altivec.h (vec_slv): New macro.
[gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Attribute Syntax:: Formal syntax for attributes.
64 * Function Prototypes:: Prototype declarations and old-style definitions.
65 * C++ Comments:: C++ comments are recognized.
66 * Dollar Signs:: Dollar sign is allowed in identifiers.
67 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
68 * Alignment:: Inquiring about the alignment of a type or variable.
69 * Inline:: Defining inline functions (as fast as macros).
70 * Volatiles:: What constitutes an access to a volatile object.
71 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
72 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
73 * Incomplete Enums:: @code{enum foo;}, with details to follow.
74 * Function Names:: Printable strings which are the name of the current
75 function.
76 * Return Address:: Getting the return or frame address of a function.
77 * Vector Extensions:: Using vector instructions through built-in functions.
78 * Offsetof:: Special syntax for implementing @code{offsetof}.
79 * __sync Builtins:: Legacy built-in functions for atomic memory access.
80 * __atomic Builtins:: Atomic built-in functions with memory model.
81 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
82 arithmetic overflow checking.
83 * x86 specific memory model extensions for transactional memory:: x86 memory models.
84 * Object Size Checking:: Built-in functions for limited buffer overflow
85 checking.
86 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
87 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
88 * Other Builtins:: Other built-in functions.
89 * Target Builtins:: Built-in functions specific to particular targets.
90 * Target Format Checks:: Format checks specific to particular targets.
91 * Pragmas:: Pragmas accepted by GCC.
92 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
93 * Thread-Local:: Per-thread variables.
94 * Binary constants:: Binary constants using the @samp{0b} prefix.
95 @end menu
96
97 @node Statement Exprs
98 @section Statements and Declarations in Expressions
99 @cindex statements inside expressions
100 @cindex declarations inside expressions
101 @cindex expressions containing statements
102 @cindex macros, statements in expressions
103
104 @c the above section title wrapped and causes an underfull hbox.. i
105 @c changed it from "within" to "in". --mew 4feb93
106 A compound statement enclosed in parentheses may appear as an expression
107 in GNU C@. This allows you to use loops, switches, and local variables
108 within an expression.
109
110 Recall that a compound statement is a sequence of statements surrounded
111 by braces; in this construct, parentheses go around the braces. For
112 example:
113
114 @smallexample
115 (@{ int y = foo (); int z;
116 if (y > 0) z = y;
117 else z = - y;
118 z; @})
119 @end smallexample
120
121 @noindent
122 is a valid (though slightly more complex than necessary) expression
123 for the absolute value of @code{foo ()}.
124
125 The last thing in the compound statement should be an expression
126 followed by a semicolon; the value of this subexpression serves as the
127 value of the entire construct. (If you use some other kind of statement
128 last within the braces, the construct has type @code{void}, and thus
129 effectively no value.)
130
131 This feature is especially useful in making macro definitions ``safe'' (so
132 that they evaluate each operand exactly once). For example, the
133 ``maximum'' function is commonly defined as a macro in standard C as
134 follows:
135
136 @smallexample
137 #define max(a,b) ((a) > (b) ? (a) : (b))
138 @end smallexample
139
140 @noindent
141 @cindex side effects, macro argument
142 But this definition computes either @var{a} or @var{b} twice, with bad
143 results if the operand has side effects. In GNU C, if you know the
144 type of the operands (here taken as @code{int}), you can define
145 the macro safely as follows:
146
147 @smallexample
148 #define maxint(a,b) \
149 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
150 @end smallexample
151
152 Embedded statements are not allowed in constant expressions, such as
153 the value of an enumeration constant, the width of a bit-field, or
154 the initial value of a static variable.
155
156 If you don't know the type of the operand, you can still do this, but you
157 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
158
159 In G++, the result value of a statement expression undergoes array and
160 function pointer decay, and is returned by value to the enclosing
161 expression. For instance, if @code{A} is a class, then
162
163 @smallexample
164 A a;
165
166 (@{a;@}).Foo ()
167 @end smallexample
168
169 @noindent
170 constructs a temporary @code{A} object to hold the result of the
171 statement expression, and that is used to invoke @code{Foo}.
172 Therefore the @code{this} pointer observed by @code{Foo} is not the
173 address of @code{a}.
174
175 In a statement expression, any temporaries created within a statement
176 are destroyed at that statement's end. This makes statement
177 expressions inside macros slightly different from function calls. In
178 the latter case temporaries introduced during argument evaluation are
179 destroyed at the end of the statement that includes the function
180 call. In the statement expression case they are destroyed during
181 the statement expression. For instance,
182
183 @smallexample
184 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
185 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
186
187 void foo ()
188 @{
189 macro (X ());
190 function (X ());
191 @}
192 @end smallexample
193
194 @noindent
195 has different places where temporaries are destroyed. For the
196 @code{macro} case, the temporary @code{X} is destroyed just after
197 the initialization of @code{b}. In the @code{function} case that
198 temporary is destroyed when the function returns.
199
200 These considerations mean that it is probably a bad idea to use
201 statement expressions of this form in header files that are designed to
202 work with C++. (Note that some versions of the GNU C Library contained
203 header files using statement expressions that lead to precisely this
204 bug.)
205
206 Jumping into a statement expression with @code{goto} or using a
207 @code{switch} statement outside the statement expression with a
208 @code{case} or @code{default} label inside the statement expression is
209 not permitted. Jumping into a statement expression with a computed
210 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
211 Jumping out of a statement expression is permitted, but if the
212 statement expression is part of a larger expression then it is
213 unspecified which other subexpressions of that expression have been
214 evaluated except where the language definition requires certain
215 subexpressions to be evaluated before or after the statement
216 expression. In any case, as with a function call, the evaluation of a
217 statement expression is not interleaved with the evaluation of other
218 parts of the containing expression. For example,
219
220 @smallexample
221 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
222 @end smallexample
223
224 @noindent
225 calls @code{foo} and @code{bar1} and does not call @code{baz} but
226 may or may not call @code{bar2}. If @code{bar2} is called, it is
227 called after @code{foo} and before @code{bar1}.
228
229 @node Local Labels
230 @section Locally Declared Labels
231 @cindex local labels
232 @cindex macros, local labels
233
234 GCC allows you to declare @dfn{local labels} in any nested block
235 scope. A local label is just like an ordinary label, but you can
236 only reference it (with a @code{goto} statement, or by taking its
237 address) within the block in which it is declared.
238
239 A local label declaration looks like this:
240
241 @smallexample
242 __label__ @var{label};
243 @end smallexample
244
245 @noindent
246 or
247
248 @smallexample
249 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
250 @end smallexample
251
252 Local label declarations must come at the beginning of the block,
253 before any ordinary declarations or statements.
254
255 The label declaration defines the label @emph{name}, but does not define
256 the label itself. You must do this in the usual way, with
257 @code{@var{label}:}, within the statements of the statement expression.
258
259 The local label feature is useful for complex macros. If a macro
260 contains nested loops, a @code{goto} can be useful for breaking out of
261 them. However, an ordinary label whose scope is the whole function
262 cannot be used: if the macro can be expanded several times in one
263 function, the label is multiply defined in that function. A
264 local label avoids this problem. For example:
265
266 @smallexample
267 #define SEARCH(value, array, target) \
268 do @{ \
269 __label__ found; \
270 typeof (target) _SEARCH_target = (target); \
271 typeof (*(array)) *_SEARCH_array = (array); \
272 int i, j; \
273 int value; \
274 for (i = 0; i < max; i++) \
275 for (j = 0; j < max; j++) \
276 if (_SEARCH_array[i][j] == _SEARCH_target) \
277 @{ (value) = i; goto found; @} \
278 (value) = -1; \
279 found:; \
280 @} while (0)
281 @end smallexample
282
283 This could also be written using a statement expression:
284
285 @smallexample
286 #define SEARCH(array, target) \
287 (@{ \
288 __label__ found; \
289 typeof (target) _SEARCH_target = (target); \
290 typeof (*(array)) *_SEARCH_array = (array); \
291 int i, j; \
292 int value; \
293 for (i = 0; i < max; i++) \
294 for (j = 0; j < max; j++) \
295 if (_SEARCH_array[i][j] == _SEARCH_target) \
296 @{ value = i; goto found; @} \
297 value = -1; \
298 found: \
299 value; \
300 @})
301 @end smallexample
302
303 Local label declarations also make the labels they declare visible to
304 nested functions, if there are any. @xref{Nested Functions}, for details.
305
306 @node Labels as Values
307 @section Labels as Values
308 @cindex labels as values
309 @cindex computed gotos
310 @cindex goto with computed label
311 @cindex address of a label
312
313 You can get the address of a label defined in the current function
314 (or a containing function) with the unary operator @samp{&&}. The
315 value has type @code{void *}. This value is a constant and can be used
316 wherever a constant of that type is valid. For example:
317
318 @smallexample
319 void *ptr;
320 /* @r{@dots{}} */
321 ptr = &&foo;
322 @end smallexample
323
324 To use these values, you need to be able to jump to one. This is done
325 with the computed goto statement@footnote{The analogous feature in
326 Fortran is called an assigned goto, but that name seems inappropriate in
327 C, where one can do more than simply store label addresses in label
328 variables.}, @code{goto *@var{exp};}. For example,
329
330 @smallexample
331 goto *ptr;
332 @end smallexample
333
334 @noindent
335 Any expression of type @code{void *} is allowed.
336
337 One way of using these constants is in initializing a static array that
338 serves as a jump table:
339
340 @smallexample
341 static void *array[] = @{ &&foo, &&bar, &&hack @};
342 @end smallexample
343
344 @noindent
345 Then you can select a label with indexing, like this:
346
347 @smallexample
348 goto *array[i];
349 @end smallexample
350
351 @noindent
352 Note that this does not check whether the subscript is in bounds---array
353 indexing in C never does that.
354
355 Such an array of label values serves a purpose much like that of the
356 @code{switch} statement. The @code{switch} statement is cleaner, so
357 use that rather than an array unless the problem does not fit a
358 @code{switch} statement very well.
359
360 Another use of label values is in an interpreter for threaded code.
361 The labels within the interpreter function can be stored in the
362 threaded code for super-fast dispatching.
363
364 You may not use this mechanism to jump to code in a different function.
365 If you do that, totally unpredictable things happen. The best way to
366 avoid this is to store the label address only in automatic variables and
367 never pass it as an argument.
368
369 An alternate way to write the above example is
370
371 @smallexample
372 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
373 &&hack - &&foo @};
374 goto *(&&foo + array[i]);
375 @end smallexample
376
377 @noindent
378 This is more friendly to code living in shared libraries, as it reduces
379 the number of dynamic relocations that are needed, and by consequence,
380 allows the data to be read-only.
381 This alternative with label differences is not supported for the AVR target,
382 please use the first approach for AVR programs.
383
384 The @code{&&foo} expressions for the same label might have different
385 values if the containing function is inlined or cloned. If a program
386 relies on them being always the same,
387 @code{__attribute__((__noinline__,__noclone__))} should be used to
388 prevent inlining and cloning. If @code{&&foo} is used in a static
389 variable initializer, inlining and cloning is forbidden.
390
391 @node Nested Functions
392 @section Nested Functions
393 @cindex nested functions
394 @cindex downward funargs
395 @cindex thunks
396
397 A @dfn{nested function} is a function defined inside another function.
398 Nested functions are supported as an extension in GNU C, but are not
399 supported by GNU C++.
400
401 The nested function's name is local to the block where it is defined.
402 For example, here we define a nested function named @code{square}, and
403 call it twice:
404
405 @smallexample
406 @group
407 foo (double a, double b)
408 @{
409 double square (double z) @{ return z * z; @}
410
411 return square (a) + square (b);
412 @}
413 @end group
414 @end smallexample
415
416 The nested function can access all the variables of the containing
417 function that are visible at the point of its definition. This is
418 called @dfn{lexical scoping}. For example, here we show a nested
419 function which uses an inherited variable named @code{offset}:
420
421 @smallexample
422 @group
423 bar (int *array, int offset, int size)
424 @{
425 int access (int *array, int index)
426 @{ return array[index + offset]; @}
427 int i;
428 /* @r{@dots{}} */
429 for (i = 0; i < size; i++)
430 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
431 @}
432 @end group
433 @end smallexample
434
435 Nested function definitions are permitted within functions in the places
436 where variable definitions are allowed; that is, in any block, mixed
437 with the other declarations and statements in the block.
438
439 It is possible to call the nested function from outside the scope of its
440 name by storing its address or passing the address to another function:
441
442 @smallexample
443 hack (int *array, int size)
444 @{
445 void store (int index, int value)
446 @{ array[index] = value; @}
447
448 intermediate (store, size);
449 @}
450 @end smallexample
451
452 Here, the function @code{intermediate} receives the address of
453 @code{store} as an argument. If @code{intermediate} calls @code{store},
454 the arguments given to @code{store} are used to store into @code{array}.
455 But this technique works only so long as the containing function
456 (@code{hack}, in this example) does not exit.
457
458 If you try to call the nested function through its address after the
459 containing function exits, all hell breaks loose. If you try
460 to call it after a containing scope level exits, and if it refers
461 to some of the variables that are no longer in scope, you may be lucky,
462 but it's not wise to take the risk. If, however, the nested function
463 does not refer to anything that has gone out of scope, you should be
464 safe.
465
466 GCC implements taking the address of a nested function using a technique
467 called @dfn{trampolines}. This technique was described in
468 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
469 C++ Conference Proceedings, October 17-21, 1988).
470
471 A nested function can jump to a label inherited from a containing
472 function, provided the label is explicitly declared in the containing
473 function (@pxref{Local Labels}). Such a jump returns instantly to the
474 containing function, exiting the nested function that did the
475 @code{goto} and any intermediate functions as well. Here is an example:
476
477 @smallexample
478 @group
479 bar (int *array, int offset, int size)
480 @{
481 __label__ failure;
482 int access (int *array, int index)
483 @{
484 if (index > size)
485 goto failure;
486 return array[index + offset];
487 @}
488 int i;
489 /* @r{@dots{}} */
490 for (i = 0; i < size; i++)
491 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
492 /* @r{@dots{}} */
493 return 0;
494
495 /* @r{Control comes here from @code{access}
496 if it detects an error.} */
497 failure:
498 return -1;
499 @}
500 @end group
501 @end smallexample
502
503 A nested function always has no linkage. Declaring one with
504 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
505 before its definition, use @code{auto} (which is otherwise meaningless
506 for function declarations).
507
508 @smallexample
509 bar (int *array, int offset, int size)
510 @{
511 __label__ failure;
512 auto int access (int *, int);
513 /* @r{@dots{}} */
514 int access (int *array, int index)
515 @{
516 if (index > size)
517 goto failure;
518 return array[index + offset];
519 @}
520 /* @r{@dots{}} */
521 @}
522 @end smallexample
523
524 @node Constructing Calls
525 @section Constructing Function Calls
526 @cindex constructing calls
527 @cindex forwarding calls
528
529 Using the built-in functions described below, you can record
530 the arguments a function received, and call another function
531 with the same arguments, without knowing the number or types
532 of the arguments.
533
534 You can also record the return value of that function call,
535 and later return that value, without knowing what data type
536 the function tried to return (as long as your caller expects
537 that data type).
538
539 However, these built-in functions may interact badly with some
540 sophisticated features or other extensions of the language. It
541 is, therefore, not recommended to use them outside very simple
542 functions acting as mere forwarders for their arguments.
543
544 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
545 This built-in function returns a pointer to data
546 describing how to perform a call with the same arguments as are passed
547 to the current function.
548
549 The function saves the arg pointer register, structure value address,
550 and all registers that might be used to pass arguments to a function
551 into a block of memory allocated on the stack. Then it returns the
552 address of that block.
553 @end deftypefn
554
555 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
556 This built-in function invokes @var{function}
557 with a copy of the parameters described by @var{arguments}
558 and @var{size}.
559
560 The value of @var{arguments} should be the value returned by
561 @code{__builtin_apply_args}. The argument @var{size} specifies the size
562 of the stack argument data, in bytes.
563
564 This function returns a pointer to data describing
565 how to return whatever value is returned by @var{function}. The data
566 is saved in a block of memory allocated on the stack.
567
568 It is not always simple to compute the proper value for @var{size}. The
569 value is used by @code{__builtin_apply} to compute the amount of data
570 that should be pushed on the stack and copied from the incoming argument
571 area.
572 @end deftypefn
573
574 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
575 This built-in function returns the value described by @var{result} from
576 the containing function. You should specify, for @var{result}, a value
577 returned by @code{__builtin_apply}.
578 @end deftypefn
579
580 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
581 This built-in function represents all anonymous arguments of an inline
582 function. It can be used only in inline functions that are always
583 inlined, never compiled as a separate function, such as those using
584 @code{__attribute__ ((__always_inline__))} or
585 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
586 It must be only passed as last argument to some other function
587 with variable arguments. This is useful for writing small wrapper
588 inlines for variable argument functions, when using preprocessor
589 macros is undesirable. For example:
590 @smallexample
591 extern int myprintf (FILE *f, const char *format, ...);
592 extern inline __attribute__ ((__gnu_inline__)) int
593 myprintf (FILE *f, const char *format, ...)
594 @{
595 int r = fprintf (f, "myprintf: ");
596 if (r < 0)
597 return r;
598 int s = fprintf (f, format, __builtin_va_arg_pack ());
599 if (s < 0)
600 return s;
601 return r + s;
602 @}
603 @end smallexample
604 @end deftypefn
605
606 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
607 This built-in function returns the number of anonymous arguments of
608 an inline function. It can be used only in inline functions that
609 are always inlined, never compiled as a separate function, such
610 as those using @code{__attribute__ ((__always_inline__))} or
611 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
612 For example following does link- or run-time checking of open
613 arguments for optimized code:
614 @smallexample
615 #ifdef __OPTIMIZE__
616 extern inline __attribute__((__gnu_inline__)) int
617 myopen (const char *path, int oflag, ...)
618 @{
619 if (__builtin_va_arg_pack_len () > 1)
620 warn_open_too_many_arguments ();
621
622 if (__builtin_constant_p (oflag))
623 @{
624 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
625 @{
626 warn_open_missing_mode ();
627 return __open_2 (path, oflag);
628 @}
629 return open (path, oflag, __builtin_va_arg_pack ());
630 @}
631
632 if (__builtin_va_arg_pack_len () < 1)
633 return __open_2 (path, oflag);
634
635 return open (path, oflag, __builtin_va_arg_pack ());
636 @}
637 #endif
638 @end smallexample
639 @end deftypefn
640
641 @node Typeof
642 @section Referring to a Type with @code{typeof}
643 @findex typeof
644 @findex sizeof
645 @cindex macros, types of arguments
646
647 Another way to refer to the type of an expression is with @code{typeof}.
648 The syntax of using of this keyword looks like @code{sizeof}, but the
649 construct acts semantically like a type name defined with @code{typedef}.
650
651 There are two ways of writing the argument to @code{typeof}: with an
652 expression or with a type. Here is an example with an expression:
653
654 @smallexample
655 typeof (x[0](1))
656 @end smallexample
657
658 @noindent
659 This assumes that @code{x} is an array of pointers to functions;
660 the type described is that of the values of the functions.
661
662 Here is an example with a typename as the argument:
663
664 @smallexample
665 typeof (int *)
666 @end smallexample
667
668 @noindent
669 Here the type described is that of pointers to @code{int}.
670
671 If you are writing a header file that must work when included in ISO C
672 programs, write @code{__typeof__} instead of @code{typeof}.
673 @xref{Alternate Keywords}.
674
675 A @code{typeof} construct can be used anywhere a typedef name can be
676 used. For example, you can use it in a declaration, in a cast, or inside
677 of @code{sizeof} or @code{typeof}.
678
679 The operand of @code{typeof} is evaluated for its side effects if and
680 only if it is an expression of variably modified type or the name of
681 such a type.
682
683 @code{typeof} is often useful in conjunction with
684 statement expressions (@pxref{Statement Exprs}).
685 Here is how the two together can
686 be used to define a safe ``maximum'' macro which operates on any
687 arithmetic type and evaluates each of its arguments exactly once:
688
689 @smallexample
690 #define max(a,b) \
691 (@{ typeof (a) _a = (a); \
692 typeof (b) _b = (b); \
693 _a > _b ? _a : _b; @})
694 @end smallexample
695
696 @cindex underscores in variables in macros
697 @cindex @samp{_} in variables in macros
698 @cindex local variables in macros
699 @cindex variables, local, in macros
700 @cindex macros, local variables in
701
702 The reason for using names that start with underscores for the local
703 variables is to avoid conflicts with variable names that occur within the
704 expressions that are substituted for @code{a} and @code{b}. Eventually we
705 hope to design a new form of declaration syntax that allows you to declare
706 variables whose scopes start only after their initializers; this will be a
707 more reliable way to prevent such conflicts.
708
709 @noindent
710 Some more examples of the use of @code{typeof}:
711
712 @itemize @bullet
713 @item
714 This declares @code{y} with the type of what @code{x} points to.
715
716 @smallexample
717 typeof (*x) y;
718 @end smallexample
719
720 @item
721 This declares @code{y} as an array of such values.
722
723 @smallexample
724 typeof (*x) y[4];
725 @end smallexample
726
727 @item
728 This declares @code{y} as an array of pointers to characters:
729
730 @smallexample
731 typeof (typeof (char *)[4]) y;
732 @end smallexample
733
734 @noindent
735 It is equivalent to the following traditional C declaration:
736
737 @smallexample
738 char *y[4];
739 @end smallexample
740
741 To see the meaning of the declaration using @code{typeof}, and why it
742 might be a useful way to write, rewrite it with these macros:
743
744 @smallexample
745 #define pointer(T) typeof(T *)
746 #define array(T, N) typeof(T [N])
747 @end smallexample
748
749 @noindent
750 Now the declaration can be rewritten this way:
751
752 @smallexample
753 array (pointer (char), 4) y;
754 @end smallexample
755
756 @noindent
757 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
758 pointers to @code{char}.
759 @end itemize
760
761 In GNU C, but not GNU C++, you may also declare the type of a variable
762 as @code{__auto_type}. In that case, the declaration must declare
763 only one variable, whose declarator must just be an identifier, the
764 declaration must be initialized, and the type of the variable is
765 determined by the initializer; the name of the variable is not in
766 scope until after the initializer. (In C++, you should use C++11
767 @code{auto} for this purpose.) Using @code{__auto_type}, the
768 ``maximum'' macro above could be written as:
769
770 @smallexample
771 #define max(a,b) \
772 (@{ __auto_type _a = (a); \
773 __auto_type _b = (b); \
774 _a > _b ? _a : _b; @})
775 @end smallexample
776
777 Using @code{__auto_type} instead of @code{typeof} has two advantages:
778
779 @itemize @bullet
780 @item Each argument to the macro appears only once in the expansion of
781 the macro. This prevents the size of the macro expansion growing
782 exponentially when calls to such macros are nested inside arguments of
783 such macros.
784
785 @item If the argument to the macro has variably modified type, it is
786 evaluated only once when using @code{__auto_type}, but twice if
787 @code{typeof} is used.
788 @end itemize
789
790 @node Conditionals
791 @section Conditionals with Omitted Operands
792 @cindex conditional expressions, extensions
793 @cindex omitted middle-operands
794 @cindex middle-operands, omitted
795 @cindex extensions, @code{?:}
796 @cindex @code{?:} extensions
797
798 The middle operand in a conditional expression may be omitted. Then
799 if the first operand is nonzero, its value is the value of the conditional
800 expression.
801
802 Therefore, the expression
803
804 @smallexample
805 x ? : y
806 @end smallexample
807
808 @noindent
809 has the value of @code{x} if that is nonzero; otherwise, the value of
810 @code{y}.
811
812 This example is perfectly equivalent to
813
814 @smallexample
815 x ? x : y
816 @end smallexample
817
818 @cindex side effect in @code{?:}
819 @cindex @code{?:} side effect
820 @noindent
821 In this simple case, the ability to omit the middle operand is not
822 especially useful. When it becomes useful is when the first operand does,
823 or may (if it is a macro argument), contain a side effect. Then repeating
824 the operand in the middle would perform the side effect twice. Omitting
825 the middle operand uses the value already computed without the undesirable
826 effects of recomputing it.
827
828 @node __int128
829 @section 128-bit Integers
830 @cindex @code{__int128} data types
831
832 As an extension the integer scalar type @code{__int128} is supported for
833 targets which have an integer mode wide enough to hold 128 bits.
834 Simply write @code{__int128} for a signed 128-bit integer, or
835 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
836 support in GCC for expressing an integer constant of type @code{__int128}
837 for targets with @code{long long} integer less than 128 bits wide.
838
839 @node Long Long
840 @section Double-Word Integers
841 @cindex @code{long long} data types
842 @cindex double-word arithmetic
843 @cindex multiprecision arithmetic
844 @cindex @code{LL} integer suffix
845 @cindex @code{ULL} integer suffix
846
847 ISO C99 supports data types for integers that are at least 64 bits wide,
848 and as an extension GCC supports them in C90 mode and in C++.
849 Simply write @code{long long int} for a signed integer, or
850 @code{unsigned long long int} for an unsigned integer. To make an
851 integer constant of type @code{long long int}, add the suffix @samp{LL}
852 to the integer. To make an integer constant of type @code{unsigned long
853 long int}, add the suffix @samp{ULL} to the integer.
854
855 You can use these types in arithmetic like any other integer types.
856 Addition, subtraction, and bitwise boolean operations on these types
857 are open-coded on all types of machines. Multiplication is open-coded
858 if the machine supports a fullword-to-doubleword widening multiply
859 instruction. Division and shifts are open-coded only on machines that
860 provide special support. The operations that are not open-coded use
861 special library routines that come with GCC@.
862
863 There may be pitfalls when you use @code{long long} types for function
864 arguments without function prototypes. If a function
865 expects type @code{int} for its argument, and you pass a value of type
866 @code{long long int}, confusion results because the caller and the
867 subroutine disagree about the number of bytes for the argument.
868 Likewise, if the function expects @code{long long int} and you pass
869 @code{int}. The best way to avoid such problems is to use prototypes.
870
871 @node Complex
872 @section Complex Numbers
873 @cindex complex numbers
874 @cindex @code{_Complex} keyword
875 @cindex @code{__complex__} keyword
876
877 ISO C99 supports complex floating data types, and as an extension GCC
878 supports them in C90 mode and in C++. GCC also supports complex integer data
879 types which are not part of ISO C99. You can declare complex types
880 using the keyword @code{_Complex}. As an extension, the older GNU
881 keyword @code{__complex__} is also supported.
882
883 For example, @samp{_Complex double x;} declares @code{x} as a
884 variable whose real part and imaginary part are both of type
885 @code{double}. @samp{_Complex short int y;} declares @code{y} to
886 have real and imaginary parts of type @code{short int}; this is not
887 likely to be useful, but it shows that the set of complex types is
888 complete.
889
890 To write a constant with a complex data type, use the suffix @samp{i} or
891 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
892 has type @code{_Complex float} and @code{3i} has type
893 @code{_Complex int}. Such a constant always has a pure imaginary
894 value, but you can form any complex value you like by adding one to a
895 real constant. This is a GNU extension; if you have an ISO C99
896 conforming C library (such as the GNU C Library), and want to construct complex
897 constants of floating type, you should include @code{<complex.h>} and
898 use the macros @code{I} or @code{_Complex_I} instead.
899
900 @cindex @code{__real__} keyword
901 @cindex @code{__imag__} keyword
902 To extract the real part of a complex-valued expression @var{exp}, write
903 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
904 extract the imaginary part. This is a GNU extension; for values of
905 floating type, you should use the ISO C99 functions @code{crealf},
906 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
907 @code{cimagl}, declared in @code{<complex.h>} and also provided as
908 built-in functions by GCC@.
909
910 @cindex complex conjugation
911 The operator @samp{~} performs complex conjugation when used on a value
912 with a complex type. This is a GNU extension; for values of
913 floating type, you should use the ISO C99 functions @code{conjf},
914 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
915 provided as built-in functions by GCC@.
916
917 GCC can allocate complex automatic variables in a noncontiguous
918 fashion; it's even possible for the real part to be in a register while
919 the imaginary part is on the stack (or vice versa). Only the DWARF
920 debug info format can represent this, so use of DWARF is recommended.
921 If you are using the stabs debug info format, GCC describes a noncontiguous
922 complex variable as if it were two separate variables of noncomplex type.
923 If the variable's actual name is @code{foo}, the two fictitious
924 variables are named @code{foo$real} and @code{foo$imag}. You can
925 examine and set these two fictitious variables with your debugger.
926
927 @node Floating Types
928 @section Additional Floating Types
929 @cindex additional floating types
930 @cindex @code{__float80} data type
931 @cindex @code{__float128} data type
932 @cindex @code{__ibm128} data type
933 @cindex @code{w} floating point suffix
934 @cindex @code{q} floating point suffix
935 @cindex @code{W} floating point suffix
936 @cindex @code{Q} floating point suffix
937
938 As an extension, GNU C supports additional floating
939 types, @code{__float80} and @code{__float128} to support 80-bit
940 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types.
941 Support for additional types includes the arithmetic operators:
942 add, subtract, multiply, divide; unary arithmetic operators;
943 relational operators; equality operators; and conversions to and from
944 integer and other floating types. Use a suffix @samp{w} or @samp{W}
945 in a literal constant of type @code{__float80} or type
946 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
947
948 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
949 types using the corresponding internal complex type, @code{XCmode} for
950 @code{__float80} type and @code{TCmode} for @code{__float128} type:
951
952 @smallexample
953 typedef _Complex float __attribute__((mode(TC))) _Complex128;
954 typedef _Complex float __attribute__((mode(XC))) _Complex80;
955 @end smallexample
956
957 In order to use @code{__float128} and @code{__ibm128} on PowerPC Linux
958 systems, you must use the @option{-mfloat128}. It is expected in
959 future versions of GCC that @code{__float128} will be enabled
960 automatically. In addition, there are currently problems in using the
961 complex @code{__float128} type. When these problems are fixed, you
962 would use the following syntax to declare @code{_Complex128} to be a
963 complex @code{__float128} type:
964
965 On the PowerPC Linux VSX targets, you can declare complex types using
966 the corresponding internal complex type, @code{KCmode} for
967 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
968
969 @smallexample
970 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
971 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
972 @end smallexample
973
974 Not all targets support additional floating-point types.
975 @code{__float80} and @code{__float128} types are supported on x86 and
976 IA-64 targets. The @code{__float128} type is supported on hppa HP-UX.
977 The @code{__float128} type is supported on PowerPC 64-bit Linux
978 systems by default if the vector scalar instruction set (VSX) is
979 enabled.
980
981 On the PowerPC, @code{__ibm128} provides access to the IBM extended
982 double format, and it is intended to be used by the library functions
983 that handle conversions if/when long double is changed to be IEEE
984 128-bit floating point.
985
986 @node Half-Precision
987 @section Half-Precision Floating Point
988 @cindex half-precision floating point
989 @cindex @code{__fp16} data type
990
991 On ARM targets, GCC supports half-precision (16-bit) floating point via
992 the @code{__fp16} type. You must enable this type explicitly
993 with the @option{-mfp16-format} command-line option in order to use it.
994
995 ARM supports two incompatible representations for half-precision
996 floating-point values. You must choose one of the representations and
997 use it consistently in your program.
998
999 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1000 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1001 There are 11 bits of significand precision, approximately 3
1002 decimal digits.
1003
1004 Specifying @option{-mfp16-format=alternative} selects the ARM
1005 alternative format. This representation is similar to the IEEE
1006 format, but does not support infinities or NaNs. Instead, the range
1007 of exponents is extended, so that this format can represent normalized
1008 values in the range of @math{2^{-14}} to 131008.
1009
1010 The @code{__fp16} type is a storage format only. For purposes
1011 of arithmetic and other operations, @code{__fp16} values in C or C++
1012 expressions are automatically promoted to @code{float}. In addition,
1013 you cannot declare a function with a return value or parameters
1014 of type @code{__fp16}.
1015
1016 Note that conversions from @code{double} to @code{__fp16}
1017 involve an intermediate conversion to @code{float}. Because
1018 of rounding, this can sometimes produce a different result than a
1019 direct conversion.
1020
1021 ARM provides hardware support for conversions between
1022 @code{__fp16} and @code{float} values
1023 as an extension to VFP and NEON (Advanced SIMD). GCC generates
1024 code using these hardware instructions if you compile with
1025 options to select an FPU that provides them;
1026 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1027 in addition to the @option{-mfp16-format} option to select
1028 a half-precision format.
1029
1030 Language-level support for the @code{__fp16} data type is
1031 independent of whether GCC generates code using hardware floating-point
1032 instructions. In cases where hardware support is not specified, GCC
1033 implements conversions between @code{__fp16} and @code{float} values
1034 as library calls.
1035
1036 @node Decimal Float
1037 @section Decimal Floating Types
1038 @cindex decimal floating types
1039 @cindex @code{_Decimal32} data type
1040 @cindex @code{_Decimal64} data type
1041 @cindex @code{_Decimal128} data type
1042 @cindex @code{df} integer suffix
1043 @cindex @code{dd} integer suffix
1044 @cindex @code{dl} integer suffix
1045 @cindex @code{DF} integer suffix
1046 @cindex @code{DD} integer suffix
1047 @cindex @code{DL} integer suffix
1048
1049 As an extension, GNU C supports decimal floating types as
1050 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1051 floating types in GCC will evolve as the draft technical report changes.
1052 Calling conventions for any target might also change. Not all targets
1053 support decimal floating types.
1054
1055 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1056 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1057 @code{float}, @code{double}, and @code{long double} whose radix is not
1058 specified by the C standard but is usually two.
1059
1060 Support for decimal floating types includes the arithmetic operators
1061 add, subtract, multiply, divide; unary arithmetic operators;
1062 relational operators; equality operators; and conversions to and from
1063 integer and other floating types. Use a suffix @samp{df} or
1064 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1065 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1066 @code{_Decimal128}.
1067
1068 GCC support of decimal float as specified by the draft technical report
1069 is incomplete:
1070
1071 @itemize @bullet
1072 @item
1073 When the value of a decimal floating type cannot be represented in the
1074 integer type to which it is being converted, the result is undefined
1075 rather than the result value specified by the draft technical report.
1076
1077 @item
1078 GCC does not provide the C library functionality associated with
1079 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1080 @file{wchar.h}, which must come from a separate C library implementation.
1081 Because of this the GNU C compiler does not define macro
1082 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1083 the technical report.
1084 @end itemize
1085
1086 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1087 are supported by the DWARF debug information format.
1088
1089 @node Hex Floats
1090 @section Hex Floats
1091 @cindex hex floats
1092
1093 ISO C99 supports floating-point numbers written not only in the usual
1094 decimal notation, such as @code{1.55e1}, but also numbers such as
1095 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1096 supports this in C90 mode (except in some cases when strictly
1097 conforming) and in C++. In that format the
1098 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1099 mandatory. The exponent is a decimal number that indicates the power of
1100 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1101 @tex
1102 $1 {15\over16}$,
1103 @end tex
1104 @ifnottex
1105 1 15/16,
1106 @end ifnottex
1107 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1108 is the same as @code{1.55e1}.
1109
1110 Unlike for floating-point numbers in the decimal notation the exponent
1111 is always required in the hexadecimal notation. Otherwise the compiler
1112 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1113 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1114 extension for floating-point constants of type @code{float}.
1115
1116 @node Fixed-Point
1117 @section Fixed-Point Types
1118 @cindex fixed-point types
1119 @cindex @code{_Fract} data type
1120 @cindex @code{_Accum} data type
1121 @cindex @code{_Sat} data type
1122 @cindex @code{hr} fixed-suffix
1123 @cindex @code{r} fixed-suffix
1124 @cindex @code{lr} fixed-suffix
1125 @cindex @code{llr} fixed-suffix
1126 @cindex @code{uhr} fixed-suffix
1127 @cindex @code{ur} fixed-suffix
1128 @cindex @code{ulr} fixed-suffix
1129 @cindex @code{ullr} fixed-suffix
1130 @cindex @code{hk} fixed-suffix
1131 @cindex @code{k} fixed-suffix
1132 @cindex @code{lk} fixed-suffix
1133 @cindex @code{llk} fixed-suffix
1134 @cindex @code{uhk} fixed-suffix
1135 @cindex @code{uk} fixed-suffix
1136 @cindex @code{ulk} fixed-suffix
1137 @cindex @code{ullk} fixed-suffix
1138 @cindex @code{HR} fixed-suffix
1139 @cindex @code{R} fixed-suffix
1140 @cindex @code{LR} fixed-suffix
1141 @cindex @code{LLR} fixed-suffix
1142 @cindex @code{UHR} fixed-suffix
1143 @cindex @code{UR} fixed-suffix
1144 @cindex @code{ULR} fixed-suffix
1145 @cindex @code{ULLR} fixed-suffix
1146 @cindex @code{HK} fixed-suffix
1147 @cindex @code{K} fixed-suffix
1148 @cindex @code{LK} fixed-suffix
1149 @cindex @code{LLK} fixed-suffix
1150 @cindex @code{UHK} fixed-suffix
1151 @cindex @code{UK} fixed-suffix
1152 @cindex @code{ULK} fixed-suffix
1153 @cindex @code{ULLK} fixed-suffix
1154
1155 As an extension, GNU C supports fixed-point types as
1156 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1157 types in GCC will evolve as the draft technical report changes.
1158 Calling conventions for any target might also change. Not all targets
1159 support fixed-point types.
1160
1161 The fixed-point types are
1162 @code{short _Fract},
1163 @code{_Fract},
1164 @code{long _Fract},
1165 @code{long long _Fract},
1166 @code{unsigned short _Fract},
1167 @code{unsigned _Fract},
1168 @code{unsigned long _Fract},
1169 @code{unsigned long long _Fract},
1170 @code{_Sat short _Fract},
1171 @code{_Sat _Fract},
1172 @code{_Sat long _Fract},
1173 @code{_Sat long long _Fract},
1174 @code{_Sat unsigned short _Fract},
1175 @code{_Sat unsigned _Fract},
1176 @code{_Sat unsigned long _Fract},
1177 @code{_Sat unsigned long long _Fract},
1178 @code{short _Accum},
1179 @code{_Accum},
1180 @code{long _Accum},
1181 @code{long long _Accum},
1182 @code{unsigned short _Accum},
1183 @code{unsigned _Accum},
1184 @code{unsigned long _Accum},
1185 @code{unsigned long long _Accum},
1186 @code{_Sat short _Accum},
1187 @code{_Sat _Accum},
1188 @code{_Sat long _Accum},
1189 @code{_Sat long long _Accum},
1190 @code{_Sat unsigned short _Accum},
1191 @code{_Sat unsigned _Accum},
1192 @code{_Sat unsigned long _Accum},
1193 @code{_Sat unsigned long long _Accum}.
1194
1195 Fixed-point data values contain fractional and optional integral parts.
1196 The format of fixed-point data varies and depends on the target machine.
1197
1198 Support for fixed-point types includes:
1199 @itemize @bullet
1200 @item
1201 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1202 @item
1203 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1204 @item
1205 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1206 @item
1207 binary shift operators (@code{<<}, @code{>>})
1208 @item
1209 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1210 @item
1211 equality operators (@code{==}, @code{!=})
1212 @item
1213 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1214 @code{<<=}, @code{>>=})
1215 @item
1216 conversions to and from integer, floating-point, or fixed-point types
1217 @end itemize
1218
1219 Use a suffix in a fixed-point literal constant:
1220 @itemize
1221 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1222 @code{_Sat short _Fract}
1223 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1224 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1225 @code{_Sat long _Fract}
1226 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1227 @code{_Sat long long _Fract}
1228 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1229 @code{_Sat unsigned short _Fract}
1230 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1231 @code{_Sat unsigned _Fract}
1232 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1233 @code{_Sat unsigned long _Fract}
1234 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1235 and @code{_Sat unsigned long long _Fract}
1236 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1237 @code{_Sat short _Accum}
1238 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1239 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1240 @code{_Sat long _Accum}
1241 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1242 @code{_Sat long long _Accum}
1243 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1244 @code{_Sat unsigned short _Accum}
1245 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1246 @code{_Sat unsigned _Accum}
1247 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1248 @code{_Sat unsigned long _Accum}
1249 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1250 and @code{_Sat unsigned long long _Accum}
1251 @end itemize
1252
1253 GCC support of fixed-point types as specified by the draft technical report
1254 is incomplete:
1255
1256 @itemize @bullet
1257 @item
1258 Pragmas to control overflow and rounding behaviors are not implemented.
1259 @end itemize
1260
1261 Fixed-point types are supported by the DWARF debug information format.
1262
1263 @node Named Address Spaces
1264 @section Named Address Spaces
1265 @cindex Named Address Spaces
1266
1267 As an extension, GNU C supports named address spaces as
1268 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1269 address spaces in GCC will evolve as the draft technical report
1270 changes. Calling conventions for any target might also change. At
1271 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1272 address spaces other than the generic address space.
1273
1274 Address space identifiers may be used exactly like any other C type
1275 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1276 document for more details.
1277
1278 @anchor{AVR Named Address Spaces}
1279 @subsection AVR Named Address Spaces
1280
1281 On the AVR target, there are several address spaces that can be used
1282 in order to put read-only data into the flash memory and access that
1283 data by means of the special instructions @code{LPM} or @code{ELPM}
1284 needed to read from flash.
1285
1286 Per default, any data including read-only data is located in RAM
1287 (the generic address space) so that non-generic address spaces are
1288 needed to locate read-only data in flash memory
1289 @emph{and} to generate the right instructions to access this data
1290 without using (inline) assembler code.
1291
1292 @table @code
1293 @item __flash
1294 @cindex @code{__flash} AVR Named Address Spaces
1295 The @code{__flash} qualifier locates data in the
1296 @code{.progmem.data} section. Data is read using the @code{LPM}
1297 instruction. Pointers to this address space are 16 bits wide.
1298
1299 @item __flash1
1300 @itemx __flash2
1301 @itemx __flash3
1302 @itemx __flash4
1303 @itemx __flash5
1304 @cindex @code{__flash1} AVR Named Address Spaces
1305 @cindex @code{__flash2} AVR Named Address Spaces
1306 @cindex @code{__flash3} AVR Named Address Spaces
1307 @cindex @code{__flash4} AVR Named Address Spaces
1308 @cindex @code{__flash5} AVR Named Address Spaces
1309 These are 16-bit address spaces locating data in section
1310 @code{.progmem@var{N}.data} where @var{N} refers to
1311 address space @code{__flash@var{N}}.
1312 The compiler sets the @code{RAMPZ} segment register appropriately
1313 before reading data by means of the @code{ELPM} instruction.
1314
1315 @item __memx
1316 @cindex @code{__memx} AVR Named Address Spaces
1317 This is a 24-bit address space that linearizes flash and RAM:
1318 If the high bit of the address is set, data is read from
1319 RAM using the lower two bytes as RAM address.
1320 If the high bit of the address is clear, data is read from flash
1321 with @code{RAMPZ} set according to the high byte of the address.
1322 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1323
1324 Objects in this address space are located in @code{.progmemx.data}.
1325 @end table
1326
1327 @b{Example}
1328
1329 @smallexample
1330 char my_read (const __flash char ** p)
1331 @{
1332 /* p is a pointer to RAM that points to a pointer to flash.
1333 The first indirection of p reads that flash pointer
1334 from RAM and the second indirection reads a char from this
1335 flash address. */
1336
1337 return **p;
1338 @}
1339
1340 /* Locate array[] in flash memory */
1341 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1342
1343 int i = 1;
1344
1345 int main (void)
1346 @{
1347 /* Return 17 by reading from flash memory */
1348 return array[array[i]];
1349 @}
1350 @end smallexample
1351
1352 @noindent
1353 For each named address space supported by avr-gcc there is an equally
1354 named but uppercase built-in macro defined.
1355 The purpose is to facilitate testing if respective address space
1356 support is available or not:
1357
1358 @smallexample
1359 #ifdef __FLASH
1360 const __flash int var = 1;
1361
1362 int read_var (void)
1363 @{
1364 return var;
1365 @}
1366 #else
1367 #include <avr/pgmspace.h> /* From AVR-LibC */
1368
1369 const int var PROGMEM = 1;
1370
1371 int read_var (void)
1372 @{
1373 return (int) pgm_read_word (&var);
1374 @}
1375 #endif /* __FLASH */
1376 @end smallexample
1377
1378 @noindent
1379 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1380 locates data in flash but
1381 accesses to these data read from generic address space, i.e.@:
1382 from RAM,
1383 so that you need special accessors like @code{pgm_read_byte}
1384 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1385 together with attribute @code{progmem}.
1386
1387 @noindent
1388 @b{Limitations and caveats}
1389
1390 @itemize
1391 @item
1392 Reading across the 64@tie{}KiB section boundary of
1393 the @code{__flash} or @code{__flash@var{N}} address spaces
1394 shows undefined behavior. The only address space that
1395 supports reading across the 64@tie{}KiB flash segment boundaries is
1396 @code{__memx}.
1397
1398 @item
1399 If you use one of the @code{__flash@var{N}} address spaces
1400 you must arrange your linker script to locate the
1401 @code{.progmem@var{N}.data} sections according to your needs.
1402
1403 @item
1404 Any data or pointers to the non-generic address spaces must
1405 be qualified as @code{const}, i.e.@: as read-only data.
1406 This still applies if the data in one of these address
1407 spaces like software version number or calibration lookup table are intended to
1408 be changed after load time by, say, a boot loader. In this case
1409 the right qualification is @code{const} @code{volatile} so that the compiler
1410 must not optimize away known values or insert them
1411 as immediates into operands of instructions.
1412
1413 @item
1414 The following code initializes a variable @code{pfoo}
1415 located in static storage with a 24-bit address:
1416 @smallexample
1417 extern const __memx char foo;
1418 const __memx void *pfoo = &foo;
1419 @end smallexample
1420
1421 @noindent
1422 Such code requires at least binutils 2.23, see
1423 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1424
1425 @end itemize
1426
1427 @subsection M32C Named Address Spaces
1428 @cindex @code{__far} M32C Named Address Spaces
1429
1430 On the M32C target, with the R8C and M16C CPU variants, variables
1431 qualified with @code{__far} are accessed using 32-bit addresses in
1432 order to access memory beyond the first 64@tie{}Ki bytes. If
1433 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1434 effect.
1435
1436 @subsection RL78 Named Address Spaces
1437 @cindex @code{__far} RL78 Named Address Spaces
1438
1439 On the RL78 target, variables qualified with @code{__far} are accessed
1440 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1441 addresses. Non-far variables are assumed to appear in the topmost
1442 64@tie{}KiB of the address space.
1443
1444 @subsection SPU Named Address Spaces
1445 @cindex @code{__ea} SPU Named Address Spaces
1446
1447 On the SPU target variables may be declared as
1448 belonging to another address space by qualifying the type with the
1449 @code{__ea} address space identifier:
1450
1451 @smallexample
1452 extern int __ea i;
1453 @end smallexample
1454
1455 @noindent
1456 The compiler generates special code to access the variable @code{i}.
1457 It may use runtime library
1458 support, or generate special machine instructions to access that address
1459 space.
1460
1461 @subsection x86 Named Address Spaces
1462 @cindex x86 named address spaces
1463
1464 On the x86 target, variables may be declared as being relative
1465 to the @code{%fs} or @code{%gs} segments.
1466
1467 @table @code
1468 @item __seg_fs
1469 @itemx __seg_gs
1470 @cindex @code{__seg_fs} x86 named address space
1471 @cindex @code{__seg_gs} x86 named address space
1472 The object is accessed with the respective segment override prefix.
1473
1474 The respective segment base must be set via some method specific to
1475 the operating system. Rather than require an expensive system call
1476 to retrieve the segment base, these address spaces are not considered
1477 to be subspaces of the generic (flat) address space. This means that
1478 explicit casts are required to convert pointers between these address
1479 spaces and the generic address space. In practice the application
1480 should cast to @code{uintptr_t} and apply the segment base offset
1481 that it installed previously.
1482
1483 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1484 defined when these address spaces are supported.
1485 @end table
1486
1487 @node Zero Length
1488 @section Arrays of Length Zero
1489 @cindex arrays of length zero
1490 @cindex zero-length arrays
1491 @cindex length-zero arrays
1492 @cindex flexible array members
1493
1494 Zero-length arrays are allowed in GNU C@. They are very useful as the
1495 last element of a structure that is really a header for a variable-length
1496 object:
1497
1498 @smallexample
1499 struct line @{
1500 int length;
1501 char contents[0];
1502 @};
1503
1504 struct line *thisline = (struct line *)
1505 malloc (sizeof (struct line) + this_length);
1506 thisline->length = this_length;
1507 @end smallexample
1508
1509 In ISO C90, you would have to give @code{contents} a length of 1, which
1510 means either you waste space or complicate the argument to @code{malloc}.
1511
1512 In ISO C99, you would use a @dfn{flexible array member}, which is
1513 slightly different in syntax and semantics:
1514
1515 @itemize @bullet
1516 @item
1517 Flexible array members are written as @code{contents[]} without
1518 the @code{0}.
1519
1520 @item
1521 Flexible array members have incomplete type, and so the @code{sizeof}
1522 operator may not be applied. As a quirk of the original implementation
1523 of zero-length arrays, @code{sizeof} evaluates to zero.
1524
1525 @item
1526 Flexible array members may only appear as the last member of a
1527 @code{struct} that is otherwise non-empty.
1528
1529 @item
1530 A structure containing a flexible array member, or a union containing
1531 such a structure (possibly recursively), may not be a member of a
1532 structure or an element of an array. (However, these uses are
1533 permitted by GCC as extensions.)
1534 @end itemize
1535
1536 Non-empty initialization of zero-length
1537 arrays is treated like any case where there are more initializer
1538 elements than the array holds, in that a suitable warning about ``excess
1539 elements in array'' is given, and the excess elements (all of them, in
1540 this case) are ignored.
1541
1542 GCC allows static initialization of flexible array members.
1543 This is equivalent to defining a new structure containing the original
1544 structure followed by an array of sufficient size to contain the data.
1545 E.g.@: in the following, @code{f1} is constructed as if it were declared
1546 like @code{f2}.
1547
1548 @smallexample
1549 struct f1 @{
1550 int x; int y[];
1551 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1552
1553 struct f2 @{
1554 struct f1 f1; int data[3];
1555 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1556 @end smallexample
1557
1558 @noindent
1559 The convenience of this extension is that @code{f1} has the desired
1560 type, eliminating the need to consistently refer to @code{f2.f1}.
1561
1562 This has symmetry with normal static arrays, in that an array of
1563 unknown size is also written with @code{[]}.
1564
1565 Of course, this extension only makes sense if the extra data comes at
1566 the end of a top-level object, as otherwise we would be overwriting
1567 data at subsequent offsets. To avoid undue complication and confusion
1568 with initialization of deeply nested arrays, we simply disallow any
1569 non-empty initialization except when the structure is the top-level
1570 object. For example:
1571
1572 @smallexample
1573 struct foo @{ int x; int y[]; @};
1574 struct bar @{ struct foo z; @};
1575
1576 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1577 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1578 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1579 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1580 @end smallexample
1581
1582 @node Empty Structures
1583 @section Structures with No Members
1584 @cindex empty structures
1585 @cindex zero-size structures
1586
1587 GCC permits a C structure to have no members:
1588
1589 @smallexample
1590 struct empty @{
1591 @};
1592 @end smallexample
1593
1594 The structure has size zero. In C++, empty structures are part
1595 of the language. G++ treats empty structures as if they had a single
1596 member of type @code{char}.
1597
1598 @node Variable Length
1599 @section Arrays of Variable Length
1600 @cindex variable-length arrays
1601 @cindex arrays of variable length
1602 @cindex VLAs
1603
1604 Variable-length automatic arrays are allowed in ISO C99, and as an
1605 extension GCC accepts them in C90 mode and in C++. These arrays are
1606 declared like any other automatic arrays, but with a length that is not
1607 a constant expression. The storage is allocated at the point of
1608 declaration and deallocated when the block scope containing the declaration
1609 exits. For
1610 example:
1611
1612 @smallexample
1613 FILE *
1614 concat_fopen (char *s1, char *s2, char *mode)
1615 @{
1616 char str[strlen (s1) + strlen (s2) + 1];
1617 strcpy (str, s1);
1618 strcat (str, s2);
1619 return fopen (str, mode);
1620 @}
1621 @end smallexample
1622
1623 @cindex scope of a variable length array
1624 @cindex variable-length array scope
1625 @cindex deallocating variable length arrays
1626 Jumping or breaking out of the scope of the array name deallocates the
1627 storage. Jumping into the scope is not allowed; you get an error
1628 message for it.
1629
1630 @cindex variable-length array in a structure
1631 As an extension, GCC accepts variable-length arrays as a member of
1632 a structure or a union. For example:
1633
1634 @smallexample
1635 void
1636 foo (int n)
1637 @{
1638 struct S @{ int x[n]; @};
1639 @}
1640 @end smallexample
1641
1642 @cindex @code{alloca} vs variable-length arrays
1643 You can use the function @code{alloca} to get an effect much like
1644 variable-length arrays. The function @code{alloca} is available in
1645 many other C implementations (but not in all). On the other hand,
1646 variable-length arrays are more elegant.
1647
1648 There are other differences between these two methods. Space allocated
1649 with @code{alloca} exists until the containing @emph{function} returns.
1650 The space for a variable-length array is deallocated as soon as the array
1651 name's scope ends, unless you also use @code{alloca} in this scope.
1652
1653 You can also use variable-length arrays as arguments to functions:
1654
1655 @smallexample
1656 struct entry
1657 tester (int len, char data[len][len])
1658 @{
1659 /* @r{@dots{}} */
1660 @}
1661 @end smallexample
1662
1663 The length of an array is computed once when the storage is allocated
1664 and is remembered for the scope of the array in case you access it with
1665 @code{sizeof}.
1666
1667 If you want to pass the array first and the length afterward, you can
1668 use a forward declaration in the parameter list---another GNU extension.
1669
1670 @smallexample
1671 struct entry
1672 tester (int len; char data[len][len], int len)
1673 @{
1674 /* @r{@dots{}} */
1675 @}
1676 @end smallexample
1677
1678 @cindex parameter forward declaration
1679 The @samp{int len} before the semicolon is a @dfn{parameter forward
1680 declaration}, and it serves the purpose of making the name @code{len}
1681 known when the declaration of @code{data} is parsed.
1682
1683 You can write any number of such parameter forward declarations in the
1684 parameter list. They can be separated by commas or semicolons, but the
1685 last one must end with a semicolon, which is followed by the ``real''
1686 parameter declarations. Each forward declaration must match a ``real''
1687 declaration in parameter name and data type. ISO C99 does not support
1688 parameter forward declarations.
1689
1690 @node Variadic Macros
1691 @section Macros with a Variable Number of Arguments.
1692 @cindex variable number of arguments
1693 @cindex macro with variable arguments
1694 @cindex rest argument (in macro)
1695 @cindex variadic macros
1696
1697 In the ISO C standard of 1999, a macro can be declared to accept a
1698 variable number of arguments much as a function can. The syntax for
1699 defining the macro is similar to that of a function. Here is an
1700 example:
1701
1702 @smallexample
1703 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1704 @end smallexample
1705
1706 @noindent
1707 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1708 such a macro, it represents the zero or more tokens until the closing
1709 parenthesis that ends the invocation, including any commas. This set of
1710 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1711 wherever it appears. See the CPP manual for more information.
1712
1713 GCC has long supported variadic macros, and used a different syntax that
1714 allowed you to give a name to the variable arguments just like any other
1715 argument. Here is an example:
1716
1717 @smallexample
1718 #define debug(format, args...) fprintf (stderr, format, args)
1719 @end smallexample
1720
1721 @noindent
1722 This is in all ways equivalent to the ISO C example above, but arguably
1723 more readable and descriptive.
1724
1725 GNU CPP has two further variadic macro extensions, and permits them to
1726 be used with either of the above forms of macro definition.
1727
1728 In standard C, you are not allowed to leave the variable argument out
1729 entirely; but you are allowed to pass an empty argument. For example,
1730 this invocation is invalid in ISO C, because there is no comma after
1731 the string:
1732
1733 @smallexample
1734 debug ("A message")
1735 @end smallexample
1736
1737 GNU CPP permits you to completely omit the variable arguments in this
1738 way. In the above examples, the compiler would complain, though since
1739 the expansion of the macro still has the extra comma after the format
1740 string.
1741
1742 To help solve this problem, CPP behaves specially for variable arguments
1743 used with the token paste operator, @samp{##}. If instead you write
1744
1745 @smallexample
1746 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1747 @end smallexample
1748
1749 @noindent
1750 and if the variable arguments are omitted or empty, the @samp{##}
1751 operator causes the preprocessor to remove the comma before it. If you
1752 do provide some variable arguments in your macro invocation, GNU CPP
1753 does not complain about the paste operation and instead places the
1754 variable arguments after the comma. Just like any other pasted macro
1755 argument, these arguments are not macro expanded.
1756
1757 @node Escaped Newlines
1758 @section Slightly Looser Rules for Escaped Newlines
1759 @cindex escaped newlines
1760 @cindex newlines (escaped)
1761
1762 The preprocessor treatment of escaped newlines is more relaxed
1763 than that specified by the C90 standard, which requires the newline
1764 to immediately follow a backslash.
1765 GCC's implementation allows whitespace in the form
1766 of spaces, horizontal and vertical tabs, and form feeds between the
1767 backslash and the subsequent newline. The preprocessor issues a
1768 warning, but treats it as a valid escaped newline and combines the two
1769 lines to form a single logical line. This works within comments and
1770 tokens, as well as between tokens. Comments are @emph{not} treated as
1771 whitespace for the purposes of this relaxation, since they have not
1772 yet been replaced with spaces.
1773
1774 @node Subscripting
1775 @section Non-Lvalue Arrays May Have Subscripts
1776 @cindex subscripting
1777 @cindex arrays, non-lvalue
1778
1779 @cindex subscripting and function values
1780 In ISO C99, arrays that are not lvalues still decay to pointers, and
1781 may be subscripted, although they may not be modified or used after
1782 the next sequence point and the unary @samp{&} operator may not be
1783 applied to them. As an extension, GNU C allows such arrays to be
1784 subscripted in C90 mode, though otherwise they do not decay to
1785 pointers outside C99 mode. For example,
1786 this is valid in GNU C though not valid in C90:
1787
1788 @smallexample
1789 @group
1790 struct foo @{int a[4];@};
1791
1792 struct foo f();
1793
1794 bar (int index)
1795 @{
1796 return f().a[index];
1797 @}
1798 @end group
1799 @end smallexample
1800
1801 @node Pointer Arith
1802 @section Arithmetic on @code{void}- and Function-Pointers
1803 @cindex void pointers, arithmetic
1804 @cindex void, size of pointer to
1805 @cindex function pointers, arithmetic
1806 @cindex function, size of pointer to
1807
1808 In GNU C, addition and subtraction operations are supported on pointers to
1809 @code{void} and on pointers to functions. This is done by treating the
1810 size of a @code{void} or of a function as 1.
1811
1812 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1813 and on function types, and returns 1.
1814
1815 @opindex Wpointer-arith
1816 The option @option{-Wpointer-arith} requests a warning if these extensions
1817 are used.
1818
1819 @node Pointers to Arrays
1820 @section Pointers to Arrays with Qualifiers Work as Expected
1821 @cindex pointers to arrays
1822 @cindex const qualifier
1823
1824 In GNU C, pointers to arrays with qualifiers work similar to pointers
1825 to other qualified types. For example, a value of type @code{int (*)[5]}
1826 can be used to initialize a variable of type @code{const int (*)[5]}.
1827 These types are incompatible in ISO C because the @code{const} qualifier
1828 is formally attached to the element type of the array and not the
1829 array itself.
1830
1831 @smallexample
1832 extern void
1833 transpose (int N, int M, double out[M][N], const double in[N][M]);
1834 double x[3][2];
1835 double y[2][3];
1836 @r{@dots{}}
1837 transpose(3, 2, y, x);
1838 @end smallexample
1839
1840 @node Initializers
1841 @section Non-Constant Initializers
1842 @cindex initializers, non-constant
1843 @cindex non-constant initializers
1844
1845 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1846 automatic variable are not required to be constant expressions in GNU C@.
1847 Here is an example of an initializer with run-time varying elements:
1848
1849 @smallexample
1850 foo (float f, float g)
1851 @{
1852 float beat_freqs[2] = @{ f-g, f+g @};
1853 /* @r{@dots{}} */
1854 @}
1855 @end smallexample
1856
1857 @node Compound Literals
1858 @section Compound Literals
1859 @cindex constructor expressions
1860 @cindex initializations in expressions
1861 @cindex structures, constructor expression
1862 @cindex expressions, constructor
1863 @cindex compound literals
1864 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1865
1866 ISO C99 supports compound literals. A compound literal looks like
1867 a cast containing an initializer. Its value is an object of the
1868 type specified in the cast, containing the elements specified in
1869 the initializer; it is an lvalue. As an extension, GCC supports
1870 compound literals in C90 mode and in C++, though the semantics are
1871 somewhat different in C++.
1872
1873 Usually, the specified type is a structure. Assume that
1874 @code{struct foo} and @code{structure} are declared as shown:
1875
1876 @smallexample
1877 struct foo @{int a; char b[2];@} structure;
1878 @end smallexample
1879
1880 @noindent
1881 Here is an example of constructing a @code{struct foo} with a compound literal:
1882
1883 @smallexample
1884 structure = ((struct foo) @{x + y, 'a', 0@});
1885 @end smallexample
1886
1887 @noindent
1888 This is equivalent to writing the following:
1889
1890 @smallexample
1891 @{
1892 struct foo temp = @{x + y, 'a', 0@};
1893 structure = temp;
1894 @}
1895 @end smallexample
1896
1897 You can also construct an array, though this is dangerous in C++, as
1898 explained below. If all the elements of the compound literal are
1899 (made up of) simple constant expressions, suitable for use in
1900 initializers of objects of static storage duration, then the compound
1901 literal can be coerced to a pointer to its first element and used in
1902 such an initializer, as shown here:
1903
1904 @smallexample
1905 char **foo = (char *[]) @{ "x", "y", "z" @};
1906 @end smallexample
1907
1908 Compound literals for scalar types and union types are
1909 also allowed, but then the compound literal is equivalent
1910 to a cast.
1911
1912 As a GNU extension, GCC allows initialization of objects with static storage
1913 duration by compound literals (which is not possible in ISO C99, because
1914 the initializer is not a constant).
1915 It is handled as if the object is initialized only with the bracket
1916 enclosed list if the types of the compound literal and the object match.
1917 The initializer list of the compound literal must be constant.
1918 If the object being initialized has array type of unknown size, the size is
1919 determined by compound literal size.
1920
1921 @smallexample
1922 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1923 static int y[] = (int []) @{1, 2, 3@};
1924 static int z[] = (int [3]) @{1@};
1925 @end smallexample
1926
1927 @noindent
1928 The above lines are equivalent to the following:
1929 @smallexample
1930 static struct foo x = @{1, 'a', 'b'@};
1931 static int y[] = @{1, 2, 3@};
1932 static int z[] = @{1, 0, 0@};
1933 @end smallexample
1934
1935 In C, a compound literal designates an unnamed object with static or
1936 automatic storage duration. In C++, a compound literal designates a
1937 temporary object, which only lives until the end of its
1938 full-expression. As a result, well-defined C code that takes the
1939 address of a subobject of a compound literal can be undefined in C++,
1940 so the C++ compiler rejects the conversion of a temporary array to a pointer.
1941 For instance, if the array compound literal example above appeared
1942 inside a function, any subsequent use of @samp{foo} in C++ has
1943 undefined behavior because the lifetime of the array ends after the
1944 declaration of @samp{foo}.
1945
1946 As an optimization, the C++ compiler sometimes gives array compound
1947 literals longer lifetimes: when the array either appears outside a
1948 function or has const-qualified type. If @samp{foo} and its
1949 initializer had elements of @samp{char *const} type rather than
1950 @samp{char *}, or if @samp{foo} were a global variable, the array
1951 would have static storage duration. But it is probably safest just to
1952 avoid the use of array compound literals in code compiled as C++.
1953
1954 @node Designated Inits
1955 @section Designated Initializers
1956 @cindex initializers with labeled elements
1957 @cindex labeled elements in initializers
1958 @cindex case labels in initializers
1959 @cindex designated initializers
1960
1961 Standard C90 requires the elements of an initializer to appear in a fixed
1962 order, the same as the order of the elements in the array or structure
1963 being initialized.
1964
1965 In ISO C99 you can give the elements in any order, specifying the array
1966 indices or structure field names they apply to, and GNU C allows this as
1967 an extension in C90 mode as well. This extension is not
1968 implemented in GNU C++.
1969
1970 To specify an array index, write
1971 @samp{[@var{index}] =} before the element value. For example,
1972
1973 @smallexample
1974 int a[6] = @{ [4] = 29, [2] = 15 @};
1975 @end smallexample
1976
1977 @noindent
1978 is equivalent to
1979
1980 @smallexample
1981 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1982 @end smallexample
1983
1984 @noindent
1985 The index values must be constant expressions, even if the array being
1986 initialized is automatic.
1987
1988 An alternative syntax for this that has been obsolete since GCC 2.5 but
1989 GCC still accepts is to write @samp{[@var{index}]} before the element
1990 value, with no @samp{=}.
1991
1992 To initialize a range of elements to the same value, write
1993 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1994 extension. For example,
1995
1996 @smallexample
1997 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1998 @end smallexample
1999
2000 @noindent
2001 If the value in it has side-effects, the side-effects happen only once,
2002 not for each initialized field by the range initializer.
2003
2004 @noindent
2005 Note that the length of the array is the highest value specified
2006 plus one.
2007
2008 In a structure initializer, specify the name of a field to initialize
2009 with @samp{.@var{fieldname} =} before the element value. For example,
2010 given the following structure,
2011
2012 @smallexample
2013 struct point @{ int x, y; @};
2014 @end smallexample
2015
2016 @noindent
2017 the following initialization
2018
2019 @smallexample
2020 struct point p = @{ .y = yvalue, .x = xvalue @};
2021 @end smallexample
2022
2023 @noindent
2024 is equivalent to
2025
2026 @smallexample
2027 struct point p = @{ xvalue, yvalue @};
2028 @end smallexample
2029
2030 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2031 @samp{@var{fieldname}:}, as shown here:
2032
2033 @smallexample
2034 struct point p = @{ y: yvalue, x: xvalue @};
2035 @end smallexample
2036
2037 Omitted field members are implicitly initialized the same as objects
2038 that have static storage duration.
2039
2040 @cindex designators
2041 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2042 @dfn{designator}. You can also use a designator (or the obsolete colon
2043 syntax) when initializing a union, to specify which element of the union
2044 should be used. For example,
2045
2046 @smallexample
2047 union foo @{ int i; double d; @};
2048
2049 union foo f = @{ .d = 4 @};
2050 @end smallexample
2051
2052 @noindent
2053 converts 4 to a @code{double} to store it in the union using
2054 the second element. By contrast, casting 4 to type @code{union foo}
2055 stores it into the union as the integer @code{i}, since it is
2056 an integer. (@xref{Cast to Union}.)
2057
2058 You can combine this technique of naming elements with ordinary C
2059 initialization of successive elements. Each initializer element that
2060 does not have a designator applies to the next consecutive element of the
2061 array or structure. For example,
2062
2063 @smallexample
2064 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2065 @end smallexample
2066
2067 @noindent
2068 is equivalent to
2069
2070 @smallexample
2071 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2072 @end smallexample
2073
2074 Labeling the elements of an array initializer is especially useful
2075 when the indices are characters or belong to an @code{enum} type.
2076 For example:
2077
2078 @smallexample
2079 int whitespace[256]
2080 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2081 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2082 @end smallexample
2083
2084 @cindex designator lists
2085 You can also write a series of @samp{.@var{fieldname}} and
2086 @samp{[@var{index}]} designators before an @samp{=} to specify a
2087 nested subobject to initialize; the list is taken relative to the
2088 subobject corresponding to the closest surrounding brace pair. For
2089 example, with the @samp{struct point} declaration above:
2090
2091 @smallexample
2092 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2093 @end smallexample
2094
2095 @noindent
2096 If the same field is initialized multiple times, it has the value from
2097 the last initialization. If any such overridden initialization has
2098 side-effect, it is unspecified whether the side-effect happens or not.
2099 Currently, GCC discards them and issues a warning.
2100
2101 @node Case Ranges
2102 @section Case Ranges
2103 @cindex case ranges
2104 @cindex ranges in case statements
2105
2106 You can specify a range of consecutive values in a single @code{case} label,
2107 like this:
2108
2109 @smallexample
2110 case @var{low} ... @var{high}:
2111 @end smallexample
2112
2113 @noindent
2114 This has the same effect as the proper number of individual @code{case}
2115 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2116
2117 This feature is especially useful for ranges of ASCII character codes:
2118
2119 @smallexample
2120 case 'A' ... 'Z':
2121 @end smallexample
2122
2123 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2124 it may be parsed wrong when you use it with integer values. For example,
2125 write this:
2126
2127 @smallexample
2128 case 1 ... 5:
2129 @end smallexample
2130
2131 @noindent
2132 rather than this:
2133
2134 @smallexample
2135 case 1...5:
2136 @end smallexample
2137
2138 @node Cast to Union
2139 @section Cast to a Union Type
2140 @cindex cast to a union
2141 @cindex union, casting to a
2142
2143 A cast to union type is similar to other casts, except that the type
2144 specified is a union type. You can specify the type either with
2145 @code{union @var{tag}} or with a typedef name. A cast to union is actually
2146 a constructor, not a cast, and hence does not yield an lvalue like
2147 normal casts. (@xref{Compound Literals}.)
2148
2149 The types that may be cast to the union type are those of the members
2150 of the union. Thus, given the following union and variables:
2151
2152 @smallexample
2153 union foo @{ int i; double d; @};
2154 int x;
2155 double y;
2156 @end smallexample
2157
2158 @noindent
2159 both @code{x} and @code{y} can be cast to type @code{union foo}.
2160
2161 Using the cast as the right-hand side of an assignment to a variable of
2162 union type is equivalent to storing in a member of the union:
2163
2164 @smallexample
2165 union foo u;
2166 /* @r{@dots{}} */
2167 u = (union foo) x @equiv{} u.i = x
2168 u = (union foo) y @equiv{} u.d = y
2169 @end smallexample
2170
2171 You can also use the union cast as a function argument:
2172
2173 @smallexample
2174 void hack (union foo);
2175 /* @r{@dots{}} */
2176 hack ((union foo) x);
2177 @end smallexample
2178
2179 @node Mixed Declarations
2180 @section Mixed Declarations and Code
2181 @cindex mixed declarations and code
2182 @cindex declarations, mixed with code
2183 @cindex code, mixed with declarations
2184
2185 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2186 within compound statements. As an extension, GNU C also allows this in
2187 C90 mode. For example, you could do:
2188
2189 @smallexample
2190 int i;
2191 /* @r{@dots{}} */
2192 i++;
2193 int j = i + 2;
2194 @end smallexample
2195
2196 Each identifier is visible from where it is declared until the end of
2197 the enclosing block.
2198
2199 @node Function Attributes
2200 @section Declaring Attributes of Functions
2201 @cindex function attributes
2202 @cindex declaring attributes of functions
2203 @cindex @code{volatile} applied to function
2204 @cindex @code{const} applied to function
2205
2206 In GNU C, you can use function attributes to declare certain things
2207 about functions called in your program which help the compiler
2208 optimize calls and check your code more carefully. For example, you
2209 can use attributes to declare that a function never returns
2210 (@code{noreturn}), returns a value depending only on its arguments
2211 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2212
2213 You can also use attributes to control memory placement, code
2214 generation options or call/return conventions within the function
2215 being annotated. Many of these attributes are target-specific. For
2216 example, many targets support attributes for defining interrupt
2217 handler functions, which typically must follow special register usage
2218 and return conventions.
2219
2220 Function attributes are introduced by the @code{__attribute__} keyword
2221 on a declaration, followed by an attribute specification inside double
2222 parentheses. You can specify multiple attributes in a declaration by
2223 separating them by commas within the double parentheses or by
2224 immediately following an attribute declaration with another attribute
2225 declaration. @xref{Attribute Syntax}, for the exact rules on
2226 attribute syntax and placement.
2227
2228 GCC also supports attributes on
2229 variable declarations (@pxref{Variable Attributes}),
2230 labels (@pxref{Label Attributes}),
2231 enumerators (@pxref{Enumerator Attributes}),
2232 and types (@pxref{Type Attributes}).
2233
2234 There is some overlap between the purposes of attributes and pragmas
2235 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2236 found convenient to use @code{__attribute__} to achieve a natural
2237 attachment of attributes to their corresponding declarations, whereas
2238 @code{#pragma} is of use for compatibility with other compilers
2239 or constructs that do not naturally form part of the grammar.
2240
2241 In addition to the attributes documented here,
2242 GCC plugins may provide their own attributes.
2243
2244 @menu
2245 * Common Function Attributes::
2246 * AArch64 Function Attributes::
2247 * ARC Function Attributes::
2248 * ARM Function Attributes::
2249 * AVR Function Attributes::
2250 * Blackfin Function Attributes::
2251 * CR16 Function Attributes::
2252 * Epiphany Function Attributes::
2253 * H8/300 Function Attributes::
2254 * IA-64 Function Attributes::
2255 * M32C Function Attributes::
2256 * M32R/D Function Attributes::
2257 * m68k Function Attributes::
2258 * MCORE Function Attributes::
2259 * MeP Function Attributes::
2260 * MicroBlaze Function Attributes::
2261 * Microsoft Windows Function Attributes::
2262 * MIPS Function Attributes::
2263 * MSP430 Function Attributes::
2264 * NDS32 Function Attributes::
2265 * Nios II Function Attributes::
2266 * Nvidia PTX Function Attributes::
2267 * PowerPC Function Attributes::
2268 * RL78 Function Attributes::
2269 * RX Function Attributes::
2270 * S/390 Function Attributes::
2271 * SH Function Attributes::
2272 * SPU Function Attributes::
2273 * Symbian OS Function Attributes::
2274 * V850 Function Attributes::
2275 * Visium Function Attributes::
2276 * x86 Function Attributes::
2277 * Xstormy16 Function Attributes::
2278 @end menu
2279
2280 @node Common Function Attributes
2281 @subsection Common Function Attributes
2282
2283 The following attributes are supported on most targets.
2284
2285 @table @code
2286 @c Keep this table alphabetized by attribute name. Treat _ as space.
2287
2288 @item alias ("@var{target}")
2289 @cindex @code{alias} function attribute
2290 The @code{alias} attribute causes the declaration to be emitted as an
2291 alias for another symbol, which must be specified. For instance,
2292
2293 @smallexample
2294 void __f () @{ /* @r{Do something.} */; @}
2295 void f () __attribute__ ((weak, alias ("__f")));
2296 @end smallexample
2297
2298 @noindent
2299 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2300 mangled name for the target must be used. It is an error if @samp{__f}
2301 is not defined in the same translation unit.
2302
2303 This attribute requires assembler and object file support,
2304 and may not be available on all targets.
2305
2306 @item aligned (@var{alignment})
2307 @cindex @code{aligned} function attribute
2308 This attribute specifies a minimum alignment for the function,
2309 measured in bytes.
2310
2311 You cannot use this attribute to decrease the alignment of a function,
2312 only to increase it. However, when you explicitly specify a function
2313 alignment this overrides the effect of the
2314 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2315 function.
2316
2317 Note that the effectiveness of @code{aligned} attributes may be
2318 limited by inherent limitations in your linker. On many systems, the
2319 linker is only able to arrange for functions to be aligned up to a
2320 certain maximum alignment. (For some linkers, the maximum supported
2321 alignment may be very very small.) See your linker documentation for
2322 further information.
2323
2324 The @code{aligned} attribute can also be used for variables and fields
2325 (@pxref{Variable Attributes}.)
2326
2327 @item alloc_align
2328 @cindex @code{alloc_align} function attribute
2329 The @code{alloc_align} attribute is used to tell the compiler that the
2330 function return value points to memory, where the returned pointer minimum
2331 alignment is given by one of the functions parameters. GCC uses this
2332 information to improve pointer alignment analysis.
2333
2334 The function parameter denoting the allocated alignment is specified by
2335 one integer argument, whose number is the argument of the attribute.
2336 Argument numbering starts at one.
2337
2338 For instance,
2339
2340 @smallexample
2341 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2342 @end smallexample
2343
2344 @noindent
2345 declares that @code{my_memalign} returns memory with minimum alignment
2346 given by parameter 1.
2347
2348 @item alloc_size
2349 @cindex @code{alloc_size} function attribute
2350 The @code{alloc_size} attribute is used to tell the compiler that the
2351 function return value points to memory, where the size is given by
2352 one or two of the functions parameters. GCC uses this
2353 information to improve the correctness of @code{__builtin_object_size}.
2354
2355 The function parameter(s) denoting the allocated size are specified by
2356 one or two integer arguments supplied to the attribute. The allocated size
2357 is either the value of the single function argument specified or the product
2358 of the two function arguments specified. Argument numbering starts at
2359 one.
2360
2361 For instance,
2362
2363 @smallexample
2364 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2365 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2366 @end smallexample
2367
2368 @noindent
2369 declares that @code{my_calloc} returns memory of the size given by
2370 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2371 of the size given by parameter 2.
2372
2373 @item always_inline
2374 @cindex @code{always_inline} function attribute
2375 Generally, functions are not inlined unless optimization is specified.
2376 For functions declared inline, this attribute inlines the function
2377 independent of any restrictions that otherwise apply to inlining.
2378 Failure to inline such a function is diagnosed as an error.
2379 Note that if such a function is called indirectly the compiler may
2380 or may not inline it depending on optimization level and a failure
2381 to inline an indirect call may or may not be diagnosed.
2382
2383 @item artificial
2384 @cindex @code{artificial} function attribute
2385 This attribute is useful for small inline wrappers that if possible
2386 should appear during debugging as a unit. Depending on the debug
2387 info format it either means marking the function as artificial
2388 or using the caller location for all instructions within the inlined
2389 body.
2390
2391 @item assume_aligned
2392 @cindex @code{assume_aligned} function attribute
2393 The @code{assume_aligned} attribute is used to tell the compiler that the
2394 function return value points to memory, where the returned pointer minimum
2395 alignment is given by the first argument.
2396 If the attribute has two arguments, the second argument is misalignment offset.
2397
2398 For instance
2399
2400 @smallexample
2401 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2402 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2403 @end smallexample
2404
2405 @noindent
2406 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2407 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2408 to 8.
2409
2410 @item bnd_instrument
2411 @cindex @code{bnd_instrument} function attribute
2412 The @code{bnd_instrument} attribute on functions is used to inform the
2413 compiler that the function should be instrumented when compiled
2414 with the @option{-fchkp-instrument-marked-only} option.
2415
2416 @item bnd_legacy
2417 @cindex @code{bnd_legacy} function attribute
2418 @cindex Pointer Bounds Checker attributes
2419 The @code{bnd_legacy} attribute on functions is used to inform the
2420 compiler that the function should not be instrumented when compiled
2421 with the @option{-fcheck-pointer-bounds} option.
2422
2423 @item cold
2424 @cindex @code{cold} function attribute
2425 The @code{cold} attribute on functions is used to inform the compiler that
2426 the function is unlikely to be executed. The function is optimized for
2427 size rather than speed and on many targets it is placed into a special
2428 subsection of the text section so all cold functions appear close together,
2429 improving code locality of non-cold parts of program. The paths leading
2430 to calls of cold functions within code are marked as unlikely by the branch
2431 prediction mechanism. It is thus useful to mark functions used to handle
2432 unlikely conditions, such as @code{perror}, as cold to improve optimization
2433 of hot functions that do call marked functions in rare occasions.
2434
2435 When profile feedback is available, via @option{-fprofile-use}, cold functions
2436 are automatically detected and this attribute is ignored.
2437
2438 @item const
2439 @cindex @code{const} function attribute
2440 @cindex functions that have no side effects
2441 Many functions do not examine any values except their arguments, and
2442 have no effects except the return value. Basically this is just slightly
2443 more strict class than the @code{pure} attribute below, since function is not
2444 allowed to read global memory.
2445
2446 @cindex pointer arguments
2447 Note that a function that has pointer arguments and examines the data
2448 pointed to must @emph{not} be declared @code{const}. Likewise, a
2449 function that calls a non-@code{const} function usually must not be
2450 @code{const}. It does not make sense for a @code{const} function to
2451 return @code{void}.
2452
2453 @item constructor
2454 @itemx destructor
2455 @itemx constructor (@var{priority})
2456 @itemx destructor (@var{priority})
2457 @cindex @code{constructor} function attribute
2458 @cindex @code{destructor} function attribute
2459 The @code{constructor} attribute causes the function to be called
2460 automatically before execution enters @code{main ()}. Similarly, the
2461 @code{destructor} attribute causes the function to be called
2462 automatically after @code{main ()} completes or @code{exit ()} is
2463 called. Functions with these attributes are useful for
2464 initializing data that is used implicitly during the execution of
2465 the program.
2466
2467 You may provide an optional integer priority to control the order in
2468 which constructor and destructor functions are run. A constructor
2469 with a smaller priority number runs before a constructor with a larger
2470 priority number; the opposite relationship holds for destructors. So,
2471 if you have a constructor that allocates a resource and a destructor
2472 that deallocates the same resource, both functions typically have the
2473 same priority. The priorities for constructor and destructor
2474 functions are the same as those specified for namespace-scope C++
2475 objects (@pxref{C++ Attributes}).
2476
2477 These attributes are not currently implemented for Objective-C@.
2478
2479 @item deprecated
2480 @itemx deprecated (@var{msg})
2481 @cindex @code{deprecated} function attribute
2482 The @code{deprecated} attribute results in a warning if the function
2483 is used anywhere in the source file. This is useful when identifying
2484 functions that are expected to be removed in a future version of a
2485 program. The warning also includes the location of the declaration
2486 of the deprecated function, to enable users to easily find further
2487 information about why the function is deprecated, or what they should
2488 do instead. Note that the warnings only occurs for uses:
2489
2490 @smallexample
2491 int old_fn () __attribute__ ((deprecated));
2492 int old_fn ();
2493 int (*fn_ptr)() = old_fn;
2494 @end smallexample
2495
2496 @noindent
2497 results in a warning on line 3 but not line 2. The optional @var{msg}
2498 argument, which must be a string, is printed in the warning if
2499 present.
2500
2501 The @code{deprecated} attribute can also be used for variables and
2502 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2503
2504 @item error ("@var{message}")
2505 @itemx warning ("@var{message}")
2506 @cindex @code{error} function attribute
2507 @cindex @code{warning} function attribute
2508 If the @code{error} or @code{warning} attribute
2509 is used on a function declaration and a call to such a function
2510 is not eliminated through dead code elimination or other optimizations,
2511 an error or warning (respectively) that includes @var{message} is diagnosed.
2512 This is useful
2513 for compile-time checking, especially together with @code{__builtin_constant_p}
2514 and inline functions where checking the inline function arguments is not
2515 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2516
2517 While it is possible to leave the function undefined and thus invoke
2518 a link failure (to define the function with
2519 a message in @code{.gnu.warning*} section),
2520 when using these attributes the problem is diagnosed
2521 earlier and with exact location of the call even in presence of inline
2522 functions or when not emitting debugging information.
2523
2524 @item externally_visible
2525 @cindex @code{externally_visible} function attribute
2526 This attribute, attached to a global variable or function, nullifies
2527 the effect of the @option{-fwhole-program} command-line option, so the
2528 object remains visible outside the current compilation unit.
2529
2530 If @option{-fwhole-program} is used together with @option{-flto} and
2531 @command{gold} is used as the linker plugin,
2532 @code{externally_visible} attributes are automatically added to functions
2533 (not variable yet due to a current @command{gold} issue)
2534 that are accessed outside of LTO objects according to resolution file
2535 produced by @command{gold}.
2536 For other linkers that cannot generate resolution file,
2537 explicit @code{externally_visible} attributes are still necessary.
2538
2539 @item flatten
2540 @cindex @code{flatten} function attribute
2541 Generally, inlining into a function is limited. For a function marked with
2542 this attribute, every call inside this function is inlined, if possible.
2543 Whether the function itself is considered for inlining depends on its size and
2544 the current inlining parameters.
2545
2546 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2547 @cindex @code{format} function attribute
2548 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2549 @opindex Wformat
2550 The @code{format} attribute specifies that a function takes @code{printf},
2551 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2552 should be type-checked against a format string. For example, the
2553 declaration:
2554
2555 @smallexample
2556 extern int
2557 my_printf (void *my_object, const char *my_format, ...)
2558 __attribute__ ((format (printf, 2, 3)));
2559 @end smallexample
2560
2561 @noindent
2562 causes the compiler to check the arguments in calls to @code{my_printf}
2563 for consistency with the @code{printf} style format string argument
2564 @code{my_format}.
2565
2566 The parameter @var{archetype} determines how the format string is
2567 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2568 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2569 @code{strfmon}. (You can also use @code{__printf__},
2570 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2571 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2572 @code{ms_strftime} are also present.
2573 @var{archetype} values such as @code{printf} refer to the formats accepted
2574 by the system's C runtime library,
2575 while values prefixed with @samp{gnu_} always refer
2576 to the formats accepted by the GNU C Library. On Microsoft Windows
2577 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2578 @file{msvcrt.dll} library.
2579 The parameter @var{string-index}
2580 specifies which argument is the format string argument (starting
2581 from 1), while @var{first-to-check} is the number of the first
2582 argument to check against the format string. For functions
2583 where the arguments are not available to be checked (such as
2584 @code{vprintf}), specify the third parameter as zero. In this case the
2585 compiler only checks the format string for consistency. For
2586 @code{strftime} formats, the third parameter is required to be zero.
2587 Since non-static C++ methods have an implicit @code{this} argument, the
2588 arguments of such methods should be counted from two, not one, when
2589 giving values for @var{string-index} and @var{first-to-check}.
2590
2591 In the example above, the format string (@code{my_format}) is the second
2592 argument of the function @code{my_print}, and the arguments to check
2593 start with the third argument, so the correct parameters for the format
2594 attribute are 2 and 3.
2595
2596 @opindex ffreestanding
2597 @opindex fno-builtin
2598 The @code{format} attribute allows you to identify your own functions
2599 that take format strings as arguments, so that GCC can check the
2600 calls to these functions for errors. The compiler always (unless
2601 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2602 for the standard library functions @code{printf}, @code{fprintf},
2603 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2604 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2605 warnings are requested (using @option{-Wformat}), so there is no need to
2606 modify the header file @file{stdio.h}. In C99 mode, the functions
2607 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2608 @code{vsscanf} are also checked. Except in strictly conforming C
2609 standard modes, the X/Open function @code{strfmon} is also checked as
2610 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2611 @xref{C Dialect Options,,Options Controlling C Dialect}.
2612
2613 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2614 recognized in the same context. Declarations including these format attributes
2615 are parsed for correct syntax, however the result of checking of such format
2616 strings is not yet defined, and is not carried out by this version of the
2617 compiler.
2618
2619 The target may also provide additional types of format checks.
2620 @xref{Target Format Checks,,Format Checks Specific to Particular
2621 Target Machines}.
2622
2623 @item format_arg (@var{string-index})
2624 @cindex @code{format_arg} function attribute
2625 @opindex Wformat-nonliteral
2626 The @code{format_arg} attribute specifies that a function takes a format
2627 string for a @code{printf}, @code{scanf}, @code{strftime} or
2628 @code{strfmon} style function and modifies it (for example, to translate
2629 it into another language), so the result can be passed to a
2630 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2631 function (with the remaining arguments to the format function the same
2632 as they would have been for the unmodified string). For example, the
2633 declaration:
2634
2635 @smallexample
2636 extern char *
2637 my_dgettext (char *my_domain, const char *my_format)
2638 __attribute__ ((format_arg (2)));
2639 @end smallexample
2640
2641 @noindent
2642 causes the compiler to check the arguments in calls to a @code{printf},
2643 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2644 format string argument is a call to the @code{my_dgettext} function, for
2645 consistency with the format string argument @code{my_format}. If the
2646 @code{format_arg} attribute had not been specified, all the compiler
2647 could tell in such calls to format functions would be that the format
2648 string argument is not constant; this would generate a warning when
2649 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2650 without the attribute.
2651
2652 The parameter @var{string-index} specifies which argument is the format
2653 string argument (starting from one). Since non-static C++ methods have
2654 an implicit @code{this} argument, the arguments of such methods should
2655 be counted from two.
2656
2657 The @code{format_arg} attribute allows you to identify your own
2658 functions that modify format strings, so that GCC can check the
2659 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2660 type function whose operands are a call to one of your own function.
2661 The compiler always treats @code{gettext}, @code{dgettext}, and
2662 @code{dcgettext} in this manner except when strict ISO C support is
2663 requested by @option{-ansi} or an appropriate @option{-std} option, or
2664 @option{-ffreestanding} or @option{-fno-builtin}
2665 is used. @xref{C Dialect Options,,Options
2666 Controlling C Dialect}.
2667
2668 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2669 @code{NSString} reference for compatibility with the @code{format} attribute
2670 above.
2671
2672 The target may also allow additional types in @code{format-arg} attributes.
2673 @xref{Target Format Checks,,Format Checks Specific to Particular
2674 Target Machines}.
2675
2676 @item gnu_inline
2677 @cindex @code{gnu_inline} function attribute
2678 This attribute should be used with a function that is also declared
2679 with the @code{inline} keyword. It directs GCC to treat the function
2680 as if it were defined in gnu90 mode even when compiling in C99 or
2681 gnu99 mode.
2682
2683 If the function is declared @code{extern}, then this definition of the
2684 function is used only for inlining. In no case is the function
2685 compiled as a standalone function, not even if you take its address
2686 explicitly. Such an address becomes an external reference, as if you
2687 had only declared the function, and had not defined it. This has
2688 almost the effect of a macro. The way to use this is to put a
2689 function definition in a header file with this attribute, and put
2690 another copy of the function, without @code{extern}, in a library
2691 file. The definition in the header file causes most calls to the
2692 function to be inlined. If any uses of the function remain, they
2693 refer to the single copy in the library. Note that the two
2694 definitions of the functions need not be precisely the same, although
2695 if they do not have the same effect your program may behave oddly.
2696
2697 In C, if the function is neither @code{extern} nor @code{static}, then
2698 the function is compiled as a standalone function, as well as being
2699 inlined where possible.
2700
2701 This is how GCC traditionally handled functions declared
2702 @code{inline}. Since ISO C99 specifies a different semantics for
2703 @code{inline}, this function attribute is provided as a transition
2704 measure and as a useful feature in its own right. This attribute is
2705 available in GCC 4.1.3 and later. It is available if either of the
2706 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2707 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2708 Function is As Fast As a Macro}.
2709
2710 In C++, this attribute does not depend on @code{extern} in any way,
2711 but it still requires the @code{inline} keyword to enable its special
2712 behavior.
2713
2714 @item hot
2715 @cindex @code{hot} function attribute
2716 The @code{hot} attribute on a function is used to inform the compiler that
2717 the function is a hot spot of the compiled program. The function is
2718 optimized more aggressively and on many targets it is placed into a special
2719 subsection of the text section so all hot functions appear close together,
2720 improving locality.
2721
2722 When profile feedback is available, via @option{-fprofile-use}, hot functions
2723 are automatically detected and this attribute is ignored.
2724
2725 @item ifunc ("@var{resolver}")
2726 @cindex @code{ifunc} function attribute
2727 @cindex indirect functions
2728 @cindex functions that are dynamically resolved
2729 The @code{ifunc} attribute is used to mark a function as an indirect
2730 function using the STT_GNU_IFUNC symbol type extension to the ELF
2731 standard. This allows the resolution of the symbol value to be
2732 determined dynamically at load time, and an optimized version of the
2733 routine can be selected for the particular processor or other system
2734 characteristics determined then. To use this attribute, first define
2735 the implementation functions available, and a resolver function that
2736 returns a pointer to the selected implementation function. The
2737 implementation functions' declarations must match the API of the
2738 function being implemented, the resolver's declaration is be a
2739 function returning pointer to void function returning void:
2740
2741 @smallexample
2742 void *my_memcpy (void *dst, const void *src, size_t len)
2743 @{
2744 @dots{}
2745 @}
2746
2747 static void (*resolve_memcpy (void)) (void)
2748 @{
2749 return my_memcpy; // we'll just always select this routine
2750 @}
2751 @end smallexample
2752
2753 @noindent
2754 The exported header file declaring the function the user calls would
2755 contain:
2756
2757 @smallexample
2758 extern void *memcpy (void *, const void *, size_t);
2759 @end smallexample
2760
2761 @noindent
2762 allowing the user to call this as a regular function, unaware of the
2763 implementation. Finally, the indirect function needs to be defined in
2764 the same translation unit as the resolver function:
2765
2766 @smallexample
2767 void *memcpy (void *, const void *, size_t)
2768 __attribute__ ((ifunc ("resolve_memcpy")));
2769 @end smallexample
2770
2771 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2772 and GNU C Library version 2.11.1 are required to use this feature.
2773
2774 @item interrupt
2775 @itemx interrupt_handler
2776 Many GCC back ends support attributes to indicate that a function is
2777 an interrupt handler, which tells the compiler to generate function
2778 entry and exit sequences that differ from those from regular
2779 functions. The exact syntax and behavior are target-specific;
2780 refer to the following subsections for details.
2781
2782 @item leaf
2783 @cindex @code{leaf} function attribute
2784 Calls to external functions with this attribute must return to the
2785 current compilation unit only by return or by exception handling. In
2786 particular, a leaf function is not allowed to invoke callback functions
2787 passed to it from the current compilation unit, directly call functions
2788 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2789 might still call functions from other compilation units and thus they
2790 are not necessarily leaf in the sense that they contain no function
2791 calls at all.
2792
2793 The attribute is intended for library functions to improve dataflow
2794 analysis. The compiler takes the hint that any data not escaping the
2795 current compilation unit cannot be used or modified by the leaf
2796 function. For example, the @code{sin} function is a leaf function, but
2797 @code{qsort} is not.
2798
2799 Note that leaf functions might indirectly run a signal handler defined
2800 in the current compilation unit that uses static variables. Similarly,
2801 when lazy symbol resolution is in effect, leaf functions might invoke
2802 indirect functions whose resolver function or implementation function is
2803 defined in the current compilation unit and uses static variables. There
2804 is no standard-compliant way to write such a signal handler, resolver
2805 function, or implementation function, and the best that you can do is to
2806 remove the @code{leaf} attribute or mark all such static variables
2807 @code{volatile}. Lastly, for ELF-based systems that support symbol
2808 interposition, care should be taken that functions defined in the
2809 current compilation unit do not unexpectedly interpose other symbols
2810 based on the defined standards mode and defined feature test macros;
2811 otherwise an inadvertent callback would be added.
2812
2813 The attribute has no effect on functions defined within the current
2814 compilation unit. This is to allow easy merging of multiple compilation
2815 units into one, for example, by using the link-time optimization. For
2816 this reason the attribute is not allowed on types to annotate indirect
2817 calls.
2818
2819 @item malloc
2820 @cindex @code{malloc} function attribute
2821 @cindex functions that behave like malloc
2822 This tells the compiler that a function is @code{malloc}-like, i.e.,
2823 that the pointer @var{P} returned by the function cannot alias any
2824 other pointer valid when the function returns, and moreover no
2825 pointers to valid objects occur in any storage addressed by @var{P}.
2826
2827 Using this attribute can improve optimization. Functions like
2828 @code{malloc} and @code{calloc} have this property because they return
2829 a pointer to uninitialized or zeroed-out storage. However, functions
2830 like @code{realloc} do not have this property, as they can return a
2831 pointer to storage containing pointers.
2832
2833 @item no_icf
2834 @cindex @code{no_icf} function attribute
2835 This function attribute prevents a functions from being merged with another
2836 semantically equivalent function.
2837
2838 @item no_instrument_function
2839 @cindex @code{no_instrument_function} function attribute
2840 @opindex finstrument-functions
2841 If @option{-finstrument-functions} is given, profiling function calls are
2842 generated at entry and exit of most user-compiled functions.
2843 Functions with this attribute are not so instrumented.
2844
2845 @item no_reorder
2846 @cindex @code{no_reorder} function attribute
2847 Do not reorder functions or variables marked @code{no_reorder}
2848 against each other or top level assembler statements the executable.
2849 The actual order in the program will depend on the linker command
2850 line. Static variables marked like this are also not removed.
2851 This has a similar effect
2852 as the @option{-fno-toplevel-reorder} option, but only applies to the
2853 marked symbols.
2854
2855 @item no_sanitize_address
2856 @itemx no_address_safety_analysis
2857 @cindex @code{no_sanitize_address} function attribute
2858 The @code{no_sanitize_address} attribute on functions is used
2859 to inform the compiler that it should not instrument memory accesses
2860 in the function when compiling with the @option{-fsanitize=address} option.
2861 The @code{no_address_safety_analysis} is a deprecated alias of the
2862 @code{no_sanitize_address} attribute, new code should use
2863 @code{no_sanitize_address}.
2864
2865 @item no_sanitize_thread
2866 @cindex @code{no_sanitize_thread} function attribute
2867 The @code{no_sanitize_thread} attribute on functions is used
2868 to inform the compiler that it should not instrument memory accesses
2869 in the function when compiling with the @option{-fsanitize=thread} option.
2870
2871 @item no_sanitize_undefined
2872 @cindex @code{no_sanitize_undefined} function attribute
2873 The @code{no_sanitize_undefined} attribute on functions is used
2874 to inform the compiler that it should not check for undefined behavior
2875 in the function when compiling with the @option{-fsanitize=undefined} option.
2876
2877 @item no_split_stack
2878 @cindex @code{no_split_stack} function attribute
2879 @opindex fsplit-stack
2880 If @option{-fsplit-stack} is given, functions have a small
2881 prologue which decides whether to split the stack. Functions with the
2882 @code{no_split_stack} attribute do not have that prologue, and thus
2883 may run with only a small amount of stack space available.
2884
2885 @item no_stack_limit
2886 @cindex @code{no_stack_limit} function attribute
2887 This attribute locally overrides the @option{-fstack-limit-register}
2888 and @option{-fstack-limit-symbol} command-line options; it has the effect
2889 of disabling stack limit checking in the function it applies to.
2890
2891 @item noclone
2892 @cindex @code{noclone} function attribute
2893 This function attribute prevents a function from being considered for
2894 cloning---a mechanism that produces specialized copies of functions
2895 and which is (currently) performed by interprocedural constant
2896 propagation.
2897
2898 @item noinline
2899 @cindex @code{noinline} function attribute
2900 This function attribute prevents a function from being considered for
2901 inlining.
2902 @c Don't enumerate the optimizations by name here; we try to be
2903 @c future-compatible with this mechanism.
2904 If the function does not have side-effects, there are optimizations
2905 other than inlining that cause function calls to be optimized away,
2906 although the function call is live. To keep such calls from being
2907 optimized away, put
2908 @smallexample
2909 asm ("");
2910 @end smallexample
2911
2912 @noindent
2913 (@pxref{Extended Asm}) in the called function, to serve as a special
2914 side-effect.
2915
2916 @item nonnull (@var{arg-index}, @dots{})
2917 @cindex @code{nonnull} function attribute
2918 @cindex functions with non-null pointer arguments
2919 The @code{nonnull} attribute specifies that some function parameters should
2920 be non-null pointers. For instance, the declaration:
2921
2922 @smallexample
2923 extern void *
2924 my_memcpy (void *dest, const void *src, size_t len)
2925 __attribute__((nonnull (1, 2)));
2926 @end smallexample
2927
2928 @noindent
2929 causes the compiler to check that, in calls to @code{my_memcpy},
2930 arguments @var{dest} and @var{src} are non-null. If the compiler
2931 determines that a null pointer is passed in an argument slot marked
2932 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2933 is issued. The compiler may also choose to make optimizations based
2934 on the knowledge that certain function arguments will never be null.
2935
2936 If no argument index list is given to the @code{nonnull} attribute,
2937 all pointer arguments are marked as non-null. To illustrate, the
2938 following declaration is equivalent to the previous example:
2939
2940 @smallexample
2941 extern void *
2942 my_memcpy (void *dest, const void *src, size_t len)
2943 __attribute__((nonnull));
2944 @end smallexample
2945
2946 @item noplt
2947 @cindex @code{noplt} function attribute
2948 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
2949 Calls to functions marked with this attribute in position-independent code
2950 do not use the PLT.
2951
2952 @smallexample
2953 @group
2954 /* Externally defined function foo. */
2955 int foo () __attribute__ ((noplt));
2956
2957 int
2958 main (/* @r{@dots{}} */)
2959 @{
2960 /* @r{@dots{}} */
2961 foo ();
2962 /* @r{@dots{}} */
2963 @}
2964 @end group
2965 @end smallexample
2966
2967 The @code{noplt} attribute on function @code{foo}
2968 tells the compiler to assume that
2969 the function @code{foo} is externally defined and that the call to
2970 @code{foo} must avoid the PLT
2971 in position-independent code.
2972
2973 In position-dependent code, a few targets also convert calls to
2974 functions that are marked to not use the PLT to use the GOT instead.
2975
2976 @item noreturn
2977 @cindex @code{noreturn} function attribute
2978 @cindex functions that never return
2979 A few standard library functions, such as @code{abort} and @code{exit},
2980 cannot return. GCC knows this automatically. Some programs define
2981 their own functions that never return. You can declare them
2982 @code{noreturn} to tell the compiler this fact. For example,
2983
2984 @smallexample
2985 @group
2986 void fatal () __attribute__ ((noreturn));
2987
2988 void
2989 fatal (/* @r{@dots{}} */)
2990 @{
2991 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
2992 exit (1);
2993 @}
2994 @end group
2995 @end smallexample
2996
2997 The @code{noreturn} keyword tells the compiler to assume that
2998 @code{fatal} cannot return. It can then optimize without regard to what
2999 would happen if @code{fatal} ever did return. This makes slightly
3000 better code. More importantly, it helps avoid spurious warnings of
3001 uninitialized variables.
3002
3003 The @code{noreturn} keyword does not affect the exceptional path when that
3004 applies: a @code{noreturn}-marked function may still return to the caller
3005 by throwing an exception or calling @code{longjmp}.
3006
3007 Do not assume that registers saved by the calling function are
3008 restored before calling the @code{noreturn} function.
3009
3010 It does not make sense for a @code{noreturn} function to have a return
3011 type other than @code{void}.
3012
3013 @item nothrow
3014 @cindex @code{nothrow} function attribute
3015 The @code{nothrow} attribute is used to inform the compiler that a
3016 function cannot throw an exception. For example, most functions in
3017 the standard C library can be guaranteed not to throw an exception
3018 with the notable exceptions of @code{qsort} and @code{bsearch} that
3019 take function pointer arguments.
3020
3021 @item optimize
3022 @cindex @code{optimize} function attribute
3023 The @code{optimize} attribute is used to specify that a function is to
3024 be compiled with different optimization options than specified on the
3025 command line. Arguments can either be numbers or strings. Numbers
3026 are assumed to be an optimization level. Strings that begin with
3027 @code{O} are assumed to be an optimization option, while other options
3028 are assumed to be used with a @code{-f} prefix. You can also use the
3029 @samp{#pragma GCC optimize} pragma to set the optimization options
3030 that affect more than one function.
3031 @xref{Function Specific Option Pragmas}, for details about the
3032 @samp{#pragma GCC optimize} pragma.
3033
3034 This attribute should be used for debugging purposes only. It is not
3035 suitable in production code.
3036
3037 @item pure
3038 @cindex @code{pure} function attribute
3039 @cindex functions that have no side effects
3040 Many functions have no effects except the return value and their
3041 return value depends only on the parameters and/or global variables.
3042 Such a function can be subject
3043 to common subexpression elimination and loop optimization just as an
3044 arithmetic operator would be. These functions should be declared
3045 with the attribute @code{pure}. For example,
3046
3047 @smallexample
3048 int square (int) __attribute__ ((pure));
3049 @end smallexample
3050
3051 @noindent
3052 says that the hypothetical function @code{square} is safe to call
3053 fewer times than the program says.
3054
3055 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3056 Interesting non-pure functions are functions with infinite loops or those
3057 depending on volatile memory or other system resource, that may change between
3058 two consecutive calls (such as @code{feof} in a multithreading environment).
3059
3060 @item returns_nonnull
3061 @cindex @code{returns_nonnull} function attribute
3062 The @code{returns_nonnull} attribute specifies that the function
3063 return value should be a non-null pointer. For instance, the declaration:
3064
3065 @smallexample
3066 extern void *
3067 mymalloc (size_t len) __attribute__((returns_nonnull));
3068 @end smallexample
3069
3070 @noindent
3071 lets the compiler optimize callers based on the knowledge
3072 that the return value will never be null.
3073
3074 @item returns_twice
3075 @cindex @code{returns_twice} function attribute
3076 @cindex functions that return more than once
3077 The @code{returns_twice} attribute tells the compiler that a function may
3078 return more than one time. The compiler ensures that all registers
3079 are dead before calling such a function and emits a warning about
3080 the variables that may be clobbered after the second return from the
3081 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3082 The @code{longjmp}-like counterpart of such function, if any, might need
3083 to be marked with the @code{noreturn} attribute.
3084
3085 @item section ("@var{section-name}")
3086 @cindex @code{section} function attribute
3087 @cindex functions in arbitrary sections
3088 Normally, the compiler places the code it generates in the @code{text} section.
3089 Sometimes, however, you need additional sections, or you need certain
3090 particular functions to appear in special sections. The @code{section}
3091 attribute specifies that a function lives in a particular section.
3092 For example, the declaration:
3093
3094 @smallexample
3095 extern void foobar (void) __attribute__ ((section ("bar")));
3096 @end smallexample
3097
3098 @noindent
3099 puts the function @code{foobar} in the @code{bar} section.
3100
3101 Some file formats do not support arbitrary sections so the @code{section}
3102 attribute is not available on all platforms.
3103 If you need to map the entire contents of a module to a particular
3104 section, consider using the facilities of the linker instead.
3105
3106 @item sentinel
3107 @cindex @code{sentinel} function attribute
3108 This function attribute ensures that a parameter in a function call is
3109 an explicit @code{NULL}. The attribute is only valid on variadic
3110 functions. By default, the sentinel is located at position zero, the
3111 last parameter of the function call. If an optional integer position
3112 argument P is supplied to the attribute, the sentinel must be located at
3113 position P counting backwards from the end of the argument list.
3114
3115 @smallexample
3116 __attribute__ ((sentinel))
3117 is equivalent to
3118 __attribute__ ((sentinel(0)))
3119 @end smallexample
3120
3121 The attribute is automatically set with a position of 0 for the built-in
3122 functions @code{execl} and @code{execlp}. The built-in function
3123 @code{execle} has the attribute set with a position of 1.
3124
3125 A valid @code{NULL} in this context is defined as zero with any pointer
3126 type. If your system defines the @code{NULL} macro with an integer type
3127 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3128 with a copy that redefines NULL appropriately.
3129
3130 The warnings for missing or incorrect sentinels are enabled with
3131 @option{-Wformat}.
3132
3133 @item simd
3134 @itemx simd("@var{mask}")
3135 @cindex @code{simd} function attribute
3136 This attribute enables creation of one or more function versions that
3137 can process multiple arguments using SIMD instructions from a
3138 single invocation. Specifying this attribute allows compiler to
3139 assume that such versions are available at link time (provided
3140 in the same or another translation unit). Generated versions are
3141 target-dependent and described in the corresponding Vector ABI document. For
3142 x86_64 target this document can be found
3143 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3144
3145 The optional argument @var{mask} may have the value
3146 @code{notinbranch} or @code{inbranch},
3147 and instructs the compiler to generate non-masked or masked
3148 clones correspondingly. By default, all clones are generated.
3149
3150 The attribute should not be used together with Cilk Plus @code{vector}
3151 attribute on the same function.
3152
3153 If the attribute is specified and @code{#pragma omp declare simd} is
3154 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3155 switch is specified, then the attribute is ignored.
3156
3157 @item stack_protect
3158 @cindex @code{stack_protect} function attribute
3159 This attribute adds stack protection code to the function if
3160 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3161 or @option{-fstack-protector-explicit} are set.
3162
3163 @item target (@var{options})
3164 @cindex @code{target} function attribute
3165 Multiple target back ends implement the @code{target} attribute
3166 to specify that a function is to
3167 be compiled with different target options than specified on the
3168 command line. This can be used for instance to have functions
3169 compiled with a different ISA (instruction set architecture) than the
3170 default. You can also use the @samp{#pragma GCC target} pragma to set
3171 more than one function to be compiled with specific target options.
3172 @xref{Function Specific Option Pragmas}, for details about the
3173 @samp{#pragma GCC target} pragma.
3174
3175 For instance, on an x86, you could declare one function with the
3176 @code{target("sse4.1,arch=core2")} attribute and another with
3177 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3178 compiling the first function with @option{-msse4.1} and
3179 @option{-march=core2} options, and the second function with
3180 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3181 to make sure that a function is only invoked on a machine that
3182 supports the particular ISA it is compiled for (for example by using
3183 @code{cpuid} on x86 to determine what feature bits and architecture
3184 family are used).
3185
3186 @smallexample
3187 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3188 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3189 @end smallexample
3190
3191 You can either use multiple
3192 strings separated by commas to specify multiple options,
3193 or separate the options with a comma (@samp{,}) within a single string.
3194
3195 The options supported are specific to each target; refer to @ref{x86
3196 Function Attributes}, @ref{PowerPC Function Attributes},
3197 @ref{ARM Function Attributes},and @ref{Nios II Function Attributes},
3198 for details.
3199
3200 @item target_clones (@var{options})
3201 @cindex @code{target_clones} function attribute
3202 The @code{target_clones} attribute is used to specify that a function
3203 be cloned into multiple versions compiled with different target options
3204 than specified on the command line. The supported options and restrictions
3205 are the same as for @code{target} attribute.
3206
3207 For instance, on an x86, you could compile a function with
3208 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3209 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3210 It also creates a resolver function (see the @code{ifunc} attribute
3211 above) that dynamically selects a clone suitable for current architecture.
3212
3213 @item unused
3214 @cindex @code{unused} function attribute
3215 This attribute, attached to a function, means that the function is meant
3216 to be possibly unused. GCC does not produce a warning for this
3217 function.
3218
3219 @item used
3220 @cindex @code{used} function attribute
3221 This attribute, attached to a function, means that code must be emitted
3222 for the function even if it appears that the function is not referenced.
3223 This is useful, for example, when the function is referenced only in
3224 inline assembly.
3225
3226 When applied to a member function of a C++ class template, the
3227 attribute also means that the function is instantiated if the
3228 class itself is instantiated.
3229
3230 @item visibility ("@var{visibility_type}")
3231 @cindex @code{visibility} function attribute
3232 This attribute affects the linkage of the declaration to which it is attached.
3233 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3234 (@pxref{Common Type Attributes}) as well as functions.
3235
3236 There are four supported @var{visibility_type} values: default,
3237 hidden, protected or internal visibility.
3238
3239 @smallexample
3240 void __attribute__ ((visibility ("protected")))
3241 f () @{ /* @r{Do something.} */; @}
3242 int i __attribute__ ((visibility ("hidden")));
3243 @end smallexample
3244
3245 The possible values of @var{visibility_type} correspond to the
3246 visibility settings in the ELF gABI.
3247
3248 @table @code
3249 @c keep this list of visibilities in alphabetical order.
3250
3251 @item default
3252 Default visibility is the normal case for the object file format.
3253 This value is available for the visibility attribute to override other
3254 options that may change the assumed visibility of entities.
3255
3256 On ELF, default visibility means that the declaration is visible to other
3257 modules and, in shared libraries, means that the declared entity may be
3258 overridden.
3259
3260 On Darwin, default visibility means that the declaration is visible to
3261 other modules.
3262
3263 Default visibility corresponds to ``external linkage'' in the language.
3264
3265 @item hidden
3266 Hidden visibility indicates that the entity declared has a new
3267 form of linkage, which we call ``hidden linkage''. Two
3268 declarations of an object with hidden linkage refer to the same object
3269 if they are in the same shared object.
3270
3271 @item internal
3272 Internal visibility is like hidden visibility, but with additional
3273 processor specific semantics. Unless otherwise specified by the
3274 psABI, GCC defines internal visibility to mean that a function is
3275 @emph{never} called from another module. Compare this with hidden
3276 functions which, while they cannot be referenced directly by other
3277 modules, can be referenced indirectly via function pointers. By
3278 indicating that a function cannot be called from outside the module,
3279 GCC may for instance omit the load of a PIC register since it is known
3280 that the calling function loaded the correct value.
3281
3282 @item protected
3283 Protected visibility is like default visibility except that it
3284 indicates that references within the defining module bind to the
3285 definition in that module. That is, the declared entity cannot be
3286 overridden by another module.
3287
3288 @end table
3289
3290 All visibilities are supported on many, but not all, ELF targets
3291 (supported when the assembler supports the @samp{.visibility}
3292 pseudo-op). Default visibility is supported everywhere. Hidden
3293 visibility is supported on Darwin targets.
3294
3295 The visibility attribute should be applied only to declarations that
3296 would otherwise have external linkage. The attribute should be applied
3297 consistently, so that the same entity should not be declared with
3298 different settings of the attribute.
3299
3300 In C++, the visibility attribute applies to types as well as functions
3301 and objects, because in C++ types have linkage. A class must not have
3302 greater visibility than its non-static data member types and bases,
3303 and class members default to the visibility of their class. Also, a
3304 declaration without explicit visibility is limited to the visibility
3305 of its type.
3306
3307 In C++, you can mark member functions and static member variables of a
3308 class with the visibility attribute. This is useful if you know a
3309 particular method or static member variable should only be used from
3310 one shared object; then you can mark it hidden while the rest of the
3311 class has default visibility. Care must be taken to avoid breaking
3312 the One Definition Rule; for example, it is usually not useful to mark
3313 an inline method as hidden without marking the whole class as hidden.
3314
3315 A C++ namespace declaration can also have the visibility attribute.
3316
3317 @smallexample
3318 namespace nspace1 __attribute__ ((visibility ("protected")))
3319 @{ /* @r{Do something.} */; @}
3320 @end smallexample
3321
3322 This attribute applies only to the particular namespace body, not to
3323 other definitions of the same namespace; it is equivalent to using
3324 @samp{#pragma GCC visibility} before and after the namespace
3325 definition (@pxref{Visibility Pragmas}).
3326
3327 In C++, if a template argument has limited visibility, this
3328 restriction is implicitly propagated to the template instantiation.
3329 Otherwise, template instantiations and specializations default to the
3330 visibility of their template.
3331
3332 If both the template and enclosing class have explicit visibility, the
3333 visibility from the template is used.
3334
3335 @item warn_unused_result
3336 @cindex @code{warn_unused_result} function attribute
3337 The @code{warn_unused_result} attribute causes a warning to be emitted
3338 if a caller of the function with this attribute does not use its
3339 return value. This is useful for functions where not checking
3340 the result is either a security problem or always a bug, such as
3341 @code{realloc}.
3342
3343 @smallexample
3344 int fn () __attribute__ ((warn_unused_result));
3345 int foo ()
3346 @{
3347 if (fn () < 0) return -1;
3348 fn ();
3349 return 0;
3350 @}
3351 @end smallexample
3352
3353 @noindent
3354 results in warning on line 5.
3355
3356 @item weak
3357 @cindex @code{weak} function attribute
3358 The @code{weak} attribute causes the declaration to be emitted as a weak
3359 symbol rather than a global. This is primarily useful in defining
3360 library functions that can be overridden in user code, though it can
3361 also be used with non-function declarations. Weak symbols are supported
3362 for ELF targets, and also for a.out targets when using the GNU assembler
3363 and linker.
3364
3365 @item weakref
3366 @itemx weakref ("@var{target}")
3367 @cindex @code{weakref} function attribute
3368 The @code{weakref} attribute marks a declaration as a weak reference.
3369 Without arguments, it should be accompanied by an @code{alias} attribute
3370 naming the target symbol. Optionally, the @var{target} may be given as
3371 an argument to @code{weakref} itself. In either case, @code{weakref}
3372 implicitly marks the declaration as @code{weak}. Without a
3373 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3374 @code{weakref} is equivalent to @code{weak}.
3375
3376 @smallexample
3377 static int x() __attribute__ ((weakref ("y")));
3378 /* is equivalent to... */
3379 static int x() __attribute__ ((weak, weakref, alias ("y")));
3380 /* and to... */
3381 static int x() __attribute__ ((weakref));
3382 static int x() __attribute__ ((alias ("y")));
3383 @end smallexample
3384
3385 A weak reference is an alias that does not by itself require a
3386 definition to be given for the target symbol. If the target symbol is
3387 only referenced through weak references, then it becomes a @code{weak}
3388 undefined symbol. If it is directly referenced, however, then such
3389 strong references prevail, and a definition is required for the
3390 symbol, not necessarily in the same translation unit.
3391
3392 The effect is equivalent to moving all references to the alias to a
3393 separate translation unit, renaming the alias to the aliased symbol,
3394 declaring it as weak, compiling the two separate translation units and
3395 performing a reloadable link on them.
3396
3397 At present, a declaration to which @code{weakref} is attached can
3398 only be @code{static}.
3399
3400
3401 @end table
3402
3403 @c This is the end of the target-independent attribute table
3404
3405 @node AArch64 Function Attributes
3406 @subsection AArch64 Function Attributes
3407
3408 The following target-specific function attributes are available for the
3409 AArch64 target. For the most part, these options mirror the behavior of
3410 similar command-line options (@pxref{AArch64 Options}), but on a
3411 per-function basis.
3412
3413 @table @code
3414 @item general-regs-only
3415 @cindex @code{general-regs-only} function attribute, AArch64
3416 Indicates that no floating-point or Advanced SIMD registers should be
3417 used when generating code for this function. If the function explicitly
3418 uses floating-point code, then the compiler gives an error. This is
3419 the same behavior as that of the command-line option
3420 @option{-mgeneral-regs-only}.
3421
3422 @item fix-cortex-a53-835769
3423 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3424 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3425 applied to this function. To explicitly disable the workaround for this
3426 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3427 This corresponds to the behavior of the command line options
3428 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3429
3430 @item cmodel=
3431 @cindex @code{cmodel=} function attribute, AArch64
3432 Indicates that code should be generated for a particular code model for
3433 this function. The behavior and permissible arguments are the same as
3434 for the command line option @option{-mcmodel=}.
3435
3436 @item strict-align
3437 @cindex @code{strict-align} function attribute, AArch64
3438 Indicates that the compiler should not assume that unaligned memory references
3439 are handled by the system. The behavior is the same as for the command-line
3440 option @option{-mstrict-align}.
3441
3442 @item omit-leaf-frame-pointer
3443 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3444 Indicates that the frame pointer should be omitted for a leaf function call.
3445 To keep the frame pointer, the inverse attribute
3446 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3447 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3448 and @option{-mno-omit-leaf-frame-pointer}.
3449
3450 @item tls-dialect=
3451 @cindex @code{tls-dialect=} function attribute, AArch64
3452 Specifies the TLS dialect to use for this function. The behavior and
3453 permissible arguments are the same as for the command-line option
3454 @option{-mtls-dialect=}.
3455
3456 @item arch=
3457 @cindex @code{arch=} function attribute, AArch64
3458 Specifies the architecture version and architectural extensions to use
3459 for this function. The behavior and permissible arguments are the same as
3460 for the @option{-march=} command-line option.
3461
3462 @item tune=
3463 @cindex @code{tune=} function attribute, AArch64
3464 Specifies the core for which to tune the performance of this function.
3465 The behavior and permissible arguments are the same as for the @option{-mtune=}
3466 command-line option.
3467
3468 @item cpu=
3469 @cindex @code{cpu=} function attribute, AArch64
3470 Specifies the core for which to tune the performance of this function and also
3471 whose architectural features to use. The behavior and valid arguments are the
3472 same as for the @option{-mcpu=} command-line option.
3473
3474 @end table
3475
3476 The above target attributes can be specified as follows:
3477
3478 @smallexample
3479 __attribute__((target("@var{attr-string}")))
3480 int
3481 f (int a)
3482 @{
3483 return a + 5;
3484 @}
3485 @end smallexample
3486
3487 where @code{@var{attr-string}} is one of the attribute strings specified above.
3488
3489 Additionally, the architectural extension string may be specified on its
3490 own. This can be used to turn on and off particular architectural extensions
3491 without having to specify a particular architecture version or core. Example:
3492
3493 @smallexample
3494 __attribute__((target("+crc+nocrypto")))
3495 int
3496 foo (int a)
3497 @{
3498 return a + 5;
3499 @}
3500 @end smallexample
3501
3502 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3503 extension and disables the @code{crypto} extension for the function @code{foo}
3504 without modifying an existing @option{-march=} or @option{-mcpu} option.
3505
3506 Multiple target function attributes can be specified by separating them with
3507 a comma. For example:
3508 @smallexample
3509 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3510 int
3511 foo (int a)
3512 @{
3513 return a + 5;
3514 @}
3515 @end smallexample
3516
3517 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3518 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3519
3520 @subsubsection Inlining rules
3521 Specifying target attributes on individual functions or performing link-time
3522 optimization across translation units compiled with different target options
3523 can affect function inlining rules:
3524
3525 In particular, a caller function can inline a callee function only if the
3526 architectural features available to the callee are a subset of the features
3527 available to the caller.
3528 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3529 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3530 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3531 because the all the architectural features that function @code{bar} requires
3532 are available to function @code{foo}. Conversely, function @code{bar} cannot
3533 inline function @code{foo}.
3534
3535 Additionally inlining a function compiled with @option{-mstrict-align} into a
3536 function compiled without @code{-mstrict-align} is not allowed.
3537 However, inlining a function compiled without @option{-mstrict-align} into a
3538 function compiled with @option{-mstrict-align} is allowed.
3539
3540 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3541 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3542 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3543 architectural feature rules specified above.
3544
3545 @node ARC Function Attributes
3546 @subsection ARC Function Attributes
3547
3548 These function attributes are supported by the ARC back end:
3549
3550 @table @code
3551 @item interrupt
3552 @cindex @code{interrupt} function attribute, ARC
3553 Use this attribute to indicate
3554 that the specified function is an interrupt handler. The compiler generates
3555 function entry and exit sequences suitable for use in an interrupt handler
3556 when this attribute is present.
3557
3558 On the ARC, you must specify the kind of interrupt to be handled
3559 in a parameter to the interrupt attribute like this:
3560
3561 @smallexample
3562 void f () __attribute__ ((interrupt ("ilink1")));
3563 @end smallexample
3564
3565 Permissible values for this parameter are: @w{@code{ilink1}} and
3566 @w{@code{ilink2}}.
3567
3568 @item long_call
3569 @itemx medium_call
3570 @itemx short_call
3571 @cindex @code{long_call} function attribute, ARC
3572 @cindex @code{medium_call} function attribute, ARC
3573 @cindex @code{short_call} function attribute, ARC
3574 @cindex indirect calls, ARC
3575 These attributes specify how a particular function is called.
3576 These attributes override the
3577 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3578 command-line switches and @code{#pragma long_calls} settings.
3579
3580 For ARC, a function marked with the @code{long_call} attribute is
3581 always called using register-indirect jump-and-link instructions,
3582 thereby enabling the called function to be placed anywhere within the
3583 32-bit address space. A function marked with the @code{medium_call}
3584 attribute will always be close enough to be called with an unconditional
3585 branch-and-link instruction, which has a 25-bit offset from
3586 the call site. A function marked with the @code{short_call}
3587 attribute will always be close enough to be called with a conditional
3588 branch-and-link instruction, which has a 21-bit offset from
3589 the call site.
3590 @end table
3591
3592 @node ARM Function Attributes
3593 @subsection ARM Function Attributes
3594
3595 These function attributes are supported for ARM targets:
3596
3597 @table @code
3598 @item interrupt
3599 @cindex @code{interrupt} function attribute, ARM
3600 Use this attribute to indicate
3601 that the specified function is an interrupt handler. The compiler generates
3602 function entry and exit sequences suitable for use in an interrupt handler
3603 when this attribute is present.
3604
3605 You can specify the kind of interrupt to be handled by
3606 adding an optional parameter to the interrupt attribute like this:
3607
3608 @smallexample
3609 void f () __attribute__ ((interrupt ("IRQ")));
3610 @end smallexample
3611
3612 @noindent
3613 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3614 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3615
3616 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3617 may be called with a word-aligned stack pointer.
3618
3619 @item isr
3620 @cindex @code{isr} function attribute, ARM
3621 Use this attribute on ARM to write Interrupt Service Routines. This is an
3622 alias to the @code{interrupt} attribute above.
3623
3624 @item long_call
3625 @itemx short_call
3626 @cindex @code{long_call} function attribute, ARM
3627 @cindex @code{short_call} function attribute, ARM
3628 @cindex indirect calls, ARM
3629 These attributes specify how a particular function is called.
3630 These attributes override the
3631 @option{-mlong-calls} (@pxref{ARM Options})
3632 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3633 @code{long_call} attribute indicates that the function might be far
3634 away from the call site and require a different (more expensive)
3635 calling sequence. The @code{short_call} attribute always places
3636 the offset to the function from the call site into the @samp{BL}
3637 instruction directly.
3638
3639 @item naked
3640 @cindex @code{naked} function attribute, ARM
3641 This attribute allows the compiler to construct the
3642 requisite function declaration, while allowing the body of the
3643 function to be assembly code. The specified function will not have
3644 prologue/epilogue sequences generated by the compiler. Only basic
3645 @code{asm} statements can safely be included in naked functions
3646 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3647 basic @code{asm} and C code may appear to work, they cannot be
3648 depended upon to work reliably and are not supported.
3649
3650 @item pcs
3651 @cindex @code{pcs} function attribute, ARM
3652
3653 The @code{pcs} attribute can be used to control the calling convention
3654 used for a function on ARM. The attribute takes an argument that specifies
3655 the calling convention to use.
3656
3657 When compiling using the AAPCS ABI (or a variant of it) then valid
3658 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3659 order to use a variant other than @code{"aapcs"} then the compiler must
3660 be permitted to use the appropriate co-processor registers (i.e., the
3661 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3662 For example,
3663
3664 @smallexample
3665 /* Argument passed in r0, and result returned in r0+r1. */
3666 double f2d (float) __attribute__((pcs("aapcs")));
3667 @end smallexample
3668
3669 Variadic functions always use the @code{"aapcs"} calling convention and
3670 the compiler rejects attempts to specify an alternative.
3671
3672 @item target (@var{options})
3673 @cindex @code{target} function attribute
3674 As discussed in @ref{Common Function Attributes}, this attribute
3675 allows specification of target-specific compilation options.
3676
3677 On ARM, the following options are allowed:
3678
3679 @table @samp
3680 @item thumb
3681 @cindex @code{target("thumb")} function attribute, ARM
3682 Force code generation in the Thumb (T16/T32) ISA, depending on the
3683 architecture level.
3684
3685 @item arm
3686 @cindex @code{target("arm")} function attribute, ARM
3687 Force code generation in the ARM (A32) ISA.
3688
3689 Functions from different modes can be inlined in the caller's mode.
3690
3691 @item fpu=
3692 @cindex @code{target("fpu=")} function attribute, ARM
3693 Specifies the fpu for which to tune the performance of this function.
3694 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3695 command-line option.
3696
3697 @end table
3698
3699 @end table
3700
3701 @node AVR Function Attributes
3702 @subsection AVR Function Attributes
3703
3704 These function attributes are supported by the AVR back end:
3705
3706 @table @code
3707 @item interrupt
3708 @cindex @code{interrupt} function attribute, AVR
3709 Use this attribute to indicate
3710 that the specified function is an interrupt handler. The compiler generates
3711 function entry and exit sequences suitable for use in an interrupt handler
3712 when this attribute is present.
3713
3714 On the AVR, the hardware globally disables interrupts when an
3715 interrupt is executed. The first instruction of an interrupt handler
3716 declared with this attribute is a @code{SEI} instruction to
3717 re-enable interrupts. See also the @code{signal} function attribute
3718 that does not insert a @code{SEI} instruction. If both @code{signal} and
3719 @code{interrupt} are specified for the same function, @code{signal}
3720 is silently ignored.
3721
3722 @item naked
3723 @cindex @code{naked} function attribute, AVR
3724 This attribute allows the compiler to construct the
3725 requisite function declaration, while allowing the body of the
3726 function to be assembly code. The specified function will not have
3727 prologue/epilogue sequences generated by the compiler. Only basic
3728 @code{asm} statements can safely be included in naked functions
3729 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3730 basic @code{asm} and C code may appear to work, they cannot be
3731 depended upon to work reliably and are not supported.
3732
3733 @item OS_main
3734 @itemx OS_task
3735 @cindex @code{OS_main} function attribute, AVR
3736 @cindex @code{OS_task} function attribute, AVR
3737 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3738 do not save/restore any call-saved register in their prologue/epilogue.
3739
3740 The @code{OS_main} attribute can be used when there @emph{is
3741 guarantee} that interrupts are disabled at the time when the function
3742 is entered. This saves resources when the stack pointer has to be
3743 changed to set up a frame for local variables.
3744
3745 The @code{OS_task} attribute can be used when there is @emph{no
3746 guarantee} that interrupts are disabled at that time when the function
3747 is entered like for, e@.g@. task functions in a multi-threading operating
3748 system. In that case, changing the stack pointer register is
3749 guarded by save/clear/restore of the global interrupt enable flag.
3750
3751 The differences to the @code{naked} function attribute are:
3752 @itemize @bullet
3753 @item @code{naked} functions do not have a return instruction whereas
3754 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3755 @code{RETI} return instruction.
3756 @item @code{naked} functions do not set up a frame for local variables
3757 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3758 as needed.
3759 @end itemize
3760
3761 @item signal
3762 @cindex @code{signal} function attribute, AVR
3763 Use this attribute on the AVR to indicate that the specified
3764 function is an interrupt handler. The compiler generates function
3765 entry and exit sequences suitable for use in an interrupt handler when this
3766 attribute is present.
3767
3768 See also the @code{interrupt} function attribute.
3769
3770 The AVR hardware globally disables interrupts when an interrupt is executed.
3771 Interrupt handler functions defined with the @code{signal} attribute
3772 do not re-enable interrupts. It is save to enable interrupts in a
3773 @code{signal} handler. This ``save'' only applies to the code
3774 generated by the compiler and not to the IRQ layout of the
3775 application which is responsibility of the application.
3776
3777 If both @code{signal} and @code{interrupt} are specified for the same
3778 function, @code{signal} is silently ignored.
3779 @end table
3780
3781 @node Blackfin Function Attributes
3782 @subsection Blackfin Function Attributes
3783
3784 These function attributes are supported by the Blackfin back end:
3785
3786 @table @code
3787
3788 @item exception_handler
3789 @cindex @code{exception_handler} function attribute
3790 @cindex exception handler functions, Blackfin
3791 Use this attribute on the Blackfin to indicate that the specified function
3792 is an exception handler. The compiler generates function entry and
3793 exit sequences suitable for use in an exception handler when this
3794 attribute is present.
3795
3796 @item interrupt_handler
3797 @cindex @code{interrupt_handler} function attribute, Blackfin
3798 Use this attribute to
3799 indicate that the specified function is an interrupt handler. The compiler
3800 generates function entry and exit sequences suitable for use in an
3801 interrupt handler when this attribute is present.
3802
3803 @item kspisusp
3804 @cindex @code{kspisusp} function attribute, Blackfin
3805 @cindex User stack pointer in interrupts on the Blackfin
3806 When used together with @code{interrupt_handler}, @code{exception_handler}
3807 or @code{nmi_handler}, code is generated to load the stack pointer
3808 from the USP register in the function prologue.
3809
3810 @item l1_text
3811 @cindex @code{l1_text} function attribute, Blackfin
3812 This attribute specifies a function to be placed into L1 Instruction
3813 SRAM@. The function is put into a specific section named @code{.l1.text}.
3814 With @option{-mfdpic}, function calls with a such function as the callee
3815 or caller uses inlined PLT.
3816
3817 @item l2
3818 @cindex @code{l2} function attribute, Blackfin
3819 This attribute specifies a function to be placed into L2
3820 SRAM. The function is put into a specific section named
3821 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
3822 an inlined PLT.
3823
3824 @item longcall
3825 @itemx shortcall
3826 @cindex indirect calls, Blackfin
3827 @cindex @code{longcall} function attribute, Blackfin
3828 @cindex @code{shortcall} function attribute, Blackfin
3829 The @code{longcall} attribute
3830 indicates that the function might be far away from the call site and
3831 require a different (more expensive) calling sequence. The
3832 @code{shortcall} attribute indicates that the function is always close
3833 enough for the shorter calling sequence to be used. These attributes
3834 override the @option{-mlongcall} switch.
3835
3836 @item nesting
3837 @cindex @code{nesting} function attribute, Blackfin
3838 @cindex Allow nesting in an interrupt handler on the Blackfin processor
3839 Use this attribute together with @code{interrupt_handler},
3840 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3841 entry code should enable nested interrupts or exceptions.
3842
3843 @item nmi_handler
3844 @cindex @code{nmi_handler} function attribute, Blackfin
3845 @cindex NMI handler functions on the Blackfin processor
3846 Use this attribute on the Blackfin to indicate that the specified function
3847 is an NMI handler. The compiler generates function entry and
3848 exit sequences suitable for use in an NMI handler when this
3849 attribute is present.
3850
3851 @item saveall
3852 @cindex @code{saveall} function attribute, Blackfin
3853 @cindex save all registers on the Blackfin
3854 Use this attribute to indicate that
3855 all registers except the stack pointer should be saved in the prologue
3856 regardless of whether they are used or not.
3857 @end table
3858
3859 @node CR16 Function Attributes
3860 @subsection CR16 Function Attributes
3861
3862 These function attributes are supported by the CR16 back end:
3863
3864 @table @code
3865 @item interrupt
3866 @cindex @code{interrupt} function attribute, CR16
3867 Use this attribute to indicate
3868 that the specified function is an interrupt handler. The compiler generates
3869 function entry and exit sequences suitable for use in an interrupt handler
3870 when this attribute is present.
3871 @end table
3872
3873 @node Epiphany Function Attributes
3874 @subsection Epiphany Function Attributes
3875
3876 These function attributes are supported by the Epiphany back end:
3877
3878 @table @code
3879 @item disinterrupt
3880 @cindex @code{disinterrupt} function attribute, Epiphany
3881 This attribute causes the compiler to emit
3882 instructions to disable interrupts for the duration of the given
3883 function.
3884
3885 @item forwarder_section
3886 @cindex @code{forwarder_section} function attribute, Epiphany
3887 This attribute modifies the behavior of an interrupt handler.
3888 The interrupt handler may be in external memory which cannot be
3889 reached by a branch instruction, so generate a local memory trampoline
3890 to transfer control. The single parameter identifies the section where
3891 the trampoline is placed.
3892
3893 @item interrupt
3894 @cindex @code{interrupt} function attribute, Epiphany
3895 Use this attribute to indicate
3896 that the specified function is an interrupt handler. The compiler generates
3897 function entry and exit sequences suitable for use in an interrupt handler
3898 when this attribute is present. It may also generate
3899 a special section with code to initialize the interrupt vector table.
3900
3901 On Epiphany targets one or more optional parameters can be added like this:
3902
3903 @smallexample
3904 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3905 @end smallexample
3906
3907 Permissible values for these parameters are: @w{@code{reset}},
3908 @w{@code{software_exception}}, @w{@code{page_miss}},
3909 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
3910 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
3911 Multiple parameters indicate that multiple entries in the interrupt
3912 vector table should be initialized for this function, i.e.@: for each
3913 parameter @w{@var{name}}, a jump to the function is emitted in
3914 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3915 entirely, in which case no interrupt vector table entry is provided.
3916
3917 Note that interrupts are enabled inside the function
3918 unless the @code{disinterrupt} attribute is also specified.
3919
3920 The following examples are all valid uses of these attributes on
3921 Epiphany targets:
3922 @smallexample
3923 void __attribute__ ((interrupt)) universal_handler ();
3924 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3925 void __attribute__ ((interrupt ("dma0, dma1")))
3926 universal_dma_handler ();
3927 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3928 fast_timer_handler ();
3929 void __attribute__ ((interrupt ("dma0, dma1"),
3930 forwarder_section ("tramp")))
3931 external_dma_handler ();
3932 @end smallexample
3933
3934 @item long_call
3935 @itemx short_call
3936 @cindex @code{long_call} function attribute, Epiphany
3937 @cindex @code{short_call} function attribute, Epiphany
3938 @cindex indirect calls, Epiphany
3939 These attributes specify how a particular function is called.
3940 These attributes override the
3941 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
3942 command-line switch and @code{#pragma long_calls} settings.
3943 @end table
3944
3945
3946 @node H8/300 Function Attributes
3947 @subsection H8/300 Function Attributes
3948
3949 These function attributes are available for H8/300 targets:
3950
3951 @table @code
3952 @item function_vector
3953 @cindex @code{function_vector} function attribute, H8/300
3954 Use this attribute on the H8/300, H8/300H, and H8S to indicate
3955 that the specified function should be called through the function vector.
3956 Calling a function through the function vector reduces code size; however,
3957 the function vector has a limited size (maximum 128 entries on the H8/300
3958 and 64 entries on the H8/300H and H8S)
3959 and shares space with the interrupt vector.
3960
3961 @item interrupt_handler
3962 @cindex @code{interrupt_handler} function attribute, H8/300
3963 Use this attribute on the H8/300, H8/300H, and H8S to
3964 indicate that the specified function is an interrupt handler. The compiler
3965 generates function entry and exit sequences suitable for use in an
3966 interrupt handler when this attribute is present.
3967
3968 @item saveall
3969 @cindex @code{saveall} function attribute, H8/300
3970 @cindex save all registers on the H8/300, H8/300H, and H8S
3971 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
3972 all registers except the stack pointer should be saved in the prologue
3973 regardless of whether they are used or not.
3974 @end table
3975
3976 @node IA-64 Function Attributes
3977 @subsection IA-64 Function Attributes
3978
3979 These function attributes are supported on IA-64 targets:
3980
3981 @table @code
3982 @item syscall_linkage
3983 @cindex @code{syscall_linkage} function attribute, IA-64
3984 This attribute is used to modify the IA-64 calling convention by marking
3985 all input registers as live at all function exits. This makes it possible
3986 to restart a system call after an interrupt without having to save/restore
3987 the input registers. This also prevents kernel data from leaking into
3988 application code.
3989
3990 @item version_id
3991 @cindex @code{version_id} function attribute, IA-64
3992 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
3993 symbol to contain a version string, thus allowing for function level
3994 versioning. HP-UX system header files may use function level versioning
3995 for some system calls.
3996
3997 @smallexample
3998 extern int foo () __attribute__((version_id ("20040821")));
3999 @end smallexample
4000
4001 @noindent
4002 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4003 @end table
4004
4005 @node M32C Function Attributes
4006 @subsection M32C Function Attributes
4007
4008 These function attributes are supported by the M32C back end:
4009
4010 @table @code
4011 @item bank_switch
4012 @cindex @code{bank_switch} function attribute, M32C
4013 When added to an interrupt handler with the M32C port, causes the
4014 prologue and epilogue to use bank switching to preserve the registers
4015 rather than saving them on the stack.
4016
4017 @item fast_interrupt
4018 @cindex @code{fast_interrupt} function attribute, M32C
4019 Use this attribute on the M32C port to indicate that the specified
4020 function is a fast interrupt handler. This is just like the
4021 @code{interrupt} attribute, except that @code{freit} is used to return
4022 instead of @code{reit}.
4023
4024 @item function_vector
4025 @cindex @code{function_vector} function attribute, M16C/M32C
4026 On M16C/M32C targets, the @code{function_vector} attribute declares a
4027 special page subroutine call function. Use of this attribute reduces
4028 the code size by 2 bytes for each call generated to the
4029 subroutine. The argument to the attribute is the vector number entry
4030 from the special page vector table which contains the 16 low-order
4031 bits of the subroutine's entry address. Each vector table has special
4032 page number (18 to 255) that is used in @code{jsrs} instructions.
4033 Jump addresses of the routines are generated by adding 0x0F0000 (in
4034 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4035 2-byte addresses set in the vector table. Therefore you need to ensure
4036 that all the special page vector routines should get mapped within the
4037 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4038 (for M32C).
4039
4040 In the following example 2 bytes are saved for each call to
4041 function @code{foo}.
4042
4043 @smallexample
4044 void foo (void) __attribute__((function_vector(0x18)));
4045 void foo (void)
4046 @{
4047 @}
4048
4049 void bar (void)
4050 @{
4051 foo();
4052 @}
4053 @end smallexample
4054
4055 If functions are defined in one file and are called in another file,
4056 then be sure to write this declaration in both files.
4057
4058 This attribute is ignored for R8C target.
4059
4060 @item interrupt
4061 @cindex @code{interrupt} function attribute, M32C
4062 Use this attribute to indicate
4063 that the specified function is an interrupt handler. The compiler generates
4064 function entry and exit sequences suitable for use in an interrupt handler
4065 when this attribute is present.
4066 @end table
4067
4068 @node M32R/D Function Attributes
4069 @subsection M32R/D Function Attributes
4070
4071 These function attributes are supported by the M32R/D back end:
4072
4073 @table @code
4074 @item interrupt
4075 @cindex @code{interrupt} function attribute, M32R/D
4076 Use this attribute to indicate
4077 that the specified function is an interrupt handler. The compiler generates
4078 function entry and exit sequences suitable for use in an interrupt handler
4079 when this attribute is present.
4080
4081 @item model (@var{model-name})
4082 @cindex @code{model} function attribute, M32R/D
4083 @cindex function addressability on the M32R/D
4084
4085 On the M32R/D, use this attribute to set the addressability of an
4086 object, and of the code generated for a function. The identifier
4087 @var{model-name} is one of @code{small}, @code{medium}, or
4088 @code{large}, representing each of the code models.
4089
4090 Small model objects live in the lower 16MB of memory (so that their
4091 addresses can be loaded with the @code{ld24} instruction), and are
4092 callable with the @code{bl} instruction.
4093
4094 Medium model objects may live anywhere in the 32-bit address space (the
4095 compiler generates @code{seth/add3} instructions to load their addresses),
4096 and are callable with the @code{bl} instruction.
4097
4098 Large model objects may live anywhere in the 32-bit address space (the
4099 compiler generates @code{seth/add3} instructions to load their addresses),
4100 and may not be reachable with the @code{bl} instruction (the compiler
4101 generates the much slower @code{seth/add3/jl} instruction sequence).
4102 @end table
4103
4104 @node m68k Function Attributes
4105 @subsection m68k Function Attributes
4106
4107 These function attributes are supported by the m68k back end:
4108
4109 @table @code
4110 @item interrupt
4111 @itemx interrupt_handler
4112 @cindex @code{interrupt} function attribute, m68k
4113 @cindex @code{interrupt_handler} function attribute, m68k
4114 Use this attribute to
4115 indicate that the specified function is an interrupt handler. The compiler
4116 generates function entry and exit sequences suitable for use in an
4117 interrupt handler when this attribute is present. Either name may be used.
4118
4119 @item interrupt_thread
4120 @cindex @code{interrupt_thread} function attribute, fido
4121 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4122 that the specified function is an interrupt handler that is designed
4123 to run as a thread. The compiler omits generate prologue/epilogue
4124 sequences and replaces the return instruction with a @code{sleep}
4125 instruction. This attribute is available only on fido.
4126 @end table
4127
4128 @node MCORE Function Attributes
4129 @subsection MCORE Function Attributes
4130
4131 These function attributes are supported by the MCORE back end:
4132
4133 @table @code
4134 @item naked
4135 @cindex @code{naked} function attribute, MCORE
4136 This attribute allows the compiler to construct the
4137 requisite function declaration, while allowing the body of the
4138 function to be assembly code. The specified function will not have
4139 prologue/epilogue sequences generated by the compiler. Only basic
4140 @code{asm} statements can safely be included in naked functions
4141 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4142 basic @code{asm} and C code may appear to work, they cannot be
4143 depended upon to work reliably and are not supported.
4144 @end table
4145
4146 @node MeP Function Attributes
4147 @subsection MeP Function Attributes
4148
4149 These function attributes are supported by the MeP back end:
4150
4151 @table @code
4152 @item disinterrupt
4153 @cindex @code{disinterrupt} function attribute, MeP
4154 On MeP targets, this attribute causes the compiler to emit
4155 instructions to disable interrupts for the duration of the given
4156 function.
4157
4158 @item interrupt
4159 @cindex @code{interrupt} function attribute, MeP
4160 Use this attribute to indicate
4161 that the specified function is an interrupt handler. The compiler generates
4162 function entry and exit sequences suitable for use in an interrupt handler
4163 when this attribute is present.
4164
4165 @item near
4166 @cindex @code{near} function attribute, MeP
4167 This attribute causes the compiler to assume the called
4168 function is close enough to use the normal calling convention,
4169 overriding the @option{-mtf} command-line option.
4170
4171 @item far
4172 @cindex @code{far} function attribute, MeP
4173 On MeP targets this causes the compiler to use a calling convention
4174 that assumes the called function is too far away for the built-in
4175 addressing modes.
4176
4177 @item vliw
4178 @cindex @code{vliw} function attribute, MeP
4179 The @code{vliw} attribute tells the compiler to emit
4180 instructions in VLIW mode instead of core mode. Note that this
4181 attribute is not allowed unless a VLIW coprocessor has been configured
4182 and enabled through command-line options.
4183 @end table
4184
4185 @node MicroBlaze Function Attributes
4186 @subsection MicroBlaze Function Attributes
4187
4188 These function attributes are supported on MicroBlaze targets:
4189
4190 @table @code
4191 @item save_volatiles
4192 @cindex @code{save_volatiles} function attribute, MicroBlaze
4193 Use this attribute to indicate that the function is
4194 an interrupt handler. All volatile registers (in addition to non-volatile
4195 registers) are saved in the function prologue. If the function is a leaf
4196 function, only volatiles used by the function are saved. A normal function
4197 return is generated instead of a return from interrupt.
4198
4199 @item break_handler
4200 @cindex @code{break_handler} function attribute, MicroBlaze
4201 @cindex break handler functions
4202 Use this attribute to indicate that
4203 the specified function is a break handler. The compiler generates function
4204 entry and exit sequences suitable for use in an break handler when this
4205 attribute is present. The return from @code{break_handler} is done through
4206 the @code{rtbd} instead of @code{rtsd}.
4207
4208 @smallexample
4209 void f () __attribute__ ((break_handler));
4210 @end smallexample
4211
4212 @item interrupt_handler
4213 @itemx fast_interrupt
4214 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4215 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4216 These attributes indicate that the specified function is an interrupt
4217 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4218 used in low-latency interrupt mode, and @code{interrupt_handler} for
4219 interrupts that do not use low-latency handlers. In both cases, GCC
4220 emits appropriate prologue code and generates a return from the handler
4221 using @code{rtid} instead of @code{rtsd}.
4222 @end table
4223
4224 @node Microsoft Windows Function Attributes
4225 @subsection Microsoft Windows Function Attributes
4226
4227 The following attributes are available on Microsoft Windows and Symbian OS
4228 targets.
4229
4230 @table @code
4231 @item dllexport
4232 @cindex @code{dllexport} function attribute
4233 @cindex @code{__declspec(dllexport)}
4234 On Microsoft Windows targets and Symbian OS targets the
4235 @code{dllexport} attribute causes the compiler to provide a global
4236 pointer to a pointer in a DLL, so that it can be referenced with the
4237 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4238 name is formed by combining @code{_imp__} and the function or variable
4239 name.
4240
4241 You can use @code{__declspec(dllexport)} as a synonym for
4242 @code{__attribute__ ((dllexport))} for compatibility with other
4243 compilers.
4244
4245 On systems that support the @code{visibility} attribute, this
4246 attribute also implies ``default'' visibility. It is an error to
4247 explicitly specify any other visibility.
4248
4249 GCC's default behavior is to emit all inline functions with the
4250 @code{dllexport} attribute. Since this can cause object file-size bloat,
4251 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4252 ignore the attribute for inlined functions unless the
4253 @option{-fkeep-inline-functions} flag is used instead.
4254
4255 The attribute is ignored for undefined symbols.
4256
4257 When applied to C++ classes, the attribute marks defined non-inlined
4258 member functions and static data members as exports. Static consts
4259 initialized in-class are not marked unless they are also defined
4260 out-of-class.
4261
4262 For Microsoft Windows targets there are alternative methods for
4263 including the symbol in the DLL's export table such as using a
4264 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4265 the @option{--export-all} linker flag.
4266
4267 @item dllimport
4268 @cindex @code{dllimport} function attribute
4269 @cindex @code{__declspec(dllimport)}
4270 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4271 attribute causes the compiler to reference a function or variable via
4272 a global pointer to a pointer that is set up by the DLL exporting the
4273 symbol. The attribute implies @code{extern}. On Microsoft Windows
4274 targets, the pointer name is formed by combining @code{_imp__} and the
4275 function or variable name.
4276
4277 You can use @code{__declspec(dllimport)} as a synonym for
4278 @code{__attribute__ ((dllimport))} for compatibility with other
4279 compilers.
4280
4281 On systems that support the @code{visibility} attribute, this
4282 attribute also implies ``default'' visibility. It is an error to
4283 explicitly specify any other visibility.
4284
4285 Currently, the attribute is ignored for inlined functions. If the
4286 attribute is applied to a symbol @emph{definition}, an error is reported.
4287 If a symbol previously declared @code{dllimport} is later defined, the
4288 attribute is ignored in subsequent references, and a warning is emitted.
4289 The attribute is also overridden by a subsequent declaration as
4290 @code{dllexport}.
4291
4292 When applied to C++ classes, the attribute marks non-inlined
4293 member functions and static data members as imports. However, the
4294 attribute is ignored for virtual methods to allow creation of vtables
4295 using thunks.
4296
4297 On the SH Symbian OS target the @code{dllimport} attribute also has
4298 another affect---it can cause the vtable and run-time type information
4299 for a class to be exported. This happens when the class has a
4300 dllimported constructor or a non-inline, non-pure virtual function
4301 and, for either of those two conditions, the class also has an inline
4302 constructor or destructor and has a key function that is defined in
4303 the current translation unit.
4304
4305 For Microsoft Windows targets the use of the @code{dllimport}
4306 attribute on functions is not necessary, but provides a small
4307 performance benefit by eliminating a thunk in the DLL@. The use of the
4308 @code{dllimport} attribute on imported variables can be avoided by passing the
4309 @option{--enable-auto-import} switch to the GNU linker. As with
4310 functions, using the attribute for a variable eliminates a thunk in
4311 the DLL@.
4312
4313 One drawback to using this attribute is that a pointer to a
4314 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4315 address. However, a pointer to a @emph{function} with the
4316 @code{dllimport} attribute can be used as a constant initializer; in
4317 this case, the address of a stub function in the import lib is
4318 referenced. On Microsoft Windows targets, the attribute can be disabled
4319 for functions by setting the @option{-mnop-fun-dllimport} flag.
4320 @end table
4321
4322 @node MIPS Function Attributes
4323 @subsection MIPS Function Attributes
4324
4325 These function attributes are supported by the MIPS back end:
4326
4327 @table @code
4328 @item interrupt
4329 @cindex @code{interrupt} function attribute, MIPS
4330 Use this attribute to indicate that the specified function is an interrupt
4331 handler. The compiler generates function entry and exit sequences suitable
4332 for use in an interrupt handler when this attribute is present.
4333 An optional argument is supported for the interrupt attribute which allows
4334 the interrupt mode to be described. By default GCC assumes the external
4335 interrupt controller (EIC) mode is in use, this can be explicitly set using
4336 @code{eic}. When interrupts are non-masked then the requested Interrupt
4337 Priority Level (IPL) is copied to the current IPL which has the effect of only
4338 enabling higher priority interrupts. To use vectored interrupt mode use
4339 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4340 the behavior of the non-masked interrupt support and GCC will arrange to mask
4341 all interrupts from sw0 up to and including the specified interrupt vector.
4342
4343 You can use the following attributes to modify the behavior
4344 of an interrupt handler:
4345 @table @code
4346 @item use_shadow_register_set
4347 @cindex @code{use_shadow_register_set} function attribute, MIPS
4348 Assume that the handler uses a shadow register set, instead of
4349 the main general-purpose registers. An optional argument @code{intstack} is
4350 supported to indicate that the shadow register set contains a valid stack
4351 pointer.
4352
4353 @item keep_interrupts_masked
4354 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4355 Keep interrupts masked for the whole function. Without this attribute,
4356 GCC tries to reenable interrupts for as much of the function as it can.
4357
4358 @item use_debug_exception_return
4359 @cindex @code{use_debug_exception_return} function attribute, MIPS
4360 Return using the @code{deret} instruction. Interrupt handlers that don't
4361 have this attribute return using @code{eret} instead.
4362 @end table
4363
4364 You can use any combination of these attributes, as shown below:
4365 @smallexample
4366 void __attribute__ ((interrupt)) v0 ();
4367 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4368 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4369 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4370 void __attribute__ ((interrupt, use_shadow_register_set,
4371 keep_interrupts_masked)) v4 ();
4372 void __attribute__ ((interrupt, use_shadow_register_set,
4373 use_debug_exception_return)) v5 ();
4374 void __attribute__ ((interrupt, keep_interrupts_masked,
4375 use_debug_exception_return)) v6 ();
4376 void __attribute__ ((interrupt, use_shadow_register_set,
4377 keep_interrupts_masked,
4378 use_debug_exception_return)) v7 ();
4379 void __attribute__ ((interrupt("eic"))) v8 ();
4380 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4381 @end smallexample
4382
4383 @item long_call
4384 @itemx near
4385 @itemx far
4386 @cindex indirect calls, MIPS
4387 @cindex @code{long_call} function attribute, MIPS
4388 @cindex @code{near} function attribute, MIPS
4389 @cindex @code{far} function attribute, MIPS
4390 These attributes specify how a particular function is called on MIPS@.
4391 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4392 command-line switch. The @code{long_call} and @code{far} attributes are
4393 synonyms, and cause the compiler to always call
4394 the function by first loading its address into a register, and then using
4395 the contents of that register. The @code{near} attribute has the opposite
4396 effect; it specifies that non-PIC calls should be made using the more
4397 efficient @code{jal} instruction.
4398
4399 @item mips16
4400 @itemx nomips16
4401 @cindex @code{mips16} function attribute, MIPS
4402 @cindex @code{nomips16} function attribute, MIPS
4403
4404 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4405 function attributes to locally select or turn off MIPS16 code generation.
4406 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4407 while MIPS16 code generation is disabled for functions with the
4408 @code{nomips16} attribute. These attributes override the
4409 @option{-mips16} and @option{-mno-mips16} options on the command line
4410 (@pxref{MIPS Options}).
4411
4412 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4413 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4414 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4415 may interact badly with some GCC extensions such as @code{__builtin_apply}
4416 (@pxref{Constructing Calls}).
4417
4418 @item micromips, MIPS
4419 @itemx nomicromips, MIPS
4420 @cindex @code{micromips} function attribute
4421 @cindex @code{nomicromips} function attribute
4422
4423 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4424 function attributes to locally select or turn off microMIPS code generation.
4425 A function with the @code{micromips} attribute is emitted as microMIPS code,
4426 while microMIPS code generation is disabled for functions with the
4427 @code{nomicromips} attribute. These attributes override the
4428 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4429 (@pxref{MIPS Options}).
4430
4431 When compiling files containing mixed microMIPS and non-microMIPS code, the
4432 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4433 command line,
4434 not that within individual functions. Mixed microMIPS and non-microMIPS code
4435 may interact badly with some GCC extensions such as @code{__builtin_apply}
4436 (@pxref{Constructing Calls}).
4437
4438 @item nocompression
4439 @cindex @code{nocompression} function attribute, MIPS
4440 On MIPS targets, you can use the @code{nocompression} function attribute
4441 to locally turn off MIPS16 and microMIPS code generation. This attribute
4442 overrides the @option{-mips16} and @option{-mmicromips} options on the
4443 command line (@pxref{MIPS Options}).
4444 @end table
4445
4446 @node MSP430 Function Attributes
4447 @subsection MSP430 Function Attributes
4448
4449 These function attributes are supported by the MSP430 back end:
4450
4451 @table @code
4452 @item critical
4453 @cindex @code{critical} function attribute, MSP430
4454 Critical functions disable interrupts upon entry and restore the
4455 previous interrupt state upon exit. Critical functions cannot also
4456 have the @code{naked} or @code{reentrant} attributes. They can have
4457 the @code{interrupt} attribute.
4458
4459 @item interrupt
4460 @cindex @code{interrupt} function attribute, MSP430
4461 Use this attribute to indicate
4462 that the specified function is an interrupt handler. The compiler generates
4463 function entry and exit sequences suitable for use in an interrupt handler
4464 when this attribute is present.
4465
4466 You can provide an argument to the interrupt
4467 attribute which specifies a name or number. If the argument is a
4468 number it indicates the slot in the interrupt vector table (0 - 31) to
4469 which this handler should be assigned. If the argument is a name it
4470 is treated as a symbolic name for the vector slot. These names should
4471 match up with appropriate entries in the linker script. By default
4472 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4473 @code{reset} for vector 31 are recognized.
4474
4475 @item naked
4476 @cindex @code{naked} function attribute, MSP430
4477 This attribute allows the compiler to construct the
4478 requisite function declaration, while allowing the body of the
4479 function to be assembly code. The specified function will not have
4480 prologue/epilogue sequences generated by the compiler. Only basic
4481 @code{asm} statements can safely be included in naked functions
4482 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4483 basic @code{asm} and C code may appear to work, they cannot be
4484 depended upon to work reliably and are not supported.
4485
4486 @item reentrant
4487 @cindex @code{reentrant} function attribute, MSP430
4488 Reentrant functions disable interrupts upon entry and enable them
4489 upon exit. Reentrant functions cannot also have the @code{naked}
4490 or @code{critical} attributes. They can have the @code{interrupt}
4491 attribute.
4492
4493 @item wakeup
4494 @cindex @code{wakeup} function attribute, MSP430
4495 This attribute only applies to interrupt functions. It is silently
4496 ignored if applied to a non-interrupt function. A wakeup interrupt
4497 function will rouse the processor from any low-power state that it
4498 might be in when the function exits.
4499
4500 @item lower
4501 @itemx upper
4502 @itemx either
4503 @cindex @code{lower} function attribute, MSP430
4504 @cindex @code{upper} function attribute, MSP430
4505 @cindex @code{either} function attribute, MSP430
4506 On the MSP430 target these attributes can be used to specify whether
4507 the function or variable should be placed into low memory, high
4508 memory, or the placement should be left to the linker to decide. The
4509 attributes are only significant if compiling for the MSP430X
4510 architecture.
4511
4512 The attributes work in conjunction with a linker script that has been
4513 augmented to specify where to place sections with a @code{.lower} and
4514 a @code{.upper} prefix. So, for example, as well as placing the
4515 @code{.data} section, the script also specifies the placement of a
4516 @code{.lower.data} and a @code{.upper.data} section. The intention
4517 is that @code{lower} sections are placed into a small but easier to
4518 access memory region and the upper sections are placed into a larger, but
4519 slower to access, region.
4520
4521 The @code{either} attribute is special. It tells the linker to place
4522 the object into the corresponding @code{lower} section if there is
4523 room for it. If there is insufficient room then the object is placed
4524 into the corresponding @code{upper} section instead. Note that the
4525 placement algorithm is not very sophisticated. It does not attempt to
4526 find an optimal packing of the @code{lower} sections. It just makes
4527 one pass over the objects and does the best that it can. Using the
4528 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4529 options can help the packing, however, since they produce smaller,
4530 easier to pack regions.
4531 @end table
4532
4533 @node NDS32 Function Attributes
4534 @subsection NDS32 Function Attributes
4535
4536 These function attributes are supported by the NDS32 back end:
4537
4538 @table @code
4539 @item exception
4540 @cindex @code{exception} function attribute
4541 @cindex exception handler functions, NDS32
4542 Use this attribute on the NDS32 target to indicate that the specified function
4543 is an exception handler. The compiler will generate corresponding sections
4544 for use in an exception handler.
4545
4546 @item interrupt
4547 @cindex @code{interrupt} function attribute, NDS32
4548 On NDS32 target, this attribute indicates that the specified function
4549 is an interrupt handler. The compiler generates corresponding sections
4550 for use in an interrupt handler. You can use the following attributes
4551 to modify the behavior:
4552 @table @code
4553 @item nested
4554 @cindex @code{nested} function attribute, NDS32
4555 This interrupt service routine is interruptible.
4556 @item not_nested
4557 @cindex @code{not_nested} function attribute, NDS32
4558 This interrupt service routine is not interruptible.
4559 @item nested_ready
4560 @cindex @code{nested_ready} function attribute, NDS32
4561 This interrupt service routine is interruptible after @code{PSW.GIE}
4562 (global interrupt enable) is set. This allows interrupt service routine to
4563 finish some short critical code before enabling interrupts.
4564 @item save_all
4565 @cindex @code{save_all} function attribute, NDS32
4566 The system will help save all registers into stack before entering
4567 interrupt handler.
4568 @item partial_save
4569 @cindex @code{partial_save} function attribute, NDS32
4570 The system will help save caller registers into stack before entering
4571 interrupt handler.
4572 @end table
4573
4574 @item naked
4575 @cindex @code{naked} function attribute, NDS32
4576 This attribute allows the compiler to construct the
4577 requisite function declaration, while allowing the body of the
4578 function to be assembly code. The specified function will not have
4579 prologue/epilogue sequences generated by the compiler. Only basic
4580 @code{asm} statements can safely be included in naked functions
4581 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4582 basic @code{asm} and C code may appear to work, they cannot be
4583 depended upon to work reliably and are not supported.
4584
4585 @item reset
4586 @cindex @code{reset} function attribute, NDS32
4587 @cindex reset handler functions
4588 Use this attribute on the NDS32 target to indicate that the specified function
4589 is a reset handler. The compiler will generate corresponding sections
4590 for use in a reset handler. You can use the following attributes
4591 to provide extra exception handling:
4592 @table @code
4593 @item nmi
4594 @cindex @code{nmi} function attribute, NDS32
4595 Provide a user-defined function to handle NMI exception.
4596 @item warm
4597 @cindex @code{warm} function attribute, NDS32
4598 Provide a user-defined function to handle warm reset exception.
4599 @end table
4600 @end table
4601
4602 @node Nios II Function Attributes
4603 @subsection Nios II Function Attributes
4604
4605 These function attributes are supported by the Nios II back end:
4606
4607 @table @code
4608 @item target (@var{options})
4609 @cindex @code{target} function attribute
4610 As discussed in @ref{Common Function Attributes}, this attribute
4611 allows specification of target-specific compilation options.
4612
4613 When compiling for Nios II, the following options are allowed:
4614
4615 @table @samp
4616 @item custom-@var{insn}=@var{N}
4617 @itemx no-custom-@var{insn}
4618 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4619 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4620 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4621 custom instruction with encoding @var{N} when generating code that uses
4622 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4623 the custom instruction @var{insn}.
4624 These target attributes correspond to the
4625 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4626 command-line options, and support the same set of @var{insn} keywords.
4627 @xref{Nios II Options}, for more information.
4628
4629 @item custom-fpu-cfg=@var{name}
4630 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4631 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4632 command-line option, to select a predefined set of custom instructions
4633 named @var{name}.
4634 @xref{Nios II Options}, for more information.
4635 @end table
4636 @end table
4637
4638 @node Nvidia PTX Function Attributes
4639 @subsection Nvidia PTX Function Attributes
4640
4641 These function attributes are supported by the Nvidia PTX back end:
4642
4643 @table @code
4644 @item kernel
4645 @cindex @code{kernel} attribute, Nvidia PTX
4646 This attribute indicates that the corresponding function should be compiled
4647 as a kernel function, which can be invoked from the host via the CUDA RT
4648 library.
4649 By default functions are only callable only from other PTX functions.
4650
4651 Kernel functions must have @code{void} return type.
4652 @end table
4653
4654 @node PowerPC Function Attributes
4655 @subsection PowerPC Function Attributes
4656
4657 These function attributes are supported by the PowerPC back end:
4658
4659 @table @code
4660 @item longcall
4661 @itemx shortcall
4662 @cindex indirect calls, PowerPC
4663 @cindex @code{longcall} function attribute, PowerPC
4664 @cindex @code{shortcall} function attribute, PowerPC
4665 The @code{longcall} attribute
4666 indicates that the function might be far away from the call site and
4667 require a different (more expensive) calling sequence. The
4668 @code{shortcall} attribute indicates that the function is always close
4669 enough for the shorter calling sequence to be used. These attributes
4670 override both the @option{-mlongcall} switch and
4671 the @code{#pragma longcall} setting.
4672
4673 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4674 calls are necessary.
4675
4676 @item target (@var{options})
4677 @cindex @code{target} function attribute
4678 As discussed in @ref{Common Function Attributes}, this attribute
4679 allows specification of target-specific compilation options.
4680
4681 On the PowerPC, the following options are allowed:
4682
4683 @table @samp
4684 @item altivec
4685 @itemx no-altivec
4686 @cindex @code{target("altivec")} function attribute, PowerPC
4687 Generate code that uses (does not use) AltiVec instructions. In
4688 32-bit code, you cannot enable AltiVec instructions unless
4689 @option{-mabi=altivec} is used on the command line.
4690
4691 @item cmpb
4692 @itemx no-cmpb
4693 @cindex @code{target("cmpb")} function attribute, PowerPC
4694 Generate code that uses (does not use) the compare bytes instruction
4695 implemented on the POWER6 processor and other processors that support
4696 the PowerPC V2.05 architecture.
4697
4698 @item dlmzb
4699 @itemx no-dlmzb
4700 @cindex @code{target("dlmzb")} function attribute, PowerPC
4701 Generate code that uses (does not use) the string-search @samp{dlmzb}
4702 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4703 generated by default when targeting those processors.
4704
4705 @item fprnd
4706 @itemx no-fprnd
4707 @cindex @code{target("fprnd")} function attribute, PowerPC
4708 Generate code that uses (does not use) the FP round to integer
4709 instructions implemented on the POWER5+ processor and other processors
4710 that support the PowerPC V2.03 architecture.
4711
4712 @item hard-dfp
4713 @itemx no-hard-dfp
4714 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4715 Generate code that uses (does not use) the decimal floating-point
4716 instructions implemented on some POWER processors.
4717
4718 @item isel
4719 @itemx no-isel
4720 @cindex @code{target("isel")} function attribute, PowerPC
4721 Generate code that uses (does not use) ISEL instruction.
4722
4723 @item mfcrf
4724 @itemx no-mfcrf
4725 @cindex @code{target("mfcrf")} function attribute, PowerPC
4726 Generate code that uses (does not use) the move from condition
4727 register field instruction implemented on the POWER4 processor and
4728 other processors that support the PowerPC V2.01 architecture.
4729
4730 @item mfpgpr
4731 @itemx no-mfpgpr
4732 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4733 Generate code that uses (does not use) the FP move to/from general
4734 purpose register instructions implemented on the POWER6X processor and
4735 other processors that support the extended PowerPC V2.05 architecture.
4736
4737 @item mulhw
4738 @itemx no-mulhw
4739 @cindex @code{target("mulhw")} function attribute, PowerPC
4740 Generate code that uses (does not use) the half-word multiply and
4741 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4742 These instructions are generated by default when targeting those
4743 processors.
4744
4745 @item multiple
4746 @itemx no-multiple
4747 @cindex @code{target("multiple")} function attribute, PowerPC
4748 Generate code that uses (does not use) the load multiple word
4749 instructions and the store multiple word instructions.
4750
4751 @item update
4752 @itemx no-update
4753 @cindex @code{target("update")} function attribute, PowerPC
4754 Generate code that uses (does not use) the load or store instructions
4755 that update the base register to the address of the calculated memory
4756 location.
4757
4758 @item popcntb
4759 @itemx no-popcntb
4760 @cindex @code{target("popcntb")} function attribute, PowerPC
4761 Generate code that uses (does not use) the popcount and double-precision
4762 FP reciprocal estimate instruction implemented on the POWER5
4763 processor and other processors that support the PowerPC V2.02
4764 architecture.
4765
4766 @item popcntd
4767 @itemx no-popcntd
4768 @cindex @code{target("popcntd")} function attribute, PowerPC
4769 Generate code that uses (does not use) the popcount instruction
4770 implemented on the POWER7 processor and other processors that support
4771 the PowerPC V2.06 architecture.
4772
4773 @item powerpc-gfxopt
4774 @itemx no-powerpc-gfxopt
4775 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4776 Generate code that uses (does not use) the optional PowerPC
4777 architecture instructions in the Graphics group, including
4778 floating-point select.
4779
4780 @item powerpc-gpopt
4781 @itemx no-powerpc-gpopt
4782 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4783 Generate code that uses (does not use) the optional PowerPC
4784 architecture instructions in the General Purpose group, including
4785 floating-point square root.
4786
4787 @item recip-precision
4788 @itemx no-recip-precision
4789 @cindex @code{target("recip-precision")} function attribute, PowerPC
4790 Assume (do not assume) that the reciprocal estimate instructions
4791 provide higher-precision estimates than is mandated by the PowerPC
4792 ABI.
4793
4794 @item string
4795 @itemx no-string
4796 @cindex @code{target("string")} function attribute, PowerPC
4797 Generate code that uses (does not use) the load string instructions
4798 and the store string word instructions to save multiple registers and
4799 do small block moves.
4800
4801 @item vsx
4802 @itemx no-vsx
4803 @cindex @code{target("vsx")} function attribute, PowerPC
4804 Generate code that uses (does not use) vector/scalar (VSX)
4805 instructions, and also enable the use of built-in functions that allow
4806 more direct access to the VSX instruction set. In 32-bit code, you
4807 cannot enable VSX or AltiVec instructions unless
4808 @option{-mabi=altivec} is used on the command line.
4809
4810 @item friz
4811 @itemx no-friz
4812 @cindex @code{target("friz")} function attribute, PowerPC
4813 Generate (do not generate) the @code{friz} instruction when the
4814 @option{-funsafe-math-optimizations} option is used to optimize
4815 rounding a floating-point value to 64-bit integer and back to floating
4816 point. The @code{friz} instruction does not return the same value if
4817 the floating-point number is too large to fit in an integer.
4818
4819 @item avoid-indexed-addresses
4820 @itemx no-avoid-indexed-addresses
4821 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
4822 Generate code that tries to avoid (not avoid) the use of indexed load
4823 or store instructions.
4824
4825 @item paired
4826 @itemx no-paired
4827 @cindex @code{target("paired")} function attribute, PowerPC
4828 Generate code that uses (does not use) the generation of PAIRED simd
4829 instructions.
4830
4831 @item longcall
4832 @itemx no-longcall
4833 @cindex @code{target("longcall")} function attribute, PowerPC
4834 Generate code that assumes (does not assume) that all calls are far
4835 away so that a longer more expensive calling sequence is required.
4836
4837 @item cpu=@var{CPU}
4838 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
4839 Specify the architecture to generate code for when compiling the
4840 function. If you select the @code{target("cpu=power7")} attribute when
4841 generating 32-bit code, VSX and AltiVec instructions are not generated
4842 unless you use the @option{-mabi=altivec} option on the command line.
4843
4844 @item tune=@var{TUNE}
4845 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
4846 Specify the architecture to tune for when compiling the function. If
4847 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4848 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4849 compilation tunes for the @var{CPU} architecture, and not the
4850 default tuning specified on the command line.
4851 @end table
4852
4853 On the PowerPC, the inliner does not inline a
4854 function that has different target options than the caller, unless the
4855 callee has a subset of the target options of the caller.
4856 @end table
4857
4858 @node RL78 Function Attributes
4859 @subsection RL78 Function Attributes
4860
4861 These function attributes are supported by the RL78 back end:
4862
4863 @table @code
4864 @item interrupt
4865 @itemx brk_interrupt
4866 @cindex @code{interrupt} function attribute, RL78
4867 @cindex @code{brk_interrupt} function attribute, RL78
4868 These attributes indicate
4869 that the specified function is an interrupt handler. The compiler generates
4870 function entry and exit sequences suitable for use in an interrupt handler
4871 when this attribute is present.
4872
4873 Use @code{brk_interrupt} instead of @code{interrupt} for
4874 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
4875 that must end with @code{RETB} instead of @code{RETI}).
4876
4877 @item naked
4878 @cindex @code{naked} function attribute, RL78
4879 This attribute allows the compiler to construct the
4880 requisite function declaration, while allowing the body of the
4881 function to be assembly code. The specified function will not have
4882 prologue/epilogue sequences generated by the compiler. Only basic
4883 @code{asm} statements can safely be included in naked functions
4884 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4885 basic @code{asm} and C code may appear to work, they cannot be
4886 depended upon to work reliably and are not supported.
4887 @end table
4888
4889 @node RX Function Attributes
4890 @subsection RX Function Attributes
4891
4892 These function attributes are supported by the RX back end:
4893
4894 @table @code
4895 @item fast_interrupt
4896 @cindex @code{fast_interrupt} function attribute, RX
4897 Use this attribute on the RX port to indicate that the specified
4898 function is a fast interrupt handler. This is just like the
4899 @code{interrupt} attribute, except that @code{freit} is used to return
4900 instead of @code{reit}.
4901
4902 @item interrupt
4903 @cindex @code{interrupt} function attribute, RX
4904 Use this attribute to indicate
4905 that the specified function is an interrupt handler. The compiler generates
4906 function entry and exit sequences suitable for use in an interrupt handler
4907 when this attribute is present.
4908
4909 On RX targets, you may specify one or more vector numbers as arguments
4910 to the attribute, as well as naming an alternate table name.
4911 Parameters are handled sequentially, so one handler can be assigned to
4912 multiple entries in multiple tables. One may also pass the magic
4913 string @code{"$default"} which causes the function to be used for any
4914 unfilled slots in the current table.
4915
4916 This example shows a simple assignment of a function to one vector in
4917 the default table (note that preprocessor macros may be used for
4918 chip-specific symbolic vector names):
4919 @smallexample
4920 void __attribute__ ((interrupt (5))) txd1_handler ();
4921 @end smallexample
4922
4923 This example assigns a function to two slots in the default table
4924 (using preprocessor macros defined elsewhere) and makes it the default
4925 for the @code{dct} table:
4926 @smallexample
4927 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
4928 txd1_handler ();
4929 @end smallexample
4930
4931 @item naked
4932 @cindex @code{naked} function attribute, RX
4933 This attribute allows the compiler to construct the
4934 requisite function declaration, while allowing the body of the
4935 function to be assembly code. The specified function will not have
4936 prologue/epilogue sequences generated by the compiler. Only basic
4937 @code{asm} statements can safely be included in naked functions
4938 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4939 basic @code{asm} and C code may appear to work, they cannot be
4940 depended upon to work reliably and are not supported.
4941
4942 @item vector
4943 @cindex @code{vector} function attribute, RX
4944 This RX attribute is similar to the @code{interrupt} attribute, including its
4945 parameters, but does not make the function an interrupt-handler type
4946 function (i.e. it retains the normal C function calling ABI). See the
4947 @code{interrupt} attribute for a description of its arguments.
4948 @end table
4949
4950 @node S/390 Function Attributes
4951 @subsection S/390 Function Attributes
4952
4953 These function attributes are supported on the S/390:
4954
4955 @table @code
4956 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
4957 @cindex @code{hotpatch} function attribute, S/390
4958
4959 On S/390 System z targets, you can use this function attribute to
4960 make GCC generate a ``hot-patching'' function prologue. If the
4961 @option{-mhotpatch=} command-line option is used at the same time,
4962 the @code{hotpatch} attribute takes precedence. The first of the
4963 two arguments specifies the number of halfwords to be added before
4964 the function label. A second argument can be used to specify the
4965 number of halfwords to be added after the function label. For
4966 both arguments the maximum allowed value is 1000000.
4967
4968 If both arguments are zero, hotpatching is disabled.
4969
4970 @item target (@var{options})
4971 @cindex @code{target} function attribute
4972 As discussed in @ref{Common Function Attributes}, this attribute
4973 allows specification of target-specific compilation options.
4974
4975 On S/390, the following options are supported:
4976
4977 @table @samp
4978 @item arch=
4979 @item tune=
4980 @item stack-guard=
4981 @item stack-size=
4982 @item branch-cost=
4983 @item warn-framesize=
4984 @item backchain
4985 @itemx no-backchain
4986 @item hard-dfp
4987 @itemx no-hard-dfp
4988 @item hard-float
4989 @itemx soft-float
4990 @item htm
4991 @itemx no-htm
4992 @item vx
4993 @itemx no-vx
4994 @item packed-stack
4995 @itemx no-packed-stack
4996 @item small-exec
4997 @itemx no-small-exec
4998 @item mvcle
4999 @itemx no-mvcle
5000 @item warn-dynamicstack
5001 @itemx no-warn-dynamicstack
5002 @end table
5003
5004 The options work exactly like the S/390 specific command line
5005 options (without the prefix @option{-m}) except that they do not
5006 change any feature macros. For example,
5007
5008 @smallexample
5009 @code{target("no-vx")}
5010 @end smallexample
5011
5012 does not undefine the @code{__VEC__} macro.
5013 @end table
5014
5015 @node SH Function Attributes
5016 @subsection SH Function Attributes
5017
5018 These function attributes are supported on the SH family of processors:
5019
5020 @table @code
5021 @item function_vector
5022 @cindex @code{function_vector} function attribute, SH
5023 @cindex calling functions through the function vector on SH2A
5024 On SH2A targets, this attribute declares a function to be called using the
5025 TBR relative addressing mode. The argument to this attribute is the entry
5026 number of the same function in a vector table containing all the TBR
5027 relative addressable functions. For correct operation the TBR must be setup
5028 accordingly to point to the start of the vector table before any functions with
5029 this attribute are invoked. Usually a good place to do the initialization is
5030 the startup routine. The TBR relative vector table can have at max 256 function
5031 entries. The jumps to these functions are generated using a SH2A specific,
5032 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5033 from GNU binutils version 2.7 or later for this attribute to work correctly.
5034
5035 In an application, for a function being called once, this attribute
5036 saves at least 8 bytes of code; and if other successive calls are being
5037 made to the same function, it saves 2 bytes of code per each of these
5038 calls.
5039
5040 @item interrupt_handler
5041 @cindex @code{interrupt_handler} function attribute, SH
5042 Use this attribute to
5043 indicate that the specified function is an interrupt handler. The compiler
5044 generates function entry and exit sequences suitable for use in an
5045 interrupt handler when this attribute is present.
5046
5047 @item nosave_low_regs
5048 @cindex @code{nosave_low_regs} function attribute, SH
5049 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5050 function should not save and restore registers R0..R7. This can be used on SH3*
5051 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5052 interrupt handlers.
5053
5054 @item renesas
5055 @cindex @code{renesas} function attribute, SH
5056 On SH targets this attribute specifies that the function or struct follows the
5057 Renesas ABI.
5058
5059 @item resbank
5060 @cindex @code{resbank} function attribute, SH
5061 On the SH2A target, this attribute enables the high-speed register
5062 saving and restoration using a register bank for @code{interrupt_handler}
5063 routines. Saving to the bank is performed automatically after the CPU
5064 accepts an interrupt that uses a register bank.
5065
5066 The nineteen 32-bit registers comprising general register R0 to R14,
5067 control register GBR, and system registers MACH, MACL, and PR and the
5068 vector table address offset are saved into a register bank. Register
5069 banks are stacked in first-in last-out (FILO) sequence. Restoration
5070 from the bank is executed by issuing a RESBANK instruction.
5071
5072 @item sp_switch
5073 @cindex @code{sp_switch} function attribute, SH
5074 Use this attribute on the SH to indicate an @code{interrupt_handler}
5075 function should switch to an alternate stack. It expects a string
5076 argument that names a global variable holding the address of the
5077 alternate stack.
5078
5079 @smallexample
5080 void *alt_stack;
5081 void f () __attribute__ ((interrupt_handler,
5082 sp_switch ("alt_stack")));
5083 @end smallexample
5084
5085 @item trap_exit
5086 @cindex @code{trap_exit} function attribute, SH
5087 Use this attribute on the SH for an @code{interrupt_handler} to return using
5088 @code{trapa} instead of @code{rte}. This attribute expects an integer
5089 argument specifying the trap number to be used.
5090
5091 @item trapa_handler
5092 @cindex @code{trapa_handler} function attribute, SH
5093 On SH targets this function attribute is similar to @code{interrupt_handler}
5094 but it does not save and restore all registers.
5095 @end table
5096
5097 @node SPU Function Attributes
5098 @subsection SPU Function Attributes
5099
5100 These function attributes are supported by the SPU back end:
5101
5102 @table @code
5103 @item naked
5104 @cindex @code{naked} function attribute, SPU
5105 This attribute allows the compiler to construct the
5106 requisite function declaration, while allowing the body of the
5107 function to be assembly code. The specified function will not have
5108 prologue/epilogue sequences generated by the compiler. Only basic
5109 @code{asm} statements can safely be included in naked functions
5110 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5111 basic @code{asm} and C code may appear to work, they cannot be
5112 depended upon to work reliably and are not supported.
5113 @end table
5114
5115 @node Symbian OS Function Attributes
5116 @subsection Symbian OS Function Attributes
5117
5118 @xref{Microsoft Windows Function Attributes}, for discussion of the
5119 @code{dllexport} and @code{dllimport} attributes.
5120
5121 @node V850 Function Attributes
5122 @subsection V850 Function Attributes
5123
5124 The V850 back end supports these function attributes:
5125
5126 @table @code
5127 @item interrupt
5128 @itemx interrupt_handler
5129 @cindex @code{interrupt} function attribute, V850
5130 @cindex @code{interrupt_handler} function attribute, V850
5131 Use these attributes to indicate
5132 that the specified function is an interrupt handler. The compiler generates
5133 function entry and exit sequences suitable for use in an interrupt handler
5134 when either attribute is present.
5135 @end table
5136
5137 @node Visium Function Attributes
5138 @subsection Visium Function Attributes
5139
5140 These function attributes are supported by the Visium back end:
5141
5142 @table @code
5143 @item interrupt
5144 @cindex @code{interrupt} function attribute, Visium
5145 Use this attribute to indicate
5146 that the specified function is an interrupt handler. The compiler generates
5147 function entry and exit sequences suitable for use in an interrupt handler
5148 when this attribute is present.
5149 @end table
5150
5151 @node x86 Function Attributes
5152 @subsection x86 Function Attributes
5153
5154 These function attributes are supported by the x86 back end:
5155
5156 @table @code
5157 @item cdecl
5158 @cindex @code{cdecl} function attribute, x86-32
5159 @cindex functions that pop the argument stack on x86-32
5160 @opindex mrtd
5161 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5162 assume that the calling function pops off the stack space used to
5163 pass arguments. This is
5164 useful to override the effects of the @option{-mrtd} switch.
5165
5166 @item fastcall
5167 @cindex @code{fastcall} function attribute, x86-32
5168 @cindex functions that pop the argument stack on x86-32
5169 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5170 pass the first argument (if of integral type) in the register ECX and
5171 the second argument (if of integral type) in the register EDX@. Subsequent
5172 and other typed arguments are passed on the stack. The called function
5173 pops the arguments off the stack. If the number of arguments is variable all
5174 arguments are pushed on the stack.
5175
5176 @item thiscall
5177 @cindex @code{thiscall} function attribute, x86-32
5178 @cindex functions that pop the argument stack on x86-32
5179 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5180 pass the first argument (if of integral type) in the register ECX.
5181 Subsequent and other typed arguments are passed on the stack. The called
5182 function pops the arguments off the stack.
5183 If the number of arguments is variable all arguments are pushed on the
5184 stack.
5185 The @code{thiscall} attribute is intended for C++ non-static member functions.
5186 As a GCC extension, this calling convention can be used for C functions
5187 and for static member methods.
5188
5189 @item ms_abi
5190 @itemx sysv_abi
5191 @cindex @code{ms_abi} function attribute, x86
5192 @cindex @code{sysv_abi} function attribute, x86
5193
5194 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5195 to indicate which calling convention should be used for a function. The
5196 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5197 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5198 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5199 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5200
5201 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5202 requires the @option{-maccumulate-outgoing-args} option.
5203
5204 @item callee_pop_aggregate_return (@var{number})
5205 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5206
5207 On x86-32 targets, you can use this attribute to control how
5208 aggregates are returned in memory. If the caller is responsible for
5209 popping the hidden pointer together with the rest of the arguments, specify
5210 @var{number} equal to zero. If callee is responsible for popping the
5211 hidden pointer, specify @var{number} equal to one.
5212
5213 The default x86-32 ABI assumes that the callee pops the
5214 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5215 the compiler assumes that the
5216 caller pops the stack for hidden pointer.
5217
5218 @item ms_hook_prologue
5219 @cindex @code{ms_hook_prologue} function attribute, x86
5220
5221 On 32-bit and 64-bit x86 targets, you can use
5222 this function attribute to make GCC generate the ``hot-patching'' function
5223 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5224 and newer.
5225
5226 @item regparm (@var{number})
5227 @cindex @code{regparm} function attribute, x86
5228 @cindex functions that are passed arguments in registers on x86-32
5229 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5230 pass arguments number one to @var{number} if they are of integral type
5231 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5232 take a variable number of arguments continue to be passed all of their
5233 arguments on the stack.
5234
5235 Beware that on some ELF systems this attribute is unsuitable for
5236 global functions in shared libraries with lazy binding (which is the
5237 default). Lazy binding sends the first call via resolving code in
5238 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5239 per the standard calling conventions. Solaris 8 is affected by this.
5240 Systems with the GNU C Library version 2.1 or higher
5241 and FreeBSD are believed to be
5242 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5243 disabled with the linker or the loader if desired, to avoid the
5244 problem.)
5245
5246 @item sseregparm
5247 @cindex @code{sseregparm} function attribute, x86
5248 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5249 causes the compiler to pass up to 3 floating-point arguments in
5250 SSE registers instead of on the stack. Functions that take a
5251 variable number of arguments continue to pass all of their
5252 floating-point arguments on the stack.
5253
5254 @item force_align_arg_pointer
5255 @cindex @code{force_align_arg_pointer} function attribute, x86
5256 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5257 applied to individual function definitions, generating an alternate
5258 prologue and epilogue that realigns the run-time stack if necessary.
5259 This supports mixing legacy codes that run with a 4-byte aligned stack
5260 with modern codes that keep a 16-byte stack for SSE compatibility.
5261
5262 @item stdcall
5263 @cindex @code{stdcall} function attribute, x86-32
5264 @cindex functions that pop the argument stack on x86-32
5265 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5266 assume that the called function pops off the stack space used to
5267 pass arguments, unless it takes a variable number of arguments.
5268
5269 @item target (@var{options})
5270 @cindex @code{target} function attribute
5271 As discussed in @ref{Common Function Attributes}, this attribute
5272 allows specification of target-specific compilation options.
5273
5274 On the x86, the following options are allowed:
5275 @table @samp
5276 @item abm
5277 @itemx no-abm
5278 @cindex @code{target("abm")} function attribute, x86
5279 Enable/disable the generation of the advanced bit instructions.
5280
5281 @item aes
5282 @itemx no-aes
5283 @cindex @code{target("aes")} function attribute, x86
5284 Enable/disable the generation of the AES instructions.
5285
5286 @item default
5287 @cindex @code{target("default")} function attribute, x86
5288 @xref{Function Multiversioning}, where it is used to specify the
5289 default function version.
5290
5291 @item mmx
5292 @itemx no-mmx
5293 @cindex @code{target("mmx")} function attribute, x86
5294 Enable/disable the generation of the MMX instructions.
5295
5296 @item pclmul
5297 @itemx no-pclmul
5298 @cindex @code{target("pclmul")} function attribute, x86
5299 Enable/disable the generation of the PCLMUL instructions.
5300
5301 @item popcnt
5302 @itemx no-popcnt
5303 @cindex @code{target("popcnt")} function attribute, x86
5304 Enable/disable the generation of the POPCNT instruction.
5305
5306 @item sse
5307 @itemx no-sse
5308 @cindex @code{target("sse")} function attribute, x86
5309 Enable/disable the generation of the SSE instructions.
5310
5311 @item sse2
5312 @itemx no-sse2
5313 @cindex @code{target("sse2")} function attribute, x86
5314 Enable/disable the generation of the SSE2 instructions.
5315
5316 @item sse3
5317 @itemx no-sse3
5318 @cindex @code{target("sse3")} function attribute, x86
5319 Enable/disable the generation of the SSE3 instructions.
5320
5321 @item sse4
5322 @itemx no-sse4
5323 @cindex @code{target("sse4")} function attribute, x86
5324 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5325 and SSE4.2).
5326
5327 @item sse4.1
5328 @itemx no-sse4.1
5329 @cindex @code{target("sse4.1")} function attribute, x86
5330 Enable/disable the generation of the sse4.1 instructions.
5331
5332 @item sse4.2
5333 @itemx no-sse4.2
5334 @cindex @code{target("sse4.2")} function attribute, x86
5335 Enable/disable the generation of the sse4.2 instructions.
5336
5337 @item sse4a
5338 @itemx no-sse4a
5339 @cindex @code{target("sse4a")} function attribute, x86
5340 Enable/disable the generation of the SSE4A instructions.
5341
5342 @item fma4
5343 @itemx no-fma4
5344 @cindex @code{target("fma4")} function attribute, x86
5345 Enable/disable the generation of the FMA4 instructions.
5346
5347 @item xop
5348 @itemx no-xop
5349 @cindex @code{target("xop")} function attribute, x86
5350 Enable/disable the generation of the XOP instructions.
5351
5352 @item lwp
5353 @itemx no-lwp
5354 @cindex @code{target("lwp")} function attribute, x86
5355 Enable/disable the generation of the LWP instructions.
5356
5357 @item ssse3
5358 @itemx no-ssse3
5359 @cindex @code{target("ssse3")} function attribute, x86
5360 Enable/disable the generation of the SSSE3 instructions.
5361
5362 @item cld
5363 @itemx no-cld
5364 @cindex @code{target("cld")} function attribute, x86
5365 Enable/disable the generation of the CLD before string moves.
5366
5367 @item fancy-math-387
5368 @itemx no-fancy-math-387
5369 @cindex @code{target("fancy-math-387")} function attribute, x86
5370 Enable/disable the generation of the @code{sin}, @code{cos}, and
5371 @code{sqrt} instructions on the 387 floating-point unit.
5372
5373 @item fused-madd
5374 @itemx no-fused-madd
5375 @cindex @code{target("fused-madd")} function attribute, x86
5376 Enable/disable the generation of the fused multiply/add instructions.
5377
5378 @item ieee-fp
5379 @itemx no-ieee-fp
5380 @cindex @code{target("ieee-fp")} function attribute, x86
5381 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5382
5383 @item inline-all-stringops
5384 @itemx no-inline-all-stringops
5385 @cindex @code{target("inline-all-stringops")} function attribute, x86
5386 Enable/disable inlining of string operations.
5387
5388 @item inline-stringops-dynamically
5389 @itemx no-inline-stringops-dynamically
5390 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5391 Enable/disable the generation of the inline code to do small string
5392 operations and calling the library routines for large operations.
5393
5394 @item align-stringops
5395 @itemx no-align-stringops
5396 @cindex @code{target("align-stringops")} function attribute, x86
5397 Do/do not align destination of inlined string operations.
5398
5399 @item recip
5400 @itemx no-recip
5401 @cindex @code{target("recip")} function attribute, x86
5402 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5403 instructions followed an additional Newton-Raphson step instead of
5404 doing a floating-point division.
5405
5406 @item arch=@var{ARCH}
5407 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5408 Specify the architecture to generate code for in compiling the function.
5409
5410 @item tune=@var{TUNE}
5411 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5412 Specify the architecture to tune for in compiling the function.
5413
5414 @item fpmath=@var{FPMATH}
5415 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5416 Specify which floating-point unit to use. You must specify the
5417 @code{target("fpmath=sse,387")} option as
5418 @code{target("fpmath=sse+387")} because the comma would separate
5419 different options.
5420 @end table
5421
5422 On the x86, the inliner does not inline a
5423 function that has different target options than the caller, unless the
5424 callee has a subset of the target options of the caller. For example
5425 a function declared with @code{target("sse3")} can inline a function
5426 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5427 @end table
5428
5429 @node Xstormy16 Function Attributes
5430 @subsection Xstormy16 Function Attributes
5431
5432 These function attributes are supported by the Xstormy16 back end:
5433
5434 @table @code
5435 @item interrupt
5436 @cindex @code{interrupt} function attribute, Xstormy16
5437 Use this attribute to indicate
5438 that the specified function is an interrupt handler. The compiler generates
5439 function entry and exit sequences suitable for use in an interrupt handler
5440 when this attribute is present.
5441 @end table
5442
5443 @node Variable Attributes
5444 @section Specifying Attributes of Variables
5445 @cindex attribute of variables
5446 @cindex variable attributes
5447
5448 The keyword @code{__attribute__} allows you to specify special
5449 attributes of variables or structure fields. This keyword is followed
5450 by an attribute specification inside double parentheses. Some
5451 attributes are currently defined generically for variables.
5452 Other attributes are defined for variables on particular target
5453 systems. Other attributes are available for functions
5454 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5455 enumerators (@pxref{Enumerator Attributes}), and for types
5456 (@pxref{Type Attributes}).
5457 Other front ends might define more attributes
5458 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5459
5460 @xref{Attribute Syntax}, for details of the exact syntax for using
5461 attributes.
5462
5463 @menu
5464 * Common Variable Attributes::
5465 * AVR Variable Attributes::
5466 * Blackfin Variable Attributes::
5467 * H8/300 Variable Attributes::
5468 * IA-64 Variable Attributes::
5469 * M32R/D Variable Attributes::
5470 * MeP Variable Attributes::
5471 * Microsoft Windows Variable Attributes::
5472 * MSP430 Variable Attributes::
5473 * PowerPC Variable Attributes::
5474 * RL78 Variable Attributes::
5475 * SPU Variable Attributes::
5476 * V850 Variable Attributes::
5477 * x86 Variable Attributes::
5478 * Xstormy16 Variable Attributes::
5479 @end menu
5480
5481 @node Common Variable Attributes
5482 @subsection Common Variable Attributes
5483
5484 The following attributes are supported on most targets.
5485
5486 @table @code
5487 @cindex @code{aligned} variable attribute
5488 @item aligned (@var{alignment})
5489 This attribute specifies a minimum alignment for the variable or
5490 structure field, measured in bytes. For example, the declaration:
5491
5492 @smallexample
5493 int x __attribute__ ((aligned (16))) = 0;
5494 @end smallexample
5495
5496 @noindent
5497 causes the compiler to allocate the global variable @code{x} on a
5498 16-byte boundary. On a 68040, this could be used in conjunction with
5499 an @code{asm} expression to access the @code{move16} instruction which
5500 requires 16-byte aligned operands.
5501
5502 You can also specify the alignment of structure fields. For example, to
5503 create a double-word aligned @code{int} pair, you could write:
5504
5505 @smallexample
5506 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5507 @end smallexample
5508
5509 @noindent
5510 This is an alternative to creating a union with a @code{double} member,
5511 which forces the union to be double-word aligned.
5512
5513 As in the preceding examples, you can explicitly specify the alignment
5514 (in bytes) that you wish the compiler to use for a given variable or
5515 structure field. Alternatively, you can leave out the alignment factor
5516 and just ask the compiler to align a variable or field to the
5517 default alignment for the target architecture you are compiling for.
5518 The default alignment is sufficient for all scalar types, but may not be
5519 enough for all vector types on a target that supports vector operations.
5520 The default alignment is fixed for a particular target ABI.
5521
5522 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5523 which is the largest alignment ever used for any data type on the
5524 target machine you are compiling for. For example, you could write:
5525
5526 @smallexample
5527 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5528 @end smallexample
5529
5530 The compiler automatically sets the alignment for the declared
5531 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5532 often make copy operations more efficient, because the compiler can
5533 use whatever instructions copy the biggest chunks of memory when
5534 performing copies to or from the variables or fields that you have
5535 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5536 may change depending on command-line options.
5537
5538 When used on a struct, or struct member, the @code{aligned} attribute can
5539 only increase the alignment; in order to decrease it, the @code{packed}
5540 attribute must be specified as well. When used as part of a typedef, the
5541 @code{aligned} attribute can both increase and decrease alignment, and
5542 specifying the @code{packed} attribute generates a warning.
5543
5544 Note that the effectiveness of @code{aligned} attributes may be limited
5545 by inherent limitations in your linker. On many systems, the linker is
5546 only able to arrange for variables to be aligned up to a certain maximum
5547 alignment. (For some linkers, the maximum supported alignment may
5548 be very very small.) If your linker is only able to align variables
5549 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5550 in an @code{__attribute__} still only provides you with 8-byte
5551 alignment. See your linker documentation for further information.
5552
5553 The @code{aligned} attribute can also be used for functions
5554 (@pxref{Common Function Attributes}.)
5555
5556 @item cleanup (@var{cleanup_function})
5557 @cindex @code{cleanup} variable attribute
5558 The @code{cleanup} attribute runs a function when the variable goes
5559 out of scope. This attribute can only be applied to auto function
5560 scope variables; it may not be applied to parameters or variables
5561 with static storage duration. The function must take one parameter,
5562 a pointer to a type compatible with the variable. The return value
5563 of the function (if any) is ignored.
5564
5565 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5566 is run during the stack unwinding that happens during the
5567 processing of the exception. Note that the @code{cleanup} attribute
5568 does not allow the exception to be caught, only to perform an action.
5569 It is undefined what happens if @var{cleanup_function} does not
5570 return normally.
5571
5572 @item common
5573 @itemx nocommon
5574 @cindex @code{common} variable attribute
5575 @cindex @code{nocommon} variable attribute
5576 @opindex fcommon
5577 @opindex fno-common
5578 The @code{common} attribute requests GCC to place a variable in
5579 ``common'' storage. The @code{nocommon} attribute requests the
5580 opposite---to allocate space for it directly.
5581
5582 These attributes override the default chosen by the
5583 @option{-fno-common} and @option{-fcommon} flags respectively.
5584
5585 @item deprecated
5586 @itemx deprecated (@var{msg})
5587 @cindex @code{deprecated} variable attribute
5588 The @code{deprecated} attribute results in a warning if the variable
5589 is used anywhere in the source file. This is useful when identifying
5590 variables that are expected to be removed in a future version of a
5591 program. The warning also includes the location of the declaration
5592 of the deprecated variable, to enable users to easily find further
5593 information about why the variable is deprecated, or what they should
5594 do instead. Note that the warning only occurs for uses:
5595
5596 @smallexample
5597 extern int old_var __attribute__ ((deprecated));
5598 extern int old_var;
5599 int new_fn () @{ return old_var; @}
5600 @end smallexample
5601
5602 @noindent
5603 results in a warning on line 3 but not line 2. The optional @var{msg}
5604 argument, which must be a string, is printed in the warning if
5605 present.
5606
5607 The @code{deprecated} attribute can also be used for functions and
5608 types (@pxref{Common Function Attributes},
5609 @pxref{Common Type Attributes}).
5610
5611 @item mode (@var{mode})
5612 @cindex @code{mode} variable attribute
5613 This attribute specifies the data type for the declaration---whichever
5614 type corresponds to the mode @var{mode}. This in effect lets you
5615 request an integer or floating-point type according to its width.
5616
5617 You may also specify a mode of @code{byte} or @code{__byte__} to
5618 indicate the mode corresponding to a one-byte integer, @code{word} or
5619 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5620 or @code{__pointer__} for the mode used to represent pointers.
5621
5622 @item packed
5623 @cindex @code{packed} variable attribute
5624 The @code{packed} attribute specifies that a variable or structure field
5625 should have the smallest possible alignment---one byte for a variable,
5626 and one bit for a field, unless you specify a larger value with the
5627 @code{aligned} attribute.
5628
5629 Here is a structure in which the field @code{x} is packed, so that it
5630 immediately follows @code{a}:
5631
5632 @smallexample
5633 struct foo
5634 @{
5635 char a;
5636 int x[2] __attribute__ ((packed));
5637 @};
5638 @end smallexample
5639
5640 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5641 @code{packed} attribute on bit-fields of type @code{char}. This has
5642 been fixed in GCC 4.4 but the change can lead to differences in the
5643 structure layout. See the documentation of
5644 @option{-Wpacked-bitfield-compat} for more information.
5645
5646 @item section ("@var{section-name}")
5647 @cindex @code{section} variable attribute
5648 Normally, the compiler places the objects it generates in sections like
5649 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5650 or you need certain particular variables to appear in special sections,
5651 for example to map to special hardware. The @code{section}
5652 attribute specifies that a variable (or function) lives in a particular
5653 section. For example, this small program uses several specific section names:
5654
5655 @smallexample
5656 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5657 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5658 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5659 int init_data __attribute__ ((section ("INITDATA")));
5660
5661 main()
5662 @{
5663 /* @r{Initialize stack pointer} */
5664 init_sp (stack + sizeof (stack));
5665
5666 /* @r{Initialize initialized data} */
5667 memcpy (&init_data, &data, &edata - &data);
5668
5669 /* @r{Turn on the serial ports} */
5670 init_duart (&a);
5671 init_duart (&b);
5672 @}
5673 @end smallexample
5674
5675 @noindent
5676 Use the @code{section} attribute with
5677 @emph{global} variables and not @emph{local} variables,
5678 as shown in the example.
5679
5680 You may use the @code{section} attribute with initialized or
5681 uninitialized global variables but the linker requires
5682 each object be defined once, with the exception that uninitialized
5683 variables tentatively go in the @code{common} (or @code{bss}) section
5684 and can be multiply ``defined''. Using the @code{section} attribute
5685 changes what section the variable goes into and may cause the
5686 linker to issue an error if an uninitialized variable has multiple
5687 definitions. You can force a variable to be initialized with the
5688 @option{-fno-common} flag or the @code{nocommon} attribute.
5689
5690 Some file formats do not support arbitrary sections so the @code{section}
5691 attribute is not available on all platforms.
5692 If you need to map the entire contents of a module to a particular
5693 section, consider using the facilities of the linker instead.
5694
5695 @item tls_model ("@var{tls_model}")
5696 @cindex @code{tls_model} variable attribute
5697 The @code{tls_model} attribute sets thread-local storage model
5698 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5699 overriding @option{-ftls-model=} command-line switch on a per-variable
5700 basis.
5701 The @var{tls_model} argument should be one of @code{global-dynamic},
5702 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5703
5704 Not all targets support this attribute.
5705
5706 @item unused
5707 @cindex @code{unused} variable attribute
5708 This attribute, attached to a variable, means that the variable is meant
5709 to be possibly unused. GCC does not produce a warning for this
5710 variable.
5711
5712 @item used
5713 @cindex @code{used} variable attribute
5714 This attribute, attached to a variable with static storage, means that
5715 the variable must be emitted even if it appears that the variable is not
5716 referenced.
5717
5718 When applied to a static data member of a C++ class template, the
5719 attribute also means that the member is instantiated if the
5720 class itself is instantiated.
5721
5722 @item vector_size (@var{bytes})
5723 @cindex @code{vector_size} variable attribute
5724 This attribute specifies the vector size for the variable, measured in
5725 bytes. For example, the declaration:
5726
5727 @smallexample
5728 int foo __attribute__ ((vector_size (16)));
5729 @end smallexample
5730
5731 @noindent
5732 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5733 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5734 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5735
5736 This attribute is only applicable to integral and float scalars,
5737 although arrays, pointers, and function return values are allowed in
5738 conjunction with this construct.
5739
5740 Aggregates with this attribute are invalid, even if they are of the same
5741 size as a corresponding scalar. For example, the declaration:
5742
5743 @smallexample
5744 struct S @{ int a; @};
5745 struct S __attribute__ ((vector_size (16))) foo;
5746 @end smallexample
5747
5748 @noindent
5749 is invalid even if the size of the structure is the same as the size of
5750 the @code{int}.
5751
5752 @item visibility ("@var{visibility_type}")
5753 @cindex @code{visibility} variable attribute
5754 This attribute affects the linkage of the declaration to which it is attached.
5755 The @code{visibility} attribute is described in
5756 @ref{Common Function Attributes}.
5757
5758 @item weak
5759 @cindex @code{weak} variable attribute
5760 The @code{weak} attribute is described in
5761 @ref{Common Function Attributes}.
5762
5763 @end table
5764
5765 @node AVR Variable Attributes
5766 @subsection AVR Variable Attributes
5767
5768 @table @code
5769 @item progmem
5770 @cindex @code{progmem} variable attribute, AVR
5771 The @code{progmem} attribute is used on the AVR to place read-only
5772 data in the non-volatile program memory (flash). The @code{progmem}
5773 attribute accomplishes this by putting respective variables into a
5774 section whose name starts with @code{.progmem}.
5775
5776 This attribute works similar to the @code{section} attribute
5777 but adds additional checking. Notice that just like the
5778 @code{section} attribute, @code{progmem} affects the location
5779 of the data but not how this data is accessed.
5780
5781 In order to read data located with the @code{progmem} attribute
5782 (inline) assembler must be used.
5783 @smallexample
5784 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5785 #include <avr/pgmspace.h>
5786
5787 /* Locate var in flash memory */
5788 const int var[2] PROGMEM = @{ 1, 2 @};
5789
5790 int read_var (int i)
5791 @{
5792 /* Access var[] by accessor macro from avr/pgmspace.h */
5793 return (int) pgm_read_word (& var[i]);
5794 @}
5795 @end smallexample
5796
5797 AVR is a Harvard architecture processor and data and read-only data
5798 normally resides in the data memory (RAM).
5799
5800 See also the @ref{AVR Named Address Spaces} section for
5801 an alternate way to locate and access data in flash memory.
5802
5803 @item io
5804 @itemx io (@var{addr})
5805 @cindex @code{io} variable attribute, AVR
5806 Variables with the @code{io} attribute are used to address
5807 memory-mapped peripherals in the io address range.
5808 If an address is specified, the variable
5809 is assigned that address, and the value is interpreted as an
5810 address in the data address space.
5811 Example:
5812
5813 @smallexample
5814 volatile int porta __attribute__((io (0x22)));
5815 @end smallexample
5816
5817 The address specified in the address in the data address range.
5818
5819 Otherwise, the variable it is not assigned an address, but the
5820 compiler will still use in/out instructions where applicable,
5821 assuming some other module assigns an address in the io address range.
5822 Example:
5823
5824 @smallexample
5825 extern volatile int porta __attribute__((io));
5826 @end smallexample
5827
5828 @item io_low
5829 @itemx io_low (@var{addr})
5830 @cindex @code{io_low} variable attribute, AVR
5831 This is like the @code{io} attribute, but additionally it informs the
5832 compiler that the object lies in the lower half of the I/O area,
5833 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
5834 instructions.
5835
5836 @item address
5837 @itemx address (@var{addr})
5838 @cindex @code{address} variable attribute, AVR
5839 Variables with the @code{address} attribute are used to address
5840 memory-mapped peripherals that may lie outside the io address range.
5841
5842 @smallexample
5843 volatile int porta __attribute__((address (0x600)));
5844 @end smallexample
5845
5846 @end table
5847
5848 @node Blackfin Variable Attributes
5849 @subsection Blackfin Variable Attributes
5850
5851 Three attributes are currently defined for the Blackfin.
5852
5853 @table @code
5854 @item l1_data
5855 @itemx l1_data_A
5856 @itemx l1_data_B
5857 @cindex @code{l1_data} variable attribute, Blackfin
5858 @cindex @code{l1_data_A} variable attribute, Blackfin
5859 @cindex @code{l1_data_B} variable attribute, Blackfin
5860 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
5861 Variables with @code{l1_data} attribute are put into the specific section
5862 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
5863 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
5864 attribute are put into the specific section named @code{.l1.data.B}.
5865
5866 @item l2
5867 @cindex @code{l2} variable attribute, Blackfin
5868 Use this attribute on the Blackfin to place the variable into L2 SRAM.
5869 Variables with @code{l2} attribute are put into the specific section
5870 named @code{.l2.data}.
5871 @end table
5872
5873 @node H8/300 Variable Attributes
5874 @subsection H8/300 Variable Attributes
5875
5876 These variable attributes are available for H8/300 targets:
5877
5878 @table @code
5879 @item eightbit_data
5880 @cindex @code{eightbit_data} variable attribute, H8/300
5881 @cindex eight-bit data on the H8/300, H8/300H, and H8S
5882 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
5883 variable should be placed into the eight-bit data section.
5884 The compiler generates more efficient code for certain operations
5885 on data in the eight-bit data area. Note the eight-bit data area is limited to
5886 256 bytes of data.
5887
5888 You must use GAS and GLD from GNU binutils version 2.7 or later for
5889 this attribute to work correctly.
5890
5891 @item tiny_data
5892 @cindex @code{tiny_data} variable attribute, H8/300
5893 @cindex tiny data section on the H8/300H and H8S
5894 Use this attribute on the H8/300H and H8S to indicate that the specified
5895 variable should be placed into the tiny data section.
5896 The compiler generates more efficient code for loads and stores
5897 on data in the tiny data section. Note the tiny data area is limited to
5898 slightly under 32KB of data.
5899
5900 @end table
5901
5902 @node IA-64 Variable Attributes
5903 @subsection IA-64 Variable Attributes
5904
5905 The IA-64 back end supports the following variable attribute:
5906
5907 @table @code
5908 @item model (@var{model-name})
5909 @cindex @code{model} variable attribute, IA-64
5910
5911 On IA-64, use this attribute to set the addressability of an object.
5912 At present, the only supported identifier for @var{model-name} is
5913 @code{small}, indicating addressability via ``small'' (22-bit)
5914 addresses (so that their addresses can be loaded with the @code{addl}
5915 instruction). Caveat: such addressing is by definition not position
5916 independent and hence this attribute must not be used for objects
5917 defined by shared libraries.
5918
5919 @end table
5920
5921 @node M32R/D Variable Attributes
5922 @subsection M32R/D Variable Attributes
5923
5924 One attribute is currently defined for the M32R/D@.
5925
5926 @table @code
5927 @item model (@var{model-name})
5928 @cindex @code{model-name} variable attribute, M32R/D
5929 @cindex variable addressability on the M32R/D
5930 Use this attribute on the M32R/D to set the addressability of an object.
5931 The identifier @var{model-name} is one of @code{small}, @code{medium},
5932 or @code{large}, representing each of the code models.
5933
5934 Small model objects live in the lower 16MB of memory (so that their
5935 addresses can be loaded with the @code{ld24} instruction).
5936
5937 Medium and large model objects may live anywhere in the 32-bit address space
5938 (the compiler generates @code{seth/add3} instructions to load their
5939 addresses).
5940 @end table
5941
5942 @node MeP Variable Attributes
5943 @subsection MeP Variable Attributes
5944
5945 The MeP target has a number of addressing modes and busses. The
5946 @code{near} space spans the standard memory space's first 16 megabytes
5947 (24 bits). The @code{far} space spans the entire 32-bit memory space.
5948 The @code{based} space is a 128-byte region in the memory space that
5949 is addressed relative to the @code{$tp} register. The @code{tiny}
5950 space is a 65536-byte region relative to the @code{$gp} register. In
5951 addition to these memory regions, the MeP target has a separate 16-bit
5952 control bus which is specified with @code{cb} attributes.
5953
5954 @table @code
5955
5956 @item based
5957 @cindex @code{based} variable attribute, MeP
5958 Any variable with the @code{based} attribute is assigned to the
5959 @code{.based} section, and is accessed with relative to the
5960 @code{$tp} register.
5961
5962 @item tiny
5963 @cindex @code{tiny} variable attribute, MeP
5964 Likewise, the @code{tiny} attribute assigned variables to the
5965 @code{.tiny} section, relative to the @code{$gp} register.
5966
5967 @item near
5968 @cindex @code{near} variable attribute, MeP
5969 Variables with the @code{near} attribute are assumed to have addresses
5970 that fit in a 24-bit addressing mode. This is the default for large
5971 variables (@code{-mtiny=4} is the default) but this attribute can
5972 override @code{-mtiny=} for small variables, or override @code{-ml}.
5973
5974 @item far
5975 @cindex @code{far} variable attribute, MeP
5976 Variables with the @code{far} attribute are addressed using a full
5977 32-bit address. Since this covers the entire memory space, this
5978 allows modules to make no assumptions about where variables might be
5979 stored.
5980
5981 @item io
5982 @cindex @code{io} variable attribute, MeP
5983 @itemx io (@var{addr})
5984 Variables with the @code{io} attribute are used to address
5985 memory-mapped peripherals. If an address is specified, the variable
5986 is assigned that address, else it is not assigned an address (it is
5987 assumed some other module assigns an address). Example:
5988
5989 @smallexample
5990 int timer_count __attribute__((io(0x123)));
5991 @end smallexample
5992
5993 @item cb
5994 @itemx cb (@var{addr})
5995 @cindex @code{cb} variable attribute, MeP
5996 Variables with the @code{cb} attribute are used to access the control
5997 bus, using special instructions. @code{addr} indicates the control bus
5998 address. Example:
5999
6000 @smallexample
6001 int cpu_clock __attribute__((cb(0x123)));
6002 @end smallexample
6003
6004 @end table
6005
6006 @node Microsoft Windows Variable Attributes
6007 @subsection Microsoft Windows Variable Attributes
6008
6009 You can use these attributes on Microsoft Windows targets.
6010 @ref{x86 Variable Attributes} for additional Windows compatibility
6011 attributes available on all x86 targets.
6012
6013 @table @code
6014 @item dllimport
6015 @itemx dllexport
6016 @cindex @code{dllimport} variable attribute
6017 @cindex @code{dllexport} variable attribute
6018 The @code{dllimport} and @code{dllexport} attributes are described in
6019 @ref{Microsoft Windows Function Attributes}.
6020
6021 @item selectany
6022 @cindex @code{selectany} variable attribute
6023 The @code{selectany} attribute causes an initialized global variable to
6024 have link-once semantics. When multiple definitions of the variable are
6025 encountered by the linker, the first is selected and the remainder are
6026 discarded. Following usage by the Microsoft compiler, the linker is told
6027 @emph{not} to warn about size or content differences of the multiple
6028 definitions.
6029
6030 Although the primary usage of this attribute is for POD types, the
6031 attribute can also be applied to global C++ objects that are initialized
6032 by a constructor. In this case, the static initialization and destruction
6033 code for the object is emitted in each translation defining the object,
6034 but the calls to the constructor and destructor are protected by a
6035 link-once guard variable.
6036
6037 The @code{selectany} attribute is only available on Microsoft Windows
6038 targets. You can use @code{__declspec (selectany)} as a synonym for
6039 @code{__attribute__ ((selectany))} for compatibility with other
6040 compilers.
6041
6042 @item shared
6043 @cindex @code{shared} variable attribute
6044 On Microsoft Windows, in addition to putting variable definitions in a named
6045 section, the section can also be shared among all running copies of an
6046 executable or DLL@. For example, this small program defines shared data
6047 by putting it in a named section @code{shared} and marking the section
6048 shareable:
6049
6050 @smallexample
6051 int foo __attribute__((section ("shared"), shared)) = 0;
6052
6053 int
6054 main()
6055 @{
6056 /* @r{Read and write foo. All running
6057 copies see the same value.} */
6058 return 0;
6059 @}
6060 @end smallexample
6061
6062 @noindent
6063 You may only use the @code{shared} attribute along with @code{section}
6064 attribute with a fully-initialized global definition because of the way
6065 linkers work. See @code{section} attribute for more information.
6066
6067 The @code{shared} attribute is only available on Microsoft Windows@.
6068
6069 @end table
6070
6071 @node MSP430 Variable Attributes
6072 @subsection MSP430 Variable Attributes
6073
6074 @table @code
6075 @item noinit
6076 @cindex @code{noinit} variable attribute, MSP430
6077 Any data with the @code{noinit} attribute will not be initialised by
6078 the C runtime startup code, or the program loader. Not initialising
6079 data in this way can reduce program startup times.
6080
6081 @item persistent
6082 @cindex @code{persistent} variable attribute, MSP430
6083 Any variable with the @code{persistent} attribute will not be
6084 initialised by the C runtime startup code. Instead its value will be
6085 set once, when the application is loaded, and then never initialised
6086 again, even if the processor is reset or the program restarts.
6087 Persistent data is intended to be placed into FLASH RAM, where its
6088 value will be retained across resets. The linker script being used to
6089 create the application should ensure that persistent data is correctly
6090 placed.
6091
6092 @item lower
6093 @itemx upper
6094 @itemx either
6095 @cindex @code{lower} variable attribute, MSP430
6096 @cindex @code{upper} variable attribute, MSP430
6097 @cindex @code{either} variable attribute, MSP430
6098 These attributes are the same as the MSP430 function attributes of the
6099 same name (@pxref{MSP430 Function Attributes}).
6100 These attributes can be applied to both functions and variables.
6101 @end table
6102
6103 @node PowerPC Variable Attributes
6104 @subsection PowerPC Variable Attributes
6105
6106 Three attributes currently are defined for PowerPC configurations:
6107 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6108
6109 @cindex @code{ms_struct} variable attribute, PowerPC
6110 @cindex @code{gcc_struct} variable attribute, PowerPC
6111 For full documentation of the struct attributes please see the
6112 documentation in @ref{x86 Variable Attributes}.
6113
6114 @cindex @code{altivec} variable attribute, PowerPC
6115 For documentation of @code{altivec} attribute please see the
6116 documentation in @ref{PowerPC Type Attributes}.
6117
6118 @node RL78 Variable Attributes
6119 @subsection RL78 Variable Attributes
6120
6121 @cindex @code{saddr} variable attribute, RL78
6122 The RL78 back end supports the @code{saddr} variable attribute. This
6123 specifies placement of the corresponding variable in the SADDR area,
6124 which can be accessed more efficiently than the default memory region.
6125
6126 @node SPU Variable Attributes
6127 @subsection SPU Variable Attributes
6128
6129 @cindex @code{spu_vector} variable attribute, SPU
6130 The SPU supports the @code{spu_vector} attribute for variables. For
6131 documentation of this attribute please see the documentation in
6132 @ref{SPU Type Attributes}.
6133
6134 @node V850 Variable Attributes
6135 @subsection V850 Variable Attributes
6136
6137 These variable attributes are supported by the V850 back end:
6138
6139 @table @code
6140
6141 @item sda
6142 @cindex @code{sda} variable attribute, V850
6143 Use this attribute to explicitly place a variable in the small data area,
6144 which can hold up to 64 kilobytes.
6145
6146 @item tda
6147 @cindex @code{tda} variable attribute, V850
6148 Use this attribute to explicitly place a variable in the tiny data area,
6149 which can hold up to 256 bytes in total.
6150
6151 @item zda
6152 @cindex @code{zda} variable attribute, V850
6153 Use this attribute to explicitly place a variable in the first 32 kilobytes
6154 of memory.
6155 @end table
6156
6157 @node x86 Variable Attributes
6158 @subsection x86 Variable Attributes
6159
6160 Two attributes are currently defined for x86 configurations:
6161 @code{ms_struct} and @code{gcc_struct}.
6162
6163 @table @code
6164 @item ms_struct
6165 @itemx gcc_struct
6166 @cindex @code{ms_struct} variable attribute, x86
6167 @cindex @code{gcc_struct} variable attribute, x86
6168
6169 If @code{packed} is used on a structure, or if bit-fields are used,
6170 it may be that the Microsoft ABI lays out the structure differently
6171 than the way GCC normally does. Particularly when moving packed
6172 data between functions compiled with GCC and the native Microsoft compiler
6173 (either via function call or as data in a file), it may be necessary to access
6174 either format.
6175
6176 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6177 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6178 command-line options, respectively;
6179 see @ref{x86 Options}, for details of how structure layout is affected.
6180 @xref{x86 Type Attributes}, for information about the corresponding
6181 attributes on types.
6182
6183 @end table
6184
6185 @node Xstormy16 Variable Attributes
6186 @subsection Xstormy16 Variable Attributes
6187
6188 One attribute is currently defined for xstormy16 configurations:
6189 @code{below100}.
6190
6191 @table @code
6192 @item below100
6193 @cindex @code{below100} variable attribute, Xstormy16
6194
6195 If a variable has the @code{below100} attribute (@code{BELOW100} is
6196 allowed also), GCC places the variable in the first 0x100 bytes of
6197 memory and use special opcodes to access it. Such variables are
6198 placed in either the @code{.bss_below100} section or the
6199 @code{.data_below100} section.
6200
6201 @end table
6202
6203 @node Type Attributes
6204 @section Specifying Attributes of Types
6205 @cindex attribute of types
6206 @cindex type attributes
6207
6208 The keyword @code{__attribute__} allows you to specify special
6209 attributes of types. Some type attributes apply only to @code{struct}
6210 and @code{union} types, while others can apply to any type defined
6211 via a @code{typedef} declaration. Other attributes are defined for
6212 functions (@pxref{Function Attributes}), labels (@pxref{Label
6213 Attributes}), enumerators (@pxref{Enumerator Attributes}), and for
6214 variables (@pxref{Variable Attributes}).
6215
6216 The @code{__attribute__} keyword is followed by an attribute specification
6217 inside double parentheses.
6218
6219 You may specify type attributes in an enum, struct or union type
6220 declaration or definition by placing them immediately after the
6221 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6222 syntax is to place them just past the closing curly brace of the
6223 definition.
6224
6225 You can also include type attributes in a @code{typedef} declaration.
6226 @xref{Attribute Syntax}, for details of the exact syntax for using
6227 attributes.
6228
6229 @menu
6230 * Common Type Attributes::
6231 * ARM Type Attributes::
6232 * MeP Type Attributes::
6233 * PowerPC Type Attributes::
6234 * SPU Type Attributes::
6235 * x86 Type Attributes::
6236 @end menu
6237
6238 @node Common Type Attributes
6239 @subsection Common Type Attributes
6240
6241 The following type attributes are supported on most targets.
6242
6243 @table @code
6244 @cindex @code{aligned} type attribute
6245 @item aligned (@var{alignment})
6246 This attribute specifies a minimum alignment (in bytes) for variables
6247 of the specified type. For example, the declarations:
6248
6249 @smallexample
6250 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6251 typedef int more_aligned_int __attribute__ ((aligned (8)));
6252 @end smallexample
6253
6254 @noindent
6255 force the compiler to ensure (as far as it can) that each variable whose
6256 type is @code{struct S} or @code{more_aligned_int} is allocated and
6257 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6258 variables of type @code{struct S} aligned to 8-byte boundaries allows
6259 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6260 store) instructions when copying one variable of type @code{struct S} to
6261 another, thus improving run-time efficiency.
6262
6263 Note that the alignment of any given @code{struct} or @code{union} type
6264 is required by the ISO C standard to be at least a perfect multiple of
6265 the lowest common multiple of the alignments of all of the members of
6266 the @code{struct} or @code{union} in question. This means that you @emph{can}
6267 effectively adjust the alignment of a @code{struct} or @code{union}
6268 type by attaching an @code{aligned} attribute to any one of the members
6269 of such a type, but the notation illustrated in the example above is a
6270 more obvious, intuitive, and readable way to request the compiler to
6271 adjust the alignment of an entire @code{struct} or @code{union} type.
6272
6273 As in the preceding example, you can explicitly specify the alignment
6274 (in bytes) that you wish the compiler to use for a given @code{struct}
6275 or @code{union} type. Alternatively, you can leave out the alignment factor
6276 and just ask the compiler to align a type to the maximum
6277 useful alignment for the target machine you are compiling for. For
6278 example, you could write:
6279
6280 @smallexample
6281 struct S @{ short f[3]; @} __attribute__ ((aligned));
6282 @end smallexample
6283
6284 Whenever you leave out the alignment factor in an @code{aligned}
6285 attribute specification, the compiler automatically sets the alignment
6286 for the type to the largest alignment that is ever used for any data
6287 type on the target machine you are compiling for. Doing this can often
6288 make copy operations more efficient, because the compiler can use
6289 whatever instructions copy the biggest chunks of memory when performing
6290 copies to or from the variables that have types that you have aligned
6291 this way.
6292
6293 In the example above, if the size of each @code{short} is 2 bytes, then
6294 the size of the entire @code{struct S} type is 6 bytes. The smallest
6295 power of two that is greater than or equal to that is 8, so the
6296 compiler sets the alignment for the entire @code{struct S} type to 8
6297 bytes.
6298
6299 Note that although you can ask the compiler to select a time-efficient
6300 alignment for a given type and then declare only individual stand-alone
6301 objects of that type, the compiler's ability to select a time-efficient
6302 alignment is primarily useful only when you plan to create arrays of
6303 variables having the relevant (efficiently aligned) type. If you
6304 declare or use arrays of variables of an efficiently-aligned type, then
6305 it is likely that your program also does pointer arithmetic (or
6306 subscripting, which amounts to the same thing) on pointers to the
6307 relevant type, and the code that the compiler generates for these
6308 pointer arithmetic operations is often more efficient for
6309 efficiently-aligned types than for other types.
6310
6311 Note that the effectiveness of @code{aligned} attributes may be limited
6312 by inherent limitations in your linker. On many systems, the linker is
6313 only able to arrange for variables to be aligned up to a certain maximum
6314 alignment. (For some linkers, the maximum supported alignment may
6315 be very very small.) If your linker is only able to align variables
6316 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6317 in an @code{__attribute__} still only provides you with 8-byte
6318 alignment. See your linker documentation for further information.
6319
6320 The @code{aligned} attribute can only increase alignment. Alignment
6321 can be decreased by specifying the @code{packed} attribute. See below.
6322
6323 @item bnd_variable_size
6324 @cindex @code{bnd_variable_size} type attribute
6325 @cindex Pointer Bounds Checker attributes
6326 When applied to a structure field, this attribute tells Pointer
6327 Bounds Checker that the size of this field should not be computed
6328 using static type information. It may be used to mark variably-sized
6329 static array fields placed at the end of a structure.
6330
6331 @smallexample
6332 struct S
6333 @{
6334 int size;
6335 char data[1];
6336 @}
6337 S *p = (S *)malloc (sizeof(S) + 100);
6338 p->data[10] = 0; //Bounds violation
6339 @end smallexample
6340
6341 @noindent
6342 By using an attribute for the field we may avoid unwanted bound
6343 violation checks:
6344
6345 @smallexample
6346 struct S
6347 @{
6348 int size;
6349 char data[1] __attribute__((bnd_variable_size));
6350 @}
6351 S *p = (S *)malloc (sizeof(S) + 100);
6352 p->data[10] = 0; //OK
6353 @end smallexample
6354
6355 @item deprecated
6356 @itemx deprecated (@var{msg})
6357 @cindex @code{deprecated} type attribute
6358 The @code{deprecated} attribute results in a warning if the type
6359 is used anywhere in the source file. This is useful when identifying
6360 types that are expected to be removed in a future version of a program.
6361 If possible, the warning also includes the location of the declaration
6362 of the deprecated type, to enable users to easily find further
6363 information about why the type is deprecated, or what they should do
6364 instead. Note that the warnings only occur for uses and then only
6365 if the type is being applied to an identifier that itself is not being
6366 declared as deprecated.
6367
6368 @smallexample
6369 typedef int T1 __attribute__ ((deprecated));
6370 T1 x;
6371 typedef T1 T2;
6372 T2 y;
6373 typedef T1 T3 __attribute__ ((deprecated));
6374 T3 z __attribute__ ((deprecated));
6375 @end smallexample
6376
6377 @noindent
6378 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6379 warning is issued for line 4 because T2 is not explicitly
6380 deprecated. Line 5 has no warning because T3 is explicitly
6381 deprecated. Similarly for line 6. The optional @var{msg}
6382 argument, which must be a string, is printed in the warning if
6383 present.
6384
6385 The @code{deprecated} attribute can also be used for functions and
6386 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6387
6388 @item designated_init
6389 @cindex @code{designated_init} type attribute
6390 This attribute may only be applied to structure types. It indicates
6391 that any initialization of an object of this type must use designated
6392 initializers rather than positional initializers. The intent of this
6393 attribute is to allow the programmer to indicate that a structure's
6394 layout may change, and that therefore relying on positional
6395 initialization will result in future breakage.
6396
6397 GCC emits warnings based on this attribute by default; use
6398 @option{-Wno-designated-init} to suppress them.
6399
6400 @item may_alias
6401 @cindex @code{may_alias} type attribute
6402 Accesses through pointers to types with this attribute are not subject
6403 to type-based alias analysis, but are instead assumed to be able to alias
6404 any other type of objects.
6405 In the context of section 6.5 paragraph 7 of the C99 standard,
6406 an lvalue expression
6407 dereferencing such a pointer is treated like having a character type.
6408 See @option{-fstrict-aliasing} for more information on aliasing issues.
6409 This extension exists to support some vector APIs, in which pointers to
6410 one vector type are permitted to alias pointers to a different vector type.
6411
6412 Note that an object of a type with this attribute does not have any
6413 special semantics.
6414
6415 Example of use:
6416
6417 @smallexample
6418 typedef short __attribute__((__may_alias__)) short_a;
6419
6420 int
6421 main (void)
6422 @{
6423 int a = 0x12345678;
6424 short_a *b = (short_a *) &a;
6425
6426 b[1] = 0;
6427
6428 if (a == 0x12345678)
6429 abort();
6430
6431 exit(0);
6432 @}
6433 @end smallexample
6434
6435 @noindent
6436 If you replaced @code{short_a} with @code{short} in the variable
6437 declaration, the above program would abort when compiled with
6438 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6439 above.
6440
6441 @item packed
6442 @cindex @code{packed} type attribute
6443 This attribute, attached to @code{struct} or @code{union} type
6444 definition, specifies that each member (other than zero-width bit-fields)
6445 of the structure or union is placed to minimize the memory required. When
6446 attached to an @code{enum} definition, it indicates that the smallest
6447 integral type should be used.
6448
6449 @opindex fshort-enums
6450 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6451 types is equivalent to specifying the @code{packed} attribute on each
6452 of the structure or union members. Specifying the @option{-fshort-enums}
6453 flag on the command line is equivalent to specifying the @code{packed}
6454 attribute on all @code{enum} definitions.
6455
6456 In the following example @code{struct my_packed_struct}'s members are
6457 packed closely together, but the internal layout of its @code{s} member
6458 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6459 be packed too.
6460
6461 @smallexample
6462 struct my_unpacked_struct
6463 @{
6464 char c;
6465 int i;
6466 @};
6467
6468 struct __attribute__ ((__packed__)) my_packed_struct
6469 @{
6470 char c;
6471 int i;
6472 struct my_unpacked_struct s;
6473 @};
6474 @end smallexample
6475
6476 You may only specify the @code{packed} attribute attribute on the definition
6477 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
6478 that does not also define the enumerated type, structure or union.
6479
6480 @item scalar_storage_order ("@var{endianness}")
6481 @cindex @code{scalar_storage_order} type attribute
6482 When attached to a @code{union} or a @code{struct}, this attribute sets
6483 the storage order, aka endianness, of the scalar fields of the type, as
6484 well as the array fields whose component is scalar. The supported
6485 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
6486 has no effects on fields which are themselves a @code{union}, a @code{struct}
6487 or an array whose component is a @code{union} or a @code{struct}, and it is
6488 possible for these fields to have a different scalar storage order than the
6489 enclosing type.
6490
6491 This attribute is supported only for targets that use a uniform default
6492 scalar storage order (fortunately, most of them), i.e. targets that store
6493 the scalars either all in big-endian or all in little-endian.
6494
6495 Additional restrictions are enforced for types with the reverse scalar
6496 storage order with regard to the scalar storage order of the target:
6497
6498 @itemize
6499 @item Taking the address of a scalar field of a @code{union} or a
6500 @code{struct} with reverse scalar storage order is not permitted and yields
6501 an error.
6502 @item Taking the address of an array field, whose component is scalar, of
6503 a @code{union} or a @code{struct} with reverse scalar storage order is
6504 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
6505 is specified.
6506 @item Taking the address of a @code{union} or a @code{struct} with reverse
6507 scalar storage order is permitted.
6508 @end itemize
6509
6510 These restrictions exist because the storage order attribute is lost when
6511 the address of a scalar or the address of an array with scalar component is
6512 taken, so storing indirectly through this address generally does not work.
6513 The second case is nevertheless allowed to be able to perform a block copy
6514 from or to the array.
6515
6516 Moreover, the use of type punning or aliasing to toggle the storage order
6517 is not supported; that is to say, a given scalar object cannot be accessed
6518 through distinct types that assign a different storage order to it.
6519
6520 @item transparent_union
6521 @cindex @code{transparent_union} type attribute
6522
6523 This attribute, attached to a @code{union} type definition, indicates
6524 that any function parameter having that union type causes calls to that
6525 function to be treated in a special way.
6526
6527 First, the argument corresponding to a transparent union type can be of
6528 any type in the union; no cast is required. Also, if the union contains
6529 a pointer type, the corresponding argument can be a null pointer
6530 constant or a void pointer expression; and if the union contains a void
6531 pointer type, the corresponding argument can be any pointer expression.
6532 If the union member type is a pointer, qualifiers like @code{const} on
6533 the referenced type must be respected, just as with normal pointer
6534 conversions.
6535
6536 Second, the argument is passed to the function using the calling
6537 conventions of the first member of the transparent union, not the calling
6538 conventions of the union itself. All members of the union must have the
6539 same machine representation; this is necessary for this argument passing
6540 to work properly.
6541
6542 Transparent unions are designed for library functions that have multiple
6543 interfaces for compatibility reasons. For example, suppose the
6544 @code{wait} function must accept either a value of type @code{int *} to
6545 comply with POSIX, or a value of type @code{union wait *} to comply with
6546 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
6547 @code{wait} would accept both kinds of arguments, but it would also
6548 accept any other pointer type and this would make argument type checking
6549 less useful. Instead, @code{<sys/wait.h>} might define the interface
6550 as follows:
6551
6552 @smallexample
6553 typedef union __attribute__ ((__transparent_union__))
6554 @{
6555 int *__ip;
6556 union wait *__up;
6557 @} wait_status_ptr_t;
6558
6559 pid_t wait (wait_status_ptr_t);
6560 @end smallexample
6561
6562 @noindent
6563 This interface allows either @code{int *} or @code{union wait *}
6564 arguments to be passed, using the @code{int *} calling convention.
6565 The program can call @code{wait} with arguments of either type:
6566
6567 @smallexample
6568 int w1 () @{ int w; return wait (&w); @}
6569 int w2 () @{ union wait w; return wait (&w); @}
6570 @end smallexample
6571
6572 @noindent
6573 With this interface, @code{wait}'s implementation might look like this:
6574
6575 @smallexample
6576 pid_t wait (wait_status_ptr_t p)
6577 @{
6578 return waitpid (-1, p.__ip, 0);
6579 @}
6580 @end smallexample
6581
6582 @item unused
6583 @cindex @code{unused} type attribute
6584 When attached to a type (including a @code{union} or a @code{struct}),
6585 this attribute means that variables of that type are meant to appear
6586 possibly unused. GCC does not produce a warning for any variables of
6587 that type, even if the variable appears to do nothing. This is often
6588 the case with lock or thread classes, which are usually defined and then
6589 not referenced, but contain constructors and destructors that have
6590 nontrivial bookkeeping functions.
6591
6592 @item visibility
6593 @cindex @code{visibility} type attribute
6594 In C++, attribute visibility (@pxref{Function Attributes}) can also be
6595 applied to class, struct, union and enum types. Unlike other type
6596 attributes, the attribute must appear between the initial keyword and
6597 the name of the type; it cannot appear after the body of the type.
6598
6599 Note that the type visibility is applied to vague linkage entities
6600 associated with the class (vtable, typeinfo node, etc.). In
6601 particular, if a class is thrown as an exception in one shared object
6602 and caught in another, the class must have default visibility.
6603 Otherwise the two shared objects are unable to use the same
6604 typeinfo node and exception handling will break.
6605
6606 @end table
6607
6608 To specify multiple attributes, separate them by commas within the
6609 double parentheses: for example, @samp{__attribute__ ((aligned (16),
6610 packed))}.
6611
6612 @node ARM Type Attributes
6613 @subsection ARM Type Attributes
6614
6615 @cindex @code{notshared} type attribute, ARM
6616 On those ARM targets that support @code{dllimport} (such as Symbian
6617 OS), you can use the @code{notshared} attribute to indicate that the
6618 virtual table and other similar data for a class should not be
6619 exported from a DLL@. For example:
6620
6621 @smallexample
6622 class __declspec(notshared) C @{
6623 public:
6624 __declspec(dllimport) C();
6625 virtual void f();
6626 @}
6627
6628 __declspec(dllexport)
6629 C::C() @{@}
6630 @end smallexample
6631
6632 @noindent
6633 In this code, @code{C::C} is exported from the current DLL, but the
6634 virtual table for @code{C} is not exported. (You can use
6635 @code{__attribute__} instead of @code{__declspec} if you prefer, but
6636 most Symbian OS code uses @code{__declspec}.)
6637
6638 @node MeP Type Attributes
6639 @subsection MeP Type Attributes
6640
6641 @cindex @code{based} type attribute, MeP
6642 @cindex @code{tiny} type attribute, MeP
6643 @cindex @code{near} type attribute, MeP
6644 @cindex @code{far} type attribute, MeP
6645 Many of the MeP variable attributes may be applied to types as well.
6646 Specifically, the @code{based}, @code{tiny}, @code{near}, and
6647 @code{far} attributes may be applied to either. The @code{io} and
6648 @code{cb} attributes may not be applied to types.
6649
6650 @node PowerPC Type Attributes
6651 @subsection PowerPC Type Attributes
6652
6653 Three attributes currently are defined for PowerPC configurations:
6654 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6655
6656 @cindex @code{ms_struct} type attribute, PowerPC
6657 @cindex @code{gcc_struct} type attribute, PowerPC
6658 For full documentation of the @code{ms_struct} and @code{gcc_struct}
6659 attributes please see the documentation in @ref{x86 Type Attributes}.
6660
6661 @cindex @code{altivec} type attribute, PowerPC
6662 The @code{altivec} attribute allows one to declare AltiVec vector data
6663 types supported by the AltiVec Programming Interface Manual. The
6664 attribute requires an argument to specify one of three vector types:
6665 @code{vector__}, @code{pixel__} (always followed by unsigned short),
6666 and @code{bool__} (always followed by unsigned).
6667
6668 @smallexample
6669 __attribute__((altivec(vector__)))
6670 __attribute__((altivec(pixel__))) unsigned short
6671 __attribute__((altivec(bool__))) unsigned
6672 @end smallexample
6673
6674 These attributes mainly are intended to support the @code{__vector},
6675 @code{__pixel}, and @code{__bool} AltiVec keywords.
6676
6677 @node SPU Type Attributes
6678 @subsection SPU Type Attributes
6679
6680 @cindex @code{spu_vector} type attribute, SPU
6681 The SPU supports the @code{spu_vector} attribute for types. This attribute
6682 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
6683 Language Extensions Specification. It is intended to support the
6684 @code{__vector} keyword.
6685
6686 @node x86 Type Attributes
6687 @subsection x86 Type Attributes
6688
6689 Two attributes are currently defined for x86 configurations:
6690 @code{ms_struct} and @code{gcc_struct}.
6691
6692 @table @code
6693
6694 @item ms_struct
6695 @itemx gcc_struct
6696 @cindex @code{ms_struct} type attribute, x86
6697 @cindex @code{gcc_struct} type attribute, x86
6698
6699 If @code{packed} is used on a structure, or if bit-fields are used
6700 it may be that the Microsoft ABI packs them differently
6701 than GCC normally packs them. Particularly when moving packed
6702 data between functions compiled with GCC and the native Microsoft compiler
6703 (either via function call or as data in a file), it may be necessary to access
6704 either format.
6705
6706 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6707 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6708 command-line options, respectively;
6709 see @ref{x86 Options}, for details of how structure layout is affected.
6710 @xref{x86 Variable Attributes}, for information about the corresponding
6711 attributes on variables.
6712
6713 @end table
6714
6715 @node Label Attributes
6716 @section Label Attributes
6717 @cindex Label Attributes
6718
6719 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
6720 details of the exact syntax for using attributes. Other attributes are
6721 available for functions (@pxref{Function Attributes}), variables
6722 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
6723 and for types (@pxref{Type Attributes}).
6724
6725 This example uses the @code{cold} label attribute to indicate the
6726 @code{ErrorHandling} branch is unlikely to be taken and that the
6727 @code{ErrorHandling} label is unused:
6728
6729 @smallexample
6730
6731 asm goto ("some asm" : : : : NoError);
6732
6733 /* This branch (the fall-through from the asm) is less commonly used */
6734 ErrorHandling:
6735 __attribute__((cold, unused)); /* Semi-colon is required here */
6736 printf("error\n");
6737 return 0;
6738
6739 NoError:
6740 printf("no error\n");
6741 return 1;
6742 @end smallexample
6743
6744 @table @code
6745 @item unused
6746 @cindex @code{unused} label attribute
6747 This feature is intended for program-generated code that may contain
6748 unused labels, but which is compiled with @option{-Wall}. It is
6749 not normally appropriate to use in it human-written code, though it
6750 could be useful in cases where the code that jumps to the label is
6751 contained within an @code{#ifdef} conditional.
6752
6753 @item hot
6754 @cindex @code{hot} label attribute
6755 The @code{hot} attribute on a label is used to inform the compiler that
6756 the path following the label is more likely than paths that are not so
6757 annotated. This attribute is used in cases where @code{__builtin_expect}
6758 cannot be used, for instance with computed goto or @code{asm goto}.
6759
6760 @item cold
6761 @cindex @code{cold} label attribute
6762 The @code{cold} attribute on labels is used to inform the compiler that
6763 the path following the label is unlikely to be executed. This attribute
6764 is used in cases where @code{__builtin_expect} cannot be used, for instance
6765 with computed goto or @code{asm goto}.
6766
6767 @end table
6768
6769 @node Enumerator Attributes
6770 @section Enumerator Attributes
6771 @cindex Enumerator Attributes
6772
6773 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
6774 details of the exact syntax for using attributes. Other attributes are
6775 available for functions (@pxref{Function Attributes}), variables
6776 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}),
6777 and for types (@pxref{Type Attributes}).
6778
6779 This example uses the @code{deprecated} enumerator attribute to indicate the
6780 @code{oldval} enumerator is deprecated:
6781
6782 @smallexample
6783 enum E @{
6784 oldval __attribute__((deprecated)),
6785 newval
6786 @};
6787
6788 int
6789 fn (void)
6790 @{
6791 return oldval;
6792 @}
6793 @end smallexample
6794
6795 @table @code
6796 @item deprecated
6797 @cindex @code{deprecated} enumerator attribute
6798 The @code{deprecated} attribute results in a warning if the enumerator
6799 is used anywhere in the source file. This is useful when identifying
6800 enumerators that are expected to be removed in a future version of a
6801 program. The warning also includes the location of the declaration
6802 of the deprecated enumerator, to enable users to easily find further
6803 information about why the enumerator is deprecated, or what they should
6804 do instead. Note that the warnings only occurs for uses.
6805
6806 @end table
6807
6808 @node Attribute Syntax
6809 @section Attribute Syntax
6810 @cindex attribute syntax
6811
6812 This section describes the syntax with which @code{__attribute__} may be
6813 used, and the constructs to which attribute specifiers bind, for the C
6814 language. Some details may vary for C++ and Objective-C@. Because of
6815 infelicities in the grammar for attributes, some forms described here
6816 may not be successfully parsed in all cases.
6817
6818 There are some problems with the semantics of attributes in C++. For
6819 example, there are no manglings for attributes, although they may affect
6820 code generation, so problems may arise when attributed types are used in
6821 conjunction with templates or overloading. Similarly, @code{typeid}
6822 does not distinguish between types with different attributes. Support
6823 for attributes in C++ may be restricted in future to attributes on
6824 declarations only, but not on nested declarators.
6825
6826 @xref{Function Attributes}, for details of the semantics of attributes
6827 applying to functions. @xref{Variable Attributes}, for details of the
6828 semantics of attributes applying to variables. @xref{Type Attributes},
6829 for details of the semantics of attributes applying to structure, union
6830 and enumerated types.
6831 @xref{Label Attributes}, for details of the semantics of attributes
6832 applying to labels.
6833 @xref{Enumerator Attributes}, for details of the semantics of attributes
6834 applying to enumerators.
6835
6836 An @dfn{attribute specifier} is of the form
6837 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
6838 is a possibly empty comma-separated sequence of @dfn{attributes}, where
6839 each attribute is one of the following:
6840
6841 @itemize @bullet
6842 @item
6843 Empty. Empty attributes are ignored.
6844
6845 @item
6846 An attribute name
6847 (which may be an identifier such as @code{unused}, or a reserved
6848 word such as @code{const}).
6849
6850 @item
6851 An attribute name followed by a parenthesized list of
6852 parameters for the attribute.
6853 These parameters take one of the following forms:
6854
6855 @itemize @bullet
6856 @item
6857 An identifier. For example, @code{mode} attributes use this form.
6858
6859 @item
6860 An identifier followed by a comma and a non-empty comma-separated list
6861 of expressions. For example, @code{format} attributes use this form.
6862
6863 @item
6864 A possibly empty comma-separated list of expressions. For example,
6865 @code{format_arg} attributes use this form with the list being a single
6866 integer constant expression, and @code{alias} attributes use this form
6867 with the list being a single string constant.
6868 @end itemize
6869 @end itemize
6870
6871 An @dfn{attribute specifier list} is a sequence of one or more attribute
6872 specifiers, not separated by any other tokens.
6873
6874 You may optionally specify attribute names with @samp{__}
6875 preceding and following the name.
6876 This allows you to use them in header files without
6877 being concerned about a possible macro of the same name. For example,
6878 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
6879
6880
6881 @subsubheading Label Attributes
6882
6883 In GNU C, an attribute specifier list may appear after the colon following a
6884 label, other than a @code{case} or @code{default} label. GNU C++ only permits
6885 attributes on labels if the attribute specifier is immediately
6886 followed by a semicolon (i.e., the label applies to an empty
6887 statement). If the semicolon is missing, C++ label attributes are
6888 ambiguous, as it is permissible for a declaration, which could begin
6889 with an attribute list, to be labelled in C++. Declarations cannot be
6890 labelled in C90 or C99, so the ambiguity does not arise there.
6891
6892 @subsubheading Enumerator Attributes
6893
6894 In GNU C, an attribute specifier list may appear as part of an enumerator.
6895 The attribute goes after the enumeration constant, before @code{=}, if
6896 present. The optional attribute in the enumerator appertains to the
6897 enumeration constant. It is not possible to place the attribute after
6898 the constant expression, if present.
6899
6900 @subsubheading Type Attributes
6901
6902 An attribute specifier list may appear as part of a @code{struct},
6903 @code{union} or @code{enum} specifier. It may go either immediately
6904 after the @code{struct}, @code{union} or @code{enum} keyword, or after
6905 the closing brace. The former syntax is preferred.
6906 Where attribute specifiers follow the closing brace, they are considered
6907 to relate to the structure, union or enumerated type defined, not to any
6908 enclosing declaration the type specifier appears in, and the type
6909 defined is not complete until after the attribute specifiers.
6910 @c Otherwise, there would be the following problems: a shift/reduce
6911 @c conflict between attributes binding the struct/union/enum and
6912 @c binding to the list of specifiers/qualifiers; and "aligned"
6913 @c attributes could use sizeof for the structure, but the size could be
6914 @c changed later by "packed" attributes.
6915
6916
6917 @subsubheading All other attributes
6918
6919 Otherwise, an attribute specifier appears as part of a declaration,
6920 counting declarations of unnamed parameters and type names, and relates
6921 to that declaration (which may be nested in another declaration, for
6922 example in the case of a parameter declaration), or to a particular declarator
6923 within a declaration. Where an
6924 attribute specifier is applied to a parameter declared as a function or
6925 an array, it should apply to the function or array rather than the
6926 pointer to which the parameter is implicitly converted, but this is not
6927 yet correctly implemented.
6928
6929 Any list of specifiers and qualifiers at the start of a declaration may
6930 contain attribute specifiers, whether or not such a list may in that
6931 context contain storage class specifiers. (Some attributes, however,
6932 are essentially in the nature of storage class specifiers, and only make
6933 sense where storage class specifiers may be used; for example,
6934 @code{section}.) There is one necessary limitation to this syntax: the
6935 first old-style parameter declaration in a function definition cannot
6936 begin with an attribute specifier, because such an attribute applies to
6937 the function instead by syntax described below (which, however, is not
6938 yet implemented in this case). In some other cases, attribute
6939 specifiers are permitted by this grammar but not yet supported by the
6940 compiler. All attribute specifiers in this place relate to the
6941 declaration as a whole. In the obsolescent usage where a type of
6942 @code{int} is implied by the absence of type specifiers, such a list of
6943 specifiers and qualifiers may be an attribute specifier list with no
6944 other specifiers or qualifiers.
6945
6946 At present, the first parameter in a function prototype must have some
6947 type specifier that is not an attribute specifier; this resolves an
6948 ambiguity in the interpretation of @code{void f(int
6949 (__attribute__((foo)) x))}, but is subject to change. At present, if
6950 the parentheses of a function declarator contain only attributes then
6951 those attributes are ignored, rather than yielding an error or warning
6952 or implying a single parameter of type int, but this is subject to
6953 change.
6954
6955 An attribute specifier list may appear immediately before a declarator
6956 (other than the first) in a comma-separated list of declarators in a
6957 declaration of more than one identifier using a single list of
6958 specifiers and qualifiers. Such attribute specifiers apply
6959 only to the identifier before whose declarator they appear. For
6960 example, in
6961
6962 @smallexample
6963 __attribute__((noreturn)) void d0 (void),
6964 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
6965 d2 (void);
6966 @end smallexample
6967
6968 @noindent
6969 the @code{noreturn} attribute applies to all the functions
6970 declared; the @code{format} attribute only applies to @code{d1}.
6971
6972 An attribute specifier list may appear immediately before the comma,
6973 @code{=} or semicolon terminating the declaration of an identifier other
6974 than a function definition. Such attribute specifiers apply
6975 to the declared object or function. Where an
6976 assembler name for an object or function is specified (@pxref{Asm
6977 Labels}), the attribute must follow the @code{asm}
6978 specification.
6979
6980 An attribute specifier list may, in future, be permitted to appear after
6981 the declarator in a function definition (before any old-style parameter
6982 declarations or the function body).
6983
6984 Attribute specifiers may be mixed with type qualifiers appearing inside
6985 the @code{[]} of a parameter array declarator, in the C99 construct by
6986 which such qualifiers are applied to the pointer to which the array is
6987 implicitly converted. Such attribute specifiers apply to the pointer,
6988 not to the array, but at present this is not implemented and they are
6989 ignored.
6990
6991 An attribute specifier list may appear at the start of a nested
6992 declarator. At present, there are some limitations in this usage: the
6993 attributes correctly apply to the declarator, but for most individual
6994 attributes the semantics this implies are not implemented.
6995 When attribute specifiers follow the @code{*} of a pointer
6996 declarator, they may be mixed with any type qualifiers present.
6997 The following describes the formal semantics of this syntax. It makes the
6998 most sense if you are familiar with the formal specification of
6999 declarators in the ISO C standard.
7000
7001 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7002 D1}, where @code{T} contains declaration specifiers that specify a type
7003 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7004 contains an identifier @var{ident}. The type specified for @var{ident}
7005 for derived declarators whose type does not include an attribute
7006 specifier is as in the ISO C standard.
7007
7008 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7009 and the declaration @code{T D} specifies the type
7010 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7011 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7012 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7013
7014 If @code{D1} has the form @code{*
7015 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7016 declaration @code{T D} specifies the type
7017 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7018 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7019 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7020 @var{ident}.
7021
7022 For example,
7023
7024 @smallexample
7025 void (__attribute__((noreturn)) ****f) (void);
7026 @end smallexample
7027
7028 @noindent
7029 specifies the type ``pointer to pointer to pointer to pointer to
7030 non-returning function returning @code{void}''. As another example,
7031
7032 @smallexample
7033 char *__attribute__((aligned(8))) *f;
7034 @end smallexample
7035
7036 @noindent
7037 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7038 Note again that this does not work with most attributes; for example,
7039 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7040 is not yet supported.
7041
7042 For compatibility with existing code written for compiler versions that
7043 did not implement attributes on nested declarators, some laxity is
7044 allowed in the placing of attributes. If an attribute that only applies
7045 to types is applied to a declaration, it is treated as applying to
7046 the type of that declaration. If an attribute that only applies to
7047 declarations is applied to the type of a declaration, it is treated
7048 as applying to that declaration; and, for compatibility with code
7049 placing the attributes immediately before the identifier declared, such
7050 an attribute applied to a function return type is treated as
7051 applying to the function type, and such an attribute applied to an array
7052 element type is treated as applying to the array type. If an
7053 attribute that only applies to function types is applied to a
7054 pointer-to-function type, it is treated as applying to the pointer
7055 target type; if such an attribute is applied to a function return type
7056 that is not a pointer-to-function type, it is treated as applying
7057 to the function type.
7058
7059 @node Function Prototypes
7060 @section Prototypes and Old-Style Function Definitions
7061 @cindex function prototype declarations
7062 @cindex old-style function definitions
7063 @cindex promotion of formal parameters
7064
7065 GNU C extends ISO C to allow a function prototype to override a later
7066 old-style non-prototype definition. Consider the following example:
7067
7068 @smallexample
7069 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7070 #ifdef __STDC__
7071 #define P(x) x
7072 #else
7073 #define P(x) ()
7074 #endif
7075
7076 /* @r{Prototype function declaration.} */
7077 int isroot P((uid_t));
7078
7079 /* @r{Old-style function definition.} */
7080 int
7081 isroot (x) /* @r{??? lossage here ???} */
7082 uid_t x;
7083 @{
7084 return x == 0;
7085 @}
7086 @end smallexample
7087
7088 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7089 not allow this example, because subword arguments in old-style
7090 non-prototype definitions are promoted. Therefore in this example the
7091 function definition's argument is really an @code{int}, which does not
7092 match the prototype argument type of @code{short}.
7093
7094 This restriction of ISO C makes it hard to write code that is portable
7095 to traditional C compilers, because the programmer does not know
7096 whether the @code{uid_t} type is @code{short}, @code{int}, or
7097 @code{long}. Therefore, in cases like these GNU C allows a prototype
7098 to override a later old-style definition. More precisely, in GNU C, a
7099 function prototype argument type overrides the argument type specified
7100 by a later old-style definition if the former type is the same as the
7101 latter type before promotion. Thus in GNU C the above example is
7102 equivalent to the following:
7103
7104 @smallexample
7105 int isroot (uid_t);
7106
7107 int
7108 isroot (uid_t x)
7109 @{
7110 return x == 0;
7111 @}
7112 @end smallexample
7113
7114 @noindent
7115 GNU C++ does not support old-style function definitions, so this
7116 extension is irrelevant.
7117
7118 @node C++ Comments
7119 @section C++ Style Comments
7120 @cindex @code{//}
7121 @cindex C++ comments
7122 @cindex comments, C++ style
7123
7124 In GNU C, you may use C++ style comments, which start with @samp{//} and
7125 continue until the end of the line. Many other C implementations allow
7126 such comments, and they are included in the 1999 C standard. However,
7127 C++ style comments are not recognized if you specify an @option{-std}
7128 option specifying a version of ISO C before C99, or @option{-ansi}
7129 (equivalent to @option{-std=c90}).
7130
7131 @node Dollar Signs
7132 @section Dollar Signs in Identifier Names
7133 @cindex $
7134 @cindex dollar signs in identifier names
7135 @cindex identifier names, dollar signs in
7136
7137 In GNU C, you may normally use dollar signs in identifier names.
7138 This is because many traditional C implementations allow such identifiers.
7139 However, dollar signs in identifiers are not supported on a few target
7140 machines, typically because the target assembler does not allow them.
7141
7142 @node Character Escapes
7143 @section The Character @key{ESC} in Constants
7144
7145 You can use the sequence @samp{\e} in a string or character constant to
7146 stand for the ASCII character @key{ESC}.
7147
7148 @node Alignment
7149 @section Inquiring on Alignment of Types or Variables
7150 @cindex alignment
7151 @cindex type alignment
7152 @cindex variable alignment
7153
7154 The keyword @code{__alignof__} allows you to inquire about how an object
7155 is aligned, or the minimum alignment usually required by a type. Its
7156 syntax is just like @code{sizeof}.
7157
7158 For example, if the target machine requires a @code{double} value to be
7159 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7160 This is true on many RISC machines. On more traditional machine
7161 designs, @code{__alignof__ (double)} is 4 or even 2.
7162
7163 Some machines never actually require alignment; they allow reference to any
7164 data type even at an odd address. For these machines, @code{__alignof__}
7165 reports the smallest alignment that GCC gives the data type, usually as
7166 mandated by the target ABI.
7167
7168 If the operand of @code{__alignof__} is an lvalue rather than a type,
7169 its value is the required alignment for its type, taking into account
7170 any minimum alignment specified with GCC's @code{__attribute__}
7171 extension (@pxref{Variable Attributes}). For example, after this
7172 declaration:
7173
7174 @smallexample
7175 struct foo @{ int x; char y; @} foo1;
7176 @end smallexample
7177
7178 @noindent
7179 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7180 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7181
7182 It is an error to ask for the alignment of an incomplete type.
7183
7184
7185 @node Inline
7186 @section An Inline Function is As Fast As a Macro
7187 @cindex inline functions
7188 @cindex integrating function code
7189 @cindex open coding
7190 @cindex macros, inline alternative
7191
7192 By declaring a function inline, you can direct GCC to make
7193 calls to that function faster. One way GCC can achieve this is to
7194 integrate that function's code into the code for its callers. This
7195 makes execution faster by eliminating the function-call overhead; in
7196 addition, if any of the actual argument values are constant, their
7197 known values may permit simplifications at compile time so that not
7198 all of the inline function's code needs to be included. The effect on
7199 code size is less predictable; object code may be larger or smaller
7200 with function inlining, depending on the particular case. You can
7201 also direct GCC to try to integrate all ``simple enough'' functions
7202 into their callers with the option @option{-finline-functions}.
7203
7204 GCC implements three different semantics of declaring a function
7205 inline. One is available with @option{-std=gnu89} or
7206 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7207 on all inline declarations, another when
7208 @option{-std=c99}, @option{-std=c11},
7209 @option{-std=gnu99} or @option{-std=gnu11}
7210 (without @option{-fgnu89-inline}), and the third
7211 is used when compiling C++.
7212
7213 To declare a function inline, use the @code{inline} keyword in its
7214 declaration, like this:
7215
7216 @smallexample
7217 static inline int
7218 inc (int *a)
7219 @{
7220 return (*a)++;
7221 @}
7222 @end smallexample
7223
7224 If you are writing a header file to be included in ISO C90 programs, write
7225 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7226
7227 The three types of inlining behave similarly in two important cases:
7228 when the @code{inline} keyword is used on a @code{static} function,
7229 like the example above, and when a function is first declared without
7230 using the @code{inline} keyword and then is defined with
7231 @code{inline}, like this:
7232
7233 @smallexample
7234 extern int inc (int *a);
7235 inline int
7236 inc (int *a)
7237 @{
7238 return (*a)++;
7239 @}
7240 @end smallexample
7241
7242 In both of these common cases, the program behaves the same as if you
7243 had not used the @code{inline} keyword, except for its speed.
7244
7245 @cindex inline functions, omission of
7246 @opindex fkeep-inline-functions
7247 When a function is both inline and @code{static}, if all calls to the
7248 function are integrated into the caller, and the function's address is
7249 never used, then the function's own assembler code is never referenced.
7250 In this case, GCC does not actually output assembler code for the
7251 function, unless you specify the option @option{-fkeep-inline-functions}.
7252 If there is a nonintegrated call, then the function is compiled to
7253 assembler code as usual. The function must also be compiled as usual if
7254 the program refers to its address, because that can't be inlined.
7255
7256 @opindex Winline
7257 Note that certain usages in a function definition can make it unsuitable
7258 for inline substitution. Among these usages are: variadic functions,
7259 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7260 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7261 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7262 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7263 function marked @code{inline} could not be substituted, and gives the
7264 reason for the failure.
7265
7266 @cindex automatic @code{inline} for C++ member fns
7267 @cindex @code{inline} automatic for C++ member fns
7268 @cindex member fns, automatically @code{inline}
7269 @cindex C++ member fns, automatically @code{inline}
7270 @opindex fno-default-inline
7271 As required by ISO C++, GCC considers member functions defined within
7272 the body of a class to be marked inline even if they are
7273 not explicitly declared with the @code{inline} keyword. You can
7274 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7275 Options,,Options Controlling C++ Dialect}.
7276
7277 GCC does not inline any functions when not optimizing unless you specify
7278 the @samp{always_inline} attribute for the function, like this:
7279
7280 @smallexample
7281 /* @r{Prototype.} */
7282 inline void foo (const char) __attribute__((always_inline));
7283 @end smallexample
7284
7285 The remainder of this section is specific to GNU C90 inlining.
7286
7287 @cindex non-static inline function
7288 When an inline function is not @code{static}, then the compiler must assume
7289 that there may be calls from other source files; since a global symbol can
7290 be defined only once in any program, the function must not be defined in
7291 the other source files, so the calls therein cannot be integrated.
7292 Therefore, a non-@code{static} inline function is always compiled on its
7293 own in the usual fashion.
7294
7295 If you specify both @code{inline} and @code{extern} in the function
7296 definition, then the definition is used only for inlining. In no case
7297 is the function compiled on its own, not even if you refer to its
7298 address explicitly. Such an address becomes an external reference, as
7299 if you had only declared the function, and had not defined it.
7300
7301 This combination of @code{inline} and @code{extern} has almost the
7302 effect of a macro. The way to use it is to put a function definition in
7303 a header file with these keywords, and put another copy of the
7304 definition (lacking @code{inline} and @code{extern}) in a library file.
7305 The definition in the header file causes most calls to the function
7306 to be inlined. If any uses of the function remain, they refer to
7307 the single copy in the library.
7308
7309 @node Volatiles
7310 @section When is a Volatile Object Accessed?
7311 @cindex accessing volatiles
7312 @cindex volatile read
7313 @cindex volatile write
7314 @cindex volatile access
7315
7316 C has the concept of volatile objects. These are normally accessed by
7317 pointers and used for accessing hardware or inter-thread
7318 communication. The standard encourages compilers to refrain from
7319 optimizations concerning accesses to volatile objects, but leaves it
7320 implementation defined as to what constitutes a volatile access. The
7321 minimum requirement is that at a sequence point all previous accesses
7322 to volatile objects have stabilized and no subsequent accesses have
7323 occurred. Thus an implementation is free to reorder and combine
7324 volatile accesses that occur between sequence points, but cannot do
7325 so for accesses across a sequence point. The use of volatile does
7326 not allow you to violate the restriction on updating objects multiple
7327 times between two sequence points.
7328
7329 Accesses to non-volatile objects are not ordered with respect to
7330 volatile accesses. You cannot use a volatile object as a memory
7331 barrier to order a sequence of writes to non-volatile memory. For
7332 instance:
7333
7334 @smallexample
7335 int *ptr = @var{something};
7336 volatile int vobj;
7337 *ptr = @var{something};
7338 vobj = 1;
7339 @end smallexample
7340
7341 @noindent
7342 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7343 that the write to @var{*ptr} occurs by the time the update
7344 of @var{vobj} happens. If you need this guarantee, you must use
7345 a stronger memory barrier such as:
7346
7347 @smallexample
7348 int *ptr = @var{something};
7349 volatile int vobj;
7350 *ptr = @var{something};
7351 asm volatile ("" : : : "memory");
7352 vobj = 1;
7353 @end smallexample
7354
7355 A scalar volatile object is read when it is accessed in a void context:
7356
7357 @smallexample
7358 volatile int *src = @var{somevalue};
7359 *src;
7360 @end smallexample
7361
7362 Such expressions are rvalues, and GCC implements this as a
7363 read of the volatile object being pointed to.
7364
7365 Assignments are also expressions and have an rvalue. However when
7366 assigning to a scalar volatile, the volatile object is not reread,
7367 regardless of whether the assignment expression's rvalue is used or
7368 not. If the assignment's rvalue is used, the value is that assigned
7369 to the volatile object. For instance, there is no read of @var{vobj}
7370 in all the following cases:
7371
7372 @smallexample
7373 int obj;
7374 volatile int vobj;
7375 vobj = @var{something};
7376 obj = vobj = @var{something};
7377 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7378 obj = (@var{something}, vobj = @var{anotherthing});
7379 @end smallexample
7380
7381 If you need to read the volatile object after an assignment has
7382 occurred, you must use a separate expression with an intervening
7383 sequence point.
7384
7385 As bit-fields are not individually addressable, volatile bit-fields may
7386 be implicitly read when written to, or when adjacent bit-fields are
7387 accessed. Bit-field operations may be optimized such that adjacent
7388 bit-fields are only partially accessed, if they straddle a storage unit
7389 boundary. For these reasons it is unwise to use volatile bit-fields to
7390 access hardware.
7391
7392 @node Using Assembly Language with C
7393 @section How to Use Inline Assembly Language in C Code
7394 @cindex @code{asm} keyword
7395 @cindex assembly language in C
7396 @cindex inline assembly language
7397 @cindex mixing assembly language and C
7398
7399 The @code{asm} keyword allows you to embed assembler instructions
7400 within C code. GCC provides two forms of inline @code{asm}
7401 statements. A @dfn{basic @code{asm}} statement is one with no
7402 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7403 statement (@pxref{Extended Asm}) includes one or more operands.
7404 The extended form is preferred for mixing C and assembly language
7405 within a function, but to include assembly language at
7406 top level you must use basic @code{asm}.
7407
7408 You can also use the @code{asm} keyword to override the assembler name
7409 for a C symbol, or to place a C variable in a specific register.
7410
7411 @menu
7412 * Basic Asm:: Inline assembler without operands.
7413 * Extended Asm:: Inline assembler with operands.
7414 * Constraints:: Constraints for @code{asm} operands
7415 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7416 * Explicit Register Variables:: Defining variables residing in specified
7417 registers.
7418 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7419 @end menu
7420
7421 @node Basic Asm
7422 @subsection Basic Asm --- Assembler Instructions Without Operands
7423 @cindex basic @code{asm}
7424 @cindex assembly language in C, basic
7425
7426 A basic @code{asm} statement has the following syntax:
7427
7428 @example
7429 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
7430 @end example
7431
7432 The @code{asm} keyword is a GNU extension.
7433 When writing code that can be compiled with @option{-ansi} and the
7434 various @option{-std} options, use @code{__asm__} instead of
7435 @code{asm} (@pxref{Alternate Keywords}).
7436
7437 @subsubheading Qualifiers
7438 @table @code
7439 @item volatile
7440 The optional @code{volatile} qualifier has no effect.
7441 All basic @code{asm} blocks are implicitly volatile.
7442 @end table
7443
7444 @subsubheading Parameters
7445 @table @var
7446
7447 @item AssemblerInstructions
7448 This is a literal string that specifies the assembler code. The string can
7449 contain any instructions recognized by the assembler, including directives.
7450 GCC does not parse the assembler instructions themselves and
7451 does not know what they mean or even whether they are valid assembler input.
7452
7453 You may place multiple assembler instructions together in a single @code{asm}
7454 string, separated by the characters normally used in assembly code for the
7455 system. A combination that works in most places is a newline to break the
7456 line, plus a tab character (written as @samp{\n\t}).
7457 Some assemblers allow semicolons as a line separator. However,
7458 note that some assembler dialects use semicolons to start a comment.
7459 @end table
7460
7461 @subsubheading Remarks
7462 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
7463 smaller, safer, and more efficient code, and in most cases it is a
7464 better solution than basic @code{asm}. However, there are two
7465 situations where only basic @code{asm} can be used:
7466
7467 @itemize @bullet
7468 @item
7469 Extended @code{asm} statements have to be inside a C
7470 function, so to write inline assembly language at file scope (``top-level''),
7471 outside of C functions, you must use basic @code{asm}.
7472 You can use this technique to emit assembler directives,
7473 define assembly language macros that can be invoked elsewhere in the file,
7474 or write entire functions in assembly language.
7475
7476 @item
7477 Functions declared
7478 with the @code{naked} attribute also require basic @code{asm}
7479 (@pxref{Function Attributes}).
7480 @end itemize
7481
7482 Safely accessing C data and calling functions from basic @code{asm} is more
7483 complex than it may appear. To access C data, it is better to use extended
7484 @code{asm}.
7485
7486 Do not expect a sequence of @code{asm} statements to remain perfectly
7487 consecutive after compilation. If certain instructions need to remain
7488 consecutive in the output, put them in a single multi-instruction @code{asm}
7489 statement. Note that GCC's optimizers can move @code{asm} statements
7490 relative to other code, including across jumps.
7491
7492 @code{asm} statements may not perform jumps into other @code{asm} statements.
7493 GCC does not know about these jumps, and therefore cannot take
7494 account of them when deciding how to optimize. Jumps from @code{asm} to C
7495 labels are only supported in extended @code{asm}.
7496
7497 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7498 assembly code when optimizing. This can lead to unexpected duplicate
7499 symbol errors during compilation if your assembly code defines symbols or
7500 labels.
7501
7502 @strong{Warning:} The C standards do not specify semantics for @code{asm},
7503 making it a potential source of incompatibilities between compilers. These
7504 incompatibilities may not produce compiler warnings/errors.
7505
7506 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
7507 means there is no way to communicate to the compiler what is happening
7508 inside them. GCC has no visibility of symbols in the @code{asm} and may
7509 discard them as unreferenced. It also does not know about side effects of
7510 the assembler code, such as modifications to memory or registers. Unlike
7511 some compilers, GCC assumes that no changes to either memory or registers
7512 occur. This assumption may change in a future release.
7513
7514 To avoid complications from future changes to the semantics and the
7515 compatibility issues between compilers, consider replacing basic @code{asm}
7516 with extended @code{asm}. See
7517 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
7518 from basic asm to extended asm} for information about how to perform this
7519 conversion.
7520
7521 The compiler copies the assembler instructions in a basic @code{asm}
7522 verbatim to the assembly language output file, without
7523 processing dialects or any of the @samp{%} operators that are available with
7524 extended @code{asm}. This results in minor differences between basic
7525 @code{asm} strings and extended @code{asm} templates. For example, to refer to
7526 registers you might use @samp{%eax} in basic @code{asm} and
7527 @samp{%%eax} in extended @code{asm}.
7528
7529 On targets such as x86 that support multiple assembler dialects,
7530 all basic @code{asm} blocks use the assembler dialect specified by the
7531 @option{-masm} command-line option (@pxref{x86 Options}).
7532 Basic @code{asm} provides no
7533 mechanism to provide different assembler strings for different dialects.
7534
7535 Here is an example of basic @code{asm} for i386:
7536
7537 @example
7538 /* Note that this code will not compile with -masm=intel */
7539 #define DebugBreak() asm("int $3")
7540 @end example
7541
7542 @node Extended Asm
7543 @subsection Extended Asm - Assembler Instructions with C Expression Operands
7544 @cindex extended @code{asm}
7545 @cindex assembly language in C, extended
7546
7547 With extended @code{asm} you can read and write C variables from
7548 assembler and perform jumps from assembler code to C labels.
7549 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
7550 the operand parameters after the assembler template:
7551
7552 @example
7553 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
7554 : @var{OutputOperands}
7555 @r{[} : @var{InputOperands}
7556 @r{[} : @var{Clobbers} @r{]} @r{]})
7557
7558 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
7559 :
7560 : @var{InputOperands}
7561 : @var{Clobbers}
7562 : @var{GotoLabels})
7563 @end example
7564
7565 The @code{asm} keyword is a GNU extension.
7566 When writing code that can be compiled with @option{-ansi} and the
7567 various @option{-std} options, use @code{__asm__} instead of
7568 @code{asm} (@pxref{Alternate Keywords}).
7569
7570 @subsubheading Qualifiers
7571 @table @code
7572
7573 @item volatile
7574 The typical use of extended @code{asm} statements is to manipulate input
7575 values to produce output values. However, your @code{asm} statements may
7576 also produce side effects. If so, you may need to use the @code{volatile}
7577 qualifier to disable certain optimizations. @xref{Volatile}.
7578
7579 @item goto
7580 This qualifier informs the compiler that the @code{asm} statement may
7581 perform a jump to one of the labels listed in the @var{GotoLabels}.
7582 @xref{GotoLabels}.
7583 @end table
7584
7585 @subsubheading Parameters
7586 @table @var
7587 @item AssemblerTemplate
7588 This is a literal string that is the template for the assembler code. It is a
7589 combination of fixed text and tokens that refer to the input, output,
7590 and goto parameters. @xref{AssemblerTemplate}.
7591
7592 @item OutputOperands
7593 A comma-separated list of the C variables modified by the instructions in the
7594 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
7595
7596 @item InputOperands
7597 A comma-separated list of C expressions read by the instructions in the
7598 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
7599
7600 @item Clobbers
7601 A comma-separated list of registers or other values changed by the
7602 @var{AssemblerTemplate}, beyond those listed as outputs.
7603 An empty list is permitted. @xref{Clobbers}.
7604
7605 @item GotoLabels
7606 When you are using the @code{goto} form of @code{asm}, this section contains
7607 the list of all C labels to which the code in the
7608 @var{AssemblerTemplate} may jump.
7609 @xref{GotoLabels}.
7610
7611 @code{asm} statements may not perform jumps into other @code{asm} statements,
7612 only to the listed @var{GotoLabels}.
7613 GCC's optimizers do not know about other jumps; therefore they cannot take
7614 account of them when deciding how to optimize.
7615 @end table
7616
7617 The total number of input + output + goto operands is limited to 30.
7618
7619 @subsubheading Remarks
7620 The @code{asm} statement allows you to include assembly instructions directly
7621 within C code. This may help you to maximize performance in time-sensitive
7622 code or to access assembly instructions that are not readily available to C
7623 programs.
7624
7625 Note that extended @code{asm} statements must be inside a function. Only
7626 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
7627 Functions declared with the @code{naked} attribute also require basic
7628 @code{asm} (@pxref{Function Attributes}).
7629
7630 While the uses of @code{asm} are many and varied, it may help to think of an
7631 @code{asm} statement as a series of low-level instructions that convert input
7632 parameters to output parameters. So a simple (if not particularly useful)
7633 example for i386 using @code{asm} might look like this:
7634
7635 @example
7636 int src = 1;
7637 int dst;
7638
7639 asm ("mov %1, %0\n\t"
7640 "add $1, %0"
7641 : "=r" (dst)
7642 : "r" (src));
7643
7644 printf("%d\n", dst);
7645 @end example
7646
7647 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
7648
7649 @anchor{Volatile}
7650 @subsubsection Volatile
7651 @cindex volatile @code{asm}
7652 @cindex @code{asm} volatile
7653
7654 GCC's optimizers sometimes discard @code{asm} statements if they determine
7655 there is no need for the output variables. Also, the optimizers may move
7656 code out of loops if they believe that the code will always return the same
7657 result (i.e. none of its input values change between calls). Using the
7658 @code{volatile} qualifier disables these optimizations. @code{asm} statements
7659 that have no output operands, including @code{asm goto} statements,
7660 are implicitly volatile.
7661
7662 This i386 code demonstrates a case that does not use (or require) the
7663 @code{volatile} qualifier. If it is performing assertion checking, this code
7664 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
7665 unreferenced by any code. As a result, the optimizers can discard the
7666 @code{asm} statement, which in turn removes the need for the entire
7667 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
7668 isn't needed you allow the optimizers to produce the most efficient code
7669 possible.
7670
7671 @example
7672 void DoCheck(uint32_t dwSomeValue)
7673 @{
7674 uint32_t dwRes;
7675
7676 // Assumes dwSomeValue is not zero.
7677 asm ("bsfl %1,%0"
7678 : "=r" (dwRes)
7679 : "r" (dwSomeValue)
7680 : "cc");
7681
7682 assert(dwRes > 3);
7683 @}
7684 @end example
7685
7686 The next example shows a case where the optimizers can recognize that the input
7687 (@code{dwSomeValue}) never changes during the execution of the function and can
7688 therefore move the @code{asm} outside the loop to produce more efficient code.
7689 Again, using @code{volatile} disables this type of optimization.
7690
7691 @example
7692 void do_print(uint32_t dwSomeValue)
7693 @{
7694 uint32_t dwRes;
7695
7696 for (uint32_t x=0; x < 5; x++)
7697 @{
7698 // Assumes dwSomeValue is not zero.
7699 asm ("bsfl %1,%0"
7700 : "=r" (dwRes)
7701 : "r" (dwSomeValue)
7702 : "cc");
7703
7704 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
7705 @}
7706 @}
7707 @end example
7708
7709 The following example demonstrates a case where you need to use the
7710 @code{volatile} qualifier.
7711 It uses the x86 @code{rdtsc} instruction, which reads
7712 the computer's time-stamp counter. Without the @code{volatile} qualifier,
7713 the optimizers might assume that the @code{asm} block will always return the
7714 same value and therefore optimize away the second call.
7715
7716 @example
7717 uint64_t msr;
7718
7719 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7720 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7721 "or %%rdx, %0" // 'Or' in the lower bits.
7722 : "=a" (msr)
7723 :
7724 : "rdx");
7725
7726 printf("msr: %llx\n", msr);
7727
7728 // Do other work...
7729
7730 // Reprint the timestamp
7731 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
7732 "shl $32, %%rdx\n\t" // Shift the upper bits left.
7733 "or %%rdx, %0" // 'Or' in the lower bits.
7734 : "=a" (msr)
7735 :
7736 : "rdx");
7737
7738 printf("msr: %llx\n", msr);
7739 @end example
7740
7741 GCC's optimizers do not treat this code like the non-volatile code in the
7742 earlier examples. They do not move it out of loops or omit it on the
7743 assumption that the result from a previous call is still valid.
7744
7745 Note that the compiler can move even volatile @code{asm} instructions relative
7746 to other code, including across jump instructions. For example, on many
7747 targets there is a system register that controls the rounding mode of
7748 floating-point operations. Setting it with a volatile @code{asm}, as in the
7749 following PowerPC example, does not work reliably.
7750
7751 @example
7752 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
7753 sum = x + y;
7754 @end example
7755
7756 The compiler may move the addition back before the volatile @code{asm}. To
7757 make it work as expected, add an artificial dependency to the @code{asm} by
7758 referencing a variable in the subsequent code, for example:
7759
7760 @example
7761 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
7762 sum = x + y;
7763 @end example
7764
7765 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
7766 assembly code when optimizing. This can lead to unexpected duplicate symbol
7767 errors during compilation if your asm code defines symbols or labels.
7768 Using @samp{%=}
7769 (@pxref{AssemblerTemplate}) may help resolve this problem.
7770
7771 @anchor{AssemblerTemplate}
7772 @subsubsection Assembler Template
7773 @cindex @code{asm} assembler template
7774
7775 An assembler template is a literal string containing assembler instructions.
7776 The compiler replaces tokens in the template that refer
7777 to inputs, outputs, and goto labels,
7778 and then outputs the resulting string to the assembler. The
7779 string can contain any instructions recognized by the assembler, including
7780 directives. GCC does not parse the assembler instructions
7781 themselves and does not know what they mean or even whether they are valid
7782 assembler input. However, it does count the statements
7783 (@pxref{Size of an asm}).
7784
7785 You may place multiple assembler instructions together in a single @code{asm}
7786 string, separated by the characters normally used in assembly code for the
7787 system. A combination that works in most places is a newline to break the
7788 line, plus a tab character to move to the instruction field (written as
7789 @samp{\n\t}).
7790 Some assemblers allow semicolons as a line separator. However, note
7791 that some assembler dialects use semicolons to start a comment.
7792
7793 Do not expect a sequence of @code{asm} statements to remain perfectly
7794 consecutive after compilation, even when you are using the @code{volatile}
7795 qualifier. If certain instructions need to remain consecutive in the output,
7796 put them in a single multi-instruction asm statement.
7797
7798 Accessing data from C programs without using input/output operands (such as
7799 by using global symbols directly from the assembler template) may not work as
7800 expected. Similarly, calling functions directly from an assembler template
7801 requires a detailed understanding of the target assembler and ABI.
7802
7803 Since GCC does not parse the assembler template,
7804 it has no visibility of any
7805 symbols it references. This may result in GCC discarding those symbols as
7806 unreferenced unless they are also listed as input, output, or goto operands.
7807
7808 @subsubheading Special format strings
7809
7810 In addition to the tokens described by the input, output, and goto operands,
7811 these tokens have special meanings in the assembler template:
7812
7813 @table @samp
7814 @item %%
7815 Outputs a single @samp{%} into the assembler code.
7816
7817 @item %=
7818 Outputs a number that is unique to each instance of the @code{asm}
7819 statement in the entire compilation. This option is useful when creating local
7820 labels and referring to them multiple times in a single template that
7821 generates multiple assembler instructions.
7822
7823 @item %@{
7824 @itemx %|
7825 @itemx %@}
7826 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
7827 into the assembler code. When unescaped, these characters have special
7828 meaning to indicate multiple assembler dialects, as described below.
7829 @end table
7830
7831 @subsubheading Multiple assembler dialects in @code{asm} templates
7832
7833 On targets such as x86, GCC supports multiple assembler dialects.
7834 The @option{-masm} option controls which dialect GCC uses as its
7835 default for inline assembler. The target-specific documentation for the
7836 @option{-masm} option contains the list of supported dialects, as well as the
7837 default dialect if the option is not specified. This information may be
7838 important to understand, since assembler code that works correctly when
7839 compiled using one dialect will likely fail if compiled using another.
7840 @xref{x86 Options}.
7841
7842 If your code needs to support multiple assembler dialects (for example, if
7843 you are writing public headers that need to support a variety of compilation
7844 options), use constructs of this form:
7845
7846 @example
7847 @{ dialect0 | dialect1 | dialect2... @}
7848 @end example
7849
7850 This construct outputs @code{dialect0}
7851 when using dialect #0 to compile the code,
7852 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
7853 braces than the number of dialects the compiler supports, the construct
7854 outputs nothing.
7855
7856 For example, if an x86 compiler supports two dialects
7857 (@samp{att}, @samp{intel}), an
7858 assembler template such as this:
7859
7860 @example
7861 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
7862 @end example
7863
7864 @noindent
7865 is equivalent to one of
7866
7867 @example
7868 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
7869 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
7870 @end example
7871
7872 Using that same compiler, this code:
7873
7874 @example
7875 "xchg@{l@}\t@{%%@}ebx, %1"
7876 @end example
7877
7878 @noindent
7879 corresponds to either
7880
7881 @example
7882 "xchgl\t%%ebx, %1" @r{/* att dialect */}
7883 "xchg\tebx, %1" @r{/* intel dialect */}
7884 @end example
7885
7886 There is no support for nesting dialect alternatives.
7887
7888 @anchor{OutputOperands}
7889 @subsubsection Output Operands
7890 @cindex @code{asm} output operands
7891
7892 An @code{asm} statement has zero or more output operands indicating the names
7893 of C variables modified by the assembler code.
7894
7895 In this i386 example, @code{old} (referred to in the template string as
7896 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
7897 (@code{%2}) is an input:
7898
7899 @example
7900 bool old;
7901
7902 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
7903 "sbb %0,%0" // Use the CF to calculate old.
7904 : "=r" (old), "+rm" (*Base)
7905 : "Ir" (Offset)
7906 : "cc");
7907
7908 return old;
7909 @end example
7910
7911 Operands are separated by commas. Each operand has this format:
7912
7913 @example
7914 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
7915 @end example
7916
7917 @table @var
7918 @item asmSymbolicName
7919 Specifies a symbolic name for the operand.
7920 Reference the name in the assembler template
7921 by enclosing it in square brackets
7922 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
7923 that contains the definition. Any valid C variable name is acceptable,
7924 including names already defined in the surrounding code. No two operands
7925 within the same @code{asm} statement can use the same symbolic name.
7926
7927 When not using an @var{asmSymbolicName}, use the (zero-based) position
7928 of the operand
7929 in the list of operands in the assembler template. For example if there are
7930 three output operands, use @samp{%0} in the template to refer to the first,
7931 @samp{%1} for the second, and @samp{%2} for the third.
7932
7933 @item constraint
7934 A string constant specifying constraints on the placement of the operand;
7935 @xref{Constraints}, for details.
7936
7937 Output constraints must begin with either @samp{=} (a variable overwriting an
7938 existing value) or @samp{+} (when reading and writing). When using
7939 @samp{=}, do not assume the location contains the existing value
7940 on entry to the @code{asm}, except
7941 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
7942
7943 After the prefix, there must be one or more additional constraints
7944 (@pxref{Constraints}) that describe where the value resides. Common
7945 constraints include @samp{r} for register and @samp{m} for memory.
7946 When you list more than one possible location (for example, @code{"=rm"}),
7947 the compiler chooses the most efficient one based on the current context.
7948 If you list as many alternates as the @code{asm} statement allows, you permit
7949 the optimizers to produce the best possible code.
7950 If you must use a specific register, but your Machine Constraints do not
7951 provide sufficient control to select the specific register you want,
7952 local register variables may provide a solution (@pxref{Local Register
7953 Variables}).
7954
7955 @item cvariablename
7956 Specifies a C lvalue expression to hold the output, typically a variable name.
7957 The enclosing parentheses are a required part of the syntax.
7958
7959 @end table
7960
7961 When the compiler selects the registers to use to
7962 represent the output operands, it does not use any of the clobbered registers
7963 (@pxref{Clobbers}).
7964
7965 Output operand expressions must be lvalues. The compiler cannot check whether
7966 the operands have data types that are reasonable for the instruction being
7967 executed. For output expressions that are not directly addressable (for
7968 example a bit-field), the constraint must allow a register. In that case, GCC
7969 uses the register as the output of the @code{asm}, and then stores that
7970 register into the output.
7971
7972 Operands using the @samp{+} constraint modifier count as two operands
7973 (that is, both as input and output) towards the total maximum of 30 operands
7974 per @code{asm} statement.
7975
7976 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
7977 operands that must not overlap an input. Otherwise,
7978 GCC may allocate the output operand in the same register as an unrelated
7979 input operand, on the assumption that the assembler code consumes its
7980 inputs before producing outputs. This assumption may be false if the assembler
7981 code actually consists of more than one instruction.
7982
7983 The same problem can occur if one output parameter (@var{a}) allows a register
7984 constraint and another output parameter (@var{b}) allows a memory constraint.
7985 The code generated by GCC to access the memory address in @var{b} can contain
7986 registers which @emph{might} be shared by @var{a}, and GCC considers those
7987 registers to be inputs to the asm. As above, GCC assumes that such input
7988 registers are consumed before any outputs are written. This assumption may
7989 result in incorrect behavior if the asm writes to @var{a} before using
7990 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
7991 ensures that modifying @var{a} does not affect the address referenced by
7992 @var{b}. Otherwise, the location of @var{b}
7993 is undefined if @var{a} is modified before using @var{b}.
7994
7995 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
7996 instead of simply @samp{%2}). Typically these qualifiers are hardware
7997 dependent. The list of supported modifiers for x86 is found at
7998 @ref{x86Operandmodifiers,x86 Operand modifiers}.
7999
8000 If the C code that follows the @code{asm} makes no use of any of the output
8001 operands, use @code{volatile} for the @code{asm} statement to prevent the
8002 optimizers from discarding the @code{asm} statement as unneeded
8003 (see @ref{Volatile}).
8004
8005 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8006 references the first output operand as @code{%0} (were there a second, it
8007 would be @code{%1}, etc). The number of the first input operand is one greater
8008 than that of the last output operand. In this i386 example, that makes
8009 @code{Mask} referenced as @code{%1}:
8010
8011 @example
8012 uint32_t Mask = 1234;
8013 uint32_t Index;
8014
8015 asm ("bsfl %1, %0"
8016 : "=r" (Index)
8017 : "r" (Mask)
8018 : "cc");
8019 @end example
8020
8021 That code overwrites the variable @code{Index} (@samp{=}),
8022 placing the value in a register (@samp{r}).
8023 Using the generic @samp{r} constraint instead of a constraint for a specific
8024 register allows the compiler to pick the register to use, which can result
8025 in more efficient code. This may not be possible if an assembler instruction
8026 requires a specific register.
8027
8028 The following i386 example uses the @var{asmSymbolicName} syntax.
8029 It produces the
8030 same result as the code above, but some may consider it more readable or more
8031 maintainable since reordering index numbers is not necessary when adding or
8032 removing operands. The names @code{aIndex} and @code{aMask}
8033 are only used in this example to emphasize which
8034 names get used where.
8035 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8036
8037 @example
8038 uint32_t Mask = 1234;
8039 uint32_t Index;
8040
8041 asm ("bsfl %[aMask], %[aIndex]"
8042 : [aIndex] "=r" (Index)
8043 : [aMask] "r" (Mask)
8044 : "cc");
8045 @end example
8046
8047 Here are some more examples of output operands.
8048
8049 @example
8050 uint32_t c = 1;
8051 uint32_t d;
8052 uint32_t *e = &c;
8053
8054 asm ("mov %[e], %[d]"
8055 : [d] "=rm" (d)
8056 : [e] "rm" (*e));
8057 @end example
8058
8059 Here, @code{d} may either be in a register or in memory. Since the compiler
8060 might already have the current value of the @code{uint32_t} location
8061 pointed to by @code{e}
8062 in a register, you can enable it to choose the best location
8063 for @code{d} by specifying both constraints.
8064
8065 @anchor{FlagOutputOperands}
8066 @subsubsection Flag Output Operands
8067 @cindex @code{asm} flag output operands
8068
8069 Some targets have a special register that holds the ``flags'' for the
8070 result of an operation or comparison. Normally, the contents of that
8071 register are either unmodifed by the asm, or the asm is considered to
8072 clobber the contents.
8073
8074 On some targets, a special form of output operand exists by which
8075 conditions in the flags register may be outputs of the asm. The set of
8076 conditions supported are target specific, but the general rule is that
8077 the output variable must be a scalar integer, and the value is boolean.
8078 When supported, the target defines the preprocessor symbol
8079 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8080
8081 Because of the special nature of the flag output operands, the constraint
8082 may not include alternatives.
8083
8084 Most often, the target has only one flags register, and thus is an implied
8085 operand of many instructions. In this case, the operand should not be
8086 referenced within the assembler template via @code{%0} etc, as there's
8087 no corresponding text in the assembly language.
8088
8089 @table @asis
8090 @item x86 family
8091 The flag output constraints for the x86 family are of the form
8092 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8093 conditions defined in the ISA manual for @code{j@var{cc}} or
8094 @code{set@var{cc}}.
8095
8096 @table @code
8097 @item a
8098 ``above'' or unsigned greater than
8099 @item ae
8100 ``above or equal'' or unsigned greater than or equal
8101 @item b
8102 ``below'' or unsigned less than
8103 @item be
8104 ``below or equal'' or unsigned less than or equal
8105 @item c
8106 carry flag set
8107 @item e
8108 @itemx z
8109 ``equal'' or zero flag set
8110 @item g
8111 signed greater than
8112 @item ge
8113 signed greater than or equal
8114 @item l
8115 signed less than
8116 @item le
8117 signed less than or equal
8118 @item o
8119 overflow flag set
8120 @item p
8121 parity flag set
8122 @item s
8123 sign flag set
8124 @item na
8125 @itemx nae
8126 @itemx nb
8127 @itemx nbe
8128 @itemx nc
8129 @itemx ne
8130 @itemx ng
8131 @itemx nge
8132 @itemx nl
8133 @itemx nle
8134 @itemx no
8135 @itemx np
8136 @itemx ns
8137 @itemx nz
8138 ``not'' @var{flag}, or inverted versions of those above
8139 @end table
8140
8141 @end table
8142
8143 @anchor{InputOperands}
8144 @subsubsection Input Operands
8145 @cindex @code{asm} input operands
8146 @cindex @code{asm} expressions
8147
8148 Input operands make values from C variables and expressions available to the
8149 assembly code.
8150
8151 Operands are separated by commas. Each operand has this format:
8152
8153 @example
8154 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8155 @end example
8156
8157 @table @var
8158 @item asmSymbolicName
8159 Specifies a symbolic name for the operand.
8160 Reference the name in the assembler template
8161 by enclosing it in square brackets
8162 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8163 that contains the definition. Any valid C variable name is acceptable,
8164 including names already defined in the surrounding code. No two operands
8165 within the same @code{asm} statement can use the same symbolic name.
8166
8167 When not using an @var{asmSymbolicName}, use the (zero-based) position
8168 of the operand
8169 in the list of operands in the assembler template. For example if there are
8170 two output operands and three inputs,
8171 use @samp{%2} in the template to refer to the first input operand,
8172 @samp{%3} for the second, and @samp{%4} for the third.
8173
8174 @item constraint
8175 A string constant specifying constraints on the placement of the operand;
8176 @xref{Constraints}, for details.
8177
8178 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8179 When you list more than one possible location (for example, @samp{"irm"}),
8180 the compiler chooses the most efficient one based on the current context.
8181 If you must use a specific register, but your Machine Constraints do not
8182 provide sufficient control to select the specific register you want,
8183 local register variables may provide a solution (@pxref{Local Register
8184 Variables}).
8185
8186 Input constraints can also be digits (for example, @code{"0"}). This indicates
8187 that the specified input must be in the same place as the output constraint
8188 at the (zero-based) index in the output constraint list.
8189 When using @var{asmSymbolicName} syntax for the output operands,
8190 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8191
8192 @item cexpression
8193 This is the C variable or expression being passed to the @code{asm} statement
8194 as input. The enclosing parentheses are a required part of the syntax.
8195
8196 @end table
8197
8198 When the compiler selects the registers to use to represent the input
8199 operands, it does not use any of the clobbered registers (@pxref{Clobbers}).
8200
8201 If there are no output operands but there are input operands, place two
8202 consecutive colons where the output operands would go:
8203
8204 @example
8205 __asm__ ("some instructions"
8206 : /* No outputs. */
8207 : "r" (Offset / 8));
8208 @end example
8209
8210 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8211 (except for inputs tied to outputs). The compiler assumes that on exit from
8212 the @code{asm} statement these operands contain the same values as they
8213 had before executing the statement.
8214 It is @emph{not} possible to use clobbers
8215 to inform the compiler that the values in these inputs are changing. One
8216 common work-around is to tie the changing input variable to an output variable
8217 that never gets used. Note, however, that if the code that follows the
8218 @code{asm} statement makes no use of any of the output operands, the GCC
8219 optimizers may discard the @code{asm} statement as unneeded
8220 (see @ref{Volatile}).
8221
8222 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8223 instead of simply @samp{%2}). Typically these qualifiers are hardware
8224 dependent. The list of supported modifiers for x86 is found at
8225 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8226
8227 In this example using the fictitious @code{combine} instruction, the
8228 constraint @code{"0"} for input operand 1 says that it must occupy the same
8229 location as output operand 0. Only input operands may use numbers in
8230 constraints, and they must each refer to an output operand. Only a number (or
8231 the symbolic assembler name) in the constraint can guarantee that one operand
8232 is in the same place as another. The mere fact that @code{foo} is the value of
8233 both operands is not enough to guarantee that they are in the same place in
8234 the generated assembler code.
8235
8236 @example
8237 asm ("combine %2, %0"
8238 : "=r" (foo)
8239 : "0" (foo), "g" (bar));
8240 @end example
8241
8242 Here is an example using symbolic names.
8243
8244 @example
8245 asm ("cmoveq %1, %2, %[result]"
8246 : [result] "=r"(result)
8247 : "r" (test), "r" (new), "[result]" (old));
8248 @end example
8249
8250 @anchor{Clobbers}
8251 @subsubsection Clobbers
8252 @cindex @code{asm} clobbers
8253
8254 While the compiler is aware of changes to entries listed in the output
8255 operands, the inline @code{asm} code may modify more than just the outputs. For
8256 example, calculations may require additional registers, or the processor may
8257 overwrite a register as a side effect of a particular assembler instruction.
8258 In order to inform the compiler of these changes, list them in the clobber
8259 list. Clobber list items are either register names or the special clobbers
8260 (listed below). Each clobber list item is a string constant
8261 enclosed in double quotes and separated by commas.
8262
8263 Clobber descriptions may not in any way overlap with an input or output
8264 operand. For example, you may not have an operand describing a register class
8265 with one member when listing that register in the clobber list. Variables
8266 declared to live in specific registers (@pxref{Explicit Register
8267 Variables}) and used
8268 as @code{asm} input or output operands must have no part mentioned in the
8269 clobber description. In particular, there is no way to specify that input
8270 operands get modified without also specifying them as output operands.
8271
8272 When the compiler selects which registers to use to represent input and output
8273 operands, it does not use any of the clobbered registers. As a result,
8274 clobbered registers are available for any use in the assembler code.
8275
8276 Here is a realistic example for the VAX showing the use of clobbered
8277 registers:
8278
8279 @example
8280 asm volatile ("movc3 %0, %1, %2"
8281 : /* No outputs. */
8282 : "g" (from), "g" (to), "g" (count)
8283 : "r0", "r1", "r2", "r3", "r4", "r5");
8284 @end example
8285
8286 Also, there are two special clobber arguments:
8287
8288 @table @code
8289 @item "cc"
8290 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8291 register. On some machines, GCC represents the condition codes as a specific
8292 hardware register; @code{"cc"} serves to name this register.
8293 On other machines, condition code handling is different,
8294 and specifying @code{"cc"} has no effect. But
8295 it is valid no matter what the target.
8296
8297 @item "memory"
8298 The @code{"memory"} clobber tells the compiler that the assembly code
8299 performs memory
8300 reads or writes to items other than those listed in the input and output
8301 operands (for example, accessing the memory pointed to by one of the input
8302 parameters). To ensure memory contains correct values, GCC may need to flush
8303 specific register values to memory before executing the @code{asm}. Further,
8304 the compiler does not assume that any values read from memory before an
8305 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8306 needed.
8307 Using the @code{"memory"} clobber effectively forms a read/write
8308 memory barrier for the compiler.
8309
8310 Note that this clobber does not prevent the @emph{processor} from doing
8311 speculative reads past the @code{asm} statement. To prevent that, you need
8312 processor-specific fence instructions.
8313
8314 Flushing registers to memory has performance implications and may be an issue
8315 for time-sensitive code. You can use a trick to avoid this if the size of
8316 the memory being accessed is known at compile time. For example, if accessing
8317 ten bytes of a string, use a memory input like:
8318
8319 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
8320
8321 @end table
8322
8323 @anchor{GotoLabels}
8324 @subsubsection Goto Labels
8325 @cindex @code{asm} goto labels
8326
8327 @code{asm goto} allows assembly code to jump to one or more C labels. The
8328 @var{GotoLabels} section in an @code{asm goto} statement contains
8329 a comma-separated
8330 list of all C labels to which the assembler code may jump. GCC assumes that
8331 @code{asm} execution falls through to the next statement (if this is not the
8332 case, consider using the @code{__builtin_unreachable} intrinsic after the
8333 @code{asm} statement). Optimization of @code{asm goto} may be improved by
8334 using the @code{hot} and @code{cold} label attributes (@pxref{Label
8335 Attributes}).
8336
8337 An @code{asm goto} statement cannot have outputs.
8338 This is due to an internal restriction of
8339 the compiler: control transfer instructions cannot have outputs.
8340 If the assembler code does modify anything, use the @code{"memory"} clobber
8341 to force the
8342 optimizers to flush all register values to memory and reload them if
8343 necessary after the @code{asm} statement.
8344
8345 Also note that an @code{asm goto} statement is always implicitly
8346 considered volatile.
8347
8348 To reference a label in the assembler template,
8349 prefix it with @samp{%l} (lowercase @samp{L}) followed
8350 by its (zero-based) position in @var{GotoLabels} plus the number of input
8351 operands. For example, if the @code{asm} has three inputs and references two
8352 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
8353
8354 Alternately, you can reference labels using the actual C label name enclosed
8355 in brackets. For example, to reference a label named @code{carry}, you can
8356 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
8357 section when using this approach.
8358
8359 Here is an example of @code{asm goto} for i386:
8360
8361 @example
8362 asm goto (
8363 "btl %1, %0\n\t"
8364 "jc %l2"
8365 : /* No outputs. */
8366 : "r" (p1), "r" (p2)
8367 : "cc"
8368 : carry);
8369
8370 return 0;
8371
8372 carry:
8373 return 1;
8374 @end example
8375
8376 The following example shows an @code{asm goto} that uses a memory clobber.
8377
8378 @example
8379 int frob(int x)
8380 @{
8381 int y;
8382 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
8383 : /* No outputs. */
8384 : "r"(x), "r"(&y)
8385 : "r5", "memory"
8386 : error);
8387 return y;
8388 error:
8389 return -1;
8390 @}
8391 @end example
8392
8393 @anchor{x86Operandmodifiers}
8394 @subsubsection x86 Operand Modifiers
8395
8396 References to input, output, and goto operands in the assembler template
8397 of extended @code{asm} statements can use
8398 modifiers to affect the way the operands are formatted in
8399 the code output to the assembler. For example, the
8400 following code uses the @samp{h} and @samp{b} modifiers for x86:
8401
8402 @example
8403 uint16_t num;
8404 asm volatile ("xchg %h0, %b0" : "+a" (num) );
8405 @end example
8406
8407 @noindent
8408 These modifiers generate this assembler code:
8409
8410 @example
8411 xchg %ah, %al
8412 @end example
8413
8414 The rest of this discussion uses the following code for illustrative purposes.
8415
8416 @example
8417 int main()
8418 @{
8419 int iInt = 1;
8420
8421 top:
8422
8423 asm volatile goto ("some assembler instructions here"
8424 : /* No outputs. */
8425 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
8426 : /* No clobbers. */
8427 : top);
8428 @}
8429 @end example
8430
8431 With no modifiers, this is what the output from the operands would be for the
8432 @samp{att} and @samp{intel} dialects of assembler:
8433
8434 @multitable {Operand} {masm=att} {OFFSET FLAT:.L2}
8435 @headitem Operand @tab masm=att @tab masm=intel
8436 @item @code{%0}
8437 @tab @code{%eax}
8438 @tab @code{eax}
8439 @item @code{%1}
8440 @tab @code{$2}
8441 @tab @code{2}
8442 @item @code{%2}
8443 @tab @code{$.L2}
8444 @tab @code{OFFSET FLAT:.L2}
8445 @end multitable
8446
8447 The table below shows the list of supported modifiers and their effects.
8448
8449 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {masm=att} {masm=intel}
8450 @headitem Modifier @tab Description @tab Operand @tab @option{masm=att} @tab @option{masm=intel}
8451 @item @code{z}
8452 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
8453 @tab @code{%z0}
8454 @tab @code{l}
8455 @tab
8456 @item @code{b}
8457 @tab Print the QImode name of the register.
8458 @tab @code{%b0}
8459 @tab @code{%al}
8460 @tab @code{al}
8461 @item @code{h}
8462 @tab Print the QImode name for a ``high'' register.
8463 @tab @code{%h0}
8464 @tab @code{%ah}
8465 @tab @code{ah}
8466 @item @code{w}
8467 @tab Print the HImode name of the register.
8468 @tab @code{%w0}
8469 @tab @code{%ax}
8470 @tab @code{ax}
8471 @item @code{k}
8472 @tab Print the SImode name of the register.
8473 @tab @code{%k0}
8474 @tab @code{%eax}
8475 @tab @code{eax}
8476 @item @code{q}
8477 @tab Print the DImode name of the register.
8478 @tab @code{%q0}
8479 @tab @code{%rax}
8480 @tab @code{rax}
8481 @item @code{l}
8482 @tab Print the label name with no punctuation.
8483 @tab @code{%l2}
8484 @tab @code{.L2}
8485 @tab @code{.L2}
8486 @item @code{c}
8487 @tab Require a constant operand and print the constant expression with no punctuation.
8488 @tab @code{%c1}
8489 @tab @code{2}
8490 @tab @code{2}
8491 @end multitable
8492
8493 @anchor{x86floatingpointasmoperands}
8494 @subsubsection x86 Floating-Point @code{asm} Operands
8495
8496 On x86 targets, there are several rules on the usage of stack-like registers
8497 in the operands of an @code{asm}. These rules apply only to the operands
8498 that are stack-like registers:
8499
8500 @enumerate
8501 @item
8502 Given a set of input registers that die in an @code{asm}, it is
8503 necessary to know which are implicitly popped by the @code{asm}, and
8504 which must be explicitly popped by GCC@.
8505
8506 An input register that is implicitly popped by the @code{asm} must be
8507 explicitly clobbered, unless it is constrained to match an
8508 output operand.
8509
8510 @item
8511 For any input register that is implicitly popped by an @code{asm}, it is
8512 necessary to know how to adjust the stack to compensate for the pop.
8513 If any non-popped input is closer to the top of the reg-stack than
8514 the implicitly popped register, it would not be possible to know what the
8515 stack looked like---it's not clear how the rest of the stack ``slides
8516 up''.
8517
8518 All implicitly popped input registers must be closer to the top of
8519 the reg-stack than any input that is not implicitly popped.
8520
8521 It is possible that if an input dies in an @code{asm}, the compiler might
8522 use the input register for an output reload. Consider this example:
8523
8524 @smallexample
8525 asm ("foo" : "=t" (a) : "f" (b));
8526 @end smallexample
8527
8528 @noindent
8529 This code says that input @code{b} is not popped by the @code{asm}, and that
8530 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
8531 deeper after the @code{asm} than it was before. But, it is possible that
8532 reload may think that it can use the same register for both the input and
8533 the output.
8534
8535 To prevent this from happening,
8536 if any input operand uses the @samp{f} constraint, all output register
8537 constraints must use the @samp{&} early-clobber modifier.
8538
8539 The example above is correctly written as:
8540
8541 @smallexample
8542 asm ("foo" : "=&t" (a) : "f" (b));
8543 @end smallexample
8544
8545 @item
8546 Some operands need to be in particular places on the stack. All
8547 output operands fall in this category---GCC has no other way to
8548 know which registers the outputs appear in unless you indicate
8549 this in the constraints.
8550
8551 Output operands must specifically indicate which register an output
8552 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
8553 constraints must select a class with a single register.
8554
8555 @item
8556 Output operands may not be ``inserted'' between existing stack registers.
8557 Since no 387 opcode uses a read/write operand, all output operands
8558 are dead before the @code{asm}, and are pushed by the @code{asm}.
8559 It makes no sense to push anywhere but the top of the reg-stack.
8560
8561 Output operands must start at the top of the reg-stack: output
8562 operands may not ``skip'' a register.
8563
8564 @item
8565 Some @code{asm} statements may need extra stack space for internal
8566 calculations. This can be guaranteed by clobbering stack registers
8567 unrelated to the inputs and outputs.
8568
8569 @end enumerate
8570
8571 This @code{asm}
8572 takes one input, which is internally popped, and produces two outputs.
8573
8574 @smallexample
8575 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
8576 @end smallexample
8577
8578 @noindent
8579 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
8580 and replaces them with one output. The @code{st(1)} clobber is necessary
8581 for the compiler to know that @code{fyl2xp1} pops both inputs.
8582
8583 @smallexample
8584 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
8585 @end smallexample
8586
8587 @lowersections
8588 @include md.texi
8589 @raisesections
8590
8591 @node Asm Labels
8592 @subsection Controlling Names Used in Assembler Code
8593 @cindex assembler names for identifiers
8594 @cindex names used in assembler code
8595 @cindex identifiers, names in assembler code
8596
8597 You can specify the name to be used in the assembler code for a C
8598 function or variable by writing the @code{asm} (or @code{__asm__})
8599 keyword after the declarator.
8600 It is up to you to make sure that the assembler names you choose do not
8601 conflict with any other assembler symbols, or reference registers.
8602
8603 @subsubheading Assembler names for data:
8604
8605 This sample shows how to specify the assembler name for data:
8606
8607 @smallexample
8608 int foo asm ("myfoo") = 2;
8609 @end smallexample
8610
8611 @noindent
8612 This specifies that the name to be used for the variable @code{foo} in
8613 the assembler code should be @samp{myfoo} rather than the usual
8614 @samp{_foo}.
8615
8616 On systems where an underscore is normally prepended to the name of a C
8617 variable, this feature allows you to define names for the
8618 linker that do not start with an underscore.
8619
8620 GCC does not support using this feature with a non-static local variable
8621 since such variables do not have assembler names. If you are
8622 trying to put the variable in a particular register, see
8623 @ref{Explicit Register Variables}.
8624
8625 @subsubheading Assembler names for functions:
8626
8627 To specify the assembler name for functions, write a declaration for the
8628 function before its definition and put @code{asm} there, like this:
8629
8630 @smallexample
8631 int func (int x, int y) asm ("MYFUNC");
8632
8633 int func (int x, int y)
8634 @{
8635 /* @r{@dots{}} */
8636 @end smallexample
8637
8638 @noindent
8639 This specifies that the name to be used for the function @code{func} in
8640 the assembler code should be @code{MYFUNC}.
8641
8642 @node Explicit Register Variables
8643 @subsection Variables in Specified Registers
8644 @anchor{Explicit Reg Vars}
8645 @cindex explicit register variables
8646 @cindex variables in specified registers
8647 @cindex specified registers
8648
8649 GNU C allows you to associate specific hardware registers with C
8650 variables. In almost all cases, allowing the compiler to assign
8651 registers produces the best code. However under certain unusual
8652 circumstances, more precise control over the variable storage is
8653 required.
8654
8655 Both global and local variables can be associated with a register. The
8656 consequences of performing this association are very different between
8657 the two, as explained in the sections below.
8658
8659 @menu
8660 * Global Register Variables:: Variables declared at global scope.
8661 * Local Register Variables:: Variables declared within a function.
8662 @end menu
8663
8664 @node Global Register Variables
8665 @subsubsection Defining Global Register Variables
8666 @anchor{Global Reg Vars}
8667 @cindex global register variables
8668 @cindex registers, global variables in
8669 @cindex registers, global allocation
8670
8671 You can define a global register variable and associate it with a specified
8672 register like this:
8673
8674 @smallexample
8675 register int *foo asm ("r12");
8676 @end smallexample
8677
8678 @noindent
8679 Here @code{r12} is the name of the register that should be used. Note that
8680 this is the same syntax used for defining local register variables, but for
8681 a global variable the declaration appears outside a function. The
8682 @code{register} keyword is required, and cannot be combined with
8683 @code{static}. The register name must be a valid register name for the
8684 target platform.
8685
8686 Registers are a scarce resource on most systems and allowing the
8687 compiler to manage their usage usually results in the best code. However,
8688 under special circumstances it can make sense to reserve some globally.
8689 For example this may be useful in programs such as programming language
8690 interpreters that have a couple of global variables that are accessed
8691 very often.
8692
8693 After defining a global register variable, for the current compilation
8694 unit:
8695
8696 @itemize @bullet
8697 @item The register is reserved entirely for this use, and will not be
8698 allocated for any other purpose.
8699 @item The register is not saved and restored by any functions.
8700 @item Stores into this register are never deleted even if they appear to be
8701 dead, but references may be deleted, moved or simplified.
8702 @end itemize
8703
8704 Note that these points @emph{only} apply to code that is compiled with the
8705 definition. The behavior of code that is merely linked in (for example
8706 code from libraries) is not affected.
8707
8708 If you want to recompile source files that do not actually use your global
8709 register variable so they do not use the specified register for any other
8710 purpose, you need not actually add the global register declaration to
8711 their source code. It suffices to specify the compiler option
8712 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
8713 register.
8714
8715 @subsubheading Declaring the variable
8716
8717 Global register variables can not have initial values, because an
8718 executable file has no means to supply initial contents for a register.
8719
8720 When selecting a register, choose one that is normally saved and
8721 restored by function calls on your machine. This ensures that code
8722 which is unaware of this reservation (such as library routines) will
8723 restore it before returning.
8724
8725 On machines with register windows, be sure to choose a global
8726 register that is not affected magically by the function call mechanism.
8727
8728 @subsubheading Using the variable
8729
8730 @cindex @code{qsort}, and global register variables
8731 When calling routines that are not aware of the reservation, be
8732 cautious if those routines call back into code which uses them. As an
8733 example, if you call the system library version of @code{qsort}, it may
8734 clobber your registers during execution, but (if you have selected
8735 appropriate registers) it will restore them before returning. However
8736 it will @emph{not} restore them before calling @code{qsort}'s comparison
8737 function. As a result, global values will not reliably be available to
8738 the comparison function unless the @code{qsort} function itself is rebuilt.
8739
8740 Similarly, it is not safe to access the global register variables from signal
8741 handlers or from more than one thread of control. Unless you recompile
8742 them specially for the task at hand, the system library routines may
8743 temporarily use the register for other things.
8744
8745 @cindex register variable after @code{longjmp}
8746 @cindex global register after @code{longjmp}
8747 @cindex value after @code{longjmp}
8748 @findex longjmp
8749 @findex setjmp
8750 On most machines, @code{longjmp} restores to each global register
8751 variable the value it had at the time of the @code{setjmp}. On some
8752 machines, however, @code{longjmp} does not change the value of global
8753 register variables. To be portable, the function that called @code{setjmp}
8754 should make other arrangements to save the values of the global register
8755 variables, and to restore them in a @code{longjmp}. This way, the same
8756 thing happens regardless of what @code{longjmp} does.
8757
8758 Eventually there may be a way of asking the compiler to choose a register
8759 automatically, but first we need to figure out how it should choose and
8760 how to enable you to guide the choice. No solution is evident.
8761
8762 @node Local Register Variables
8763 @subsubsection Specifying Registers for Local Variables
8764 @anchor{Local Reg Vars}
8765 @cindex local variables, specifying registers
8766 @cindex specifying registers for local variables
8767 @cindex registers for local variables
8768
8769 You can define a local register variable and associate it with a specified
8770 register like this:
8771
8772 @smallexample
8773 register int *foo asm ("r12");
8774 @end smallexample
8775
8776 @noindent
8777 Here @code{r12} is the name of the register that should be used. Note
8778 that this is the same syntax used for defining global register variables,
8779 but for a local variable the declaration appears within a function. The
8780 @code{register} keyword is required, and cannot be combined with
8781 @code{static}. The register name must be a valid register name for the
8782 target platform.
8783
8784 As with global register variables, it is recommended that you choose
8785 a register that is normally saved and restored by function calls on your
8786 machine, so that calls to library routines will not clobber it.
8787
8788 The only supported use for this feature is to specify registers
8789 for input and output operands when calling Extended @code{asm}
8790 (@pxref{Extended Asm}). This may be necessary if the constraints for a
8791 particular machine don't provide sufficient control to select the desired
8792 register. To force an operand into a register, create a local variable
8793 and specify the register name after the variable's declaration. Then use
8794 the local variable for the @code{asm} operand and specify any constraint
8795 letter that matches the register:
8796
8797 @smallexample
8798 register int *p1 asm ("r0") = @dots{};
8799 register int *p2 asm ("r1") = @dots{};
8800 register int *result asm ("r0");
8801 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
8802 @end smallexample
8803
8804 @emph{Warning:} In the above example, be aware that a register (for example
8805 @code{r0}) can be call-clobbered by subsequent code, including function
8806 calls and library calls for arithmetic operators on other variables (for
8807 example the initialization of @code{p2}). In this case, use temporary
8808 variables for expressions between the register assignments:
8809
8810 @smallexample
8811 int t1 = @dots{};
8812 register int *p1 asm ("r0") = @dots{};
8813 register int *p2 asm ("r1") = t1;
8814 register int *result asm ("r0");
8815 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
8816 @end smallexample
8817
8818 Defining a register variable does not reserve the register. Other than
8819 when invoking the Extended @code{asm}, the contents of the specified
8820 register are not guaranteed. For this reason, the following uses
8821 are explicitly @emph{not} supported. If they appear to work, it is only
8822 happenstance, and may stop working as intended due to (seemingly)
8823 unrelated changes in surrounding code, or even minor changes in the
8824 optimization of a future version of gcc:
8825
8826 @itemize @bullet
8827 @item Passing parameters to or from Basic @code{asm}
8828 @item Passing parameters to or from Extended @code{asm} without using input
8829 or output operands.
8830 @item Passing parameters to or from routines written in assembler (or
8831 other languages) using non-standard calling conventions.
8832 @end itemize
8833
8834 Some developers use Local Register Variables in an attempt to improve
8835 gcc's allocation of registers, especially in large functions. In this
8836 case the register name is essentially a hint to the register allocator.
8837 While in some instances this can generate better code, improvements are
8838 subject to the whims of the allocator/optimizers. Since there are no
8839 guarantees that your improvements won't be lost, this usage of Local
8840 Register Variables is discouraged.
8841
8842 On the MIPS platform, there is related use for local register variables
8843 with slightly different characteristics (@pxref{MIPS Coprocessors,,
8844 Defining coprocessor specifics for MIPS targets, gccint,
8845 GNU Compiler Collection (GCC) Internals}).
8846
8847 @node Size of an asm
8848 @subsection Size of an @code{asm}
8849
8850 Some targets require that GCC track the size of each instruction used
8851 in order to generate correct code. Because the final length of the
8852 code produced by an @code{asm} statement is only known by the
8853 assembler, GCC must make an estimate as to how big it will be. It
8854 does this by counting the number of instructions in the pattern of the
8855 @code{asm} and multiplying that by the length of the longest
8856 instruction supported by that processor. (When working out the number
8857 of instructions, it assumes that any occurrence of a newline or of
8858 whatever statement separator character is supported by the assembler --
8859 typically @samp{;} --- indicates the end of an instruction.)
8860
8861 Normally, GCC's estimate is adequate to ensure that correct
8862 code is generated, but it is possible to confuse the compiler if you use
8863 pseudo instructions or assembler macros that expand into multiple real
8864 instructions, or if you use assembler directives that expand to more
8865 space in the object file than is needed for a single instruction.
8866 If this happens then the assembler may produce a diagnostic saying that
8867 a label is unreachable.
8868
8869 @node Alternate Keywords
8870 @section Alternate Keywords
8871 @cindex alternate keywords
8872 @cindex keywords, alternate
8873
8874 @option{-ansi} and the various @option{-std} options disable certain
8875 keywords. This causes trouble when you want to use GNU C extensions, or
8876 a general-purpose header file that should be usable by all programs,
8877 including ISO C programs. The keywords @code{asm}, @code{typeof} and
8878 @code{inline} are not available in programs compiled with
8879 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
8880 program compiled with @option{-std=c99} or @option{-std=c11}). The
8881 ISO C99 keyword
8882 @code{restrict} is only available when @option{-std=gnu99} (which will
8883 eventually be the default) or @option{-std=c99} (or the equivalent
8884 @option{-std=iso9899:1999}), or an option for a later standard
8885 version, is used.
8886
8887 The way to solve these problems is to put @samp{__} at the beginning and
8888 end of each problematical keyword. For example, use @code{__asm__}
8889 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
8890
8891 Other C compilers won't accept these alternative keywords; if you want to
8892 compile with another compiler, you can define the alternate keywords as
8893 macros to replace them with the customary keywords. It looks like this:
8894
8895 @smallexample
8896 #ifndef __GNUC__
8897 #define __asm__ asm
8898 #endif
8899 @end smallexample
8900
8901 @findex __extension__
8902 @opindex pedantic
8903 @option{-pedantic} and other options cause warnings for many GNU C extensions.
8904 You can
8905 prevent such warnings within one expression by writing
8906 @code{__extension__} before the expression. @code{__extension__} has no
8907 effect aside from this.
8908
8909 @node Incomplete Enums
8910 @section Incomplete @code{enum} Types
8911
8912 You can define an @code{enum} tag without specifying its possible values.
8913 This results in an incomplete type, much like what you get if you write
8914 @code{struct foo} without describing the elements. A later declaration
8915 that does specify the possible values completes the type.
8916
8917 You can't allocate variables or storage using the type while it is
8918 incomplete. However, you can work with pointers to that type.
8919
8920 This extension may not be very useful, but it makes the handling of
8921 @code{enum} more consistent with the way @code{struct} and @code{union}
8922 are handled.
8923
8924 This extension is not supported by GNU C++.
8925
8926 @node Function Names
8927 @section Function Names as Strings
8928 @cindex @code{__func__} identifier
8929 @cindex @code{__FUNCTION__} identifier
8930 @cindex @code{__PRETTY_FUNCTION__} identifier
8931
8932 GCC provides three magic constants that hold the name of the current
8933 function as a string. In C++11 and later modes, all three are treated
8934 as constant expressions and can be used in @code{constexpr} constexts.
8935 The first of these constants is @code{__func__}, which is part of
8936 the C99 standard:
8937
8938 The identifier @code{__func__} is implicitly declared by the translator
8939 as if, immediately following the opening brace of each function
8940 definition, the declaration
8941
8942 @smallexample
8943 static const char __func__[] = "function-name";
8944 @end smallexample
8945
8946 @noindent
8947 appeared, where function-name is the name of the lexically-enclosing
8948 function. This name is the unadorned name of the function. As an
8949 extension, at file (or, in C++, namespace scope), @code{__func__}
8950 evaluates to the empty string.
8951
8952 @code{__FUNCTION__} is another name for @code{__func__}, provided for
8953 backward compatibility with old versions of GCC.
8954
8955 In C, @code{__PRETTY_FUNCTION__} is yet another name for
8956 @code{__func__}, except that at file (or, in C++, namespace scope),
8957 it evaluates to the string @code{"top level"}. In addition, in C++,
8958 @code{__PRETTY_FUNCTION__} contains the signature of the function as
8959 well as its bare name. For example, this program:
8960
8961 @smallexample
8962 extern "C" int printf (const char *, ...);
8963
8964 class a @{
8965 public:
8966 void sub (int i)
8967 @{
8968 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
8969 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
8970 @}
8971 @};
8972
8973 int
8974 main (void)
8975 @{
8976 a ax;
8977 ax.sub (0);
8978 return 0;
8979 @}
8980 @end smallexample
8981
8982 @noindent
8983 gives this output:
8984
8985 @smallexample
8986 __FUNCTION__ = sub
8987 __PRETTY_FUNCTION__ = void a::sub(int)
8988 @end smallexample
8989
8990 These identifiers are variables, not preprocessor macros, and may not
8991 be used to initialize @code{char} arrays or be concatenated with string
8992 literals.
8993
8994 @node Return Address
8995 @section Getting the Return or Frame Address of a Function
8996
8997 These functions may be used to get information about the callers of a
8998 function.
8999
9000 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9001 This function returns the return address of the current function, or of
9002 one of its callers. The @var{level} argument is number of frames to
9003 scan up the call stack. A value of @code{0} yields the return address
9004 of the current function, a value of @code{1} yields the return address
9005 of the caller of the current function, and so forth. When inlining
9006 the expected behavior is that the function returns the address of
9007 the function that is returned to. To work around this behavior use
9008 the @code{noinline} function attribute.
9009
9010 The @var{level} argument must be a constant integer.
9011
9012 On some machines it may be impossible to determine the return address of
9013 any function other than the current one; in such cases, or when the top
9014 of the stack has been reached, this function returns @code{0} or a
9015 random value. In addition, @code{__builtin_frame_address} may be used
9016 to determine if the top of the stack has been reached.
9017
9018 Additional post-processing of the returned value may be needed, see
9019 @code{__builtin_extract_return_addr}.
9020
9021 Calling this function with a nonzero argument can have unpredictable
9022 effects, including crashing the calling program. As a result, calls
9023 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9024 option is in effect. Such calls should only be made in debugging
9025 situations.
9026 @end deftypefn
9027
9028 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9029 The address as returned by @code{__builtin_return_address} may have to be fed
9030 through this function to get the actual encoded address. For example, on the
9031 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9032 platforms an offset has to be added for the true next instruction to be
9033 executed.
9034
9035 If no fixup is needed, this function simply passes through @var{addr}.
9036 @end deftypefn
9037
9038 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9039 This function does the reverse of @code{__builtin_extract_return_addr}.
9040 @end deftypefn
9041
9042 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9043 This function is similar to @code{__builtin_return_address}, but it
9044 returns the address of the function frame rather than the return address
9045 of the function. Calling @code{__builtin_frame_address} with a value of
9046 @code{0} yields the frame address of the current function, a value of
9047 @code{1} yields the frame address of the caller of the current function,
9048 and so forth.
9049
9050 The frame is the area on the stack that holds local variables and saved
9051 registers. The frame address is normally the address of the first word
9052 pushed on to the stack by the function. However, the exact definition
9053 depends upon the processor and the calling convention. If the processor
9054 has a dedicated frame pointer register, and the function has a frame,
9055 then @code{__builtin_frame_address} returns the value of the frame
9056 pointer register.
9057
9058 On some machines it may be impossible to determine the frame address of
9059 any function other than the current one; in such cases, or when the top
9060 of the stack has been reached, this function returns @code{0} if
9061 the first frame pointer is properly initialized by the startup code.
9062
9063 Calling this function with a nonzero argument can have unpredictable
9064 effects, including crashing the calling program. As a result, calls
9065 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9066 option is in effect. Such calls should only be made in debugging
9067 situations.
9068 @end deftypefn
9069
9070 @node Vector Extensions
9071 @section Using Vector Instructions through Built-in Functions
9072
9073 On some targets, the instruction set contains SIMD vector instructions which
9074 operate on multiple values contained in one large register at the same time.
9075 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9076 this way.
9077
9078 The first step in using these extensions is to provide the necessary data
9079 types. This should be done using an appropriate @code{typedef}:
9080
9081 @smallexample
9082 typedef int v4si __attribute__ ((vector_size (16)));
9083 @end smallexample
9084
9085 @noindent
9086 The @code{int} type specifies the base type, while the attribute specifies
9087 the vector size for the variable, measured in bytes. For example, the
9088 declaration above causes the compiler to set the mode for the @code{v4si}
9089 type to be 16 bytes wide and divided into @code{int} sized units. For
9090 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9091 corresponding mode of @code{foo} is @acronym{V4SI}.
9092
9093 The @code{vector_size} attribute is only applicable to integral and
9094 float scalars, although arrays, pointers, and function return values
9095 are allowed in conjunction with this construct. Only sizes that are
9096 a power of two are currently allowed.
9097
9098 All the basic integer types can be used as base types, both as signed
9099 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9100 @code{long long}. In addition, @code{float} and @code{double} can be
9101 used to build floating-point vector types.
9102
9103 Specifying a combination that is not valid for the current architecture
9104 causes GCC to synthesize the instructions using a narrower mode.
9105 For example, if you specify a variable of type @code{V4SI} and your
9106 architecture does not allow for this specific SIMD type, GCC
9107 produces code that uses 4 @code{SIs}.
9108
9109 The types defined in this manner can be used with a subset of normal C
9110 operations. Currently, GCC allows using the following operators
9111 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9112
9113 The operations behave like C++ @code{valarrays}. Addition is defined as
9114 the addition of the corresponding elements of the operands. For
9115 example, in the code below, each of the 4 elements in @var{a} is
9116 added to the corresponding 4 elements in @var{b} and the resulting
9117 vector is stored in @var{c}.
9118
9119 @smallexample
9120 typedef int v4si __attribute__ ((vector_size (16)));
9121
9122 v4si a, b, c;
9123
9124 c = a + b;
9125 @end smallexample
9126
9127 Subtraction, multiplication, division, and the logical operations
9128 operate in a similar manner. Likewise, the result of using the unary
9129 minus or complement operators on a vector type is a vector whose
9130 elements are the negative or complemented values of the corresponding
9131 elements in the operand.
9132
9133 It is possible to use shifting operators @code{<<}, @code{>>} on
9134 integer-type vectors. The operation is defined as following: @code{@{a0,
9135 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9136 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9137 elements.
9138
9139 For convenience, it is allowed to use a binary vector operation
9140 where one operand is a scalar. In that case the compiler transforms
9141 the scalar operand into a vector where each element is the scalar from
9142 the operation. The transformation happens only if the scalar could be
9143 safely converted to the vector-element type.
9144 Consider the following code.
9145
9146 @smallexample
9147 typedef int v4si __attribute__ ((vector_size (16)));
9148
9149 v4si a, b, c;
9150 long l;
9151
9152 a = b + 1; /* a = b + @{1,1,1,1@}; */
9153 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9154
9155 a = l + a; /* Error, cannot convert long to int. */
9156 @end smallexample
9157
9158 Vectors can be subscripted as if the vector were an array with
9159 the same number of elements and base type. Out of bound accesses
9160 invoke undefined behavior at run time. Warnings for out of bound
9161 accesses for vector subscription can be enabled with
9162 @option{-Warray-bounds}.
9163
9164 Vector comparison is supported with standard comparison
9165 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9166 vector expressions of integer-type or real-type. Comparison between
9167 integer-type vectors and real-type vectors are not supported. The
9168 result of the comparison is a vector of the same width and number of
9169 elements as the comparison operands with a signed integral element
9170 type.
9171
9172 Vectors are compared element-wise producing 0 when comparison is false
9173 and -1 (constant of the appropriate type where all bits are set)
9174 otherwise. Consider the following example.
9175
9176 @smallexample
9177 typedef int v4si __attribute__ ((vector_size (16)));
9178
9179 v4si a = @{1,2,3,4@};
9180 v4si b = @{3,2,1,4@};
9181 v4si c;
9182
9183 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9184 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9185 @end smallexample
9186
9187 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9188 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9189 integer vector with the same number of elements of the same size as @code{b}
9190 and @code{c}, computes all three arguments and creates a vector
9191 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9192 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9193 As in the case of binary operations, this syntax is also accepted when
9194 one of @code{b} or @code{c} is a scalar that is then transformed into a
9195 vector. If both @code{b} and @code{c} are scalars and the type of
9196 @code{true?b:c} has the same size as the element type of @code{a}, then
9197 @code{b} and @code{c} are converted to a vector type whose elements have
9198 this type and with the same number of elements as @code{a}.
9199
9200 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9201 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9202 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9203 For mixed operations between a scalar @code{s} and a vector @code{v},
9204 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9205 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9206
9207 Vector shuffling is available using functions
9208 @code{__builtin_shuffle (vec, mask)} and
9209 @code{__builtin_shuffle (vec0, vec1, mask)}.
9210 Both functions construct a permutation of elements from one or two
9211 vectors and return a vector of the same type as the input vector(s).
9212 The @var{mask} is an integral vector with the same width (@var{W})
9213 and element count (@var{N}) as the output vector.
9214
9215 The elements of the input vectors are numbered in memory ordering of
9216 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9217 elements of @var{mask} are considered modulo @var{N} in the single-operand
9218 case and modulo @math{2*@var{N}} in the two-operand case.
9219
9220 Consider the following example,
9221
9222 @smallexample
9223 typedef int v4si __attribute__ ((vector_size (16)));
9224
9225 v4si a = @{1,2,3,4@};
9226 v4si b = @{5,6,7,8@};
9227 v4si mask1 = @{0,1,1,3@};
9228 v4si mask2 = @{0,4,2,5@};
9229 v4si res;
9230
9231 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9232 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9233 @end smallexample
9234
9235 Note that @code{__builtin_shuffle} is intentionally semantically
9236 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9237
9238 You can declare variables and use them in function calls and returns, as
9239 well as in assignments and some casts. You can specify a vector type as
9240 a return type for a function. Vector types can also be used as function
9241 arguments. It is possible to cast from one vector type to another,
9242 provided they are of the same size (in fact, you can also cast vectors
9243 to and from other datatypes of the same size).
9244
9245 You cannot operate between vectors of different lengths or different
9246 signedness without a cast.
9247
9248 @node Offsetof
9249 @section Support for @code{offsetof}
9250 @findex __builtin_offsetof
9251
9252 GCC implements for both C and C++ a syntactic extension to implement
9253 the @code{offsetof} macro.
9254
9255 @smallexample
9256 primary:
9257 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9258
9259 offsetof_member_designator:
9260 @code{identifier}
9261 | offsetof_member_designator "." @code{identifier}
9262 | offsetof_member_designator "[" @code{expr} "]"
9263 @end smallexample
9264
9265 This extension is sufficient such that
9266
9267 @smallexample
9268 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9269 @end smallexample
9270
9271 @noindent
9272 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9273 may be dependent. In either case, @var{member} may consist of a single
9274 identifier, or a sequence of member accesses and array references.
9275
9276 @node __sync Builtins
9277 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9278
9279 The following built-in functions
9280 are intended to be compatible with those described
9281 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9282 section 7.4. As such, they depart from normal GCC practice by not using
9283 the @samp{__builtin_} prefix and also by being overloaded so that they
9284 work on multiple types.
9285
9286 The definition given in the Intel documentation allows only for the use of
9287 the types @code{int}, @code{long}, @code{long long} or their unsigned
9288 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9289 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9290 Operations on pointer arguments are performed as if the operands were
9291 of the @code{uintptr_t} type. That is, they are not scaled by the size
9292 of the type to which the pointer points.
9293
9294 These functions are implemented in terms of the @samp{__atomic}
9295 builtins (@pxref{__atomic Builtins}). They should not be used for new
9296 code which should use the @samp{__atomic} builtins instead.
9297
9298 Not all operations are supported by all target processors. If a particular
9299 operation cannot be implemented on the target processor, a warning is
9300 generated and a call to an external function is generated. The external
9301 function carries the same name as the built-in version,
9302 with an additional suffix
9303 @samp{_@var{n}} where @var{n} is the size of the data type.
9304
9305 @c ??? Should we have a mechanism to suppress this warning? This is almost
9306 @c useful for implementing the operation under the control of an external
9307 @c mutex.
9308
9309 In most cases, these built-in functions are considered a @dfn{full barrier}.
9310 That is,
9311 no memory operand is moved across the operation, either forward or
9312 backward. Further, instructions are issued as necessary to prevent the
9313 processor from speculating loads across the operation and from queuing stores
9314 after the operation.
9315
9316 All of the routines are described in the Intel documentation to take
9317 ``an optional list of variables protected by the memory barrier''. It's
9318 not clear what is meant by that; it could mean that @emph{only} the
9319 listed variables are protected, or it could mean a list of additional
9320 variables to be protected. The list is ignored by GCC which treats it as
9321 empty. GCC interprets an empty list as meaning that all globally
9322 accessible variables should be protected.
9323
9324 @table @code
9325 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
9326 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
9327 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
9328 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
9329 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
9330 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
9331 @findex __sync_fetch_and_add
9332 @findex __sync_fetch_and_sub
9333 @findex __sync_fetch_and_or
9334 @findex __sync_fetch_and_and
9335 @findex __sync_fetch_and_xor
9336 @findex __sync_fetch_and_nand
9337 These built-in functions perform the operation suggested by the name, and
9338 returns the value that had previously been in memory. That is, operations
9339 on integer operands have the following semantics. Operations on pointer
9340 arguments are performed as if the operands were of the @code{uintptr_t}
9341 type. That is, they are not scaled by the size of the type to which
9342 the pointer points.
9343
9344 @smallexample
9345 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
9346 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
9347 @end smallexample
9348
9349 The object pointed to by the first argument must be of integer or pointer
9350 type. It must not be a Boolean type.
9351
9352 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
9353 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
9354
9355 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
9356 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
9357 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
9358 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
9359 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
9360 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
9361 @findex __sync_add_and_fetch
9362 @findex __sync_sub_and_fetch
9363 @findex __sync_or_and_fetch
9364 @findex __sync_and_and_fetch
9365 @findex __sync_xor_and_fetch
9366 @findex __sync_nand_and_fetch
9367 These built-in functions perform the operation suggested by the name, and
9368 return the new value. That is, operations on integer operands have
9369 the following semantics. Operations on pointer operands are performed as
9370 if the operand's type were @code{uintptr_t}.
9371
9372 @smallexample
9373 @{ *ptr @var{op}= value; return *ptr; @}
9374 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
9375 @end smallexample
9376
9377 The same constraints on arguments apply as for the corresponding
9378 @code{__sync_op_and_fetch} built-in functions.
9379
9380 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
9381 as @code{*ptr = ~(*ptr & value)} instead of
9382 @code{*ptr = ~*ptr & value}.
9383
9384 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9385 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
9386 @findex __sync_bool_compare_and_swap
9387 @findex __sync_val_compare_and_swap
9388 These built-in functions perform an atomic compare and swap.
9389 That is, if the current
9390 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
9391 @code{*@var{ptr}}.
9392
9393 The ``bool'' version returns true if the comparison is successful and
9394 @var{newval} is written. The ``val'' version returns the contents
9395 of @code{*@var{ptr}} before the operation.
9396
9397 @item __sync_synchronize (...)
9398 @findex __sync_synchronize
9399 This built-in function issues a full memory barrier.
9400
9401 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
9402 @findex __sync_lock_test_and_set
9403 This built-in function, as described by Intel, is not a traditional test-and-set
9404 operation, but rather an atomic exchange operation. It writes @var{value}
9405 into @code{*@var{ptr}}, and returns the previous contents of
9406 @code{*@var{ptr}}.
9407
9408 Many targets have only minimal support for such locks, and do not support
9409 a full exchange operation. In this case, a target may support reduced
9410 functionality here by which the @emph{only} valid value to store is the
9411 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
9412 is implementation defined.
9413
9414 This built-in function is not a full barrier,
9415 but rather an @dfn{acquire barrier}.
9416 This means that references after the operation cannot move to (or be
9417 speculated to) before the operation, but previous memory stores may not
9418 be globally visible yet, and previous memory loads may not yet be
9419 satisfied.
9420
9421 @item void __sync_lock_release (@var{type} *ptr, ...)
9422 @findex __sync_lock_release
9423 This built-in function releases the lock acquired by
9424 @code{__sync_lock_test_and_set}.
9425 Normally this means writing the constant 0 to @code{*@var{ptr}}.
9426
9427 This built-in function is not a full barrier,
9428 but rather a @dfn{release barrier}.
9429 This means that all previous memory stores are globally visible, and all
9430 previous memory loads have been satisfied, but following memory reads
9431 are not prevented from being speculated to before the barrier.
9432 @end table
9433
9434 @node __atomic Builtins
9435 @section Built-in Functions for Memory Model Aware Atomic Operations
9436
9437 The following built-in functions approximately match the requirements
9438 for the C++11 memory model. They are all
9439 identified by being prefixed with @samp{__atomic} and most are
9440 overloaded so that they work with multiple types.
9441
9442 These functions are intended to replace the legacy @samp{__sync}
9443 builtins. The main difference is that the memory order that is requested
9444 is a parameter to the functions. New code should always use the
9445 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
9446
9447 Note that the @samp{__atomic} builtins assume that programs will
9448 conform to the C++11 memory model. In particular, they assume
9449 that programs are free of data races. See the C++11 standard for
9450 detailed requirements.
9451
9452 The @samp{__atomic} builtins can be used with any integral scalar or
9453 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
9454 types are also allowed if @samp{__int128} (@pxref{__int128}) is
9455 supported by the architecture.
9456
9457 The four non-arithmetic functions (load, store, exchange, and
9458 compare_exchange) all have a generic version as well. This generic
9459 version works on any data type. It uses the lock-free built-in function
9460 if the specific data type size makes that possible; otherwise, an
9461 external call is left to be resolved at run time. This external call is
9462 the same format with the addition of a @samp{size_t} parameter inserted
9463 as the first parameter indicating the size of the object being pointed to.
9464 All objects must be the same size.
9465
9466 There are 6 different memory orders that can be specified. These map
9467 to the C++11 memory orders with the same names, see the C++11 standard
9468 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
9469 on atomic synchronization} for detailed definitions. Individual
9470 targets may also support additional memory orders for use on specific
9471 architectures. Refer to the target documentation for details of
9472 these.
9473
9474 An atomic operation can both constrain code motion and
9475 be mapped to hardware instructions for synchronization between threads
9476 (e.g., a fence). To which extent this happens is controlled by the
9477 memory orders, which are listed here in approximately ascending order of
9478 strength. The description of each memory order is only meant to roughly
9479 illustrate the effects and is not a specification; see the C++11
9480 memory model for precise semantics.
9481
9482 @table @code
9483 @item __ATOMIC_RELAXED
9484 Implies no inter-thread ordering constraints.
9485 @item __ATOMIC_CONSUME
9486 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
9487 memory order because of a deficiency in C++11's semantics for
9488 @code{memory_order_consume}.
9489 @item __ATOMIC_ACQUIRE
9490 Creates an inter-thread happens-before constraint from the release (or
9491 stronger) semantic store to this acquire load. Can prevent hoisting
9492 of code to before the operation.
9493 @item __ATOMIC_RELEASE
9494 Creates an inter-thread happens-before constraint to acquire (or stronger)
9495 semantic loads that read from this release store. Can prevent sinking
9496 of code to after the operation.
9497 @item __ATOMIC_ACQ_REL
9498 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
9499 @code{__ATOMIC_RELEASE}.
9500 @item __ATOMIC_SEQ_CST
9501 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
9502 @end table
9503
9504 Note that in the C++11 memory model, @emph{fences} (e.g.,
9505 @samp{__atomic_thread_fence}) take effect in combination with other
9506 atomic operations on specific memory locations (e.g., atomic loads);
9507 operations on specific memory locations do not necessarily affect other
9508 operations in the same way.
9509
9510 Target architectures are encouraged to provide their own patterns for
9511 each of the atomic built-in functions. If no target is provided, the original
9512 non-memory model set of @samp{__sync} atomic built-in functions are
9513 used, along with any required synchronization fences surrounding it in
9514 order to achieve the proper behavior. Execution in this case is subject
9515 to the same restrictions as those built-in functions.
9516
9517 If there is no pattern or mechanism to provide a lock-free instruction
9518 sequence, a call is made to an external routine with the same parameters
9519 to be resolved at run time.
9520
9521 When implementing patterns for these built-in functions, the memory order
9522 parameter can be ignored as long as the pattern implements the most
9523 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
9524 orders execute correctly with this memory order but they may not execute as
9525 efficiently as they could with a more appropriate implementation of the
9526 relaxed requirements.
9527
9528 Note that the C++11 standard allows for the memory order parameter to be
9529 determined at run time rather than at compile time. These built-in
9530 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
9531 than invoke a runtime library call or inline a switch statement. This is
9532 standard compliant, safe, and the simplest approach for now.
9533
9534 The memory order parameter is a signed int, but only the lower 16 bits are
9535 reserved for the memory order. The remainder of the signed int is reserved
9536 for target use and should be 0. Use of the predefined atomic values
9537 ensures proper usage.
9538
9539 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
9540 This built-in function implements an atomic load operation. It returns the
9541 contents of @code{*@var{ptr}}.
9542
9543 The valid memory order variants are
9544 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9545 and @code{__ATOMIC_CONSUME}.
9546
9547 @end deftypefn
9548
9549 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
9550 This is the generic version of an atomic load. It returns the
9551 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
9552
9553 @end deftypefn
9554
9555 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
9556 This built-in function implements an atomic store operation. It writes
9557 @code{@var{val}} into @code{*@var{ptr}}.
9558
9559 The valid memory order variants are
9560 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
9561
9562 @end deftypefn
9563
9564 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
9565 This is the generic version of an atomic store. It stores the value
9566 of @code{*@var{val}} into @code{*@var{ptr}}.
9567
9568 @end deftypefn
9569
9570 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
9571 This built-in function implements an atomic exchange operation. It writes
9572 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
9573 @code{*@var{ptr}}.
9574
9575 The valid memory order variants are
9576 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
9577 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
9578
9579 @end deftypefn
9580
9581 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
9582 This is the generic version of an atomic exchange. It stores the
9583 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
9584 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
9585
9586 @end deftypefn
9587
9588 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
9589 This built-in function implements an atomic compare and exchange operation.
9590 This compares the contents of @code{*@var{ptr}} with the contents of
9591 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
9592 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
9593 equal, the operation is a @emph{read} and the current contents of
9594 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
9595 for weak compare_exchange, which may fail spuriously, and false for
9596 the strong variation, which never fails spuriously. Many targets
9597 only offer the strong variation and ignore the parameter. When in doubt, use
9598 the strong variation.
9599
9600 If @var{desired} is written into @code{*@var{ptr}} then true is returned
9601 and memory is affected according to the
9602 memory order specified by @var{success_memorder}. There are no
9603 restrictions on what memory order can be used here.
9604
9605 Otherwise, false is returned and memory is affected according
9606 to @var{failure_memorder}. This memory order cannot be
9607 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
9608 stronger order than that specified by @var{success_memorder}.
9609
9610 @end deftypefn
9611
9612 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
9613 This built-in function implements the generic version of
9614 @code{__atomic_compare_exchange}. The function is virtually identical to
9615 @code{__atomic_compare_exchange_n}, except the desired value is also a
9616 pointer.
9617
9618 @end deftypefn
9619
9620 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
9621 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
9622 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
9623 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
9624 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
9625 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
9626 These built-in functions perform the operation suggested by the name, and
9627 return the result of the operation. Operations on pointer arguments are
9628 performed as if the operands were of the @code{uintptr_t} type. That is,
9629 they are not scaled by the size of the type to which the pointer points.
9630
9631 @smallexample
9632 @{ *ptr @var{op}= val; return *ptr; @}
9633 @end smallexample
9634
9635 The object pointed to by the first argument must be of integer or pointer
9636 type. It must not be a Boolean type. All memory orders are valid.
9637
9638 @end deftypefn
9639
9640 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
9641 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
9642 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
9643 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
9644 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
9645 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
9646 These built-in functions perform the operation suggested by the name, and
9647 return the value that had previously been in @code{*@var{ptr}}. Operations
9648 on pointer arguments are performed as if the operands were of
9649 the @code{uintptr_t} type. That is, they are not scaled by the size of
9650 the type to which the pointer points.
9651
9652 @smallexample
9653 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
9654 @end smallexample
9655
9656 The same constraints on arguments apply as for the corresponding
9657 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
9658
9659 @end deftypefn
9660
9661 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
9662
9663 This built-in function performs an atomic test-and-set operation on
9664 the byte at @code{*@var{ptr}}. The byte is set to some implementation
9665 defined nonzero ``set'' value and the return value is @code{true} if and only
9666 if the previous contents were ``set''.
9667 It should be only used for operands of type @code{bool} or @code{char}. For
9668 other types only part of the value may be set.
9669
9670 All memory orders are valid.
9671
9672 @end deftypefn
9673
9674 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
9675
9676 This built-in function performs an atomic clear operation on
9677 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
9678 It should be only used for operands of type @code{bool} or @code{char} and
9679 in conjunction with @code{__atomic_test_and_set}.
9680 For other types it may only clear partially. If the type is not @code{bool}
9681 prefer using @code{__atomic_store}.
9682
9683 The valid memory order variants are
9684 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
9685 @code{__ATOMIC_RELEASE}.
9686
9687 @end deftypefn
9688
9689 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
9690
9691 This built-in function acts as a synchronization fence between threads
9692 based on the specified memory order.
9693
9694 All memory orders are valid.
9695
9696 @end deftypefn
9697
9698 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
9699
9700 This built-in function acts as a synchronization fence between a thread
9701 and signal handlers based in the same thread.
9702
9703 All memory orders are valid.
9704
9705 @end deftypefn
9706
9707 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
9708
9709 This built-in function returns true if objects of @var{size} bytes always
9710 generate lock-free atomic instructions for the target architecture.
9711 @var{size} must resolve to a compile-time constant and the result also
9712 resolves to a compile-time constant.
9713
9714 @var{ptr} is an optional pointer to the object that may be used to determine
9715 alignment. A value of 0 indicates typical alignment should be used. The
9716 compiler may also ignore this parameter.
9717
9718 @smallexample
9719 if (__atomic_always_lock_free (sizeof (long long), 0))
9720 @end smallexample
9721
9722 @end deftypefn
9723
9724 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
9725
9726 This built-in function returns true if objects of @var{size} bytes always
9727 generate lock-free atomic instructions for the target architecture. If
9728 the built-in function is not known to be lock-free, a call is made to a
9729 runtime routine named @code{__atomic_is_lock_free}.
9730
9731 @var{ptr} is an optional pointer to the object that may be used to determine
9732 alignment. A value of 0 indicates typical alignment should be used. The
9733 compiler may also ignore this parameter.
9734 @end deftypefn
9735
9736 @node Integer Overflow Builtins
9737 @section Built-in Functions to Perform Arithmetic with Overflow Checking
9738
9739 The following built-in functions allow performing simple arithmetic operations
9740 together with checking whether the operations overflowed.
9741
9742 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9743 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
9744 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
9745 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long int *res)
9746 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
9747 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9748 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long int *res)
9749
9750 These built-in functions promote the first two operands into infinite precision signed
9751 type and perform addition on those promoted operands. The result is then
9752 cast to the type the third pointer argument points to and stored there.
9753 If the stored result is equal to the infinite precision result, the built-in
9754 functions return false, otherwise they return true. As the addition is
9755 performed in infinite signed precision, these built-in functions have fully defined
9756 behavior for all argument values.
9757
9758 The first built-in function allows arbitrary integral types for operands and
9759 the result type must be pointer to some integer type, the rest of the built-in
9760 functions have explicit integer types.
9761
9762 The compiler will attempt to use hardware instructions to implement
9763 these built-in functions where possible, like conditional jump on overflow
9764 after addition, conditional jump on carry etc.
9765
9766 @end deftypefn
9767
9768 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9769 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
9770 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
9771 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long int *res)
9772 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
9773 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9774 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long int *res)
9775
9776 These built-in functions are similar to the add overflow checking built-in
9777 functions above, except they perform subtraction, subtract the second argument
9778 from the first one, instead of addition.
9779
9780 @end deftypefn
9781
9782 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
9783 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
9784 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
9785 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long int *res)
9786 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
9787 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
9788 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long int *res)
9789
9790 These built-in functions are similar to the add overflow checking built-in
9791 functions above, except they perform multiplication, instead of addition.
9792
9793 @end deftypefn
9794
9795 @node x86 specific memory model extensions for transactional memory
9796 @section x86-Specific Memory Model Extensions for Transactional Memory
9797
9798 The x86 architecture supports additional memory ordering flags
9799 to mark lock critical sections for hardware lock elision.
9800 These must be specified in addition to an existing memory order to
9801 atomic intrinsics.
9802
9803 @table @code
9804 @item __ATOMIC_HLE_ACQUIRE
9805 Start lock elision on a lock variable.
9806 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
9807 @item __ATOMIC_HLE_RELEASE
9808 End lock elision on a lock variable.
9809 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
9810 @end table
9811
9812 When a lock acquire fails, it is required for good performance to abort
9813 the transaction quickly. This can be done with a @code{_mm_pause}.
9814
9815 @smallexample
9816 #include <immintrin.h> // For _mm_pause
9817
9818 int lockvar;
9819
9820 /* Acquire lock with lock elision */
9821 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
9822 _mm_pause(); /* Abort failed transaction */
9823 ...
9824 /* Free lock with lock elision */
9825 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
9826 @end smallexample
9827
9828 @node Object Size Checking
9829 @section Object Size Checking Built-in Functions
9830 @findex __builtin_object_size
9831 @findex __builtin___memcpy_chk
9832 @findex __builtin___mempcpy_chk
9833 @findex __builtin___memmove_chk
9834 @findex __builtin___memset_chk
9835 @findex __builtin___strcpy_chk
9836 @findex __builtin___stpcpy_chk
9837 @findex __builtin___strncpy_chk
9838 @findex __builtin___strcat_chk
9839 @findex __builtin___strncat_chk
9840 @findex __builtin___sprintf_chk
9841 @findex __builtin___snprintf_chk
9842 @findex __builtin___vsprintf_chk
9843 @findex __builtin___vsnprintf_chk
9844 @findex __builtin___printf_chk
9845 @findex __builtin___vprintf_chk
9846 @findex __builtin___fprintf_chk
9847 @findex __builtin___vfprintf_chk
9848
9849 GCC implements a limited buffer overflow protection mechanism
9850 that can prevent some buffer overflow attacks.
9851
9852 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
9853 is a built-in construct that returns a constant number of bytes from
9854 @var{ptr} to the end of the object @var{ptr} pointer points to
9855 (if known at compile time). @code{__builtin_object_size} never evaluates
9856 its arguments for side-effects. If there are any side-effects in them, it
9857 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
9858 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
9859 point to and all of them are known at compile time, the returned number
9860 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
9861 0 and minimum if nonzero. If it is not possible to determine which objects
9862 @var{ptr} points to at compile time, @code{__builtin_object_size} should
9863 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
9864 for @var{type} 2 or 3.
9865
9866 @var{type} is an integer constant from 0 to 3. If the least significant
9867 bit is clear, objects are whole variables, if it is set, a closest
9868 surrounding subobject is considered the object a pointer points to.
9869 The second bit determines if maximum or minimum of remaining bytes
9870 is computed.
9871
9872 @smallexample
9873 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
9874 char *p = &var.buf1[1], *q = &var.b;
9875
9876 /* Here the object p points to is var. */
9877 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
9878 /* The subobject p points to is var.buf1. */
9879 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
9880 /* The object q points to is var. */
9881 assert (__builtin_object_size (q, 0)
9882 == (char *) (&var + 1) - (char *) &var.b);
9883 /* The subobject q points to is var.b. */
9884 assert (__builtin_object_size (q, 1) == sizeof (var.b));
9885 @end smallexample
9886 @end deftypefn
9887
9888 There are built-in functions added for many common string operation
9889 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
9890 built-in is provided. This built-in has an additional last argument,
9891 which is the number of bytes remaining in object the @var{dest}
9892 argument points to or @code{(size_t) -1} if the size is not known.
9893
9894 The built-in functions are optimized into the normal string functions
9895 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
9896 it is known at compile time that the destination object will not
9897 be overflown. If the compiler can determine at compile time the
9898 object will be always overflown, it issues a warning.
9899
9900 The intended use can be e.g.@:
9901
9902 @smallexample
9903 #undef memcpy
9904 #define bos0(dest) __builtin_object_size (dest, 0)
9905 #define memcpy(dest, src, n) \
9906 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
9907
9908 char *volatile p;
9909 char buf[10];
9910 /* It is unknown what object p points to, so this is optimized
9911 into plain memcpy - no checking is possible. */
9912 memcpy (p, "abcde", n);
9913 /* Destination is known and length too. It is known at compile
9914 time there will be no overflow. */
9915 memcpy (&buf[5], "abcde", 5);
9916 /* Destination is known, but the length is not known at compile time.
9917 This will result in __memcpy_chk call that can check for overflow
9918 at run time. */
9919 memcpy (&buf[5], "abcde", n);
9920 /* Destination is known and it is known at compile time there will
9921 be overflow. There will be a warning and __memcpy_chk call that
9922 will abort the program at run time. */
9923 memcpy (&buf[6], "abcde", 5);
9924 @end smallexample
9925
9926 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
9927 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
9928 @code{strcat} and @code{strncat}.
9929
9930 There are also checking built-in functions for formatted output functions.
9931 @smallexample
9932 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
9933 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
9934 const char *fmt, ...);
9935 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
9936 va_list ap);
9937 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
9938 const char *fmt, va_list ap);
9939 @end smallexample
9940
9941 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
9942 etc.@: functions and can contain implementation specific flags on what
9943 additional security measures the checking function might take, such as
9944 handling @code{%n} differently.
9945
9946 The @var{os} argument is the object size @var{s} points to, like in the
9947 other built-in functions. There is a small difference in the behavior
9948 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
9949 optimized into the non-checking functions only if @var{flag} is 0, otherwise
9950 the checking function is called with @var{os} argument set to
9951 @code{(size_t) -1}.
9952
9953 In addition to this, there are checking built-in functions
9954 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
9955 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
9956 These have just one additional argument, @var{flag}, right before
9957 format string @var{fmt}. If the compiler is able to optimize them to
9958 @code{fputc} etc.@: functions, it does, otherwise the checking function
9959 is called and the @var{flag} argument passed to it.
9960
9961 @node Pointer Bounds Checker builtins
9962 @section Pointer Bounds Checker Built-in Functions
9963 @cindex Pointer Bounds Checker builtins
9964 @findex __builtin___bnd_set_ptr_bounds
9965 @findex __builtin___bnd_narrow_ptr_bounds
9966 @findex __builtin___bnd_copy_ptr_bounds
9967 @findex __builtin___bnd_init_ptr_bounds
9968 @findex __builtin___bnd_null_ptr_bounds
9969 @findex __builtin___bnd_store_ptr_bounds
9970 @findex __builtin___bnd_chk_ptr_lbounds
9971 @findex __builtin___bnd_chk_ptr_ubounds
9972 @findex __builtin___bnd_chk_ptr_bounds
9973 @findex __builtin___bnd_get_ptr_lbound
9974 @findex __builtin___bnd_get_ptr_ubound
9975
9976 GCC provides a set of built-in functions to control Pointer Bounds Checker
9977 instrumentation. Note that all Pointer Bounds Checker builtins can be used
9978 even if you compile with Pointer Bounds Checker off
9979 (@option{-fno-check-pointer-bounds}).
9980 The behavior may differ in such case as documented below.
9981
9982 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
9983
9984 This built-in function returns a new pointer with the value of @var{q}, and
9985 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
9986 Bounds Checker off, the built-in function just returns the first argument.
9987
9988 @smallexample
9989 extern void *__wrap_malloc (size_t n)
9990 @{
9991 void *p = (void *)__real_malloc (n);
9992 if (!p) return __builtin___bnd_null_ptr_bounds (p);
9993 return __builtin___bnd_set_ptr_bounds (p, n);
9994 @}
9995 @end smallexample
9996
9997 @end deftypefn
9998
9999 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10000
10001 This built-in function returns a new pointer with the value of @var{p}
10002 and associates it with the narrowed bounds formed by the intersection
10003 of bounds associated with @var{q} and the bounds
10004 [@var{p}, @var{p} + @var{size} - 1].
10005 With Pointer Bounds Checker off, the built-in function just returns the first
10006 argument.
10007
10008 @smallexample
10009 void init_objects (object *objs, size_t size)
10010 @{
10011 size_t i;
10012 /* Initialize objects one-by-one passing pointers with bounds of
10013 an object, not the full array of objects. */
10014 for (i = 0; i < size; i++)
10015 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10016 sizeof(object)));
10017 @}
10018 @end smallexample
10019
10020 @end deftypefn
10021
10022 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10023
10024 This built-in function returns a new pointer with the value of @var{q},
10025 and associates it with the bounds already associated with pointer @var{r}.
10026 With Pointer Bounds Checker off, the built-in function just returns the first
10027 argument.
10028
10029 @smallexample
10030 /* Here is a way to get pointer to object's field but
10031 still with the full object's bounds. */
10032 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10033 objptr);
10034 @end smallexample
10035
10036 @end deftypefn
10037
10038 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10039
10040 This built-in function returns a new pointer with the value of @var{q}, and
10041 associates it with INIT (allowing full memory access) bounds. With Pointer
10042 Bounds Checker off, the built-in function just returns the first argument.
10043
10044 @end deftypefn
10045
10046 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10047
10048 This built-in function returns a new pointer with the value of @var{q}, and
10049 associates it with NULL (allowing no memory access) bounds. With Pointer
10050 Bounds Checker off, the built-in function just returns the first argument.
10051
10052 @end deftypefn
10053
10054 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10055
10056 This built-in function stores the bounds associated with pointer @var{ptr_val}
10057 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10058 bounds from legacy code without touching the associated pointer's memory when
10059 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10060 function call is ignored.
10061
10062 @end deftypefn
10063
10064 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10065
10066 This built-in function checks if the pointer @var{q} is within the lower
10067 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10068 function call is ignored.
10069
10070 @smallexample
10071 extern void *__wrap_memset (void *dst, int c, size_t len)
10072 @{
10073 if (len > 0)
10074 @{
10075 __builtin___bnd_chk_ptr_lbounds (dst);
10076 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10077 __real_memset (dst, c, len);
10078 @}
10079 return dst;
10080 @}
10081 @end smallexample
10082
10083 @end deftypefn
10084
10085 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10086
10087 This built-in function checks if the pointer @var{q} is within the upper
10088 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10089 function call is ignored.
10090
10091 @end deftypefn
10092
10093 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10094
10095 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10096 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10097 off, the built-in function call is ignored.
10098
10099 @smallexample
10100 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10101 @{
10102 if (n > 0)
10103 @{
10104 __bnd_chk_ptr_bounds (dst, n);
10105 __bnd_chk_ptr_bounds (src, n);
10106 __real_memcpy (dst, src, n);
10107 @}
10108 return dst;
10109 @}
10110 @end smallexample
10111
10112 @end deftypefn
10113
10114 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10115
10116 This built-in function returns the lower bound associated
10117 with the pointer @var{q}, as a pointer value.
10118 This is useful for debugging using @code{printf}.
10119 With Pointer Bounds Checker off, the built-in function returns 0.
10120
10121 @smallexample
10122 void *lb = __builtin___bnd_get_ptr_lbound (q);
10123 void *ub = __builtin___bnd_get_ptr_ubound (q);
10124 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10125 @end smallexample
10126
10127 @end deftypefn
10128
10129 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10130
10131 This built-in function returns the upper bound (which is a pointer) associated
10132 with the pointer @var{q}. With Pointer Bounds Checker off,
10133 the built-in function returns -1.
10134
10135 @end deftypefn
10136
10137 @node Cilk Plus Builtins
10138 @section Cilk Plus C/C++ Language Extension Built-in Functions
10139
10140 GCC provides support for the following built-in reduction functions if Cilk Plus
10141 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10142
10143 @itemize @bullet
10144 @item @code{__sec_implicit_index}
10145 @item @code{__sec_reduce}
10146 @item @code{__sec_reduce_add}
10147 @item @code{__sec_reduce_all_nonzero}
10148 @item @code{__sec_reduce_all_zero}
10149 @item @code{__sec_reduce_any_nonzero}
10150 @item @code{__sec_reduce_any_zero}
10151 @item @code{__sec_reduce_max}
10152 @item @code{__sec_reduce_min}
10153 @item @code{__sec_reduce_max_ind}
10154 @item @code{__sec_reduce_min_ind}
10155 @item @code{__sec_reduce_mul}
10156 @item @code{__sec_reduce_mutating}
10157 @end itemize
10158
10159 Further details and examples about these built-in functions are described
10160 in the Cilk Plus language manual which can be found at
10161 @uref{http://www.cilkplus.org}.
10162
10163 @node Other Builtins
10164 @section Other Built-in Functions Provided by GCC
10165 @cindex built-in functions
10166 @findex __builtin_alloca
10167 @findex __builtin_alloca_with_align
10168 @findex __builtin_call_with_static_chain
10169 @findex __builtin_fpclassify
10170 @findex __builtin_isfinite
10171 @findex __builtin_isnormal
10172 @findex __builtin_isgreater
10173 @findex __builtin_isgreaterequal
10174 @findex __builtin_isinf_sign
10175 @findex __builtin_isless
10176 @findex __builtin_islessequal
10177 @findex __builtin_islessgreater
10178 @findex __builtin_isunordered
10179 @findex __builtin_powi
10180 @findex __builtin_powif
10181 @findex __builtin_powil
10182 @findex _Exit
10183 @findex _exit
10184 @findex abort
10185 @findex abs
10186 @findex acos
10187 @findex acosf
10188 @findex acosh
10189 @findex acoshf
10190 @findex acoshl
10191 @findex acosl
10192 @findex alloca
10193 @findex asin
10194 @findex asinf
10195 @findex asinh
10196 @findex asinhf
10197 @findex asinhl
10198 @findex asinl
10199 @findex atan
10200 @findex atan2
10201 @findex atan2f
10202 @findex atan2l
10203 @findex atanf
10204 @findex atanh
10205 @findex atanhf
10206 @findex atanhl
10207 @findex atanl
10208 @findex bcmp
10209 @findex bzero
10210 @findex cabs
10211 @findex cabsf
10212 @findex cabsl
10213 @findex cacos
10214 @findex cacosf
10215 @findex cacosh
10216 @findex cacoshf
10217 @findex cacoshl
10218 @findex cacosl
10219 @findex calloc
10220 @findex carg
10221 @findex cargf
10222 @findex cargl
10223 @findex casin
10224 @findex casinf
10225 @findex casinh
10226 @findex casinhf
10227 @findex casinhl
10228 @findex casinl
10229 @findex catan
10230 @findex catanf
10231 @findex catanh
10232 @findex catanhf
10233 @findex catanhl
10234 @findex catanl
10235 @findex cbrt
10236 @findex cbrtf
10237 @findex cbrtl
10238 @findex ccos
10239 @findex ccosf
10240 @findex ccosh
10241 @findex ccoshf
10242 @findex ccoshl
10243 @findex ccosl
10244 @findex ceil
10245 @findex ceilf
10246 @findex ceill
10247 @findex cexp
10248 @findex cexpf
10249 @findex cexpl
10250 @findex cimag
10251 @findex cimagf
10252 @findex cimagl
10253 @findex clog
10254 @findex clogf
10255 @findex clogl
10256 @findex clog10
10257 @findex clog10f
10258 @findex clog10l
10259 @findex conj
10260 @findex conjf
10261 @findex conjl
10262 @findex copysign
10263 @findex copysignf
10264 @findex copysignl
10265 @findex cos
10266 @findex cosf
10267 @findex cosh
10268 @findex coshf
10269 @findex coshl
10270 @findex cosl
10271 @findex cpow
10272 @findex cpowf
10273 @findex cpowl
10274 @findex cproj
10275 @findex cprojf
10276 @findex cprojl
10277 @findex creal
10278 @findex crealf
10279 @findex creall
10280 @findex csin
10281 @findex csinf
10282 @findex csinh
10283 @findex csinhf
10284 @findex csinhl
10285 @findex csinl
10286 @findex csqrt
10287 @findex csqrtf
10288 @findex csqrtl
10289 @findex ctan
10290 @findex ctanf
10291 @findex ctanh
10292 @findex ctanhf
10293 @findex ctanhl
10294 @findex ctanl
10295 @findex dcgettext
10296 @findex dgettext
10297 @findex drem
10298 @findex dremf
10299 @findex dreml
10300 @findex erf
10301 @findex erfc
10302 @findex erfcf
10303 @findex erfcl
10304 @findex erff
10305 @findex erfl
10306 @findex exit
10307 @findex exp
10308 @findex exp10
10309 @findex exp10f
10310 @findex exp10l
10311 @findex exp2
10312 @findex exp2f
10313 @findex exp2l
10314 @findex expf
10315 @findex expl
10316 @findex expm1
10317 @findex expm1f
10318 @findex expm1l
10319 @findex fabs
10320 @findex fabsf
10321 @findex fabsl
10322 @findex fdim
10323 @findex fdimf
10324 @findex fdiml
10325 @findex ffs
10326 @findex floor
10327 @findex floorf
10328 @findex floorl
10329 @findex fma
10330 @findex fmaf
10331 @findex fmal
10332 @findex fmax
10333 @findex fmaxf
10334 @findex fmaxl
10335 @findex fmin
10336 @findex fminf
10337 @findex fminl
10338 @findex fmod
10339 @findex fmodf
10340 @findex fmodl
10341 @findex fprintf
10342 @findex fprintf_unlocked
10343 @findex fputs
10344 @findex fputs_unlocked
10345 @findex frexp
10346 @findex frexpf
10347 @findex frexpl
10348 @findex fscanf
10349 @findex gamma
10350 @findex gammaf
10351 @findex gammal
10352 @findex gamma_r
10353 @findex gammaf_r
10354 @findex gammal_r
10355 @findex gettext
10356 @findex hypot
10357 @findex hypotf
10358 @findex hypotl
10359 @findex ilogb
10360 @findex ilogbf
10361 @findex ilogbl
10362 @findex imaxabs
10363 @findex index
10364 @findex isalnum
10365 @findex isalpha
10366 @findex isascii
10367 @findex isblank
10368 @findex iscntrl
10369 @findex isdigit
10370 @findex isgraph
10371 @findex islower
10372 @findex isprint
10373 @findex ispunct
10374 @findex isspace
10375 @findex isupper
10376 @findex iswalnum
10377 @findex iswalpha
10378 @findex iswblank
10379 @findex iswcntrl
10380 @findex iswdigit
10381 @findex iswgraph
10382 @findex iswlower
10383 @findex iswprint
10384 @findex iswpunct
10385 @findex iswspace
10386 @findex iswupper
10387 @findex iswxdigit
10388 @findex isxdigit
10389 @findex j0
10390 @findex j0f
10391 @findex j0l
10392 @findex j1
10393 @findex j1f
10394 @findex j1l
10395 @findex jn
10396 @findex jnf
10397 @findex jnl
10398 @findex labs
10399 @findex ldexp
10400 @findex ldexpf
10401 @findex ldexpl
10402 @findex lgamma
10403 @findex lgammaf
10404 @findex lgammal
10405 @findex lgamma_r
10406 @findex lgammaf_r
10407 @findex lgammal_r
10408 @findex llabs
10409 @findex llrint
10410 @findex llrintf
10411 @findex llrintl
10412 @findex llround
10413 @findex llroundf
10414 @findex llroundl
10415 @findex log
10416 @findex log10
10417 @findex log10f
10418 @findex log10l
10419 @findex log1p
10420 @findex log1pf
10421 @findex log1pl
10422 @findex log2
10423 @findex log2f
10424 @findex log2l
10425 @findex logb
10426 @findex logbf
10427 @findex logbl
10428 @findex logf
10429 @findex logl
10430 @findex lrint
10431 @findex lrintf
10432 @findex lrintl
10433 @findex lround
10434 @findex lroundf
10435 @findex lroundl
10436 @findex malloc
10437 @findex memchr
10438 @findex memcmp
10439 @findex memcpy
10440 @findex mempcpy
10441 @findex memset
10442 @findex modf
10443 @findex modff
10444 @findex modfl
10445 @findex nearbyint
10446 @findex nearbyintf
10447 @findex nearbyintl
10448 @findex nextafter
10449 @findex nextafterf
10450 @findex nextafterl
10451 @findex nexttoward
10452 @findex nexttowardf
10453 @findex nexttowardl
10454 @findex pow
10455 @findex pow10
10456 @findex pow10f
10457 @findex pow10l
10458 @findex powf
10459 @findex powl
10460 @findex printf
10461 @findex printf_unlocked
10462 @findex putchar
10463 @findex puts
10464 @findex remainder
10465 @findex remainderf
10466 @findex remainderl
10467 @findex remquo
10468 @findex remquof
10469 @findex remquol
10470 @findex rindex
10471 @findex rint
10472 @findex rintf
10473 @findex rintl
10474 @findex round
10475 @findex roundf
10476 @findex roundl
10477 @findex scalb
10478 @findex scalbf
10479 @findex scalbl
10480 @findex scalbln
10481 @findex scalblnf
10482 @findex scalblnf
10483 @findex scalbn
10484 @findex scalbnf
10485 @findex scanfnl
10486 @findex signbit
10487 @findex signbitf
10488 @findex signbitl
10489 @findex signbitd32
10490 @findex signbitd64
10491 @findex signbitd128
10492 @findex significand
10493 @findex significandf
10494 @findex significandl
10495 @findex sin
10496 @findex sincos
10497 @findex sincosf
10498 @findex sincosl
10499 @findex sinf
10500 @findex sinh
10501 @findex sinhf
10502 @findex sinhl
10503 @findex sinl
10504 @findex snprintf
10505 @findex sprintf
10506 @findex sqrt
10507 @findex sqrtf
10508 @findex sqrtl
10509 @findex sscanf
10510 @findex stpcpy
10511 @findex stpncpy
10512 @findex strcasecmp
10513 @findex strcat
10514 @findex strchr
10515 @findex strcmp
10516 @findex strcpy
10517 @findex strcspn
10518 @findex strdup
10519 @findex strfmon
10520 @findex strftime
10521 @findex strlen
10522 @findex strncasecmp
10523 @findex strncat
10524 @findex strncmp
10525 @findex strncpy
10526 @findex strndup
10527 @findex strpbrk
10528 @findex strrchr
10529 @findex strspn
10530 @findex strstr
10531 @findex tan
10532 @findex tanf
10533 @findex tanh
10534 @findex tanhf
10535 @findex tanhl
10536 @findex tanl
10537 @findex tgamma
10538 @findex tgammaf
10539 @findex tgammal
10540 @findex toascii
10541 @findex tolower
10542 @findex toupper
10543 @findex towlower
10544 @findex towupper
10545 @findex trunc
10546 @findex truncf
10547 @findex truncl
10548 @findex vfprintf
10549 @findex vfscanf
10550 @findex vprintf
10551 @findex vscanf
10552 @findex vsnprintf
10553 @findex vsprintf
10554 @findex vsscanf
10555 @findex y0
10556 @findex y0f
10557 @findex y0l
10558 @findex y1
10559 @findex y1f
10560 @findex y1l
10561 @findex yn
10562 @findex ynf
10563 @findex ynl
10564
10565 GCC provides a large number of built-in functions other than the ones
10566 mentioned above. Some of these are for internal use in the processing
10567 of exceptions or variable-length argument lists and are not
10568 documented here because they may change from time to time; we do not
10569 recommend general use of these functions.
10570
10571 The remaining functions are provided for optimization purposes.
10572
10573 With the exception of built-ins that have library equivalents such as
10574 the standard C library functions discussed below, or that expand to
10575 library calls, GCC built-in functions are always expanded inline and
10576 thus do not have corresponding entry points and their address cannot
10577 be obtained. Attempting to use them in an expression other than
10578 a function call results in a compile-time error.
10579
10580 @opindex fno-builtin
10581 GCC includes built-in versions of many of the functions in the standard
10582 C library. These functions come in two forms: one whose names start with
10583 the @code{__builtin_} prefix, and the other without. Both forms have the
10584 same type (including prototype), the same address (when their address is
10585 taken), and the same meaning as the C library functions even if you specify
10586 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
10587 functions are only optimized in certain cases; if they are not optimized in
10588 a particular case, a call to the library function is emitted.
10589
10590 @opindex ansi
10591 @opindex std
10592 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
10593 @option{-std=c99} or @option{-std=c11}), the functions
10594 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
10595 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
10596 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
10597 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
10598 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
10599 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
10600 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
10601 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
10602 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
10603 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
10604 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
10605 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
10606 @code{signbitd64}, @code{signbitd128}, @code{significandf},
10607 @code{significandl}, @code{significand}, @code{sincosf},
10608 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
10609 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
10610 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
10611 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
10612 @code{yn}
10613 may be handled as built-in functions.
10614 All these functions have corresponding versions
10615 prefixed with @code{__builtin_}, which may be used even in strict C90
10616 mode.
10617
10618 The ISO C99 functions
10619 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
10620 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
10621 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
10622 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
10623 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
10624 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
10625 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
10626 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
10627 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
10628 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
10629 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
10630 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
10631 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
10632 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
10633 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
10634 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
10635 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
10636 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
10637 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
10638 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
10639 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
10640 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
10641 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
10642 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
10643 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
10644 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
10645 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
10646 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
10647 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
10648 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
10649 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
10650 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
10651 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
10652 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
10653 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
10654 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
10655 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
10656 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
10657 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
10658 are handled as built-in functions
10659 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10660
10661 There are also built-in versions of the ISO C99 functions
10662 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
10663 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
10664 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
10665 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
10666 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
10667 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
10668 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
10669 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
10670 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
10671 that are recognized in any mode since ISO C90 reserves these names for
10672 the purpose to which ISO C99 puts them. All these functions have
10673 corresponding versions prefixed with @code{__builtin_}.
10674
10675 There are also GNU extension functions @code{clog10}, @code{clog10f} and
10676 @code{clog10l} which names are reserved by ISO C99 for future use.
10677 All these functions have versions prefixed with @code{__builtin_}.
10678
10679 The ISO C94 functions
10680 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
10681 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
10682 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
10683 @code{towupper}
10684 are handled as built-in functions
10685 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
10686
10687 The ISO C90 functions
10688 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
10689 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
10690 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
10691 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
10692 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
10693 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
10694 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
10695 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
10696 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
10697 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
10698 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
10699 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
10700 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
10701 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
10702 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
10703 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
10704 are all recognized as built-in functions unless
10705 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
10706 is specified for an individual function). All of these functions have
10707 corresponding versions prefixed with @code{__builtin_}.
10708
10709 GCC provides built-in versions of the ISO C99 floating-point comparison
10710 macros that avoid raising exceptions for unordered operands. They have
10711 the same names as the standard macros ( @code{isgreater},
10712 @code{isgreaterequal}, @code{isless}, @code{islessequal},
10713 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
10714 prefixed. We intend for a library implementor to be able to simply
10715 @code{#define} each standard macro to its built-in equivalent.
10716 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
10717 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
10718 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
10719 built-in functions appear both with and without the @code{__builtin_} prefix.
10720
10721 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
10722 The @code{__builtin_alloca} function must be called at block scope.
10723 The function allocates an object @var{size} bytes large on the stack
10724 of the calling function. The object is aligned on the default stack
10725 alignment boundary for the target determined by the
10726 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
10727 function returns a pointer to the first byte of the allocated object.
10728 The lifetime of the allocated object ends just before the calling
10729 function returns to its caller. This is so even when
10730 @code{__builtin_alloca} is called within a nested block.
10731
10732 For example, the following function allocates eight objects of @code{n}
10733 bytes each on the stack, storing a pointer to each in consecutive elements
10734 of the array @code{a}. It then passes the array to function @code{g}
10735 which can safely use the storage pointed to by each of the array elements.
10736
10737 @smallexample
10738 void f (unsigned n)
10739 @{
10740 void *a [8];
10741 for (int i = 0; i != 8; ++i)
10742 a [i] = __builtin_alloca (n);
10743
10744 g (a, n); // @r{safe}
10745 @}
10746 @end smallexample
10747
10748 Since the @code{__builtin_alloca} function doesn't validate its argument
10749 it is the responsibility of its caller to make sure the argument doesn't
10750 cause it to exceed the stack size limit.
10751 The @code{__builtin_alloca} function is provided to make it possible to
10752 allocate on the stack arrays of bytes with an upper bound that may be
10753 computed at run time. Since C99 Variable Length Arrays offer
10754 similar functionality under a portable, more convenient, and safer
10755 interface they are recommended instead, in both C99 and C++ programs
10756 where GCC provides them as an extension.
10757 @xref{Variable Length}, for details.
10758
10759 @end deftypefn
10760
10761 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
10762 The @code{__builtin_alloca_with_align} function must be called at block
10763 scope. The function allocates an object @var{size} bytes large on
10764 the stack of the calling function. The allocated object is aligned on
10765 the boundary specified by the argument @var{alignment} whose unit is given
10766 in bits (not bytes). The @var{size} argument must be positive and not
10767 exceed the stack size limit. The @var{alignment} argument must be a constant
10768 integer expression that evaluates to a power of 2 greater than or equal to
10769 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
10770 with other values are rejected with an error indicating the valid bounds.
10771 The function returns a pointer to the first byte of the allocated object.
10772 The lifetime of the allocated object ends at the end of the block in which
10773 the function was called. The allocated storage is released no later than
10774 just before the calling function returns to its caller, but may be released
10775 at the end of the block in which the function was called.
10776
10777 For example, in the following function the call to @code{g} is unsafe
10778 because when @code{overalign} is non-zero, the space allocated by
10779 @code{__builtin_alloca_with_align} may have been released at the end
10780 of the @code{if} statement in which it was called.
10781
10782 @smallexample
10783 void f (unsigned n, bool overalign)
10784 @{
10785 void *p;
10786 if (overalign)
10787 p = __builtin_alloca_with_align (n, 64 /* bits */);
10788 else
10789 p = __builtin_alloc (n);
10790
10791 g (p, n); // @r{unsafe}
10792 @}
10793 @end smallexample
10794
10795 Since the @code{__builtin_alloca_with_align} function doesn't validate its
10796 @var{size} argument it is the responsibility of its caller to make sure
10797 the argument doesn't cause it to exceed the stack size limit.
10798 The @code{__builtin_alloca_with_align} function is provided to make
10799 it possible to allocate on the stack overaligned arrays of bytes with
10800 an upper bound that may be computed at run time. Since C99
10801 Variable Length Arrays offer the same functionality under
10802 a portable, more convenient, and safer interface they are recommended
10803 instead, in both C99 and C++ programs where GCC provides them as
10804 an extension. @xref{Variable Length}, for details.
10805
10806 @end deftypefn
10807
10808 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
10809
10810 You can use the built-in function @code{__builtin_types_compatible_p} to
10811 determine whether two types are the same.
10812
10813 This built-in function returns 1 if the unqualified versions of the
10814 types @var{type1} and @var{type2} (which are types, not expressions) are
10815 compatible, 0 otherwise. The result of this built-in function can be
10816 used in integer constant expressions.
10817
10818 This built-in function ignores top level qualifiers (e.g., @code{const},
10819 @code{volatile}). For example, @code{int} is equivalent to @code{const
10820 int}.
10821
10822 The type @code{int[]} and @code{int[5]} are compatible. On the other
10823 hand, @code{int} and @code{char *} are not compatible, even if the size
10824 of their types, on the particular architecture are the same. Also, the
10825 amount of pointer indirection is taken into account when determining
10826 similarity. Consequently, @code{short *} is not similar to
10827 @code{short **}. Furthermore, two types that are typedefed are
10828 considered compatible if their underlying types are compatible.
10829
10830 An @code{enum} type is not considered to be compatible with another
10831 @code{enum} type even if both are compatible with the same integer
10832 type; this is what the C standard specifies.
10833 For example, @code{enum @{foo, bar@}} is not similar to
10834 @code{enum @{hot, dog@}}.
10835
10836 You typically use this function in code whose execution varies
10837 depending on the arguments' types. For example:
10838
10839 @smallexample
10840 #define foo(x) \
10841 (@{ \
10842 typeof (x) tmp = (x); \
10843 if (__builtin_types_compatible_p (typeof (x), long double)) \
10844 tmp = foo_long_double (tmp); \
10845 else if (__builtin_types_compatible_p (typeof (x), double)) \
10846 tmp = foo_double (tmp); \
10847 else if (__builtin_types_compatible_p (typeof (x), float)) \
10848 tmp = foo_float (tmp); \
10849 else \
10850 abort (); \
10851 tmp; \
10852 @})
10853 @end smallexample
10854
10855 @emph{Note:} This construct is only available for C@.
10856
10857 @end deftypefn
10858
10859 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
10860
10861 The @var{call_exp} expression must be a function call, and the
10862 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
10863 is passed to the function call in the target's static chain location.
10864 The result of builtin is the result of the function call.
10865
10866 @emph{Note:} This builtin is only available for C@.
10867 This builtin can be used to call Go closures from C.
10868
10869 @end deftypefn
10870
10871 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
10872
10873 You can use the built-in function @code{__builtin_choose_expr} to
10874 evaluate code depending on the value of a constant expression. This
10875 built-in function returns @var{exp1} if @var{const_exp}, which is an
10876 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
10877
10878 This built-in function is analogous to the @samp{? :} operator in C,
10879 except that the expression returned has its type unaltered by promotion
10880 rules. Also, the built-in function does not evaluate the expression
10881 that is not chosen. For example, if @var{const_exp} evaluates to true,
10882 @var{exp2} is not evaluated even if it has side-effects.
10883
10884 This built-in function can return an lvalue if the chosen argument is an
10885 lvalue.
10886
10887 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
10888 type. Similarly, if @var{exp2} is returned, its return type is the same
10889 as @var{exp2}.
10890
10891 Example:
10892
10893 @smallexample
10894 #define foo(x) \
10895 __builtin_choose_expr ( \
10896 __builtin_types_compatible_p (typeof (x), double), \
10897 foo_double (x), \
10898 __builtin_choose_expr ( \
10899 __builtin_types_compatible_p (typeof (x), float), \
10900 foo_float (x), \
10901 /* @r{The void expression results in a compile-time error} \
10902 @r{when assigning the result to something.} */ \
10903 (void)0))
10904 @end smallexample
10905
10906 @emph{Note:} This construct is only available for C@. Furthermore, the
10907 unused expression (@var{exp1} or @var{exp2} depending on the value of
10908 @var{const_exp}) may still generate syntax errors. This may change in
10909 future revisions.
10910
10911 @end deftypefn
10912
10913 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
10914
10915 The built-in function @code{__builtin_complex} is provided for use in
10916 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
10917 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
10918 real binary floating-point type, and the result has the corresponding
10919 complex type with real and imaginary parts @var{real} and @var{imag}.
10920 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
10921 infinities, NaNs and negative zeros are involved.
10922
10923 @end deftypefn
10924
10925 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
10926 You can use the built-in function @code{__builtin_constant_p} to
10927 determine if a value is known to be constant at compile time and hence
10928 that GCC can perform constant-folding on expressions involving that
10929 value. The argument of the function is the value to test. The function
10930 returns the integer 1 if the argument is known to be a compile-time
10931 constant and 0 if it is not known to be a compile-time constant. A
10932 return of 0 does not indicate that the value is @emph{not} a constant,
10933 but merely that GCC cannot prove it is a constant with the specified
10934 value of the @option{-O} option.
10935
10936 You typically use this function in an embedded application where
10937 memory is a critical resource. If you have some complex calculation,
10938 you may want it to be folded if it involves constants, but need to call
10939 a function if it does not. For example:
10940
10941 @smallexample
10942 #define Scale_Value(X) \
10943 (__builtin_constant_p (X) \
10944 ? ((X) * SCALE + OFFSET) : Scale (X))
10945 @end smallexample
10946
10947 You may use this built-in function in either a macro or an inline
10948 function. However, if you use it in an inlined function and pass an
10949 argument of the function as the argument to the built-in, GCC
10950 never returns 1 when you call the inline function with a string constant
10951 or compound literal (@pxref{Compound Literals}) and does not return 1
10952 when you pass a constant numeric value to the inline function unless you
10953 specify the @option{-O} option.
10954
10955 You may also use @code{__builtin_constant_p} in initializers for static
10956 data. For instance, you can write
10957
10958 @smallexample
10959 static const int table[] = @{
10960 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
10961 /* @r{@dots{}} */
10962 @};
10963 @end smallexample
10964
10965 @noindent
10966 This is an acceptable initializer even if @var{EXPRESSION} is not a
10967 constant expression, including the case where
10968 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
10969 folded to a constant but @var{EXPRESSION} contains operands that are
10970 not otherwise permitted in a static initializer (for example,
10971 @code{0 && foo ()}). GCC must be more conservative about evaluating the
10972 built-in in this case, because it has no opportunity to perform
10973 optimization.
10974 @end deftypefn
10975
10976 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
10977 @opindex fprofile-arcs
10978 You may use @code{__builtin_expect} to provide the compiler with
10979 branch prediction information. In general, you should prefer to
10980 use actual profile feedback for this (@option{-fprofile-arcs}), as
10981 programmers are notoriously bad at predicting how their programs
10982 actually perform. However, there are applications in which this
10983 data is hard to collect.
10984
10985 The return value is the value of @var{exp}, which should be an integral
10986 expression. The semantics of the built-in are that it is expected that
10987 @var{exp} == @var{c}. For example:
10988
10989 @smallexample
10990 if (__builtin_expect (x, 0))
10991 foo ();
10992 @end smallexample
10993
10994 @noindent
10995 indicates that we do not expect to call @code{foo}, since
10996 we expect @code{x} to be zero. Since you are limited to integral
10997 expressions for @var{exp}, you should use constructions such as
10998
10999 @smallexample
11000 if (__builtin_expect (ptr != NULL, 1))
11001 foo (*ptr);
11002 @end smallexample
11003
11004 @noindent
11005 when testing pointer or floating-point values.
11006 @end deftypefn
11007
11008 @deftypefn {Built-in Function} void __builtin_trap (void)
11009 This function causes the program to exit abnormally. GCC implements
11010 this function by using a target-dependent mechanism (such as
11011 intentionally executing an illegal instruction) or by calling
11012 @code{abort}. The mechanism used may vary from release to release so
11013 you should not rely on any particular implementation.
11014 @end deftypefn
11015
11016 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11017 If control flow reaches the point of the @code{__builtin_unreachable},
11018 the program is undefined. It is useful in situations where the
11019 compiler cannot deduce the unreachability of the code.
11020
11021 One such case is immediately following an @code{asm} statement that
11022 either never terminates, or one that transfers control elsewhere
11023 and never returns. In this example, without the
11024 @code{__builtin_unreachable}, GCC issues a warning that control
11025 reaches the end of a non-void function. It also generates code
11026 to return after the @code{asm}.
11027
11028 @smallexample
11029 int f (int c, int v)
11030 @{
11031 if (c)
11032 @{
11033 return v;
11034 @}
11035 else
11036 @{
11037 asm("jmp error_handler");
11038 __builtin_unreachable ();
11039 @}
11040 @}
11041 @end smallexample
11042
11043 @noindent
11044 Because the @code{asm} statement unconditionally transfers control out
11045 of the function, control never reaches the end of the function
11046 body. The @code{__builtin_unreachable} is in fact unreachable and
11047 communicates this fact to the compiler.
11048
11049 Another use for @code{__builtin_unreachable} is following a call a
11050 function that never returns but that is not declared
11051 @code{__attribute__((noreturn))}, as in this example:
11052
11053 @smallexample
11054 void function_that_never_returns (void);
11055
11056 int g (int c)
11057 @{
11058 if (c)
11059 @{
11060 return 1;
11061 @}
11062 else
11063 @{
11064 function_that_never_returns ();
11065 __builtin_unreachable ();
11066 @}
11067 @}
11068 @end smallexample
11069
11070 @end deftypefn
11071
11072 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11073 This function returns its first argument, and allows the compiler
11074 to assume that the returned pointer is at least @var{align} bytes
11075 aligned. This built-in can have either two or three arguments,
11076 if it has three, the third argument should have integer type, and
11077 if it is nonzero means misalignment offset. For example:
11078
11079 @smallexample
11080 void *x = __builtin_assume_aligned (arg, 16);
11081 @end smallexample
11082
11083 @noindent
11084 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11085 16-byte aligned, while:
11086
11087 @smallexample
11088 void *x = __builtin_assume_aligned (arg, 32, 8);
11089 @end smallexample
11090
11091 @noindent
11092 means that the compiler can assume for @code{x}, set to @code{arg}, that
11093 @code{(char *) x - 8} is 32-byte aligned.
11094 @end deftypefn
11095
11096 @deftypefn {Built-in Function} int __builtin_LINE ()
11097 This function is the equivalent of the preprocessor @code{__LINE__}
11098 macro and returns a constant integer expression that evaluates to
11099 the line number of the invocation of the built-in. When used as a C++
11100 default argument for a function @var{F}, it returns the line number
11101 of the call to @var{F}.
11102 @end deftypefn
11103
11104 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11105 This function is the equivalent of the @code{__FUNCTION__} symbol
11106 and returns an address constant pointing to the name of the function
11107 from which the built-in was invoked, or the empty string if
11108 the invocation is not at function scope. When used as a C++ default
11109 argument for a function @var{F}, it returns the name of @var{F}'s
11110 caller or the empty string if the call was not made at function
11111 scope.
11112 @end deftypefn
11113
11114 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11115 This function is the equivalent of the preprocessor @code{__FILE__}
11116 macro and returns an address constant pointing to the file name
11117 containing the invocation of the built-in, or the empty string if
11118 the invocation is not at function scope. When used as a C++ default
11119 argument for a function @var{F}, it returns the file name of the call
11120 to @var{F} or the empty string if the call was not made at function
11121 scope.
11122
11123 For example, in the following, each call to function @code{foo} will
11124 print a line similar to @code{"file.c:123: foo: message"} with the name
11125 of the file and the line number of the @code{printf} call, the name of
11126 the function @code{foo}, followed by the word @code{message}.
11127
11128 @smallexample
11129 const char*
11130 function (const char *func = __builtin_FUNCTION ())
11131 @{
11132 return func;
11133 @}
11134
11135 void foo (void)
11136 @{
11137 printf ("%s:%i: %s: message\n", file (), line (), function ());
11138 @}
11139 @end smallexample
11140
11141 @end deftypefn
11142
11143 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11144 This function is used to flush the processor's instruction cache for
11145 the region of memory between @var{begin} inclusive and @var{end}
11146 exclusive. Some targets require that the instruction cache be
11147 flushed, after modifying memory containing code, in order to obtain
11148 deterministic behavior.
11149
11150 If the target does not require instruction cache flushes,
11151 @code{__builtin___clear_cache} has no effect. Otherwise either
11152 instructions are emitted in-line to clear the instruction cache or a
11153 call to the @code{__clear_cache} function in libgcc is made.
11154 @end deftypefn
11155
11156 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11157 This function is used to minimize cache-miss latency by moving data into
11158 a cache before it is accessed.
11159 You can insert calls to @code{__builtin_prefetch} into code for which
11160 you know addresses of data in memory that is likely to be accessed soon.
11161 If the target supports them, data prefetch instructions are generated.
11162 If the prefetch is done early enough before the access then the data will
11163 be in the cache by the time it is accessed.
11164
11165 The value of @var{addr} is the address of the memory to prefetch.
11166 There are two optional arguments, @var{rw} and @var{locality}.
11167 The value of @var{rw} is a compile-time constant one or zero; one
11168 means that the prefetch is preparing for a write to the memory address
11169 and zero, the default, means that the prefetch is preparing for a read.
11170 The value @var{locality} must be a compile-time constant integer between
11171 zero and three. A value of zero means that the data has no temporal
11172 locality, so it need not be left in the cache after the access. A value
11173 of three means that the data has a high degree of temporal locality and
11174 should be left in all levels of cache possible. Values of one and two
11175 mean, respectively, a low or moderate degree of temporal locality. The
11176 default is three.
11177
11178 @smallexample
11179 for (i = 0; i < n; i++)
11180 @{
11181 a[i] = a[i] + b[i];
11182 __builtin_prefetch (&a[i+j], 1, 1);
11183 __builtin_prefetch (&b[i+j], 0, 1);
11184 /* @r{@dots{}} */
11185 @}
11186 @end smallexample
11187
11188 Data prefetch does not generate faults if @var{addr} is invalid, but
11189 the address expression itself must be valid. For example, a prefetch
11190 of @code{p->next} does not fault if @code{p->next} is not a valid
11191 address, but evaluation faults if @code{p} is not a valid address.
11192
11193 If the target does not support data prefetch, the address expression
11194 is evaluated if it includes side effects but no other code is generated
11195 and GCC does not issue a warning.
11196 @end deftypefn
11197
11198 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11199 Returns a positive infinity, if supported by the floating-point format,
11200 else @code{DBL_MAX}. This function is suitable for implementing the
11201 ISO C macro @code{HUGE_VAL}.
11202 @end deftypefn
11203
11204 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11205 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11206 @end deftypefn
11207
11208 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11209 Similar to @code{__builtin_huge_val}, except the return
11210 type is @code{long double}.
11211 @end deftypefn
11212
11213 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11214 This built-in implements the C99 fpclassify functionality. The first
11215 five int arguments should be the target library's notion of the
11216 possible FP classes and are used for return values. They must be
11217 constant values and they must appear in this order: @code{FP_NAN},
11218 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
11219 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
11220 to classify. GCC treats the last argument as type-generic, which
11221 means it does not do default promotion from float to double.
11222 @end deftypefn
11223
11224 @deftypefn {Built-in Function} double __builtin_inf (void)
11225 Similar to @code{__builtin_huge_val}, except a warning is generated
11226 if the target floating-point format does not support infinities.
11227 @end deftypefn
11228
11229 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
11230 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
11231 @end deftypefn
11232
11233 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
11234 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
11235 @end deftypefn
11236
11237 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
11238 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
11239 @end deftypefn
11240
11241 @deftypefn {Built-in Function} float __builtin_inff (void)
11242 Similar to @code{__builtin_inf}, except the return type is @code{float}.
11243 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
11244 @end deftypefn
11245
11246 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
11247 Similar to @code{__builtin_inf}, except the return
11248 type is @code{long double}.
11249 @end deftypefn
11250
11251 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
11252 Similar to @code{isinf}, except the return value is -1 for
11253 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
11254 Note while the parameter list is an
11255 ellipsis, this function only accepts exactly one floating-point
11256 argument. GCC treats this parameter as type-generic, which means it
11257 does not do default promotion from float to double.
11258 @end deftypefn
11259
11260 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
11261 This is an implementation of the ISO C99 function @code{nan}.
11262
11263 Since ISO C99 defines this function in terms of @code{strtod}, which we
11264 do not implement, a description of the parsing is in order. The string
11265 is parsed as by @code{strtol}; that is, the base is recognized by
11266 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
11267 in the significand such that the least significant bit of the number
11268 is at the least significant bit of the significand. The number is
11269 truncated to fit the significand field provided. The significand is
11270 forced to be a quiet NaN@.
11271
11272 This function, if given a string literal all of which would have been
11273 consumed by @code{strtol}, is evaluated early enough that it is considered a
11274 compile-time constant.
11275 @end deftypefn
11276
11277 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
11278 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
11279 @end deftypefn
11280
11281 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
11282 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
11283 @end deftypefn
11284
11285 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
11286 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
11287 @end deftypefn
11288
11289 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
11290 Similar to @code{__builtin_nan}, except the return type is @code{float}.
11291 @end deftypefn
11292
11293 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
11294 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
11295 @end deftypefn
11296
11297 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
11298 Similar to @code{__builtin_nan}, except the significand is forced
11299 to be a signaling NaN@. The @code{nans} function is proposed by
11300 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
11301 @end deftypefn
11302
11303 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
11304 Similar to @code{__builtin_nans}, except the return type is @code{float}.
11305 @end deftypefn
11306
11307 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
11308 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
11309 @end deftypefn
11310
11311 @deftypefn {Built-in Function} int __builtin_ffs (int x)
11312 Returns one plus the index of the least significant 1-bit of @var{x}, or
11313 if @var{x} is zero, returns zero.
11314 @end deftypefn
11315
11316 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
11317 Returns the number of leading 0-bits in @var{x}, starting at the most
11318 significant bit position. If @var{x} is 0, the result is undefined.
11319 @end deftypefn
11320
11321 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
11322 Returns the number of trailing 0-bits in @var{x}, starting at the least
11323 significant bit position. If @var{x} is 0, the result is undefined.
11324 @end deftypefn
11325
11326 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
11327 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
11328 number of bits following the most significant bit that are identical
11329 to it. There are no special cases for 0 or other values.
11330 @end deftypefn
11331
11332 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
11333 Returns the number of 1-bits in @var{x}.
11334 @end deftypefn
11335
11336 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
11337 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
11338 modulo 2.
11339 @end deftypefn
11340
11341 @deftypefn {Built-in Function} int __builtin_ffsl (long)
11342 Similar to @code{__builtin_ffs}, except the argument type is
11343 @code{long}.
11344 @end deftypefn
11345
11346 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
11347 Similar to @code{__builtin_clz}, except the argument type is
11348 @code{unsigned long}.
11349 @end deftypefn
11350
11351 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
11352 Similar to @code{__builtin_ctz}, except the argument type is
11353 @code{unsigned long}.
11354 @end deftypefn
11355
11356 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
11357 Similar to @code{__builtin_clrsb}, except the argument type is
11358 @code{long}.
11359 @end deftypefn
11360
11361 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
11362 Similar to @code{__builtin_popcount}, except the argument type is
11363 @code{unsigned long}.
11364 @end deftypefn
11365
11366 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
11367 Similar to @code{__builtin_parity}, except the argument type is
11368 @code{unsigned long}.
11369 @end deftypefn
11370
11371 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
11372 Similar to @code{__builtin_ffs}, except the argument type is
11373 @code{long long}.
11374 @end deftypefn
11375
11376 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
11377 Similar to @code{__builtin_clz}, except the argument type is
11378 @code{unsigned long long}.
11379 @end deftypefn
11380
11381 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
11382 Similar to @code{__builtin_ctz}, except the argument type is
11383 @code{unsigned long long}.
11384 @end deftypefn
11385
11386 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
11387 Similar to @code{__builtin_clrsb}, except the argument type is
11388 @code{long long}.
11389 @end deftypefn
11390
11391 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
11392 Similar to @code{__builtin_popcount}, except the argument type is
11393 @code{unsigned long long}.
11394 @end deftypefn
11395
11396 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
11397 Similar to @code{__builtin_parity}, except the argument type is
11398 @code{unsigned long long}.
11399 @end deftypefn
11400
11401 @deftypefn {Built-in Function} double __builtin_powi (double, int)
11402 Returns the first argument raised to the power of the second. Unlike the
11403 @code{pow} function no guarantees about precision and rounding are made.
11404 @end deftypefn
11405
11406 @deftypefn {Built-in Function} float __builtin_powif (float, int)
11407 Similar to @code{__builtin_powi}, except the argument and return types
11408 are @code{float}.
11409 @end deftypefn
11410
11411 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
11412 Similar to @code{__builtin_powi}, except the argument and return types
11413 are @code{long double}.
11414 @end deftypefn
11415
11416 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
11417 Returns @var{x} with the order of the bytes reversed; for example,
11418 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
11419 exactly 8 bits.
11420 @end deftypefn
11421
11422 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
11423 Similar to @code{__builtin_bswap16}, except the argument and return types
11424 are 32 bit.
11425 @end deftypefn
11426
11427 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
11428 Similar to @code{__builtin_bswap32}, except the argument and return types
11429 are 64 bit.
11430 @end deftypefn
11431
11432 @node Target Builtins
11433 @section Built-in Functions Specific to Particular Target Machines
11434
11435 On some target machines, GCC supports many built-in functions specific
11436 to those machines. Generally these generate calls to specific machine
11437 instructions, but allow the compiler to schedule those calls.
11438
11439 @menu
11440 * AArch64 Built-in Functions::
11441 * Alpha Built-in Functions::
11442 * Altera Nios II Built-in Functions::
11443 * ARC Built-in Functions::
11444 * ARC SIMD Built-in Functions::
11445 * ARM iWMMXt Built-in Functions::
11446 * ARM C Language Extensions (ACLE)::
11447 * ARM Floating Point Status and Control Intrinsics::
11448 * AVR Built-in Functions::
11449 * Blackfin Built-in Functions::
11450 * FR-V Built-in Functions::
11451 * MIPS DSP Built-in Functions::
11452 * MIPS Paired-Single Support::
11453 * MIPS Loongson Built-in Functions::
11454 * MIPS SIMD Architecture (MSA) Support::
11455 * Other MIPS Built-in Functions::
11456 * MSP430 Built-in Functions::
11457 * NDS32 Built-in Functions::
11458 * picoChip Built-in Functions::
11459 * PowerPC Built-in Functions::
11460 * PowerPC AltiVec/VSX Built-in Functions::
11461 * PowerPC Hardware Transactional Memory Built-in Functions::
11462 * RX Built-in Functions::
11463 * S/390 System z Built-in Functions::
11464 * SH Built-in Functions::
11465 * SPARC VIS Built-in Functions::
11466 * SPU Built-in Functions::
11467 * TI C6X Built-in Functions::
11468 * TILE-Gx Built-in Functions::
11469 * TILEPro Built-in Functions::
11470 * x86 Built-in Functions::
11471 * x86 transactional memory intrinsics::
11472 @end menu
11473
11474 @node AArch64 Built-in Functions
11475 @subsection AArch64 Built-in Functions
11476
11477 These built-in functions are available for the AArch64 family of
11478 processors.
11479 @smallexample
11480 unsigned int __builtin_aarch64_get_fpcr ()
11481 void __builtin_aarch64_set_fpcr (unsigned int)
11482 unsigned int __builtin_aarch64_get_fpsr ()
11483 void __builtin_aarch64_set_fpsr (unsigned int)
11484 @end smallexample
11485
11486 @node Alpha Built-in Functions
11487 @subsection Alpha Built-in Functions
11488
11489 These built-in functions are available for the Alpha family of
11490 processors, depending on the command-line switches used.
11491
11492 The following built-in functions are always available. They
11493 all generate the machine instruction that is part of the name.
11494
11495 @smallexample
11496 long __builtin_alpha_implver (void)
11497 long __builtin_alpha_rpcc (void)
11498 long __builtin_alpha_amask (long)
11499 long __builtin_alpha_cmpbge (long, long)
11500 long __builtin_alpha_extbl (long, long)
11501 long __builtin_alpha_extwl (long, long)
11502 long __builtin_alpha_extll (long, long)
11503 long __builtin_alpha_extql (long, long)
11504 long __builtin_alpha_extwh (long, long)
11505 long __builtin_alpha_extlh (long, long)
11506 long __builtin_alpha_extqh (long, long)
11507 long __builtin_alpha_insbl (long, long)
11508 long __builtin_alpha_inswl (long, long)
11509 long __builtin_alpha_insll (long, long)
11510 long __builtin_alpha_insql (long, long)
11511 long __builtin_alpha_inswh (long, long)
11512 long __builtin_alpha_inslh (long, long)
11513 long __builtin_alpha_insqh (long, long)
11514 long __builtin_alpha_mskbl (long, long)
11515 long __builtin_alpha_mskwl (long, long)
11516 long __builtin_alpha_mskll (long, long)
11517 long __builtin_alpha_mskql (long, long)
11518 long __builtin_alpha_mskwh (long, long)
11519 long __builtin_alpha_msklh (long, long)
11520 long __builtin_alpha_mskqh (long, long)
11521 long __builtin_alpha_umulh (long, long)
11522 long __builtin_alpha_zap (long, long)
11523 long __builtin_alpha_zapnot (long, long)
11524 @end smallexample
11525
11526 The following built-in functions are always with @option{-mmax}
11527 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
11528 later. They all generate the machine instruction that is part
11529 of the name.
11530
11531 @smallexample
11532 long __builtin_alpha_pklb (long)
11533 long __builtin_alpha_pkwb (long)
11534 long __builtin_alpha_unpkbl (long)
11535 long __builtin_alpha_unpkbw (long)
11536 long __builtin_alpha_minub8 (long, long)
11537 long __builtin_alpha_minsb8 (long, long)
11538 long __builtin_alpha_minuw4 (long, long)
11539 long __builtin_alpha_minsw4 (long, long)
11540 long __builtin_alpha_maxub8 (long, long)
11541 long __builtin_alpha_maxsb8 (long, long)
11542 long __builtin_alpha_maxuw4 (long, long)
11543 long __builtin_alpha_maxsw4 (long, long)
11544 long __builtin_alpha_perr (long, long)
11545 @end smallexample
11546
11547 The following built-in functions are always with @option{-mcix}
11548 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
11549 later. They all generate the machine instruction that is part
11550 of the name.
11551
11552 @smallexample
11553 long __builtin_alpha_cttz (long)
11554 long __builtin_alpha_ctlz (long)
11555 long __builtin_alpha_ctpop (long)
11556 @end smallexample
11557
11558 The following built-in functions are available on systems that use the OSF/1
11559 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
11560 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
11561 @code{rdval} and @code{wrval}.
11562
11563 @smallexample
11564 void *__builtin_thread_pointer (void)
11565 void __builtin_set_thread_pointer (void *)
11566 @end smallexample
11567
11568 @node Altera Nios II Built-in Functions
11569 @subsection Altera Nios II Built-in Functions
11570
11571 These built-in functions are available for the Altera Nios II
11572 family of processors.
11573
11574 The following built-in functions are always available. They
11575 all generate the machine instruction that is part of the name.
11576
11577 @example
11578 int __builtin_ldbio (volatile const void *)
11579 int __builtin_ldbuio (volatile const void *)
11580 int __builtin_ldhio (volatile const void *)
11581 int __builtin_ldhuio (volatile const void *)
11582 int __builtin_ldwio (volatile const void *)
11583 void __builtin_stbio (volatile void *, int)
11584 void __builtin_sthio (volatile void *, int)
11585 void __builtin_stwio (volatile void *, int)
11586 void __builtin_sync (void)
11587 int __builtin_rdctl (int)
11588 int __builtin_rdprs (int, int)
11589 void __builtin_wrctl (int, int)
11590 void __builtin_flushd (volatile void *)
11591 void __builtin_flushda (volatile void *)
11592 int __builtin_wrpie (int);
11593 void __builtin_eni (int);
11594 int __builtin_ldex (volatile const void *)
11595 int __builtin_stex (volatile void *, int)
11596 int __builtin_ldsex (volatile const void *)
11597 int __builtin_stsex (volatile void *, int)
11598 @end example
11599
11600 The following built-in functions are always available. They
11601 all generate a Nios II Custom Instruction. The name of the
11602 function represents the types that the function takes and
11603 returns. The letter before the @code{n} is the return type
11604 or void if absent. The @code{n} represents the first parameter
11605 to all the custom instructions, the custom instruction number.
11606 The two letters after the @code{n} represent the up to two
11607 parameters to the function.
11608
11609 The letters represent the following data types:
11610 @table @code
11611 @item <no letter>
11612 @code{void} for return type and no parameter for parameter types.
11613
11614 @item i
11615 @code{int} for return type and parameter type
11616
11617 @item f
11618 @code{float} for return type and parameter type
11619
11620 @item p
11621 @code{void *} for return type and parameter type
11622
11623 @end table
11624
11625 And the function names are:
11626 @example
11627 void __builtin_custom_n (void)
11628 void __builtin_custom_ni (int)
11629 void __builtin_custom_nf (float)
11630 void __builtin_custom_np (void *)
11631 void __builtin_custom_nii (int, int)
11632 void __builtin_custom_nif (int, float)
11633 void __builtin_custom_nip (int, void *)
11634 void __builtin_custom_nfi (float, int)
11635 void __builtin_custom_nff (float, float)
11636 void __builtin_custom_nfp (float, void *)
11637 void __builtin_custom_npi (void *, int)
11638 void __builtin_custom_npf (void *, float)
11639 void __builtin_custom_npp (void *, void *)
11640 int __builtin_custom_in (void)
11641 int __builtin_custom_ini (int)
11642 int __builtin_custom_inf (float)
11643 int __builtin_custom_inp (void *)
11644 int __builtin_custom_inii (int, int)
11645 int __builtin_custom_inif (int, float)
11646 int __builtin_custom_inip (int, void *)
11647 int __builtin_custom_infi (float, int)
11648 int __builtin_custom_inff (float, float)
11649 int __builtin_custom_infp (float, void *)
11650 int __builtin_custom_inpi (void *, int)
11651 int __builtin_custom_inpf (void *, float)
11652 int __builtin_custom_inpp (void *, void *)
11653 float __builtin_custom_fn (void)
11654 float __builtin_custom_fni (int)
11655 float __builtin_custom_fnf (float)
11656 float __builtin_custom_fnp (void *)
11657 float __builtin_custom_fnii (int, int)
11658 float __builtin_custom_fnif (int, float)
11659 float __builtin_custom_fnip (int, void *)
11660 float __builtin_custom_fnfi (float, int)
11661 float __builtin_custom_fnff (float, float)
11662 float __builtin_custom_fnfp (float, void *)
11663 float __builtin_custom_fnpi (void *, int)
11664 float __builtin_custom_fnpf (void *, float)
11665 float __builtin_custom_fnpp (void *, void *)
11666 void * __builtin_custom_pn (void)
11667 void * __builtin_custom_pni (int)
11668 void * __builtin_custom_pnf (float)
11669 void * __builtin_custom_pnp (void *)
11670 void * __builtin_custom_pnii (int, int)
11671 void * __builtin_custom_pnif (int, float)
11672 void * __builtin_custom_pnip (int, void *)
11673 void * __builtin_custom_pnfi (float, int)
11674 void * __builtin_custom_pnff (float, float)
11675 void * __builtin_custom_pnfp (float, void *)
11676 void * __builtin_custom_pnpi (void *, int)
11677 void * __builtin_custom_pnpf (void *, float)
11678 void * __builtin_custom_pnpp (void *, void *)
11679 @end example
11680
11681 @node ARC Built-in Functions
11682 @subsection ARC Built-in Functions
11683
11684 The following built-in functions are provided for ARC targets. The
11685 built-ins generate the corresponding assembly instructions. In the
11686 examples given below, the generated code often requires an operand or
11687 result to be in a register. Where necessary further code will be
11688 generated to ensure this is true, but for brevity this is not
11689 described in each case.
11690
11691 @emph{Note:} Using a built-in to generate an instruction not supported
11692 by a target may cause problems. At present the compiler is not
11693 guaranteed to detect such misuse, and as a result an internal compiler
11694 error may be generated.
11695
11696 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
11697 Return 1 if @var{val} is known to have the byte alignment given
11698 by @var{alignval}, otherwise return 0.
11699 Note that this is different from
11700 @smallexample
11701 __alignof__(*(char *)@var{val}) >= alignval
11702 @end smallexample
11703 because __alignof__ sees only the type of the dereference, whereas
11704 __builtin_arc_align uses alignment information from the pointer
11705 as well as from the pointed-to type.
11706 The information available will depend on optimization level.
11707 @end deftypefn
11708
11709 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
11710 Generates
11711 @example
11712 brk
11713 @end example
11714 @end deftypefn
11715
11716 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
11717 The operand is the number of a register to be read. Generates:
11718 @example
11719 mov @var{dest}, r@var{regno}
11720 @end example
11721 where the value in @var{dest} will be the result returned from the
11722 built-in.
11723 @end deftypefn
11724
11725 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
11726 The first operand is the number of a register to be written, the
11727 second operand is a compile time constant to write into that
11728 register. Generates:
11729 @example
11730 mov r@var{regno}, @var{val}
11731 @end example
11732 @end deftypefn
11733
11734 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
11735 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
11736 Generates:
11737 @example
11738 divaw @var{dest}, @var{a}, @var{b}
11739 @end example
11740 where the value in @var{dest} will be the result returned from the
11741 built-in.
11742 @end deftypefn
11743
11744 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
11745 Generates
11746 @example
11747 flag @var{a}
11748 @end example
11749 @end deftypefn
11750
11751 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
11752 The operand, @var{auxv}, is the address of an auxiliary register and
11753 must be a compile time constant. Generates:
11754 @example
11755 lr @var{dest}, [@var{auxr}]
11756 @end example
11757 Where the value in @var{dest} will be the result returned from the
11758 built-in.
11759 @end deftypefn
11760
11761 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
11762 Only available with @option{-mmul64}. Generates:
11763 @example
11764 mul64 @var{a}, @var{b}
11765 @end example
11766 @end deftypefn
11767
11768 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
11769 Only available with @option{-mmul64}. Generates:
11770 @example
11771 mulu64 @var{a}, @var{b}
11772 @end example
11773 @end deftypefn
11774
11775 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
11776 Generates:
11777 @example
11778 nop
11779 @end example
11780 @end deftypefn
11781
11782 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
11783 Only valid if the @samp{norm} instruction is available through the
11784 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
11785 Generates:
11786 @example
11787 norm @var{dest}, @var{src}
11788 @end example
11789 Where the value in @var{dest} will be the result returned from the
11790 built-in.
11791 @end deftypefn
11792
11793 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
11794 Only valid if the @samp{normw} instruction is available through the
11795 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
11796 Generates:
11797 @example
11798 normw @var{dest}, @var{src}
11799 @end example
11800 Where the value in @var{dest} will be the result returned from the
11801 built-in.
11802 @end deftypefn
11803
11804 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
11805 Generates:
11806 @example
11807 rtie
11808 @end example
11809 @end deftypefn
11810
11811 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
11812 Generates:
11813 @example
11814 sleep @var{a}
11815 @end example
11816 @end deftypefn
11817
11818 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
11819 The first argument, @var{auxv}, is the address of an auxiliary
11820 register, the second argument, @var{val}, is a compile time constant
11821 to be written to the register. Generates:
11822 @example
11823 sr @var{auxr}, [@var{val}]
11824 @end example
11825 @end deftypefn
11826
11827 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
11828 Only valid with @option{-mswap}. Generates:
11829 @example
11830 swap @var{dest}, @var{src}
11831 @end example
11832 Where the value in @var{dest} will be the result returned from the
11833 built-in.
11834 @end deftypefn
11835
11836 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
11837 Generates:
11838 @example
11839 swi
11840 @end example
11841 @end deftypefn
11842
11843 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
11844 Only available with @option{-mcpu=ARC700}. Generates:
11845 @example
11846 sync
11847 @end example
11848 @end deftypefn
11849
11850 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
11851 Only available with @option{-mcpu=ARC700}. Generates:
11852 @example
11853 trap_s @var{c}
11854 @end example
11855 @end deftypefn
11856
11857 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
11858 Only available with @option{-mcpu=ARC700}. Generates:
11859 @example
11860 unimp_s
11861 @end example
11862 @end deftypefn
11863
11864 The instructions generated by the following builtins are not
11865 considered as candidates for scheduling. They are not moved around by
11866 the compiler during scheduling, and thus can be expected to appear
11867 where they are put in the C code:
11868 @example
11869 __builtin_arc_brk()
11870 __builtin_arc_core_read()
11871 __builtin_arc_core_write()
11872 __builtin_arc_flag()
11873 __builtin_arc_lr()
11874 __builtin_arc_sleep()
11875 __builtin_arc_sr()
11876 __builtin_arc_swi()
11877 @end example
11878
11879 @node ARC SIMD Built-in Functions
11880 @subsection ARC SIMD Built-in Functions
11881
11882 SIMD builtins provided by the compiler can be used to generate the
11883 vector instructions. This section describes the available builtins
11884 and their usage in programs. With the @option{-msimd} option, the
11885 compiler provides 128-bit vector types, which can be specified using
11886 the @code{vector_size} attribute. The header file @file{arc-simd.h}
11887 can be included to use the following predefined types:
11888 @example
11889 typedef int __v4si __attribute__((vector_size(16)));
11890 typedef short __v8hi __attribute__((vector_size(16)));
11891 @end example
11892
11893 These types can be used to define 128-bit variables. The built-in
11894 functions listed in the following section can be used on these
11895 variables to generate the vector operations.
11896
11897 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
11898 @file{arc-simd.h} also provides equivalent macros called
11899 @code{_@var{someinsn}} that can be used for programming ease and
11900 improved readability. The following macros for DMA control are also
11901 provided:
11902 @example
11903 #define _setup_dma_in_channel_reg _vdiwr
11904 #define _setup_dma_out_channel_reg _vdowr
11905 @end example
11906
11907 The following is a complete list of all the SIMD built-ins provided
11908 for ARC, grouped by calling signature.
11909
11910 The following take two @code{__v8hi} arguments and return a
11911 @code{__v8hi} result:
11912 @example
11913 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
11914 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
11915 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
11916 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
11917 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
11918 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
11919 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
11920 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
11921 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
11922 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
11923 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
11924 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
11925 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
11926 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
11927 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
11928 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
11929 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
11930 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
11931 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
11932 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
11933 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
11934 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
11935 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
11936 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
11937 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
11938 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
11939 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
11940 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
11941 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
11942 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
11943 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
11944 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
11945 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
11946 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
11947 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
11948 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
11949 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
11950 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
11951 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
11952 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
11953 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
11954 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
11955 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
11956 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
11957 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
11958 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
11959 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
11960 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
11961 @end example
11962
11963 The following take one @code{__v8hi} and one @code{int} argument and return a
11964 @code{__v8hi} result:
11965
11966 @example
11967 __v8hi __builtin_arc_vbaddw (__v8hi, int)
11968 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
11969 __v8hi __builtin_arc_vbminw (__v8hi, int)
11970 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
11971 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
11972 __v8hi __builtin_arc_vbmulw (__v8hi, int)
11973 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
11974 __v8hi __builtin_arc_vbsubw (__v8hi, int)
11975 @end example
11976
11977 The following take one @code{__v8hi} argument and one @code{int} argument which
11978 must be a 3-bit compile time constant indicating a register number
11979 I0-I7. They return a @code{__v8hi} result.
11980 @example
11981 __v8hi __builtin_arc_vasrw (__v8hi, const int)
11982 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
11983 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
11984 @end example
11985
11986 The following take one @code{__v8hi} argument and one @code{int}
11987 argument which must be a 6-bit compile time constant. They return a
11988 @code{__v8hi} result.
11989 @example
11990 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
11991 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
11992 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
11993 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
11994 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
11995 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
11996 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
11997 @end example
11998
11999 The following take one @code{__v8hi} argument and one @code{int} argument which
12000 must be a 8-bit compile time constant. They return a @code{__v8hi}
12001 result.
12002 @example
12003 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12004 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12005 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12006 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12007 @end example
12008
12009 The following take two @code{int} arguments, the second of which which
12010 must be a 8-bit compile time constant. They return a @code{__v8hi}
12011 result:
12012 @example
12013 __v8hi __builtin_arc_vmovaw (int, const int)
12014 __v8hi __builtin_arc_vmovw (int, const int)
12015 __v8hi __builtin_arc_vmovzw (int, const int)
12016 @end example
12017
12018 The following take a single @code{__v8hi} argument and return a
12019 @code{__v8hi} result:
12020 @example
12021 __v8hi __builtin_arc_vabsaw (__v8hi)
12022 __v8hi __builtin_arc_vabsw (__v8hi)
12023 __v8hi __builtin_arc_vaddsuw (__v8hi)
12024 __v8hi __builtin_arc_vexch1 (__v8hi)
12025 __v8hi __builtin_arc_vexch2 (__v8hi)
12026 __v8hi __builtin_arc_vexch4 (__v8hi)
12027 __v8hi __builtin_arc_vsignw (__v8hi)
12028 __v8hi __builtin_arc_vupbaw (__v8hi)
12029 __v8hi __builtin_arc_vupbw (__v8hi)
12030 __v8hi __builtin_arc_vupsbaw (__v8hi)
12031 __v8hi __builtin_arc_vupsbw (__v8hi)
12032 @end example
12033
12034 The following take two @code{int} arguments and return no result:
12035 @example
12036 void __builtin_arc_vdirun (int, int)
12037 void __builtin_arc_vdorun (int, int)
12038 @end example
12039
12040 The following take two @code{int} arguments and return no result. The
12041 first argument must a 3-bit compile time constant indicating one of
12042 the DR0-DR7 DMA setup channels:
12043 @example
12044 void __builtin_arc_vdiwr (const int, int)
12045 void __builtin_arc_vdowr (const int, int)
12046 @end example
12047
12048 The following take an @code{int} argument and return no result:
12049 @example
12050 void __builtin_arc_vendrec (int)
12051 void __builtin_arc_vrec (int)
12052 void __builtin_arc_vrecrun (int)
12053 void __builtin_arc_vrun (int)
12054 @end example
12055
12056 The following take a @code{__v8hi} argument and two @code{int}
12057 arguments and return a @code{__v8hi} result. The second argument must
12058 be a 3-bit compile time constants, indicating one the registers I0-I7,
12059 and the third argument must be an 8-bit compile time constant.
12060
12061 @emph{Note:} Although the equivalent hardware instructions do not take
12062 an SIMD register as an operand, these builtins overwrite the relevant
12063 bits of the @code{__v8hi} register provided as the first argument with
12064 the value loaded from the @code{[Ib, u8]} location in the SDM.
12065
12066 @example
12067 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12068 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12069 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12070 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12071 @end example
12072
12073 The following take two @code{int} arguments and return a @code{__v8hi}
12074 result. The first argument must be a 3-bit compile time constants,
12075 indicating one the registers I0-I7, and the second argument must be an
12076 8-bit compile time constant.
12077
12078 @example
12079 __v8hi __builtin_arc_vld128 (const int, const int)
12080 __v8hi __builtin_arc_vld64w (const int, const int)
12081 @end example
12082
12083 The following take a @code{__v8hi} argument and two @code{int}
12084 arguments and return no result. The second argument must be a 3-bit
12085 compile time constants, indicating one the registers I0-I7, and the
12086 third argument must be an 8-bit compile time constant.
12087
12088 @example
12089 void __builtin_arc_vst128 (__v8hi, const int, const int)
12090 void __builtin_arc_vst64 (__v8hi, const int, const int)
12091 @end example
12092
12093 The following take a @code{__v8hi} argument and three @code{int}
12094 arguments and return no result. The second argument must be a 3-bit
12095 compile-time constant, identifying the 16-bit sub-register to be
12096 stored, the third argument must be a 3-bit compile time constants,
12097 indicating one the registers I0-I7, and the fourth argument must be an
12098 8-bit compile time constant.
12099
12100 @example
12101 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12102 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12103 @end example
12104
12105 @node ARM iWMMXt Built-in Functions
12106 @subsection ARM iWMMXt Built-in Functions
12107
12108 These built-in functions are available for the ARM family of
12109 processors when the @option{-mcpu=iwmmxt} switch is used:
12110
12111 @smallexample
12112 typedef int v2si __attribute__ ((vector_size (8)));
12113 typedef short v4hi __attribute__ ((vector_size (8)));
12114 typedef char v8qi __attribute__ ((vector_size (8)));
12115
12116 int __builtin_arm_getwcgr0 (void)
12117 void __builtin_arm_setwcgr0 (int)
12118 int __builtin_arm_getwcgr1 (void)
12119 void __builtin_arm_setwcgr1 (int)
12120 int __builtin_arm_getwcgr2 (void)
12121 void __builtin_arm_setwcgr2 (int)
12122 int __builtin_arm_getwcgr3 (void)
12123 void __builtin_arm_setwcgr3 (int)
12124 int __builtin_arm_textrmsb (v8qi, int)
12125 int __builtin_arm_textrmsh (v4hi, int)
12126 int __builtin_arm_textrmsw (v2si, int)
12127 int __builtin_arm_textrmub (v8qi, int)
12128 int __builtin_arm_textrmuh (v4hi, int)
12129 int __builtin_arm_textrmuw (v2si, int)
12130 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12131 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12132 v2si __builtin_arm_tinsrw (v2si, int, int)
12133 long long __builtin_arm_tmia (long long, int, int)
12134 long long __builtin_arm_tmiabb (long long, int, int)
12135 long long __builtin_arm_tmiabt (long long, int, int)
12136 long long __builtin_arm_tmiaph (long long, int, int)
12137 long long __builtin_arm_tmiatb (long long, int, int)
12138 long long __builtin_arm_tmiatt (long long, int, int)
12139 int __builtin_arm_tmovmskb (v8qi)
12140 int __builtin_arm_tmovmskh (v4hi)
12141 int __builtin_arm_tmovmskw (v2si)
12142 long long __builtin_arm_waccb (v8qi)
12143 long long __builtin_arm_wacch (v4hi)
12144 long long __builtin_arm_waccw (v2si)
12145 v8qi __builtin_arm_waddb (v8qi, v8qi)
12146 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12147 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12148 v4hi __builtin_arm_waddh (v4hi, v4hi)
12149 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12150 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12151 v2si __builtin_arm_waddw (v2si, v2si)
12152 v2si __builtin_arm_waddwss (v2si, v2si)
12153 v2si __builtin_arm_waddwus (v2si, v2si)
12154 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12155 long long __builtin_arm_wand(long long, long long)
12156 long long __builtin_arm_wandn (long long, long long)
12157 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12158 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12159 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12160 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12161 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12162 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12163 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12164 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12165 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12166 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12167 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12168 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12169 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12170 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12171 long long __builtin_arm_wmacsz (v4hi, v4hi)
12172 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12173 long long __builtin_arm_wmacuz (v4hi, v4hi)
12174 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12175 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12176 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12177 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12178 v2si __builtin_arm_wmaxsw (v2si, v2si)
12179 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12180 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12181 v2si __builtin_arm_wmaxuw (v2si, v2si)
12182 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12183 v4hi __builtin_arm_wminsh (v4hi, v4hi)
12184 v2si __builtin_arm_wminsw (v2si, v2si)
12185 v8qi __builtin_arm_wminub (v8qi, v8qi)
12186 v4hi __builtin_arm_wminuh (v4hi, v4hi)
12187 v2si __builtin_arm_wminuw (v2si, v2si)
12188 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
12189 v4hi __builtin_arm_wmulul (v4hi, v4hi)
12190 v4hi __builtin_arm_wmulum (v4hi, v4hi)
12191 long long __builtin_arm_wor (long long, long long)
12192 v2si __builtin_arm_wpackdss (long long, long long)
12193 v2si __builtin_arm_wpackdus (long long, long long)
12194 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
12195 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
12196 v4hi __builtin_arm_wpackwss (v2si, v2si)
12197 v4hi __builtin_arm_wpackwus (v2si, v2si)
12198 long long __builtin_arm_wrord (long long, long long)
12199 long long __builtin_arm_wrordi (long long, int)
12200 v4hi __builtin_arm_wrorh (v4hi, long long)
12201 v4hi __builtin_arm_wrorhi (v4hi, int)
12202 v2si __builtin_arm_wrorw (v2si, long long)
12203 v2si __builtin_arm_wrorwi (v2si, int)
12204 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
12205 v2si __builtin_arm_wsadbz (v8qi, v8qi)
12206 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
12207 v2si __builtin_arm_wsadhz (v4hi, v4hi)
12208 v4hi __builtin_arm_wshufh (v4hi, int)
12209 long long __builtin_arm_wslld (long long, long long)
12210 long long __builtin_arm_wslldi (long long, int)
12211 v4hi __builtin_arm_wsllh (v4hi, long long)
12212 v4hi __builtin_arm_wsllhi (v4hi, int)
12213 v2si __builtin_arm_wsllw (v2si, long long)
12214 v2si __builtin_arm_wsllwi (v2si, int)
12215 long long __builtin_arm_wsrad (long long, long long)
12216 long long __builtin_arm_wsradi (long long, int)
12217 v4hi __builtin_arm_wsrah (v4hi, long long)
12218 v4hi __builtin_arm_wsrahi (v4hi, int)
12219 v2si __builtin_arm_wsraw (v2si, long long)
12220 v2si __builtin_arm_wsrawi (v2si, int)
12221 long long __builtin_arm_wsrld (long long, long long)
12222 long long __builtin_arm_wsrldi (long long, int)
12223 v4hi __builtin_arm_wsrlh (v4hi, long long)
12224 v4hi __builtin_arm_wsrlhi (v4hi, int)
12225 v2si __builtin_arm_wsrlw (v2si, long long)
12226 v2si __builtin_arm_wsrlwi (v2si, int)
12227 v8qi __builtin_arm_wsubb (v8qi, v8qi)
12228 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
12229 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
12230 v4hi __builtin_arm_wsubh (v4hi, v4hi)
12231 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
12232 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
12233 v2si __builtin_arm_wsubw (v2si, v2si)
12234 v2si __builtin_arm_wsubwss (v2si, v2si)
12235 v2si __builtin_arm_wsubwus (v2si, v2si)
12236 v4hi __builtin_arm_wunpckehsb (v8qi)
12237 v2si __builtin_arm_wunpckehsh (v4hi)
12238 long long __builtin_arm_wunpckehsw (v2si)
12239 v4hi __builtin_arm_wunpckehub (v8qi)
12240 v2si __builtin_arm_wunpckehuh (v4hi)
12241 long long __builtin_arm_wunpckehuw (v2si)
12242 v4hi __builtin_arm_wunpckelsb (v8qi)
12243 v2si __builtin_arm_wunpckelsh (v4hi)
12244 long long __builtin_arm_wunpckelsw (v2si)
12245 v4hi __builtin_arm_wunpckelub (v8qi)
12246 v2si __builtin_arm_wunpckeluh (v4hi)
12247 long long __builtin_arm_wunpckeluw (v2si)
12248 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
12249 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
12250 v2si __builtin_arm_wunpckihw (v2si, v2si)
12251 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
12252 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
12253 v2si __builtin_arm_wunpckilw (v2si, v2si)
12254 long long __builtin_arm_wxor (long long, long long)
12255 long long __builtin_arm_wzero ()
12256 @end smallexample
12257
12258
12259 @node ARM C Language Extensions (ACLE)
12260 @subsection ARM C Language Extensions (ACLE)
12261
12262 GCC implements extensions for C as described in the ARM C Language
12263 Extensions (ACLE) specification, which can be found at
12264 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
12265
12266 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
12267 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
12268 intrinsics can be found at
12269 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
12270 The built-in intrinsics for the Advanced SIMD extension are available when
12271 NEON is enabled.
12272
12273 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
12274 back ends support CRC32 intrinsics from @file{arm_acle.h}. The ARM back end's
12275 16-bit floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
12276 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
12277 intrinsics yet.
12278
12279 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
12280 availability of extensions.
12281
12282 @node ARM Floating Point Status and Control Intrinsics
12283 @subsection ARM Floating Point Status and Control Intrinsics
12284
12285 These built-in functions are available for the ARM family of
12286 processors with floating-point unit.
12287
12288 @smallexample
12289 unsigned int __builtin_arm_get_fpscr ()
12290 void __builtin_arm_set_fpscr (unsigned int)
12291 @end smallexample
12292
12293 @node AVR Built-in Functions
12294 @subsection AVR Built-in Functions
12295
12296 For each built-in function for AVR, there is an equally named,
12297 uppercase built-in macro defined. That way users can easily query if
12298 or if not a specific built-in is implemented or not. For example, if
12299 @code{__builtin_avr_nop} is available the macro
12300 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
12301
12302 The following built-in functions map to the respective machine
12303 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
12304 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
12305 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
12306 as library call if no hardware multiplier is available.
12307
12308 @smallexample
12309 void __builtin_avr_nop (void)
12310 void __builtin_avr_sei (void)
12311 void __builtin_avr_cli (void)
12312 void __builtin_avr_sleep (void)
12313 void __builtin_avr_wdr (void)
12314 unsigned char __builtin_avr_swap (unsigned char)
12315 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
12316 int __builtin_avr_fmuls (char, char)
12317 int __builtin_avr_fmulsu (char, unsigned char)
12318 @end smallexample
12319
12320 In order to delay execution for a specific number of cycles, GCC
12321 implements
12322 @smallexample
12323 void __builtin_avr_delay_cycles (unsigned long ticks)
12324 @end smallexample
12325
12326 @noindent
12327 @code{ticks} is the number of ticks to delay execution. Note that this
12328 built-in does not take into account the effect of interrupts that
12329 might increase delay time. @code{ticks} must be a compile-time
12330 integer constant; delays with a variable number of cycles are not supported.
12331
12332 @smallexample
12333 char __builtin_avr_flash_segment (const __memx void*)
12334 @end smallexample
12335
12336 @noindent
12337 This built-in takes a byte address to the 24-bit
12338 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
12339 the number of the flash segment (the 64 KiB chunk) where the address
12340 points to. Counting starts at @code{0}.
12341 If the address does not point to flash memory, return @code{-1}.
12342
12343 @smallexample
12344 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
12345 @end smallexample
12346
12347 @noindent
12348 Insert bits from @var{bits} into @var{val} and return the resulting
12349 value. The nibbles of @var{map} determine how the insertion is
12350 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
12351 @enumerate
12352 @item If @var{X} is @code{0xf},
12353 then the @var{n}-th bit of @var{val} is returned unaltered.
12354
12355 @item If X is in the range 0@dots{}7,
12356 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
12357
12358 @item If X is in the range 8@dots{}@code{0xe},
12359 then the @var{n}-th result bit is undefined.
12360 @end enumerate
12361
12362 @noindent
12363 One typical use case for this built-in is adjusting input and
12364 output values to non-contiguous port layouts. Some examples:
12365
12366 @smallexample
12367 // same as val, bits is unused
12368 __builtin_avr_insert_bits (0xffffffff, bits, val)
12369 @end smallexample
12370
12371 @smallexample
12372 // same as bits, val is unused
12373 __builtin_avr_insert_bits (0x76543210, bits, val)
12374 @end smallexample
12375
12376 @smallexample
12377 // same as rotating bits by 4
12378 __builtin_avr_insert_bits (0x32107654, bits, 0)
12379 @end smallexample
12380
12381 @smallexample
12382 // high nibble of result is the high nibble of val
12383 // low nibble of result is the low nibble of bits
12384 __builtin_avr_insert_bits (0xffff3210, bits, val)
12385 @end smallexample
12386
12387 @smallexample
12388 // reverse the bit order of bits
12389 __builtin_avr_insert_bits (0x01234567, bits, 0)
12390 @end smallexample
12391
12392 @node Blackfin Built-in Functions
12393 @subsection Blackfin Built-in Functions
12394
12395 Currently, there are two Blackfin-specific built-in functions. These are
12396 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
12397 using inline assembly; by using these built-in functions the compiler can
12398 automatically add workarounds for hardware errata involving these
12399 instructions. These functions are named as follows:
12400
12401 @smallexample
12402 void __builtin_bfin_csync (void)
12403 void __builtin_bfin_ssync (void)
12404 @end smallexample
12405
12406 @node FR-V Built-in Functions
12407 @subsection FR-V Built-in Functions
12408
12409 GCC provides many FR-V-specific built-in functions. In general,
12410 these functions are intended to be compatible with those described
12411 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
12412 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
12413 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
12414 pointer rather than by value.
12415
12416 Most of the functions are named after specific FR-V instructions.
12417 Such functions are said to be ``directly mapped'' and are summarized
12418 here in tabular form.
12419
12420 @menu
12421 * Argument Types::
12422 * Directly-mapped Integer Functions::
12423 * Directly-mapped Media Functions::
12424 * Raw read/write Functions::
12425 * Other Built-in Functions::
12426 @end menu
12427
12428 @node Argument Types
12429 @subsubsection Argument Types
12430
12431 The arguments to the built-in functions can be divided into three groups:
12432 register numbers, compile-time constants and run-time values. In order
12433 to make this classification clear at a glance, the arguments and return
12434 values are given the following pseudo types:
12435
12436 @multitable @columnfractions .20 .30 .15 .35
12437 @item Pseudo type @tab Real C type @tab Constant? @tab Description
12438 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
12439 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
12440 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
12441 @item @code{uw2} @tab @code{unsigned long long} @tab No
12442 @tab an unsigned doubleword
12443 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
12444 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
12445 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
12446 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
12447 @end multitable
12448
12449 These pseudo types are not defined by GCC, they are simply a notational
12450 convenience used in this manual.
12451
12452 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
12453 and @code{sw2} are evaluated at run time. They correspond to
12454 register operands in the underlying FR-V instructions.
12455
12456 @code{const} arguments represent immediate operands in the underlying
12457 FR-V instructions. They must be compile-time constants.
12458
12459 @code{acc} arguments are evaluated at compile time and specify the number
12460 of an accumulator register. For example, an @code{acc} argument of 2
12461 selects the ACC2 register.
12462
12463 @code{iacc} arguments are similar to @code{acc} arguments but specify the
12464 number of an IACC register. See @pxref{Other Built-in Functions}
12465 for more details.
12466
12467 @node Directly-mapped Integer Functions
12468 @subsubsection Directly-Mapped Integer Functions
12469
12470 The functions listed below map directly to FR-V I-type instructions.
12471
12472 @multitable @columnfractions .45 .32 .23
12473 @item Function prototype @tab Example usage @tab Assembly output
12474 @item @code{sw1 __ADDSS (sw1, sw1)}
12475 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
12476 @tab @code{ADDSS @var{a},@var{b},@var{c}}
12477 @item @code{sw1 __SCAN (sw1, sw1)}
12478 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
12479 @tab @code{SCAN @var{a},@var{b},@var{c}}
12480 @item @code{sw1 __SCUTSS (sw1)}
12481 @tab @code{@var{b} = __SCUTSS (@var{a})}
12482 @tab @code{SCUTSS @var{a},@var{b}}
12483 @item @code{sw1 __SLASS (sw1, sw1)}
12484 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
12485 @tab @code{SLASS @var{a},@var{b},@var{c}}
12486 @item @code{void __SMASS (sw1, sw1)}
12487 @tab @code{__SMASS (@var{a}, @var{b})}
12488 @tab @code{SMASS @var{a},@var{b}}
12489 @item @code{void __SMSSS (sw1, sw1)}
12490 @tab @code{__SMSSS (@var{a}, @var{b})}
12491 @tab @code{SMSSS @var{a},@var{b}}
12492 @item @code{void __SMU (sw1, sw1)}
12493 @tab @code{__SMU (@var{a}, @var{b})}
12494 @tab @code{SMU @var{a},@var{b}}
12495 @item @code{sw2 __SMUL (sw1, sw1)}
12496 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
12497 @tab @code{SMUL @var{a},@var{b},@var{c}}
12498 @item @code{sw1 __SUBSS (sw1, sw1)}
12499 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
12500 @tab @code{SUBSS @var{a},@var{b},@var{c}}
12501 @item @code{uw2 __UMUL (uw1, uw1)}
12502 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
12503 @tab @code{UMUL @var{a},@var{b},@var{c}}
12504 @end multitable
12505
12506 @node Directly-mapped Media Functions
12507 @subsubsection Directly-Mapped Media Functions
12508
12509 The functions listed below map directly to FR-V M-type instructions.
12510
12511 @multitable @columnfractions .45 .32 .23
12512 @item Function prototype @tab Example usage @tab Assembly output
12513 @item @code{uw1 __MABSHS (sw1)}
12514 @tab @code{@var{b} = __MABSHS (@var{a})}
12515 @tab @code{MABSHS @var{a},@var{b}}
12516 @item @code{void __MADDACCS (acc, acc)}
12517 @tab @code{__MADDACCS (@var{b}, @var{a})}
12518 @tab @code{MADDACCS @var{a},@var{b}}
12519 @item @code{sw1 __MADDHSS (sw1, sw1)}
12520 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
12521 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
12522 @item @code{uw1 __MADDHUS (uw1, uw1)}
12523 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
12524 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
12525 @item @code{uw1 __MAND (uw1, uw1)}
12526 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
12527 @tab @code{MAND @var{a},@var{b},@var{c}}
12528 @item @code{void __MASACCS (acc, acc)}
12529 @tab @code{__MASACCS (@var{b}, @var{a})}
12530 @tab @code{MASACCS @var{a},@var{b}}
12531 @item @code{uw1 __MAVEH (uw1, uw1)}
12532 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
12533 @tab @code{MAVEH @var{a},@var{b},@var{c}}
12534 @item @code{uw2 __MBTOH (uw1)}
12535 @tab @code{@var{b} = __MBTOH (@var{a})}
12536 @tab @code{MBTOH @var{a},@var{b}}
12537 @item @code{void __MBTOHE (uw1 *, uw1)}
12538 @tab @code{__MBTOHE (&@var{b}, @var{a})}
12539 @tab @code{MBTOHE @var{a},@var{b}}
12540 @item @code{void __MCLRACC (acc)}
12541 @tab @code{__MCLRACC (@var{a})}
12542 @tab @code{MCLRACC @var{a}}
12543 @item @code{void __MCLRACCA (void)}
12544 @tab @code{__MCLRACCA ()}
12545 @tab @code{MCLRACCA}
12546 @item @code{uw1 __Mcop1 (uw1, uw1)}
12547 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
12548 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
12549 @item @code{uw1 __Mcop2 (uw1, uw1)}
12550 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
12551 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
12552 @item @code{uw1 __MCPLHI (uw2, const)}
12553 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
12554 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
12555 @item @code{uw1 __MCPLI (uw2, const)}
12556 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
12557 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
12558 @item @code{void __MCPXIS (acc, sw1, sw1)}
12559 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
12560 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
12561 @item @code{void __MCPXIU (acc, uw1, uw1)}
12562 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
12563 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
12564 @item @code{void __MCPXRS (acc, sw1, sw1)}
12565 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
12566 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
12567 @item @code{void __MCPXRU (acc, uw1, uw1)}
12568 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
12569 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
12570 @item @code{uw1 __MCUT (acc, uw1)}
12571 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
12572 @tab @code{MCUT @var{a},@var{b},@var{c}}
12573 @item @code{uw1 __MCUTSS (acc, sw1)}
12574 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
12575 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
12576 @item @code{void __MDADDACCS (acc, acc)}
12577 @tab @code{__MDADDACCS (@var{b}, @var{a})}
12578 @tab @code{MDADDACCS @var{a},@var{b}}
12579 @item @code{void __MDASACCS (acc, acc)}
12580 @tab @code{__MDASACCS (@var{b}, @var{a})}
12581 @tab @code{MDASACCS @var{a},@var{b}}
12582 @item @code{uw2 __MDCUTSSI (acc, const)}
12583 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
12584 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
12585 @item @code{uw2 __MDPACKH (uw2, uw2)}
12586 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
12587 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
12588 @item @code{uw2 __MDROTLI (uw2, const)}
12589 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
12590 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
12591 @item @code{void __MDSUBACCS (acc, acc)}
12592 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
12593 @tab @code{MDSUBACCS @var{a},@var{b}}
12594 @item @code{void __MDUNPACKH (uw1 *, uw2)}
12595 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
12596 @tab @code{MDUNPACKH @var{a},@var{b}}
12597 @item @code{uw2 __MEXPDHD (uw1, const)}
12598 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
12599 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
12600 @item @code{uw1 __MEXPDHW (uw1, const)}
12601 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
12602 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
12603 @item @code{uw1 __MHDSETH (uw1, const)}
12604 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
12605 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
12606 @item @code{sw1 __MHDSETS (const)}
12607 @tab @code{@var{b} = __MHDSETS (@var{a})}
12608 @tab @code{MHDSETS #@var{a},@var{b}}
12609 @item @code{uw1 __MHSETHIH (uw1, const)}
12610 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
12611 @tab @code{MHSETHIH #@var{a},@var{b}}
12612 @item @code{sw1 __MHSETHIS (sw1, const)}
12613 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
12614 @tab @code{MHSETHIS #@var{a},@var{b}}
12615 @item @code{uw1 __MHSETLOH (uw1, const)}
12616 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
12617 @tab @code{MHSETLOH #@var{a},@var{b}}
12618 @item @code{sw1 __MHSETLOS (sw1, const)}
12619 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
12620 @tab @code{MHSETLOS #@var{a},@var{b}}
12621 @item @code{uw1 __MHTOB (uw2)}
12622 @tab @code{@var{b} = __MHTOB (@var{a})}
12623 @tab @code{MHTOB @var{a},@var{b}}
12624 @item @code{void __MMACHS (acc, sw1, sw1)}
12625 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
12626 @tab @code{MMACHS @var{a},@var{b},@var{c}}
12627 @item @code{void __MMACHU (acc, uw1, uw1)}
12628 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
12629 @tab @code{MMACHU @var{a},@var{b},@var{c}}
12630 @item @code{void __MMRDHS (acc, sw1, sw1)}
12631 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
12632 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
12633 @item @code{void __MMRDHU (acc, uw1, uw1)}
12634 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
12635 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
12636 @item @code{void __MMULHS (acc, sw1, sw1)}
12637 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
12638 @tab @code{MMULHS @var{a},@var{b},@var{c}}
12639 @item @code{void __MMULHU (acc, uw1, uw1)}
12640 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
12641 @tab @code{MMULHU @var{a},@var{b},@var{c}}
12642 @item @code{void __MMULXHS (acc, sw1, sw1)}
12643 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
12644 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
12645 @item @code{void __MMULXHU (acc, uw1, uw1)}
12646 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
12647 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
12648 @item @code{uw1 __MNOT (uw1)}
12649 @tab @code{@var{b} = __MNOT (@var{a})}
12650 @tab @code{MNOT @var{a},@var{b}}
12651 @item @code{uw1 __MOR (uw1, uw1)}
12652 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
12653 @tab @code{MOR @var{a},@var{b},@var{c}}
12654 @item @code{uw1 __MPACKH (uh, uh)}
12655 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
12656 @tab @code{MPACKH @var{a},@var{b},@var{c}}
12657 @item @code{sw2 __MQADDHSS (sw2, sw2)}
12658 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
12659 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
12660 @item @code{uw2 __MQADDHUS (uw2, uw2)}
12661 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
12662 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
12663 @item @code{void __MQCPXIS (acc, sw2, sw2)}
12664 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
12665 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
12666 @item @code{void __MQCPXIU (acc, uw2, uw2)}
12667 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
12668 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
12669 @item @code{void __MQCPXRS (acc, sw2, sw2)}
12670 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
12671 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
12672 @item @code{void __MQCPXRU (acc, uw2, uw2)}
12673 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
12674 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
12675 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
12676 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
12677 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
12678 @item @code{sw2 __MQLMTHS (sw2, sw2)}
12679 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
12680 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
12681 @item @code{void __MQMACHS (acc, sw2, sw2)}
12682 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
12683 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
12684 @item @code{void __MQMACHU (acc, uw2, uw2)}
12685 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
12686 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
12687 @item @code{void __MQMACXHS (acc, sw2, sw2)}
12688 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
12689 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
12690 @item @code{void __MQMULHS (acc, sw2, sw2)}
12691 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
12692 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
12693 @item @code{void __MQMULHU (acc, uw2, uw2)}
12694 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
12695 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
12696 @item @code{void __MQMULXHS (acc, sw2, sw2)}
12697 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
12698 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
12699 @item @code{void __MQMULXHU (acc, uw2, uw2)}
12700 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
12701 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
12702 @item @code{sw2 __MQSATHS (sw2, sw2)}
12703 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
12704 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
12705 @item @code{uw2 __MQSLLHI (uw2, int)}
12706 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
12707 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
12708 @item @code{sw2 __MQSRAHI (sw2, int)}
12709 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
12710 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
12711 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
12712 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
12713 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
12714 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
12715 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
12716 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
12717 @item @code{void __MQXMACHS (acc, sw2, sw2)}
12718 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
12719 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
12720 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
12721 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
12722 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
12723 @item @code{uw1 __MRDACC (acc)}
12724 @tab @code{@var{b} = __MRDACC (@var{a})}
12725 @tab @code{MRDACC @var{a},@var{b}}
12726 @item @code{uw1 __MRDACCG (acc)}
12727 @tab @code{@var{b} = __MRDACCG (@var{a})}
12728 @tab @code{MRDACCG @var{a},@var{b}}
12729 @item @code{uw1 __MROTLI (uw1, const)}
12730 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
12731 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
12732 @item @code{uw1 __MROTRI (uw1, const)}
12733 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
12734 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
12735 @item @code{sw1 __MSATHS (sw1, sw1)}
12736 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
12737 @tab @code{MSATHS @var{a},@var{b},@var{c}}
12738 @item @code{uw1 __MSATHU (uw1, uw1)}
12739 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
12740 @tab @code{MSATHU @var{a},@var{b},@var{c}}
12741 @item @code{uw1 __MSLLHI (uw1, const)}
12742 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
12743 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
12744 @item @code{sw1 __MSRAHI (sw1, const)}
12745 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
12746 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
12747 @item @code{uw1 __MSRLHI (uw1, const)}
12748 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
12749 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
12750 @item @code{void __MSUBACCS (acc, acc)}
12751 @tab @code{__MSUBACCS (@var{b}, @var{a})}
12752 @tab @code{MSUBACCS @var{a},@var{b}}
12753 @item @code{sw1 __MSUBHSS (sw1, sw1)}
12754 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
12755 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
12756 @item @code{uw1 __MSUBHUS (uw1, uw1)}
12757 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
12758 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
12759 @item @code{void __MTRAP (void)}
12760 @tab @code{__MTRAP ()}
12761 @tab @code{MTRAP}
12762 @item @code{uw2 __MUNPACKH (uw1)}
12763 @tab @code{@var{b} = __MUNPACKH (@var{a})}
12764 @tab @code{MUNPACKH @var{a},@var{b}}
12765 @item @code{uw1 __MWCUT (uw2, uw1)}
12766 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
12767 @tab @code{MWCUT @var{a},@var{b},@var{c}}
12768 @item @code{void __MWTACC (acc, uw1)}
12769 @tab @code{__MWTACC (@var{b}, @var{a})}
12770 @tab @code{MWTACC @var{a},@var{b}}
12771 @item @code{void __MWTACCG (acc, uw1)}
12772 @tab @code{__MWTACCG (@var{b}, @var{a})}
12773 @tab @code{MWTACCG @var{a},@var{b}}
12774 @item @code{uw1 __MXOR (uw1, uw1)}
12775 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
12776 @tab @code{MXOR @var{a},@var{b},@var{c}}
12777 @end multitable
12778
12779 @node Raw read/write Functions
12780 @subsubsection Raw Read/Write Functions
12781
12782 This sections describes built-in functions related to read and write
12783 instructions to access memory. These functions generate
12784 @code{membar} instructions to flush the I/O load and stores where
12785 appropriate, as described in Fujitsu's manual described above.
12786
12787 @table @code
12788
12789 @item unsigned char __builtin_read8 (void *@var{data})
12790 @item unsigned short __builtin_read16 (void *@var{data})
12791 @item unsigned long __builtin_read32 (void *@var{data})
12792 @item unsigned long long __builtin_read64 (void *@var{data})
12793
12794 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
12795 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
12796 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
12797 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
12798 @end table
12799
12800 @node Other Built-in Functions
12801 @subsubsection Other Built-in Functions
12802
12803 This section describes built-in functions that are not named after
12804 a specific FR-V instruction.
12805
12806 @table @code
12807 @item sw2 __IACCreadll (iacc @var{reg})
12808 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
12809 for future expansion and must be 0.
12810
12811 @item sw1 __IACCreadl (iacc @var{reg})
12812 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
12813 Other values of @var{reg} are rejected as invalid.
12814
12815 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
12816 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
12817 is reserved for future expansion and must be 0.
12818
12819 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
12820 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
12821 is 1. Other values of @var{reg} are rejected as invalid.
12822
12823 @item void __data_prefetch0 (const void *@var{x})
12824 Use the @code{dcpl} instruction to load the contents of address @var{x}
12825 into the data cache.
12826
12827 @item void __data_prefetch (const void *@var{x})
12828 Use the @code{nldub} instruction to load the contents of address @var{x}
12829 into the data cache. The instruction is issued in slot I1@.
12830 @end table
12831
12832 @node MIPS DSP Built-in Functions
12833 @subsection MIPS DSP Built-in Functions
12834
12835 The MIPS DSP Application-Specific Extension (ASE) includes new
12836 instructions that are designed to improve the performance of DSP and
12837 media applications. It provides instructions that operate on packed
12838 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
12839
12840 GCC supports MIPS DSP operations using both the generic
12841 vector extensions (@pxref{Vector Extensions}) and a collection of
12842 MIPS-specific built-in functions. Both kinds of support are
12843 enabled by the @option{-mdsp} command-line option.
12844
12845 Revision 2 of the ASE was introduced in the second half of 2006.
12846 This revision adds extra instructions to the original ASE, but is
12847 otherwise backwards-compatible with it. You can select revision 2
12848 using the command-line option @option{-mdspr2}; this option implies
12849 @option{-mdsp}.
12850
12851 The SCOUNT and POS bits of the DSP control register are global. The
12852 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
12853 POS bits. During optimization, the compiler does not delete these
12854 instructions and it does not delete calls to functions containing
12855 these instructions.
12856
12857 At present, GCC only provides support for operations on 32-bit
12858 vectors. The vector type associated with 8-bit integer data is
12859 usually called @code{v4i8}, the vector type associated with Q7
12860 is usually called @code{v4q7}, the vector type associated with 16-bit
12861 integer data is usually called @code{v2i16}, and the vector type
12862 associated with Q15 is usually called @code{v2q15}. They can be
12863 defined in C as follows:
12864
12865 @smallexample
12866 typedef signed char v4i8 __attribute__ ((vector_size(4)));
12867 typedef signed char v4q7 __attribute__ ((vector_size(4)));
12868 typedef short v2i16 __attribute__ ((vector_size(4)));
12869 typedef short v2q15 __attribute__ ((vector_size(4)));
12870 @end smallexample
12871
12872 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
12873 initialized in the same way as aggregates. For example:
12874
12875 @smallexample
12876 v4i8 a = @{1, 2, 3, 4@};
12877 v4i8 b;
12878 b = (v4i8) @{5, 6, 7, 8@};
12879
12880 v2q15 c = @{0x0fcb, 0x3a75@};
12881 v2q15 d;
12882 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
12883 @end smallexample
12884
12885 @emph{Note:} The CPU's endianness determines the order in which values
12886 are packed. On little-endian targets, the first value is the least
12887 significant and the last value is the most significant. The opposite
12888 order applies to big-endian targets. For example, the code above
12889 sets the lowest byte of @code{a} to @code{1} on little-endian targets
12890 and @code{4} on big-endian targets.
12891
12892 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
12893 representation. As shown in this example, the integer representation
12894 of a Q7 value can be obtained by multiplying the fractional value by
12895 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
12896 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
12897 @code{0x1.0p31}.
12898
12899 The table below lists the @code{v4i8} and @code{v2q15} operations for which
12900 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
12901 and @code{c} and @code{d} are @code{v2q15} values.
12902
12903 @multitable @columnfractions .50 .50
12904 @item C code @tab MIPS instruction
12905 @item @code{a + b} @tab @code{addu.qb}
12906 @item @code{c + d} @tab @code{addq.ph}
12907 @item @code{a - b} @tab @code{subu.qb}
12908 @item @code{c - d} @tab @code{subq.ph}
12909 @end multitable
12910
12911 The table below lists the @code{v2i16} operation for which
12912 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
12913 @code{v2i16} values.
12914
12915 @multitable @columnfractions .50 .50
12916 @item C code @tab MIPS instruction
12917 @item @code{e * f} @tab @code{mul.ph}
12918 @end multitable
12919
12920 It is easier to describe the DSP built-in functions if we first define
12921 the following types:
12922
12923 @smallexample
12924 typedef int q31;
12925 typedef int i32;
12926 typedef unsigned int ui32;
12927 typedef long long a64;
12928 @end smallexample
12929
12930 @code{q31} and @code{i32} are actually the same as @code{int}, but we
12931 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
12932 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
12933 @code{long long}, but we use @code{a64} to indicate values that are
12934 placed in one of the four DSP accumulators (@code{$ac0},
12935 @code{$ac1}, @code{$ac2} or @code{$ac3}).
12936
12937 Also, some built-in functions prefer or require immediate numbers as
12938 parameters, because the corresponding DSP instructions accept both immediate
12939 numbers and register operands, or accept immediate numbers only. The
12940 immediate parameters are listed as follows.
12941
12942 @smallexample
12943 imm0_3: 0 to 3.
12944 imm0_7: 0 to 7.
12945 imm0_15: 0 to 15.
12946 imm0_31: 0 to 31.
12947 imm0_63: 0 to 63.
12948 imm0_255: 0 to 255.
12949 imm_n32_31: -32 to 31.
12950 imm_n512_511: -512 to 511.
12951 @end smallexample
12952
12953 The following built-in functions map directly to a particular MIPS DSP
12954 instruction. Please refer to the architecture specification
12955 for details on what each instruction does.
12956
12957 @smallexample
12958 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
12959 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
12960 q31 __builtin_mips_addq_s_w (q31, q31)
12961 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
12962 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
12963 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
12964 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
12965 q31 __builtin_mips_subq_s_w (q31, q31)
12966 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
12967 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
12968 i32 __builtin_mips_addsc (i32, i32)
12969 i32 __builtin_mips_addwc (i32, i32)
12970 i32 __builtin_mips_modsub (i32, i32)
12971 i32 __builtin_mips_raddu_w_qb (v4i8)
12972 v2q15 __builtin_mips_absq_s_ph (v2q15)
12973 q31 __builtin_mips_absq_s_w (q31)
12974 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
12975 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
12976 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
12977 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
12978 q31 __builtin_mips_preceq_w_phl (v2q15)
12979 q31 __builtin_mips_preceq_w_phr (v2q15)
12980 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
12981 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
12982 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
12983 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
12984 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
12985 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
12986 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
12987 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
12988 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
12989 v4i8 __builtin_mips_shll_qb (v4i8, i32)
12990 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
12991 v2q15 __builtin_mips_shll_ph (v2q15, i32)
12992 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
12993 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
12994 q31 __builtin_mips_shll_s_w (q31, imm0_31)
12995 q31 __builtin_mips_shll_s_w (q31, i32)
12996 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
12997 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
12998 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
12999 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13000 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13001 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13002 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13003 q31 __builtin_mips_shra_r_w (q31, i32)
13004 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13005 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13006 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13007 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13008 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13009 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13010 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13011 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13012 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13013 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13014 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13015 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13016 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13017 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13018 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13019 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13020 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13021 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13022 i32 __builtin_mips_bitrev (i32)
13023 i32 __builtin_mips_insv (i32, i32)
13024 v4i8 __builtin_mips_repl_qb (imm0_255)
13025 v4i8 __builtin_mips_repl_qb (i32)
13026 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13027 v2q15 __builtin_mips_repl_ph (i32)
13028 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13029 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13030 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13031 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13032 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13033 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13034 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13035 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13036 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13037 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13038 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13039 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13040 i32 __builtin_mips_extr_w (a64, imm0_31)
13041 i32 __builtin_mips_extr_w (a64, i32)
13042 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13043 i32 __builtin_mips_extr_s_h (a64, i32)
13044 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13045 i32 __builtin_mips_extr_rs_w (a64, i32)
13046 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13047 i32 __builtin_mips_extr_r_w (a64, i32)
13048 i32 __builtin_mips_extp (a64, imm0_31)
13049 i32 __builtin_mips_extp (a64, i32)
13050 i32 __builtin_mips_extpdp (a64, imm0_31)
13051 i32 __builtin_mips_extpdp (a64, i32)
13052 a64 __builtin_mips_shilo (a64, imm_n32_31)
13053 a64 __builtin_mips_shilo (a64, i32)
13054 a64 __builtin_mips_mthlip (a64, i32)
13055 void __builtin_mips_wrdsp (i32, imm0_63)
13056 i32 __builtin_mips_rddsp (imm0_63)
13057 i32 __builtin_mips_lbux (void *, i32)
13058 i32 __builtin_mips_lhx (void *, i32)
13059 i32 __builtin_mips_lwx (void *, i32)
13060 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13061 i32 __builtin_mips_bposge32 (void)
13062 a64 __builtin_mips_madd (a64, i32, i32);
13063 a64 __builtin_mips_maddu (a64, ui32, ui32);
13064 a64 __builtin_mips_msub (a64, i32, i32);
13065 a64 __builtin_mips_msubu (a64, ui32, ui32);
13066 a64 __builtin_mips_mult (i32, i32);
13067 a64 __builtin_mips_multu (ui32, ui32);
13068 @end smallexample
13069
13070 The following built-in functions map directly to a particular MIPS DSP REV 2
13071 instruction. Please refer to the architecture specification
13072 for details on what each instruction does.
13073
13074 @smallexample
13075 v4q7 __builtin_mips_absq_s_qb (v4q7);
13076 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13077 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13078 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13079 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13080 i32 __builtin_mips_append (i32, i32, imm0_31);
13081 i32 __builtin_mips_balign (i32, i32, imm0_3);
13082 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13083 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13084 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13085 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13086 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13087 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13088 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13089 q31 __builtin_mips_mulq_rs_w (q31, q31);
13090 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13091 q31 __builtin_mips_mulq_s_w (q31, q31);
13092 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13093 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13094 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13095 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13096 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13097 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13098 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13099 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13100 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13101 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13102 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13103 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13104 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13105 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13106 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13107 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13108 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13109 q31 __builtin_mips_addqh_w (q31, q31);
13110 q31 __builtin_mips_addqh_r_w (q31, q31);
13111 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13112 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13113 q31 __builtin_mips_subqh_w (q31, q31);
13114 q31 __builtin_mips_subqh_r_w (q31, q31);
13115 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13116 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13117 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13118 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13119 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13120 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13121 @end smallexample
13122
13123
13124 @node MIPS Paired-Single Support
13125 @subsection MIPS Paired-Single Support
13126
13127 The MIPS64 architecture includes a number of instructions that
13128 operate on pairs of single-precision floating-point values.
13129 Each pair is packed into a 64-bit floating-point register,
13130 with one element being designated the ``upper half'' and
13131 the other being designated the ``lower half''.
13132
13133 GCC supports paired-single operations using both the generic
13134 vector extensions (@pxref{Vector Extensions}) and a collection of
13135 MIPS-specific built-in functions. Both kinds of support are
13136 enabled by the @option{-mpaired-single} command-line option.
13137
13138 The vector type associated with paired-single values is usually
13139 called @code{v2sf}. It can be defined in C as follows:
13140
13141 @smallexample
13142 typedef float v2sf __attribute__ ((vector_size (8)));
13143 @end smallexample
13144
13145 @code{v2sf} values are initialized in the same way as aggregates.
13146 For example:
13147
13148 @smallexample
13149 v2sf a = @{1.5, 9.1@};
13150 v2sf b;
13151 float e, f;
13152 b = (v2sf) @{e, f@};
13153 @end smallexample
13154
13155 @emph{Note:} The CPU's endianness determines which value is stored in
13156 the upper half of a register and which value is stored in the lower half.
13157 On little-endian targets, the first value is the lower one and the second
13158 value is the upper one. The opposite order applies to big-endian targets.
13159 For example, the code above sets the lower half of @code{a} to
13160 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
13161
13162 @node MIPS Loongson Built-in Functions
13163 @subsection MIPS Loongson Built-in Functions
13164
13165 GCC provides intrinsics to access the SIMD instructions provided by the
13166 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
13167 available after inclusion of the @code{loongson.h} header file,
13168 operate on the following 64-bit vector types:
13169
13170 @itemize
13171 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
13172 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
13173 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
13174 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
13175 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
13176 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
13177 @end itemize
13178
13179 The intrinsics provided are listed below; each is named after the
13180 machine instruction to which it corresponds, with suffixes added as
13181 appropriate to distinguish intrinsics that expand to the same machine
13182 instruction yet have different argument types. Refer to the architecture
13183 documentation for a description of the functionality of each
13184 instruction.
13185
13186 @smallexample
13187 int16x4_t packsswh (int32x2_t s, int32x2_t t);
13188 int8x8_t packsshb (int16x4_t s, int16x4_t t);
13189 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
13190 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
13191 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
13192 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
13193 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
13194 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
13195 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
13196 uint64_t paddd_u (uint64_t s, uint64_t t);
13197 int64_t paddd_s (int64_t s, int64_t t);
13198 int16x4_t paddsh (int16x4_t s, int16x4_t t);
13199 int8x8_t paddsb (int8x8_t s, int8x8_t t);
13200 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
13201 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
13202 uint64_t pandn_ud (uint64_t s, uint64_t t);
13203 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
13204 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
13205 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
13206 int64_t pandn_sd (int64_t s, int64_t t);
13207 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
13208 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
13209 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
13210 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
13211 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
13212 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
13213 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
13214 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
13215 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
13216 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
13217 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
13218 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
13219 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
13220 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
13221 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
13222 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
13223 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
13224 uint16x4_t pextrh_u (uint16x4_t s, int field);
13225 int16x4_t pextrh_s (int16x4_t s, int field);
13226 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
13227 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
13228 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
13229 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
13230 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
13231 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
13232 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
13233 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
13234 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
13235 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
13236 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
13237 int16x4_t pminsh (int16x4_t s, int16x4_t t);
13238 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
13239 uint8x8_t pmovmskb_u (uint8x8_t s);
13240 int8x8_t pmovmskb_s (int8x8_t s);
13241 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
13242 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
13243 int16x4_t pmullh (int16x4_t s, int16x4_t t);
13244 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
13245 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
13246 uint16x4_t biadd (uint8x8_t s);
13247 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
13248 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
13249 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
13250 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
13251 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
13252 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
13253 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
13254 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
13255 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
13256 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
13257 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
13258 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
13259 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
13260 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
13261 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
13262 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
13263 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
13264 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
13265 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
13266 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
13267 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
13268 uint64_t psubd_u (uint64_t s, uint64_t t);
13269 int64_t psubd_s (int64_t s, int64_t t);
13270 int16x4_t psubsh (int16x4_t s, int16x4_t t);
13271 int8x8_t psubsb (int8x8_t s, int8x8_t t);
13272 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
13273 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
13274 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
13275 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
13276 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
13277 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
13278 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
13279 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
13280 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
13281 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
13282 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13283 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13284 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13285 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13286 @end smallexample
13287
13288 @menu
13289 * Paired-Single Arithmetic::
13290 * Paired-Single Built-in Functions::
13291 * MIPS-3D Built-in Functions::
13292 @end menu
13293
13294 @node Paired-Single Arithmetic
13295 @subsubsection Paired-Single Arithmetic
13296
13297 The table below lists the @code{v2sf} operations for which hardware
13298 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13299 values and @code{x} is an integral value.
13300
13301 @multitable @columnfractions .50 .50
13302 @item C code @tab MIPS instruction
13303 @item @code{a + b} @tab @code{add.ps}
13304 @item @code{a - b} @tab @code{sub.ps}
13305 @item @code{-a} @tab @code{neg.ps}
13306 @item @code{a * b} @tab @code{mul.ps}
13307 @item @code{a * b + c} @tab @code{madd.ps}
13308 @item @code{a * b - c} @tab @code{msub.ps}
13309 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13310 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13311 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13312 @end multitable
13313
13314 Note that the multiply-accumulate instructions can be disabled
13315 using the command-line option @code{-mno-fused-madd}.
13316
13317 @node Paired-Single Built-in Functions
13318 @subsubsection Paired-Single Built-in Functions
13319
13320 The following paired-single functions map directly to a particular
13321 MIPS instruction. Please refer to the architecture specification
13322 for details on what each instruction does.
13323
13324 @table @code
13325 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13326 Pair lower lower (@code{pll.ps}).
13327
13328 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13329 Pair upper lower (@code{pul.ps}).
13330
13331 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13332 Pair lower upper (@code{plu.ps}).
13333
13334 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13335 Pair upper upper (@code{puu.ps}).
13336
13337 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13338 Convert pair to paired single (@code{cvt.ps.s}).
13339
13340 @item float __builtin_mips_cvt_s_pl (v2sf)
13341 Convert pair lower to single (@code{cvt.s.pl}).
13342
13343 @item float __builtin_mips_cvt_s_pu (v2sf)
13344 Convert pair upper to single (@code{cvt.s.pu}).
13345
13346 @item v2sf __builtin_mips_abs_ps (v2sf)
13347 Absolute value (@code{abs.ps}).
13348
13349 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13350 Align variable (@code{alnv.ps}).
13351
13352 @emph{Note:} The value of the third parameter must be 0 or 4
13353 modulo 8, otherwise the result is unpredictable. Please read the
13354 instruction description for details.
13355 @end table
13356
13357 The following multi-instruction functions are also available.
13358 In each case, @var{cond} can be any of the 16 floating-point conditions:
13359 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13360 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13361 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13362
13363 @table @code
13364 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13365 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13366 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13367 @code{movt.ps}/@code{movf.ps}).
13368
13369 The @code{movt} functions return the value @var{x} computed by:
13370
13371 @smallexample
13372 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13373 mov.ps @var{x},@var{c}
13374 movt.ps @var{x},@var{d},@var{cc}
13375 @end smallexample
13376
13377 The @code{movf} functions are similar but use @code{movf.ps} instead
13378 of @code{movt.ps}.
13379
13380 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13381 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13382 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13383 @code{bc1t}/@code{bc1f}).
13384
13385 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13386 and return either the upper or lower half of the result. For example:
13387
13388 @smallexample
13389 v2sf a, b;
13390 if (__builtin_mips_upper_c_eq_ps (a, b))
13391 upper_halves_are_equal ();
13392 else
13393 upper_halves_are_unequal ();
13394
13395 if (__builtin_mips_lower_c_eq_ps (a, b))
13396 lower_halves_are_equal ();
13397 else
13398 lower_halves_are_unequal ();
13399 @end smallexample
13400 @end table
13401
13402 @node MIPS-3D Built-in Functions
13403 @subsubsection MIPS-3D Built-in Functions
13404
13405 The MIPS-3D Application-Specific Extension (ASE) includes additional
13406 paired-single instructions that are designed to improve the performance
13407 of 3D graphics operations. Support for these instructions is controlled
13408 by the @option{-mips3d} command-line option.
13409
13410 The functions listed below map directly to a particular MIPS-3D
13411 instruction. Please refer to the architecture specification for
13412 more details on what each instruction does.
13413
13414 @table @code
13415 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13416 Reduction add (@code{addr.ps}).
13417
13418 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13419 Reduction multiply (@code{mulr.ps}).
13420
13421 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13422 Convert paired single to paired word (@code{cvt.pw.ps}).
13423
13424 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13425 Convert paired word to paired single (@code{cvt.ps.pw}).
13426
13427 @item float __builtin_mips_recip1_s (float)
13428 @itemx double __builtin_mips_recip1_d (double)
13429 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13430 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13431
13432 @item float __builtin_mips_recip2_s (float, float)
13433 @itemx double __builtin_mips_recip2_d (double, double)
13434 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13435 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13436
13437 @item float __builtin_mips_rsqrt1_s (float)
13438 @itemx double __builtin_mips_rsqrt1_d (double)
13439 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13440 Reduced-precision reciprocal square root (sequence step 1)
13441 (@code{rsqrt1.@var{fmt}}).
13442
13443 @item float __builtin_mips_rsqrt2_s (float, float)
13444 @itemx double __builtin_mips_rsqrt2_d (double, double)
13445 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13446 Reduced-precision reciprocal square root (sequence step 2)
13447 (@code{rsqrt2.@var{fmt}}).
13448 @end table
13449
13450 The following multi-instruction functions are also available.
13451 In each case, @var{cond} can be any of the 16 floating-point conditions:
13452 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13453 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13454 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13455
13456 @table @code
13457 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13458 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13459 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13460 @code{bc1t}/@code{bc1f}).
13461
13462 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13463 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13464 For example:
13465
13466 @smallexample
13467 float a, b;
13468 if (__builtin_mips_cabs_eq_s (a, b))
13469 true ();
13470 else
13471 false ();
13472 @end smallexample
13473
13474 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13475 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13476 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13477 @code{bc1t}/@code{bc1f}).
13478
13479 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13480 and return either the upper or lower half of the result. For example:
13481
13482 @smallexample
13483 v2sf a, b;
13484 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13485 upper_halves_are_equal ();
13486 else
13487 upper_halves_are_unequal ();
13488
13489 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13490 lower_halves_are_equal ();
13491 else
13492 lower_halves_are_unequal ();
13493 @end smallexample
13494
13495 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13496 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13497 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13498 @code{movt.ps}/@code{movf.ps}).
13499
13500 The @code{movt} functions return the value @var{x} computed by:
13501
13502 @smallexample
13503 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13504 mov.ps @var{x},@var{c}
13505 movt.ps @var{x},@var{d},@var{cc}
13506 @end smallexample
13507
13508 The @code{movf} functions are similar but use @code{movf.ps} instead
13509 of @code{movt.ps}.
13510
13511 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13512 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13513 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13514 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13515 Comparison of two paired-single values
13516 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13517 @code{bc1any2t}/@code{bc1any2f}).
13518
13519 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13520 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13521 result is true and the @code{all} forms return true if both results are true.
13522 For example:
13523
13524 @smallexample
13525 v2sf a, b;
13526 if (__builtin_mips_any_c_eq_ps (a, b))
13527 one_is_true ();
13528 else
13529 both_are_false ();
13530
13531 if (__builtin_mips_all_c_eq_ps (a, b))
13532 both_are_true ();
13533 else
13534 one_is_false ();
13535 @end smallexample
13536
13537 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13538 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13539 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13540 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13541 Comparison of four paired-single values
13542 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13543 @code{bc1any4t}/@code{bc1any4f}).
13544
13545 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13546 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13547 The @code{any} forms return true if any of the four results are true
13548 and the @code{all} forms return true if all four results are true.
13549 For example:
13550
13551 @smallexample
13552 v2sf a, b, c, d;
13553 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13554 some_are_true ();
13555 else
13556 all_are_false ();
13557
13558 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13559 all_are_true ();
13560 else
13561 some_are_false ();
13562 @end smallexample
13563 @end table
13564
13565 @node MIPS SIMD Architecture (MSA) Support
13566 @subsection MIPS SIMD Architecture (MSA) Support
13567
13568 @menu
13569 * MIPS SIMD Architecture Built-in Functions::
13570 @end menu
13571
13572 GCC provides intrinsics to access the SIMD instructions provided by the
13573 MSA MIPS SIMD Architecture. The interface is made available by including
13574 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
13575 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
13576 @code{__msa_*}.
13577
13578 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
13579 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
13580 data elements. The following vectors typedefs are included in @code{msa.h}:
13581 @itemize
13582 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
13583 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
13584 @item @code{v8i16}, a vector of eight signed 16-bit integers;
13585 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
13586 @item @code{v4i32}, a vector of four signed 32-bit integers;
13587 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
13588 @item @code{v2i64}, a vector of two signed 64-bit integers;
13589 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
13590 @item @code{v4f32}, a vector of four 32-bit floats;
13591 @item @code{v2f64}, a vector of two 64-bit doubles.
13592 @end itemize
13593
13594 Intructions and corresponding built-ins may have additional restrictions and/or
13595 input/output values manipulated:
13596 @itemize
13597 @item @code{imm0_1}, an integer literal in range 0 to 1;
13598 @item @code{imm0_3}, an integer literal in range 0 to 3;
13599 @item @code{imm0_7}, an integer literal in range 0 to 7;
13600 @item @code{imm0_15}, an integer literal in range 0 to 15;
13601 @item @code{imm0_31}, an integer literal in range 0 to 31;
13602 @item @code{imm0_63}, an integer literal in range 0 to 63;
13603 @item @code{imm0_255}, an integer literal in range 0 to 255;
13604 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
13605 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
13606 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
13607 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
13608 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
13609 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
13610 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
13611 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
13612 @item @code{imm1_4}, an integer literal in range 1 to 4;
13613 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
13614 @end itemize
13615
13616 @smallexample
13617 @{
13618 typedef int i32;
13619 #if __LONG_MAX__ == __LONG_LONG_MAX__
13620 typedef long i64;
13621 #else
13622 typedef long long i64;
13623 #endif
13624
13625 typedef unsigned int u32;
13626 #if __LONG_MAX__ == __LONG_LONG_MAX__
13627 typedef unsigned long u64;
13628 #else
13629 typedef unsigned long long u64;
13630 #endif
13631
13632 typedef double f64;
13633 typedef float f32;
13634 @}
13635 @end smallexample
13636
13637 @node MIPS SIMD Architecture Built-in Functions
13638 @subsubsection MIPS SIMD Architecture Built-in Functions
13639
13640 The intrinsics provided are listed below; each is named after the
13641 machine instruction.
13642
13643 @smallexample
13644 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
13645 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
13646 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
13647 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
13648
13649 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
13650 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
13651 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
13652 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
13653
13654 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
13655 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
13656 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
13657 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
13658
13659 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
13660 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
13661 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
13662 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
13663
13664 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
13665 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
13666 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
13667 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
13668
13669 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
13670 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
13671 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
13672 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
13673
13674 v16u8 __builtin_msa_and_v (v16u8, v16u8);
13675
13676 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
13677
13678 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
13679 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
13680 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
13681 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
13682
13683 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
13684 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
13685 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
13686 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
13687
13688 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
13689 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
13690 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
13691 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
13692
13693 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
13694 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
13695 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
13696 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
13697
13698 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
13699 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
13700 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
13701 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
13702
13703 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
13704 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
13705 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
13706 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
13707
13708 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
13709 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
13710 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
13711 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
13712
13713 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
13714 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
13715 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
13716 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
13717
13718 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
13719 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
13720 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
13721 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
13722
13723 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
13724 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
13725 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
13726 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
13727
13728 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
13729 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
13730 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
13731 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
13732
13733 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
13734 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
13735 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
13736 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
13737
13738 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
13739
13740 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
13741
13742 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
13743
13744 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
13745
13746 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
13747 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
13748 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
13749 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
13750
13751 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
13752 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
13753 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
13754 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
13755
13756 i32 __builtin_msa_bnz_b (v16u8);
13757 i32 __builtin_msa_bnz_h (v8u16);
13758 i32 __builtin_msa_bnz_w (v4u32);
13759 i32 __builtin_msa_bnz_d (v2u64);
13760
13761 i32 __builtin_msa_bnz_v (v16u8);
13762
13763 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
13764
13765 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
13766
13767 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
13768 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
13769 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
13770 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
13771
13772 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
13773 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
13774 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
13775 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
13776
13777 i32 __builtin_msa_bz_b (v16u8);
13778 i32 __builtin_msa_bz_h (v8u16);
13779 i32 __builtin_msa_bz_w (v4u32);
13780 i32 __builtin_msa_bz_d (v2u64);
13781
13782 i32 __builtin_msa_bz_v (v16u8);
13783
13784 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
13785 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
13786 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
13787 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
13788
13789 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
13790 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
13791 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
13792 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
13793
13794 i32 __builtin_msa_cfcmsa (imm0_31);
13795
13796 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
13797 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
13798 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
13799 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
13800
13801 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
13802 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
13803 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
13804 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
13805
13806 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
13807 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
13808 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
13809 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
13810
13811 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
13812 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
13813 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
13814 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
13815
13816 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
13817 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
13818 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
13819 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
13820
13821 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
13822 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
13823 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
13824 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
13825
13826 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
13827 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
13828 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
13829 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
13830
13831 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
13832 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
13833 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
13834 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
13835
13836 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
13837 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
13838 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
13839 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
13840
13841 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
13842 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
13843 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
13844 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
13845
13846 void __builtin_msa_ctcmsa (imm0_31, i32);
13847
13848 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
13849 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
13850 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
13851 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
13852
13853 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
13854 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
13855 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
13856 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
13857
13858 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
13859 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
13860 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
13861
13862 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
13863 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
13864 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
13865
13866 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
13867 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
13868 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
13869
13870 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
13871 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
13872 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
13873
13874 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
13875 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
13876 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
13877
13878 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
13879 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
13880 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
13881
13882 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
13883 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
13884
13885 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
13886 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
13887
13888 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
13889 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
13890
13891 v4i32 __builtin_msa_fclass_w (v4f32);
13892 v2i64 __builtin_msa_fclass_d (v2f64);
13893
13894 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
13895 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
13896
13897 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
13898 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
13899
13900 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
13901 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
13902
13903 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
13904 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
13905
13906 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
13907 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
13908
13909 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
13910 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
13911
13912 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
13913 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
13914
13915 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
13916 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
13917
13918 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
13919 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
13920
13921 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
13922 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
13923
13924 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
13925 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
13926
13927 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
13928 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
13929
13930 v4f32 __builtin_msa_fexupl_w (v8i16);
13931 v2f64 __builtin_msa_fexupl_d (v4f32);
13932
13933 v4f32 __builtin_msa_fexupr_w (v8i16);
13934 v2f64 __builtin_msa_fexupr_d (v4f32);
13935
13936 v4f32 __builtin_msa_ffint_s_w (v4i32);
13937 v2f64 __builtin_msa_ffint_s_d (v2i64);
13938
13939 v4f32 __builtin_msa_ffint_u_w (v4u32);
13940 v2f64 __builtin_msa_ffint_u_d (v2u64);
13941
13942 v4f32 __builtin_msa_ffql_w (v8i16);
13943 v2f64 __builtin_msa_ffql_d (v4i32);
13944
13945 v4f32 __builtin_msa_ffqr_w (v8i16);
13946 v2f64 __builtin_msa_ffqr_d (v4i32);
13947
13948 v16i8 __builtin_msa_fill_b (i32);
13949 v8i16 __builtin_msa_fill_h (i32);
13950 v4i32 __builtin_msa_fill_w (i32);
13951 v2i64 __builtin_msa_fill_d (i64);
13952
13953 v4f32 __builtin_msa_flog2_w (v4f32);
13954 v2f64 __builtin_msa_flog2_d (v2f64);
13955
13956 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
13957 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
13958
13959 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
13960 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
13961
13962 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
13963 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
13964
13965 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
13966 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
13967
13968 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
13969 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
13970
13971 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
13972 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
13973
13974 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
13975 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
13976
13977 v4f32 __builtin_msa_frint_w (v4f32);
13978 v2f64 __builtin_msa_frint_d (v2f64);
13979
13980 v4f32 __builtin_msa_frcp_w (v4f32);
13981 v2f64 __builtin_msa_frcp_d (v2f64);
13982
13983 v4f32 __builtin_msa_frsqrt_w (v4f32);
13984 v2f64 __builtin_msa_frsqrt_d (v2f64);
13985
13986 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
13987 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
13988
13989 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
13990 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
13991
13992 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
13993 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
13994
13995 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
13996 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
13997
13998 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
13999 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14000
14001 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14002 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14003
14004 v4f32 __builtin_msa_fsqrt_w (v4f32);
14005 v2f64 __builtin_msa_fsqrt_d (v2f64);
14006
14007 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14008 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14009
14010 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14011 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14012
14013 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14014 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14015
14016 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14017 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14018
14019 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14020 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14021
14022 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14023 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14024
14025 v4i32 __builtin_msa_ftint_s_w (v4f32);
14026 v2i64 __builtin_msa_ftint_s_d (v2f64);
14027
14028 v4u32 __builtin_msa_ftint_u_w (v4f32);
14029 v2u64 __builtin_msa_ftint_u_d (v2f64);
14030
14031 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14032 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14033
14034 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14035 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14036
14037 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14038 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14039
14040 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14041 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14042 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14043
14044 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14045 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14046 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14047
14048 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14049 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14050 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14051
14052 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14053 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14054 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14055
14056 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14057 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14058 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14059 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14060
14061 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14062 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14063 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14064 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14065
14066 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14067 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14068 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14069 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14070
14071 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14072 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14073 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14074 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14075
14076 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14077 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14078 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14079 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14080
14081 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14082 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14083 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14084 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14085
14086 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14087 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14088 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14089 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14090
14091 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14092 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14093 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14094 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14095
14096 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14097 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14098
14099 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14100 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14101
14102 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14103 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14104 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14105 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14106
14107 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14108 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14109 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14110 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14111
14112 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14113 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14114 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14115 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14116
14117 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14118 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14119 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14120 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14121
14122 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14123 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14124 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14125 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14126
14127 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14128 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14129 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14130 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14131
14132 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14133 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14134 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14135 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14136
14137 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14138 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14139 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14140 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14141
14142 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14143 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14144 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
14145 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
14146
14147 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
14148 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
14149 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
14150 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
14151
14152 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
14153 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
14154 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
14155 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
14156
14157 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
14158 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
14159 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
14160 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
14161
14162 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
14163 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
14164 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
14165 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
14166
14167 v16i8 __builtin_msa_move_v (v16i8);
14168
14169 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
14170 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
14171
14172 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
14173 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
14174
14175 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
14176 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
14177 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
14178 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
14179
14180 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
14181 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
14182
14183 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
14184 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
14185
14186 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
14187 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
14188 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
14189 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
14190
14191 v16i8 __builtin_msa_nloc_b (v16i8);
14192 v8i16 __builtin_msa_nloc_h (v8i16);
14193 v4i32 __builtin_msa_nloc_w (v4i32);
14194 v2i64 __builtin_msa_nloc_d (v2i64);
14195
14196 v16i8 __builtin_msa_nlzc_b (v16i8);
14197 v8i16 __builtin_msa_nlzc_h (v8i16);
14198 v4i32 __builtin_msa_nlzc_w (v4i32);
14199 v2i64 __builtin_msa_nlzc_d (v2i64);
14200
14201 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
14202
14203 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
14204
14205 v16u8 __builtin_msa_or_v (v16u8, v16u8);
14206
14207 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
14208
14209 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
14210 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
14211 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
14212 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
14213
14214 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
14215 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
14216 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
14217 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
14218
14219 v16i8 __builtin_msa_pcnt_b (v16i8);
14220 v8i16 __builtin_msa_pcnt_h (v8i16);
14221 v4i32 __builtin_msa_pcnt_w (v4i32);
14222 v2i64 __builtin_msa_pcnt_d (v2i64);
14223
14224 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
14225 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
14226 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
14227 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
14228
14229 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
14230 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
14231 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
14232 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
14233
14234 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
14235 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
14236 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
14237
14238 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
14239 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
14240 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
14241 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
14242
14243 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
14244 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
14245 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
14246 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
14247
14248 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
14249 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
14250 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
14251 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
14252
14253 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
14254 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
14255 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
14256 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
14257
14258 v16i8 __builtin_msa_splat_b (v16i8, i32);
14259 v8i16 __builtin_msa_splat_h (v8i16, i32);
14260 v4i32 __builtin_msa_splat_w (v4i32, i32);
14261 v2i64 __builtin_msa_splat_d (v2i64, i32);
14262
14263 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
14264 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
14265 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
14266 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
14267
14268 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
14269 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
14270 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
14271 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
14272
14273 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
14274 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
14275 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
14276 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
14277
14278 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
14279 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
14280 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
14281 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
14282
14283 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
14284 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
14285 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
14286 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
14287
14288 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
14289 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
14290 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
14291 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
14292
14293 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
14294 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
14295 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
14296 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
14297
14298 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
14299 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
14300 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
14301 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
14302
14303 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
14304 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
14305 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
14306 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
14307
14308 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
14309 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
14310 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
14311 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
14312
14313 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
14314 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
14315 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
14316 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
14317
14318 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
14319 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
14320 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
14321 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
14322
14323 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
14324 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
14325 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
14326 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
14327
14328 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
14329 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
14330 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
14331 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
14332
14333 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
14334 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
14335 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
14336 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
14337
14338 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
14339 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
14340 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
14341 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
14342
14343 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
14344 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
14345 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
14346 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
14347
14348 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
14349
14350 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
14351 @end smallexample
14352
14353 @node Other MIPS Built-in Functions
14354 @subsection Other MIPS Built-in Functions
14355
14356 GCC provides other MIPS-specific built-in functions:
14357
14358 @table @code
14359 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
14360 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
14361 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
14362 when this function is available.
14363
14364 @item unsigned int __builtin_mips_get_fcsr (void)
14365 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
14366 Get and set the contents of the floating-point control and status register
14367 (FPU control register 31). These functions are only available in hard-float
14368 code but can be called in both MIPS16 and non-MIPS16 contexts.
14369
14370 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
14371 register except the condition codes, which GCC assumes are preserved.
14372 @end table
14373
14374 @node MSP430 Built-in Functions
14375 @subsection MSP430 Built-in Functions
14376
14377 GCC provides a couple of special builtin functions to aid in the
14378 writing of interrupt handlers in C.
14379
14380 @table @code
14381 @item __bic_SR_register_on_exit (int @var{mask})
14382 This clears the indicated bits in the saved copy of the status register
14383 currently residing on the stack. This only works inside interrupt
14384 handlers and the changes to the status register will only take affect
14385 once the handler returns.
14386
14387 @item __bis_SR_register_on_exit (int @var{mask})
14388 This sets the indicated bits in the saved copy of the status register
14389 currently residing on the stack. This only works inside interrupt
14390 handlers and the changes to the status register will only take affect
14391 once the handler returns.
14392
14393 @item __delay_cycles (long long @var{cycles})
14394 This inserts an instruction sequence that takes exactly @var{cycles}
14395 cycles (between 0 and about 17E9) to complete. The inserted sequence
14396 may use jumps, loops, or no-ops, and does not interfere with any other
14397 instructions. Note that @var{cycles} must be a compile-time constant
14398 integer - that is, you must pass a number, not a variable that may be
14399 optimized to a constant later. The number of cycles delayed by this
14400 builtin is exact.
14401 @end table
14402
14403 @node NDS32 Built-in Functions
14404 @subsection NDS32 Built-in Functions
14405
14406 These built-in functions are available for the NDS32 target:
14407
14408 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
14409 Insert an ISYNC instruction into the instruction stream where
14410 @var{addr} is an instruction address for serialization.
14411 @end deftypefn
14412
14413 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
14414 Insert an ISB instruction into the instruction stream.
14415 @end deftypefn
14416
14417 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
14418 Return the content of a system register which is mapped by @var{sr}.
14419 @end deftypefn
14420
14421 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
14422 Return the content of a user space register which is mapped by @var{usr}.
14423 @end deftypefn
14424
14425 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
14426 Move the @var{value} to a system register which is mapped by @var{sr}.
14427 @end deftypefn
14428
14429 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
14430 Move the @var{value} to a user space register which is mapped by @var{usr}.
14431 @end deftypefn
14432
14433 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
14434 Enable global interrupt.
14435 @end deftypefn
14436
14437 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
14438 Disable global interrupt.
14439 @end deftypefn
14440
14441 @node picoChip Built-in Functions
14442 @subsection picoChip Built-in Functions
14443
14444 GCC provides an interface to selected machine instructions from the
14445 picoChip instruction set.
14446
14447 @table @code
14448 @item int __builtin_sbc (int @var{value})
14449 Sign bit count. Return the number of consecutive bits in @var{value}
14450 that have the same value as the sign bit. The result is the number of
14451 leading sign bits minus one, giving the number of redundant sign bits in
14452 @var{value}.
14453
14454 @item int __builtin_byteswap (int @var{value})
14455 Byte swap. Return the result of swapping the upper and lower bytes of
14456 @var{value}.
14457
14458 @item int __builtin_brev (int @var{value})
14459 Bit reversal. Return the result of reversing the bits in
14460 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
14461 and so on.
14462
14463 @item int __builtin_adds (int @var{x}, int @var{y})
14464 Saturating addition. Return the result of adding @var{x} and @var{y},
14465 storing the value 32767 if the result overflows.
14466
14467 @item int __builtin_subs (int @var{x}, int @var{y})
14468 Saturating subtraction. Return the result of subtracting @var{y} from
14469 @var{x}, storing the value @minus{}32768 if the result overflows.
14470
14471 @item void __builtin_halt (void)
14472 Halt. The processor stops execution. This built-in is useful for
14473 implementing assertions.
14474
14475 @end table
14476
14477 @node PowerPC Built-in Functions
14478 @subsection PowerPC Built-in Functions
14479
14480 The following built-in functions are always available and can be used to
14481 check the PowerPC target platform type:
14482
14483 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
14484 This function is a @code{nop} on the PowerPC platform and is included solely
14485 to maintain API compatibility with the x86 builtins.
14486 @end deftypefn
14487
14488 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
14489 This function returns a value of @code{1} if the run-time CPU is of type
14490 @var{cpuname} and returns @code{0} otherwise. The following CPU names can be
14491 detected:
14492
14493 @table @samp
14494 @item power9
14495 IBM POWER9 Server CPU.
14496 @item power8
14497 IBM POWER8 Server CPU.
14498 @item power7
14499 IBM POWER7 Server CPU.
14500 @item power6x
14501 IBM POWER6 Server CPU (RAW mode).
14502 @item power6
14503 IBM POWER6 Server CPU (Architected mode).
14504 @item power5+
14505 IBM POWER5+ Server CPU.
14506 @item power5
14507 IBM POWER5 Server CPU.
14508 @item ppc970
14509 IBM 970 Server CPU (ie, Apple G5).
14510 @item power4
14511 IBM POWER4 Server CPU.
14512 @item ppca2
14513 IBM A2 64-bit Embedded CPU
14514 @item ppc476
14515 IBM PowerPC 476FP 32-bit Embedded CPU.
14516 @item ppc464
14517 IBM PowerPC 464 32-bit Embedded CPU.
14518 @item ppc440
14519 PowerPC 440 32-bit Embedded CPU.
14520 @item ppc405
14521 PowerPC 405 32-bit Embedded CPU.
14522 @item ppc-cell-be
14523 IBM PowerPC Cell Broadband Engine Architecture CPU.
14524 @end table
14525
14526 Here is an example:
14527 @smallexample
14528 if (__builtin_cpu_is ("power8"))
14529 @{
14530 do_power8 (); // POWER8 specific implementation.
14531 @}
14532 else
14533 @{
14534 do_generic (); // Generic implementation.
14535 @}
14536 @end smallexample
14537 @end deftypefn
14538
14539 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
14540 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
14541 feature @var{feature} and returns @code{0} otherwise. The following features can be
14542 detected:
14543
14544 @table @samp
14545 @item 4xxmac
14546 4xx CPU has a Multiply Accumulator.
14547 @item altivec
14548 CPU has a SIMD/Vector Unit.
14549 @item arch_2_05
14550 CPU supports ISA 2.05 (eg, POWER6)
14551 @item arch_2_06
14552 CPU supports ISA 2.06 (eg, POWER7)
14553 @item arch_2_07
14554 CPU supports ISA 2.07 (eg, POWER8)
14555 @item arch_3_00
14556 CPU supports ISA 3.0 (eg, POWER9)
14557 @item archpmu
14558 CPU supports the set of compatible performance monitoring events.
14559 @item booke
14560 CPU supports the Embedded ISA category.
14561 @item cellbe
14562 CPU has a CELL broadband engine.
14563 @item dfp
14564 CPU has a decimal floating point unit.
14565 @item dscr
14566 CPU supports the data stream control register.
14567 @item ebb
14568 CPU supports event base branching.
14569 @item efpdouble
14570 CPU has a SPE double precision floating point unit.
14571 @item efpsingle
14572 CPU has a SPE single precision floating point unit.
14573 @item fpu
14574 CPU has a floating point unit.
14575 @item htm
14576 CPU has hardware transaction memory instructions.
14577 @item htm-nosc
14578 Kernel aborts hardware transactions when a syscall is made.
14579 @item ic_snoop
14580 CPU supports icache snooping capabilities.
14581 @item ieee128
14582 CPU supports 128-bit IEEE binary floating point instructions.
14583 @item isel
14584 CPU supports the integer select instruction.
14585 @item mmu
14586 CPU has a memory management unit.
14587 @item notb
14588 CPU does not have a timebase (eg, 601 and 403gx).
14589 @item pa6t
14590 CPU supports the PA Semi 6T CORE ISA.
14591 @item power4
14592 CPU supports ISA 2.00 (eg, POWER4)
14593 @item power5
14594 CPU supports ISA 2.02 (eg, POWER5)
14595 @item power5+
14596 CPU supports ISA 2.03 (eg, POWER5+)
14597 @item power6x
14598 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
14599 @item ppc32
14600 CPU supports 32-bit mode execution.
14601 @item ppc601
14602 CPU supports the old POWER ISA (eg, 601)
14603 @item ppc64
14604 CPU supports 64-bit mode execution.
14605 @item ppcle
14606 CPU supports a little-endian mode that uses address swizzling.
14607 @item smt
14608 CPU support simultaneous multi-threading.
14609 @item spe
14610 CPU has a signal processing extension unit.
14611 @item tar
14612 CPU supports the target address register.
14613 @item true_le
14614 CPU supports true little-endian mode.
14615 @item ucache
14616 CPU has unified I/D cache.
14617 @item vcrypto
14618 CPU supports the vector cryptography instructions.
14619 @item vsx
14620 CPU supports the vector-scalar extension.
14621 @end table
14622
14623 Here is an example:
14624 @smallexample
14625 if (__builtin_cpu_supports ("fpu"))
14626 @{
14627 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
14628 @}
14629 else
14630 @{
14631 dst = __fadd (src1, src2); // Software FP addition function.
14632 @}
14633 @end smallexample
14634 @end deftypefn
14635
14636 These built-in functions are available for the PowerPC family of
14637 processors:
14638 @smallexample
14639 float __builtin_recipdivf (float, float);
14640 float __builtin_rsqrtf (float);
14641 double __builtin_recipdiv (double, double);
14642 double __builtin_rsqrt (double);
14643 uint64_t __builtin_ppc_get_timebase ();
14644 unsigned long __builtin_ppc_mftb ();
14645 double __builtin_unpack_longdouble (long double, int);
14646 long double __builtin_pack_longdouble (double, double);
14647 @end smallexample
14648
14649 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
14650 @code{__builtin_rsqrtf} functions generate multiple instructions to
14651 implement the reciprocal sqrt functionality using reciprocal sqrt
14652 estimate instructions.
14653
14654 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
14655 functions generate multiple instructions to implement division using
14656 the reciprocal estimate instructions.
14657
14658 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
14659 functions generate instructions to read the Time Base Register. The
14660 @code{__builtin_ppc_get_timebase} function may generate multiple
14661 instructions and always returns the 64 bits of the Time Base Register.
14662 The @code{__builtin_ppc_mftb} function always generates one instruction and
14663 returns the Time Base Register value as an unsigned long, throwing away
14664 the most significant word on 32-bit environments.
14665
14666 The following built-in functions are available for the PowerPC family
14667 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
14668 or @option{-mpopcntd}):
14669 @smallexample
14670 long __builtin_bpermd (long, long);
14671 int __builtin_divwe (int, int);
14672 int __builtin_divweo (int, int);
14673 unsigned int __builtin_divweu (unsigned int, unsigned int);
14674 unsigned int __builtin_divweuo (unsigned int, unsigned int);
14675 long __builtin_divde (long, long);
14676 long __builtin_divdeo (long, long);
14677 unsigned long __builtin_divdeu (unsigned long, unsigned long);
14678 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
14679 unsigned int cdtbcd (unsigned int);
14680 unsigned int cbcdtd (unsigned int);
14681 unsigned int addg6s (unsigned int, unsigned int);
14682 @end smallexample
14683
14684 The @code{__builtin_divde}, @code{__builtin_divdeo},
14685 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
14686 64-bit environment support ISA 2.06 or later.
14687
14688 The following built-in functions are available for the PowerPC family
14689 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9})
14690 or with @option{-mmodulo}:
14691 @smallexample
14692 long long __builtin_darn (void);
14693 long long __builtin_darn_raw (void);
14694 int __builtin_darn_32 (void);
14695 @end smallexample
14696
14697 The @code{__builtin_darn} and @code{__builtin_darn_raw}
14698 functions require a
14699 64-bit environment supporting ISA 3.0 or later.
14700 The @code{__builtin_darn} function provides a 64-bit conditioned
14701 random number. The @code{__builtin_darn_raw} function provides a
14702 64-bit raw random number. The @code{__builtin_darn_32} function
14703 provides a 32-bit random number.
14704
14705 The following built-in functions are available for the PowerPC family
14706 of processors when hardware decimal floating point
14707 (@option{-mhard-dfp}) is available:
14708 @smallexample
14709 _Decimal64 __builtin_dxex (_Decimal64);
14710 _Decimal128 __builtin_dxexq (_Decimal128);
14711 _Decimal64 __builtin_ddedpd (int, _Decimal64);
14712 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
14713 _Decimal64 __builtin_denbcd (int, _Decimal64);
14714 _Decimal128 __builtin_denbcdq (int, _Decimal128);
14715 _Decimal64 __builtin_diex (_Decimal64, _Decimal64);
14716 _Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
14717 _Decimal64 __builtin_dscli (_Decimal64, int);
14718 _Decimal128 __builtin_dscliq (_Decimal128, int);
14719 _Decimal64 __builtin_dscri (_Decimal64, int);
14720 _Decimal128 __builtin_dscriq (_Decimal128, int);
14721 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
14722 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
14723 @end smallexample
14724
14725 The following built-in functions are available for the PowerPC family
14726 of processors when the Vector Scalar (vsx) instruction set is
14727 available:
14728 @smallexample
14729 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
14730 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
14731 unsigned long long);
14732 @end smallexample
14733
14734 @node PowerPC AltiVec/VSX Built-in Functions
14735 @subsection PowerPC AltiVec Built-in Functions
14736
14737 GCC provides an interface for the PowerPC family of processors to access
14738 the AltiVec operations described in Motorola's AltiVec Programming
14739 Interface Manual. The interface is made available by including
14740 @code{<altivec.h>} and using @option{-maltivec} and
14741 @option{-mabi=altivec}. The interface supports the following vector
14742 types.
14743
14744 @smallexample
14745 vector unsigned char
14746 vector signed char
14747 vector bool char
14748
14749 vector unsigned short
14750 vector signed short
14751 vector bool short
14752 vector pixel
14753
14754 vector unsigned int
14755 vector signed int
14756 vector bool int
14757 vector float
14758 @end smallexample
14759
14760 If @option{-mvsx} is used the following additional vector types are
14761 implemented.
14762
14763 @smallexample
14764 vector unsigned long
14765 vector signed long
14766 vector double
14767 @end smallexample
14768
14769 The long types are only implemented for 64-bit code generation, and
14770 the long type is only used in the floating point/integer conversion
14771 instructions.
14772
14773 GCC's implementation of the high-level language interface available from
14774 C and C++ code differs from Motorola's documentation in several ways.
14775
14776 @itemize @bullet
14777
14778 @item
14779 A vector constant is a list of constant expressions within curly braces.
14780
14781 @item
14782 A vector initializer requires no cast if the vector constant is of the
14783 same type as the variable it is initializing.
14784
14785 @item
14786 If @code{signed} or @code{unsigned} is omitted, the signedness of the
14787 vector type is the default signedness of the base type. The default
14788 varies depending on the operating system, so a portable program should
14789 always specify the signedness.
14790
14791 @item
14792 Compiling with @option{-maltivec} adds keywords @code{__vector},
14793 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
14794 @code{bool}. When compiling ISO C, the context-sensitive substitution
14795 of the keywords @code{vector}, @code{pixel} and @code{bool} is
14796 disabled. To use them, you must include @code{<altivec.h>} instead.
14797
14798 @item
14799 GCC allows using a @code{typedef} name as the type specifier for a
14800 vector type.
14801
14802 @item
14803 For C, overloaded functions are implemented with macros so the following
14804 does not work:
14805
14806 @smallexample
14807 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
14808 @end smallexample
14809
14810 @noindent
14811 Since @code{vec_add} is a macro, the vector constant in the example
14812 is treated as four separate arguments. Wrap the entire argument in
14813 parentheses for this to work.
14814 @end itemize
14815
14816 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
14817 Internally, GCC uses built-in functions to achieve the functionality in
14818 the aforementioned header file, but they are not supported and are
14819 subject to change without notice.
14820
14821 The following interfaces are supported for the generic and specific
14822 AltiVec operations and the AltiVec predicates. In cases where there
14823 is a direct mapping between generic and specific operations, only the
14824 generic names are shown here, although the specific operations can also
14825 be used.
14826
14827 Arguments that are documented as @code{const int} require literal
14828 integral values within the range required for that operation.
14829
14830 @smallexample
14831 vector signed char vec_abs (vector signed char);
14832 vector signed short vec_abs (vector signed short);
14833 vector signed int vec_abs (vector signed int);
14834 vector float vec_abs (vector float);
14835
14836 vector signed char vec_abss (vector signed char);
14837 vector signed short vec_abss (vector signed short);
14838 vector signed int vec_abss (vector signed int);
14839
14840 vector signed char vec_add (vector bool char, vector signed char);
14841 vector signed char vec_add (vector signed char, vector bool char);
14842 vector signed char vec_add (vector signed char, vector signed char);
14843 vector unsigned char vec_add (vector bool char, vector unsigned char);
14844 vector unsigned char vec_add (vector unsigned char, vector bool char);
14845 vector unsigned char vec_add (vector unsigned char,
14846 vector unsigned char);
14847 vector signed short vec_add (vector bool short, vector signed short);
14848 vector signed short vec_add (vector signed short, vector bool short);
14849 vector signed short vec_add (vector signed short, vector signed short);
14850 vector unsigned short vec_add (vector bool short,
14851 vector unsigned short);
14852 vector unsigned short vec_add (vector unsigned short,
14853 vector bool short);
14854 vector unsigned short vec_add (vector unsigned short,
14855 vector unsigned short);
14856 vector signed int vec_add (vector bool int, vector signed int);
14857 vector signed int vec_add (vector signed int, vector bool int);
14858 vector signed int vec_add (vector signed int, vector signed int);
14859 vector unsigned int vec_add (vector bool int, vector unsigned int);
14860 vector unsigned int vec_add (vector unsigned int, vector bool int);
14861 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
14862 vector float vec_add (vector float, vector float);
14863
14864 vector float vec_vaddfp (vector float, vector float);
14865
14866 vector signed int vec_vadduwm (vector bool int, vector signed int);
14867 vector signed int vec_vadduwm (vector signed int, vector bool int);
14868 vector signed int vec_vadduwm (vector signed int, vector signed int);
14869 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
14870 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
14871 vector unsigned int vec_vadduwm (vector unsigned int,
14872 vector unsigned int);
14873
14874 vector signed short vec_vadduhm (vector bool short,
14875 vector signed short);
14876 vector signed short vec_vadduhm (vector signed short,
14877 vector bool short);
14878 vector signed short vec_vadduhm (vector signed short,
14879 vector signed short);
14880 vector unsigned short vec_vadduhm (vector bool short,
14881 vector unsigned short);
14882 vector unsigned short vec_vadduhm (vector unsigned short,
14883 vector bool short);
14884 vector unsigned short vec_vadduhm (vector unsigned short,
14885 vector unsigned short);
14886
14887 vector signed char vec_vaddubm (vector bool char, vector signed char);
14888 vector signed char vec_vaddubm (vector signed char, vector bool char);
14889 vector signed char vec_vaddubm (vector signed char, vector signed char);
14890 vector unsigned char vec_vaddubm (vector bool char,
14891 vector unsigned char);
14892 vector unsigned char vec_vaddubm (vector unsigned char,
14893 vector bool char);
14894 vector unsigned char vec_vaddubm (vector unsigned char,
14895 vector unsigned char);
14896
14897 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
14898
14899 vector unsigned char vec_adds (vector bool char, vector unsigned char);
14900 vector unsigned char vec_adds (vector unsigned char, vector bool char);
14901 vector unsigned char vec_adds (vector unsigned char,
14902 vector unsigned char);
14903 vector signed char vec_adds (vector bool char, vector signed char);
14904 vector signed char vec_adds (vector signed char, vector bool char);
14905 vector signed char vec_adds (vector signed char, vector signed char);
14906 vector unsigned short vec_adds (vector bool short,
14907 vector unsigned short);
14908 vector unsigned short vec_adds (vector unsigned short,
14909 vector bool short);
14910 vector unsigned short vec_adds (vector unsigned short,
14911 vector unsigned short);
14912 vector signed short vec_adds (vector bool short, vector signed short);
14913 vector signed short vec_adds (vector signed short, vector bool short);
14914 vector signed short vec_adds (vector signed short, vector signed short);
14915 vector unsigned int vec_adds (vector bool int, vector unsigned int);
14916 vector unsigned int vec_adds (vector unsigned int, vector bool int);
14917 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
14918 vector signed int vec_adds (vector bool int, vector signed int);
14919 vector signed int vec_adds (vector signed int, vector bool int);
14920 vector signed int vec_adds (vector signed int, vector signed int);
14921
14922 vector signed int vec_vaddsws (vector bool int, vector signed int);
14923 vector signed int vec_vaddsws (vector signed int, vector bool int);
14924 vector signed int vec_vaddsws (vector signed int, vector signed int);
14925
14926 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
14927 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
14928 vector unsigned int vec_vadduws (vector unsigned int,
14929 vector unsigned int);
14930
14931 vector signed short vec_vaddshs (vector bool short,
14932 vector signed short);
14933 vector signed short vec_vaddshs (vector signed short,
14934 vector bool short);
14935 vector signed short vec_vaddshs (vector signed short,
14936 vector signed short);
14937
14938 vector unsigned short vec_vadduhs (vector bool short,
14939 vector unsigned short);
14940 vector unsigned short vec_vadduhs (vector unsigned short,
14941 vector bool short);
14942 vector unsigned short vec_vadduhs (vector unsigned short,
14943 vector unsigned short);
14944
14945 vector signed char vec_vaddsbs (vector bool char, vector signed char);
14946 vector signed char vec_vaddsbs (vector signed char, vector bool char);
14947 vector signed char vec_vaddsbs (vector signed char, vector signed char);
14948
14949 vector unsigned char vec_vaddubs (vector bool char,
14950 vector unsigned char);
14951 vector unsigned char vec_vaddubs (vector unsigned char,
14952 vector bool char);
14953 vector unsigned char vec_vaddubs (vector unsigned char,
14954 vector unsigned char);
14955
14956 vector float vec_and (vector float, vector float);
14957 vector float vec_and (vector float, vector bool int);
14958 vector float vec_and (vector bool int, vector float);
14959 vector bool int vec_and (vector bool int, vector bool int);
14960 vector signed int vec_and (vector bool int, vector signed int);
14961 vector signed int vec_and (vector signed int, vector bool int);
14962 vector signed int vec_and (vector signed int, vector signed int);
14963 vector unsigned int vec_and (vector bool int, vector unsigned int);
14964 vector unsigned int vec_and (vector unsigned int, vector bool int);
14965 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
14966 vector bool short vec_and (vector bool short, vector bool short);
14967 vector signed short vec_and (vector bool short, vector signed short);
14968 vector signed short vec_and (vector signed short, vector bool short);
14969 vector signed short vec_and (vector signed short, vector signed short);
14970 vector unsigned short vec_and (vector bool short,
14971 vector unsigned short);
14972 vector unsigned short vec_and (vector unsigned short,
14973 vector bool short);
14974 vector unsigned short vec_and (vector unsigned short,
14975 vector unsigned short);
14976 vector signed char vec_and (vector bool char, vector signed char);
14977 vector bool char vec_and (vector bool char, vector bool char);
14978 vector signed char vec_and (vector signed char, vector bool char);
14979 vector signed char vec_and (vector signed char, vector signed char);
14980 vector unsigned char vec_and (vector bool char, vector unsigned char);
14981 vector unsigned char vec_and (vector unsigned char, vector bool char);
14982 vector unsigned char vec_and (vector unsigned char,
14983 vector unsigned char);
14984
14985 vector float vec_andc (vector float, vector float);
14986 vector float vec_andc (vector float, vector bool int);
14987 vector float vec_andc (vector bool int, vector float);
14988 vector bool int vec_andc (vector bool int, vector bool int);
14989 vector signed int vec_andc (vector bool int, vector signed int);
14990 vector signed int vec_andc (vector signed int, vector bool int);
14991 vector signed int vec_andc (vector signed int, vector signed int);
14992 vector unsigned int vec_andc (vector bool int, vector unsigned int);
14993 vector unsigned int vec_andc (vector unsigned int, vector bool int);
14994 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
14995 vector bool short vec_andc (vector bool short, vector bool short);
14996 vector signed short vec_andc (vector bool short, vector signed short);
14997 vector signed short vec_andc (vector signed short, vector bool short);
14998 vector signed short vec_andc (vector signed short, vector signed short);
14999 vector unsigned short vec_andc (vector bool short,
15000 vector unsigned short);
15001 vector unsigned short vec_andc (vector unsigned short,
15002 vector bool short);
15003 vector unsigned short vec_andc (vector unsigned short,
15004 vector unsigned short);
15005 vector signed char vec_andc (vector bool char, vector signed char);
15006 vector bool char vec_andc (vector bool char, vector bool char);
15007 vector signed char vec_andc (vector signed char, vector bool char);
15008 vector signed char vec_andc (vector signed char, vector signed char);
15009 vector unsigned char vec_andc (vector bool char, vector unsigned char);
15010 vector unsigned char vec_andc (vector unsigned char, vector bool char);
15011 vector unsigned char vec_andc (vector unsigned char,
15012 vector unsigned char);
15013
15014 vector unsigned char vec_avg (vector unsigned char,
15015 vector unsigned char);
15016 vector signed char vec_avg (vector signed char, vector signed char);
15017 vector unsigned short vec_avg (vector unsigned short,
15018 vector unsigned short);
15019 vector signed short vec_avg (vector signed short, vector signed short);
15020 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
15021 vector signed int vec_avg (vector signed int, vector signed int);
15022
15023 vector signed int vec_vavgsw (vector signed int, vector signed int);
15024
15025 vector unsigned int vec_vavguw (vector unsigned int,
15026 vector unsigned int);
15027
15028 vector signed short vec_vavgsh (vector signed short,
15029 vector signed short);
15030
15031 vector unsigned short vec_vavguh (vector unsigned short,
15032 vector unsigned short);
15033
15034 vector signed char vec_vavgsb (vector signed char, vector signed char);
15035
15036 vector unsigned char vec_vavgub (vector unsigned char,
15037 vector unsigned char);
15038
15039 vector float vec_copysign (vector float);
15040
15041 vector float vec_ceil (vector float);
15042
15043 vector signed int vec_cmpb (vector float, vector float);
15044
15045 vector bool char vec_cmpeq (vector signed char, vector signed char);
15046 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
15047 vector bool short vec_cmpeq (vector signed short, vector signed short);
15048 vector bool short vec_cmpeq (vector unsigned short,
15049 vector unsigned short);
15050 vector bool int vec_cmpeq (vector signed int, vector signed int);
15051 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
15052 vector bool int vec_cmpeq (vector float, vector float);
15053
15054 vector bool int vec_vcmpeqfp (vector float, vector float);
15055
15056 vector bool int vec_vcmpequw (vector signed int, vector signed int);
15057 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
15058
15059 vector bool short vec_vcmpequh (vector signed short,
15060 vector signed short);
15061 vector bool short vec_vcmpequh (vector unsigned short,
15062 vector unsigned short);
15063
15064 vector bool char vec_vcmpequb (vector signed char, vector signed char);
15065 vector bool char vec_vcmpequb (vector unsigned char,
15066 vector unsigned char);
15067
15068 vector bool int vec_cmpge (vector float, vector float);
15069
15070 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
15071 vector bool char vec_cmpgt (vector signed char, vector signed char);
15072 vector bool short vec_cmpgt (vector unsigned short,
15073 vector unsigned short);
15074 vector bool short vec_cmpgt (vector signed short, vector signed short);
15075 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
15076 vector bool int vec_cmpgt (vector signed int, vector signed int);
15077 vector bool int vec_cmpgt (vector float, vector float);
15078
15079 vector bool int vec_vcmpgtfp (vector float, vector float);
15080
15081 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
15082
15083 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
15084
15085 vector bool short vec_vcmpgtsh (vector signed short,
15086 vector signed short);
15087
15088 vector bool short vec_vcmpgtuh (vector unsigned short,
15089 vector unsigned short);
15090
15091 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
15092
15093 vector bool char vec_vcmpgtub (vector unsigned char,
15094 vector unsigned char);
15095
15096 vector bool int vec_cmple (vector float, vector float);
15097
15098 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
15099 vector bool char vec_cmplt (vector signed char, vector signed char);
15100 vector bool short vec_cmplt (vector unsigned short,
15101 vector unsigned short);
15102 vector bool short vec_cmplt (vector signed short, vector signed short);
15103 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
15104 vector bool int vec_cmplt (vector signed int, vector signed int);
15105 vector bool int vec_cmplt (vector float, vector float);
15106
15107 vector float vec_cpsgn (vector float, vector float);
15108
15109 vector float vec_ctf (vector unsigned int, const int);
15110 vector float vec_ctf (vector signed int, const int);
15111 vector double vec_ctf (vector unsigned long, const int);
15112 vector double vec_ctf (vector signed long, const int);
15113
15114 vector float vec_vcfsx (vector signed int, const int);
15115
15116 vector float vec_vcfux (vector unsigned int, const int);
15117
15118 vector signed int vec_cts (vector float, const int);
15119 vector signed long vec_cts (vector double, const int);
15120
15121 vector unsigned int vec_ctu (vector float, const int);
15122 vector unsigned long vec_ctu (vector double, const int);
15123
15124 void vec_dss (const int);
15125
15126 void vec_dssall (void);
15127
15128 void vec_dst (const vector unsigned char *, int, const int);
15129 void vec_dst (const vector signed char *, int, const int);
15130 void vec_dst (const vector bool char *, int, const int);
15131 void vec_dst (const vector unsigned short *, int, const int);
15132 void vec_dst (const vector signed short *, int, const int);
15133 void vec_dst (const vector bool short *, int, const int);
15134 void vec_dst (const vector pixel *, int, const int);
15135 void vec_dst (const vector unsigned int *, int, const int);
15136 void vec_dst (const vector signed int *, int, const int);
15137 void vec_dst (const vector bool int *, int, const int);
15138 void vec_dst (const vector float *, int, const int);
15139 void vec_dst (const unsigned char *, int, const int);
15140 void vec_dst (const signed char *, int, const int);
15141 void vec_dst (const unsigned short *, int, const int);
15142 void vec_dst (const short *, int, const int);
15143 void vec_dst (const unsigned int *, int, const int);
15144 void vec_dst (const int *, int, const int);
15145 void vec_dst (const unsigned long *, int, const int);
15146 void vec_dst (const long *, int, const int);
15147 void vec_dst (const float *, int, const int);
15148
15149 void vec_dstst (const vector unsigned char *, int, const int);
15150 void vec_dstst (const vector signed char *, int, const int);
15151 void vec_dstst (const vector bool char *, int, const int);
15152 void vec_dstst (const vector unsigned short *, int, const int);
15153 void vec_dstst (const vector signed short *, int, const int);
15154 void vec_dstst (const vector bool short *, int, const int);
15155 void vec_dstst (const vector pixel *, int, const int);
15156 void vec_dstst (const vector unsigned int *, int, const int);
15157 void vec_dstst (const vector signed int *, int, const int);
15158 void vec_dstst (const vector bool int *, int, const int);
15159 void vec_dstst (const vector float *, int, const int);
15160 void vec_dstst (const unsigned char *, int, const int);
15161 void vec_dstst (const signed char *, int, const int);
15162 void vec_dstst (const unsigned short *, int, const int);
15163 void vec_dstst (const short *, int, const int);
15164 void vec_dstst (const unsigned int *, int, const int);
15165 void vec_dstst (const int *, int, const int);
15166 void vec_dstst (const unsigned long *, int, const int);
15167 void vec_dstst (const long *, int, const int);
15168 void vec_dstst (const float *, int, const int);
15169
15170 void vec_dststt (const vector unsigned char *, int, const int);
15171 void vec_dststt (const vector signed char *, int, const int);
15172 void vec_dststt (const vector bool char *, int, const int);
15173 void vec_dststt (const vector unsigned short *, int, const int);
15174 void vec_dststt (const vector signed short *, int, const int);
15175 void vec_dststt (const vector bool short *, int, const int);
15176 void vec_dststt (const vector pixel *, int, const int);
15177 void vec_dststt (const vector unsigned int *, int, const int);
15178 void vec_dststt (const vector signed int *, int, const int);
15179 void vec_dststt (const vector bool int *, int, const int);
15180 void vec_dststt (const vector float *, int, const int);
15181 void vec_dststt (const unsigned char *, int, const int);
15182 void vec_dststt (const signed char *, int, const int);
15183 void vec_dststt (const unsigned short *, int, const int);
15184 void vec_dststt (const short *, int, const int);
15185 void vec_dststt (const unsigned int *, int, const int);
15186 void vec_dststt (const int *, int, const int);
15187 void vec_dststt (const unsigned long *, int, const int);
15188 void vec_dststt (const long *, int, const int);
15189 void vec_dststt (const float *, int, const int);
15190
15191 void vec_dstt (const vector unsigned char *, int, const int);
15192 void vec_dstt (const vector signed char *, int, const int);
15193 void vec_dstt (const vector bool char *, int, const int);
15194 void vec_dstt (const vector unsigned short *, int, const int);
15195 void vec_dstt (const vector signed short *, int, const int);
15196 void vec_dstt (const vector bool short *, int, const int);
15197 void vec_dstt (const vector pixel *, int, const int);
15198 void vec_dstt (const vector unsigned int *, int, const int);
15199 void vec_dstt (const vector signed int *, int, const int);
15200 void vec_dstt (const vector bool int *, int, const int);
15201 void vec_dstt (const vector float *, int, const int);
15202 void vec_dstt (const unsigned char *, int, const int);
15203 void vec_dstt (const signed char *, int, const int);
15204 void vec_dstt (const unsigned short *, int, const int);
15205 void vec_dstt (const short *, int, const int);
15206 void vec_dstt (const unsigned int *, int, const int);
15207 void vec_dstt (const int *, int, const int);
15208 void vec_dstt (const unsigned long *, int, const int);
15209 void vec_dstt (const long *, int, const int);
15210 void vec_dstt (const float *, int, const int);
15211
15212 vector float vec_expte (vector float);
15213
15214 vector float vec_floor (vector float);
15215
15216 vector float vec_ld (int, const vector float *);
15217 vector float vec_ld (int, const float *);
15218 vector bool int vec_ld (int, const vector bool int *);
15219 vector signed int vec_ld (int, const vector signed int *);
15220 vector signed int vec_ld (int, const int *);
15221 vector signed int vec_ld (int, const long *);
15222 vector unsigned int vec_ld (int, const vector unsigned int *);
15223 vector unsigned int vec_ld (int, const unsigned int *);
15224 vector unsigned int vec_ld (int, const unsigned long *);
15225 vector bool short vec_ld (int, const vector bool short *);
15226 vector pixel vec_ld (int, const vector pixel *);
15227 vector signed short vec_ld (int, const vector signed short *);
15228 vector signed short vec_ld (int, const short *);
15229 vector unsigned short vec_ld (int, const vector unsigned short *);
15230 vector unsigned short vec_ld (int, const unsigned short *);
15231 vector bool char vec_ld (int, const vector bool char *);
15232 vector signed char vec_ld (int, const vector signed char *);
15233 vector signed char vec_ld (int, const signed char *);
15234 vector unsigned char vec_ld (int, const vector unsigned char *);
15235 vector unsigned char vec_ld (int, const unsigned char *);
15236
15237 vector signed char vec_lde (int, const signed char *);
15238 vector unsigned char vec_lde (int, const unsigned char *);
15239 vector signed short vec_lde (int, const short *);
15240 vector unsigned short vec_lde (int, const unsigned short *);
15241 vector float vec_lde (int, const float *);
15242 vector signed int vec_lde (int, const int *);
15243 vector unsigned int vec_lde (int, const unsigned int *);
15244 vector signed int vec_lde (int, const long *);
15245 vector unsigned int vec_lde (int, const unsigned long *);
15246
15247 vector float vec_lvewx (int, float *);
15248 vector signed int vec_lvewx (int, int *);
15249 vector unsigned int vec_lvewx (int, unsigned int *);
15250 vector signed int vec_lvewx (int, long *);
15251 vector unsigned int vec_lvewx (int, unsigned long *);
15252
15253 vector signed short vec_lvehx (int, short *);
15254 vector unsigned short vec_lvehx (int, unsigned short *);
15255
15256 vector signed char vec_lvebx (int, char *);
15257 vector unsigned char vec_lvebx (int, unsigned char *);
15258
15259 vector float vec_ldl (int, const vector float *);
15260 vector float vec_ldl (int, const float *);
15261 vector bool int vec_ldl (int, const vector bool int *);
15262 vector signed int vec_ldl (int, const vector signed int *);
15263 vector signed int vec_ldl (int, const int *);
15264 vector signed int vec_ldl (int, const long *);
15265 vector unsigned int vec_ldl (int, const vector unsigned int *);
15266 vector unsigned int vec_ldl (int, const unsigned int *);
15267 vector unsigned int vec_ldl (int, const unsigned long *);
15268 vector bool short vec_ldl (int, const vector bool short *);
15269 vector pixel vec_ldl (int, const vector pixel *);
15270 vector signed short vec_ldl (int, const vector signed short *);
15271 vector signed short vec_ldl (int, const short *);
15272 vector unsigned short vec_ldl (int, const vector unsigned short *);
15273 vector unsigned short vec_ldl (int, const unsigned short *);
15274 vector bool char vec_ldl (int, const vector bool char *);
15275 vector signed char vec_ldl (int, const vector signed char *);
15276 vector signed char vec_ldl (int, const signed char *);
15277 vector unsigned char vec_ldl (int, const vector unsigned char *);
15278 vector unsigned char vec_ldl (int, const unsigned char *);
15279
15280 vector float vec_loge (vector float);
15281
15282 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
15283 vector unsigned char vec_lvsl (int, const volatile signed char *);
15284 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
15285 vector unsigned char vec_lvsl (int, const volatile short *);
15286 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
15287 vector unsigned char vec_lvsl (int, const volatile int *);
15288 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
15289 vector unsigned char vec_lvsl (int, const volatile long *);
15290 vector unsigned char vec_lvsl (int, const volatile float *);
15291
15292 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
15293 vector unsigned char vec_lvsr (int, const volatile signed char *);
15294 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
15295 vector unsigned char vec_lvsr (int, const volatile short *);
15296 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
15297 vector unsigned char vec_lvsr (int, const volatile int *);
15298 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
15299 vector unsigned char vec_lvsr (int, const volatile long *);
15300 vector unsigned char vec_lvsr (int, const volatile float *);
15301
15302 vector float vec_madd (vector float, vector float, vector float);
15303
15304 vector signed short vec_madds (vector signed short,
15305 vector signed short,
15306 vector signed short);
15307
15308 vector unsigned char vec_max (vector bool char, vector unsigned char);
15309 vector unsigned char vec_max (vector unsigned char, vector bool char);
15310 vector unsigned char vec_max (vector unsigned char,
15311 vector unsigned char);
15312 vector signed char vec_max (vector bool char, vector signed char);
15313 vector signed char vec_max (vector signed char, vector bool char);
15314 vector signed char vec_max (vector signed char, vector signed char);
15315 vector unsigned short vec_max (vector bool short,
15316 vector unsigned short);
15317 vector unsigned short vec_max (vector unsigned short,
15318 vector bool short);
15319 vector unsigned short vec_max (vector unsigned short,
15320 vector unsigned short);
15321 vector signed short vec_max (vector bool short, vector signed short);
15322 vector signed short vec_max (vector signed short, vector bool short);
15323 vector signed short vec_max (vector signed short, vector signed short);
15324 vector unsigned int vec_max (vector bool int, vector unsigned int);
15325 vector unsigned int vec_max (vector unsigned int, vector bool int);
15326 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
15327 vector signed int vec_max (vector bool int, vector signed int);
15328 vector signed int vec_max (vector signed int, vector bool int);
15329 vector signed int vec_max (vector signed int, vector signed int);
15330 vector float vec_max (vector float, vector float);
15331
15332 vector float vec_vmaxfp (vector float, vector float);
15333
15334 vector signed int vec_vmaxsw (vector bool int, vector signed int);
15335 vector signed int vec_vmaxsw (vector signed int, vector bool int);
15336 vector signed int vec_vmaxsw (vector signed int, vector signed int);
15337
15338 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
15339 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
15340 vector unsigned int vec_vmaxuw (vector unsigned int,
15341 vector unsigned int);
15342
15343 vector signed short vec_vmaxsh (vector bool short, vector signed short);
15344 vector signed short vec_vmaxsh (vector signed short, vector bool short);
15345 vector signed short vec_vmaxsh (vector signed short,
15346 vector signed short);
15347
15348 vector unsigned short vec_vmaxuh (vector bool short,
15349 vector unsigned short);
15350 vector unsigned short vec_vmaxuh (vector unsigned short,
15351 vector bool short);
15352 vector unsigned short vec_vmaxuh (vector unsigned short,
15353 vector unsigned short);
15354
15355 vector signed char vec_vmaxsb (vector bool char, vector signed char);
15356 vector signed char vec_vmaxsb (vector signed char, vector bool char);
15357 vector signed char vec_vmaxsb (vector signed char, vector signed char);
15358
15359 vector unsigned char vec_vmaxub (vector bool char,
15360 vector unsigned char);
15361 vector unsigned char vec_vmaxub (vector unsigned char,
15362 vector bool char);
15363 vector unsigned char vec_vmaxub (vector unsigned char,
15364 vector unsigned char);
15365
15366 vector bool char vec_mergeh (vector bool char, vector bool char);
15367 vector signed char vec_mergeh (vector signed char, vector signed char);
15368 vector unsigned char vec_mergeh (vector unsigned char,
15369 vector unsigned char);
15370 vector bool short vec_mergeh (vector bool short, vector bool short);
15371 vector pixel vec_mergeh (vector pixel, vector pixel);
15372 vector signed short vec_mergeh (vector signed short,
15373 vector signed short);
15374 vector unsigned short vec_mergeh (vector unsigned short,
15375 vector unsigned short);
15376 vector float vec_mergeh (vector float, vector float);
15377 vector bool int vec_mergeh (vector bool int, vector bool int);
15378 vector signed int vec_mergeh (vector signed int, vector signed int);
15379 vector unsigned int vec_mergeh (vector unsigned int,
15380 vector unsigned int);
15381
15382 vector float vec_vmrghw (vector float, vector float);
15383 vector bool int vec_vmrghw (vector bool int, vector bool int);
15384 vector signed int vec_vmrghw (vector signed int, vector signed int);
15385 vector unsigned int vec_vmrghw (vector unsigned int,
15386 vector unsigned int);
15387
15388 vector bool short vec_vmrghh (vector bool short, vector bool short);
15389 vector signed short vec_vmrghh (vector signed short,
15390 vector signed short);
15391 vector unsigned short vec_vmrghh (vector unsigned short,
15392 vector unsigned short);
15393 vector pixel vec_vmrghh (vector pixel, vector pixel);
15394
15395 vector bool char vec_vmrghb (vector bool char, vector bool char);
15396 vector signed char vec_vmrghb (vector signed char, vector signed char);
15397 vector unsigned char vec_vmrghb (vector unsigned char,
15398 vector unsigned char);
15399
15400 vector bool char vec_mergel (vector bool char, vector bool char);
15401 vector signed char vec_mergel (vector signed char, vector signed char);
15402 vector unsigned char vec_mergel (vector unsigned char,
15403 vector unsigned char);
15404 vector bool short vec_mergel (vector bool short, vector bool short);
15405 vector pixel vec_mergel (vector pixel, vector pixel);
15406 vector signed short vec_mergel (vector signed short,
15407 vector signed short);
15408 vector unsigned short vec_mergel (vector unsigned short,
15409 vector unsigned short);
15410 vector float vec_mergel (vector float, vector float);
15411 vector bool int vec_mergel (vector bool int, vector bool int);
15412 vector signed int vec_mergel (vector signed int, vector signed int);
15413 vector unsigned int vec_mergel (vector unsigned int,
15414 vector unsigned int);
15415
15416 vector float vec_vmrglw (vector float, vector float);
15417 vector signed int vec_vmrglw (vector signed int, vector signed int);
15418 vector unsigned int vec_vmrglw (vector unsigned int,
15419 vector unsigned int);
15420 vector bool int vec_vmrglw (vector bool int, vector bool int);
15421
15422 vector bool short vec_vmrglh (vector bool short, vector bool short);
15423 vector signed short vec_vmrglh (vector signed short,
15424 vector signed short);
15425 vector unsigned short vec_vmrglh (vector unsigned short,
15426 vector unsigned short);
15427 vector pixel vec_vmrglh (vector pixel, vector pixel);
15428
15429 vector bool char vec_vmrglb (vector bool char, vector bool char);
15430 vector signed char vec_vmrglb (vector signed char, vector signed char);
15431 vector unsigned char vec_vmrglb (vector unsigned char,
15432 vector unsigned char);
15433
15434 vector unsigned short vec_mfvscr (void);
15435
15436 vector unsigned char vec_min (vector bool char, vector unsigned char);
15437 vector unsigned char vec_min (vector unsigned char, vector bool char);
15438 vector unsigned char vec_min (vector unsigned char,
15439 vector unsigned char);
15440 vector signed char vec_min (vector bool char, vector signed char);
15441 vector signed char vec_min (vector signed char, vector bool char);
15442 vector signed char vec_min (vector signed char, vector signed char);
15443 vector unsigned short vec_min (vector bool short,
15444 vector unsigned short);
15445 vector unsigned short vec_min (vector unsigned short,
15446 vector bool short);
15447 vector unsigned short vec_min (vector unsigned short,
15448 vector unsigned short);
15449 vector signed short vec_min (vector bool short, vector signed short);
15450 vector signed short vec_min (vector signed short, vector bool short);
15451 vector signed short vec_min (vector signed short, vector signed short);
15452 vector unsigned int vec_min (vector bool int, vector unsigned int);
15453 vector unsigned int vec_min (vector unsigned int, vector bool int);
15454 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
15455 vector signed int vec_min (vector bool int, vector signed int);
15456 vector signed int vec_min (vector signed int, vector bool int);
15457 vector signed int vec_min (vector signed int, vector signed int);
15458 vector float vec_min (vector float, vector float);
15459
15460 vector float vec_vminfp (vector float, vector float);
15461
15462 vector signed int vec_vminsw (vector bool int, vector signed int);
15463 vector signed int vec_vminsw (vector signed int, vector bool int);
15464 vector signed int vec_vminsw (vector signed int, vector signed int);
15465
15466 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
15467 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
15468 vector unsigned int vec_vminuw (vector unsigned int,
15469 vector unsigned int);
15470
15471 vector signed short vec_vminsh (vector bool short, vector signed short);
15472 vector signed short vec_vminsh (vector signed short, vector bool short);
15473 vector signed short vec_vminsh (vector signed short,
15474 vector signed short);
15475
15476 vector unsigned short vec_vminuh (vector bool short,
15477 vector unsigned short);
15478 vector unsigned short vec_vminuh (vector unsigned short,
15479 vector bool short);
15480 vector unsigned short vec_vminuh (vector unsigned short,
15481 vector unsigned short);
15482
15483 vector signed char vec_vminsb (vector bool char, vector signed char);
15484 vector signed char vec_vminsb (vector signed char, vector bool char);
15485 vector signed char vec_vminsb (vector signed char, vector signed char);
15486
15487 vector unsigned char vec_vminub (vector bool char,
15488 vector unsigned char);
15489 vector unsigned char vec_vminub (vector unsigned char,
15490 vector bool char);
15491 vector unsigned char vec_vminub (vector unsigned char,
15492 vector unsigned char);
15493
15494 vector signed short vec_mladd (vector signed short,
15495 vector signed short,
15496 vector signed short);
15497 vector signed short vec_mladd (vector signed short,
15498 vector unsigned short,
15499 vector unsigned short);
15500 vector signed short vec_mladd (vector unsigned short,
15501 vector signed short,
15502 vector signed short);
15503 vector unsigned short vec_mladd (vector unsigned short,
15504 vector unsigned short,
15505 vector unsigned short);
15506
15507 vector signed short vec_mradds (vector signed short,
15508 vector signed short,
15509 vector signed short);
15510
15511 vector unsigned int vec_msum (vector unsigned char,
15512 vector unsigned char,
15513 vector unsigned int);
15514 vector signed int vec_msum (vector signed char,
15515 vector unsigned char,
15516 vector signed int);
15517 vector unsigned int vec_msum (vector unsigned short,
15518 vector unsigned short,
15519 vector unsigned int);
15520 vector signed int vec_msum (vector signed short,
15521 vector signed short,
15522 vector signed int);
15523
15524 vector signed int vec_vmsumshm (vector signed short,
15525 vector signed short,
15526 vector signed int);
15527
15528 vector unsigned int vec_vmsumuhm (vector unsigned short,
15529 vector unsigned short,
15530 vector unsigned int);
15531
15532 vector signed int vec_vmsummbm (vector signed char,
15533 vector unsigned char,
15534 vector signed int);
15535
15536 vector unsigned int vec_vmsumubm (vector unsigned char,
15537 vector unsigned char,
15538 vector unsigned int);
15539
15540 vector unsigned int vec_msums (vector unsigned short,
15541 vector unsigned short,
15542 vector unsigned int);
15543 vector signed int vec_msums (vector signed short,
15544 vector signed short,
15545 vector signed int);
15546
15547 vector signed int vec_vmsumshs (vector signed short,
15548 vector signed short,
15549 vector signed int);
15550
15551 vector unsigned int vec_vmsumuhs (vector unsigned short,
15552 vector unsigned short,
15553 vector unsigned int);
15554
15555 void vec_mtvscr (vector signed int);
15556 void vec_mtvscr (vector unsigned int);
15557 void vec_mtvscr (vector bool int);
15558 void vec_mtvscr (vector signed short);
15559 void vec_mtvscr (vector unsigned short);
15560 void vec_mtvscr (vector bool short);
15561 void vec_mtvscr (vector pixel);
15562 void vec_mtvscr (vector signed char);
15563 void vec_mtvscr (vector unsigned char);
15564 void vec_mtvscr (vector bool char);
15565
15566 vector unsigned short vec_mule (vector unsigned char,
15567 vector unsigned char);
15568 vector signed short vec_mule (vector signed char,
15569 vector signed char);
15570 vector unsigned int vec_mule (vector unsigned short,
15571 vector unsigned short);
15572 vector signed int vec_mule (vector signed short, vector signed short);
15573
15574 vector signed int vec_vmulesh (vector signed short,
15575 vector signed short);
15576
15577 vector unsigned int vec_vmuleuh (vector unsigned short,
15578 vector unsigned short);
15579
15580 vector signed short vec_vmulesb (vector signed char,
15581 vector signed char);
15582
15583 vector unsigned short vec_vmuleub (vector unsigned char,
15584 vector unsigned char);
15585
15586 vector unsigned short vec_mulo (vector unsigned char,
15587 vector unsigned char);
15588 vector signed short vec_mulo (vector signed char, vector signed char);
15589 vector unsigned int vec_mulo (vector unsigned short,
15590 vector unsigned short);
15591 vector signed int vec_mulo (vector signed short, vector signed short);
15592
15593 vector signed int vec_vmulosh (vector signed short,
15594 vector signed short);
15595
15596 vector unsigned int vec_vmulouh (vector unsigned short,
15597 vector unsigned short);
15598
15599 vector signed short vec_vmulosb (vector signed char,
15600 vector signed char);
15601
15602 vector unsigned short vec_vmuloub (vector unsigned char,
15603 vector unsigned char);
15604
15605 vector float vec_nmsub (vector float, vector float, vector float);
15606
15607 vector float vec_nor (vector float, vector float);
15608 vector signed int vec_nor (vector signed int, vector signed int);
15609 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
15610 vector bool int vec_nor (vector bool int, vector bool int);
15611 vector signed short vec_nor (vector signed short, vector signed short);
15612 vector unsigned short vec_nor (vector unsigned short,
15613 vector unsigned short);
15614 vector bool short vec_nor (vector bool short, vector bool short);
15615 vector signed char vec_nor (vector signed char, vector signed char);
15616 vector unsigned char vec_nor (vector unsigned char,
15617 vector unsigned char);
15618 vector bool char vec_nor (vector bool char, vector bool char);
15619
15620 vector float vec_or (vector float, vector float);
15621 vector float vec_or (vector float, vector bool int);
15622 vector float vec_or (vector bool int, vector float);
15623 vector bool int vec_or (vector bool int, vector bool int);
15624 vector signed int vec_or (vector bool int, vector signed int);
15625 vector signed int vec_or (vector signed int, vector bool int);
15626 vector signed int vec_or (vector signed int, vector signed int);
15627 vector unsigned int vec_or (vector bool int, vector unsigned int);
15628 vector unsigned int vec_or (vector unsigned int, vector bool int);
15629 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
15630 vector bool short vec_or (vector bool short, vector bool short);
15631 vector signed short vec_or (vector bool short, vector signed short);
15632 vector signed short vec_or (vector signed short, vector bool short);
15633 vector signed short vec_or (vector signed short, vector signed short);
15634 vector unsigned short vec_or (vector bool short, vector unsigned short);
15635 vector unsigned short vec_or (vector unsigned short, vector bool short);
15636 vector unsigned short vec_or (vector unsigned short,
15637 vector unsigned short);
15638 vector signed char vec_or (vector bool char, vector signed char);
15639 vector bool char vec_or (vector bool char, vector bool char);
15640 vector signed char vec_or (vector signed char, vector bool char);
15641 vector signed char vec_or (vector signed char, vector signed char);
15642 vector unsigned char vec_or (vector bool char, vector unsigned char);
15643 vector unsigned char vec_or (vector unsigned char, vector bool char);
15644 vector unsigned char vec_or (vector unsigned char,
15645 vector unsigned char);
15646
15647 vector signed char vec_pack (vector signed short, vector signed short);
15648 vector unsigned char vec_pack (vector unsigned short,
15649 vector unsigned short);
15650 vector bool char vec_pack (vector bool short, vector bool short);
15651 vector signed short vec_pack (vector signed int, vector signed int);
15652 vector unsigned short vec_pack (vector unsigned int,
15653 vector unsigned int);
15654 vector bool short vec_pack (vector bool int, vector bool int);
15655
15656 vector bool short vec_vpkuwum (vector bool int, vector bool int);
15657 vector signed short vec_vpkuwum (vector signed int, vector signed int);
15658 vector unsigned short vec_vpkuwum (vector unsigned int,
15659 vector unsigned int);
15660
15661 vector bool char vec_vpkuhum (vector bool short, vector bool short);
15662 vector signed char vec_vpkuhum (vector signed short,
15663 vector signed short);
15664 vector unsigned char vec_vpkuhum (vector unsigned short,
15665 vector unsigned short);
15666
15667 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
15668
15669 vector unsigned char vec_packs (vector unsigned short,
15670 vector unsigned short);
15671 vector signed char vec_packs (vector signed short, vector signed short);
15672 vector unsigned short vec_packs (vector unsigned int,
15673 vector unsigned int);
15674 vector signed short vec_packs (vector signed int, vector signed int);
15675
15676 vector signed short vec_vpkswss (vector signed int, vector signed int);
15677
15678 vector unsigned short vec_vpkuwus (vector unsigned int,
15679 vector unsigned int);
15680
15681 vector signed char vec_vpkshss (vector signed short,
15682 vector signed short);
15683
15684 vector unsigned char vec_vpkuhus (vector unsigned short,
15685 vector unsigned short);
15686
15687 vector unsigned char vec_packsu (vector unsigned short,
15688 vector unsigned short);
15689 vector unsigned char vec_packsu (vector signed short,
15690 vector signed short);
15691 vector unsigned short vec_packsu (vector unsigned int,
15692 vector unsigned int);
15693 vector unsigned short vec_packsu (vector signed int, vector signed int);
15694
15695 vector unsigned short vec_vpkswus (vector signed int,
15696 vector signed int);
15697
15698 vector unsigned char vec_vpkshus (vector signed short,
15699 vector signed short);
15700
15701 vector float vec_perm (vector float,
15702 vector float,
15703 vector unsigned char);
15704 vector signed int vec_perm (vector signed int,
15705 vector signed int,
15706 vector unsigned char);
15707 vector unsigned int vec_perm (vector unsigned int,
15708 vector unsigned int,
15709 vector unsigned char);
15710 vector bool int vec_perm (vector bool int,
15711 vector bool int,
15712 vector unsigned char);
15713 vector signed short vec_perm (vector signed short,
15714 vector signed short,
15715 vector unsigned char);
15716 vector unsigned short vec_perm (vector unsigned short,
15717 vector unsigned short,
15718 vector unsigned char);
15719 vector bool short vec_perm (vector bool short,
15720 vector bool short,
15721 vector unsigned char);
15722 vector pixel vec_perm (vector pixel,
15723 vector pixel,
15724 vector unsigned char);
15725 vector signed char vec_perm (vector signed char,
15726 vector signed char,
15727 vector unsigned char);
15728 vector unsigned char vec_perm (vector unsigned char,
15729 vector unsigned char,
15730 vector unsigned char);
15731 vector bool char vec_perm (vector bool char,
15732 vector bool char,
15733 vector unsigned char);
15734
15735 vector float vec_re (vector float);
15736
15737 vector signed char vec_rl (vector signed char,
15738 vector unsigned char);
15739 vector unsigned char vec_rl (vector unsigned char,
15740 vector unsigned char);
15741 vector signed short vec_rl (vector signed short, vector unsigned short);
15742 vector unsigned short vec_rl (vector unsigned short,
15743 vector unsigned short);
15744 vector signed int vec_rl (vector signed int, vector unsigned int);
15745 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
15746
15747 vector signed int vec_vrlw (vector signed int, vector unsigned int);
15748 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
15749
15750 vector signed short vec_vrlh (vector signed short,
15751 vector unsigned short);
15752 vector unsigned short vec_vrlh (vector unsigned short,
15753 vector unsigned short);
15754
15755 vector signed char vec_vrlb (vector signed char, vector unsigned char);
15756 vector unsigned char vec_vrlb (vector unsigned char,
15757 vector unsigned char);
15758
15759 vector float vec_round (vector float);
15760
15761 vector float vec_recip (vector float, vector float);
15762
15763 vector float vec_rsqrt (vector float);
15764
15765 vector float vec_rsqrte (vector float);
15766
15767 vector float vec_sel (vector float, vector float, vector bool int);
15768 vector float vec_sel (vector float, vector float, vector unsigned int);
15769 vector signed int vec_sel (vector signed int,
15770 vector signed int,
15771 vector bool int);
15772 vector signed int vec_sel (vector signed int,
15773 vector signed int,
15774 vector unsigned int);
15775 vector unsigned int vec_sel (vector unsigned int,
15776 vector unsigned int,
15777 vector bool int);
15778 vector unsigned int vec_sel (vector unsigned int,
15779 vector unsigned int,
15780 vector unsigned int);
15781 vector bool int vec_sel (vector bool int,
15782 vector bool int,
15783 vector bool int);
15784 vector bool int vec_sel (vector bool int,
15785 vector bool int,
15786 vector unsigned int);
15787 vector signed short vec_sel (vector signed short,
15788 vector signed short,
15789 vector bool short);
15790 vector signed short vec_sel (vector signed short,
15791 vector signed short,
15792 vector unsigned short);
15793 vector unsigned short vec_sel (vector unsigned short,
15794 vector unsigned short,
15795 vector bool short);
15796 vector unsigned short vec_sel (vector unsigned short,
15797 vector unsigned short,
15798 vector unsigned short);
15799 vector bool short vec_sel (vector bool short,
15800 vector bool short,
15801 vector bool short);
15802 vector bool short vec_sel (vector bool short,
15803 vector bool short,
15804 vector unsigned short);
15805 vector signed char vec_sel (vector signed char,
15806 vector signed char,
15807 vector bool char);
15808 vector signed char vec_sel (vector signed char,
15809 vector signed char,
15810 vector unsigned char);
15811 vector unsigned char vec_sel (vector unsigned char,
15812 vector unsigned char,
15813 vector bool char);
15814 vector unsigned char vec_sel (vector unsigned char,
15815 vector unsigned char,
15816 vector unsigned char);
15817 vector bool char vec_sel (vector bool char,
15818 vector bool char,
15819 vector bool char);
15820 vector bool char vec_sel (vector bool char,
15821 vector bool char,
15822 vector unsigned char);
15823
15824 vector signed char vec_sl (vector signed char,
15825 vector unsigned char);
15826 vector unsigned char vec_sl (vector unsigned char,
15827 vector unsigned char);
15828 vector signed short vec_sl (vector signed short, vector unsigned short);
15829 vector unsigned short vec_sl (vector unsigned short,
15830 vector unsigned short);
15831 vector signed int vec_sl (vector signed int, vector unsigned int);
15832 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
15833
15834 vector signed int vec_vslw (vector signed int, vector unsigned int);
15835 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
15836
15837 vector signed short vec_vslh (vector signed short,
15838 vector unsigned short);
15839 vector unsigned short vec_vslh (vector unsigned short,
15840 vector unsigned short);
15841
15842 vector signed char vec_vslb (vector signed char, vector unsigned char);
15843 vector unsigned char vec_vslb (vector unsigned char,
15844 vector unsigned char);
15845
15846 vector float vec_sld (vector float, vector float, const int);
15847 vector signed int vec_sld (vector signed int,
15848 vector signed int,
15849 const int);
15850 vector unsigned int vec_sld (vector unsigned int,
15851 vector unsigned int,
15852 const int);
15853 vector bool int vec_sld (vector bool int,
15854 vector bool int,
15855 const int);
15856 vector signed short vec_sld (vector signed short,
15857 vector signed short,
15858 const int);
15859 vector unsigned short vec_sld (vector unsigned short,
15860 vector unsigned short,
15861 const int);
15862 vector bool short vec_sld (vector bool short,
15863 vector bool short,
15864 const int);
15865 vector pixel vec_sld (vector pixel,
15866 vector pixel,
15867 const int);
15868 vector signed char vec_sld (vector signed char,
15869 vector signed char,
15870 const int);
15871 vector unsigned char vec_sld (vector unsigned char,
15872 vector unsigned char,
15873 const int);
15874 vector bool char vec_sld (vector bool char,
15875 vector bool char,
15876 const int);
15877
15878 vector signed int vec_sll (vector signed int,
15879 vector unsigned int);
15880 vector signed int vec_sll (vector signed int,
15881 vector unsigned short);
15882 vector signed int vec_sll (vector signed int,
15883 vector unsigned char);
15884 vector unsigned int vec_sll (vector unsigned int,
15885 vector unsigned int);
15886 vector unsigned int vec_sll (vector unsigned int,
15887 vector unsigned short);
15888 vector unsigned int vec_sll (vector unsigned int,
15889 vector unsigned char);
15890 vector bool int vec_sll (vector bool int,
15891 vector unsigned int);
15892 vector bool int vec_sll (vector bool int,
15893 vector unsigned short);
15894 vector bool int vec_sll (vector bool int,
15895 vector unsigned char);
15896 vector signed short vec_sll (vector signed short,
15897 vector unsigned int);
15898 vector signed short vec_sll (vector signed short,
15899 vector unsigned short);
15900 vector signed short vec_sll (vector signed short,
15901 vector unsigned char);
15902 vector unsigned short vec_sll (vector unsigned short,
15903 vector unsigned int);
15904 vector unsigned short vec_sll (vector unsigned short,
15905 vector unsigned short);
15906 vector unsigned short vec_sll (vector unsigned short,
15907 vector unsigned char);
15908 vector bool short vec_sll (vector bool short, vector unsigned int);
15909 vector bool short vec_sll (vector bool short, vector unsigned short);
15910 vector bool short vec_sll (vector bool short, vector unsigned char);
15911 vector pixel vec_sll (vector pixel, vector unsigned int);
15912 vector pixel vec_sll (vector pixel, vector unsigned short);
15913 vector pixel vec_sll (vector pixel, vector unsigned char);
15914 vector signed char vec_sll (vector signed char, vector unsigned int);
15915 vector signed char vec_sll (vector signed char, vector unsigned short);
15916 vector signed char vec_sll (vector signed char, vector unsigned char);
15917 vector unsigned char vec_sll (vector unsigned char,
15918 vector unsigned int);
15919 vector unsigned char vec_sll (vector unsigned char,
15920 vector unsigned short);
15921 vector unsigned char vec_sll (vector unsigned char,
15922 vector unsigned char);
15923 vector bool char vec_sll (vector bool char, vector unsigned int);
15924 vector bool char vec_sll (vector bool char, vector unsigned short);
15925 vector bool char vec_sll (vector bool char, vector unsigned char);
15926
15927 vector float vec_slo (vector float, vector signed char);
15928 vector float vec_slo (vector float, vector unsigned char);
15929 vector signed int vec_slo (vector signed int, vector signed char);
15930 vector signed int vec_slo (vector signed int, vector unsigned char);
15931 vector unsigned int vec_slo (vector unsigned int, vector signed char);
15932 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
15933 vector signed short vec_slo (vector signed short, vector signed char);
15934 vector signed short vec_slo (vector signed short, vector unsigned char);
15935 vector unsigned short vec_slo (vector unsigned short,
15936 vector signed char);
15937 vector unsigned short vec_slo (vector unsigned short,
15938 vector unsigned char);
15939 vector pixel vec_slo (vector pixel, vector signed char);
15940 vector pixel vec_slo (vector pixel, vector unsigned char);
15941 vector signed char vec_slo (vector signed char, vector signed char);
15942 vector signed char vec_slo (vector signed char, vector unsigned char);
15943 vector unsigned char vec_slo (vector unsigned char, vector signed char);
15944 vector unsigned char vec_slo (vector unsigned char,
15945 vector unsigned char);
15946
15947 vector signed char vec_splat (vector signed char, const int);
15948 vector unsigned char vec_splat (vector unsigned char, const int);
15949 vector bool char vec_splat (vector bool char, const int);
15950 vector signed short vec_splat (vector signed short, const int);
15951 vector unsigned short vec_splat (vector unsigned short, const int);
15952 vector bool short vec_splat (vector bool short, const int);
15953 vector pixel vec_splat (vector pixel, const int);
15954 vector float vec_splat (vector float, const int);
15955 vector signed int vec_splat (vector signed int, const int);
15956 vector unsigned int vec_splat (vector unsigned int, const int);
15957 vector bool int vec_splat (vector bool int, const int);
15958 vector signed long vec_splat (vector signed long, const int);
15959 vector unsigned long vec_splat (vector unsigned long, const int);
15960
15961 vector signed char vec_splats (signed char);
15962 vector unsigned char vec_splats (unsigned char);
15963 vector signed short vec_splats (signed short);
15964 vector unsigned short vec_splats (unsigned short);
15965 vector signed int vec_splats (signed int);
15966 vector unsigned int vec_splats (unsigned int);
15967 vector float vec_splats (float);
15968
15969 vector float vec_vspltw (vector float, const int);
15970 vector signed int vec_vspltw (vector signed int, const int);
15971 vector unsigned int vec_vspltw (vector unsigned int, const int);
15972 vector bool int vec_vspltw (vector bool int, const int);
15973
15974 vector bool short vec_vsplth (vector bool short, const int);
15975 vector signed short vec_vsplth (vector signed short, const int);
15976 vector unsigned short vec_vsplth (vector unsigned short, const int);
15977 vector pixel vec_vsplth (vector pixel, const int);
15978
15979 vector signed char vec_vspltb (vector signed char, const int);
15980 vector unsigned char vec_vspltb (vector unsigned char, const int);
15981 vector bool char vec_vspltb (vector bool char, const int);
15982
15983 vector signed char vec_splat_s8 (const int);
15984
15985 vector signed short vec_splat_s16 (const int);
15986
15987 vector signed int vec_splat_s32 (const int);
15988
15989 vector unsigned char vec_splat_u8 (const int);
15990
15991 vector unsigned short vec_splat_u16 (const int);
15992
15993 vector unsigned int vec_splat_u32 (const int);
15994
15995 vector signed char vec_sr (vector signed char, vector unsigned char);
15996 vector unsigned char vec_sr (vector unsigned char,
15997 vector unsigned char);
15998 vector signed short vec_sr (vector signed short,
15999 vector unsigned short);
16000 vector unsigned short vec_sr (vector unsigned short,
16001 vector unsigned short);
16002 vector signed int vec_sr (vector signed int, vector unsigned int);
16003 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
16004
16005 vector signed int vec_vsrw (vector signed int, vector unsigned int);
16006 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
16007
16008 vector signed short vec_vsrh (vector signed short,
16009 vector unsigned short);
16010 vector unsigned short vec_vsrh (vector unsigned short,
16011 vector unsigned short);
16012
16013 vector signed char vec_vsrb (vector signed char, vector unsigned char);
16014 vector unsigned char vec_vsrb (vector unsigned char,
16015 vector unsigned char);
16016
16017 vector signed char vec_sra (vector signed char, vector unsigned char);
16018 vector unsigned char vec_sra (vector unsigned char,
16019 vector unsigned char);
16020 vector signed short vec_sra (vector signed short,
16021 vector unsigned short);
16022 vector unsigned short vec_sra (vector unsigned short,
16023 vector unsigned short);
16024 vector signed int vec_sra (vector signed int, vector unsigned int);
16025 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
16026
16027 vector signed int vec_vsraw (vector signed int, vector unsigned int);
16028 vector unsigned int vec_vsraw (vector unsigned int,
16029 vector unsigned int);
16030
16031 vector signed short vec_vsrah (vector signed short,
16032 vector unsigned short);
16033 vector unsigned short vec_vsrah (vector unsigned short,
16034 vector unsigned short);
16035
16036 vector signed char vec_vsrab (vector signed char, vector unsigned char);
16037 vector unsigned char vec_vsrab (vector unsigned char,
16038 vector unsigned char);
16039
16040 vector signed int vec_srl (vector signed int, vector unsigned int);
16041 vector signed int vec_srl (vector signed int, vector unsigned short);
16042 vector signed int vec_srl (vector signed int, vector unsigned char);
16043 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
16044 vector unsigned int vec_srl (vector unsigned int,
16045 vector unsigned short);
16046 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
16047 vector bool int vec_srl (vector bool int, vector unsigned int);
16048 vector bool int vec_srl (vector bool int, vector unsigned short);
16049 vector bool int vec_srl (vector bool int, vector unsigned char);
16050 vector signed short vec_srl (vector signed short, vector unsigned int);
16051 vector signed short vec_srl (vector signed short,
16052 vector unsigned short);
16053 vector signed short vec_srl (vector signed short, vector unsigned char);
16054 vector unsigned short vec_srl (vector unsigned short,
16055 vector unsigned int);
16056 vector unsigned short vec_srl (vector unsigned short,
16057 vector unsigned short);
16058 vector unsigned short vec_srl (vector unsigned short,
16059 vector unsigned char);
16060 vector bool short vec_srl (vector bool short, vector unsigned int);
16061 vector bool short vec_srl (vector bool short, vector unsigned short);
16062 vector bool short vec_srl (vector bool short, vector unsigned char);
16063 vector pixel vec_srl (vector pixel, vector unsigned int);
16064 vector pixel vec_srl (vector pixel, vector unsigned short);
16065 vector pixel vec_srl (vector pixel, vector unsigned char);
16066 vector signed char vec_srl (vector signed char, vector unsigned int);
16067 vector signed char vec_srl (vector signed char, vector unsigned short);
16068 vector signed char vec_srl (vector signed char, vector unsigned char);
16069 vector unsigned char vec_srl (vector unsigned char,
16070 vector unsigned int);
16071 vector unsigned char vec_srl (vector unsigned char,
16072 vector unsigned short);
16073 vector unsigned char vec_srl (vector unsigned char,
16074 vector unsigned char);
16075 vector bool char vec_srl (vector bool char, vector unsigned int);
16076 vector bool char vec_srl (vector bool char, vector unsigned short);
16077 vector bool char vec_srl (vector bool char, vector unsigned char);
16078
16079 vector float vec_sro (vector float, vector signed char);
16080 vector float vec_sro (vector float, vector unsigned char);
16081 vector signed int vec_sro (vector signed int, vector signed char);
16082 vector signed int vec_sro (vector signed int, vector unsigned char);
16083 vector unsigned int vec_sro (vector unsigned int, vector signed char);
16084 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
16085 vector signed short vec_sro (vector signed short, vector signed char);
16086 vector signed short vec_sro (vector signed short, vector unsigned char);
16087 vector unsigned short vec_sro (vector unsigned short,
16088 vector signed char);
16089 vector unsigned short vec_sro (vector unsigned short,
16090 vector unsigned char);
16091 vector pixel vec_sro (vector pixel, vector signed char);
16092 vector pixel vec_sro (vector pixel, vector unsigned char);
16093 vector signed char vec_sro (vector signed char, vector signed char);
16094 vector signed char vec_sro (vector signed char, vector unsigned char);
16095 vector unsigned char vec_sro (vector unsigned char, vector signed char);
16096 vector unsigned char vec_sro (vector unsigned char,
16097 vector unsigned char);
16098
16099 void vec_st (vector float, int, vector float *);
16100 void vec_st (vector float, int, float *);
16101 void vec_st (vector signed int, int, vector signed int *);
16102 void vec_st (vector signed int, int, int *);
16103 void vec_st (vector unsigned int, int, vector unsigned int *);
16104 void vec_st (vector unsigned int, int, unsigned int *);
16105 void vec_st (vector bool int, int, vector bool int *);
16106 void vec_st (vector bool int, int, unsigned int *);
16107 void vec_st (vector bool int, int, int *);
16108 void vec_st (vector signed short, int, vector signed short *);
16109 void vec_st (vector signed short, int, short *);
16110 void vec_st (vector unsigned short, int, vector unsigned short *);
16111 void vec_st (vector unsigned short, int, unsigned short *);
16112 void vec_st (vector bool short, int, vector bool short *);
16113 void vec_st (vector bool short, int, unsigned short *);
16114 void vec_st (vector pixel, int, vector pixel *);
16115 void vec_st (vector pixel, int, unsigned short *);
16116 void vec_st (vector pixel, int, short *);
16117 void vec_st (vector bool short, int, short *);
16118 void vec_st (vector signed char, int, vector signed char *);
16119 void vec_st (vector signed char, int, signed char *);
16120 void vec_st (vector unsigned char, int, vector unsigned char *);
16121 void vec_st (vector unsigned char, int, unsigned char *);
16122 void vec_st (vector bool char, int, vector bool char *);
16123 void vec_st (vector bool char, int, unsigned char *);
16124 void vec_st (vector bool char, int, signed char *);
16125
16126 void vec_ste (vector signed char, int, signed char *);
16127 void vec_ste (vector unsigned char, int, unsigned char *);
16128 void vec_ste (vector bool char, int, signed char *);
16129 void vec_ste (vector bool char, int, unsigned char *);
16130 void vec_ste (vector signed short, int, short *);
16131 void vec_ste (vector unsigned short, int, unsigned short *);
16132 void vec_ste (vector bool short, int, short *);
16133 void vec_ste (vector bool short, int, unsigned short *);
16134 void vec_ste (vector pixel, int, short *);
16135 void vec_ste (vector pixel, int, unsigned short *);
16136 void vec_ste (vector float, int, float *);
16137 void vec_ste (vector signed int, int, int *);
16138 void vec_ste (vector unsigned int, int, unsigned int *);
16139 void vec_ste (vector bool int, int, int *);
16140 void vec_ste (vector bool int, int, unsigned int *);
16141
16142 void vec_stvewx (vector float, int, float *);
16143 void vec_stvewx (vector signed int, int, int *);
16144 void vec_stvewx (vector unsigned int, int, unsigned int *);
16145 void vec_stvewx (vector bool int, int, int *);
16146 void vec_stvewx (vector bool int, int, unsigned int *);
16147
16148 void vec_stvehx (vector signed short, int, short *);
16149 void vec_stvehx (vector unsigned short, int, unsigned short *);
16150 void vec_stvehx (vector bool short, int, short *);
16151 void vec_stvehx (vector bool short, int, unsigned short *);
16152 void vec_stvehx (vector pixel, int, short *);
16153 void vec_stvehx (vector pixel, int, unsigned short *);
16154
16155 void vec_stvebx (vector signed char, int, signed char *);
16156 void vec_stvebx (vector unsigned char, int, unsigned char *);
16157 void vec_stvebx (vector bool char, int, signed char *);
16158 void vec_stvebx (vector bool char, int, unsigned char *);
16159
16160 void vec_stl (vector float, int, vector float *);
16161 void vec_stl (vector float, int, float *);
16162 void vec_stl (vector signed int, int, vector signed int *);
16163 void vec_stl (vector signed int, int, int *);
16164 void vec_stl (vector unsigned int, int, vector unsigned int *);
16165 void vec_stl (vector unsigned int, int, unsigned int *);
16166 void vec_stl (vector bool int, int, vector bool int *);
16167 void vec_stl (vector bool int, int, unsigned int *);
16168 void vec_stl (vector bool int, int, int *);
16169 void vec_stl (vector signed short, int, vector signed short *);
16170 void vec_stl (vector signed short, int, short *);
16171 void vec_stl (vector unsigned short, int, vector unsigned short *);
16172 void vec_stl (vector unsigned short, int, unsigned short *);
16173 void vec_stl (vector bool short, int, vector bool short *);
16174 void vec_stl (vector bool short, int, unsigned short *);
16175 void vec_stl (vector bool short, int, short *);
16176 void vec_stl (vector pixel, int, vector pixel *);
16177 void vec_stl (vector pixel, int, unsigned short *);
16178 void vec_stl (vector pixel, int, short *);
16179 void vec_stl (vector signed char, int, vector signed char *);
16180 void vec_stl (vector signed char, int, signed char *);
16181 void vec_stl (vector unsigned char, int, vector unsigned char *);
16182 void vec_stl (vector unsigned char, int, unsigned char *);
16183 void vec_stl (vector bool char, int, vector bool char *);
16184 void vec_stl (vector bool char, int, unsigned char *);
16185 void vec_stl (vector bool char, int, signed char *);
16186
16187 vector signed char vec_sub (vector bool char, vector signed char);
16188 vector signed char vec_sub (vector signed char, vector bool char);
16189 vector signed char vec_sub (vector signed char, vector signed char);
16190 vector unsigned char vec_sub (vector bool char, vector unsigned char);
16191 vector unsigned char vec_sub (vector unsigned char, vector bool char);
16192 vector unsigned char vec_sub (vector unsigned char,
16193 vector unsigned char);
16194 vector signed short vec_sub (vector bool short, vector signed short);
16195 vector signed short vec_sub (vector signed short, vector bool short);
16196 vector signed short vec_sub (vector signed short, vector signed short);
16197 vector unsigned short vec_sub (vector bool short,
16198 vector unsigned short);
16199 vector unsigned short vec_sub (vector unsigned short,
16200 vector bool short);
16201 vector unsigned short vec_sub (vector unsigned short,
16202 vector unsigned short);
16203 vector signed int vec_sub (vector bool int, vector signed int);
16204 vector signed int vec_sub (vector signed int, vector bool int);
16205 vector signed int vec_sub (vector signed int, vector signed int);
16206 vector unsigned int vec_sub (vector bool int, vector unsigned int);
16207 vector unsigned int vec_sub (vector unsigned int, vector bool int);
16208 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
16209 vector float vec_sub (vector float, vector float);
16210
16211 vector float vec_vsubfp (vector float, vector float);
16212
16213 vector signed int vec_vsubuwm (vector bool int, vector signed int);
16214 vector signed int vec_vsubuwm (vector signed int, vector bool int);
16215 vector signed int vec_vsubuwm (vector signed int, vector signed int);
16216 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
16217 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
16218 vector unsigned int vec_vsubuwm (vector unsigned int,
16219 vector unsigned int);
16220
16221 vector signed short vec_vsubuhm (vector bool short,
16222 vector signed short);
16223 vector signed short vec_vsubuhm (vector signed short,
16224 vector bool short);
16225 vector signed short vec_vsubuhm (vector signed short,
16226 vector signed short);
16227 vector unsigned short vec_vsubuhm (vector bool short,
16228 vector unsigned short);
16229 vector unsigned short vec_vsubuhm (vector unsigned short,
16230 vector bool short);
16231 vector unsigned short vec_vsubuhm (vector unsigned short,
16232 vector unsigned short);
16233
16234 vector signed char vec_vsububm (vector bool char, vector signed char);
16235 vector signed char vec_vsububm (vector signed char, vector bool char);
16236 vector signed char vec_vsububm (vector signed char, vector signed char);
16237 vector unsigned char vec_vsububm (vector bool char,
16238 vector unsigned char);
16239 vector unsigned char vec_vsububm (vector unsigned char,
16240 vector bool char);
16241 vector unsigned char vec_vsububm (vector unsigned char,
16242 vector unsigned char);
16243
16244 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
16245
16246 vector unsigned char vec_subs (vector bool char, vector unsigned char);
16247 vector unsigned char vec_subs (vector unsigned char, vector bool char);
16248 vector unsigned char vec_subs (vector unsigned char,
16249 vector unsigned char);
16250 vector signed char vec_subs (vector bool char, vector signed char);
16251 vector signed char vec_subs (vector signed char, vector bool char);
16252 vector signed char vec_subs (vector signed char, vector signed char);
16253 vector unsigned short vec_subs (vector bool short,
16254 vector unsigned short);
16255 vector unsigned short vec_subs (vector unsigned short,
16256 vector bool short);
16257 vector unsigned short vec_subs (vector unsigned short,
16258 vector unsigned short);
16259 vector signed short vec_subs (vector bool short, vector signed short);
16260 vector signed short vec_subs (vector signed short, vector bool short);
16261 vector signed short vec_subs (vector signed short, vector signed short);
16262 vector unsigned int vec_subs (vector bool int, vector unsigned int);
16263 vector unsigned int vec_subs (vector unsigned int, vector bool int);
16264 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
16265 vector signed int vec_subs (vector bool int, vector signed int);
16266 vector signed int vec_subs (vector signed int, vector bool int);
16267 vector signed int vec_subs (vector signed int, vector signed int);
16268
16269 vector signed int vec_vsubsws (vector bool int, vector signed int);
16270 vector signed int vec_vsubsws (vector signed int, vector bool int);
16271 vector signed int vec_vsubsws (vector signed int, vector signed int);
16272
16273 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
16274 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
16275 vector unsigned int vec_vsubuws (vector unsigned int,
16276 vector unsigned int);
16277
16278 vector signed short vec_vsubshs (vector bool short,
16279 vector signed short);
16280 vector signed short vec_vsubshs (vector signed short,
16281 vector bool short);
16282 vector signed short vec_vsubshs (vector signed short,
16283 vector signed short);
16284
16285 vector unsigned short vec_vsubuhs (vector bool short,
16286 vector unsigned short);
16287 vector unsigned short vec_vsubuhs (vector unsigned short,
16288 vector bool short);
16289 vector unsigned short vec_vsubuhs (vector unsigned short,
16290 vector unsigned short);
16291
16292 vector signed char vec_vsubsbs (vector bool char, vector signed char);
16293 vector signed char vec_vsubsbs (vector signed char, vector bool char);
16294 vector signed char vec_vsubsbs (vector signed char, vector signed char);
16295
16296 vector unsigned char vec_vsububs (vector bool char,
16297 vector unsigned char);
16298 vector unsigned char vec_vsububs (vector unsigned char,
16299 vector bool char);
16300 vector unsigned char vec_vsububs (vector unsigned char,
16301 vector unsigned char);
16302
16303 vector unsigned int vec_sum4s (vector unsigned char,
16304 vector unsigned int);
16305 vector signed int vec_sum4s (vector signed char, vector signed int);
16306 vector signed int vec_sum4s (vector signed short, vector signed int);
16307
16308 vector signed int vec_vsum4shs (vector signed short, vector signed int);
16309
16310 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
16311
16312 vector unsigned int vec_vsum4ubs (vector unsigned char,
16313 vector unsigned int);
16314
16315 vector signed int vec_sum2s (vector signed int, vector signed int);
16316
16317 vector signed int vec_sums (vector signed int, vector signed int);
16318
16319 vector float vec_trunc (vector float);
16320
16321 vector signed short vec_unpackh (vector signed char);
16322 vector bool short vec_unpackh (vector bool char);
16323 vector signed int vec_unpackh (vector signed short);
16324 vector bool int vec_unpackh (vector bool short);
16325 vector unsigned int vec_unpackh (vector pixel);
16326
16327 vector bool int vec_vupkhsh (vector bool short);
16328 vector signed int vec_vupkhsh (vector signed short);
16329
16330 vector unsigned int vec_vupkhpx (vector pixel);
16331
16332 vector bool short vec_vupkhsb (vector bool char);
16333 vector signed short vec_vupkhsb (vector signed char);
16334
16335 vector signed short vec_unpackl (vector signed char);
16336 vector bool short vec_unpackl (vector bool char);
16337 vector unsigned int vec_unpackl (vector pixel);
16338 vector signed int vec_unpackl (vector signed short);
16339 vector bool int vec_unpackl (vector bool short);
16340
16341 vector unsigned int vec_vupklpx (vector pixel);
16342
16343 vector bool int vec_vupklsh (vector bool short);
16344 vector signed int vec_vupklsh (vector signed short);
16345
16346 vector bool short vec_vupklsb (vector bool char);
16347 vector signed short vec_vupklsb (vector signed char);
16348
16349 vector float vec_xor (vector float, vector float);
16350 vector float vec_xor (vector float, vector bool int);
16351 vector float vec_xor (vector bool int, vector float);
16352 vector bool int vec_xor (vector bool int, vector bool int);
16353 vector signed int vec_xor (vector bool int, vector signed int);
16354 vector signed int vec_xor (vector signed int, vector bool int);
16355 vector signed int vec_xor (vector signed int, vector signed int);
16356 vector unsigned int vec_xor (vector bool int, vector unsigned int);
16357 vector unsigned int vec_xor (vector unsigned int, vector bool int);
16358 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
16359 vector bool short vec_xor (vector bool short, vector bool short);
16360 vector signed short vec_xor (vector bool short, vector signed short);
16361 vector signed short vec_xor (vector signed short, vector bool short);
16362 vector signed short vec_xor (vector signed short, vector signed short);
16363 vector unsigned short vec_xor (vector bool short,
16364 vector unsigned short);
16365 vector unsigned short vec_xor (vector unsigned short,
16366 vector bool short);
16367 vector unsigned short vec_xor (vector unsigned short,
16368 vector unsigned short);
16369 vector signed char vec_xor (vector bool char, vector signed char);
16370 vector bool char vec_xor (vector bool char, vector bool char);
16371 vector signed char vec_xor (vector signed char, vector bool char);
16372 vector signed char vec_xor (vector signed char, vector signed char);
16373 vector unsigned char vec_xor (vector bool char, vector unsigned char);
16374 vector unsigned char vec_xor (vector unsigned char, vector bool char);
16375 vector unsigned char vec_xor (vector unsigned char,
16376 vector unsigned char);
16377
16378 int vec_all_eq (vector signed char, vector bool char);
16379 int vec_all_eq (vector signed char, vector signed char);
16380 int vec_all_eq (vector unsigned char, vector bool char);
16381 int vec_all_eq (vector unsigned char, vector unsigned char);
16382 int vec_all_eq (vector bool char, vector bool char);
16383 int vec_all_eq (vector bool char, vector unsigned char);
16384 int vec_all_eq (vector bool char, vector signed char);
16385 int vec_all_eq (vector signed short, vector bool short);
16386 int vec_all_eq (vector signed short, vector signed short);
16387 int vec_all_eq (vector unsigned short, vector bool short);
16388 int vec_all_eq (vector unsigned short, vector unsigned short);
16389 int vec_all_eq (vector bool short, vector bool short);
16390 int vec_all_eq (vector bool short, vector unsigned short);
16391 int vec_all_eq (vector bool short, vector signed short);
16392 int vec_all_eq (vector pixel, vector pixel);
16393 int vec_all_eq (vector signed int, vector bool int);
16394 int vec_all_eq (vector signed int, vector signed int);
16395 int vec_all_eq (vector unsigned int, vector bool int);
16396 int vec_all_eq (vector unsigned int, vector unsigned int);
16397 int vec_all_eq (vector bool int, vector bool int);
16398 int vec_all_eq (vector bool int, vector unsigned int);
16399 int vec_all_eq (vector bool int, vector signed int);
16400 int vec_all_eq (vector float, vector float);
16401
16402 int vec_all_ge (vector bool char, vector unsigned char);
16403 int vec_all_ge (vector unsigned char, vector bool char);
16404 int vec_all_ge (vector unsigned char, vector unsigned char);
16405 int vec_all_ge (vector bool char, vector signed char);
16406 int vec_all_ge (vector signed char, vector bool char);
16407 int vec_all_ge (vector signed char, vector signed char);
16408 int vec_all_ge (vector bool short, vector unsigned short);
16409 int vec_all_ge (vector unsigned short, vector bool short);
16410 int vec_all_ge (vector unsigned short, vector unsigned short);
16411 int vec_all_ge (vector signed short, vector signed short);
16412 int vec_all_ge (vector bool short, vector signed short);
16413 int vec_all_ge (vector signed short, vector bool short);
16414 int vec_all_ge (vector bool int, vector unsigned int);
16415 int vec_all_ge (vector unsigned int, vector bool int);
16416 int vec_all_ge (vector unsigned int, vector unsigned int);
16417 int vec_all_ge (vector bool int, vector signed int);
16418 int vec_all_ge (vector signed int, vector bool int);
16419 int vec_all_ge (vector signed int, vector signed int);
16420 int vec_all_ge (vector float, vector float);
16421
16422 int vec_all_gt (vector bool char, vector unsigned char);
16423 int vec_all_gt (vector unsigned char, vector bool char);
16424 int vec_all_gt (vector unsigned char, vector unsigned char);
16425 int vec_all_gt (vector bool char, vector signed char);
16426 int vec_all_gt (vector signed char, vector bool char);
16427 int vec_all_gt (vector signed char, vector signed char);
16428 int vec_all_gt (vector bool short, vector unsigned short);
16429 int vec_all_gt (vector unsigned short, vector bool short);
16430 int vec_all_gt (vector unsigned short, vector unsigned short);
16431 int vec_all_gt (vector bool short, vector signed short);
16432 int vec_all_gt (vector signed short, vector bool short);
16433 int vec_all_gt (vector signed short, vector signed short);
16434 int vec_all_gt (vector bool int, vector unsigned int);
16435 int vec_all_gt (vector unsigned int, vector bool int);
16436 int vec_all_gt (vector unsigned int, vector unsigned int);
16437 int vec_all_gt (vector bool int, vector signed int);
16438 int vec_all_gt (vector signed int, vector bool int);
16439 int vec_all_gt (vector signed int, vector signed int);
16440 int vec_all_gt (vector float, vector float);
16441
16442 int vec_all_in (vector float, vector float);
16443
16444 int vec_all_le (vector bool char, vector unsigned char);
16445 int vec_all_le (vector unsigned char, vector bool char);
16446 int vec_all_le (vector unsigned char, vector unsigned char);
16447 int vec_all_le (vector bool char, vector signed char);
16448 int vec_all_le (vector signed char, vector bool char);
16449 int vec_all_le (vector signed char, vector signed char);
16450 int vec_all_le (vector bool short, vector unsigned short);
16451 int vec_all_le (vector unsigned short, vector bool short);
16452 int vec_all_le (vector unsigned short, vector unsigned short);
16453 int vec_all_le (vector bool short, vector signed short);
16454 int vec_all_le (vector signed short, vector bool short);
16455 int vec_all_le (vector signed short, vector signed short);
16456 int vec_all_le (vector bool int, vector unsigned int);
16457 int vec_all_le (vector unsigned int, vector bool int);
16458 int vec_all_le (vector unsigned int, vector unsigned int);
16459 int vec_all_le (vector bool int, vector signed int);
16460 int vec_all_le (vector signed int, vector bool int);
16461 int vec_all_le (vector signed int, vector signed int);
16462 int vec_all_le (vector float, vector float);
16463
16464 int vec_all_lt (vector bool char, vector unsigned char);
16465 int vec_all_lt (vector unsigned char, vector bool char);
16466 int vec_all_lt (vector unsigned char, vector unsigned char);
16467 int vec_all_lt (vector bool char, vector signed char);
16468 int vec_all_lt (vector signed char, vector bool char);
16469 int vec_all_lt (vector signed char, vector signed char);
16470 int vec_all_lt (vector bool short, vector unsigned short);
16471 int vec_all_lt (vector unsigned short, vector bool short);
16472 int vec_all_lt (vector unsigned short, vector unsigned short);
16473 int vec_all_lt (vector bool short, vector signed short);
16474 int vec_all_lt (vector signed short, vector bool short);
16475 int vec_all_lt (vector signed short, vector signed short);
16476 int vec_all_lt (vector bool int, vector unsigned int);
16477 int vec_all_lt (vector unsigned int, vector bool int);
16478 int vec_all_lt (vector unsigned int, vector unsigned int);
16479 int vec_all_lt (vector bool int, vector signed int);
16480 int vec_all_lt (vector signed int, vector bool int);
16481 int vec_all_lt (vector signed int, vector signed int);
16482 int vec_all_lt (vector float, vector float);
16483
16484 int vec_all_nan (vector float);
16485
16486 int vec_all_ne (vector signed char, vector bool char);
16487 int vec_all_ne (vector signed char, vector signed char);
16488 int vec_all_ne (vector unsigned char, vector bool char);
16489 int vec_all_ne (vector unsigned char, vector unsigned char);
16490 int vec_all_ne (vector bool char, vector bool char);
16491 int vec_all_ne (vector bool char, vector unsigned char);
16492 int vec_all_ne (vector bool char, vector signed char);
16493 int vec_all_ne (vector signed short, vector bool short);
16494 int vec_all_ne (vector signed short, vector signed short);
16495 int vec_all_ne (vector unsigned short, vector bool short);
16496 int vec_all_ne (vector unsigned short, vector unsigned short);
16497 int vec_all_ne (vector bool short, vector bool short);
16498 int vec_all_ne (vector bool short, vector unsigned short);
16499 int vec_all_ne (vector bool short, vector signed short);
16500 int vec_all_ne (vector pixel, vector pixel);
16501 int vec_all_ne (vector signed int, vector bool int);
16502 int vec_all_ne (vector signed int, vector signed int);
16503 int vec_all_ne (vector unsigned int, vector bool int);
16504 int vec_all_ne (vector unsigned int, vector unsigned int);
16505 int vec_all_ne (vector bool int, vector bool int);
16506 int vec_all_ne (vector bool int, vector unsigned int);
16507 int vec_all_ne (vector bool int, vector signed int);
16508 int vec_all_ne (vector float, vector float);
16509
16510 int vec_all_nge (vector float, vector float);
16511
16512 int vec_all_ngt (vector float, vector float);
16513
16514 int vec_all_nle (vector float, vector float);
16515
16516 int vec_all_nlt (vector float, vector float);
16517
16518 int vec_all_numeric (vector float);
16519
16520 int vec_any_eq (vector signed char, vector bool char);
16521 int vec_any_eq (vector signed char, vector signed char);
16522 int vec_any_eq (vector unsigned char, vector bool char);
16523 int vec_any_eq (vector unsigned char, vector unsigned char);
16524 int vec_any_eq (vector bool char, vector bool char);
16525 int vec_any_eq (vector bool char, vector unsigned char);
16526 int vec_any_eq (vector bool char, vector signed char);
16527 int vec_any_eq (vector signed short, vector bool short);
16528 int vec_any_eq (vector signed short, vector signed short);
16529 int vec_any_eq (vector unsigned short, vector bool short);
16530 int vec_any_eq (vector unsigned short, vector unsigned short);
16531 int vec_any_eq (vector bool short, vector bool short);
16532 int vec_any_eq (vector bool short, vector unsigned short);
16533 int vec_any_eq (vector bool short, vector signed short);
16534 int vec_any_eq (vector pixel, vector pixel);
16535 int vec_any_eq (vector signed int, vector bool int);
16536 int vec_any_eq (vector signed int, vector signed int);
16537 int vec_any_eq (vector unsigned int, vector bool int);
16538 int vec_any_eq (vector unsigned int, vector unsigned int);
16539 int vec_any_eq (vector bool int, vector bool int);
16540 int vec_any_eq (vector bool int, vector unsigned int);
16541 int vec_any_eq (vector bool int, vector signed int);
16542 int vec_any_eq (vector float, vector float);
16543
16544 int vec_any_ge (vector signed char, vector bool char);
16545 int vec_any_ge (vector unsigned char, vector bool char);
16546 int vec_any_ge (vector unsigned char, vector unsigned char);
16547 int vec_any_ge (vector signed char, vector signed char);
16548 int vec_any_ge (vector bool char, vector unsigned char);
16549 int vec_any_ge (vector bool char, vector signed char);
16550 int vec_any_ge (vector unsigned short, vector bool short);
16551 int vec_any_ge (vector unsigned short, vector unsigned short);
16552 int vec_any_ge (vector signed short, vector signed short);
16553 int vec_any_ge (vector signed short, vector bool short);
16554 int vec_any_ge (vector bool short, vector unsigned short);
16555 int vec_any_ge (vector bool short, vector signed short);
16556 int vec_any_ge (vector signed int, vector bool int);
16557 int vec_any_ge (vector unsigned int, vector bool int);
16558 int vec_any_ge (vector unsigned int, vector unsigned int);
16559 int vec_any_ge (vector signed int, vector signed int);
16560 int vec_any_ge (vector bool int, vector unsigned int);
16561 int vec_any_ge (vector bool int, vector signed int);
16562 int vec_any_ge (vector float, vector float);
16563
16564 int vec_any_gt (vector bool char, vector unsigned char);
16565 int vec_any_gt (vector unsigned char, vector bool char);
16566 int vec_any_gt (vector unsigned char, vector unsigned char);
16567 int vec_any_gt (vector bool char, vector signed char);
16568 int vec_any_gt (vector signed char, vector bool char);
16569 int vec_any_gt (vector signed char, vector signed char);
16570 int vec_any_gt (vector bool short, vector unsigned short);
16571 int vec_any_gt (vector unsigned short, vector bool short);
16572 int vec_any_gt (vector unsigned short, vector unsigned short);
16573 int vec_any_gt (vector bool short, vector signed short);
16574 int vec_any_gt (vector signed short, vector bool short);
16575 int vec_any_gt (vector signed short, vector signed short);
16576 int vec_any_gt (vector bool int, vector unsigned int);
16577 int vec_any_gt (vector unsigned int, vector bool int);
16578 int vec_any_gt (vector unsigned int, vector unsigned int);
16579 int vec_any_gt (vector bool int, vector signed int);
16580 int vec_any_gt (vector signed int, vector bool int);
16581 int vec_any_gt (vector signed int, vector signed int);
16582 int vec_any_gt (vector float, vector float);
16583
16584 int vec_any_le (vector bool char, vector unsigned char);
16585 int vec_any_le (vector unsigned char, vector bool char);
16586 int vec_any_le (vector unsigned char, vector unsigned char);
16587 int vec_any_le (vector bool char, vector signed char);
16588 int vec_any_le (vector signed char, vector bool char);
16589 int vec_any_le (vector signed char, vector signed char);
16590 int vec_any_le (vector bool short, vector unsigned short);
16591 int vec_any_le (vector unsigned short, vector bool short);
16592 int vec_any_le (vector unsigned short, vector unsigned short);
16593 int vec_any_le (vector bool short, vector signed short);
16594 int vec_any_le (vector signed short, vector bool short);
16595 int vec_any_le (vector signed short, vector signed short);
16596 int vec_any_le (vector bool int, vector unsigned int);
16597 int vec_any_le (vector unsigned int, vector bool int);
16598 int vec_any_le (vector unsigned int, vector unsigned int);
16599 int vec_any_le (vector bool int, vector signed int);
16600 int vec_any_le (vector signed int, vector bool int);
16601 int vec_any_le (vector signed int, vector signed int);
16602 int vec_any_le (vector float, vector float);
16603
16604 int vec_any_lt (vector bool char, vector unsigned char);
16605 int vec_any_lt (vector unsigned char, vector bool char);
16606 int vec_any_lt (vector unsigned char, vector unsigned char);
16607 int vec_any_lt (vector bool char, vector signed char);
16608 int vec_any_lt (vector signed char, vector bool char);
16609 int vec_any_lt (vector signed char, vector signed char);
16610 int vec_any_lt (vector bool short, vector unsigned short);
16611 int vec_any_lt (vector unsigned short, vector bool short);
16612 int vec_any_lt (vector unsigned short, vector unsigned short);
16613 int vec_any_lt (vector bool short, vector signed short);
16614 int vec_any_lt (vector signed short, vector bool short);
16615 int vec_any_lt (vector signed short, vector signed short);
16616 int vec_any_lt (vector bool int, vector unsigned int);
16617 int vec_any_lt (vector unsigned int, vector bool int);
16618 int vec_any_lt (vector unsigned int, vector unsigned int);
16619 int vec_any_lt (vector bool int, vector signed int);
16620 int vec_any_lt (vector signed int, vector bool int);
16621 int vec_any_lt (vector signed int, vector signed int);
16622 int vec_any_lt (vector float, vector float);
16623
16624 int vec_any_nan (vector float);
16625
16626 int vec_any_ne (vector signed char, vector bool char);
16627 int vec_any_ne (vector signed char, vector signed char);
16628 int vec_any_ne (vector unsigned char, vector bool char);
16629 int vec_any_ne (vector unsigned char, vector unsigned char);
16630 int vec_any_ne (vector bool char, vector bool char);
16631 int vec_any_ne (vector bool char, vector unsigned char);
16632 int vec_any_ne (vector bool char, vector signed char);
16633 int vec_any_ne (vector signed short, vector bool short);
16634 int vec_any_ne (vector signed short, vector signed short);
16635 int vec_any_ne (vector unsigned short, vector bool short);
16636 int vec_any_ne (vector unsigned short, vector unsigned short);
16637 int vec_any_ne (vector bool short, vector bool short);
16638 int vec_any_ne (vector bool short, vector unsigned short);
16639 int vec_any_ne (vector bool short, vector signed short);
16640 int vec_any_ne (vector pixel, vector pixel);
16641 int vec_any_ne (vector signed int, vector bool int);
16642 int vec_any_ne (vector signed int, vector signed int);
16643 int vec_any_ne (vector unsigned int, vector bool int);
16644 int vec_any_ne (vector unsigned int, vector unsigned int);
16645 int vec_any_ne (vector bool int, vector bool int);
16646 int vec_any_ne (vector bool int, vector unsigned int);
16647 int vec_any_ne (vector bool int, vector signed int);
16648 int vec_any_ne (vector float, vector float);
16649
16650 int vec_any_nge (vector float, vector float);
16651
16652 int vec_any_ngt (vector float, vector float);
16653
16654 int vec_any_nle (vector float, vector float);
16655
16656 int vec_any_nlt (vector float, vector float);
16657
16658 int vec_any_numeric (vector float);
16659
16660 int vec_any_out (vector float, vector float);
16661 @end smallexample
16662
16663 If the vector/scalar (VSX) instruction set is available, the following
16664 additional functions are available:
16665
16666 @smallexample
16667 vector double vec_abs (vector double);
16668 vector double vec_add (vector double, vector double);
16669 vector double vec_and (vector double, vector double);
16670 vector double vec_and (vector double, vector bool long);
16671 vector double vec_and (vector bool long, vector double);
16672 vector long vec_and (vector long, vector long);
16673 vector long vec_and (vector long, vector bool long);
16674 vector long vec_and (vector bool long, vector long);
16675 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
16676 vector unsigned long vec_and (vector unsigned long, vector bool long);
16677 vector unsigned long vec_and (vector bool long, vector unsigned long);
16678 vector double vec_andc (vector double, vector double);
16679 vector double vec_andc (vector double, vector bool long);
16680 vector double vec_andc (vector bool long, vector double);
16681 vector long vec_andc (vector long, vector long);
16682 vector long vec_andc (vector long, vector bool long);
16683 vector long vec_andc (vector bool long, vector long);
16684 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
16685 vector unsigned long vec_andc (vector unsigned long, vector bool long);
16686 vector unsigned long vec_andc (vector bool long, vector unsigned long);
16687 vector double vec_ceil (vector double);
16688 vector bool long vec_cmpeq (vector double, vector double);
16689 vector bool long vec_cmpge (vector double, vector double);
16690 vector bool long vec_cmpgt (vector double, vector double);
16691 vector bool long vec_cmple (vector double, vector double);
16692 vector bool long vec_cmplt (vector double, vector double);
16693 vector double vec_cpsgn (vector double, vector double);
16694 vector float vec_div (vector float, vector float);
16695 vector double vec_div (vector double, vector double);
16696 vector long vec_div (vector long, vector long);
16697 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
16698 vector double vec_floor (vector double);
16699 vector double vec_ld (int, const vector double *);
16700 vector double vec_ld (int, const double *);
16701 vector double vec_ldl (int, const vector double *);
16702 vector double vec_ldl (int, const double *);
16703 vector unsigned char vec_lvsl (int, const volatile double *);
16704 vector unsigned char vec_lvsr (int, const volatile double *);
16705 vector double vec_madd (vector double, vector double, vector double);
16706 vector double vec_max (vector double, vector double);
16707 vector signed long vec_mergeh (vector signed long, vector signed long);
16708 vector signed long vec_mergeh (vector signed long, vector bool long);
16709 vector signed long vec_mergeh (vector bool long, vector signed long);
16710 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
16711 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
16712 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
16713 vector signed long vec_mergel (vector signed long, vector signed long);
16714 vector signed long vec_mergel (vector signed long, vector bool long);
16715 vector signed long vec_mergel (vector bool long, vector signed long);
16716 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
16717 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
16718 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
16719 vector double vec_min (vector double, vector double);
16720 vector float vec_msub (vector float, vector float, vector float);
16721 vector double vec_msub (vector double, vector double, vector double);
16722 vector float vec_mul (vector float, vector float);
16723 vector double vec_mul (vector double, vector double);
16724 vector long vec_mul (vector long, vector long);
16725 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
16726 vector float vec_nearbyint (vector float);
16727 vector double vec_nearbyint (vector double);
16728 vector float vec_nmadd (vector float, vector float, vector float);
16729 vector double vec_nmadd (vector double, vector double, vector double);
16730 vector double vec_nmsub (vector double, vector double, vector double);
16731 vector double vec_nor (vector double, vector double);
16732 vector long vec_nor (vector long, vector long);
16733 vector long vec_nor (vector long, vector bool long);
16734 vector long vec_nor (vector bool long, vector long);
16735 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
16736 vector unsigned long vec_nor (vector unsigned long, vector bool long);
16737 vector unsigned long vec_nor (vector bool long, vector unsigned long);
16738 vector double vec_or (vector double, vector double);
16739 vector double vec_or (vector double, vector bool long);
16740 vector double vec_or (vector bool long, vector double);
16741 vector long vec_or (vector long, vector long);
16742 vector long vec_or (vector long, vector bool long);
16743 vector long vec_or (vector bool long, vector long);
16744 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
16745 vector unsigned long vec_or (vector unsigned long, vector bool long);
16746 vector unsigned long vec_or (vector bool long, vector unsigned long);
16747 vector double vec_perm (vector double, vector double, vector unsigned char);
16748 vector long vec_perm (vector long, vector long, vector unsigned char);
16749 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
16750 vector unsigned char);
16751 vector double vec_rint (vector double);
16752 vector double vec_recip (vector double, vector double);
16753 vector double vec_rsqrt (vector double);
16754 vector double vec_rsqrte (vector double);
16755 vector double vec_sel (vector double, vector double, vector bool long);
16756 vector double vec_sel (vector double, vector double, vector unsigned long);
16757 vector long vec_sel (vector long, vector long, vector long);
16758 vector long vec_sel (vector long, vector long, vector unsigned long);
16759 vector long vec_sel (vector long, vector long, vector bool long);
16760 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
16761 vector long);
16762 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
16763 vector unsigned long);
16764 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
16765 vector bool long);
16766 vector double vec_splats (double);
16767 vector signed long vec_splats (signed long);
16768 vector unsigned long vec_splats (unsigned long);
16769 vector float vec_sqrt (vector float);
16770 vector double vec_sqrt (vector double);
16771 void vec_st (vector double, int, vector double *);
16772 void vec_st (vector double, int, double *);
16773 vector double vec_sub (vector double, vector double);
16774 vector double vec_trunc (vector double);
16775 vector double vec_xl (int, vector double *);
16776 vector double vec_xl (int, double *);
16777 vector long long vec_xl (int, vector long long *);
16778 vector long long vec_xl (int, long long *);
16779 vector unsigned long long vec_xl (int, vector unsigned long long *);
16780 vector unsigned long long vec_xl (int, unsigned long long *);
16781 vector float vec_xl (int, vector float *);
16782 vector float vec_xl (int, float *);
16783 vector int vec_xl (int, vector int *);
16784 vector int vec_xl (int, int *);
16785 vector unsigned int vec_xl (int, vector unsigned int *);
16786 vector unsigned int vec_xl (int, unsigned int *);
16787 vector double vec_xor (vector double, vector double);
16788 vector double vec_xor (vector double, vector bool long);
16789 vector double vec_xor (vector bool long, vector double);
16790 vector long vec_xor (vector long, vector long);
16791 vector long vec_xor (vector long, vector bool long);
16792 vector long vec_xor (vector bool long, vector long);
16793 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
16794 vector unsigned long vec_xor (vector unsigned long, vector bool long);
16795 vector unsigned long vec_xor (vector bool long, vector unsigned long);
16796 void vec_xst (vector double, int, vector double *);
16797 void vec_xst (vector double, int, double *);
16798 void vec_xst (vector long long, int, vector long long *);
16799 void vec_xst (vector long long, int, long long *);
16800 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
16801 void vec_xst (vector unsigned long long, int, unsigned long long *);
16802 void vec_xst (vector float, int, vector float *);
16803 void vec_xst (vector float, int, float *);
16804 void vec_xst (vector int, int, vector int *);
16805 void vec_xst (vector int, int, int *);
16806 void vec_xst (vector unsigned int, int, vector unsigned int *);
16807 void vec_xst (vector unsigned int, int, unsigned int *);
16808 int vec_all_eq (vector double, vector double);
16809 int vec_all_ge (vector double, vector double);
16810 int vec_all_gt (vector double, vector double);
16811 int vec_all_le (vector double, vector double);
16812 int vec_all_lt (vector double, vector double);
16813 int vec_all_nan (vector double);
16814 int vec_all_ne (vector double, vector double);
16815 int vec_all_nge (vector double, vector double);
16816 int vec_all_ngt (vector double, vector double);
16817 int vec_all_nle (vector double, vector double);
16818 int vec_all_nlt (vector double, vector double);
16819 int vec_all_numeric (vector double);
16820 int vec_any_eq (vector double, vector double);
16821 int vec_any_ge (vector double, vector double);
16822 int vec_any_gt (vector double, vector double);
16823 int vec_any_le (vector double, vector double);
16824 int vec_any_lt (vector double, vector double);
16825 int vec_any_nan (vector double);
16826 int vec_any_ne (vector double, vector double);
16827 int vec_any_nge (vector double, vector double);
16828 int vec_any_ngt (vector double, vector double);
16829 int vec_any_nle (vector double, vector double);
16830 int vec_any_nlt (vector double, vector double);
16831 int vec_any_numeric (vector double);
16832
16833 vector double vec_vsx_ld (int, const vector double *);
16834 vector double vec_vsx_ld (int, const double *);
16835 vector float vec_vsx_ld (int, const vector float *);
16836 vector float vec_vsx_ld (int, const float *);
16837 vector bool int vec_vsx_ld (int, const vector bool int *);
16838 vector signed int vec_vsx_ld (int, const vector signed int *);
16839 vector signed int vec_vsx_ld (int, const int *);
16840 vector signed int vec_vsx_ld (int, const long *);
16841 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
16842 vector unsigned int vec_vsx_ld (int, const unsigned int *);
16843 vector unsigned int vec_vsx_ld (int, const unsigned long *);
16844 vector bool short vec_vsx_ld (int, const vector bool short *);
16845 vector pixel vec_vsx_ld (int, const vector pixel *);
16846 vector signed short vec_vsx_ld (int, const vector signed short *);
16847 vector signed short vec_vsx_ld (int, const short *);
16848 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
16849 vector unsigned short vec_vsx_ld (int, const unsigned short *);
16850 vector bool char vec_vsx_ld (int, const vector bool char *);
16851 vector signed char vec_vsx_ld (int, const vector signed char *);
16852 vector signed char vec_vsx_ld (int, const signed char *);
16853 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
16854 vector unsigned char vec_vsx_ld (int, const unsigned char *);
16855
16856 void vec_vsx_st (vector double, int, vector double *);
16857 void vec_vsx_st (vector double, int, double *);
16858 void vec_vsx_st (vector float, int, vector float *);
16859 void vec_vsx_st (vector float, int, float *);
16860 void vec_vsx_st (vector signed int, int, vector signed int *);
16861 void vec_vsx_st (vector signed int, int, int *);
16862 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
16863 void vec_vsx_st (vector unsigned int, int, unsigned int *);
16864 void vec_vsx_st (vector bool int, int, vector bool int *);
16865 void vec_vsx_st (vector bool int, int, unsigned int *);
16866 void vec_vsx_st (vector bool int, int, int *);
16867 void vec_vsx_st (vector signed short, int, vector signed short *);
16868 void vec_vsx_st (vector signed short, int, short *);
16869 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
16870 void vec_vsx_st (vector unsigned short, int, unsigned short *);
16871 void vec_vsx_st (vector bool short, int, vector bool short *);
16872 void vec_vsx_st (vector bool short, int, unsigned short *);
16873 void vec_vsx_st (vector pixel, int, vector pixel *);
16874 void vec_vsx_st (vector pixel, int, unsigned short *);
16875 void vec_vsx_st (vector pixel, int, short *);
16876 void vec_vsx_st (vector bool short, int, short *);
16877 void vec_vsx_st (vector signed char, int, vector signed char *);
16878 void vec_vsx_st (vector signed char, int, signed char *);
16879 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
16880 void vec_vsx_st (vector unsigned char, int, unsigned char *);
16881 void vec_vsx_st (vector bool char, int, vector bool char *);
16882 void vec_vsx_st (vector bool char, int, unsigned char *);
16883 void vec_vsx_st (vector bool char, int, signed char *);
16884
16885 vector double vec_xxpermdi (vector double, vector double, int);
16886 vector float vec_xxpermdi (vector float, vector float, int);
16887 vector long long vec_xxpermdi (vector long long, vector long long, int);
16888 vector unsigned long long vec_xxpermdi (vector unsigned long long,
16889 vector unsigned long long, int);
16890 vector int vec_xxpermdi (vector int, vector int, int);
16891 vector unsigned int vec_xxpermdi (vector unsigned int,
16892 vector unsigned int, int);
16893 vector short vec_xxpermdi (vector short, vector short, int);
16894 vector unsigned short vec_xxpermdi (vector unsigned short,
16895 vector unsigned short, int);
16896 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
16897 vector unsigned char vec_xxpermdi (vector unsigned char,
16898 vector unsigned char, int);
16899
16900 vector double vec_xxsldi (vector double, vector double, int);
16901 vector float vec_xxsldi (vector float, vector float, int);
16902 vector long long vec_xxsldi (vector long long, vector long long, int);
16903 vector unsigned long long vec_xxsldi (vector unsigned long long,
16904 vector unsigned long long, int);
16905 vector int vec_xxsldi (vector int, vector int, int);
16906 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
16907 vector short vec_xxsldi (vector short, vector short, int);
16908 vector unsigned short vec_xxsldi (vector unsigned short,
16909 vector unsigned short, int);
16910 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
16911 vector unsigned char vec_xxsldi (vector unsigned char,
16912 vector unsigned char, int);
16913 @end smallexample
16914
16915 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
16916 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
16917 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
16918 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
16919 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
16920
16921 If the ISA 2.07 additions to the vector/scalar (power8-vector)
16922 instruction set are available, the following additional functions are
16923 available for both 32-bit and 64-bit targets. For 64-bit targets, you
16924 can use @var{vector long} instead of @var{vector long long},
16925 @var{vector bool long} instead of @var{vector bool long long}, and
16926 @var{vector unsigned long} instead of @var{vector unsigned long long}.
16927
16928 @smallexample
16929 vector long long vec_abs (vector long long);
16930
16931 vector long long vec_add (vector long long, vector long long);
16932 vector unsigned long long vec_add (vector unsigned long long,
16933 vector unsigned long long);
16934
16935 int vec_all_eq (vector long long, vector long long);
16936 int vec_all_eq (vector unsigned long long, vector unsigned long long);
16937 int vec_all_ge (vector long long, vector long long);
16938 int vec_all_ge (vector unsigned long long, vector unsigned long long);
16939 int vec_all_gt (vector long long, vector long long);
16940 int vec_all_gt (vector unsigned long long, vector unsigned long long);
16941 int vec_all_le (vector long long, vector long long);
16942 int vec_all_le (vector unsigned long long, vector unsigned long long);
16943 int vec_all_lt (vector long long, vector long long);
16944 int vec_all_lt (vector unsigned long long, vector unsigned long long);
16945 int vec_all_ne (vector long long, vector long long);
16946 int vec_all_ne (vector unsigned long long, vector unsigned long long);
16947
16948 int vec_any_eq (vector long long, vector long long);
16949 int vec_any_eq (vector unsigned long long, vector unsigned long long);
16950 int vec_any_ge (vector long long, vector long long);
16951 int vec_any_ge (vector unsigned long long, vector unsigned long long);
16952 int vec_any_gt (vector long long, vector long long);
16953 int vec_any_gt (vector unsigned long long, vector unsigned long long);
16954 int vec_any_le (vector long long, vector long long);
16955 int vec_any_le (vector unsigned long long, vector unsigned long long);
16956 int vec_any_lt (vector long long, vector long long);
16957 int vec_any_lt (vector unsigned long long, vector unsigned long long);
16958 int vec_any_ne (vector long long, vector long long);
16959 int vec_any_ne (vector unsigned long long, vector unsigned long long);
16960
16961 vector long long vec_eqv (vector long long, vector long long);
16962 vector long long vec_eqv (vector bool long long, vector long long);
16963 vector long long vec_eqv (vector long long, vector bool long long);
16964 vector unsigned long long vec_eqv (vector unsigned long long,
16965 vector unsigned long long);
16966 vector unsigned long long vec_eqv (vector bool long long,
16967 vector unsigned long long);
16968 vector unsigned long long vec_eqv (vector unsigned long long,
16969 vector bool long long);
16970 vector int vec_eqv (vector int, vector int);
16971 vector int vec_eqv (vector bool int, vector int);
16972 vector int vec_eqv (vector int, vector bool int);
16973 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
16974 vector unsigned int vec_eqv (vector bool unsigned int,
16975 vector unsigned int);
16976 vector unsigned int vec_eqv (vector unsigned int,
16977 vector bool unsigned int);
16978 vector short vec_eqv (vector short, vector short);
16979 vector short vec_eqv (vector bool short, vector short);
16980 vector short vec_eqv (vector short, vector bool short);
16981 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
16982 vector unsigned short vec_eqv (vector bool unsigned short,
16983 vector unsigned short);
16984 vector unsigned short vec_eqv (vector unsigned short,
16985 vector bool unsigned short);
16986 vector signed char vec_eqv (vector signed char, vector signed char);
16987 vector signed char vec_eqv (vector bool signed char, vector signed char);
16988 vector signed char vec_eqv (vector signed char, vector bool signed char);
16989 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
16990 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
16991 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
16992
16993 vector long long vec_max (vector long long, vector long long);
16994 vector unsigned long long vec_max (vector unsigned long long,
16995 vector unsigned long long);
16996
16997 vector signed int vec_mergee (vector signed int, vector signed int);
16998 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
16999 vector bool int vec_mergee (vector bool int, vector bool int);
17000
17001 vector signed int vec_mergeo (vector signed int, vector signed int);
17002 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
17003 vector bool int vec_mergeo (vector bool int, vector bool int);
17004
17005 vector long long vec_min (vector long long, vector long long);
17006 vector unsigned long long vec_min (vector unsigned long long,
17007 vector unsigned long long);
17008
17009 vector long long vec_nand (vector long long, vector long long);
17010 vector long long vec_nand (vector bool long long, vector long long);
17011 vector long long vec_nand (vector long long, vector bool long long);
17012 vector unsigned long long vec_nand (vector unsigned long long,
17013 vector unsigned long long);
17014 vector unsigned long long vec_nand (vector bool long long,
17015 vector unsigned long long);
17016 vector unsigned long long vec_nand (vector unsigned long long,
17017 vector bool long long);
17018 vector int vec_nand (vector int, vector int);
17019 vector int vec_nand (vector bool int, vector int);
17020 vector int vec_nand (vector int, vector bool int);
17021 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
17022 vector unsigned int vec_nand (vector bool unsigned int,
17023 vector unsigned int);
17024 vector unsigned int vec_nand (vector unsigned int,
17025 vector bool unsigned int);
17026 vector short vec_nand (vector short, vector short);
17027 vector short vec_nand (vector bool short, vector short);
17028 vector short vec_nand (vector short, vector bool short);
17029 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
17030 vector unsigned short vec_nand (vector bool unsigned short,
17031 vector unsigned short);
17032 vector unsigned short vec_nand (vector unsigned short,
17033 vector bool unsigned short);
17034 vector signed char vec_nand (vector signed char, vector signed char);
17035 vector signed char vec_nand (vector bool signed char, vector signed char);
17036 vector signed char vec_nand (vector signed char, vector bool signed char);
17037 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
17038 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
17039 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
17040
17041 vector long long vec_orc (vector long long, vector long long);
17042 vector long long vec_orc (vector bool long long, vector long long);
17043 vector long long vec_orc (vector long long, vector bool long long);
17044 vector unsigned long long vec_orc (vector unsigned long long,
17045 vector unsigned long long);
17046 vector unsigned long long vec_orc (vector bool long long,
17047 vector unsigned long long);
17048 vector unsigned long long vec_orc (vector unsigned long long,
17049 vector bool long long);
17050 vector int vec_orc (vector int, vector int);
17051 vector int vec_orc (vector bool int, vector int);
17052 vector int vec_orc (vector int, vector bool int);
17053 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
17054 vector unsigned int vec_orc (vector bool unsigned int,
17055 vector unsigned int);
17056 vector unsigned int vec_orc (vector unsigned int,
17057 vector bool unsigned int);
17058 vector short vec_orc (vector short, vector short);
17059 vector short vec_orc (vector bool short, vector short);
17060 vector short vec_orc (vector short, vector bool short);
17061 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
17062 vector unsigned short vec_orc (vector bool unsigned short,
17063 vector unsigned short);
17064 vector unsigned short vec_orc (vector unsigned short,
17065 vector bool unsigned short);
17066 vector signed char vec_orc (vector signed char, vector signed char);
17067 vector signed char vec_orc (vector bool signed char, vector signed char);
17068 vector signed char vec_orc (vector signed char, vector bool signed char);
17069 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
17070 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
17071 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
17072
17073 vector int vec_pack (vector long long, vector long long);
17074 vector unsigned int vec_pack (vector unsigned long long,
17075 vector unsigned long long);
17076 vector bool int vec_pack (vector bool long long, vector bool long long);
17077
17078 vector int vec_packs (vector long long, vector long long);
17079 vector unsigned int vec_packs (vector unsigned long long,
17080 vector unsigned long long);
17081
17082 vector unsigned int vec_packsu (vector long long, vector long long);
17083 vector unsigned int vec_packsu (vector unsigned long long,
17084 vector unsigned long long);
17085
17086 vector long long vec_rl (vector long long,
17087 vector unsigned long long);
17088 vector long long vec_rl (vector unsigned long long,
17089 vector unsigned long long);
17090
17091 vector long long vec_sl (vector long long, vector unsigned long long);
17092 vector long long vec_sl (vector unsigned long long,
17093 vector unsigned long long);
17094
17095 vector long long vec_sr (vector long long, vector unsigned long long);
17096 vector unsigned long long char vec_sr (vector unsigned long long,
17097 vector unsigned long long);
17098
17099 vector long long vec_sra (vector long long, vector unsigned long long);
17100 vector unsigned long long vec_sra (vector unsigned long long,
17101 vector unsigned long long);
17102
17103 vector long long vec_sub (vector long long, vector long long);
17104 vector unsigned long long vec_sub (vector unsigned long long,
17105 vector unsigned long long);
17106
17107 vector long long vec_unpackh (vector int);
17108 vector unsigned long long vec_unpackh (vector unsigned int);
17109
17110 vector long long vec_unpackl (vector int);
17111 vector unsigned long long vec_unpackl (vector unsigned int);
17112
17113 vector long long vec_vaddudm (vector long long, vector long long);
17114 vector long long vec_vaddudm (vector bool long long, vector long long);
17115 vector long long vec_vaddudm (vector long long, vector bool long long);
17116 vector unsigned long long vec_vaddudm (vector unsigned long long,
17117 vector unsigned long long);
17118 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
17119 vector unsigned long long);
17120 vector unsigned long long vec_vaddudm (vector unsigned long long,
17121 vector bool unsigned long long);
17122
17123 vector long long vec_vbpermq (vector signed char, vector signed char);
17124 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
17125
17126 vector long long vec_cntlz (vector long long);
17127 vector unsigned long long vec_cntlz (vector unsigned long long);
17128 vector int vec_cntlz (vector int);
17129 vector unsigned int vec_cntlz (vector int);
17130 vector short vec_cntlz (vector short);
17131 vector unsigned short vec_cntlz (vector unsigned short);
17132 vector signed char vec_cntlz (vector signed char);
17133 vector unsigned char vec_cntlz (vector unsigned char);
17134
17135 vector long long vec_vclz (vector long long);
17136 vector unsigned long long vec_vclz (vector unsigned long long);
17137 vector int vec_vclz (vector int);
17138 vector unsigned int vec_vclz (vector int);
17139 vector short vec_vclz (vector short);
17140 vector unsigned short vec_vclz (vector unsigned short);
17141 vector signed char vec_vclz (vector signed char);
17142 vector unsigned char vec_vclz (vector unsigned char);
17143
17144 vector signed char vec_vclzb (vector signed char);
17145 vector unsigned char vec_vclzb (vector unsigned char);
17146
17147 vector long long vec_vclzd (vector long long);
17148 vector unsigned long long vec_vclzd (vector unsigned long long);
17149
17150 vector short vec_vclzh (vector short);
17151 vector unsigned short vec_vclzh (vector unsigned short);
17152
17153 vector int vec_vclzw (vector int);
17154 vector unsigned int vec_vclzw (vector int);
17155
17156 vector signed char vec_vgbbd (vector signed char);
17157 vector unsigned char vec_vgbbd (vector unsigned char);
17158
17159 vector long long vec_vmaxsd (vector long long, vector long long);
17160
17161 vector unsigned long long vec_vmaxud (vector unsigned long long,
17162 unsigned vector long long);
17163
17164 vector long long vec_vminsd (vector long long, vector long long);
17165
17166 vector unsigned long long vec_vminud (vector long long,
17167 vector long long);
17168
17169 vector int vec_vpksdss (vector long long, vector long long);
17170 vector unsigned int vec_vpksdss (vector long long, vector long long);
17171
17172 vector unsigned int vec_vpkudus (vector unsigned long long,
17173 vector unsigned long long);
17174
17175 vector int vec_vpkudum (vector long long, vector long long);
17176 vector unsigned int vec_vpkudum (vector unsigned long long,
17177 vector unsigned long long);
17178 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
17179
17180 vector long long vec_vpopcnt (vector long long);
17181 vector unsigned long long vec_vpopcnt (vector unsigned long long);
17182 vector int vec_vpopcnt (vector int);
17183 vector unsigned int vec_vpopcnt (vector int);
17184 vector short vec_vpopcnt (vector short);
17185 vector unsigned short vec_vpopcnt (vector unsigned short);
17186 vector signed char vec_vpopcnt (vector signed char);
17187 vector unsigned char vec_vpopcnt (vector unsigned char);
17188
17189 vector signed char vec_vpopcntb (vector signed char);
17190 vector unsigned char vec_vpopcntb (vector unsigned char);
17191
17192 vector long long vec_vpopcntd (vector long long);
17193 vector unsigned long long vec_vpopcntd (vector unsigned long long);
17194
17195 vector short vec_vpopcnth (vector short);
17196 vector unsigned short vec_vpopcnth (vector unsigned short);
17197
17198 vector int vec_vpopcntw (vector int);
17199 vector unsigned int vec_vpopcntw (vector int);
17200
17201 vector long long vec_vrld (vector long long, vector unsigned long long);
17202 vector unsigned long long vec_vrld (vector unsigned long long,
17203 vector unsigned long long);
17204
17205 vector long long vec_vsld (vector long long, vector unsigned long long);
17206 vector long long vec_vsld (vector unsigned long long,
17207 vector unsigned long long);
17208
17209 vector long long vec_vsrad (vector long long, vector unsigned long long);
17210 vector unsigned long long vec_vsrad (vector unsigned long long,
17211 vector unsigned long long);
17212
17213 vector long long vec_vsrd (vector long long, vector unsigned long long);
17214 vector unsigned long long char vec_vsrd (vector unsigned long long,
17215 vector unsigned long long);
17216
17217 vector long long vec_vsubudm (vector long long, vector long long);
17218 vector long long vec_vsubudm (vector bool long long, vector long long);
17219 vector long long vec_vsubudm (vector long long, vector bool long long);
17220 vector unsigned long long vec_vsubudm (vector unsigned long long,
17221 vector unsigned long long);
17222 vector unsigned long long vec_vsubudm (vector bool long long,
17223 vector unsigned long long);
17224 vector unsigned long long vec_vsubudm (vector unsigned long long,
17225 vector bool long long);
17226
17227 vector long long vec_vupkhsw (vector int);
17228 vector unsigned long long vec_vupkhsw (vector unsigned int);
17229
17230 vector long long vec_vupklsw (vector int);
17231 vector unsigned long long vec_vupklsw (vector int);
17232 @end smallexample
17233
17234 If the ISA 2.07 additions to the vector/scalar (power8-vector)
17235 instruction set are available, the following additional functions are
17236 available for 64-bit targets. New vector types
17237 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
17238 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
17239 builtins.
17240
17241 The normal vector extract, and set operations work on
17242 @var{vector __int128_t} and @var{vector __uint128_t} types,
17243 but the index value must be 0.
17244
17245 @smallexample
17246 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
17247 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
17248
17249 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
17250 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
17251
17252 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
17253 vector __int128_t);
17254 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
17255 vector __uint128_t);
17256
17257 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
17258 vector __int128_t);
17259 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
17260 vector __uint128_t);
17261
17262 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
17263 vector __int128_t);
17264 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
17265 vector __uint128_t);
17266
17267 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
17268 vector __int128_t);
17269 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
17270 vector __uint128_t);
17271
17272 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
17273 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
17274
17275 __int128_t vec_vsubuqm (__int128_t, __int128_t);
17276 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
17277
17278 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
17279 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
17280 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
17281 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
17282 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
17283 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
17284 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
17285 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
17286 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
17287 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
17288 @end smallexample
17289
17290 If the ISA 3.0 additions to the vector/scalar (power9-vector)
17291 instruction set are available:
17292
17293 @smallexample
17294 vector long long vec_vctz (vector long long);
17295 vector unsigned long long vec_vctz (vector unsigned long long);
17296 vector int vec_vctz (vector int);
17297 vector unsigned int vec_vctz (vector int);
17298 vector short vec_vctz (vector short);
17299 vector unsigned short vec_vctz (vector unsigned short);
17300 vector signed char vec_vctz (vector signed char);
17301 vector unsigned char vec_vctz (vector unsigned char);
17302
17303 vector signed char vec_vctzb (vector signed char);
17304 vector unsigned char vec_vctzb (vector unsigned char);
17305
17306 vector long long vec_vctzd (vector long long);
17307 vector unsigned long long vec_vctzd (vector unsigned long long);
17308
17309 vector short vec_vctzh (vector short);
17310 vector unsigned short vec_vctzh (vector unsigned short);
17311
17312 vector int vec_vctzw (vector int);
17313 vector unsigned int vec_vctzw (vector int);
17314
17315 vector int vec_vprtyb (vector int);
17316 vector unsigned int vec_vprtyb (vector unsigned int);
17317 vector long long vec_vprtyb (vector long long);
17318 vector unsigned long long vec_vprtyb (vector unsigned long long);
17319
17320 vector int vec_vprtybw (vector int);
17321 vector unsigned int vec_vprtybw (vector unsigned int);
17322
17323 vector long long vec_vprtybd (vector long long);
17324 vector unsigned long long vec_vprtybd (vector unsigned long long);
17325 @end smallexample
17326
17327
17328 If the ISA 3.0 additions to the vector/scalar (power9-vector)
17329 instruction set are available for 64-bit targets:
17330
17331 @smallexample
17332 vector long vec_vprtyb (vector long);
17333 vector unsigned long vec_vprtyb (vector unsigned long);
17334 vector __int128_t vec_vprtyb (vector __int128_t);
17335 vector __uint128_t vec_vprtyb (vector __uint128_t);
17336
17337 vector long vec_vprtybd (vector long);
17338 vector unsigned long vec_vprtybd (vector unsigned long);
17339
17340 vector __int128_t vec_vprtybq (vector __int128_t);
17341 vector __uint128_t vec_vprtybd (vector __uint128_t);
17342 @end smallexample
17343
17344 The following built-in vector functions are available for the PowerPC family
17345 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9})
17346 or with @option{-mpower9-vector}:
17347 @smallexample
17348 __vector unsigned char
17349 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
17350 __vector unsigned char
17351 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
17352 @end smallexample
17353
17354 The @code{vec_slv} and @code{vec_srv} functions operate on
17355 all of the bytes of their @code{src} and @code{shift_distance}
17356 arguments in parallel. The behavior of the @code{vec_slv} is as if
17357 there existed a temporary array of 17 unsigned characters
17358 @code{slv_array} within which elements 0 through 15 are the same as
17359 the entries in the @code{src} array and element 16 equals 0. The
17360 result returned from the @code{vec_slv} function is a
17361 @code{__vector} of 16 unsigned characters within which element
17362 @code{i} is computed using the C expression
17363 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
17364 shift_distance[i]))},
17365 with this resulting value coerced to the @code{unsigned char} type.
17366 The behavior of the @code{vec_srv} is as if
17367 there existed a temporary array of 17 unsigned characters
17368 @code{srv_array} within which element 0 equals zero and
17369 elements 1 through 16 equal the elements 0 through 15 of
17370 the @code{src} array. The
17371 result returned from the @code{vec_srv} function is a
17372 @code{__vector} of 16 unsigned characters within which element
17373 @code{i} is computed using the C expression
17374 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
17375 (0x07 & shift_distance[i]))},
17376 with this resulting value coerced to the @code{unsigned char} type.
17377
17378 If the cryptographic instructions are enabled (@option{-mcrypto} or
17379 @option{-mcpu=power8}), the following builtins are enabled.
17380
17381 @smallexample
17382 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
17383
17384 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
17385 vector unsigned long long);
17386
17387 vector unsigned long long __builtin_crypto_vcipherlast
17388 (vector unsigned long long,
17389 vector unsigned long long);
17390
17391 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
17392 vector unsigned long long);
17393
17394 vector unsigned long long __builtin_crypto_vncipherlast
17395 (vector unsigned long long,
17396 vector unsigned long long);
17397
17398 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
17399 vector unsigned char,
17400 vector unsigned char);
17401
17402 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
17403 vector unsigned short,
17404 vector unsigned short);
17405
17406 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
17407 vector unsigned int,
17408 vector unsigned int);
17409
17410 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
17411 vector unsigned long long,
17412 vector unsigned long long);
17413
17414 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
17415 vector unsigned char);
17416
17417 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
17418 vector unsigned short);
17419
17420 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
17421 vector unsigned int);
17422
17423 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
17424 vector unsigned long long);
17425
17426 vector unsigned long long __builtin_crypto_vshasigmad
17427 (vector unsigned long long, int, int);
17428
17429 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
17430 int, int);
17431 @end smallexample
17432
17433 The second argument to the @var{__builtin_crypto_vshasigmad} and
17434 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
17435 integer that is 0 or 1. The third argument to these builtin functions
17436 must be a constant integer in the range of 0 to 15.
17437
17438 If the ISA 3.0 additions to the vector/scalar (power9-vector)
17439 instruction set are available, the following additional functions are
17440 available for both 32-bit and 64-bit targets.
17441
17442 vector short vec_xl (int, vector short *);
17443 vector short vec_xl (int, short *);
17444 vector unsigned short vec_xl (int, vector unsigned short *);
17445 vector unsigned short vec_xl (int, unsigned short *);
17446 vector char vec_xl (int, vector char *);
17447 vector char vec_xl (int, char *);
17448 vector unsigned char vec_xl (int, vector unsigned char *);
17449 vector unsigned char vec_xl (int, unsigned char *);
17450
17451 void vec_xst (vector short, int, vector short *);
17452 void vec_xst (vector short, int, short *);
17453 void vec_xst (vector unsigned short, int, vector unsigned short *);
17454 void vec_xst (vector unsigned short, int, unsigned short *);
17455 void vec_xst (vector char, int, vector char *);
17456 void vec_xst (vector char, int, char *);
17457 void vec_xst (vector unsigned char, int, vector unsigned char *);
17458 void vec_xst (vector unsigned char, int, unsigned char *);
17459
17460 @node PowerPC Hardware Transactional Memory Built-in Functions
17461 @subsection PowerPC Hardware Transactional Memory Built-in Functions
17462 GCC provides two interfaces for accessing the Hardware Transactional
17463 Memory (HTM) instructions available on some of the PowerPC family
17464 of processors (eg, POWER8). The two interfaces come in a low level
17465 interface, consisting of built-in functions specific to PowerPC and a
17466 higher level interface consisting of inline functions that are common
17467 between PowerPC and S/390.
17468
17469 @subsubsection PowerPC HTM Low Level Built-in Functions
17470
17471 The following low level built-in functions are available with
17472 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
17473 They all generate the machine instruction that is part of the name.
17474
17475 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
17476 the full 4-bit condition register value set by their associated hardware
17477 instruction. The header file @code{htmintrin.h} defines some macros that can
17478 be used to decipher the return value. The @code{__builtin_tbegin} builtin
17479 returns a simple true or false value depending on whether a transaction was
17480 successfully started or not. The arguments of the builtins match exactly the
17481 type and order of the associated hardware instruction's operands, except for
17482 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
17483 Refer to the ISA manual for a description of each instruction's operands.
17484
17485 @smallexample
17486 unsigned int __builtin_tbegin (unsigned int)
17487 unsigned int __builtin_tend (unsigned int)
17488
17489 unsigned int __builtin_tabort (unsigned int)
17490 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
17491 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
17492 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
17493 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
17494
17495 unsigned int __builtin_tcheck (void)
17496 unsigned int __builtin_treclaim (unsigned int)
17497 unsigned int __builtin_trechkpt (void)
17498 unsigned int __builtin_tsr (unsigned int)
17499 @end smallexample
17500
17501 In addition to the above HTM built-ins, we have added built-ins for
17502 some common extended mnemonics of the HTM instructions:
17503
17504 @smallexample
17505 unsigned int __builtin_tendall (void)
17506 unsigned int __builtin_tresume (void)
17507 unsigned int __builtin_tsuspend (void)
17508 @end smallexample
17509
17510 Note that the semantics of the above HTM builtins are required to mimic
17511 the locking semantics used for critical sections. Builtins that are used
17512 to create a new transaction or restart a suspended transaction must have
17513 lock acquisition like semantics while those builtins that end or suspend a
17514 transaction must have lock release like semantics. Specifically, this must
17515 mimic lock semantics as specified by C++11, for example: Lock acquisition is
17516 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
17517 that returns 0, and lock release is as-if an execution of
17518 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
17519 implicit implementation-defined lock used for all transactions. The HTM
17520 instructions associated with with the builtins inherently provide the
17521 correct acquisition and release hardware barriers required. However,
17522 the compiler must also be prohibited from moving loads and stores across
17523 the builtins in a way that would violate their semantics. This has been
17524 accomplished by adding memory barriers to the associated HTM instructions
17525 (which is a conservative approach to provide acquire and release semantics).
17526 Earlier versions of the compiler did not treat the HTM instructions as
17527 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
17528 be used to determine whether the current compiler treats HTM instructions
17529 as memory barriers or not. This allows the user to explicitly add memory
17530 barriers to their code when using an older version of the compiler.
17531
17532 The following set of built-in functions are available to gain access
17533 to the HTM specific special purpose registers.
17534
17535 @smallexample
17536 unsigned long __builtin_get_texasr (void)
17537 unsigned long __builtin_get_texasru (void)
17538 unsigned long __builtin_get_tfhar (void)
17539 unsigned long __builtin_get_tfiar (void)
17540
17541 void __builtin_set_texasr (unsigned long);
17542 void __builtin_set_texasru (unsigned long);
17543 void __builtin_set_tfhar (unsigned long);
17544 void __builtin_set_tfiar (unsigned long);
17545 @end smallexample
17546
17547 Example usage of these low level built-in functions may look like:
17548
17549 @smallexample
17550 #include <htmintrin.h>
17551
17552 int num_retries = 10;
17553
17554 while (1)
17555 @{
17556 if (__builtin_tbegin (0))
17557 @{
17558 /* Transaction State Initiated. */
17559 if (is_locked (lock))
17560 __builtin_tabort (0);
17561 ... transaction code...
17562 __builtin_tend (0);
17563 break;
17564 @}
17565 else
17566 @{
17567 /* Transaction State Failed. Use locks if the transaction
17568 failure is "persistent" or we've tried too many times. */
17569 if (num_retries-- <= 0
17570 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
17571 @{
17572 acquire_lock (lock);
17573 ... non transactional fallback path...
17574 release_lock (lock);
17575 break;
17576 @}
17577 @}
17578 @}
17579 @end smallexample
17580
17581 One final built-in function has been added that returns the value of
17582 the 2-bit Transaction State field of the Machine Status Register (MSR)
17583 as stored in @code{CR0}.
17584
17585 @smallexample
17586 unsigned long __builtin_ttest (void)
17587 @end smallexample
17588
17589 This built-in can be used to determine the current transaction state
17590 using the following code example:
17591
17592 @smallexample
17593 #include <htmintrin.h>
17594
17595 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
17596
17597 if (tx_state == _HTM_TRANSACTIONAL)
17598 @{
17599 /* Code to use in transactional state. */
17600 @}
17601 else if (tx_state == _HTM_NONTRANSACTIONAL)
17602 @{
17603 /* Code to use in non-transactional state. */
17604 @}
17605 else if (tx_state == _HTM_SUSPENDED)
17606 @{
17607 /* Code to use in transaction suspended state. */
17608 @}
17609 @end smallexample
17610
17611 @subsubsection PowerPC HTM High Level Inline Functions
17612
17613 The following high level HTM interface is made available by including
17614 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
17615 where CPU is `power8' or later. This interface is common between PowerPC
17616 and S/390, allowing users to write one HTM source implementation that
17617 can be compiled and executed on either system.
17618
17619 @smallexample
17620 long __TM_simple_begin (void)
17621 long __TM_begin (void* const TM_buff)
17622 long __TM_end (void)
17623 void __TM_abort (void)
17624 void __TM_named_abort (unsigned char const code)
17625 void __TM_resume (void)
17626 void __TM_suspend (void)
17627
17628 long __TM_is_user_abort (void* const TM_buff)
17629 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
17630 long __TM_is_illegal (void* const TM_buff)
17631 long __TM_is_footprint_exceeded (void* const TM_buff)
17632 long __TM_nesting_depth (void* const TM_buff)
17633 long __TM_is_nested_too_deep(void* const TM_buff)
17634 long __TM_is_conflict(void* const TM_buff)
17635 long __TM_is_failure_persistent(void* const TM_buff)
17636 long __TM_failure_address(void* const TM_buff)
17637 long long __TM_failure_code(void* const TM_buff)
17638 @end smallexample
17639
17640 Using these common set of HTM inline functions, we can create
17641 a more portable version of the HTM example in the previous
17642 section that will work on either PowerPC or S/390:
17643
17644 @smallexample
17645 #include <htmxlintrin.h>
17646
17647 int num_retries = 10;
17648 TM_buff_type TM_buff;
17649
17650 while (1)
17651 @{
17652 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
17653 @{
17654 /* Transaction State Initiated. */
17655 if (is_locked (lock))
17656 __TM_abort ();
17657 ... transaction code...
17658 __TM_end ();
17659 break;
17660 @}
17661 else
17662 @{
17663 /* Transaction State Failed. Use locks if the transaction
17664 failure is "persistent" or we've tried too many times. */
17665 if (num_retries-- <= 0
17666 || __TM_is_failure_persistent (TM_buff))
17667 @{
17668 acquire_lock (lock);
17669 ... non transactional fallback path...
17670 release_lock (lock);
17671 break;
17672 @}
17673 @}
17674 @}
17675 @end smallexample
17676
17677 @node RX Built-in Functions
17678 @subsection RX Built-in Functions
17679 GCC supports some of the RX instructions which cannot be expressed in
17680 the C programming language via the use of built-in functions. The
17681 following functions are supported:
17682
17683 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
17684 Generates the @code{brk} machine instruction.
17685 @end deftypefn
17686
17687 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
17688 Generates the @code{clrpsw} machine instruction to clear the specified
17689 bit in the processor status word.
17690 @end deftypefn
17691
17692 @deftypefn {Built-in Function} void __builtin_rx_int (int)
17693 Generates the @code{int} machine instruction to generate an interrupt
17694 with the specified value.
17695 @end deftypefn
17696
17697 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
17698 Generates the @code{machi} machine instruction to add the result of
17699 multiplying the top 16 bits of the two arguments into the
17700 accumulator.
17701 @end deftypefn
17702
17703 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
17704 Generates the @code{maclo} machine instruction to add the result of
17705 multiplying the bottom 16 bits of the two arguments into the
17706 accumulator.
17707 @end deftypefn
17708
17709 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
17710 Generates the @code{mulhi} machine instruction to place the result of
17711 multiplying the top 16 bits of the two arguments into the
17712 accumulator.
17713 @end deftypefn
17714
17715 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
17716 Generates the @code{mullo} machine instruction to place the result of
17717 multiplying the bottom 16 bits of the two arguments into the
17718 accumulator.
17719 @end deftypefn
17720
17721 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
17722 Generates the @code{mvfachi} machine instruction to read the top
17723 32 bits of the accumulator.
17724 @end deftypefn
17725
17726 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
17727 Generates the @code{mvfacmi} machine instruction to read the middle
17728 32 bits of the accumulator.
17729 @end deftypefn
17730
17731 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
17732 Generates the @code{mvfc} machine instruction which reads the control
17733 register specified in its argument and returns its value.
17734 @end deftypefn
17735
17736 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
17737 Generates the @code{mvtachi} machine instruction to set the top
17738 32 bits of the accumulator.
17739 @end deftypefn
17740
17741 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
17742 Generates the @code{mvtaclo} machine instruction to set the bottom
17743 32 bits of the accumulator.
17744 @end deftypefn
17745
17746 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
17747 Generates the @code{mvtc} machine instruction which sets control
17748 register number @code{reg} to @code{val}.
17749 @end deftypefn
17750
17751 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
17752 Generates the @code{mvtipl} machine instruction set the interrupt
17753 priority level.
17754 @end deftypefn
17755
17756 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
17757 Generates the @code{racw} machine instruction to round the accumulator
17758 according to the specified mode.
17759 @end deftypefn
17760
17761 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
17762 Generates the @code{revw} machine instruction which swaps the bytes in
17763 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
17764 and also bits 16--23 occupy bits 24--31 and vice versa.
17765 @end deftypefn
17766
17767 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
17768 Generates the @code{rmpa} machine instruction which initiates a
17769 repeated multiply and accumulate sequence.
17770 @end deftypefn
17771
17772 @deftypefn {Built-in Function} void __builtin_rx_round (float)
17773 Generates the @code{round} machine instruction which returns the
17774 floating-point argument rounded according to the current rounding mode
17775 set in the floating-point status word register.
17776 @end deftypefn
17777
17778 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
17779 Generates the @code{sat} machine instruction which returns the
17780 saturated value of the argument.
17781 @end deftypefn
17782
17783 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
17784 Generates the @code{setpsw} machine instruction to set the specified
17785 bit in the processor status word.
17786 @end deftypefn
17787
17788 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
17789 Generates the @code{wait} machine instruction.
17790 @end deftypefn
17791
17792 @node S/390 System z Built-in Functions
17793 @subsection S/390 System z Built-in Functions
17794 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
17795 Generates the @code{tbegin} machine instruction starting a
17796 non-constrained hardware transaction. If the parameter is non-NULL the
17797 memory area is used to store the transaction diagnostic buffer and
17798 will be passed as first operand to @code{tbegin}. This buffer can be
17799 defined using the @code{struct __htm_tdb} C struct defined in
17800 @code{htmintrin.h} and must reside on a double-word boundary. The
17801 second tbegin operand is set to @code{0xff0c}. This enables
17802 save/restore of all GPRs and disables aborts for FPR and AR
17803 manipulations inside the transaction body. The condition code set by
17804 the tbegin instruction is returned as integer value. The tbegin
17805 instruction by definition overwrites the content of all FPRs. The
17806 compiler will generate code which saves and restores the FPRs. For
17807 soft-float code it is recommended to used the @code{*_nofloat}
17808 variant. In order to prevent a TDB from being written it is required
17809 to pass a constant zero value as parameter. Passing a zero value
17810 through a variable is not sufficient. Although modifications of
17811 access registers inside the transaction will not trigger an
17812 transaction abort it is not supported to actually modify them. Access
17813 registers do not get saved when entering a transaction. They will have
17814 undefined state when reaching the abort code.
17815 @end deftypefn
17816
17817 Macros for the possible return codes of tbegin are defined in the
17818 @code{htmintrin.h} header file:
17819
17820 @table @code
17821 @item _HTM_TBEGIN_STARTED
17822 @code{tbegin} has been executed as part of normal processing. The
17823 transaction body is supposed to be executed.
17824 @item _HTM_TBEGIN_INDETERMINATE
17825 The transaction was aborted due to an indeterminate condition which
17826 might be persistent.
17827 @item _HTM_TBEGIN_TRANSIENT
17828 The transaction aborted due to a transient failure. The transaction
17829 should be re-executed in that case.
17830 @item _HTM_TBEGIN_PERSISTENT
17831 The transaction aborted due to a persistent failure. Re-execution
17832 under same circumstances will not be productive.
17833 @end table
17834
17835 @defmac _HTM_FIRST_USER_ABORT_CODE
17836 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
17837 specifies the first abort code which can be used for
17838 @code{__builtin_tabort}. Values below this threshold are reserved for
17839 machine use.
17840 @end defmac
17841
17842 @deftp {Data type} {struct __htm_tdb}
17843 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
17844 the structure of the transaction diagnostic block as specified in the
17845 Principles of Operation manual chapter 5-91.
17846 @end deftp
17847
17848 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
17849 Same as @code{__builtin_tbegin} but without FPR saves and restores.
17850 Using this variant in code making use of FPRs will leave the FPRs in
17851 undefined state when entering the transaction abort handler code.
17852 @end deftypefn
17853
17854 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
17855 In addition to @code{__builtin_tbegin} a loop for transient failures
17856 is generated. If tbegin returns a condition code of 2 the transaction
17857 will be retried as often as specified in the second argument. The
17858 perform processor assist instruction is used to tell the CPU about the
17859 number of fails so far.
17860 @end deftypefn
17861
17862 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
17863 Same as @code{__builtin_tbegin_retry} but without FPR saves and
17864 restores. Using this variant in code making use of FPRs will leave
17865 the FPRs in undefined state when entering the transaction abort
17866 handler code.
17867 @end deftypefn
17868
17869 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
17870 Generates the @code{tbeginc} machine instruction starting a constrained
17871 hardware transaction. The second operand is set to @code{0xff08}.
17872 @end deftypefn
17873
17874 @deftypefn {Built-in Function} int __builtin_tend (void)
17875 Generates the @code{tend} machine instruction finishing a transaction
17876 and making the changes visible to other threads. The condition code
17877 generated by tend is returned as integer value.
17878 @end deftypefn
17879
17880 @deftypefn {Built-in Function} void __builtin_tabort (int)
17881 Generates the @code{tabort} machine instruction with the specified
17882 abort code. Abort codes from 0 through 255 are reserved and will
17883 result in an error message.
17884 @end deftypefn
17885
17886 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
17887 Generates the @code{ppa rX,rY,1} machine instruction. Where the
17888 integer parameter is loaded into rX and a value of zero is loaded into
17889 rY. The integer parameter specifies the number of times the
17890 transaction repeatedly aborted.
17891 @end deftypefn
17892
17893 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
17894 Generates the @code{etnd} machine instruction. The current nesting
17895 depth is returned as integer value. For a nesting depth of 0 the code
17896 is not executed as part of an transaction.
17897 @end deftypefn
17898
17899 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
17900
17901 Generates the @code{ntstg} machine instruction. The second argument
17902 is written to the first arguments location. The store operation will
17903 not be rolled-back in case of an transaction abort.
17904 @end deftypefn
17905
17906 @node SH Built-in Functions
17907 @subsection SH Built-in Functions
17908 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
17909 families of processors:
17910
17911 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
17912 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
17913 used by system code that manages threads and execution contexts. The compiler
17914 normally does not generate code that modifies the contents of @samp{GBR} and
17915 thus the value is preserved across function calls. Changing the @samp{GBR}
17916 value in user code must be done with caution, since the compiler might use
17917 @samp{GBR} in order to access thread local variables.
17918
17919 @end deftypefn
17920
17921 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
17922 Returns the value that is currently set in the @samp{GBR} register.
17923 Memory loads and stores that use the thread pointer as a base address are
17924 turned into @samp{GBR} based displacement loads and stores, if possible.
17925 For example:
17926 @smallexample
17927 struct my_tcb
17928 @{
17929 int a, b, c, d, e;
17930 @};
17931
17932 int get_tcb_value (void)
17933 @{
17934 // Generate @samp{mov.l @@(8,gbr),r0} instruction
17935 return ((my_tcb*)__builtin_thread_pointer ())->c;
17936 @}
17937
17938 @end smallexample
17939 @end deftypefn
17940
17941 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
17942 Returns the value that is currently set in the @samp{FPSCR} register.
17943 @end deftypefn
17944
17945 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
17946 Sets the @samp{FPSCR} register to the specified value @var{val}, while
17947 preserving the current values of the FR, SZ and PR bits.
17948 @end deftypefn
17949
17950 @node SPARC VIS Built-in Functions
17951 @subsection SPARC VIS Built-in Functions
17952
17953 GCC supports SIMD operations on the SPARC using both the generic vector
17954 extensions (@pxref{Vector Extensions}) as well as built-in functions for
17955 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
17956 switch, the VIS extension is exposed as the following built-in functions:
17957
17958 @smallexample
17959 typedef int v1si __attribute__ ((vector_size (4)));
17960 typedef int v2si __attribute__ ((vector_size (8)));
17961 typedef short v4hi __attribute__ ((vector_size (8)));
17962 typedef short v2hi __attribute__ ((vector_size (4)));
17963 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
17964 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
17965
17966 void __builtin_vis_write_gsr (int64_t);
17967 int64_t __builtin_vis_read_gsr (void);
17968
17969 void * __builtin_vis_alignaddr (void *, long);
17970 void * __builtin_vis_alignaddrl (void *, long);
17971 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
17972 v2si __builtin_vis_faligndatav2si (v2si, v2si);
17973 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
17974 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
17975
17976 v4hi __builtin_vis_fexpand (v4qi);
17977
17978 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
17979 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
17980 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
17981 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
17982 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
17983 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
17984 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
17985
17986 v4qi __builtin_vis_fpack16 (v4hi);
17987 v8qi __builtin_vis_fpack32 (v2si, v8qi);
17988 v2hi __builtin_vis_fpackfix (v2si);
17989 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
17990
17991 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
17992
17993 long __builtin_vis_edge8 (void *, void *);
17994 long __builtin_vis_edge8l (void *, void *);
17995 long __builtin_vis_edge16 (void *, void *);
17996 long __builtin_vis_edge16l (void *, void *);
17997 long __builtin_vis_edge32 (void *, void *);
17998 long __builtin_vis_edge32l (void *, void *);
17999
18000 long __builtin_vis_fcmple16 (v4hi, v4hi);
18001 long __builtin_vis_fcmple32 (v2si, v2si);
18002 long __builtin_vis_fcmpne16 (v4hi, v4hi);
18003 long __builtin_vis_fcmpne32 (v2si, v2si);
18004 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
18005 long __builtin_vis_fcmpgt32 (v2si, v2si);
18006 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
18007 long __builtin_vis_fcmpeq32 (v2si, v2si);
18008
18009 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
18010 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
18011 v2si __builtin_vis_fpadd32 (v2si, v2si);
18012 v1si __builtin_vis_fpadd32s (v1si, v1si);
18013 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
18014 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
18015 v2si __builtin_vis_fpsub32 (v2si, v2si);
18016 v1si __builtin_vis_fpsub32s (v1si, v1si);
18017
18018 long __builtin_vis_array8 (long, long);
18019 long __builtin_vis_array16 (long, long);
18020 long __builtin_vis_array32 (long, long);
18021 @end smallexample
18022
18023 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
18024 functions also become available:
18025
18026 @smallexample
18027 long __builtin_vis_bmask (long, long);
18028 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
18029 v2si __builtin_vis_bshufflev2si (v2si, v2si);
18030 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
18031 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
18032
18033 long __builtin_vis_edge8n (void *, void *);
18034 long __builtin_vis_edge8ln (void *, void *);
18035 long __builtin_vis_edge16n (void *, void *);
18036 long __builtin_vis_edge16ln (void *, void *);
18037 long __builtin_vis_edge32n (void *, void *);
18038 long __builtin_vis_edge32ln (void *, void *);
18039 @end smallexample
18040
18041 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
18042 functions also become available:
18043
18044 @smallexample
18045 void __builtin_vis_cmask8 (long);
18046 void __builtin_vis_cmask16 (long);
18047 void __builtin_vis_cmask32 (long);
18048
18049 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
18050
18051 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
18052 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
18053 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
18054 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
18055 v2si __builtin_vis_fsll16 (v2si, v2si);
18056 v2si __builtin_vis_fslas16 (v2si, v2si);
18057 v2si __builtin_vis_fsrl16 (v2si, v2si);
18058 v2si __builtin_vis_fsra16 (v2si, v2si);
18059
18060 long __builtin_vis_pdistn (v8qi, v8qi);
18061
18062 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
18063
18064 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
18065 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
18066
18067 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
18068 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
18069 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
18070 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
18071 v2si __builtin_vis_fpadds32 (v2si, v2si);
18072 v1si __builtin_vis_fpadds32s (v1si, v1si);
18073 v2si __builtin_vis_fpsubs32 (v2si, v2si);
18074 v1si __builtin_vis_fpsubs32s (v1si, v1si);
18075
18076 long __builtin_vis_fucmple8 (v8qi, v8qi);
18077 long __builtin_vis_fucmpne8 (v8qi, v8qi);
18078 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
18079 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
18080
18081 float __builtin_vis_fhadds (float, float);
18082 double __builtin_vis_fhaddd (double, double);
18083 float __builtin_vis_fhsubs (float, float);
18084 double __builtin_vis_fhsubd (double, double);
18085 float __builtin_vis_fnhadds (float, float);
18086 double __builtin_vis_fnhaddd (double, double);
18087
18088 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
18089 int64_t __builtin_vis_xmulx (int64_t, int64_t);
18090 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
18091 @end smallexample
18092
18093 @node SPU Built-in Functions
18094 @subsection SPU Built-in Functions
18095
18096 GCC provides extensions for the SPU processor as described in the
18097 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
18098 found at @uref{http://cell.scei.co.jp/} or
18099 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
18100 implementation differs in several ways.
18101
18102 @itemize @bullet
18103
18104 @item
18105 The optional extension of specifying vector constants in parentheses is
18106 not supported.
18107
18108 @item
18109 A vector initializer requires no cast if the vector constant is of the
18110 same type as the variable it is initializing.
18111
18112 @item
18113 If @code{signed} or @code{unsigned} is omitted, the signedness of the
18114 vector type is the default signedness of the base type. The default
18115 varies depending on the operating system, so a portable program should
18116 always specify the signedness.
18117
18118 @item
18119 By default, the keyword @code{__vector} is added. The macro
18120 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
18121 undefined.
18122
18123 @item
18124 GCC allows using a @code{typedef} name as the type specifier for a
18125 vector type.
18126
18127 @item
18128 For C, overloaded functions are implemented with macros so the following
18129 does not work:
18130
18131 @smallexample
18132 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
18133 @end smallexample
18134
18135 @noindent
18136 Since @code{spu_add} is a macro, the vector constant in the example
18137 is treated as four separate arguments. Wrap the entire argument in
18138 parentheses for this to work.
18139
18140 @item
18141 The extended version of @code{__builtin_expect} is not supported.
18142
18143 @end itemize
18144
18145 @emph{Note:} Only the interface described in the aforementioned
18146 specification is supported. Internally, GCC uses built-in functions to
18147 implement the required functionality, but these are not supported and
18148 are subject to change without notice.
18149
18150 @node TI C6X Built-in Functions
18151 @subsection TI C6X Built-in Functions
18152
18153 GCC provides intrinsics to access certain instructions of the TI C6X
18154 processors. These intrinsics, listed below, are available after
18155 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
18156 to C6X instructions.
18157
18158 @smallexample
18159
18160 int _sadd (int, int)
18161 int _ssub (int, int)
18162 int _sadd2 (int, int)
18163 int _ssub2 (int, int)
18164 long long _mpy2 (int, int)
18165 long long _smpy2 (int, int)
18166 int _add4 (int, int)
18167 int _sub4 (int, int)
18168 int _saddu4 (int, int)
18169
18170 int _smpy (int, int)
18171 int _smpyh (int, int)
18172 int _smpyhl (int, int)
18173 int _smpylh (int, int)
18174
18175 int _sshl (int, int)
18176 int _subc (int, int)
18177
18178 int _avg2 (int, int)
18179 int _avgu4 (int, int)
18180
18181 int _clrr (int, int)
18182 int _extr (int, int)
18183 int _extru (int, int)
18184 int _abs (int)
18185 int _abs2 (int)
18186
18187 @end smallexample
18188
18189 @node TILE-Gx Built-in Functions
18190 @subsection TILE-Gx Built-in Functions
18191
18192 GCC provides intrinsics to access every instruction of the TILE-Gx
18193 processor. The intrinsics are of the form:
18194
18195 @smallexample
18196
18197 unsigned long long __insn_@var{op} (...)
18198
18199 @end smallexample
18200
18201 Where @var{op} is the name of the instruction. Refer to the ISA manual
18202 for the complete list of instructions.
18203
18204 GCC also provides intrinsics to directly access the network registers.
18205 The intrinsics are:
18206
18207 @smallexample
18208
18209 unsigned long long __tile_idn0_receive (void)
18210 unsigned long long __tile_idn1_receive (void)
18211 unsigned long long __tile_udn0_receive (void)
18212 unsigned long long __tile_udn1_receive (void)
18213 unsigned long long __tile_udn2_receive (void)
18214 unsigned long long __tile_udn3_receive (void)
18215 void __tile_idn_send (unsigned long long)
18216 void __tile_udn_send (unsigned long long)
18217
18218 @end smallexample
18219
18220 The intrinsic @code{void __tile_network_barrier (void)} is used to
18221 guarantee that no network operations before it are reordered with
18222 those after it.
18223
18224 @node TILEPro Built-in Functions
18225 @subsection TILEPro Built-in Functions
18226
18227 GCC provides intrinsics to access every instruction of the TILEPro
18228 processor. The intrinsics are of the form:
18229
18230 @smallexample
18231
18232 unsigned __insn_@var{op} (...)
18233
18234 @end smallexample
18235
18236 @noindent
18237 where @var{op} is the name of the instruction. Refer to the ISA manual
18238 for the complete list of instructions.
18239
18240 GCC also provides intrinsics to directly access the network registers.
18241 The intrinsics are:
18242
18243 @smallexample
18244
18245 unsigned __tile_idn0_receive (void)
18246 unsigned __tile_idn1_receive (void)
18247 unsigned __tile_sn_receive (void)
18248 unsigned __tile_udn0_receive (void)
18249 unsigned __tile_udn1_receive (void)
18250 unsigned __tile_udn2_receive (void)
18251 unsigned __tile_udn3_receive (void)
18252 void __tile_idn_send (unsigned)
18253 void __tile_sn_send (unsigned)
18254 void __tile_udn_send (unsigned)
18255
18256 @end smallexample
18257
18258 The intrinsic @code{void __tile_network_barrier (void)} is used to
18259 guarantee that no network operations before it are reordered with
18260 those after it.
18261
18262 @node x86 Built-in Functions
18263 @subsection x86 Built-in Functions
18264
18265 These built-in functions are available for the x86-32 and x86-64 family
18266 of computers, depending on the command-line switches used.
18267
18268 If you specify command-line switches such as @option{-msse},
18269 the compiler could use the extended instruction sets even if the built-ins
18270 are not used explicitly in the program. For this reason, applications
18271 that perform run-time CPU detection must compile separate files for each
18272 supported architecture, using the appropriate flags. In particular,
18273 the file containing the CPU detection code should be compiled without
18274 these options.
18275
18276 The following machine modes are available for use with MMX built-in functions
18277 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
18278 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
18279 vector of eight 8-bit integers. Some of the built-in functions operate on
18280 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
18281
18282 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
18283 of two 32-bit floating-point values.
18284
18285 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
18286 floating-point values. Some instructions use a vector of four 32-bit
18287 integers, these use @code{V4SI}. Finally, some instructions operate on an
18288 entire vector register, interpreting it as a 128-bit integer, these use mode
18289 @code{TI}.
18290
18291 In 64-bit mode, the x86-64 family of processors uses additional built-in
18292 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
18293 floating point and @code{TC} 128-bit complex floating-point values.
18294
18295 The following floating-point built-in functions are available in 64-bit
18296 mode. All of them implement the function that is part of the name.
18297
18298 @smallexample
18299 __float128 __builtin_fabsq (__float128)
18300 __float128 __builtin_copysignq (__float128, __float128)
18301 @end smallexample
18302
18303 The following built-in function is always available.
18304
18305 @table @code
18306 @item void __builtin_ia32_pause (void)
18307 Generates the @code{pause} machine instruction with a compiler memory
18308 barrier.
18309 @end table
18310
18311 The following floating-point built-in functions are made available in the
18312 64-bit mode.
18313
18314 @table @code
18315 @item __float128 __builtin_infq (void)
18316 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
18317 @findex __builtin_infq
18318
18319 @item __float128 __builtin_huge_valq (void)
18320 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
18321 @findex __builtin_huge_valq
18322 @end table
18323
18324 The following built-in functions are always available and can be used to
18325 check the target platform type.
18326
18327 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
18328 This function runs the CPU detection code to check the type of CPU and the
18329 features supported. This built-in function needs to be invoked along with the built-in functions
18330 to check CPU type and features, @code{__builtin_cpu_is} and
18331 @code{__builtin_cpu_supports}, only when used in a function that is
18332 executed before any constructors are called. The CPU detection code is
18333 automatically executed in a very high priority constructor.
18334
18335 For example, this function has to be used in @code{ifunc} resolvers that
18336 check for CPU type using the built-in functions @code{__builtin_cpu_is}
18337 and @code{__builtin_cpu_supports}, or in constructors on targets that
18338 don't support constructor priority.
18339 @smallexample
18340
18341 static void (*resolve_memcpy (void)) (void)
18342 @{
18343 // ifunc resolvers fire before constructors, explicitly call the init
18344 // function.
18345 __builtin_cpu_init ();
18346 if (__builtin_cpu_supports ("ssse3"))
18347 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
18348 else
18349 return default_memcpy;
18350 @}
18351
18352 void *memcpy (void *, const void *, size_t)
18353 __attribute__ ((ifunc ("resolve_memcpy")));
18354 @end smallexample
18355
18356 @end deftypefn
18357
18358 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
18359 This function returns a positive integer if the run-time CPU
18360 is of type @var{cpuname}
18361 and returns @code{0} otherwise. The following CPU names can be detected:
18362
18363 @table @samp
18364 @item intel
18365 Intel CPU.
18366
18367 @item atom
18368 Intel Atom CPU.
18369
18370 @item core2
18371 Intel Core 2 CPU.
18372
18373 @item corei7
18374 Intel Core i7 CPU.
18375
18376 @item nehalem
18377 Intel Core i7 Nehalem CPU.
18378
18379 @item westmere
18380 Intel Core i7 Westmere CPU.
18381
18382 @item sandybridge
18383 Intel Core i7 Sandy Bridge CPU.
18384
18385 @item amd
18386 AMD CPU.
18387
18388 @item amdfam10h
18389 AMD Family 10h CPU.
18390
18391 @item barcelona
18392 AMD Family 10h Barcelona CPU.
18393
18394 @item shanghai
18395 AMD Family 10h Shanghai CPU.
18396
18397 @item istanbul
18398 AMD Family 10h Istanbul CPU.
18399
18400 @item btver1
18401 AMD Family 14h CPU.
18402
18403 @item amdfam15h
18404 AMD Family 15h CPU.
18405
18406 @item bdver1
18407 AMD Family 15h Bulldozer version 1.
18408
18409 @item bdver2
18410 AMD Family 15h Bulldozer version 2.
18411
18412 @item bdver3
18413 AMD Family 15h Bulldozer version 3.
18414
18415 @item bdver4
18416 AMD Family 15h Bulldozer version 4.
18417
18418 @item btver2
18419 AMD Family 16h CPU.
18420
18421 @item znver1
18422 AMD Family 17h CPU.
18423 @end table
18424
18425 Here is an example:
18426 @smallexample
18427 if (__builtin_cpu_is ("corei7"))
18428 @{
18429 do_corei7 (); // Core i7 specific implementation.
18430 @}
18431 else
18432 @{
18433 do_generic (); // Generic implementation.
18434 @}
18435 @end smallexample
18436 @end deftypefn
18437
18438 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
18439 This function returns a positive integer if the run-time CPU
18440 supports @var{feature}
18441 and returns @code{0} otherwise. The following features can be detected:
18442
18443 @table @samp
18444 @item cmov
18445 CMOV instruction.
18446 @item mmx
18447 MMX instructions.
18448 @item popcnt
18449 POPCNT instruction.
18450 @item sse
18451 SSE instructions.
18452 @item sse2
18453 SSE2 instructions.
18454 @item sse3
18455 SSE3 instructions.
18456 @item ssse3
18457 SSSE3 instructions.
18458 @item sse4.1
18459 SSE4.1 instructions.
18460 @item sse4.2
18461 SSE4.2 instructions.
18462 @item avx
18463 AVX instructions.
18464 @item avx2
18465 AVX2 instructions.
18466 @item avx512f
18467 AVX512F instructions.
18468 @end table
18469
18470 Here is an example:
18471 @smallexample
18472 if (__builtin_cpu_supports ("popcnt"))
18473 @{
18474 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
18475 @}
18476 else
18477 @{
18478 count = generic_countbits (n); //generic implementation.
18479 @}
18480 @end smallexample
18481 @end deftypefn
18482
18483
18484 The following built-in functions are made available by @option{-mmmx}.
18485 All of them generate the machine instruction that is part of the name.
18486
18487 @smallexample
18488 v8qi __builtin_ia32_paddb (v8qi, v8qi)
18489 v4hi __builtin_ia32_paddw (v4hi, v4hi)
18490 v2si __builtin_ia32_paddd (v2si, v2si)
18491 v8qi __builtin_ia32_psubb (v8qi, v8qi)
18492 v4hi __builtin_ia32_psubw (v4hi, v4hi)
18493 v2si __builtin_ia32_psubd (v2si, v2si)
18494 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
18495 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
18496 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
18497 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
18498 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
18499 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
18500 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
18501 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
18502 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
18503 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
18504 di __builtin_ia32_pand (di, di)
18505 di __builtin_ia32_pandn (di,di)
18506 di __builtin_ia32_por (di, di)
18507 di __builtin_ia32_pxor (di, di)
18508 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
18509 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
18510 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
18511 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
18512 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
18513 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
18514 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
18515 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
18516 v2si __builtin_ia32_punpckhdq (v2si, v2si)
18517 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
18518 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
18519 v2si __builtin_ia32_punpckldq (v2si, v2si)
18520 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
18521 v4hi __builtin_ia32_packssdw (v2si, v2si)
18522 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
18523
18524 v4hi __builtin_ia32_psllw (v4hi, v4hi)
18525 v2si __builtin_ia32_pslld (v2si, v2si)
18526 v1di __builtin_ia32_psllq (v1di, v1di)
18527 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
18528 v2si __builtin_ia32_psrld (v2si, v2si)
18529 v1di __builtin_ia32_psrlq (v1di, v1di)
18530 v4hi __builtin_ia32_psraw (v4hi, v4hi)
18531 v2si __builtin_ia32_psrad (v2si, v2si)
18532 v4hi __builtin_ia32_psllwi (v4hi, int)
18533 v2si __builtin_ia32_pslldi (v2si, int)
18534 v1di __builtin_ia32_psllqi (v1di, int)
18535 v4hi __builtin_ia32_psrlwi (v4hi, int)
18536 v2si __builtin_ia32_psrldi (v2si, int)
18537 v1di __builtin_ia32_psrlqi (v1di, int)
18538 v4hi __builtin_ia32_psrawi (v4hi, int)
18539 v2si __builtin_ia32_psradi (v2si, int)
18540
18541 @end smallexample
18542
18543 The following built-in functions are made available either with
18544 @option{-msse}, or with a combination of @option{-m3dnow} and
18545 @option{-march=athlon}. All of them generate the machine
18546 instruction that is part of the name.
18547
18548 @smallexample
18549 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
18550 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
18551 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
18552 v1di __builtin_ia32_psadbw (v8qi, v8qi)
18553 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
18554 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
18555 v8qi __builtin_ia32_pminub (v8qi, v8qi)
18556 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
18557 int __builtin_ia32_pmovmskb (v8qi)
18558 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
18559 void __builtin_ia32_movntq (di *, di)
18560 void __builtin_ia32_sfence (void)
18561 @end smallexample
18562
18563 The following built-in functions are available when @option{-msse} is used.
18564 All of them generate the machine instruction that is part of the name.
18565
18566 @smallexample
18567 int __builtin_ia32_comieq (v4sf, v4sf)
18568 int __builtin_ia32_comineq (v4sf, v4sf)
18569 int __builtin_ia32_comilt (v4sf, v4sf)
18570 int __builtin_ia32_comile (v4sf, v4sf)
18571 int __builtin_ia32_comigt (v4sf, v4sf)
18572 int __builtin_ia32_comige (v4sf, v4sf)
18573 int __builtin_ia32_ucomieq (v4sf, v4sf)
18574 int __builtin_ia32_ucomineq (v4sf, v4sf)
18575 int __builtin_ia32_ucomilt (v4sf, v4sf)
18576 int __builtin_ia32_ucomile (v4sf, v4sf)
18577 int __builtin_ia32_ucomigt (v4sf, v4sf)
18578 int __builtin_ia32_ucomige (v4sf, v4sf)
18579 v4sf __builtin_ia32_addps (v4sf, v4sf)
18580 v4sf __builtin_ia32_subps (v4sf, v4sf)
18581 v4sf __builtin_ia32_mulps (v4sf, v4sf)
18582 v4sf __builtin_ia32_divps (v4sf, v4sf)
18583 v4sf __builtin_ia32_addss (v4sf, v4sf)
18584 v4sf __builtin_ia32_subss (v4sf, v4sf)
18585 v4sf __builtin_ia32_mulss (v4sf, v4sf)
18586 v4sf __builtin_ia32_divss (v4sf, v4sf)
18587 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
18588 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
18589 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
18590 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
18591 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
18592 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
18593 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
18594 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
18595 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
18596 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
18597 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
18598 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
18599 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
18600 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
18601 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
18602 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
18603 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
18604 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
18605 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
18606 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
18607 v4sf __builtin_ia32_maxps (v4sf, v4sf)
18608 v4sf __builtin_ia32_maxss (v4sf, v4sf)
18609 v4sf __builtin_ia32_minps (v4sf, v4sf)
18610 v4sf __builtin_ia32_minss (v4sf, v4sf)
18611 v4sf __builtin_ia32_andps (v4sf, v4sf)
18612 v4sf __builtin_ia32_andnps (v4sf, v4sf)
18613 v4sf __builtin_ia32_orps (v4sf, v4sf)
18614 v4sf __builtin_ia32_xorps (v4sf, v4sf)
18615 v4sf __builtin_ia32_movss (v4sf, v4sf)
18616 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
18617 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
18618 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
18619 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
18620 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
18621 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
18622 v2si __builtin_ia32_cvtps2pi (v4sf)
18623 int __builtin_ia32_cvtss2si (v4sf)
18624 v2si __builtin_ia32_cvttps2pi (v4sf)
18625 int __builtin_ia32_cvttss2si (v4sf)
18626 v4sf __builtin_ia32_rcpps (v4sf)
18627 v4sf __builtin_ia32_rsqrtps (v4sf)
18628 v4sf __builtin_ia32_sqrtps (v4sf)
18629 v4sf __builtin_ia32_rcpss (v4sf)
18630 v4sf __builtin_ia32_rsqrtss (v4sf)
18631 v4sf __builtin_ia32_sqrtss (v4sf)
18632 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
18633 void __builtin_ia32_movntps (float *, v4sf)
18634 int __builtin_ia32_movmskps (v4sf)
18635 @end smallexample
18636
18637 The following built-in functions are available when @option{-msse} is used.
18638
18639 @table @code
18640 @item v4sf __builtin_ia32_loadups (float *)
18641 Generates the @code{movups} machine instruction as a load from memory.
18642 @item void __builtin_ia32_storeups (float *, v4sf)
18643 Generates the @code{movups} machine instruction as a store to memory.
18644 @item v4sf __builtin_ia32_loadss (float *)
18645 Generates the @code{movss} machine instruction as a load from memory.
18646 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
18647 Generates the @code{movhps} machine instruction as a load from memory.
18648 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
18649 Generates the @code{movlps} machine instruction as a load from memory
18650 @item void __builtin_ia32_storehps (v2sf *, v4sf)
18651 Generates the @code{movhps} machine instruction as a store to memory.
18652 @item void __builtin_ia32_storelps (v2sf *, v4sf)
18653 Generates the @code{movlps} machine instruction as a store to memory.
18654 @end table
18655
18656 The following built-in functions are available when @option{-msse2} is used.
18657 All of them generate the machine instruction that is part of the name.
18658
18659 @smallexample
18660 int __builtin_ia32_comisdeq (v2df, v2df)
18661 int __builtin_ia32_comisdlt (v2df, v2df)
18662 int __builtin_ia32_comisdle (v2df, v2df)
18663 int __builtin_ia32_comisdgt (v2df, v2df)
18664 int __builtin_ia32_comisdge (v2df, v2df)
18665 int __builtin_ia32_comisdneq (v2df, v2df)
18666 int __builtin_ia32_ucomisdeq (v2df, v2df)
18667 int __builtin_ia32_ucomisdlt (v2df, v2df)
18668 int __builtin_ia32_ucomisdle (v2df, v2df)
18669 int __builtin_ia32_ucomisdgt (v2df, v2df)
18670 int __builtin_ia32_ucomisdge (v2df, v2df)
18671 int __builtin_ia32_ucomisdneq (v2df, v2df)
18672 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
18673 v2df __builtin_ia32_cmpltpd (v2df, v2df)
18674 v2df __builtin_ia32_cmplepd (v2df, v2df)
18675 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
18676 v2df __builtin_ia32_cmpgepd (v2df, v2df)
18677 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
18678 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
18679 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
18680 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
18681 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
18682 v2df __builtin_ia32_cmpngepd (v2df, v2df)
18683 v2df __builtin_ia32_cmpordpd (v2df, v2df)
18684 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
18685 v2df __builtin_ia32_cmpltsd (v2df, v2df)
18686 v2df __builtin_ia32_cmplesd (v2df, v2df)
18687 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
18688 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
18689 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
18690 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
18691 v2df __builtin_ia32_cmpordsd (v2df, v2df)
18692 v2di __builtin_ia32_paddq (v2di, v2di)
18693 v2di __builtin_ia32_psubq (v2di, v2di)
18694 v2df __builtin_ia32_addpd (v2df, v2df)
18695 v2df __builtin_ia32_subpd (v2df, v2df)
18696 v2df __builtin_ia32_mulpd (v2df, v2df)
18697 v2df __builtin_ia32_divpd (v2df, v2df)
18698 v2df __builtin_ia32_addsd (v2df, v2df)
18699 v2df __builtin_ia32_subsd (v2df, v2df)
18700 v2df __builtin_ia32_mulsd (v2df, v2df)
18701 v2df __builtin_ia32_divsd (v2df, v2df)
18702 v2df __builtin_ia32_minpd (v2df, v2df)
18703 v2df __builtin_ia32_maxpd (v2df, v2df)
18704 v2df __builtin_ia32_minsd (v2df, v2df)
18705 v2df __builtin_ia32_maxsd (v2df, v2df)
18706 v2df __builtin_ia32_andpd (v2df, v2df)
18707 v2df __builtin_ia32_andnpd (v2df, v2df)
18708 v2df __builtin_ia32_orpd (v2df, v2df)
18709 v2df __builtin_ia32_xorpd (v2df, v2df)
18710 v2df __builtin_ia32_movsd (v2df, v2df)
18711 v2df __builtin_ia32_unpckhpd (v2df, v2df)
18712 v2df __builtin_ia32_unpcklpd (v2df, v2df)
18713 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
18714 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
18715 v4si __builtin_ia32_paddd128 (v4si, v4si)
18716 v2di __builtin_ia32_paddq128 (v2di, v2di)
18717 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
18718 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
18719 v4si __builtin_ia32_psubd128 (v4si, v4si)
18720 v2di __builtin_ia32_psubq128 (v2di, v2di)
18721 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
18722 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
18723 v2di __builtin_ia32_pand128 (v2di, v2di)
18724 v2di __builtin_ia32_pandn128 (v2di, v2di)
18725 v2di __builtin_ia32_por128 (v2di, v2di)
18726 v2di __builtin_ia32_pxor128 (v2di, v2di)
18727 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
18728 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
18729 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
18730 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
18731 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
18732 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
18733 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
18734 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
18735 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
18736 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
18737 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
18738 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
18739 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
18740 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
18741 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
18742 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
18743 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
18744 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
18745 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
18746 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
18747 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
18748 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
18749 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
18750 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
18751 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
18752 v2df __builtin_ia32_loadupd (double *)
18753 void __builtin_ia32_storeupd (double *, v2df)
18754 v2df __builtin_ia32_loadhpd (v2df, double const *)
18755 v2df __builtin_ia32_loadlpd (v2df, double const *)
18756 int __builtin_ia32_movmskpd (v2df)
18757 int __builtin_ia32_pmovmskb128 (v16qi)
18758 void __builtin_ia32_movnti (int *, int)
18759 void __builtin_ia32_movnti64 (long long int *, long long int)
18760 void __builtin_ia32_movntpd (double *, v2df)
18761 void __builtin_ia32_movntdq (v2df *, v2df)
18762 v4si __builtin_ia32_pshufd (v4si, int)
18763 v8hi __builtin_ia32_pshuflw (v8hi, int)
18764 v8hi __builtin_ia32_pshufhw (v8hi, int)
18765 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
18766 v2df __builtin_ia32_sqrtpd (v2df)
18767 v2df __builtin_ia32_sqrtsd (v2df)
18768 v2df __builtin_ia32_shufpd (v2df, v2df, int)
18769 v2df __builtin_ia32_cvtdq2pd (v4si)
18770 v4sf __builtin_ia32_cvtdq2ps (v4si)
18771 v4si __builtin_ia32_cvtpd2dq (v2df)
18772 v2si __builtin_ia32_cvtpd2pi (v2df)
18773 v4sf __builtin_ia32_cvtpd2ps (v2df)
18774 v4si __builtin_ia32_cvttpd2dq (v2df)
18775 v2si __builtin_ia32_cvttpd2pi (v2df)
18776 v2df __builtin_ia32_cvtpi2pd (v2si)
18777 int __builtin_ia32_cvtsd2si (v2df)
18778 int __builtin_ia32_cvttsd2si (v2df)
18779 long long __builtin_ia32_cvtsd2si64 (v2df)
18780 long long __builtin_ia32_cvttsd2si64 (v2df)
18781 v4si __builtin_ia32_cvtps2dq (v4sf)
18782 v2df __builtin_ia32_cvtps2pd (v4sf)
18783 v4si __builtin_ia32_cvttps2dq (v4sf)
18784 v2df __builtin_ia32_cvtsi2sd (v2df, int)
18785 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
18786 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
18787 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
18788 void __builtin_ia32_clflush (const void *)
18789 void __builtin_ia32_lfence (void)
18790 void __builtin_ia32_mfence (void)
18791 v16qi __builtin_ia32_loaddqu (const char *)
18792 void __builtin_ia32_storedqu (char *, v16qi)
18793 v1di __builtin_ia32_pmuludq (v2si, v2si)
18794 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
18795 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
18796 v4si __builtin_ia32_pslld128 (v4si, v4si)
18797 v2di __builtin_ia32_psllq128 (v2di, v2di)
18798 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
18799 v4si __builtin_ia32_psrld128 (v4si, v4si)
18800 v2di __builtin_ia32_psrlq128 (v2di, v2di)
18801 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
18802 v4si __builtin_ia32_psrad128 (v4si, v4si)
18803 v2di __builtin_ia32_pslldqi128 (v2di, int)
18804 v8hi __builtin_ia32_psllwi128 (v8hi, int)
18805 v4si __builtin_ia32_pslldi128 (v4si, int)
18806 v2di __builtin_ia32_psllqi128 (v2di, int)
18807 v2di __builtin_ia32_psrldqi128 (v2di, int)
18808 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
18809 v4si __builtin_ia32_psrldi128 (v4si, int)
18810 v2di __builtin_ia32_psrlqi128 (v2di, int)
18811 v8hi __builtin_ia32_psrawi128 (v8hi, int)
18812 v4si __builtin_ia32_psradi128 (v4si, int)
18813 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
18814 v2di __builtin_ia32_movq128 (v2di)
18815 @end smallexample
18816
18817 The following built-in functions are available when @option{-msse3} is used.
18818 All of them generate the machine instruction that is part of the name.
18819
18820 @smallexample
18821 v2df __builtin_ia32_addsubpd (v2df, v2df)
18822 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
18823 v2df __builtin_ia32_haddpd (v2df, v2df)
18824 v4sf __builtin_ia32_haddps (v4sf, v4sf)
18825 v2df __builtin_ia32_hsubpd (v2df, v2df)
18826 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
18827 v16qi __builtin_ia32_lddqu (char const *)
18828 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
18829 v4sf __builtin_ia32_movshdup (v4sf)
18830 v4sf __builtin_ia32_movsldup (v4sf)
18831 void __builtin_ia32_mwait (unsigned int, unsigned int)
18832 @end smallexample
18833
18834 The following built-in functions are available when @option{-mssse3} is used.
18835 All of them generate the machine instruction that is part of the name.
18836
18837 @smallexample
18838 v2si __builtin_ia32_phaddd (v2si, v2si)
18839 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
18840 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
18841 v2si __builtin_ia32_phsubd (v2si, v2si)
18842 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
18843 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
18844 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
18845 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
18846 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
18847 v8qi __builtin_ia32_psignb (v8qi, v8qi)
18848 v2si __builtin_ia32_psignd (v2si, v2si)
18849 v4hi __builtin_ia32_psignw (v4hi, v4hi)
18850 v1di __builtin_ia32_palignr (v1di, v1di, int)
18851 v8qi __builtin_ia32_pabsb (v8qi)
18852 v2si __builtin_ia32_pabsd (v2si)
18853 v4hi __builtin_ia32_pabsw (v4hi)
18854 @end smallexample
18855
18856 The following built-in functions are available when @option{-mssse3} is used.
18857 All of them generate the machine instruction that is part of the name.
18858
18859 @smallexample
18860 v4si __builtin_ia32_phaddd128 (v4si, v4si)
18861 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
18862 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
18863 v4si __builtin_ia32_phsubd128 (v4si, v4si)
18864 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
18865 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
18866 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
18867 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
18868 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
18869 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
18870 v4si __builtin_ia32_psignd128 (v4si, v4si)
18871 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
18872 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
18873 v16qi __builtin_ia32_pabsb128 (v16qi)
18874 v4si __builtin_ia32_pabsd128 (v4si)
18875 v8hi __builtin_ia32_pabsw128 (v8hi)
18876 @end smallexample
18877
18878 The following built-in functions are available when @option{-msse4.1} is
18879 used. All of them generate the machine instruction that is part of the
18880 name.
18881
18882 @smallexample
18883 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
18884 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
18885 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
18886 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
18887 v2df __builtin_ia32_dppd (v2df, v2df, const int)
18888 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
18889 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
18890 v2di __builtin_ia32_movntdqa (v2di *);
18891 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
18892 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
18893 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
18894 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
18895 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
18896 v8hi __builtin_ia32_phminposuw128 (v8hi)
18897 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
18898 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
18899 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
18900 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
18901 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
18902 v4si __builtin_ia32_pminsd128 (v4si, v4si)
18903 v4si __builtin_ia32_pminud128 (v4si, v4si)
18904 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
18905 v4si __builtin_ia32_pmovsxbd128 (v16qi)
18906 v2di __builtin_ia32_pmovsxbq128 (v16qi)
18907 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
18908 v2di __builtin_ia32_pmovsxdq128 (v4si)
18909 v4si __builtin_ia32_pmovsxwd128 (v8hi)
18910 v2di __builtin_ia32_pmovsxwq128 (v8hi)
18911 v4si __builtin_ia32_pmovzxbd128 (v16qi)
18912 v2di __builtin_ia32_pmovzxbq128 (v16qi)
18913 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
18914 v2di __builtin_ia32_pmovzxdq128 (v4si)
18915 v4si __builtin_ia32_pmovzxwd128 (v8hi)
18916 v2di __builtin_ia32_pmovzxwq128 (v8hi)
18917 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
18918 v4si __builtin_ia32_pmulld128 (v4si, v4si)
18919 int __builtin_ia32_ptestc128 (v2di, v2di)
18920 int __builtin_ia32_ptestnzc128 (v2di, v2di)
18921 int __builtin_ia32_ptestz128 (v2di, v2di)
18922 v2df __builtin_ia32_roundpd (v2df, const int)
18923 v4sf __builtin_ia32_roundps (v4sf, const int)
18924 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
18925 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
18926 @end smallexample
18927
18928 The following built-in functions are available when @option{-msse4.1} is
18929 used.
18930
18931 @table @code
18932 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
18933 Generates the @code{insertps} machine instruction.
18934 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
18935 Generates the @code{pextrb} machine instruction.
18936 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
18937 Generates the @code{pinsrb} machine instruction.
18938 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
18939 Generates the @code{pinsrd} machine instruction.
18940 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
18941 Generates the @code{pinsrq} machine instruction in 64bit mode.
18942 @end table
18943
18944 The following built-in functions are changed to generate new SSE4.1
18945 instructions when @option{-msse4.1} is used.
18946
18947 @table @code
18948 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
18949 Generates the @code{extractps} machine instruction.
18950 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
18951 Generates the @code{pextrd} machine instruction.
18952 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
18953 Generates the @code{pextrq} machine instruction in 64bit mode.
18954 @end table
18955
18956 The following built-in functions are available when @option{-msse4.2} is
18957 used. All of them generate the machine instruction that is part of the
18958 name.
18959
18960 @smallexample
18961 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
18962 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
18963 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
18964 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
18965 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
18966 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
18967 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
18968 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
18969 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
18970 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
18971 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
18972 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
18973 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
18974 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
18975 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
18976 @end smallexample
18977
18978 The following built-in functions are available when @option{-msse4.2} is
18979 used.
18980
18981 @table @code
18982 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
18983 Generates the @code{crc32b} machine instruction.
18984 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
18985 Generates the @code{crc32w} machine instruction.
18986 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
18987 Generates the @code{crc32l} machine instruction.
18988 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
18989 Generates the @code{crc32q} machine instruction.
18990 @end table
18991
18992 The following built-in functions are changed to generate new SSE4.2
18993 instructions when @option{-msse4.2} is used.
18994
18995 @table @code
18996 @item int __builtin_popcount (unsigned int)
18997 Generates the @code{popcntl} machine instruction.
18998 @item int __builtin_popcountl (unsigned long)
18999 Generates the @code{popcntl} or @code{popcntq} machine instruction,
19000 depending on the size of @code{unsigned long}.
19001 @item int __builtin_popcountll (unsigned long long)
19002 Generates the @code{popcntq} machine instruction.
19003 @end table
19004
19005 The following built-in functions are available when @option{-mavx} is
19006 used. All of them generate the machine instruction that is part of the
19007 name.
19008
19009 @smallexample
19010 v4df __builtin_ia32_addpd256 (v4df,v4df)
19011 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
19012 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
19013 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
19014 v4df __builtin_ia32_andnpd256 (v4df,v4df)
19015 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
19016 v4df __builtin_ia32_andpd256 (v4df,v4df)
19017 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
19018 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
19019 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
19020 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
19021 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
19022 v2df __builtin_ia32_cmppd (v2df,v2df,int)
19023 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
19024 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
19025 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
19026 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
19027 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
19028 v4df __builtin_ia32_cvtdq2pd256 (v4si)
19029 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
19030 v4si __builtin_ia32_cvtpd2dq256 (v4df)
19031 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
19032 v8si __builtin_ia32_cvtps2dq256 (v8sf)
19033 v4df __builtin_ia32_cvtps2pd256 (v4sf)
19034 v4si __builtin_ia32_cvttpd2dq256 (v4df)
19035 v8si __builtin_ia32_cvttps2dq256 (v8sf)
19036 v4df __builtin_ia32_divpd256 (v4df,v4df)
19037 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
19038 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
19039 v4df __builtin_ia32_haddpd256 (v4df,v4df)
19040 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
19041 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
19042 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
19043 v32qi __builtin_ia32_lddqu256 (pcchar)
19044 v32qi __builtin_ia32_loaddqu256 (pcchar)
19045 v4df __builtin_ia32_loadupd256 (pcdouble)
19046 v8sf __builtin_ia32_loadups256 (pcfloat)
19047 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
19048 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
19049 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
19050 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
19051 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
19052 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
19053 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
19054 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
19055 v4df __builtin_ia32_maxpd256 (v4df,v4df)
19056 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
19057 v4df __builtin_ia32_minpd256 (v4df,v4df)
19058 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
19059 v4df __builtin_ia32_movddup256 (v4df)
19060 int __builtin_ia32_movmskpd256 (v4df)
19061 int __builtin_ia32_movmskps256 (v8sf)
19062 v8sf __builtin_ia32_movshdup256 (v8sf)
19063 v8sf __builtin_ia32_movsldup256 (v8sf)
19064 v4df __builtin_ia32_mulpd256 (v4df,v4df)
19065 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
19066 v4df __builtin_ia32_orpd256 (v4df,v4df)
19067 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
19068 v2df __builtin_ia32_pd_pd256 (v4df)
19069 v4df __builtin_ia32_pd256_pd (v2df)
19070 v4sf __builtin_ia32_ps_ps256 (v8sf)
19071 v8sf __builtin_ia32_ps256_ps (v4sf)
19072 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
19073 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
19074 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
19075 v8sf __builtin_ia32_rcpps256 (v8sf)
19076 v4df __builtin_ia32_roundpd256 (v4df,int)
19077 v8sf __builtin_ia32_roundps256 (v8sf,int)
19078 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
19079 v8sf __builtin_ia32_rsqrtps256 (v8sf)
19080 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
19081 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
19082 v4si __builtin_ia32_si_si256 (v8si)
19083 v8si __builtin_ia32_si256_si (v4si)
19084 v4df __builtin_ia32_sqrtpd256 (v4df)
19085 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
19086 v8sf __builtin_ia32_sqrtps256 (v8sf)
19087 void __builtin_ia32_storedqu256 (pchar,v32qi)
19088 void __builtin_ia32_storeupd256 (pdouble,v4df)
19089 void __builtin_ia32_storeups256 (pfloat,v8sf)
19090 v4df __builtin_ia32_subpd256 (v4df,v4df)
19091 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
19092 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
19093 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
19094 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
19095 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
19096 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
19097 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
19098 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
19099 v4sf __builtin_ia32_vbroadcastss (pcfloat)
19100 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
19101 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
19102 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
19103 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
19104 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
19105 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
19106 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
19107 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
19108 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
19109 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
19110 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
19111 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
19112 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
19113 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
19114 v2df __builtin_ia32_vpermilpd (v2df,int)
19115 v4df __builtin_ia32_vpermilpd256 (v4df,int)
19116 v4sf __builtin_ia32_vpermilps (v4sf,int)
19117 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
19118 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
19119 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
19120 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
19121 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
19122 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
19123 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
19124 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
19125 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
19126 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
19127 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
19128 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
19129 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
19130 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
19131 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
19132 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
19133 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
19134 void __builtin_ia32_vzeroall (void)
19135 void __builtin_ia32_vzeroupper (void)
19136 v4df __builtin_ia32_xorpd256 (v4df,v4df)
19137 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
19138 @end smallexample
19139
19140 The following built-in functions are available when @option{-mavx2} is
19141 used. All of them generate the machine instruction that is part of the
19142 name.
19143
19144 @smallexample
19145 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
19146 v32qi __builtin_ia32_pabsb256 (v32qi)
19147 v16hi __builtin_ia32_pabsw256 (v16hi)
19148 v8si __builtin_ia32_pabsd256 (v8si)
19149 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
19150 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
19151 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
19152 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
19153 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
19154 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
19155 v8si __builtin_ia32_paddd256 (v8si,v8si)
19156 v4di __builtin_ia32_paddq256 (v4di,v4di)
19157 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
19158 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
19159 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
19160 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
19161 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
19162 v4di __builtin_ia32_andsi256 (v4di,v4di)
19163 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
19164 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
19165 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
19166 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
19167 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
19168 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
19169 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
19170 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
19171 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
19172 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
19173 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
19174 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
19175 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
19176 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
19177 v8si __builtin_ia32_phaddd256 (v8si,v8si)
19178 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
19179 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
19180 v8si __builtin_ia32_phsubd256 (v8si,v8si)
19181 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
19182 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
19183 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
19184 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
19185 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
19186 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
19187 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
19188 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
19189 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
19190 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
19191 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
19192 v8si __builtin_ia32_pminsd256 (v8si,v8si)
19193 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
19194 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
19195 v8si __builtin_ia32_pminud256 (v8si,v8si)
19196 int __builtin_ia32_pmovmskb256 (v32qi)
19197 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
19198 v8si __builtin_ia32_pmovsxbd256 (v16qi)
19199 v4di __builtin_ia32_pmovsxbq256 (v16qi)
19200 v8si __builtin_ia32_pmovsxwd256 (v8hi)
19201 v4di __builtin_ia32_pmovsxwq256 (v8hi)
19202 v4di __builtin_ia32_pmovsxdq256 (v4si)
19203 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
19204 v8si __builtin_ia32_pmovzxbd256 (v16qi)
19205 v4di __builtin_ia32_pmovzxbq256 (v16qi)
19206 v8si __builtin_ia32_pmovzxwd256 (v8hi)
19207 v4di __builtin_ia32_pmovzxwq256 (v8hi)
19208 v4di __builtin_ia32_pmovzxdq256 (v4si)
19209 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
19210 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
19211 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
19212 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
19213 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
19214 v8si __builtin_ia32_pmulld256 (v8si,v8si)
19215 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
19216 v4di __builtin_ia32_por256 (v4di,v4di)
19217 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
19218 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
19219 v8si __builtin_ia32_pshufd256 (v8si,int)
19220 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
19221 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
19222 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
19223 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
19224 v8si __builtin_ia32_psignd256 (v8si,v8si)
19225 v4di __builtin_ia32_pslldqi256 (v4di,int)
19226 v16hi __builtin_ia32_psllwi256 (16hi,int)
19227 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
19228 v8si __builtin_ia32_pslldi256 (v8si,int)
19229 v8si __builtin_ia32_pslld256(v8si,v4si)
19230 v4di __builtin_ia32_psllqi256 (v4di,int)
19231 v4di __builtin_ia32_psllq256(v4di,v2di)
19232 v16hi __builtin_ia32_psrawi256 (v16hi,int)
19233 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
19234 v8si __builtin_ia32_psradi256 (v8si,int)
19235 v8si __builtin_ia32_psrad256 (v8si,v4si)
19236 v4di __builtin_ia32_psrldqi256 (v4di, int)
19237 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
19238 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
19239 v8si __builtin_ia32_psrldi256 (v8si,int)
19240 v8si __builtin_ia32_psrld256 (v8si,v4si)
19241 v4di __builtin_ia32_psrlqi256 (v4di,int)
19242 v4di __builtin_ia32_psrlq256(v4di,v2di)
19243 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
19244 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
19245 v8si __builtin_ia32_psubd256 (v8si,v8si)
19246 v4di __builtin_ia32_psubq256 (v4di,v4di)
19247 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
19248 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
19249 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
19250 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
19251 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
19252 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
19253 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
19254 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
19255 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
19256 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
19257 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
19258 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
19259 v4di __builtin_ia32_pxor256 (v4di,v4di)
19260 v4di __builtin_ia32_movntdqa256 (pv4di)
19261 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
19262 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
19263 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
19264 v4di __builtin_ia32_vbroadcastsi256 (v2di)
19265 v4si __builtin_ia32_pblendd128 (v4si,v4si)
19266 v8si __builtin_ia32_pblendd256 (v8si,v8si)
19267 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
19268 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
19269 v8si __builtin_ia32_pbroadcastd256 (v4si)
19270 v4di __builtin_ia32_pbroadcastq256 (v2di)
19271 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
19272 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
19273 v4si __builtin_ia32_pbroadcastd128 (v4si)
19274 v2di __builtin_ia32_pbroadcastq128 (v2di)
19275 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
19276 v4df __builtin_ia32_permdf256 (v4df,int)
19277 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
19278 v4di __builtin_ia32_permdi256 (v4di,int)
19279 v4di __builtin_ia32_permti256 (v4di,v4di,int)
19280 v4di __builtin_ia32_extract128i256 (v4di,int)
19281 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
19282 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
19283 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
19284 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
19285 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
19286 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
19287 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
19288 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
19289 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
19290 v8si __builtin_ia32_psllv8si (v8si,v8si)
19291 v4si __builtin_ia32_psllv4si (v4si,v4si)
19292 v4di __builtin_ia32_psllv4di (v4di,v4di)
19293 v2di __builtin_ia32_psllv2di (v2di,v2di)
19294 v8si __builtin_ia32_psrav8si (v8si,v8si)
19295 v4si __builtin_ia32_psrav4si (v4si,v4si)
19296 v8si __builtin_ia32_psrlv8si (v8si,v8si)
19297 v4si __builtin_ia32_psrlv4si (v4si,v4si)
19298 v4di __builtin_ia32_psrlv4di (v4di,v4di)
19299 v2di __builtin_ia32_psrlv2di (v2di,v2di)
19300 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
19301 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
19302 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
19303 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
19304 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
19305 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
19306 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
19307 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
19308 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
19309 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
19310 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
19311 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
19312 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
19313 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
19314 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
19315 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
19316 @end smallexample
19317
19318 The following built-in functions are available when @option{-maes} is
19319 used. All of them generate the machine instruction that is part of the
19320 name.
19321
19322 @smallexample
19323 v2di __builtin_ia32_aesenc128 (v2di, v2di)
19324 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
19325 v2di __builtin_ia32_aesdec128 (v2di, v2di)
19326 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
19327 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
19328 v2di __builtin_ia32_aesimc128 (v2di)
19329 @end smallexample
19330
19331 The following built-in function is available when @option{-mpclmul} is
19332 used.
19333
19334 @table @code
19335 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
19336 Generates the @code{pclmulqdq} machine instruction.
19337 @end table
19338
19339 The following built-in function is available when @option{-mfsgsbase} is
19340 used. All of them generate the machine instruction that is part of the
19341 name.
19342
19343 @smallexample
19344 unsigned int __builtin_ia32_rdfsbase32 (void)
19345 unsigned long long __builtin_ia32_rdfsbase64 (void)
19346 unsigned int __builtin_ia32_rdgsbase32 (void)
19347 unsigned long long __builtin_ia32_rdgsbase64 (void)
19348 void _writefsbase_u32 (unsigned int)
19349 void _writefsbase_u64 (unsigned long long)
19350 void _writegsbase_u32 (unsigned int)
19351 void _writegsbase_u64 (unsigned long long)
19352 @end smallexample
19353
19354 The following built-in function is available when @option{-mrdrnd} is
19355 used. All of them generate the machine instruction that is part of the
19356 name.
19357
19358 @smallexample
19359 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
19360 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
19361 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
19362 @end smallexample
19363
19364 The following built-in functions are available when @option{-msse4a} is used.
19365 All of them generate the machine instruction that is part of the name.
19366
19367 @smallexample
19368 void __builtin_ia32_movntsd (double *, v2df)
19369 void __builtin_ia32_movntss (float *, v4sf)
19370 v2di __builtin_ia32_extrq (v2di, v16qi)
19371 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
19372 v2di __builtin_ia32_insertq (v2di, v2di)
19373 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
19374 @end smallexample
19375
19376 The following built-in functions are available when @option{-mxop} is used.
19377 @smallexample
19378 v2df __builtin_ia32_vfrczpd (v2df)
19379 v4sf __builtin_ia32_vfrczps (v4sf)
19380 v2df __builtin_ia32_vfrczsd (v2df)
19381 v4sf __builtin_ia32_vfrczss (v4sf)
19382 v4df __builtin_ia32_vfrczpd256 (v4df)
19383 v8sf __builtin_ia32_vfrczps256 (v8sf)
19384 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
19385 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
19386 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
19387 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
19388 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
19389 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
19390 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
19391 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
19392 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
19393 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
19394 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
19395 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
19396 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
19397 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
19398 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
19399 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
19400 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
19401 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
19402 v4si __builtin_ia32_vpcomequd (v4si, v4si)
19403 v2di __builtin_ia32_vpcomequq (v2di, v2di)
19404 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
19405 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
19406 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
19407 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
19408 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
19409 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
19410 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
19411 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
19412 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
19413 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
19414 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
19415 v4si __builtin_ia32_vpcomged (v4si, v4si)
19416 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
19417 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
19418 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
19419 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
19420 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
19421 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
19422 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
19423 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
19424 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
19425 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
19426 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
19427 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
19428 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
19429 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
19430 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
19431 v4si __builtin_ia32_vpcomled (v4si, v4si)
19432 v2di __builtin_ia32_vpcomleq (v2di, v2di)
19433 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
19434 v4si __builtin_ia32_vpcomleud (v4si, v4si)
19435 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
19436 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
19437 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
19438 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
19439 v4si __builtin_ia32_vpcomltd (v4si, v4si)
19440 v2di __builtin_ia32_vpcomltq (v2di, v2di)
19441 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
19442 v4si __builtin_ia32_vpcomltud (v4si, v4si)
19443 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
19444 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
19445 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
19446 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
19447 v4si __builtin_ia32_vpcomned (v4si, v4si)
19448 v2di __builtin_ia32_vpcomneq (v2di, v2di)
19449 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
19450 v4si __builtin_ia32_vpcomneud (v4si, v4si)
19451 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
19452 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
19453 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
19454 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
19455 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
19456 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
19457 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
19458 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
19459 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
19460 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
19461 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
19462 v4si __builtin_ia32_vphaddbd (v16qi)
19463 v2di __builtin_ia32_vphaddbq (v16qi)
19464 v8hi __builtin_ia32_vphaddbw (v16qi)
19465 v2di __builtin_ia32_vphadddq (v4si)
19466 v4si __builtin_ia32_vphaddubd (v16qi)
19467 v2di __builtin_ia32_vphaddubq (v16qi)
19468 v8hi __builtin_ia32_vphaddubw (v16qi)
19469 v2di __builtin_ia32_vphaddudq (v4si)
19470 v4si __builtin_ia32_vphadduwd (v8hi)
19471 v2di __builtin_ia32_vphadduwq (v8hi)
19472 v4si __builtin_ia32_vphaddwd (v8hi)
19473 v2di __builtin_ia32_vphaddwq (v8hi)
19474 v8hi __builtin_ia32_vphsubbw (v16qi)
19475 v2di __builtin_ia32_vphsubdq (v4si)
19476 v4si __builtin_ia32_vphsubwd (v8hi)
19477 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
19478 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
19479 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
19480 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
19481 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
19482 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
19483 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
19484 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
19485 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
19486 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
19487 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
19488 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
19489 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
19490 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
19491 v4si __builtin_ia32_vprotd (v4si, v4si)
19492 v2di __builtin_ia32_vprotq (v2di, v2di)
19493 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
19494 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
19495 v4si __builtin_ia32_vpshad (v4si, v4si)
19496 v2di __builtin_ia32_vpshaq (v2di, v2di)
19497 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
19498 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
19499 v4si __builtin_ia32_vpshld (v4si, v4si)
19500 v2di __builtin_ia32_vpshlq (v2di, v2di)
19501 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
19502 @end smallexample
19503
19504 The following built-in functions are available when @option{-mfma4} is used.
19505 All of them generate the machine instruction that is part of the name.
19506
19507 @smallexample
19508 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
19509 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
19510 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
19511 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
19512 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
19513 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
19514 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
19515 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
19516 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
19517 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
19518 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
19519 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
19520 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
19521 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
19522 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
19523 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
19524 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
19525 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
19526 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
19527 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
19528 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
19529 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
19530 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
19531 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
19532 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
19533 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
19534 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
19535 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
19536 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
19537 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
19538 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
19539 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
19540
19541 @end smallexample
19542
19543 The following built-in functions are available when @option{-mlwp} is used.
19544
19545 @smallexample
19546 void __builtin_ia32_llwpcb16 (void *);
19547 void __builtin_ia32_llwpcb32 (void *);
19548 void __builtin_ia32_llwpcb64 (void *);
19549 void * __builtin_ia32_llwpcb16 (void);
19550 void * __builtin_ia32_llwpcb32 (void);
19551 void * __builtin_ia32_llwpcb64 (void);
19552 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
19553 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
19554 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
19555 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
19556 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
19557 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
19558 @end smallexample
19559
19560 The following built-in functions are available when @option{-mbmi} is used.
19561 All of them generate the machine instruction that is part of the name.
19562 @smallexample
19563 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
19564 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
19565 @end smallexample
19566
19567 The following built-in functions are available when @option{-mbmi2} is used.
19568 All of them generate the machine instruction that is part of the name.
19569 @smallexample
19570 unsigned int _bzhi_u32 (unsigned int, unsigned int)
19571 unsigned int _pdep_u32 (unsigned int, unsigned int)
19572 unsigned int _pext_u32 (unsigned int, unsigned int)
19573 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
19574 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
19575 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
19576 @end smallexample
19577
19578 The following built-in functions are available when @option{-mlzcnt} is used.
19579 All of them generate the machine instruction that is part of the name.
19580 @smallexample
19581 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
19582 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
19583 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
19584 @end smallexample
19585
19586 The following built-in functions are available when @option{-mfxsr} is used.
19587 All of them generate the machine instruction that is part of the name.
19588 @smallexample
19589 void __builtin_ia32_fxsave (void *)
19590 void __builtin_ia32_fxrstor (void *)
19591 void __builtin_ia32_fxsave64 (void *)
19592 void __builtin_ia32_fxrstor64 (void *)
19593 @end smallexample
19594
19595 The following built-in functions are available when @option{-mxsave} is used.
19596 All of them generate the machine instruction that is part of the name.
19597 @smallexample
19598 void __builtin_ia32_xsave (void *, long long)
19599 void __builtin_ia32_xrstor (void *, long long)
19600 void __builtin_ia32_xsave64 (void *, long long)
19601 void __builtin_ia32_xrstor64 (void *, long long)
19602 @end smallexample
19603
19604 The following built-in functions are available when @option{-mxsaveopt} is used.
19605 All of them generate the machine instruction that is part of the name.
19606 @smallexample
19607 void __builtin_ia32_xsaveopt (void *, long long)
19608 void __builtin_ia32_xsaveopt64 (void *, long long)
19609 @end smallexample
19610
19611 The following built-in functions are available when @option{-mtbm} is used.
19612 Both of them generate the immediate form of the bextr machine instruction.
19613 @smallexample
19614 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
19615 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
19616 @end smallexample
19617
19618
19619 The following built-in functions are available when @option{-m3dnow} is used.
19620 All of them generate the machine instruction that is part of the name.
19621
19622 @smallexample
19623 void __builtin_ia32_femms (void)
19624 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
19625 v2si __builtin_ia32_pf2id (v2sf)
19626 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
19627 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
19628 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
19629 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
19630 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
19631 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
19632 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
19633 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
19634 v2sf __builtin_ia32_pfrcp (v2sf)
19635 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
19636 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
19637 v2sf __builtin_ia32_pfrsqrt (v2sf)
19638 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
19639 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
19640 v2sf __builtin_ia32_pi2fd (v2si)
19641 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
19642 @end smallexample
19643
19644 The following built-in functions are available when both @option{-m3dnow}
19645 and @option{-march=athlon} are used. All of them generate the machine
19646 instruction that is part of the name.
19647
19648 @smallexample
19649 v2si __builtin_ia32_pf2iw (v2sf)
19650 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
19651 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
19652 v2sf __builtin_ia32_pi2fw (v2si)
19653 v2sf __builtin_ia32_pswapdsf (v2sf)
19654 v2si __builtin_ia32_pswapdsi (v2si)
19655 @end smallexample
19656
19657 The following built-in functions are available when @option{-mrtm} is used
19658 They are used for restricted transactional memory. These are the internal
19659 low level functions. Normally the functions in
19660 @ref{x86 transactional memory intrinsics} should be used instead.
19661
19662 @smallexample
19663 int __builtin_ia32_xbegin ()
19664 void __builtin_ia32_xend ()
19665 void __builtin_ia32_xabort (status)
19666 int __builtin_ia32_xtest ()
19667 @end smallexample
19668
19669 The following built-in functions are available when @option{-mmwaitx} is used.
19670 All of them generate the machine instruction that is part of the name.
19671 @smallexample
19672 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
19673 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
19674 @end smallexample
19675
19676 The following built-in functions are available when @option{-mclzero} is used.
19677 All of them generate the machine instruction that is part of the name.
19678 @smallexample
19679 void __builtin_i32_clzero (void *)
19680 @end smallexample
19681
19682 The following built-in functions are available when @option{-mpku} is used.
19683 They generate reads and writes to PKRU.
19684 @smallexample
19685 void __builtin_ia32_wrpkru (unsigned int)
19686 unsigned int __builtin_ia32_rdpkru ()
19687 @end smallexample
19688
19689 @node x86 transactional memory intrinsics
19690 @subsection x86 Transactional Memory Intrinsics
19691
19692 These hardware transactional memory intrinsics for x86 allow you to use
19693 memory transactions with RTM (Restricted Transactional Memory).
19694 This support is enabled with the @option{-mrtm} option.
19695 For using HLE (Hardware Lock Elision) see
19696 @ref{x86 specific memory model extensions for transactional memory} instead.
19697
19698 A memory transaction commits all changes to memory in an atomic way,
19699 as visible to other threads. If the transaction fails it is rolled back
19700 and all side effects discarded.
19701
19702 Generally there is no guarantee that a memory transaction ever succeeds
19703 and suitable fallback code always needs to be supplied.
19704
19705 @deftypefn {RTM Function} {unsigned} _xbegin ()
19706 Start a RTM (Restricted Transactional Memory) transaction.
19707 Returns @code{_XBEGIN_STARTED} when the transaction
19708 started successfully (note this is not 0, so the constant has to be
19709 explicitly tested).
19710
19711 If the transaction aborts, all side-effects
19712 are undone and an abort code encoded as a bit mask is returned.
19713 The following macros are defined:
19714
19715 @table @code
19716 @item _XABORT_EXPLICIT
19717 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
19718 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
19719 @item _XABORT_RETRY
19720 Transaction retry is possible.
19721 @item _XABORT_CONFLICT
19722 Transaction abort due to a memory conflict with another thread.
19723 @item _XABORT_CAPACITY
19724 Transaction abort due to the transaction using too much memory.
19725 @item _XABORT_DEBUG
19726 Transaction abort due to a debug trap.
19727 @item _XABORT_NESTED
19728 Transaction abort in an inner nested transaction.
19729 @end table
19730
19731 There is no guarantee
19732 any transaction ever succeeds, so there always needs to be a valid
19733 fallback path.
19734 @end deftypefn
19735
19736 @deftypefn {RTM Function} {void} _xend ()
19737 Commit the current transaction. When no transaction is active this faults.
19738 All memory side-effects of the transaction become visible
19739 to other threads in an atomic manner.
19740 @end deftypefn
19741
19742 @deftypefn {RTM Function} {int} _xtest ()
19743 Return a nonzero value if a transaction is currently active, otherwise 0.
19744 @end deftypefn
19745
19746 @deftypefn {RTM Function} {void} _xabort (status)
19747 Abort the current transaction. When no transaction is active this is a no-op.
19748 The @var{status} is an 8-bit constant; its value is encoded in the return
19749 value from @code{_xbegin}.
19750 @end deftypefn
19751
19752 Here is an example showing handling for @code{_XABORT_RETRY}
19753 and a fallback path for other failures:
19754
19755 @smallexample
19756 #include <immintrin.h>
19757
19758 int n_tries, max_tries;
19759 unsigned status = _XABORT_EXPLICIT;
19760 ...
19761
19762 for (n_tries = 0; n_tries < max_tries; n_tries++)
19763 @{
19764 status = _xbegin ();
19765 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
19766 break;
19767 @}
19768 if (status == _XBEGIN_STARTED)
19769 @{
19770 ... transaction code...
19771 _xend ();
19772 @}
19773 else
19774 @{
19775 ... non-transactional fallback path...
19776 @}
19777 @end smallexample
19778
19779 @noindent
19780 Note that, in most cases, the transactional and non-transactional code
19781 must synchronize together to ensure consistency.
19782
19783 @node Target Format Checks
19784 @section Format Checks Specific to Particular Target Machines
19785
19786 For some target machines, GCC supports additional options to the
19787 format attribute
19788 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
19789
19790 @menu
19791 * Solaris Format Checks::
19792 * Darwin Format Checks::
19793 @end menu
19794
19795 @node Solaris Format Checks
19796 @subsection Solaris Format Checks
19797
19798 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
19799 check. @code{cmn_err} accepts a subset of the standard @code{printf}
19800 conversions, and the two-argument @code{%b} conversion for displaying
19801 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
19802
19803 @node Darwin Format Checks
19804 @subsection Darwin Format Checks
19805
19806 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
19807 attribute context. Declarations made with such attribution are parsed for correct syntax
19808 and format argument types. However, parsing of the format string itself is currently undefined
19809 and is not carried out by this version of the compiler.
19810
19811 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
19812 also be used as format arguments. Note that the relevant headers are only likely to be
19813 available on Darwin (OSX) installations. On such installations, the XCode and system
19814 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
19815 associated functions.
19816
19817 @node Pragmas
19818 @section Pragmas Accepted by GCC
19819 @cindex pragmas
19820 @cindex @code{#pragma}
19821
19822 GCC supports several types of pragmas, primarily in order to compile
19823 code originally written for other compilers. Note that in general
19824 we do not recommend the use of pragmas; @xref{Function Attributes},
19825 for further explanation.
19826
19827 @menu
19828 * AArch64 Pragmas::
19829 * ARM Pragmas::
19830 * M32C Pragmas::
19831 * MeP Pragmas::
19832 * RS/6000 and PowerPC Pragmas::
19833 * S/390 Pragmas::
19834 * Darwin Pragmas::
19835 * Solaris Pragmas::
19836 * Symbol-Renaming Pragmas::
19837 * Structure-Layout Pragmas::
19838 * Weak Pragmas::
19839 * Diagnostic Pragmas::
19840 * Visibility Pragmas::
19841 * Push/Pop Macro Pragmas::
19842 * Function Specific Option Pragmas::
19843 * Loop-Specific Pragmas::
19844 @end menu
19845
19846 @node AArch64 Pragmas
19847 @subsection AArch64 Pragmas
19848
19849 The pragmas defined by the AArch64 target correspond to the AArch64
19850 target function attributes. They can be specified as below:
19851 @smallexample
19852 #pragma GCC target("string")
19853 @end smallexample
19854
19855 where @code{@var{string}} can be any string accepted as an AArch64 target
19856 attribute. @xref{AArch64 Function Attributes}, for more details
19857 on the permissible values of @code{string}.
19858
19859 @node ARM Pragmas
19860 @subsection ARM Pragmas
19861
19862 The ARM target defines pragmas for controlling the default addition of
19863 @code{long_call} and @code{short_call} attributes to functions.
19864 @xref{Function Attributes}, for information about the effects of these
19865 attributes.
19866
19867 @table @code
19868 @item long_calls
19869 @cindex pragma, long_calls
19870 Set all subsequent functions to have the @code{long_call} attribute.
19871
19872 @item no_long_calls
19873 @cindex pragma, no_long_calls
19874 Set all subsequent functions to have the @code{short_call} attribute.
19875
19876 @item long_calls_off
19877 @cindex pragma, long_calls_off
19878 Do not affect the @code{long_call} or @code{short_call} attributes of
19879 subsequent functions.
19880 @end table
19881
19882 @node M32C Pragmas
19883 @subsection M32C Pragmas
19884
19885 @table @code
19886 @item GCC memregs @var{number}
19887 @cindex pragma, memregs
19888 Overrides the command-line option @code{-memregs=} for the current
19889 file. Use with care! This pragma must be before any function in the
19890 file, and mixing different memregs values in different objects may
19891 make them incompatible. This pragma is useful when a
19892 performance-critical function uses a memreg for temporary values,
19893 as it may allow you to reduce the number of memregs used.
19894
19895 @item ADDRESS @var{name} @var{address}
19896 @cindex pragma, address
19897 For any declared symbols matching @var{name}, this does three things
19898 to that symbol: it forces the symbol to be located at the given
19899 address (a number), it forces the symbol to be volatile, and it
19900 changes the symbol's scope to be static. This pragma exists for
19901 compatibility with other compilers, but note that the common
19902 @code{1234H} numeric syntax is not supported (use @code{0x1234}
19903 instead). Example:
19904
19905 @smallexample
19906 #pragma ADDRESS port3 0x103
19907 char port3;
19908 @end smallexample
19909
19910 @end table
19911
19912 @node MeP Pragmas
19913 @subsection MeP Pragmas
19914
19915 @table @code
19916
19917 @item custom io_volatile (on|off)
19918 @cindex pragma, custom io_volatile
19919 Overrides the command-line option @code{-mio-volatile} for the current
19920 file. Note that for compatibility with future GCC releases, this
19921 option should only be used once before any @code{io} variables in each
19922 file.
19923
19924 @item GCC coprocessor available @var{registers}
19925 @cindex pragma, coprocessor available
19926 Specifies which coprocessor registers are available to the register
19927 allocator. @var{registers} may be a single register, register range
19928 separated by ellipses, or comma-separated list of those. Example:
19929
19930 @smallexample
19931 #pragma GCC coprocessor available $c0...$c10, $c28
19932 @end smallexample
19933
19934 @item GCC coprocessor call_saved @var{registers}
19935 @cindex pragma, coprocessor call_saved
19936 Specifies which coprocessor registers are to be saved and restored by
19937 any function using them. @var{registers} may be a single register,
19938 register range separated by ellipses, or comma-separated list of
19939 those. Example:
19940
19941 @smallexample
19942 #pragma GCC coprocessor call_saved $c4...$c6, $c31
19943 @end smallexample
19944
19945 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
19946 @cindex pragma, coprocessor subclass
19947 Creates and defines a register class. These register classes can be
19948 used by inline @code{asm} constructs. @var{registers} may be a single
19949 register, register range separated by ellipses, or comma-separated
19950 list of those. Example:
19951
19952 @smallexample
19953 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
19954
19955 asm ("cpfoo %0" : "=B" (x));
19956 @end smallexample
19957
19958 @item GCC disinterrupt @var{name} , @var{name} @dots{}
19959 @cindex pragma, disinterrupt
19960 For the named functions, the compiler adds code to disable interrupts
19961 for the duration of those functions. If any functions so named
19962 are not encountered in the source, a warning is emitted that the pragma is
19963 not used. Examples:
19964
19965 @smallexample
19966 #pragma disinterrupt foo
19967 #pragma disinterrupt bar, grill
19968 int foo () @{ @dots{} @}
19969 @end smallexample
19970
19971 @item GCC call @var{name} , @var{name} @dots{}
19972 @cindex pragma, call
19973 For the named functions, the compiler always uses a register-indirect
19974 call model when calling the named functions. Examples:
19975
19976 @smallexample
19977 extern int foo ();
19978 #pragma call foo
19979 @end smallexample
19980
19981 @end table
19982
19983 @node RS/6000 and PowerPC Pragmas
19984 @subsection RS/6000 and PowerPC Pragmas
19985
19986 The RS/6000 and PowerPC targets define one pragma for controlling
19987 whether or not the @code{longcall} attribute is added to function
19988 declarations by default. This pragma overrides the @option{-mlongcall}
19989 option, but not the @code{longcall} and @code{shortcall} attributes.
19990 @xref{RS/6000 and PowerPC Options}, for more information about when long
19991 calls are and are not necessary.
19992
19993 @table @code
19994 @item longcall (1)
19995 @cindex pragma, longcall
19996 Apply the @code{longcall} attribute to all subsequent function
19997 declarations.
19998
19999 @item longcall (0)
20000 Do not apply the @code{longcall} attribute to subsequent function
20001 declarations.
20002 @end table
20003
20004 @c Describe h8300 pragmas here.
20005 @c Describe sh pragmas here.
20006 @c Describe v850 pragmas here.
20007
20008 @node S/390 Pragmas
20009 @subsection S/390 Pragmas
20010
20011 The pragmas defined by the S/390 target correspond to the S/390
20012 target function attributes and some the additional options:
20013
20014 @table @samp
20015 @item zvector
20016 @itemx no-zvector
20017 @end table
20018
20019 Note that options of the pragma, unlike options of the target
20020 attribute, do change the value of preprocessor macros like
20021 @code{__VEC__}. They can be specified as below:
20022
20023 @smallexample
20024 #pragma GCC target("string[,string]...")
20025 #pragma GCC target("string"[,"string"]...)
20026 @end smallexample
20027
20028 @node Darwin Pragmas
20029 @subsection Darwin Pragmas
20030
20031 The following pragmas are available for all architectures running the
20032 Darwin operating system. These are useful for compatibility with other
20033 Mac OS compilers.
20034
20035 @table @code
20036 @item mark @var{tokens}@dots{}
20037 @cindex pragma, mark
20038 This pragma is accepted, but has no effect.
20039
20040 @item options align=@var{alignment}
20041 @cindex pragma, options align
20042 This pragma sets the alignment of fields in structures. The values of
20043 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
20044 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
20045 properly; to restore the previous setting, use @code{reset} for the
20046 @var{alignment}.
20047
20048 @item segment @var{tokens}@dots{}
20049 @cindex pragma, segment
20050 This pragma is accepted, but has no effect.
20051
20052 @item unused (@var{var} [, @var{var}]@dots{})
20053 @cindex pragma, unused
20054 This pragma declares variables to be possibly unused. GCC does not
20055 produce warnings for the listed variables. The effect is similar to
20056 that of the @code{unused} attribute, except that this pragma may appear
20057 anywhere within the variables' scopes.
20058 @end table
20059
20060 @node Solaris Pragmas
20061 @subsection Solaris Pragmas
20062
20063 The Solaris target supports @code{#pragma redefine_extname}
20064 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
20065 @code{#pragma} directives for compatibility with the system compiler.
20066
20067 @table @code
20068 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
20069 @cindex pragma, align
20070
20071 Increase the minimum alignment of each @var{variable} to @var{alignment}.
20072 This is the same as GCC's @code{aligned} attribute @pxref{Variable
20073 Attributes}). Macro expansion occurs on the arguments to this pragma
20074 when compiling C and Objective-C@. It does not currently occur when
20075 compiling C++, but this is a bug which may be fixed in a future
20076 release.
20077
20078 @item fini (@var{function} [, @var{function}]...)
20079 @cindex pragma, fini
20080
20081 This pragma causes each listed @var{function} to be called after
20082 main, or during shared module unloading, by adding a call to the
20083 @code{.fini} section.
20084
20085 @item init (@var{function} [, @var{function}]...)
20086 @cindex pragma, init
20087
20088 This pragma causes each listed @var{function} to be called during
20089 initialization (before @code{main}) or during shared module loading, by
20090 adding a call to the @code{.init} section.
20091
20092 @end table
20093
20094 @node Symbol-Renaming Pragmas
20095 @subsection Symbol-Renaming Pragmas
20096
20097 GCC supports a @code{#pragma} directive that changes the name used in
20098 assembly for a given declaration. While this pragma is supported on all
20099 platforms, it is intended primarily to provide compatibility with the
20100 Solaris system headers. This effect can also be achieved using the asm
20101 labels extension (@pxref{Asm Labels}).
20102
20103 @table @code
20104 @item redefine_extname @var{oldname} @var{newname}
20105 @cindex pragma, redefine_extname
20106
20107 This pragma gives the C function @var{oldname} the assembly symbol
20108 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
20109 is defined if this pragma is available (currently on all platforms).
20110 @end table
20111
20112 This pragma and the asm labels extension interact in a complicated
20113 manner. Here are some corner cases you may want to be aware of:
20114
20115 @enumerate
20116 @item This pragma silently applies only to declarations with external
20117 linkage. Asm labels do not have this restriction.
20118
20119 @item In C++, this pragma silently applies only to declarations with
20120 ``C'' linkage. Again, asm labels do not have this restriction.
20121
20122 @item If either of the ways of changing the assembly name of a
20123 declaration are applied to a declaration whose assembly name has
20124 already been determined (either by a previous use of one of these
20125 features, or because the compiler needed the assembly name in order to
20126 generate code), and the new name is different, a warning issues and
20127 the name does not change.
20128
20129 @item The @var{oldname} used by @code{#pragma redefine_extname} is
20130 always the C-language name.
20131 @end enumerate
20132
20133 @node Structure-Layout Pragmas
20134 @subsection Structure-Layout Pragmas
20135
20136 For compatibility with Microsoft Windows compilers, GCC supports a
20137 set of @code{#pragma} directives that change the maximum alignment of
20138 members of structures (other than zero-width bit-fields), unions, and
20139 classes subsequently defined. The @var{n} value below always is required
20140 to be a small power of two and specifies the new alignment in bytes.
20141
20142 @enumerate
20143 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
20144 @item @code{#pragma pack()} sets the alignment to the one that was in
20145 effect when compilation started (see also command-line option
20146 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
20147 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
20148 setting on an internal stack and then optionally sets the new alignment.
20149 @item @code{#pragma pack(pop)} restores the alignment setting to the one
20150 saved at the top of the internal stack (and removes that stack entry).
20151 Note that @code{#pragma pack([@var{n}])} does not influence this internal
20152 stack; thus it is possible to have @code{#pragma pack(push)} followed by
20153 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
20154 @code{#pragma pack(pop)}.
20155 @end enumerate
20156
20157 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
20158 directive which lays out structures and unions subsequently defined as the
20159 documented @code{__attribute__ ((ms_struct))}.
20160
20161 @enumerate
20162 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
20163 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
20164 @item @code{#pragma ms_struct reset} goes back to the default layout.
20165 @end enumerate
20166
20167 Most targets also support the @code{#pragma scalar_storage_order} directive
20168 which lays out structures and unions subsequently defined as the documented
20169 @code{__attribute__ ((scalar_storage_order))}.
20170
20171 @enumerate
20172 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
20173 of the scalar fields to big-endian.
20174 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
20175 of the scalar fields to little-endian.
20176 @item @code{#pragma scalar_storage_order default} goes back to the endianness
20177 that was in effect when compilation started (see also command-line option
20178 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
20179 @end enumerate
20180
20181 @node Weak Pragmas
20182 @subsection Weak Pragmas
20183
20184 For compatibility with SVR4, GCC supports a set of @code{#pragma}
20185 directives for declaring symbols to be weak, and defining weak
20186 aliases.
20187
20188 @table @code
20189 @item #pragma weak @var{symbol}
20190 @cindex pragma, weak
20191 This pragma declares @var{symbol} to be weak, as if the declaration
20192 had the attribute of the same name. The pragma may appear before
20193 or after the declaration of @var{symbol}. It is not an error for
20194 @var{symbol} to never be defined at all.
20195
20196 @item #pragma weak @var{symbol1} = @var{symbol2}
20197 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
20198 It is an error if @var{symbol2} is not defined in the current
20199 translation unit.
20200 @end table
20201
20202 @node Diagnostic Pragmas
20203 @subsection Diagnostic Pragmas
20204
20205 GCC allows the user to selectively enable or disable certain types of
20206 diagnostics, and change the kind of the diagnostic. For example, a
20207 project's policy might require that all sources compile with
20208 @option{-Werror} but certain files might have exceptions allowing
20209 specific types of warnings. Or, a project might selectively enable
20210 diagnostics and treat them as errors depending on which preprocessor
20211 macros are defined.
20212
20213 @table @code
20214 @item #pragma GCC diagnostic @var{kind} @var{option}
20215 @cindex pragma, diagnostic
20216
20217 Modifies the disposition of a diagnostic. Note that not all
20218 diagnostics are modifiable; at the moment only warnings (normally
20219 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
20220 Use @option{-fdiagnostics-show-option} to determine which diagnostics
20221 are controllable and which option controls them.
20222
20223 @var{kind} is @samp{error} to treat this diagnostic as an error,
20224 @samp{warning} to treat it like a warning (even if @option{-Werror} is
20225 in effect), or @samp{ignored} if the diagnostic is to be ignored.
20226 @var{option} is a double quoted string that matches the command-line
20227 option.
20228
20229 @smallexample
20230 #pragma GCC diagnostic warning "-Wformat"
20231 #pragma GCC diagnostic error "-Wformat"
20232 #pragma GCC diagnostic ignored "-Wformat"
20233 @end smallexample
20234
20235 Note that these pragmas override any command-line options. GCC keeps
20236 track of the location of each pragma, and issues diagnostics according
20237 to the state as of that point in the source file. Thus, pragmas occurring
20238 after a line do not affect diagnostics caused by that line.
20239
20240 @item #pragma GCC diagnostic push
20241 @itemx #pragma GCC diagnostic pop
20242
20243 Causes GCC to remember the state of the diagnostics as of each
20244 @code{push}, and restore to that point at each @code{pop}. If a
20245 @code{pop} has no matching @code{push}, the command-line options are
20246 restored.
20247
20248 @smallexample
20249 #pragma GCC diagnostic error "-Wuninitialized"
20250 foo(a); /* error is given for this one */
20251 #pragma GCC diagnostic push
20252 #pragma GCC diagnostic ignored "-Wuninitialized"
20253 foo(b); /* no diagnostic for this one */
20254 #pragma GCC diagnostic pop
20255 foo(c); /* error is given for this one */
20256 #pragma GCC diagnostic pop
20257 foo(d); /* depends on command-line options */
20258 @end smallexample
20259
20260 @end table
20261
20262 GCC also offers a simple mechanism for printing messages during
20263 compilation.
20264
20265 @table @code
20266 @item #pragma message @var{string}
20267 @cindex pragma, diagnostic
20268
20269 Prints @var{string} as a compiler message on compilation. The message
20270 is informational only, and is neither a compilation warning nor an error.
20271
20272 @smallexample
20273 #pragma message "Compiling " __FILE__ "..."
20274 @end smallexample
20275
20276 @var{string} may be parenthesized, and is printed with location
20277 information. For example,
20278
20279 @smallexample
20280 #define DO_PRAGMA(x) _Pragma (#x)
20281 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
20282
20283 TODO(Remember to fix this)
20284 @end smallexample
20285
20286 @noindent
20287 prints @samp{/tmp/file.c:4: note: #pragma message:
20288 TODO - Remember to fix this}.
20289
20290 @end table
20291
20292 @node Visibility Pragmas
20293 @subsection Visibility Pragmas
20294
20295 @table @code
20296 @item #pragma GCC visibility push(@var{visibility})
20297 @itemx #pragma GCC visibility pop
20298 @cindex pragma, visibility
20299
20300 This pragma allows the user to set the visibility for multiple
20301 declarations without having to give each a visibility attribute
20302 (@pxref{Function Attributes}).
20303
20304 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
20305 declarations. Class members and template specializations are not
20306 affected; if you want to override the visibility for a particular
20307 member or instantiation, you must use an attribute.
20308
20309 @end table
20310
20311
20312 @node Push/Pop Macro Pragmas
20313 @subsection Push/Pop Macro Pragmas
20314
20315 For compatibility with Microsoft Windows compilers, GCC supports
20316 @samp{#pragma push_macro(@var{"macro_name"})}
20317 and @samp{#pragma pop_macro(@var{"macro_name"})}.
20318
20319 @table @code
20320 @item #pragma push_macro(@var{"macro_name"})
20321 @cindex pragma, push_macro
20322 This pragma saves the value of the macro named as @var{macro_name} to
20323 the top of the stack for this macro.
20324
20325 @item #pragma pop_macro(@var{"macro_name"})
20326 @cindex pragma, pop_macro
20327 This pragma sets the value of the macro named as @var{macro_name} to
20328 the value on top of the stack for this macro. If the stack for
20329 @var{macro_name} is empty, the value of the macro remains unchanged.
20330 @end table
20331
20332 For example:
20333
20334 @smallexample
20335 #define X 1
20336 #pragma push_macro("X")
20337 #undef X
20338 #define X -1
20339 #pragma pop_macro("X")
20340 int x [X];
20341 @end smallexample
20342
20343 @noindent
20344 In this example, the definition of X as 1 is saved by @code{#pragma
20345 push_macro} and restored by @code{#pragma pop_macro}.
20346
20347 @node Function Specific Option Pragmas
20348 @subsection Function Specific Option Pragmas
20349
20350 @table @code
20351 @item #pragma GCC target (@var{"string"}...)
20352 @cindex pragma GCC target
20353
20354 This pragma allows you to set target specific options for functions
20355 defined later in the source file. One or more strings can be
20356 specified. Each function that is defined after this point is as
20357 if @code{attribute((target("STRING")))} was specified for that
20358 function. The parenthesis around the options is optional.
20359 @xref{Function Attributes}, for more information about the
20360 @code{target} attribute and the attribute syntax.
20361
20362 The @code{#pragma GCC target} pragma is presently implemented for
20363 x86, PowerPC, and Nios II targets only.
20364 @end table
20365
20366 @table @code
20367 @item #pragma GCC optimize (@var{"string"}...)
20368 @cindex pragma GCC optimize
20369
20370 This pragma allows you to set global optimization options for functions
20371 defined later in the source file. One or more strings can be
20372 specified. Each function that is defined after this point is as
20373 if @code{attribute((optimize("STRING")))} was specified for that
20374 function. The parenthesis around the options is optional.
20375 @xref{Function Attributes}, for more information about the
20376 @code{optimize} attribute and the attribute syntax.
20377 @end table
20378
20379 @table @code
20380 @item #pragma GCC push_options
20381 @itemx #pragma GCC pop_options
20382 @cindex pragma GCC push_options
20383 @cindex pragma GCC pop_options
20384
20385 These pragmas maintain a stack of the current target and optimization
20386 options. It is intended for include files where you temporarily want
20387 to switch to using a different @samp{#pragma GCC target} or
20388 @samp{#pragma GCC optimize} and then to pop back to the previous
20389 options.
20390 @end table
20391
20392 @table @code
20393 @item #pragma GCC reset_options
20394 @cindex pragma GCC reset_options
20395
20396 This pragma clears the current @code{#pragma GCC target} and
20397 @code{#pragma GCC optimize} to use the default switches as specified
20398 on the command line.
20399 @end table
20400
20401 @node Loop-Specific Pragmas
20402 @subsection Loop-Specific Pragmas
20403
20404 @table @code
20405 @item #pragma GCC ivdep
20406 @cindex pragma GCC ivdep
20407 @end table
20408
20409 With this pragma, the programmer asserts that there are no loop-carried
20410 dependencies which would prevent consecutive iterations of
20411 the following loop from executing concurrently with SIMD
20412 (single instruction multiple data) instructions.
20413
20414 For example, the compiler can only unconditionally vectorize the following
20415 loop with the pragma:
20416
20417 @smallexample
20418 void foo (int n, int *a, int *b, int *c)
20419 @{
20420 int i, j;
20421 #pragma GCC ivdep
20422 for (i = 0; i < n; ++i)
20423 a[i] = b[i] + c[i];
20424 @}
20425 @end smallexample
20426
20427 @noindent
20428 In this example, using the @code{restrict} qualifier had the same
20429 effect. In the following example, that would not be possible. Assume
20430 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
20431 that it can unconditionally vectorize the following loop:
20432
20433 @smallexample
20434 void ignore_vec_dep (int *a, int k, int c, int m)
20435 @{
20436 #pragma GCC ivdep
20437 for (int i = 0; i < m; i++)
20438 a[i] = a[i + k] * c;
20439 @}
20440 @end smallexample
20441
20442
20443 @node Unnamed Fields
20444 @section Unnamed Structure and Union Fields
20445 @cindex @code{struct}
20446 @cindex @code{union}
20447
20448 As permitted by ISO C11 and for compatibility with other compilers,
20449 GCC allows you to define
20450 a structure or union that contains, as fields, structures and unions
20451 without names. For example:
20452
20453 @smallexample
20454 struct @{
20455 int a;
20456 union @{
20457 int b;
20458 float c;
20459 @};
20460 int d;
20461 @} foo;
20462 @end smallexample
20463
20464 @noindent
20465 In this example, you are able to access members of the unnamed
20466 union with code like @samp{foo.b}. Note that only unnamed structs and
20467 unions are allowed, you may not have, for example, an unnamed
20468 @code{int}.
20469
20470 You must never create such structures that cause ambiguous field definitions.
20471 For example, in this structure:
20472
20473 @smallexample
20474 struct @{
20475 int a;
20476 struct @{
20477 int a;
20478 @};
20479 @} foo;
20480 @end smallexample
20481
20482 @noindent
20483 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
20484 The compiler gives errors for such constructs.
20485
20486 @opindex fms-extensions
20487 Unless @option{-fms-extensions} is used, the unnamed field must be a
20488 structure or union definition without a tag (for example, @samp{struct
20489 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
20490 also be a definition with a tag such as @samp{struct foo @{ int a;
20491 @};}, a reference to a previously defined structure or union such as
20492 @samp{struct foo;}, or a reference to a @code{typedef} name for a
20493 previously defined structure or union type.
20494
20495 @opindex fplan9-extensions
20496 The option @option{-fplan9-extensions} enables
20497 @option{-fms-extensions} as well as two other extensions. First, a
20498 pointer to a structure is automatically converted to a pointer to an
20499 anonymous field for assignments and function calls. For example:
20500
20501 @smallexample
20502 struct s1 @{ int a; @};
20503 struct s2 @{ struct s1; @};
20504 extern void f1 (struct s1 *);
20505 void f2 (struct s2 *p) @{ f1 (p); @}
20506 @end smallexample
20507
20508 @noindent
20509 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
20510 converted into a pointer to the anonymous field.
20511
20512 Second, when the type of an anonymous field is a @code{typedef} for a
20513 @code{struct} or @code{union}, code may refer to the field using the
20514 name of the @code{typedef}.
20515
20516 @smallexample
20517 typedef struct @{ int a; @} s1;
20518 struct s2 @{ s1; @};
20519 s1 f1 (struct s2 *p) @{ return p->s1; @}
20520 @end smallexample
20521
20522 These usages are only permitted when they are not ambiguous.
20523
20524 @node Thread-Local
20525 @section Thread-Local Storage
20526 @cindex Thread-Local Storage
20527 @cindex @acronym{TLS}
20528 @cindex @code{__thread}
20529
20530 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
20531 are allocated such that there is one instance of the variable per extant
20532 thread. The runtime model GCC uses to implement this originates
20533 in the IA-64 processor-specific ABI, but has since been migrated
20534 to other processors as well. It requires significant support from
20535 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
20536 system libraries (@file{libc.so} and @file{libpthread.so}), so it
20537 is not available everywhere.
20538
20539 At the user level, the extension is visible with a new storage
20540 class keyword: @code{__thread}. For example:
20541
20542 @smallexample
20543 __thread int i;
20544 extern __thread struct state s;
20545 static __thread char *p;
20546 @end smallexample
20547
20548 The @code{__thread} specifier may be used alone, with the @code{extern}
20549 or @code{static} specifiers, but with no other storage class specifier.
20550 When used with @code{extern} or @code{static}, @code{__thread} must appear
20551 immediately after the other storage class specifier.
20552
20553 The @code{__thread} specifier may be applied to any global, file-scoped
20554 static, function-scoped static, or static data member of a class. It may
20555 not be applied to block-scoped automatic or non-static data member.
20556
20557 When the address-of operator is applied to a thread-local variable, it is
20558 evaluated at run time and returns the address of the current thread's
20559 instance of that variable. An address so obtained may be used by any
20560 thread. When a thread terminates, any pointers to thread-local variables
20561 in that thread become invalid.
20562
20563 No static initialization may refer to the address of a thread-local variable.
20564
20565 In C++, if an initializer is present for a thread-local variable, it must
20566 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
20567 standard.
20568
20569 See @uref{http://www.akkadia.org/drepper/tls.pdf,
20570 ELF Handling For Thread-Local Storage} for a detailed explanation of
20571 the four thread-local storage addressing models, and how the runtime
20572 is expected to function.
20573
20574 @menu
20575 * C99 Thread-Local Edits::
20576 * C++98 Thread-Local Edits::
20577 @end menu
20578
20579 @node C99 Thread-Local Edits
20580 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
20581
20582 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
20583 that document the exact semantics of the language extension.
20584
20585 @itemize @bullet
20586 @item
20587 @cite{5.1.2 Execution environments}
20588
20589 Add new text after paragraph 1
20590
20591 @quotation
20592 Within either execution environment, a @dfn{thread} is a flow of
20593 control within a program. It is implementation defined whether
20594 or not there may be more than one thread associated with a program.
20595 It is implementation defined how threads beyond the first are
20596 created, the name and type of the function called at thread
20597 startup, and how threads may be terminated. However, objects
20598 with thread storage duration shall be initialized before thread
20599 startup.
20600 @end quotation
20601
20602 @item
20603 @cite{6.2.4 Storage durations of objects}
20604
20605 Add new text before paragraph 3
20606
20607 @quotation
20608 An object whose identifier is declared with the storage-class
20609 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
20610 Its lifetime is the entire execution of the thread, and its
20611 stored value is initialized only once, prior to thread startup.
20612 @end quotation
20613
20614 @item
20615 @cite{6.4.1 Keywords}
20616
20617 Add @code{__thread}.
20618
20619 @item
20620 @cite{6.7.1 Storage-class specifiers}
20621
20622 Add @code{__thread} to the list of storage class specifiers in
20623 paragraph 1.
20624
20625 Change paragraph 2 to
20626
20627 @quotation
20628 With the exception of @code{__thread}, at most one storage-class
20629 specifier may be given [@dots{}]. The @code{__thread} specifier may
20630 be used alone, or immediately following @code{extern} or
20631 @code{static}.
20632 @end quotation
20633
20634 Add new text after paragraph 6
20635
20636 @quotation
20637 The declaration of an identifier for a variable that has
20638 block scope that specifies @code{__thread} shall also
20639 specify either @code{extern} or @code{static}.
20640
20641 The @code{__thread} specifier shall be used only with
20642 variables.
20643 @end quotation
20644 @end itemize
20645
20646 @node C++98 Thread-Local Edits
20647 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
20648
20649 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
20650 that document the exact semantics of the language extension.
20651
20652 @itemize @bullet
20653 @item
20654 @b{[intro.execution]}
20655
20656 New text after paragraph 4
20657
20658 @quotation
20659 A @dfn{thread} is a flow of control within the abstract machine.
20660 It is implementation defined whether or not there may be more than
20661 one thread.
20662 @end quotation
20663
20664 New text after paragraph 7
20665
20666 @quotation
20667 It is unspecified whether additional action must be taken to
20668 ensure when and whether side effects are visible to other threads.
20669 @end quotation
20670
20671 @item
20672 @b{[lex.key]}
20673
20674 Add @code{__thread}.
20675
20676 @item
20677 @b{[basic.start.main]}
20678
20679 Add after paragraph 5
20680
20681 @quotation
20682 The thread that begins execution at the @code{main} function is called
20683 the @dfn{main thread}. It is implementation defined how functions
20684 beginning threads other than the main thread are designated or typed.
20685 A function so designated, as well as the @code{main} function, is called
20686 a @dfn{thread startup function}. It is implementation defined what
20687 happens if a thread startup function returns. It is implementation
20688 defined what happens to other threads when any thread calls @code{exit}.
20689 @end quotation
20690
20691 @item
20692 @b{[basic.start.init]}
20693
20694 Add after paragraph 4
20695
20696 @quotation
20697 The storage for an object of thread storage duration shall be
20698 statically initialized before the first statement of the thread startup
20699 function. An object of thread storage duration shall not require
20700 dynamic initialization.
20701 @end quotation
20702
20703 @item
20704 @b{[basic.start.term]}
20705
20706 Add after paragraph 3
20707
20708 @quotation
20709 The type of an object with thread storage duration shall not have a
20710 non-trivial destructor, nor shall it be an array type whose elements
20711 (directly or indirectly) have non-trivial destructors.
20712 @end quotation
20713
20714 @item
20715 @b{[basic.stc]}
20716
20717 Add ``thread storage duration'' to the list in paragraph 1.
20718
20719 Change paragraph 2
20720
20721 @quotation
20722 Thread, static, and automatic storage durations are associated with
20723 objects introduced by declarations [@dots{}].
20724 @end quotation
20725
20726 Add @code{__thread} to the list of specifiers in paragraph 3.
20727
20728 @item
20729 @b{[basic.stc.thread]}
20730
20731 New section before @b{[basic.stc.static]}
20732
20733 @quotation
20734 The keyword @code{__thread} applied to a non-local object gives the
20735 object thread storage duration.
20736
20737 A local variable or class data member declared both @code{static}
20738 and @code{__thread} gives the variable or member thread storage
20739 duration.
20740 @end quotation
20741
20742 @item
20743 @b{[basic.stc.static]}
20744
20745 Change paragraph 1
20746
20747 @quotation
20748 All objects that have neither thread storage duration, dynamic
20749 storage duration nor are local [@dots{}].
20750 @end quotation
20751
20752 @item
20753 @b{[dcl.stc]}
20754
20755 Add @code{__thread} to the list in paragraph 1.
20756
20757 Change paragraph 1
20758
20759 @quotation
20760 With the exception of @code{__thread}, at most one
20761 @var{storage-class-specifier} shall appear in a given
20762 @var{decl-specifier-seq}. The @code{__thread} specifier may
20763 be used alone, or immediately following the @code{extern} or
20764 @code{static} specifiers. [@dots{}]
20765 @end quotation
20766
20767 Add after paragraph 5
20768
20769 @quotation
20770 The @code{__thread} specifier can be applied only to the names of objects
20771 and to anonymous unions.
20772 @end quotation
20773
20774 @item
20775 @b{[class.mem]}
20776
20777 Add after paragraph 6
20778
20779 @quotation
20780 Non-@code{static} members shall not be @code{__thread}.
20781 @end quotation
20782 @end itemize
20783
20784 @node Binary constants
20785 @section Binary Constants using the @samp{0b} Prefix
20786 @cindex Binary constants using the @samp{0b} prefix
20787
20788 Integer constants can be written as binary constants, consisting of a
20789 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
20790 @samp{0B}. This is particularly useful in environments that operate a
20791 lot on the bit level (like microcontrollers).
20792
20793 The following statements are identical:
20794
20795 @smallexample
20796 i = 42;
20797 i = 0x2a;
20798 i = 052;
20799 i = 0b101010;
20800 @end smallexample
20801
20802 The type of these constants follows the same rules as for octal or
20803 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
20804 can be applied.
20805
20806 @node C++ Extensions
20807 @chapter Extensions to the C++ Language
20808 @cindex extensions, C++ language
20809 @cindex C++ language extensions
20810
20811 The GNU compiler provides these extensions to the C++ language (and you
20812 can also use most of the C language extensions in your C++ programs). If you
20813 want to write code that checks whether these features are available, you can
20814 test for the GNU compiler the same way as for C programs: check for a
20815 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
20816 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
20817 Predefined Macros,cpp,The GNU C Preprocessor}).
20818
20819 @menu
20820 * C++ Volatiles:: What constitutes an access to a volatile object.
20821 * Restricted Pointers:: C99 restricted pointers and references.
20822 * Vague Linkage:: Where G++ puts inlines, vtables and such.
20823 * C++ Interface:: You can use a single C++ header file for both
20824 declarations and definitions.
20825 * Template Instantiation:: Methods for ensuring that exactly one copy of
20826 each needed template instantiation is emitted.
20827 * Bound member functions:: You can extract a function pointer to the
20828 method denoted by a @samp{->*} or @samp{.*} expression.
20829 * C++ Attributes:: Variable, function, and type attributes for C++ only.
20830 * Function Multiversioning:: Declaring multiple function versions.
20831 * Namespace Association:: Strong using-directives for namespace association.
20832 * Type Traits:: Compiler support for type traits.
20833 * C++ Concepts:: Improved support for generic programming.
20834 * Java Exceptions:: Tweaking exception handling to work with Java.
20835 * Deprecated Features:: Things will disappear from G++.
20836 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
20837 @end menu
20838
20839 @node C++ Volatiles
20840 @section When is a Volatile C++ Object Accessed?
20841 @cindex accessing volatiles
20842 @cindex volatile read
20843 @cindex volatile write
20844 @cindex volatile access
20845
20846 The C++ standard differs from the C standard in its treatment of
20847 volatile objects. It fails to specify what constitutes a volatile
20848 access, except to say that C++ should behave in a similar manner to C
20849 with respect to volatiles, where possible. However, the different
20850 lvalueness of expressions between C and C++ complicate the behavior.
20851 G++ behaves the same as GCC for volatile access, @xref{C
20852 Extensions,,Volatiles}, for a description of GCC's behavior.
20853
20854 The C and C++ language specifications differ when an object is
20855 accessed in a void context:
20856
20857 @smallexample
20858 volatile int *src = @var{somevalue};
20859 *src;
20860 @end smallexample
20861
20862 The C++ standard specifies that such expressions do not undergo lvalue
20863 to rvalue conversion, and that the type of the dereferenced object may
20864 be incomplete. The C++ standard does not specify explicitly that it
20865 is lvalue to rvalue conversion that is responsible for causing an
20866 access. There is reason to believe that it is, because otherwise
20867 certain simple expressions become undefined. However, because it
20868 would surprise most programmers, G++ treats dereferencing a pointer to
20869 volatile object of complete type as GCC would do for an equivalent
20870 type in C@. When the object has incomplete type, G++ issues a
20871 warning; if you wish to force an error, you must force a conversion to
20872 rvalue with, for instance, a static cast.
20873
20874 When using a reference to volatile, G++ does not treat equivalent
20875 expressions as accesses to volatiles, but instead issues a warning that
20876 no volatile is accessed. The rationale for this is that otherwise it
20877 becomes difficult to determine where volatile access occur, and not
20878 possible to ignore the return value from functions returning volatile
20879 references. Again, if you wish to force a read, cast the reference to
20880 an rvalue.
20881
20882 G++ implements the same behavior as GCC does when assigning to a
20883 volatile object---there is no reread of the assigned-to object, the
20884 assigned rvalue is reused. Note that in C++ assignment expressions
20885 are lvalues, and if used as an lvalue, the volatile object is
20886 referred to. For instance, @var{vref} refers to @var{vobj}, as
20887 expected, in the following example:
20888
20889 @smallexample
20890 volatile int vobj;
20891 volatile int &vref = vobj = @var{something};
20892 @end smallexample
20893
20894 @node Restricted Pointers
20895 @section Restricting Pointer Aliasing
20896 @cindex restricted pointers
20897 @cindex restricted references
20898 @cindex restricted this pointer
20899
20900 As with the C front end, G++ understands the C99 feature of restricted pointers,
20901 specified with the @code{__restrict__}, or @code{__restrict} type
20902 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
20903 language flag, @code{restrict} is not a keyword in C++.
20904
20905 In addition to allowing restricted pointers, you can specify restricted
20906 references, which indicate that the reference is not aliased in the local
20907 context.
20908
20909 @smallexample
20910 void fn (int *__restrict__ rptr, int &__restrict__ rref)
20911 @{
20912 /* @r{@dots{}} */
20913 @}
20914 @end smallexample
20915
20916 @noindent
20917 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
20918 @var{rref} refers to a (different) unaliased integer.
20919
20920 You may also specify whether a member function's @var{this} pointer is
20921 unaliased by using @code{__restrict__} as a member function qualifier.
20922
20923 @smallexample
20924 void T::fn () __restrict__
20925 @{
20926 /* @r{@dots{}} */
20927 @}
20928 @end smallexample
20929
20930 @noindent
20931 Within the body of @code{T::fn}, @var{this} has the effective
20932 definition @code{T *__restrict__ const this}. Notice that the
20933 interpretation of a @code{__restrict__} member function qualifier is
20934 different to that of @code{const} or @code{volatile} qualifier, in that it
20935 is applied to the pointer rather than the object. This is consistent with
20936 other compilers that implement restricted pointers.
20937
20938 As with all outermost parameter qualifiers, @code{__restrict__} is
20939 ignored in function definition matching. This means you only need to
20940 specify @code{__restrict__} in a function definition, rather than
20941 in a function prototype as well.
20942
20943 @node Vague Linkage
20944 @section Vague Linkage
20945 @cindex vague linkage
20946
20947 There are several constructs in C++ that require space in the object
20948 file but are not clearly tied to a single translation unit. We say that
20949 these constructs have ``vague linkage''. Typically such constructs are
20950 emitted wherever they are needed, though sometimes we can be more
20951 clever.
20952
20953 @table @asis
20954 @item Inline Functions
20955 Inline functions are typically defined in a header file which can be
20956 included in many different compilations. Hopefully they can usually be
20957 inlined, but sometimes an out-of-line copy is necessary, if the address
20958 of the function is taken or if inlining fails. In general, we emit an
20959 out-of-line copy in all translation units where one is needed. As an
20960 exception, we only emit inline virtual functions with the vtable, since
20961 it always requires a copy.
20962
20963 Local static variables and string constants used in an inline function
20964 are also considered to have vague linkage, since they must be shared
20965 between all inlined and out-of-line instances of the function.
20966
20967 @item VTables
20968 @cindex vtable
20969 C++ virtual functions are implemented in most compilers using a lookup
20970 table, known as a vtable. The vtable contains pointers to the virtual
20971 functions provided by a class, and each object of the class contains a
20972 pointer to its vtable (or vtables, in some multiple-inheritance
20973 situations). If the class declares any non-inline, non-pure virtual
20974 functions, the first one is chosen as the ``key method'' for the class,
20975 and the vtable is only emitted in the translation unit where the key
20976 method is defined.
20977
20978 @emph{Note:} If the chosen key method is later defined as inline, the
20979 vtable is still emitted in every translation unit that defines it.
20980 Make sure that any inline virtuals are declared inline in the class
20981 body, even if they are not defined there.
20982
20983 @item @code{type_info} objects
20984 @cindex @code{type_info}
20985 @cindex RTTI
20986 C++ requires information about types to be written out in order to
20987 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
20988 For polymorphic classes (classes with virtual functions), the @samp{type_info}
20989 object is written out along with the vtable so that @samp{dynamic_cast}
20990 can determine the dynamic type of a class object at run time. For all
20991 other types, we write out the @samp{type_info} object when it is used: when
20992 applying @samp{typeid} to an expression, throwing an object, or
20993 referring to a type in a catch clause or exception specification.
20994
20995 @item Template Instantiations
20996 Most everything in this section also applies to template instantiations,
20997 but there are other options as well.
20998 @xref{Template Instantiation,,Where's the Template?}.
20999
21000 @end table
21001
21002 When used with GNU ld version 2.8 or later on an ELF system such as
21003 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
21004 these constructs will be discarded at link time. This is known as
21005 COMDAT support.
21006
21007 On targets that don't support COMDAT, but do support weak symbols, GCC
21008 uses them. This way one copy overrides all the others, but
21009 the unused copies still take up space in the executable.
21010
21011 For targets that do not support either COMDAT or weak symbols,
21012 most entities with vague linkage are emitted as local symbols to
21013 avoid duplicate definition errors from the linker. This does not happen
21014 for local statics in inlines, however, as having multiple copies
21015 almost certainly breaks things.
21016
21017 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
21018 another way to control placement of these constructs.
21019
21020 @node C++ Interface
21021 @section C++ Interface and Implementation Pragmas
21022
21023 @cindex interface and implementation headers, C++
21024 @cindex C++ interface and implementation headers
21025 @cindex pragmas, interface and implementation
21026
21027 @code{#pragma interface} and @code{#pragma implementation} provide the
21028 user with a way of explicitly directing the compiler to emit entities
21029 with vague linkage (and debugging information) in a particular
21030 translation unit.
21031
21032 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
21033 by COMDAT support and the ``key method'' heuristic
21034 mentioned in @ref{Vague Linkage}. Using them can actually cause your
21035 program to grow due to unnecessary out-of-line copies of inline
21036 functions.
21037
21038 @table @code
21039 @item #pragma interface
21040 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
21041 @kindex #pragma interface
21042 Use this directive in @emph{header files} that define object classes, to save
21043 space in most of the object files that use those classes. Normally,
21044 local copies of certain information (backup copies of inline member
21045 functions, debugging information, and the internal tables that implement
21046 virtual functions) must be kept in each object file that includes class
21047 definitions. You can use this pragma to avoid such duplication. When a
21048 header file containing @samp{#pragma interface} is included in a
21049 compilation, this auxiliary information is not generated (unless
21050 the main input source file itself uses @samp{#pragma implementation}).
21051 Instead, the object files contain references to be resolved at link
21052 time.
21053
21054 The second form of this directive is useful for the case where you have
21055 multiple headers with the same name in different directories. If you
21056 use this form, you must specify the same string to @samp{#pragma
21057 implementation}.
21058
21059 @item #pragma implementation
21060 @itemx #pragma implementation "@var{objects}.h"
21061 @kindex #pragma implementation
21062 Use this pragma in a @emph{main input file}, when you want full output from
21063 included header files to be generated (and made globally visible). The
21064 included header file, in turn, should use @samp{#pragma interface}.
21065 Backup copies of inline member functions, debugging information, and the
21066 internal tables used to implement virtual functions are all generated in
21067 implementation files.
21068
21069 @cindex implied @code{#pragma implementation}
21070 @cindex @code{#pragma implementation}, implied
21071 @cindex naming convention, implementation headers
21072 If you use @samp{#pragma implementation} with no argument, it applies to
21073 an include file with the same basename@footnote{A file's @dfn{basename}
21074 is the name stripped of all leading path information and of trailing
21075 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
21076 file. For example, in @file{allclass.cc}, giving just
21077 @samp{#pragma implementation}
21078 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
21079
21080 Use the string argument if you want a single implementation file to
21081 include code from multiple header files. (You must also use
21082 @samp{#include} to include the header file; @samp{#pragma
21083 implementation} only specifies how to use the file---it doesn't actually
21084 include it.)
21085
21086 There is no way to split up the contents of a single header file into
21087 multiple implementation files.
21088 @end table
21089
21090 @cindex inlining and C++ pragmas
21091 @cindex C++ pragmas, effect on inlining
21092 @cindex pragmas in C++, effect on inlining
21093 @samp{#pragma implementation} and @samp{#pragma interface} also have an
21094 effect on function inlining.
21095
21096 If you define a class in a header file marked with @samp{#pragma
21097 interface}, the effect on an inline function defined in that class is
21098 similar to an explicit @code{extern} declaration---the compiler emits
21099 no code at all to define an independent version of the function. Its
21100 definition is used only for inlining with its callers.
21101
21102 @opindex fno-implement-inlines
21103 Conversely, when you include the same header file in a main source file
21104 that declares it as @samp{#pragma implementation}, the compiler emits
21105 code for the function itself; this defines a version of the function
21106 that can be found via pointers (or by callers compiled without
21107 inlining). If all calls to the function can be inlined, you can avoid
21108 emitting the function by compiling with @option{-fno-implement-inlines}.
21109 If any calls are not inlined, you will get linker errors.
21110
21111 @node Template Instantiation
21112 @section Where's the Template?
21113 @cindex template instantiation
21114
21115 C++ templates were the first language feature to require more
21116 intelligence from the environment than was traditionally found on a UNIX
21117 system. Somehow the compiler and linker have to make sure that each
21118 template instance occurs exactly once in the executable if it is needed,
21119 and not at all otherwise. There are two basic approaches to this
21120 problem, which are referred to as the Borland model and the Cfront model.
21121
21122 @table @asis
21123 @item Borland model
21124 Borland C++ solved the template instantiation problem by adding the code
21125 equivalent of common blocks to their linker; the compiler emits template
21126 instances in each translation unit that uses them, and the linker
21127 collapses them together. The advantage of this model is that the linker
21128 only has to consider the object files themselves; there is no external
21129 complexity to worry about. The disadvantage is that compilation time
21130 is increased because the template code is being compiled repeatedly.
21131 Code written for this model tends to include definitions of all
21132 templates in the header file, since they must be seen to be
21133 instantiated.
21134
21135 @item Cfront model
21136 The AT&T C++ translator, Cfront, solved the template instantiation
21137 problem by creating the notion of a template repository, an
21138 automatically maintained place where template instances are stored. A
21139 more modern version of the repository works as follows: As individual
21140 object files are built, the compiler places any template definitions and
21141 instantiations encountered in the repository. At link time, the link
21142 wrapper adds in the objects in the repository and compiles any needed
21143 instances that were not previously emitted. The advantages of this
21144 model are more optimal compilation speed and the ability to use the
21145 system linker; to implement the Borland model a compiler vendor also
21146 needs to replace the linker. The disadvantages are vastly increased
21147 complexity, and thus potential for error; for some code this can be
21148 just as transparent, but in practice it can been very difficult to build
21149 multiple programs in one directory and one program in multiple
21150 directories. Code written for this model tends to separate definitions
21151 of non-inline member templates into a separate file, which should be
21152 compiled separately.
21153 @end table
21154
21155 G++ implements the Borland model on targets where the linker supports it,
21156 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
21157 Otherwise G++ implements neither automatic model.
21158
21159 You have the following options for dealing with template instantiations:
21160
21161 @enumerate
21162 @item
21163 Do nothing. Code written for the Borland model works fine, but
21164 each translation unit contains instances of each of the templates it
21165 uses. The duplicate instances will be discarded by the linker, but in
21166 a large program, this can lead to an unacceptable amount of code
21167 duplication in object files or shared libraries.
21168
21169 Duplicate instances of a template can be avoided by defining an explicit
21170 instantiation in one object file, and preventing the compiler from doing
21171 implicit instantiations in any other object files by using an explicit
21172 instantiation declaration, using the @code{extern template} syntax:
21173
21174 @smallexample
21175 extern template int max (int, int);
21176 @end smallexample
21177
21178 This syntax is defined in the C++ 2011 standard, but has been supported by
21179 G++ and other compilers since well before 2011.
21180
21181 Explicit instantiations can be used for the largest or most frequently
21182 duplicated instances, without having to know exactly which other instances
21183 are used in the rest of the program. You can scatter the explicit
21184 instantiations throughout your program, perhaps putting them in the
21185 translation units where the instances are used or the translation units
21186 that define the templates themselves; you can put all of the explicit
21187 instantiations you need into one big file; or you can create small files
21188 like
21189
21190 @smallexample
21191 #include "Foo.h"
21192 #include "Foo.cc"
21193
21194 template class Foo<int>;
21195 template ostream& operator <<
21196 (ostream&, const Foo<int>&);
21197 @end smallexample
21198
21199 @noindent
21200 for each of the instances you need, and create a template instantiation
21201 library from those.
21202
21203 This is the simplest option, but also offers flexibility and
21204 fine-grained control when necessary. It is also the most portable
21205 alternative and programs using this approach will work with most modern
21206 compilers.
21207
21208 @item
21209 @opindex frepo
21210 Compile your template-using code with @option{-frepo}. The compiler
21211 generates files with the extension @samp{.rpo} listing all of the
21212 template instantiations used in the corresponding object files that
21213 could be instantiated there; the link wrapper, @samp{collect2},
21214 then updates the @samp{.rpo} files to tell the compiler where to place
21215 those instantiations and rebuild any affected object files. The
21216 link-time overhead is negligible after the first pass, as the compiler
21217 continues to place the instantiations in the same files.
21218
21219 This can be a suitable option for application code written for the Borland
21220 model, as it usually just works. Code written for the Cfront model
21221 needs to be modified so that the template definitions are available at
21222 one or more points of instantiation; usually this is as simple as adding
21223 @code{#include <tmethods.cc>} to the end of each template header.
21224
21225 For library code, if you want the library to provide all of the template
21226 instantiations it needs, just try to link all of its object files
21227 together; the link will fail, but cause the instantiations to be
21228 generated as a side effect. Be warned, however, that this may cause
21229 conflicts if multiple libraries try to provide the same instantiations.
21230 For greater control, use explicit instantiation as described in the next
21231 option.
21232
21233 @item
21234 @opindex fno-implicit-templates
21235 Compile your code with @option{-fno-implicit-templates} to disable the
21236 implicit generation of template instances, and explicitly instantiate
21237 all the ones you use. This approach requires more knowledge of exactly
21238 which instances you need than do the others, but it's less
21239 mysterious and allows greater control if you want to ensure that only
21240 the intended instances are used.
21241
21242 If you are using Cfront-model code, you can probably get away with not
21243 using @option{-fno-implicit-templates} when compiling files that don't
21244 @samp{#include} the member template definitions.
21245
21246 If you use one big file to do the instantiations, you may want to
21247 compile it without @option{-fno-implicit-templates} so you get all of the
21248 instances required by your explicit instantiations (but not by any
21249 other files) without having to specify them as well.
21250
21251 In addition to forward declaration of explicit instantiations
21252 (with @code{extern}), G++ has extended the template instantiation
21253 syntax to support instantiation of the compiler support data for a
21254 template class (i.e.@: the vtable) without instantiating any of its
21255 members (with @code{inline}), and instantiation of only the static data
21256 members of a template class, without the support data or member
21257 functions (with @code{static}):
21258
21259 @smallexample
21260 inline template class Foo<int>;
21261 static template class Foo<int>;
21262 @end smallexample
21263 @end enumerate
21264
21265 @node Bound member functions
21266 @section Extracting the Function Pointer from a Bound Pointer to Member Function
21267 @cindex pmf
21268 @cindex pointer to member function
21269 @cindex bound pointer to member function
21270
21271 In C++, pointer to member functions (PMFs) are implemented using a wide
21272 pointer of sorts to handle all the possible call mechanisms; the PMF
21273 needs to store information about how to adjust the @samp{this} pointer,
21274 and if the function pointed to is virtual, where to find the vtable, and
21275 where in the vtable to look for the member function. If you are using
21276 PMFs in an inner loop, you should really reconsider that decision. If
21277 that is not an option, you can extract the pointer to the function that
21278 would be called for a given object/PMF pair and call it directly inside
21279 the inner loop, to save a bit of time.
21280
21281 Note that you still pay the penalty for the call through a
21282 function pointer; on most modern architectures, such a call defeats the
21283 branch prediction features of the CPU@. This is also true of normal
21284 virtual function calls.
21285
21286 The syntax for this extension is
21287
21288 @smallexample
21289 extern A a;
21290 extern int (A::*fp)();
21291 typedef int (*fptr)(A *);
21292
21293 fptr p = (fptr)(a.*fp);
21294 @end smallexample
21295
21296 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
21297 no object is needed to obtain the address of the function. They can be
21298 converted to function pointers directly:
21299
21300 @smallexample
21301 fptr p1 = (fptr)(&A::foo);
21302 @end smallexample
21303
21304 @opindex Wno-pmf-conversions
21305 You must specify @option{-Wno-pmf-conversions} to use this extension.
21306
21307 @node C++ Attributes
21308 @section C++-Specific Variable, Function, and Type Attributes
21309
21310 Some attributes only make sense for C++ programs.
21311
21312 @table @code
21313 @item abi_tag ("@var{tag}", ...)
21314 @cindex @code{abi_tag} function attribute
21315 @cindex @code{abi_tag} variable attribute
21316 @cindex @code{abi_tag} type attribute
21317 The @code{abi_tag} attribute can be applied to a function, variable, or class
21318 declaration. It modifies the mangled name of the entity to
21319 incorporate the tag name, in order to distinguish the function or
21320 class from an earlier version with a different ABI; perhaps the class
21321 has changed size, or the function has a different return type that is
21322 not encoded in the mangled name.
21323
21324 The attribute can also be applied to an inline namespace, but does not
21325 affect the mangled name of the namespace; in this case it is only used
21326 for @option{-Wabi-tag} warnings and automatic tagging of functions and
21327 variables. Tagging inline namespaces is generally preferable to
21328 tagging individual declarations, but the latter is sometimes
21329 necessary, such as when only certain members of a class need to be
21330 tagged.
21331
21332 The argument can be a list of strings of arbitrary length. The
21333 strings are sorted on output, so the order of the list is
21334 unimportant.
21335
21336 A redeclaration of an entity must not add new ABI tags,
21337 since doing so would change the mangled name.
21338
21339 The ABI tags apply to a name, so all instantiations and
21340 specializations of a template have the same tags. The attribute will
21341 be ignored if applied to an explicit specialization or instantiation.
21342
21343 The @option{-Wabi-tag} flag enables a warning about a class which does
21344 not have all the ABI tags used by its subobjects and virtual functions; for users with code
21345 that needs to coexist with an earlier ABI, using this option can help
21346 to find all affected types that need to be tagged.
21347
21348 When a type involving an ABI tag is used as the type of a variable or
21349 return type of a function where that tag is not already present in the
21350 signature of the function, the tag is automatically applied to the
21351 variable or function. @option{-Wabi-tag} also warns about this
21352 situation; this warning can be avoided by explicitly tagging the
21353 variable or function or moving it into a tagged inline namespace.
21354
21355 @item init_priority (@var{priority})
21356 @cindex @code{init_priority} variable attribute
21357
21358 In Standard C++, objects defined at namespace scope are guaranteed to be
21359 initialized in an order in strict accordance with that of their definitions
21360 @emph{in a given translation unit}. No guarantee is made for initializations
21361 across translation units. However, GNU C++ allows users to control the
21362 order of initialization of objects defined at namespace scope with the
21363 @code{init_priority} attribute by specifying a relative @var{priority},
21364 a constant integral expression currently bounded between 101 and 65535
21365 inclusive. Lower numbers indicate a higher priority.
21366
21367 In the following example, @code{A} would normally be created before
21368 @code{B}, but the @code{init_priority} attribute reverses that order:
21369
21370 @smallexample
21371 Some_Class A __attribute__ ((init_priority (2000)));
21372 Some_Class B __attribute__ ((init_priority (543)));
21373 @end smallexample
21374
21375 @noindent
21376 Note that the particular values of @var{priority} do not matter; only their
21377 relative ordering.
21378
21379 @item java_interface
21380 @cindex @code{java_interface} type attribute
21381
21382 This type attribute informs C++ that the class is a Java interface. It may
21383 only be applied to classes declared within an @code{extern "Java"} block.
21384 Calls to methods declared in this interface are dispatched using GCJ's
21385 interface table mechanism, instead of regular virtual table dispatch.
21386
21387 @item warn_unused
21388 @cindex @code{warn_unused} type attribute
21389
21390 For C++ types with non-trivial constructors and/or destructors it is
21391 impossible for the compiler to determine whether a variable of this
21392 type is truly unused if it is not referenced. This type attribute
21393 informs the compiler that variables of this type should be warned
21394 about if they appear to be unused, just like variables of fundamental
21395 types.
21396
21397 This attribute is appropriate for types which just represent a value,
21398 such as @code{std::string}; it is not appropriate for types which
21399 control a resource, such as @code{std::lock_guard}.
21400
21401 This attribute is also accepted in C, but it is unnecessary because C
21402 does not have constructors or destructors.
21403
21404 @end table
21405
21406 See also @ref{Namespace Association}.
21407
21408 @node Function Multiversioning
21409 @section Function Multiversioning
21410 @cindex function versions
21411
21412 With the GNU C++ front end, for x86 targets, you may specify multiple
21413 versions of a function, where each function is specialized for a
21414 specific target feature. At runtime, the appropriate version of the
21415 function is automatically executed depending on the characteristics of
21416 the execution platform. Here is an example.
21417
21418 @smallexample
21419 __attribute__ ((target ("default")))
21420 int foo ()
21421 @{
21422 // The default version of foo.
21423 return 0;
21424 @}
21425
21426 __attribute__ ((target ("sse4.2")))
21427 int foo ()
21428 @{
21429 // foo version for SSE4.2
21430 return 1;
21431 @}
21432
21433 __attribute__ ((target ("arch=atom")))
21434 int foo ()
21435 @{
21436 // foo version for the Intel ATOM processor
21437 return 2;
21438 @}
21439
21440 __attribute__ ((target ("arch=amdfam10")))
21441 int foo ()
21442 @{
21443 // foo version for the AMD Family 0x10 processors.
21444 return 3;
21445 @}
21446
21447 int main ()
21448 @{
21449 int (*p)() = &foo;
21450 assert ((*p) () == foo ());
21451 return 0;
21452 @}
21453 @end smallexample
21454
21455 In the above example, four versions of function foo are created. The
21456 first version of foo with the target attribute "default" is the default
21457 version. This version gets executed when no other target specific
21458 version qualifies for execution on a particular platform. A new version
21459 of foo is created by using the same function signature but with a
21460 different target string. Function foo is called or a pointer to it is
21461 taken just like a regular function. GCC takes care of doing the
21462 dispatching to call the right version at runtime. Refer to the
21463 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
21464 Function Multiversioning} for more details.
21465
21466 @node Namespace Association
21467 @section Namespace Association
21468
21469 @strong{Caution:} The semantics of this extension are equivalent
21470 to C++ 2011 inline namespaces. Users should use inline namespaces
21471 instead as this extension will be removed in future versions of G++.
21472
21473 A using-directive with @code{__attribute ((strong))} is stronger
21474 than a normal using-directive in two ways:
21475
21476 @itemize @bullet
21477 @item
21478 Templates from the used namespace can be specialized and explicitly
21479 instantiated as though they were members of the using namespace.
21480
21481 @item
21482 The using namespace is considered an associated namespace of all
21483 templates in the used namespace for purposes of argument-dependent
21484 name lookup.
21485 @end itemize
21486
21487 The used namespace must be nested within the using namespace so that
21488 normal unqualified lookup works properly.
21489
21490 This is useful for composing a namespace transparently from
21491 implementation namespaces. For example:
21492
21493 @smallexample
21494 namespace std @{
21495 namespace debug @{
21496 template <class T> struct A @{ @};
21497 @}
21498 using namespace debug __attribute ((__strong__));
21499 template <> struct A<int> @{ @}; // @r{OK to specialize}
21500
21501 template <class T> void f (A<T>);
21502 @}
21503
21504 int main()
21505 @{
21506 f (std::A<float>()); // @r{lookup finds} std::f
21507 f (std::A<int>());
21508 @}
21509 @end smallexample
21510
21511 @node Type Traits
21512 @section Type Traits
21513
21514 The C++ front end implements syntactic extensions that allow
21515 compile-time determination of
21516 various characteristics of a type (or of a
21517 pair of types).
21518
21519 @table @code
21520 @item __has_nothrow_assign (type)
21521 If @code{type} is const qualified or is a reference type then the trait is
21522 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
21523 is true, else if @code{type} is a cv class or union type with copy assignment
21524 operators that are known not to throw an exception then the trait is true,
21525 else it is false. Requires: @code{type} shall be a complete type,
21526 (possibly cv-qualified) @code{void}, or an array of unknown bound.
21527
21528 @item __has_nothrow_copy (type)
21529 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
21530 @code{type} is a cv class or union type with copy constructors that
21531 are known not to throw an exception then the trait is true, else it is false.
21532 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
21533 @code{void}, or an array of unknown bound.
21534
21535 @item __has_nothrow_constructor (type)
21536 If @code{__has_trivial_constructor (type)} is true then the trait is
21537 true, else if @code{type} is a cv class or union type (or array
21538 thereof) with a default constructor that is known not to throw an
21539 exception then the trait is true, else it is false. Requires:
21540 @code{type} shall be a complete type, (possibly cv-qualified)
21541 @code{void}, or an array of unknown bound.
21542
21543 @item __has_trivial_assign (type)
21544 If @code{type} is const qualified or is a reference type then the trait is
21545 false. Otherwise if @code{__is_pod (type)} is true then the trait is
21546 true, else if @code{type} is a cv class or union type with a trivial
21547 copy assignment ([class.copy]) then the trait is true, else it is
21548 false. Requires: @code{type} shall be a complete type, (possibly
21549 cv-qualified) @code{void}, or an array of unknown bound.
21550
21551 @item __has_trivial_copy (type)
21552 If @code{__is_pod (type)} is true or @code{type} is a reference type
21553 then the trait is true, else if @code{type} is a cv class or union type
21554 with a trivial copy constructor ([class.copy]) then the trait
21555 is true, else it is false. Requires: @code{type} shall be a complete
21556 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21557
21558 @item __has_trivial_constructor (type)
21559 If @code{__is_pod (type)} is true then the trait is true, else if
21560 @code{type} is a cv class or union type (or array thereof) with a
21561 trivial default constructor ([class.ctor]) then the trait is true,
21562 else it is false. Requires: @code{type} shall be a complete
21563 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21564
21565 @item __has_trivial_destructor (type)
21566 If @code{__is_pod (type)} is true or @code{type} is a reference type then
21567 the trait is true, else if @code{type} is a cv class or union type (or
21568 array thereof) with a trivial destructor ([class.dtor]) then the trait
21569 is true, else it is false. Requires: @code{type} shall be a complete
21570 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21571
21572 @item __has_virtual_destructor (type)
21573 If @code{type} is a class type with a virtual destructor
21574 ([class.dtor]) then the trait is true, else it is false. Requires:
21575 @code{type} shall be a complete type, (possibly cv-qualified)
21576 @code{void}, or an array of unknown bound.
21577
21578 @item __is_abstract (type)
21579 If @code{type} is an abstract class ([class.abstract]) then the trait
21580 is true, else it is false. Requires: @code{type} shall be a complete
21581 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21582
21583 @item __is_base_of (base_type, derived_type)
21584 If @code{base_type} is a base class of @code{derived_type}
21585 ([class.derived]) then the trait is true, otherwise it is false.
21586 Top-level cv qualifications of @code{base_type} and
21587 @code{derived_type} are ignored. For the purposes of this trait, a
21588 class type is considered is own base. Requires: if @code{__is_class
21589 (base_type)} and @code{__is_class (derived_type)} are true and
21590 @code{base_type} and @code{derived_type} are not the same type
21591 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
21592 type. A diagnostic is produced if this requirement is not met.
21593
21594 @item __is_class (type)
21595 If @code{type} is a cv class type, and not a union type
21596 ([basic.compound]) the trait is true, else it is false.
21597
21598 @item __is_empty (type)
21599 If @code{__is_class (type)} is false then the trait is false.
21600 Otherwise @code{type} is considered empty if and only if: @code{type}
21601 has no non-static data members, or all non-static data members, if
21602 any, are bit-fields of length 0, and @code{type} has no virtual
21603 members, and @code{type} has no virtual base classes, and @code{type}
21604 has no base classes @code{base_type} for which
21605 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
21606 be a complete type, (possibly cv-qualified) @code{void}, or an array
21607 of unknown bound.
21608
21609 @item __is_enum (type)
21610 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
21611 true, else it is false.
21612
21613 @item __is_literal_type (type)
21614 If @code{type} is a literal type ([basic.types]) the trait is
21615 true, else it is false. Requires: @code{type} shall be a complete type,
21616 (possibly cv-qualified) @code{void}, or an array of unknown bound.
21617
21618 @item __is_pod (type)
21619 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
21620 else it is false. Requires: @code{type} shall be a complete type,
21621 (possibly cv-qualified) @code{void}, or an array of unknown bound.
21622
21623 @item __is_polymorphic (type)
21624 If @code{type} is a polymorphic class ([class.virtual]) then the trait
21625 is true, else it is false. Requires: @code{type} shall be a complete
21626 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21627
21628 @item __is_standard_layout (type)
21629 If @code{type} is a standard-layout type ([basic.types]) the trait is
21630 true, else it is false. Requires: @code{type} shall be a complete
21631 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21632
21633 @item __is_trivial (type)
21634 If @code{type} is a trivial type ([basic.types]) the trait is
21635 true, else it is false. Requires: @code{type} shall be a complete
21636 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
21637
21638 @item __is_union (type)
21639 If @code{type} is a cv union type ([basic.compound]) the trait is
21640 true, else it is false.
21641
21642 @item __underlying_type (type)
21643 The underlying type of @code{type}. Requires: @code{type} shall be
21644 an enumeration type ([dcl.enum]).
21645
21646 @end table
21647
21648
21649 @node C++ Concepts
21650 @section C++ Concepts
21651
21652 C++ concepts provide much-improved support for generic programming. In
21653 particular, they allow the specification of constraints on template arguments.
21654 The constraints are used to extend the usual overloading and partial
21655 specialization capabilities of the language, allowing generic data structures
21656 and algorithms to be ``refined'' based on their properties rather than their
21657 type names.
21658
21659 The following keywords are reserved for concepts.
21660
21661 @table @code
21662 @item assumes
21663 States an expression as an assumption, and if possible, verifies that the
21664 assumption is valid. For example, @code{assume(n > 0)}.
21665
21666 @item axiom
21667 Introduces an axiom definition. Axioms introduce requirements on values.
21668
21669 @item forall
21670 Introduces a universally quantified object in an axiom. For example,
21671 @code{forall (int n) n + 0 == n}).
21672
21673 @item concept
21674 Introduces a concept definition. Concepts are sets of syntactic and semantic
21675 requirements on types and their values.
21676
21677 @item requires
21678 Introduces constraints on template arguments or requirements for a member
21679 function of a class template.
21680
21681 @end table
21682
21683 The front end also exposes a number of internal mechanism that can be used
21684 to simplify the writing of type traits. Note that some of these traits are
21685 likely to be removed in the future.
21686
21687 @table @code
21688 @item __is_same (type1, type2)
21689 A binary type trait: true whenever the type arguments are the same.
21690
21691 @end table
21692
21693
21694 @node Java Exceptions
21695 @section Java Exceptions
21696
21697 The Java language uses a slightly different exception handling model
21698 from C++. Normally, GNU C++ automatically detects when you are
21699 writing C++ code that uses Java exceptions, and handle them
21700 appropriately. However, if C++ code only needs to execute destructors
21701 when Java exceptions are thrown through it, GCC guesses incorrectly.
21702 Sample problematic code is:
21703
21704 @smallexample
21705 struct S @{ ~S(); @};
21706 extern void bar(); // @r{is written in Java, and may throw exceptions}
21707 void foo()
21708 @{
21709 S s;
21710 bar();
21711 @}
21712 @end smallexample
21713
21714 @noindent
21715 The usual effect of an incorrect guess is a link failure, complaining of
21716 a missing routine called @samp{__gxx_personality_v0}.
21717
21718 You can inform the compiler that Java exceptions are to be used in a
21719 translation unit, irrespective of what it might think, by writing
21720 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
21721 @samp{#pragma} must appear before any functions that throw or catch
21722 exceptions, or run destructors when exceptions are thrown through them.
21723
21724 You cannot mix Java and C++ exceptions in the same translation unit. It
21725 is believed to be safe to throw a C++ exception from one file through
21726 another file compiled for the Java exception model, or vice versa, but
21727 there may be bugs in this area.
21728
21729 @node Deprecated Features
21730 @section Deprecated Features
21731
21732 In the past, the GNU C++ compiler was extended to experiment with new
21733 features, at a time when the C++ language was still evolving. Now that
21734 the C++ standard is complete, some of those features are superseded by
21735 superior alternatives. Using the old features might cause a warning in
21736 some cases that the feature will be dropped in the future. In other
21737 cases, the feature might be gone already.
21738
21739 While the list below is not exhaustive, it documents some of the options
21740 that are now deprecated:
21741
21742 @table @code
21743 @item -fexternal-templates
21744 @itemx -falt-external-templates
21745 These are two of the many ways for G++ to implement template
21746 instantiation. @xref{Template Instantiation}. The C++ standard clearly
21747 defines how template definitions have to be organized across
21748 implementation units. G++ has an implicit instantiation mechanism that
21749 should work just fine for standard-conforming code.
21750
21751 @item -fstrict-prototype
21752 @itemx -fno-strict-prototype
21753 Previously it was possible to use an empty prototype parameter list to
21754 indicate an unspecified number of parameters (like C), rather than no
21755 parameters, as C++ demands. This feature has been removed, except where
21756 it is required for backwards compatibility. @xref{Backwards Compatibility}.
21757 @end table
21758
21759 G++ allows a virtual function returning @samp{void *} to be overridden
21760 by one returning a different pointer type. This extension to the
21761 covariant return type rules is now deprecated and will be removed from a
21762 future version.
21763
21764 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
21765 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
21766 and are now removed from G++. Code using these operators should be
21767 modified to use @code{std::min} and @code{std::max} instead.
21768
21769 The named return value extension has been deprecated, and is now
21770 removed from G++.
21771
21772 The use of initializer lists with new expressions has been deprecated,
21773 and is now removed from G++.
21774
21775 Floating and complex non-type template parameters have been deprecated,
21776 and are now removed from G++.
21777
21778 The implicit typename extension has been deprecated and is now
21779 removed from G++.
21780
21781 The use of default arguments in function pointers, function typedefs
21782 and other places where they are not permitted by the standard is
21783 deprecated and will be removed from a future version of G++.
21784
21785 G++ allows floating-point literals to appear in integral constant expressions,
21786 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
21787 This extension is deprecated and will be removed from a future version.
21788
21789 G++ allows static data members of const floating-point type to be declared
21790 with an initializer in a class definition. The standard only allows
21791 initializers for static members of const integral types and const
21792 enumeration types so this extension has been deprecated and will be removed
21793 from a future version.
21794
21795 @node Backwards Compatibility
21796 @section Backwards Compatibility
21797 @cindex Backwards Compatibility
21798 @cindex ARM [Annotated C++ Reference Manual]
21799
21800 Now that there is a definitive ISO standard C++, G++ has a specification
21801 to adhere to. The C++ language evolved over time, and features that
21802 used to be acceptable in previous drafts of the standard, such as the ARM
21803 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
21804 compilation of C++ written to such drafts, G++ contains some backwards
21805 compatibilities. @emph{All such backwards compatibility features are
21806 liable to disappear in future versions of G++.} They should be considered
21807 deprecated. @xref{Deprecated Features}.
21808
21809 @table @code
21810 @item For scope
21811 If a variable is declared at for scope, it used to remain in scope until
21812 the end of the scope that contained the for statement (rather than just
21813 within the for scope). G++ retains this, but issues a warning, if such a
21814 variable is accessed outside the for scope.
21815
21816 @item Implicit C language
21817 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
21818 scope to set the language. On such systems, all header files are
21819 implicitly scoped inside a C language scope. Also, an empty prototype
21820 @code{()} is treated as an unspecified number of arguments, rather
21821 than no arguments, as C++ demands.
21822 @end table
21823
21824 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
21825 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr