member types and bases,
3300 and class members default to the visibility of their class. Also, a
3301 declaration without explicit visibility is limited to the visibility
3302 of its type.
3303
3304 In C++, you can mark member functions and static member variables of a
3305 class with the visibility attribute. This is useful if you know a
3306 particular method or static member variable should only be used from
3307 one shared object; then you can mark it hidden while the rest of the
3308 class has default visibility. Care must be taken to avoid breaking
3309 the One Definition Rule; for example, it is usually not useful to mark
3310 an inline method as hidden without marking the whole class as hidden.
3311
3312 A C++ namespace declaration can also have the visibility attribute.
3313
3314 @smallexample
3315 namespace nspace1 __attribute__ ((visibility ("protected")))
3316 @{ /* @r{Do something.} */; @}
3317 @end smallexample
3318
3319 This attribute applies only to the particular namespace body, not to
3320 other definitions of the same namespace; it is equivalent to using
3321 @samp{#pragma GCC visibility} before and after the namespace
3322 definition (@pxref{Visibility Pragmas}).
3323
3324 In C++, if a template argument has limited visibility, this
3325 restriction is implicitly propagated to the template instantiation.
3326 Otherwise, template instantiations and specializations default to the
3327 visibility of their template.
3328
3329 If both the template and enclosing class have explicit visibility, the
3330 visibility from the template is used.
3331
3332 @item warn_unused_result
3333 @cindex @code{warn_unused_result} function attribute
3334 The @code{warn_unused_result} attribute causes a warning to be emitted
3335 if a caller of the function with this attribute does not use its
3336 return value. This is useful for functions where not checking
3337 the result is either a security problem or always a bug, such as
3338 @code{realloc}.
3339
3340 @smallexample
3341 int fn () __attribute__ ((warn_unused_result));
3342 int foo ()
3343 @{
3344 if (fn () < 0) return -1;
3345 fn ();
3346 return 0;
3347 @}
3348 @end smallexample
3349
3350 @noindent
3351 results in warning on line 5.
3352
3353 @item weak
3354 @cindex @code{weak} function attribute
3355 The @code{weak} attribute causes the declaration to be emitted as a weak
3356 symbol rather than a global. This is primarily useful in defining
3357 library functions that can be overridden in user code, though it can
3358 also be used with non-function declarations. Weak symbols are supported
3359 for ELF targets, and also for a.out targets when using the GNU assembler
3360 and linker.
3361
3362 @item weakref
3363 @itemx weakref ("@var{target}")
3364 @cindex @code{weakref} function attribute
3365 The @code{weakref} attribute marks a declaration as a weak reference.
3366 Without arguments, it should be accompanied by an @code{alias} attribute
3367 naming the target symbol. Optionally, the @var{target} may be given as
3368 an argument to @code{weakref} itself. In either case, @code{weakref}
3369 implicitly marks the declaration as @code{weak}. Without a
3370 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3371 @code{weakref} is equivalent to @code{weak}.
3372
3373 @smallexample
3374 static int x() __attribute__ ((weakref ("y")));
3375 /* is equivalent to... */
3376 static int x() __attribute__ ((weak, weakref, alias ("y")));
3377 /* and to... */
3378 static int x() __attribute__ ((weakref));
3379 static int x() __attribute__ ((alias ("y")));
3380 @end smallexample
3381
3382 A weak reference is an alias that does not by itself require a
3383 definition to be given for the target symbol. If the target symbol is
3384 only referenced through weak references, then it becomes a @code{weak}
3385 undefined symbol. If it is directly referenced, however, then such
3386 strong references prevail, and a definition is required for the
3387 symbol, not necessarily in the same translation unit.
3388
3389 The effect is equivalent to moving all references to the alias to a
3390 separate translation unit, renaming the alias to the aliased symbol,
3391 declaring it as weak, compiling the two separate translation units and
3392 performing a reloadable link on them.
3393
3394 At present, a declaration to which @code{weakref} is attached can
3395 only be @code{static}.
3396
3397 @item lower
3398 @itemx upper
3399 @itemx either
3400 @cindex lower memory region on the MSP430
3401 @cindex upper memory region on the MSP430
3402 @cindex either memory region on the MSP430
3403 On the MSP430 target these attributes can be used to specify whether
3404 the function or variable should be placed into low memory, high
3405 memory, or the placement should be left to the linker to decide. The
3406 attributes are only significant if compiling for the MSP430X
3407 architecture.
3408
3409 The attributes work in conjunction with a linker script that has been
3410 augmented to specify where to place sections with a @code{.lower} and
3411 a @code{.upper} prefix. So for example as well as placing the
3412 @code{.data} section the script would also specify the placement of a
3413 @code{.lower.data} and a @code{.upper.data} section. The intention
3414 being that @code{lower} sections are placed into a small but easier to
3415 access memory region and the upper sections are placed into a larger, but
3416 slower to access region.
3417
3418 The @code{either} attribute is special. It tells the linker to place
3419 the object into the corresponding @code{lower} section if there is
3420 room for it. If there is insufficient room then the object is placed
3421 into the corresponding @code{upper} section instead. Note - the
3422 placement algorithm is not very sophisticated. It will not attempt to
3423 find an optimal packing of the @code{lower} sections. It just makes
3424 one pass over the objects and does the best that it can. Using the
3425 @option{-ffunction-sections} and @option{-fdata-sections} command line
3426 options can help the packing however, since they produce smaller,
3427 easier to pack regions.
3428
3429 @item reentrant
3430 On the MSP430 a function can be given the @code{reentant} attribute.
3431 This makes the function disable interrupts upon entry and enable
3432 interrupts upon exit. Reentrant functions cannot be @code{naked}.
3433
3434 @item critical
3435 On the MSP430 a function can be given the @code{critical} attribute.
3436 This makes the function disable interrupts upon entry and restore the
3437 previous interrupt enabled/disabled state upon exit. A function
3438 cannot have both the @code{reentrant} and @code{critical} attributes.
3439 Critical functions cannot be @code{naked}.
3440
3441 @item wakeup
3442 On the MSP430 a function can be given the @code{wakeup} attribute.
3443 Such a function must also have the @code{interrupt} attribute. When a
3444 function with the @code{wakeup} attribute exists the processor will be
3445 woken up from any low-power state in which it may be residing.
3446
3447 @end table
3448
3449 @c This is the end of the target-independent attribute table
3450
3451 @node AArch64 Function Attributes
3452 @subsection AArch64 Function Attributes
3453
3454 The following target-specific function attributes are available for the
3455 AArch64 target. For the most part, these options mirror the behavior of
3456 similar command-line options (@pxref{AArch64 Options}), but on a
3457 per-function basis.
3458
3459 @table @code
3460 @item general-regs-only
3461 @cindex @code{general-regs-only} function attribute, AArch64
3462 Indicates that no floating-point or Advanced SIMD registers should be
3463 used when generating code for this function. If the function explicitly
3464 uses floating-point code, then the compiler gives an error. This is
3465 the same behavior as that of the command-line option
3466 @option{-mgeneral-regs-only}.
3467
3468 @item fix-cortex-a53-835769
3469 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3470 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3471 applied to this function. To explicitly disable the workaround for this
3472 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3473 This corresponds to the behavior of the command line options
3474 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3475
3476 @item cmodel=
3477 @cindex @code{cmodel=} function attribute, AArch64
3478 Indicates that code should be generated for a particular code model for
3479 this function. The behavior and permissible arguments are the same as
3480 for the command line option @option{-mcmodel=}.
3481
3482 @item strict-align
3483 @cindex @code{strict-align} function attribute, AArch64
3484 Indicates that the compiler should not assume that unaligned memory references
3485 are handled by the system. The behavior is the same as for the command-line
3486 option @option{-mstrict-align}.
3487
3488 @item omit-leaf-frame-pointer
3489 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3490 Indicates that the frame pointer should be omitted for a leaf function call.
3491 To keep the frame pointer, the inverse attribute
3492 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3493 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3494 and @option{-mno-omit-leaf-frame-pointer}.
3495
3496 @item tls-dialect=
3497 @cindex @code{tls-dialect=} function attribute, AArch64
3498 Specifies the TLS dialect to use for this function. The behavior and
3499 permissible arguments are the same as for the command-line option
3500 @option{-mtls-dialect=}.
3501
3502 @item arch=
3503 @cindex @code{arch=} function attribute, AArch64
3504 Specifies the architecture version and architectural extensions to use
3505 for this function. The behavior and permissible arguments are the same as
3506 for the @option{-march=} command-line option.
3507
3508 @item tune=
3509 @cindex @code{tune=} function attribute, AArch64
3510 Specifies the core for which to tune the performance of this function.
3511 The behavior and permissible arguments are the same as for the @option{-mtune=}
3512 command-line option.
3513
3514 @item cpu=
3515 @cindex @code{cpu=} function attribute, AArch64
3516 Specifies the core for which to tune the performance of this function and also
3517 whose architectural features to use. The behavior and valid arguments are the
3518 same as for the @option{-mcpu=} command-line option.
3519
3520 @end table
3521
3522 The above target attributes can be specified as follows:
3523
3524 @smallexample
3525 __attribute__((target("@var{attr-string}")))
3526 int
3527 f (int a)
3528 @{
3529 return a + 5;
3530 @}
3531 @end smallexample
3532
3533 where @code{@var{attr-string}} is one of the attribute strings specified above.
3534
3535 Additionally, the architectural extension string may be specified on its
3536 own. This can be used to turn on and off particular architectural extensions
3537 without having to specify a particular architecture version or core. Example:
3538
3539 @smallexample
3540 __attribute__((target("+crc+nocrypto")))
3541 int
3542 foo (int a)
3543 @{
3544 return a + 5;
3545 @}
3546 @end smallexample
3547
3548 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3549 extension and disables the @code{crypto} extension for the function @code{foo}
3550 without modifying an existing @option{-march=} or @option{-mcpu} option.
3551
3552 Multiple target function attributes can be specified by separating them with
3553 a comma. For example:
3554 @smallexample
3555 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3556 int
3557 foo (int a)
3558 @{
3559 return a + 5;
3560 @}
3561 @end smallexample
3562
3563 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3564 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3565
3566 @subsubsection Inlining rules
3567 Specifying target attributes on individual functions or performing link-time
3568 optimization across translation units compiled with different target options
3569 can affect function inlining rules:
3570
3571 In particular, a caller function can inline a callee function only if the
3572 architectural features available to the callee are a subset of the features
3573 available to the caller.
3574 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3575 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3576 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3577 because the all the architectural features that function @code{bar} requires
3578 are available to function @code{foo}. Conversely, function @code{bar} cannot
3579 inline function @code{foo}.
3580
3581 Additionally inlining a function compiled with @option{-mstrict-align} into a
3582 function compiled without @code{-mstrict-align} is not allowed.
3583 However, inlining a function compiled without @option{-mstrict-align} into a
3584 function compiled with @option{-mstrict-align} is allowed.
3585
3586 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3587 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3588 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3589 architectural feature rules specified above.
3590
3591 @node ARC Function Attributes
3592 @subsection ARC Function Attributes
3593
3594 These function attributes are supported by the ARC back end:
3595
3596 @table @code
3597 @item interrupt
3598 @cindex @code{interrupt} function attribute, ARC
3599 Use this attribute to indicate
3600 that the specified function is an interrupt handler. The compiler generates
3601 function entry and exit sequences suitable for use in an interrupt handler
3602 when this attribute is present.
3603
3604 On the ARC, you must specify the kind of interrupt to be handled
3605 in a parameter to the interrupt attribute like this:
3606
3607 @smallexample
3608 void f () __attribute__ ((interrupt ("ilink1")));
3609 @end smallexample
3610
3611 Permissible values for this parameter are: @w{@code{ilink1}} and
3612 @w{@code{ilink2}}.
3613
3614 @item long_call
3615 @itemx medium_call
3616 @itemx short_call
3617 @cindex @code{long_call} function attribute, ARC
3618 @cindex @code{medium_call} function attribute, ARC
3619 @cindex @code{short_call} function attribute, ARC
3620 @cindex indirect calls, ARC
3621 These attributes specify how a particular function is called.
3622 These attributes override the
3623 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3624 command-line switches and @code{#pragma long_calls} settings.
3625
3626 For ARC, a function marked with the @code{long_call} attribute is
3627 always called using register-indirect jump-and-link instructions,
3628 thereby enabling the called function to be placed anywhere within the
3629 32-bit address space. A function marked with the @code{medium_call}
3630 attribute will always be close enough to be called with an unconditional
3631 branch-and-link instruction, which has a 25-bit offset from
3632 the call site. A function marked with the @code{short_call}
3633 attribute will always be close enough to be called with a conditional
3634 branch-and-link instruction, which has a 21-bit offset from
3635 the call site.
3636 @end table
3637
3638 @node ARM Function Attributes
3639 @subsection ARM Function Attributes
3640
3641 These function attributes are supported for ARM targets:
3642
3643 @table @code
3644 @item interrupt
3645 @cindex @code{interrupt} function attribute, ARM
3646 Use this attribute to indicate
3647 that the specified function is an interrupt handler. The compiler generates
3648 function entry and exit sequences suitable for use in an interrupt handler
3649 when this attribute is present.
3650
3651 You can specify the kind of interrupt to be handled by
3652 adding an optional parameter to the interrupt attribute like this:
3653
3654 @smallexample
3655 void f () __attribute__ ((interrupt ("IRQ")));
3656 @end smallexample
3657
3658 @noindent
3659 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3660 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3661
3662 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3663 may be called with a word-aligned stack pointer.
3664
3665 @item isr
3666 @cindex @code{isr} function attribute, ARM
3667 Use this attribute on ARM to write Interrupt Service Routines. This is an
3668 alias to the @code{interrupt} attribute above.
3669
3670 @item long_call
3671 @itemx short_call
3672 @cindex @code{long_call} function attribute, ARM
3673 @cindex @code{short_call} function attribute, ARM
3674 @cindex indirect calls, ARM
3675 These attributes specify how a particular function is called.
3676 These attributes override the
3677 @option{-mlong-calls} (@pxref{ARM Options})
3678 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3679 @code{long_call} attribute indicates that the function might be far
3680 away from the call site and require a different (more expensive)
3681 calling sequence. The @code{short_call} attribute always places
3682 the offset to the function from the call site into the @samp{BL}
3683 instruction directly.
3684
3685 @item naked
3686 @cindex @code{naked} function attribute, ARM
3687 This attribute allows the compiler to construct the
3688 requisite function declaration, while allowing the body of the
3689 function to be assembly code. The specified function will not have
3690 prologue/epilogue sequences generated by the compiler. Only basic
3691 @code{asm} statements can safely be included in naked functions
3692 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3693 basic @code{asm} and C code may appear to work, they cannot be
3694 depended upon to work reliably and are not supported.
3695
3696 @item pcs
3697 @cindex @code{pcs} function attribute, ARM
3698
3699 The @code{pcs} attribute can be used to control the calling convention
3700 used for a function on ARM. The attribute takes an argument that specifies
3701 the calling convention to use.
3702
3703 When compiling using the AAPCS ABI (or a variant of it) then valid
3704 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3705 order to use a variant other than @code{"aapcs"} then the compiler must
3706 be permitted to use the appropriate co-processor registers (i.e., the
3707 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3708 For example,
3709
3710 @smallexample
3711 /* Argument passed in r0, and result returned in r0+r1. */
3712 double f2d (float) __attribute__((pcs("aapcs")));
3713 @end smallexample
3714
3715 Variadic functions always use the @code{"aapcs"} calling convention and
3716 the compiler rejects attempts to specify an alternative.
3717
3718 @item target (@var{options})
3719 @cindex @code{target} function attribute
3720 As discussed in @ref{Common Function Attributes}, this attribute
3721 allows specification of target-specific compilation options.
3722
3723 On ARM, the following options are allowed:
3724
3725 @table @samp
3726 @item thumb
3727 @cindex @code{target("thumb")} function attribute, ARM
3728 Force code generation in the Thumb (T16/T32) ISA, depending on the
3729 architecture level.
3730
3731 @item arm
3732 @cindex @code{target("arm")} function attribute, ARM
3733 Force code generation in the ARM (A32) ISA.
3734
3735 Functions from different modes can be inlined in the caller's mode.
3736
3737 @item fpu=
3738 @cindex @code{target("fpu=")} function attribute, ARM
3739 Specifies the fpu for which to tune the performance of this function.
3740 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3741 command-line option.
3742
3743 @end table
3744
3745 @end table
3746
3747 @node AVR Function Attributes
3748 @subsection AVR Function Attributes
3749
3750 These function attributes are supported by the AVR back end:
3751
3752 @table @code
3753 @item interrupt
3754 @cindex @code{interrupt} function attribute, AVR
3755 Use this attribute to indicate
3756 that the specified function is an interrupt handler. The compiler generates
3757 function entry and exit sequences suitable for use in an interrupt handler
3758 when this attribute is present.
3759
3760 On the AVR, the hardware globally disables interrupts when an
3761 interrupt is executed. The first instruction of an interrupt handler
3762 declared with this attribute is a @code{SEI} instruction to
3763 re-enable interrupts. See also the @code{signal} function attribute
3764 that does not insert a @code{SEI} instruction. If both @code{signal} and
3765 @code{interrupt} are specified for the same function, @code{signal}
3766 is silently ignored.
3767
3768 @item naked
3769 @cindex @code{naked} function attribute, AVR
3770 This attribute allows the compiler to construct the
3771 requisite function declaration, while allowing the body of the
3772 function to be assembly code. The specified function will not have
3773 prologue/epilogue sequences generated by the compiler. Only basic
3774 @code{asm} statements can safely be included in naked functions
3775 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3776 basic @code{asm} and C code may appear to work, they cannot be
3777 depended upon to work reliably and are not supported.
3778
3779 @item OS_main
3780 @itemx OS_task
3781 @cindex @code{OS_main} function attribute, AVR
3782 @cindex @code{OS_task} function attribute, AVR
3783 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3784 do not save/restore any call-saved register in their prologue/epilogue.
3785
3786 The @code{OS_main} attribute can be used when there @emph{is
3787 guarantee} that interrupts are disabled at the time when the function
3788 is entered. This saves resources when the stack pointer has to be
3789 changed to set up a frame for local variables.
3790
3791 The @code{OS_task} attribute can be used when there is @emph{no
3792 guarantee} that interrupts are disabled at that time when the function
3793 is entered like for, e@.g@. task functions in a multi-threading operating
3794 system. In that case, changing the stack pointer register is
3795 guarded by save/clear/restore of the global interrupt enable flag.
3796
3797 The differences to the @code{naked} function attribute are:
3798 @itemize @bullet
3799 @item @code{naked} functions do not have a return instruction whereas
3800 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3801 @code{RETI} return instruction.
3802 @item @code{naked} functions do not set up a frame for local variables
3803 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3804 as needed.
3805 @end itemize
3806
3807 @item signal
3808 @cindex @code{signal} function attribute, AVR
3809 Use this attribute on the AVR to indicate that the specified
3810 function is an interrupt handler. The compiler generates function
3811 entry and exit sequences suitable for use in an interrupt handler when this
3812 attribute is present.
3813
3814 See also the @code{interrupt} function attribute.
3815
3816 The AVR hardware globally disables interrupts when an interrupt is executed.
3817 Interrupt handler functions defined with the @code{signal} attribute
3818 do not re-enable interrupts. It is save to enable interrupts in a
3819 @code{signal} handler. This ``save'' only applies to the code
3820 generated by the compiler and not to the IRQ layout of the
3821 application which is responsibility of the application.
3822
3823 If both @code{signal} and @code{interrupt} are specified for the same
3824 function, @code{signal} is silently ignored.
3825 @end table
3826
3827 @node Blackfin Function Attributes
3828 @subsection Blackfin Function Attributes
3829
3830 These function attributes are supported by the Blackfin back end:
3831
3832 @table @code
3833
3834 @item exception_handler
3835 @cindex @code{exception_handler} function attribute
3836 @cindex exception handler functions, Blackfin
3837 Use this attribute on the Blackfin to indicate that the specified function
3838 is an exception handler. The compiler generates function entry and
3839 exit sequences suitable for use in an exception handler when this
3840 attribute is present.
3841
3842 @item interrupt_handler
3843 @cindex @code{interrupt_handler} function attribute, Blackfin
3844 Use this attribute to
3845 indicate that the specified function is an interrupt handler. The compiler
3846 generates function entry and exit sequences suitable for use in an
3847 interrupt handler when this attribute is present.
3848
3849 @item kspisusp
3850 @cindex @code{kspisusp} function attribute, Blackfin
3851 @cindex User stack pointer in interrupts on the Blackfin
3852 When used together with @code{interrupt_handler}, @code{exception_handler}
3853 or @code{nmi_handler}, code is generated to load the stack pointer
3854 from the USP register in the function prologue.
3855
3856 @item l1_text
3857 @cindex @code{l1_text} function attribute, Blackfin
3858 This attribute specifies a function to be placed into L1 Instruction
3859 SRAM@. The function is put into a specific section named @code{.l1.text}.
3860 With @option{-mfdpic}, function calls with a such function as the callee
3861 or caller uses inlined PLT.
3862
3863 @item l2
3864 @cindex @code{l2} function attribute, Blackfin
3865 This attribute specifies a function to be placed into L2
3866 SRAM. The function is put into a specific section named
3867 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3868 an inlined PLT.
3869
3870 @item longcall
3871 @itemx shortcall
3872 @cindex indirect calls, Blackfin
3873 @cindex @code{longcall} function attribute, Blackfin
3874 @cindex @code{shortcall} function attribute, Blackfin
3875 The @code{longcall} attribute
3876 indicates that the function might be far away from the call site and
3877 require a different (more expensive) calling sequence. The
3878 @code{shortcall} attribute indicates that the function is always close
3879 enough for the shorter calling sequence to be used. These attributes
3880 override the @option{-mlongcall} switch.
3881
3882 @item nesting
3883 @cindex @code{nesting} function attribute, Blackfin
3884 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3885 Use this attribute together with @code{interrupt_handler},
3886 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3887 entry code should enable nested interrupts or exceptions.
3888
3889 @item nmi_handler
3890 @cindex @code{nmi_handler} function attribute, Blackfin
3891 @cindex NMI handler functions on the Blackfin processor
3892 Use this attribute on the Blackfin to indicate that the specified function
3893 is an NMI handler. The compiler generates function entry and
3894 exit sequences suitable for use in an NMI handler when this
3895 attribute is present.
3896
3897 @item saveall
3898 @cindex @code{saveall} function attribute, Blackfin
3899 @cindex save all registers on the Blackfin
3900 Use this attribute to indicate that
3901 all registers except the stack pointer should be saved in the prologue
3902 regardless of whether they are used or not.
3903 @end table
3904
3905 @node CR16 Function Attributes
3906 @subsection CR16 Function Attributes
3907
3908 These function attributes are supported by the CR16 back end:
3909
3910 @table @code
3911 @item interrupt
3912 @cindex @code{interrupt} function attribute, CR16
3913 Use this attribute to indicate
3914 that the specified function is an interrupt handler. The compiler generates
3915 function entry and exit sequences suitable for use in an interrupt handler
3916 when this attribute is present.
3917 @end table
3918
3919 @node Epiphany Function Attributes
3920 @subsection Epiphany Function Attributes
3921
3922 These function attributes are supported by the Epiphany back end:
3923
3924 @table @code
3925 @item disinterrupt
3926 @cindex @code{disinterrupt} function attribute, Epiphany
3927 This attribute causes the compiler to emit
3928 instructions to disable interrupts for the duration of the given
3929 function.
3930
3931 @item forwarder_section
3932 @cindex @code{forwarder_section} function attribute, Epiphany
3933 This attribute modifies the behavior of an interrupt handler.
3934 The interrupt handler may be in external memory which cannot be
3935 reached by a branch instruction, so generate a local memory trampoline
3936 to transfer control. The single parameter identifies the section where
3937 the trampoline is placed.
3938
3939 @item interrupt
3940 @cindex @code{interrupt} function attribute, Epiphany
3941 Use this attribute to indicate
3942 that the specified function is an interrupt handler. The compiler generates
3943 function entry and exit sequences suitable for use in an interrupt handler
3944 when this attribute is present. It may also generate
3945 a special section with code to initialize the interrupt vector table.
3946
3947 On Epiphany targets one or more optional parameters can be added like this:
3948
3949 @smallexample
3950 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3951 @end smallexample
3952
3953 Permissible values for these parameters are: @w{@code{reset}},
3954 @w{@code{software_exception}}, @w{@code{page_miss}},
3955 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
3956 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
3957 Multiple parameters indicate that multiple entries in the interrupt
3958 vector table should be initialized for this function, i.e.@: for each
3959 parameter @w{@var{name}}, a jump to the function is emitted in
3960 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3961 entirely, in which case no interrupt vector table entry is provided.
3962
3963 Note that interrupts are enabled inside the function
3964 unless the @code{disinterrupt} attribute is also specified.
3965
3966 The following examples are all valid uses of these attributes on
3967 Epiphany targets:
3968 @smallexample
3969 void __attribute__ ((interrupt)) universal_handler ();
3970 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3971 void __attribute__ ((interrupt ("dma0, dma1")))
3972 universal_dma_handler ();
3973 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3974 fast_timer_handler ();
3975 void __attribute__ ((interrupt ("dma0, dma1"),
3976 forwarder_section ("tramp")))
3977 external_dma_handler ();
3978 @end smallexample
3979
3980 @item long_call
3981 @itemx short_call
3982 @cindex @code{long_call} function attribute, Epiphany
3983 @cindex @code{short_call} function attribute, Epiphany
3984 @cindex indirect calls, Epiphany
3985 These attributes specify how a particular function is called.
3986 These attributes override the
3987 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
3988 command-line switch and @code{#pragma long_calls} settings.
3989 @end table
3990
3991
3992 @node H8/300 Function Attributes
3993 @subsection H8/300 Function Attributes
3994
3995 These function attributes are available for H8/300 targets:
3996
3997 @table @code
3998 @item function_vector
3999 @cindex @code{function_vector} function attribute, H8/300
4000 Use this attribute on the H8/300, H8/300H, and H8S to indicate
4001 that the specified function should be called through the function vector.
4002 Calling a function through the function vector reduces code size; however,
4003 the function vector has a limited size (maximum 128 entries on the H8/300
4004 and 64 entries on the H8/300H and H8S)
4005 and shares space with the interrupt vector.
4006
4007 @item interrupt_handler
4008 @cindex @code{interrupt_handler} function attribute, H8/300
4009 Use this attribute on the H8/300, H8/300H, and H8S to
4010 indicate that the specified function is an interrupt handler. The compiler
4011 generates function entry and exit sequences suitable for use in an
4012 interrupt handler when this attribute is present.
4013
4014 @item saveall
4015 @cindex @code{saveall} function attribute, H8/300
4016 @cindex save all registers on the H8/300, H8/300H, and H8S
4017 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4018 all registers except the stack pointer should be saved in the prologue
4019 regardless of whether they are used or not.
4020 @end table
4021
4022 @node IA-64 Function Attributes
4023 @subsection IA-64 Function Attributes
4024
4025 These function attributes are supported on IA-64 targets:
4026
4027 @table @code
4028 @item syscall_linkage
4029 @cindex @code{syscall_linkage} function attribute, IA-64
4030 This attribute is used to modify the IA-64 calling convention by marking
4031 all input registers as live at all function exits. This makes it possible
4032 to restart a system call after an interrupt without having to save/restore
4033 the input registers. This also prevents kernel data from leaking into
4034 application code.
4035
4036 @item version_id
4037 @cindex @code{version_id} function attribute, IA-64
4038 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4039 symbol to contain a version string, thus allowing for function level
4040 versioning. HP-UX system header files may use function level versioning
4041 for some system calls.
4042
4043 @smallexample
4044 extern int foo () __attribute__((version_id ("20040821")));
4045 @end smallexample
4046
4047 @noindent
4048 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4049 @end table
4050
4051 @node M32C Function Attributes
4052 @subsection M32C Function Attributes
4053
4054 These function attributes are supported by the M32C back end:
4055
4056 @table @code
4057 @item bank_switch
4058 @cindex @code{bank_switch} function attribute, M32C
4059 When added to an interrupt handler with the M32C port, causes the
4060 prologue and epilogue to use bank switching to preserve the registers
4061 rather than saving them on the stack.
4062
4063 @item fast_interrupt
4064 @cindex @code{fast_interrupt} function attribute, M32C
4065 Use this attribute on the M32C port to indicate that the specified
4066 function is a fast interrupt handler. This is just like the
4067 @code{interrupt} attribute, except that @code{freit} is used to return
4068 instead of @code{reit}.
4069
4070 @item function_vector
4071 @cindex @code{function_vector} function attribute, M16C/M32C
4072 On M16C/M32C targets, the @code{function_vector} attribute declares a
4073 special page subroutine call function. Use of this attribute reduces
4074 the code size by 2 bytes for each call generated to the
4075 subroutine. The argument to the attribute is the vector number entry
4076 from the special page vector table which contains the 16 low-order
4077 bits of the subroutine's entry address. Each vector table has special
4078 page number (18 to 255) that is used in @code{jsrs} instructions.
4079 Jump addresses of the routines are generated by adding 0x0F0000 (in
4080 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4081 2-byte addresses set in the vector table. Therefore you need to ensure
4082 that all the special page vector routines should get mapped within the
4083 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4084 (for M32C).
4085
4086 In the following example 2 bytes are saved for each call to
4087 function @code{foo}.
4088
4089 @smallexample
4090 void foo (void) __attribute__((function_vector(0x18)));
4091 void foo (void)
4092 @{
4093 @}
4094
4095 void bar (void)
4096 @{
4097 foo();
4098 @}
4099 @end smallexample
4100
4101 If functions are defined in one file and are called in another file,
4102 then be sure to write this declaration in both files.
4103
4104 This attribute is ignored for R8C target.
4105
4106 @item interrupt
4107 @cindex @code{interrupt} function attribute, M32C
4108 Use this attribute to indicate
4109 that the specified function is an interrupt handler. The compiler generates
4110 function entry and exit sequences suitable for use in an interrupt handler
4111 when this attribute is present.
4112 @end table
4113
4114 @node M32R/D Function Attributes
4115 @subsection M32R/D Function Attributes
4116
4117 These function attributes are supported by the M32R/D back end:
4118
4119 @table @code
4120 @item interrupt
4121 @cindex @code{interrupt} function attribute, M32R/D
4122 Use this attribute to indicate
4123 that the specified function is an interrupt handler. The compiler generates
4124 function entry and exit sequences suitable for use in an interrupt handler
4125 when this attribute is present.
4126
4127 @item model (@var{model-name})
4128 @cindex @code{model} function attribute, M32R/D
4129 @cindex function addressability on the M32R/D
4130
4131 On the M32R/D, use this attribute to set the addressability of an
4132 object, and of the code generated for a function. The identifier
4133 @var{model-name} is one of @code{small}, @code{medium}, or
4134 @code{large}, representing each of the code models.
4135
4136 Small model objects live in the lower 16MB of memory (so that their
4137 addresses can be loaded with the @code{ld24} instruction), and are
4138 callable with the @code{bl} instruction.
4139
4140 Medium model objects may live anywhere in the 32-bit address space (the
4141 compiler generates @code{seth/add3} instructions to load their addresses),
4142 and are callable with the @code{bl} instruction.
4143
4144 Large model objects may live anywhere in the 32-bit address space (the
4145 compiler generates @code{seth/add3} instructions to load their addresses),
4146 and may not be reachable with the @code{bl} instruction (the compiler
4147 generates the much slower @code{seth/add3/jl} instruction sequence).
4148 @end table
4149
4150 @node m68k Function Attributes
4151 @subsection m68k Function Attributes
4152
4153 These function attributes are supported by the m68k back end:
4154
4155 @table @code
4156 @item interrupt
4157 @itemx interrupt_handler
4158 @cindex @code{interrupt} function attribute, m68k
4159 @cindex @code{interrupt_handler} function attribute, m68k
4160 Use this attribute to
4161 indicate that the specified function is an interrupt handler. The compiler
4162 generates function entry and exit sequences suitable for use in an
4163 interrupt handler when this attribute is present. Either name may be used.
4164
4165 @item interrupt_thread
4166 @cindex @code{interrupt_thread} function attribute, fido
4167 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4168 that the specified function is an interrupt handler that is designed
4169 to run as a thread. The compiler omits generate prologue/epilogue
4170 sequences and replaces the return instruction with a @code{sleep}
4171 instruction. This attribute is available only on fido.
4172 @end table
4173
4174 @node MCORE Function Attributes
4175 @subsection MCORE Function Attributes
4176
4177 These function attributes are supported by the MCORE back end:
4178
4179 @table @code
4180 @item naked
4181 @cindex @code{naked} function attribute, MCORE
4182 This attribute allows the compiler to construct the
4183 requisite function declaration, while allowing the body of the
4184 function to be assembly code. The specified function will not have
4185 prologue/epilogue sequences generated by the compiler. Only basic
4186 @code{asm} statements can safely be included in naked functions
4187 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4188 basic @code{asm} and C code may appear to work, they cannot be
4189 depended upon to work reliably and are not supported.
4190 @end table
4191
4192 @node MeP Function Attributes
4193 @subsection MeP Function Attributes
4194
4195 These function attributes are supported by the MeP back end:
4196
4197 @table @code
4198 @item disinterrupt
4199 @cindex @code{disinterrupt} function attribute, MeP
4200 On MeP targets, this attribute causes the compiler to emit
4201 instructions to disable interrupts for the duration of the given
4202 function.
4203
4204 @item interrupt
4205 @cindex @code{interrupt} function attribute, MeP
4206 Use this attribute to indicate
4207 that the specified function is an interrupt handler. The compiler generates
4208 function entry and exit sequences suitable for use in an interrupt handler
4209 when this attribute is present.
4210
4211 @item near
4212 @cindex @code{near} function attribute, MeP
4213 This attribute causes the compiler to assume the called
4214 function is close enough to use the normal calling convention,
4215 overriding the @option{-mtf} command-line option.
4216
4217 @item far
4218 @cindex @code{far} function attribute, MeP
4219 On MeP targets this causes the compiler to use a calling convention
4220 that assumes the called function is too far away for the built-in
4221 addressing modes.
4222
4223 @item vliw
4224 @cindex @code{vliw} function attribute, MeP
4225 The @code{vliw} attribute tells the compiler to emit
4226 instructions in VLIW mode instead of core mode. Note that this
4227 attribute is not allowed unless a VLIW coprocessor has been configured
4228 and enabled through command-line options.
4229 @end table
4230
4231 @node MicroBlaze Function Attributes
4232 @subsection MicroBlaze Function Attributes
4233
4234 These function attributes are supported on MicroBlaze targets:
4235
4236 @table @code
4237 @item save_volatiles
4238 @cindex @code{save_volatiles} function attribute, MicroBlaze
4239 Use this attribute to indicate that the function is
4240 an interrupt handler. All volatile registers (in addition to non-volatile
4241 registers) are saved in the function prologue. If the function is a leaf
4242 function, only volatiles used by the function are saved. A normal function
4243 return is generated instead of a return from interrupt.
4244
4245 @item break_handler
4246 @cindex @code{break_handler} function attribute, MicroBlaze
4247 @cindex break handler functions
4248 Use this attribute to indicate that
4249 the specified function is a break handler. The compiler generates function
4250 entry and exit sequences suitable for use in an break handler when this
4251 attribute is present. The return from @code{break_handler} is done through
4252 the @code{rtbd} instead of @code{rtsd}.
4253
4254 @smallexample
4255 void f () __attribute__ ((break_handler));
4256 @end smallexample
4257 @end table
4258
4259 @node Microsoft Windows Function Attributes
4260 @subsection Microsoft Windows Function Attributes
4261
4262 The following attributes are available on Microsoft Windows and Symbian OS
4263 targets.
4264
4265 @table @code
4266 @item dllexport
4267 @cindex @code{dllexport} function attribute
4268 @cindex @code{__declspec(dllexport)}
4269 On Microsoft Windows targets and Symbian OS targets the
4270 @code{dllexport} attribute causes the compiler to provide a global
4271 pointer to a pointer in a DLL, so that it can be referenced with the
4272 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4273 name is formed by combining @code{_imp__} and the function or variable
4274 name.
4275
4276 You can use @code{__declspec(dllexport)} as a synonym for
4277 @code{__attribute__ ((dllexport))} for compatibility with other
4278 compilers.
4279
4280 On systems that support the @code{visibility} attribute, this
4281 attribute also implies ``default'' visibility. It is an error to
4282 explicitly specify any other visibility.
4283
4284 GCC's default behavior is to emit all inline functions with the
4285 @code{dllexport} attribute. Since this can cause object file-size bloat,
4286 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4287 ignore the attribute for inlined functions unless the
4288 @option{-fkeep-inline-functions} flag is used instead.
4289
4290 The attribute is ignored for undefined symbols.
4291
4292 When applied to C++ classes, the attribute marks defined non-inlined
4293 member functions and static data members as exports. Static consts
4294 initialized in-class are not marked unless they are also defined
4295 out-of-class.
4296
4297 For Microsoft Windows targets there are alternative methods for
4298 including the symbol in the DLL's export table such as using a
4299 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4300 the @option{--export-all} linker flag.
4301
4302 @item dllimport
4303 @cindex @code{dllimport} function attribute
4304 @cindex @code{__declspec(dllimport)}
4305 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4306 attribute causes the compiler to reference a function or variable via
4307 a global pointer to a pointer that is set up by the DLL exporting the
4308 symbol. The attribute implies @code{extern}. On Microsoft Windows
4309 targets, the pointer name is formed by combining @code{_imp__} and the
4310 function or variable name.
4311
4312 You can use @code{__declspec(dllimport)} as a synonym for
4313 @code{__attribute__ ((dllimport))} for compatibility with other
4314 compilers.
4315
4316 On systems that support the @code{visibility} attribute, this
4317 attribute also implies ``default'' visibility. It is an error to
4318 explicitly specify any other visibility.
4319
4320 Currently, the attribute is ignored for inlined functions. If the
4321 attribute is applied to a symbol @emph{definition}, an error is reported.
4322 If a symbol previously declared @code{dllimport} is later defined, the
4323 attribute is ignored in subsequent references, and a warning is emitted.
4324 The attribute is also overridden by a subsequent declaration as
4325 @code{dllexport}.
4326
4327 When applied to C++ classes, the attribute marks non-inlined
4328 member functions and static data members as imports. However, the
4329 attribute is ignored for virtual methods to allow creation of vtables
4330 using thunks.
4331
4332 On the SH Symbian OS target the @code{dllimport} attribute also has
4333 another affect---it can cause the vtable and run-time type information
4334 for a class to be exported. This happens when the class has a
4335 dllimported constructor or a non-inline, non-pure virtual function
4336 and, for either of those two conditions, the class also has an inline
4337 constructor or destructor and has a key function that is defined in
4338 the current translation unit.
4339
4340 For Microsoft Windows targets the use of the @code{dllimport}
4341 attribute on functions is not necessary, but provides a small
4342 performance benefit by eliminating a thunk in the DLL@. The use of the
4343 @code{dllimport} attribute on imported variables can be avoided by passing the
4344 @option{--enable-auto-import} switch to the GNU linker. As with
4345 functions, using the attribute for a variable eliminates a thunk in
4346 the DLL@.
4347
4348 One drawback to using this attribute is that a pointer to a
4349 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4350 address. However, a pointer to a @emph{function} with the
4351 @code{dllimport} attribute can be used as a constant initializer; in
4352 this case, the address of a stub function in the import lib is
4353 referenced. On Microsoft Windows targets, the attribute can be disabled
4354 for functions by setting the @option{-mnop-fun-dllimport} flag.
4355 @end table
4356
4357 @node MIPS Function Attributes
4358 @subsection MIPS Function Attributes
4359
4360 These function attributes are supported by the MIPS back end:
4361
4362 @table @code
4363 @item interrupt
4364 @cindex @code{interrupt} function attribute, MIPS
4365 Use this attribute to indicate that the specified function is an interrupt
4366 handler. The compiler generates function entry and exit sequences suitable
4367 for use in an interrupt handler when this attribute is present.
4368 An optional argument is supported for the interrupt attribute which allows
4369 the interrupt mode to be described. By default GCC assumes the external
4370 interrupt controller (EIC) mode is in use, this can be explicitly set using
4371 @code{eic}. When interrupts are non-masked then the requested Interrupt
4372 Priority Level (IPL) is copied to the current IPL which has the effect of only
4373 enabling higher priority interrupts. To use vectored interrupt mode use
4374 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4375 the behaviour of the non-masked interrupt support and GCC will arrange to mask
4376 all interrupts from sw0 up to and including the specified interrupt vector.
4377
4378 You can use the following attributes to modify the behavior
4379 of an interrupt handler:
4380 @table @code
4381 @item use_shadow_register_set
4382 @cindex @code{use_shadow_register_set} function attribute, MIPS
4383 Assume that the handler uses a shadow register set, instead of
4384 the main general-purpose registers. An optional argument @code{intstack} is
4385 supported to indicate that the shadow register set contains a valid stack
4386 pointer.
4387
4388 @item keep_interrupts_masked
4389 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4390 Keep interrupts masked for the whole function. Without this attribute,
4391 GCC tries to reenable interrupts for as much of the function as it can.
4392
4393 @item use_debug_exception_return
4394 @cindex @code{use_debug_exception_return} function attribute, MIPS
4395 Return using the @code{deret} instruction. Interrupt handlers that don't
4396 have this attribute return using @code{eret} instead.
4397 @end table
4398
4399 You can use any combination of these attributes, as shown below:
4400 @smallexample
4401 void __attribute__ ((interrupt)) v0 ();
4402 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4403 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4404 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4405 void __attribute__ ((interrupt, use_shadow_register_set,
4406 keep_interrupts_masked)) v4 ();
4407 void __attribute__ ((interrupt, use_shadow_register_set,
4408 use_debug_exception_return)) v5 ();
4409 void __attribute__ ((interrupt, keep_interrupts_masked,
4410 use_debug_exception_return)) v6 ();
4411 void __attribute__ ((interrupt, use_shadow_register_set,
4412 keep_interrupts_masked,
4413 use_debug_exception_return)) v7 ();
4414 void __attribute__ ((interrupt("eic"))) v8 ();
4415 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4416 @end smallexample
4417
4418 @item long_call
4419 @itemx near
4420 @itemx far
4421 @cindex indirect calls, MIPS
4422 @cindex @code{long_call} function attribute, MIPS
4423 @cindex @code{near} function attribute, MIPS
4424 @cindex @code{far} function attribute, MIPS
4425 These attributes specify how a particular function is called on MIPS@.
4426 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4427 command-line switch. The @code{long_call} and @code{far} attributes are
4428 synonyms, and cause the compiler to always call
4429 the function by first loading its address into a register, and then using
4430 the contents of that register. The @code{near} attribute has the opposite
4431 effect; it specifies that non-PIC calls should be made using the more
4432 efficient @code{jal} instruction.
4433
4434 @item mips16
4435 @itemx nomips16
4436 @cindex @code{mips16} function attribute, MIPS
4437 @cindex @code{nomips16} function attribute, MIPS
4438
4439 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4440 function attributes to locally select or turn off MIPS16 code generation.
4441 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4442 while MIPS16 code generation is disabled for functions with the
4443 @code{nomips16} attribute. These attributes override the
4444 @option{-mips16} and @option{-mno-mips16} options on the command line
4445 (@pxref{MIPS Options}).
4446
4447 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4448 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4449 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4450 may interact badly with some GCC extensions such as @code{__builtin_apply}
4451 (@pxref{Constructing Calls}).
4452
4453 @item micromips, MIPS
4454 @itemx nomicromips, MIPS
4455 @cindex @code{micromips} function attribute
4456 @cindex @code{nomicromips} function attribute
4457
4458 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4459 function attributes to locally select or turn off microMIPS code generation.
4460 A function with the @code{micromips} attribute is emitted as microMIPS code,
4461 while microMIPS code generation is disabled for functions with the
4462 @code{nomicromips} attribute. These attributes override the
4463 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4464 (@pxref{MIPS Options}).
4465
4466 When compiling files containing mixed microMIPS and non-microMIPS code, the
4467 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4468 command line,
4469 not that within individual functions. Mixed microMIPS and non-microMIPS code
4470 may interact badly with some GCC extensions such as @code{__builtin_apply}
4471 (@pxref{Constructing Calls}).
4472
4473 @item nocompression
4474 @cindex @code{nocompression} function attribute, MIPS
4475 On MIPS targets, you can use the @code{nocompression} function attribute
4476 to locally turn off MIPS16 and microMIPS code generation. This attribute
4477 overrides the @option{-mips16} and @option{-mmicromips} options on the
4478 command line (@pxref{MIPS Options}).
4479 @end table
4480
4481 @node MSP430 Function Attributes
4482 @subsection MSP430 Function Attributes
4483
4484 These function attributes are supported by the MSP430 back end:
4485
4486 @table @code
4487 @item critical
4488 @cindex @code{critical} function attribute, MSP430
4489 Critical functions disable interrupts upon entry and restore the
4490 previous interrupt state upon exit. Critical functions cannot also
4491 have the @code{naked} or @code{reentrant} attributes. They can have
4492 the @code{interrupt} attribute.
4493
4494 @item interrupt
4495 @cindex @code{interrupt} function attribute, MSP430
4496 Use this attribute to indicate
4497 that the specified function is an interrupt handler. The compiler generates
4498 function entry and exit sequences suitable for use in an interrupt handler
4499 when this attribute is present.
4500
4501 You can provide an argument to the interrupt
4502 attribute which specifies a name or number. If the argument is a
4503 number it indicates the slot in the interrupt vector table (0 - 31) to
4504 which this handler should be assigned. If the argument is a name it
4505 is treated as a symbolic name for the vector slot. These names should
4506 match up with appropriate entries in the linker script. By default
4507 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4508 @code{reset} for vector 31 are recognized.
4509
4510 @item naked
4511 @cindex @code{naked} function attribute, MSP430
4512 This attribute allows the compiler to construct the
4513 requisite function declaration, while allowing the body of the
4514 function to be assembly code. The specified function will not have
4515 prologue/epilogue sequences generated by the compiler. Only basic
4516 @code{asm} statements can safely be included in naked functions
4517 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4518 basic @code{asm} and C code may appear to work, they cannot be
4519 depended upon to work reliably and are not supported.
4520
4521 @item reentrant
4522 @cindex @code{reentrant} function attribute, MSP430
4523 Reentrant functions disable interrupts upon entry and enable them
4524 upon exit. Reentrant functions cannot also have the @code{naked}
4525 or @code{critical} attributes. They can have the @code{interrupt}
4526 attribute.
4527
4528 @item wakeup
4529 @cindex @code{wakeup} function attribute, MSP430
4530 This attribute only applies to interrupt functions. It is silently
4531 ignored if applied to a non-interrupt function. A wakeup interrupt
4532 function will rouse the processor from any low-power state that it
4533 might be in when the function exits.
4534 @end table
4535
4536 @node NDS32 Function Attributes
4537 @subsection NDS32 Function Attributes
4538
4539 These function attributes are supported by the NDS32 back end:
4540
4541 @table @code
4542 @item exception
4543 @cindex @code{exception} function attribute
4544 @cindex exception handler functions, NDS32
4545 Use this attribute on the NDS32 target to indicate that the specified function
4546 is an exception handler. The compiler will generate corresponding sections
4547 for use in an exception handler.
4548
4549 @item interrupt
4550 @cindex @code{interrupt} function attribute, NDS32
4551 On NDS32 target, this attribute indicates that the specified function
4552 is an interrupt handler. The compiler generates corresponding sections
4553 for use in an interrupt handler. You can use the following attributes
4554 to modify the behavior:
4555 @table @code
4556 @item nested
4557 @cindex @code{nested} function attribute, NDS32
4558 This interrupt service routine is interruptible.
4559 @item not_nested
4560 @cindex @code{not_nested} function attribute, NDS32
4561 This interrupt service routine is not interruptible.
4562 @item nested_ready
4563 @cindex @code{nested_ready} function attribute, NDS32
4564 This interrupt service routine is interruptible after @code{PSW.GIE}
4565 (global interrupt enable) is set. This allows interrupt service routine to
4566 finish some short critical code before enabling interrupts.
4567 @item save_all
4568 @cindex @code{save_all} function attribute, NDS32
4569 The system will help save all registers into stack before entering
4570 interrupt handler.
4571 @item partial_save
4572 @cindex @code{partial_save} function attribute, NDS32
4573 The system will help save caller registers into stack before entering
4574 interrupt handler.
4575 @end table
4576
4577 @item naked
4578 @cindex @code{naked} function attribute, NDS32
4579 This attribute allows the compiler to construct the
4580 requisite function declaration, while allowing the body of the
4581 function to be assembly code. The specified function will not have
4582 prologue/epilogue sequences generated by the compiler. Only basic
4583 @code{asm} statements can safely be included in naked functions
4584 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4585 basic @code{asm} and C code may appear to work, they cannot be
4586 depended upon to work reliably and are not supported.
4587
4588 @item reset
4589 @cindex @code{reset} function attribute, NDS32
4590 @cindex reset handler functions
4591 Use this attribute on the NDS32 target to indicate that the specified function
4592 is a reset handler. The compiler will generate corresponding sections
4593 for use in a reset handler. You can use the following attributes
4594 to provide extra exception handling:
4595 @table @code
4596 @item nmi
4597 @cindex @code{nmi} function attribute, NDS32
4598 Provide a user-defined function to handle NMI exception.
4599 @item warm
4600 @cindex @code{warm} function attribute, NDS32
4601 Provide a user-defined function to handle warm reset exception.
4602 @end table
4603 @end table
4604
4605 @node Nios II Function Attributes
4606 @subsection Nios II Function Attributes
4607
4608 These function attributes are supported by the Nios II back end:
4609
4610 @table @code
4611 @item target (@var{options})
4612 @cindex @code{target} function attribute
4613 As discussed in @ref{Common Function Attributes}, this attribute
4614 allows specification of target-specific compilation options.
4615
4616 When compiling for Nios II, the following options are allowed:
4617
4618 @table @samp
4619 @item custom-@var{insn}=@var{N}
4620 @itemx no-custom-@var{insn}
4621 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4622 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4623 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4624 custom instruction with encoding @var{N} when generating code that uses
4625 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4626 the custom instruction @var{insn}.
4627 These target attributes correspond to the
4628 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4629 command-line options, and support the same set of @var{insn} keywords.
4630 @xref{Nios II Options}, for more information.
4631
4632 @item custom-fpu-cfg=@var{name}
4633 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4634 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4635 command-line option, to select a predefined set of custom instructions
4636 named @var{name}.
4637 @xref{Nios II Options}, for more information.
4638 @end table
4639 @end table
4640
4641 @node PowerPC Function Attributes
4642 @subsection PowerPC Function Attributes
4643
4644 These function attributes are supported by the PowerPC back end:
4645
4646 @table @code
4647 @item longcall
4648 @itemx shortcall
4649 @cindex indirect calls, PowerPC
4650 @cindex @code{longcall} function attribute, PowerPC
4651 @cindex @code{shortcall} function attribute, PowerPC
4652 The @code{longcall} attribute
4653 indicates that the function might be far away from the call site and
4654 require a different (more expensive) calling sequence. The
4655 @code{shortcall} attribute indicates that the function is always close
4656 enough for the shorter calling sequence to be used. These attributes
4657 override both the @option{-mlongcall} switch and
4658 the @code{#pragma longcall} setting.
4659
4660 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4661 calls are necessary.
4662
4663 @item target (@var{options})
4664 @cindex @code{target} function attribute
4665 As discussed in @ref{Common Function Attributes}, this attribute
4666 allows specification of target-specific compilation options.
4667
4668 On the PowerPC, the following options are allowed:
4669
4670 @table @samp
4671 @item altivec
4672 @itemx no-altivec
4673 @cindex @code{target("altivec")} function attribute, PowerPC
4674 Generate code that uses (does not use) AltiVec instructions. In
4675 32-bit code, you cannot enable AltiVec instructions unless
4676 @option{-mabi=altivec} is used on the command line.
4677
4678 @item cmpb
4679 @itemx no-cmpb
4680 @cindex @code{target("cmpb")} function attribute, PowerPC
4681 Generate code that uses (does not use) the compare bytes instruction
4682 implemented on the POWER6 processor and other processors that support
4683 the PowerPC V2.05 architecture.
4684
4685 @item dlmzb
4686 @itemx no-dlmzb
4687 @cindex @code{target("dlmzb")} function attribute, PowerPC
4688 Generate code that uses (does not use) the string-search @samp{dlmzb}
4689 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4690 generated by default when targeting those processors.
4691
4692 @item fprnd
4693 @itemx no-fprnd
4694 @cindex @code{target("fprnd")} function attribute, PowerPC
4695 Generate code that uses (does not use) the FP round to integer
4696 instructions implemented on the POWER5+ processor and other processors
4697 that support the PowerPC V2.03 architecture.
4698
4699 @item hard-dfp
4700 @itemx no-hard-dfp
4701 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4702 Generate code that uses (does not use) the decimal floating-point
4703 instructions implemented on some POWER processors.
4704
4705 @item isel
4706 @itemx no-isel
4707 @cindex @code{target("isel")} function attribute, PowerPC
4708 Generate code that uses (does not use) ISEL instruction.
4709
4710 @item mfcrf
4711 @itemx no-mfcrf
4712 @cindex @code{target("mfcrf")} function attribute, PowerPC
4713 Generate code that uses (does not use) the move from condition
4714 register field instruction implemented on the POWER4 processor and
4715 other processors that support the PowerPC V2.01 architecture.
4716
4717 @item mfpgpr
4718 @itemx no-mfpgpr
4719 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4720 Generate code that uses (does not use) the FP move to/from general
4721 purpose register instructions implemented on the POWER6X processor and
4722 other processors that support the extended PowerPC V2.05 architecture.
4723
4724 @item mulhw
4725 @itemx no-mulhw
4726 @cindex @code{target("mulhw")} function attribute, PowerPC
4727 Generate code that uses (does not use) the half-word multiply and
4728 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4729 These instructions are generated by default when targeting those
4730 processors.
4731
4732 @item multiple
4733 @itemx no-multiple
4734 @cindex @code{target("multiple")} function attribute, PowerPC
4735 Generate code that uses (does not use) the load multiple word
4736 instructions and the store multiple word instructions.
4737
4738 @item update
4739 @itemx no-update
4740 @cindex @code{target("update")} function attribute, PowerPC
4741 Generate code that uses (does not use) the load or store instructions
4742 that update the base register to the address of the calculated memory
4743 location.
4744
4745 @item popcntb
4746 @itemx no-popcntb
4747 @cindex @code{target("popcntb")} function attribute, PowerPC
4748 Generate code that uses (does not use) the popcount and double-precision
4749 FP reciprocal estimate instruction implemented on the POWER5
4750 processor and other processors that support the PowerPC V2.02
4751 architecture.
4752
4753 @item popcntd
4754 @itemx no-popcntd
4755 @cindex @code{target("popcntd")} function attribute, PowerPC
4756 Generate code that uses (does not use) the popcount instruction
4757 implemented on the POWER7 processor and other processors that support
4758 the PowerPC V2.06 architecture.
4759
4760 @item powerpc-gfxopt
4761 @itemx no-powerpc-gfxopt
4762 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4763 Generate code that uses (does not use) the optional PowerPC
4764 architecture instructions in the Graphics group, including
4765 floating-point select.
4766
4767 @item powerpc-gpopt
4768 @itemx no-powerpc-gpopt
4769 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4770 Generate code that uses (does not use) the optional PowerPC
4771 architecture instructions in the General Purpose group, including
4772 floating-point square root.
4773
4774 @item recip-precision
4775 @itemx no-recip-precision
4776 @cindex @code{target("recip-precision")} function attribute, PowerPC
4777 Assume (do not assume) that the reciprocal estimate instructions
4778 provide higher-precision estimates than is mandated by the PowerPC
4779 ABI.
4780
4781 @item string
4782 @itemx no-string
4783 @cindex @code{target("string")} function attribute, PowerPC
4784 Generate code that uses (does not use) the load string instructions
4785 and the store string word instructions to save multiple registers and
4786 do small block moves.
4787
4788 @item vsx
4789 @itemx no-vsx
4790 @cindex @code{target("vsx")} function attribute, PowerPC
4791 Generate code that uses (does not use) vector/scalar (VSX)
4792 instructions, and also enable the use of built-in functions that allow
4793 more direct access to the VSX instruction set. In 32-bit code, you
4794 cannot enable VSX or AltiVec instructions unless
4795 @option{-mabi=altivec} is used on the command line.
4796
4797 @item friz
4798 @itemx no-friz
4799 @cindex @code{target("friz")} function attribute, PowerPC
4800 Generate (do not generate) the @code{friz} instruction when the
4801 @option{-funsafe-math-optimizations} option is used to optimize
4802 rounding a floating-point value to 64-bit integer and back to floating
4803 point. The @code{friz} instruction does not return the same value if
4804 the floating-point number is too large to fit in an integer.
4805
4806 @item avoid-indexed-addresses
4807 @itemx no-avoid-indexed-addresses
4808 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4809 Generate code that tries to avoid (not avoid) the use of indexed load
4810 or store instructions.
4811
4812 @item paired
4813 @itemx no-paired
4814 @cindex @code{target("paired")} function attribute, PowerPC
4815 Generate code that uses (does not use) the generation of PAIRED simd
4816 instructions.
4817
4818 @item longcall
4819 @itemx no-longcall
4820 @cindex @code{target("longcall")} function attribute, PowerPC
4821 Generate code that assumes (does not assume) that all calls are far
4822 away so that a longer more expensive calling sequence is required.
4823
4824 @item cpu=@var{CPU}
4825 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4826 Specify the architecture to generate code for when compiling the
4827 function. If you select the @code{target("cpu=power7")} attribute when
4828 generating 32-bit code, VSX and AltiVec instructions are not generated
4829 unless you use the @option{-mabi=altivec} option on the command line.
4830
4831 @item tune=@var{TUNE}
4832 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4833 Specify the architecture to tune for when compiling the function. If
4834 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4835 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4836 compilation tunes for the @var{CPU} architecture, and not the
4837 default tuning specified on the command line.
4838 @end table
4839
4840 On the PowerPC, the inliner does not inline a
4841 function that has different target options than the caller, unless the
4842 callee has a subset of the target options of the caller.
4843 @end table
4844
4845 @node RL78 Function Attributes
4846 @subsection RL78 Function Attributes
4847
4848 These function attributes are supported by the RL78 back end:
4849
4850 @table @code
4851 @item interrupt
4852 @itemx brk_interrupt
4853 @cindex @code{interrupt} function attribute, RL78
4854 @cindex @code{brk_interrupt} function attribute, RL78
4855 These attributes indicate
4856 that the specified function is an interrupt handler. The compiler generates
4857 function entry and exit sequences suitable for use in an interrupt handler
4858 when this attribute is present.
4859
4860 Use @code{brk_interrupt} instead of @code{interrupt} for
4861 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
4862 that must end with @code{RETB} instead of @code{RETI}).
4863
4864 @item naked
4865 @cindex @code{naked} function attribute, RL78
4866 This attribute allows the compiler to construct the
4867 requisite function declaration, while allowing the body of the
4868 function to be assembly code. The specified function will not have
4869 prologue/epilogue sequences generated by the compiler. Only basic
4870 @code{asm} statements can safely be included in naked functions
4871 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4872 basic @code{asm} and C code may appear to work, they cannot be
4873 depended upon to work reliably and are not supported.
4874 @end table
4875
4876 @node RX Function Attributes
4877 @subsection RX Function Attributes
4878
4879 These function attributes are supported by the RX back end:
4880
4881 @table @code
4882 @item fast_interrupt
4883 @cindex @code{fast_interrupt} function attribute, RX
4884 Use this attribute on the RX port to indicate that the specified
4885 function is a fast interrupt handler. This is just like the
4886 @code{interrupt} attribute, except that @code{freit} is used to return
4887 instead of @code{reit}.
4888
4889 @item interrupt
4890 @cindex @code{interrupt} function attribute, RX
4891 Use this attribute to indicate
4892 that the specified function is an interrupt handler. The compiler generates
4893 function entry and exit sequences suitable for use in an interrupt handler
4894 when this attribute is present.
4895
4896 On RX targets, you may specify one or more vector numbers as arguments
4897 to the attribute, as well as naming an alternate table name.
4898 Parameters are handled sequentially, so one handler can be assigned to
4899 multiple entries in multiple tables. One may also pass the magic
4900 string @code{"$default"} which causes the function to be used for any
4901 unfilled slots in the current table.
4902
4903 This example shows a simple assignment of a function to one vector in
4904 the default table (note that preprocessor macros may be used for
4905 chip-specific symbolic vector names):
4906 @smallexample
4907 void __attribute__ ((interrupt (5))) txd1_handler ();
4908 @end smallexample
4909
4910 This example assigns a function to two slots in the default table
4911 (using preprocessor macros defined elsewhere) and makes it the default
4912 for the @code{dct} table:
4913 @smallexample
4914 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
4915 txd1_handler ();
4916 @end smallexample
4917
4918 @item naked
4919 @cindex @code{naked} function attribute, RX
4920 This attribute allows the compiler to construct the
4921 requisite function declaration, while allowing the body of the
4922 function to be assembly code. The specified function will not have
4923 prologue/epilogue sequences generated by the compiler. Only basic
4924 @code{asm} statements can safely be included in naked functions
4925 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4926 basic @code{asm} and C code may appear to work, they cannot be
4927 depended upon to work reliably and are not supported.
4928
4929 @item vector
4930 @cindex @code{vector} function attribute, RX
4931 This RX attribute is similar to the @code{interrupt} attribute, including its
4932 parameters, but does not make the function an interrupt-handler type
4933 function (i.e. it retains the normal C function calling ABI). See the
4934 @code{interrupt} attribute for a description of its arguments.
4935 @end table
4936
4937 @node S/390 Function Attributes
4938 @subsection S/390 Function Attributes
4939
4940 These function attributes are supported on the S/390:
4941
4942 @table @code
4943 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
4944 @cindex @code{hotpatch} function attribute, S/390
4945
4946 On S/390 System z targets, you can use this function attribute to
4947 make GCC generate a ``hot-patching'' function prologue. If the
4948 @option{-mhotpatch=} command-line option is used at the same time,
4949 the @code{hotpatch} attribute takes precedence. The first of the
4950 two arguments specifies the number of halfwords to be added before
4951 the function label. A second argument can be used to specify the
4952 number of halfwords to be added after the function label. For
4953 both arguments the maximum allowed value is 1000000.
4954
4955 If both arguments are zero, hotpatching is disabled.
4956
4957 @item target (@var{options})
4958 @cindex @code{target} function attribute
4959 As discussed in @ref{Common Function Attributes}, this attribute
4960 allows specification of target-specific compilation options.
4961
4962 On S/390, the following options are supported:
4963
4964 @table @samp
4965 @item arch=
4966 @item tune=
4967 @item stack-guard=
4968 @item stack-size=
4969 @item branch-cost=
4970 @item warn-framesize=
4971 @item backchain
4972 @itemx no-backchain
4973 @item hard-dfp
4974 @itemx no-hard-dfp
4975 @item hard-float
4976 @itemx soft-float
4977 @item htm
4978 @itemx no-htm
4979 @item vx
4980 @itemx no-vx
4981 @item packed-stack
4982 @itemx no-packed-stack
4983 @item small-exec
4984 @itemx no-small-exec
4985 @item mvcle
4986 @itemx no-mvcle
4987 @item warn-dynamicstack
4988 @itemx no-warn-dynamicstack
4989 @end table
4990
4991 The options work exactly like the S/390 specific command line
4992 options (without the prefix @option{-m}) except that they do not
4993 change any feature macros. For example,
4994
4995 @smallexample
4996 @code{target("no-vx")}
4997 @end smallexample
4998
4999 does not undefine the @code{__VEC__} macro.
5000 @end table
5001
5002 @node SH Function Attributes
5003 @subsection SH Function Attributes
5004
5005 These function attributes are supported on the SH family of processors:
5006
5007 @table @code
5008 @item function_vector
5009 @cindex @code{function_vector} function attribute, SH
5010 @cindex calling functions through the function vector on SH2A
5011 On SH2A targets, this attribute declares a function to be called using the
5012 TBR relative addressing mode. The argument to this attribute is the entry
5013 number of the same function in a vector table containing all the TBR
5014 relative addressable functions. For correct operation the TBR must be setup
5015 accordingly to point to the start of the vector table before any functions with
5016 this attribute are invoked. Usually a good place to do the initialization is
5017 the startup routine. The TBR relative vector table can have at max 256 function
5018 entries. The jumps to these functions are generated using a SH2A specific,
5019 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5020 from GNU binutils version 2.7 or later for this attribute to work correctly.
5021
5022 In an application, for a function being called once, this attribute
5023 saves at least 8 bytes of code; and if other successive calls are being
5024 made to the same function, it saves 2 bytes of code per each of these
5025 calls.
5026
5027 @item interrupt_handler
5028 @cindex @code{interrupt_handler} function attribute, SH
5029 Use this attribute to
5030 indicate that the specified function is an interrupt handler. The compiler
5031 generates function entry and exit sequences suitable for use in an
5032 interrupt handler when this attribute is present.
5033
5034 @item nosave_low_regs
5035 @cindex @code{nosave_low_regs} function attribute, SH
5036 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5037 function should not save and restore registers R0..R7. This can be used on SH3*
5038 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5039 interrupt handlers.
5040
5041 @item renesas
5042 @cindex @code{renesas} function attribute, SH
5043 On SH targets this attribute specifies that the function or struct follows the
5044 Renesas ABI.
5045
5046 @item resbank
5047 @cindex @code{resbank} function attribute, SH
5048 On the SH2A target, this attribute enables the high-speed register
5049 saving and restoration using a register bank for @code{interrupt_handler}
5050 routines. Saving to the bank is performed automatically after the CPU
5051 accepts an interrupt that uses a register bank.
5052
5053 The nineteen 32-bit registers comprising general register R0 to R14,
5054 control register GBR, and system registers MACH, MACL, and PR and the
5055 vector table address offset are saved into a register bank. Register
5056 banks are stacked in first-in last-out (FILO) sequence. Restoration
5057 from the bank is executed by issuing a RESBANK instruction.
5058
5059 @item sp_switch
5060 @cindex @code{sp_switch} function attribute, SH
5061 Use this attribute on the SH to indicate an @code{interrupt_handler}
5062 function should switch to an alternate stack. It expects a string
5063 argument that names a global variable holding the address of the
5064 alternate stack.
5065
5066 @smallexample
5067 void *alt_stack;
5068 void f () __attribute__ ((interrupt_handler,
5069 sp_switch ("alt_stack")));
5070 @end smallexample
5071
5072 @item trap_exit
5073 @cindex @code{trap_exit} function attribute, SH
5074 Use this attribute on the SH for an @code{interrupt_handler} to return using
5075 @code{trapa} instead of @code{rte}. This attribute expects an integer
5076 argument specifying the trap number to be used.
5077
5078 @item trapa_handler
5079 @cindex @code{trapa_handler} function attribute, SH
5080 On SH targets this function attribute is similar to @code{interrupt_handler}
5081 but it does not save and restore all registers.
5082 @end table
5083
5084 @node SPU Function Attributes
5085 @subsection SPU Function Attributes
5086
5087 These function attributes are supported by the SPU back end:
5088
5089 @table @code
5090 @item naked
5091 @cindex @code{naked} function attribute, SPU
5092 This attribute allows the compiler to construct the
5093 requisite function declaration, while allowing the body of the
5094 function to be assembly code. The specified function will not have
5095 prologue/epilogue sequences generated by the compiler. Only basic
5096 @code{asm} statements can safely be included in naked functions
5097 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5098 basic @code{asm} and C code may appear to work, they cannot be
5099 depended upon to work reliably and are not supported.
5100 @end table
5101
5102 @node Symbian OS Function Attributes
5103 @subsection Symbian OS Function Attributes
5104
5105 @xref{Microsoft Windows Function Attributes}, for discussion of the
5106 @code{dllexport} and @code{dllimport} attributes.
5107
5108 @node Visium Function Attributes
5109 @subsection Visium Function Attributes
5110
5111 These function attributes are supported by the Visium back end:
5112
5113 @table @code
5114 @item interrupt
5115 @cindex @code{interrupt} function attribute, Visium
5116 Use this attribute to indicate
5117 that the specified function is an interrupt handler. The compiler generates
5118 function entry and exit sequences suitable for use in an interrupt handler
5119 when this attribute is present.
5120 @end table
5121
5122 @node x86 Function Attributes
5123 @subsection x86 Function Attributes
5124
5125 These function attributes are supported by the x86 back end:
5126
5127 @table @code
5128 @item cdecl
5129 @cindex @code{cdecl} function attribute, x86-32
5130 @cindex functions that pop the argument stack on x86-32
5131 @opindex mrtd
5132 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5133 assume that the calling function pops off the stack space used to
5134 pass arguments. This is
5135 useful to override the effects of the @option{-mrtd} switch.
5136
5137 @item fastcall
5138 @cindex @code{fastcall} function attribute, x86-32
5139 @cindex functions that pop the argument stack on x86-32
5140 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5141 pass the first argument (if of integral type) in the register ECX and
5142 the second argument (if of integral type) in the register EDX@. Subsequent
5143 and other typed arguments are passed on the stack. The called function
5144 pops the arguments off the stack. If the number of arguments is variable all
5145 arguments are pushed on the stack.
5146
5147 @item thiscall
5148 @cindex @code{thiscall} function attribute, x86-32
5149 @cindex functions that pop the argument stack on x86-32
5150 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5151 pass the first argument (if of integral type) in the register ECX.
5152 Subsequent and other typed arguments are passed on the stack. The called
5153 function pops the arguments off the stack.
5154 If the number of arguments is variable all arguments are pushed on the
5155 stack.
5156 The @code{thiscall} attribute is intended for C++ non-static member functions.
5157 As a GCC extension, this calling convention can be used for C functions
5158 and for static member methods.
5159
5160 @item ms_abi
5161 @itemx sysv_abi
5162 @cindex @code{ms_abi} function attribute, x86
5163 @cindex @code{sysv_abi} function attribute, x86
5164
5165 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5166 to indicate which calling convention should be used for a function. The
5167 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5168 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5169 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5170 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5171
5172 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5173 requires the @option{-maccumulate-outgoing-args} option.
5174
5175 @item callee_pop_aggregate_return (@var{number})
5176 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5177
5178 On x86-32 targets, you can use this attribute to control how
5179 aggregates are returned in memory. If the caller is responsible for
5180 popping the hidden pointer together with the rest of the arguments, specify
5181 @var{number} equal to zero. If callee is responsible for popping the
5182 hidden pointer, specify @var{number} equal to one.
5183
5184 The default x86-32 ABI assumes that the callee pops the
5185 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5186 the compiler assumes that the
5187 caller pops the stack for hidden pointer.
5188
5189 @item ms_hook_prologue
5190 @cindex @code{ms_hook_prologue} function attribute, x86
5191
5192 On 32-bit and 64-bit x86 targets, you can use
5193 this function attribute to make GCC generate the ``hot-patching'' function
5194 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5195 and newer.
5196
5197 @item regparm (@var{number})
5198 @cindex @code{regparm} function attribute, x86
5199 @cindex functions that are passed arguments in registers on x86-32
5200 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5201 pass arguments number one to @var{number} if they are of integral type
5202 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5203 take a variable number of arguments continue to be passed all of their
5204 arguments on the stack.
5205
5206 Beware that on some ELF systems this attribute is unsuitable for
5207 global functions in shared libraries with lazy binding (which is the
5208 default). Lazy binding sends the first call via resolving code in
5209 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5210 per the standard calling conventions. Solaris 8 is affected by this.
5211 Systems with the GNU C Library version 2.1 or higher
5212 and FreeBSD are believed to be
5213 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5214 disabled with the linker or the loader if desired, to avoid the
5215 problem.)
5216
5217 @item sseregparm
5218 @cindex @code{sseregparm} function attribute, x86
5219 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5220 causes the compiler to pass up to 3 floating-point arguments in
5221 SSE registers instead of on the stack. Functions that take a
5222 variable number of arguments continue to pass all of their
5223 floating-point arguments on the stack.
5224
5225 @item force_align_arg_pointer
5226 @cindex @code{force_align_arg_pointer} function attribute, x86
5227 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5228 applied to individual function definitions, generating an alternate
5229 prologue and epilogue that realigns the run-time stack if necessary.
5230 This supports mixing legacy codes that run with a 4-byte aligned stack
5231 with modern codes that keep a 16-byte stack for SSE compatibility.
5232
5233 @item stdcall
5234 @cindex @code{stdcall} function attribute, x86-32
5235 @cindex functions that pop the argument stack on x86-32
5236 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5237 assume that the called function pops off the stack space used to
5238 pass arguments, unless it takes a variable number of arguments.
5239
5240 @item target (@var{options})
5241 @cindex @code{target} function attribute
5242 As discussed in @ref{Common Function Attributes}, this attribute
5243 allows specification of target-specific compilation options.
5244
5245 On the x86, the following options are allowed:
5246 @table @samp
5247 @item abm
5248 @itemx no-abm
5249 @cindex @code{target("abm")} function attribute, x86
5250 Enable/disable the generation of the advanced bit instructions.
5251
5252 @item aes
5253 @itemx no-aes
5254 @cindex @code{target("aes")} function attribute, x86
5255 Enable/disable the generation of the AES instructions.
5256
5257 @item default
5258 @cindex @code{target("default")} function attribute, x86
5259 @xref{Function Multiversioning}, where it is used to specify the
5260 default function version.
5261
5262 @item mmx
5263 @itemx no-mmx
5264 @cindex @code{target("mmx")} function attribute, x86
5265 Enable/disable the generation of the MMX instructions.
5266
5267 @item pclmul
5268 @itemx no-pclmul
5269 @cindex @code{target("pclmul")} function attribute, x86
5270 Enable/disable the generation of the PCLMUL instructions.
5271
5272 @item popcnt
5273 @itemx no-popcnt
5274 @cindex @code{target("popcnt")} function attribute, x86
5275 Enable/disable the generation of the POPCNT instruction.
5276
5277 @item sse
5278 @itemx no-sse
5279 @cindex @code{target("sse")} function attribute, x86
5280 Enable/disable the generation of the SSE instructions.
5281
5282 @item sse2
5283 @itemx no-sse2
5284 @cindex @code{target("sse2")} function attribute, x86
5285 Enable/disable the generation of the SSE2 instructions.
5286
5287 @item sse3
5288 @itemx no-sse3
5289 @cindex @code{target("sse3")} function attribute, x86
5290 Enable/disable the generation of the SSE3 instructions.
5291
5292 @item sse4
5293 @itemx no-sse4
5294 @cindex @code{target("sse4")} function attribute, x86
5295 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5296 and SSE4.2).
5297
5298 @item sse4.1
5299 @itemx no-sse4.1
5300 @cindex @code{target("sse4.1")} function attribute, x86
5301 Enable/disable the generation of the sse4.1 instructions.
5302
5303 @item sse4.2
5304 @itemx no-sse4.2
5305 @cindex @code{target("sse4.2")} function attribute, x86
5306 Enable/disable the generation of the sse4.2 instructions.
5307
5308 @item sse4a
5309 @itemx no-sse4a
5310 @cindex @code{target("sse4a")} function attribute, x86
5311 Enable/disable the generation of the SSE4A instructions.
5312
5313 @item fma4
5314 @itemx no-fma4
5315 @cindex @code{target("fma4")} function attribute, x86
5316 Enable/disable the generation of the FMA4 instructions.
5317
5318 @item xop
5319 @itemx no-xop
5320 @cindex @code{target("xop")} function attribute, x86
5321 Enable/disable the generation of the XOP instructions.
5322
5323 @item lwp
5324 @itemx no-lwp
5325 @cindex @code{target("lwp")} function attribute, x86
5326 Enable/disable the generation of the LWP instructions.
5327
5328 @item ssse3
5329 @itemx no-ssse3
5330 @cindex @code{target("ssse3")} function attribute, x86
5331 Enable/disable the generation of the SSSE3 instructions.
5332
5333 @item cld
5334 @itemx no-cld
5335 @cindex @code{target("cld")} function attribute, x86
5336 Enable/disable the generation of the CLD before string moves.
5337
5338 @item fancy-math-387
5339 @itemx no-fancy-math-387
5340 @cindex @code{target("fancy-math-387")} function attribute, x86
5341 Enable/disable the generation of the @code{sin}, @code{cos}, and
5342 @code{sqrt} instructions on the 387 floating-point unit.
5343
5344 @item fused-madd
5345 @itemx no-fused-madd
5346 @cindex @code{target("fused-madd")} function attribute, x86
5347 Enable/disable the generation of the fused multiply/add instructions.
5348
5349 @item ieee-fp
5350 @itemx no-ieee-fp
5351 @cindex @code{target("ieee-fp")} function attribute, x86
5352 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5353
5354 @item inline-all-stringops
5355 @itemx no-inline-all-stringops
5356 @cindex @code{target("inline-all-stringops")} function attribute, x86
5357 Enable/disable inlining of string operations.
5358
5359 @item inline-stringops-dynamically
5360 @itemx no-inline-stringops-dynamically
5361 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5362 Enable/disable the generation of the inline code to do small string
5363 operations and calling the library routines for large operations.
5364
5365 @item align-stringops
5366 @itemx no-align-stringops
5367 @cindex @code{target("align-stringops")} function attribute, x86
5368 Do/do not align destination of inlined string operations.
5369
5370 @item recip
5371 @itemx no-recip
5372 @cindex @code{target("recip")} function attribute, x86
5373 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5374 instructions followed an additional Newton-Raphson step instead of
5375 doing a floating-point division.
5376
5377 @item arch=@var{ARCH}
5378 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5379 Specify the architecture to generate code for in compiling the function.
5380
5381 @item tune=@var{TUNE}
5382 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5383 Specify the architecture to tune for in compiling the function.
5384
5385 @item fpmath=@var{FPMATH}
5386 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5387 Specify which floating-point unit to use. You must specify the
5388 @code{target("fpmath=sse,387")} option as
5389 @code{target("fpmath=sse+387")} because the comma would separate
5390 different options.
5391 @end table
5392
5393 On the x86, the inliner does not inline a
5394 function that has different target options than the caller, unless the
5395 callee has a subset of the target options of the caller. For example
5396 a function declared with @code{target("sse3")} can inline a function
5397 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5398 @end table
5399
5400 @node Xstormy16 Function Attributes
5401 @subsection Xstormy16 Function Attributes
5402
5403 These function attributes are supported by the Xstormy16 back end:
5404
5405 @table @code
5406 @item interrupt
5407 @cindex @code{interrupt} function attribute, Xstormy16
5408 Use this attribute to indicate
5409 that the specified function is an interrupt handler. The compiler generates
5410 function entry and exit sequences suitable for use in an interrupt handler
5411 when this attribute is present.
5412 @end table
5413
5414 @node Variable Attributes
5415 @section Specifying Attributes of Variables
5416 @cindex attribute of variables
5417 @cindex variable attributes
5418
5419 The keyword @code{__attribute__} allows you to specify special
5420 attributes of variables or structure fields. This keyword is followed
5421 by an attribute specification inside double parentheses. Some
5422 attributes are currently defined generically for variables.
5423 Other attributes are defined for variables on particular target
5424 systems. Other attributes are available for functions
5425 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5426 enumerators (@pxref{Enumerator Attributes}), and for types
5427 (@pxref{Type Attributes}).
5428 Other front ends might define more attributes
5429 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5430
5431 @xref{Attribute Syntax}, for details of the exact syntax for using
5432 attributes.
5433
5434 @menu
5435 * Common Variable Attributes::
5436 * AVR Variable Attributes::
5437 * Blackfin Variable Attributes::
5438 * H8/300 Variable Attributes::
5439 * IA-64 Variable Attributes::
5440 * M32R/D Variable Attributes::
5441 * MeP Variable Attributes::
5442 * Microsoft Windows Variable Attributes::
5443 * MSP430 Variable Attributes::
5444 * PowerPC Variable Attributes::
5445 * SPU Variable Attributes::
5446 * x86 Variable Attributes::
5447 * Xstormy16 Variable Attributes::
5448 @end menu
5449
5450 @node Common Variable Attributes
5451 @subsection Common Variable Attributes
5452
5453 The following attributes are supported on most targets.
5454
5455 @table @code
5456 @cindex @code{aligned} variable attribute
5457 @item aligned (@var{alignment})
5458 This attribute specifies a minimum alignment for the variable or
5459 structure field, measured in bytes. For example, the declaration:
5460
5461 @smallexample
5462 int x __attribute__ ((aligned (16))) = 0;
5463 @end smallexample
5464
5465 @noindent
5466 causes the compiler to allocate the global variable @code{x} on a
5467 16-byte boundary. On a 68040, this could be used in conjunction with
5468 an @code{asm} expression to access the @code{move16} instruction which
5469 requires 16-byte aligned operands.
5470
5471 You can also specify the alignment of structure fields. For example, to
5472 create a double-word aligned @code{int} pair, you could write:
5473
5474 @smallexample
5475 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5476 @end smallexample
5477
5478 @noindent
5479 This is an alternative to creating a union with a @code{double} member,
5480 which forces the union to be double-word aligned.
5481
5482 As in the preceding examples, you can explicitly specify the alignment
5483 (in bytes) that you wish the compiler to use for a given variable or
5484 structure field. Alternatively, you can leave out the alignment factor
5485 and just ask the compiler to align a variable or field to the
5486 default alignment for the target architecture you are compiling for.
5487 The default alignment is sufficient for all scalar types, but may not be
5488 enough for all vector types on a target that supports vector operations.
5489 The default alignment is fixed for a particular target ABI.
5490
5491 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5492 which is the largest alignment ever used for any data type on the
5493 target machine you are compiling for. For example, you could write:
5494
5495 @smallexample
5496 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5497 @end smallexample
5498
5499 The compiler automatically sets the alignment for the declared
5500 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5501 often make copy operations more efficient, because the compiler can
5502 use whatever instructions copy the biggest chunks of memory when
5503 performing copies to or from the variables or fields that you have
5504 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5505 may change depending on command-line options.
5506
5507 When used on a struct, or struct member, the @code{aligned} attribute can
5508 only increase the alignment; in order to decrease it, the @code{packed}
5509 attribute must be specified as well. When used as part of a typedef, the
5510 @code{aligned} attribute can both increase and decrease alignment, and
5511 specifying the @code{packed} attribute generates a warning.
5512
5513 Note that the effectiveness of @code{aligned} attributes may be limited
5514 by inherent limitations in your linker. On many systems, the linker is
5515 only able to arrange for variables to be aligned up to a certain maximum
5516 alignment. (For some linkers, the maximum supported alignment may
5517 be very very small.) If your linker is only able to align variables
5518 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5519 in an @code{__attribute__} still only provides you with 8-byte
5520 alignment. See your linker documentation for further information.
5521
5522 The @code{aligned} attribute can also be used for functions
5523 (@pxref{Common Function Attributes}.)
5524
5525 @item cleanup (@var{cleanup_function})
5526 @cindex @code{cleanup} variable attribute
5527 The @code{cleanup} attribute runs a function when the variable goes
5528 out of scope. This attribute can only be applied to auto function
5529 scope variables; it may not be applied to parameters or variables
5530 with static storage duration. The function must take one parameter,
5531 a pointer to a type compatible with the variable. The return value
5532 of the function (if any) is ignored.
5533
5534 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5535 is run during the stack unwinding that happens during the
5536 processing of the exception. Note that the @code{cleanup} attribute
5537 does not allow the exception to be caught, only to perform an action.
5538 It is undefined what happens if @var{cleanup_function} does not
5539 return normally.
5540
5541 @item common
5542 @itemx nocommon
5543 @cindex @code{common} variable attribute
5544 @cindex @code{nocommon} variable attribute
5545 @opindex fcommon
5546 @opindex fno-common
5547 The @code{common} attribute requests GCC to place a variable in
5548 ``common'' storage. The @code{nocommon} attribute requests the
5549 opposite---to allocate space for it directly.
5550
5551 These attributes override the default chosen by the
5552 @option{-fno-common} and @option{-fcommon} flags respectively.
5553
5554 @item deprecated
5555 @itemx deprecated (@var{msg})
5556 @cindex @code{deprecated} variable attribute
5557 The @code{deprecated} attribute results in a warning if the variable
5558 is used anywhere in the source file. This is useful when identifying
5559 variables that are expected to be removed in a future version of a
5560 program. The warning also includes the location of the declaration
5561 of the deprecated variable, to enable users to easily find further
5562 information about why the variable is deprecated, or what they should
5563 do instead. Note that the warning only occurs for uses:
5564
5565 @smallexample
5566 extern int old_var __attribute__ ((deprecated));
5567 extern int old_var;
5568 int new_fn () @{ return old_var; @}
5569 @end smallexample
5570
5571 @noindent
5572 results in a warning on line 3 but not line 2. The optional @var{msg}
5573 argument, which must be a string, is printed in the warning if
5574 present.
5575
5576 The @code{deprecated} attribute can also be used for functions and
5577 types (@pxref{Common Function Attributes},
5578 @pxref{Common Type Attributes}).
5579
5580 @item mode (@var{mode})
5581 @cindex @code{mode} variable attribute
5582 This attribute specifies the data type for the declaration---whichever
5583 type corresponds to the mode @var{mode}. This in effect lets you
5584 request an integer or floating-point type according to its width.
5585
5586 You may also specify a mode of @code{byte} or @code{__byte__} to
5587 indicate the mode corresponding to a one-byte integer, @code{word} or
5588 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5589 or @code{__pointer__} for the mode used to represent pointers.
5590
5591 @item packed
5592 @cindex @code{packed} variable attribute
5593 The @code{packed} attribute specifies that a variable or structure field
5594 should have the smallest possible alignment---one byte for a variable,
5595 and one bit for a field, unless you specify a larger value with the
5596 @code{aligned} attribute.
5597
5598 Here is a structure in which the field @code{x} is packed, so that it
5599 immediately follows @code{a}:
5600
5601 @smallexample
5602 struct foo
5603 @{
5604 char a;
5605 int x[2] __attribute__ ((packed));
5606 @};
5607 @end smallexample
5608
5609 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5610 @code{packed} attribute on bit-fields of type @code{char}. This has
5611 been fixed in GCC 4.4 but the change can lead to differences in the
5612 structure layout. See the documentation of
5613 @option{-Wpacked-bitfield-compat} for more information.
5614
5615 @item section ("@var{section-name}")
5616 @cindex @code{section} variable attribute
5617 Normally, the compiler places the objects it generates in sections like
5618 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5619 or you need certain particular variables to appear in special sections,
5620 for example to map to special hardware. The @code{section}
5621 attribute specifies that a variable (or function) lives in a particular
5622 section. For example, this small program uses several specific section names:
5623
5624 @smallexample
5625 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5626 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5627 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5628 int init_data __attribute__ ((section ("INITDATA")));
5629
5630 main()
5631 @{
5632 /* @r{Initialize stack pointer} */
5633 init_sp (stack + sizeof (stack));
5634
5635 /* @r{Initialize initialized data} */
5636 memcpy (&init_data, &data, &edata - &data);
5637
5638 /* @r{Turn on the serial ports} */
5639 init_duart (&a);
5640 init_duart (&b);
5641 @}
5642 @end smallexample
5643
5644 @noindent
5645 Use the @code{section} attribute with
5646 @emph{global} variables and not @emph{local} variables,
5647 as shown in the example.
5648
5649 You may use the @code{section} attribute with initialized or
5650 uninitialized global variables but the linker requires
5651 each object be defined once, with the exception that uninitialized
5652 variables tentatively go in the @code{common} (or @code{bss}) section
5653 and can be multiply ``defined''. Using the @code{section} attribute
5654 changes what section the variable goes into and may cause the
5655 linker to issue an error if an uninitialized variable has multiple
5656 definitions. You can force a variable to be initialized with the
5657 @option{-fno-common} flag or the @code{nocommon} attribute.
5658
5659 Some file formats do not support arbitrary sections so the @code{section}
5660 attribute is not available on all platforms.
5661 If you need to map the entire contents of a module to a particular
5662 section, consider using the facilities of the linker instead.
5663
5664 @item tls_model ("@var{tls_model}")
5665 @cindex @code{tls_model} variable attribute
5666 The @code{tls_model} attribute sets thread-local storage model
5667 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5668 overriding @option{-ftls-model=} command-line switch on a per-variable
5669 basis.
5670 The @var{tls_model} argument should be one of @code{global-dynamic},
5671 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5672
5673 Not all targets support this attribute.
5674
5675 @item unused
5676 @cindex @code{unused} variable attribute
5677 This attribute, attached to a variable, means that the variable is meant
5678 to be possibly unused. GCC does not produce a warning for this
5679 variable.
5680
5681 @item used
5682 @cindex @code{used} variable attribute
5683 This attribute, attached to a variable with static storage, means that
5684 the variable must be emitted even if it appears that the variable is not
5685 referenced.
5686
5687 When applied to a static data member of a C++ class template, the
5688 attribute also means that the member is instantiated if the
5689 class itself is instantiated.
5690
5691 @item vector_size (@var{bytes})
5692 @cindex @code{vector_size} variable attribute
5693 This attribute specifies the vector size for the variable, measured in
5694 bytes. For example, the declaration:
5695
5696 @smallexample
5697 int foo __attribute__ ((vector_size (16)));
5698 @end smallexample
5699
5700 @noindent
5701 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5702 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5703 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5704
5705 This attribute is only applicable to integral and float scalars,
5706 although arrays, pointers, and function return values are allowed in
5707 conjunction with this construct.
5708
5709 Aggregates with this attribute are invalid, even if they are of the same
5710 size as a corresponding scalar. For example, the declaration:
5711
5712 @smallexample
5713 struct S @{ int a; @};
5714 struct S __attribute__ ((vector_size (16))) foo;
5715 @end smallexample
5716
5717 @noindent
5718 is invalid even if the size of the structure is the same as the size of
5719 the @code{int}.
5720
5721 @item visibility ("@var{visibility_type}")
5722 @cindex @code{visibility} variable attribute
5723 This attribute affects the linkage of the declaration to which it is attached.
5724 The @code{visibility} attribute is described in
5725 @ref{Common Function Attributes}.
5726
5727 @item weak
5728 @cindex @code{weak} variable attribute
5729 The @code{weak} attribute is described in
5730 @ref{Common Function Attributes}.
5731
5732 @end table
5733
5734 @node AVR Variable Attributes
5735 @subsection AVR Variable Attributes
5736
5737 @table @code
5738 @item progmem
5739 @cindex @code{progmem} variable attribute, AVR
5740 The @code{progmem} attribute is used on the AVR to place read-only
5741 data in the non-volatile program memory (flash). The @code{progmem}
5742 attribute accomplishes this by putting respective variables into a
5743 section whose name starts with @code{.progmem}.
5744
5745 This attribute works similar to the @code{section} attribute
5746 but adds additional checking. Notice that just like the
5747 @code{section} attribute, @code{progmem} affects the location
5748 of the data but not how this data is accessed.
5749
5750 In order to read data located with the @code{progmem} attribute
5751 (inline) assembler must be used.
5752 @smallexample
5753 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5754 #include <avr/pgmspace.h>
5755
5756 /* Locate var in flash memory */
5757 const int var[2] PROGMEM = @{ 1, 2 @};
5758
5759 int read_var (int i)
5760 @{
5761 /* Access var[] by accessor macro from avr/pgmspace.h */
5762 return (int) pgm_read_word (& var[i]);
5763 @}
5764 @end smallexample
5765
5766 AVR is a Harvard architecture processor and data and read-only data
5767 normally resides in the data memory (RAM).
5768
5769 See also the @ref{AVR Named Address Spaces} section for
5770 an alternate way to locate and access data in flash memory.
5771
5772 @item io
5773 @itemx io (@var{addr})
5774 @cindex @code{io} variable attribute, AVR
5775 Variables with the @code{io} attribute are used to address
5776 memory-mapped peripherals in the io address range.
5777 If an address is specified, the variable
5778 is assigned that address, and the value is interpreted as an
5779 address in the data address space.
5780 Example:
5781
5782 @smallexample
5783 volatile int porta __attribute__((io (0x22)));
5784 @end smallexample
5785
5786 The address specified in the address in the data address range.
5787
5788 Otherwise, the variable it is not assigned an address, but the
5789 compiler will still use in/out instructions where applicable,
5790 assuming some other module assigns an address in the io address range.
5791 Example:
5792
5793 @smallexample
5794 extern volatile int porta __attribute__((io));
5795 @end smallexample
5796
5797 @item io_low
5798 @itemx io_low (@var{addr})
5799 @cindex @code{io_low} variable attribute, AVR
5800 This is like the @code{io} attribute, but additionally it informs the
5801 compiler that the object lies in the lower half of the I/O area,
5802 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
5803 instructions.
5804
5805 @item address
5806 @itemx address (@var{addr})
5807 @cindex @code{address} variable attribute, AVR
5808 Variables with the @code{address} attribute are used to address
5809 memory-mapped peripherals that may lie outside the io address range.
5810
5811 @smallexample
5812 volatile int porta __attribute__((address (0x600)));
5813 @end smallexample
5814
5815 @end table
5816
5817 @node Blackfin Variable Attributes
5818 @subsection Blackfin Variable Attributes
5819
5820 Three attributes are currently defined for the Blackfin.
5821
5822 @table @code
5823 @item l1_data
5824 @itemx l1_data_A
5825 @itemx l1_data_B
5826 @cindex @code{l1_data} variable attribute, Blackfin
5827 @cindex @code{l1_data_A} variable attribute, Blackfin
5828 @cindex @code{l1_data_B} variable attribute, Blackfin
5829 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
5830 Variables with @code{l1_data} attribute are put into the specific section
5831 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
5832 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
5833 attribute are put into the specific section named @code{.l1.data.B}.
5834
5835 @item l2
5836 @cindex @code{l2} variable attribute, Blackfin
5837 Use this attribute on the Blackfin to place the variable into L2 SRAM.
5838 Variables with @code{l2} attribute are put into the specific section
5839 named @code{.l2.data}.
5840 @end table
5841
5842 @node H8/300 Variable Attributes
5843 @subsection H8/300 Variable Attributes
5844
5845 These variable attributes are available for H8/300 targets:
5846
5847 @table @code
5848 @item eightbit_data
5849 @cindex @code{eightbit_data} variable attribute, H8/300
5850 @cindex eight-bit data on the H8/300, H8/300H, and H8S
5851 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
5852 variable should be placed into the eight-bit data section.
5853 The compiler generates more efficient code for certain operations
5854 on data in the eight-bit data area. Note the eight-bit data area is limited to
5855 256 bytes of data.
5856
5857 You must use GAS and GLD from GNU binutils version 2.7 or later for
5858 this attribute to work correctly.
5859
5860 @item tiny_data
5861 @cindex @code{tiny_data} variable attribute, H8/300
5862 @cindex tiny data section on the H8/300H and H8S
5863 Use this attribute on the H8/300H and H8S to indicate that the specified
5864 variable should be placed into the tiny data section.
5865 The compiler generates more efficient code for loads and stores
5866 on data in the tiny data section. Note the tiny data area is limited to
5867 slightly under 32KB of data.
5868
5869 @end table
5870
5871 @node IA-64 Variable Attributes
5872 @subsection IA-64 Variable Attributes
5873
5874 The IA-64 back end supports the following variable attribute:
5875
5876 @table @code
5877 @item model (@var{model-name})
5878 @cindex @code{model} variable attribute, IA-64
5879
5880 On IA-64, use this attribute to set the addressability of an object.
5881 At present, the only supported identifier for @var{model-name} is
5882 @code{small}, indicating addressability via ``small'' (22-bit)
5883 addresses (so that their addresses can be loaded with the @code{addl}
5884 instruction). Caveat: such addressing is by definition not position
5885 independent and hence this attribute must not be used for objects
5886 defined by shared libraries.
5887
5888 @end table
5889
5890 @node M32R/D Variable Attributes
5891 @subsection M32R/D Variable Attributes
5892
5893 One attribute is currently defined for the M32R/D@.
5894
5895 @table @code
5896 @item model (@var{model-name})
5897 @cindex @code{model-name} variable attribute, M32R/D
5898 @cindex variable addressability on the M32R/D
5899 Use this attribute on the M32R/D to set the addressability of an object.
5900 The identifier @var{model-name} is one of @code{small}, @code{medium},
5901 or @code{large}, representing each of the code models.
5902
5903 Small model objects live in the lower 16MB of memory (so that their
5904 addresses can be loaded with the @code{ld24} instruction).
5905
5906 Medium and large model objects may live anywhere in the 32-bit address space
5907 (the compiler generates @code{seth/add3} instructions to load their
5908 addresses).
5909 @end table
5910
5911 @node MeP Variable Attributes
5912 @subsection MeP Variable Attributes
5913
5914 The MeP target has a number of addressing modes and busses. The
5915 @code{near} space spans the standard memory space's first 16 megabytes
5916 (24 bits). The @code{far} space spans the entire 32-bit memory space.
5917 The @code{based} space is a 128-byte region in the memory space that
5918 is addressed relative to the @code{$tp} register. The @code{tiny}
5919 space is a 65536-byte region relative to the @code{$gp} register. In
5920 addition to these memory regions, the MeP target has a separate 16-bit
5921 control bus which is specified with @code{cb} attributes.
5922
5923 @table @code
5924
5925 @item based
5926 @cindex @code{based} variable attribute, MeP
5927 Any variable with the @code{based} attribute is assigned to the
5928 @code{.based} section, and is accessed with relative to the
5929 @code{$tp} register.
5930
5931 @item tiny
5932 @cindex @code{tiny} variable attribute, MeP
5933 Likewise, the @code{tiny} attribute assigned variables to the
5934 @code{.tiny} section, relative to the @code{$gp} register.
5935
5936 @item near
5937 @cindex @code{near} variable attribute, MeP
5938 Variables with the @code{near} attribute are assumed to have addresses
5939 that fit in a 24-bit addressing mode. This is the default for large
5940 variables (@code{-mtiny=4} is the default) but this attribute can
5941 override @code{-mtiny=} for small variables, or override @code{-ml}.
5942
5943 @item far
5944 @cindex @code{far} variable attribute, MeP
5945 Variables with the @code{far} attribute are addressed using a full
5946 32-bit address. Since this covers the entire memory space, this
5947 allows modules to make no assumptions about where variables might be
5948 stored.
5949
5950 @item io
5951 @cindex @code{io} variable attribute, MeP
5952 @itemx io (@var{addr})
5953 Variables with the @code{io} attribute are used to address
5954 memory-mapped peripherals. If an address is specified, the variable
5955 is assigned that address, else it is not assigned an address (it is
5956 assumed some other module assigns an address). Example:
5957
5958 @smallexample
5959 int timer_count __attribute__((io(0x123)));
5960 @end smallexample
5961
5962 @item cb
5963 @itemx cb (@var{addr})
5964 @cindex @code{cb} variable attribute, MeP
5965 Variables with the @code{cb} attribute are used to access the control
5966 bus, using special instructions. @code{addr} indicates the control bus
5967 address. Example:
5968
5969 @smallexample
5970 int cpu_clock __attribute__((cb(0x123)));
5971 @end smallexample
5972
5973 @end table
5974
5975 @node Microsoft Windows Variable Attributes
5976 @subsection Microsoft Windows Variable Attributes
5977
5978 You can use these attributes on Microsoft Windows targets.
5979 @ref{x86 Variable Attributes} for additional Windows compatibility
5980 attributes available on all x86 targets.
5981
5982 @table @code
5983 @item dllimport
5984 @itemx dllexport
5985 @cindex @code{dllimport} variable attribute
5986 @cindex @code{dllexport} variable attribute
5987 The @code{dllimport} and @code{dllexport} attributes are described in
5988 @ref{Microsoft Windows Function Attributes}.
5989
5990 @item selectany
5991 @cindex @code{selectany} variable attribute
5992 The @code{selectany} attribute causes an initialized global variable to
5993 have link-once semantics. When multiple definitions of the variable are
5994 encountered by the linker, the first is selected and the remainder are
5995 discarded. Following usage by the Microsoft compiler, the linker is told
5996 @emph{not} to warn about size or content differences of the multiple
5997 definitions.
5998
5999 Although the primary usage of this attribute is for POD types, the
6000 attribute can also be applied to global C++ objects that are initialized
6001 by a constructor. In this case, the static initialization and destruction
6002 code for the object is emitted in each translation defining the object,
6003 but the calls to the constructor and destructor are protected by a
6004 link-once guard variable.
6005
6006 The @code{selectany} attribute is only available on Microsoft Windows
6007 targets. You can use @code{__declspec (selectany)} as a synonym for
6008 @code{__attribute__ ((selectany))} for compatibility with other
6009 compilers.
6010
6011 @item shared
6012 @cindex @code{shared} variable attribute
6013 On Microsoft Windows, in addition to putting variable definitions in a named
6014 section, the section can also be shared among all running copies of an
6015 executable or DLL@. For example, this small program defines shared data
6016 by putting it in a named section @code{shared} and marking the section
6017 shareable:
6018
6019 @smallexample
6020 int foo __attribute__((section ("shared"), shared)) = 0;
6021
6022 int
6023 main()
6024 @{
6025 /* @r{Read and write foo. All running
6026 copies see the same value.} */
6027 return 0;
6028 @}
6029 @end smallexample
6030
6031 @noindent
6032 You may only use the @code{shared} attribute along with @code{section}
6033 attribute with a fully-initialized global definition because of the way
6034 linkers work. See @code{section} attribute for more information.
6035
6036 The @code{shared} attribute is only available on Microsoft Windows@.
6037
6038 @end table
6039
6040 @node MSP430 Variable Attributes
6041 @subsection MSP430 Variable Attributes
6042
6043 @table @code
6044 @item noinit
6045 @cindex @code{noinit} MSP430 variable attribute
6046 Any data with the @code{noinit} attribute will not be initialised by
6047 the C runtime startup code, or the program loader. Not initialising
6048 data in this way can reduce program startup times.
6049
6050 @item persistent
6051 @cindex @code{persistent} MSP430 variable attribute
6052 Any variable with the @code{persistent} attribute will not be
6053 initialised by the C runtime startup code. Instead its value will be
6054 set once, when the application is loaded, and then never initialised
6055 again, even if the processor is reset or the program restarts.
6056 Persistent data is intended to be placed into FLASH RAM, where its
6057 value will be retained across resets. The linker script being used to
6058 create the application should ensure that persistent data is correctly
6059 placed.
6060
6061 @item lower
6062 @itemx upper
6063 @itemx either
6064 @cindex @code{lower} memory region on the MSP430
6065 @cindex @code{upper} memory region on the MSP430
6066 @cindex @code{either} memory region on the MSP430
6067 These attributes are the same as the MSP430 function attributes of the
6068 same name. These attributes can be applied to both functions and
6069 variables.
6070 @end table
6071
6072 @node PowerPC Variable Attributes
6073 @subsection PowerPC Variable Attributes
6074
6075 Three attributes currently are defined for PowerPC configurations:
6076 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6077
6078 @cindex @code{ms_struct} variable attribute, PowerPC
6079 @cindex @code{gcc_struct} variable attribute, PowerPC
6080 For full documentation of the struct attributes please see the
6081 documentation in @ref{x86 Variable Attributes}.
6082
6083 @cindex @code{altivec} variable attribute, PowerPC
6084 For documentation of @code{altivec} attribute please see the
6085 documentation in @ref{PowerPC Type Attributes}.
6086
6087 @node SPU Variable Attributes
6088 @subsection SPU Variable Attributes
6089
6090 @cindex @code{spu_vector} variable attribute, SPU
6091 The SPU supports the @code{spu_vector} attribute for variables. For
6092 documentation of this attribute please see the documentation in
6093 @ref{SPU Type Attributes}.
6094
6095 @node x86 Variable Attributes
6096 @subsection x86 Variable Attributes
6097
6098 Two attributes are currently defined for x86 configurations:
6099 @code{ms_struct} and @code{gcc_struct}.
6100
6101 @table @code
6102 @item ms_struct
6103 @itemx gcc_struct
6104 @cindex @code{ms_struct} variable attribute, x86
6105 @cindex @code{gcc_struct} variable attribute, x86
6106
6107 If @code{packed} is used on a structure, or if bit-fields are used,
6108 it may be that the Microsoft ABI lays out the structure differently
6109 than the way GCC normally does. Particularly when moving packed
6110 data between functions compiled with GCC and the native Microsoft compiler
6111 (either via function call or as data in a file), it may be necessary to access
6112 either format.
6113
6114 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6115 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6116 command-line options, respectively;
6117 see @ref{x86 Options}, for details of how structure layout is affected.
6118 @xref{x86 Type Attributes}, for information about the corresponding
6119 attributes on types.
6120
6121 @end table
6122
6123 @node Xstormy16 Variable Attributes
6124 @subsection Xstormy16 Variable Attributes
6125
6126 One attribute is currently defined for xstormy16 configurations:
6127 @code{below100}.
6128
6129 @table @code
6130 @item below100
6131 @cindex @code{below100} variable attribute, Xstormy16
6132
6133 If a variable has the @code{below100} attribute (@code{BELOW100} is
6134 allowed also), GCC places the variable in the first 0x100 bytes of
6135 memory and use special opcodes to access it. Such variables are
6136 placed in either the @code{.bss_below100} section or the
6137 @code{.data_below100} section.
6138
6139 @end table
6140
6141 @node Type Attributes
6142 @section Specifying Attributes of Types
6143 @cindex attribute of types
6144 @cindex type attributes
6145
6146 The keyword @code{__attribute__} allows you to specify special
6147 attributes of types. Some type attributes apply only to @code{struct}
6148 and @code{union} types, while others can apply to any type defined
6149 via a @code{typedef} declaration. Other attributes are defined for
6150 functions (@pxref{Function Attributes}), labels (@pxref{Label
6151 Attributes}), enumerators (@pxref{Enumerator Attributes}), and for
6152 variables (@pxref{Variable Attributes}).
6153
6154 The @code{__attribute__} keyword is followed by an attribute specification
6155 inside double parentheses.
6156
6157 You may specify type attributes in an enum, struct or union type
6158 declaration or definition by placing them immediately after the
6159 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6160 syntax is to place them just past the closing curly brace of the
6161 definition.
6162
6163 You can also include type attributes in a @code{typedef} declaration.
6164 @xref{Attribute Syntax}, for details of the exact syntax for using
6165 attributes.
6166
6167 @menu
6168 * Common Type Attributes::
6169 * ARM Type Attributes::
6170 * MeP Type Attributes::
6171 * PowerPC Type Attributes::
6172 * SPU Type Attributes::
6173 * x86 Type Attributes::
6174 @end menu
6175
6176 @node Common Type Attributes
6177 @subsection Common Type Attributes
6178
6179 The following type attributes are supported on most targets.
6180
6181 @table @code
6182 @cindex @code{aligned} type attribute
6183 @item aligned (@var{alignment})
6184 This attribute specifies a minimum alignment (in bytes) for variables
6185 of the specified type. For example, the declarations:
6186
6187 @smallexample
6188 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6189 typedef int more_aligned_int __attribute__ ((aligned (8)));
6190 @end smallexample
6191
6192 @noindent
6193 force the compiler to ensure (as far as it can) that each variable whose
6194 type is @code{struct S} or @code{more_aligned_int} is allocated and
6195 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6196 variables of type @code{struct S} aligned to 8-byte boundaries allows
6197 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6198 store) instructions when copying one variable of type @code{struct S} to
6199 another, thus improving run-time efficiency.
6200
6201 Note that the alignment of any given @code{struct} or @code{union} type
6202 is required by the ISO C standard to be at least a perfect multiple of
6203 the lowest common multiple of the alignments of all of the members of
6204 the @code{struct} or @code{union} in question. This means that you @emph{can}
6205 effectively adjust the alignment of a @code{struct} or @code{union}
6206 type by attaching an @code{aligned} attribute to any one of the members
6207 of such a type, but the notation illustrated in the example above is a
6208 more obvious, intuitive, and readable way to request the compiler to
6209 adjust the alignment of an entire @code{struct} or @code{union} type.
6210
6211 As in the preceding example, you can explicitly specify the alignment
6212 (in bytes) that you wish the compiler to use for a given @code{struct}
6213 or @code{union} type. Alternatively, you can leave out the alignment factor
6214 and just ask the compiler to align a type to the maximum
6215 useful alignment for the target machine you are compiling for. For
6216 example, you could write:
6217
6218 @smallexample
6219 struct S @{ short f[3]; @} __attribute__ ((aligned));
6220 @end smallexample
6221
6222 Whenever you leave out the alignment factor in an @code{aligned}
6223 attribute specification, the compiler automatically sets the alignment
6224 for the type to the largest alignment that is ever used for any data
6225 type on the target machine you are compiling for. Doing this can often
6226 make copy operations more efficient, because the compiler can use
6227 whatever instructions copy the biggest chunks of memory when performing
6228 copies to or from the variables that have types that you have aligned
6229 this way.
6230
6231 In the example above, if the size of each @code{short} is 2 bytes, then
6232 the size of the entire @code{struct S} type is 6 bytes. The smallest
6233 power of two that is greater than or equal to that is 8, so the
6234 compiler sets the alignment for the entire @code{struct S} type to 8
6235 bytes.
6236
6237 Note that although you can ask the compiler to select a time-efficient
6238 alignment for a given type and then declare only individual stand-alone
6239 objects of that type, the compiler's ability to select a time-efficient
6240 alignment is primarily useful only when you plan to create arrays of
6241 variables having the relevant (efficiently aligned) type. If you
6242 declare or use arrays of variables of an efficiently-aligned type, then
6243 it is likely that your program also does pointer arithmetic (or
6244 subscripting, which amounts to the same thing) on pointers to the
6245 relevant type, and the code that the compiler generates for these
6246 pointer arithmetic operations is often more efficient for
6247 efficiently-aligned types than for other types.
6248
6249 The @code{aligned} attribute can only increase the alignment; but you
6250 can decrease it by specifying @code{packed} as well. See below.
6251
6252 Note that the effectiveness of @code{aligned} attributes may be limited
6253 by inherent limitations in your linker. On many systems, the linker is
6254 only able to arrange for variables to be aligned up to a certain maximum
6255 alignment. (For some linkers, the maximum supported alignment may
6256 be very very small.) If your linker is only able to align variables
6257 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6258 in an @code{__attribute__} still only provides you with 8-byte
6259 alignment. See your linker documentation for further information.
6260
6261 @opindex fshort-enums
6262 Specifying this attribute for @code{struct} and @code{union} types is
6263 equivalent to specifying the @code{packed} attribute on each of the
6264 structure or union members. Specifying the @option{-fshort-enums}
6265 flag on the line is equivalent to specifying the @code{packed}
6266 attribute on all @code{enum} definitions.
6267
6268 In the following example @code{struct my_packed_struct}'s members are
6269 packed closely together, but the internal layout of its @code{s} member
6270 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6271 be packed too.
6272
6273 @smallexample
6274 struct my_unpacked_struct
6275 @{
6276 char c;
6277 int i;
6278 @};
6279
6280 struct __attribute__ ((__packed__)) my_packed_struct
6281 @{
6282 char c;
6283 int i;
6284 struct my_unpacked_struct s;
6285 @};
6286 @end smallexample
6287
6288 You may only specify this attribute on the definition of an @code{enum},
6289 @code{struct} or @code{union}, not on a @code{typedef} that does not
6290 also define the enumerated type, structure or union.
6291
6292 @item bnd_variable_size
6293 @cindex @code{bnd_variable_size} type attribute
6294 @cindex Pointer Bounds Checker attributes
6295 When applied to a structure field, this attribute tells Pointer
6296 Bounds Checker that the size of this field should not be computed
6297 using static type information. It may be used to mark variably-sized
6298 static array fields placed at the end of a structure.
6299
6300 @smallexample
6301 struct S
6302 @{
6303 int size;
6304 char data[1];
6305 @}
6306 S *p = (S *)malloc (sizeof(S) + 100);
6307 p->data[10] = 0; //Bounds violation
6308 @end smallexample
6309
6310 @noindent
6311 By using an attribute for the field we may avoid unwanted bound
6312 violation checks:
6313
6314 @smallexample
6315 struct S
6316 @{
6317 int size;
6318 char data[1] __attribute__((bnd_variable_size));
6319 @}
6320 S *p = (S *)malloc (sizeof(S) + 100);
6321 p->data[10] = 0; //OK
6322 @end smallexample
6323
6324 @item deprecated
6325 @itemx deprecated (@var{msg})
6326 @cindex @code{deprecated} type attribute
6327 The @code{deprecated} attribute results in a warning if the type
6328 is used anywhere in the source file. This is useful when identifying
6329 types that are expected to be removed in a future version of a program.
6330 If possible, the warning also includes the location of the declaration
6331 of the deprecated type, to enable users to easily find further
6332 information about why the type is deprecated, or what they should do
6333 instead. Note that the warnings only occur for uses and then only
6334 if the type is being applied to an identifier that itself is not being
6335 declared as deprecated.
6336
6337 @smallexample
6338 typedef int T1 __attribute__ ((deprecated));
6339 T1 x;
6340 typedef T1 T2;
6341 T2 y;
6342 typedef T1 T3 __attribute__ ((deprecated));
6343 T3 z __attribute__ ((deprecated));
6344 @end smallexample
6345
6346 @noindent
6347 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6348 warning is issued for line 4 because T2 is not explicitly
6349 deprecated. Line 5 has no warning because T3 is explicitly
6350 deprecated. Similarly for line 6. The optional @var{msg}
6351 argument, which must be a string, is printed in the warning if
6352 present.
6353
6354 The @code{deprecated} attribute can also be used for functions and
6355 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6356
6357 @item designated_init
6358 @cindex @code{designated_init} type attribute
6359 This attribute may only be applied to structure types. It indicates
6360 that any initialization of an object of this type must use designated
6361 initializers rather than positional initializers. The intent of this
6362 attribute is to allow the programmer to indicate that a structure's
6363 layout may change, and that therefore relying on positional
6364 initialization will result in future breakage.
6365
6366 GCC emits warnings based on this attribute by default; use
6367 @option{-Wno-designated-init} to suppress them.
6368
6369 @item may_alias
6370 @cindex @code{may_alias} type attribute
6371 Accesses through pointers to types with this attribute are not subject
6372 to type-based alias analysis, but are instead assumed to be able to alias
6373 any other type of objects.
6374 In the context of section 6.5 paragraph 7 of the C99 standard,
6375 an lvalue expression
6376 dereferencing such a pointer is treated like having a character type.
6377 See @option{-fstrict-aliasing} for more information on aliasing issues.
6378 This extension exists to support some vector APIs, in which pointers to
6379 one vector type are permitted to alias pointers to a different vector type.
6380
6381 Note that an object of a type with this attribute does not have any
6382 special semantics.
6383
6384 Example of use:
6385
6386 @smallexample
6387 typedef short __attribute__((__may_alias__)) short_a;
6388
6389 int
6390 main (void)
6391 @{
6392 int a = 0x12345678;
6393 short_a *b = (short_a *) &a;
6394
6395 b[1] = 0;
6396
6397 if (a == 0x12345678)
6398 abort();
6399
6400 exit(0);
6401 @}
6402 @end smallexample
6403
6404 @noindent
6405 If you replaced @code{short_a} with @code{short} in the variable
6406 declaration, the above program would abort when compiled with
6407 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6408 above.
6409
6410 @item packed
6411 @cindex @code{packed} type attribute
6412 This attribute, attached to @code{struct} or @code{union} type
6413 definition, specifies that each member (other than zero-width bit-fields)
6414 of the structure or union is placed to minimize the memory required. When
6415 attached to an @code{enum} definition, it indicates that the smallest
6416 integral type should be used.
6417
6418 @item scalar_storage_order ("@var{endianness}")
6419 @cindex @code{scalar_storage_order} type attribute
6420 When attached to a @code{union} or a @code{struct}, this attribute sets
6421 the storage order, aka endianness, of the scalar fields of the type, as
6422 well as the array fields whose component is scalar. The supported
6423 endianness are @code{big-endian} and @code{little-endian}. The attribute
6424 has no effects on fields which are themselves a @code{union}, a @code{struct}
6425 or an array whose component is a @code{union} or a @code{struct}, and it is
6426 possible to have fields with a different scalar storage order than the
6427 enclosing type.
6428
6429 This attribute is supported only for targets that use a uniform default
6430 scalar storage order (fortunately, most of them), i.e. targets that store
6431 the scalars either all in big-endian or all in little-endian.
6432
6433 Additional restrictions are enforced for types with the reverse scalar
6434 storage order with regard to the scalar storage order of the target:
6435
6436 @itemize
6437 @item Taking the address of a scalar field of a @code{union} or a
6438 @code{struct} with reverse scalar storage order is not permitted and will
6439 yield an error.
6440 @item Taking the address of an array field, whose component is scalar, of
6441 a @code{union} or a @code{struct} with reverse scalar storage order is
6442 permitted but will yield a warning, unless @option{-Wno-scalar-storage-order}
6443 is specified.
6444 @item Taking the address of a @code{union} or a @code{struct} with reverse
6445 scalar storage order is permitted.
6446 @end itemize
6447
6448 These restrictions exist because the storage order attribute is lost when
6449 the address of a scalar or the address of an array with scalar component
6450 is taken, so storing indirectly through this address will generally not work.
6451 The second case is nevertheless allowed to be able to perform a block copy
6452 from or to the array.
6453
6454 @item transparent_union
6455 @cindex @code{transparent_union} type attribute
6456
6457 This attribute, attached to a @code{union} type definition, indicates
6458 that any function parameter having that union type causes calls to that
6459 function to be treated in a special way.
6460
6461 First, the argument corresponding to a transparent union type can be of
6462 any type in the union; no cast is required. Also, if the union contains
6463 a pointer type, the corresponding argument can be a null pointer
6464 constant or a void pointer expression; and if the union contains a void
6465 pointer type, the corresponding argument can be any pointer expression.
6466 If the union member type is a pointer, qualifiers like @code{const} on
6467 the referenced type must be respected, just as with normal pointer
6468 conversions.
6469
6470 Second, the argument is passed to the function using the calling
6471 conventions of the first member of the transparent union, not the calling
6472 conventions of the union itself. All members of the union must have the
6473 same machine representation; this is necessary for this argument passing
6474 to work properly.
6475
6476 Transparent unions are designed for library functions that have multiple
6477 interfaces for compatibility reasons. For example, suppose the
6478 @code{wait} function must accept either a value of type @code{int *} to
6479 comply with POSIX, or a value of type @code{union wait *} to comply with
6480 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6481 @code{wait} would accept both kinds of arguments, but it would also
6482 accept any other pointer type and this would make argument type checking
6483 less useful. Instead, @code{<sys/wait.h>} might define the interface
6484 as follows:
6485
6486 @smallexample
6487 typedef union __attribute__ ((__transparent_union__))
6488 @{
6489 int *__ip;
6490 union wait *__up;
6491 @} wait_status_ptr_t;
6492
6493 pid_t wait (wait_status_ptr_t);
6494 @end smallexample
6495
6496 @noindent
6497 This interface allows either @code{int *} or @code{union wait *}
6498 arguments to be passed, using the @code{int *} calling convention.
6499 The program can call @code{wait} with arguments of either type:
6500
6501 @smallexample
6502 int w1 () @{ int w; return wait (&w); @}
6503 int w2 () @{ union wait w; return wait (&w); @}
6504 @end smallexample
6505
6506 @noindent
6507 With this interface, @code{wait}'s implementation might look like this:
6508
6509 @smallexample
6510 pid_t wait (wait_status_ptr_t p)
6511 @{
6512 return waitpid (-1, p.__ip, 0);
6513 @}
6514 @end smallexample
6515
6516 @item unused
6517 @cindex @code{unused} type attribute
6518 When attached to a type (including a @code{union} or a @code{struct}),
6519 this attribute means that variables of that type are meant to appear
6520 possibly unused. GCC does not produce a warning for any variables of
6521 that type, even if the variable appears to do nothing. This is often
6522 the case with lock or thread classes, which are usually defined and then
6523 not referenced, but contain constructors and destructors that have
6524 nontrivial bookkeeping functions.
6525
6526 @item visibility
6527 @cindex @code{visibility} type attribute
6528 In C++, attribute visibility (@pxref{Function Attributes}) can also be
6529 applied to class, struct, union and enum types. Unlike other type
6530 attributes, the attribute must appear between the initial keyword and
6531 the name of the type; it cannot appear after the body of the type.
6532
6533 Note that the type visibility is applied to vague linkage entities
6534 associated with the class (vtable, typeinfo node, etc.). In
6535 particular, if a class is thrown as an exception in one shared object
6536 and caught in another, the class must have default visibility.
6537 Otherwise the two shared objects are unable to use the same
6538 typeinfo node and exception handling will break.
6539
6540 @end table
6541
6542 To specify multiple attributes, separate them by commas within the
6543 double parentheses: for example, @samp{__attribute__ ((aligned (16),
6544 packed))}.
6545
6546 @node ARM Type Attributes
6547 @subsection ARM Type Attributes
6548
6549 @cindex @code{notshared} type attribute, ARM
6550 On those ARM targets that support @code{dllimport} (such as Symbian
6551 OS), you can use the @code{notshared} attribute to indicate that the
6552 virtual table and other similar data for a class should not be
6553 exported from a DLL@. For example:
6554
6555 @smallexample
6556 class __declspec(notshared) C @{
6557 public:
6558 __declspec(dllimport) C();
6559 virtual void f();
6560 @}
6561
6562 __declspec(dllexport)
6563 C::C() @{@}
6564 @end smallexample
6565
6566 @noindent
6567 In this code, @code{C::C} is exported from the current DLL, but the
6568 virtual table for @code{C} is not exported. (You can use
6569 @code{__attribute__} instead of @code{__declspec} if you prefer, but
6570 most Symbian OS code uses @code{__declspec}.)
6571
6572 @node MeP Type Attributes
6573 @subsection MeP Type Attributes
6574
6575 @cindex @code{based} type attribute, MeP
6576 @cindex @code{tiny} type attribute, MeP
6577 @cindex @code{near} type attribute, MeP
6578 @cindex @code{far} type attribute, MeP
6579 Many of the MeP variable attributes may be applied to types as well.
6580 Specifically, the @code{based}, @code{tiny}, @code{near}, and
6581 @code{far} attributes may be applied to either. The @code{io} and
6582 @code{cb} attributes may not be applied to types.
6583
6584 @node PowerPC Type Attributes
6585 @subsection PowerPC Type Attributes
6586
6587 Three attributes currently are defined for PowerPC configurations:
6588 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6589
6590 @cindex @code{ms_struct} type attribute, PowerPC
6591 @cindex @code{gcc_struct} type attribute, PowerPC
6592 For full documentation of the @code{ms_struct} and @code{gcc_struct}
6593 attributes please see the documentation in @ref{x86 Type Attributes}.
6594
6595 @cindex @code{altivec} type attribute, PowerPC
6596 The @code{altivec} attribute allows one to declare AltiVec vector data
6597 types supported by the AltiVec Programming Interface Manual. The
6598 attribute requires an argument to specify one of three vector types:
6599 @code{vector__}, @code{pixel__} (always followed by unsigned short),
6600 and @code{bool__} (always followed by unsigned).
6601
6602 @smallexample
6603 __attribute__((altivec(vector__)))
6604 __attribute__((altivec(pixel__))) unsigned short
6605 __attribute__((altivec(bool__))) unsigned
6606 @end smallexample
6607
6608 These attributes mainly are intended to support the @code{__vector},
6609 @code{__pixel}, and @code{__bool} AltiVec keywords.
6610
6611 @node SPU Type Attributes
6612 @subsection SPU Type Attributes
6613
6614 @cindex @code{spu_vector} type attribute, SPU
6615 The SPU supports the @code{spu_vector} attribute for types. This attribute
6616 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
6617 Language Extensions Specification. It is intended to support the
6618 @code{__vector} keyword.
6619
6620 @node x86 Type Attributes
6621 @subsection x86 Type Attributes
6622
6623 Two attributes are currently defined for x86 configurations:
6624 @code{ms_struct} and @code{gcc_struct}.
6625
6626 @table @code
6627
6628 @item ms_struct
6629 @itemx gcc_struct
6630 @cindex @code{ms_struct} type attribute, x86
6631 @cindex @code{gcc_struct} type attribute, x86
6632
6633 If @code{packed} is used on a structure, or if bit-fields are used
6634 it may be that the Microsoft ABI packs them differently
6635 than GCC normally packs them. Particularly when moving packed
6636 data between functions compiled with GCC and the native Microsoft compiler
6637 (either via function call or as data in a file), it may be necessary to access
6638 either format.
6639
6640 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6641 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6642 command-line options, respectively;
6643 see @ref{x86 Options}, for details of how structure layout is affected.
6644 @xref{x86 Variable Attributes}, for information about the corresponding
6645 attributes on variables.
6646
6647 @end table
6648
6649 @node Label Attributes
6650 @section Label Attributes
6651 @cindex Label Attributes
6652
6653 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
6654 details of the exact syntax for using attributes. Other attributes are
6655 available for functions (@pxref{Function Attributes}), variables
6656 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
6657 and for types (@pxref{Type Attributes}).
6658
6659 This example uses the @code{cold} label attribute to indicate the
6660 @code{ErrorHandling} branch is unlikely to be taken and that the
6661 @code{ErrorHandling} label is unused:
6662
6663 @smallexample
6664
6665 asm goto ("some asm" : : : : NoError);
6666
6667 /* This branch (the fall-through from the asm) is less commonly used */
6668 ErrorHandling:
6669 __attribute__((cold, unused)); /* Semi-colon is required here */
6670 printf("error\n");
6671 return 0;
6672
6673 NoError:
6674 printf("no error\n");
6675 return 1;
6676 @end smallexample
6677
6678 @table @code
6679 @item unused
6680 @cindex @code{unused} label attribute
6681 This feature is intended for program-generated code that may contain
6682 unused labels, but which is compiled with @option{-Wall}. It is
6683 not normally appropriate to use in it human-written code, though it
6684 could be useful in cases where the code that jumps to the label is
6685 contained within an @code{#ifdef} conditional.
6686
6687 @item hot
6688 @cindex @code{hot} label attribute
6689 The @code{hot} attribute on a label is used to inform the compiler that
6690 the path following the label is more likely than paths that are not so
6691 annotated. This attribute is used in cases where @code{__builtin_expect}
6692 cannot be used, for instance with computed goto or @code{asm goto}.
6693
6694 @item cold
6695 @cindex @code{cold} label attribute
6696 The @code{cold} attribute on labels is used to inform the compiler that
6697 the path following the label is unlikely to be executed. This attribute
6698 is used in cases where @code{__builtin_expect} cannot be used, for instance
6699 with computed goto or @code{asm goto}.
6700
6701 @end table
6702
6703 @node Enumerator Attributes
6704 @section Enumerator Attributes
6705 @cindex Enumerator Attributes
6706
6707 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
6708 details of the exact syntax for using attributes. Other attributes are
6709 available for functions (@pxref{Function Attributes}), variables
6710 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}),
6711 and for types (@pxref{Type Attributes}).
6712
6713 This example uses the @code{deprecated} enumerator attribute to indicate the
6714 @code{oldval} enumerator is deprecated:
6715
6716 @smallexample
6717 enum E @{
6718 oldval __attribute__((deprecated)),
6719 newval
6720 @};
6721
6722 int
6723 fn (void)
6724 @{
6725 return oldval;
6726 @}
6727 @end smallexample
6728
6729 @table @code
6730 @item deprecated
6731 @cindex @code{deprecated} enumerator attribute
6732 The @code{deprecated} attribute results in a warning if the enumerator
6733 is used anywhere in the source file. This is useful when identifying
6734 enumerators that are expected to be removed in a future version of a
6735 program. The warning also includes the location of the declaration
6736 of the deprecated enumerator, to enable users to easily find further
6737 information about why the enumerator is deprecated, or what they should
6738 do instead. Note that the warnings only occurs for uses.
6739
6740 @end table
6741
6742 @node Attribute Syntax
6743 @section Attribute Syntax
6744 @cindex attribute syntax
6745
6746 This section describes the syntax with which @code{__attribute__} may be
6747 used, and the constructs to which attribute specifiers bind, for the C
6748 language. Some details may vary for C++ and Objective-C@. Because of
6749 infelicities in the grammar for attributes, some forms described here
6750 may not be successfully parsed in all cases.
6751
6752 There are some problems with the semantics of attributes in C++. For
6753 example, there are no manglings for attributes, although they may affect
6754 code generation, so problems may arise when attributed types are used in
6755 conjunction with templates or overloading. Similarly, @code{typeid}
6756 does not distinguish between types with different attributes. Support
6757 for attributes in C++ may be restricted in future to attributes on
6758 declarations only, but not on nested declarators.
6759
6760 @xref{Function Attributes}, for details of the semantics of attributes
6761 applying to functions. @xref{Variable Attributes}, for details of the
6762 semantics of attributes applying to variables. @xref{Type Attributes},
6763 for details of the semantics of attributes applying to structure, union
6764 and enumerated types.
6765 @xref{Label Attributes}, for details of the semantics of attributes
6766 applying to labels.
6767 @xref{Enumerator Attributes}, for details of the semantics of attributes
6768 applying to enumerators.
6769
6770 An @dfn{attribute specifier} is of the form
6771 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
6772 is a possibly empty comma-separated sequence of @dfn{attributes}, where
6773 each attribute is one of the following:
6774
6775 @itemize @bullet
6776 @item
6777 Empty. Empty attributes are ignored.
6778
6779 @item
6780 An attribute name
6781 (which may be an identifier such as @code{unused}, or a reserved
6782 word such as @code{const}).
6783
6784 @item
6785 An attribute name followed by a parenthesized list of
6786 parameters for the attribute.
6787 These parameters take one of the following forms:
6788
6789 @itemize @bullet
6790 @item
6791 An identifier. For example, @code{mode} attributes use this form.
6792
6793 @item
6794 An identifier followed by a comma and a non-empty comma-separated list
6795 of expressions. For example, @code{format} attributes use this form.
6796
6797 @item
6798 A possibly empty comma-separated list of expressions. For example,
6799 @code{format_arg} attributes use this form with the list being a single
6800 integer constant expression, and @code{alias} attributes use this form
6801 with the list being a single string constant.
6802 @end itemize
6803 @end itemize
6804
6805 An @dfn{attribute specifier list} is a sequence of one or more attribute
6806 specifiers, not separated by any other tokens.
6807
6808 You may optionally specify attribute names with @samp{__}
6809 preceding and following the name.
6810 This allows you to use them in header files without
6811 being concerned about a possible macro of the same name. For example,
6812 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
6813
6814
6815 @subsubheading Label Attributes
6816
6817 In GNU C, an attribute specifier list may appear after the colon following a
6818 label, other than a @code{case} or @code{default} label. GNU C++ only permits
6819 attributes on labels if the attribute specifier is immediately
6820 followed by a semicolon (i.e., the label applies to an empty
6821 statement). If the semicolon is missing, C++ label attributes are
6822 ambiguous, as it is permissible for a declaration, which could begin
6823 with an attribute list, to be labelled in C++. Declarations cannot be
6824 labelled in C90 or C99, so the ambiguity does not arise there.
6825
6826 @subsubheading Enumerator Attributes
6827
6828 In GNU C, an attribute specifier list may appear as part of an enumerator.
6829 The attribute goes after the enumeration constant, before @code{=}, if
6830 present. The optional attribute in the enumerator appertains to the
6831 enumeration constant. It is not possible to place the attribute after
6832 the constant expression, if present.
6833
6834 @subsubheading Type Attributes
6835
6836 An attribute specifier list may appear as part of a @code{struct},
6837 @code{union} or @code{enum} specifier. It may go either immediately
6838 after the @code{struct}, @code{union} or @code{enum} keyword, or after
6839 the closing brace. The former syntax is preferred.
6840 Where attribute specifiers follow the closing brace, they are considered
6841 to relate to the structure, union or enumerated type defined, not to any
6842 enclosing declaration the type specifier appears in, and the type
6843 defined is not complete until after the attribute specifiers.
6844 @c Otherwise, there would be the following problems: a shift/reduce
6845 @c conflict between attributes binding the struct/union/enum and
6846 @c binding to the list of specifiers/qualifiers; and "aligned"
6847 @c attributes could use sizeof for the structure, but the size could be
6848 @c changed later by "packed" attributes.
6849
6850
6851 @subsubheading All other attributes
6852
6853 Otherwise, an attribute specifier appears as part of a declaration,
6854 counting declarations of unnamed parameters and type names, and relates
6855 to that declaration (which may be nested in another declaration, for
6856 example in the case of a parameter declaration), or to a particular declarator
6857 within a declaration. Where an
6858 attribute specifier is applied to a parameter declared as a function or
6859 an array, it should apply to the function or array rather than the
6860 pointer to which the parameter is implicitly converted, but this is not
6861 yet correctly implemented.
6862
6863 Any list of specifiers and qualifiers at the start of a declaration may
6864 contain attribute specifiers, whether or not such a list may in that
6865 context contain storage class specifiers. (Some attributes, however,
6866 are essentially in the nature of storage class specifiers, and only make
6867 sense where storage class specifiers may be used; for example,
6868 @code{section}.) There is one necessary limitation to this syntax: the
6869 first old-style parameter declaration in a function definition cannot
6870 begin with an attribute specifier, because such an attribute applies to
6871 the function instead by syntax described below (which, however, is not
6872 yet implemented in this case). In some other cases, attribute
6873 specifiers are permitted by this grammar but not yet supported by the
6874 compiler. All attribute specifiers in this place relate to the
6875 declaration as a whole. In the obsolescent usage where a type of
6876 @code{int} is implied by the absence of type specifiers, such a list of
6877 specifiers and qualifiers may be an attribute specifier list with no
6878 other specifiers or qualifiers.
6879
6880 At present, the first parameter in a function prototype must have some
6881 type specifier that is not an attribute specifier; this resolves an
6882 ambiguity in the interpretation of @code{void f(int
6883 (__attribute__((foo)) x))}, but is subject to change. At present, if
6884 the parentheses of a function declarator contain only attributes then
6885 those attributes are ignored, rather than yielding an error or warning
6886 or implying a single parameter of type int, but this is subject to
6887 change.
6888
6889 An attribute specifier list may appear immediately before a declarator
6890 (other than the first) in a comma-separated list of declarators in a
6891 declaration of more than one identifier using a single list of
6892 specifiers and qualifiers. Such attribute specifiers apply
6893 only to the identifier before whose declarator they appear. For
6894 example, in
6895
6896 @smallexample
6897 __attribute__((noreturn)) void d0 (void),
6898 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
6899 d2 (void);
6900 @end smallexample
6901
6902 @noindent
6903 the @code{noreturn} attribute applies to all the functions
6904 declared; the @code{format} attribute only applies to @code{d1}.
6905
6906 An attribute specifier list may appear immediately before the comma,
6907 @code{=} or semicolon terminating the declaration of an identifier other
6908 than a function definition. Such attribute specifiers apply
6909 to the declared object or function. Where an
6910 assembler name for an object or function is specified (@pxref{Asm
6911 Labels}), the attribute must follow the @code{asm}
6912 specification.
6913
6914 An attribute specifier list may, in future, be permitted to appear after
6915 the declarator in a function definition (before any old-style parameter
6916 declarations or the function body).
6917
6918 Attribute specifiers may be mixed with type qualifiers appearing inside
6919 the @code{[]} of a parameter array declarator, in the C99 construct by
6920 which such qualifiers are applied to the pointer to which the array is
6921 implicitly converted. Such attribute specifiers apply to the pointer,
6922 not to the array, but at present this is not implemented and they are
6923 ignored.
6924
6925 An attribute specifier list may appear at the start of a nested
6926 declarator. At present, there are some limitations in this usage: the
6927 attributes correctly apply to the declarator, but for most individual
6928 attributes the semantics this implies are not implemented.
6929 When attribute specifiers follow the @code{*} of a pointer
6930 declarator, they may be mixed with any type qualifiers present.
6931 The following describes the formal semantics of this syntax. It makes the
6932 most sense if you are familiar with the formal specification of
6933 declarators in the ISO C standard.
6934
6935 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
6936 D1}, where @code{T} contains declaration specifiers that specify a type
6937 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
6938 contains an identifier @var{ident}. The type specified for @var{ident}
6939 for derived declarators whose type does not include an attribute
6940 specifier is as in the ISO C standard.
6941
6942 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
6943 and the declaration @code{T D} specifies the type
6944 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
6945 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
6946 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
6947
6948 If @code{D1} has the form @code{*
6949 @var{type-qualifier-and-attribute-specifier-list} D}, and the
6950 declaration @code{T D} specifies the type
6951 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
6952 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
6953 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
6954 @var{ident}.
6955
6956 For example,
6957
6958 @smallexample
6959 void (__attribute__((noreturn)) ****f) (void);
6960 @end smallexample
6961
6962 @noindent
6963 specifies the type ``pointer to pointer to pointer to pointer to
6964 non-returning function returning @code{void}''. As another example,
6965
6966 @smallexample
6967 char *__attribute__((aligned(8))) *f;
6968 @end smallexample
6969
6970 @noindent
6971 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
6972 Note again that this does not work with most attributes; for example,
6973 the usage of @samp{aligned} and @samp{noreturn} attributes given above
6974 is not yet supported.
6975
6976 For compatibility with existing code written for compiler versions that
6977 did not implement attributes on nested declarators, some laxity is
6978 allowed in the placing of attributes. If an attribute that only applies
6979 to types is applied to a declaration, it is treated as applying to
6980 the type of that declaration. If an attribute that only applies to
6981 declarations is applied to the type of a declaration, it is treated
6982 as applying to that declaration; and, for compatibility with code
6983 placing the attributes immediately before the identifier declared, such
6984 an attribute applied to a function return type is treated as
6985 applying to the function type, and such an attribute applied to an array
6986 element type is treated as applying to the array type. If an
6987 attribute that only applies to function types is applied to a
6988 pointer-to-function type, it is treated as applying to the pointer
6989 target type; if such an attribute is applied to a function return type
6990 that is not a pointer-to-function type, it is treated as applying
6991 to the function type.
6992
6993 @node Function Prototypes
6994 @section Prototypes and Old-Style Function Definitions
6995 @cindex function prototype declarations
6996 @cindex old-style function definitions
6997 @cindex promotion of formal parameters
6998
6999 GNU C extends ISO C to allow a function prototype to override a later
7000 old-style non-prototype definition. Consider the following example:
7001
7002 @smallexample
7003 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7004 #ifdef __STDC__
7005 #define P(x) x
7006 #else
7007 #define P(x) ()
7008 #endif
7009
7010 /* @r{Prototype function declaration.} */
7011 int isroot P((uid_t));
7012
7013 /* @r{Old-style function definition.} */
7014 int
7015 isroot (x) /* @r{??? lossage here ???} */
7016 uid_t x;
7017 @{
7018 return x == 0;
7019 @}
7020 @end smallexample
7021
7022 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7023 not allow this example, because subword arguments in old-style
7024 non-prototype definitions are promoted. Therefore in this example the
7025 function definition's argument is really an @code{int}, which does not
7026 match the prototype argument type of @code{short}.
7027
7028 This restriction of ISO C makes it hard to write code that is portable
7029 to traditional C compilers, because the programmer does not know
7030 whether the @code{uid_t} type is @code{short}, @code{int}, or
7031 @code{long}. Therefore, in cases like these GNU C allows a prototype
7032 to override a later old-style definition. More precisely, in GNU C, a
7033 function prototype argument type overrides the argument type specified
7034 by a later old-style definition if the former type is the same as the
7035 latter type before promotion. Thus in GNU C the above example is
7036 equivalent to the following:
7037
7038 @smallexample
7039 int isroot (uid_t);
7040
7041 int
7042 isroot (uid_t x)
7043 @{
7044 return x == 0;
7045 @}
7046 @end smallexample
7047
7048 @noindent
7049 GNU C++ does not support old-style function definitions, so this
7050 extension is irrelevant.
7051
7052 @node C++ Comments
7053 @section C++ Style Comments
7054 @cindex @code{//}
7055 @cindex C++ comments
7056 @cindex comments, C++ style
7057
7058 In GNU C, you may use C++ style comments, which start with @samp{//} and
7059 continue until the end of the line. Many other C implementations allow
7060 such comments, and they are included in the 1999 C standard. However,
7061 C++ style comments are not recognized if you specify an @option{-std}
7062 option specifying a version of ISO C before C99, or @option{-ansi}
7063 (equivalent to @option{-std=c90}).
7064
7065 @node Dollar Signs
7066 @section Dollar Signs in Identifier Names
7067 @cindex $
7068 @cindex dollar signs in identifier names
7069 @cindex identifier names, dollar signs in
7070
7071 In GNU C, you may normally use dollar signs in identifier names.
7072 This is because many traditional C implementations allow such identifiers.
7073 However, dollar signs in identifiers are not supported on a few target
7074 machines, typically because the target assembler does not allow them.
7075
7076 @node Character Escapes
7077 @section The Character @key{ESC} in Constants
7078
7079 You can use the sequence @samp{\e} in a string or character constant to
7080 stand for the ASCII character @key{ESC}.
7081
7082 @node Alignment
7083 @section Inquiring on Alignment of Types or Variables
7084 @cindex alignment
7085 @cindex type alignment
7086 @cindex variable alignment
7087
7088 The keyword @code{__alignof__} allows you to inquire about how an object
7089 is aligned, or the minimum alignment usually required by a type. Its
7090 syntax is just like @code{sizeof}.
7091
7092 For example, if the target machine requires a @code{double} value to be
7093 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7094 This is true on many RISC machines. On more traditional machine
7095 designs, @code{__alignof__ (double)} is 4 or even 2.
7096
7097 Some machines never actually require alignment; they allow reference to any
7098 data type even at an odd address. For these machines, @code{__alignof__}
7099 reports the smallest alignment that GCC gives the data type, usually as
7100 mandated by the target ABI.
7101
7102 If the operand of @code{__alignof__} is an lvalue rather than a type,
7103 its value is the required alignment for its type, taking into account
7104 any minimum alignment specified with GCC's @code{__attribute__}
7105 extension (@pxref{Variable Attributes}). For example, after this
7106 declaration:
7107
7108 @smallexample
7109 struct foo @{ int x; char y; @} foo1;
7110 @end smallexample
7111
7112 @noindent
7113 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7114 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7115
7116 It is an error to ask for the alignment of an incomplete type.
7117
7118
7119 @node Inline
7120 @section An Inline Function is As Fast As a Macro
7121 @cindex inline functions
7122 @cindex integrating function code
7123 @cindex open coding
7124 @cindex macros, inline alternative
7125
7126 By declaring a function inline, you can direct GCC to make
7127 calls to that function faster. One way GCC can achieve this is to
7128 integrate that function's code into the code for its callers. This
7129 makes execution faster by eliminating the function-call overhead; in
7130 addition, if any of the actual argument values are constant, their
7131 known values may permit simplifications at compile time so that not
7132 all of the inline function's code needs to be included. The effect on
7133 code size is less predictable; object code may be larger or smaller
7134 with function inlining, depending on the particular case. You can
7135 also direct GCC to try to integrate all ``simple enough'' functions
7136 into their callers with the option @option{-finline-functions}.
7137
7138 GCC implements three different semantics of declaring a function
7139 inline. One is available with @option{-std=gnu89} or
7140 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7141 on all inline declarations, another when
7142 @option{-std=c99}, @option{-std=c11},
7143 @option{-std=gnu99} or @option{-std=gnu11}
7144 (without @option{-fgnu89-inline}), and the third
7145 is used when compiling C++.
7146
7147 To declare a function inline, use the @code{inline} keyword in its
7148 declaration, like this:
7149
7150 @smallexample
7151 static inline int
7152 inc (int *a)
7153 @{
7154 return (*a)++;
7155 @}
7156 @end smallexample
7157
7158 If you are writing a header file to be included in ISO C90 programs, write
7159 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7160
7161 The three types of inlining behave similarly in two important cases:
7162 when the @code{inline} keyword is used on a @code{static} function,
7163 like the example above, and when a function is first declared without
7164 using the @code{inline} keyword and then is defined with
7165 @code{inline}, like this:
7166
7167 @smallexample
7168 extern int inc (int *a);
7169 inline int
7170 inc (int *a)
7171 @{
7172 return (*a)++;
7173 @}
7174 @end smallexample
7175
7176 In both of these common cases, the program behaves the same as if you
7177 had not used the @code{inline} keyword, except for its speed.
7178
7179 @cindex inline functions, omission of
7180 @opindex fkeep-inline-functions
7181 When a function is both inline and @code{static}, if all calls to the
7182 function are integrated into the caller, and the function's address is
7183 never used, then the function's own assembler code is never referenced.
7184 In this case, GCC does not actually output assembler code for the
7185 function, unless you specify the option @option{-fkeep-inline-functions}.
7186 If there is a nonintegrated call, then the function is compiled to
7187 assembler code as usual. The function must also be compiled as usual if
7188 the program refers to its address, because that can't be inlined.
7189
7190 @opindex Winline
7191 Note that certain usages in a function definition can make it unsuitable
7192 for inline substitution. Among these usages are: variadic functions,
7193 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7194 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7195 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7196 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7197 function marked @code{inline} could not be substituted, and gives the
7198 reason for the failure.
7199
7200 @cindex automatic @code{inline} for C++ member fns
7201 @cindex @code{inline} automatic for C++ member fns
7202 @cindex member fns, automatically @code{inline}
7203 @cindex C++ member fns, automatically @code{inline}
7204 @opindex fno-default-inline
7205 As required by ISO C++, GCC considers member functions defined within
7206 the body of a class to be marked inline even if they are
7207 not explicitly declared with the @code{inline} keyword. You can
7208 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7209 Options,,Options Controlling C++ Dialect}.
7210
7211 GCC does not inline any functions when not optimizing unless you specify
7212 the @samp{always_inline} attribute for the function, like this:
7213
7214 @smallexample
7215 /* @r{Prototype.} */
7216 inline void foo (const char) __attribute__((always_inline));
7217 @end smallexample
7218
7219 The remainder of this section is specific to GNU C90 inlining.
7220
7221 @cindex non-static inline function
7222 When an inline function is not @code{static}, then the compiler must assume
7223 that there may be calls from other source files; since a global symbol can
7224 be defined only once in any program, the function must not be defined in
7225 the other source files, so the calls therein cannot be integrated.
7226 Therefore, a non-@code{static} inline function is always compiled on its
7227 own in the usual fashion.
7228
7229 If you specify both @code{inline} and @code{extern} in the function
7230 definition, then the definition is used only for inlining. In no case
7231 is the function compiled on its own, not even if you refer to its
7232 address explicitly. Such an address becomes an external reference, as
7233 if you had only declared the function, and had not defined it.
7234
7235 This combination of @code{inline} and @code{extern} has almost the
7236 effect of a macro. The way to use it is to put a function definition in
7237 a header file with these keywords, and put another copy of the
7238 definition (lacking @code{inline} and @code{extern}) in a library file.
7239 The definition in the header file causes most calls to the function
7240 to be inlined. If any uses of the function remain, they refer to
7241 the single copy in the library.
7242
7243 @node Volatiles
7244 @section When is a Volatile Object Accessed?
7245 @cindex accessing volatiles
7246 @cindex volatile read
7247 @cindex volatile write
7248 @cindex volatile access
7249
7250 C has the concept of volatile objects. These are normally accessed by
7251 pointers and used for accessing hardware or inter-thread
7252 communication. The standard encourages compilers to refrain from
7253 optimizations concerning accesses to volatile objects, but leaves it
7254 implementation defined as to what constitutes a volatile access. The
7255 minimum requirement is that at a sequence point all previous accesses
7256 to volatile objects have stabilized and no subsequent accesses have
7257 occurred. Thus an implementation is free to reorder and combine
7258 volatile accesses that occur between sequence points, but cannot do
7259 so for accesses across a sequence point. The use of volatile does
7260 not allow you to violate the restriction on updating objects multiple
7261 times between two sequence points.
7262
7263 Accesses to non-volatile objects are not ordered with respect to
7264 volatile accesses. You cannot use a volatile object as a memory
7265 barrier to order a sequence of writes to non-volatile memory. For
7266 instance:
7267
7268 @smallexample
7269 int *ptr = @var{something};
7270 volatile int vobj;
7271 *ptr = @var{something};
7272 vobj = 1;
7273 @end smallexample
7274
7275 @noindent
7276 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7277 that the write to @var{*ptr} occurs by the time the update
7278 of @var{vobj} happens. If you need this guarantee, you must use
7279 a stronger memory barrier such as:
7280
7281 @smallexample
7282 int *ptr = @var{something};
7283 volatile int vobj;
7284 *ptr = @var{something};
7285 asm volatile ("" : : : "memory");
7286 vobj = 1;
7287 @end smallexample
7288
7289 A scalar volatile object is read when it is accessed in a void context:
7290
7291 @smallexample
7292 volatile int *src = @var{somevalue};
7293 *src;
7294 @end smallexample
7295
7296 Such expressions are rvalues, and GCC implements this as a
7297 read of the volatile object being pointed to.
7298
7299 Assignments are also expressions and have an rvalue. However when
7300 assigning to a scalar volatile, the volatile object is not reread,
7301 regardless of whether the assignment expression's rvalue is used or
7302 not. If the assignment's rvalue is used, the value is that assigned
7303 to the volatile object. For instance, there is no read of @var{vobj}
7304 in all the following cases:
7305
7306 @smallexample
7307 int obj;
7308 volatile int vobj;
7309 vobj = @var{something};
7310 obj = vobj = @var{something};
7311 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7312 obj = (@var{something}, vobj = @var{anotherthing});
7313 @end smallexample
7314
7315 If you need to read the volatile object after an assignment has
7316 occurred, you must use a separate expression with an intervening
7317 sequence point.
7318
7319 As bit-fields are not individually addressable, volatile bit-fields may
7320 be implicitly read when written to, or when adjacent bit-fields are
7321 accessed. Bit-field operations may be optimized such that adjacent
7322 bit-fields are only partially accessed, if they straddle a storage unit
7323 boundary. For these reasons it is unwise to use volatile bit-fields to
7324 access hardware.
7325
7326 @node Using Assembly Language with C
7327 @section How to Use Inline Assembly Language in C Code
7328 @cindex @code{asm} keyword
7329 @cindex assembly language in C
7330 @cindex inline assembly language
7331 @cindex mixing assembly language and C
7332
7333 The @code{asm} keyword allows you to embed assembler instructions
7334 within C code. GCC provides two forms of inline @code{asm}
7335 statements. A @dfn{basic @code{asm}} statement is one with no
7336 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7337 statement (@pxref{Extended Asm}) includes one or more operands.
7338 The extended form is preferred for mixing C and assembly language
7339 within a function, but to include assembly language at
7340 top level you must use basic @code{asm}.
7341
7342 You can also use the @code{asm} keyword to override the assembler name
7343 for a C symbol, or to place a C variable in a specific register.
7344
7345 @menu
7346 * Basic Asm:: Inline assembler without operands.
7347 * Extended Asm:: Inline assembler with operands.
7348 * Constraints:: Constraints for @code{asm} operands
7349 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7350 * Explicit Register Variables:: Defining variables residing in specified
7351 registers.
7352 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7353 @end menu
7354
7355 @node Basic Asm
7356 @subsection Basic Asm --- Assembler Instructions Without Operands
7357 @cindex basic @code{asm}
7358 @cindex assembly language in C, basic
7359
7360 A basic @code{asm} statement has the following syntax:
7361
7362 @example
7363 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7364 @end example
7365
7366 The @code{asm} keyword is a GNU extension.
7367 When writing code that can be compiled with @option{-ansi} and the
7368 various @option{-std} options, use @code{__asm__} instead of
7369 @code{asm} (@pxref{Alternate Keywords}).
7370
7371 @subsubheading Qualifiers
7372 @table @code
7373 @item volatile
7374 The optional @code{volatile} qualifier has no effect.
7375 All basic @code{asm} blocks are implicitly volatile.
7376 @end table
7377
7378 @subsubheading Parameters
7379 @table @var
7380
7381 @item AssemblerInstructions
7382 This is a literal string that specifies the assembler code. The string can
7383 contain any instructions recognized by the assembler, including directives.
7384 GCC does not parse the assembler instructions themselves and
7385 does not know what they mean or even whether they are valid assembler input.
7386
7387 You may place multiple assembler instructions together in a single @code{asm}
7388 string, separated by the characters normally used in assembly code for the
7389 system. A combination that works in most places is a newline to break the
7390 line, plus a tab character (written as @samp{\n\t}).
7391 Some assemblers allow semicolons as a line separator. However,
7392 note that some assembler dialects use semicolons to start a comment.
7393 @end table
7394
7395 @subsubheading Remarks
7396 Using extended @code{asm} typically produces smaller, safer, and more
7397 efficient code, and in most cases it is a better solution than basic
7398 @code{asm}. However, there are two situations where only basic @code{asm}
7399 can be used:
7400
7401 @itemize @bullet
7402 @item
7403 Extended @code{asm} statements have to be inside a C
7404 function, so to write inline assembly language at file scope (``top-level''),
7405 outside of C functions, you must use basic @code{asm}.
7406 You can use this technique to emit assembler directives,
7407 define assembly language macros that can be invoked elsewhere in the file,
7408 or write entire functions in assembly language.
7409
7410 @item
7411 Functions declared
7412 with the @code{naked} attribute also require basic @code{asm}
7413 (@pxref{Function Attributes}).
7414 @end itemize
7415
7416 Safely accessing C data and calling functions from basic @code{asm} is more
7417 complex than it may appear. To access C data, it is better to use extended
7418 @code{asm}.
7419
7420 Do not expect a sequence of @code{asm} statements to remain perfectly
7421 consecutive after compilation. If certain instructions need to remain
7422 consecutive in the output, put them in a single multi-instruction @code{asm}
7423 statement. Note that GCC's optimizers can move @code{asm} statements
7424 relative to other code, including across jumps.
7425
7426 @code{asm} statements may not perform jumps into other @code{asm} statements.
7427 GCC does not know about these jumps, and therefore cannot take
7428 account of them when deciding how to optimize. Jumps from @code{asm} to C
7429 labels are only supported in extended @code{asm}.
7430
7431 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7432 assembly code when optimizing. This can lead to unexpected duplicate
7433 symbol errors during compilation if your assembly code defines symbols or
7434 labels.
7435
7436 Since GCC does not parse the @var{AssemblerInstructions}, it has no
7437 visibility of any symbols it references. This may result in GCC discarding
7438 those symbols as unreferenced.
7439
7440 The compiler copies the assembler instructions in a basic @code{asm}
7441 verbatim to the assembly language output file, without
7442 processing dialects or any of the @samp{%} operators that are available with
7443 extended @code{asm}. This results in minor differences between basic
7444 @code{asm} strings and extended @code{asm} templates. For example, to refer to
7445 registers you might use @samp{%eax} in basic @code{asm} and
7446 @samp{%%eax} in extended @code{asm}.
7447
7448 On targets such as x86 that support multiple assembler dialects,
7449 all basic @code{asm} blocks use the assembler dialect specified by the
7450 @option{-masm} command-line option (@pxref{x86 Options}).
7451 Basic @code{asm} provides no
7452 mechanism to provide different assembler strings for different dialects.
7453
7454 Here is an example of basic @code{asm} for i386:
7455
7456 @example
7457 /* Note that this code will not compile with -masm=intel */
7458 #define DebugBreak() asm("int $3")
7459 @end example
7460
7461 @node Extended Asm
7462 @subsection Extended Asm - Assembler Instructions with C Expression Operands
7463 @cindex extended @code{asm}
7464 @cindex assembly language in C, extended
7465
7466 With extended @code{asm} you can read and write C variables from
7467 assembler and perform jumps from assembler code to C labels.
7468 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
7469 the operand parameters after the assembler template:
7470
7471 @example
7472 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
7473 : @var{OutputOperands}
7474 @r{[} : @var{InputOperands}
7475 @r{[} : @var{Clobbers} @r{]} @r{]})
7476
7477 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
7478 :
7479 : @var{InputOperands}
7480 : @var{Clobbers}
7481 : @var{GotoLabels})
7482 @end example
7483
7484 The @code{asm} keyword is a GNU extension.
7485 When writing code that can be compiled with @option{-ansi} and the
7486 various @option{-std} options, use @code{__asm__} instead of
7487 @code{asm} (@pxref{Alternate Keywords}).
7488
7489 @subsubheading Qualifiers
7490 @table @code
7491
7492 @item volatile
7493 The typical use of extended @code{asm} statements is to manipulate input
7494 values to produce output values. However, your @code{asm} statements may
7495 also produce side effects. If so, you may need to use the @code{volatile}
7496 qualifier to disable certain optimizations. @xref{Volatile}.
7497
7498 @item goto
7499 This qualifier informs the compiler that the @code{asm} statement may
7500 perform a jump to one of the labels listed in the @var{GotoLabels}.
7501 @xref{GotoLabels}.
7502 @end table
7503
7504 @subsubheading Parameters
7505 @table @var
7506 @item AssemblerTemplate
7507 This is a literal string that is the template for the assembler code. It is a
7508 combination of fixed text and tokens that refer to the input, output,
7509 and goto parameters. @xref{AssemblerTemplate}.
7510
7511 @item OutputOperands
7512 A comma-separated list of the C variables modified by the instructions in the
7513 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
7514
7515 @item InputOperands
7516 A comma-separated list of C expressions read by the instructions in the
7517 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
7518
7519 @item Clobbers
7520 A comma-separated list of registers or other values changed by the
7521 @var{AssemblerTemplate}, beyond those listed as outputs.
7522 An empty list is permitted. @xref{Clobbers}.
7523
7524 @item GotoLabels
7525 When you are using the @code{goto} form of @code{asm}, this section contains
7526 the list of all C labels to which the code in the
7527 @var{AssemblerTemplate} may jump.
7528 @xref{GotoLabels}.
7529
7530 @code{asm} statements may not perform jumps into other @code{asm} statements,
7531 only to the listed @var{GotoLabels}.
7532 GCC's optimizers do not know about other jumps; therefore they cannot take
7533 account of them when deciding how to optimize.
7534 @end table
7535
7536 The total number of input + output + goto operands is limited to 30.
7537
7538 @subsubheading Remarks
7539 The @code{asm} statement allows you to include assembly instructions directly
7540 within C code. This may help you to maximize performance in time-sensitive
7541 code or to access assembly instructions that are not readily available to C
7542 programs.
7543
7544 Note that extended @code{asm} statements must be inside a function. Only
7545 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
7546 Functions declared with the @code{naked} attribute also require basic
7547 @code{asm} (@pxref{Function Attributes}).
7548
7549 While the uses of @code{asm} are many and varied, it may help to think of an
7550 @code{asm} statement as a series of low-level instructions that convert input
7551 parameters to output parameters. So a simple (if not particularly useful)
7552 example for i386 using @code{asm} might look like this:
7553
7554 @example
7555 int src = 1;
7556 int dst;
7557
7558 asm ("mov %1, %0\n\t"
7559 "add $1, %0"
7560 : "=r" (dst)
7561 : "r" (src));
7562
7563 printf("%d\n", dst);
7564 @end example
7565
7566 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
7567
7568 @anchor{Volatile}
7569 @subsubsection Volatile
7570 @cindex volatile @code{asm}
7571 @cindex @code{asm} volatile
7572
7573 GCC's optimizers sometimes discard @code{asm} statements if they determine
7574 there is no need for the output variables. Also, the optimizers may move
7575 code out of loops if they believe that the code will always return the same
7576 result (i.e. none of its input values change between calls). Using the
7577 @code{volatile} qualifier disables these optimizations. @code{asm} statements
7578 that have no output operands, including @code{asm goto} statements,
7579 are implicitly volatile.
7580
7581 This i386 code demonstrates a case that does not use (or require) the
7582 @code{volatile} qualifier. If it is performing assertion checking, this code
7583 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
7584 unreferenced by any code. As a result, the optimizers can discard the
7585 @code{asm} statement, which in turn removes the need for the entire
7586 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
7587 isn't needed you allow the optimizers to produce the most efficient code
7588 possible.
7589
7590 @example
7591 void DoCheck(uint32_t dwSomeValue)
7592 @{
7593 uint32_t dwRes;
7594
7595 // Assumes dwSomeValue is not zero.
7596 asm ("bsfl %1,%0"
7597 : "=r" (dwRes)
7598 : "r" (dwSomeValue)
7599 : "cc");
7600
7601 assert(dwRes > 3);
7602 @}
7603 @end example
7604
7605 The next example shows a case where the optimizers can recognize that the input
7606 (@code{dwSomeValue}) never changes during the execution of the function and can
7607 therefore move the @code{asm} outside the loop to produce more efficient code.
7608 Again, using @code{volatile} disables this type of optimization.
7609
7610 @example
7611 void do_print(uint32_t dwSomeValue)
7612 @{
7613 uint32_t dwRes;
7614
7615 for (uint32_t x=0; x < 5; x++)
7616 @{
7617 // Assumes dwSomeValue is not zero.
7618 asm ("bsfl %1,%0"
7619 : "=r" (dwRes)
7620 : "r" (dwSomeValue)
7621 : "cc");
7622
7623 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
7624 @}
7625 @}
7626 @end example
7627
7628 The following example demonstrates a case where you need to use the
7629 @code{volatile} qualifier.
7630 It uses the x86 @code{rdtsc} instruction, which reads
7631 the computer's time-stamp counter. Without the @code{volatile} qualifier,
7632 the optimizers might assume that the @code{asm} block will always return the
7633 same value and therefore optimize away the second call.
7634
7635 @example
7636 uint64_t msr;
7637
7638 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7639 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7640 "or %%rdx, %0" // 'Or' in the lower bits.
7641 : "=a" (msr)
7642 :
7643 : "rdx");
7644
7645 printf("msr: %llx\n", msr);
7646
7647 // Do other work...
7648
7649 // Reprint the timestamp
7650 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7651 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7652 "or %%rdx, %0" // 'Or' in the lower bits.
7653 : "=a" (msr)
7654 :
7655 : "rdx");
7656
7657 printf("msr: %llx\n", msr);
7658 @end example
7659
7660 GCC's optimizers do not treat this code like the non-volatile code in the
7661 earlier examples. They do not move it out of loops or omit it on the
7662 assumption that the result from a previous call is still valid.
7663
7664 Note that the compiler can move even volatile @code{asm} instructions relative
7665 to other code, including across jump instructions. For example, on many
7666 targets there is a system register that controls the rounding mode of
7667 floating-point operations. Setting it with a volatile @code{asm}, as in the
7668 following PowerPC example, does not work reliably.
7669
7670 @example
7671 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
7672 sum = x + y;
7673 @end example
7674
7675 The compiler may move the addition back before the volatile @code{asm}. To
7676 make it work as expected, add an artificial dependency to the @code{asm} by
7677 referencing a variable in the subsequent code, for example:
7678
7679 @example
7680 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
7681 sum = x + y;
7682 @end example
7683
7684 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7685 assembly code when optimizing. This can lead to unexpected duplicate symbol
7686 errors during compilation if your asm code defines symbols or labels.
7687 Using @samp{%=}
7688 (@pxref{AssemblerTemplate}) may help resolve this problem.
7689
7690 @anchor{AssemblerTemplate}
7691 @subsubsection Assembler Template
7692 @cindex @code{asm} assembler template
7693
7694 An assembler template is a literal string containing assembler instructions.
7695 The compiler replaces tokens in the template that refer
7696 to inputs, outputs, and goto labels,
7697 and then outputs the resulting string to the assembler. The
7698 string can contain any instructions recognized by the assembler, including
7699 directives. GCC does not parse the assembler instructions
7700 themselves and does not know what they mean or even whether they are valid
7701 assembler input. However, it does count the statements
7702 (@pxref{Size of an asm}).
7703
7704 You may place multiple assembler instructions together in a single @code{asm}
7705 string, separated by the characters normally used in assembly code for the
7706 system. A combination that works in most places is a newline to break the
7707 line, plus a tab character to move to the instruction field (written as
7708 @samp{\n\t}).
7709 Some assemblers allow semicolons as a line separator. However, note
7710 that some assembler dialects use semicolons to start a comment.
7711
7712 Do not expect a sequence of @code{asm} statements to remain perfectly
7713 consecutive after compilation, even when you are using the @code{volatile}
7714 qualifier. If certain instructions need to remain consecutive in the output,
7715 put them in a single multi-instruction asm statement.
7716
7717 Accessing data from C programs without using input/output operands (such as
7718 by using global symbols directly from the assembler template) may not work as
7719 expected. Similarly, calling functions directly from an assembler template
7720 requires a detailed understanding of the target assembler and ABI.
7721
7722 Since GCC does not parse the assembler template,
7723 it has no visibility of any
7724 symbols it references. This may result in GCC discarding those symbols as
7725 unreferenced unless they are also listed as input, output, or goto operands.
7726
7727 @subsubheading Special format strings
7728
7729 In addition to the tokens described by the input, output, and goto operands,
7730 these tokens have special meanings in the assembler template:
7731
7732 @table @samp
7733 @item %%
7734 Outputs a single @samp{%} into the assembler code.
7735
7736 @item %=
7737 Outputs a number that is unique to each instance of the @code{asm}
7738 statement in the entire compilation. This option is useful when creating local
7739 labels and referring to them multiple times in a single template that
7740 generates multiple assembler instructions.
7741
7742 @item %@{
7743 @itemx %|
7744 @itemx %@}
7745 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
7746 into the assembler code. When unescaped, these characters have special
7747 meaning to indicate multiple assembler dialects, as described below.
7748 @end table
7749
7750 @subsubheading Multiple assembler dialects in @code{asm} templates
7751
7752 On targets such as x86, GCC supports multiple assembler dialects.
7753 The @option{-masm} option controls which dialect GCC uses as its
7754 default for inline assembler. The target-specific documentation for the
7755 @option{-masm} option contains the list of supported dialects, as well as the
7756 default dialect if the option is not specified. This information may be
7757 important to understand, since assembler code that works correctly when
7758 compiled using one dialect will likely fail if compiled using another.
7759 @xref{x86 Options}.
7760
7761 If your code needs to support multiple assembler dialects (for example, if
7762 you are writing public headers that need to support a variety of compilation
7763 options), use constructs of this form:
7764
7765 @example
7766 @{ dialect0 | dialect1 | dialect2... @}
7767 @end example
7768
7769 This construct outputs @code{dialect0}
7770 when using dialect #0 to compile the code,
7771 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
7772 braces than the number of dialects the compiler supports, the construct
7773 outputs nothing.
7774
7775 For example, if an x86 compiler supports two dialects
7776 (@samp{att}, @samp{intel}), an
7777 assembler template such as this:
7778
7779 @example
7780 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
7781 @end example
7782
7783 @noindent
7784 is equivalent to one of
7785
7786 @example
7787 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
7788 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
7789 @end example
7790
7791 Using that same compiler, this code:
7792
7793 @example
7794 "xchg@{l@}\t@{%%@}ebx, %1"
7795 @end example
7796
7797 @noindent
7798 corresponds to either
7799
7800 @example
7801 "xchgl\t%%ebx, %1" @r{/* att dialect */}
7802 "xchg\tebx, %1" @r{/* intel dialect */}
7803 @end example
7804
7805 There is no support for nesting dialect alternatives.
7806
7807 @anchor{OutputOperands}
7808 @subsubsection Output Operands
7809 @cindex @code{asm} output operands
7810
7811 An @code{asm} statement has zero or more output operands indicating the names
7812 of C variables modified by the assembler code.
7813
7814 In this i386 example, @code{old} (referred to in the template string as
7815 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
7816 (@code{%2}) is an input:
7817
7818 @example
7819 bool old;
7820
7821 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
7822 "sbb %0,%0" // Use the CF to calculate old.
7823 : "=r" (old), "+rm" (*Base)
7824 : "Ir" (Offset)
7825 : "cc");
7826
7827 return old;
7828 @end example
7829
7830 Operands are separated by commas. Each operand has this format:
7831
7832 @example
7833 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
7834 @end example
7835
7836 @table @var
7837 @item asmSymbolicName
7838 Specifies a symbolic name for the operand.
7839 Reference the name in the assembler template
7840 by enclosing it in square brackets
7841 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
7842 that contains the definition. Any valid C variable name is acceptable,
7843 including names already defined in the surrounding code. No two operands
7844 within the same @code{asm} statement can use the same symbolic name.
7845
7846 When not using an @var{asmSymbolicName}, use the (zero-based) position
7847 of the operand
7848 in the list of operands in the assembler template. For example if there are
7849 three output operands, use @samp{%0} in the template to refer to the first,
7850 @samp{%1} for the second, and @samp{%2} for the third.
7851
7852 @item constraint
7853 A string constant specifying constraints on the placement of the operand;
7854 @xref{Constraints}, for details.
7855
7856 Output constraints must begin with either @samp{=} (a variable overwriting an
7857 existing value) or @samp{+} (when reading and writing). When using
7858 @samp{=}, do not assume the location contains the existing value
7859 on entry to the @code{asm}, except
7860 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
7861
7862 After the prefix, there must be one or more additional constraints
7863 (@pxref{Constraints}) that describe where the value resides. Common
7864 constraints include @samp{r} for register and @samp{m} for memory.
7865 When you list more than one possible location (for example, @code{"=rm"}),
7866 the compiler chooses the most efficient one based on the current context.
7867 If you list as many alternates as the @code{asm} statement allows, you permit
7868 the optimizers to produce the best possible code.
7869 If you must use a specific register, but your Machine Constraints do not
7870 provide sufficient control to select the specific register you want,
7871 local register variables may provide a solution (@pxref{Local Register
7872 Variables}).
7873
7874 @item cvariablename
7875 Specifies a C lvalue expression to hold the output, typically a variable name.
7876 The enclosing parentheses are a required part of the syntax.
7877
7878 @end table
7879
7880 When the compiler selects the registers to use to
7881 represent the output operands, it does not use any of the clobbered registers
7882 (@pxref{Clobbers}).
7883
7884 Output operand expressions must be lvalues. The compiler cannot check whether
7885 the operands have data types that are reasonable for the instruction being
7886 executed. For output expressions that are not directly addressable (for
7887 example a bit-field), the constraint must allow a register. In that case, GCC
7888 uses the register as the output of the @code{asm}, and then stores that
7889 register into the output.
7890
7891 Operands using the @samp{+} constraint modifier count as two operands
7892 (that is, both as input and output) towards the total maximum of 30 operands
7893 per @code{asm} statement.
7894
7895 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
7896 operands that must not overlap an input. Otherwise,
7897 GCC may allocate the output operand in the same register as an unrelated
7898 input operand, on the assumption that the assembler code consumes its
7899 inputs before producing outputs. This assumption may be false if the assembler
7900 code actually consists of more than one instruction.
7901
7902 The same problem can occur if one output parameter (@var{a}) allows a register
7903 constraint and another output parameter (@var{b}) allows a memory constraint.
7904 The code generated by GCC to access the memory address in @var{b} can contain
7905 registers which @emph{might} be shared by @var{a}, and GCC considers those
7906 registers to be inputs to the asm. As above, GCC assumes that such input
7907 registers are consumed before any outputs are written. This assumption may
7908 result in incorrect behavior if the asm writes to @var{a} before using
7909 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
7910 ensures that modifying @var{a} does not affect the address referenced by
7911 @var{b}. Otherwise, the location of @var{b}
7912 is undefined if @var{a} is modified before using @var{b}.
7913
7914 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
7915 instead of simply @samp{%2}). Typically these qualifiers are hardware
7916 dependent. The list of supported modifiers for x86 is found at
7917 @ref{x86Operandmodifiers,x86 Operand modifiers}.
7918
7919 If the C code that follows the @code{asm} makes no use of any of the output
7920 operands, use @code{volatile} for the @code{asm} statement to prevent the
7921 optimizers from discarding the @code{asm} statement as unneeded
7922 (see @ref{Volatile}).
7923
7924 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
7925 references the first output operand as @code{%0} (were there a second, it
7926 would be @code{%1}, etc). The number of the first input operand is one greater
7927 than that of the last output operand. In this i386 example, that makes
7928 @code{Mask} referenced as @code{%1}:
7929
7930 @example
7931 uint32_t Mask = 1234;
7932 uint32_t Index;
7933
7934 asm ("bsfl %1, %0"
7935 : "=r" (Index)
7936 : "r" (Mask)
7937 : "cc");
7938 @end example
7939
7940 That code overwrites the variable @code{Index} (@samp{=}),
7941 placing the value in a register (@samp{r}).
7942 Using the generic @samp{r} constraint instead of a constraint for a specific
7943 register allows the compiler to pick the register to use, which can result
7944 in more efficient code. This may not be possible if an assembler instruction
7945 requires a specific register.
7946
7947 The following i386 example uses the @var{asmSymbolicName} syntax.
7948 It produces the
7949 same result as the code above, but some may consider it more readable or more
7950 maintainable since reordering index numbers is not necessary when adding or
7951 removing operands. The names @code{aIndex} and @code{aMask}
7952 are only used in this example to emphasize which
7953 names get used where.
7954 It is acceptable to reuse the names @code{Index} and @code{Mask}.
7955
7956 @example
7957 uint32_t Mask = 1234;
7958 uint32_t Index;
7959
7960 asm ("bsfl %[aMask], %[aIndex]"
7961 : [aIndex] "=r" (Index)
7962 : [aMask] "r" (Mask)
7963 : "cc");
7964 @end example
7965
7966 Here are some more examples of output operands.
7967
7968 @example
7969 uint32_t c = 1;
7970 uint32_t d;
7971 uint32_t *e = &c;
7972
7973 asm ("mov %[e], %[d]"
7974 : [d] "=rm" (d)
7975 : [e] "rm" (*e));
7976 @end example
7977
7978 Here, @code{d} may either be in a register or in memory. Since the compiler
7979 might already have the current value of the @code{uint32_t} location
7980 pointed to by @code{e}
7981 in a register, you can enable it to choose the best location
7982 for @code{d} by specifying both constraints.
7983
7984 @anchor{FlagOutputOperands}
7985 @subsection Flag Output Operands
7986 @cindex @code{asm} flag output operands
7987
7988 Some targets have a special register that holds the ``flags'' for the
7989 result of an operation or comparison. Normally, the contents of that
7990 register are either unmodifed by the asm, or the asm is considered to
7991 clobber the contents.
7992
7993 On some targets, a special form of output operand exists by which
7994 conditions in the flags register may be outputs of the asm. The set of
7995 conditions supported are target specific, but the general rule is that
7996 the output variable must be a scalar integer, and the value will be boolean.
7997 When supported, the target will define the preprocessor symbol
7998 @code{__GCC_ASM_FLAG_OUTPUTS__}.
7999
8000 Because of the special nature of the flag output operands, the constraint
8001 may not include alternatives.
8002
8003 Most often, the target has only one flags register, and thus is an implied
8004 operand of many instructions. In this case, the operand should not be
8005 referenced within the assembler template via @code{%0} etc, as there's
8006 no corresponding text in the assembly language.
8007
8008 @table @asis
8009 @item x86 family
8010 The flag output constraints for the x86 family are of the form
8011 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8012 conditions defined in the ISA manual for @code{j@var{cc}} or
8013 @code{set@var{cc}}.
8014
8015 @table @code
8016 @item a
8017 ``above'' or unsigned greater than
8018 @item ae
8019 ``above or equal'' or unsigned greater than or equal
8020 @item b
8021 ``below'' or unsigned less than
8022 @item be
8023 ``below or equal'' or unsigned less than or equal
8024 @item c
8025 carry flag set
8026 @item e
8027 @itemx z
8028 ``equal'' or zero flag set
8029 @item g
8030 signed greater than
8031 @item ge
8032 signed greater than or equal
8033 @item l
8034 signed less than
8035 @item le
8036 signed less than or equal
8037 @item o
8038 overflow flag set
8039 @item p
8040 parity flag set
8041 @item s
8042 sign flag set
8043 @item na
8044 @itemx nae
8045 @itemx nb
8046 @itemx nbe
8047 @itemx nc
8048 @itemx ne
8049 @itemx ng
8050 @itemx nge
8051 @itemx nl
8052 @itemx nle
8053 @itemx no
8054 @itemx np
8055 @itemx ns
8056 @itemx nz
8057 ``not'' @var{flag}, or inverted versions of those above
8058 @end table
8059
8060 @end table
8061
8062 @anchor{InputOperands}
8063 @subsubsection Input Operands
8064 @cindex @code{asm} input operands
8065 @cindex @code{asm} expressions
8066
8067 Input operands make values from C variables and expressions available to the
8068 assembly code.
8069
8070 Operands are separated by commas. Each operand has this format:
8071
8072 @example
8073 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8074 @end example
8075
8076 @table @var
8077 @item asmSymbolicName
8078 Specifies a symbolic name for the operand.
8079 Reference the name in the assembler template
8080 by enclosing it in square brackets
8081 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8082 that contains the definition. Any valid C variable name is acceptable,
8083 including names already defined in the surrounding code. No two operands
8084 within the same @code{asm} statement can use the same symbolic name.
8085
8086 When not using an @var{asmSymbolicName}, use the (zero-based) position
8087 of the operand
8088 in the list of operands in the assembler template. For example if there are
8089 two output operands and three inputs,
8090 use @samp{%2} in the template to refer to the first input operand,
8091 @samp{%3} for the second, and @samp{%4} for the third.
8092
8093 @item constraint
8094 A string constant specifying constraints on the placement of the operand;
8095 @xref{Constraints}, for details.
8096
8097 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8098 When you list more than one possible location (for example, @samp{"irm"}),
8099 the compiler chooses the most efficient one based on the current context.
8100 If you must use a specific register, but your Machine Constraints do not
8101 provide sufficient control to select the specific register you want,
8102 local register variables may provide a solution (@pxref{Local Register
8103 Variables}).
8104
8105 Input constraints can also be digits (for example, @code{"0"}). This indicates
8106 that the specified input must be in the same place as the output constraint
8107 at the (zero-based) index in the output constraint list.
8108 When using @var{asmSymbolicName} syntax for the output operands,
8109 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8110
8111 @item cexpression
8112 This is the C variable or expression being passed to the @code{asm} statement
8113 as input. The enclosing parentheses are a required part of the syntax.
8114
8115 @end table
8116
8117 When the compiler selects the registers to use to represent the input
8118 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8119
8120 If there are no output operands but there are input operands, place two
8121 consecutive colons where the output operands would go:
8122
8123 @example
8124 __asm__ ("some instructions"
8125 : /* No outputs. */
8126 : "r" (Offset / 8));
8127 @end example
8128
8129 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8130 (except for inputs tied to outputs). The compiler assumes that on exit from
8131 the @code{asm} statement these operands contain the same values as they
8132 had before executing the statement.
8133 It is @emph{not} possible to use clobbers
8134 to inform the compiler that the values in these inputs are changing. One
8135 common work-around is to tie the changing input variable to an output variable
8136 that never gets used. Note, however, that if the code that follows the
8137 @code{asm} statement makes no use of any of the output operands, the GCC
8138 optimizers may discard the @code{asm} statement as unneeded
8139 (see @ref{Volatile}).
8140
8141 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8142 instead of simply @samp{%2}). Typically these qualifiers are hardware
8143 dependent. The list of supported modifiers for x86 is found at
8144 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8145
8146 In this example using the fictitious @code{combine} instruction, the
8147 constraint @code{"0"} for input operand 1 says that it must occupy the same
8148 location as output operand 0. Only input operands may use numbers in
8149 constraints, and they must each refer to an output operand. Only a number (or
8150 the symbolic assembler name) in the constraint can guarantee that one operand
8151 is in the same place as another. The mere fact that @code{foo} is the value of
8152 both operands is not enough to guarantee that they are in the same place in
8153 the generated assembler code.
8154
8155 @example
8156 asm ("combine %2, %0"
8157 : "=r" (foo)
8158 : "0" (foo), "g" (bar));
8159 @end example
8160
8161 Here is an example using symbolic names.
8162
8163 @example
8164 asm ("cmoveq %1, %2, %[result]"
8165 : [result] "=r"(result)
8166 : "r" (test), "r" (new), "[result]" (old));
8167 @end example
8168
8169 @anchor{Clobbers}
8170 @subsubsection Clobbers
8171 @cindex @code{asm} clobbers
8172
8173 While the compiler is aware of changes to entries listed in the output
8174 operands, the inline @code{asm} code may modify more than just the outputs. For
8175 example, calculations may require additional registers, or the processor may
8176 overwrite a register as a side effect of a particular assembler instruction.
8177 In order to inform the compiler of these changes, list them in the clobber
8178 list. Clobber list items are either register names or the special clobbers
8179 (listed below). Each clobber list item is a string constant
8180 enclosed in double quotes and separated by commas.
8181
8182 Clobber descriptions may not in any way overlap with an input or output
8183 operand. For example, you may not have an operand describing a register class
8184 with one member when listing that register in the clobber list. Variables
8185 declared to live in specific registers (@pxref{Explicit Register
8186 Variables}) and used
8187 as @code{asm} input or output operands must have no part mentioned in the
8188 clobber description. In particular, there is no way to specify that input
8189 operands get modified without also specifying them as output operands.
8190
8191 When the compiler selects which registers to use to represent input and output
8192 operands, it does not use any of the clobbered registers. As a result,
8193 clobbered registers are available for any use in the assembler code.
8194
8195 Here is a realistic example for the VAX showing the use of clobbered
8196 registers:
8197
8198 @example
8199 asm volatile ("movc3 %0, %1, %2"
8200 : /* No outputs. */
8201 : "g" (from), "g" (to), "g" (count)
8202 : "r0", "r1", "r2", "r3", "r4", "r5");
8203 @end example
8204
8205 Also, there are two special clobber arguments:
8206
8207 @table @code
8208 @item "cc"
8209 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8210 register. On some machines, GCC represents the condition codes as a specific
8211 hardware register; @code{"cc"} serves to name this register.
8212 On other machines, condition code handling is different,
8213 and specifying @code{"cc"} has no effect. But
8214 it is valid no matter what the target.
8215
8216 @item "memory"
8217 The @code{"memory"} clobber tells the compiler that the assembly code
8218 performs memory
8219 reads or writes to items other than those listed in the input and output
8220 operands (for example, accessing the memory pointed to by one of the input
8221 parameters). To ensure memory contains correct values, GCC may need to flush
8222 specific register values to memory before executing the @code{asm}. Further,
8223 the compiler does not assume that any values read from memory before an
8224 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8225 needed.
8226 Using the @code{"memory"} clobber effectively forms a read/write
8227 memory barrier for the compiler.
8228
8229 Note that this clobber does not prevent the @emph{processor} from doing
8230 speculative reads past the @code{asm} statement. To prevent that, you need
8231 processor-specific fence instructions.
8232
8233 Flushing registers to memory has performance implications and may be an issue
8234 for time-sensitive code. You can use a trick to avoid this if the size of
8235 the memory being accessed is known at compile time. For example, if accessing
8236 ten bytes of a string, use a memory input like:
8237
8238 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8239
8240 @end table
8241
8242 @anchor{GotoLabels}
8243 @subsubsection Goto Labels
8244 @cindex @code{asm} goto labels
8245
8246 @code{asm goto} allows assembly code to jump to one or more C labels. The
8247 @var{GotoLabels} section in an @code{asm goto} statement contains
8248 a comma-separated
8249 list of all C labels to which the assembler code may jump. GCC assumes that
8250 @code{asm} execution falls through to the next statement (if this is not the
8251 case, consider using the @code{__builtin_unreachable} intrinsic after the
8252 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8253 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8254 Attributes}).
8255
8256 An @code{asm goto} statement cannot have outputs.
8257 This is due to an internal restriction of
8258 the compiler: control transfer instructions cannot have outputs.
8259 If the assembler code does modify anything, use the @code{"memory"} clobber
8260 to force the
8261 optimizers to flush all register values to memory and reload them if
8262 necessary after the @code{asm} statement.
8263
8264 Also note that an @code{asm goto} statement is always implicitly
8265 considered volatile.
8266
8267 To reference a label in the assembler template,
8268 prefix it with @samp{%l} (lowercase @samp{L}) followed
8269 by its (zero-based) position in @var{GotoLabels} plus the number of input
8270 operands. For example, if the @code{asm} has three inputs and references two
8271 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8272
8273 Alternately, you can reference labels using the actual C label name enclosed
8274 in brackets. For example, to reference a label named @code{carry}, you can
8275 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8276 section when using this approach.
8277
8278 Here is an example of @code{asm goto} for i386:
8279
8280 @example
8281 asm goto (
8282 "btl %1, %0\n\t"
8283 "jc %l2"
8284 : /* No outputs. */
8285 : "r" (p1), "r" (p2)
8286 : "cc"
8287 : carry);
8288
8289 return 0;
8290
8291 carry:
8292 return 1;
8293 @end example
8294
8295 The following example shows an @code{asm goto} that uses a memory clobber.
8296
8297 @example
8298 int frob(int x)
8299 @{
8300 int y;
8301 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8302 : /* No outputs. */
8303 : "r"(x), "r"(&y)
8304 : "r5", "memory"
8305 : error);
8306 return y;
8307 error:
8308 return -1;
8309 @}
8310 @end example
8311
8312 @anchor{x86Operandmodifiers}
8313 @subsubsection x86 Operand Modifiers
8314
8315 References to input, output, and goto operands in the assembler template
8316 of extended @code{asm} statements can use
8317 modifiers to affect the way the operands are formatted in
8318 the code output to the assembler. For example, the
8319 following code uses the @samp{h} and @samp{b} modifiers for x86:
8320
8321 @example
8322 uint16_t num;
8323 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8324 @end example
8325
8326 @noindent
8327 These modifiers generate this assembler code:
8328
8329 @example
8330 xchg %ah, %al
8331 @end example
8332
8333 The rest of this discussion uses the following code for illustrative purposes.
8334
8335 @example
8336 int main()
8337 @{
8338 int iInt = 1;
8339
8340 top:
8341
8342 asm volatile goto ("some assembler instructions here"
8343 : /* No outputs. */
8344 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8345 : /* No clobbers. */
8346 : top);
8347 @}
8348 @end example
8349
8350 With no modifiers, this is what the output from the operands would be for the
8351 @samp{att} and @samp{intel} dialects of assembler:
8352
8353 @multitable {Operand} {masm=att} {OFFSET FLAT:.L2}
8354 @headitem Operand @tab masm=att @tab masm=intel
8355 @item @code{%0}
8356 @tab @code{%eax}
8357 @tab @code{eax}
8358 @item @code{%1}
8359 @tab @code{$2}
8360 @tab @code{2}
8361 @item @code{%2}
8362 @tab @code{$.L2}
8363 @tab @code{OFFSET FLAT:.L2}
8364 @end multitable
8365
8366 The table below shows the list of supported modifiers and their effects.
8367
8368 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {masm=att} {masm=intel}
8369 @headitem Modifier @tab Description @tab Operand @tab @option{masm=att} @tab @option{masm=intel}
8370 @item @code{z}
8371 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8372 @tab @code{%z0}
8373 @tab @code{l}
8374 @tab
8375 @item @code{b}
8376 @tab Print the QImode name of the register.
8377 @tab @code{%b0}
8378 @tab @code{%al}
8379 @tab @code{al}
8380 @item @code{h}
8381 @tab Print the QImode name for a ``high'' register.
8382 @tab @code{%h0}
8383 @tab @code{%ah}
8384 @tab @code{ah}
8385 @item @code{w}
8386 @tab Print the HImode name of the register.
8387 @tab @code{%w0}
8388 @tab @code{%ax}
8389 @tab @code{ax}
8390 @item @code{k}
8391 @tab Print the SImode name of the register.
8392 @tab @code{%k0}
8393 @tab @code{%eax}
8394 @tab @code{eax}
8395 @item @code{q}
8396 @tab Print the DImode name of the register.
8397 @tab @code{%q0}
8398 @tab @code{%rax}
8399 @tab @code{rax}
8400 @item @code{l}
8401 @tab Print the label name with no punctuation.
8402 @tab @code{%l2}
8403 @tab @code{.L2}
8404 @tab @code{.L2}
8405 @item @code{c}
8406 @tab Require a constant operand and print the constant expression with no punctuation.
8407 @tab @code{%c1}
8408 @tab @code{2}
8409 @tab @code{2}
8410 @end multitable
8411
8412 @anchor{x86floatingpointasmoperands}
8413 @subsubsection x86 Floating-Point @code{asm} Operands
8414
8415 On x86 targets, there are several rules on the usage of stack-like registers
8416 in the operands of an @code{asm}. These rules apply only to the operands
8417 that are stack-like registers:
8418
8419 @enumerate
8420 @item
8421 Given a set of input registers that die in an @code{asm}, it is
8422 necessary to know which are implicitly popped by the @code{asm}, and
8423 which must be explicitly popped by GCC@.
8424
8425 An input register that is implicitly popped by the @code{asm} must be
8426 explicitly clobbered, unless it is constrained to match an
8427 output operand.
8428
8429 @item
8430 For any input register that is implicitly popped by an @code{asm}, it is
8431 necessary to know how to adjust the stack to compensate for the pop.
8432 If any non-popped input is closer to the top of the reg-stack than
8433 the implicitly popped register, it would not be possible to know what the
8434 stack looked like---it's not clear how the rest of the stack ``slides
8435 up''.
8436
8437 All implicitly popped input registers must be closer to the top of
8438 the reg-stack than any input that is not implicitly popped.
8439
8440 It is possible that if an input dies in an @code{asm}, the compiler might
8441 use the input register for an output reload. Consider this example:
8442
8443 @smallexample
8444 asm ("foo" : "=t" (a) : "f" (b));
8445 @end smallexample
8446
8447 @noindent
8448 This code says that input @code{b} is not popped by the @code{asm}, and that
8449 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
8450 deeper after the @code{asm} than it was before. But, it is possible that
8451 reload may think that it can use the same register for both the input and
8452 the output.
8453
8454 To prevent this from happening,
8455 if any input operand uses the @samp{f} constraint, all output register
8456 constraints must use the @samp{&} early-clobber modifier.
8457
8458 The example above is correctly written as:
8459
8460 @smallexample
8461 asm ("foo" : "=&t" (a) : "f" (b));
8462 @end smallexample
8463
8464 @item
8465 Some operands need to be in particular places on the stack. All
8466 output operands fall in this category---GCC has no other way to
8467 know which registers the outputs appear in unless you indicate
8468 this in the constraints.
8469
8470 Output operands must specifically indicate which register an output
8471 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
8472 constraints must select a class with a single register.
8473
8474 @item
8475 Output operands may not be ``inserted'' between existing stack registers.
8476 Since no 387 opcode uses a read/write operand, all output operands
8477 are dead before the @code{asm}, and are pushed by the @code{asm}.
8478 It makes no sense to push anywhere but the top of the reg-stack.
8479
8480 Output operands must start at the top of the reg-stack: output
8481 operands may not ``skip'' a register.
8482
8483 @item
8484 Some @code{asm} statements may need extra stack space for internal
8485 calculations. This can be guaranteed by clobbering stack registers
8486 unrelated to the inputs and outputs.
8487
8488 @end enumerate
8489
8490 This @code{asm}
8491 takes one input, which is internally popped, and produces two outputs.
8492
8493 @smallexample
8494 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
8495 @end smallexample
8496
8497 @noindent
8498 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
8499 and replaces them with one output. The @code{st(1)} clobber is necessary
8500 for the compiler to know that @code{fyl2xp1} pops both inputs.
8501
8502 @smallexample
8503 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
8504 @end smallexample
8505
8506 @lowersections
8507 @include md.texi
8508 @raisesections
8509
8510 @node Asm Labels
8511 @subsection Controlling Names Used in Assembler Code
8512 @cindex assembler names for identifiers
8513 @cindex names used in assembler code
8514 @cindex identifiers, names in assembler code
8515
8516 You can specify the name to be used in the assembler code for a C
8517 function or variable by writing the @code{asm} (or @code{__asm__})
8518 keyword after the declarator.
8519 It is up to you to make sure that the assembler names you choose do not
8520 conflict with any other assembler symbols, or reference registers.
8521
8522 @subsubheading Assembler names for data:
8523
8524 This sample shows how to specify the assembler name for data:
8525
8526 @smallexample
8527 int foo asm ("myfoo") = 2;
8528 @end smallexample
8529
8530 @noindent
8531 This specifies that the name to be used for the variable @code{foo} in
8532 the assembler code should be @samp{myfoo} rather than the usual
8533 @samp{_foo}.
8534
8535 On systems where an underscore is normally prepended to the name of a C
8536 variable, this feature allows you to define names for the
8537 linker that do not start with an underscore.
8538
8539 GCC does not support using this feature with a non-static local variable
8540 since such variables do not have assembler names. If you are
8541 trying to put the variable in a particular register, see
8542 @ref{Explicit Register Variables}.
8543
8544 @subsubheading Assembler names for functions:
8545
8546 To specify the assembler name for functions, write a declaration for the
8547 function before its definition and put @code{asm} there, like this:
8548
8549 @smallexample
8550 int func (int x, int y) asm ("MYFUNC");
8551
8552 int func (int x, int y)
8553 @{
8554 /* @r{@dots{}} */
8555 @end smallexample
8556
8557 @noindent
8558 This specifies that the name to be used for the function @code{func} in
8559 the assembler code should be @code{MYFUNC}.
8560
8561 @node Explicit Register Variables
8562 @subsection Variables in Specified Registers
8563 @anchor{Explicit Reg Vars}
8564 @cindex explicit register variables
8565 @cindex variables in specified registers
8566 @cindex specified registers
8567
8568 GNU C allows you to associate specific hardware registers with C
8569 variables. In almost all cases, allowing the compiler to assign
8570 registers produces the best code. However under certain unusual
8571 circumstances, more precise control over the variable storage is
8572 required.
8573
8574 Both global and local variables can be associated with a register. The
8575 consequences of performing this association are very different between
8576 the two, as explained in the sections below.
8577
8578 @menu
8579 * Global Register Variables:: Variables declared at global scope.
8580 * Local Register Variables:: Variables declared within a function.
8581 @end menu
8582
8583 @node Global Register Variables
8584 @subsubsection Defining Global Register Variables
8585 @anchor{Global Reg Vars}
8586 @cindex global register variables
8587 @cindex registers, global variables in
8588 @cindex registers, global allocation
8589
8590 You can define a global register variable and associate it with a specified
8591 register like this:
8592
8593 @smallexample
8594 register int *foo asm ("r12");
8595 @end smallexample
8596
8597 @noindent
8598 Here @code{r12} is the name of the register that should be used. Note that
8599 this is the same syntax used for defining local register variables, but for
8600 a global variable the declaration appears outside a function. The
8601 @code{register} keyword is required, and cannot be combined with
8602 @code{static}. The register name must be a valid register name for the
8603 target platform.
8604
8605 Registers are a scarce resource on most systems and allowing the
8606 compiler to manage their usage usually results in the best code. However,
8607 under special circumstances it can make sense to reserve some globally.
8608 For example this may be useful in programs such as programming language
8609 interpreters that have a couple of global variables that are accessed
8610 very often.
8611
8612 After defining a global register variable, for the current compilation
8613 unit:
8614
8615 @itemize @bullet
8616 @item The register is reserved entirely for this use, and will not be
8617 allocated for any other purpose.
8618 @item The register is not saved and restored by any functions.
8619 @item Stores into this register are never deleted even if they appear to be
8620 dead, but references may be deleted, moved or simplified.
8621 @end itemize
8622
8623 Note that these points @emph{only} apply to code that is compiled with the
8624 definition. The behavior of code that is merely linked in (for example
8625 code from libraries) is not affected.
8626
8627 If you want to recompile source files that do not actually use your global
8628 register variable so they do not use the specified register for any other
8629 purpose, you need not actually add the global register declaration to
8630 their source code. It suffices to specify the compiler option
8631 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
8632 register.
8633
8634 @subsubheading Declaring the variable
8635
8636 Global register variables can not have initial values, because an
8637 executable file has no means to supply initial contents for a register.
8638
8639 When selecting a register, choose one that is normally saved and
8640 restored by function calls on your machine. This ensures that code
8641 which is unaware of this reservation (such as library routines) will
8642 restore it before returning.
8643
8644 On machines with register windows, be sure to choose a global
8645 register that is not affected magically by the function call mechanism.
8646
8647 @subsubheading Using the variable
8648
8649 @cindex @code{qsort}, and global register variables
8650 When calling routines that are not aware of the reservation, be
8651 cautious if those routines call back into code which uses them. As an
8652 example, if you call the system library version of @code{qsort}, it may
8653 clobber your registers during execution, but (if you have selected
8654 appropriate registers) it will restore them before returning. However
8655 it will @emph{not} restore them before calling @code{qsort}'s comparison
8656 function. As a result, global values will not reliably be available to
8657 the comparison function unless the @code{qsort} function itself is rebuilt.
8658
8659 Similarly, it is not safe to access the global register variables from signal
8660 handlers or from more than one thread of control. Unless you recompile
8661 them specially for the task at hand, the system library routines may
8662 temporarily use the register for other things.
8663
8664 @cindex register variable after @code{longjmp}
8665 @cindex global register after @code{longjmp}
8666 @cindex value after @code{longjmp}
8667 @findex longjmp
8668 @findex setjmp
8669 On most machines, @code{longjmp} restores to each global register
8670 variable the value it had at the time of the @code{setjmp}. On some
8671 machines, however, @code{longjmp} does not change the value of global
8672 register variables. To be portable, the function that called @code{setjmp}
8673 should make other arrangements to save the values of the global register
8674 variables, and to restore them in a @code{longjmp}. This way, the same
8675 thing happens regardless of what @code{longjmp} does.
8676
8677 Eventually there may be a way of asking the compiler to choose a register
8678 automatically, but first we need to figure out how it should choose and
8679 how to enable you to guide the choice. No solution is evident.
8680
8681 @node Local Register Variables
8682 @subsubsection Specifying Registers for Local Variables
8683 @anchor{Local Reg Vars}
8684 @cindex local variables, specifying registers
8685 @cindex specifying registers for local variables
8686 @cindex registers for local variables
8687
8688 You can define a local register variable and associate it with a specified
8689 register like this:
8690
8691 @smallexample
8692 register int *foo asm ("r12");
8693 @end smallexample
8694
8695 @noindent
8696 Here @code{r12} is the name of the register that should be used. Note
8697 that this is the same syntax used for defining global register variables,
8698 but for a local variable the declaration appears within a function. The
8699 @code{register} keyword is required, and cannot be combined with
8700 @code{static}. The register name must be a valid register name for the
8701 target platform.
8702
8703 As with global register variables, it is recommended that you choose
8704 a register that is normally saved and restored by function calls on your
8705 machine, so that calls to library routines will not clobber it.
8706
8707 The only supported use for this feature is to specify registers
8708 for input and output operands when calling Extended @code{asm}
8709 (@pxref{Extended Asm}). This may be necessary if the constraints for a
8710 particular machine don't provide sufficient control to select the desired
8711 register. To force an operand into a register, create a local variable
8712 and specify the register name after the variable's declaration. Then use
8713 the local variable for the @code{asm} operand and specify any constraint
8714 letter that matches the register:
8715
8716 @smallexample
8717 register int *p1 asm ("r0") = @dots{};
8718 register int *p2 asm ("r1") = @dots{};
8719 register int *result asm ("r0");
8720 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
8721 @end smallexample
8722
8723 @emph{Warning:} In the above example, be aware that a register (for example
8724 @code{r0}) can be call-clobbered by subsequent code, including function
8725 calls and library calls for arithmetic operators on other variables (for
8726 example the initialization of @code{p2}). In this case, use temporary
8727 variables for expressions between the register assignments:
8728
8729 @smallexample
8730 int t1 = @dots{};
8731 register int *p1 asm ("r0") = @dots{};
8732 register int *p2 asm ("r1") = t1;
8733 register int *result asm ("r0");
8734 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
8735 @end smallexample
8736
8737 Defining a register variable does not reserve the register. Other than
8738 when invoking the Extended @code{asm}, the contents of the specified
8739 register are not guaranteed. For this reason, the following uses
8740 are explicitly @emph{not} supported. If they appear to work, it is only
8741 happenstance, and may stop working as intended due to (seemingly)
8742 unrelated changes in surrounding code, or even minor changes in the
8743 optimization of a future version of gcc:
8744
8745 @itemize @bullet
8746 @item Passing parameters to or from Basic @code{asm}
8747 @item Passing parameters to or from Extended @code{asm} without using input
8748 or output operands.
8749 @item Passing parameters to or from routines written in assembler (or
8750 other languages) using non-standard calling conventions.
8751 @end itemize
8752
8753 Some developers use Local Register Variables in an attempt to improve
8754 gcc's allocation of registers, especially in large functions. In this
8755 case the register name is essentially a hint to the register allocator.
8756 While in some instances this can generate better code, improvements are
8757 subject to the whims of the allocator/optimizers. Since there are no
8758 guarantees that your improvements won't be lost, this usage of Local
8759 Register Variables is discouraged.
8760
8761 On the MIPS platform, there is related use for local register variables
8762 with slightly different characteristics (@pxref{MIPS Coprocessors,,
8763 Defining coprocessor specifics for MIPS targets, gccint,
8764 GNU Compiler Collection (GCC) Internals}).
8765
8766 @node Size of an asm
8767 @subsection Size of an @code{asm}
8768
8769 Some targets require that GCC track the size of each instruction used
8770 in order to generate correct code. Because the final length of the
8771 code produced by an @code{asm} statement is only known by the
8772 assembler, GCC must make an estimate as to how big it will be. It
8773 does this by counting the number of instructions in the pattern of the
8774 @code{asm} and multiplying that by the length of the longest
8775 instruction supported by that processor. (When working out the number
8776 of instructions, it assumes that any occurrence of a newline or of
8777 whatever statement separator character is supported by the assembler --
8778 typically @samp{;} --- indicates the end of an instruction.)
8779
8780 Normally, GCC's estimate is adequate to ensure that correct
8781 code is generated, but it is possible to confuse the compiler if you use
8782 pseudo instructions or assembler macros that expand into multiple real
8783 instructions, or if you use assembler directives that expand to more
8784 space in the object file than is needed for a single instruction.
8785 If this happens then the assembler may produce a diagnostic saying that
8786 a label is unreachable.
8787
8788 @node Alternate Keywords
8789 @section Alternate Keywords
8790 @cindex alternate keywords
8791 @cindex keywords, alternate
8792
8793 @option{-ansi} and the various @option{-std} options disable certain
8794 keywords. This causes trouble when you want to use GNU C extensions, or
8795 a general-purpose header file that should be usable by all programs,
8796 including ISO C programs. The keywords @code{asm}, @code{typeof} and
8797 @code{inline} are not available in programs compiled with
8798 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
8799 program compiled with @option{-std=c99} or @option{-std=c11}). The
8800 ISO C99 keyword
8801 @code{restrict} is only available when @option{-std=gnu99} (which will
8802 eventually be the default) or @option{-std=c99} (or the equivalent
8803 @option{-std=iso9899:1999}), or an option for a later standard
8804 version, is used.
8805
8806 The way to solve these problems is to put @samp{__} at the beginning and
8807 end of each problematical keyword. For example, use @code{__asm__}
8808 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
8809
8810 Other C compilers won't accept these alternative keywords; if you want to
8811 compile with another compiler, you can define the alternate keywords as
8812 macros to replace them with the customary keywords. It looks like this:
8813
8814 @smallexample
8815 #ifndef __GNUC__
8816 #define __asm__ asm
8817 #endif
8818 @end smallexample
8819
8820 @findex __extension__
8821 @opindex pedantic
8822 @option{-pedantic} and other options cause warnings for many GNU C extensions.
8823 You can
8824 prevent such warnings within one expression by writing
8825 @code{__extension__} before the expression. @code{__extension__} has no
8826 effect aside from this.
8827
8828 @node Incomplete Enums
8829 @section Incomplete @code{enum} Types
8830
8831 You can define an @code{enum} tag without specifying its possible values.
8832 This results in an incomplete type, much like what you get if you write
8833 @code{struct foo} without describing the elements. A later declaration
8834 that does specify the possible values completes the type.
8835
8836 You can't allocate variables or storage using the type while it is
8837 incomplete. However, you can work with pointers to that type.
8838
8839 This extension may not be very useful, but it makes the handling of
8840 @code{enum} more consistent with the way @code{struct} and @code{union}
8841 are handled.
8842
8843 This extension is not supported by GNU C++.
8844
8845 @node Function Names
8846 @section Function Names as Strings
8847 @cindex @code{__func__} identifier
8848 @cindex @code{__FUNCTION__} identifier
8849 @cindex @code{__PRETTY_FUNCTION__} identifier
8850
8851 GCC provides three magic variables that hold the name of the current
8852 function, as a string. The first of these is @code{__func__}, which
8853 is part of the C99 standard:
8854
8855 The identifier @code{__func__} is implicitly declared by the translator
8856 as if, immediately following the opening brace of each function
8857 definition, the declaration
8858
8859 @smallexample
8860 static const char __func__[] = "function-name";
8861 @end smallexample
8862
8863 @noindent
8864 appeared, where function-name is the name of the lexically-enclosing
8865 function. This name is the unadorned name of the function.
8866
8867 @code{__FUNCTION__} is another name for @code{__func__}, provided for
8868 backward compatibility with old versions of GCC.
8869
8870 In C, @code{__PRETTY_FUNCTION__} is yet another name for
8871 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
8872 the type signature of the function as well as its bare name. For
8873 example, this program:
8874
8875 @smallexample
8876 extern "C" @{
8877 extern int printf (char *, ...);
8878 @}
8879
8880 class a @{
8881 public:
8882 void sub (int i)
8883 @{
8884 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
8885 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
8886 @}
8887 @};
8888
8889 int
8890 main (void)
8891 @{
8892 a ax;
8893 ax.sub (0);
8894 return 0;
8895 @}
8896 @end smallexample
8897
8898 @noindent
8899 gives this output:
8900
8901 @smallexample
8902 __FUNCTION__ = sub
8903 __PRETTY_FUNCTION__ = void a::sub(int)
8904 @end smallexample
8905
8906 These identifiers are variables, not preprocessor macros, and may not
8907 be used to initialize @code{char} arrays or be concatenated with other string
8908 literals.
8909
8910 @node Return Address
8911 @section Getting the Return or Frame Address of a Function
8912
8913 These functions may be used to get information about the callers of a
8914 function.
8915
8916 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
8917 This function returns the return address of the current function, or of
8918 one of its callers. The @var{level} argument is number of frames to
8919 scan up the call stack. A value of @code{0} yields the return address
8920 of the current function, a value of @code{1} yields the return address
8921 of the caller of the current function, and so forth. When inlining
8922 the expected behavior is that the function returns the address of
8923 the function that is returned to. To work around this behavior use
8924 the @code{noinline} function attribute.
8925
8926 The @var{level} argument must be a constant integer.
8927
8928 On some machines it may be impossible to determine the return address of
8929 any function other than the current one; in such cases, or when the top
8930 of the stack has been reached, this function returns @code{0} or a
8931 random value. In addition, @code{__builtin_frame_address} may be used
8932 to determine if the top of the stack has been reached.
8933
8934 Additional post-processing of the returned value may be needed, see
8935 @code{__builtin_extract_return_addr}.
8936
8937 Calling this function with a nonzero argument can have unpredictable
8938 effects, including crashing the calling program. As a result, calls
8939 that are considered unsafe are diagnosed when the @option{-Wframe-address}
8940 option is in effect. Such calls should only be made in debugging
8941 situations.
8942 @end deftypefn
8943
8944 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
8945 The address as returned by @code{__builtin_return_address} may have to be fed
8946 through this function to get the actual encoded address. For example, on the
8947 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
8948 platforms an offset has to be added for the true next instruction to be
8949 executed.
8950
8951 If no fixup is needed, this function simply passes through @var{addr}.
8952 @end deftypefn
8953
8954 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
8955 This function does the reverse of @code{__builtin_extract_return_addr}.
8956 @end deftypefn
8957
8958 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
8959 This function is similar to @code{__builtin_return_address}, but it
8960 returns the address of the function frame rather than the return address
8961 of the function. Calling @code{__builtin_frame_address} with a value of
8962 @code{0} yields the frame address of the current function, a value of
8963 @code{1} yields the frame address of the caller of the current function,
8964 and so forth.
8965
8966 The frame is the area on the stack that holds local variables and saved
8967 registers. The frame address is normally the address of the first word
8968 pushed on to the stack by the function. However, the exact definition
8969 depends upon the processor and the calling convention. If the processor
8970 has a dedicated frame pointer register, and the function has a frame,
8971 then @code{__builtin_frame_address} returns the value of the frame
8972 pointer register.
8973
8974 On some machines it may be impossible to determine the frame address of
8975 any function other than the current one; in such cases, or when the top
8976 of the stack has been reached, this function returns @code{0} if
8977 the first frame pointer is properly initialized by the startup code.
8978
8979 Calling this function with a nonzero argument can have unpredictable
8980 effects, including crashing the calling program. As a result, calls
8981 that are considered unsafe are diagnosed when the @option{-Wframe-address}
8982 option is in effect. Such calls should only be made in debugging
8983 situations.
8984 @end deftypefn
8985
8986 @node Vector Extensions
8987 @section Using Vector Instructions through Built-in Functions
8988
8989 On some targets, the instruction set contains SIMD vector instructions which
8990 operate on multiple values contained in one large register at the same time.
8991 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
8992 this way.
8993
8994 The first step in using these extensions is to provide the necessary data
8995 types. This should be done using an appropriate @code{typedef}:
8996
8997 @smallexample
8998 typedef int v4si __attribute__ ((vector_size (16)));
8999 @end smallexample
9000
9001 @noindent
9002 The @code{int} type specifies the base type, while the attribute specifies
9003 the vector size for the variable, measured in bytes. For example, the
9004 declaration above causes the compiler to set the mode for the @code{v4si}
9005 type to be 16 bytes wide and divided into @code{int} sized units. For
9006 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9007 corresponding mode of @code{foo} is @acronym{V4SI}.
9008
9009 The @code{vector_size} attribute is only applicable to integral and
9010 float scalars, although arrays, pointers, and function return values
9011 are allowed in conjunction with this construct. Only sizes that are
9012 a power of two are currently allowed.
9013
9014 All the basic integer types can be used as base types, both as signed
9015 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9016 @code{long long}. In addition, @code{float} and @code{double} can be
9017 used to build floating-point vector types.
9018
9019 Specifying a combination that is not valid for the current architecture
9020 causes GCC to synthesize the instructions using a narrower mode.
9021 For example, if you specify a variable of type @code{V4SI} and your
9022 architecture does not allow for this specific SIMD type, GCC
9023 produces code that uses 4 @code{SIs}.
9024
9025 The types defined in this manner can be used with a subset of normal C
9026 operations. Currently, GCC allows using the following operators
9027 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9028
9029 The operations behave like C++ @code{valarrays}. Addition is defined as
9030 the addition of the corresponding elements of the operands. For
9031 example, in the code below, each of the 4 elements in @var{a} is
9032 added to the corresponding 4 elements in @var{b} and the resulting
9033 vector is stored in @var{c}.
9034
9035 @smallexample
9036 typedef int v4si __attribute__ ((vector_size (16)));
9037
9038 v4si a, b, c;
9039
9040 c = a + b;
9041 @end smallexample
9042
9043 Subtraction, multiplication, division, and the logical operations
9044 operate in a similar manner. Likewise, the result of using the unary
9045 minus or complement operators on a vector type is a vector whose
9046 elements are the negative or complemented values of the corresponding
9047 elements in the operand.
9048
9049 It is possible to use shifting operators @code{<<}, @code{>>} on
9050 integer-type vectors. The operation is defined as following: @code{@{a0,
9051 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9052 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9053 elements.
9054
9055 For convenience, it is allowed to use a binary vector operation
9056 where one operand is a scalar. In that case the compiler transforms
9057 the scalar operand into a vector where each element is the scalar from
9058 the operation. The transformation happens only if the scalar could be
9059 safely converted to the vector-element type.
9060 Consider the following code.
9061
9062 @smallexample
9063 typedef int v4si __attribute__ ((vector_size (16)));
9064
9065 v4si a, b, c;
9066 long l;
9067
9068 a = b + 1; /* a = b + @{1,1,1,1@}; */
9069 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9070
9071 a = l + a; /* Error, cannot convert long to int. */
9072 @end smallexample
9073
9074 Vectors can be subscripted as if the vector were an array with
9075 the same number of elements and base type. Out of bound accesses
9076 invoke undefined behavior at run time. Warnings for out of bound
9077 accesses for vector subscription can be enabled with
9078 @option{-Warray-bounds}.
9079
9080 Vector comparison is supported with standard comparison
9081 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9082 vector expressions of integer-type or real-type. Comparison between
9083 integer-type vectors and real-type vectors are not supported. The
9084 result of the comparison is a vector of the same width and number of
9085 elements as the comparison operands with a signed integral element
9086 type.
9087
9088 Vectors are compared element-wise producing 0 when comparison is false
9089 and -1 (constant of the appropriate type where all bits are set)
9090 otherwise. Consider the following example.
9091
9092 @smallexample
9093 typedef int v4si __attribute__ ((vector_size (16)));
9094
9095 v4si a = @{1,2,3,4@};
9096 v4si b = @{3,2,1,4@};
9097 v4si c;
9098
9099 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9100 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9101 @end smallexample
9102
9103 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9104 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9105 integer vector with the same number of elements of the same size as @code{b}
9106 and @code{c}, computes all three arguments and creates a vector
9107 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9108 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9109 As in the case of binary operations, this syntax is also accepted when
9110 one of @code{b} or @code{c} is a scalar that is then transformed into a
9111 vector. If both @code{b} and @code{c} are scalars and the type of
9112 @code{true?b:c} has the same size as the element type of @code{a}, then
9113 @code{b} and @code{c} are converted to a vector type whose elements have
9114 this type and with the same number of elements as @code{a}.
9115
9116 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9117 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9118 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9119 For mixed operations between a scalar @code{s} and a vector @code{v},
9120 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9121 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9122
9123 Vector shuffling is available using functions
9124 @code{__builtin_shuffle (vec, mask)} and
9125 @code{__builtin_shuffle (vec0, vec1, mask)}.
9126 Both functions construct a permutation of elements from one or two
9127 vectors and return a vector of the same type as the input vector(s).
9128 The @var{mask} is an integral vector with the same width (@var{W})
9129 and element count (@var{N}) as the output vector.
9130
9131 The elements of the input vectors are numbered in memory ordering of
9132 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9133 elements of @var{mask} are considered modulo @var{N} in the single-operand
9134 case and modulo @math{2*@var{N}} in the two-operand case.
9135
9136 Consider the following example,
9137
9138 @smallexample
9139 typedef int v4si __attribute__ ((vector_size (16)));
9140
9141 v4si a = @{1,2,3,4@};
9142 v4si b = @{5,6,7,8@};
9143 v4si mask1 = @{0,1,1,3@};
9144 v4si mask2 = @{0,4,2,5@};
9145 v4si res;
9146
9147 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9148 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9149 @end smallexample
9150
9151 Note that @code{__builtin_shuffle} is intentionally semantically
9152 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9153
9154 You can declare variables and use them in function calls and returns, as
9155 well as in assignments and some casts. You can specify a vector type as
9156 a return type for a function. Vector types can also be used as function
9157 arguments. It is possible to cast from one vector type to another,
9158 provided they are of the same size (in fact, you can also cast vectors
9159 to and from other datatypes of the same size).
9160
9161 You cannot operate between vectors of different lengths or different
9162 signedness without a cast.
9163
9164 @node Offsetof
9165 @section Support for @code{offsetof}
9166 @findex __builtin_offsetof
9167
9168 GCC implements for both C and C++ a syntactic extension to implement
9169 the @code{offsetof} macro.
9170
9171 @smallexample
9172 primary:
9173 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9174
9175 offsetof_member_designator:
9176 @code{identifier}
9177 | offsetof_member_designator "." @code{identifier}
9178 | offsetof_member_designator "[" @code{expr} "]"
9179 @end smallexample
9180
9181 This extension is sufficient such that
9182
9183 @smallexample
9184 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9185 @end smallexample
9186
9187 @noindent
9188 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9189 may be dependent. In either case, @var{member} may consist of a single
9190 identifier, or a sequence of member accesses and array references.
9191
9192 @node __sync Builtins
9193 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9194
9195 The following built-in functions
9196 are intended to be compatible with those described
9197 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9198 section 7.4. As such, they depart from normal GCC practice by not using
9199 the @samp{__builtin_} prefix and also by being overloaded so that they
9200 work on multiple types.
9201
9202 The definition given in the Intel documentation allows only for the use of
9203 the types @code{int}, @code{long}, @code{long long} or their unsigned
9204 counterparts. GCC allows any integral scalar or pointer type that is
9205 1, 2, 4 or 8 bytes in length.
9206
9207 These functions are implemented in terms of the @samp{__atomic}
9208 builtins (@pxref{__atomic Builtins}). They should not be used for new
9209 code which should use the @samp{__atomic} builtins instead.
9210
9211 Not all operations are supported by all target processors. If a particular
9212 operation cannot be implemented on the target processor, a warning is
9213 generated and a call to an external function is generated. The external
9214 function carries the same name as the built-in version,
9215 with an additional suffix
9216 @samp{_@var{n}} where @var{n} is the size of the data type.
9217
9218 @c ??? Should we have a mechanism to suppress this warning? This is almost
9219 @c useful for implementing the operation under the control of an external
9220 @c mutex.
9221
9222 In most cases, these built-in functions are considered a @dfn{full barrier}.
9223 That is,
9224 no memory operand is moved across the operation, either forward or
9225 backward. Further, instructions are issued as necessary to prevent the
9226 processor from speculating loads across the operation and from queuing stores
9227 after the operation.
9228
9229 All of the routines are described in the Intel documentation to take
9230 ``an optional list of variables protected by the memory barrier''. It's
9231 not clear what is meant by that; it could mean that @emph{only} the
9232 listed variables are protected, or it could mean a list of additional
9233 variables to be protected. The list is ignored by GCC which treats it as
9234 empty. GCC interprets an empty list as meaning that all globally
9235 accessible variables should be protected.
9236
9237 @table @code
9238 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9239 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9240 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9241 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9242 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9243 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9244 @findex __sync_fetch_and_add
9245 @findex __sync_fetch_and_sub
9246 @findex __sync_fetch_and_or
9247 @findex __sync_fetch_and_and
9248 @findex __sync_fetch_and_xor
9249 @findex __sync_fetch_and_nand
9250 These built-in functions perform the operation suggested by the name, and
9251 returns the value that had previously been in memory. That is,
9252
9253 @smallexample
9254 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9255 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9256 @end smallexample
9257
9258 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9259 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9260
9261 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9262 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9263 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9264 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9265 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9266 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9267 @findex __sync_add_and_fetch
9268 @findex __sync_sub_and_fetch
9269 @findex __sync_or_and_fetch
9270 @findex __sync_and_and_fetch
9271 @findex __sync_xor_and_fetch
9272 @findex __sync_nand_and_fetch
9273 These built-in functions perform the operation suggested by the name, and
9274 return the new value. That is,
9275
9276 @smallexample
9277 @{ *ptr @var{op}= value; return *ptr; @}
9278 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9279 @end smallexample
9280
9281 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9282 as @code{*ptr = ~(*ptr & value)} instead of
9283 @code{*ptr = ~*ptr & value}.
9284
9285 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9286 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9287 @findex __sync_bool_compare_and_swap
9288 @findex __sync_val_compare_and_swap
9289 These built-in functions perform an atomic compare and swap.
9290 That is, if the current
9291 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9292 @code{*@var{ptr}}.
9293
9294 The ``bool'' version returns true if the comparison is successful and
9295 @var{newval} is written. The ``val'' version returns the contents
9296 of @code{*@var{ptr}} before the operation.
9297
9298 @item __sync_synchronize (...)
9299 @findex __sync_synchronize
9300 This built-in function issues a full memory barrier.
9301
9302 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9303 @findex __sync_lock_test_and_set
9304 This built-in function, as described by Intel, is not a traditional test-and-set
9305 operation, but rather an atomic exchange operation. It writes @var{value}
9306 into @code{*@var{ptr}}, and returns the previous contents of
9307 @code{*@var{ptr}}.
9308
9309 Many targets have only minimal support for such locks, and do not support
9310 a full exchange operation. In this case, a target may support reduced
9311 functionality here by which the @emph{only} valid value to store is the
9312 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9313 is implementation defined.
9314
9315 This built-in function is not a full barrier,
9316 but rather an @dfn{acquire barrier}.
9317 This means that references after the operation cannot move to (or be
9318 speculated to) before the operation, but previous memory stores may not
9319 be globally visible yet, and previous memory loads may not yet be
9320 satisfied.
9321
9322 @item void __sync_lock_release (@var{type} *ptr, ...)
9323 @findex __sync_lock_release
9324 This built-in function releases the lock acquired by
9325 @code{__sync_lock_test_and_set}.
9326 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9327
9328 This built-in function is not a full barrier,
9329 but rather a @dfn{release barrier}.
9330 This means that all previous memory stores are globally visible, and all
9331 previous memory loads have been satisfied, but following memory reads
9332 are not prevented from being speculated to before the barrier.
9333 @end table
9334
9335 @node __atomic Builtins
9336 @section Built-in Functions for Memory Model Aware Atomic Operations
9337
9338 The following built-in functions approximately match the requirements
9339 for the C++11 memory model. They are all
9340 identified by being prefixed with @samp{__atomic} and most are
9341 overloaded so that they work with multiple types.
9342
9343 These functions are intended to replace the legacy @samp{__sync}
9344 builtins. The main difference is that the memory order that is requested
9345 is a parameter to the functions. New code should always use the
9346 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9347
9348 Note that the @samp{__atomic} builtins assume that programs will
9349 conform to the C++11 memory model. In particular, they assume
9350 that programs are free of data races. See the C++11 standard for
9351 detailed requirements.
9352
9353 The @samp{__atomic} builtins can be used with any integral scalar or
9354 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9355 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9356 supported by the architecture.
9357
9358 The four non-arithmetic functions (load, store, exchange, and
9359 compare_exchange) all have a generic version as well. This generic
9360 version works on any data type. It uses the lock-free built-in function
9361 if the specific data type size makes that possible; otherwise, an
9362 external call is left to be resolved at run time. This external call is
9363 the same format with the addition of a @samp{size_t} parameter inserted
9364 as the first parameter indicating the size of the object being pointed to.
9365 All objects must be the same size.
9366
9367 There are 6 different memory orders that can be specified. These map
9368 to the C++11 memory orders with the same names, see the C++11 standard
9369 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9370 on atomic synchronization} for detailed definitions. Individual
9371 targets may also support additional memory orders for use on specific
9372 architectures. Refer to the target documentation for details of
9373 these.
9374
9375 An atomic operation can both constrain code motion and
9376 be mapped to hardware instructions for synchronization between threads
9377 (e.g., a fence). To which extent this happens is controlled by the
9378 memory orders, which are listed here in approximately ascending order of
9379 strength. The description of each memory order is only meant to roughly
9380 illustrate the effects and is not a specification; see the C++11
9381 memory model for precise semantics.
9382
9383 @table @code
9384 @item __ATOMIC_RELAXED
9385 Implies no inter-thread ordering constraints.
9386 @item __ATOMIC_CONSUME
9387 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9388 memory order because of a deficiency in C++11's semantics for
9389 @code{memory_order_consume}.
9390 @item __ATOMIC_ACQUIRE
9391 Creates an inter-thread happens-before constraint from the release (or
9392 stronger) semantic store to this acquire load. Can prevent hoisting
9393 of code to before the operation.
9394 @item __ATOMIC_RELEASE
9395 Creates an inter-thread happens-before constraint to acquire (or stronger)
9396 semantic loads that read from this release store. Can prevent sinking
9397 of code to after the operation.
9398 @item __ATOMIC_ACQ_REL
9399 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9400 @code{__ATOMIC_RELEASE}.
9401 @item __ATOMIC_SEQ_CST
9402 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9403 @end table
9404
9405 Note that in the C++11 memory model, @emph{fences} (e.g.,
9406 @samp{__atomic_thread_fence}) take effect in combination with other
9407 atomic operations on specific memory locations (e.g., atomic loads);
9408 operations on specific memory locations do not necessarily affect other
9409 operations in the same way.
9410
9411 Target architectures are encouraged to provide their own patterns for
9412 each of the atomic built-in functions. If no target is provided, the original
9413 non-memory model set of @samp{__sync} atomic built-in functions are
9414 used, along with any required synchronization fences surrounding it in
9415 order to achieve the proper behavior. Execution in this case is subject
9416 to the same restrictions as those built-in functions.
9417
9418 If there is no pattern or mechanism to provide a lock-free instruction
9419 sequence, a call is made to an external routine with the same parameters
9420 to be resolved at run time.
9421
9422 When implementing patterns for these built-in functions, the memory order
9423 parameter can be ignored as long as the pattern implements the most
9424 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
9425 orders execute correctly with this memory order but they may not execute as
9426 efficiently as they could with a more appropriate implementation of the
9427 relaxed requirements.
9428
9429 Note that the C++11 standard allows for the memory order parameter to be
9430 determined at run time rather than at compile time. These built-in
9431 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
9432 than invoke a runtime library call or inline a switch statement. This is
9433 standard compliant, safe, and the simplest approach for now.
9434
9435 The memory order parameter is a signed int, but only the lower 16 bits are
9436 reserved for the memory order. The remainder of the signed int is reserved
9437 for target use and should be 0. Use of the predefined atomic values
9438 ensures proper usage.
9439
9440 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
9441 This built-in function implements an atomic load operation. It returns the
9442 contents of @code{*@var{ptr}}.
9443
9444 The valid memory order variants are
9445 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9446 and @code{__ATOMIC_CONSUME}.
9447
9448 @end deftypefn
9449
9450 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
9451 This is the generic version of an atomic load. It returns the
9452 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
9453
9454 @end deftypefn
9455
9456 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
9457 This built-in function implements an atomic store operation. It writes
9458 @code{@var{val}} into @code{*@var{ptr}}.
9459
9460 The valid memory order variants are
9461 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
9462
9463 @end deftypefn
9464
9465 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
9466 This is the generic version of an atomic store. It stores the value
9467 of @code{*@var{val}} into @code{*@var{ptr}}.
9468
9469 @end deftypefn
9470
9471 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
9472 This built-in function implements an atomic exchange operation. It writes
9473 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
9474 @code{*@var{ptr}}.
9475
9476 The valid memory order variants are
9477 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9478 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
9479
9480 @end deftypefn
9481
9482 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
9483 This is the generic version of an atomic exchange. It stores the
9484 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
9485 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
9486
9487 @end deftypefn
9488
9489 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
9490 This built-in function implements an atomic compare and exchange operation.
9491 This compares the contents of @code{*@var{ptr}} with the contents of
9492 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
9493 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
9494 equal, the operation is a @emph{read} and the current contents of
9495 @code{*@var{ptr}} is written into @code{*@var{expected}}. @var{weak} is true
9496 for weak compare_exchange, and false for the strong variation. Many targets
9497 only offer the strong variation and ignore the parameter. When in doubt, use
9498 the strong variation.
9499
9500 True is returned if @var{desired} is written into
9501 @code{*@var{ptr}} and the operation is considered to conform to the
9502 memory order specified by @var{success_memorder}. There are no
9503 restrictions on what memory order can be used here.
9504
9505 False is returned otherwise, and the operation is considered to conform
9506 to @var{failure_memorder}. This memory order cannot be
9507 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
9508 stronger order than that specified by @var{success_memorder}.
9509
9510 @end deftypefn
9511
9512 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
9513 This built-in function implements the generic version of
9514 @code{__atomic_compare_exchange}. The function is virtually identical to
9515 @code{__atomic_compare_exchange_n}, except the desired value is also a
9516 pointer.
9517
9518 @end deftypefn
9519
9520 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
9521 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
9522 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
9523 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
9524 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
9525 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
9526 These built-in functions perform the operation suggested by the name, and
9527 return the result of the operation. That is,
9528
9529 @smallexample
9530 @{ *ptr @var{op}= val; return *ptr; @}
9531 @end smallexample
9532
9533 All memory orders are valid.
9534
9535 @end deftypefn
9536
9537 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
9538 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
9539 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
9540 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
9541 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
9542 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
9543 These built-in functions perform the operation suggested by the name, and
9544 return the value that had previously been in @code{*@var{ptr}}. That is,
9545
9546 @smallexample
9547 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
9548 @end smallexample
9549
9550 All memory orders are valid.
9551
9552 @end deftypefn
9553
9554 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
9555
9556 This built-in function performs an atomic test-and-set operation on
9557 the byte at @code{*@var{ptr}}. The byte is set to some implementation
9558 defined nonzero ``set'' value and the return value is @code{true} if and only
9559 if the previous contents were ``set''.
9560 It should be only used for operands of type @code{bool} or @code{char}. For
9561 other types only part of the value may be set.
9562
9563 All memory orders are valid.
9564
9565 @end deftypefn
9566
9567 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
9568
9569 This built-in function performs an atomic clear operation on
9570 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
9571 It should be only used for operands of type @code{bool} or @code{char} and
9572 in conjunction with @code{__atomic_test_and_set}.
9573 For other types it may only clear partially. If the type is not @code{bool}
9574 prefer using @code{__atomic_store}.
9575
9576 The valid memory order variants are
9577 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
9578 @code{__ATOMIC_RELEASE}.
9579
9580 @end deftypefn
9581
9582 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
9583
9584 This built-in function acts as a synchronization fence between threads
9585 based on the specified memory order.
9586
9587 All memory orders are valid.
9588
9589 @end deftypefn
9590
9591 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
9592
9593 This built-in function acts as a synchronization fence between a thread
9594 and signal handlers based in the same thread.
9595
9596 All memory orders are valid.
9597
9598 @end deftypefn
9599
9600 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
9601
9602 This built-in function returns true if objects of @var{size} bytes always
9603 generate lock-free atomic instructions for the target architecture.
9604 @var{size} must resolve to a compile-time constant and the result also
9605 resolves to a compile-time constant.
9606
9607 @var{ptr} is an optional pointer to the object that may be used to determine
9608 alignment. A value of 0 indicates typical alignment should be used. The
9609 compiler may also ignore this parameter.
9610
9611 @smallexample
9612 if (_atomic_always_lock_free (sizeof (long long), 0))
9613 @end smallexample
9614
9615 @end deftypefn
9616
9617 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
9618
9619 This built-in function returns true if objects of @var{size} bytes always
9620 generate lock-free atomic instructions for the target architecture. If
9621 the built-in function is not known to be lock-free, a call is made to a
9622 runtime routine named @code{__atomic_is_lock_free}.
9623
9624 @var{ptr} is an optional pointer to the object that may be used to determine
9625 alignment. A value of 0 indicates typical alignment should be used. The
9626 compiler may also ignore this parameter.
9627 @end deftypefn
9628
9629 @node Integer Overflow Builtins
9630 @section Built-in Functions to Perform Arithmetic with Overflow Checking
9631
9632 The following built-in functions allow performing simple arithmetic operations
9633 together with checking whether the operations overflowed.
9634
9635 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9636 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
9637 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
9638 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long int *res)
9639 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
9640 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9641 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long int *res)
9642
9643 These built-in functions promote the first two operands into infinite precision signed
9644 type and perform addition on those promoted operands. The result is then
9645 cast to the type the third pointer argument points to and stored there.
9646 If the stored result is equal to the infinite precision result, the built-in
9647 functions return false, otherwise they return true. As the addition is
9648 performed in infinite signed precision, these built-in functions have fully defined
9649 behavior for all argument values.
9650
9651 The first built-in function allows arbitrary integral types for operands and
9652 the result type must be pointer to some integer type, the rest of the built-in
9653 functions have explicit integer types.
9654
9655 The compiler will attempt to use hardware instructions to implement
9656 these built-in functions where possible, like conditional jump on overflow
9657 after addition, conditional jump on carry etc.
9658
9659 @end deftypefn
9660
9661 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9662 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
9663 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
9664 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long int *res)
9665 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
9666 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9667 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long int *res)
9668
9669 These built-in functions are similar to the add overflow checking built-in
9670 functions above, except they perform subtraction, subtract the second argument
9671 from the first one, instead of addition.
9672
9673 @end deftypefn
9674
9675 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9676 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
9677 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
9678 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long int *res)
9679 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
9680 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9681 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long int *res)
9682
9683 These built-in functions are similar to the add overflow checking built-in
9684 functions above, except they perform multiplication, instead of addition.
9685
9686 @end deftypefn
9687
9688 @node x86 specific memory model extensions for transactional memory
9689 @section x86-Specific Memory Model Extensions for Transactional Memory
9690
9691 The x86 architecture supports additional memory ordering flags
9692 to mark lock critical sections for hardware lock elision.
9693 These must be specified in addition to an existing memory order to
9694 atomic intrinsics.
9695
9696 @table @code
9697 @item __ATOMIC_HLE_ACQUIRE
9698 Start lock elision on a lock variable.
9699 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
9700 @item __ATOMIC_HLE_RELEASE
9701 End lock elision on a lock variable.
9702 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
9703 @end table
9704
9705 When a lock acquire fails, it is required for good performance to abort
9706 the transaction quickly. This can be done with a @code{_mm_pause}.
9707
9708 @smallexample
9709 #include <immintrin.h> // For _mm_pause
9710
9711 int lockvar;
9712
9713 /* Acquire lock with lock elision */
9714 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
9715 _mm_pause(); /* Abort failed transaction */
9716 ...
9717 /* Free lock with lock elision */
9718 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
9719 @end smallexample
9720
9721 @node Object Size Checking
9722 @section Object Size Checking Built-in Functions
9723 @findex __builtin_object_size
9724 @findex __builtin___memcpy_chk
9725 @findex __builtin___mempcpy_chk
9726 @findex __builtin___memmove_chk
9727 @findex __builtin___memset_chk
9728 @findex __builtin___strcpy_chk
9729 @findex __builtin___stpcpy_chk
9730 @findex __builtin___strncpy_chk
9731 @findex __builtin___strcat_chk
9732 @findex __builtin___strncat_chk
9733 @findex __builtin___sprintf_chk
9734 @findex __builtin___snprintf_chk
9735 @findex __builtin___vsprintf_chk
9736 @findex __builtin___vsnprintf_chk
9737 @findex __builtin___printf_chk
9738 @findex __builtin___vprintf_chk
9739 @findex __builtin___fprintf_chk
9740 @findex __builtin___vfprintf_chk
9741
9742 GCC implements a limited buffer overflow protection mechanism
9743 that can prevent some buffer overflow attacks.
9744
9745 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
9746 is a built-in construct that returns a constant number of bytes from
9747 @var{ptr} to the end of the object @var{ptr} pointer points to
9748 (if known at compile time). @code{__builtin_object_size} never evaluates
9749 its arguments for side-effects. If there are any side-effects in them, it
9750 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
9751 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
9752 point to and all of them are known at compile time, the returned number
9753 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
9754 0 and minimum if nonzero. If it is not possible to determine which objects
9755 @var{ptr} points to at compile time, @code{__builtin_object_size} should
9756 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
9757 for @var{type} 2 or 3.
9758
9759 @var{type} is an integer constant from 0 to 3. If the least significant
9760 bit is clear, objects are whole variables, if it is set, a closest
9761 surrounding subobject is considered the object a pointer points to.
9762 The second bit determines if maximum or minimum of remaining bytes
9763 is computed.
9764
9765 @smallexample
9766 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
9767 char *p = &var.buf1[1], *q = &var.b;
9768
9769 /* Here the object p points to is var. */
9770 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
9771 /* The subobject p points to is var.buf1. */
9772 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
9773 /* The object q points to is var. */
9774 assert (__builtin_object_size (q, 0)
9775 == (char *) (&var + 1) - (char *) &var.b);
9776 /* The subobject q points to is var.b. */
9777 assert (__builtin_object_size (q, 1) == sizeof (var.b));
9778 @end smallexample
9779 @end deftypefn
9780
9781 There are built-in functions added for many common string operation
9782 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
9783 built-in is provided. This built-in has an additional last argument,
9784 which is the number of bytes remaining in object the @var{dest}
9785 argument points to or @code{(size_t) -1} if the size is not known.
9786
9787 The built-in functions are optimized into the normal string functions
9788 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
9789 it is known at compile time that the destination object will not
9790 be overflown. If the compiler can determine at compile time the
9791 object will be always overflown, it issues a warning.
9792
9793 The intended use can be e.g.@:
9794
9795 @smallexample
9796 #undef memcpy
9797 #define bos0(dest) __builtin_object_size (dest, 0)
9798 #define memcpy(dest, src, n) \
9799 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
9800
9801 char *volatile p;
9802 char buf[10];
9803 /* It is unknown what object p points to, so this is optimized
9804 into plain memcpy - no checking is possible. */
9805 memcpy (p, "abcde", n);
9806 /* Destination is known and length too. It is known at compile
9807 time there will be no overflow. */
9808 memcpy (&buf[5], "abcde", 5);
9809 /* Destination is known, but the length is not known at compile time.
9810 This will result in __memcpy_chk call that can check for overflow
9811 at run time. */
9812 memcpy (&buf[5], "abcde", n);
9813 /* Destination is known and it is known at compile time there will
9814 be overflow. There will be a warning and __memcpy_chk call that
9815 will abort the program at run time. */
9816 memcpy (&buf[6], "abcde", 5);
9817 @end smallexample
9818
9819 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
9820 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
9821 @code{strcat} and @code{strncat}.
9822
9823 There are also checking built-in functions for formatted output functions.
9824 @smallexample
9825 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
9826 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
9827 const char *fmt, ...);
9828 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
9829 va_list ap);
9830 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
9831 const char *fmt, va_list ap);
9832 @end smallexample
9833
9834 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
9835 etc.@: functions and can contain implementation specific flags on what
9836 additional security measures the checking function might take, such as
9837 handling @code{%n} differently.
9838
9839 The @var{os} argument is the object size @var{s} points to, like in the
9840 other built-in functions. There is a small difference in the behavior
9841 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
9842 optimized into the non-checking functions only if @var{flag} is 0, otherwise
9843 the checking function is called with @var{os} argument set to
9844 @code{(size_t) -1}.
9845
9846 In addition to this, there are checking built-in functions
9847 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
9848 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
9849 These have just one additional argument, @var{flag}, right before
9850 format string @var{fmt}. If the compiler is able to optimize them to
9851 @code{fputc} etc.@: functions, it does, otherwise the checking function
9852 is called and the @var{flag} argument passed to it.
9853
9854 @node Pointer Bounds Checker builtins
9855 @section Pointer Bounds Checker Built-in Functions
9856 @cindex Pointer Bounds Checker builtins
9857 @findex __builtin___bnd_set_ptr_bounds
9858 @findex __builtin___bnd_narrow_ptr_bounds
9859 @findex __builtin___bnd_copy_ptr_bounds
9860 @findex __builtin___bnd_init_ptr_bounds
9861 @findex __builtin___bnd_null_ptr_bounds
9862 @findex __builtin___bnd_store_ptr_bounds
9863 @findex __builtin___bnd_chk_ptr_lbounds
9864 @findex __builtin___bnd_chk_ptr_ubounds
9865 @findex __builtin___bnd_chk_ptr_bounds
9866 @findex __builtin___bnd_get_ptr_lbound
9867 @findex __builtin___bnd_get_ptr_ubound
9868
9869 GCC provides a set of built-in functions to control Pointer Bounds Checker
9870 instrumentation. Note that all Pointer Bounds Checker builtins can be used
9871 even if you compile with Pointer Bounds Checker off
9872 (@option{-fno-check-pointer-bounds}).
9873 The behavior may differ in such case as documented below.
9874
9875 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
9876
9877 This built-in function returns a new pointer with the value of @var{q}, and
9878 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
9879 Bounds Checker off, the built-in function just returns the first argument.
9880
9881 @smallexample
9882 extern void *__wrap_malloc (size_t n)
9883 @{
9884 void *p = (void *)__real_malloc (n);
9885 if (!p) return __builtin___bnd_null_ptr_bounds (p);
9886 return __builtin___bnd_set_ptr_bounds (p, n);
9887 @}
9888 @end smallexample
9889
9890 @end deftypefn
9891
9892 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
9893
9894 This built-in function returns a new pointer with the value of @var{p}
9895 and associates it with the narrowed bounds formed by the intersection
9896 of bounds associated with @var{q} and the bounds
9897 [@var{p}, @var{p} + @var{size} - 1].
9898 With Pointer Bounds Checker off, the built-in function just returns the first
9899 argument.
9900
9901 @smallexample
9902 void init_objects (object *objs, size_t size)
9903 @{
9904 size_t i;
9905 /* Initialize objects one-by-one passing pointers with bounds of
9906 an object, not the full array of objects. */
9907 for (i = 0; i < size; i++)
9908 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
9909 sizeof(object)));
9910 @}
9911 @end smallexample
9912
9913 @end deftypefn
9914
9915 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
9916
9917 This built-in function returns a new pointer with the value of @var{q},
9918 and associates it with the bounds already associated with pointer @var{r}.
9919 With Pointer Bounds Checker off, the built-in function just returns the first
9920 argument.
9921
9922 @smallexample
9923 /* Here is a way to get pointer to object's field but
9924 still with the full object's bounds. */
9925 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
9926 objptr);
9927 @end smallexample
9928
9929 @end deftypefn
9930
9931 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
9932
9933 This built-in function returns a new pointer with the value of @var{q}, and
9934 associates it with INIT (allowing full memory access) bounds. With Pointer
9935 Bounds Checker off, the built-in function just returns the first argument.
9936
9937 @end deftypefn
9938
9939 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
9940
9941 This built-in function returns a new pointer with the value of @var{q}, and
9942 associates it with NULL (allowing no memory access) bounds. With Pointer
9943 Bounds Checker off, the built-in function just returns the first argument.
9944
9945 @end deftypefn
9946
9947 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
9948
9949 This built-in function stores the bounds associated with pointer @var{ptr_val}
9950 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
9951 bounds from legacy code without touching the associated pointer's memory when
9952 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
9953 function call is ignored.
9954
9955 @end deftypefn
9956
9957 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
9958
9959 This built-in function checks if the pointer @var{q} is within the lower
9960 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
9961 function call is ignored.
9962
9963 @smallexample
9964 extern void *__wrap_memset (void *dst, int c, size_t len)
9965 @{
9966 if (len > 0)
9967 @{
9968 __builtin___bnd_chk_ptr_lbounds (dst);
9969 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
9970 __real_memset (dst, c, len);
9971 @}
9972 return dst;
9973 @}
9974 @end smallexample
9975
9976 @end deftypefn
9977
9978 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
9979
9980 This built-in function checks if the pointer @var{q} is within the upper
9981 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
9982 function call is ignored.
9983
9984 @end deftypefn
9985
9986 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
9987
9988 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
9989 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
9990 off, the built-in function call is ignored.
9991
9992 @smallexample
9993 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
9994 @{
9995 if (n > 0)
9996 @{
9997 __bnd_chk_ptr_bounds (dst, n);
9998 __bnd_chk_ptr_bounds (src, n);
9999 __real_memcpy (dst, src, n);
10000 @}
10001 return dst;
10002 @}
10003 @end smallexample
10004
10005 @end deftypefn
10006
10007 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10008
10009 This built-in function returns the lower bound associated
10010 with the pointer @var{q}, as a pointer value.
10011 This is useful for debugging using @code{printf}.
10012 With Pointer Bounds Checker off, the built-in function returns 0.
10013
10014 @smallexample
10015 void *lb = __builtin___bnd_get_ptr_lbound (q);
10016 void *ub = __builtin___bnd_get_ptr_ubound (q);
10017 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10018 @end smallexample
10019
10020 @end deftypefn
10021
10022 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10023
10024 This built-in function returns the upper bound (which is a pointer) associated
10025 with the pointer @var{q}. With Pointer Bounds Checker off,
10026 the built-in function returns -1.
10027
10028 @end deftypefn
10029
10030 @node Cilk Plus Builtins
10031 @section Cilk Plus C/C++ Language Extension Built-in Functions
10032
10033 GCC provides support for the following built-in reduction functions if Cilk Plus
10034 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10035
10036 @itemize @bullet
10037 @item @code{__sec_implicit_index}
10038 @item @code{__sec_reduce}
10039 @item @code{__sec_reduce_add}
10040 @item @code{__sec_reduce_all_nonzero}
10041 @item @code{__sec_reduce_all_zero}
10042 @item @code{__sec_reduce_any_nonzero}
10043 @item @code{__sec_reduce_any_zero}
10044 @item @code{__sec_reduce_max}
10045 @item @code{__sec_reduce_min}
10046 @item @code{__sec_reduce_max_ind}
10047 @item @code{__sec_reduce_min_ind}
10048 @item @code{__sec_reduce_mul}
10049 @item @code{__sec_reduce_mutating}
10050 @end itemize
10051
10052 Further details and examples about these built-in functions are described
10053 in the Cilk Plus language manual which can be found at
10054 @uref{http://www.cilkplus.org}.
10055
10056 @node Other Builtins
10057 @section Other Built-in Functions Provided by GCC
10058 @cindex built-in functions
10059 @findex __builtin_call_with_static_chain
10060 @findex __builtin_fpclassify
10061 @findex __builtin_isfinite
10062 @findex __builtin_isnormal
10063 @findex __builtin_isgreater
10064 @findex __builtin_isgreaterequal
10065 @findex __builtin_isinf_sign
10066 @findex __builtin_isless
10067 @findex __builtin_islessequal
10068 @findex __builtin_islessgreater
10069 @findex __builtin_isunordered
10070 @findex __builtin_powi
10071 @findex __builtin_powif
10072 @findex __builtin_powil
10073 @findex _Exit
10074 @findex _exit
10075 @findex abort
10076 @findex abs
10077 @findex acos
10078 @findex acosf
10079 @findex acosh
10080 @findex acoshf
10081 @findex acoshl
10082 @findex acosl
10083 @findex alloca
10084 @findex asin
10085 @findex asinf
10086 @findex asinh
10087 @findex asinhf
10088 @findex asinhl
10089 @findex asinl
10090 @findex atan
10091 @findex atan2
10092 @findex atan2f
10093 @findex atan2l
10094 @findex atanf
10095 @findex atanh
10096 @findex atanhf
10097 @findex atanhl
10098 @findex atanl
10099 @findex bcmp
10100 @findex bzero
10101 @findex cabs
10102 @findex cabsf
10103 @findex cabsl
10104 @findex cacos
10105 @findex cacosf
10106 @findex cacosh
10107 @findex cacoshf
10108 @findex cacoshl
10109 @findex cacosl
10110 @findex calloc
10111 @findex carg
10112 @findex cargf
10113 @findex cargl
10114 @findex casin
10115 @findex casinf
10116 @findex casinh
10117 @findex casinhf
10118 @findex casinhl
10119 @findex casinl
10120 @findex catan
10121 @findex catanf
10122 @findex catanh
10123 @findex catanhf
10124 @findex catanhl
10125 @findex catanl
10126 @findex cbrt
10127 @findex cbrtf
10128 @findex cbrtl
10129 @findex ccos
10130 @findex ccosf
10131 @findex ccosh
10132 @findex ccoshf
10133 @findex ccoshl
10134 @findex ccosl
10135 @findex ceil
10136 @findex ceilf
10137 @findex ceill
10138 @findex cexp
10139 @findex cexpf
10140 @findex cexpl
10141 @findex cimag
10142 @findex cimagf
10143 @findex cimagl
10144 @findex clog
10145 @findex clogf
10146 @findex clogl
10147 @findex conj
10148 @findex conjf
10149 @findex conjl
10150 @findex copysign
10151 @findex copysignf
10152 @findex copysignl
10153 @findex cos
10154 @findex cosf
10155 @findex cosh
10156 @findex coshf
10157 @findex coshl
10158 @findex cosl
10159 @findex cpow
10160 @findex cpowf
10161 @findex cpowl
10162 @findex cproj
10163 @findex cprojf
10164 @findex cprojl
10165 @findex creal
10166 @findex crealf
10167 @findex creall
10168 @findex csin
10169 @findex csinf
10170 @findex csinh
10171 @findex csinhf
10172 @findex csinhl
10173 @findex csinl
10174 @findex csqrt
10175 @findex csqrtf
10176 @findex csqrtl
10177 @findex ctan
10178 @findex ctanf
10179 @findex ctanh
10180 @findex ctanhf
10181 @findex ctanhl
10182 @findex ctanl
10183 @findex dcgettext
10184 @findex dgettext
10185 @findex drem
10186 @findex dremf
10187 @findex dreml
10188 @findex erf
10189 @findex erfc
10190 @findex erfcf
10191 @findex erfcl
10192 @findex erff
10193 @findex erfl
10194 @findex exit
10195 @findex exp
10196 @findex exp10
10197 @findex exp10f
10198 @findex exp10l
10199 @findex exp2
10200 @findex exp2f
10201 @findex exp2l
10202 @findex expf
10203 @findex expl
10204 @findex expm1
10205 @findex expm1f
10206 @findex expm1l
10207 @findex fabs
10208 @findex fabsf
10209 @findex fabsl
10210 @findex fdim
10211 @findex fdimf
10212 @findex fdiml
10213 @findex ffs
10214 @findex floor
10215 @findex floorf
10216 @findex floorl
10217 @findex fma
10218 @findex fmaf
10219 @findex fmal
10220 @findex fmax
10221 @findex fmaxf
10222 @findex fmaxl
10223 @findex fmin
10224 @findex fminf
10225 @findex fminl
10226 @findex fmod
10227 @findex fmodf
10228 @findex fmodl
10229 @findex fprintf
10230 @findex fprintf_unlocked
10231 @findex fputs
10232 @findex fputs_unlocked
10233 @findex frexp
10234 @findex frexpf
10235 @findex frexpl
10236 @findex fscanf
10237 @findex gamma
10238 @findex gammaf
10239 @findex gammal
10240 @findex gamma_r
10241 @findex gammaf_r
10242 @findex gammal_r
10243 @findex gettext
10244 @findex hypot
10245 @findex hypotf
10246 @findex hypotl
10247 @findex ilogb
10248 @findex ilogbf
10249 @findex ilogbl
10250 @findex imaxabs
10251 @findex index
10252 @findex isalnum
10253 @findex isalpha
10254 @findex isascii
10255 @findex isblank
10256 @findex iscntrl
10257 @findex isdigit
10258 @findex isgraph
10259 @findex islower
10260 @findex isprint
10261 @findex ispunct
10262 @findex isspace
10263 @findex isupper
10264 @findex iswalnum
10265 @findex iswalpha
10266 @findex iswblank
10267 @findex iswcntrl
10268 @findex iswdigit
10269 @findex iswgraph
10270 @findex iswlower
10271 @findex iswprint
10272 @findex iswpunct
10273 @findex iswspace
10274 @findex iswupper
10275 @findex iswxdigit
10276 @findex isxdigit
10277 @findex j0
10278 @findex j0f
10279 @findex j0l
10280 @findex j1
10281 @findex j1f
10282 @findex j1l
10283 @findex jn
10284 @findex jnf
10285 @findex jnl
10286 @findex labs
10287 @findex ldexp
10288 @findex ldexpf
10289 @findex ldexpl
10290 @findex lgamma
10291 @findex lgammaf
10292 @findex lgammal
10293 @findex lgamma_r
10294 @findex lgammaf_r
10295 @findex lgammal_r
10296 @findex llabs
10297 @findex llrint
10298 @findex llrintf
10299 @findex llrintl
10300 @findex llround
10301 @findex llroundf
10302 @findex llroundl
10303 @findex log
10304 @findex log10
10305 @findex log10f
10306 @findex log10l
10307 @findex log1p
10308 @findex log1pf
10309 @findex log1pl
10310 @findex log2
10311 @findex log2f
10312 @findex log2l
10313 @findex logb
10314 @findex logbf
10315 @findex logbl
10316 @findex logf
10317 @findex logl
10318 @findex lrint
10319 @findex lrintf
10320 @findex lrintl
10321 @findex lround
10322 @findex lroundf
10323 @findex lroundl
10324 @findex malloc
10325 @findex memchr
10326 @findex memcmp
10327 @findex memcpy
10328 @findex mempcpy
10329 @findex memset
10330 @findex modf
10331 @findex modff
10332 @findex modfl
10333 @findex nearbyint
10334 @findex nearbyintf
10335 @findex nearbyintl
10336 @findex nextafter
10337 @findex nextafterf
10338 @findex nextafterl
10339 @findex nexttoward
10340 @findex nexttowardf
10341 @findex nexttowardl
10342 @findex pow
10343 @findex pow10
10344 @findex pow10f
10345 @findex pow10l
10346 @findex powf
10347 @findex powl
10348 @findex printf
10349 @findex printf_unlocked
10350 @findex putchar
10351 @findex puts
10352 @findex remainder
10353 @findex remainderf
10354 @findex remainderl
10355 @findex remquo
10356 @findex remquof
10357 @findex remquol
10358 @findex rindex
10359 @findex rint
10360 @findex rintf
10361 @findex rintl
10362 @findex round
10363 @findex roundf
10364 @findex roundl
10365 @findex scalb
10366 @findex scalbf
10367 @findex scalbl
10368 @findex scalbln
10369 @findex scalblnf
10370 @findex scalblnf
10371 @findex scalbn
10372 @findex scalbnf
10373 @findex scanfnl
10374 @findex signbit
10375 @findex signbitf
10376 @findex signbitl
10377 @findex signbitd32
10378 @findex signbitd64
10379 @findex signbitd128
10380 @findex significand
10381 @findex significandf
10382 @findex significandl
10383 @findex sin
10384 @findex sincos
10385 @findex sincosf
10386 @findex sincosl
10387 @findex sinf
10388 @findex sinh
10389 @findex sinhf
10390 @findex sinhl
10391 @findex sinl
10392 @findex snprintf
10393 @findex sprintf
10394 @findex sqrt
10395 @findex sqrtf
10396 @findex sqrtl
10397 @findex sscanf
10398 @findex stpcpy
10399 @findex stpncpy
10400 @findex strcasecmp
10401 @findex strcat
10402 @findex strchr
10403 @findex strcmp
10404 @findex strcpy
10405 @findex strcspn
10406 @findex strdup
10407 @findex strfmon
10408 @findex strftime
10409 @findex strlen
10410 @findex strncasecmp
10411 @findex strncat
10412 @findex strncmp
10413 @findex strncpy
10414 @findex strndup
10415 @findex strpbrk
10416 @findex strrchr
10417 @findex strspn
10418 @findex strstr
10419 @findex tan
10420 @findex tanf
10421 @findex tanh
10422 @findex tanhf
10423 @findex tanhl
10424 @findex tanl
10425 @findex tgamma
10426 @findex tgammaf
10427 @findex tgammal
10428 @findex toascii
10429 @findex tolower
10430 @findex toupper
10431 @findex towlower
10432 @findex towupper
10433 @findex trunc
10434 @findex truncf
10435 @findex truncl
10436 @findex vfprintf
10437 @findex vfscanf
10438 @findex vprintf
10439 @findex vscanf
10440 @findex vsnprintf
10441 @findex vsprintf
10442 @findex vsscanf
10443 @findex y0
10444 @findex y0f
10445 @findex y0l
10446 @findex y1
10447 @findex y1f
10448 @findex y1l
10449 @findex yn
10450 @findex ynf
10451 @findex ynl
10452
10453 GCC provides a large number of built-in functions other than the ones
10454 mentioned above. Some of these are for internal use in the processing
10455 of exceptions or variable-length argument lists and are not
10456 documented here because they may change from time to time; we do not
10457 recommend general use of these functions.
10458
10459 The remaining functions are provided for optimization purposes.
10460
10461 With the exception of built-ins that have library equivalents such as
10462 the standard C library functions discussed below, or that expand to
10463 library calls, GCC built-in functions are always expanded inline and
10464 thus do not have corresponding entry points and their address cannot
10465 be obtained. Attempting to use them in an expression other than
10466 a function call results in a compile-time error.
10467
10468 @opindex fno-builtin
10469 GCC includes built-in versions of many of the functions in the standard
10470 C library. These functions come in two forms: one whose names start with
10471 the @code{__builtin_} prefix, and the other without. Both forms have the
10472 same type (including prototype), the same address (when their address is
10473 taken), and the same meaning as the C library functions even if you specify
10474 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
10475 functions are only optimized in certain cases; if they are not optimized in
10476 a particular case, a call to the library function is emitted.
10477
10478 @opindex ansi
10479 @opindex std
10480 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
10481 @option{-std=c99} or @option{-std=c11}), the functions
10482 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
10483 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
10484 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
10485 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
10486 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
10487 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
10488 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
10489 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
10490 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
10491 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
10492 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
10493 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
10494 @code{signbitd64}, @code{signbitd128}, @code{significandf},
10495 @code{significandl}, @code{significand}, @code{sincosf},
10496 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
10497 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
10498 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
10499 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
10500 @code{yn}
10501 may be handled as built-in functions.
10502 All these functions have corresponding versions
10503 prefixed with @code{__builtin_}, which may be used even in strict C90
10504 mode.
10505
10506 The ISO C99 functions
10507 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
10508 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
10509 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
10510 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
10511 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
10512 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
10513 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
10514 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
10515 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
10516 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
10517 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
10518 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
10519 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
10520 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
10521 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
10522 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
10523 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
10524 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
10525 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
10526 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
10527 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
10528 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
10529 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
10530 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
10531 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
10532 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
10533 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
10534 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
10535 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
10536 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
10537 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
10538 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
10539 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
10540 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
10541 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
10542 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
10543 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
10544 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
10545 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
10546 are handled as built-in functions
10547 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10548
10549 There are also built-in versions of the ISO C99 functions
10550 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
10551 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
10552 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
10553 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
10554 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
10555 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
10556 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
10557 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
10558 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
10559 that are recognized in any mode since ISO C90 reserves these names for
10560 the purpose to which ISO C99 puts them. All these functions have
10561 corresponding versions prefixed with @code{__builtin_}.
10562
10563 The ISO C94 functions
10564 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
10565 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
10566 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
10567 @code{towupper}
10568 are handled as built-in functions
10569 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10570
10571 The ISO C90 functions
10572 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
10573 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
10574 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
10575 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
10576 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
10577 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
10578 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
10579 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
10580 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
10581 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
10582 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
10583 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
10584 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
10585 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
10586 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
10587 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
10588 are all recognized as built-in functions unless
10589 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
10590 is specified for an individual function). All of these functions have
10591 corresponding versions prefixed with @code{__builtin_}.
10592
10593 GCC provides built-in versions of the ISO C99 floating-point comparison
10594 macros that avoid raising exceptions for unordered operands. They have
10595 the same names as the standard macros ( @code{isgreater},
10596 @code{isgreaterequal}, @code{isless}, @code{islessequal},
10597 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
10598 prefixed. We intend for a library implementor to be able to simply
10599 @code{#define} each standard macro to its built-in equivalent.
10600 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
10601 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
10602 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
10603 built-in functions appear both with and without the @code{__builtin_} prefix.
10604
10605 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
10606
10607 You can use the built-in function @code{__builtin_types_compatible_p} to
10608 determine whether two types are the same.
10609
10610 This built-in function returns 1 if the unqualified versions of the
10611 types @var{type1} and @var{type2} (which are types, not expressions) are
10612 compatible, 0 otherwise. The result of this built-in function can be
10613 used in integer constant expressions.
10614
10615 This built-in function ignores top level qualifiers (e.g., @code{const},
10616 @code{volatile}). For example, @code{int} is equivalent to @code{const
10617 int}.
10618
10619 The type @code{int[]} and @code{int[5]} are compatible. On the other
10620 hand, @code{int} and @code{char *} are not compatible, even if the size
10621 of their types, on the particular architecture are the same. Also, the
10622 amount of pointer indirection is taken into account when determining
10623 similarity. Consequently, @code{short *} is not similar to
10624 @code{short **}. Furthermore, two types that are typedefed are
10625 considered compatible if their underlying types are compatible.
10626
10627 An @code{enum} type is not considered to be compatible with another
10628 @code{enum} type even if both are compatible with the same integer
10629 type; this is what the C standard specifies.
10630 For example, @code{enum @{foo, bar@}} is not similar to
10631 @code{enum @{hot, dog@}}.
10632
10633 You typically use this function in code whose execution varies
10634 depending on the arguments' types. For example:
10635
10636 @smallexample
10637 #define foo(x) \
10638 (@{ \
10639 typeof (x) tmp = (x); \
10640 if (__builtin_types_compatible_p (typeof (x), long double)) \
10641 tmp = foo_long_double (tmp); \
10642 else if (__builtin_types_compatible_p (typeof (x), double)) \
10643 tmp = foo_double (tmp); \
10644 else if (__builtin_types_compatible_p (typeof (x), float)) \
10645 tmp = foo_float (tmp); \
10646 else \
10647 abort (); \
10648 tmp; \
10649 @})
10650 @end smallexample
10651
10652 @emph{Note:} This construct is only available for C@.
10653
10654 @end deftypefn
10655
10656 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
10657
10658 The @var{call_exp} expression must be a function call, and the
10659 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
10660 is passed to the function call in the target's static chain location.
10661 The result of builtin is the result of the function call.
10662
10663 @emph{Note:} This builtin is only available for C@.
10664 This builtin can be used to call Go closures from C.
10665
10666 @end deftypefn
10667
10668 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
10669
10670 You can use the built-in function @code{__builtin_choose_expr} to
10671 evaluate code depending on the value of a constant expression. This
10672 built-in function returns @var{exp1} if @var{const_exp}, which is an
10673 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
10674
10675 This built-in function is analogous to the @samp{? :} operator in C,
10676 except that the expression returned has its type unaltered by promotion
10677 rules. Also, the built-in function does not evaluate the expression
10678 that is not chosen. For example, if @var{const_exp} evaluates to true,
10679 @var{exp2} is not evaluated even if it has side-effects.
10680
10681 This built-in function can return an lvalue if the chosen argument is an
10682 lvalue.
10683
10684 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
10685 type. Similarly, if @var{exp2} is returned, its return type is the same
10686 as @var{exp2}.
10687
10688 Example:
10689
10690 @smallexample
10691 #define foo(x) \
10692 __builtin_choose_expr ( \
10693 __builtin_types_compatible_p (typeof (x), double), \
10694 foo_double (x), \
10695 __builtin_choose_expr ( \
10696 __builtin_types_compatible_p (typeof (x), float), \
10697 foo_float (x), \
10698 /* @r{The void expression results in a compile-time error} \
10699 @r{when assigning the result to something.} */ \
10700 (void)0))
10701 @end smallexample
10702
10703 @emph{Note:} This construct is only available for C@. Furthermore, the
10704 unused expression (@var{exp1} or @var{exp2} depending on the value of
10705 @var{const_exp}) may still generate syntax errors. This may change in
10706 future revisions.
10707
10708 @end deftypefn
10709
10710 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
10711
10712 The built-in function @code{__builtin_complex} is provided for use in
10713 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
10714 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
10715 real binary floating-point type, and the result has the corresponding
10716 complex type with real and imaginary parts @var{real} and @var{imag}.
10717 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
10718 infinities, NaNs and negative zeros are involved.
10719
10720 @end deftypefn
10721
10722 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
10723 You can use the built-in function @code{__builtin_constant_p} to
10724 determine if a value is known to be constant at compile time and hence
10725 that GCC can perform constant-folding on expressions involving that
10726 value. The argument of the function is the value to test. The function
10727 returns the integer 1 if the argument is known to be a compile-time
10728 constant and 0 if it is not known to be a compile-time constant. A
10729 return of 0 does not indicate that the value is @emph{not} a constant,
10730 but merely that GCC cannot prove it is a constant with the specified
10731 value of the @option{-O} option.
10732
10733 You typically use this function in an embedded application where
10734 memory is a critical resource. If you have some complex calculation,
10735 you may want it to be folded if it involves constants, but need to call
10736 a function if it does not. For example:
10737
10738 @smallexample
10739 #define Scale_Value(X) \
10740 (__builtin_constant_p (X) \
10741 ? ((X) * SCALE + OFFSET) : Scale (X))
10742 @end smallexample
10743
10744 You may use this built-in function in either a macro or an inline
10745 function. However, if you use it in an inlined function and pass an
10746 argument of the function as the argument to the built-in, GCC
10747 never returns 1 when you call the inline function with a string constant
10748 or compound literal (@pxref{Compound Literals}) and does not return 1
10749 when you pass a constant numeric value to the inline function unless you
10750 specify the @option{-O} option.
10751
10752 You may also use @code{__builtin_constant_p} in initializers for static
10753 data. For instance, you can write
10754
10755 @smallexample
10756 static const int table[] = @{
10757 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
10758 /* @r{@dots{}} */
10759 @};
10760 @end smallexample
10761
10762 @noindent
10763 This is an acceptable initializer even if @var{EXPRESSION} is not a
10764 constant expression, including the case where
10765 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
10766 folded to a constant but @var{EXPRESSION} contains operands that are
10767 not otherwise permitted in a static initializer (for example,
10768 @code{0 && foo ()}). GCC must be more conservative about evaluating the
10769 built-in in this case, because it has no opportunity to perform
10770 optimization.
10771 @end deftypefn
10772
10773 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
10774 @opindex fprofile-arcs
10775 You may use @code{__builtin_expect} to provide the compiler with
10776 branch prediction information. In general, you should prefer to
10777 use actual profile feedback for this (@option{-fprofile-arcs}), as
10778 programmers are notoriously bad at predicting how their programs
10779 actually perform. However, there are applications in which this
10780 data is hard to collect.
10781
10782 The return value is the value of @var{exp}, which should be an integral
10783 expression. The semantics of the built-in are that it is expected that
10784 @var{exp} == @var{c}. For example:
10785
10786 @smallexample
10787 if (__builtin_expect (x, 0))
10788 foo ();
10789 @end smallexample
10790
10791 @noindent
10792 indicates that we do not expect to call @code{foo}, since
10793 we expect @code{x} to be zero. Since you are limited to integral
10794 expressions for @var{exp}, you should use constructions such as
10795
10796 @smallexample
10797 if (__builtin_expect (ptr != NULL, 1))
10798 foo (*ptr);
10799 @end smallexample
10800
10801 @noindent
10802 when testing pointer or floating-point values.
10803 @end deftypefn
10804
10805 @deftypefn {Built-in Function} void __builtin_trap (void)
10806 This function causes the program to exit abnormally. GCC implements
10807 this function by using a target-dependent mechanism (such as
10808 intentionally executing an illegal instruction) or by calling
10809 @code{abort}. The mechanism used may vary from release to release so
10810 you should not rely on any particular implementation.
10811 @end deftypefn
10812
10813 @deftypefn {Built-in Function} void __builtin_unreachable (void)
10814 If control flow reaches the point of the @code{__builtin_unreachable},
10815 the program is undefined. It is useful in situations where the
10816 compiler cannot deduce the unreachability of the code.
10817
10818 One such case is immediately following an @code{asm} statement that
10819 either never terminates, or one that transfers control elsewhere
10820 and never returns. In this example, without the
10821 @code{__builtin_unreachable}, GCC issues a warning that control
10822 reaches the end of a non-void function. It also generates code
10823 to return after the @code{asm}.
10824
10825 @smallexample
10826 int f (int c, int v)
10827 @{
10828 if (c)
10829 @{
10830 return v;
10831 @}
10832 else
10833 @{
10834 asm("jmp error_handler");
10835 __builtin_unreachable ();
10836 @}
10837 @}
10838 @end smallexample
10839
10840 @noindent
10841 Because the @code{asm} statement unconditionally transfers control out
10842 of the function, control never reaches the end of the function
10843 body. The @code{__builtin_unreachable} is in fact unreachable and
10844 communicates this fact to the compiler.
10845
10846 Another use for @code{__builtin_unreachable} is following a call a
10847 function that never returns but that is not declared
10848 @code{__attribute__((noreturn))}, as in this example:
10849
10850 @smallexample
10851 void function_that_never_returns (void);
10852
10853 int g (int c)
10854 @{
10855 if (c)
10856 @{
10857 return 1;
10858 @}
10859 else
10860 @{
10861 function_that_never_returns ();
10862 __builtin_unreachable ();
10863 @}
10864 @}
10865 @end smallexample
10866
10867 @end deftypefn
10868
10869 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
10870 This function returns its first argument, and allows the compiler
10871 to assume that the returned pointer is at least @var{align} bytes
10872 aligned. This built-in can have either two or three arguments,
10873 if it has three, the third argument should have integer type, and
10874 if it is nonzero means misalignment offset. For example:
10875
10876 @smallexample
10877 void *x = __builtin_assume_aligned (arg, 16);
10878 @end smallexample
10879
10880 @noindent
10881 means that the compiler can assume @code{x}, set to @code{arg}, is at least
10882 16-byte aligned, while:
10883
10884 @smallexample
10885 void *x = __builtin_assume_aligned (arg, 32, 8);
10886 @end smallexample
10887
10888 @noindent
10889 means that the compiler can assume for @code{x}, set to @code{arg}, that
10890 @code{(char *) x - 8} is 32-byte aligned.
10891 @end deftypefn
10892
10893 @deftypefn {Built-in Function} int __builtin_LINE ()
10894 This function is the equivalent to the preprocessor @code{__LINE__}
10895 macro and returns the line number of the invocation of the built-in.
10896 In a C++ default argument for a function @var{F}, it gets the line number of
10897 the call to @var{F}.
10898 @end deftypefn
10899
10900 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
10901 This function is the equivalent to the preprocessor @code{__FUNCTION__}
10902 macro and returns the function name the invocation of the built-in is in.
10903 @end deftypefn
10904
10905 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
10906 This function is the equivalent to the preprocessor @code{__FILE__}
10907 macro and returns the file name the invocation of the built-in is in.
10908 In a C++ default argument for a function @var{F}, it gets the file name of
10909 the call to @var{F}.
10910 @end deftypefn
10911
10912 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
10913 This function is used to flush the processor's instruction cache for
10914 the region of memory between @var{begin} inclusive and @var{end}
10915 exclusive. Some targets require that the instruction cache be
10916 flushed, after modifying memory containing code, in order to obtain
10917 deterministic behavior.
10918
10919 If the target does not require instruction cache flushes,
10920 @code{__builtin___clear_cache} has no effect. Otherwise either
10921 instructions are emitted in-line to clear the instruction cache or a
10922 call to the @code{__clear_cache} function in libgcc is made.
10923 @end deftypefn
10924
10925 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
10926 This function is used to minimize cache-miss latency by moving data into
10927 a cache before it is accessed.
10928 You can insert calls to @code{__builtin_prefetch} into code for which
10929 you know addresses of data in memory that is likely to be accessed soon.
10930 If the target supports them, data prefetch instructions are generated.
10931 If the prefetch is done early enough before the access then the data will
10932 be in the cache by the time it is accessed.
10933
10934 The value of @var{addr} is the address of the memory to prefetch.
10935 There are two optional arguments, @var{rw} and @var{locality}.
10936 The value of @var{rw} is a compile-time constant one or zero; one
10937 means that the prefetch is preparing for a write to the memory address
10938 and zero, the default, means that the prefetch is preparing for a read.
10939 The value @var{locality} must be a compile-time constant integer between
10940 zero and three. A value of zero means that the data has no temporal
10941 locality, so it need not be left in the cache after the access. A value
10942 of three means that the data has a high degree of temporal locality and
10943 should be left in all levels of cache possible. Values of one and two
10944 mean, respectively, a low or moderate degree of temporal locality. The
10945 default is three.
10946
10947 @smallexample
10948 for (i = 0; i < n; i++)
10949 @{
10950 a[i] = a[i] + b[i];
10951 __builtin_prefetch (&a[i+j], 1, 1);
10952 __builtin_prefetch (&b[i+j], 0, 1);
10953 /* @r{@dots{}} */
10954 @}
10955 @end smallexample
10956
10957 Data prefetch does not generate faults if @var{addr} is invalid, but
10958 the address expression itself must be valid. For example, a prefetch
10959 of @code{p->next} does not fault if @code{p->next} is not a valid
10960 address, but evaluation faults if @code{p} is not a valid address.
10961
10962 If the target does not support data prefetch, the address expression
10963 is evaluated if it includes side effects but no other code is generated
10964 and GCC does not issue a warning.
10965 @end deftypefn
10966
10967 @deftypefn {Built-in Function} double __builtin_huge_val (void)
10968 Returns a positive infinity, if supported by the floating-point format,
10969 else @code{DBL_MAX}. This function is suitable for implementing the
10970 ISO C macro @code{HUGE_VAL}.
10971 @end deftypefn
10972
10973 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
10974 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
10975 @end deftypefn
10976
10977 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
10978 Similar to @code{__builtin_huge_val}, except the return
10979 type is @code{long double}.
10980 @end deftypefn
10981
10982 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
10983 This built-in implements the C99 fpclassify functionality. The first
10984 five int arguments should be the target library's notion of the
10985 possible FP classes and are used for return values. They must be
10986 constant values and they must appear in this order: @code{FP_NAN},
10987 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
10988 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
10989 to classify. GCC treats the last argument as type-generic, which
10990 means it does not do default promotion from float to double.
10991 @end deftypefn
10992
10993 @deftypefn {Built-in Function} double __builtin_inf (void)
10994 Similar to @code{__builtin_huge_val}, except a warning is generated
10995 if the target floating-point format does not support infinities.
10996 @end deftypefn
10997
10998 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
10999 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11000 @end deftypefn
11001
11002 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11003 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11004 @end deftypefn
11005
11006 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11007 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11008 @end deftypefn
11009
11010 @deftypefn {Built-in Function} float __builtin_inff (void)
11011 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11012 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11013 @end deftypefn
11014
11015 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11016 Similar to @code{__builtin_inf}, except the return
11017 type is @code{long double}.
11018 @end deftypefn
11019
11020 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11021 Similar to @code{isinf}, except the return value is -1 for
11022 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11023 Note while the parameter list is an
11024 ellipsis, this function only accepts exactly one floating-point
11025 argument. GCC treats this parameter as type-generic, which means it
11026 does not do default promotion from float to double.
11027 @end deftypefn
11028
11029 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11030 This is an implementation of the ISO C99 function @code{nan}.
11031
11032 Since ISO C99 defines this function in terms of @code{strtod}, which we
11033 do not implement, a description of the parsing is in order. The string
11034 is parsed as by @code{strtol}; that is, the base is recognized by
11035 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11036 in the significand such that the least significant bit of the number
11037 is at the least significant bit of the significand. The number is
11038 truncated to fit the significand field provided. The significand is
11039 forced to be a quiet NaN@.
11040
11041 This function, if given a string literal all of which would have been
11042 consumed by @code{strtol}, is evaluated early enough that it is considered a
11043 compile-time constant.
11044 @end deftypefn
11045
11046 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11047 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11048 @end deftypefn
11049
11050 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11051 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11052 @end deftypefn
11053
11054 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11055 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11056 @end deftypefn
11057
11058 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11059 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11060 @end deftypefn
11061
11062 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11063 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11064 @end deftypefn
11065
11066 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11067 Similar to @code{__builtin_nan}, except the significand is forced
11068 to be a signaling NaN@. The @code{nans} function is proposed by
11069 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11070 @end deftypefn
11071
11072 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11073 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11074 @end deftypefn
11075
11076 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11077 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11078 @end deftypefn
11079
11080 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11081 Returns one plus the index of the least significant 1-bit of @var{x}, or
11082 if @var{x} is zero, returns zero.
11083 @end deftypefn
11084
11085 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11086 Returns the number of leading 0-bits in @var{x}, starting at the most
11087 significant bit position. If @var{x} is 0, the result is undefined.
11088 @end deftypefn
11089
11090 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11091 Returns the number of trailing 0-bits in @var{x}, starting at the least
11092 significant bit position. If @var{x} is 0, the result is undefined.
11093 @end deftypefn
11094
11095 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11096 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11097 number of bits following the most significant bit that are identical
11098 to it. There are no special cases for 0 or other values.
11099 @end deftypefn
11100
11101 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11102 Returns the number of 1-bits in @var{x}.
11103 @end deftypefn
11104
11105 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11106 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11107 modulo 2.
11108 @end deftypefn
11109
11110 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11111 Similar to @code{__builtin_ffs}, except the argument type is
11112 @code{long}.
11113 @end deftypefn
11114
11115 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11116 Similar to @code{__builtin_clz}, except the argument type is
11117 @code{unsigned long}.
11118 @end deftypefn
11119
11120 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11121 Similar to @code{__builtin_ctz}, except the argument type is
11122 @code{unsigned long}.
11123 @end deftypefn
11124
11125 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11126 Similar to @code{__builtin_clrsb}, except the argument type is
11127 @code{long}.
11128 @end deftypefn
11129
11130 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11131 Similar to @code{__builtin_popcount}, except the argument type is
11132 @code{unsigned long}.
11133 @end deftypefn
11134
11135 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11136 Similar to @code{__builtin_parity}, except the argument type is
11137 @code{unsigned long}.
11138 @end deftypefn
11139
11140 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11141 Similar to @code{__builtin_ffs}, except the argument type is
11142 @code{long long}.
11143 @end deftypefn
11144
11145 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11146 Similar to @code{__builtin_clz}, except the argument type is
11147 @code{unsigned long long}.
11148 @end deftypefn
11149
11150 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11151 Similar to @code{__builtin_ctz}, except the argument type is
11152 @code{unsigned long long}.
11153 @end deftypefn
11154
11155 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11156 Similar to @code{__builtin_clrsb}, except the argument type is
11157 @code{long long}.
11158 @end deftypefn
11159
11160 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11161 Similar to @code{__builtin_popcount}, except the argument type is
11162 @code{unsigned long long}.
11163 @end deftypefn
11164
11165 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11166 Similar to @code{__builtin_parity}, except the argument type is
11167 @code{unsigned long long}.
11168 @end deftypefn
11169
11170 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11171 Returns the first argument raised to the power of the second. Unlike the
11172 @code{pow} function no guarantees about precision and rounding are made.
11173 @end deftypefn
11174
11175 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11176 Similar to @code{__builtin_powi}, except the argument and return types
11177 are @code{float}.
11178 @end deftypefn
11179
11180 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11181 Similar to @code{__builtin_powi}, except the argument and return types
11182 are @code{long double}.
11183 @end deftypefn
11184
11185 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11186 Returns @var{x} with the order of the bytes reversed; for example,
11187 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11188 exactly 8 bits.
11189 @end deftypefn
11190
11191 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
11192 Similar to @code{__builtin_bswap16}, except the argument and return types
11193 are 32 bit.
11194 @end deftypefn
11195
11196 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
11197 Similar to @code{__builtin_bswap32}, except the argument and return types
11198 are 64 bit.
11199 @end deftypefn
11200
11201 @node Target Builtins
11202 @section Built-in Functions Specific to Particular Target Machines
11203
11204 On some target machines, GCC supports many built-in functions specific
11205 to those machines. Generally these generate calls to specific machine
11206 instructions, but allow the compiler to schedule those calls.
11207
11208 @menu
11209 * AArch64 Built-in Functions::
11210 * Alpha Built-in Functions::
11211 * Altera Nios II Built-in Functions::
11212 * ARC Built-in Functions::
11213 * ARC SIMD Built-in Functions::
11214 * ARM iWMMXt Built-in Functions::
11215 * ARM C Language Extensions (ACLE)::
11216 * ARM Floating Point Status and Control Intrinsics::
11217 * AVR Built-in Functions::
11218 * Blackfin Built-in Functions::
11219 * FR-V Built-in Functions::
11220 * MIPS DSP Built-in Functions::
11221 * MIPS Paired-Single Support::
11222 * MIPS Loongson Built-in Functions::
11223 * Other MIPS Built-in Functions::
11224 * MSP430 Built-in Functions::
11225 * NDS32 Built-in Functions::
11226 * picoChip Built-in Functions::
11227 * PowerPC Built-in Functions::
11228 * PowerPC AltiVec/VSX Built-in Functions::
11229 * PowerPC Hardware Transactional Memory Built-in Functions::
11230 * RX Built-in Functions::
11231 * S/390 System z Built-in Functions::
11232 * SH Built-in Functions::
11233 * SPARC VIS Built-in Functions::
11234 * SPU Built-in Functions::
11235 * TI C6X Built-in Functions::
11236 * TILE-Gx Built-in Functions::
11237 * TILEPro Built-in Functions::
11238 * x86 Built-in Functions::
11239 * x86 transactional memory intrinsics::
11240 @end menu
11241
11242 @node AArch64 Built-in Functions
11243 @subsection AArch64 Built-in Functions
11244
11245 These built-in functions are available for the AArch64 family of
11246 processors.
11247 @smallexample
11248 unsigned int __builtin_aarch64_get_fpcr ()
11249 void __builtin_aarch64_set_fpcr (unsigned int)
11250 unsigned int __builtin_aarch64_get_fpsr ()
11251 void __builtin_aarch64_set_fpsr (unsigned int)
11252 @end smallexample
11253
11254 @node Alpha Built-in Functions
11255 @subsection Alpha Built-in Functions
11256
11257 These built-in functions are available for the Alpha family of
11258 processors, depending on the command-line switches used.
11259
11260 The following built-in functions are always available. They
11261 all generate the machine instruction that is part of the name.
11262
11263 @smallexample
11264 long __builtin_alpha_implver (void)
11265 long __builtin_alpha_rpcc (void)
11266 long __builtin_alpha_amask (long)
11267 long __builtin_alpha_cmpbge (long, long)
11268 long __builtin_alpha_extbl (long, long)
11269 long __builtin_alpha_extwl (long, long)
11270 long __builtin_alpha_extll (long, long)
11271 long __builtin_alpha_extql (long, long)
11272 long __builtin_alpha_extwh (long, long)
11273 long __builtin_alpha_extlh (long, long)
11274 long __builtin_alpha_extqh (long, long)
11275 long __builtin_alpha_insbl (long, long)
11276 long __builtin_alpha_inswl (long, long)
11277 long __builtin_alpha_insll (long, long)
11278 long __builtin_alpha_insql (long, long)
11279 long __builtin_alpha_inswh (long, long)
11280 long __builtin_alpha_inslh (long, long)
11281 long __builtin_alpha_insqh (long, long)
11282 long __builtin_alpha_mskbl (long, long)
11283 long __builtin_alpha_mskwl (long, long)
11284 long __builtin_alpha_mskll (long, long)
11285 long __builtin_alpha_mskql (long, long)
11286 long __builtin_alpha_mskwh (long, long)
11287 long __builtin_alpha_msklh (long, long)
11288 long __builtin_alpha_mskqh (long, long)
11289 long __builtin_alpha_umulh (long, long)
11290 long __builtin_alpha_zap (long, long)
11291 long __builtin_alpha_zapnot (long, long)
11292 @end smallexample
11293
11294 The following built-in functions are always with @option{-mmax}
11295 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
11296 later. They all generate the machine instruction that is part
11297 of the name.
11298
11299 @smallexample
11300 long __builtin_alpha_pklb (long)
11301 long __builtin_alpha_pkwb (long)
11302 long __builtin_alpha_unpkbl (long)
11303 long __builtin_alpha_unpkbw (long)
11304 long __builtin_alpha_minub8 (long, long)
11305 long __builtin_alpha_minsb8 (long, long)
11306 long __builtin_alpha_minuw4 (long, long)
11307 long __builtin_alpha_minsw4 (long, long)
11308 long __builtin_alpha_maxub8 (long, long)
11309 long __builtin_alpha_maxsb8 (long, long)
11310 long __builtin_alpha_maxuw4 (long, long)
11311 long __builtin_alpha_maxsw4 (long, long)
11312 long __builtin_alpha_perr (long, long)
11313 @end smallexample
11314
11315 The following built-in functions are always with @option{-mcix}
11316 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
11317 later. They all generate the machine instruction that is part
11318 of the name.
11319
11320 @smallexample
11321 long __builtin_alpha_cttz (long)
11322 long __builtin_alpha_ctlz (long)
11323 long __builtin_alpha_ctpop (long)
11324 @end smallexample
11325
11326 The following built-in functions are available on systems that use the OSF/1
11327 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
11328 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
11329 @code{rdval} and @code{wrval}.
11330
11331 @smallexample
11332 void *__builtin_thread_pointer (void)
11333 void __builtin_set_thread_pointer (void *)
11334 @end smallexample
11335
11336 @node Altera Nios II Built-in Functions
11337 @subsection Altera Nios II Built-in Functions
11338
11339 These built-in functions are available for the Altera Nios II
11340 family of processors.
11341
11342 The following built-in functions are always available. They
11343 all generate the machine instruction that is part of the name.
11344
11345 @example
11346 int __builtin_ldbio (volatile const void *)
11347 int __builtin_ldbuio (volatile const void *)
11348 int __builtin_ldhio (volatile const void *)
11349 int __builtin_ldhuio (volatile const void *)
11350 int __builtin_ldwio (volatile const void *)
11351 void __builtin_stbio (volatile void *, int)
11352 void __builtin_sthio (volatile void *, int)
11353 void __builtin_stwio (volatile void *, int)
11354 void __builtin_sync (void)
11355 int __builtin_rdctl (int)
11356 int __builtin_rdprs (int, int)
11357 void __builtin_wrctl (int, int)
11358 void __builtin_flushd (volatile void *)
11359 void __builtin_flushda (volatile void *)
11360 int __builtin_wrpie (int);
11361 void __builtin_eni (int);
11362 int __builtin_ldex (volatile const void *)
11363 int __builtin_stex (volatile void *, int)
11364 int __builtin_ldsex (volatile const void *)
11365 int __builtin_stsex (volatile void *, int)
11366 @end example
11367
11368 The following built-in functions are always available. They
11369 all generate a Nios II Custom Instruction. The name of the
11370 function represents the types that the function takes and
11371 returns. The letter before the @code{n} is the return type
11372 or void if absent. The @code{n} represents the first parameter
11373 to all the custom instructions, the custom instruction number.
11374 The two letters after the @code{n} represent the up to two
11375 parameters to the function.
11376
11377 The letters represent the following data types:
11378 @table @code
11379 @item <no letter>
11380 @code{void} for return type and no parameter for parameter types.
11381
11382 @item i
11383 @code{int} for return type and parameter type
11384
11385 @item f
11386 @code{float} for return type and parameter type
11387
11388 @item p
11389 @code{void *} for return type and parameter type
11390
11391 @end table
11392
11393 And the function names are:
11394 @example
11395 void __builtin_custom_n (void)
11396 void __builtin_custom_ni (int)
11397 void __builtin_custom_nf (float)
11398 void __builtin_custom_np (void *)
11399 void __builtin_custom_nii (int, int)
11400 void __builtin_custom_nif (int, float)
11401 void __builtin_custom_nip (int, void *)
11402 void __builtin_custom_nfi (float, int)
11403 void __builtin_custom_nff (float, float)
11404 void __builtin_custom_nfp (float, void *)
11405 void __builtin_custom_npi (void *, int)
11406 void __builtin_custom_npf (void *, float)
11407 void __builtin_custom_npp (void *, void *)
11408 int __builtin_custom_in (void)
11409 int __builtin_custom_ini (int)
11410 int __builtin_custom_inf (float)
11411 int __builtin_custom_inp (void *)
11412 int __builtin_custom_inii (int, int)
11413 int __builtin_custom_inif (int, float)
11414 int __builtin_custom_inip (int, void *)
11415 int __builtin_custom_infi (float, int)
11416 int __builtin_custom_inff (float, float)
11417 int __builtin_custom_infp (float, void *)
11418 int __builtin_custom_inpi (void *, int)
11419 int __builtin_custom_inpf (void *, float)
11420 int __builtin_custom_inpp (void *, void *)
11421 float __builtin_custom_fn (void)
11422 float __builtin_custom_fni (int)
11423 float __builtin_custom_fnf (float)
11424 float __builtin_custom_fnp (void *)
11425 float __builtin_custom_fnii (int, int)
11426 float __builtin_custom_fnif (int, float)
11427 float __builtin_custom_fnip (int, void *)
11428 float __builtin_custom_fnfi (float, int)
11429 float __builtin_custom_fnff (float, float)
11430 float __builtin_custom_fnfp (float, void *)
11431 float __builtin_custom_fnpi (void *, int)
11432 float __builtin_custom_fnpf (void *, float)
11433 float __builtin_custom_fnpp (void *, void *)
11434 void * __builtin_custom_pn (void)
11435 void * __builtin_custom_pni (int)
11436 void * __builtin_custom_pnf (float)
11437 void * __builtin_custom_pnp (void *)
11438 void * __builtin_custom_pnii (int, int)
11439 void * __builtin_custom_pnif (int, float)
11440 void * __builtin_custom_pnip (int, void *)
11441 void * __builtin_custom_pnfi (float, int)
11442 void * __builtin_custom_pnff (float, float)
11443 void * __builtin_custom_pnfp (float, void *)
11444 void * __builtin_custom_pnpi (void *, int)
11445 void * __builtin_custom_pnpf (void *, float)
11446 void * __builtin_custom_pnpp (void *, void *)
11447 @end example
11448
11449 @node ARC Built-in Functions
11450 @subsection ARC Built-in Functions
11451
11452 The following built-in functions are provided for ARC targets. The
11453 built-ins generate the corresponding assembly instructions. In the
11454 examples given below, the generated code often requires an operand or
11455 result to be in a register. Where necessary further code will be
11456 generated to ensure this is true, but for brevity this is not
11457 described in each case.
11458
11459 @emph{Note:} Using a built-in to generate an instruction not supported
11460 by a target may cause problems. At present the compiler is not
11461 guaranteed to detect such misuse, and as a result an internal compiler
11462 error may be generated.
11463
11464 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
11465 Return 1 if @var{val} is known to have the byte alignment given
11466 by @var{alignval}, otherwise return 0.
11467 Note that this is different from
11468 @smallexample
11469 __alignof__(*(char *)@var{val}) >= alignval
11470 @end smallexample
11471 because __alignof__ sees only the type of the dereference, whereas
11472 __builtin_arc_align uses alignment information from the pointer
11473 as well as from the pointed-to type.
11474 The information available will depend on optimization level.
11475 @end deftypefn
11476
11477 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
11478 Generates
11479 @example
11480 brk
11481 @end example
11482 @end deftypefn
11483
11484 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
11485 The operand is the number of a register to be read. Generates:
11486 @example
11487 mov @var{dest}, r@var{regno}
11488 @end example
11489 where the value in @var{dest} will be the result returned from the
11490 built-in.
11491 @end deftypefn
11492
11493 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
11494 The first operand is the number of a register to be written, the
11495 second operand is a compile time constant to write into that
11496 register. Generates:
11497 @example
11498 mov r@var{regno}, @var{val}
11499 @end example
11500 @end deftypefn
11501
11502 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
11503 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
11504 Generates:
11505 @example
11506 divaw @var{dest}, @var{a}, @var{b}
11507 @end example
11508 where the value in @var{dest} will be the result returned from the
11509 built-in.
11510 @end deftypefn
11511
11512 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
11513 Generates
11514 @example
11515 flag @var{a}
11516 @end example
11517 @end deftypefn
11518
11519 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
11520 The operand, @var{auxv}, is the address of an auxiliary register and
11521 must be a compile time constant. Generates:
11522 @example
11523 lr @var{dest}, [@var{auxr}]
11524 @end example
11525 Where the value in @var{dest} will be the result returned from the
11526 built-in.
11527 @end deftypefn
11528
11529 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
11530 Only available with @option{-mmul64}. Generates:
11531 @example
11532 mul64 @var{a}, @var{b}
11533 @end example
11534 @end deftypefn
11535
11536 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
11537 Only available with @option{-mmul64}. Generates:
11538 @example
11539 mulu64 @var{a}, @var{b}
11540 @end example
11541 @end deftypefn
11542
11543 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
11544 Generates:
11545 @example
11546 nop
11547 @end example
11548 @end deftypefn
11549
11550 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
11551 Only valid if the @samp{norm} instruction is available through the
11552 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
11553 Generates:
11554 @example
11555 norm @var{dest}, @var{src}
11556 @end example
11557 Where the value in @var{dest} will be the result returned from the
11558 built-in.
11559 @end deftypefn
11560
11561 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
11562 Only valid if the @samp{normw} instruction is available through the
11563 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
11564 Generates:
11565 @example
11566 normw @var{dest}, @var{src}
11567 @end example
11568 Where the value in @var{dest} will be the result returned from the
11569 built-in.
11570 @end deftypefn
11571
11572 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
11573 Generates:
11574 @example
11575 rtie
11576 @end example
11577 @end deftypefn
11578
11579 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
11580 Generates:
11581 @example
11582 sleep @var{a}
11583 @end example
11584 @end deftypefn
11585
11586 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
11587 The first argument, @var{auxv}, is the address of an auxiliary
11588 register, the second argument, @var{val}, is a compile time constant
11589 to be written to the register. Generates:
11590 @example
11591 sr @var{auxr}, [@var{val}]
11592 @end example
11593 @end deftypefn
11594
11595 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
11596 Only valid with @option{-mswap}. Generates:
11597 @example
11598 swap @var{dest}, @var{src}
11599 @end example
11600 Where the value in @var{dest} will be the result returned from the
11601 built-in.
11602 @end deftypefn
11603
11604 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
11605 Generates:
11606 @example
11607 swi
11608 @end example
11609 @end deftypefn
11610
11611 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
11612 Only available with @option{-mcpu=ARC700}. Generates:
11613 @example
11614 sync
11615 @end example
11616 @end deftypefn
11617
11618 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
11619 Only available with @option{-mcpu=ARC700}. Generates:
11620 @example
11621 trap_s @var{c}
11622 @end example
11623 @end deftypefn
11624
11625 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
11626 Only available with @option{-mcpu=ARC700}. Generates:
11627 @example
11628 unimp_s
11629 @end example
11630 @end deftypefn
11631
11632 The instructions generated by the following builtins are not
11633 considered as candidates for scheduling. They are not moved around by
11634 the compiler during scheduling, and thus can be expected to appear
11635 where they are put in the C code:
11636 @example
11637 __builtin_arc_brk()
11638 __builtin_arc_core_read()
11639 __builtin_arc_core_write()
11640 __builtin_arc_flag()
11641 __builtin_arc_lr()
11642 __builtin_arc_sleep()
11643 __builtin_arc_sr()
11644 __builtin_arc_swi()
11645 @end example
11646
11647 @node ARC SIMD Built-in Functions
11648 @subsection ARC SIMD Built-in Functions
11649
11650 SIMD builtins provided by the compiler can be used to generate the
11651 vector instructions. This section describes the available builtins
11652 and their usage in programs. With the @option{-msimd} option, the
11653 compiler provides 128-bit vector types, which can be specified using
11654 the @code{vector_size} attribute. The header file @file{arc-simd.h}
11655 can be included to use the following predefined types:
11656 @example
11657 typedef int __v4si __attribute__((vector_size(16)));
11658 typedef short __v8hi __attribute__((vector_size(16)));
11659 @end example
11660
11661 These types can be used to define 128-bit variables. The built-in
11662 functions listed in the following section can be used on these
11663 variables to generate the vector operations.
11664
11665 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
11666 @file{arc-simd.h} also provides equivalent macros called
11667 @code{_@var{someinsn}} that can be used for programming ease and
11668 improved readability. The following macros for DMA control are also
11669 provided:
11670 @example
11671 #define _setup_dma_in_channel_reg _vdiwr
11672 #define _setup_dma_out_channel_reg _vdowr
11673 @end example
11674
11675 The following is a complete list of all the SIMD built-ins provided
11676 for ARC, grouped by calling signature.
11677
11678 The following take two @code{__v8hi} arguments and return a
11679 @code{__v8hi} result:
11680 @example
11681 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
11682 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
11683 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
11684 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
11685 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
11686 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
11687 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
11688 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
11689 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
11690 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
11691 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
11692 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
11693 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
11694 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
11695 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
11696 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
11697 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
11698 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
11699 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
11700 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
11701 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
11702 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
11703 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
11704 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
11705 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
11706 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
11707 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
11708 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
11709 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
11710 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
11711 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
11712 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
11713 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
11714 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
11715 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
11716 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
11717 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
11718 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
11719 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
11720 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
11721 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
11722 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
11723 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
11724 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
11725 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
11726 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
11727 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
11728 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
11729 @end example
11730
11731 The following take one @code{__v8hi} and one @code{int} argument and return a
11732 @code{__v8hi} result:
11733
11734 @example
11735 __v8hi __builtin_arc_vbaddw (__v8hi, int)
11736 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
11737 __v8hi __builtin_arc_vbminw (__v8hi, int)
11738 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
11739 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
11740 __v8hi __builtin_arc_vbmulw (__v8hi, int)
11741 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
11742 __v8hi __builtin_arc_vbsubw (__v8hi, int)
11743 @end example
11744
11745 The following take one @code{__v8hi} argument and one @code{int} argument which
11746 must be a 3-bit compile time constant indicating a register number
11747 I0-I7. They return a @code{__v8hi} result.
11748 @example
11749 __v8hi __builtin_arc_vasrw (__v8hi, const int)
11750 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
11751 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
11752 @end example
11753
11754 The following take one @code{__v8hi} argument and one @code{int}
11755 argument which must be a 6-bit compile time constant. They return a
11756 @code{__v8hi} result.
11757 @example
11758 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
11759 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
11760 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
11761 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
11762 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
11763 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
11764 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
11765 @end example
11766
11767 The following take one @code{__v8hi} argument and one @code{int} argument which
11768 must be a 8-bit compile time constant. They return a @code{__v8hi}
11769 result.
11770 @example
11771 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
11772 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
11773 __v8hi __builtin_arc_vmvw (__v8hi, const int)
11774 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
11775 @end example
11776
11777 The following take two @code{int} arguments, the second of which which
11778 must be a 8-bit compile time constant. They return a @code{__v8hi}
11779 result:
11780 @example
11781 __v8hi __builtin_arc_vmovaw (int, const int)
11782 __v8hi __builtin_arc_vmovw (int, const int)
11783 __v8hi __builtin_arc_vmovzw (int, const int)
11784 @end example
11785
11786 The following take a single @code{__v8hi} argument and return a
11787 @code{__v8hi} result:
11788 @example
11789 __v8hi __builtin_arc_vabsaw (__v8hi)
11790 __v8hi __builtin_arc_vabsw (__v8hi)
11791 __v8hi __builtin_arc_vaddsuw (__v8hi)
11792 __v8hi __builtin_arc_vexch1 (__v8hi)
11793 __v8hi __builtin_arc_vexch2 (__v8hi)
11794 __v8hi __builtin_arc_vexch4 (__v8hi)
11795 __v8hi __builtin_arc_vsignw (__v8hi)
11796 __v8hi __builtin_arc_vupbaw (__v8hi)
11797 __v8hi __builtin_arc_vupbw (__v8hi)
11798 __v8hi __builtin_arc_vupsbaw (__v8hi)
11799 __v8hi __builtin_arc_vupsbw (__v8hi)
11800 @end example
11801
11802 The following take two @code{int} arguments and return no result:
11803 @example
11804 void __builtin_arc_vdirun (int, int)
11805 void __builtin_arc_vdorun (int, int)
11806 @end example
11807
11808 The following take two @code{int} arguments and return no result. The
11809 first argument must a 3-bit compile time constant indicating one of
11810 the DR0-DR7 DMA setup channels:
11811 @example
11812 void __builtin_arc_vdiwr (const int, int)
11813 void __builtin_arc_vdowr (const int, int)
11814 @end example
11815
11816 The following take an @code{int} argument and return no result:
11817 @example
11818 void __builtin_arc_vendrec (int)
11819 void __builtin_arc_vrec (int)
11820 void __builtin_arc_vrecrun (int)
11821 void __builtin_arc_vrun (int)
11822 @end example
11823
11824 The following take a @code{__v8hi} argument and two @code{int}
11825 arguments and return a @code{__v8hi} result. The second argument must
11826 be a 3-bit compile time constants, indicating one the registers I0-I7,
11827 and the third argument must be an 8-bit compile time constant.
11828
11829 @emph{Note:} Although the equivalent hardware instructions do not take
11830 an SIMD register as an operand, these builtins overwrite the relevant
11831 bits of the @code{__v8hi} register provided as the first argument with
11832 the value loaded from the @code{[Ib, u8]} location in the SDM.
11833
11834 @example
11835 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
11836 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
11837 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
11838 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
11839 @end example
11840
11841 The following take two @code{int} arguments and return a @code{__v8hi}
11842 result. The first argument must be a 3-bit compile time constants,
11843 indicating one the registers I0-I7, and the second argument must be an
11844 8-bit compile time constant.
11845
11846 @example
11847 __v8hi __builtin_arc_vld128 (const int, const int)
11848 __v8hi __builtin_arc_vld64w (const int, const int)
11849 @end example
11850
11851 The following take a @code{__v8hi} argument and two @code{int}
11852 arguments and return no result. The second argument must be a 3-bit
11853 compile time constants, indicating one the registers I0-I7, and the
11854 third argument must be an 8-bit compile time constant.
11855
11856 @example
11857 void __builtin_arc_vst128 (__v8hi, const int, const int)
11858 void __builtin_arc_vst64 (__v8hi, const int, const int)
11859 @end example
11860
11861 The following take a @code{__v8hi} argument and three @code{int}
11862 arguments and return no result. The second argument must be a 3-bit
11863 compile-time constant, identifying the 16-bit sub-register to be
11864 stored, the third argument must be a 3-bit compile time constants,
11865 indicating one the registers I0-I7, and the fourth argument must be an
11866 8-bit compile time constant.
11867
11868 @example
11869 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
11870 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
11871 @end example
11872
11873 @node ARM iWMMXt Built-in Functions
11874 @subsection ARM iWMMXt Built-in Functions
11875
11876 These built-in functions are available for the ARM family of
11877 processors when the @option{-mcpu=iwmmxt} switch is used:
11878
11879 @smallexample
11880 typedef int v2si __attribute__ ((vector_size (8)));
11881 typedef short v4hi __attribute__ ((vector_size (8)));
11882 typedef char v8qi __attribute__ ((vector_size (8)));
11883
11884 int __builtin_arm_getwcgr0 (void)
11885 void __builtin_arm_setwcgr0 (int)
11886 int __builtin_arm_getwcgr1 (void)
11887 void __builtin_arm_setwcgr1 (int)
11888 int __builtin_arm_getwcgr2 (void)
11889 void __builtin_arm_setwcgr2 (int)
11890 int __builtin_arm_getwcgr3 (void)
11891 void __builtin_arm_setwcgr3 (int)
11892 int __builtin_arm_textrmsb (v8qi, int)
11893 int __builtin_arm_textrmsh (v4hi, int)
11894 int __builtin_arm_textrmsw (v2si, int)
11895 int __builtin_arm_textrmub (v8qi, int)
11896 int __builtin_arm_textrmuh (v4hi, int)
11897 int __builtin_arm_textrmuw (v2si, int)
11898 v8qi __builtin_arm_tinsrb (v8qi, int, int)
11899 v4hi __builtin_arm_tinsrh (v4hi, int, int)
11900 v2si __builtin_arm_tinsrw (v2si, int, int)
11901 long long __builtin_arm_tmia (long long, int, int)
11902 long long __builtin_arm_tmiabb (long long, int, int)
11903 long long __builtin_arm_tmiabt (long long, int, int)
11904 long long __builtin_arm_tmiaph (long long, int, int)
11905 long long __builtin_arm_tmiatb (long long, int, int)
11906 long long __builtin_arm_tmiatt (long long, int, int)
11907 int __builtin_arm_tmovmskb (v8qi)
11908 int __builtin_arm_tmovmskh (v4hi)
11909 int __builtin_arm_tmovmskw (v2si)
11910 long long __builtin_arm_waccb (v8qi)
11911 long long __builtin_arm_wacch (v4hi)
11912 long long __builtin_arm_waccw (v2si)
11913 v8qi __builtin_arm_waddb (v8qi, v8qi)
11914 v8qi __builtin_arm_waddbss (v8qi, v8qi)
11915 v8qi __builtin_arm_waddbus (v8qi, v8qi)
11916 v4hi __builtin_arm_waddh (v4hi, v4hi)
11917 v4hi __builtin_arm_waddhss (v4hi, v4hi)
11918 v4hi __builtin_arm_waddhus (v4hi, v4hi)
11919 v2si __builtin_arm_waddw (v2si, v2si)
11920 v2si __builtin_arm_waddwss (v2si, v2si)
11921 v2si __builtin_arm_waddwus (v2si, v2si)
11922 v8qi __builtin_arm_walign (v8qi, v8qi, int)
11923 long long __builtin_arm_wand(long long, long long)
11924 long long __builtin_arm_wandn (long long, long long)
11925 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
11926 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
11927 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
11928 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
11929 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
11930 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
11931 v2si __builtin_arm_wcmpeqw (v2si, v2si)
11932 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
11933 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
11934 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
11935 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
11936 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
11937 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
11938 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
11939 long long __builtin_arm_wmacsz (v4hi, v4hi)
11940 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
11941 long long __builtin_arm_wmacuz (v4hi, v4hi)
11942 v4hi __builtin_arm_wmadds (v4hi, v4hi)
11943 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
11944 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
11945 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
11946 v2si __builtin_arm_wmaxsw (v2si, v2si)
11947 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
11948 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
11949 v2si __builtin_arm_wmaxuw (v2si, v2si)
11950 v8qi __builtin_arm_wminsb (v8qi, v8qi)
11951 v4hi __builtin_arm_wminsh (v4hi, v4hi)
11952 v2si __builtin_arm_wminsw (v2si, v2si)
11953 v8qi __builtin_arm_wminub (v8qi, v8qi)
11954 v4hi __builtin_arm_wminuh (v4hi, v4hi)
11955 v2si __builtin_arm_wminuw (v2si, v2si)
11956 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
11957 v4hi __builtin_arm_wmulul (v4hi, v4hi)
11958 v4hi __builtin_arm_wmulum (v4hi, v4hi)
11959 long long __builtin_arm_wor (long long, long long)
11960 v2si __builtin_arm_wpackdss (long long, long long)
11961 v2si __builtin_arm_wpackdus (long long, long long)
11962 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
11963 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
11964 v4hi __builtin_arm_wpackwss (v2si, v2si)
11965 v4hi __builtin_arm_wpackwus (v2si, v2si)
11966 long long __builtin_arm_wrord (long long, long long)
11967 long long __builtin_arm_wrordi (long long, int)
11968 v4hi __builtin_arm_wrorh (v4hi, long long)
11969 v4hi __builtin_arm_wrorhi (v4hi, int)
11970 v2si __builtin_arm_wrorw (v2si, long long)
11971 v2si __builtin_arm_wrorwi (v2si, int)
11972 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
11973 v2si __builtin_arm_wsadbz (v8qi, v8qi)
11974 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
11975 v2si __builtin_arm_wsadhz (v4hi, v4hi)
11976 v4hi __builtin_arm_wshufh (v4hi, int)
11977 long long __builtin_arm_wslld (long long, long long)
11978 long long __builtin_arm_wslldi (long long, int)
11979 v4hi __builtin_arm_wsllh (v4hi, long long)
11980 v4hi __builtin_arm_wsllhi (v4hi, int)
11981 v2si __builtin_arm_wsllw (v2si, long long)
11982 v2si __builtin_arm_wsllwi (v2si, int)
11983 long long __builtin_arm_wsrad (long long, long long)
11984 long long __builtin_arm_wsradi (long long, int)
11985 v4hi __builtin_arm_wsrah (v4hi, long long)
11986 v4hi __builtin_arm_wsrahi (v4hi, int)
11987 v2si __builtin_arm_wsraw (v2si, long long)
11988 v2si __builtin_arm_wsrawi (v2si, int)
11989 long long __builtin_arm_wsrld (long long, long long)
11990 long long __builtin_arm_wsrldi (long long, int)
11991 v4hi __builtin_arm_wsrlh (v4hi, long long)
11992 v4hi __builtin_arm_wsrlhi (v4hi, int)
11993 v2si __builtin_arm_wsrlw (v2si, long long)
11994 v2si __builtin_arm_wsrlwi (v2si, int)
11995 v8qi __builtin_arm_wsubb (v8qi, v8qi)
11996 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
11997 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
11998 v4hi __builtin_arm_wsubh (v4hi, v4hi)
11999 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12000 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12001 v2si __builtin_arm_wsubw (v2si, v2si)
12002 v2si __builtin_arm_wsubwss (v2si, v2si)
12003 v2si __builtin_arm_wsubwus (v2si, v2si)
12004 v4hi __builtin_arm_wunpckehsb (v8qi)
12005 v2si __builtin_arm_wunpckehsh (v4hi)
12006 long long __builtin_arm_wunpckehsw (v2si)
12007 v4hi __builtin_arm_wunpckehub (v8qi)
12008 v2si __builtin_arm_wunpckehuh (v4hi)
12009 long long __builtin_arm_wunpckehuw (v2si)
12010 v4hi __builtin_arm_wunpckelsb (v8qi)
12011 v2si __builtin_arm_wunpckelsh (v4hi)
12012 long long __builtin_arm_wunpckelsw (v2si)
12013 v4hi __builtin_arm_wunpckelub (v8qi)
12014 v2si __builtin_arm_wunpckeluh (v4hi)
12015 long long __builtin_arm_wunpckeluw (v2si)
12016 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12017 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12018 v2si __builtin_arm_wunpckihw (v2si, v2si)
12019 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12020 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12021 v2si __builtin_arm_wunpckilw (v2si, v2si)
12022 long long __builtin_arm_wxor (long long, long long)
12023 long long __builtin_arm_wzero ()
12024 @end smallexample
12025
12026
12027 @node ARM C Language Extensions (ACLE)
12028 @subsection ARM C Language Extensions (ACLE)
12029
12030 GCC implements extensions for C as described in the ARM C Language
12031 Extensions (ACLE) specification, which can be found at
12032 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12033
12034 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12035 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12036 intrinsics can be found at
12037 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12038 The built-in intrinsics for the Advanced SIMD extension are available when
12039 NEON is enabled.
12040
12041 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12042 back ends support CRC32 intrinsics from @file{arm_acle.h}. The ARM back end's
12043 16-bit floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12044 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12045 intrinsics yet.
12046
12047 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12048 availability of extensions.
12049
12050 @node ARM Floating Point Status and Control Intrinsics
12051 @subsection ARM Floating Point Status and Control Intrinsics
12052
12053 These built-in functions are available for the ARM family of
12054 processors with floating-point unit.
12055
12056 @smallexample
12057 unsigned int __builtin_arm_get_fpscr ()
12058 void __builtin_arm_set_fpscr (unsigned int)
12059 @end smallexample
12060
12061 @node AVR Built-in Functions
12062 @subsection AVR Built-in Functions
12063
12064 For each built-in function for AVR, there is an equally named,
12065 uppercase built-in macro defined. That way users can easily query if
12066 or if not a specific built-in is implemented or not. For example, if
12067 @code{__builtin_avr_nop} is available the macro
12068 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12069
12070 The following built-in functions map to the respective machine
12071 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12072 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12073 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12074 as library call if no hardware multiplier is available.
12075
12076 @smallexample
12077 void __builtin_avr_nop (void)
12078 void __builtin_avr_sei (void)
12079 void __builtin_avr_cli (void)
12080 void __builtin_avr_sleep (void)
12081 void __builtin_avr_wdr (void)
12082 unsigned char __builtin_avr_swap (unsigned char)
12083 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12084 int __builtin_avr_fmuls (char, char)
12085 int __builtin_avr_fmulsu (char, unsigned char)
12086 @end smallexample
12087
12088 In order to delay execution for a specific number of cycles, GCC
12089 implements
12090 @smallexample
12091 void __builtin_avr_delay_cycles (unsigned long ticks)
12092 @end smallexample
12093
12094 @noindent
12095 @code{ticks} is the number of ticks to delay execution. Note that this
12096 built-in does not take into account the effect of interrupts that
12097 might increase delay time. @code{ticks} must be a compile-time
12098 integer constant; delays with a variable number of cycles are not supported.
12099
12100 @smallexample
12101 char __builtin_avr_flash_segment (const __memx void*)
12102 @end smallexample
12103
12104 @noindent
12105 This built-in takes a byte address to the 24-bit
12106 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12107 the number of the flash segment (the 64 KiB chunk) where the address
12108 points to. Counting starts at @code{0}.
12109 If the address does not point to flash memory, return @code{-1}.
12110
12111 @smallexample
12112 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
12113 @end smallexample
12114
12115 @noindent
12116 Insert bits from @var{bits} into @var{val} and return the resulting
12117 value. The nibbles of @var{map} determine how the insertion is
12118 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12119 @enumerate
12120 @item If @var{X} is @code{0xf},
12121 then the @var{n}-th bit of @var{val} is returned unaltered.
12122
12123 @item If X is in the range 0@dots{}7,
12124 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12125
12126 @item If X is in the range 8@dots{}@code{0xe},
12127 then the @var{n}-th result bit is undefined.
12128 @end enumerate
12129
12130 @noindent
12131 One typical use case for this built-in is adjusting input and
12132 output values to non-contiguous port layouts. Some examples:
12133
12134 @smallexample
12135 // same as val, bits is unused
12136 __builtin_avr_insert_bits (0xffffffff, bits, val)
12137 @end smallexample
12138
12139 @smallexample
12140 // same as bits, val is unused
12141 __builtin_avr_insert_bits (0x76543210, bits, val)
12142 @end smallexample
12143
12144 @smallexample
12145 // same as rotating bits by 4
12146 __builtin_avr_insert_bits (0x32107654, bits, 0)
12147 @end smallexample
12148
12149 @smallexample
12150 // high nibble of result is the high nibble of val
12151 // low nibble of result is the low nibble of bits
12152 __builtin_avr_insert_bits (0xffff3210, bits, val)
12153 @end smallexample
12154
12155 @smallexample
12156 // reverse the bit order of bits
12157 __builtin_avr_insert_bits (0x01234567, bits, 0)
12158 @end smallexample
12159
12160 @node Blackfin Built-in Functions
12161 @subsection Blackfin Built-in Functions
12162
12163 Currently, there are two Blackfin-specific built-in functions. These are
12164 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
12165 using inline assembly; by using these built-in functions the compiler can
12166 automatically add workarounds for hardware errata involving these
12167 instructions. These functions are named as follows:
12168
12169 @smallexample
12170 void __builtin_bfin_csync (void)
12171 void __builtin_bfin_ssync (void)
12172 @end smallexample
12173
12174 @node FR-V Built-in Functions
12175 @subsection FR-V Built-in Functions
12176
12177 GCC provides many FR-V-specific built-in functions. In general,
12178 these functions are intended to be compatible with those described
12179 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
12180 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
12181 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
12182 pointer rather than by value.
12183
12184 Most of the functions are named after specific FR-V instructions.
12185 Such functions are said to be ``directly mapped'' and are summarized
12186 here in tabular form.
12187
12188 @menu
12189 * Argument Types::
12190 * Directly-mapped Integer Functions::
12191 * Directly-mapped Media Functions::
12192 * Raw read/write Functions::
12193 * Other Built-in Functions::
12194 @end menu
12195
12196 @node Argument Types
12197 @subsubsection Argument Types
12198
12199 The arguments to the built-in functions can be divided into three groups:
12200 register numbers, compile-time constants and run-time values. In order
12201 to make this classification clear at a glance, the arguments and return
12202 values are given the following pseudo types:
12203
12204 @multitable @columnfractions .20 .30 .15 .35
12205 @item Pseudo type @tab Real C type @tab Constant? @tab Description
12206 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
12207 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
12208 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
12209 @item @code{uw2} @tab @code{unsigned long long} @tab No
12210 @tab an unsigned doubleword
12211 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
12212 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
12213 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
12214 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
12215 @end multitable
12216
12217 These pseudo types are not defined by GCC, they are simply a notational
12218 convenience used in this manual.
12219
12220 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
12221 and @code{sw2} are evaluated at run time. They correspond to
12222 register operands in the underlying FR-V instructions.
12223
12224 @code{const} arguments represent immediate operands in the underlying
12225 FR-V instructions. They must be compile-time constants.
12226
12227 @code{acc} arguments are evaluated at compile time and specify the number
12228 of an accumulator register. For example, an @code{acc} argument of 2
12229 selects the ACC2 register.
12230
12231 @code{iacc} arguments are similar to @code{acc} arguments but specify the
12232 number of an IACC register. See @pxref{Other Built-in Functions}
12233 for more details.
12234
12235 @node Directly-mapped Integer Functions
12236 @subsubsection Directly-Mapped Integer Functions
12237
12238 The functions listed below map directly to FR-V I-type instructions.
12239
12240 @multitable @columnfractions .45 .32 .23
12241 @item Function prototype @tab Example usage @tab Assembly output
12242 @item @code{sw1 __ADDSS (sw1, sw1)}
12243 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
12244 @tab @code{ADDSS @var{a},@var{b},@var{c}}
12245 @item @code{sw1 __SCAN (sw1, sw1)}
12246 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
12247 @tab @code{SCAN @var{a},@var{b},@var{c}}
12248 @item @code{sw1 __SCUTSS (sw1)}
12249 @tab @code{@var{b} = __SCUTSS (@var{a})}
12250 @tab @code{SCUTSS @var{a},@var{b}}
12251 @item @code{sw1 __SLASS (sw1, sw1)}
12252 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
12253 @tab @code{SLASS @var{a},@var{b},@var{c}}
12254 @item @code{void __SMASS (sw1, sw1)}
12255 @tab @code{__SMASS (@var{a}, @var{b})}
12256 @tab @code{SMASS @var{a},@var{b}}
12257 @item @code{void __SMSSS (sw1, sw1)}
12258 @tab @code{__SMSSS (@var{a}, @var{b})}
12259 @tab @code{SMSSS @var{a},@var{b}}
12260 @item @code{void __SMU (sw1, sw1)}
12261 @tab @code{__SMU (@var{a}, @var{b})}
12262 @tab @code{SMU @var{a},@var{b}}
12263 @item @code{sw2 __SMUL (sw1, sw1)}
12264 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
12265 @tab @code{SMUL @var{a},@var{b},@var{c}}
12266 @item @code{sw1 __SUBSS (sw1, sw1)}
12267 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
12268 @tab @code{SUBSS @var{a},@var{b},@var{c}}
12269 @item @code{uw2 __UMUL (uw1, uw1)}
12270 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
12271 @tab @code{UMUL @var{a},@var{b},@var{c}}
12272 @end multitable
12273
12274 @node Directly-mapped Media Functions
12275 @subsubsection Directly-Mapped Media Functions
12276
12277 The functions listed below map directly to FR-V M-type instructions.
12278
12279 @multitable @columnfractions .45 .32 .23
12280 @item Function prototype @tab Example usage @tab Assembly output
12281 @item @code{uw1 __MABSHS (sw1)}
12282 @tab @code{@var{b} = __MABSHS (@var{a})}
12283 @tab @code{MABSHS @var{a},@var{b}}
12284 @item @code{void __MADDACCS (acc, acc)}
12285 @tab @code{__MADDACCS (@var{b}, @var{a})}
12286 @tab @code{MADDACCS @var{a},@var{b}}
12287 @item @code{sw1 __MADDHSS (sw1, sw1)}
12288 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
12289 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
12290 @item @code{uw1 __MADDHUS (uw1, uw1)}
12291 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
12292 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
12293 @item @code{uw1 __MAND (uw1, uw1)}
12294 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
12295 @tab @code{MAND @var{a},@var{b},@var{c}}
12296 @item @code{void __MASACCS (acc, acc)}
12297 @tab @code{__MASACCS (@var{b}, @var{a})}
12298 @tab @code{MASACCS @var{a},@var{b}}
12299 @item @code{uw1 __MAVEH (uw1, uw1)}
12300 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
12301 @tab @code{MAVEH @var{a},@var{b},@var{c}}
12302 @item @code{uw2 __MBTOH (uw1)}
12303 @tab @code{@var{b} = __MBTOH (@var{a})}
12304 @tab @code{MBTOH @var{a},@var{b}}
12305 @item @code{void __MBTOHE (uw1 *, uw1)}
12306 @tab @code{__MBTOHE (&@var{b}, @var{a})}
12307 @tab @code{MBTOHE @var{a},@var{b}}
12308 @item @code{void __MCLRACC (acc)}
12309 @tab @code{__MCLRACC (@var{a})}
12310 @tab @code{MCLRACC @var{a}}
12311 @item @code{void __MCLRACCA (void)}
12312 @tab @code{__MCLRACCA ()}
12313 @tab @code{MCLRACCA}
12314 @item @code{uw1 __Mcop1 (uw1, uw1)}
12315 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
12316 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
12317 @item @code{uw1 __Mcop2 (uw1, uw1)}
12318 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
12319 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
12320 @item @code{uw1 __MCPLHI (uw2, const)}
12321 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
12322 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
12323 @item @code{uw1 __MCPLI (uw2, const)}
12324 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
12325 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
12326 @item @code{void __MCPXIS (acc, sw1, sw1)}
12327 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
12328 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
12329 @item @code{void __MCPXIU (acc, uw1, uw1)}
12330 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
12331 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
12332 @item @code{void __MCPXRS (acc, sw1, sw1)}
12333 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
12334 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
12335 @item @code{void __MCPXRU (acc, uw1, uw1)}
12336 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
12337 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
12338 @item @code{uw1 __MCUT (acc, uw1)}
12339 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
12340 @tab @code{MCUT @var{a},@var{b},@var{c}}
12341 @item @code{uw1 __MCUTSS (acc, sw1)}
12342 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
12343 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
12344 @item @code{void __MDADDACCS (acc, acc)}
12345 @tab @code{__MDADDACCS (@var{b}, @var{a})}
12346 @tab @code{MDADDACCS @var{a},@var{b}}
12347 @item @code{void __MDASACCS (acc, acc)}
12348 @tab @code{__MDASACCS (@var{b}, @var{a})}
12349 @tab @code{MDASACCS @var{a},@var{b}}
12350 @item @code{uw2 __MDCUTSSI (acc, const)}
12351 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
12352 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
12353 @item @code{uw2 __MDPACKH (uw2, uw2)}
12354 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
12355 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
12356 @item @code{uw2 __MDROTLI (uw2, const)}
12357 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
12358 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
12359 @item @code{void __MDSUBACCS (acc, acc)}
12360 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
12361 @tab @code{MDSUBACCS @var{a},@var{b}}
12362 @item @code{void __MDUNPACKH (uw1 *, uw2)}
12363 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
12364 @tab @code{MDUNPACKH @var{a},@var{b}}
12365 @item @code{uw2 __MEXPDHD (uw1, const)}
12366 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
12367 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
12368 @item @code{uw1 __MEXPDHW (uw1, const)}
12369 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
12370 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
12371 @item @code{uw1 __MHDSETH (uw1, const)}
12372 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
12373 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
12374 @item @code{sw1 __MHDSETS (const)}
12375 @tab @code{@var{b} = __MHDSETS (@var{a})}
12376 @tab @code{MHDSETS #@var{a},@var{b}}
12377 @item @code{uw1 __MHSETHIH (uw1, const)}
12378 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
12379 @tab @code{MHSETHIH #@var{a},@var{b}}
12380 @item @code{sw1 __MHSETHIS (sw1, const)}
12381 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
12382 @tab @code{MHSETHIS #@var{a},@var{b}}
12383 @item @code{uw1 __MHSETLOH (uw1, const)}
12384 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
12385 @tab @code{MHSETLOH #@var{a},@var{b}}
12386 @item @code{sw1 __MHSETLOS (sw1, const)}
12387 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
12388 @tab @code{MHSETLOS #@var{a},@var{b}}
12389 @item @code{uw1 __MHTOB (uw2)}
12390 @tab @code{@var{b} = __MHTOB (@var{a})}
12391 @tab @code{MHTOB @var{a},@var{b}}
12392 @item @code{void __MMACHS (acc, sw1, sw1)}
12393 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
12394 @tab @code{MMACHS @var{a},@var{b},@var{c}}
12395 @item @code{void __MMACHU (acc, uw1, uw1)}
12396 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
12397 @tab @code{MMACHU @var{a},@var{b},@var{c}}
12398 @item @code{void __MMRDHS (acc, sw1, sw1)}
12399 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
12400 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
12401 @item @code{void __MMRDHU (acc, uw1, uw1)}
12402 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
12403 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
12404 @item @code{void __MMULHS (acc, sw1, sw1)}
12405 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
12406 @tab @code{MMULHS @var{a},@var{b},@var{c}}
12407 @item @code{void __MMULHU (acc, uw1, uw1)}
12408 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
12409 @tab @code{MMULHU @var{a},@var{b},@var{c}}
12410 @item @code{void __MMULXHS (acc, sw1, sw1)}
12411 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
12412 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
12413 @item @code{void __MMULXHU (acc, uw1, uw1)}
12414 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
12415 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
12416 @item @code{uw1 __MNOT (uw1)}
12417 @tab @code{@var{b} = __MNOT (@var{a})}
12418 @tab @code{MNOT @var{a},@var{b}}
12419 @item @code{uw1 __MOR (uw1, uw1)}
12420 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
12421 @tab @code{MOR @var{a},@var{b},@var{c}}
12422 @item @code{uw1 __MPACKH (uh, uh)}
12423 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
12424 @tab @code{MPACKH @var{a},@var{b},@var{c}}
12425 @item @code{sw2 __MQADDHSS (sw2, sw2)}
12426 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
12427 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
12428 @item @code{uw2 __MQADDHUS (uw2, uw2)}
12429 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
12430 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
12431 @item @code{void __MQCPXIS (acc, sw2, sw2)}
12432 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
12433 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
12434 @item @code{void __MQCPXIU (acc, uw2, uw2)}
12435 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
12436 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
12437 @item @code{void __MQCPXRS (acc, sw2, sw2)}
12438 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
12439 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
12440 @item @code{void __MQCPXRU (acc, uw2, uw2)}
12441 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
12442 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
12443 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
12444 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
12445 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
12446 @item @code{sw2 __MQLMTHS (sw2, sw2)}
12447 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
12448 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
12449 @item @code{void __MQMACHS (acc, sw2, sw2)}
12450 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
12451 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
12452 @item @code{void __MQMACHU (acc, uw2, uw2)}
12453 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
12454 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
12455 @item @code{void __MQMACXHS (acc, sw2, sw2)}
12456 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
12457 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
12458 @item @code{void __MQMULHS (acc, sw2, sw2)}
12459 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
12460 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
12461 @item @code{void __MQMULHU (acc, uw2, uw2)}
12462 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
12463 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
12464 @item @code{void __MQMULXHS (acc, sw2, sw2)}
12465 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
12466 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
12467 @item @code{void __MQMULXHU (acc, uw2, uw2)}
12468 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
12469 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
12470 @item @code{sw2 __MQSATHS (sw2, sw2)}
12471 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
12472 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
12473 @item @code{uw2 __MQSLLHI (uw2, int)}
12474 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
12475 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
12476 @item @code{sw2 __MQSRAHI (sw2, int)}
12477 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
12478 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
12479 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
12480 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
12481 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
12482 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
12483 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
12484 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
12485 @item @code{void __MQXMACHS (acc, sw2, sw2)}
12486 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
12487 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
12488 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
12489 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
12490 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
12491 @item @code{uw1 __MRDACC (acc)}
12492 @tab @code{@var{b} = __MRDACC (@var{a})}
12493 @tab @code{MRDACC @var{a},@var{b}}
12494 @item @code{uw1 __MRDACCG (acc)}
12495 @tab @code{@var{b} = __MRDACCG (@var{a})}
12496 @tab @code{MRDACCG @var{a},@var{b}}
12497 @item @code{uw1 __MROTLI (uw1, const)}
12498 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
12499 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
12500 @item @code{uw1 __MROTRI (uw1, const)}
12501 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
12502 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
12503 @item @code{sw1 __MSATHS (sw1, sw1)}
12504 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
12505 @tab @code{MSATHS @var{a},@var{b},@var{c}}
12506 @item @code{uw1 __MSATHU (uw1, uw1)}
12507 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
12508 @tab @code{MSATHU @var{a},@var{b},@var{c}}
12509 @item @code{uw1 __MSLLHI (uw1, const)}
12510 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
12511 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
12512 @item @code{sw1 __MSRAHI (sw1, const)}
12513 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
12514 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
12515 @item @code{uw1 __MSRLHI (uw1, const)}
12516 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
12517 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
12518 @item @code{void __MSUBACCS (acc, acc)}
12519 @tab @code{__MSUBACCS (@var{b}, @var{a})}
12520 @tab @code{MSUBACCS @var{a},@var{b}}
12521 @item @code{sw1 __MSUBHSS (sw1, sw1)}
12522 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
12523 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
12524 @item @code{uw1 __MSUBHUS (uw1, uw1)}
12525 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
12526 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
12527 @item @code{void __MTRAP (void)}
12528 @tab @code{__MTRAP ()}
12529 @tab @code{MTRAP}
12530 @item @code{uw2 __MUNPACKH (uw1)}
12531 @tab @code{@var{b} = __MUNPACKH (@var{a})}
12532 @tab @code{MUNPACKH @var{a},@var{b}}
12533 @item @code{uw1 __MWCUT (uw2, uw1)}
12534 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
12535 @tab @code{MWCUT @var{a},@var{b},@var{c}}
12536 @item @code{void __MWTACC (acc, uw1)}
12537 @tab @code{__MWTACC (@var{b}, @var{a})}
12538 @tab @code{MWTACC @var{a},@var{b}}
12539 @item @code{void __MWTACCG (acc, uw1)}
12540 @tab @code{__MWTACCG (@var{b}, @var{a})}
12541 @tab @code{MWTACCG @var{a},@var{b}}
12542 @item @code{uw1 __MXOR (uw1, uw1)}
12543 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
12544 @tab @code{MXOR @var{a},@var{b},@var{c}}
12545 @end multitable
12546
12547 @node Raw read/write Functions
12548 @subsubsection Raw Read/Write Functions
12549
12550 This sections describes built-in functions related to read and write
12551 instructions to access memory. These functions generate
12552 @code{membar} instructions to flush the I/O load and stores where
12553 appropriate, as described in Fujitsu's manual described above.
12554
12555 @table @code
12556
12557 @item unsigned char __builtin_read8 (void *@var{data})
12558 @item unsigned short __builtin_read16 (void *@var{data})
12559 @item unsigned long __builtin_read32 (void *@var{data})
12560 @item unsigned long long __builtin_read64 (void *@var{data})
12561
12562 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
12563 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
12564 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
12565 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
12566 @end table
12567
12568 @node Other Built-in Functions
12569 @subsubsection Other Built-in Functions
12570
12571 This section describes built-in functions that are not named after
12572 a specific FR-V instruction.
12573
12574 @table @code
12575 @item sw2 __IACCreadll (iacc @var{reg})
12576 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
12577 for future expansion and must be 0.
12578
12579 @item sw1 __IACCreadl (iacc @var{reg})
12580 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
12581 Other values of @var{reg} are rejected as invalid.
12582
12583 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
12584 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
12585 is reserved for future expansion and must be 0.
12586
12587 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
12588 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
12589 is 1. Other values of @var{reg} are rejected as invalid.
12590
12591 @item void __data_prefetch0 (const void *@var{x})
12592 Use the @code{dcpl} instruction to load the contents of address @var{x}
12593 into the data cache.
12594
12595 @item void __data_prefetch (const void *@var{x})
12596 Use the @code{nldub} instruction to load the contents of address @var{x}
12597 into the data cache. The instruction is issued in slot I1@.
12598 @end table
12599
12600 @node MIPS DSP Built-in Functions
12601 @subsection MIPS DSP Built-in Functions
12602
12603 The MIPS DSP Application-Specific Extension (ASE) includes new
12604 instructions that are designed to improve the performance of DSP and
12605 media applications. It provides instructions that operate on packed
12606 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
12607
12608 GCC supports MIPS DSP operations using both the generic
12609 vector extensions (@pxref{Vector Extensions}) and a collection of
12610 MIPS-specific built-in functions. Both kinds of support are
12611 enabled by the @option{-mdsp} command-line option.
12612
12613 Revision 2 of the ASE was introduced in the second half of 2006.
12614 This revision adds extra instructions to the original ASE, but is
12615 otherwise backwards-compatible with it. You can select revision 2
12616 using the command-line option @option{-mdspr2}; this option implies
12617 @option{-mdsp}.
12618
12619 The SCOUNT and POS bits of the DSP control register are global. The
12620 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
12621 POS bits. During optimization, the compiler does not delete these
12622 instructions and it does not delete calls to functions containing
12623 these instructions.
12624
12625 At present, GCC only provides support for operations on 32-bit
12626 vectors. The vector type associated with 8-bit integer data is
12627 usually called @code{v4i8}, the vector type associated with Q7
12628 is usually called @code{v4q7}, the vector type associated with 16-bit
12629 integer data is usually called @code{v2i16}, and the vector type
12630 associated with Q15 is usually called @code{v2q15}. They can be
12631 defined in C as follows:
12632
12633 @smallexample
12634 typedef signed char v4i8 __attribute__ ((vector_size(4)));
12635 typedef signed char v4q7 __attribute__ ((vector_size(4)));
12636 typedef short v2i16 __attribute__ ((vector_size(4)));
12637 typedef short v2q15 __attribute__ ((vector_size(4)));
12638 @end smallexample
12639
12640 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
12641 initialized in the same way as aggregates. For example:
12642
12643 @smallexample
12644 v4i8 a = @{1, 2, 3, 4@};
12645 v4i8 b;
12646 b = (v4i8) @{5, 6, 7, 8@};
12647
12648 v2q15 c = @{0x0fcb, 0x3a75@};
12649 v2q15 d;
12650 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
12651 @end smallexample
12652
12653 @emph{Note:} The CPU's endianness determines the order in which values
12654 are packed. On little-endian targets, the first value is the least
12655 significant and the last value is the most significant. The opposite
12656 order applies to big-endian targets. For example, the code above
12657 sets the lowest byte of @code{a} to @code{1} on little-endian targets
12658 and @code{4} on big-endian targets.
12659
12660 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
12661 representation. As shown in this example, the integer representation
12662 of a Q7 value can be obtained by multiplying the fractional value by
12663 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
12664 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
12665 @code{0x1.0p31}.
12666
12667 The table below lists the @code{v4i8} and @code{v2q15} operations for which
12668 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
12669 and @code{c} and @code{d} are @code{v2q15} values.
12670
12671 @multitable @columnfractions .50 .50
12672 @item C code @tab MIPS instruction
12673 @item @code{a + b} @tab @code{addu.qb}
12674 @item @code{c + d} @tab @code{addq.ph}
12675 @item @code{a - b} @tab @code{subu.qb}
12676 @item @code{c - d} @tab @code{subq.ph}
12677 @end multitable
12678
12679 The table below lists the @code{v2i16} operation for which
12680 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
12681 @code{v2i16} values.
12682
12683 @multitable @columnfractions .50 .50
12684 @item C code @tab MIPS instruction
12685 @item @code{e * f} @tab @code{mul.ph}
12686 @end multitable
12687
12688 It is easier to describe the DSP built-in functions if we first define
12689 the following types:
12690
12691 @smallexample
12692 typedef int q31;
12693 typedef int i32;
12694 typedef unsigned int ui32;
12695 typedef long long a64;
12696 @end smallexample
12697
12698 @code{q31} and @code{i32} are actually the same as @code{int}, but we
12699 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
12700 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
12701 @code{long long}, but we use @code{a64} to indicate values that are
12702 placed in one of the four DSP accumulators (@code{$ac0},
12703 @code{$ac1}, @code{$ac2} or @code{$ac3}).
12704
12705 Also, some built-in functions prefer or require immediate numbers as
12706 parameters, because the corresponding DSP instructions accept both immediate
12707 numbers and register operands, or accept immediate numbers only. The
12708 immediate parameters are listed as follows.
12709
12710 @smallexample
12711 imm0_3: 0 to 3.
12712 imm0_7: 0 to 7.
12713 imm0_15: 0 to 15.
12714 imm0_31: 0 to 31.
12715 imm0_63: 0 to 63.
12716 imm0_255: 0 to 255.
12717 imm_n32_31: -32 to 31.
12718 imm_n512_511: -512 to 511.
12719 @end smallexample
12720
12721 The following built-in functions map directly to a particular MIPS DSP
12722 instruction. Please refer to the architecture specification
12723 for details on what each instruction does.
12724
12725 @smallexample
12726 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
12727 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
12728 q31 __builtin_mips_addq_s_w (q31, q31)
12729 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
12730 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
12731 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
12732 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
12733 q31 __builtin_mips_subq_s_w (q31, q31)
12734 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
12735 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
12736 i32 __builtin_mips_addsc (i32, i32)
12737 i32 __builtin_mips_addwc (i32, i32)
12738 i32 __builtin_mips_modsub (i32, i32)
12739 i32 __builtin_mips_raddu_w_qb (v4i8)
12740 v2q15 __builtin_mips_absq_s_ph (v2q15)
12741 q31 __builtin_mips_absq_s_w (q31)
12742 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
12743 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
12744 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
12745 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
12746 q31 __builtin_mips_preceq_w_phl (v2q15)
12747 q31 __builtin_mips_preceq_w_phr (v2q15)
12748 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
12749 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
12750 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
12751 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
12752 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
12753 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
12754 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
12755 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
12756 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
12757 v4i8 __builtin_mips_shll_qb (v4i8, i32)
12758 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
12759 v2q15 __builtin_mips_shll_ph (v2q15, i32)
12760 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
12761 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
12762 q31 __builtin_mips_shll_s_w (q31, imm0_31)
12763 q31 __builtin_mips_shll_s_w (q31, i32)
12764 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
12765 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
12766 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
12767 v2q15 __builtin_mips_shra_ph (v2q15, i32)
12768 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
12769 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
12770 q31 __builtin_mips_shra_r_w (q31, imm0_31)
12771 q31 __builtin_mips_shra_r_w (q31, i32)
12772 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
12773 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
12774 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
12775 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
12776 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
12777 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
12778 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
12779 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
12780 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
12781 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
12782 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
12783 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
12784 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
12785 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
12786 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
12787 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
12788 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
12789 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
12790 i32 __builtin_mips_bitrev (i32)
12791 i32 __builtin_mips_insv (i32, i32)
12792 v4i8 __builtin_mips_repl_qb (imm0_255)
12793 v4i8 __builtin_mips_repl_qb (i32)
12794 v2q15 __builtin_mips_repl_ph (imm_n512_511)
12795 v2q15 __builtin_mips_repl_ph (i32)
12796 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
12797 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
12798 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
12799 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
12800 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
12801 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
12802 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
12803 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
12804 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
12805 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
12806 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
12807 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
12808 i32 __builtin_mips_extr_w (a64, imm0_31)
12809 i32 __builtin_mips_extr_w (a64, i32)
12810 i32 __builtin_mips_extr_r_w (a64, imm0_31)
12811 i32 __builtin_mips_extr_s_h (a64, i32)
12812 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
12813 i32 __builtin_mips_extr_rs_w (a64, i32)
12814 i32 __builtin_mips_extr_s_h (a64, imm0_31)
12815 i32 __builtin_mips_extr_r_w (a64, i32)
12816 i32 __builtin_mips_extp (a64, imm0_31)
12817 i32 __builtin_mips_extp (a64, i32)
12818 i32 __builtin_mips_extpdp (a64, imm0_31)
12819 i32 __builtin_mips_extpdp (a64, i32)
12820 a64 __builtin_mips_shilo (a64, imm_n32_31)
12821 a64 __builtin_mips_shilo (a64, i32)
12822 a64 __builtin_mips_mthlip (a64, i32)
12823 void __builtin_mips_wrdsp (i32, imm0_63)
12824 i32 __builtin_mips_rddsp (imm0_63)
12825 i32 __builtin_mips_lbux (void *, i32)
12826 i32 __builtin_mips_lhx (void *, i32)
12827 i32 __builtin_mips_lwx (void *, i32)
12828 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
12829 i32 __builtin_mips_bposge32 (void)
12830 a64 __builtin_mips_madd (a64, i32, i32);
12831 a64 __builtin_mips_maddu (a64, ui32, ui32);
12832 a64 __builtin_mips_msub (a64, i32, i32);
12833 a64 __builtin_mips_msubu (a64, ui32, ui32);
12834 a64 __builtin_mips_mult (i32, i32);
12835 a64 __builtin_mips_multu (ui32, ui32);
12836 @end smallexample
12837
12838 The following built-in functions map directly to a particular MIPS DSP REV 2
12839 instruction. Please refer to the architecture specification
12840 for details on what each instruction does.
12841
12842 @smallexample
12843 v4q7 __builtin_mips_absq_s_qb (v4q7);
12844 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
12845 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
12846 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
12847 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
12848 i32 __builtin_mips_append (i32, i32, imm0_31);
12849 i32 __builtin_mips_balign (i32, i32, imm0_3);
12850 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
12851 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
12852 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
12853 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
12854 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
12855 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
12856 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
12857 q31 __builtin_mips_mulq_rs_w (q31, q31);
12858 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
12859 q31 __builtin_mips_mulq_s_w (q31, q31);
12860 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
12861 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
12862 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
12863 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
12864 i32 __builtin_mips_prepend (i32, i32, imm0_31);
12865 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
12866 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
12867 v4i8 __builtin_mips_shra_qb (v4i8, i32);
12868 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
12869 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
12870 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
12871 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
12872 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
12873 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
12874 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
12875 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
12876 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
12877 q31 __builtin_mips_addqh_w (q31, q31);
12878 q31 __builtin_mips_addqh_r_w (q31, q31);
12879 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
12880 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
12881 q31 __builtin_mips_subqh_w (q31, q31);
12882 q31 __builtin_mips_subqh_r_w (q31, q31);
12883 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
12884 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
12885 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
12886 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
12887 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
12888 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
12889 @end smallexample
12890
12891
12892 @node MIPS Paired-Single Support
12893 @subsection MIPS Paired-Single Support
12894
12895 The MIPS64 architecture includes a number of instructions that
12896 operate on pairs of single-precision floating-point values.
12897 Each pair is packed into a 64-bit floating-point register,
12898 with one element being designated the ``upper half'' and
12899 the other being designated the ``lower half''.
12900
12901 GCC supports paired-single operations using both the generic
12902 vector extensions (@pxref{Vector Extensions}) and a collection of
12903 MIPS-specific built-in functions. Both kinds of support are
12904 enabled by the @option{-mpaired-single} command-line option.
12905
12906 The vector type associated with paired-single values is usually
12907 called @code{v2sf}. It can be defined in C as follows:
12908
12909 @smallexample
12910 typedef float v2sf __attribute__ ((vector_size (8)));
12911 @end smallexample
12912
12913 @code{v2sf} values are initialized in the same way as aggregates.
12914 For example:
12915
12916 @smallexample
12917 v2sf a = @{1.5, 9.1@};
12918 v2sf b;
12919 float e, f;
12920 b = (v2sf) @{e, f@};
12921 @end smallexample
12922
12923 @emph{Note:} The CPU's endianness determines which value is stored in
12924 the upper half of a register and which value is stored in the lower half.
12925 On little-endian targets, the first value is the lower one and the second
12926 value is the upper one. The opposite order applies to big-endian targets.
12927 For example, the code above sets the lower half of @code{a} to
12928 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
12929
12930 @node MIPS Loongson Built-in Functions
12931 @subsection MIPS Loongson Built-in Functions
12932
12933 GCC provides intrinsics to access the SIMD instructions provided by the
12934 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
12935 available after inclusion of the @code{loongson.h} header file,
12936 operate on the following 64-bit vector types:
12937
12938 @itemize
12939 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
12940 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
12941 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
12942 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
12943 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
12944 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
12945 @end itemize
12946
12947 The intrinsics provided are listed below; each is named after the
12948 machine instruction to which it corresponds, with suffixes added as
12949 appropriate to distinguish intrinsics that expand to the same machine
12950 instruction yet have different argument types. Refer to the architecture
12951 documentation for a description of the functionality of each
12952 instruction.
12953
12954 @smallexample
12955 int16x4_t packsswh (int32x2_t s, int32x2_t t);
12956 int8x8_t packsshb (int16x4_t s, int16x4_t t);
12957 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
12958 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
12959 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
12960 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
12961 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
12962 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
12963 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
12964 uint64_t paddd_u (uint64_t s, uint64_t t);
12965 int64_t paddd_s (int64_t s, int64_t t);
12966 int16x4_t paddsh (int16x4_t s, int16x4_t t);
12967 int8x8_t paddsb (int8x8_t s, int8x8_t t);
12968 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
12969 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
12970 uint64_t pandn_ud (uint64_t s, uint64_t t);
12971 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
12972 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
12973 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
12974 int64_t pandn_sd (int64_t s, int64_t t);
12975 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
12976 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
12977 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
12978 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
12979 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
12980 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
12981 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
12982 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
12983 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
12984 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
12985 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
12986 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
12987 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
12988 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
12989 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
12990 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
12991 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
12992 uint16x4_t pextrh_u (uint16x4_t s, int field);
12993 int16x4_t pextrh_s (int16x4_t s, int field);
12994 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
12995 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
12996 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
12997 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
12998 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
12999 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13000 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13001 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13002 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13003 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13004 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13005 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13006 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13007 uint8x8_t pmovmskb_u (uint8x8_t s);
13008 int8x8_t pmovmskb_s (int8x8_t s);
13009 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13010 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13011 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13012 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13013 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13014 uint16x4_t biadd (uint8x8_t s);
13015 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13016 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13017 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13018 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13019 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13020 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13021 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13022 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13023 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13024 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13025 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13026 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13027 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13028 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13029 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13030 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13031 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13032 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13033 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13034 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13035 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13036 uint64_t psubd_u (uint64_t s, uint64_t t);
13037 int64_t psubd_s (int64_t s, int64_t t);
13038 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13039 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13040 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13041 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13042 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13043 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13044 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13045 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13046 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13047 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13048 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13049 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13050 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13051 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13052 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13053 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13054 @end smallexample
13055
13056 @menu
13057 * Paired-Single Arithmetic::
13058 * Paired-Single Built-in Functions::
13059 * MIPS-3D Built-in Functions::
13060 @end menu
13061
13062 @node Paired-Single Arithmetic
13063 @subsubsection Paired-Single Arithmetic
13064
13065 The table below lists the @code{v2sf} operations for which hardware
13066 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13067 values and @code{x} is an integral value.
13068
13069 @multitable @columnfractions .50 .50
13070 @item C code @tab MIPS instruction
13071 @item @code{a + b} @tab @code{add.ps}
13072 @item @code{a - b} @tab @code{sub.ps}
13073 @item @code{-a} @tab @code{neg.ps}
13074 @item @code{a * b} @tab @code{mul.ps}
13075 @item @code{a * b + c} @tab @code{madd.ps}
13076 @item @code{a * b - c} @tab @code{msub.ps}
13077 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13078 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13079 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13080 @end multitable
13081
13082 Note that the multiply-accumulate instructions can be disabled
13083 using the command-line option @code{-mno-fused-madd}.
13084
13085 @node Paired-Single Built-in Functions
13086 @subsubsection Paired-Single Built-in Functions
13087
13088 The following paired-single functions map directly to a particular
13089 MIPS instruction. Please refer to the architecture specification
13090 for details on what each instruction does.
13091
13092 @table @code
13093 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13094 Pair lower lower (@code{pll.ps}).
13095
13096 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13097 Pair upper lower (@code{pul.ps}).
13098
13099 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13100 Pair lower upper (@code{plu.ps}).
13101
13102 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13103 Pair upper upper (@code{puu.ps}).
13104
13105 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13106 Convert pair to paired single (@code{cvt.ps.s}).
13107
13108 @item float __builtin_mips_cvt_s_pl (v2sf)
13109 Convert pair lower to single (@code{cvt.s.pl}).
13110
13111 @item float __builtin_mips_cvt_s_pu (v2sf)
13112 Convert pair upper to single (@code{cvt.s.pu}).
13113
13114 @item v2sf __builtin_mips_abs_ps (v2sf)
13115 Absolute value (@code{abs.ps}).
13116
13117 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13118 Align variable (@code{alnv.ps}).
13119
13120 @emph{Note:} The value of the third parameter must be 0 or 4
13121 modulo 8, otherwise the result is unpredictable. Please read the
13122 instruction description for details.
13123 @end table
13124
13125 The following multi-instruction functions are also available.
13126 In each case, @var{cond} can be any of the 16 floating-point conditions:
13127 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13128 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13129 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13130
13131 @table @code
13132 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13133 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13134 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13135 @code{movt.ps}/@code{movf.ps}).
13136
13137 The @code{movt} functions return the value @var{x} computed by:
13138
13139 @smallexample
13140 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13141 mov.ps @var{x},@var{c}
13142 movt.ps @var{x},@var{d},@var{cc}
13143 @end smallexample
13144
13145 The @code{movf} functions are similar but use @code{movf.ps} instead
13146 of @code{movt.ps}.
13147
13148 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13149 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13150 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13151 @code{bc1t}/@code{bc1f}).
13152
13153 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13154 and return either the upper or lower half of the result. For example:
13155
13156 @smallexample
13157 v2sf a, b;
13158 if (__builtin_mips_upper_c_eq_ps (a, b))
13159 upper_halves_are_equal ();
13160 else
13161 upper_halves_are_unequal ();
13162
13163 if (__builtin_mips_lower_c_eq_ps (a, b))
13164 lower_halves_are_equal ();
13165 else
13166 lower_halves_are_unequal ();
13167 @end smallexample
13168 @end table
13169
13170 @node MIPS-3D Built-in Functions
13171 @subsubsection MIPS-3D Built-in Functions
13172
13173 The MIPS-3D Application-Specific Extension (ASE) includes additional
13174 paired-single instructions that are designed to improve the performance
13175 of 3D graphics operations. Support for these instructions is controlled
13176 by the @option{-mips3d} command-line option.
13177
13178 The functions listed below map directly to a particular MIPS-3D
13179 instruction. Please refer to the architecture specification for
13180 more details on what each instruction does.
13181
13182 @table @code
13183 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13184 Reduction add (@code{addr.ps}).
13185
13186 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13187 Reduction multiply (@code{mulr.ps}).
13188
13189 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13190 Convert paired single to paired word (@code{cvt.pw.ps}).
13191
13192 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13193 Convert paired word to paired single (@code{cvt.ps.pw}).
13194
13195 @item float __builtin_mips_recip1_s (float)
13196 @itemx double __builtin_mips_recip1_d (double)
13197 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13198 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13199
13200 @item float __builtin_mips_recip2_s (float, float)
13201 @itemx double __builtin_mips_recip2_d (double, double)
13202 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13203 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13204
13205 @item float __builtin_mips_rsqrt1_s (float)
13206 @itemx double __builtin_mips_rsqrt1_d (double)
13207 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13208 Reduced-precision reciprocal square root (sequence step 1)
13209 (@code{rsqrt1.@var{fmt}}).
13210
13211 @item float __builtin_mips_rsqrt2_s (float, float)
13212 @itemx double __builtin_mips_rsqrt2_d (double, double)
13213 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13214 Reduced-precision reciprocal square root (sequence step 2)
13215 (@code{rsqrt2.@var{fmt}}).
13216 @end table
13217
13218 The following multi-instruction functions are also available.
13219 In each case, @var{cond} can be any of the 16 floating-point conditions:
13220 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13221 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13222 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13223
13224 @table @code
13225 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13226 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13227 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13228 @code{bc1t}/@code{bc1f}).
13229
13230 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13231 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13232 For example:
13233
13234 @smallexample
13235 float a, b;
13236 if (__builtin_mips_cabs_eq_s (a, b))
13237 true ();
13238 else
13239 false ();
13240 @end smallexample
13241
13242 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13243 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13244 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13245 @code{bc1t}/@code{bc1f}).
13246
13247 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13248 and return either the upper or lower half of the result. For example:
13249
13250 @smallexample
13251 v2sf a, b;
13252 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13253 upper_halves_are_equal ();
13254 else
13255 upper_halves_are_unequal ();
13256
13257 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13258 lower_halves_are_equal ();
13259 else
13260 lower_halves_are_unequal ();
13261 @end smallexample
13262
13263 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13264 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13265 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13266 @code{movt.ps}/@code{movf.ps}).
13267
13268 The @code{movt} functions return the value @var{x} computed by:
13269
13270 @smallexample
13271 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13272 mov.ps @var{x},@var{c}
13273 movt.ps @var{x},@var{d},@var{cc}
13274 @end smallexample
13275
13276 The @code{movf} functions are similar but use @code{movf.ps} instead
13277 of @code{movt.ps}.
13278
13279 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13280 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13281 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13282 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13283 Comparison of two paired-single values
13284 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13285 @code{bc1any2t}/@code{bc1any2f}).
13286
13287 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13288 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13289 result is true and the @code{all} forms return true if both results are true.
13290 For example:
13291
13292 @smallexample
13293 v2sf a, b;
13294 if (__builtin_mips_any_c_eq_ps (a, b))
13295 one_is_true ();
13296 else
13297 both_are_false ();
13298
13299 if (__builtin_mips_all_c_eq_ps (a, b))
13300 both_are_true ();
13301 else
13302 one_is_false ();
13303 @end smallexample
13304
13305 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13306 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13307 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13308 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13309 Comparison of four paired-single values
13310 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13311 @code{bc1any4t}/@code{bc1any4f}).
13312
13313 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13314 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13315 The @code{any} forms return true if any of the four results are true
13316 and the @code{all} forms return true if all four results are true.
13317 For example:
13318
13319 @smallexample
13320 v2sf a, b, c, d;
13321 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13322 some_are_true ();
13323 else
13324 all_are_false ();
13325
13326 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13327 all_are_true ();
13328 else
13329 some_are_false ();
13330 @end smallexample
13331 @end table
13332
13333 @node Other MIPS Built-in Functions
13334 @subsection Other MIPS Built-in Functions
13335
13336 GCC provides other MIPS-specific built-in functions:
13337
13338 @table @code
13339 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
13340 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
13341 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
13342 when this function is available.
13343
13344 @item unsigned int __builtin_mips_get_fcsr (void)
13345 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
13346 Get and set the contents of the floating-point control and status register
13347 (FPU control register 31). These functions are only available in hard-float
13348 code but can be called in both MIPS16 and non-MIPS16 contexts.
13349
13350 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
13351 register except the condition codes, which GCC assumes are preserved.
13352 @end table
13353
13354 @node MSP430 Built-in Functions
13355 @subsection MSP430 Built-in Functions
13356
13357 GCC provides a couple of special builtin functions to aid in the
13358 writing of interrupt handlers in C.
13359
13360 @table @code
13361 @item __bic_SR_register_on_exit (int @var{mask})
13362 This clears the indicated bits in the saved copy of the status register
13363 currently residing on the stack. This only works inside interrupt
13364 handlers and the changes to the status register will only take affect
13365 once the handler returns.
13366
13367 @item __bis_SR_register_on_exit (int @var{mask})
13368 This sets the indicated bits in the saved copy of the status register
13369 currently residing on the stack. This only works inside interrupt
13370 handlers and the changes to the status register will only take affect
13371 once the handler returns.
13372
13373 @item __delay_cycles (long long @var{cycles})
13374 This inserts an instruction sequence that takes exactly @var{cycles}
13375 cycles (between 0 and about 17E9) to complete. The inserted sequence
13376 may use jumps, loops, or no-ops, and does not interfere with any other
13377 instructions. Note that @var{cycles} must be a compile-time constant
13378 integer - that is, you must pass a number, not a variable that may be
13379 optimized to a constant later. The number of cycles delayed by this
13380 builtin is exact.
13381 @end table
13382
13383 @node NDS32 Built-in Functions
13384 @subsection NDS32 Built-in Functions
13385
13386 These built-in functions are available for the NDS32 target:
13387
13388 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
13389 Insert an ISYNC instruction into the instruction stream where
13390 @var{addr} is an instruction address for serialization.
13391 @end deftypefn
13392
13393 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
13394 Insert an ISB instruction into the instruction stream.
13395 @end deftypefn
13396
13397 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
13398 Return the content of a system register which is mapped by @var{sr}.
13399 @end deftypefn
13400
13401 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
13402 Return the content of a user space register which is mapped by @var{usr}.
13403 @end deftypefn
13404
13405 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
13406 Move the @var{value} to a system register which is mapped by @var{sr}.
13407 @end deftypefn
13408
13409 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
13410 Move the @var{value} to a user space register which is mapped by @var{usr}.
13411 @end deftypefn
13412
13413 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
13414 Enable global interrupt.
13415 @end deftypefn
13416
13417 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
13418 Disable global interrupt.
13419 @end deftypefn
13420
13421 @node picoChip Built-in Functions
13422 @subsection picoChip Built-in Functions
13423
13424 GCC provides an interface to selected machine instructions from the
13425 picoChip instruction set.
13426
13427 @table @code
13428 @item int __builtin_sbc (int @var{value})
13429 Sign bit count. Return the number of consecutive bits in @var{value}
13430 that have the same value as the sign bit. The result is the number of
13431 leading sign bits minus one, giving the number of redundant sign bits in
13432 @var{value}.
13433
13434 @item int __builtin_byteswap (int @var{value})
13435 Byte swap. Return the result of swapping the upper and lower bytes of
13436 @var{value}.
13437
13438 @item int __builtin_brev (int @var{value})
13439 Bit reversal. Return the result of reversing the bits in
13440 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
13441 and so on.
13442
13443 @item int __builtin_adds (int @var{x}, int @var{y})
13444 Saturating addition. Return the result of adding @var{x} and @var{y},
13445 storing the value 32767 if the result overflows.
13446
13447 @item int __builtin_subs (int @var{x}, int @var{y})
13448 Saturating subtraction. Return the result of subtracting @var{y} from
13449 @var{x}, storing the value @minus{}32768 if the result overflows.
13450
13451 @item void __builtin_halt (void)
13452 Halt. The processor stops execution. This built-in is useful for
13453 implementing assertions.
13454
13455 @end table
13456
13457 @node PowerPC Built-in Functions
13458 @subsection PowerPC Built-in Functions
13459
13460 These built-in functions are available for the PowerPC family of
13461 processors:
13462 @smallexample
13463 float __builtin_recipdivf (float, float);
13464 float __builtin_rsqrtf (float);
13465 double __builtin_recipdiv (double, double);
13466 double __builtin_rsqrt (double);
13467 uint64_t __builtin_ppc_get_timebase ();
13468 unsigned long __builtin_ppc_mftb ();
13469 double __builtin_unpack_longdouble (long double, int);
13470 long double __builtin_pack_longdouble (double, double);
13471 @end smallexample
13472
13473 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13474 @code{__builtin_rsqrtf} functions generate multiple instructions to
13475 implement the reciprocal sqrt functionality using reciprocal sqrt
13476 estimate instructions.
13477
13478 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13479 functions generate multiple instructions to implement division using
13480 the reciprocal estimate instructions.
13481
13482 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
13483 functions generate instructions to read the Time Base Register. The
13484 @code{__builtin_ppc_get_timebase} function may generate multiple
13485 instructions and always returns the 64 bits of the Time Base Register.
13486 The @code{__builtin_ppc_mftb} function always generates one instruction and
13487 returns the Time Base Register value as an unsigned long, throwing away
13488 the most significant word on 32-bit environments.
13489
13490 The following built-in functions are available for the PowerPC family
13491 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
13492 or @option{-mpopcntd}):
13493 @smallexample
13494 long __builtin_bpermd (long, long);
13495 int __builtin_divwe (int, int);
13496 int __builtin_divweo (int, int);
13497 unsigned int __builtin_divweu (unsigned int, unsigned int);
13498 unsigned int __builtin_divweuo (unsigned int, unsigned int);
13499 long __builtin_divde (long, long);
13500 long __builtin_divdeo (long, long);
13501 unsigned long __builtin_divdeu (unsigned long, unsigned long);
13502 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
13503 unsigned int cdtbcd (unsigned int);
13504 unsigned int cbcdtd (unsigned int);
13505 unsigned int addg6s (unsigned int, unsigned int);
13506 @end smallexample
13507
13508 The @code{__builtin_divde}, @code{__builtin_divdeo},
13509 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
13510 64-bit environment support ISA 2.06 or later.
13511
13512 The following built-in functions are available for the PowerPC family
13513 of processors when hardware decimal floating point
13514 (@option{-mhard-dfp}) is available:
13515 @smallexample
13516 _Decimal64 __builtin_dxex (_Decimal64);
13517 _Decimal128 __builtin_dxexq (_Decimal128);
13518 _Decimal64 __builtin_ddedpd (int, _Decimal64);
13519 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
13520 _Decimal64 __builtin_denbcd (int, _Decimal64);
13521 _Decimal128 __builtin_denbcdq (int, _Decimal128);
13522 _Decimal64 __builtin_diex (_Decimal64, _Decimal64);
13523 _Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
13524 _Decimal64 __builtin_dscli (_Decimal64, int);
13525 _Decimal128 __builtin_dscliq (_Decimal128, int);
13526 _Decimal64 __builtin_dscri (_Decimal64, int);
13527 _Decimal128 __builtin_dscriq (_Decimal128, int);
13528 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
13529 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
13530 @end smallexample
13531
13532 The following built-in functions are available for the PowerPC family
13533 of processors when the Vector Scalar (vsx) instruction set is
13534 available:
13535 @smallexample
13536 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
13537 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
13538 unsigned long long);
13539 @end smallexample
13540
13541 @node PowerPC AltiVec/VSX Built-in Functions
13542 @subsection PowerPC AltiVec Built-in Functions
13543
13544 GCC provides an interface for the PowerPC family of processors to access
13545 the AltiVec operations described in Motorola's AltiVec Programming
13546 Interface Manual. The interface is made available by including
13547 @code{<altivec.h>} and using @option{-maltivec} and
13548 @option{-mabi=altivec}. The interface supports the following vector
13549 types.
13550
13551 @smallexample
13552 vector unsigned char
13553 vector signed char
13554 vector bool char
13555
13556 vector unsigned short
13557 vector signed short
13558 vector bool short
13559 vector pixel
13560
13561 vector unsigned int
13562 vector signed int
13563 vector bool int
13564 vector float
13565 @end smallexample
13566
13567 If @option{-mvsx} is used the following additional vector types are
13568 implemented.
13569
13570 @smallexample
13571 vector unsigned long
13572 vector signed long
13573 vector double
13574 @end smallexample
13575
13576 The long types are only implemented for 64-bit code generation, and
13577 the long type is only used in the floating point/integer conversion
13578 instructions.
13579
13580 GCC's implementation of the high-level language interface available from
13581 C and C++ code differs from Motorola's documentation in several ways.
13582
13583 @itemize @bullet
13584
13585 @item
13586 A vector constant is a list of constant expressions within curly braces.
13587
13588 @item
13589 A vector initializer requires no cast if the vector constant is of the
13590 same type as the variable it is initializing.
13591
13592 @item
13593 If @code{signed} or @code{unsigned} is omitted, the signedness of the
13594 vector type is the default signedness of the base type. The default
13595 varies depending on the operating system, so a portable program should
13596 always specify the signedness.
13597
13598 @item
13599 Compiling with @option{-maltivec} adds keywords @code{__vector},
13600 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
13601 @code{bool}. When compiling ISO C, the context-sensitive substitution
13602 of the keywords @code{vector}, @code{pixel} and @code{bool} is
13603 disabled. To use them, you must include @code{<altivec.h>} instead.
13604
13605 @item
13606 GCC allows using a @code{typedef} name as the type specifier for a
13607 vector type.
13608
13609 @item
13610 For C, overloaded functions are implemented with macros so the following
13611 does not work:
13612
13613 @smallexample
13614 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13615 @end smallexample
13616
13617 @noindent
13618 Since @code{vec_add} is a macro, the vector constant in the example
13619 is treated as four separate arguments. Wrap the entire argument in
13620 parentheses for this to work.
13621 @end itemize
13622
13623 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
13624 Internally, GCC uses built-in functions to achieve the functionality in
13625 the aforementioned header file, but they are not supported and are
13626 subject to change without notice.
13627
13628 The following interfaces are supported for the generic and specific
13629 AltiVec operations and the AltiVec predicates. In cases where there
13630 is a direct mapping between generic and specific operations, only the
13631 generic names are shown here, although the specific operations can also
13632 be used.
13633
13634 Arguments that are documented as @code{const int} require literal
13635 integral values within the range required for that operation.
13636
13637 @smallexample
13638 vector signed char vec_abs (vector signed char);
13639 vector signed short vec_abs (vector signed short);
13640 vector signed int vec_abs (vector signed int);
13641 vector float vec_abs (vector float);
13642
13643 vector signed char vec_abss (vector signed char);
13644 vector signed short vec_abss (vector signed short);
13645 vector signed int vec_abss (vector signed int);
13646
13647 vector signed char vec_add (vector bool char, vector signed char);
13648 vector signed char vec_add (vector signed char, vector bool char);
13649 vector signed char vec_add (vector signed char, vector signed char);
13650 vector unsigned char vec_add (vector bool char, vector unsigned char);
13651 vector unsigned char vec_add (vector unsigned char, vector bool char);
13652 vector unsigned char vec_add (vector unsigned char,
13653 vector unsigned char);
13654 vector signed short vec_add (vector bool short, vector signed short);
13655 vector signed short vec_add (vector signed short, vector bool short);
13656 vector signed short vec_add (vector signed short, vector signed short);
13657 vector unsigned short vec_add (vector bool short,
13658 vector unsigned short);
13659 vector unsigned short vec_add (vector unsigned short,
13660 vector bool short);
13661 vector unsigned short vec_add (vector unsigned short,
13662 vector unsigned short);
13663 vector signed int vec_add (vector bool int, vector signed int);
13664 vector signed int vec_add (vector signed int, vector bool int);
13665 vector signed int vec_add (vector signed int, vector signed int);
13666 vector unsigned int vec_add (vector bool int, vector unsigned int);
13667 vector unsigned int vec_add (vector unsigned int, vector bool int);
13668 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
13669 vector float vec_add (vector float, vector float);
13670
13671 vector float vec_vaddfp (vector float, vector float);
13672
13673 vector signed int vec_vadduwm (vector bool int, vector signed int);
13674 vector signed int vec_vadduwm (vector signed int, vector bool int);
13675 vector signed int vec_vadduwm (vector signed int, vector signed int);
13676 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
13677 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
13678 vector unsigned int vec_vadduwm (vector unsigned int,
13679 vector unsigned int);
13680
13681 vector signed short vec_vadduhm (vector bool short,
13682 vector signed short);
13683 vector signed short vec_vadduhm (vector signed short,
13684 vector bool short);
13685 vector signed short vec_vadduhm (vector signed short,
13686 vector signed short);
13687 vector unsigned short vec_vadduhm (vector bool short,
13688 vector unsigned short);
13689 vector unsigned short vec_vadduhm (vector unsigned short,
13690 vector bool short);
13691 vector unsigned short vec_vadduhm (vector unsigned short,
13692 vector unsigned short);
13693
13694 vector signed char vec_vaddubm (vector bool char, vector signed char);
13695 vector signed char vec_vaddubm (vector signed char, vector bool char);
13696 vector signed char vec_vaddubm (vector signed char, vector signed char);
13697 vector unsigned char vec_vaddubm (vector bool char,
13698 vector unsigned char);
13699 vector unsigned char vec_vaddubm (vector unsigned char,
13700 vector bool char);
13701 vector unsigned char vec_vaddubm (vector unsigned char,
13702 vector unsigned char);
13703
13704 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
13705
13706 vector unsigned char vec_adds (vector bool char, vector unsigned char);
13707 vector unsigned char vec_adds (vector unsigned char, vector bool char);
13708 vector unsigned char vec_adds (vector unsigned char,
13709 vector unsigned char);
13710 vector signed char vec_adds (vector bool char, vector signed char);
13711 vector signed char vec_adds (vector signed char, vector bool char);
13712 vector signed char vec_adds (vector signed char, vector signed char);
13713 vector unsigned short vec_adds (vector bool short,
13714 vector unsigned short);
13715 vector unsigned short vec_adds (vector unsigned short,
13716 vector bool short);
13717 vector unsigned short vec_adds (vector unsigned short,
13718 vector unsigned short);
13719 vector signed short vec_adds (vector bool short, vector signed short);
13720 vector signed short vec_adds (vector signed short, vector bool short);
13721 vector signed short vec_adds (vector signed short, vector signed short);
13722 vector unsigned int vec_adds (vector bool int, vector unsigned int);
13723 vector unsigned int vec_adds (vector unsigned int, vector bool int);
13724 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
13725 vector signed int vec_adds (vector bool int, vector signed int);
13726 vector signed int vec_adds (vector signed int, vector bool int);
13727 vector signed int vec_adds (vector signed int, vector signed int);
13728
13729 vector signed int vec_vaddsws (vector bool int, vector signed int);
13730 vector signed int vec_vaddsws (vector signed int, vector bool int);
13731 vector signed int vec_vaddsws (vector signed int, vector signed int);
13732
13733 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
13734 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
13735 vector unsigned int vec_vadduws (vector unsigned int,
13736 vector unsigned int);
13737
13738 vector signed short vec_vaddshs (vector bool short,
13739 vector signed short);
13740 vector signed short vec_vaddshs (vector signed short,
13741 vector bool short);
13742 vector signed short vec_vaddshs (vector signed short,
13743 vector signed short);
13744
13745 vector unsigned short vec_vadduhs (vector bool short,
13746 vector unsigned short);
13747 vector unsigned short vec_vadduhs (vector unsigned short,
13748 vector bool short);
13749 vector unsigned short vec_vadduhs (vector unsigned short,
13750 vector unsigned short);
13751
13752 vector signed char vec_vaddsbs (vector bool char, vector signed char);
13753 vector signed char vec_vaddsbs (vector signed char, vector bool char);
13754 vector signed char vec_vaddsbs (vector signed char, vector signed char);
13755
13756 vector unsigned char vec_vaddubs (vector bool char,
13757 vector unsigned char);
13758 vector unsigned char vec_vaddubs (vector unsigned char,
13759 vector bool char);
13760 vector unsigned char vec_vaddubs (vector unsigned char,
13761 vector unsigned char);
13762
13763 vector float vec_and (vector float, vector float);
13764 vector float vec_and (vector float, vector bool int);
13765 vector float vec_and (vector bool int, vector float);
13766 vector bool int vec_and (vector bool int, vector bool int);
13767 vector signed int vec_and (vector bool int, vector signed int);
13768 vector signed int vec_and (vector signed int, vector bool int);
13769 vector signed int vec_and (vector signed int, vector signed int);
13770 vector unsigned int vec_and (vector bool int, vector unsigned int);
13771 vector unsigned int vec_and (vector unsigned int, vector bool int);
13772 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
13773 vector bool short vec_and (vector bool short, vector bool short);
13774 vector signed short vec_and (vector bool short, vector signed short);
13775 vector signed short vec_and (vector signed short, vector bool short);
13776 vector signed short vec_and (vector signed short, vector signed short);
13777 vector unsigned short vec_and (vector bool short,
13778 vector unsigned short);
13779 vector unsigned short vec_and (vector unsigned short,
13780 vector bool short);
13781 vector unsigned short vec_and (vector unsigned short,
13782 vector unsigned short);
13783 vector signed char vec_and (vector bool char, vector signed char);
13784 vector bool char vec_and (vector bool char, vector bool char);
13785 vector signed char vec_and (vector signed char, vector bool char);
13786 vector signed char vec_and (vector signed char, vector signed char);
13787 vector unsigned char vec_and (vector bool char, vector unsigned char);
13788 vector unsigned char vec_and (vector unsigned char, vector bool char);
13789 vector unsigned char vec_and (vector unsigned char,
13790 vector unsigned char);
13791
13792 vector float vec_andc (vector float, vector float);
13793 vector float vec_andc (vector float, vector bool int);
13794 vector float vec_andc (vector bool int, vector float);
13795 vector bool int vec_andc (vector bool int, vector bool int);
13796 vector signed int vec_andc (vector bool int, vector signed int);
13797 vector signed int vec_andc (vector signed int, vector bool int);
13798 vector signed int vec_andc (vector signed int, vector signed int);
13799 vector unsigned int vec_andc (vector bool int, vector unsigned int);
13800 vector unsigned int vec_andc (vector unsigned int, vector bool int);
13801 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
13802 vector bool short vec_andc (vector bool short, vector bool short);
13803 vector signed short vec_andc (vector bool short, vector signed short);
13804 vector signed short vec_andc (vector signed short, vector bool short);
13805 vector signed short vec_andc (vector signed short, vector signed short);
13806 vector unsigned short vec_andc (vector bool short,
13807 vector unsigned short);
13808 vector unsigned short vec_andc (vector unsigned short,
13809 vector bool short);
13810 vector unsigned short vec_andc (vector unsigned short,
13811 vector unsigned short);
13812 vector signed char vec_andc (vector bool char, vector signed char);
13813 vector bool char vec_andc (vector bool char, vector bool char);
13814 vector signed char vec_andc (vector signed char, vector bool char);
13815 vector signed char vec_andc (vector signed char, vector signed char);
13816 vector unsigned char vec_andc (vector bool char, vector unsigned char);
13817 vector unsigned char vec_andc (vector unsigned char, vector bool char);
13818 vector unsigned char vec_andc (vector unsigned char,
13819 vector unsigned char);
13820
13821 vector unsigned char vec_avg (vector unsigned char,
13822 vector unsigned char);
13823 vector signed char vec_avg (vector signed char, vector signed char);
13824 vector unsigned short vec_avg (vector unsigned short,
13825 vector unsigned short);
13826 vector signed short vec_avg (vector signed short, vector signed short);
13827 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
13828 vector signed int vec_avg (vector signed int, vector signed int);
13829
13830 vector signed int vec_vavgsw (vector signed int, vector signed int);
13831
13832 vector unsigned int vec_vavguw (vector unsigned int,
13833 vector unsigned int);
13834
13835 vector signed short vec_vavgsh (vector signed short,
13836 vector signed short);
13837
13838 vector unsigned short vec_vavguh (vector unsigned short,
13839 vector unsigned short);
13840
13841 vector signed char vec_vavgsb (vector signed char, vector signed char);
13842
13843 vector unsigned char vec_vavgub (vector unsigned char,
13844 vector unsigned char);
13845
13846 vector float vec_copysign (vector float);
13847
13848 vector float vec_ceil (vector float);
13849
13850 vector signed int vec_cmpb (vector float, vector float);
13851
13852 vector bool char vec_cmpeq (vector signed char, vector signed char);
13853 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
13854 vector bool short vec_cmpeq (vector signed short, vector signed short);
13855 vector bool short vec_cmpeq (vector unsigned short,
13856 vector unsigned short);
13857 vector bool int vec_cmpeq (vector signed int, vector signed int);
13858 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
13859 vector bool int vec_cmpeq (vector float, vector float);
13860
13861 vector bool int vec_vcmpeqfp (vector float, vector float);
13862
13863 vector bool int vec_vcmpequw (vector signed int, vector signed int);
13864 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
13865
13866 vector bool short vec_vcmpequh (vector signed short,
13867 vector signed short);
13868 vector bool short vec_vcmpequh (vector unsigned short,
13869 vector unsigned short);
13870
13871 vector bool char vec_vcmpequb (vector signed char, vector signed char);
13872 vector bool char vec_vcmpequb (vector unsigned char,
13873 vector unsigned char);
13874
13875 vector bool int vec_cmpge (vector float, vector float);
13876
13877 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
13878 vector bool char vec_cmpgt (vector signed char, vector signed char);
13879 vector bool short vec_cmpgt (vector unsigned short,
13880 vector unsigned short);
13881 vector bool short vec_cmpgt (vector signed short, vector signed short);
13882 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
13883 vector bool int vec_cmpgt (vector signed int, vector signed int);
13884 vector bool int vec_cmpgt (vector float, vector float);
13885
13886 vector bool int vec_vcmpgtfp (vector float, vector float);
13887
13888 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
13889
13890 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
13891
13892 vector bool short vec_vcmpgtsh (vector signed short,
13893 vector signed short);
13894
13895 vector bool short vec_vcmpgtuh (vector unsigned short,
13896 vector unsigned short);
13897
13898 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
13899
13900 vector bool char vec_vcmpgtub (vector unsigned char,
13901 vector unsigned char);
13902
13903 vector bool int vec_cmple (vector float, vector float);
13904
13905 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
13906 vector bool char vec_cmplt (vector signed char, vector signed char);
13907 vector bool short vec_cmplt (vector unsigned short,
13908 vector unsigned short);
13909 vector bool short vec_cmplt (vector signed short, vector signed short);
13910 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
13911 vector bool int vec_cmplt (vector signed int, vector signed int);
13912 vector bool int vec_cmplt (vector float, vector float);
13913
13914 vector float vec_cpsgn (vector float, vector float);
13915
13916 vector float vec_ctf (vector unsigned int, const int);
13917 vector float vec_ctf (vector signed int, const int);
13918 vector double vec_ctf (vector unsigned long, const int);
13919 vector double vec_ctf (vector signed long, const int);
13920
13921 vector float vec_vcfsx (vector signed int, const int);
13922
13923 vector float vec_vcfux (vector unsigned int, const int);
13924
13925 vector signed int vec_cts (vector float, const int);
13926 vector signed long vec_cts (vector double, const int);
13927
13928 vector unsigned int vec_ctu (vector float, const int);
13929 vector unsigned long vec_ctu (vector double, const int);
13930
13931 void vec_dss (const int);
13932
13933 void vec_dssall (void);
13934
13935 void vec_dst (const vector unsigned char *, int, const int);
13936 void vec_dst (const vector signed char *, int, const int);
13937 void vec_dst (const vector bool char *, int, const int);
13938 void vec_dst (const vector unsigned short *, int, const int);
13939 void vec_dst (const vector signed short *, int, const int);
13940 void vec_dst (const vector bool short *, int, const int);
13941 void vec_dst (const vector pixel *, int, const int);
13942 void vec_dst (const vector unsigned int *, int, const int);
13943 void vec_dst (const vector signed int *, int, const int);
13944 void vec_dst (const vector bool int *, int, const int);
13945 void vec_dst (const vector float *, int, const int);
13946 void vec_dst (const unsigned char *, int, const int);
13947 void vec_dst (const signed char *, int, const int);
13948 void vec_dst (const unsigned short *, int, const int);
13949 void vec_dst (const short *, int, const int);
13950 void vec_dst (const unsigned int *, int, const int);
13951 void vec_dst (const int *, int, const int);
13952 void vec_dst (const unsigned long *, int, const int);
13953 void vec_dst (const long *, int, const int);
13954 void vec_dst (const float *, int, const int);
13955
13956 void vec_dstst (const vector unsigned char *, int, const int);
13957 void vec_dstst (const vector signed char *, int, const int);
13958 void vec_dstst (const vector bool char *, int, const int);
13959 void vec_dstst (const vector unsigned short *, int, const int);
13960 void vec_dstst (const vector signed short *, int, const int);
13961 void vec_dstst (const vector bool short *, int, const int);
13962 void vec_dstst (const vector pixel *, int, const int);
13963 void vec_dstst (const vector unsigned int *, int, const int);
13964 void vec_dstst (const vector signed int *, int, const int);
13965 void vec_dstst (const vector bool int *, int, const int);
13966 void vec_dstst (const vector float *, int, const int);
13967 void vec_dstst (const unsigned char *, int, const int);
13968 void vec_dstst (const signed char *, int, const int);
13969 void vec_dstst (const unsigned short *, int, const int);
13970 void vec_dstst (const short *, int, const int);
13971 void vec_dstst (const unsigned int *, int, const int);
13972 void vec_dstst (const int *, int, const int);
13973 void vec_dstst (const unsigned long *, int, const int);
13974 void vec_dstst (const long *, int, const int);
13975 void vec_dstst (const float *, int, const int);
13976
13977 void vec_dststt (const vector unsigned char *, int, const int);
13978 void vec_dststt (const vector signed char *, int, const int);
13979 void vec_dststt (const vector bool char *, int, const int);
13980 void vec_dststt (const vector unsigned short *, int, const int);
13981 void vec_dststt (const vector signed short *, int, const int);
13982 void vec_dststt (const vector bool short *, int, const int);
13983 void vec_dststt (const vector pixel *, int, const int);
13984 void vec_dststt (const vector unsigned int *, int, const int);
13985 void vec_dststt (const vector signed int *, int, const int);
13986 void vec_dststt (const vector bool int *, int, const int);
13987 void vec_dststt (const vector float *, int, const int);
13988 void vec_dststt (const unsigned char *, int, const int);
13989 void vec_dststt (const signed char *, int, const int);
13990 void vec_dststt (const unsigned short *, int, const int);
13991 void vec_dststt (const short *, int, const int);
13992 void vec_dststt (const unsigned int *, int, const int);
13993 void vec_dststt (const int *, int, const int);
13994 void vec_dststt (const unsigned long *, int, const int);
13995 void vec_dststt (const long *, int, const int);
13996 void vec_dststt (const float *, int, const int);
13997
13998 void vec_dstt (const vector unsigned char *, int, const int);
13999 void vec_dstt (const vector signed char *, int, const int);
14000 void vec_dstt (const vector bool char *, int, const int);
14001 void vec_dstt (const vector unsigned short *, int, const int);
14002 void vec_dstt (const vector signed short *, int, const int);
14003 void vec_dstt (const vector bool short *, int, const int);
14004 void vec_dstt (const vector pixel *, int, const int);
14005 void vec_dstt (const vector unsigned int *, int, const int);
14006 void vec_dstt (const vector signed int *, int, const int);
14007 void vec_dstt (const vector bool int *, int, const int);
14008 void vec_dstt (const vector float *, int, const int);
14009 void vec_dstt (const unsigned char *, int, const int);
14010 void vec_dstt (const signed char *, int, const int);
14011 void vec_dstt (const unsigned short *, int, const int);
14012 void vec_dstt (const short *, int, const int);
14013 void vec_dstt (const unsigned int *, int, const int);
14014 void vec_dstt (const int *, int, const int);
14015 void vec_dstt (const unsigned long *, int, const int);
14016 void vec_dstt (const long *, int, const int);
14017 void vec_dstt (const float *, int, const int);
14018
14019 vector float vec_expte (vector float);
14020
14021 vector float vec_floor (vector float);
14022
14023 vector float vec_ld (int, const vector float *);
14024 vector float vec_ld (int, const float *);
14025 vector bool int vec_ld (int, const vector bool int *);
14026 vector signed int vec_ld (int, const vector signed int *);
14027 vector signed int vec_ld (int, const int *);
14028 vector signed int vec_ld (int, const long *);
14029 vector unsigned int vec_ld (int, const vector unsigned int *);
14030 vector unsigned int vec_ld (int, const unsigned int *);
14031 vector unsigned int vec_ld (int, const unsigned long *);
14032 vector bool short vec_ld (int, const vector bool short *);
14033 vector pixel vec_ld (int, const vector pixel *);
14034 vector signed short vec_ld (int, const vector signed short *);
14035 vector signed short vec_ld (int, const short *);
14036 vector unsigned short vec_ld (int, const vector unsigned short *);
14037 vector unsigned short vec_ld (int, const unsigned short *);
14038 vector bool char vec_ld (int, const vector bool char *);
14039 vector signed char vec_ld (int, const vector signed char *);
14040 vector signed char vec_ld (int, const signed char *);
14041 vector unsigned char vec_ld (int, const vector unsigned char *);
14042 vector unsigned char vec_ld (int, const unsigned char *);
14043
14044 vector signed char vec_lde (int, const signed char *);
14045 vector unsigned char vec_lde (int, const unsigned char *);
14046 vector signed short vec_lde (int, const short *);
14047 vector unsigned short vec_lde (int, const unsigned short *);
14048 vector float vec_lde (int, const float *);
14049 vector signed int vec_lde (int, const int *);
14050 vector unsigned int vec_lde (int, const unsigned int *);
14051 vector signed int vec_lde (int, const long *);
14052 vector unsigned int vec_lde (int, const unsigned long *);
14053
14054 vector float vec_lvewx (int, float *);
14055 vector signed int vec_lvewx (int, int *);
14056 vector unsigned int vec_lvewx (int, unsigned int *);
14057 vector signed int vec_lvewx (int, long *);
14058 vector unsigned int vec_lvewx (int, unsigned long *);
14059
14060 vector signed short vec_lvehx (int, short *);
14061 vector unsigned short vec_lvehx (int, unsigned short *);
14062
14063 vector signed char vec_lvebx (int, char *);
14064 vector unsigned char vec_lvebx (int, unsigned char *);
14065
14066 vector float vec_ldl (int, const vector float *);
14067 vector float vec_ldl (int, const float *);
14068 vector bool int vec_ldl (int, const vector bool int *);
14069 vector signed int vec_ldl (int, const vector signed int *);
14070 vector signed int vec_ldl (int, const int *);
14071 vector signed int vec_ldl (int, const long *);
14072 vector unsigned int vec_ldl (int, const vector unsigned int *);
14073 vector unsigned int vec_ldl (int, const unsigned int *);
14074 vector unsigned int vec_ldl (int, const unsigned long *);
14075 vector bool short vec_ldl (int, const vector bool short *);
14076 vector pixel vec_ldl (int, const vector pixel *);
14077 vector signed short vec_ldl (int, const vector signed short *);
14078 vector signed short vec_ldl (int, const short *);
14079 vector unsigned short vec_ldl (int, const vector unsigned short *);
14080 vector unsigned short vec_ldl (int, const unsigned short *);
14081 vector bool char vec_ldl (int, const vector bool char *);
14082 vector signed char vec_ldl (int, const vector signed char *);
14083 vector signed char vec_ldl (int, const signed char *);
14084 vector unsigned char vec_ldl (int, const vector unsigned char *);
14085 vector unsigned char vec_ldl (int, const unsigned char *);
14086
14087 vector float vec_loge (vector float);
14088
14089 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
14090 vector unsigned char vec_lvsl (int, const volatile signed char *);
14091 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
14092 vector unsigned char vec_lvsl (int, const volatile short *);
14093 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
14094 vector unsigned char vec_lvsl (int, const volatile int *);
14095 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
14096 vector unsigned char vec_lvsl (int, const volatile long *);
14097 vector unsigned char vec_lvsl (int, const volatile float *);
14098
14099 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
14100 vector unsigned char vec_lvsr (int, const volatile signed char *);
14101 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
14102 vector unsigned char vec_lvsr (int, const volatile short *);
14103 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
14104 vector unsigned char vec_lvsr (int, const volatile int *);
14105 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
14106 vector unsigned char vec_lvsr (int, const volatile long *);
14107 vector unsigned char vec_lvsr (int, const volatile float *);
14108
14109 vector float vec_madd (vector float, vector float, vector float);
14110
14111 vector signed short vec_madds (vector signed short,
14112 vector signed short,
14113 vector signed short);
14114
14115 vector unsigned char vec_max (vector bool char, vector unsigned char);
14116 vector unsigned char vec_max (vector unsigned char, vector bool char);
14117 vector unsigned char vec_max (vector unsigned char,
14118 vector unsigned char);
14119 vector signed char vec_max (vector bool char, vector signed char);
14120 vector signed char vec_max (vector signed char, vector bool char);
14121 vector signed char vec_max (vector signed char, vector signed char);
14122 vector unsigned short vec_max (vector bool short,
14123 vector unsigned short);
14124 vector unsigned short vec_max (vector unsigned short,
14125 vector bool short);
14126 vector unsigned short vec_max (vector unsigned short,
14127 vector unsigned short);
14128 vector signed short vec_max (vector bool short, vector signed short);
14129 vector signed short vec_max (vector signed short, vector bool short);
14130 vector signed short vec_max (vector signed short, vector signed short);
14131 vector unsigned int vec_max (vector bool int, vector unsigned int);
14132 vector unsigned int vec_max (vector unsigned int, vector bool int);
14133 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
14134 vector signed int vec_max (vector bool int, vector signed int);
14135 vector signed int vec_max (vector signed int, vector bool int);
14136 vector signed int vec_max (vector signed int, vector signed int);
14137 vector float vec_max (vector float, vector float);
14138
14139 vector float vec_vmaxfp (vector float, vector float);
14140
14141 vector signed int vec_vmaxsw (vector bool int, vector signed int);
14142 vector signed int vec_vmaxsw (vector signed int, vector bool int);
14143 vector signed int vec_vmaxsw (vector signed int, vector signed int);
14144
14145 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
14146 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
14147 vector unsigned int vec_vmaxuw (vector unsigned int,
14148 vector unsigned int);
14149
14150 vector signed short vec_vmaxsh (vector bool short, vector signed short);
14151 vector signed short vec_vmaxsh (vector signed short, vector bool short);
14152 vector signed short vec_vmaxsh (vector signed short,
14153 vector signed short);
14154
14155 vector unsigned short vec_vmaxuh (vector bool short,
14156 vector unsigned short);
14157 vector unsigned short vec_vmaxuh (vector unsigned short,
14158 vector bool short);
14159 vector unsigned short vec_vmaxuh (vector unsigned short,
14160 vector unsigned short);
14161
14162 vector signed char vec_vmaxsb (vector bool char, vector signed char);
14163 vector signed char vec_vmaxsb (vector signed char, vector bool char);
14164 vector signed char vec_vmaxsb (vector signed char, vector signed char);
14165
14166 vector unsigned char vec_vmaxub (vector bool char,
14167 vector unsigned char);
14168 vector unsigned char vec_vmaxub (vector unsigned char,
14169 vector bool char);
14170 vector unsigned char vec_vmaxub (vector unsigned char,
14171 vector unsigned char);
14172
14173 vector bool char vec_mergeh (vector bool char, vector bool char);
14174 vector signed char vec_mergeh (vector signed char, vector signed char);
14175 vector unsigned char vec_mergeh (vector unsigned char,
14176 vector unsigned char);
14177 vector bool short vec_mergeh (vector bool short, vector bool short);
14178 vector pixel vec_mergeh (vector pixel, vector pixel);
14179 vector signed short vec_mergeh (vector signed short,
14180 vector signed short);
14181 vector unsigned short vec_mergeh (vector unsigned short,
14182 vector unsigned short);
14183 vector float vec_mergeh (vector float, vector float);
14184 vector bool int vec_mergeh (vector bool int, vector bool int);
14185 vector signed int vec_mergeh (vector signed int, vector signed int);
14186 vector unsigned int vec_mergeh (vector unsigned int,
14187 vector unsigned int);
14188
14189 vector float vec_vmrghw (vector float, vector float);
14190 vector bool int vec_vmrghw (vector bool int, vector bool int);
14191 vector signed int vec_vmrghw (vector signed int, vector signed int);
14192 vector unsigned int vec_vmrghw (vector unsigned int,
14193 vector unsigned int);
14194
14195 vector bool short vec_vmrghh (vector bool short, vector bool short);
14196 vector signed short vec_vmrghh (vector signed short,
14197 vector signed short);
14198 vector unsigned short vec_vmrghh (vector unsigned short,
14199 vector unsigned short);
14200 vector pixel vec_vmrghh (vector pixel, vector pixel);
14201
14202 vector bool char vec_vmrghb (vector bool char, vector bool char);
14203 vector signed char vec_vmrghb (vector signed char, vector signed char);
14204 vector unsigned char vec_vmrghb (vector unsigned char,
14205 vector unsigned char);
14206
14207 vector bool char vec_mergel (vector bool char, vector bool char);
14208 vector signed char vec_mergel (vector signed char, vector signed char);
14209 vector unsigned char vec_mergel (vector unsigned char,
14210 vector unsigned char);
14211 vector bool short vec_mergel (vector bool short, vector bool short);
14212 vector pixel vec_mergel (vector pixel, vector pixel);
14213 vector signed short vec_mergel (vector signed short,
14214 vector signed short);
14215 vector unsigned short vec_mergel (vector unsigned short,
14216 vector unsigned short);
14217 vector float vec_mergel (vector float, vector float);
14218 vector bool int vec_mergel (vector bool int, vector bool int);
14219 vector signed int vec_mergel (vector signed int, vector signed int);
14220 vector unsigned int vec_mergel (vector unsigned int,
14221 vector unsigned int);
14222
14223 vector float vec_vmrglw (vector float, vector float);
14224 vector signed int vec_vmrglw (vector signed int, vector signed int);
14225 vector unsigned int vec_vmrglw (vector unsigned int,
14226 vector unsigned int);
14227 vector bool int vec_vmrglw (vector bool int, vector bool int);
14228
14229 vector bool short vec_vmrglh (vector bool short, vector bool short);
14230 vector signed short vec_vmrglh (vector signed short,
14231 vector signed short);
14232 vector unsigned short vec_vmrglh (vector unsigned short,
14233 vector unsigned short);
14234 vector pixel vec_vmrglh (vector pixel, vector pixel);
14235
14236 vector bool char vec_vmrglb (vector bool char, vector bool char);
14237 vector signed char vec_vmrglb (vector signed char, vector signed char);
14238 vector unsigned char vec_vmrglb (vector unsigned char,
14239 vector unsigned char);
14240
14241 vector unsigned short vec_mfvscr (void);
14242
14243 vector unsigned char vec_min (vector bool char, vector unsigned char);
14244 vector unsigned char vec_min (vector unsigned char, vector bool char);
14245 vector unsigned char vec_min (vector unsigned char,
14246 vector unsigned char);
14247 vector signed char vec_min (vector bool char, vector signed char);
14248 vector signed char vec_min (vector signed char, vector bool char);
14249 vector signed char vec_min (vector signed char, vector signed char);
14250 vector unsigned short vec_min (vector bool short,
14251 vector unsigned short);
14252 vector unsigned short vec_min (vector unsigned short,
14253 vector bool short);
14254 vector unsigned short vec_min (vector unsigned short,
14255 vector unsigned short);
14256 vector signed short vec_min (vector bool short, vector signed short);
14257 vector signed short vec_min (vector signed short, vector bool short);
14258 vector signed short vec_min (vector signed short, vector signed short);
14259 vector unsigned int vec_min (vector bool int, vector unsigned int);
14260 vector unsigned int vec_min (vector unsigned int, vector bool int);
14261 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
14262 vector signed int vec_min (vector bool int, vector signed int);
14263 vector signed int vec_min (vector signed int, vector bool int);
14264 vector signed int vec_min (vector signed int, vector signed int);
14265 vector float vec_min (vector float, vector float);
14266
14267 vector float vec_vminfp (vector float, vector float);
14268
14269 vector signed int vec_vminsw (vector bool int, vector signed int);
14270 vector signed int vec_vminsw (vector signed int, vector bool int);
14271 vector signed int vec_vminsw (vector signed int, vector signed int);
14272
14273 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
14274 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
14275 vector unsigned int vec_vminuw (vector unsigned int,
14276 vector unsigned int);
14277
14278 vector signed short vec_vminsh (vector bool short, vector signed short);
14279 vector signed short vec_vminsh (vector signed short, vector bool short);
14280 vector signed short vec_vminsh (vector signed short,
14281 vector signed short);
14282
14283 vector unsigned short vec_vminuh (vector bool short,
14284 vector unsigned short);
14285 vector unsigned short vec_vminuh (vector unsigned short,
14286 vector bool short);
14287 vector unsigned short vec_vminuh (vector unsigned short,
14288 vector unsigned short);
14289
14290 vector signed char vec_vminsb (vector bool char, vector signed char);
14291 vector signed char vec_vminsb (vector signed char, vector bool char);
14292 vector signed char vec_vminsb (vector signed char, vector signed char);
14293
14294 vector unsigned char vec_vminub (vector bool char,
14295 vector unsigned char);
14296 vector unsigned char vec_vminub (vector unsigned char,
14297 vector bool char);
14298 vector unsigned char vec_vminub (vector unsigned char,
14299 vector unsigned char);
14300
14301 vector signed short vec_mladd (vector signed short,
14302 vector signed short,
14303 vector signed short);
14304 vector signed short vec_mladd (vector signed short,
14305 vector unsigned short,
14306 vector unsigned short);
14307 vector signed short vec_mladd (vector unsigned short,
14308 vector signed short,
14309 vector signed short);
14310 vector unsigned short vec_mladd (vector unsigned short,
14311 vector unsigned short,
14312 vector unsigned short);
14313
14314 vector signed short vec_mradds (vector signed short,
14315 vector signed short,
14316 vector signed short);
14317
14318 vector unsigned int vec_msum (vector unsigned char,
14319 vector unsigned char,
14320 vector unsigned int);
14321 vector signed int vec_msum (vector signed char,
14322 vector unsigned char,
14323 vector signed int);
14324 vector unsigned int vec_msum (vector unsigned short,
14325 vector unsigned short,
14326 vector unsigned int);
14327 vector signed int vec_msum (vector signed short,
14328 vector signed short,
14329 vector signed int);
14330
14331 vector signed int vec_vmsumshm (vector signed short,
14332 vector signed short,
14333 vector signed int);
14334
14335 vector unsigned int vec_vmsumuhm (vector unsigned short,
14336 vector unsigned short,
14337 vector unsigned int);
14338
14339 vector signed int vec_vmsummbm (vector signed char,
14340 vector unsigned char,
14341 vector signed int);
14342
14343 vector unsigned int vec_vmsumubm (vector unsigned char,
14344 vector unsigned char,
14345 vector unsigned int);
14346
14347 vector unsigned int vec_msums (vector unsigned short,
14348 vector unsigned short,
14349 vector unsigned int);
14350 vector signed int vec_msums (vector signed short,
14351 vector signed short,
14352 vector signed int);
14353
14354 vector signed int vec_vmsumshs (vector signed short,
14355 vector signed short,
14356 vector signed int);
14357
14358 vector unsigned int vec_vmsumuhs (vector unsigned short,
14359 vector unsigned short,
14360 vector unsigned int);
14361
14362 void vec_mtvscr (vector signed int);
14363 void vec_mtvscr (vector unsigned int);
14364 void vec_mtvscr (vector bool int);
14365 void vec_mtvscr (vector signed short);
14366 void vec_mtvscr (vector unsigned short);
14367 void vec_mtvscr (vector bool short);
14368 void vec_mtvscr (vector pixel);
14369 void vec_mtvscr (vector signed char);
14370 void vec_mtvscr (vector unsigned char);
14371 void vec_mtvscr (vector bool char);
14372
14373 vector unsigned short vec_mule (vector unsigned char,
14374 vector unsigned char);
14375 vector signed short vec_mule (vector signed char,
14376 vector signed char);
14377 vector unsigned int vec_mule (vector unsigned short,
14378 vector unsigned short);
14379 vector signed int vec_mule (vector signed short, vector signed short);
14380
14381 vector signed int vec_vmulesh (vector signed short,
14382 vector signed short);
14383
14384 vector unsigned int vec_vmuleuh (vector unsigned short,
14385 vector unsigned short);
14386
14387 vector signed short vec_vmulesb (vector signed char,
14388 vector signed char);
14389
14390 vector unsigned short vec_vmuleub (vector unsigned char,
14391 vector unsigned char);
14392
14393 vector unsigned short vec_mulo (vector unsigned char,
14394 vector unsigned char);
14395 vector signed short vec_mulo (vector signed char, vector signed char);
14396 vector unsigned int vec_mulo (vector unsigned short,
14397 vector unsigned short);
14398 vector signed int vec_mulo (vector signed short, vector signed short);
14399
14400 vector signed int vec_vmulosh (vector signed short,
14401 vector signed short);
14402
14403 vector unsigned int vec_vmulouh (vector unsigned short,
14404 vector unsigned short);
14405
14406 vector signed short vec_vmulosb (vector signed char,
14407 vector signed char);
14408
14409 vector unsigned short vec_vmuloub (vector unsigned char,
14410 vector unsigned char);
14411
14412 vector float vec_nmsub (vector float, vector float, vector float);
14413
14414 vector float vec_nor (vector float, vector float);
14415 vector signed int vec_nor (vector signed int, vector signed int);
14416 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
14417 vector bool int vec_nor (vector bool int, vector bool int);
14418 vector signed short vec_nor (vector signed short, vector signed short);
14419 vector unsigned short vec_nor (vector unsigned short,
14420 vector unsigned short);
14421 vector bool short vec_nor (vector bool short, vector bool short);
14422 vector signed char vec_nor (vector signed char, vector signed char);
14423 vector unsigned char vec_nor (vector unsigned char,
14424 vector unsigned char);
14425 vector bool char vec_nor (vector bool char, vector bool char);
14426
14427 vector float vec_or (vector float, vector float);
14428 vector float vec_or (vector float, vector bool int);
14429 vector float vec_or (vector bool int, vector float);
14430 vector bool int vec_or (vector bool int, vector bool int);
14431 vector signed int vec_or (vector bool int, vector signed int);
14432 vector signed int vec_or (vector signed int, vector bool int);
14433 vector signed int vec_or (vector signed int, vector signed int);
14434 vector unsigned int vec_or (vector bool int, vector unsigned int);
14435 vector unsigned int vec_or (vector unsigned int, vector bool int);
14436 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
14437 vector bool short vec_or (vector bool short, vector bool short);
14438 vector signed short vec_or (vector bool short, vector signed short);
14439 vector signed short vec_or (vector signed short, vector bool short);
14440 vector signed short vec_or (vector signed short, vector signed short);
14441 vector unsigned short vec_or (vector bool short, vector unsigned short);
14442 vector unsigned short vec_or (vector unsigned short, vector bool short);
14443 vector unsigned short vec_or (vector unsigned short,
14444 vector unsigned short);
14445 vector signed char vec_or (vector bool char, vector signed char);
14446 vector bool char vec_or (vector bool char, vector bool char);
14447 vector signed char vec_or (vector signed char, vector bool char);
14448 vector signed char vec_or (vector signed char, vector signed char);
14449 vector unsigned char vec_or (vector bool char, vector unsigned char);
14450 vector unsigned char vec_or (vector unsigned char, vector bool char);
14451 vector unsigned char vec_or (vector unsigned char,
14452 vector unsigned char);
14453
14454 vector signed char vec_pack (vector signed short, vector signed short);
14455 vector unsigned char vec_pack (vector unsigned short,
14456 vector unsigned short);
14457 vector bool char vec_pack (vector bool short, vector bool short);
14458 vector signed short vec_pack (vector signed int, vector signed int);
14459 vector unsigned short vec_pack (vector unsigned int,
14460 vector unsigned int);
14461 vector bool short vec_pack (vector bool int, vector bool int);
14462
14463 vector bool short vec_vpkuwum (vector bool int, vector bool int);
14464 vector signed short vec_vpkuwum (vector signed int, vector signed int);
14465 vector unsigned short vec_vpkuwum (vector unsigned int,
14466 vector unsigned int);
14467
14468 vector bool char vec_vpkuhum (vector bool short, vector bool short);
14469 vector signed char vec_vpkuhum (vector signed short,
14470 vector signed short);
14471 vector unsigned char vec_vpkuhum (vector unsigned short,
14472 vector unsigned short);
14473
14474 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
14475
14476 vector unsigned char vec_packs (vector unsigned short,
14477 vector unsigned short);
14478 vector signed char vec_packs (vector signed short, vector signed short);
14479 vector unsigned short vec_packs (vector unsigned int,
14480 vector unsigned int);
14481 vector signed short vec_packs (vector signed int, vector signed int);
14482
14483 vector signed short vec_vpkswss (vector signed int, vector signed int);
14484
14485 vector unsigned short vec_vpkuwus (vector unsigned int,
14486 vector unsigned int);
14487
14488 vector signed char vec_vpkshss (vector signed short,
14489 vector signed short);
14490
14491 vector unsigned char vec_vpkuhus (vector unsigned short,
14492 vector unsigned short);
14493
14494 vector unsigned char vec_packsu (vector unsigned short,
14495 vector unsigned short);
14496 vector unsigned char vec_packsu (vector signed short,
14497 vector signed short);
14498 vector unsigned short vec_packsu (vector unsigned int,
14499 vector unsigned int);
14500 vector unsigned short vec_packsu (vector signed int, vector signed int);
14501
14502 vector unsigned short vec_vpkswus (vector signed int,
14503 vector signed int);
14504
14505 vector unsigned char vec_vpkshus (vector signed short,
14506 vector signed short);
14507
14508 vector float vec_perm (vector float,
14509 vector float,
14510 vector unsigned char);
14511 vector signed int vec_perm (vector signed int,
14512 vector signed int,
14513 vector unsigned char);
14514 vector unsigned int vec_perm (vector unsigned int,
14515 vector unsigned int,
14516 vector unsigned char);
14517 vector bool int vec_perm (vector bool int,
14518 vector bool int,
14519 vector unsigned char);
14520 vector signed short vec_perm (vector signed short,
14521 vector signed short,
14522 vector unsigned char);
14523 vector unsigned short vec_perm (vector unsigned short,
14524 vector unsigned short,
14525 vector unsigned char);
14526 vector bool short vec_perm (vector bool short,
14527 vector bool short,
14528 vector unsigned char);
14529 vector pixel vec_perm (vector pixel,
14530 vector pixel,
14531 vector unsigned char);
14532 vector signed char vec_perm (vector signed char,
14533 vector signed char,
14534 vector unsigned char);
14535 vector unsigned char vec_perm (vector unsigned char,
14536 vector unsigned char,
14537 vector unsigned char);
14538 vector bool char vec_perm (vector bool char,
14539 vector bool char,
14540 vector unsigned char);
14541
14542 vector float vec_re (vector float);
14543
14544 vector signed char vec_rl (vector signed char,
14545 vector unsigned char);
14546 vector unsigned char vec_rl (vector unsigned char,
14547 vector unsigned char);
14548 vector signed short vec_rl (vector signed short, vector unsigned short);
14549 vector unsigned short vec_rl (vector unsigned short,
14550 vector unsigned short);
14551 vector signed int vec_rl (vector signed int, vector unsigned int);
14552 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
14553
14554 vector signed int vec_vrlw (vector signed int, vector unsigned int);
14555 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
14556
14557 vector signed short vec_vrlh (vector signed short,
14558 vector unsigned short);
14559 vector unsigned short vec_vrlh (vector unsigned short,
14560 vector unsigned short);
14561
14562 vector signed char vec_vrlb (vector signed char, vector unsigned char);
14563 vector unsigned char vec_vrlb (vector unsigned char,
14564 vector unsigned char);
14565
14566 vector float vec_round (vector float);
14567
14568 vector float vec_recip (vector float, vector float);
14569
14570 vector float vec_rsqrt (vector float);
14571
14572 vector float vec_rsqrte (vector float);
14573
14574 vector float vec_sel (vector float, vector float, vector bool int);
14575 vector float vec_sel (vector float, vector float, vector unsigned int);
14576 vector signed int vec_sel (vector signed int,
14577 vector signed int,
14578 vector bool int);
14579 vector signed int vec_sel (vector signed int,
14580 vector signed int,
14581 vector unsigned int);
14582 vector unsigned int vec_sel (vector unsigned int,
14583 vector unsigned int,
14584 vector bool int);
14585 vector unsigned int vec_sel (vector unsigned int,
14586 vector unsigned int,
14587 vector unsigned int);
14588 vector bool int vec_sel (vector bool int,
14589 vector bool int,
14590 vector bool int);
14591 vector bool int vec_sel (vector bool int,
14592 vector bool int,
14593 vector unsigned int);
14594 vector signed short vec_sel (vector signed short,
14595 vector signed short,
14596 vector bool short);
14597 vector signed short vec_sel (vector signed short,
14598 vector signed short,
14599 vector unsigned short);
14600 vector unsigned short vec_sel (vector unsigned short,
14601 vector unsigned short,
14602 vector bool short);
14603 vector unsigned short vec_sel (vector unsigned short,
14604 vector unsigned short,
14605 vector unsigned short);
14606 vector bool short vec_sel (vector bool short,
14607 vector bool short,
14608 vector bool short);
14609 vector bool short vec_sel (vector bool short,
14610 vector bool short,
14611 vector unsigned short);
14612 vector signed char vec_sel (vector signed char,
14613 vector signed char,
14614 vector bool char);
14615 vector signed char vec_sel (vector signed char,
14616 vector signed char,
14617 vector unsigned char);
14618 vector unsigned char vec_sel (vector unsigned char,
14619 vector unsigned char,
14620 vector bool char);
14621 vector unsigned char vec_sel (vector unsigned char,
14622 vector unsigned char,
14623 vector unsigned char);
14624 vector bool char vec_sel (vector bool char,
14625 vector bool char,
14626 vector bool char);
14627 vector bool char vec_sel (vector bool char,
14628 vector bool char,
14629 vector unsigned char);
14630
14631 vector signed char vec_sl (vector signed char,
14632 vector unsigned char);
14633 vector unsigned char vec_sl (vector unsigned char,
14634 vector unsigned char);
14635 vector signed short vec_sl (vector signed short, vector unsigned short);
14636 vector unsigned short vec_sl (vector unsigned short,
14637 vector unsigned short);
14638 vector signed int vec_sl (vector signed int, vector unsigned int);
14639 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
14640
14641 vector signed int vec_vslw (vector signed int, vector unsigned int);
14642 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
14643
14644 vector signed short vec_vslh (vector signed short,
14645 vector unsigned short);
14646 vector unsigned short vec_vslh (vector unsigned short,
14647 vector unsigned short);
14648
14649 vector signed char vec_vslb (vector signed char, vector unsigned char);
14650 vector unsigned char vec_vslb (vector unsigned char,
14651 vector unsigned char);
14652
14653 vector float vec_sld (vector float, vector float, const int);
14654 vector signed int vec_sld (vector signed int,
14655 vector signed int,
14656 const int);
14657 vector unsigned int vec_sld (vector unsigned int,
14658 vector unsigned int,
14659 const int);
14660 vector bool int vec_sld (vector bool int,
14661 vector bool int,
14662 const int);
14663 vector signed short vec_sld (vector signed short,
14664 vector signed short,
14665 const int);
14666 vector unsigned short vec_sld (vector unsigned short,
14667 vector unsigned short,
14668 const int);
14669 vector bool short vec_sld (vector bool short,
14670 vector bool short,
14671 const int);
14672 vector pixel vec_sld (vector pixel,
14673 vector pixel,
14674 const int);
14675 vector signed char vec_sld (vector signed char,
14676 vector signed char,
14677 const int);
14678 vector unsigned char vec_sld (vector unsigned char,
14679 vector unsigned char,
14680 const int);
14681 vector bool char vec_sld (vector bool char,
14682 vector bool char,
14683 const int);
14684
14685 vector signed int vec_sll (vector signed int,
14686 vector unsigned int);
14687 vector signed int vec_sll (vector signed int,
14688 vector unsigned short);
14689 vector signed int vec_sll (vector signed int,
14690 vector unsigned char);
14691 vector unsigned int vec_sll (vector unsigned int,
14692 vector unsigned int);
14693 vector unsigned int vec_sll (vector unsigned int,
14694 vector unsigned short);
14695 vector unsigned int vec_sll (vector unsigned int,
14696 vector unsigned char);
14697 vector bool int vec_sll (vector bool int,
14698 vector unsigned int);
14699 vector bool int vec_sll (vector bool int,
14700 vector unsigned short);
14701 vector bool int vec_sll (vector bool int,
14702 vector unsigned char);
14703 vector signed short vec_sll (vector signed short,
14704 vector unsigned int);
14705 vector signed short vec_sll (vector signed short,
14706 vector unsigned short);
14707 vector signed short vec_sll (vector signed short,
14708 vector unsigned char);
14709 vector unsigned short vec_sll (vector unsigned short,
14710 vector unsigned int);
14711 vector unsigned short vec_sll (vector unsigned short,
14712 vector unsigned short);
14713 vector unsigned short vec_sll (vector unsigned short,
14714 vector unsigned char);
14715 vector bool short vec_sll (vector bool short, vector unsigned int);
14716 vector bool short vec_sll (vector bool short, vector unsigned short);
14717 vector bool short vec_sll (vector bool short, vector unsigned char);
14718 vector pixel vec_sll (vector pixel, vector unsigned int);
14719 vector pixel vec_sll (vector pixel, vector unsigned short);
14720 vector pixel vec_sll (vector pixel, vector unsigned char);
14721 vector signed char vec_sll (vector signed char, vector unsigned int);
14722 vector signed char vec_sll (vector signed char, vector unsigned short);
14723 vector signed char vec_sll (vector signed char, vector unsigned char);
14724 vector unsigned char vec_sll (vector unsigned char,
14725 vector unsigned int);
14726 vector unsigned char vec_sll (vector unsigned char,
14727 vector unsigned short);
14728 vector unsigned char vec_sll (vector unsigned char,
14729 vector unsigned char);
14730 vector bool char vec_sll (vector bool char, vector unsigned int);
14731 vector bool char vec_sll (vector bool char, vector unsigned short);
14732 vector bool char vec_sll (vector bool char, vector unsigned char);
14733
14734 vector float vec_slo (vector float, vector signed char);
14735 vector float vec_slo (vector float, vector unsigned char);
14736 vector signed int vec_slo (vector signed int, vector signed char);
14737 vector signed int vec_slo (vector signed int, vector unsigned char);
14738 vector unsigned int vec_slo (vector unsigned int, vector signed char);
14739 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
14740 vector signed short vec_slo (vector signed short, vector signed char);
14741 vector signed short vec_slo (vector signed short, vector unsigned char);
14742 vector unsigned short vec_slo (vector unsigned short,
14743 vector signed char);
14744 vector unsigned short vec_slo (vector unsigned short,
14745 vector unsigned char);
14746 vector pixel vec_slo (vector pixel, vector signed char);
14747 vector pixel vec_slo (vector pixel, vector unsigned char);
14748 vector signed char vec_slo (vector signed char, vector signed char);
14749 vector signed char vec_slo (vector signed char, vector unsigned char);
14750 vector unsigned char vec_slo (vector unsigned char, vector signed char);
14751 vector unsigned char vec_slo (vector unsigned char,
14752 vector unsigned char);
14753
14754 vector signed char vec_splat (vector signed char, const int);
14755 vector unsigned char vec_splat (vector unsigned char, const int);
14756 vector bool char vec_splat (vector bool char, const int);
14757 vector signed short vec_splat (vector signed short, const int);
14758 vector unsigned short vec_splat (vector unsigned short, const int);
14759 vector bool short vec_splat (vector bool short, const int);
14760 vector pixel vec_splat (vector pixel, const int);
14761 vector float vec_splat (vector float, const int);
14762 vector signed int vec_splat (vector signed int, const int);
14763 vector unsigned int vec_splat (vector unsigned int, const int);
14764 vector bool int vec_splat (vector bool int, const int);
14765 vector signed long vec_splat (vector signed long, const int);
14766 vector unsigned long vec_splat (vector unsigned long, const int);
14767
14768 vector signed char vec_splats (signed char);
14769 vector unsigned char vec_splats (unsigned char);
14770 vector signed short vec_splats (signed short);
14771 vector unsigned short vec_splats (unsigned short);
14772 vector signed int vec_splats (signed int);
14773 vector unsigned int vec_splats (unsigned int);
14774 vector float vec_splats (float);
14775
14776 vector float vec_vspltw (vector float, const int);
14777 vector signed int vec_vspltw (vector signed int, const int);
14778 vector unsigned int vec_vspltw (vector unsigned int, const int);
14779 vector bool int vec_vspltw (vector bool int, const int);
14780
14781 vector bool short vec_vsplth (vector bool short, const int);
14782 vector signed short vec_vsplth (vector signed short, const int);
14783 vector unsigned short vec_vsplth (vector unsigned short, const int);
14784 vector pixel vec_vsplth (vector pixel, const int);
14785
14786 vector signed char vec_vspltb (vector signed char, const int);
14787 vector unsigned char vec_vspltb (vector unsigned char, const int);
14788 vector bool char vec_vspltb (vector bool char, const int);
14789
14790 vector signed char vec_splat_s8 (const int);
14791
14792 vector signed short vec_splat_s16 (const int);
14793
14794 vector signed int vec_splat_s32 (const int);
14795
14796 vector unsigned char vec_splat_u8 (const int);
14797
14798 vector unsigned short vec_splat_u16 (const int);
14799
14800 vector unsigned int vec_splat_u32 (const int);
14801
14802 vector signed char vec_sr (vector signed char, vector unsigned char);
14803 vector unsigned char vec_sr (vector unsigned char,
14804 vector unsigned char);
14805 vector signed short vec_sr (vector signed short,
14806 vector unsigned short);
14807 vector unsigned short vec_sr (vector unsigned short,
14808 vector unsigned short);
14809 vector signed int vec_sr (vector signed int, vector unsigned int);
14810 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
14811
14812 vector signed int vec_vsrw (vector signed int, vector unsigned int);
14813 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
14814
14815 vector signed short vec_vsrh (vector signed short,
14816 vector unsigned short);
14817 vector unsigned short vec_vsrh (vector unsigned short,
14818 vector unsigned short);
14819
14820 vector signed char vec_vsrb (vector signed char, vector unsigned char);
14821 vector unsigned char vec_vsrb (vector unsigned char,
14822 vector unsigned char);
14823
14824 vector signed char vec_sra (vector signed char, vector unsigned char);
14825 vector unsigned char vec_sra (vector unsigned char,
14826 vector unsigned char);
14827 vector signed short vec_sra (vector signed short,
14828 vector unsigned short);
14829 vector unsigned short vec_sra (vector unsigned short,
14830 vector unsigned short);
14831 vector signed int vec_sra (vector signed int, vector unsigned int);
14832 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
14833
14834 vector signed int vec_vsraw (vector signed int, vector unsigned int);
14835 vector unsigned int vec_vsraw (vector unsigned int,
14836 vector unsigned int);
14837
14838 vector signed short vec_vsrah (vector signed short,
14839 vector unsigned short);
14840 vector unsigned short vec_vsrah (vector unsigned short,
14841 vector unsigned short);
14842
14843 vector signed char vec_vsrab (vector signed char, vector unsigned char);
14844 vector unsigned char vec_vsrab (vector unsigned char,
14845 vector unsigned char);
14846
14847 vector signed int vec_srl (vector signed int, vector unsigned int);
14848 vector signed int vec_srl (vector signed int, vector unsigned short);
14849 vector signed int vec_srl (vector signed int, vector unsigned char);
14850 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
14851 vector unsigned int vec_srl (vector unsigned int,
14852 vector unsigned short);
14853 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
14854 vector bool int vec_srl (vector bool int, vector unsigned int);
14855 vector bool int vec_srl (vector bool int, vector unsigned short);
14856 vector bool int vec_srl (vector bool int, vector unsigned char);
14857 vector signed short vec_srl (vector signed short, vector unsigned int);
14858 vector signed short vec_srl (vector signed short,
14859 vector unsigned short);
14860 vector signed short vec_srl (vector signed short, vector unsigned char);
14861 vector unsigned short vec_srl (vector unsigned short,
14862 vector unsigned int);
14863 vector unsigned short vec_srl (vector unsigned short,
14864 vector unsigned short);
14865 vector unsigned short vec_srl (vector unsigned short,
14866 vector unsigned char);
14867 vector bool short vec_srl (vector bool short, vector unsigned int);
14868 vector bool short vec_srl (vector bool short, vector unsigned short);
14869 vector bool short vec_srl (vector bool short, vector unsigned char);
14870 vector pixel vec_srl (vector pixel, vector unsigned int);
14871 vector pixel vec_srl (vector pixel, vector unsigned short);
14872 vector pixel vec_srl (vector pixel, vector unsigned char);
14873 vector signed char vec_srl (vector signed char, vector unsigned int);
14874 vector signed char vec_srl (vector signed char, vector unsigned short);
14875 vector signed char vec_srl (vector signed char, vector unsigned char);
14876 vector unsigned char vec_srl (vector unsigned char,
14877 vector unsigned int);
14878 vector unsigned char vec_srl (vector unsigned char,
14879 vector unsigned short);
14880 vector unsigned char vec_srl (vector unsigned char,
14881 vector unsigned char);
14882 vector bool char vec_srl (vector bool char, vector unsigned int);
14883 vector bool char vec_srl (vector bool char, vector unsigned short);
14884 vector bool char vec_srl (vector bool char, vector unsigned char);
14885
14886 vector float vec_sro (vector float, vector signed char);
14887 vector float vec_sro (vector float, vector unsigned char);
14888 vector signed int vec_sro (vector signed int, vector signed char);
14889 vector signed int vec_sro (vector signed int, vector unsigned char);
14890 vector unsigned int vec_sro (vector unsigned int, vector signed char);
14891 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
14892 vector signed short vec_sro (vector signed short, vector signed char);
14893 vector signed short vec_sro (vector signed short, vector unsigned char);
14894 vector unsigned short vec_sro (vector unsigned short,
14895 vector signed char);
14896 vector unsigned short vec_sro (vector unsigned short,
14897 vector unsigned char);
14898 vector pixel vec_sro (vector pixel, vector signed char);
14899 vector pixel vec_sro (vector pixel, vector unsigned char);
14900 vector signed char vec_sro (vector signed char, vector signed char);
14901 vector signed char vec_sro (vector signed char, vector unsigned char);
14902 vector unsigned char vec_sro (vector unsigned char, vector signed char);
14903 vector unsigned char vec_sro (vector unsigned char,
14904 vector unsigned char);
14905
14906 void vec_st (vector float, int, vector float *);
14907 void vec_st (vector float, int, float *);
14908 void vec_st (vector signed int, int, vector signed int *);
14909 void vec_st (vector signed int, int, int *);
14910 void vec_st (vector unsigned int, int, vector unsigned int *);
14911 void vec_st (vector unsigned int, int, unsigned int *);
14912 void vec_st (vector bool int, int, vector bool int *);
14913 void vec_st (vector bool int, int, unsigned int *);
14914 void vec_st (vector bool int, int, int *);
14915 void vec_st (vector signed short, int, vector signed short *);
14916 void vec_st (vector signed short, int, short *);
14917 void vec_st (vector unsigned short, int, vector unsigned short *);
14918 void vec_st (vector unsigned short, int, unsigned short *);
14919 void vec_st (vector bool short, int, vector bool short *);
14920 void vec_st (vector bool short, int, unsigned short *);
14921 void vec_st (vector pixel, int, vector pixel *);
14922 void vec_st (vector pixel, int, unsigned short *);
14923 void vec_st (vector pixel, int, short *);
14924 void vec_st (vector bool short, int, short *);
14925 void vec_st (vector signed char, int, vector signed char *);
14926 void vec_st (vector signed char, int, signed char *);
14927 void vec_st (vector unsigned char, int, vector unsigned char *);
14928 void vec_st (vector unsigned char, int, unsigned char *);
14929 void vec_st (vector bool char, int, vector bool char *);
14930 void vec_st (vector bool char, int, unsigned char *);
14931 void vec_st (vector bool char, int, signed char *);
14932
14933 void vec_ste (vector signed char, int, signed char *);
14934 void vec_ste (vector unsigned char, int, unsigned char *);
14935 void vec_ste (vector bool char, int, signed char *);
14936 void vec_ste (vector bool char, int, unsigned char *);
14937 void vec_ste (vector signed short, int, short *);
14938 void vec_ste (vector unsigned short, int, unsigned short *);
14939 void vec_ste (vector bool short, int, short *);
14940 void vec_ste (vector bool short, int, unsigned short *);
14941 void vec_ste (vector pixel, int, short *);
14942 void vec_ste (vector pixel, int, unsigned short *);
14943 void vec_ste (vector float, int, float *);
14944 void vec_ste (vector signed int, int, int *);
14945 void vec_ste (vector unsigned int, int, unsigned int *);
14946 void vec_ste (vector bool int, int, int *);
14947 void vec_ste (vector bool int, int, unsigned int *);
14948
14949 void vec_stvewx (vector float, int, float *);
14950 void vec_stvewx (vector signed int, int, int *);
14951 void vec_stvewx (vector unsigned int, int, unsigned int *);
14952 void vec_stvewx (vector bool int, int, int *);
14953 void vec_stvewx (vector bool int, int, unsigned int *);
14954
14955 void vec_stvehx (vector signed short, int, short *);
14956 void vec_stvehx (vector unsigned short, int, unsigned short *);
14957 void vec_stvehx (vector bool short, int, short *);
14958 void vec_stvehx (vector bool short, int, unsigned short *);
14959 void vec_stvehx (vector pixel, int, short *);
14960 void vec_stvehx (vector pixel, int, unsigned short *);
14961
14962 void vec_stvebx (vector signed char, int, signed char *);
14963 void vec_stvebx (vector unsigned char, int, unsigned char *);
14964 void vec_stvebx (vector bool char, int, signed char *);
14965 void vec_stvebx (vector bool char, int, unsigned char *);
14966
14967 void vec_stl (vector float, int, vector float *);
14968 void vec_stl (vector float, int, float *);
14969 void vec_stl (vector signed int, int, vector signed int *);
14970 void vec_stl (vector signed int, int, int *);
14971 void vec_stl (vector unsigned int, int, vector unsigned int *);
14972 void vec_stl (vector unsigned int, int, unsigned int *);
14973 void vec_stl (vector bool int, int, vector bool int *);
14974 void vec_stl (vector bool int, int, unsigned int *);
14975 void vec_stl (vector bool int, int, int *);
14976 void vec_stl (vector signed short, int, vector signed short *);
14977 void vec_stl (vector signed short, int, short *);
14978 void vec_stl (vector unsigned short, int, vector unsigned short *);
14979 void vec_stl (vector unsigned short, int, unsigned short *);
14980 void vec_stl (vector bool short, int, vector bool short *);
14981 void vec_stl (vector bool short, int, unsigned short *);
14982 void vec_stl (vector bool short, int, short *);
14983 void vec_stl (vector pixel, int, vector pixel *);
14984 void vec_stl (vector pixel, int, unsigned short *);
14985 void vec_stl (vector pixel, int, short *);
14986 void vec_stl (vector signed char, int, vector signed char *);
14987 void vec_stl (vector signed char, int, signed char *);
14988 void vec_stl (vector unsigned char, int, vector unsigned char *);
14989 void vec_stl (vector unsigned char, int, unsigned char *);
14990 void vec_stl (vector bool char, int, vector bool char *);
14991 void vec_stl (vector bool char, int, unsigned char *);
14992 void vec_stl (vector bool char, int, signed char *);
14993
14994 vector signed char vec_sub (vector bool char, vector signed char);
14995 vector signed char vec_sub (vector signed char, vector bool char);
14996 vector signed char vec_sub (vector signed char, vector signed char);
14997 vector unsigned char vec_sub (vector bool char, vector unsigned char);
14998 vector unsigned char vec_sub (vector unsigned char, vector bool char);
14999 vector unsigned char vec_sub (vector unsigned char,
15000 vector unsigned char);
15001 vector signed short vec_sub (vector bool short, vector signed short);
15002 vector signed short vec_sub (vector signed short, vector bool short);
15003 vector signed short vec_sub (vector signed short, vector signed short);
15004 vector unsigned short vec_sub (vector bool short,
15005 vector unsigned short);
15006 vector unsigned short vec_sub (vector unsigned short,
15007 vector bool short);
15008 vector unsigned short vec_sub (vector unsigned short,
15009 vector unsigned short);
15010 vector signed int vec_sub (vector bool int, vector signed int);
15011 vector signed int vec_sub (vector signed int, vector bool int);
15012 vector signed int vec_sub (vector signed int, vector signed int);
15013 vector unsigned int vec_sub (vector bool int, vector unsigned int);
15014 vector unsigned int vec_sub (vector unsigned int, vector bool int);
15015 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
15016 vector float vec_sub (vector float, vector float);
15017
15018 vector float vec_vsubfp (vector float, vector float);
15019
15020 vector signed int vec_vsubuwm (vector bool int, vector signed int);
15021 vector signed int vec_vsubuwm (vector signed int, vector bool int);
15022 vector signed int vec_vsubuwm (vector signed int, vector signed int);
15023 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
15024 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
15025 vector unsigned int vec_vsubuwm (vector unsigned int,
15026 vector unsigned int);
15027
15028 vector signed short vec_vsubuhm (vector bool short,
15029 vector signed short);
15030 vector signed short vec_vsubuhm (vector signed short,
15031 vector bool short);
15032 vector signed short vec_vsubuhm (vector signed short,
15033 vector signed short);
15034 vector unsigned short vec_vsubuhm (vector bool short,
15035 vector unsigned short);
15036 vector unsigned short vec_vsubuhm (vector unsigned short,
15037 vector bool short);
15038 vector unsigned short vec_vsubuhm (vector unsigned short,
15039 vector unsigned short);
15040
15041 vector signed char vec_vsububm (vector bool char, vector signed char);
15042 vector signed char vec_vsububm (vector signed char, vector bool char);
15043 vector signed char vec_vsububm (vector signed char, vector signed char);
15044 vector unsigned char vec_vsububm (vector bool char,
15045 vector unsigned char);
15046 vector unsigned char vec_vsububm (vector unsigned char,
15047 vector bool char);
15048 vector unsigned char vec_vsububm (vector unsigned char,
15049 vector unsigned char);
15050
15051 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
15052
15053 vector unsigned char vec_subs (vector bool char, vector unsigned char);
15054 vector unsigned char vec_subs (vector unsigned char, vector bool char);
15055 vector unsigned char vec_subs (vector unsigned char,
15056 vector unsigned char);
15057 vector signed char vec_subs (vector bool char, vector signed char);
15058 vector signed char vec_subs (vector signed char, vector bool char);
15059 vector signed char vec_subs (vector signed char, vector signed char);
15060 vector unsigned short vec_subs (vector bool short,
15061 vector unsigned short);
15062 vector unsigned short vec_subs (vector unsigned short,
15063 vector bool short);
15064 vector unsigned short vec_subs (vector unsigned short,
15065 vector unsigned short);
15066 vector signed short vec_subs (vector bool short, vector signed short);
15067 vector signed short vec_subs (vector signed short, vector bool short);
15068 vector signed short vec_subs (vector signed short, vector signed short);
15069 vector unsigned int vec_subs (vector bool int, vector unsigned int);
15070 vector unsigned int vec_subs (vector unsigned int, vector bool int);
15071 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
15072 vector signed int vec_subs (vector bool int, vector signed int);
15073 vector signed int vec_subs (vector signed int, vector bool int);
15074 vector signed int vec_subs (vector signed int, vector signed int);
15075
15076 vector signed int vec_vsubsws (vector bool int, vector signed int);
15077 vector signed int vec_vsubsws (vector signed int, vector bool int);
15078 vector signed int vec_vsubsws (vector signed int, vector signed int);
15079
15080 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
15081 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
15082 vector unsigned int vec_vsubuws (vector unsigned int,
15083 vector unsigned int);
15084
15085 vector signed short vec_vsubshs (vector bool short,
15086 vector signed short);
15087 vector signed short vec_vsubshs (vector signed short,
15088 vector bool short);
15089 vector signed short vec_vsubshs (vector signed short,
15090 vector signed short);
15091
15092 vector unsigned short vec_vsubuhs (vector bool short,
15093 vector unsigned short);
15094 vector unsigned short vec_vsubuhs (vector unsigned short,
15095 vector bool short);
15096 vector unsigned short vec_vsubuhs (vector unsigned short,
15097 vector unsigned short);
15098
15099 vector signed char vec_vsubsbs (vector bool char, vector signed char);
15100 vector signed char vec_vsubsbs (vector signed char, vector bool char);
15101 vector signed char vec_vsubsbs (vector signed char, vector signed char);
15102
15103 vector unsigned char vec_vsububs (vector bool char,
15104 vector unsigned char);
15105 vector unsigned char vec_vsububs (vector unsigned char,
15106 vector bool char);
15107 vector unsigned char vec_vsububs (vector unsigned char,
15108 vector unsigned char);
15109
15110 vector unsigned int vec_sum4s (vector unsigned char,
15111 vector unsigned int);
15112 vector signed int vec_sum4s (vector signed char, vector signed int);
15113 vector signed int vec_sum4s (vector signed short, vector signed int);
15114
15115 vector signed int vec_vsum4shs (vector signed short, vector signed int);
15116
15117 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
15118
15119 vector unsigned int vec_vsum4ubs (vector unsigned char,
15120 vector unsigned int);
15121
15122 vector signed int vec_sum2s (vector signed int, vector signed int);
15123
15124 vector signed int vec_sums (vector signed int, vector signed int);
15125
15126 vector float vec_trunc (vector float);
15127
15128 vector signed short vec_unpackh (vector signed char);
15129 vector bool short vec_unpackh (vector bool char);
15130 vector signed int vec_unpackh (vector signed short);
15131 vector bool int vec_unpackh (vector bool short);
15132 vector unsigned int vec_unpackh (vector pixel);
15133
15134 vector bool int vec_vupkhsh (vector bool short);
15135 vector signed int vec_vupkhsh (vector signed short);
15136
15137 vector unsigned int vec_vupkhpx (vector pixel);
15138
15139 vector bool short vec_vupkhsb (vector bool char);
15140 vector signed short vec_vupkhsb (vector signed char);
15141
15142 vector signed short vec_unpackl (vector signed char);
15143 vector bool short vec_unpackl (vector bool char);
15144 vector unsigned int vec_unpackl (vector pixel);
15145 vector signed int vec_unpackl (vector signed short);
15146 vector bool int vec_unpackl (vector bool short);
15147
15148 vector unsigned int vec_vupklpx (vector pixel);
15149
15150 vector bool int vec_vupklsh (vector bool short);
15151 vector signed int vec_vupklsh (vector signed short);
15152
15153 vector bool short vec_vupklsb (vector bool char);
15154 vector signed short vec_vupklsb (vector signed char);
15155
15156 vector float vec_xor (vector float, vector float);
15157 vector float vec_xor (vector float, vector bool int);
15158 vector float vec_xor (vector bool int, vector float);
15159 vector bool int vec_xor (vector bool int, vector bool int);
15160 vector signed int vec_xor (vector bool int, vector signed int);
15161 vector signed int vec_xor (vector signed int, vector bool int);
15162 vector signed int vec_xor (vector signed int, vector signed int);
15163 vector unsigned int vec_xor (vector bool int, vector unsigned int);
15164 vector unsigned int vec_xor (vector unsigned int, vector bool int);
15165 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
15166 vector bool short vec_xor (vector bool short, vector bool short);
15167 vector signed short vec_xor (vector bool short, vector signed short);
15168 vector signed short vec_xor (vector signed short, vector bool short);
15169 vector signed short vec_xor (vector signed short, vector signed short);
15170 vector unsigned short vec_xor (vector bool short,
15171 vector unsigned short);
15172 vector unsigned short vec_xor (vector unsigned short,
15173 vector bool short);
15174 vector unsigned short vec_xor (vector unsigned short,
15175 vector unsigned short);
15176 vector signed char vec_xor (vector bool char, vector signed char);
15177 vector bool char vec_xor (vector bool char, vector bool char);
15178 vector signed char vec_xor (vector signed char, vector bool char);
15179 vector signed char vec_xor (vector signed char, vector signed char);
15180 vector unsigned char vec_xor (vector bool char, vector unsigned char);
15181 vector unsigned char vec_xor (vector unsigned char, vector bool char);
15182 vector unsigned char vec_xor (vector unsigned char,
15183 vector unsigned char);
15184
15185 int vec_all_eq (vector signed char, vector bool char);
15186 int vec_all_eq (vector signed char, vector signed char);
15187 int vec_all_eq (vector unsigned char, vector bool char);
15188 int vec_all_eq (vector unsigned char, vector unsigned char);
15189 int vec_all_eq (vector bool char, vector bool char);
15190 int vec_all_eq (vector bool char, vector unsigned char);
15191 int vec_all_eq (vector bool char, vector signed char);
15192 int vec_all_eq (vector signed short, vector bool short);
15193 int vec_all_eq (vector signed short, vector signed short);
15194 int vec_all_eq (vector unsigned short, vector bool short);
15195 int vec_all_eq (vector unsigned short, vector unsigned short);
15196 int vec_all_eq (vector bool short, vector bool short);
15197 int vec_all_eq (vector bool short, vector unsigned short);
15198 int vec_all_eq (vector bool short, vector signed short);
15199 int vec_all_eq (vector pixel, vector pixel);
15200 int vec_all_eq (vector signed int, vector bool int);
15201 int vec_all_eq (vector signed int, vector signed int);
15202 int vec_all_eq (vector unsigned int, vector bool int);
15203 int vec_all_eq (vector unsigned int, vector unsigned int);
15204 int vec_all_eq (vector bool int, vector bool int);
15205 int vec_all_eq (vector bool int, vector unsigned int);
15206 int vec_all_eq (vector bool int, vector signed int);
15207 int vec_all_eq (vector float, vector float);
15208
15209 int vec_all_ge (vector bool char, vector unsigned char);
15210 int vec_all_ge (vector unsigned char, vector bool char);
15211 int vec_all_ge (vector unsigned char, vector unsigned char);
15212 int vec_all_ge (vector bool char, vector signed char);
15213 int vec_all_ge (vector signed char, vector bool char);
15214 int vec_all_ge (vector signed char, vector signed char);
15215 int vec_all_ge (vector bool short, vector unsigned short);
15216 int vec_all_ge (vector unsigned short, vector bool short);
15217 int vec_all_ge (vector unsigned short, vector unsigned short);
15218 int vec_all_ge (vector signed short, vector signed short);
15219 int vec_all_ge (vector bool short, vector signed short);
15220 int vec_all_ge (vector signed short, vector bool short);
15221 int vec_all_ge (vector bool int, vector unsigned int);
15222 int vec_all_ge (vector unsigned int, vector bool int);
15223 int vec_all_ge (vector unsigned int, vector unsigned int);
15224 int vec_all_ge (vector bool int, vector signed int);
15225 int vec_all_ge (vector signed int, vector bool int);
15226 int vec_all_ge (vector signed int, vector signed int);
15227 int vec_all_ge (vector float, vector float);
15228
15229 int vec_all_gt (vector bool char, vector unsigned char);
15230 int vec_all_gt (vector unsigned char, vector bool char);
15231 int vec_all_gt (vector unsigned char, vector unsigned char);
15232 int vec_all_gt (vector bool char, vector signed char);
15233 int vec_all_gt (vector signed char, vector bool char);
15234 int vec_all_gt (vector signed char, vector signed char);
15235 int vec_all_gt (vector bool short, vector unsigned short);
15236 int vec_all_gt (vector unsigned short, vector bool short);
15237 int vec_all_gt (vector unsigned short, vector unsigned short);
15238 int vec_all_gt (vector bool short, vector signed short);
15239 int vec_all_gt (vector signed short, vector bool short);
15240 int vec_all_gt (vector signed short, vector signed short);
15241 int vec_all_gt (vector bool int, vector unsigned int);
15242 int vec_all_gt (vector unsigned int, vector bool int);
15243 int vec_all_gt (vector unsigned int, vector unsigned int);
15244 int vec_all_gt (vector bool int, vector signed int);
15245 int vec_all_gt (vector signed int, vector bool int);
15246 int vec_all_gt (vector signed int, vector signed int);
15247 int vec_all_gt (vector float, vector float);
15248
15249 int vec_all_in (vector float, vector float);
15250
15251 int vec_all_le (vector bool char, vector unsigned char);
15252 int vec_all_le (vector unsigned char, vector bool char);
15253 int vec_all_le (vector unsigned char, vector unsigned char);
15254 int vec_all_le (vector bool char, vector signed char);
15255 int vec_all_le (vector signed char, vector bool char);
15256 int vec_all_le (vector signed char, vector signed char);
15257 int vec_all_le (vector bool short, vector unsigned short);
15258 int vec_all_le (vector unsigned short, vector bool short);
15259 int vec_all_le (vector unsigned short, vector unsigned short);
15260 int vec_all_le (vector bool short, vector signed short);
15261 int vec_all_le (vector signed short, vector bool short);
15262 int vec_all_le (vector signed short, vector signed short);
15263 int vec_all_le (vector bool int, vector unsigned int);
15264 int vec_all_le (vector unsigned int, vector bool int);
15265 int vec_all_le (vector unsigned int, vector unsigned int);
15266 int vec_all_le (vector bool int, vector signed int);
15267 int vec_all_le (vector signed int, vector bool int);
15268 int vec_all_le (vector signed int, vector signed int);
15269 int vec_all_le (vector float, vector float);
15270
15271 int vec_all_lt (vector bool char, vector unsigned char);
15272 int vec_all_lt (vector unsigned char, vector bool char);
15273 int vec_all_lt (vector unsigned char, vector unsigned char);
15274 int vec_all_lt (vector bool char, vector signed char);
15275 int vec_all_lt (vector signed char, vector bool char);
15276 int vec_all_lt (vector signed char, vector signed char);
15277 int vec_all_lt (vector bool short, vector unsigned short);
15278 int vec_all_lt (vector unsigned short, vector bool short);
15279 int vec_all_lt (vector unsigned short, vector unsigned short);
15280 int vec_all_lt (vector bool short, vector signed short);
15281 int vec_all_lt (vector signed short, vector bool short);
15282 int vec_all_lt (vector signed short, vector signed short);
15283 int vec_all_lt (vector bool int, vector unsigned int);
15284 int vec_all_lt (vector unsigned int, vector bool int);
15285 int vec_all_lt (vector unsigned int, vector unsigned int);
15286 int vec_all_lt (vector bool int, vector signed int);
15287 int vec_all_lt (vector signed int, vector bool int);
15288 int vec_all_lt (vector signed int, vector signed int);
15289 int vec_all_lt (vector float, vector float);
15290
15291 int vec_all_nan (vector float);
15292
15293 int vec_all_ne (vector signed char, vector bool char);
15294 int vec_all_ne (vector signed char, vector signed char);
15295 int vec_all_ne (vector unsigned char, vector bool char);
15296 int vec_all_ne (vector unsigned char, vector unsigned char);
15297 int vec_all_ne (vector bool char, vector bool char);
15298 int vec_all_ne (vector bool char, vector unsigned char);
15299 int vec_all_ne (vector bool char, vector signed char);
15300 int vec_all_ne (vector signed short, vector bool short);
15301 int vec_all_ne (vector signed short, vector signed short);
15302 int vec_all_ne (vector unsigned short, vector bool short);
15303 int vec_all_ne (vector unsigned short, vector unsigned short);
15304 int vec_all_ne (vector bool short, vector bool short);
15305 int vec_all_ne (vector bool short, vector unsigned short);
15306 int vec_all_ne (vector bool short, vector signed short);
15307 int vec_all_ne (vector pixel, vector pixel);
15308 int vec_all_ne (vector signed int, vector bool int);
15309 int vec_all_ne (vector signed int, vector signed int);
15310 int vec_all_ne (vector unsigned int, vector bool int);
15311 int vec_all_ne (vector unsigned int, vector unsigned int);
15312 int vec_all_ne (vector bool int, vector bool int);
15313 int vec_all_ne (vector bool int, vector unsigned int);
15314 int vec_all_ne (vector bool int, vector signed int);
15315 int vec_all_ne (vector float, vector float);
15316
15317 int vec_all_nge (vector float, vector float);
15318
15319 int vec_all_ngt (vector float, vector float);
15320
15321 int vec_all_nle (vector float, vector float);
15322
15323 int vec_all_nlt (vector float, vector float);
15324
15325 int vec_all_numeric (vector float);
15326
15327 int vec_any_eq (vector signed char, vector bool char);
15328 int vec_any_eq (vector signed char, vector signed char);
15329 int vec_any_eq (vector unsigned char, vector bool char);
15330 int vec_any_eq (vector unsigned char, vector unsigned char);
15331 int vec_any_eq (vector bool char, vector bool char);
15332 int vec_any_eq (vector bool char, vector unsigned char);
15333 int vec_any_eq (vector bool char, vector signed char);
15334 int vec_any_eq (vector signed short, vector bool short);
15335 int vec_any_eq (vector signed short, vector signed short);
15336 int vec_any_eq (vector unsigned short, vector bool short);
15337 int vec_any_eq (vector unsigned short, vector unsigned short);
15338 int vec_any_eq (vector bool short, vector bool short);
15339 int vec_any_eq (vector bool short, vector unsigned short);
15340 int vec_any_eq (vector bool short, vector signed short);
15341 int vec_any_eq (vector pixel, vector pixel);
15342 int vec_any_eq (vector signed int, vector bool int);
15343 int vec_any_eq (vector signed int, vector signed int);
15344 int vec_any_eq (vector unsigned int, vector bool int);
15345 int vec_any_eq (vector unsigned int, vector unsigned int);
15346 int vec_any_eq (vector bool int, vector bool int);
15347 int vec_any_eq (vector bool int, vector unsigned int);
15348 int vec_any_eq (vector bool int, vector signed int);
15349 int vec_any_eq (vector float, vector float);
15350
15351 int vec_any_ge (vector signed char, vector bool char);
15352 int vec_any_ge (vector unsigned char, vector bool char);
15353 int vec_any_ge (vector unsigned char, vector unsigned char);
15354 int vec_any_ge (vector signed char, vector signed char);
15355 int vec_any_ge (vector bool char, vector unsigned char);
15356 int vec_any_ge (vector bool char, vector signed char);
15357 int vec_any_ge (vector unsigned short, vector bool short);
15358 int vec_any_ge (vector unsigned short, vector unsigned short);
15359 int vec_any_ge (vector signed short, vector signed short);
15360 int vec_any_ge (vector signed short, vector bool short);
15361 int vec_any_ge (vector bool short, vector unsigned short);
15362 int vec_any_ge (vector bool short, vector signed short);
15363 int vec_any_ge (vector signed int, vector bool int);
15364 int vec_any_ge (vector unsigned int, vector bool int);
15365 int vec_any_ge (vector unsigned int, vector unsigned int);
15366 int vec_any_ge (vector signed int, vector signed int);
15367 int vec_any_ge (vector bool int, vector unsigned int);
15368 int vec_any_ge (vector bool int, vector signed int);
15369 int vec_any_ge (vector float, vector float);
15370
15371 int vec_any_gt (vector bool char, vector unsigned char);
15372 int vec_any_gt (vector unsigned char, vector bool char);
15373 int vec_any_gt (vector unsigned char, vector unsigned char);
15374 int vec_any_gt (vector bool char, vector signed char);
15375 int vec_any_gt (vector signed char, vector bool char);
15376 int vec_any_gt (vector signed char, vector signed char);
15377 int vec_any_gt (vector bool short, vector unsigned short);
15378 int vec_any_gt (vector unsigned short, vector bool short);
15379 int vec_any_gt (vector unsigned short, vector unsigned short);
15380 int vec_any_gt (vector bool short, vector signed short);
15381 int vec_any_gt (vector signed short, vector bool short);
15382 int vec_any_gt (vector signed short, vector signed short);
15383 int vec_any_gt (vector bool int, vector unsigned int);
15384 int vec_any_gt (vector unsigned int, vector bool int);
15385 int vec_any_gt (vector unsigned int, vector unsigned int);
15386 int vec_any_gt (vector bool int, vector signed int);
15387 int vec_any_gt (vector signed int, vector bool int);
15388 int vec_any_gt (vector signed int, vector signed int);
15389 int vec_any_gt (vector float, vector float);
15390
15391 int vec_any_le (vector bool char, vector unsigned char);
15392 int vec_any_le (vector unsigned char, vector bool char);
15393 int vec_any_le (vector unsigned char, vector unsigned char);
15394 int vec_any_le (vector bool char, vector signed char);
15395 int vec_any_le (vector signed char, vector bool char);
15396 int vec_any_le (vector signed char, vector signed char);
15397 int vec_any_le (vector bool short, vector unsigned short);
15398 int vec_any_le (vector unsigned short, vector bool short);
15399 int vec_any_le (vector unsigned short, vector unsigned short);
15400 int vec_any_le (vector bool short, vector signed short);
15401 int vec_any_le (vector signed short, vector bool short);
15402 int vec_any_le (vector signed short, vector signed short);
15403 int vec_any_le (vector bool int, vector unsigned int);
15404 int vec_any_le (vector unsigned int, vector bool int);
15405 int vec_any_le (vector unsigned int, vector unsigned int);
15406 int vec_any_le (vector bool int, vector signed int);
15407 int vec_any_le (vector signed int, vector bool int);
15408 int vec_any_le (vector signed int, vector signed int);
15409 int vec_any_le (vector float, vector float);
15410
15411 int vec_any_lt (vector bool char, vector unsigned char);
15412 int vec_any_lt (vector unsigned char, vector bool char);
15413 int vec_any_lt (vector unsigned char, vector unsigned char);
15414 int vec_any_lt (vector bool char, vector signed char);
15415 int vec_any_lt (vector signed char, vector bool char);
15416 int vec_any_lt (vector signed char, vector signed char);
15417 int vec_any_lt (vector bool short, vector unsigned short);
15418 int vec_any_lt (vector unsigned short, vector bool short);
15419 int vec_any_lt (vector unsigned short, vector unsigned short);
15420 int vec_any_lt (vector bool short, vector signed short);
15421 int vec_any_lt (vector signed short, vector bool short);
15422 int vec_any_lt (vector signed short, vector signed short);
15423 int vec_any_lt (vector bool int, vector unsigned int);
15424 int vec_any_lt (vector unsigned int, vector bool int);
15425 int vec_any_lt (vector unsigned int, vector unsigned int);
15426 int vec_any_lt (vector bool int, vector signed int);
15427 int vec_any_lt (vector signed int, vector bool int);
15428 int vec_any_lt (vector signed int, vector signed int);
15429 int vec_any_lt (vector float, vector float);
15430
15431 int vec_any_nan (vector float);
15432
15433 int vec_any_ne (vector signed char, vector bool char);
15434 int vec_any_ne (vector signed char, vector signed char);
15435 int vec_any_ne (vector unsigned char, vector bool char);
15436 int vec_any_ne (vector unsigned char, vector unsigned char);
15437 int vec_any_ne (vector bool char, vector bool char);
15438 int vec_any_ne (vector bool char, vector unsigned char);
15439 int vec_any_ne (vector bool char, vector signed char);
15440 int vec_any_ne (vector signed short, vector bool short);
15441 int vec_any_ne (vector signed short, vector signed short);
15442 int vec_any_ne (vector unsigned short, vector bool short);
15443 int vec_any_ne (vector unsigned short, vector unsigned short);
15444 int vec_any_ne (vector bool short, vector bool short);
15445 int vec_any_ne (vector bool short, vector unsigned short);
15446 int vec_any_ne (vector bool short, vector signed short);
15447 int vec_any_ne (vector pixel, vector pixel);
15448 int vec_any_ne (vector signed int, vector bool int);
15449 int vec_any_ne (vector signed int, vector signed int);
15450 int vec_any_ne (vector unsigned int, vector bool int);
15451 int vec_any_ne (vector unsigned int, vector unsigned int);
15452 int vec_any_ne (vector bool int, vector bool int);
15453 int vec_any_ne (vector bool int, vector unsigned int);
15454 int vec_any_ne (vector bool int, vector signed int);
15455 int vec_any_ne (vector float, vector float);
15456
15457 int vec_any_nge (vector float, vector float);
15458
15459 int vec_any_ngt (vector float, vector float);
15460
15461 int vec_any_nle (vector float, vector float);
15462
15463 int vec_any_nlt (vector float, vector float);
15464
15465 int vec_any_numeric (vector float);
15466
15467 int vec_any_out (vector float, vector float);
15468 @end smallexample
15469
15470 If the vector/scalar (VSX) instruction set is available, the following
15471 additional functions are available:
15472
15473 @smallexample
15474 vector double vec_abs (vector double);
15475 vector double vec_add (vector double, vector double);
15476 vector double vec_and (vector double, vector double);
15477 vector double vec_and (vector double, vector bool long);
15478 vector double vec_and (vector bool long, vector double);
15479 vector long vec_and (vector long, vector long);
15480 vector long vec_and (vector long, vector bool long);
15481 vector long vec_and (vector bool long, vector long);
15482 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
15483 vector unsigned long vec_and (vector unsigned long, vector bool long);
15484 vector unsigned long vec_and (vector bool long, vector unsigned long);
15485 vector double vec_andc (vector double, vector double);
15486 vector double vec_andc (vector double, vector bool long);
15487 vector double vec_andc (vector bool long, vector double);
15488 vector long vec_andc (vector long, vector long);
15489 vector long vec_andc (vector long, vector bool long);
15490 vector long vec_andc (vector bool long, vector long);
15491 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
15492 vector unsigned long vec_andc (vector unsigned long, vector bool long);
15493 vector unsigned long vec_andc (vector bool long, vector unsigned long);
15494 vector double vec_ceil (vector double);
15495 vector bool long vec_cmpeq (vector double, vector double);
15496 vector bool long vec_cmpge (vector double, vector double);
15497 vector bool long vec_cmpgt (vector double, vector double);
15498 vector bool long vec_cmple (vector double, vector double);
15499 vector bool long vec_cmplt (vector double, vector double);
15500 vector double vec_cpsgn (vector double, vector double);
15501 vector float vec_div (vector float, vector float);
15502 vector double vec_div (vector double, vector double);
15503 vector long vec_div (vector long, vector long);
15504 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
15505 vector double vec_floor (vector double);
15506 vector double vec_ld (int, const vector double *);
15507 vector double vec_ld (int, const double *);
15508 vector double vec_ldl (int, const vector double *);
15509 vector double vec_ldl (int, const double *);
15510 vector unsigned char vec_lvsl (int, const volatile double *);
15511 vector unsigned char vec_lvsr (int, const volatile double *);
15512 vector double vec_madd (vector double, vector double, vector double);
15513 vector double vec_max (vector double, vector double);
15514 vector signed long vec_mergeh (vector signed long, vector signed long);
15515 vector signed long vec_mergeh (vector signed long, vector bool long);
15516 vector signed long vec_mergeh (vector bool long, vector signed long);
15517 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
15518 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
15519 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
15520 vector signed long vec_mergel (vector signed long, vector signed long);
15521 vector signed long vec_mergel (vector signed long, vector bool long);
15522 vector signed long vec_mergel (vector bool long, vector signed long);
15523 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
15524 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
15525 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
15526 vector double vec_min (vector double, vector double);
15527 vector float vec_msub (vector float, vector float, vector float);
15528 vector double vec_msub (vector double, vector double, vector double);
15529 vector float vec_mul (vector float, vector float);
15530 vector double vec_mul (vector double, vector double);
15531 vector long vec_mul (vector long, vector long);
15532 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
15533 vector float vec_nearbyint (vector float);
15534 vector double vec_nearbyint (vector double);
15535 vector float vec_nmadd (vector float, vector float, vector float);
15536 vector double vec_nmadd (vector double, vector double, vector double);
15537 vector double vec_nmsub (vector double, vector double, vector double);
15538 vector double vec_nor (vector double, vector double);
15539 vector long vec_nor (vector long, vector long);
15540 vector long vec_nor (vector long, vector bool long);
15541 vector long vec_nor (vector bool long, vector long);
15542 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
15543 vector unsigned long vec_nor (vector unsigned long, vector bool long);
15544 vector unsigned long vec_nor (vector bool long, vector unsigned long);
15545 vector double vec_or (vector double, vector double);
15546 vector double vec_or (vector double, vector bool long);
15547 vector double vec_or (vector bool long, vector double);
15548 vector long vec_or (vector long, vector long);
15549 vector long vec_or (vector long, vector bool long);
15550 vector long vec_or (vector bool long, vector long);
15551 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
15552 vector unsigned long vec_or (vector unsigned long, vector bool long);
15553 vector unsigned long vec_or (vector bool long, vector unsigned long);
15554 vector double vec_perm (vector double, vector double, vector unsigned char);
15555 vector long vec_perm (vector long, vector long, vector unsigned char);
15556 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
15557 vector unsigned char);
15558 vector double vec_rint (vector double);
15559 vector double vec_recip (vector double, vector double);
15560 vector double vec_rsqrt (vector double);
15561 vector double vec_rsqrte (vector double);
15562 vector double vec_sel (vector double, vector double, vector bool long);
15563 vector double vec_sel (vector double, vector double, vector unsigned long);
15564 vector long vec_sel (vector long, vector long, vector long);
15565 vector long vec_sel (vector long, vector long, vector unsigned long);
15566 vector long vec_sel (vector long, vector long, vector bool long);
15567 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
15568 vector long);
15569 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
15570 vector unsigned long);
15571 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
15572 vector bool long);
15573 vector double vec_splats (double);
15574 vector signed long vec_splats (signed long);
15575 vector unsigned long vec_splats (unsigned long);
15576 vector float vec_sqrt (vector float);
15577 vector double vec_sqrt (vector double);
15578 void vec_st (vector double, int, vector double *);
15579 void vec_st (vector double, int, double *);
15580 vector double vec_sub (vector double, vector double);
15581 vector double vec_trunc (vector double);
15582 vector double vec_xor (vector double, vector double);
15583 vector double vec_xor (vector double, vector bool long);
15584 vector double vec_xor (vector bool long, vector double);
15585 vector long vec_xor (vector long, vector long);
15586 vector long vec_xor (vector long, vector bool long);
15587 vector long vec_xor (vector bool long, vector long);
15588 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
15589 vector unsigned long vec_xor (vector unsigned long, vector bool long);
15590 vector unsigned long vec_xor (vector bool long, vector unsigned long);
15591 int vec_all_eq (vector double, vector double);
15592 int vec_all_ge (vector double, vector double);
15593 int vec_all_gt (vector double, vector double);
15594 int vec_all_le (vector double, vector double);
15595 int vec_all_lt (vector double, vector double);
15596 int vec_all_nan (vector double);
15597 int vec_all_ne (vector double, vector double);
15598 int vec_all_nge (vector double, vector double);
15599 int vec_all_ngt (vector double, vector double);
15600 int vec_all_nle (vector double, vector double);
15601 int vec_all_nlt (vector double, vector double);
15602 int vec_all_numeric (vector double);
15603 int vec_any_eq (vector double, vector double);
15604 int vec_any_ge (vector double, vector double);
15605 int vec_any_gt (vector double, vector double);
15606 int vec_any_le (vector double, vector double);
15607 int vec_any_lt (vector double, vector double);
15608 int vec_any_nan (vector double);
15609 int vec_any_ne (vector double, vector double);
15610 int vec_any_nge (vector double, vector double);
15611 int vec_any_ngt (vector double, vector double);
15612 int vec_any_nle (vector double, vector double);
15613 int vec_any_nlt (vector double, vector double);
15614 int vec_any_numeric (vector double);
15615
15616 vector double vec_vsx_ld (int, const vector double *);
15617 vector double vec_vsx_ld (int, const double *);
15618 vector float vec_vsx_ld (int, const vector float *);
15619 vector float vec_vsx_ld (int, const float *);
15620 vector bool int vec_vsx_ld (int, const vector bool int *);
15621 vector signed int vec_vsx_ld (int, const vector signed int *);
15622 vector signed int vec_vsx_ld (int, const int *);
15623 vector signed int vec_vsx_ld (int, const long *);
15624 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
15625 vector unsigned int vec_vsx_ld (int, const unsigned int *);
15626 vector unsigned int vec_vsx_ld (int, const unsigned long *);
15627 vector bool short vec_vsx_ld (int, const vector bool short *);
15628 vector pixel vec_vsx_ld (int, const vector pixel *);
15629 vector signed short vec_vsx_ld (int, const vector signed short *);
15630 vector signed short vec_vsx_ld (int, const short *);
15631 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
15632 vector unsigned short vec_vsx_ld (int, const unsigned short *);
15633 vector bool char vec_vsx_ld (int, const vector bool char *);
15634 vector signed char vec_vsx_ld (int, const vector signed char *);
15635 vector signed char vec_vsx_ld (int, const signed char *);
15636 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
15637 vector unsigned char vec_vsx_ld (int, const unsigned char *);
15638
15639 void vec_vsx_st (vector double, int, vector double *);
15640 void vec_vsx_st (vector double, int, double *);
15641 void vec_vsx_st (vector float, int, vector float *);
15642 void vec_vsx_st (vector float, int, float *);
15643 void vec_vsx_st (vector signed int, int, vector signed int *);
15644 void vec_vsx_st (vector signed int, int, int *);
15645 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
15646 void vec_vsx_st (vector unsigned int, int, unsigned int *);
15647 void vec_vsx_st (vector bool int, int, vector bool int *);
15648 void vec_vsx_st (vector bool int, int, unsigned int *);
15649 void vec_vsx_st (vector bool int, int, int *);
15650 void vec_vsx_st (vector signed short, int, vector signed short *);
15651 void vec_vsx_st (vector signed short, int, short *);
15652 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
15653 void vec_vsx_st (vector unsigned short, int, unsigned short *);
15654 void vec_vsx_st (vector bool short, int, vector bool short *);
15655 void vec_vsx_st (vector bool short, int, unsigned short *);
15656 void vec_vsx_st (vector pixel, int, vector pixel *);
15657 void vec_vsx_st (vector pixel, int, unsigned short *);
15658 void vec_vsx_st (vector pixel, int, short *);
15659 void vec_vsx_st (vector bool short, int, short *);
15660 void vec_vsx_st (vector signed char, int, vector signed char *);
15661 void vec_vsx_st (vector signed char, int, signed char *);
15662 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
15663 void vec_vsx_st (vector unsigned char, int, unsigned char *);
15664 void vec_vsx_st (vector bool char, int, vector bool char *);
15665 void vec_vsx_st (vector bool char, int, unsigned char *);
15666 void vec_vsx_st (vector bool char, int, signed char *);
15667
15668 vector double vec_xxpermdi (vector double, vector double, int);
15669 vector float vec_xxpermdi (vector float, vector float, int);
15670 vector long long vec_xxpermdi (vector long long, vector long long, int);
15671 vector unsigned long long vec_xxpermdi (vector unsigned long long,
15672 vector unsigned long long, int);
15673 vector int vec_xxpermdi (vector int, vector int, int);
15674 vector unsigned int vec_xxpermdi (vector unsigned int,
15675 vector unsigned int, int);
15676 vector short vec_xxpermdi (vector short, vector short, int);
15677 vector unsigned short vec_xxpermdi (vector unsigned short,
15678 vector unsigned short, int);
15679 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
15680 vector unsigned char vec_xxpermdi (vector unsigned char,
15681 vector unsigned char, int);
15682
15683 vector double vec_xxsldi (vector double, vector double, int);
15684 vector float vec_xxsldi (vector float, vector float, int);
15685 vector long long vec_xxsldi (vector long long, vector long long, int);
15686 vector unsigned long long vec_xxsldi (vector unsigned long long,
15687 vector unsigned long long, int);
15688 vector int vec_xxsldi (vector int, vector int, int);
15689 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
15690 vector short vec_xxsldi (vector short, vector short, int);
15691 vector unsigned short vec_xxsldi (vector unsigned short,
15692 vector unsigned short, int);
15693 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
15694 vector unsigned char vec_xxsldi (vector unsigned char,
15695 vector unsigned char, int);
15696 @end smallexample
15697
15698 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
15699 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
15700 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
15701 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
15702 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
15703
15704 If the ISA 2.07 additions to the vector/scalar (power8-vector)
15705 instruction set is available, the following additional functions are
15706 available for both 32-bit and 64-bit targets. For 64-bit targets, you
15707 can use @var{vector long} instead of @var{vector long long},
15708 @var{vector bool long} instead of @var{vector bool long long}, and
15709 @var{vector unsigned long} instead of @var{vector unsigned long long}.
15710
15711 @smallexample
15712 vector long long vec_abs (vector long long);
15713
15714 vector long long vec_add (vector long long, vector long long);
15715 vector unsigned long long vec_add (vector unsigned long long,
15716 vector unsigned long long);
15717
15718 int vec_all_eq (vector long long, vector long long);
15719 int vec_all_eq (vector unsigned long long, vector unsigned long long);
15720 int vec_all_ge (vector long long, vector long long);
15721 int vec_all_ge (vector unsigned long long, vector unsigned long long);
15722 int vec_all_gt (vector long long, vector long long);
15723 int vec_all_gt (vector unsigned long long, vector unsigned long long);
15724 int vec_all_le (vector long long, vector long long);
15725 int vec_all_le (vector unsigned long long, vector unsigned long long);
15726 int vec_all_lt (vector long long, vector long long);
15727 int vec_all_lt (vector unsigned long long, vector unsigned long long);
15728 int vec_all_ne (vector long long, vector long long);
15729 int vec_all_ne (vector unsigned long long, vector unsigned long long);
15730
15731 int vec_any_eq (vector long long, vector long long);
15732 int vec_any_eq (vector unsigned long long, vector unsigned long long);
15733 int vec_any_ge (vector long long, vector long long);
15734 int vec_any_ge (vector unsigned long long, vector unsigned long long);
15735 int vec_any_gt (vector long long, vector long long);
15736 int vec_any_gt (vector unsigned long long, vector unsigned long long);
15737 int vec_any_le (vector long long, vector long long);
15738 int vec_any_le (vector unsigned long long, vector unsigned long long);
15739 int vec_any_lt (vector long long, vector long long);
15740 int vec_any_lt (vector unsigned long long, vector unsigned long long);
15741 int vec_any_ne (vector long long, vector long long);
15742 int vec_any_ne (vector unsigned long long, vector unsigned long long);
15743
15744 vector long long vec_eqv (vector long long, vector long long);
15745 vector long long vec_eqv (vector bool long long, vector long long);
15746 vector long long vec_eqv (vector long long, vector bool long long);
15747 vector unsigned long long vec_eqv (vector unsigned long long,
15748 vector unsigned long long);
15749 vector unsigned long long vec_eqv (vector bool long long,
15750 vector unsigned long long);
15751 vector unsigned long long vec_eqv (vector unsigned long long,
15752 vector bool long long);
15753 vector int vec_eqv (vector int, vector int);
15754 vector int vec_eqv (vector bool int, vector int);
15755 vector int vec_eqv (vector int, vector bool int);
15756 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
15757 vector unsigned int vec_eqv (vector bool unsigned int,
15758 vector unsigned int);
15759 vector unsigned int vec_eqv (vector unsigned int,
15760 vector bool unsigned int);
15761 vector short vec_eqv (vector short, vector short);
15762 vector short vec_eqv (vector bool short, vector short);
15763 vector short vec_eqv (vector short, vector bool short);
15764 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
15765 vector unsigned short vec_eqv (vector bool unsigned short,
15766 vector unsigned short);
15767 vector unsigned short vec_eqv (vector unsigned short,
15768 vector bool unsigned short);
15769 vector signed char vec_eqv (vector signed char, vector signed char);
15770 vector signed char vec_eqv (vector bool signed char, vector signed char);
15771 vector signed char vec_eqv (vector signed char, vector bool signed char);
15772 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
15773 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
15774 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
15775
15776 vector long long vec_max (vector long long, vector long long);
15777 vector unsigned long long vec_max (vector unsigned long long,
15778 vector unsigned long long);
15779
15780 vector signed int vec_mergee (vector signed int, vector signed int);
15781 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
15782 vector bool int vec_mergee (vector bool int, vector bool int);
15783
15784 vector signed int vec_mergeo (vector signed int, vector signed int);
15785 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
15786 vector bool int vec_mergeo (vector bool int, vector bool int);
15787
15788 vector long long vec_min (vector long long, vector long long);
15789 vector unsigned long long vec_min (vector unsigned long long,
15790 vector unsigned long long);
15791
15792 vector long long vec_nand (vector long long, vector long long);
15793 vector long long vec_nand (vector bool long long, vector long long);
15794 vector long long vec_nand (vector long long, vector bool long long);
15795 vector unsigned long long vec_nand (vector unsigned long long,
15796 vector unsigned long long);
15797 vector unsigned long long vec_nand (vector bool long long,
15798 vector unsigned long long);
15799 vector unsigned long long vec_nand (vector unsigned long long,
15800 vector bool long long);
15801 vector int vec_nand (vector int, vector int);
15802 vector int vec_nand (vector bool int, vector int);
15803 vector int vec_nand (vector int, vector bool int);
15804 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
15805 vector unsigned int vec_nand (vector bool unsigned int,
15806 vector unsigned int);
15807 vector unsigned int vec_nand (vector unsigned int,
15808 vector bool unsigned int);
15809 vector short vec_nand (vector short, vector short);
15810 vector short vec_nand (vector bool short, vector short);
15811 vector short vec_nand (vector short, vector bool short);
15812 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
15813 vector unsigned short vec_nand (vector bool unsigned short,
15814 vector unsigned short);
15815 vector unsigned short vec_nand (vector unsigned short,
15816 vector bool unsigned short);
15817 vector signed char vec_nand (vector signed char, vector signed char);
15818 vector signed char vec_nand (vector bool signed char, vector signed char);
15819 vector signed char vec_nand (vector signed char, vector bool signed char);
15820 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
15821 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
15822 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
15823
15824 vector long long vec_orc (vector long long, vector long long);
15825 vector long long vec_orc (vector bool long long, vector long long);
15826 vector long long vec_orc (vector long long, vector bool long long);
15827 vector unsigned long long vec_orc (vector unsigned long long,
15828 vector unsigned long long);
15829 vector unsigned long long vec_orc (vector bool long long,
15830 vector unsigned long long);
15831 vector unsigned long long vec_orc (vector unsigned long long,
15832 vector bool long long);
15833 vector int vec_orc (vector int, vector int);
15834 vector int vec_orc (vector bool int, vector int);
15835 vector int vec_orc (vector int, vector bool int);
15836 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
15837 vector unsigned int vec_orc (vector bool unsigned int,
15838 vector unsigned int);
15839 vector unsigned int vec_orc (vector unsigned int,
15840 vector bool unsigned int);
15841 vector short vec_orc (vector short, vector short);
15842 vector short vec_orc (vector bool short, vector short);
15843 vector short vec_orc (vector short, vector bool short);
15844 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
15845 vector unsigned short vec_orc (vector bool unsigned short,
15846 vector unsigned short);
15847 vector unsigned short vec_orc (vector unsigned short,
15848 vector bool unsigned short);
15849 vector signed char vec_orc (vector signed char, vector signed char);
15850 vector signed char vec_orc (vector bool signed char, vector signed char);
15851 vector signed char vec_orc (vector signed char, vector bool signed char);
15852 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
15853 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
15854 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
15855
15856 vector int vec_pack (vector long long, vector long long);
15857 vector unsigned int vec_pack (vector unsigned long long,
15858 vector unsigned long long);
15859 vector bool int vec_pack (vector bool long long, vector bool long long);
15860
15861 vector int vec_packs (vector long long, vector long long);
15862 vector unsigned int vec_packs (vector unsigned long long,
15863 vector unsigned long long);
15864
15865 vector unsigned int vec_packsu (vector long long, vector long long);
15866 vector unsigned int vec_packsu (vector unsigned long long,
15867 vector unsigned long long);
15868
15869 vector long long vec_rl (vector long long,
15870 vector unsigned long long);
15871 vector long long vec_rl (vector unsigned long long,
15872 vector unsigned long long);
15873
15874 vector long long vec_sl (vector long long, vector unsigned long long);
15875 vector long long vec_sl (vector unsigned long long,
15876 vector unsigned long long);
15877
15878 vector long long vec_sr (vector long long, vector unsigned long long);
15879 vector unsigned long long char vec_sr (vector unsigned long long,
15880 vector unsigned long long);
15881
15882 vector long long vec_sra (vector long long, vector unsigned long long);
15883 vector unsigned long long vec_sra (vector unsigned long long,
15884 vector unsigned long long);
15885
15886 vector long long vec_sub (vector long long, vector long long);
15887 vector unsigned long long vec_sub (vector unsigned long long,
15888 vector unsigned long long);
15889
15890 vector long long vec_unpackh (vector int);
15891 vector unsigned long long vec_unpackh (vector unsigned int);
15892
15893 vector long long vec_unpackl (vector int);
15894 vector unsigned long long vec_unpackl (vector unsigned int);
15895
15896 vector long long vec_vaddudm (vector long long, vector long long);
15897 vector long long vec_vaddudm (vector bool long long, vector long long);
15898 vector long long vec_vaddudm (vector long long, vector bool long long);
15899 vector unsigned long long vec_vaddudm (vector unsigned long long,
15900 vector unsigned long long);
15901 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
15902 vector unsigned long long);
15903 vector unsigned long long vec_vaddudm (vector unsigned long long,
15904 vector bool unsigned long long);
15905
15906 vector long long vec_vbpermq (vector signed char, vector signed char);
15907 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
15908
15909 vector long long vec_cntlz (vector long long);
15910 vector unsigned long long vec_cntlz (vector unsigned long long);
15911 vector int vec_cntlz (vector int);
15912 vector unsigned int vec_cntlz (vector int);
15913 vector short vec_cntlz (vector short);
15914 vector unsigned short vec_cntlz (vector unsigned short);
15915 vector signed char vec_cntlz (vector signed char);
15916 vector unsigned char vec_cntlz (vector unsigned char);
15917
15918 vector long long vec_vclz (vector long long);
15919 vector unsigned long long vec_vclz (vector unsigned long long);
15920 vector int vec_vclz (vector int);
15921 vector unsigned int vec_vclz (vector int);
15922 vector short vec_vclz (vector short);
15923 vector unsigned short vec_vclz (vector unsigned short);
15924 vector signed char vec_vclz (vector signed char);
15925 vector unsigned char vec_vclz (vector unsigned char);
15926
15927 vector signed char vec_vclzb (vector signed char);
15928 vector unsigned char vec_vclzb (vector unsigned char);
15929
15930 vector long long vec_vclzd (vector long long);
15931 vector unsigned long long vec_vclzd (vector unsigned long long);
15932
15933 vector short vec_vclzh (vector short);
15934 vector unsigned short vec_vclzh (vector unsigned short);
15935
15936 vector int vec_vclzw (vector int);
15937 vector unsigned int vec_vclzw (vector int);
15938
15939 vector signed char vec_vgbbd (vector signed char);
15940 vector unsigned char vec_vgbbd (vector unsigned char);
15941
15942 vector long long vec_vmaxsd (vector long long, vector long long);
15943
15944 vector unsigned long long vec_vmaxud (vector unsigned long long,
15945 unsigned vector long long);
15946
15947 vector long long vec_vminsd (vector long long, vector long long);
15948
15949 vector unsigned long long vec_vminud (vector long long,
15950 vector long long);
15951
15952 vector int vec_vpksdss (vector long long, vector long long);
15953 vector unsigned int vec_vpksdss (vector long long, vector long long);
15954
15955 vector unsigned int vec_vpkudus (vector unsigned long long,
15956 vector unsigned long long);
15957
15958 vector int vec_vpkudum (vector long long, vector long long);
15959 vector unsigned int vec_vpkudum (vector unsigned long long,
15960 vector unsigned long long);
15961 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
15962
15963 vector long long vec_vpopcnt (vector long long);
15964 vector unsigned long long vec_vpopcnt (vector unsigned long long);
15965 vector int vec_vpopcnt (vector int);
15966 vector unsigned int vec_vpopcnt (vector int);
15967 vector short vec_vpopcnt (vector short);
15968 vector unsigned short vec_vpopcnt (vector unsigned short);
15969 vector signed char vec_vpopcnt (vector signed char);
15970 vector unsigned char vec_vpopcnt (vector unsigned char);
15971
15972 vector signed char vec_vpopcntb (vector signed char);
15973 vector unsigned char vec_vpopcntb (vector unsigned char);
15974
15975 vector long long vec_vpopcntd (vector long long);
15976 vector unsigned long long vec_vpopcntd (vector unsigned long long);
15977
15978 vector short vec_vpopcnth (vector short);
15979 vector unsigned short vec_vpopcnth (vector unsigned short);
15980
15981 vector int vec_vpopcntw (vector int);
15982 vector unsigned int vec_vpopcntw (vector int);
15983
15984 vector long long vec_vrld (vector long long, vector unsigned long long);
15985 vector unsigned long long vec_vrld (vector unsigned long long,
15986 vector unsigned long long);
15987
15988 vector long long vec_vsld (vector long long, vector unsigned long long);
15989 vector long long vec_vsld (vector unsigned long long,
15990 vector unsigned long long);
15991
15992 vector long long vec_vsrad (vector long long, vector unsigned long long);
15993 vector unsigned long long vec_vsrad (vector unsigned long long,
15994 vector unsigned long long);
15995
15996 vector long long vec_vsrd (vector long long, vector unsigned long long);
15997 vector unsigned long long char vec_vsrd (vector unsigned long long,
15998 vector unsigned long long);
15999
16000 vector long long vec_vsubudm (vector long long, vector long long);
16001 vector long long vec_vsubudm (vector bool long long, vector long long);
16002 vector long long vec_vsubudm (vector long long, vector bool long long);
16003 vector unsigned long long vec_vsubudm (vector unsigned long long,
16004 vector unsigned long long);
16005 vector unsigned long long vec_vsubudm (vector bool long long,
16006 vector unsigned long long);
16007 vector unsigned long long vec_vsubudm (vector unsigned long long,
16008 vector bool long long);
16009
16010 vector long long vec_vupkhsw (vector int);
16011 vector unsigned long long vec_vupkhsw (vector unsigned int);
16012
16013 vector long long vec_vupklsw (vector int);
16014 vector unsigned long long vec_vupklsw (vector int);
16015 @end smallexample
16016
16017 If the ISA 2.07 additions to the vector/scalar (power8-vector)
16018 instruction set is available, the following additional functions are
16019 available for 64-bit targets. New vector types
16020 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
16021 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
16022 builtins.
16023
16024 The normal vector extract, and set operations work on
16025 @var{vector __int128_t} and @var{vector __uint128_t} types,
16026 but the index value must be 0.
16027
16028 @smallexample
16029 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
16030 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
16031
16032 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
16033 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
16034
16035 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
16036 vector __int128_t);
16037 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
16038 vector __uint128_t);
16039
16040 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
16041 vector __int128_t);
16042 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
16043 vector __uint128_t);
16044
16045 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
16046 vector __int128_t);
16047 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
16048 vector __uint128_t);
16049
16050 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
16051 vector __int128_t);
16052 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
16053 vector __uint128_t);
16054
16055 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
16056 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
16057
16058 __int128_t vec_vsubuqm (__int128_t, __int128_t);
16059 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
16060
16061 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
16062 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
16063 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
16064 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
16065 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
16066 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
16067 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
16068 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
16069 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
16070 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
16071 @end smallexample
16072
16073 If the cryptographic instructions are enabled (@option{-mcrypto} or
16074 @option{-mcpu=power8}), the following builtins are enabled.
16075
16076 @smallexample
16077 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
16078
16079 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
16080 vector unsigned long long);
16081
16082 vector unsigned long long __builtin_crypto_vcipherlast
16083 (vector unsigned long long,
16084 vector unsigned long long);
16085
16086 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
16087 vector unsigned long long);
16088
16089 vector unsigned long long __builtin_crypto_vncipherlast
16090 (vector unsigned long long,
16091 vector unsigned long long);
16092
16093 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
16094 vector unsigned char,
16095 vector unsigned char);
16096
16097 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
16098 vector unsigned short,
16099 vector unsigned short);
16100
16101 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
16102 vector unsigned int,
16103 vector unsigned int);
16104
16105 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
16106 vector unsigned long long,
16107 vector unsigned long long);
16108
16109 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
16110 vector unsigned char);
16111
16112 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
16113 vector unsigned short);
16114
16115 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
16116 vector unsigned int);
16117
16118 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
16119 vector unsigned long long);
16120
16121 vector unsigned long long __builtin_crypto_vshasigmad
16122 (vector unsigned long long, int, int);
16123
16124 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
16125 int, int);
16126 @end smallexample
16127
16128 The second argument to the @var{__builtin_crypto_vshasigmad} and
16129 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
16130 integer that is 0 or 1. The third argument to these builtin functions
16131 must be a constant integer in the range of 0 to 15.
16132
16133 @node PowerPC Hardware Transactional Memory Built-in Functions
16134 @subsection PowerPC Hardware Transactional Memory Built-in Functions
16135 GCC provides two interfaces for accessing the Hardware Transactional
16136 Memory (HTM) instructions available on some of the PowerPC family
16137 of processors (eg, POWER8). The two interfaces come in a low level
16138 interface, consisting of built-in functions specific to PowerPC and a
16139 higher level interface consisting of inline functions that are common
16140 between PowerPC and S/390.
16141
16142 @subsubsection PowerPC HTM Low Level Built-in Functions
16143
16144 The following low level built-in functions are available with
16145 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
16146 They all generate the machine instruction that is part of the name.
16147
16148 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
16149 the full 4-bit condition register value set by their associated hardware
16150 instruction. The header file @code{htmintrin.h} defines some macros that can
16151 be used to decipher the return value. The @code{__builtin_tbegin} builtin
16152 returns a simple true or false value depending on whether a transaction was
16153 successfully started or not. The arguments of the builtins match exactly the
16154 type and order of the associated hardware instruction's operands, except for
16155 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
16156 Refer to the ISA manual for a description of each instruction's operands.
16157
16158 @smallexample
16159 unsigned int __builtin_tbegin (unsigned int)
16160 unsigned int __builtin_tend (unsigned int)
16161
16162 unsigned int __builtin_tabort (unsigned int)
16163 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
16164 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
16165 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
16166 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
16167
16168 unsigned int __builtin_tcheck (void)
16169 unsigned int __builtin_treclaim (unsigned int)
16170 unsigned int __builtin_trechkpt (void)
16171 unsigned int __builtin_tsr (unsigned int)
16172 @end smallexample
16173
16174 In addition to the above HTM built-ins, we have added built-ins for
16175 some common extended mnemonics of the HTM instructions:
16176
16177 @smallexample
16178 unsigned int __builtin_tendall (void)
16179 unsigned int __builtin_tresume (void)
16180 unsigned int __builtin_tsuspend (void)
16181 @end smallexample
16182
16183 Note that the semantics of the above HTM builtins are required to mimic
16184 the locking semantics used for critical sections. Builtins that are used
16185 to create a new transaction or restart a suspended transaction must have
16186 lock acquisition like semantics while those builtins that end or suspend a
16187 transaction must have lock release like semantics. Specifically, this must
16188 mimic lock semantics as specified by C++11, for example: Lock acquisition is
16189 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
16190 that returns 0, and lock release is as-if an execution of
16191 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
16192 implicit implementation-defined lock used for all transactions. The HTM
16193 instructions associated with with the builtins inherently provide the
16194 correct acquisition and release hardware barriers required. However,
16195 the compiler must also be prohibited from moving loads and stores across
16196 the builtins in a way that would violate their semantics. This has been
16197 accomplished by adding memory barriers to the associated HTM instructions
16198 (which is a conservative approach to provide acquire and release semantics).
16199 Earlier versions of the compiler did not treat the HTM instructions as
16200 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
16201 be used to determine whether the current compiler treats HTM instructions
16202 as memory barriers or not. This allows the user to explicitly add memory
16203 barriers to their code when using an older version of the compiler.
16204
16205 The following set of built-in functions are available to gain access
16206 to the HTM specific special purpose registers.
16207
16208 @smallexample
16209 unsigned long __builtin_get_texasr (void)
16210 unsigned long __builtin_get_texasru (void)
16211 unsigned long __builtin_get_tfhar (void)
16212 unsigned long __builtin_get_tfiar (void)
16213
16214 void __builtin_set_texasr (unsigned long);
16215 void __builtin_set_texasru (unsigned long);
16216 void __builtin_set_tfhar (unsigned long);
16217 void __builtin_set_tfiar (unsigned long);
16218 @end smallexample
16219
16220 Example usage of these low level built-in functions may look like:
16221
16222 @smallexample
16223 #include <htmintrin.h>
16224
16225 int num_retries = 10;
16226
16227 while (1)
16228 @{
16229 if (__builtin_tbegin (0))
16230 @{
16231 /* Transaction State Initiated. */
16232 if (is_locked (lock))
16233 __builtin_tabort (0);
16234 ... transaction code...
16235 __builtin_tend (0);
16236 break;
16237 @}
16238 else
16239 @{
16240 /* Transaction State Failed. Use locks if the transaction
16241 failure is "persistent" or we've tried too many times. */
16242 if (num_retries-- <= 0
16243 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
16244 @{
16245 acquire_lock (lock);
16246 ... non transactional fallback path...
16247 release_lock (lock);
16248 break;
16249 @}
16250 @}
16251 @}
16252 @end smallexample
16253
16254 One final built-in function has been added that returns the value of
16255 the 2-bit Transaction State field of the Machine Status Register (MSR)
16256 as stored in @code{CR0}.
16257
16258 @smallexample
16259 unsigned long __builtin_ttest (void)
16260 @end smallexample
16261
16262 This built-in can be used to determine the current transaction state
16263 using the following code example:
16264
16265 @smallexample
16266 #include <htmintrin.h>
16267
16268 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
16269
16270 if (tx_state == _HTM_TRANSACTIONAL)
16271 @{
16272 /* Code to use in transactional state. */
16273 @}
16274 else if (tx_state == _HTM_NONTRANSACTIONAL)
16275 @{
16276 /* Code to use in non-transactional state. */
16277 @}
16278 else if (tx_state == _HTM_SUSPENDED)
16279 @{
16280 /* Code to use in transaction suspended state. */
16281 @}
16282 @end smallexample
16283
16284 @subsubsection PowerPC HTM High Level Inline Functions
16285
16286 The following high level HTM interface is made available by including
16287 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
16288 where CPU is `power8' or later. This interface is common between PowerPC
16289 and S/390, allowing users to write one HTM source implementation that
16290 can be compiled and executed on either system.
16291
16292 @smallexample
16293 long __TM_simple_begin (void)
16294 long __TM_begin (void* const TM_buff)
16295 long __TM_end (void)
16296 void __TM_abort (void)
16297 void __TM_named_abort (unsigned char const code)
16298 void __TM_resume (void)
16299 void __TM_suspend (void)
16300
16301 long __TM_is_user_abort (void* const TM_buff)
16302 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
16303 long __TM_is_illegal (void* const TM_buff)
16304 long __TM_is_footprint_exceeded (void* const TM_buff)
16305 long __TM_nesting_depth (void* const TM_buff)
16306 long __TM_is_nested_too_deep(void* const TM_buff)
16307 long __TM_is_conflict(void* const TM_buff)
16308 long __TM_is_failure_persistent(void* const TM_buff)
16309 long __TM_failure_address(void* const TM_buff)
16310 long long __TM_failure_code(void* const TM_buff)
16311 @end smallexample
16312
16313 Using these common set of HTM inline functions, we can create
16314 a more portable version of the HTM example in the previous
16315 section that will work on either PowerPC or S/390:
16316
16317 @smallexample
16318 #include <htmxlintrin.h>
16319
16320 int num_retries = 10;
16321 TM_buff_type TM_buff;
16322
16323 while (1)
16324 @{
16325 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
16326 @{
16327 /* Transaction State Initiated. */
16328 if (is_locked (lock))
16329 __TM_abort ();
16330 ... transaction code...
16331 __TM_end ();
16332 break;
16333 @}
16334 else
16335 @{
16336 /* Transaction State Failed. Use locks if the transaction
16337 failure is "persistent" or we've tried too many times. */
16338 if (num_retries-- <= 0
16339 || __TM_is_failure_persistent (TM_buff))
16340 @{
16341 acquire_lock (lock);
16342 ... non transactional fallback path...
16343 release_lock (lock);
16344 break;
16345 @}
16346 @}
16347 @}
16348 @end smallexample
16349
16350 @node RX Built-in Functions
16351 @subsection RX Built-in Functions
16352 GCC supports some of the RX instructions which cannot be expressed in
16353 the C programming language via the use of built-in functions. The
16354 following functions are supported:
16355
16356 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
16357 Generates the @code{brk} machine instruction.
16358 @end deftypefn
16359
16360 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
16361 Generates the @code{clrpsw} machine instruction to clear the specified
16362 bit in the processor status word.
16363 @end deftypefn
16364
16365 @deftypefn {Built-in Function} void __builtin_rx_int (int)
16366 Generates the @code{int} machine instruction to generate an interrupt
16367 with the specified value.
16368 @end deftypefn
16369
16370 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
16371 Generates the @code{machi} machine instruction to add the result of
16372 multiplying the top 16 bits of the two arguments into the
16373 accumulator.
16374 @end deftypefn
16375
16376 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
16377 Generates the @code{maclo} machine instruction to add the result of
16378 multiplying the bottom 16 bits of the two arguments into the
16379 accumulator.
16380 @end deftypefn
16381
16382 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
16383 Generates the @code{mulhi} machine instruction to place the result of
16384 multiplying the top 16 bits of the two arguments into the
16385 accumulator.
16386 @end deftypefn
16387
16388 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
16389 Generates the @code{mullo} machine instruction to place the result of
16390 multiplying the bottom 16 bits of the two arguments into the
16391 accumulator.
16392 @end deftypefn
16393
16394 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
16395 Generates the @code{mvfachi} machine instruction to read the top
16396 32 bits of the accumulator.
16397 @end deftypefn
16398
16399 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
16400 Generates the @code{mvfacmi} machine instruction to read the middle
16401 32 bits of the accumulator.
16402 @end deftypefn
16403
16404 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
16405 Generates the @code{mvfc} machine instruction which reads the control
16406 register specified in its argument and returns its value.
16407 @end deftypefn
16408
16409 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
16410 Generates the @code{mvtachi} machine instruction to set the top
16411 32 bits of the accumulator.
16412 @end deftypefn
16413
16414 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
16415 Generates the @code{mvtaclo} machine instruction to set the bottom
16416 32 bits of the accumulator.
16417 @end deftypefn
16418
16419 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
16420 Generates the @code{mvtc} machine instruction which sets control
16421 register number @code{reg} to @code{val}.
16422 @end deftypefn
16423
16424 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
16425 Generates the @code{mvtipl} machine instruction set the interrupt
16426 priority level.
16427 @end deftypefn
16428
16429 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
16430 Generates the @code{racw} machine instruction to round the accumulator
16431 according to the specified mode.
16432 @end deftypefn
16433
16434 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
16435 Generates the @code{revw} machine instruction which swaps the bytes in
16436 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
16437 and also bits 16--23 occupy bits 24--31 and vice versa.
16438 @end deftypefn
16439
16440 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
16441 Generates the @code{rmpa} machine instruction which initiates a
16442 repeated multiply and accumulate sequence.
16443 @end deftypefn
16444
16445 @deftypefn {Built-in Function} void __builtin_rx_round (float)
16446 Generates the @code{round} machine instruction which returns the
16447 floating-point argument rounded according to the current rounding mode
16448 set in the floating-point status word register.
16449 @end deftypefn
16450
16451 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
16452 Generates the @code{sat} machine instruction which returns the
16453 saturated value of the argument.
16454 @end deftypefn
16455
16456 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
16457 Generates the @code{setpsw} machine instruction to set the specified
16458 bit in the processor status word.
16459 @end deftypefn
16460
16461 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
16462 Generates the @code{wait} machine instruction.
16463 @end deftypefn
16464
16465 @node S/390 System z Built-in Functions
16466 @subsection S/390 System z Built-in Functions
16467 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
16468 Generates the @code{tbegin} machine instruction starting a
16469 non-constraint hardware transaction. If the parameter is non-NULL the
16470 memory area is used to store the transaction diagnostic buffer and
16471 will be passed as first operand to @code{tbegin}. This buffer can be
16472 defined using the @code{struct __htm_tdb} C struct defined in
16473 @code{htmintrin.h} and must reside on a double-word boundary. The
16474 second tbegin operand is set to @code{0xff0c}. This enables
16475 save/restore of all GPRs and disables aborts for FPR and AR
16476 manipulations inside the transaction body. The condition code set by
16477 the tbegin instruction is returned as integer value. The tbegin
16478 instruction by definition overwrites the content of all FPRs. The
16479 compiler will generate code which saves and restores the FPRs. For
16480 soft-float code it is recommended to used the @code{*_nofloat}
16481 variant. In order to prevent a TDB from being written it is required
16482 to pass an constant zero value as parameter. Passing the zero value
16483 through a variable is not sufficient. Although modifications of
16484 access registers inside the transaction will not trigger an
16485 transaction abort it is not supported to actually modify them. Access
16486 registers do not get saved when entering a transaction. They will have
16487 undefined state when reaching the abort code.
16488 @end deftypefn
16489
16490 Macros for the possible return codes of tbegin are defined in the
16491 @code{htmintrin.h} header file:
16492
16493 @table @code
16494 @item _HTM_TBEGIN_STARTED
16495 @code{tbegin} has been executed as part of normal processing. The
16496 transaction body is supposed to be executed.
16497 @item _HTM_TBEGIN_INDETERMINATE
16498 The transaction was aborted due to an indeterminate condition which
16499 might be persistent.
16500 @item _HTM_TBEGIN_TRANSIENT
16501 The transaction aborted due to a transient failure. The transaction
16502 should be re-executed in that case.
16503 @item _HTM_TBEGIN_PERSISTENT
16504 The transaction aborted due to a persistent failure. Re-execution
16505 under same circumstances will not be productive.
16506 @end table
16507
16508 @defmac _HTM_FIRST_USER_ABORT_CODE
16509 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
16510 specifies the first abort code which can be used for
16511 @code{__builtin_tabort}. Values below this threshold are reserved for
16512 machine use.
16513 @end defmac
16514
16515 @deftp {Data type} {struct __htm_tdb}
16516 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
16517 the structure of the transaction diagnostic block as specified in the
16518 Principles of Operation manual chapter 5-91.
16519 @end deftp
16520
16521 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
16522 Same as @code{__builtin_tbegin} but without FPR saves and restores.
16523 Using this variant in code making use of FPRs will leave the FPRs in
16524 undefined state when entering the transaction abort handler code.
16525 @end deftypefn
16526
16527 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
16528 In addition to @code{__builtin_tbegin} a loop for transient failures
16529 is generated. If tbegin returns a condition code of 2 the transaction
16530 will be retried as often as specified in the second argument. The
16531 perform processor assist instruction is used to tell the CPU about the
16532 number of fails so far.
16533 @end deftypefn
16534
16535 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
16536 Same as @code{__builtin_tbegin_retry} but without FPR saves and
16537 restores. Using this variant in code making use of FPRs will leave
16538 the FPRs in undefined state when entering the transaction abort
16539 handler code.
16540 @end deftypefn
16541
16542 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
16543 Generates the @code{tbeginc} machine instruction starting a constraint
16544 hardware transaction. The second operand is set to @code{0xff08}.
16545 @end deftypefn
16546
16547 @deftypefn {Built-in Function} int __builtin_tend (void)
16548 Generates the @code{tend} machine instruction finishing a transaction
16549 and making the changes visible to other threads. The condition code
16550 generated by tend is returned as integer value.
16551 @end deftypefn
16552
16553 @deftypefn {Built-in Function} void __builtin_tabort (int)
16554 Generates the @code{tabort} machine instruction with the specified
16555 abort code. Abort codes from 0 through 255 are reserved and will
16556 result in an error message.
16557 @end deftypefn
16558
16559 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
16560 Generates the @code{ppa rX,rY,1} machine instruction. Where the
16561 integer parameter is loaded into rX and a value of zero is loaded into
16562 rY. The integer parameter specifies the number of times the
16563 transaction repeatedly aborted.
16564 @end deftypefn
16565
16566 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
16567 Generates the @code{etnd} machine instruction. The current nesting
16568 depth is returned as integer value. For a nesting depth of 0 the code
16569 is not executed as part of an transaction.
16570 @end deftypefn
16571
16572 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
16573
16574 Generates the @code{ntstg} machine instruction. The second argument
16575 is written to the first arguments location. The store operation will
16576 not be rolled-back in case of an transaction abort.
16577 @end deftypefn
16578
16579 @node SH Built-in Functions
16580 @subsection SH Built-in Functions
16581 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
16582 families of processors:
16583
16584 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
16585 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
16586 used by system code that manages threads and execution contexts. The compiler
16587 normally does not generate code that modifies the contents of @samp{GBR} and
16588 thus the value is preserved across function calls. Changing the @samp{GBR}
16589 value in user code must be done with caution, since the compiler might use
16590 @samp{GBR} in order to access thread local variables.
16591
16592 @end deftypefn
16593
16594 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
16595 Returns the value that is currently set in the @samp{GBR} register.
16596 Memory loads and stores that use the thread pointer as a base address are
16597 turned into @samp{GBR} based displacement loads and stores, if possible.
16598 For example:
16599 @smallexample
16600 struct my_tcb
16601 @{
16602 int a, b, c, d, e;
16603 @};
16604
16605 int get_tcb_value (void)
16606 @{
16607 // Generate @samp{mov.l @@(8,gbr),r0} instruction
16608 return ((my_tcb*)__builtin_thread_pointer ())->c;
16609 @}
16610
16611 @end smallexample
16612 @end deftypefn
16613
16614 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
16615 Returns the value that is currently set in the @samp{FPSCR} register.
16616 @end deftypefn
16617
16618 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
16619 Sets the @samp{FPSCR} register to the specified value @var{val}, while
16620 preserving the current values of the FR, SZ and PR bits.
16621 @end deftypefn
16622
16623 @node SPARC VIS Built-in Functions
16624 @subsection SPARC VIS Built-in Functions
16625
16626 GCC supports SIMD operations on the SPARC using both the generic vector
16627 extensions (@pxref{Vector Extensions}) as well as built-in functions for
16628 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
16629 switch, the VIS extension is exposed as the following built-in functions:
16630
16631 @smallexample
16632 typedef int v1si __attribute__ ((vector_size (4)));
16633 typedef int v2si __attribute__ ((vector_size (8)));
16634 typedef short v4hi __attribute__ ((vector_size (8)));
16635 typedef short v2hi __attribute__ ((vector_size (4)));
16636 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
16637 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
16638
16639 void __builtin_vis_write_gsr (int64_t);
16640 int64_t __builtin_vis_read_gsr (void);
16641
16642 void * __builtin_vis_alignaddr (void *, long);
16643 void * __builtin_vis_alignaddrl (void *, long);
16644 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
16645 v2si __builtin_vis_faligndatav2si (v2si, v2si);
16646 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
16647 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
16648
16649 v4hi __builtin_vis_fexpand (v4qi);
16650
16651 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
16652 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
16653 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
16654 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
16655 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
16656 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
16657 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
16658
16659 v4qi __builtin_vis_fpack16 (v4hi);
16660 v8qi __builtin_vis_fpack32 (v2si, v8qi);
16661 v2hi __builtin_vis_fpackfix (v2si);
16662 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
16663
16664 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
16665
16666 long __builtin_vis_edge8 (void *, void *);
16667 long __builtin_vis_edge8l (void *, void *);
16668 long __builtin_vis_edge16 (void *, void *);
16669 long __builtin_vis_edge16l (void *, void *);
16670 long __builtin_vis_edge32 (void *, void *);
16671 long __builtin_vis_edge32l (void *, void *);
16672
16673 long __builtin_vis_fcmple16 (v4hi, v4hi);
16674 long __builtin_vis_fcmple32 (v2si, v2si);
16675 long __builtin_vis_fcmpne16 (v4hi, v4hi);
16676 long __builtin_vis_fcmpne32 (v2si, v2si);
16677 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
16678 long __builtin_vis_fcmpgt32 (v2si, v2si);
16679 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
16680 long __builtin_vis_fcmpeq32 (v2si, v2si);
16681
16682 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
16683 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
16684 v2si __builtin_vis_fpadd32 (v2si, v2si);
16685 v1si __builtin_vis_fpadd32s (v1si, v1si);
16686 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
16687 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
16688 v2si __builtin_vis_fpsub32 (v2si, v2si);
16689 v1si __builtin_vis_fpsub32s (v1si, v1si);
16690
16691 long __builtin_vis_array8 (long, long);
16692 long __builtin_vis_array16 (long, long);
16693 long __builtin_vis_array32 (long, long);
16694 @end smallexample
16695
16696 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
16697 functions also become available:
16698
16699 @smallexample
16700 long __builtin_vis_bmask (long, long);
16701 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
16702 v2si __builtin_vis_bshufflev2si (v2si, v2si);
16703 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
16704 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
16705
16706 long __builtin_vis_edge8n (void *, void *);
16707 long __builtin_vis_edge8ln (void *, void *);
16708 long __builtin_vis_edge16n (void *, void *);
16709 long __builtin_vis_edge16ln (void *, void *);
16710 long __builtin_vis_edge32n (void *, void *);
16711 long __builtin_vis_edge32ln (void *, void *);
16712 @end smallexample
16713
16714 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
16715 functions also become available:
16716
16717 @smallexample
16718 void __builtin_vis_cmask8 (long);
16719 void __builtin_vis_cmask16 (long);
16720 void __builtin_vis_cmask32 (long);
16721
16722 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
16723
16724 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
16725 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
16726 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
16727 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
16728 v2si __builtin_vis_fsll16 (v2si, v2si);
16729 v2si __builtin_vis_fslas16 (v2si, v2si);
16730 v2si __builtin_vis_fsrl16 (v2si, v2si);
16731 v2si __builtin_vis_fsra16 (v2si, v2si);
16732
16733 long __builtin_vis_pdistn (v8qi, v8qi);
16734
16735 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
16736
16737 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
16738 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
16739
16740 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
16741 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
16742 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
16743 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
16744 v2si __builtin_vis_fpadds32 (v2si, v2si);
16745 v1si __builtin_vis_fpadds32s (v1si, v1si);
16746 v2si __builtin_vis_fpsubs32 (v2si, v2si);
16747 v1si __builtin_vis_fpsubs32s (v1si, v1si);
16748
16749 long __builtin_vis_fucmple8 (v8qi, v8qi);
16750 long __builtin_vis_fucmpne8 (v8qi, v8qi);
16751 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
16752 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
16753
16754 float __builtin_vis_fhadds (float, float);
16755 double __builtin_vis_fhaddd (double, double);
16756 float __builtin_vis_fhsubs (float, float);
16757 double __builtin_vis_fhsubd (double, double);
16758 float __builtin_vis_fnhadds (float, float);
16759 double __builtin_vis_fnhaddd (double, double);
16760
16761 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
16762 int64_t __builtin_vis_xmulx (int64_t, int64_t);
16763 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
16764 @end smallexample
16765
16766 @node SPU Built-in Functions
16767 @subsection SPU Built-in Functions
16768
16769 GCC provides extensions for the SPU processor as described in the
16770 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
16771 found at @uref{http://cell.scei.co.jp/} or
16772 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
16773 implementation differs in several ways.
16774
16775 @itemize @bullet
16776
16777 @item
16778 The optional extension of specifying vector constants in parentheses is
16779 not supported.
16780
16781 @item
16782 A vector initializer requires no cast if the vector constant is of the
16783 same type as the variable it is initializing.
16784
16785 @item
16786 If @code{signed} or @code{unsigned} is omitted, the signedness of the
16787 vector type is the default signedness of the base type. The default
16788 varies depending on the operating system, so a portable program should
16789 always specify the signedness.
16790
16791 @item
16792 By default, the keyword @code{__vector} is added. The macro
16793 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
16794 undefined.
16795
16796 @item
16797 GCC allows using a @code{typedef} name as the type specifier for a
16798 vector type.
16799
16800 @item
16801 For C, overloaded functions are implemented with macros so the following
16802 does not work:
16803
16804 @smallexample
16805 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
16806 @end smallexample
16807
16808 @noindent
16809 Since @code{spu_add} is a macro, the vector constant in the example
16810 is treated as four separate arguments. Wrap the entire argument in
16811 parentheses for this to work.
16812
16813 @item
16814 The extended version of @code{__builtin_expect} is not supported.
16815
16816 @end itemize
16817
16818 @emph{Note:} Only the interface described in the aforementioned
16819 specification is supported. Internally, GCC uses built-in functions to
16820 implement the required functionality, but these are not supported and
16821 are subject to change without notice.
16822
16823 @node TI C6X Built-in Functions
16824 @subsection TI C6X Built-in Functions
16825
16826 GCC provides intrinsics to access certain instructions of the TI C6X
16827 processors. These intrinsics, listed below, are available after
16828 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
16829 to C6X instructions.
16830
16831 @smallexample
16832
16833 int _sadd (int, int)
16834 int _ssub (int, int)
16835 int _sadd2 (int, int)
16836 int _ssub2 (int, int)
16837 long long _mpy2 (int, int)
16838 long long _smpy2 (int, int)
16839 int _add4 (int, int)
16840 int _sub4 (int, int)
16841 int _saddu4 (int, int)
16842
16843 int _smpy (int, int)
16844 int _smpyh (int, int)
16845 int _smpyhl (int, int)
16846 int _smpylh (int, int)
16847
16848 int _sshl (int, int)
16849 int _subc (int, int)
16850
16851 int _avg2 (int, int)
16852 int _avgu4 (int, int)
16853
16854 int _clrr (int, int)
16855 int _extr (int, int)
16856 int _extru (int, int)
16857 int _abs (int)
16858 int _abs2 (int)
16859
16860 @end smallexample
16861
16862 @node TILE-Gx Built-in Functions
16863 @subsection TILE-Gx Built-in Functions
16864
16865 GCC provides intrinsics to access every instruction of the TILE-Gx
16866 processor. The intrinsics are of the form:
16867
16868 @smallexample
16869
16870 unsigned long long __insn_@var{op} (...)
16871
16872 @end smallexample
16873
16874 Where @var{op} is the name of the instruction. Refer to the ISA manual
16875 for the complete list of instructions.
16876
16877 GCC also provides intrinsics to directly access the network registers.
16878 The intrinsics are:
16879
16880 @smallexample
16881
16882 unsigned long long __tile_idn0_receive (void)
16883 unsigned long long __tile_idn1_receive (void)
16884 unsigned long long __tile_udn0_receive (void)
16885 unsigned long long __tile_udn1_receive (void)
16886 unsigned long long __tile_udn2_receive (void)
16887 unsigned long long __tile_udn3_receive (void)
16888 void __tile_idn_send (unsigned long long)
16889 void __tile_udn_send (unsigned long long)
16890
16891 @end smallexample
16892
16893 The intrinsic @code{void __tile_network_barrier (void)} is used to
16894 guarantee that no network operations before it are reordered with
16895 those after it.
16896
16897 @node TILEPro Built-in Functions
16898 @subsection TILEPro Built-in Functions
16899
16900 GCC provides intrinsics to access every instruction of the TILEPro
16901 processor. The intrinsics are of the form:
16902
16903 @smallexample
16904
16905 unsigned __insn_@var{op} (...)
16906
16907 @end smallexample
16908
16909 @noindent
16910 where @var{op} is the name of the instruction. Refer to the ISA manual
16911 for the complete list of instructions.
16912
16913 GCC also provides intrinsics to directly access the network registers.
16914 The intrinsics are:
16915
16916 @smallexample
16917
16918 unsigned __tile_idn0_receive (void)
16919 unsigned __tile_idn1_receive (void)
16920 unsigned __tile_sn_receive (void)
16921 unsigned __tile_udn0_receive (void)
16922 unsigned __tile_udn1_receive (void)
16923 unsigned __tile_udn2_receive (void)
16924 unsigned __tile_udn3_receive (void)
16925 void __tile_idn_send (unsigned)
16926 void __tile_sn_send (unsigned)
16927 void __tile_udn_send (unsigned)
16928
16929 @end smallexample
16930
16931 The intrinsic @code{void __tile_network_barrier (void)} is used to
16932 guarantee that no network operations before it are reordered with
16933 those after it.
16934
16935 @node x86 Built-in Functions
16936 @subsection x86 Built-in Functions
16937
16938 These built-in functions are available for the x86-32 and x86-64 family
16939 of computers, depending on the command-line switches used.
16940
16941 If you specify command-line switches such as @option{-msse},
16942 the compiler could use the extended instruction sets even if the built-ins
16943 are not used explicitly in the program. For this reason, applications
16944 that perform run-time CPU detection must compile separate files for each
16945 supported architecture, using the appropriate flags. In particular,
16946 the file containing the CPU detection code should be compiled without
16947 these options.
16948
16949 The following machine modes are available for use with MMX built-in functions
16950 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
16951 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
16952 vector of eight 8-bit integers. Some of the built-in functions operate on
16953 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
16954
16955 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
16956 of two 32-bit floating-point values.
16957
16958 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
16959 floating-point values. Some instructions use a vector of four 32-bit
16960 integers, these use @code{V4SI}. Finally, some instructions operate on an
16961 entire vector register, interpreting it as a 128-bit integer, these use mode
16962 @code{TI}.
16963
16964 In 64-bit mode, the x86-64 family of processors uses additional built-in
16965 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
16966 floating point and @code{TC} 128-bit complex floating-point values.
16967
16968 The following floating-point built-in functions are available in 64-bit
16969 mode. All of them implement the function that is part of the name.
16970
16971 @smallexample
16972 __float128 __builtin_fabsq (__float128)
16973 __float128 __builtin_copysignq (__float128, __float128)
16974 @end smallexample
16975
16976 The following built-in function is always available.
16977
16978 @table @code
16979 @item void __builtin_ia32_pause (void)
16980 Generates the @code{pause} machine instruction with a compiler memory
16981 barrier.
16982 @end table
16983
16984 The following floating-point built-in functions are made available in the
16985 64-bit mode.
16986
16987 @table @code
16988 @item __float128 __builtin_infq (void)
16989 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
16990 @findex __builtin_infq
16991
16992 @item __float128 __builtin_huge_valq (void)
16993 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
16994 @findex __builtin_huge_valq
16995 @end table
16996
16997 The following built-in functions are always available and can be used to
16998 check the target platform type.
16999
17000 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
17001 This function runs the CPU detection code to check the type of CPU and the
17002 features supported. This built-in function needs to be invoked along with the built-in functions
17003 to check CPU type and features, @code{__builtin_cpu_is} and
17004 @code{__builtin_cpu_supports}, only when used in a function that is
17005 executed before any constructors are called. The CPU detection code is
17006 automatically executed in a very high priority constructor.
17007
17008 For example, this function has to be used in @code{ifunc} resolvers that
17009 check for CPU type using the built-in functions @code{__builtin_cpu_is}
17010 and @code{__builtin_cpu_supports}, or in constructors on targets that
17011 don't support constructor priority.
17012 @smallexample
17013
17014 static void (*resolve_memcpy (void)) (void)
17015 @{
17016 // ifunc resolvers fire before constructors, explicitly call the init
17017 // function.
17018 __builtin_cpu_init ();
17019 if (__builtin_cpu_supports ("ssse3"))
17020 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
17021 else
17022 return default_memcpy;
17023 @}
17024
17025 void *memcpy (void *, const void *, size_t)
17026 __attribute__ ((ifunc ("resolve_memcpy")));
17027 @end smallexample
17028
17029 @end deftypefn
17030
17031 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
17032 This function returns a positive integer if the run-time CPU
17033 is of type @var{cpuname}
17034 and returns @code{0} otherwise. The following CPU names can be detected:
17035
17036 @table @samp
17037 @item intel
17038 Intel CPU.
17039
17040 @item atom
17041 Intel Atom CPU.
17042
17043 @item core2
17044 Intel Core 2 CPU.
17045
17046 @item corei7
17047 Intel Core i7 CPU.
17048
17049 @item nehalem
17050 Intel Core i7 Nehalem CPU.
17051
17052 @item westmere
17053 Intel Core i7 Westmere CPU.
17054
17055 @item sandybridge
17056 Intel Core i7 Sandy Bridge CPU.
17057
17058 @item amd
17059 AMD CPU.
17060
17061 @item amdfam10h
17062 AMD Family 10h CPU.
17063
17064 @item barcelona
17065 AMD Family 10h Barcelona CPU.
17066
17067 @item shanghai
17068 AMD Family 10h Shanghai CPU.
17069
17070 @item istanbul
17071 AMD Family 10h Istanbul CPU.
17072
17073 @item btver1
17074 AMD Family 14h CPU.
17075
17076 @item amdfam15h
17077 AMD Family 15h CPU.
17078
17079 @item bdver1
17080 AMD Family 15h Bulldozer version 1.
17081
17082 @item bdver2
17083 AMD Family 15h Bulldozer version 2.
17084
17085 @item bdver3
17086 AMD Family 15h Bulldozer version 3.
17087
17088 @item bdver4
17089 AMD Family 15h Bulldozer version 4.
17090
17091 @item btver2
17092 AMD Family 16h CPU.
17093
17094 @item znver1
17095 AMD Family 17h CPU.
17096 @end table
17097
17098 Here is an example:
17099 @smallexample
17100 if (__builtin_cpu_is ("corei7"))
17101 @{
17102 do_corei7 (); // Core i7 specific implementation.
17103 @}
17104 else
17105 @{
17106 do_generic (); // Generic implementation.
17107 @}
17108 @end smallexample
17109 @end deftypefn
17110
17111 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
17112 This function returns a positive integer if the run-time CPU
17113 supports @var{feature}
17114 and returns @code{0} otherwise. The following features can be detected:
17115
17116 @table @samp
17117 @item cmov
17118 CMOV instruction.
17119 @item mmx
17120 MMX instructions.
17121 @item popcnt
17122 POPCNT instruction.
17123 @item sse
17124 SSE instructions.
17125 @item sse2
17126 SSE2 instructions.
17127 @item sse3
17128 SSE3 instructions.
17129 @item ssse3
17130 SSSE3 instructions.
17131 @item sse4.1
17132 SSE4.1 instructions.
17133 @item sse4.2
17134 SSE4.2 instructions.
17135 @item avx
17136 AVX instructions.
17137 @item avx2
17138 AVX2 instructions.
17139 @item avx512f
17140 AVX512F instructions.
17141 @end table
17142
17143 Here is an example:
17144 @smallexample
17145 if (__builtin_cpu_supports ("popcnt"))
17146 @{
17147 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
17148 @}
17149 else
17150 @{
17151 count = generic_countbits (n); //generic implementation.
17152 @}
17153 @end smallexample
17154 @end deftypefn
17155
17156
17157 The following built-in functions are made available by @option{-mmmx}.
17158 All of them generate the machine instruction that is part of the name.
17159
17160 @smallexample
17161 v8qi __builtin_ia32_paddb (v8qi, v8qi)
17162 v4hi __builtin_ia32_paddw (v4hi, v4hi)
17163 v2si __builtin_ia32_paddd (v2si, v2si)
17164 v8qi __builtin_ia32_psubb (v8qi, v8qi)
17165 v4hi __builtin_ia32_psubw (v4hi, v4hi)
17166 v2si __builtin_ia32_psubd (v2si, v2si)
17167 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
17168 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
17169 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
17170 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
17171 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
17172 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
17173 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
17174 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
17175 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
17176 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
17177 di __builtin_ia32_pand (di, di)
17178 di __builtin_ia32_pandn (di,di)
17179 di __builtin_ia32_por (di, di)
17180 di __builtin_ia32_pxor (di, di)
17181 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
17182 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
17183 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
17184 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
17185 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
17186 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
17187 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
17188 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
17189 v2si __builtin_ia32_punpckhdq (v2si, v2si)
17190 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
17191 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
17192 v2si __builtin_ia32_punpckldq (v2si, v2si)
17193 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
17194 v4hi __builtin_ia32_packssdw (v2si, v2si)
17195 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
17196
17197 v4hi __builtin_ia32_psllw (v4hi, v4hi)
17198 v2si __builtin_ia32_pslld (v2si, v2si)
17199 v1di __builtin_ia32_psllq (v1di, v1di)
17200 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
17201 v2si __builtin_ia32_psrld (v2si, v2si)
17202 v1di __builtin_ia32_psrlq (v1di, v1di)
17203 v4hi __builtin_ia32_psraw (v4hi, v4hi)
17204 v2si __builtin_ia32_psrad (v2si, v2si)
17205 v4hi __builtin_ia32_psllwi (v4hi, int)
17206 v2si __builtin_ia32_pslldi (v2si, int)
17207 v1di __builtin_ia32_psllqi (v1di, int)
17208 v4hi __builtin_ia32_psrlwi (v4hi, int)
17209 v2si __builtin_ia32_psrldi (v2si, int)
17210 v1di __builtin_ia32_psrlqi (v1di, int)
17211 v4hi __builtin_ia32_psrawi (v4hi, int)
17212 v2si __builtin_ia32_psradi (v2si, int)
17213
17214 @end smallexample
17215
17216 The following built-in functions are made available either with
17217 @option{-msse}, or with a combination of @option{-m3dnow} and
17218 @option{-march=athlon}. All of them generate the machine
17219 instruction that is part of the name.
17220
17221 @smallexample
17222 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
17223 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
17224 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
17225 v1di __builtin_ia32_psadbw (v8qi, v8qi)
17226 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
17227 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
17228 v8qi __builtin_ia32_pminub (v8qi, v8qi)
17229 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
17230 int __builtin_ia32_pmovmskb (v8qi)
17231 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
17232 void __builtin_ia32_movntq (di *, di)
17233 void __builtin_ia32_sfence (void)
17234 @end smallexample
17235
17236 The following built-in functions are available when @option{-msse} is used.
17237 All of them generate the machine instruction that is part of the name.
17238
17239 @smallexample
17240 int __builtin_ia32_comieq (v4sf, v4sf)
17241 int __builtin_ia32_comineq (v4sf, v4sf)
17242 int __builtin_ia32_comilt (v4sf, v4sf)
17243 int __builtin_ia32_comile (v4sf, v4sf)
17244 int __builtin_ia32_comigt (v4sf, v4sf)
17245 int __builtin_ia32_comige (v4sf, v4sf)
17246 int __builtin_ia32_ucomieq (v4sf, v4sf)
17247 int __builtin_ia32_ucomineq (v4sf, v4sf)
17248 int __builtin_ia32_ucomilt (v4sf, v4sf)
17249 int __builtin_ia32_ucomile (v4sf, v4sf)
17250 int __builtin_ia32_ucomigt (v4sf, v4sf)
17251 int __builtin_ia32_ucomige (v4sf, v4sf)
17252 v4sf __builtin_ia32_addps (v4sf, v4sf)
17253 v4sf __builtin_ia32_subps (v4sf, v4sf)
17254 v4sf __builtin_ia32_mulps (v4sf, v4sf)
17255 v4sf __builtin_ia32_divps (v4sf, v4sf)
17256 v4sf __builtin_ia32_addss (v4sf, v4sf)
17257 v4sf __builtin_ia32_subss (v4sf, v4sf)
17258 v4sf __builtin_ia32_mulss (v4sf, v4sf)
17259 v4sf __builtin_ia32_divss (v4sf, v4sf)
17260 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
17261 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
17262 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
17263 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
17264 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
17265 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
17266 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
17267 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
17268 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
17269 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
17270 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
17271 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
17272 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
17273 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
17274 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
17275 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
17276 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
17277 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
17278 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
17279 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
17280 v4sf __builtin_ia32_maxps (v4sf, v4sf)
17281 v4sf __builtin_ia32_maxss (v4sf, v4sf)
17282 v4sf __builtin_ia32_minps (v4sf, v4sf)
17283 v4sf __builtin_ia32_minss (v4sf, v4sf)
17284 v4sf __builtin_ia32_andps (v4sf, v4sf)
17285 v4sf __builtin_ia32_andnps (v4sf, v4sf)
17286 v4sf __builtin_ia32_orps (v4sf, v4sf)
17287 v4sf __builtin_ia32_xorps (v4sf, v4sf)
17288 v4sf __builtin_ia32_movss (v4sf, v4sf)
17289 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
17290 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
17291 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
17292 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
17293 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
17294 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
17295 v2si __builtin_ia32_cvtps2pi (v4sf)
17296 int __builtin_ia32_cvtss2si (v4sf)
17297 v2si __builtin_ia32_cvttps2pi (v4sf)
17298 int __builtin_ia32_cvttss2si (v4sf)
17299 v4sf __builtin_ia32_rcpps (v4sf)
17300 v4sf __builtin_ia32_rsqrtps (v4sf)
17301 v4sf __builtin_ia32_sqrtps (v4sf)
17302 v4sf __builtin_ia32_rcpss (v4sf)
17303 v4sf __builtin_ia32_rsqrtss (v4sf)
17304 v4sf __builtin_ia32_sqrtss (v4sf)
17305 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
17306 void __builtin_ia32_movntps (float *, v4sf)
17307 int __builtin_ia32_movmskps (v4sf)
17308 @end smallexample
17309
17310 The following built-in functions are available when @option{-msse} is used.
17311
17312 @table @code
17313 @item v4sf __builtin_ia32_loadups (float *)
17314 Generates the @code{movups} machine instruction as a load from memory.
17315 @item void __builtin_ia32_storeups (float *, v4sf)
17316 Generates the @code{movups} machine instruction as a store to memory.
17317 @item v4sf __builtin_ia32_loadss (float *)
17318 Generates the @code{movss} machine instruction as a load from memory.
17319 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
17320 Generates the @code{movhps} machine instruction as a load from memory.
17321 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
17322 Generates the @code{movlps} machine instruction as a load from memory
17323 @item void __builtin_ia32_storehps (v2sf *, v4sf)
17324 Generates the @code{movhps} machine instruction as a store to memory.
17325 @item void __builtin_ia32_storelps (v2sf *, v4sf)
17326 Generates the @code{movlps} machine instruction as a store to memory.
17327 @end table
17328
17329 The following built-in functions are available when @option{-msse2} is used.
17330 All of them generate the machine instruction that is part of the name.
17331
17332 @smallexample
17333 int __builtin_ia32_comisdeq (v2df, v2df)
17334 int __builtin_ia32_comisdlt (v2df, v2df)
17335 int __builtin_ia32_comisdle (v2df, v2df)
17336 int __builtin_ia32_comisdgt (v2df, v2df)
17337 int __builtin_ia32_comisdge (v2df, v2df)
17338 int __builtin_ia32_comisdneq (v2df, v2df)
17339 int __builtin_ia32_ucomisdeq (v2df, v2df)
17340 int __builtin_ia32_ucomisdlt (v2df, v2df)
17341 int __builtin_ia32_ucomisdle (v2df, v2df)
17342 int __builtin_ia32_ucomisdgt (v2df, v2df)
17343 int __builtin_ia32_ucomisdge (v2df, v2df)
17344 int __builtin_ia32_ucomisdneq (v2df, v2df)
17345 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
17346 v2df __builtin_ia32_cmpltpd (v2df, v2df)
17347 v2df __builtin_ia32_cmplepd (v2df, v2df)
17348 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
17349 v2df __builtin_ia32_cmpgepd (v2df, v2df)
17350 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
17351 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
17352 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
17353 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
17354 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
17355 v2df __builtin_ia32_cmpngepd (v2df, v2df)
17356 v2df __builtin_ia32_cmpordpd (v2df, v2df)
17357 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
17358 v2df __builtin_ia32_cmpltsd (v2df, v2df)
17359 v2df __builtin_ia32_cmplesd (v2df, v2df)
17360 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
17361 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
17362 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
17363 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
17364 v2df __builtin_ia32_cmpordsd (v2df, v2df)
17365 v2di __builtin_ia32_paddq (v2di, v2di)
17366 v2di __builtin_ia32_psubq (v2di, v2di)
17367 v2df __builtin_ia32_addpd (v2df, v2df)
17368 v2df __builtin_ia32_subpd (v2df, v2df)
17369 v2df __builtin_ia32_mulpd (v2df, v2df)
17370 v2df __builtin_ia32_divpd (v2df, v2df)
17371 v2df __builtin_ia32_addsd (v2df, v2df)
17372 v2df __builtin_ia32_subsd (v2df, v2df)
17373 v2df __builtin_ia32_mulsd (v2df, v2df)
17374 v2df __builtin_ia32_divsd (v2df, v2df)
17375 v2df __builtin_ia32_minpd (v2df, v2df)
17376 v2df __builtin_ia32_maxpd (v2df, v2df)
17377 v2df __builtin_ia32_minsd (v2df, v2df)
17378 v2df __builtin_ia32_maxsd (v2df, v2df)
17379 v2df __builtin_ia32_andpd (v2df, v2df)
17380 v2df __builtin_ia32_andnpd (v2df, v2df)
17381 v2df __builtin_ia32_orpd (v2df, v2df)
17382 v2df __builtin_ia32_xorpd (v2df, v2df)
17383 v2df __builtin_ia32_movsd (v2df, v2df)
17384 v2df __builtin_ia32_unpckhpd (v2df, v2df)
17385 v2df __builtin_ia32_unpcklpd (v2df, v2df)
17386 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
17387 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
17388 v4si __builtin_ia32_paddd128 (v4si, v4si)
17389 v2di __builtin_ia32_paddq128 (v2di, v2di)
17390 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
17391 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
17392 v4si __builtin_ia32_psubd128 (v4si, v4si)
17393 v2di __builtin_ia32_psubq128 (v2di, v2di)
17394 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
17395 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
17396 v2di __builtin_ia32_pand128 (v2di, v2di)
17397 v2di __builtin_ia32_pandn128 (v2di, v2di)
17398 v2di __builtin_ia32_por128 (v2di, v2di)
17399 v2di __builtin_ia32_pxor128 (v2di, v2di)
17400 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
17401 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
17402 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
17403 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
17404 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
17405 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
17406 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
17407 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
17408 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
17409 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
17410 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
17411 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
17412 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
17413 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
17414 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
17415 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
17416 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
17417 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
17418 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
17419 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
17420 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
17421 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
17422 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
17423 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
17424 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
17425 v2df __builtin_ia32_loadupd (double *)
17426 void __builtin_ia32_storeupd (double *, v2df)
17427 v2df __builtin_ia32_loadhpd (v2df, double const *)
17428 v2df __builtin_ia32_loadlpd (v2df, double const *)
17429 int __builtin_ia32_movmskpd (v2df)
17430 int __builtin_ia32_pmovmskb128 (v16qi)
17431 void __builtin_ia32_movnti (int *, int)
17432 void __builtin_ia32_movnti64 (long long int *, long long int)
17433 void __builtin_ia32_movntpd (double *, v2df)
17434 void __builtin_ia32_movntdq (v2df *, v2df)
17435 v4si __builtin_ia32_pshufd (v4si, int)
17436 v8hi __builtin_ia32_pshuflw (v8hi, int)
17437 v8hi __builtin_ia32_pshufhw (v8hi, int)
17438 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
17439 v2df __builtin_ia32_sqrtpd (v2df)
17440 v2df __builtin_ia32_sqrtsd (v2df)
17441 v2df __builtin_ia32_shufpd (v2df, v2df, int)
17442 v2df __builtin_ia32_cvtdq2pd (v4si)
17443 v4sf __builtin_ia32_cvtdq2ps (v4si)
17444 v4si __builtin_ia32_cvtpd2dq (v2df)
17445 v2si __builtin_ia32_cvtpd2pi (v2df)
17446 v4sf __builtin_ia32_cvtpd2ps (v2df)
17447 v4si __builtin_ia32_cvttpd2dq (v2df)
17448 v2si __builtin_ia32_cvttpd2pi (v2df)
17449 v2df __builtin_ia32_cvtpi2pd (v2si)
17450 int __builtin_ia32_cvtsd2si (v2df)
17451 int __builtin_ia32_cvttsd2si (v2df)
17452 long long __builtin_ia32_cvtsd2si64 (v2df)
17453 long long __builtin_ia32_cvttsd2si64 (v2df)
17454 v4si __builtin_ia32_cvtps2dq (v4sf)
17455 v2df __builtin_ia32_cvtps2pd (v4sf)
17456 v4si __builtin_ia32_cvttps2dq (v4sf)
17457 v2df __builtin_ia32_cvtsi2sd (v2df, int)
17458 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
17459 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
17460 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
17461 void __builtin_ia32_clflush (const void *)
17462 void __builtin_ia32_lfence (void)
17463 void __builtin_ia32_mfence (void)
17464 v16qi __builtin_ia32_loaddqu (const char *)
17465 void __builtin_ia32_storedqu (char *, v16qi)
17466 v1di __builtin_ia32_pmuludq (v2si, v2si)
17467 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
17468 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
17469 v4si __builtin_ia32_pslld128 (v4si, v4si)
17470 v2di __builtin_ia32_psllq128 (v2di, v2di)
17471 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
17472 v4si __builtin_ia32_psrld128 (v4si, v4si)
17473 v2di __builtin_ia32_psrlq128 (v2di, v2di)
17474 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
17475 v4si __builtin_ia32_psrad128 (v4si, v4si)
17476 v2di __builtin_ia32_pslldqi128 (v2di, int)
17477 v8hi __builtin_ia32_psllwi128 (v8hi, int)
17478 v4si __builtin_ia32_pslldi128 (v4si, int)
17479 v2di __builtin_ia32_psllqi128 (v2di, int)
17480 v2di __builtin_ia32_psrldqi128 (v2di, int)
17481 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
17482 v4si __builtin_ia32_psrldi128 (v4si, int)
17483 v2di __builtin_ia32_psrlqi128 (v2di, int)
17484 v8hi __builtin_ia32_psrawi128 (v8hi, int)
17485 v4si __builtin_ia32_psradi128 (v4si, int)
17486 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
17487 v2di __builtin_ia32_movq128 (v2di)
17488 @end smallexample
17489
17490 The following built-in functions are available when @option{-msse3} is used.
17491 All of them generate the machine instruction that is part of the name.
17492
17493 @smallexample
17494 v2df __builtin_ia32_addsubpd (v2df, v2df)
17495 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
17496 v2df __builtin_ia32_haddpd (v2df, v2df)
17497 v4sf __builtin_ia32_haddps (v4sf, v4sf)
17498 v2df __builtin_ia32_hsubpd (v2df, v2df)
17499 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
17500 v16qi __builtin_ia32_lddqu (char const *)
17501 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
17502 v4sf __builtin_ia32_movshdup (v4sf)
17503 v4sf __builtin_ia32_movsldup (v4sf)
17504 void __builtin_ia32_mwait (unsigned int, unsigned int)
17505 @end smallexample
17506
17507 The following built-in functions are available when @option{-mssse3} is used.
17508 All of them generate the machine instruction that is part of the name.
17509
17510 @smallexample
17511 v2si __builtin_ia32_phaddd (v2si, v2si)
17512 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
17513 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
17514 v2si __builtin_ia32_phsubd (v2si, v2si)
17515 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
17516 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
17517 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
17518 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
17519 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
17520 v8qi __builtin_ia32_psignb (v8qi, v8qi)
17521 v2si __builtin_ia32_psignd (v2si, v2si)
17522 v4hi __builtin_ia32_psignw (v4hi, v4hi)
17523 v1di __builtin_ia32_palignr (v1di, v1di, int)
17524 v8qi __builtin_ia32_pabsb (v8qi)
17525 v2si __builtin_ia32_pabsd (v2si)
17526 v4hi __builtin_ia32_pabsw (v4hi)
17527 @end smallexample
17528
17529 The following built-in functions are available when @option{-mssse3} is used.
17530 All of them generate the machine instruction that is part of the name.
17531
17532 @smallexample
17533 v4si __builtin_ia32_phaddd128 (v4si, v4si)
17534 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
17535 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
17536 v4si __builtin_ia32_phsubd128 (v4si, v4si)
17537 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
17538 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
17539 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
17540 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
17541 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
17542 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
17543 v4si __builtin_ia32_psignd128 (v4si, v4si)
17544 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
17545 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
17546 v16qi __builtin_ia32_pabsb128 (v16qi)
17547 v4si __builtin_ia32_pabsd128 (v4si)
17548 v8hi __builtin_ia32_pabsw128 (v8hi)
17549 @end smallexample
17550
17551 The following built-in functions are available when @option{-msse4.1} is
17552 used. All of them generate the machine instruction that is part of the
17553 name.
17554
17555 @smallexample
17556 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
17557 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
17558 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
17559 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
17560 v2df __builtin_ia32_dppd (v2df, v2df, const int)
17561 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
17562 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
17563 v2di __builtin_ia32_movntdqa (v2di *);
17564 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
17565 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
17566 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
17567 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
17568 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
17569 v8hi __builtin_ia32_phminposuw128 (v8hi)
17570 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
17571 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
17572 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
17573 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
17574 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
17575 v4si __builtin_ia32_pminsd128 (v4si, v4si)
17576 v4si __builtin_ia32_pminud128 (v4si, v4si)
17577 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
17578 v4si __builtin_ia32_pmovsxbd128 (v16qi)
17579 v2di __builtin_ia32_pmovsxbq128 (v16qi)
17580 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
17581 v2di __builtin_ia32_pmovsxdq128 (v4si)
17582 v4si __builtin_ia32_pmovsxwd128 (v8hi)
17583 v2di __builtin_ia32_pmovsxwq128 (v8hi)
17584 v4si __builtin_ia32_pmovzxbd128 (v16qi)
17585 v2di __builtin_ia32_pmovzxbq128 (v16qi)
17586 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
17587 v2di __builtin_ia32_pmovzxdq128 (v4si)
17588 v4si __builtin_ia32_pmovzxwd128 (v8hi)
17589 v2di __builtin_ia32_pmovzxwq128 (v8hi)
17590 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
17591 v4si __builtin_ia32_pmulld128 (v4si, v4si)
17592 int __builtin_ia32_ptestc128 (v2di, v2di)
17593 int __builtin_ia32_ptestnzc128 (v2di, v2di)
17594 int __builtin_ia32_ptestz128 (v2di, v2di)
17595 v2df __builtin_ia32_roundpd (v2df, const int)
17596 v4sf __builtin_ia32_roundps (v4sf, const int)
17597 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
17598 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
17599 @end smallexample
17600
17601 The following built-in functions are available when @option{-msse4.1} is
17602 used.
17603
17604 @table @code
17605 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
17606 Generates the @code{insertps} machine instruction.
17607 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
17608 Generates the @code{pextrb} machine instruction.
17609 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
17610 Generates the @code{pinsrb} machine instruction.
17611 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
17612 Generates the @code{pinsrd} machine instruction.
17613 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
17614 Generates the @code{pinsrq} machine instruction in 64bit mode.
17615 @end table
17616
17617 The following built-in functions are changed to generate new SSE4.1
17618 instructions when @option{-msse4.1} is used.
17619
17620 @table @code
17621 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
17622 Generates the @code{extractps} machine instruction.
17623 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
17624 Generates the @code{pextrd} machine instruction.
17625 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
17626 Generates the @code{pextrq} machine instruction in 64bit mode.
17627 @end table
17628
17629 The following built-in functions are available when @option{-msse4.2} is
17630 used. All of them generate the machine instruction that is part of the
17631 name.
17632
17633 @smallexample
17634 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
17635 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
17636 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
17637 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
17638 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
17639 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
17640 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
17641 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
17642 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
17643 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
17644 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
17645 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
17646 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
17647 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
17648 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
17649 @end smallexample
17650
17651 The following built-in functions are available when @option{-msse4.2} is
17652 used.
17653
17654 @table @code
17655 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
17656 Generates the @code{crc32b} machine instruction.
17657 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
17658 Generates the @code{crc32w} machine instruction.
17659 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
17660 Generates the @code{crc32l} machine instruction.
17661 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
17662 Generates the @code{crc32q} machine instruction.
17663 @end table
17664
17665 The following built-in functions are changed to generate new SSE4.2
17666 instructions when @option{-msse4.2} is used.
17667
17668 @table @code
17669 @item int __builtin_popcount (unsigned int)
17670 Generates the @code{popcntl} machine instruction.
17671 @item int __builtin_popcountl (unsigned long)
17672 Generates the @code{popcntl} or @code{popcntq} machine instruction,
17673 depending on the size of @code{unsigned long}.
17674 @item int __builtin_popcountll (unsigned long long)
17675 Generates the @code{popcntq} machine instruction.
17676 @end table
17677
17678 The following built-in functions are available when @option{-mavx} is
17679 used. All of them generate the machine instruction that is part of the
17680 name.
17681
17682 @smallexample
17683 v4df __builtin_ia32_addpd256 (v4df,v4df)
17684 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
17685 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
17686 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
17687 v4df __builtin_ia32_andnpd256 (v4df,v4df)
17688 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
17689 v4df __builtin_ia32_andpd256 (v4df,v4df)
17690 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
17691 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
17692 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
17693 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
17694 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
17695 v2df __builtin_ia32_cmppd (v2df,v2df,int)
17696 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
17697 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
17698 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
17699 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
17700 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
17701 v4df __builtin_ia32_cvtdq2pd256 (v4si)
17702 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
17703 v4si __builtin_ia32_cvtpd2dq256 (v4df)
17704 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
17705 v8si __builtin_ia32_cvtps2dq256 (v8sf)
17706 v4df __builtin_ia32_cvtps2pd256 (v4sf)
17707 v4si __builtin_ia32_cvttpd2dq256 (v4df)
17708 v8si __builtin_ia32_cvttps2dq256 (v8sf)
17709 v4df __builtin_ia32_divpd256 (v4df,v4df)
17710 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
17711 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
17712 v4df __builtin_ia32_haddpd256 (v4df,v4df)
17713 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
17714 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
17715 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
17716 v32qi __builtin_ia32_lddqu256 (pcchar)
17717 v32qi __builtin_ia32_loaddqu256 (pcchar)
17718 v4df __builtin_ia32_loadupd256 (pcdouble)
17719 v8sf __builtin_ia32_loadups256 (pcfloat)
17720 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
17721 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
17722 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
17723 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
17724 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
17725 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
17726 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
17727 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
17728 v4df __builtin_ia32_maxpd256 (v4df,v4df)
17729 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
17730 v4df __builtin_ia32_minpd256 (v4df,v4df)
17731 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
17732 v4df __builtin_ia32_movddup256 (v4df)
17733 int __builtin_ia32_movmskpd256 (v4df)
17734 int __builtin_ia32_movmskps256 (v8sf)
17735 v8sf __builtin_ia32_movshdup256 (v8sf)
17736 v8sf __builtin_ia32_movsldup256 (v8sf)
17737 v4df __builtin_ia32_mulpd256 (v4df,v4df)
17738 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
17739 v4df __builtin_ia32_orpd256 (v4df,v4df)
17740 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
17741 v2df __builtin_ia32_pd_pd256 (v4df)
17742 v4df __builtin_ia32_pd256_pd (v2df)
17743 v4sf __builtin_ia32_ps_ps256 (v8sf)
17744 v8sf __builtin_ia32_ps256_ps (v4sf)
17745 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
17746 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
17747 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
17748 v8sf __builtin_ia32_rcpps256 (v8sf)
17749 v4df __builtin_ia32_roundpd256 (v4df,int)
17750 v8sf __builtin_ia32_roundps256 (v8sf,int)
17751 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
17752 v8sf __builtin_ia32_rsqrtps256 (v8sf)
17753 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
17754 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
17755 v4si __builtin_ia32_si_si256 (v8si)
17756 v8si __builtin_ia32_si256_si (v4si)
17757 v4df __builtin_ia32_sqrtpd256 (v4df)
17758 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
17759 v8sf __builtin_ia32_sqrtps256 (v8sf)
17760 void __builtin_ia32_storedqu256 (pchar,v32qi)
17761 void __builtin_ia32_storeupd256 (pdouble,v4df)
17762 void __builtin_ia32_storeups256 (pfloat,v8sf)
17763 v4df __builtin_ia32_subpd256 (v4df,v4df)
17764 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
17765 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
17766 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
17767 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
17768 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
17769 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
17770 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
17771 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
17772 v4sf __builtin_ia32_vbroadcastss (pcfloat)
17773 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
17774 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
17775 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
17776 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
17777 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
17778 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
17779 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
17780 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
17781 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
17782 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
17783 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
17784 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
17785 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
17786 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
17787 v2df __builtin_ia32_vpermilpd (v2df,int)
17788 v4df __builtin_ia32_vpermilpd256 (v4df,int)
17789 v4sf __builtin_ia32_vpermilps (v4sf,int)
17790 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
17791 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
17792 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
17793 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
17794 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
17795 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
17796 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
17797 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
17798 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
17799 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
17800 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
17801 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
17802 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
17803 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
17804 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
17805 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
17806 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
17807 void __builtin_ia32_vzeroall (void)
17808 void __builtin_ia32_vzeroupper (void)
17809 v4df __builtin_ia32_xorpd256 (v4df,v4df)
17810 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
17811 @end smallexample
17812
17813 The following built-in functions are available when @option{-mavx2} is
17814 used. All of them generate the machine instruction that is part of the
17815 name.
17816
17817 @smallexample
17818 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
17819 v32qi __builtin_ia32_pabsb256 (v32qi)
17820 v16hi __builtin_ia32_pabsw256 (v16hi)
17821 v8si __builtin_ia32_pabsd256 (v8si)
17822 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
17823 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
17824 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
17825 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
17826 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
17827 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
17828 v8si __builtin_ia32_paddd256 (v8si,v8si)
17829 v4di __builtin_ia32_paddq256 (v4di,v4di)
17830 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
17831 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
17832 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
17833 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
17834 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
17835 v4di __builtin_ia32_andsi256 (v4di,v4di)
17836 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
17837 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
17838 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
17839 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
17840 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
17841 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
17842 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
17843 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
17844 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
17845 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
17846 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
17847 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
17848 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
17849 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
17850 v8si __builtin_ia32_phaddd256 (v8si,v8si)
17851 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
17852 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
17853 v8si __builtin_ia32_phsubd256 (v8si,v8si)
17854 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
17855 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
17856 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
17857 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
17858 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
17859 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
17860 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
17861 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
17862 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
17863 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
17864 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
17865 v8si __builtin_ia32_pminsd256 (v8si,v8si)
17866 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
17867 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
17868 v8si __builtin_ia32_pminud256 (v8si,v8si)
17869 int __builtin_ia32_pmovmskb256 (v32qi)
17870 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
17871 v8si __builtin_ia32_pmovsxbd256 (v16qi)
17872 v4di __builtin_ia32_pmovsxbq256 (v16qi)
17873 v8si __builtin_ia32_pmovsxwd256 (v8hi)
17874 v4di __builtin_ia32_pmovsxwq256 (v8hi)
17875 v4di __builtin_ia32_pmovsxdq256 (v4si)
17876 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
17877 v8si __builtin_ia32_pmovzxbd256 (v16qi)
17878 v4di __builtin_ia32_pmovzxbq256 (v16qi)
17879 v8si __builtin_ia32_pmovzxwd256 (v8hi)
17880 v4di __builtin_ia32_pmovzxwq256 (v8hi)
17881 v4di __builtin_ia32_pmovzxdq256 (v4si)
17882 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
17883 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
17884 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
17885 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
17886 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
17887 v8si __builtin_ia32_pmulld256 (v8si,v8si)
17888 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
17889 v4di __builtin_ia32_por256 (v4di,v4di)
17890 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
17891 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
17892 v8si __builtin_ia32_pshufd256 (v8si,int)
17893 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
17894 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
17895 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
17896 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
17897 v8si __builtin_ia32_psignd256 (v8si,v8si)
17898 v4di __builtin_ia32_pslldqi256 (v4di,int)
17899 v16hi __builtin_ia32_psllwi256 (16hi,int)
17900 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
17901 v8si __builtin_ia32_pslldi256 (v8si,int)
17902 v8si __builtin_ia32_pslld256(v8si,v4si)
17903 v4di __builtin_ia32_psllqi256 (v4di,int)
17904 v4di __builtin_ia32_psllq256(v4di,v2di)
17905 v16hi __builtin_ia32_psrawi256 (v16hi,int)
17906 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
17907 v8si __builtin_ia32_psradi256 (v8si,int)
17908 v8si __builtin_ia32_psrad256 (v8si,v4si)
17909 v4di __builtin_ia32_psrldqi256 (v4di, int)
17910 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
17911 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
17912 v8si __builtin_ia32_psrldi256 (v8si,int)
17913 v8si __builtin_ia32_psrld256 (v8si,v4si)
17914 v4di __builtin_ia32_psrlqi256 (v4di,int)
17915 v4di __builtin_ia32_psrlq256(v4di,v2di)
17916 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
17917 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
17918 v8si __builtin_ia32_psubd256 (v8si,v8si)
17919 v4di __builtin_ia32_psubq256 (v4di,v4di)
17920 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
17921 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
17922 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
17923 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
17924 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
17925 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
17926 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
17927 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
17928 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
17929 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
17930 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
17931 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
17932 v4di __builtin_ia32_pxor256 (v4di,v4di)
17933 v4di __builtin_ia32_movntdqa256 (pv4di)
17934 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
17935 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
17936 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
17937 v4di __builtin_ia32_vbroadcastsi256 (v2di)
17938 v4si __builtin_ia32_pblendd128 (v4si,v4si)
17939 v8si __builtin_ia32_pblendd256 (v8si,v8si)
17940 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
17941 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
17942 v8si __builtin_ia32_pbroadcastd256 (v4si)
17943 v4di __builtin_ia32_pbroadcastq256 (v2di)
17944 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
17945 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
17946 v4si __builtin_ia32_pbroadcastd128 (v4si)
17947 v2di __builtin_ia32_pbroadcastq128 (v2di)
17948 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
17949 v4df __builtin_ia32_permdf256 (v4df,int)
17950 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
17951 v4di __builtin_ia32_permdi256 (v4di,int)
17952 v4di __builtin_ia32_permti256 (v4di,v4di,int)
17953 v4di __builtin_ia32_extract128i256 (v4di,int)
17954 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
17955 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
17956 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
17957 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
17958 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
17959 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
17960 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
17961 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
17962 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
17963 v8si __builtin_ia32_psllv8si (v8si,v8si)
17964 v4si __builtin_ia32_psllv4si (v4si,v4si)
17965 v4di __builtin_ia32_psllv4di (v4di,v4di)
17966 v2di __builtin_ia32_psllv2di (v2di,v2di)
17967 v8si __builtin_ia32_psrav8si (v8si,v8si)
17968 v4si __builtin_ia32_psrav4si (v4si,v4si)
17969 v8si __builtin_ia32_psrlv8si (v8si,v8si)
17970 v4si __builtin_ia32_psrlv4si (v4si,v4si)
17971 v4di __builtin_ia32_psrlv4di (v4di,v4di)
17972 v2di __builtin_ia32_psrlv2di (v2di,v2di)
17973 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
17974 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
17975 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
17976 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
17977 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
17978 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
17979 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
17980 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
17981 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
17982 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
17983 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
17984 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
17985 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
17986 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
17987 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
17988 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
17989 @end smallexample
17990
17991 The following built-in functions are available when @option{-maes} is
17992 used. All of them generate the machine instruction that is part of the
17993 name.
17994
17995 @smallexample
17996 v2di __builtin_ia32_aesenc128 (v2di, v2di)
17997 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
17998 v2di __builtin_ia32_aesdec128 (v2di, v2di)
17999 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
18000 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
18001 v2di __builtin_ia32_aesimc128 (v2di)
18002 @end smallexample
18003
18004 The following built-in function is available when @option{-mpclmul} is
18005 used.
18006
18007 @table @code
18008 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
18009 Generates the @code{pclmulqdq} machine instruction.
18010 @end table
18011
18012 The following built-in function is available when @option{-mfsgsbase} is
18013 used. All of them generate the machine instruction that is part of the
18014 name.
18015
18016 @smallexample
18017 unsigned int __builtin_ia32_rdfsbase32 (void)
18018 unsigned long long __builtin_ia32_rdfsbase64 (void)
18019 unsigned int __builtin_ia32_rdgsbase32 (void)
18020 unsigned long long __builtin_ia32_rdgsbase64 (void)
18021 void _writefsbase_u32 (unsigned int)
18022 void _writefsbase_u64 (unsigned long long)
18023 void _writegsbase_u32 (unsigned int)
18024 void _writegsbase_u64 (unsigned long long)
18025 @end smallexample
18026
18027 The following built-in function is available when @option{-mrdrnd} is
18028 used. All of them generate the machine instruction that is part of the
18029 name.
18030
18031 @smallexample
18032 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
18033 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
18034 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
18035 @end smallexample
18036
18037 The following built-in functions are available when @option{-msse4a} is used.
18038 All of them generate the machine instruction that is part of the name.
18039
18040 @smallexample
18041 void __builtin_ia32_movntsd (double *, v2df)
18042 void __builtin_ia32_movntss (float *, v4sf)
18043 v2di __builtin_ia32_extrq (v2di, v16qi)
18044 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
18045 v2di __builtin_ia32_insertq (v2di, v2di)
18046 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
18047 @end smallexample
18048
18049 The following built-in functions are available when @option{-mxop} is used.
18050 @smallexample
18051 v2df __builtin_ia32_vfrczpd (v2df)
18052 v4sf __builtin_ia32_vfrczps (v4sf)
18053 v2df __builtin_ia32_vfrczsd (v2df)
18054 v4sf __builtin_ia32_vfrczss (v4sf)
18055 v4df __builtin_ia32_vfrczpd256 (v4df)
18056 v8sf __builtin_ia32_vfrczps256 (v8sf)
18057 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
18058 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
18059 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
18060 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
18061 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
18062 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
18063 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
18064 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
18065 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
18066 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
18067 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
18068 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
18069 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
18070 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
18071 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
18072 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
18073 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
18074 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
18075 v4si __builtin_ia32_vpcomequd (v4si, v4si)
18076 v2di __builtin_ia32_vpcomequq (v2di, v2di)
18077 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
18078 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
18079 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
18080 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
18081 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
18082 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
18083 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
18084 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
18085 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
18086 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
18087 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
18088 v4si __builtin_ia32_vpcomged (v4si, v4si)
18089 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
18090 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
18091 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
18092 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
18093 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
18094 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
18095 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
18096 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
18097 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
18098 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
18099 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
18100 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
18101 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
18102 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
18103 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
18104 v4si __builtin_ia32_vpcomled (v4si, v4si)
18105 v2di __builtin_ia32_vpcomleq (v2di, v2di)
18106 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
18107 v4si __builtin_ia32_vpcomleud (v4si, v4si)
18108 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
18109 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
18110 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
18111 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
18112 v4si __builtin_ia32_vpcomltd (v4si, v4si)
18113 v2di __builtin_ia32_vpcomltq (v2di, v2di)
18114 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
18115 v4si __builtin_ia32_vpcomltud (v4si, v4si)
18116 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
18117 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
18118 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
18119 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
18120 v4si __builtin_ia32_vpcomned (v4si, v4si)
18121 v2di __builtin_ia32_vpcomneq (v2di, v2di)
18122 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
18123 v4si __builtin_ia32_vpcomneud (v4si, v4si)
18124 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
18125 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
18126 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
18127 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
18128 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
18129 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
18130 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
18131 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
18132 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
18133 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
18134 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
18135 v4si __builtin_ia32_vphaddbd (v16qi)
18136 v2di __builtin_ia32_vphaddbq (v16qi)
18137 v8hi __builtin_ia32_vphaddbw (v16qi)
18138 v2di __builtin_ia32_vphadddq (v4si)
18139 v4si __builtin_ia32_vphaddubd (v16qi)
18140 v2di __builtin_ia32_vphaddubq (v16qi)
18141 v8hi __builtin_ia32_vphaddubw (v16qi)
18142 v2di __builtin_ia32_vphaddudq (v4si)
18143 v4si __builtin_ia32_vphadduwd (v8hi)
18144 v2di __builtin_ia32_vphadduwq (v8hi)
18145 v4si __builtin_ia32_vphaddwd (v8hi)
18146 v2di __builtin_ia32_vphaddwq (v8hi)
18147 v8hi __builtin_ia32_vphsubbw (v16qi)
18148 v2di __builtin_ia32_vphsubdq (v4si)
18149 v4si __builtin_ia32_vphsubwd (v8hi)
18150 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
18151 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
18152 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
18153 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
18154 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
18155 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
18156 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
18157 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
18158 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
18159 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
18160 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
18161 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
18162 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
18163 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
18164 v4si __builtin_ia32_vprotd (v4si, v4si)
18165 v2di __builtin_ia32_vprotq (v2di, v2di)
18166 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
18167 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
18168 v4si __builtin_ia32_vpshad (v4si, v4si)
18169 v2di __builtin_ia32_vpshaq (v2di, v2di)
18170 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
18171 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
18172 v4si __builtin_ia32_vpshld (v4si, v4si)
18173 v2di __builtin_ia32_vpshlq (v2di, v2di)
18174 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
18175 @end smallexample
18176
18177 The following built-in functions are available when @option{-mfma4} is used.
18178 All of them generate the machine instruction that is part of the name.
18179
18180 @smallexample
18181 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
18182 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
18183 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
18184 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
18185 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
18186 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
18187 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
18188 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
18189 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
18190 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
18191 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
18192 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
18193 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
18194 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
18195 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
18196 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
18197 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
18198 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
18199 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
18200 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
18201 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
18202 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
18203 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
18204 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
18205 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
18206 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
18207 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
18208 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
18209 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
18210 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
18211 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
18212 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
18213
18214 @end smallexample
18215
18216 The following built-in functions are available when @option{-mlwp} is used.
18217
18218 @smallexample
18219 void __builtin_ia32_llwpcb16 (void *);
18220 void __builtin_ia32_llwpcb32 (void *);
18221 void __builtin_ia32_llwpcb64 (void *);
18222 void * __builtin_ia32_llwpcb16 (void);
18223 void * __builtin_ia32_llwpcb32 (void);
18224 void * __builtin_ia32_llwpcb64 (void);
18225 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
18226 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
18227 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
18228 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
18229 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
18230 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
18231 @end smallexample
18232
18233 The following built-in functions are available when @option{-mbmi} is used.
18234 All of them generate the machine instruction that is part of the name.
18235 @smallexample
18236 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
18237 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
18238 @end smallexample
18239
18240 The following built-in functions are available when @option{-mbmi2} is used.
18241 All of them generate the machine instruction that is part of the name.
18242 @smallexample
18243 unsigned int _bzhi_u32 (unsigned int, unsigned int)
18244 unsigned int _pdep_u32 (unsigned int, unsigned int)
18245 unsigned int _pext_u32 (unsigned int, unsigned int)
18246 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
18247 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
18248 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
18249 @end smallexample
18250
18251 The following built-in functions are available when @option{-mlzcnt} is used.
18252 All of them generate the machine instruction that is part of the name.
18253 @smallexample
18254 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
18255 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
18256 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
18257 @end smallexample
18258
18259 The following built-in functions are available when @option{-mfxsr} is used.
18260 All of them generate the machine instruction that is part of the name.
18261 @smallexample
18262 void __builtin_ia32_fxsave (void *)
18263 void __builtin_ia32_fxrstor (void *)
18264 void __builtin_ia32_fxsave64 (void *)
18265 void __builtin_ia32_fxrstor64 (void *)
18266 @end smallexample
18267
18268 The following built-in functions are available when @option{-mxsave} is used.
18269 All of them generate the machine instruction that is part of the name.
18270 @smallexample
18271 void __builtin_ia32_xsave (void *, long long)
18272 void __builtin_ia32_xrstor (void *, long long)
18273 void __builtin_ia32_xsave64 (void *, long long)
18274 void __builtin_ia32_xrstor64 (void *, long long)
18275 @end smallexample
18276
18277 The following built-in functions are available when @option{-mxsaveopt} is used.
18278 All of them generate the machine instruction that is part of the name.
18279 @smallexample
18280 void __builtin_ia32_xsaveopt (void *, long long)
18281 void __builtin_ia32_xsaveopt64 (void *, long long)
18282 @end smallexample
18283
18284 The following built-in functions are available when @option{-mtbm} is used.
18285 Both of them generate the immediate form of the bextr machine instruction.
18286 @smallexample
18287 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
18288 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
18289 @end smallexample
18290
18291
18292 The following built-in functions are available when @option{-m3dnow} is used.
18293 All of them generate the machine instruction that is part of the name.
18294
18295 @smallexample
18296 void __builtin_ia32_femms (void)
18297 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
18298 v2si __builtin_ia32_pf2id (v2sf)
18299 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
18300 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
18301 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
18302 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
18303 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
18304 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
18305 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
18306 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
18307 v2sf __builtin_ia32_pfrcp (v2sf)
18308 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
18309 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
18310 v2sf __builtin_ia32_pfrsqrt (v2sf)
18311 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
18312 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
18313 v2sf __builtin_ia32_pi2fd (v2si)
18314 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
18315 @end smallexample
18316
18317 The following built-in functions are available when both @option{-m3dnow}
18318 and @option{-march=athlon} are used. All of them generate the machine
18319 instruction that is part of the name.
18320
18321 @smallexample
18322 v2si __builtin_ia32_pf2iw (v2sf)
18323 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
18324 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
18325 v2sf __builtin_ia32_pi2fw (v2si)
18326 v2sf __builtin_ia32_pswapdsf (v2sf)
18327 v2si __builtin_ia32_pswapdsi (v2si)
18328 @end smallexample
18329
18330 The following built-in functions are available when @option{-mrtm} is used
18331 They are used for restricted transactional memory. These are the internal
18332 low level functions. Normally the functions in
18333 @ref{x86 transactional memory intrinsics} should be used instead.
18334
18335 @smallexample
18336 int __builtin_ia32_xbegin ()
18337 void __builtin_ia32_xend ()
18338 void __builtin_ia32_xabort (status)
18339 int __builtin_ia32_xtest ()
18340 @end smallexample
18341
18342 The following built-in functions are available when @option{-mmwaitx} is used.
18343 All of them generate the machine instruction that is part of the name.
18344 @smallexample
18345 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
18346 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
18347 @end smallexample
18348
18349 The following built-in functions are available when @option{-mclzero} is used.
18350 All of them generate the machine instruction that is part of the name.
18351 @smallexample
18352 void __builtin_i32_clzero (void *)
18353 @end smallexample
18354
18355 The following built-in functions are available when @option{-mpku} is used.
18356 They generate reads and writes to PKRU.
18357 @smallexample
18358 void __builtin_ia32_wrpkru (unsigned int)
18359 unsigned int __builtin_ia32_rdpkru ()
18360 @end smallexample
18361
18362 @node x86 transactional memory intrinsics
18363 @subsection x86 Transactional Memory Intrinsics
18364
18365 These hardware transactional memory intrinsics for x86 allow you to use
18366 memory transactions with RTM (Restricted Transactional Memory).
18367 This support is enabled with the @option{-mrtm} option.
18368 For using HLE (Hardware Lock Elision) see
18369 @ref{x86 specific memory model extensions for transactional memory} instead.
18370
18371 A memory transaction commits all changes to memory in an atomic way,
18372 as visible to other threads. If the transaction fails it is rolled back
18373 and all side effects discarded.
18374
18375 Generally there is no guarantee that a memory transaction ever succeeds
18376 and suitable fallback code always needs to be supplied.
18377
18378 @deftypefn {RTM Function} {unsigned} _xbegin ()
18379 Start a RTM (Restricted Transactional Memory) transaction.
18380 Returns @code{_XBEGIN_STARTED} when the transaction
18381 started successfully (note this is not 0, so the constant has to be
18382 explicitly tested).
18383
18384 If the transaction aborts, all side-effects
18385 are undone and an abort code encoded as a bit mask is returned.
18386 The following macros are defined:
18387
18388 @table @code
18389 @item _XABORT_EXPLICIT
18390 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
18391 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
18392 @item _XABORT_RETRY
18393 Transaction retry is possible.
18394 @item _XABORT_CONFLICT
18395 Transaction abort due to a memory conflict with another thread.
18396 @item _XABORT_CAPACITY
18397 Transaction abort due to the transaction using too much memory.
18398 @item _XABORT_DEBUG
18399 Transaction abort due to a debug trap.
18400 @item _XABORT_NESTED
18401 Transaction abort in an inner nested transaction.
18402 @end table
18403
18404 There is no guarantee
18405 any transaction ever succeeds, so there always needs to be a valid
18406 fallback path.
18407 @end deftypefn
18408
18409 @deftypefn {RTM Function} {void} _xend ()
18410 Commit the current transaction. When no transaction is active this faults.
18411 All memory side-effects of the transaction become visible
18412 to other threads in an atomic manner.
18413 @end deftypefn
18414
18415 @deftypefn {RTM Function} {int} _xtest ()
18416 Return a nonzero value if a transaction is currently active, otherwise 0.
18417 @end deftypefn
18418
18419 @deftypefn {RTM Function} {void} _xabort (status)
18420 Abort the current transaction. When no transaction is active this is a no-op.
18421 The @var{status} is an 8-bit constant; its value is encoded in the return
18422 value from @code{_xbegin}.
18423 @end deftypefn
18424
18425 Here is an example showing handling for @code{_XABORT_RETRY}
18426 and a fallback path for other failures:
18427
18428 @smallexample
18429 #include <immintrin.h>
18430
18431 int n_tries, max_tries;
18432 unsigned status = _XABORT_EXPLICIT;
18433 ...
18434
18435 for (n_tries = 0; n_tries < max_tries; n_tries++)
18436 @{
18437 status = _xbegin ();
18438 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
18439 break;
18440 @}
18441 if (status == _XBEGIN_STARTED)
18442 @{
18443 ... transaction code...
18444 _xend ();
18445 @}
18446 else
18447 @{
18448 ... non-transactional fallback path...
18449 @}
18450 @end smallexample
18451
18452 @noindent
18453 Note that, in most cases, the transactional and non-transactional code
18454 must synchronize together to ensure consistency.
18455
18456 @node Target Format Checks
18457 @section Format Checks Specific to Particular Target Machines
18458
18459 For some target machines, GCC supports additional options to the
18460 format attribute
18461 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
18462
18463 @menu
18464 * Solaris Format Checks::
18465 * Darwin Format Checks::
18466 @end menu
18467
18468 @node Solaris Format Checks
18469 @subsection Solaris Format Checks
18470
18471 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
18472 check. @code{cmn_err} accepts a subset of the standard @code{printf}
18473 conversions, and the two-argument @code{%b} conversion for displaying
18474 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
18475
18476 @node Darwin Format Checks
18477 @subsection Darwin Format Checks
18478
18479 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
18480 attribute context. Declarations made with such attribution are parsed for correct syntax
18481 and format argument types. However, parsing of the format string itself is currently undefined
18482 and is not carried out by this version of the compiler.
18483
18484 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
18485 also be used as format arguments. Note that the relevant headers are only likely to be
18486 available on Darwin (OSX) installations. On such installations, the XCode and system
18487 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
18488 associated functions.
18489
18490 @node Pragmas
18491 @section Pragmas Accepted by GCC
18492 @cindex pragmas
18493 @cindex @code{#pragma}
18494
18495 GCC supports several types of pragmas, primarily in order to compile
18496 code originally written for other compilers. Note that in general
18497 we do not recommend the use of pragmas; @xref{Function Attributes},
18498 for further explanation.
18499
18500 @menu
18501 * AArch64 Pragmas::
18502 * ARM Pragmas::
18503 * M32C Pragmas::
18504 * MeP Pragmas::
18505 * RS/6000 and PowerPC Pragmas::
18506 * S/390 Pragmas::
18507 * Darwin Pragmas::
18508 * Solaris Pragmas::
18509 * Symbol-Renaming Pragmas::
18510 * Structure-Layout Pragmas::
18511 * Weak Pragmas::
18512 * Diagnostic Pragmas::
18513 * Visibility Pragmas::
18514 * Push/Pop Macro Pragmas::
18515 * Function Specific Option Pragmas::
18516 * Loop-Specific Pragmas::
18517 @end menu
18518
18519 @node AArch64 Pragmas
18520 @subsection AArch64 Pragmas
18521
18522 The pragmas defined by the AArch64 target correspond to the AArch64
18523 target function attributes. They can be specified as below:
18524 @smallexample
18525 #pragma GCC target("string")
18526 @end smallexample
18527
18528 where @code{@var{string}} can be any string accepted as an AArch64 target
18529 attribute. @xref{AArch64 Function Attributes}, for more details
18530 on the permissible values of @code{string}.
18531
18532 @node ARM Pragmas
18533 @subsection ARM Pragmas
18534
18535 The ARM target defines pragmas for controlling the default addition of
18536 @code{long_call} and @code{short_call} attributes to functions.
18537 @xref{Function Attributes}, for information about the effects of these
18538 attributes.
18539
18540 @table @code
18541 @item long_calls
18542 @cindex pragma, long_calls
18543 Set all subsequent functions to have the @code{long_call} attribute.
18544
18545 @item no_long_calls
18546 @cindex pragma, no_long_calls
18547 Set all subsequent functions to have the @code{short_call} attribute.
18548
18549 @item long_calls_off
18550 @cindex pragma, long_calls_off
18551 Do not affect the @code{long_call} or @code{short_call} attributes of
18552 subsequent functions.
18553 @end table
18554
18555 @node M32C Pragmas
18556 @subsection M32C Pragmas
18557
18558 @table @code
18559 @item GCC memregs @var{number}
18560 @cindex pragma, memregs
18561 Overrides the command-line option @code{-memregs=} for the current
18562 file. Use with care! This pragma must be before any function in the
18563 file, and mixing different memregs values in different objects may
18564 make them incompatible. This pragma is useful when a
18565 performance-critical function uses a memreg for temporary values,
18566 as it may allow you to reduce the number of memregs used.
18567
18568 @item ADDRESS @var{name} @var{address}
18569 @cindex pragma, address
18570 For any declared symbols matching @var{name}, this does three things
18571 to that symbol: it forces the symbol to be located at the given
18572 address (a number), it forces the symbol to be volatile, and it
18573 changes the symbol's scope to be static. This pragma exists for
18574 compatibility with other compilers, but note that the common
18575 @code{1234H} numeric syntax is not supported (use @code{0x1234}
18576 instead). Example:
18577
18578 @smallexample
18579 #pragma ADDRESS port3 0x103
18580 char port3;
18581 @end smallexample
18582
18583 @end table
18584
18585 @node MeP Pragmas
18586 @subsection MeP Pragmas
18587
18588 @table @code
18589
18590 @item custom io_volatile (on|off)
18591 @cindex pragma, custom io_volatile
18592 Overrides the command-line option @code{-mio-volatile} for the current
18593 file. Note that for compatibility with future GCC releases, this
18594 option should only be used once before any @code{io} variables in each
18595 file.
18596
18597 @item GCC coprocessor available @var{registers}
18598 @cindex pragma, coprocessor available
18599 Specifies which coprocessor registers are available to the register
18600 allocator. @var{registers} may be a single register, register range
18601 separated by ellipses, or comma-separated list of those. Example:
18602
18603 @smallexample
18604 #pragma GCC coprocessor available $c0...$c10, $c28
18605 @end smallexample
18606
18607 @item GCC coprocessor call_saved @var{registers}
18608 @cindex pragma, coprocessor call_saved
18609 Specifies which coprocessor registers are to be saved and restored by
18610 any function using them. @var{registers} may be a single register,
18611 register range separated by ellipses, or comma-separated list of
18612 those. Example:
18613
18614 @smallexample
18615 #pragma GCC coprocessor call_saved $c4...$c6, $c31
18616 @end smallexample
18617
18618 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
18619 @cindex pragma, coprocessor subclass
18620 Creates and defines a register class. These register classes can be
18621 used by inline @code{asm} constructs. @var{registers} may be a single
18622 register, register range separated by ellipses, or comma-separated
18623 list of those. Example:
18624
18625 @smallexample
18626 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
18627
18628 asm ("cpfoo %0" : "=B" (x));
18629 @end smallexample
18630
18631 @item GCC disinterrupt @var{name} , @var{name} @dots{}
18632 @cindex pragma, disinterrupt
18633 For the named functions, the compiler adds code to disable interrupts
18634 for the duration of those functions. If any functions so named
18635 are not encountered in the source, a warning is emitted that the pragma is
18636 not used. Examples:
18637
18638 @smallexample
18639 #pragma disinterrupt foo
18640 #pragma disinterrupt bar, grill
18641 int foo () @{ @dots{} @}
18642 @end smallexample
18643
18644 @item GCC call @var{name} , @var{name} @dots{}
18645 @cindex pragma, call
18646 For the named functions, the compiler always uses a register-indirect
18647 call model when calling the named functions. Examples:
18648
18649 @smallexample
18650 extern int foo ();
18651 #pragma call foo
18652 @end smallexample
18653
18654 @end table
18655
18656 @node RS/6000 and PowerPC Pragmas
18657 @subsection RS/6000 and PowerPC Pragmas
18658
18659 The RS/6000 and PowerPC targets define one pragma for controlling
18660 whether or not the @code{longcall} attribute is added to function
18661 declarations by default. This pragma overrides the @option{-mlongcall}
18662 option, but not the @code{longcall} and @code{shortcall} attributes.
18663 @xref{RS/6000 and PowerPC Options}, for more information about when long
18664 calls are and are not necessary.
18665
18666 @table @code
18667 @item longcall (1)
18668 @cindex pragma, longcall
18669 Apply the @code{longcall} attribute to all subsequent function
18670 declarations.
18671
18672 @item longcall (0)
18673 Do not apply the @code{longcall} attribute to subsequent function
18674 declarations.
18675 @end table
18676
18677 @c Describe h8300 pragmas here.
18678 @c Describe sh pragmas here.
18679 @c Describe v850 pragmas here.
18680
18681 @node S/390 Pragmas
18682 @subsection S/390 Pragmas
18683
18684 The pragmas defined by the S/390 target correspond to the S/390
18685 target function attributes and some the additional options:
18686
18687 @table @samp
18688 @item zvector
18689 @itemx no-zvector
18690 @end table
18691
18692 Note that options of the pragma, unlike options of the target
18693 attribute, do change the value of preprocessor macros like
18694 @code{__VEC__}. They can be specified as below:
18695
18696 @smallexample
18697 #pragma GCC target("string[,string]...")
18698 #pragma GCC target("string"[,"string"]...)
18699 @end smallexample
18700
18701 @node Darwin Pragmas
18702 @subsection Darwin Pragmas
18703
18704 The following pragmas are available for all architectures running the
18705 Darwin operating system. These are useful for compatibility with other
18706 Mac OS compilers.
18707
18708 @table @code
18709 @item mark @var{tokens}@dots{}
18710 @cindex pragma, mark
18711 This pragma is accepted, but has no effect.
18712
18713 @item options align=@var{alignment}
18714 @cindex pragma, options align
18715 This pragma sets the alignment of fields in structures. The values of
18716 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
18717 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
18718 properly; to restore the previous setting, use @code{reset} for the
18719 @var{alignment}.
18720
18721 @item segment @var{tokens}@dots{}
18722 @cindex pragma, segment
18723 This pragma is accepted, but has no effect.
18724
18725 @item unused (@var{var} [, @var{var}]@dots{})
18726 @cindex pragma, unused
18727 This pragma declares variables to be possibly unused. GCC does not
18728 produce warnings for the listed variables. The effect is similar to
18729 that of the @code{unused} attribute, except that this pragma may appear
18730 anywhere within the variables' scopes.
18731 @end table
18732
18733 @node Solaris Pragmas
18734 @subsection Solaris Pragmas
18735
18736 The Solaris target supports @code{#pragma redefine_extname}
18737 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
18738 @code{#pragma} directives for compatibility with the system compiler.
18739
18740 @table @code
18741 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
18742 @cindex pragma, align
18743
18744 Increase the minimum alignment of each @var{variable} to @var{alignment}.
18745 This is the same as GCC's @code{aligned} attribute @pxref{Variable
18746 Attributes}). Macro expansion occurs on the arguments to this pragma
18747 when compiling C and Objective-C@. It does not currently occur when
18748 compiling C++, but this is a bug which may be fixed in a future
18749 release.
18750
18751 @item fini (@var{function} [, @var{function}]...)
18752 @cindex pragma, fini
18753
18754 This pragma causes each listed @var{function} to be called after
18755 main, or during shared module unloading, by adding a call to the
18756 @code{.fini} section.
18757
18758 @item init (@var{function} [, @var{function}]...)
18759 @cindex pragma, init
18760
18761 This pragma causes each listed @var{function} to be called during
18762 initialization (before @code{main}) or during shared module loading, by
18763 adding a call to the @code{.init} section.
18764
18765 @end table
18766
18767 @node Symbol-Renaming Pragmas
18768 @subsection Symbol-Renaming Pragmas
18769
18770 GCC supports a @code{#pragma} directive that changes the name used in
18771 assembly for a given declaration. While this pragma is supported on all
18772 platforms, it is intended primarily to provide compatibility with the
18773 Solaris system headers. This effect can also be achieved using the asm
18774 labels extension (@pxref{Asm Labels}).
18775
18776 @table @code
18777 @item redefine_extname @var{oldname} @var{newname}
18778 @cindex pragma, redefine_extname
18779
18780 This pragma gives the C function @var{oldname} the assembly symbol
18781 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
18782 is defined if this pragma is available (currently on all platforms).
18783 @end table
18784
18785 This pragma and the asm labels extension interact in a complicated
18786 manner. Here are some corner cases you may want to be aware of:
18787
18788 @enumerate
18789 @item This pragma silently applies only to declarations with external
18790 linkage. Asm labels do not have this restriction.
18791
18792 @item In C++, this pragma silently applies only to declarations with
18793 ``C'' linkage. Again, asm labels do not have this restriction.
18794
18795 @item If either of the ways of changing the assembly name of a
18796 declaration are applied to a declaration whose assembly name has
18797 already been determined (either by a previous use of one of these
18798 features, or because the compiler needed the assembly name in order to
18799 generate code), and the new name is different, a warning issues and
18800 the name does not change.
18801
18802 @item The @var{oldname} used by @code{#pragma redefine_extname} is
18803 always the C-language name.
18804 @end enumerate
18805
18806 @node Structure-Layout Pragmas
18807 @subsection Structure-Layout Pragmas
18808
18809 For compatibility with Microsoft Windows compilers, GCC supports a
18810 set of @code{#pragma} directives that change the maximum alignment of
18811 members of structures (other than zero-width bit-fields), unions, and
18812 classes subsequently defined. The @var{n} value below always is required
18813 to be a small power of two and specifies the new alignment in bytes.
18814
18815 @enumerate
18816 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
18817 @item @code{#pragma pack()} sets the alignment to the one that was in
18818 effect when compilation started (see also command-line option
18819 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
18820 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
18821 setting on an internal stack and then optionally sets the new alignment.
18822 @item @code{#pragma pack(pop)} restores the alignment setting to the one
18823 saved at the top of the internal stack (and removes that stack entry).
18824 Note that @code{#pragma pack([@var{n}])} does not influence this internal
18825 stack; thus it is possible to have @code{#pragma pack(push)} followed by
18826 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
18827 @code{#pragma pack(pop)}.
18828 @end enumerate
18829
18830 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
18831 directive which lays out structures and unions subsequently defined as the
18832 documented @code{__attribute__ ((ms_struct))}.
18833
18834 @enumerate
18835 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
18836 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
18837 @item @code{#pragma ms_struct reset} goes back to the default layout.
18838 @end enumerate
18839
18840 Most targets also support the @code{#pragma scalar_storage_order} directive
18841 which lays out structures and unions subsequently defined as the documented
18842 @code{__attribute__ ((scalar_storage_order))}.
18843
18844 @enumerate
18845 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
18846 of the scalar fields to big-endian.
18847 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
18848 of the scalar fields to little-endian.
18849 @item @code{#pragma scalar_storage_order default} goes back to the endianness
18850 that was in effect when compilation started (see also command-line option
18851 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
18852 @end enumerate
18853
18854 @node Weak Pragmas
18855 @subsection Weak Pragmas
18856
18857 For compatibility with SVR4, GCC supports a set of @code{#pragma}
18858 directives for declaring symbols to be weak, and defining weak
18859 aliases.
18860
18861 @table @code
18862 @item #pragma weak @var{symbol}
18863 @cindex pragma, weak
18864 This pragma declares @var{symbol} to be weak, as if the declaration
18865 had the attribute of the same name. The pragma may appear before
18866 or after the declaration of @var{symbol}. It is not an error for
18867 @var{symbol} to never be defined at all.
18868
18869 @item #pragma weak @var{symbol1} = @var{symbol2}
18870 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
18871 It is an error if @var{symbol2} is not defined in the current
18872 translation unit.
18873 @end table
18874
18875 @node Diagnostic Pragmas
18876 @subsection Diagnostic Pragmas
18877
18878 GCC allows the user to selectively enable or disable certain types of
18879 diagnostics, and change the kind of the diagnostic. For example, a
18880 project's policy might require that all sources compile with
18881 @option{-Werror} but certain files might have exceptions allowing
18882 specific types of warnings. Or, a project might selectively enable
18883 diagnostics and treat them as errors depending on which preprocessor
18884 macros are defined.
18885
18886 @table @code
18887 @item #pragma GCC diagnostic @var{kind} @var{option}
18888 @cindex pragma, diagnostic
18889
18890 Modifies the disposition of a diagnostic. Note that not all
18891 diagnostics are modifiable; at the moment only warnings (normally
18892 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
18893 Use @option{-fdiagnostics-show-option} to determine which diagnostics
18894 are controllable and which option controls them.
18895
18896 @var{kind} is @samp{error} to treat this diagnostic as an error,
18897 @samp{warning} to treat it like a warning (even if @option{-Werror} is
18898 in effect), or @samp{ignored} if the diagnostic is to be ignored.
18899 @var{option} is a double quoted string that matches the command-line
18900 option.
18901
18902 @smallexample
18903 #pragma GCC diagnostic warning "-Wformat"
18904 #pragma GCC diagnostic error "-Wformat"
18905 #pragma GCC diagnostic ignored "-Wformat"
18906 @end smallexample
18907
18908 Note that these pragmas override any command-line options. GCC keeps
18909 track of the location of each pragma, and issues diagnostics according
18910 to the state as of that point in the source file. Thus, pragmas occurring
18911 after a line do not affect diagnostics caused by that line.
18912
18913 @item #pragma GCC diagnostic push
18914 @itemx #pragma GCC diagnostic pop
18915
18916 Causes GCC to remember the state of the diagnostics as of each
18917 @code{push}, and restore to that point at each @code{pop}. If a
18918 @code{pop} has no matching @code{push}, the command-line options are
18919 restored.
18920
18921 @smallexample
18922 #pragma GCC diagnostic error "-Wuninitialized"
18923 foo(a); /* error is given for this one */
18924 #pragma GCC diagnostic push
18925 #pragma GCC diagnostic ignored "-Wuninitialized"
18926 foo(b); /* no diagnostic for this one */
18927 #pragma GCC diagnostic pop
18928 foo(c); /* error is given for this one */
18929 #pragma GCC diagnostic pop
18930 foo(d); /* depends on command-line options */
18931 @end smallexample
18932
18933 @end table
18934
18935 GCC also offers a simple mechanism for printing messages during
18936 compilation.
18937
18938 @table @code
18939 @item #pragma message @var{string}
18940 @cindex pragma, diagnostic
18941
18942 Prints @var{string} as a compiler message on compilation. The message
18943 is informational only, and is neither a compilation warning nor an error.
18944
18945 @smallexample
18946 #pragma message "Compiling " __FILE__ "..."
18947 @end smallexample
18948
18949 @var{string} may be parenthesized, and is printed with location
18950 information. For example,
18951
18952 @smallexample
18953 #define DO_PRAGMA(x) _Pragma (#x)
18954 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
18955
18956 TODO(Remember to fix this)
18957 @end smallexample
18958
18959 @noindent
18960 prints @samp{/tmp/file.c:4: note: #pragma message:
18961 TODO - Remember to fix this}.
18962
18963 @end table
18964
18965 @node Visibility Pragmas
18966 @subsection Visibility Pragmas
18967
18968 @table @code
18969 @item #pragma GCC visibility push(@var{visibility})
18970 @itemx #pragma GCC visibility pop
18971 @cindex pragma, visibility
18972
18973 This pragma allows the user to set the visibility for multiple
18974 declarations without having to give each a visibility attribute
18975 (@pxref{Function Attributes}).
18976
18977 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
18978 declarations. Class members and template specializations are not
18979 affected; if you want to override the visibility for a particular
18980 member or instantiation, you must use an attribute.
18981
18982 @end table
18983
18984
18985 @node Push/Pop Macro Pragmas
18986 @subsection Push/Pop Macro Pragmas
18987
18988 For compatibility with Microsoft Windows compilers, GCC supports
18989 @samp{#pragma push_macro(@var{"macro_name"})}
18990 and @samp{#pragma pop_macro(@var{"macro_name"})}.
18991
18992 @table @code
18993 @item #pragma push_macro(@var{"macro_name"})
18994 @cindex pragma, push_macro
18995 This pragma saves the value of the macro named as @var{macro_name} to
18996 the top of the stack for this macro.
18997
18998 @item #pragma pop_macro(@var{"macro_name"})
18999 @cindex pragma, pop_macro
19000 This pragma sets the value of the macro named as @var{macro_name} to
19001 the value on top of the stack for this macro. If the stack for
19002 @var{macro_name} is empty, the value of the macro remains unchanged.
19003 @end table
19004
19005 For example:
19006
19007 @smallexample
19008 #define X 1
19009 #pragma push_macro("X")
19010 #undef X
19011 #define X -1
19012 #pragma pop_macro("X")
19013 int x [X];
19014 @end smallexample
19015
19016 @noindent
19017 In this example, the definition of X as 1 is saved by @code{#pragma
19018 push_macro} and restored by @code{#pragma pop_macro}.
19019
19020 @node Function Specific Option Pragmas
19021 @subsection Function Specific Option Pragmas
19022
19023 @table @code
19024 @item #pragma GCC target (@var{"string"}...)
19025 @cindex pragma GCC target
19026
19027 This pragma allows you to set target specific options for functions
19028 defined later in the source file. One or more strings can be
19029 specified. Each function that is defined after this point is as
19030 if @code{attribute((target("STRING")))} was specified for that
19031 function. The parenthesis around the options is optional.
19032 @xref{Function Attributes}, for more information about the
19033 @code{target} attribute and the attribute syntax.
19034
19035 The @code{#pragma GCC target} pragma is presently implemented for
19036 x86, PowerPC, and Nios II targets only.
19037 @end table
19038
19039 @table @code
19040 @item #pragma GCC optimize (@var{"string"}...)
19041 @cindex pragma GCC optimize
19042
19043 This pragma allows you to set global optimization options for functions
19044 defined later in the source file. One or more strings can be
19045 specified. Each function that is defined after this point is as
19046 if @code{attribute((optimize("STRING")))} was specified for that
19047 function. The parenthesis around the options is optional.
19048 @xref{Function Attributes}, for more information about the
19049 @code{optimize} attribute and the attribute syntax.
19050 @end table
19051
19052 @table @code
19053 @item #pragma GCC push_options
19054 @itemx #pragma GCC pop_options
19055 @cindex pragma GCC push_options
19056 @cindex pragma GCC pop_options
19057
19058 These pragmas maintain a stack of the current target and optimization
19059 options. It is intended for include files where you temporarily want
19060 to switch to using a different @samp{#pragma GCC target} or
19061 @samp{#pragma GCC optimize} and then to pop back to the previous
19062 options.
19063 @end table
19064
19065 @table @code
19066 @item #pragma GCC reset_options
19067 @cindex pragma GCC reset_options
19068
19069 This pragma clears the current @code{#pragma GCC target} and
19070 @code{#pragma GCC optimize} to use the default switches as specified
19071 on the command line.
19072 @end table
19073
19074 @node Loop-Specific Pragmas
19075 @subsection Loop-Specific Pragmas
19076
19077 @table @code
19078 @item #pragma GCC ivdep
19079 @cindex pragma GCC ivdep
19080 @end table
19081
19082 With this pragma, the programmer asserts that there are no loop-carried
19083 dependencies which would prevent consecutive iterations of
19084 the following loop from executing concurrently with SIMD
19085 (single instruction multiple data) instructions.
19086
19087 For example, the compiler can only unconditionally vectorize the following
19088 loop with the pragma:
19089
19090 @smallexample
19091 void foo (int n, int *a, int *b, int *c)
19092 @{
19093 int i, j;
19094 #pragma GCC ivdep
19095 for (i = 0; i < n; ++i)
19096 a[i] = b[i] + c[i];
19097 @}
19098 @end smallexample
19099
19100 @noindent
19101 In this example, using the @code{restrict} qualifier had the same
19102 effect. In the following example, that would not be possible. Assume
19103 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
19104 that it can unconditionally vectorize the following loop:
19105
19106 @smallexample
19107 void ignore_vec_dep (int *a, int k, int c, int m)
19108 @{
19109 #pragma GCC ivdep
19110 for (int i = 0; i < m; i++)
19111 a[i] = a[i + k] * c;
19112 @}
19113 @end smallexample
19114
19115
19116 @node Unnamed Fields
19117 @section Unnamed Structure and Union Fields
19118 @cindex @code{struct}
19119 @cindex @code{union}
19120
19121 As permitted by ISO C11 and for compatibility with other compilers,
19122 GCC allows you to define
19123 a structure or union that contains, as fields, structures and unions
19124 without names. For example:
19125
19126 @smallexample
19127 struct @{
19128 int a;
19129 union @{
19130 int b;
19131 float c;
19132 @};
19133 int d;
19134 @} foo;
19135 @end smallexample
19136
19137 @noindent
19138 In this example, you are able to access members of the unnamed
19139 union with code like @samp{foo.b}. Note that only unnamed structs and
19140 unions are allowed, you may not have, for example, an unnamed
19141 @code{int}.
19142
19143 You must never create such structures that cause ambiguous field definitions.
19144 For example, in this structure:
19145
19146 @smallexample
19147 struct @{
19148 int a;
19149 struct @{
19150 int a;
19151 @};
19152 @} foo;
19153 @end smallexample
19154
19155 @noindent
19156 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
19157 The compiler gives errors for such constructs.
19158
19159 @opindex fms-extensions
19160 Unless @option{-fms-extensions} is used, the unnamed field must be a
19161 structure or union definition without a tag (for example, @samp{struct
19162 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
19163 also be a definition with a tag such as @samp{struct foo @{ int a;
19164 @};}, a reference to a previously defined structure or union such as
19165 @samp{struct foo;}, or a reference to a @code{typedef} name for a
19166 previously defined structure or union type.
19167
19168 @opindex fplan9-extensions
19169 The option @option{-fplan9-extensions} enables
19170 @option{-fms-extensions} as well as two other extensions. First, a
19171 pointer to a structure is automatically converted to a pointer to an
19172 anonymous field for assignments and function calls. For example:
19173
19174 @smallexample
19175 struct s1 @{ int a; @};
19176 struct s2 @{ struct s1; @};
19177 extern void f1 (struct s1 *);
19178 void f2 (struct s2 *p) @{ f1 (p); @}
19179 @end smallexample
19180
19181 @noindent
19182 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
19183 converted into a pointer to the anonymous field.
19184
19185 Second, when the type of an anonymous field is a @code{typedef} for a
19186 @code{struct} or @code{union}, code may refer to the field using the
19187 name of the @code{typedef}.
19188
19189 @smallexample
19190 typedef struct @{ int a; @} s1;
19191 struct s2 @{ s1; @};
19192 s1 f1 (struct s2 *p) @{ return p->s1; @}
19193 @end smallexample
19194
19195 These usages are only permitted when they are not ambiguous.
19196
19197 @node Thread-Local
19198 @section Thread-Local Storage
19199 @cindex Thread-Local Storage
19200 @cindex @acronym{TLS}
19201 @cindex @code{__thread}
19202
19203 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
19204 are allocated such that there is one instance of the variable per extant
19205 thread. The runtime model GCC uses to implement this originates
19206 in the IA-64 processor-specific ABI, but has since been migrated
19207 to other processors as well. It requires significant support from
19208 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
19209 system libraries (@file{libc.so} and @file{libpthread.so}), so it
19210 is not available everywhere.
19211
19212 At the user level, the extension is visible with a new storage
19213 class keyword: @code{__thread}. For example:
19214
19215 @smallexample
19216 __thread int i;
19217 extern __thread struct state s;
19218 static __thread char *p;
19219 @end smallexample
19220
19221 The @code{__thread} specifier may be used alone, with the @code{extern}
19222 or @code{static} specifiers, but with no other storage class specifier.
19223 When used with @code{extern} or @code{static}, @code{__thread} must appear
19224 immediately after the other storage class specifier.
19225
19226 The @code{__thread} specifier may be applied to any global, file-scoped
19227 static, function-scoped static, or static data member of a class. It may
19228 not be applied to block-scoped automatic or non-static data member.
19229
19230 When the address-of operator is applied to a thread-local variable, it is
19231 evaluated at run time and returns the address of the current thread's
19232 instance of that variable. An address so obtained may be used by any
19233 thread. When a thread terminates, any pointers to thread-local variables
19234 in that thread become invalid.
19235
19236 No static initialization may refer to the address of a thread-local variable.
19237
19238 In C++, if an initializer is present for a thread-local variable, it must
19239 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
19240 standard.
19241
19242 See @uref{http://www.akkadia.org/drepper/tls.pdf,
19243 ELF Handling For Thread-Local Storage} for a detailed explanation of
19244 the four thread-local storage addressing models, and how the runtime
19245 is expected to function.
19246
19247 @menu
19248 * C99 Thread-Local Edits::
19249 * C++98 Thread-Local Edits::
19250 @end menu
19251
19252 @node C99 Thread-Local Edits
19253 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
19254
19255 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
19256 that document the exact semantics of the language extension.
19257
19258 @itemize @bullet
19259 @item
19260 @cite{5.1.2 Execution environments}
19261
19262 Add new text after paragraph 1
19263
19264 @quotation
19265 Within either execution environment, a @dfn{thread} is a flow of
19266 control within a program. It is implementation defined whether
19267 or not there may be more than one thread associated with a program.
19268 It is implementation defined how threads beyond the first are
19269 created, the name and type of the function called at thread
19270 startup, and how threads may be terminated. However, objects
19271 with thread storage duration shall be initialized before thread
19272 startup.
19273 @end quotation
19274
19275 @item
19276 @cite{6.2.4 Storage durations of objects}
19277
19278 Add new text before paragraph 3
19279
19280 @quotation
19281 An object whose identifier is declared with the storage-class
19282 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
19283 Its lifetime is the entire execution of the thread, and its
19284 stored value is initialized only once, prior to thread startup.
19285 @end quotation
19286
19287 @item
19288 @cite{6.4.1 Keywords}
19289
19290 Add @code{__thread}.
19291
19292 @item
19293 @cite{6.7.1 Storage-class specifiers}
19294
19295 Add @code{__thread} to the list of storage class specifiers in
19296 paragraph 1.
19297
19298 Change paragraph 2 to
19299
19300 @quotation
19301 With the exception of @code{__thread}, at most one storage-class
19302 specifier may be given [@dots{}]. The @code{__thread} specifier may
19303 be used alone, or immediately following @code{extern} or
19304 @code{static}.
19305 @end quotation
19306
19307 Add new text after paragraph 6
19308
19309 @quotation
19310 The declaration of an identifier for a variable that has
19311 block scope that specifies @code{__thread} shall also
19312 specify either @code{extern} or @code{static}.
19313
19314 The @code{__thread} specifier shall be used only with
19315 variables.
19316 @end quotation
19317 @end itemize
19318
19319 @node C++98 Thread-Local Edits
19320 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
19321
19322 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
19323 that document the exact semantics of the language extension.
19324
19325 @itemize @bullet
19326 @item
19327 @b{[intro.execution]}
19328
19329 New text after paragraph 4
19330
19331 @quotation
19332 A @dfn{thread} is a flow of control within the abstract machine.
19333 It is implementation defined whether or not there may be more than
19334 one thread.
19335 @end quotation
19336
19337 New text after paragraph 7
19338
19339 @quotation
19340 It is unspecified whether additional action must be taken to
19341 ensure when and whether side effects are visible to other threads.
19342 @end quotation
19343
19344 @item
19345 @b{[lex.key]}
19346
19347 Add @code{__thread}.
19348
19349 @item
19350 @b{[basic.start.main]}
19351
19352 Add after paragraph 5
19353
19354 @quotation
19355 The thread that begins execution at the @code{main} function is called
19356 the @dfn{main thread}. It is implementation defined how functions
19357 beginning threads other than the main thread are designated or typed.
19358 A function so designated, as well as the @code{main} function, is called
19359 a @dfn{thread startup function}. It is implementation defined what
19360 happens if a thread startup function returns. It is implementation
19361 defined what happens to other threads when any thread calls @code{exit}.
19362 @end quotation
19363
19364 @item
19365 @b{[basic.start.init]}
19366
19367 Add after paragraph 4
19368
19369 @quotation
19370 The storage for an object of thread storage duration shall be
19371 statically initialized before the first statement of the thread startup
19372 function. An object of thread storage duration shall not require
19373 dynamic initialization.
19374 @end quotation
19375
19376 @item
19377 @b{[basic.start.term]}
19378
19379 Add after paragraph 3
19380
19381 @quotation
19382 The type of an object with thread storage duration shall not have a
19383 non-trivial destructor, nor shall it be an array type whose elements
19384 (directly or indirectly) have non-trivial destructors.
19385 @end quotation
19386
19387 @item
19388 @b{[basic.stc]}
19389
19390 Add ``thread storage duration'' to the list in paragraph 1.
19391
19392 Change paragraph 2
19393
19394 @quotation
19395 Thread, static, and automatic storage durations are associated with
19396 objects introduced by declarations [@dots{}].
19397 @end quotation
19398
19399 Add @code{__thread} to the list of specifiers in paragraph 3.
19400
19401 @item
19402 @b{[basic.stc.thread]}
19403
19404 New section before @b{[basic.stc.static]}
19405
19406 @quotation
19407 The keyword @code{__thread} applied to a non-local object gives the
19408 object thread storage duration.
19409
19410 A local variable or class data member declared both @code{static}
19411 and @code{__thread} gives the variable or member thread storage
19412 duration.
19413 @end quotation
19414
19415 @item
19416 @b{[basic.stc.static]}
19417
19418 Change paragraph 1
19419
19420 @quotation
19421 All objects that have neither thread storage duration, dynamic
19422 storage duration nor are local [@dots{}].
19423 @end quotation
19424
19425 @item
19426 @b{[dcl.stc]}
19427
19428 Add @code{__thread} to the list in paragraph 1.
19429
19430 Change paragraph 1
19431
19432 @quotation
19433 With the exception of @code{__thread}, at most one
19434 @var{storage-class-specifier} shall appear in a given
19435 @var{decl-specifier-seq}. The @code{__thread} specifier may
19436 be used alone, or immediately following the @code{extern} or
19437 @code{static} specifiers. [@dots{}]
19438 @end quotation
19439
19440 Add after paragraph 5
19441
19442 @quotation
19443 The @code{__thread} specifier can be applied only to the names of objects
19444 and to anonymous unions.
19445 @end quotation
19446
19447 @item
19448 @b{[class.mem]}
19449
19450 Add after paragraph 6
19451
19452 @quotation
19453 Non-@code{static} members shall not be @code{__thread}.
19454 @end quotation
19455 @end itemize
19456
19457 @node Binary constants
19458 @section Binary Constants using the @samp{0b} Prefix
19459 @cindex Binary constants using the @samp{0b} prefix
19460
19461 Integer constants can be written as binary constants, consisting of a
19462 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
19463 @samp{0B}. This is particularly useful in environments that operate a
19464 lot on the bit level (like microcontrollers).
19465
19466 The following statements are identical:
19467
19468 @smallexample
19469 i = 42;
19470 i = 0x2a;
19471 i = 052;
19472 i = 0b101010;
19473 @end smallexample
19474
19475 The type of these constants follows the same rules as for octal or
19476 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
19477 can be applied.
19478
19479 @node C++ Extensions
19480 @chapter Extensions to the C++ Language
19481 @cindex extensions, C++ language
19482 @cindex C++ language extensions
19483
19484 The GNU compiler provides these extensions to the C++ language (and you
19485 can also use most of the C language extensions in your C++ programs). If you
19486 want to write code that checks whether these features are available, you can
19487 test for the GNU compiler the same way as for C programs: check for a
19488 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
19489 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
19490 Predefined Macros,cpp,The GNU C Preprocessor}).
19491
19492 @menu
19493 * C++ Volatiles:: What constitutes an access to a volatile object.
19494 * Restricted Pointers:: C99 restricted pointers and references.
19495 * Vague Linkage:: Where G++ puts inlines, vtables and such.
19496 * C++ Interface:: You can use a single C++ header file for both
19497 declarations and definitions.
19498 * Template Instantiation:: Methods for ensuring that exactly one copy of
19499 each needed template instantiation is emitted.
19500 * Bound member functions:: You can extract a function pointer to the
19501 method denoted by a @samp{->*} or @samp{.*} expression.
19502 * C++ Attributes:: Variable, function, and type attributes for C++ only.
19503 * Function Multiversioning:: Declaring multiple function versions.
19504 * Namespace Association:: Strong using-directives for namespace association.
19505 * Type Traits:: Compiler support for type traits.
19506 * C++ Concepts:: Improved support for generic programming.
19507 * Java Exceptions:: Tweaking exception handling to work with Java.
19508 * Deprecated Features:: Things will disappear from G++.
19509 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
19510 @end menu
19511
19512 @node C++ Volatiles
19513 @section When is a Volatile C++ Object Accessed?
19514 @cindex accessing volatiles
19515 @cindex volatile read
19516 @cindex volatile write
19517 @cindex volatile access
19518
19519 The C++ standard differs from the C standard in its treatment of
19520 volatile objects. It fails to specify what constitutes a volatile
19521 access, except to say that C++ should behave in a similar manner to C
19522 with respect to volatiles, where possible. However, the different
19523 lvalueness of expressions between C and C++ complicate the behavior.
19524 G++ behaves the same as GCC for volatile access, @xref{C
19525 Extensions,,Volatiles}, for a description of GCC's behavior.
19526
19527 The C and C++ language specifications differ when an object is
19528 accessed in a void context:
19529
19530 @smallexample
19531 volatile int *src = @var{somevalue};
19532 *src;
19533 @end smallexample
19534
19535 The C++ standard specifies that such expressions do not undergo lvalue
19536 to rvalue conversion, and that the type of the dereferenced object may
19537 be incomplete. The C++ standard does not specify explicitly that it
19538 is lvalue to rvalue conversion that is responsible for causing an
19539 access. There is reason to believe that it is, because otherwise
19540 certain simple expressions become undefined. However, because it
19541 would surprise most programmers, G++ treats dereferencing a pointer to
19542 volatile object of complete type as GCC would do for an equivalent
19543 type in C@. When the object has incomplete type, G++ issues a
19544 warning; if you wish to force an error, you must force a conversion to
19545 rvalue with, for instance, a static cast.
19546
19547 When using a reference to volatile, G++ does not treat equivalent
19548 expressions as accesses to volatiles, but instead issues a warning that
19549 no volatile is accessed. The rationale for this is that otherwise it
19550 becomes difficult to determine where volatile access occur, and not
19551 possible to ignore the return value from functions returning volatile
19552 references. Again, if you wish to force a read, cast the reference to
19553 an rvalue.
19554
19555 G++ implements the same behavior as GCC does when assigning to a
19556 volatile object---there is no reread of the assigned-to object, the
19557 assigned rvalue is reused. Note that in C++ assignment expressions
19558 are lvalues, and if used as an lvalue, the volatile object is
19559 referred to. For instance, @var{vref} refers to @var{vobj}, as
19560 expected, in the following example:
19561
19562 @smallexample
19563 volatile int vobj;
19564 volatile int &vref = vobj = @var{something};
19565 @end smallexample
19566
19567 @node Restricted Pointers
19568 @section Restricting Pointer Aliasing
19569 @cindex restricted pointers
19570 @cindex restricted references
19571 @cindex restricted this pointer
19572
19573 As with the C front end, G++ understands the C99 feature of restricted pointers,
19574 specified with the @code{__restrict__}, or @code{__restrict} type
19575 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
19576 language flag, @code{restrict} is not a keyword in C++.
19577
19578 In addition to allowing restricted pointers, you can specify restricted
19579 references, which indicate that the reference is not aliased in the local
19580 context.
19581
19582 @smallexample
19583 void fn (int *__restrict__ rptr, int &__restrict__ rref)
19584 @{
19585 /* @r{@dots{}} */
19586 @}
19587 @end smallexample
19588
19589 @noindent
19590 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
19591 @var{rref} refers to a (different) unaliased integer.
19592
19593 You may also specify whether a member function's @var{this} pointer is
19594 unaliased by using @code{__restrict__} as a member function qualifier.
19595
19596 @smallexample
19597 void T::fn () __restrict__
19598 @{
19599 /* @r{@dots{}} */
19600 @}
19601 @end smallexample
19602
19603 @noindent
19604 Within the body of @code{T::fn}, @var{this} has the effective
19605 definition @code{T *__restrict__ const this}. Notice that the
19606 interpretation of a @code{__restrict__} member function qualifier is
19607 different to that of @code{const} or @code{volatile} qualifier, in that it
19608 is applied to the pointer rather than the object. This is consistent with
19609 other compilers that implement restricted pointers.
19610
19611 As with all outermost parameter qualifiers, @code{__restrict__} is
19612 ignored in function definition matching. This means you only need to
19613 specify @code{__restrict__} in a function definition, rather than
19614 in a function prototype as well.
19615
19616 @node Vague Linkage
19617 @section Vague Linkage
19618 @cindex vague linkage
19619
19620 There are several constructs in C++ that require space in the object
19621 file but are not clearly tied to a single translation unit. We say that
19622 these constructs have ``vague linkage''. Typically such constructs are
19623 emitted wherever they are needed, though sometimes we can be more
19624 clever.
19625
19626 @table @asis
19627 @item Inline Functions
19628 Inline functions are typically defined in a header file which can be
19629 included in many different compilations. Hopefully they can usually be
19630 inlined, but sometimes an out-of-line copy is necessary, if the address
19631 of the function is taken or if inlining fails. In general, we emit an
19632 out-of-line copy in all translation units where one is needed. As an
19633 exception, we only emit inline virtual functions with the vtable, since
19634 it always requires a copy.
19635
19636 Local static variables and string constants used in an inline function
19637 are also considered to have vague linkage, since they must be shared
19638 between all inlined and out-of-line instances of the function.
19639
19640 @item VTables
19641 @cindex vtable
19642 C++ virtual functions are implemented in most compilers using a lookup
19643 table, known as a vtable. The vtable contains pointers to the virtual
19644 functions provided by a class, and each object of the class contains a
19645 pointer to its vtable (or vtables, in some multiple-inheritance
19646 situations). If the class declares any non-inline, non-pure virtual
19647 functions, the first one is chosen as the ``key method'' for the class,
19648 and the vtable is only emitted in the translation unit where the key
19649 method is defined.
19650
19651 @emph{Note:} If the chosen key method is later defined as inline, the
19652 vtable is still emitted in every translation unit that defines it.
19653 Make sure that any inline virtuals are declared inline in the class
19654 body, even if they are not defined there.
19655
19656 @item @code{type_info} objects
19657 @cindex @code{type_info}
19658 @cindex RTTI
19659 C++ requires information about types to be written out in order to
19660 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
19661 For polymorphic classes (classes with virtual functions), the @samp{type_info}
19662 object is written out along with the vtable so that @samp{dynamic_cast}
19663 can determine the dynamic type of a class object at run time. For all
19664 other types, we write out the @samp{type_info} object when it is used: when
19665 applying @samp{typeid} to an expression, throwing an object, or
19666 referring to a type in a catch clause or exception specification.
19667
19668 @item Template Instantiations
19669 Most everything in this section also applies to template instantiations,
19670 but there are other options as well.
19671 @xref{Template Instantiation,,Where's the Template?}.
19672
19673 @end table
19674
19675 When used with GNU ld version 2.8 or later on an ELF system such as
19676 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
19677 these constructs will be discarded at link time. This is known as
19678 COMDAT support.
19679
19680 On targets that don't support COMDAT, but do support weak symbols, GCC
19681 uses them. This way one copy overrides all the others, but
19682 the unused copies still take up space in the executable.
19683
19684 For targets that do not support either COMDAT or weak symbols,
19685 most entities with vague linkage are emitted as local symbols to
19686 avoid duplicate definition errors from the linker. This does not happen
19687 for local statics in inlines, however, as having multiple copies
19688 almost certainly breaks things.
19689
19690 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
19691 another way to control placement of these constructs.
19692
19693 @node C++ Interface
19694 @section C++ Interface and Implementation Pragmas
19695
19696 @cindex interface and implementation headers, C++
19697 @cindex C++ interface and implementation headers
19698 @cindex pragmas, interface and implementation
19699
19700 @code{#pragma interface} and @code{#pragma implementation} provide the
19701 user with a way of explicitly directing the compiler to emit entities
19702 with vague linkage (and debugging information) in a particular
19703 translation unit.
19704
19705 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
19706 by COMDAT support and the ``key method'' heuristic
19707 mentioned in @ref{Vague Linkage}. Using them can actually cause your
19708 program to grow due to unnecessary out-of-line copies of inline
19709 functions.
19710
19711 @table @code
19712 @item #pragma interface
19713 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
19714 @kindex #pragma interface
19715 Use this directive in @emph{header files} that define object classes, to save
19716 space in most of the object files that use those classes. Normally,
19717 local copies of certain information (backup copies of inline member
19718 functions, debugging information, and the internal tables that implement
19719 virtual functions) must be kept in each object file that includes class
19720 definitions. You can use this pragma to avoid such duplication. When a
19721 header file containing @samp{#pragma interface} is included in a
19722 compilation, this auxiliary information is not generated (unless
19723 the main input source file itself uses @samp{#pragma implementation}).
19724 Instead, the object files contain references to be resolved at link
19725 time.
19726
19727 The second form of this directive is useful for the case where you have
19728 multiple headers with the same name in different directories. If you
19729 use this form, you must specify the same string to @samp{#pragma
19730 implementation}.
19731
19732 @item #pragma implementation
19733 @itemx #pragma implementation "@var{objects}.h"
19734 @kindex #pragma implementation
19735 Use this pragma in a @emph{main input file}, when you want full output from
19736 included header files to be generated (and made globally visible). The
19737 included header file, in turn, should use @samp{#pragma interface}.
19738 Backup copies of inline member functions, debugging information, and the
19739 internal tables used to implement virtual functions are all generated in
19740 implementation files.
19741
19742 @cindex implied @code{#pragma implementation}
19743 @cindex @code{#pragma implementation}, implied
19744 @cindex naming convention, implementation headers
19745 If you use @samp{#pragma implementation} with no argument, it applies to
19746 an include file with the same basename@footnote{A file's @dfn{basename}
19747 is the name stripped of all leading path information and of trailing
19748 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
19749 file. For example, in @file{allclass.cc}, giving just
19750 @samp{#pragma implementation}
19751 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
19752
19753 Use the string argument if you want a single implementation file to
19754 include code from multiple header files. (You must also use
19755 @samp{#include} to include the header file; @samp{#pragma
19756 implementation} only specifies how to use the file---it doesn't actually
19757 include it.)
19758
19759 There is no way to split up the contents of a single header file into
19760 multiple implementation files.
19761 @end table
19762
19763 @cindex inlining and C++ pragmas
19764 @cindex C++ pragmas, effect on inlining
19765 @cindex pragmas in C++, effect on inlining
19766 @samp{#pragma implementation} and @samp{#pragma interface} also have an
19767 effect on function inlining.
19768
19769 If you define a class in a header file marked with @samp{#pragma
19770 interface}, the effect on an inline function defined in that class is
19771 similar to an explicit @code{extern} declaration---the compiler emits
19772 no code at all to define an independent version of the function. Its
19773 definition is used only for inlining with its callers.
19774
19775 @opindex fno-implement-inlines
19776 Conversely, when you include the same header file in a main source file
19777 that declares it as @samp{#pragma implementation}, the compiler emits
19778 code for the function itself; this defines a version of the function
19779 that can be found via pointers (or by callers compiled without
19780 inlining). If all calls to the function can be inlined, you can avoid
19781 emitting the function by compiling with @option{-fno-implement-inlines}.
19782 If any calls are not inlined, you will get linker errors.
19783
19784 @node Template Instantiation
19785 @section Where's the Template?
19786 @cindex template instantiation
19787
19788 C++ templates were the first language feature to require more
19789 intelligence from the environment than was traditionally found on a UNIX
19790 system. Somehow the compiler and linker have to make sure that each
19791 template instance occurs exactly once in the executable if it is needed,
19792 and not at all otherwise. There are two basic approaches to this
19793 problem, which are referred to as the Borland model and the Cfront model.
19794
19795 @table @asis
19796 @item Borland model
19797 Borland C++ solved the template instantiation problem by adding the code
19798 equivalent of common blocks to their linker; the compiler emits template
19799 instances in each translation unit that uses them, and the linker
19800 collapses them together. The advantage of this model is that the linker
19801 only has to consider the object files themselves; there is no external
19802 complexity to worry about. The disadvantage is that compilation time
19803 is increased because the template code is being compiled repeatedly.
19804 Code written for this model tends to include definitions of all
19805 templates in the header file, since they must be seen to be
19806 instantiated.
19807
19808 @item Cfront model
19809 The AT&T C++ translator, Cfront, solved the template instantiation
19810 problem by creating the notion of a template repository, an
19811 automatically maintained place where template instances are stored. A
19812 more modern version of the repository works as follows: As individual
19813 object files are built, the compiler places any template definitions and
19814 instantiations encountered in the repository. At link time, the link
19815 wrapper adds in the objects in the repository and compiles any needed
19816 instances that were not previously emitted. The advantages of this
19817 model are more optimal compilation speed and the ability to use the
19818 system linker; to implement the Borland model a compiler vendor also
19819 needs to replace the linker. The disadvantages are vastly increased
19820 complexity, and thus potential for error; for some code this can be
19821 just as transparent, but in practice it can been very difficult to build
19822 multiple programs in one directory and one program in multiple
19823 directories. Code written for this model tends to separate definitions
19824 of non-inline member templates into a separate file, which should be
19825 compiled separately.
19826 @end table
19827
19828 G++ implements the Borland model on targets where the linker supports it,
19829 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
19830 Otherwise G++ implements neither automatic model.
19831
19832 You have the following options for dealing with template instantiations:
19833
19834 @enumerate
19835 @item
19836 Do nothing. Code written for the Borland model works fine, but
19837 each translation unit contains instances of each of the templates it
19838 uses. The duplicate instances will be discarded by the linker, but in
19839 a large program, this can lead to an unacceptable amount of code
19840 duplication in object files or shared libraries.
19841
19842 Duplicate instances of a template can be avoided by defining an explicit
19843 instantiation in one object file, and preventing the compiler from doing
19844 implicit instantiations in any other object files by using an explicit
19845 instantiation declaration, using the @code{extern template} syntax:
19846
19847 @smallexample
19848 extern template int max (int, int);
19849 @end smallexample
19850
19851 This syntax is defined in the C++ 2011 standard, but has been supported by
19852 G++ and other compilers since well before 2011.
19853
19854 Explicit instantiations can be used for the largest or most frequently
19855 duplicated instances, without having to know exactly which other instances
19856 are used in the rest of the program. You can scatter the explicit
19857 instantiations throughout your program, perhaps putting them in the
19858 translation units where the instances are used or the translation units
19859 that define the templates themselves; you can put all of the explicit
19860 instantiations you need into one big file; or you can create small files
19861 like
19862
19863 @smallexample
19864 #include "Foo.h"
19865 #include "Foo.cc"
19866
19867 template class Foo<int>;
19868 template ostream& operator <<
19869 (ostream&, const Foo<int>&);
19870 @end smallexample
19871
19872 @noindent
19873 for each of the instances you need, and create a template instantiation
19874 library from those.
19875
19876 This is the simplest option, but also offers flexibility and
19877 fine-grained control when necessary. It is also the most portable
19878 alternative and programs using this approach will work with most modern
19879 compilers.
19880
19881 @item
19882 @opindex frepo
19883 Compile your template-using code with @option{-frepo}. The compiler
19884 generates files with the extension @samp{.rpo} listing all of the
19885 template instantiations used in the corresponding object files that
19886 could be instantiated there; the link wrapper, @samp{collect2},
19887 then updates the @samp{.rpo} files to tell the compiler where to place
19888 those instantiations and rebuild any affected object files. The
19889 link-time overhead is negligible after the first pass, as the compiler
19890 continues to place the instantiations in the same files.
19891
19892 This can be a suitable option for application code written for the Borland
19893 model, as it usually just works. Code written for the Cfront model
19894 needs to be modified so that the template definitions are available at
19895 one or more points of instantiation; usually this is as simple as adding
19896 @code{#include <tmethods.cc>} to the end of each template header.
19897
19898 For library code, if you want the library to provide all of the template
19899 instantiations it needs, just try to link all of its object files
19900 together; the link will fail, but cause the instantiations to be
19901 generated as a side effect. Be warned, however, that this may cause
19902 conflicts if multiple libraries try to provide the same instantiations.
19903 For greater control, use explicit instantiation as described in the next
19904 option.
19905
19906 @item
19907 @opindex fno-implicit-templates
19908 Compile your code with @option{-fno-implicit-templates} to disable the
19909 implicit generation of template instances, and explicitly instantiate
19910 all the ones you use. This approach requires more knowledge of exactly
19911 which instances you need than do the others, but it's less
19912 mysterious and allows greater control if you want to ensure that only
19913 the intended instances are used.
19914
19915 If you are using Cfront-model code, you can probably get away with not
19916 using @option{-fno-implicit-templates} when compiling files that don't
19917 @samp{#include} the member template definitions.
19918
19919 If you use one big file to do the instantiations, you may want to
19920 compile it without @option{-fno-implicit-templates} so you get all of the
19921 instances required by your explicit instantiations (but not by any
19922 other files) without having to specify them as well.
19923
19924 In addition to forward declaration of explicit instantiations
19925 (with @code{extern}), G++ has extended the template instantiation
19926 syntax to support instantiation of the compiler support data for a
19927 template class (i.e.@: the vtable) without instantiating any of its
19928 members (with @code{inline}), and instantiation of only the static data
19929 members of a template class, without the support data or member
19930 functions (with @code{static}):
19931
19932 @smallexample
19933 inline template class Foo<int>;
19934 static template class Foo<int>;
19935 @end smallexample
19936 @end enumerate
19937
19938 @node Bound member functions
19939 @section Extracting the Function Pointer from a Bound Pointer to Member Function
19940 @cindex pmf
19941 @cindex pointer to member function
19942 @cindex bound pointer to member function
19943
19944 In C++, pointer to member functions (PMFs) are implemented using a wide
19945 pointer of sorts to handle all the possible call mechanisms; the PMF
19946 needs to store information about how to adjust the @samp{this} pointer,
19947 and if the function pointed to is virtual, where to find the vtable, and
19948 where in the vtable to look for the member function. If you are using
19949 PMFs in an inner loop, you should really reconsider that decision. If
19950 that is not an option, you can extract the pointer to the function that
19951 would be called for a given object/PMF pair and call it directly inside
19952 the inner loop, to save a bit of time.
19953
19954 Note that you still pay the penalty for the call through a
19955 function pointer; on most modern architectures, such a call defeats the
19956 branch prediction features of the CPU@. This is also true of normal
19957 virtual function calls.
19958
19959 The syntax for this extension is
19960
19961 @smallexample
19962 extern A a;
19963 extern int (A::*fp)();
19964 typedef int (*fptr)(A *);
19965
19966 fptr p = (fptr)(a.*fp);
19967 @end smallexample
19968
19969 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
19970 no object is needed to obtain the address of the function. They can be
19971 converted to function pointers directly:
19972
19973 @smallexample
19974 fptr p1 = (fptr)(&A::foo);
19975 @end smallexample
19976
19977 @opindex Wno-pmf-conversions
19978 You must specify @option{-Wno-pmf-conversions} to use this extension.
19979
19980 @node C++ Attributes
19981 @section C++-Specific Variable, Function, and Type Attributes
19982
19983 Some attributes only make sense for C++ programs.
19984
19985 @table @code
19986 @item abi_tag ("@var{tag}", ...)
19987 @cindex @code{abi_tag} function attribute
19988 @cindex @code{abi_tag} variable attribute
19989 @cindex @code{abi_tag} type attribute
19990 The @code{abi_tag} attribute can be applied to a function, variable, or class
19991 declaration. It modifies the mangled name of the entity to
19992 incorporate the tag name, in order to distinguish the function or
19993 class from an earlier version with a different ABI; perhaps the class
19994 has changed size, or the function has a different return type that is
19995 not encoded in the mangled name.
19996
19997 The attribute can also be applied to an inline namespace, but does not
19998 affect the mangled name of the namespace; in this case it is only used
19999 for @option{-Wabi-tag} warnings and automatic tagging of functions and
20000 variables. Tagging inline namespaces is generally preferable to
20001 tagging individual declarations, but the latter is sometimes
20002 necessary, such as when only certain members of a class need to be
20003 tagged.
20004
20005 The argument can be a list of strings of arbitrary length. The
20006 strings are sorted on output, so the order of the list is
20007 unimportant.
20008
20009 A redeclaration of an entity must not add new ABI tags,
20010 since doing so would change the mangled name.
20011
20012 The ABI tags apply to a name, so all instantiations and
20013 specializations of a template have the same tags. The attribute will
20014 be ignored if applied to an explicit specialization or instantiation.
20015
20016 The @option{-Wabi-tag} flag enables a warning about a class which does
20017 not have all the ABI tags used by its subobjects and virtual functions; for users with code
20018 that needs to coexist with an earlier ABI, using this option can help
20019 to find all affected types that need to be tagged.
20020
20021 When a type involving an ABI tag is used as the type of a variable or
20022 return type of a function where that tag is not already present in the
20023 signature of the function, the tag is automatically applied to the
20024 variable or function. @option{-Wabi-tag} also warns about this
20025 situation; this warning can be avoided by explicitly tagging the
20026 variable or function or moving it into a tagged inline namespace.
20027
20028 @item init_priority (@var{priority})
20029 @cindex @code{init_priority} variable attribute
20030
20031 In Standard C++, objects defined at namespace scope are guaranteed to be
20032 initialized in an order in strict accordance with that of their definitions
20033 @emph{in a given translation unit}. No guarantee is made for initializations
20034 across translation units. However, GNU C++ allows users to control the
20035 order of initialization of objects defined at namespace scope with the
20036 @code{init_priority} attribute by specifying a relative @var{priority},
20037 a constant integral expression currently bounded between 101 and 65535
20038 inclusive. Lower numbers indicate a higher priority.
20039
20040 In the following example, @code{A} would normally be created before
20041 @code{B}, but the @code{init_priority} attribute reverses that order:
20042
20043 @smallexample
20044 Some_Class A __attribute__ ((init_priority (2000)));
20045 Some_Class B __attribute__ ((init_priority (543)));
20046 @end smallexample
20047
20048 @noindent
20049 Note that the particular values of @var{priority} do not matter; only their
20050 relative ordering.
20051
20052 @item java_interface
20053 @cindex @code{java_interface} type attribute
20054
20055 This type attribute informs C++ that the class is a Java interface. It may
20056 only be applied to classes declared within an @code{extern "Java"} block.
20057 Calls to methods declared in this interface are dispatched using GCJ's
20058 interface table mechanism, instead of regular virtual table dispatch.
20059
20060 @item warn_unused
20061 @cindex @code{warn_unused} type attribute
20062
20063 For C++ types with non-trivial constructors and/or destructors it is
20064 impossible for the compiler to determine whether a variable of this
20065 type is truly unused if it is not referenced. This type attribute
20066 informs the compiler that variables of this type should be warned
20067 about if they appear to be unused, just like variables of fundamental
20068 types.
20069
20070 This attribute is appropriate for types which just represent a value,
20071 such as @code{std::string}; it is not appropriate for types which
20072 control a resource, such as @code{std::mutex}.
20073
20074 This attribute is also accepted in C, but it is unnecessary because C
20075 does not have constructors or destructors.
20076
20077 @end table
20078
20079 See also @ref{Namespace Association}.
20080
20081 @node Function Multiversioning
20082 @section Function Multiversioning
20083 @cindex function versions
20084
20085 With the GNU C++ front end, for x86 targets, you may specify multiple
20086 versions of a function, where each function is specialized for a
20087 specific target feature. At runtime, the appropriate version of the
20088 function is automatically executed depending on the characteristics of
20089 the execution platform. Here is an example.
20090
20091 @smallexample
20092 __attribute__ ((target ("default")))
20093 int foo ()
20094 @{
20095 // The default version of foo.
20096 return 0;
20097 @}
20098
20099 __attribute__ ((target ("sse4.2")))
20100 int foo ()
20101 @{
20102 // foo version for SSE4.2
20103 return 1;
20104 @}
20105
20106 __attribute__ ((target ("arch=atom")))
20107 int foo ()
20108 @{
20109 // foo version for the Intel ATOM processor
20110 return 2;
20111 @}
20112
20113 __attribute__ ((target ("arch=amdfam10")))
20114 int foo ()
20115 @{
20116 // foo version for the AMD Family 0x10 processors.
20117 return 3;
20118 @}
20119
20120 int main ()
20121 @{
20122 int (*p)() = &foo;
20123 assert ((*p) () == foo ());
20124 return 0;
20125 @}
20126 @end smallexample
20127
20128 In the above example, four versions of function foo are created. The
20129 first version of foo with the target attribute "default" is the default
20130 version. This version gets executed when no other target specific
20131 version qualifies for execution on a particular platform. A new version
20132 of foo is created by using the same function signature but with a
20133 different target string. Function foo is called or a pointer to it is
20134 taken just like a regular function. GCC takes care of doing the
20135 dispatching to call the right version at runtime. Refer to the
20136 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
20137 Function Multiversioning} for more details.
20138
20139 @node Namespace Association
20140 @section Namespace Association
20141
20142 @strong{Caution:} The semantics of this extension are equivalent
20143 to C++ 2011 inline namespaces. Users should use inline namespaces
20144 instead as this extension will be removed in future versions of G++.
20145
20146 A using-directive with @code{__attribute ((strong))} is stronger
20147 than a normal using-directive in two ways:
20148
20149 @itemize @bullet
20150 @item
20151 Templates from the used namespace can be specialized and explicitly
20152 instantiated as though they were members of the using namespace.
20153
20154 @item
20155 The using namespace is considered an associated namespace of all
20156 templates in the used namespace for purposes of argument-dependent
20157 name lookup.
20158 @end itemize
20159
20160 The used namespace must be nested within the using namespace so that
20161 normal unqualified lookup works properly.
20162
20163 This is useful for composing a namespace transparently from
20164 implementation namespaces. For example:
20165
20166 @smallexample
20167 namespace std @{
20168 namespace debug @{
20169 template <class T> struct A @{ @};
20170 @}
20171 using namespace debug __attribute ((__strong__));
20172 template <> struct A<int> @{ @}; // @r{OK to specialize}
20173
20174 template <class T> void f (A<T>);
20175 @}
20176
20177 int main()
20178 @{
20179 f (std::A<float>()); // @r{lookup finds} std::f
20180 f (std::A<int>());
20181 @}
20182 @end smallexample
20183
20184 @node Type Traits
20185 @section Type Traits
20186
20187 The C++ front end implements syntactic extensions that allow
20188 compile-time determination of
20189 various characteristics of a type (or of a
20190 pair of types).
20191
20192 @table @code
20193 @item __has_nothrow_assign (type)
20194 If @code{type} is const qualified or is a reference type then the trait is
20195 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
20196 is true, else if @code{type} is a cv class or union type with copy assignment
20197 operators that are known not to throw an exception then the trait is true,
20198 else it is false. Requires: @code{type} shall be a complete type,
20199 (possibly cv-qualified) @code{void}, or an array of unknown bound.
20200
20201 @item __has_nothrow_copy (type)
20202 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
20203 @code{type} is a cv class or union type with copy constructors that
20204 are known not to throw an exception then the trait is true, else it is false.
20205 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
20206 @code{void}, or an array of unknown bound.
20207
20208 @item __has_nothrow_constructor (type)
20209 If @code{__has_trivial_constructor (type)} is true then the trait is
20210 true, else if @code{type} is a cv class or union type (or array
20211 thereof) with a default constructor that is known not to throw an
20212 exception then the trait is true, else it is false. Requires:
20213 @code{type} shall be a complete type, (possibly cv-qualified)
20214 @code{void}, or an array of unknown bound.
20215
20216 @item __has_trivial_assign (type)
20217 If @code{type} is const qualified or is a reference type then the trait is
20218 false. Otherwise if @code{__is_pod (type)} is true then the trait is
20219 true, else if @code{type} is a cv class or union type with a trivial
20220 copy assignment ([class.copy]) then the trait is true, else it is
20221 false. Requires: @code{type} shall be a complete type, (possibly
20222 cv-qualified) @code{void}, or an array of unknown bound.
20223
20224 @item __has_trivial_copy (type)
20225 If @code{__is_pod (type)} is true or @code{type} is a reference type
20226 then the trait is true, else if @code{type} is a cv class or union type
20227 with a trivial copy constructor ([class.copy]) then the trait
20228 is true, else it is false. Requires: @code{type} shall be a complete
20229 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20230
20231 @item __has_trivial_constructor (type)
20232 If @code{__is_pod (type)} is true then the trait is true, else if
20233 @code{type} is a cv class or union type (or array thereof) with a
20234 trivial default constructor ([class.ctor]) then the trait is true,
20235 else it is false. Requires: @code{type} shall be a complete
20236 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20237
20238 @item __has_trivial_destructor (type)
20239 If @code{__is_pod (type)} is true or @code{type} is a reference type then
20240 the trait is true, else if @code{type} is a cv class or union type (or
20241 array thereof) with a trivial destructor ([class.dtor]) then the trait
20242 is true, else it is false. Requires: @code{type} shall be a complete
20243 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20244
20245 @item __has_virtual_destructor (type)
20246 If @code{type} is a class type with a virtual destructor
20247 ([class.dtor]) then the trait is true, else it is false. Requires:
20248 @code{type} shall be a complete type, (possibly cv-qualified)
20249 @code{void}, or an array of unknown bound.
20250
20251 @item __is_abstract (type)
20252 If @code{type} is an abstract class ([class.abstract]) then the trait
20253 is true, else it is false. Requires: @code{type} shall be a complete
20254 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20255
20256 @item __is_base_of (base_type, derived_type)
20257 If @code{base_type} is a base class of @code{derived_type}
20258 ([class.derived]) then the trait is true, otherwise it is false.
20259 Top-level cv qualifications of @code{base_type} and
20260 @code{derived_type} are ignored. For the purposes of this trait, a
20261 class type is considered is own base. Requires: if @code{__is_class
20262 (base_type)} and @code{__is_class (derived_type)} are true and
20263 @code{base_type} and @code{derived_type} are not the same type
20264 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
20265 type. Diagnostic is produced if this requirement is not met.
20266
20267 @item __is_class (type)
20268 If @code{type} is a cv class type, and not a union type
20269 ([basic.compound]) the trait is true, else it is false.
20270
20271 @item __is_empty (type)
20272 If @code{__is_class (type)} is false then the trait is false.
20273 Otherwise @code{type} is considered empty if and only if: @code{type}
20274 has no non-static data members, or all non-static data members, if
20275 any, are bit-fields of length 0, and @code{type} has no virtual
20276 members, and @code{type} has no virtual base classes, and @code{type}
20277 has no base classes @code{base_type} for which
20278 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
20279 be a complete type, (possibly cv-qualified) @code{void}, or an array
20280 of unknown bound.
20281
20282 @item __is_enum (type)
20283 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
20284 true, else it is false.
20285
20286 @item __is_literal_type (type)
20287 If @code{type} is a literal type ([basic.types]) the trait is
20288 true, else it is false. Requires: @code{type} shall be a complete type,
20289 (possibly cv-qualified) @code{void}, or an array of unknown bound.
20290
20291 @item __is_pod (type)
20292 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
20293 else it is false. Requires: @code{type} shall be a complete type,
20294 (possibly cv-qualified) @code{void}, or an array of unknown bound.
20295
20296 @item __is_polymorphic (type)
20297 If @code{type} is a polymorphic class ([class.virtual]) then the trait
20298 is true, else it is false. Requires: @code{type} shall be a complete
20299 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20300
20301 @item __is_standard_layout (type)
20302 If @code{type} is a standard-layout type ([basic.types]) the trait is
20303 true, else it is false. Requires: @code{type} shall be a complete
20304 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20305
20306 @item __is_trivial (type)
20307 If @code{type} is a trivial type ([basic.types]) the trait is
20308 true, else it is false. Requires: @code{type} shall be a complete
20309 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
20310
20311 @item __is_union (type)
20312 If @code{type} is a cv union type ([basic.compound]) the trait is
20313 true, else it is false.
20314
20315 @item __underlying_type (type)
20316 The underlying type of @code{type}. Requires: @code{type} shall be
20317 an enumeration type ([dcl.enum]).
20318
20319 @end table
20320
20321
20322 @node C++ Concepts
20323 @section C++ Concepts
20324
20325 C++ concepts provide much-improved support for generic programming. In
20326 particular, they allow the specification of constraints on template arguments.
20327 The constraints are used to extend the usual overloading and partial
20328 specialization capabilities of the language, allowing generic data structures
20329 and algorithms to be ``refined'' based on their properties rather than their
20330 type names.
20331
20332 The following keywords are reserved for concepts.
20333
20334 @table @code
20335 @item assumes
20336 States an expression as an assumption, and if possible, verifies that the
20337 assumption is valid. For example, @code{assume(n > 0)}.
20338
20339 @item axiom
20340 Introduces an axiom definition. Axioms introduce requirements on values.
20341
20342 @item forall
20343 Introduces a universally quantified object in an axiom. For example,
20344 @code{forall (int n) n + 0 == n}).
20345
20346 @item concept
20347 Introduces a concept definition. Concepts are sets of syntactic and semantic
20348 requirements on types and their values.
20349
20350 @item requires
20351 Introduces constraints on template arguments or requirements for a member
20352 function of a class template.
20353
20354 @end table
20355
20356 The front end also exposes a number of internal mechanism that can be used
20357 to simplify the writing of type traits. Note that some of these traits are
20358 likely to be removed in the future.
20359
20360 @table @code
20361 @item __is_same (type1, type2)
20362 A binary type trait: true whenever the type arguments are the same.
20363
20364 @end table
20365
20366
20367 @node Java Exceptions
20368 @section Java Exceptions
20369
20370 The Java language uses a slightly different exception handling model
20371 from C++. Normally, GNU C++ automatically detects when you are
20372 writing C++ code that uses Java exceptions, and handle them
20373 appropriately. However, if C++ code only needs to execute destructors
20374 when Java exceptions are thrown through it, GCC guesses incorrectly.
20375 Sample problematic code is:
20376
20377 @smallexample
20378 struct S @{ ~S(); @};
20379 extern void bar(); // @r{is written in Java, and may throw exceptions}
20380 void foo()
20381 @{
20382 S s;
20383 bar();
20384 @}
20385 @end smallexample
20386
20387 @noindent
20388 The usual effect of an incorrect guess is a link failure, complaining of
20389 a missing routine called @samp{__gxx_personality_v0}.
20390
20391 You can inform the compiler that Java exceptions are to be used in a
20392 translation unit, irrespective of what it might think, by writing
20393 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
20394 @samp{#pragma} must appear before any functions that throw or catch
20395 exceptions, or run destructors when exceptions are thrown through them.
20396
20397 You cannot mix Java and C++ exceptions in the same translation unit. It
20398 is believed to be safe to throw a C++ exception from one file through
20399 another file compiled for the Java exception model, or vice versa, but
20400 there may be bugs in this area.
20401
20402 @node Deprecated Features
20403 @section Deprecated Features
20404
20405 In the past, the GNU C++ compiler was extended to experiment with new
20406 features, at a time when the C++ language was still evolving. Now that
20407 the C++ standard is complete, some of those features are superseded by
20408 superior alternatives. Using the old features might cause a warning in
20409 some cases that the feature will be dropped in the future. In other
20410 cases, the feature might be gone already.
20411
20412 While the list below is not exhaustive, it documents some of the options
20413 that are now deprecated:
20414
20415 @table @code
20416 @item -fexternal-templates
20417 @itemx -falt-external-templates
20418 These are two of the many ways for G++ to implement template
20419 instantiation. @xref{Template Instantiation}. The C++ standard clearly
20420 defines how template definitions have to be organized across
20421 implementation units. G++ has an implicit instantiation mechanism that
20422 should work just fine for standard-conforming code.
20423
20424 @item -fstrict-prototype
20425 @itemx -fno-strict-prototype
20426 Previously it was possible to use an empty prototype parameter list to
20427 indicate an unspecified number of parameters (like C), rather than no
20428 parameters, as C++ demands. This feature has been removed, except where
20429 it is required for backwards compatibility. @xref{Backwards Compatibility}.
20430 @end table
20431
20432 G++ allows a virtual function returning @samp{void *} to be overridden
20433 by one returning a different pointer type. This extension to the
20434 covariant return type rules is now deprecated and will be removed from a
20435 future version.
20436
20437 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
20438 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
20439 and are now removed from G++. Code using these operators should be
20440 modified to use @code{std::min} and @code{std::max} instead.
20441
20442 The named return value extension has been deprecated, and is now
20443 removed from G++.
20444
20445 The use of initializer lists with new expressions has been deprecated,
20446 and is now removed from G++.
20447
20448 Floating and complex non-type template parameters have been deprecated,
20449 and are now removed from G++.
20450
20451 The implicit typename extension has been deprecated and is now
20452 removed from G++.
20453
20454 The use of default arguments in function pointers, function typedefs
20455 and other places where they are not permitted by the standard is
20456 deprecated and will be removed from a future version of G++.
20457
20458 G++ allows floating-point literals to appear in integral constant expressions,
20459 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
20460 This extension is deprecated and will be removed from a future version.
20461
20462 G++ allows static data members of const floating-point type to be declared
20463 with an initializer in a class definition. The standard only allows
20464 initializers for static members of const integral types and const
20465 enumeration types so this extension has been deprecated and will be removed
20466 from a future version.
20467
20468 @node Backwards Compatibility
20469 @section Backwards Compatibility
20470 @cindex Backwards Compatibility
20471 @cindex ARM [Annotated C++ Reference Manual]
20472
20473 Now that there is a definitive ISO standard C++, G++ has a specification
20474 to adhere to. The C++ language evolved over time, and features that
20475 used to be acceptable in previous drafts of the standard, such as the ARM
20476 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
20477 compilation of C++ written to such drafts, G++ contains some backwards
20478 compatibilities. @emph{All such backwards compatibility features are
20479 liable to disappear in future versions of G++.} They should be considered
20480 deprecated. @xref{Deprecated Features}.
20481
20482 @table @code
20483 @item For scope
20484 If a variable is declared at for scope, it used to remain in scope until
20485 the end of the scope that contained the for statement (rather than just
20486 within the for scope). G++ retains this, but issues a warning, if such a
20487 variable is accessed outside the for scope.
20488
20489 @item Implicit C language
20490 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
20491 scope to set the language. On such systems, all header files are
20492 implicitly scoped inside a C language scope. Also, an empty prototype
20493 @code{()} is treated as an unspecified number of arguments, rather
20494 than no arguments, as C++ demands.
20495 @end table
20496
20497 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
20498 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr